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Preface

This book uses MATLAB R© to analyze various applications in mathematics and me-
chanics. The authors hope to encourage engineers and scientists to consider this
modern programming environment as an excellent alternative to languages such as
FORTRAN or C++. MATLAB1 embodies an interactive environment with a high
level programming language supporting both numerical and graphical commands for
two- and three-dimensional data analysis and presentation. The wealth of intrinsic
mathematical commands to handle matrix algebra, Fourier series, differential equa-
tions, and complex-valued functions makes simple calculator operations of many
tasks previously requiring subroutine libraries with cumbersome argument lists.

We analyze problems, drawn from our teaching and research interests, empha-
sizing linear and nonlinear differential equation methods. Linear partial differential
equations and linear matrix differential equations are analyzed using eigenfunctions
and series solutions. Several types of physical problems are considered. Among
these are heat conduction, harmonic response of strings, membranes, beams, and
trusses, geometrical properties of areas and volumes, ßexure and buckling of inde-
terminate beams, elastostatic stress analysis, and multi-dimensional optimization.

Numerical integration of matrix differential equations is used in several examples
illustrating the utility of such methods as well as essential aspects of numerical ap-
proximation. Attention is restricted to the Runge-Kutta method which is adequate to
handle most situations. Space limitation led us to omit some interesting MATLAB
features concerning predictor-corrector methods, stiff systems, and event locations.

This book is not an introductory numerical analysis text. It is most useful as a ref-
erence or a supplementary text in computationally oriented courses emphasizing ap-
plications. The authors have previously solved many of the examples in FORTRAN.
Our MATLAB solutions consume over three hundred pages (over twelve thousand
lines). Although few books published recently present this much code, comparable
FORTRAN versions would probably be signifcantly longer. In fact, the conciseness
of MATLAB was a primary motivation for writing the book.

The programs contain many comments and are intended for study as separate en-
tities without an additional reference. Consequently, some deliberate redundancy

1MATLAB is a registered trademark of The MathWorks, Inc. For additional information contact:
The MathWorks, Inc.
3 Apple Hill Drive

Natick, MA 01760-1500
(508) 647-7000, Fax: (508) 647-7001

Email: info@mathworks.com

© 2003 by Chapman & Hall/CRC



exists between program comments and text discussions. We also list programs in a
style we feel will be helpful to most readers. The source listings show line numbers
adjacent to the MATLAB code. MATLAB code does not use line numbers or permit
goto statements. We have numbered the lines to aid discussions of particular pro-
gram segments. To conserve space, we often place multiple MATLAB statements on
the same line when this does not interrupt the logical ßow.

All of the programs presented are designed to operate under the 6.x version of
MATLAB and Microsoft Windows. Both the text and graphics windows should be
simultaneously visible. A windowed environment is essential for using capabilities
like animation and interactive manipulation of three dimensional Þgures. The source
code for all of the programs in the book is available from the CRC Press website at
http://www.crcpress.com. The program collection is organized using an
independent subdirectory for each of the thirteen chapters.

This third edition incorporates much new material on time dependent solutions of
linear partial differential equations. Animation is used whenever seeing the solution
evolve in time is helpful. Animation illustrates quite well phenomena like wave
propagation in strings and membranes. The interactive zoom and rotation features in
MATLAB are also valuable tools for interpreting graphical output.

Most programs in the book are academic examples, but some problem solutions
are useful as stand-alone analysis tools. Examples include geometrical property cal-
culation, differentiation or integration of splines, Gauss integration of arbitrary order,
and frequency analysis of trusses and membranes.

A chapter on eigenvalue problems presents applications in stress analysis, elastic
stability, and linear system dynamics. A chapter on analytic functions shows the
efÞciency of MATLAB for applying complex valued functions and the Fast Fourier
Transform (FFT) to harmonic and biharmonic functions. Finally, the book concludes
with a chapter applying multidimensional search to several nonlinear programming
problems.

We emphasize that this book is primarily for those concerned with physical appli-
cations. A thorough grasp of Euclidean geometry, Newtonian mechanics, and some
mathematics beyond calculus is essential to understand most of the topics. Finally,
the authors enjoy interacting with students, teachers, and researchers applying ad-
vanced mathematics to real world problems.The availability of economical computer
hardware and the friendly software interface in MATLAB makes computing increas-
ingly attractive to the entire technical community. If we manage to cultivate interest
in MATLAB among engineers who only spend part of their time using computers,
our primary goal will have been achieved.

Howard B. Wilson hwilson@bama.ua.edu
Louis H. Turcotte turcotte@rose-hulman.edu
David Halpern david.halpern@ua.edu

© 2003 by Chapman & Hall/CRC



Contents

1 Introduction
1.1 MATLAB: A Tool for Engineering Analysis
1.2 MATLAB Commands and Related Reference Materials
1.3 Example Problem on Financial Analysis
1.4 Computer Code and Results

1.4.1 Computer Output
1.4.2 Discussion of the MATLAB Code
1.4.3 Code for Financial Problem

2 Elementary Aspects of MATLAB Graphics
2.1 Introduction
2.2 Overview of Graphics
2.3 Example Comparing Polynomial and Spline Interpolation
2.4 Conformal Mapping Example
2.5 Nonlinear Motion of a Damped Pendulum
2.6 A Linear Vibration Model
2.7 Example of Waves in an Elastic String
2.8 Properties of Curves and Surfaces

2.8.1 Curve Properties
2.8.2 Surface Properties
2.8.3 Program Output and Code

3 Summary of Concepts from Linear Algebra
3.1 Introduction
3.2 Vectors, Norms, Linear Independence, and Rank
3.3 Systems of Linear Equations, Consistency, and Least Squares Ap-

proximation
3.4 Applications of Least Squares Approximation

3.4.1 A Membrane Deßection Problem
3.4.2 Mixed Boundary Value Problem for a Function Harmonic

Inside a Circular Disk
3.4.3 Using Rational Functions to Conformally Map a Circular

Disk onto a Square
3.5 Eigenvalue Problems

3.5.1 Statement of the Problem
3.5.2 Application to Solution of Matrix Differential Equations

© 2003 by Chapman & Hall/CRC



3.5.3 The Structural Dynamics Equation
3.6 Computing Natural Frequencies for a Rectangular Membrane
3.7 Column Space, Null Space, Orthonormal Bases, and SVD
3.8 Computation Time to Run a MATLAB Program

4 Methods for Interpolation and Numerical Differentiation
4.1 Concepts of Interpolation
4.2 Interpolation, Differentiation, and Integration by Cubic Splines

4.2.1 Computing the Length and Area Bounded by a Curve
4.2.2 Example: Length and Enclosed Area for a Spline Curve
4.2.3 Generalizing the Intrinsic Spline Function in MATLAB
4.2.4 Example: A Spline Curve with Several Parts and Corners

4.3 Numerical Differentiation Using Finite Differences
4.3.1 Example: Program to Derive Difference Formulas

5 Gauss Integration with Geometric Property Applications
5.1 Fundamental Concepts and Intrinsic Integration Tools in MATLAB
5.2 Concepts of Gauss Integration
5.3 Comparing Results from Gauss Integration and Function QUADL
5.4 Geometrical Properties of Areas and Volumes

5.4.1 Area Property Program
5.4.2 Program Analyzing Volumes of Revolution

5.5 Computing Solid Properties Using Triangular Surface Elements and
Using Symbolic Math

5.6 Numerical and Symbolic Results for the Example
5.7 Geometrical Properties of a Polyhedron
5.8 Evaluating Integrals Having Square Root Type Singularities

5.8.1 Program Listing
5.9 Gauss Integration of a Multiple Integral

5.9.1 Example: Evaluating a Multiple Integral

6 Fourier Series and the Fast Fourier Transform
6.1 DeÞnitions and Computation of Fourier CoefÞcients

6.1.1 Trigonometric Interpolation and the Fast Fourier Transform
6.2 Some Applications

6.2.1 Using the FFT to Compute Integer Order Bessel Functions
6.2.2 Dynamic Response of a Mass on an Oscillating Foundation
6.2.3 General Program to Plot Fourier Expansions

7 Dynamic Response of Linear Second Order Systems
7.1 Solving the Structural Dynamics Equations for Periodic Forces

7.1.1 Application to Oscillations of a Vertically Suspended Cable
7.2 Direct Integration Methods

7.2.1 Example on Cable Response by Direct Integration

© 2003 by Chapman & Hall/CRC



8 Integration of Nonlinear Initial Value Problems
8.1 General Concepts on Numerical Integration of Nonlinear Matrix Dif-

ferential Equations
8.2 Runge-Kutta Methods and the ODE45 Integrator Provided in MAT-

LAB
8.3 Step-size Limits Necessary to Maintain Numerical Stability
8.4 Discussion of Procedures to Maintain Accuracy by Varying Integra-

tion Step-size
8.5 Example on Forced Oscillations of an Inverted Pendulum
8.6 Dynamics of a Spinning Top
8.7 Motion of a Projectile
8.8 Example on Dynamics of a Chain with SpeciÞed End Motion
8.9 Dynamics of an Elastic Chain

9 Boundary Value Problems for Partial Differential Equations
9.1 Several Important Partial Differential Equations
9.2 Solving the Laplace Equation inside a Rectangular Region
9.3 The Vibrating String
9.4 Force Moving on an Elastic String

9.4.1 Computer Analysis
9.5 Waves in Rectangular or Circular Membranes

9.5.1 Computer Formulation
9.5.2 Input Data for Program membwave

9.6 Wave Propagation in a Beam with an Impact Moment Applied to
One End

9.7 Forced Vibration of a Pile Embedded in an Elastic Medium
9.8 Transient Heat Conduction in a One-Dimensional Slab
9.9 Transient Heat Conduction in a Circular Cylinder with Spatially Vary-

ing Boundary Temperature
9.9.1 Problem Formulation
9.9.2 Computer Formulation

9.10 Torsional Stresses in a Beam of Rectangular Cross Section

10 Eigenvalue Problems and Applications
10.1 Introduction
10.2 Approximation Accuracy in a Simple Eigenvalue Problem
10.3 Stress Transformation and Principal Coordinates

10.3.1 Principal Stress Program
10.3.2 Principal Axes of the Inertia Tensor

10.4 Vibration of Truss Structures
10.4.1 Truss Vibration Program

10.5 Buckling of Axially Loaded Columns
10.5.1 Example for a Linearly Tapered Circular Cross Section
10.5.2 Numerical Results

© 2003 by Chapman & Hall/CRC



10.6 Accuracy Comparison for Euler Beam Natural Frequencies by Finite
Element and Finite Difference Methods
10.6.1 Mathematical Formulation
10.6.2 Discussion of the Code
10.6.3 Numerical Results

10.7 Vibration Modes of an Elliptic Membrane
10.7.1 Analytical Formulation
10.7.2 Computer Formulation

11 Bending Analysis of Beams of General Cross Section
11.1 Introduction

11.1.1 Analytical Formulation
11.1.2 Program to Analyze Beams of General Cross Section
11.1.3 Program Output and Code

12 Applications of Analytic Functions
12.1 Properties of Analytic Functions
12.2 DeÞnition of Analyticity
12.3 Series Expansions
12.4 Integral Properties

12.4.1 Cauchy Integral Formula
12.4.2 Residue Theorem

12.5 Physical Problems Leading to Analytic Functions
12.5.1 Steady-State Heat Conduction
12.5.2 Incompressible Inviscid Fluid Flow
12.5.3 Torsion and Flexure of Elastic Beams
12.5.4 Plane Elastostatics
12.5.5 Electric Field Intensity

12.6 Branch Points and Multivalued Behavior
12.7 Conformal Mapping and Harmonic Functions
12.8 Mapping onto the Exterior or the Interior of an Ellipse

12.8.1 Program Output and Code
12.9 Linear Fractional Transformations

12.9.1 Program Output and Code
12.10 Schwarz-Christoffel Mapping onto a Square

12.10.1 Program Output and Code
12.11 Determining Harmonic Functions in a Circular Disk

12.11.1 Numerical Results
12.11.2 Program Output and Code

12.12 Inviscid Fluid Flow around an Elliptic Cylinder
12.12.1 Program Output and Code

12.13 Torsional Stresses in a Beam Mapped onto a Unit Disk
12.13.1 Program Output and Code

12.14 Stress Analysis by the Kolosov-Muskhelishvili Method
12.14.1 Program Output and Code

© 2003 by Chapman & Hall/CRC



12.14.2 Stressed Plate with an Elliptic Hole
12.14.3 Program Output and Code

13 Nonlinear Optimization Applications
13.1 Basic Concepts
13.2 Initial Angle for a Projectile
13.3 Fitting Nonlinear Equations to Data
13.4 Nonlinear Deßections of a Cable
13.5 Quickest Time Descent Curve (the Brachistochrone)
13.6 Determining the Closest Points on Two Surfaces

13.6.1 Discussion of the Computer Code

A List of MATLAB Routines with Descriptions

B Selected Utility and Application Functions

References

© 2003 by Chapman & Hall/CRC



Chapter 1

Introduction

1.1 MATLAB: A Tool for Engineering Analysis

This book presents various MATLAB applications in mechanics and applied math-
ematics. Our objective is to employ numerical methods in examples emphasizing the
appeal of MATLAB as a programming tool. The programs are intended for study as
a primary component of the text. The numerical methods used include interpola-
tion, numerical integration, Þnite differences, linear algebra, Fourier analysis, roots
of nonlinear equations, linear differential equations, nonlinear differential equations,
linear partial differential equations, analytic functions, and optimization methods.
Many intrinsic MATLAB functions are used along with some utility functions devel-
oped by the authors. The physical applications vary widely from solution of linear
and nonlinear differential equations in mechanical system dynamics to geometrical
property calculations for areas and volumes.

For many years FORTRAN has been the favorite programming language for solv-
ing mathematical and engineering problems on digital computers. An attractive al-
ternative is MATLAB which facilitates program development with excellent error
diagnostics and code tracing capabilities. Matrices are handled efÞciently with many
intrinsic functions performing familiar linear algebra tasks. Advanced software fea-
tures such as dynamic memory allocation and interactive error tracing reduce the
time to get solutions. The versatile but simple graphics commands in MATLAB also
allow easy preparation of publication quality graphs and surface plots for technical
papers and books. The authors have found that MATLAB programs are often signi-
fantly shorter than corresponding FORTRAN versions. Consequently, more time is
available for the primary purpose of computing, namely, to better understand physi-
cal system behavior.

The mathematical foundation needed to grasp most topics presented here is cov-
ered in an undergraduate engineering curriculum. This should include a grounding in
calculus, differential equations, and knowledge of a procedure oriented programming
language like FORTRAN. An additional course on advanced engineering mathemat-
ics covering linear algebra, matrix differential equations, and eigenfunction solutions
of partial differential equations will also be valuable. The MATLAB programs were
written primarily to serve as instructional examples in classes traditionally referred to
as advanced engineering mathematics and applied numerical methods. The greatest
beneÞt to the reader will probably be derived through study of the programs relat-
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ing mainly to physics and engineering applications. Furthermore, we believe that
several of the MATLAB functions are useful as general utilities. Typical examples
include routines for spline interpolation, differentiation, and integration; area and
inertial moments for general plane shapes; and volume and inertial properties of ar-
bitrary polyhedra. We have also included examples demonstrating natural frequency
analysis and wave propagation in strings and membranes.

MATLAB is now employed in more than two thousand universities and the user
community throughout the world numbers in the thousands. Continued growth will
be fueled by decreasing hardware costs and more people familiar with advanced an-
alytical methods. The authors hope that our problem solutions will motivate analysts
already comfortable with languages like FORTRAN to learn MATLAB. The rewards
of such efforts can be considerable.

1.2 MATLAB Commands and Related Reference Materials

MATLAB has a rich command vocabulary covering most mathematical topics en-
countered in applications. The current section presents instructions on: a) how to
learn MATLAB commands, b) how to examine and understand MATLAB�s lucidly
written and easily accessible �demo� programs, and c) how to expand the command
language by writing new functions and programs. A comprehensive online help sys-
tem is included and provides lengthy documentation of all the operators and com-
mands. Additional capabilities are provided by auxiliary toolboxes. The reader is
encouraged to study the command summary to get a feeling for the language struc-
ture and to have an awareness of powerful operations such as null,orth,eig, and fft.

The manual for The Student Edition of MATLAB should be read thoroughly and
kept handy for reference. Other references [47, 97, 103] also provide valuable sup-
plementary information. This book extends the standard MATLAB documentation
to include additional examples which we believe are complementary to more basic
instructional materials.

Learning to use help, type, dbtype, demo, and diary is important to understand-
ing MATLAB. help function name (such as help plot) lists available documentation
on a command or function generically called �function name.� MATLAB responds
by printing introductory comments in the relevant function (comments are printed
until the Þrst blank line or Þrst MATLAB command after the function heading is
encountered). This feature allows users to create online help for their own functions
by simply inserting appropriate comments at the top of the function. The instruction
type function name lists the entire source code for any function where source code
is available (the code for intrinsic functions stored in compiled binary for computa-
tional efÞciency cannot be listed). Consider the following list of typical examples
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Command Resulting Action
help help discusses use of the help command
help demos lists names of various demo programs
type linspace lists the source code for the function which generates a vec-

tor of equidistant data values
type plot outputs a message indicating that plot is a built-in function
intro executes the source code in a function named intro which

illustrates various MATLAB functions.
type intro lists the source code for the intro demo program. By study-

ing this example, readers can quickly learn many MATLAB
commands

graf2d demonstrates X-Y graphing
graf3d demonstrates X-Y-Z graphing
help diary provides instructions on how results appearing on the com-

mand screen can be saved into a Þle for later printing, edit-
ing, or merging with other text

diary Þl name instructs MATLAB to record, into a Þle called Þl name,
all text appearing on the command screen until the user
types diary off. The diary command is especially useful
for making copies of library programs such as zerodemo

demo initiates access to a lengthy set of programs demonstrating
the functionality of MATLAB. It is also helpful to source
list some of these programs such as: zerodemo, Þtdemo,
quaddemo, odedemo, ode45, fftdemo, and truss

1.3 Example Problem on Financial Analysis

Let us next analyze a problem showing several language constructs of MATLAB
programming. Most of this book is devoted to solving initial value and boundary
value problems for physical systems. For sake of variety we study brießy an elemen-
tary example useful in business, namely, asset growth resulting from compounded
investment return.

The differential equation

Q′(t) = RQ(t) + S exp(At)

describes growth of investment capital earning a rate of investment return R and
augmented by a saving rate S exp(At). The general solution of this Þrst order linear
equation is

Q(t) = exp(Rt)


Q(0) +

t∫
0

S exp((A−R)t)dt


 .
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A realistic formulation should employ inßation adjusted capital deÞned by

q(t) = Q(t) exp(−It)

where I denotes the annual inßation rate. Then a suitable model describing capital
accumulation over a saving interval of t1 years, followed by a payout period of t2
years, is characterized as

q′(t) = r q(t) + [s(t ≤ t1) − p exp(−at1)(t > t1)] exp(at), q(0) = q0.

The quantity (t ≤ t1) equals one for t ≤ t1 and is zero otherwise. This equation
also uses inßation adjusted parameters r = R − I and a = A− I . The parameter s
quantiÞes the initial saving rate and p is the payout rate starting at t = t1.

It is plausible to question whether continuous compounding is a reasonable alter-
native to a discrete model employing assumptions such as quarterly or yearly com-
pounding. It turns out that results obtained, for example, using discrete monthly
compounding over several years differ little from those produced with the continuous
model. Since long term rates of investment return and inßation are usually estimated
rather than known exactly, the simpliÞed formulas for continuous compounding il-
lustrate reasonably well the beneÞts of long term investment growth. Integrating the
differential equation for the continuous compounding model gives

q(t) = q0 exp(rt) + s[h(t) − (t > t1) exp(at1)h(t− t1)] − p (t > t1)h(t− t1)

where h(t) = [exp(rt) − exp(at)]/(r − a). The limiting case for r = a is also
dealt with appropriately in the program below. At time T 2 = t1 + t2 the Þnal capital
q2 = q(T2) is

q2 = q0 exp(rT2) +
s

r − a
[exp(rt1) − exp(at1)] exp(rt2)

− p

r − a
[exp(rt2) − exp(at2)].

Therefore, for known r, a, t1, t2, the four quantities q2, q0, s, p are linearly related
and any particular one of these values can be found in terms of the other three. For
instance, when q0 = q2 = 0, the saving factor s needed to provide a desired payout
factor p can be computed from the useful equation

s = p[1 − exp((a− r)t2)]/[exp(rt1) − exp(at1)]

A MATLAB program using the above equations was written to compute and plot
q(t) for general combinations of the nine parameters R,A, I, t 1, t2, q0, s, p, q2. The
program allows data to be passed through the call list of function Þnance, or the
interactive input is activated when no call list data is passed. Finance calls function
inputv to read data and the function savespnd to evaluate q(t). First we will show
some numerical results and then discuss selected parts of the code. Consider a case
where someone initially starting with $10,000 of capital expects to save for 40 years
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and subsequently draw $50,000 annually from savings for 20 years, at which time
the remaining capital is to be $100,000. Assume that the investment rate before in-
ßation is R = 8 while the inßation rate is I = 4 . During the 60 year period, annual
savings, as well as the pension payout amount, are to be increased to match inßation,
so that A = 4. The necessary value of s and a plot of the inßation adjusted assets
as a function of time are to be determined. The program output shows that when the
unknown value of s was input as nan (meaning Not-a-Number in IEEE arithmetic), a
corrected value of $6417 was computed. This says that, with the assumed rate of in-
vestment return, saving at an initial rate of $6417 per year and continually increasing
that amount to match inßation will sufÞce to provide the desired inßation adjusted
payout. Furthermore, the inßation adjusted Þnancial capital accumulated at the end
of 40 years is $733,272. The related graph of q(t) duplicates the data listed on the
text screen. The reader may Þnd it interesting to repeat the illustrative calculation
assuming R = 11, in which case the saving coefÞcient is greatly reduced to only
$1060.

1.4 Computer Code and Results

A computer code which analyzes the above equations and presents both numerical
and graphical results appears next. First we show the program output, and then
discuss particular aspects of the program.

1.4.1 Computer Output

>> finance;

ANALYSIS OF THE SAVE-SPEND PROBLEM BY SOLVING
q�(t)=r*q(t)+[s*(t<=t1)-p*(t>t1)*exp(-a*t1)]*exp(a*t)
where r=R-I, a=A-I, and q(0)=q0

To list parameter definitions enter y
otherwise enter n ? y
INPUT QUANTITIES:
R - annual percent earnings on assets
I - annual percent inflation rate
A - annual percent increase in savings

to offset inflation
r,a - inflation adjusted values of R and I
t1 - saving period (years), 0<t<t1
t2 - payout period (years), t1<t<(t1+t2)
s - saving rate at t=0, ($K). Saving is
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expressed as s*exp(a*t), 0<t<t1
p - payout rate at t=t1, ($K). Payout is

expressed as
-p*exp(a*(t-t1)), t1<t<(t1+t2)

q0 - initial savings at t=0, ($K)
q2 - final savings at t=T2=t1+t2, ($K)

OUTPUT QUANTITIES:
q - vector of inflation adjusted savings

values for 0 <= t <= (t1+t2)
t - vector of times (years) corresponding

to the components of q
q1 - value of savings at t=t1, when the

saving period ends

Press return to continue

Input R,A,I (try 11,4,4) ? 8,4,4
Input t1,t2 (try 40,20) ? 40,20
Input q0,s,p,q2 (try 20,5,nan,40) ? 20,nan,50,100

PROGRAM RESULTS
t1 t2 R A I

40.000 20.000 8.000 4.000 4.000

q0 q1 q2 s p
20.000 733.272 100.000 6.417 50.000

>>
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1.4.2 Discussion of the MATLAB Code

Let us examine the following program listing. The line numbers, which are not
part of the actual code, are helpful for discussing particular parts of the program. A
numbered listing can be obtained with the MATLAB command dbtype.

Line Comments
1-2 Three dots . . . are used to continue function Þnance to handle the

long argument list. The output list duplicates some input items to
handle cases involving interactive input.

3-16 Comment lines always begin with the % symbol. At the inter-
active command level in MATLAB, typing help followed by a
function name will print documentation in the Þrst unbroken se-
quence of comments in a function or script Þle.

20-25 The output heading is printed. Note that q�(t) is used to print q�(t)
because special characters such as � or % must be repeated.

29-50 Intrinsic function char is used to store descriptions of program
variable in a character matrix.

59 Function nargin checks whether the number of input variables is
zero. If so, data values are read interactively.

68-69 Function inputv reads several variables on the same line.
70-78 While 1,...,end code sequence loops repeatedly to check data in-

put. Break exits to line 80 if data are OK.
85-97 Set multiplier constants to solve for one unknown variable among

q0, s, p, q2.
99-105 Determine time vectors to evaluate the solution. Cases where t1

or t2 are zero require special treatment.
108-112 Intrinsic function isnan is used to identify the variable which was

input as nan.
115-116 User deÞned function savespnd is used to evaluate q(t) and q(t1).
119-127 Program results are printed with a chosen format. The statement

b=inline(�blanks(j)�,�j�) just shortens the name for intrinsic func-
tion blanks.

130-139 Draw the graph along with a title and axis labels.
141-153 Create a label containing data values. Position it on the graph.
154 Turn the grid off and bring the graph to the foreground.
158-176 Function savespnd evaluates q(t). The formula for r=a results

from the limiting form of q(t) as parameter a tends to r.
180-213 Function inputv generalizes the intrinsic function input to read

several variables on the same line. Inputv is used often through-
out this text.
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1.4.3 Code for Financial Problem

Program Þnance

1: function [q,t,R,A,I,t1,t2,s,p,q0,q1,q2]=finance...
2: (R,A,I,t1,t2,s,p,q0,q2)
3: % [q,t,R,A,I,t1,t2,s,p,q0,q1,q2]=finance...
4: % (R,A,I,t1,t2,s,p,q0,q2)
5: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: %
7: % This function solves the SAVE-SPEND PROBLEM
8: % where funds earning interest are accumulated
9: % during one period and paid out in a subsequent

10: % period. The value of assets is adjusted to
11: % account for inflation. This problem is
12: % governed by the differential equation
13: % q’(t)=r*q(t)+[s*(t<=t1)...
14: % -p*(t>t1)*exp(-a*t1)]*exp(a*t) where
15: % r=R-I, a=A-I and the remaining parameters
16: % are defined below
17:

18: % User m functions required: inputv, savespnd
19:

20: disp(’ ’), disp([’ ’,...
21: ’ANALYSIS OF THE SAVE-SPEND PROBLEM BY SOLVING’])
22: disp(...
23: [’q’’(t)=r*q(t)+[s*(t<=t1)-p*(t>t1)*’,...
24: ’exp(-a*t1)]*exp(a*t)’]), disp(...
25: ’where r=R-I, a=A-I, and q(0)=q0’), disp(’ ’)
26:

27: % Create a character variable containing
28: % definitions of input and output quantities
29: explain=char(’INPUT QUANTITIES:’,...
30: ’R - annual percent earnings on assets’,...
31: ’I - annual percent inflation rate’,...
32: ’A - annual percent increase in savings’,...
33: ’ to offset inflation’,...
34: ’r,a - inflation adjusted values of R and I’,...
35: ’t1 - saving period (years), 0<t<t1’,...
36: ’t2 - payout period (years), t1<t<(t1+t2)’,...
37: ’s - saving rate at t=0, ($K). Saving is’,...
38: ’ expressed as s*exp(a*t), 0<t<t1’,...
39: ’p - payout rate at t=t1, ($K). Payout is’,...
40: ’ expressed as’,...
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41: ’ -p*exp(a*(t-t1)), t1<t<(t1+t2)’,...
42: ’q0 - initial savings at t=0, ($K)’,...
43: ’q2 - final savings at t=T2=t1+t2, ($K)’,’ ’,...
44: ’OUTPUT QUANTITIES:’,...
45: ’q - vector of inflation adjusted savings’,...
46: ’ values for 0 <= t <= (t1+t2)’,...
47: ’t - vector of times (years) corresponding’,...
48: ’ to the components of q’,...
49: ’q1 - value of savings at t=t1, when the’,...
50: ’ saving period ends’,’ ’);
51:

52: % NOTE: WHEN R,I,A,T1,T2 ARE KNOWN,THEN FIXING
53: % ANY THREE OF THE VALUES q0,s,p,q2 DETERMINES
54: % THE UNKNOWN VALUE WHICH SHOULD BE GIVEN AS
55: % nan IN THE DATA INPUT.
56:

57: % Read data interactively when input data is not
58: % passed through the call list
59: if nargin==0
60: disp(’To list parameter definitions enter y’)
61: querry=input(’otherwise enter n ? ’,’s’);
62: if querry==’Y’ | querry==’y’
63: disp(explain); disp(’Press return to continue’)
64: pause, disp(’ ’)
65: end
66:

67: % Read multiple variables on the same line
68: [R,A,I]=inputv(’Input R,A,I (try 11,4,4) ? ’);
69: [t1,t2]=inputv(’Input t1,t2 (try 40,20) ? ’);
70: while 1
71: [q0,s,p,q2]=inputv(...
72: ’Input q0,s,p,q2 (try 20,5,nan,40) ? ’);
73: if sum(isnan([q0,s,p,q2]))==1, break; end
74: fprintf([’\nDATA ERROR. ONE AND ONLY ’,...
75: ’ONE VALUE AMONG\n’,’THE PARAMETERS ’,...
76: ’q0,s,p,q2 CAN EQUAL nan \n\n’])
77: end
78: end
79:

80: nt=101; T2=t1+t2; r=(R-I)/100; a=(A-I)/100;
81: c0=exp(r*T2);
82:

83: % q0,s,p,q2 are related by q2=c0*q0+c1*s+c2*p
84: % Check special case where t1 or t2 are zero
85: if t1==0
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86: disp(’ ’), disp(’s is set to zero when t1=0’)
87: s=0; c1=0;
88: else
89: c1=savespnd(T2,t1,0,R,A,I,1,0);
90: end
91:

92: if t2==0
93: disp(’ ’), disp(’p is set to zero when t2=0’)
94: p=0; c2=0;
95: else
96: c2=savespnd(T2,t1,0,R,A,I,0,1);
97: end
98:

99: if t1==0 | t2==0
100: t=linspace(0,T2,nt)’;
101: else
102: n1=max(2,fix(t1/T2*nt));
103: n2=max(2,nt-n1)-1;
104: t=[t1/n1*(0:n1),t1+t2/n2*(1:n2)]’;
105: end
106:

107: % Solve for the unknown parameter
108: if isnan(q0), q0=(q2-s*c1-p*c2)/c0;
109: elseif isnan(s), s=(q2-q0*c0-p*c2)/c1;
110: elseif isnan(p), p=(q2-q0*c0-s*c1)/c2;
111: else, q2=q0*c0+s*c1+p*c2;
112: end
113:

114: % Compute results for q(t)
115: q=savespnd(t,t1,q0,R,A,I,s,p);
116: q1=savespnd(t1,t1,q0,R,A,I,s,p);
117:

118: % Print formatted results
119: b=inline(’blanks(j)’,’j’); B=b(3); d=’%8.3f’;
120: u=[d,B,d,B,d,B,d,B,d,’\n’]; disp(’ ’)
121: disp([b(19),’PROGRAM RESULTS’])
122: disp([’ t1 t2 R’,...
123: ’ A I’])
124: fprintf(u,t1,t2,R,A,I), disp(’ ’)
125: disp([’ q0 q1 q2’,...
126: ’ s p’])
127: fprintf(u,q0,q1,q2,s,p), disp(’ ’), pause(1)
128:

129: % Show results graphically
130: plot(t,q,’k’)
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131: title([’INFLATION ADJUSTED SAVINGS WHEN ’,...
132: ’S = ’,num2str(s),’ AND P = ’,num2str(p)]);
133: titl=...
134: [’TOTAL SAVINGS WHEN T1 = ’,num2str(t1),...
135: ’, T2 = ’,num2str(t2),’, s = ’,num2str(s),...
136: ’, p = ’,num2str(p)]; title(titl)
137:

138: xlabel(’TIME IN YEARS’)
139: ylabel(’TOTAL SAVINGS IN $K’)
140:

141: % Character label showing data parameters
142: label=char(...
143: sprintf(’R = %8.3f’,R),...
144: sprintf(’I = %8.3f’,I),...
145: sprintf(’A = %8.3f’,A),...
146: sprintf(’q0 = %8.3f’,q0),...
147: sprintf(’q1 = %8.3f’,q1),...
148: sprintf(’q2 = %8.3f’,q2));
149: w=axis; ymin=w(3); dy=w(4)-w(3);
150: xmin=w(1); dx=w(2)-w(1);
151: ytop=ymin+.8*dy; Dy=.065*dy;
152: xlft=xmin+0.04*dx;
153: text(xlft,ytop,label)
154: grid off, shg
155:

156: %=============================================
157:

158: function q=savespnd(t,t1,q0,R,A,I,s,p)
159: %
160: % q=savespnd(t,t1,q0,R,A,I,s,p)
161: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162:

163: % This function determines q(t) satisfying
164: % q’(t)=r*q+[s*(t<=t1)-p*(t>t1)*...
165: % exp(-a*t1)]*exp(a*t), with q(0)=q0,
166: % r=(R-I)/100; a=(A-I)/100
167:

168: r=(R-I)/100; a=(A-I)/100; c=r-a; T=t-t1;
169: if r~=a
170: q=q0*exp(r*t)+s/c*(exp(r*t)-exp(a*t))...
171: -(p+s*exp(a*t1))/c*(T>0).*(...
172: exp(r*T)-exp(a*T));
173: else % limiting case as a=>r
174: q=q0*exp(r*t)+s*t.*exp(r*t)...
175: -(p+s*exp(r*t1)).*T.*(T>0).*exp(r*T);
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176: end
177:

178: %=============================================
179:

180: function varargout=inputv(prompt)
181: %
182: % [a1,a2,...,a_nargout]=inputv(prompt)
183: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
184: %
185: % This function reads several values on one
186: % line. The items should be separated by
187: % commas or blanks.
188: %
189: % prompt - A string preceding the
190: % data entry. It is set
191: % to ’ ? ’ if no value of
192: % prompt is given.
193: % a1,a2,...,a_nargout - The output variables
194: % that are created. If
195: % not enough data values
196: % are given following the
197: % prompt, the remaining
198: % undefined values are
199: % set equal to NaN
200: %
201: % A typical function call is:
202: % [A,B,C,D]=inputv(’Enter values of A,B,C,D: ’)
203: %
204: % ---------------------------------------------
205:

206: if nargin==0, prompt=’ ? ’; end
207: u=input(prompt,’s’); v=eval([’[’,u,’]’]);
208: ni=length(v); no=nargout;
209: varargout=cell(1,no); k=min(ni,no);
210: for j=1:k, varargout{j}=v(j); end
211: if no>ni
212: for j=ni+1:no, varargout{j}=nan; end
213: end
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Chapter 2

Elementary Aspects of MATLAB Graphics

2.1 Introduction

MATLAB�s capabilities for plotting curves and surfaces are versatile and easy to
understand. In fact, the effort required to learn MATLAB would be rewarding even
if it were only used to construct plots, save graphic images, and output publication
quality graphs on a laser printer. Numerous help features and well-written demo pro-
grams are included with MATLAB. By executing the demo programs and studying
the relevant code, users can quickly understand the techniques necessary to imple-
ment graphics within their programs. This chapter discusses a few of the graphics
commands. These commands are useful in many applications and do not require
extensive time to master. This next section provides a quick overview of the ba-
sics of using MATLAB�s graphics. The subsequent sections in this chapter present
several additional examples (summarized in the table below) involving interesting
applications which use these graphics primitives.

Example Purpose

Polynomial Inter-
polation

2-D graphics and polynomial interpolation
functions

Conformal 2-D graphics and some aspects of complex
Mapping numbers
Pendulum Motion 2-D graphics animation and ODE solution
Linear Vibration
Model

Animated spring-mass response

String Vibration 2-D and 3-D graphics for a function of form
y(x, t)

Space Curve Ge-
ometry

3-D graphics for a space curve

Intersecting Sur-
faces

3-D graphics and combined surface plots
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2.2 Overview of Graphics

The following commands should be executed since they will accelerate the under-
standing of graphics functions, and others, included within MATLAB.

help help discusses use of help command.
help lists categories of help.
help general lists various utility commands.
help more describes how to control output paging.
help diary describes how to save console output to a Þle.
help plotxy describes 2D plot functions.
help plotxyz describes 3D plot functions.
help graphics describes more general graphics features.
help demos lists names of various demo programs.
intro executes the intro program showing MATLAB

commands including fundamental graphics capa-
bilities.

help funfun describes several numerical analysis programs
contained in MATLAB.

type humps lists a function employed in several of the MAT-
LAB demos.

fplotdemo executes program fplotdemo which plots the
function named humps.

help peaks describes a function peaks used to illustrate sur-
face plots.

peaks executes the function peaks to produce an inter-
esting surface plot.

spline2d executes a demo program to draw a curve through
data input interactively.

The example programs can be studied interactively using the type command to list
programs of interest. Library programs can also be inspected and printed using the
MATLAB editor, but care should be taken not to accidentally overwrite the original
library Þles with changes. Furthermore, text output in the command window can be
captured in several ways. Some of these are: (1) Use the mouse to highlight material
of interest. Then use the �Print Selected� on the Þle menu to send output to the
printer; (2) Use CTRL-C to copy outlined text to the clipboard. Then open a new Þle
and use CTRL-V to paste the text into the new Þle; and (3) Use a diary command
such as diary mysave.doc to begin printing subsequent command window output
into the chosen Þle. This printing can be turned off using diary off. Then the Þle can
be edited, modiÞed, or combined with other text using standard editor commands.

More advanced features of MATLAB graphics, including handle graphics, control
of shading and light sources, creation of movies, etc., exceed the scope of the present
text. Instead we concentrate on using the basic commands listed below and on pro-
ducing simple animations. The advanced graphics can be mastered by studying the
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MATLAB manuals and relevant demo programs. The principal graphing commands
discussed here are

Command Purpose
plot draw two-dimensional graphs
xlabel, ylabel, deÞne axis labels
zlabel

title deÞne graph title
axis set various axis parameters (min, max, etc.)
legend show labels for plot lines
shg bring graphics window to foreground
text place text at selected locations
grid turns grid lines on or off
mesh draw surface using colored lines
surf draw surface using colored patches
hold Þx the graph limits between successive plots
view change surface viewing position
drawnow empty graphics buffer immediately
zoom magnify graph or surface plot
clf clear graphics window
contour draw contour plot
ginput read coordinates interactively

All of these commands, along with numerous others, are extensively documented by
the help facilities in MATLAB. The user can get an introduction to these capabilities
by typing �help plot� and by running the demo programs. The accompanying code
for the demo program should be examined since it provides worthwhile insight into
how MATLAB graphics is used.

2.3 Example Comparing Polynomial and Spline Interpolation

Many familiar mathematical functions such as arctan(x), exp(x), sin(x), etc.
can be represented well near x = 0 by Taylor series expansions. If a series expansion
converges rapidly, taking a few terms in the series may produce good polynomial ap-
proximations. Assuming such a procedure is plausible, one approach to polynomial
approximation is to take some data points, say (x i, yi), 1 ≤ i ≤ n and determine the
polynomial of degree n− 1 passing through those points. It appears reasonable that
using evenly spaced data is appropriate and that increasing the number of polyno-
mial terms should improve the accuracy of the approximating function. However, it
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has actually been shown that a polynomial through points on a function y(x), where
the x values are evenly spaced, often gives approximations which are not smooth
between the data points and tend to oscillate at the ends of the interpolating interval
[20]. Attempting to reduce the oscillation by increasing the polynomial order makes
matters worse. Surprisingly, a special set of unevenly spaced points bunching data
near the interval ends according to

xj = (a+ b)/2 + (a− b)/2 cos[π(j − 1/2)/n], 1 ≤ j ≤ n

for the interval a ≤ x ≤ b turns out to be preferable. This formula deÞnes what are
called the Chebyshev points optimally chosen in the sense described by Conte and
de Boor [20].

The program below employs MATLAB functions polyÞt, polyval, and spline to
produce interpolated approximations to the known function 1/(1+x 2). The example
illustrates how strongly the spacing of the data points for polynomial interpolation
can inßuence results, and also shows that a spline interpolation can be a better choice
than high order polynomials. A least square Þt polynomial of degree n through data
points deÞned by vectors (xd, yd) is given by

p(x) = polyval(polyfit(xd, yd, n), x).

When the polynomial order is one less than the number of data points, the polyno-
mial passes through the data points exactly, but it may still produce unsatisfactory
interpolation because of large oscillations between the data points. A preferable ap-
proximation is often provided by function spline giving a piecewise cubic curve with
continuous Þrst and second derivatives. The program passes polynomials of degree
ten through a set of evenly spaced points and a set of Chebyshev points lying in
the range −4 ≤ x ≤ 4. A spline curve passed through the equidistant points is
constructed in addition to a least square polynomial Þt employing 501 points. Two
graphs are created which show results for x ≥ 0. Only results for positive x were
plotted to provide more contrast between different interpolation results. Figure 2.1
plots the exact function, the spline curve, and the polynomial through the equidistant
data. The polynomial is clearly an unsatisfactory approximation, whereas the spline
appears to deviate imperceptibly from the exact function. By using the interactive
zoom feature in MATLAB graphics, parts of the graph can be magniÞed so the dif-
ference between the spline and exact results is clearly visible. Figure 2.2 compares
the exact function with a polynomial employing the Chebyshev points. This result is
much better than what is produced with equidistant data. An approximation gener-
ated from a least square Þt polynomial and 501 data points is also shown. This curve
Þts the exact function unpredictably and signiÞcantly misses the desired values at
x = 0 and x = ±4. While general conclusions about interpolation should not be
drawn from this simple example, it certainly implies that high order polynomial in-
terpolation over a large range of the independent variable should be used cautiously.

The graphics functions used in the program include plot, title, xlabel, ylabel, and
legend. Some other features of the program are summarized in the table preceding
the code listing.
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Line Operation
12,17,21 several inline functions are deÞned

27 function linspace generates vector of equidistant points
27,28,34-37 inline functions called

38 intrinsic spline function is used
45,57 graph legends created
52,64 graph images saved to Þles

Program polyplot

1: function polyplot
2: % Example: polyplot
3: % ~~~~~~~~~~~~~~~~~~
4: % This program illustrates polynomial and
5: % spline interpolation methods applied to
6: % approximate the function 1/(1+x^2).
7: %
8: % User inline functions used:
9: % cbp, Ylsq, yexact

10:

11: % Function for Chebyshev data points
12: cbp=inline([’(a+b)/2+(a-b)/2*cos(pi/n*’,...
13: ’(1/2:n))’],’a’,’b’,’n’);
14:

15: % Polynomial of degree n to least square fit
16: % data points in vectors xd,yd
17: Ylsq=inline(’polyval(polyfit(xd,yd,n),x)’,...
18: ’xd’,’yd’,’n’,’x’);
19:

20: % Function to be approximated by polynomials
21: yexact=inline(’1./(1+abs(x).^p)’,’p’,’x’);
22:

23: % Set data parameters. Functions linspace and
24: % cbp generate data with even and Chebyshev
25: % spacing
26: n=10; nd=n+1; a=-4; b=4; p=2;
27: xeven=linspace(a,b,nd); yeven=yexact(p,xeven);
28: xcbp=cbp(a,b,nd); ycbp=yexact(p,xcbp);
29:

30: nlsq=501; % Number of least square points
31: xlsq=linspace(a,b,nlsq); ylsq=yexact(p,xlsq);
32:

33: % Compute interpolated functions for plotting

© 2003 by CRC Press LLC



34: xplt=linspace(0,b,121); yplt=yexact(p,xplt);
35: yyeven=Ylsq(xeven,yeven,n,xplt);
36: yycbp=Ylsq(xcbp,ycbp,n,xplt);
37: yylsq=Ylsq(xlsq,ylsq,n,xplt);
38: yyspln=spline(xeven,yeven,xplt);
39:

40: % Plot results
41: j=6:nd; % Plot only data points for x>=0
42: plot(xplt,yplt,’-’,xplt,yyeven,’--’,...
43: xplt,yyspln,’.’,xeven(j),yeven(j),...
44: ’s’,’linewidth’,2)
45: legend(’Exact Function’,...
46: ’Poly. for Even Spacing’,...
47: ’Spline Curve’,...
48: ’Interpolation Points’,2)
49: title([’SPLINE CURVE AND POLYNOMIAL ’,...
50: ’USING EVEN SPACING’])
51: xlabel(’x axis’), ylabel(’function values’)
52: % print(gcf,’-deps’,’splpofit’)
53: shg, pause
54: plot(xplt,yplt,’-’,xplt,yycbp,’--’,...
55: xplt,yylsq,’.’,xcbp(j),ycbp(j),’s’,...
56: ’linewidth’,2)
57: legend(’Exact Function’,...
58: ’Poly. for Chebyshev Points’,...
59: ’Least Square Poly. Fit’,...
60: ’Interpolation Points’,1)
61: title([’LEAST SQUARE POLY. AND POLY. ’,...
62: ’USING CHEBYSHEV POINTS’])
63: xlabel(’x axis’), ylabel(’function values’)
64: % print(gcf,’-deps’,’lsqchfit’)
65: shg, disp(’ ’), disp(’All Done’)

2.4 Conformal Mapping Example

This example involves analytic functions and conformal mapping. The complex
function w(z) which maps |z| ≤ 1 onto the interior of a square of side length 2 can
be written in power series form as

w(z) =
∞∑

k=0

bkz
4k+1
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where

bk = c

[
(−1)k(1

2 )k

k!(4k + 1)

]
,

∞∑
k=0

bk = 1

and c is a scaling coefÞcient chosen to make z = 1 map to w = 1 (see reference
[75]). Truncating the series after some Þnite number of terms, say m, produces an
approximate square with rounded corners. Increasing m reduces the corner round-
ing but convergence is rather slow so that using even a thousand terms still gives
perceptible inaccuracy. The purpose of the present exercise is to show how a polar
coordinate region characterized by

z = reıθ , r1 ≤ r ≤ r2 , θ1 ≤ θ ≤ θ2

transforms and to exhibit an undistorted plot of the region produced in the w-plane.
The exercise also emphasizes the utility of MATLAB for handling complex arith-
metic and complex functions. The program has a short driver squarrun and a func-
tion squarmap which computes points in the w region and coefÞcients in the series
expansion. Salient features of the program are summarized in the table below.

Results produced when 0.5 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π by a twenty-term series
appear in Figure 2.3. The reader may Þnd it interesting to run the program using sev-
eral hundred terms and take 0 ≤ θ ≤ π/2. The corner rounding remains noticeable
even when m = 1000 is used. Later in this book we will visit the mapping problem
again to show that a better approximation is obtainable using rational functions.

Routine Line Operation
squarrun 20-41 functions input, disp, fprintf, and read are

used to input data interactively. Several dif-
ferent methods of printing were used for pur-
poses of illustration rather than necessity.

45 function squarmap generates results.
49 function genprint is a system dependent rou-

tine which is used to create plot Þles for later
printing.

squarmap 31-33 functions linspace and ones are used to gen-
erate points in the z-plane.

43-45 series coefÞcients are computed using
cumprod and the mapping is evaluated using
polyval with a matrix argument.

48-51 scale limits are calculated to allow an undis-
torted plot of the geometry. Use is made of
MATLAB functions real and imag.

57-73 loops are executed to plot the circumferential
lines Þrst and the radial lines second.

cubrange function which determines limits for a square
or cube shaped region.
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MATLAB Example

Program squarrun

1: function squarrun
2: % Example: squarrun
3: % ~~~~~~~~~~~~~~~~~~~
4: %
5: % Driver program to plot the mapping of a
6: % circular disk onto the interior of a square
7: % by the Schwarz-Christoffel transformation.
8: %
9: % User m functions required:

10: % squarmap, inputv, cubrange
11:

12: % Illustrate use of the functions input and
13: % inputv to interactively read one or several
14: % data items on the same line
15:

16: fprintf(’\nCONFORMAL MAPPING OF A SQUARE ’)
17: fprintf(’BY USE OF A\n’)
18: fprintf(’TRUNCATED SCHWARZ-CHRISTOFFEL ’)
19: fprintf(’SERIES\n\n’)
20:

21: fprintf(’Input the number of series ’)
22: fprintf(’terms used ’)
23: m=input(’(try 20)? ’);
24:

25: % Illustrate use of the function disp
26: disp(’’)
27: str=[’\nInput the inner radius, outer ’ ...
28: ’radius and number of increments ’ ...
29: ’\n(try .5,1,8)\n’];
30: fprintf(str);
31:

32: % Use function inputv to input several variables
33: [r1,r2,nr]=inputv;
34:

35: % Use function fprintf to print more
36: % complicated heading
37: str=[’\nInput the starting value of ’ ...
38: ’theta, the final value of theta \n’ ...
39: ’and the number of theta increments ’ ...
40: ’(the angles are in degrees) ’ ...
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41: ’\n(try 0,360,120)\n’];
42: fprintf(str); [t1,t2,nt]=inputv;
43:

44: % Call function squarmap to make the plot
45: hold off; clf;
46: [w,b]=squarmap(m,r1,r2,nr,t1,t2,nt+1);
47:

48: % Save the plot
49: % print -deps squarplt
50:

51: disp(’ ’); disp(’All Done’);
52:

53: %==============================================
54:

55: function [w,b]=squarmap(m,r1,r2,nr,t1,t2,nt)
56: %
57: % [w,b]=squarmap(m,r1,r2,nr,t1,t2,nt)
58: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
59: % This function evaluates the conformal mapping
60: % produced by the Schwarz-Christoffel
61: % transformation w(z) mapping abs(z)<=1 inside
62: % a square having a side length of two. The
63: % transformation is approximated in series form
64: % which converges very slowly near the corners.
65: %
66: % m - number of series terms used
67: % r1,r2,nr - abs(z) varies from r1 to r2 in
68: % nr steps
69: % t1,t2,nt - arg(z) varies from t1 to t2 in
70: % nt steps (t1 and t2 are measured
71: % in degrees)
72: % w - points approximating the square
73: % b - coefficients in the truncated
74: % series expansion which has the
75: % form
76: %
77: % w(z)=sum({j=1:m},b(j)*z*(4*j-3))
78: %
79: % User m functions called: cubrange
80: %----------------------------------------------
81:

82: % Generate polar coordinate grid points for the
83: % map. Function linspace generates vectors
84: % with equally spaced components.
85: r=linspace(r1,r2,nr)’;
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86: t=pi/180*linspace(t1,t2,nt);
87: z=(r*ones(1,nt)).*(ones(nr,1)*exp(i*t));
88:

89: % Use high point resolution for the
90: % outer contour
91: touter=pi/180*linspace(t1,t2,10*nt);
92: zouter=r2*exp(i*touter);
93:

94: % Compute the series coefficients and
95: % evaluate the series
96: k=1:m-1;
97: b=cumprod([1,-(k-.75).*(k-.5)./(k.*(k+.25))]);
98: b=b/sum(b); w=z.*polyval(b(m:-1:1),z.^4);
99: wouter=zouter.*polyval(b(m:-1:1),zouter.^4);

100:

101: % Determine square window limits for plotting
102: uu=real([w(:);wouter(:)]);
103: vv=imag([w(:);wouter(:)]);
104: rng=cubrange([uu,vv],1.1);
105: axis(’square’); axis(rng); hold on
106:

107: % Plot orthogonal grid lines which represent
108: % the mapping of circles and radial lines
109: x=real(w); y=imag(w);
110: xo=real(wouter); yo=imag(wouter);
111: plot(x,y,’-k’,x(1:end-1,:)’,y(1:end-1,:)’,...
112: ’-k’,xo,yo,’-k’)
113:

114: % Add a title and axis labels
115: title([’Mapping of a Square Using a ’, ...
116: num2str(m),’-term Polynomial’])
117: xlabel(’x axis’); ylabel(’y axis’)
118: figure(gcf); hold off;
119:

120: %==============================================
121:

122: function range=cubrange(xyz,ovrsiz)
123: %
124: % range=cubrange(xyz,ovrsiz)
125: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
126: % This function determines limits for a square
127: % or cube shaped region for plotting data values
128: % in the columns of array xyz to an undistorted
129: % scale
130: %
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131: % xyz - a matrix of the form [x,y] or [x,y,z]
132: % where x,y,z are vectors of coordinate
133: % points
134: % ovrsiz - a scale factor for increasing the
135: % window size. This parameter is set to
136: % one if only one input is given.
137: %
138: % range - a vector used by function axis to set
139: % window limits to plot x,y,z points
140: % undistorted. This vector has the form
141: % [xmin,xmax,ymin,ymax] when xyz has
142: % only two columns or the form
143: % [xmin,xmax,ymin,ymax,zmin,zmax]
144: % when xyz has three columns.
145: %
146: % User m functions called: none
147: %----------------------------------------------
148:

149: if nargin==1, ovrsiz=1; end
150: pmin=min(xyz); pmax=max(xyz); pm=(pmin+pmax)/2;
151: pd=max(ovrsiz/2*(pmax-pmin));
152: if length(pmin)==2
153: range=pm([1,1,2,2])+pd*[-1,1,-1,1];
154: else
155: range=pm([1 1 2 2 3 3])+pd*[-1,1,-1,1,-1,1];
156: end
157:

158: %==============================================
159:

160: % function varargout=inputv(prompt)
161: % See Appendix B

2.5 Nonlinear Motion of a Damped Pendulum

Motion of a simple pendulum is one of the most familiar dynamics examples stud-
ied in physics. The governing equation of motion can be satisfactorily linearized for
small oscillations about the vertical equilibrium position, whereas nonlinear effects
become important for large deßections. For small deßections, the analysis leads to
a constant coefÞcient linear differential equation. Solving the general case requires
elliptic functions seldom encountered in routine engineering practice. Nevertheless,
the pendulum equation can be handled very well for general cases by numerical in-
tegration.
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Suppose a bar of negligible weight is hinged at one end and has a particle of mass
m attached to the other end. The bar has length l and the deßection from the vertical
static equilibrium position is called θ. Assuming that the applied forces consist of
the particle weight and a viscous drag force proportional to the particle velocity, the
equation of motion is found to be

θ ′′(τ) +
c

m
θ ′(t) +

g

l
sin(θ) = 0

where τ is time, c is a viscous damping coefÞcient, and g is the gravity constant.
Introducing dimensionless time, t, such that τ =

√
l/g t gives

θ ′′(t) + 2ςθ ′(t) + sin(θ) = 0

where ς =
√
l/g c/(2m) is called the damping factor. When θ is small enough

for sin(θ) to be approximated well by θ , then a constant coefÞcient linear equation
solvable by elementary means is obtained. In the general situation, a solution can
still be obtained numerically without resorting to higher transcendental functions. If
we use ς = 0.10 for illustrative purposes, and let

z = [θ(t) ; θ ′(t)]

then the original differential equation expressed in Þrst order matrix form is

z ′(t) = [z(2) ; −0.2z(2)− sin(z(1)].

An inline function suitable for use by the ode45 integrator in MATLAB is simply
zdot=inline(�[z(2); -0.2*z(2)-sin(z(1))]�,�t�,�z�).

A program was written to integrate the pendulum equation when the angular ve-
locity ω0 for θ = 0 is speciÞed. For the undamped case, it is not hard to show that a
starting angular velocity exceeding 2 is sufÞcient to push the pendulum over the top,
but the pendulum will fall back for values smaller than two. For the amount of vis-
cous damping chosen here, a value of about ω 0 = 2.42 barely pushes the pendulum
over the top, whereas the top is not reached for ω0 = 2.41. These cases vividly illus-
trate that, for a nonlinear system, small changes in initial conditions can sometimes
produce very large changes in the response of the system.

In the computer program that follows, a driver function runpen controls input,
calls the differential equation solver ode45, as well as a function animpen which
plots θ versus t, and performs animation by drawing successive positions of the pen-
dulum. Because the animation routine is very simple and requires little knowledge
of MATLAB graphics, the images and the titles ßicker somewhat. This becomes
particularly evident unless the graph axes are left off. A better routine using more
detailed graphics commands to eliminate the ßicker problem is presented in Article
2.7 on wave motion in a string. The current program permits interactive input repeat-
edly specifying the initial angular velocity, or two illustrative data cases can be run
by executing the command runpen(1). The differential equation for the problem is
deÞned as function zdot on lines 26 and 27. This equation is integrated numerically
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PUSHED OVER THE TOP FOR W0=2.42

Figure 2.4: Angular Deßection versus Time for Pendulum Pushed Over the
Top

by calls to function ode45 on lines 59, 75, and 80. Integration tolerance values were
chosen at line 30, and a time span for the simulation is deÞned interactively at lines
46 and 47. Function penanim(t,th,titl,tim) plots theta versus time and animates
the system response by computing the range of (x,y) values, Þxing the window size
to prevent distortion, and sequentially plotting positions of the pendulum to show
the motion history. The output results produced by runpen(1) are shown below for
reference.
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PUSHED OVER THE TOP FOR W0=2.42

Figure 2.5: Partial Motion Trace for Pendulum Pushed Over the Top
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Figure 2.6: Angular Displacement versus Time for Pendulum Almost Pushed
Over the Top
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ALMOST OVER THE TOP FOR W0=2.41

Figure 2.7: Partial Motion Trace for Pendulum Almost Pushed Over the Top
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Program pendulum

1: function pendulum(rundemo)
2: % pendulum(rundemo)
3: % This example analyzes damped oscillations of
4: % a simple pendulum and animates the motion.
5: % The governing second order differential
6: % equation is
7: %
8: % theta"(t) + 0.2*theta’(t)+sin(theta) = 0
9:

10: % Type pendulum with no argument for inter-
11: % active input. Type pendulum(1) to run two
12: % example problems
13:

14: % The equation of motion can be written as
15: % two first order equations:
16: % theta’(t)=w; w’(t)=-.2*w-sin(theta)
17: % Letting z=[theta; w], then
18: % z’(t)=[z(2); -0.2*z(2)-sin(z(1))]
19:

20: disp(’ ’)
21: disp(’ DAMPED PENDULUM MOTION DESCRIBED BY’)
22: disp(’ theta"(t)+0.2*theta’’(t)+sin(theta) = 0’)
23:

24: % Create an inline function defining the
25: % differential equation in matrix form
26: zdot=inline(...
27: ’[z(2);-0.2*z(2)-sin(z(1))]’,’t’,’z’);
28:

29: % Set ode45 integration tolerances
30: ops=odeset(’reltol’,1e-5,’abstol’,1e-5);
31:

32: % Interactively input angular velocity repeatedly
33: if nargin==0
34:

35: while 1, close, disp(’ ’)
36: disp(’Select the angular velocity at the lowest’)
37: disp(’point. Values of 2.42 or greater push the’)
38: disp(...
39: ’the pendulum over the top. Input zero to stop.’)
40: w0=input(’w0 = ? > ’);
41:
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42: if isempty(w0) | w0==0
43: disp(’ ’), disp(’All Done’), disp(’ ’), return
44: end
45: disp(’ ’)
46: t=input([’Input a vector of time values ’,...
47: ’(Try 0:.1:30) > ? ’]);
48:

49: disp(’ ’)
50: titl=input(’Input a title for the graphs : ’,’s’);
51: disp(’ ’), disp(...
52: ’Input 1 to leave images of all positions shown’)
53: trac=input(...
54: ’in the animation, otherwise input 0 > ? ’);
55:

56: % Specify the initial conditions and solve the
57: % differential equation using ode45
58: theta0=0; z0=[theta0;w0];
59: [t,th]=ode45(zdot,t,z0,ops);
60:

61: % Animate the motion
62: animpen(t,th(:,1),titl,.05,trac)
63: end
64:

65: % Run two typical data cases
66: else
67:

68: % Choose time limits for the solution
69: tmax=30; n=351; t=linspace(0,tmax,n);
70:

71: disp(’ ’)
72: disp(’Press return to see two examples’), pause
73:

74: w0=2.42; W0=num2str(w0);
75: [t,th]=ode45(zdot,t,[0;w0],ops);
76: titl=[’PUSHED OVER THE TOP FOR W0 = ’,W0];
77: animpen(t,th(:,1), titl,.05), pause(2)
78:

79: w0=2.41; W0=num2str(w0);
80: [t,th]=ode45(zdot,t,[0;w0],ops);
81: titl=[’NEARLY PUSHED OVER THE TOP FOR W0 = ’,W0];
82: animpen(t,th(:,1),titl,.05)
83: close, disp(’ ’), disp(’All Done’), disp(’ ’)
84:

85: end
86:
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87: %===============================================
88:

89: function animpen(t,th,titl,tim,trac)
90: %
91: % animpen(t,th,titl,tim,trac)
92: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
93: % This function plots theta versus t and animates
94: % the pendulum motion
95: %
96: % t - time vector for the solution
97: % th - angular deflection values defining the
98: % pendulum positions
99: % titl - a title shown on the graphs

100: % tim - a time delay between successive steps of
101: % the animation. This is used to slow down
102: % the animation on fast computers
103: % trac - 1 if successive positions plotted in the
104: % animation are retained on the screen, 0
105: % if each image is erased after it is
106: % drawn
107:

108: if nargin<5, trac=0; end; if nargin<4, tim=.05; end;
109: if nargin<3, titl=’’; end
110:

111: % Plot the angular deflection
112: plot(t,180/pi*th(:,1),’k’), xlabel(’time’)
113: ylabel(’angular deflection (degrees)’), title(titl)
114: grid on, shg, disp(’ ’)
115: disp(’Press return to see the animation’), pause
116: % print -deps penangle
117:

118: nt=length(th); z=zeros(nt,1);
119: x=[z,sin(th)]; y=[z,-cos(th)];
120: hold off, close
121: if trac
122: axis([-1,1,-1,1]), axis square, axis off, hold on
123: end
124: for j=1:nt
125: X=x(j,:); Y=y(j,:);
126: plot(X,Y,’k-’,X(2),Y(2),’ko’,’markersize’,12)
127: if ~trac
128: axis([-1,1,-1,1]), axis square, axis off
129: end
130: title(titl), drawnow, shg
131: if tim>0, pause(tim), end
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132: end
133: % if trac==1, print -deps pentrace, end
134: pause(1),hold off

2.6 A Linear Vibration Model

Important aspects of linear vibration theory are illustrated by the one-dimensional
motion of a mass subjected to an elastic restoring force, a viscous damping force
proportional to the velocity, and a harmonically varying forcing function. The related
differential equation is

mx′′(t)+ c x′(t)+k x(t) = f1 cos(ω t)+f2 sin(ω t) = real((f1− i f2) exp(i ω t))

with initial conditions of x(0) = x0 and x′(0) = v0. The general solution is the
sum of a particular solution to account for the forcing function, and a homogeneous
solution corresponding to a zero right hand side. The initial conditions are applied
to the sum of the two solution components. The particular solution is given by

X(t) = real(F exp(i ω t))

with
F = (f1 − if2)/(k −mω2 + i c ω).

The initial conditions given by this particular solution are

X(0) = real(F )

and
X ′(0) = real(i ω F ).

The characteristic equation for the homogeneous equation is

ms2 + c s+ k = 0

which has roots

s1 = (−c+ r)/(2m), s2 = (−c− r)/(2m), r =
√
c2 − 4mk.

Then the homogeneous solution has the form

u(t) = d(1) exp(s1t) + d(2) exp(s2t)

where
d = [1, 1; s1, s2 ] \ [x0 −X(0); v0 −X ′(0)]

and the complete solution is

x(t) = u(t) +X(t).
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A couple of special cases arise. The Þrst corresponds to zero damping and a forcing
function matching the undamped natural frequency, i.e.,

c = 0, ω =
√
k/m.

This case can be avoided by including a tiny amount of damping to make c =
2
√
mk/106. The second case happens when the characteristic roots are equal. This

is remedied by perturbing the value of c to (1+10−6) times c. Such small changes in
a system model where realistic physical parameters are only known approximately
will not affect the Þnal results signiÞcantly.

In practice, enough damping often exists in the system to make the homogeneous
solution components decay rapidly so the total solution approaches the particular
solution with the displacement having the same frequency as the forcing function
but out of phase with that force. To illustrate this effect, a program was written to
solve the given differential equation, plot x(t), and show an animation for a block
connected to a wall with a spring and sliding on a surface with viscous damping
resistance. Applying the oscillating force of varying magnitude on the block helps
illustrate how the homogeneous solution dies out and the displacement settles into a
constant phase shift relative to the driving force.

The following program either reads data interactively or runs a default data exam-
ple. The solution procedure described above is implemented in function smdsolve.
For arbitrary values of the system parameters, x(t) is plotted and a simple animation
scheme is used to plot the block, a spring, and the applied force throughout the time
history. Figure 2.8 shows x(t) for the default data case. The input data values for
this case use

[m, c, k, f1, f2, w, x0, v0, tmax, nt] <=> [1, 3, 1, 1, 0, 2, 0, 2, 30, 250].

Note that near t = 11 , the transient and forced solution components interact so that
the block almost pauses momentarily. However, the solution then quickly approaches
the steady state. Figure 2.9 shows the Þnal position of the mass and the applied force
at the end of the chosen motion cycle.
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Program smdplot

1: function [t,X,m,c,k,f1,f2,w,x0,v0]= smdplot(example)
2: %
3: % [t,X,m,c,k,f1,f2,w,x0,v0]= smdplot(example)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function plots the response and animates the
6: % motion of a damped linear harmonic oscillator
7: % characterized by the differential equation
8: % m*x’’+c*x’+k*x=f1*cos(w*t)+f2*sin(w*t)
9: % with initial conditions x(0)=x0, x’(0)=v0.

10: % The animation depicts forced motion of a block
11: % attached to a wall by a spring. The block
12: % slides on a horizontal plane which provides
13: % viscous damping.
14:

15: % example - Omit this parameter for interactive input.
16: % Use smdplot(1) to run a sample problem.
17: % t,X - time vector and displacement response
18: % m,c,k - mass, damping coefficient,
19: % spring stiffness constant
20: % f1,f2,w - force components and forcing frequency
21: % x0,v0 - initial position and velocity
22: %
23: % User m functions called: spring smdsolve inputv
24: % -----------------------------------------------
25:

26: pltsave=0; disp(’ ’), disp(...
27: ’ SOLUTION OF ’), disp(...
28: ’M*X" + C*X’’ + K*X = F1*COS(W*T) + F2*SIN(W*T)’)
29: disp(...
30: ’ WITH ANIMATION OF THE RESPONSE’)
31: disp(’ ’)
32:

33: % Example data used when nargin > 0
34: if nargin > 0
35: m=1; c=.3; k=1; f1=1; f2=0; w=2; x0=0; v0=2;
36: tmax=25; nt=250;
37: else % Interactive data input
38: [m,c,k]=inputv(...
39: ’Input m, c, k (try 1, .3, 1) >> ? ’);
40:

41: [f1,f2,w]=inputv(...
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42: ’Input f1, f2, w (try 1, 0, 2) >> ? ’);
43:

44: [x0,v0]=inputv(...
45: ’Input x0, v0 (try 0, 2) >> ? ’);
46:

47: [tmax,nt]=inputv(...
48: ’Input tmax, nt (try 30, 250) >> ? ’);
49: end
50:

51: t=linspace(0,tmax,nt);
52: X=smdsolve(m,c,k,f1,f2,w,x0,v0,t);
53:

54: % Plot the displacement versus time
55: plot(t,X,’k’), xlabel(’time’)
56: ylabel(’displacement’), title(...
57: ’FORCED RESPONSE OF A DAMPED HARMONIC OSCILLATOR’)
58: grid on, shg, disp(’ ’)
59: if pltsave, print -deps smdplotxvst; end
60: disp(’Press return for response animation’)
61: pause
62:

63: % Add a block and a spring to the displacement
64: xmx=max(abs(X)); X=X/1.1/xmx;
65: xb=[0,0,1,1,0,0]/2; yb=[0,-1,-1,1,1,0]/2;
66:

67: % Make an arrow tip
68: d=.08; h=.05;
69: xtip=[0,-d,-d,0]; ytip=[0,0,0,h,-h,0];
70:

71: % Add a spring and a block to the response
72: [xs,ys]=spring; nm=length(X); ns=length(xs);
73: nb=length(xb); x=zeros(nm,ns+nb);y=[ys,yb];
74: for j=1:nm, x(j,:)=[-1+(1+X(j))*xs,X(j)+xb];end
75: xmin=min(x(:)); xmax=max(x(:)); d=xmax-xmin;
76: xmax=xmin+1.1*d; r=[xmin,xmax,-2,2];
77: rx=r([1 1 2]); ry=[.5,-.5,-.5]; close;
78:

79: % Plot the motion
80: for j=1:nm
81: % Compute and scale the applied force
82: f=f1*cos(w*t(j))+f2*sin(w*t(j));
83: f=.5*f; fa=abs(f); sf=sign(f);
84: xj=x(j,:); xmaxj=max(xj);
85: if sf>0
86: xforc=xmaxj+[0,fa,fa+xtip];
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87: else
88: xforc=xmaxj+[fa,0,-xtip];
89: end
90:

91: % Plot the spring, block, and force
92: % plot(xj,y,rx,ry,’k’,xforc,ytip,’r’)
93: %plot(xj,y,’k-’,rx,ry,’k-’,xforc,ytip,’k-’)
94: plot(xj,y,’k-’,xforc,ytip,’k-’,...
95: rx,ry,’k-’,’linewidth’,1)
96: title(’FORCED MOTION WITH DAMPING’)
97: xlabel(’FORCED MOTION WITH DAMPING’)
98: axis(r), axis(’off’), drawnow
99: figure(gcf), pause(.05)

100: end
101: if pltsave, print -deps smdplotanim; end
102: disp(’ ’), disp(’All Done’)
103:

104: %====================================
105:

106: function [x,y] = spring(len,ht)
107: % This function generates a set of points
108: % defining a spring
109:

110: if nargin==0, len=1; ht=.125; end
111: x=[0,.5,linspace(1,11,10),11.5,12];
112: y=[ones(1,5);-ones(1,5)];
113: y=[0;0;y(:);0;0]’; y=ht/2/max(y)*y;
114: x=len/max(x)*x;
115:

116: %====================================
117:

118: function [x,v]=smdsolve(m,c,k,f1,f2,w,x0,v0,t)
119: %
120: % [x,v]=smdsolve(m,c,k,f1,f2,w,x0,v0,t)
121: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
122: % This function solves the differential equation
123: % m*x’’(t)+c*x’(t)+k*x(t)=f1*cos(w*t)+f2*sin(w*t)
124: % with x(0)=x0 and x’(0)=v0
125: %
126: % m,c,k - mass, damping and stiffness coefficients
127: % f1,f2 - magnitudes of cosine and sine terms in
128: % the forcing function
129: % w - frequency of the forcing function
130: % t - vector of times to evaluate the solution
131: % x,v - computed position and velocity vectors
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132:

133: ccrit=2*sqrt(m*k); wn=sqrt(k/m);
134:

135: % If the system is undamped and resonance will
136: % occur, add a little damping
137: if c==0 & w==wn; c=ccrit/1e6; end;
138:

139: % If damping is critical, modify the damping
140: % very slightly to avoid repeated roots
141: if c==ccrit; c=c*(1+1e-6); end
142:

143: % Forced response solution
144: a=(f1-i*f2)/(k-m*w^2+i*c*w);
145: X0=real(a); V0=real(i*w*a);
146: X=real(a*exp(i*w*t)); V=real(i*w*a*exp(i*w*t));
147:

148: % Homogeneous solution
149: r=sqrt(c^2-4*m*k);
150: s1=(-c+r)/(2*m); s2=(-c-r)/(2*m);
151: p=[1,1;s1,s2]\[x0-X0;v0-V0];
152:

153: % Total solution satisfying the initial conditions
154: x=X+real(p(1)*exp(s1*t)+p(2)*exp(s2*t));
155: v=V+real(p(1)*s1*exp(s1*t)+p(2)*s2*exp(s2*t));
156:

157: %====================================
158:

159: % function [a1,a2,...,a_nargout]=inputv(prompt)
160: % See Appendix B

2.7 Example of Waves in an Elastic String

One-dimensional wave propagation is illustrated well by the response of a tightly
stretched string of Þnite length released from rest with given initial deßection. The
transverse deßection y(x, t) satisÞes the wave equation

a2yxx = ytt

and the general solution for an inÞnite length string, released from rest, is given by

y(x, t) = [F (x− at) + F (x+ at)]/2

where F (x) is the initial deßection for −∞ < x < ∞. The physical interpretation
for this equation is that the initial deßection splits in two parts translating at speed
a,with one part moving to the right and the other moving to the left. The translating

© 2003 by CRC Press LLC



wave solution can be adapted to handle a string of Þnite length l by requiring

y(0, t) = y(l, t) = 0.

These end conditions, along with initial deßection f(x) ( deÞning F (x) between 0
and l ), are sufÞcient to continue the solution outside the original interval. We write
the initial condition for the Þnite length string as

y(x, 0) = f(x), 0 < x < l.

To satisfy the end conditions, F (x) must be an odd-valued function of period 2l.
Introducing a function g(x) such that

g(x) = f(x), 0 ≤ x ≤ l

and
g(x) = −f(2l− x), l < x ≤ 2l

leads to
F (x) = sign(x)g(rem(abs(x), 2l))

where the desired periodicity is achieved using the MATLAB remainder function,
rem. This same problem can also be solved using a Fourier sine series (see chapter
9). For the present we concentrate on the solution just obtained.

A program was written to implement the translating wave solution when f(x)
is a piecewise linear function computed using interp1. The system behavior can
be examined from three different aspects. 1) The solution y(x, t) for a range of x
and t values describes a surface. 2) The deßection curve at a particular time t 0 is
expressed as y(x, t0), 0 < x < l. 3) The motion history at a particular point x0

is y(x0, t), t ≥ 0. The nature of F (x) implies that the motion has a period of
2l/a. Waves striking the boundary are reßected in inverted form so that for any time
y(x, t+ l/a) = −y(x, t). The character of the motion is typiÞed by the default data
case the program uses to deÞne a triangular initial deßection pattern where

a = 1, l = 1, xd = [0, 0.33, 0.5, 0.67, 1], yd = [0, 0, −1, 0, 0].

The program reads the wave speed, the string length, and data points specifying the
initial deßection. The solution is evaluated for a range of x, t values. The function
plot3 was used to create Figure 2.10, which is a three-dimensional plot of traces of
the string deßection for a sequence of times. Figure 2.11 shows the string position
at t = 0.33. Figure 2.12 plots the deßection history at position x = 0.25. Finally,
a function to animate the solution over two motion cycles illustrates how the initial
deßection splits, translates, and reßects from the boundaries. In an attempt to illus-
trate successive positions assumed in the animation, traces of the motion for a brief
period are shown in Figure 2.13
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MATLAB Example

Program strngrun

1: function strngrun(rundemo)
2: %
3: % strngrun(rundemo)
4: % ~~~~~~~~~~~~~~~~
5: % This function illustrates propagation of
6: % waves in a tightly stretched string having
7: % given initial deflection. Calling strngrun
8: % with no input argument causes data to be
9: % read interactively. Otherwise, strngrun(1)

10: % executes a sample data case.
11: %
12: % User m functions called: strngwav animate
13:

14: pltsav=0; % flag to save or not save graphs
15:

16: disp(’ ’)
17: disp(’WAVE PROPAGATION IN A STRING’), disp(’ ’)
18: if nargin==0 % Input data interactively
19: [a,len]=inputv([’Input wave speed (a) and ’,...
20: ’string length (len) > ? ’]);
21: disp(’ ’)
22: disp([’Enter the number of interior ’,...
23: ’data points (the fixed’])
24: disp([’end point coordinates are ’,...
25: ’added automatically)’])
26: n=input(’? ’); if isempty(n), return, end
27: xd=zeros(n+2,1); xd(n+2)=len;
28: yd=zeros(n+2,1); disp(’ ’)
29: disp([’The string stretches between ’,...
30: ’fixed endpoints at’])
31: disp([’x=0 and x=’,num2str(len),’.’]),disp(’ ’)
32: disp([’Enter ’,num2str(n),...
33: ’ sets of x,y to specify interior’])
34: disp([’initial deflections ’,...
35: ’(one pair per line)’])
36: for j=2:n+1,[xd(j),yd(j)]=inputv; end;
37: disp(’ ’)
38: disp(’Input tmax and the number of time steps’)
39: [tmax,nt]=inputv(’(Try len/a and 40) > ? ’);
40: disp(’ ’)
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41: disp(’Specify position x=x0 where the time’)
42: x0=input(...
43: ’history is to be evaluated (try len/4) > ? ’);
44: disp(’ ’)
45: disp(’Specify time t=t0 when the deflection’)
46: t0=input(’curve is to be plotted > ? ’);
47: disp(’ ’)
48: titl=input(’Input a graph title > ? ’,’s’);
49:

50: else % Example for triangular initial deflection
51: a=1; len=1; tmax=len/a; nt=40;
52: xd=[0,.33,.5,.67,1]*len; yd=[0,0,-1,0,0];
53:

54: % Different example for a truncated sine curve
55: % xd=linspace(0,len,351); yd=sin(3*pi/len*xd);
56: % k=find(yd<=0); xd=xd(k); yd=yd(k);
57:

58: x0=0.25*len; t0=0.33*len/a;
59: titl=’TRANSLATING WAVE OVER HALF A PERIOD’;
60: end
61:

62: nx=80; x=0:len/nx:len; t=0:tmax/nt:tmax;
63:

64: h=max(abs(yd)); xplot=linspace(0,len,201);
65: tplot=linspace(0,max(t),251)’;
66:

67: [Y,X,T]=strngwav(xd,yd,x,t,len,a);
68: plot3(X’,T’,Y’,’k’); xlabel(’x axis’)
69: ylabel(’time’), zlabel(’y(x,t)’), title(titl)
70: if pltsav, print(gcf,’-deps’,’strngplot3’); end
71: drawnow, shg, disp(’ ’)
72:

73: disp(’Press return to see the deflection’)
74: disp([’when t = ’,num2str(t0)]), pause
75:

76: [yt0,xx,tt]=strngwav(xd,yd,xplot,t0,len,a);
77: close; plot(xx(:),yt0(:),’k’)
78: xlabel(’x axis’), ylabel(’y(x,t0)’)
79: title([’DEFLECTION WHEN T = ’,num2str(t0)])
80: axis([min(xx),max(xx),-h,h])
81: if pltsav, print(gcf,’-deps’,’strngyxt0’); end
82: drawnow, shg
83:

84: disp(’ ’)
85: disp(’Press return to see the deflection history’)
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86: disp([’at x = ’,num2str(x0)]), pause
87:

88: yx0=strngwav(xd,yd,x0,tplot,len,a);
89: plot(tplot,yx0,’k’)
90: xlabel(’time’), ylabel(’y(x0,t)’)
91: title(...
92: [’DEFLECTION HISTORY AT X = ’,num2str(x0)])
93: axis([0,max(t),-h,h])
94: if pltsav, print(gcf,’-deps’,’strngyx0t’); end
95: drawnow, shg
96:

97: disp(’ ’)
98: disp(’Press return to see the animation’)
99: disp(’over two periods of motion’), pause

100: x=linspace(0,len,101); t=linspace(0,4*len/a,121);
101: [Y,X,T]=strngwav(xd,yd,x,t,len,a);
102: titl=’MOTION OVER TWO PERIODS’;
103: animate(X(1,:),Y’,titl,.1), pause(2)
104:

105: if pltsav, print(gcf,’-deps’,’strnganim’); end
106:

107: disp(’ ’), disp(’All Done’)
108:

109: %===============================================
110:

111: function [Y,X,T]=strngwav(xd,yd,x,t,len,a)
112: %
113: % [Y,X,T]=strngwav(xd,yd,x,t,len,a)
114: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
115: % This function computes the dynamic response of
116: % a tightly stretched string released from rest
117: % with a piecewise linear initial deflection. The
118: % string ends are fixed.
119: %
120: % xd,yd - data vectors defining the initial
121: % deflection as a piecewise linear
122: % function. xd values should be increasing
123: % and lie between 0 and len
124: % x,t - position and time vectors for which the
125: % solution is evaluated
126: % len,a - string length and wave speed
127:

128: if nargin<6, a=1; end; if nargin <5, len=1; end
129: xd=xd(:); yd=yd(:); p=2*len;
130:
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131: % If end values are not zero, add these points
132: if xd(end)~=len, xd=[xd;len]; yd=[yd;0]; end
133: if xd(1)~=0, xd=[0;xd]; yd=[0;yd]; end
134: nd=length(xd);
135:

136: % Eliminate any repeated abscissa values
137: k=find(diff(xd)==0); tiny=len/1e6;
138: if length(k)>0, xd(k)=xd(k)+tiny; end
139:

140: % Extend the data definition for len < x < 2*len
141: xd=[xd;p-xd(nd-1:-1:1)]; yd=[yd;-yd(nd-1:-1:1)];
142: [X,T]=meshgrid(x,t); xp=X+a*T; xm=X-a*T;
143: shape=size(xp); xp=xp(:); xm=xm(:);
144:

145: % Compute the general solution for a piecewise
146: % linear initial deflection
147: Y=(sign(xp).*interp1(xd,yd,rem(abs(xp),p),...
148: ’linear’,’extrap’)+sign(xm).*interp1(xd,yd,...
149: rem(abs(xm),p),’linear’,’extrap’))/2;
150: Y=reshape(Y,shape);
151:

152: %===============================================
153:

154: function animate(x,y,titl,tim,trace)
155: %
156: % animate(x,y,titl,tim,trace)
157: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
158: % This function performs animation of a 2D curve
159: % x,y - arrays with columns containing curve positions
160: % for successive times. x can also be a single
161: % vector if x values do not change. The animation
162: % is done by plotting (x(:,j),y(:,j)) for
163: % j=1:size(y,2).
164: % titl- title for the graph
165: % tim - the time in seconds between successive plots
166:

167: if nargin<5, trace=0; else, trace=1; end;
168: if nargin<4, tim=.05; end
169: if nargin<3, trac=’’; end; [np,nt]=size(y);
170: if min(size(x))==1, j=ones(1,nt); x=x(:);
171: else, j=1:nt; end; ax=newplot;
172: if trace, XOR=’none’; else, XOR=’xor’; end
173: r=[min(x(:)),max(x(:)),min(y(:)),max(y(:))];
174: %axis(’equal’) % Needed for an undistorted plot
175: axis(r), % axis(’off’)
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176: curve = line(’color’,’k’,’linestyle’,’-’,...
177: ’erase’,XOR, ’xdata’,[],’ydata’,[]);
178: xlabel(’x axis’), ylabel(’y axis’), title(titl)
179: for k = 1:nt
180: set(curve,’xdata’,x(:,j(k)),’ydata’,y(:,k))
181: if tim>0, pause(tim), end, drawnow, shg
182: end
183:

184: %===============================================
185:

186: % function varargout=inputv(prompt)
187: % See Appendix B

2.8 Properties of Curves and Surfaces

In this section some properties of space curves and surfaces are studied. Exam-
ples illustrating the graphics capabilities of MATLAB to describe three-dimensional
geometries are given. Readers should also study the demo examples and intrinsic
documentation on functions such as plot3, surf, and mesh to appreciate the wealth
of plotting options available.

2.8.1 Curve Properties

A space curve is a one-dimensional region representable in parametric form as

R(t) = ı̂x(t) + ̂ y(t) + k̂ z(t) , a < t < b

where ı̂, ̂, k̂ are Cartesian base vectors, and t is a scalar parameter such as arc length
s or time. At each point on the curve, differential properties naturally lead to a triad
of orthonormal base vectors T̂ , N̂, and B̂ called the tangent, the principal normal,
and the binormal. The normal vector points toward the center of curvature and the
binormal is deÞned by T̂ × N̂ to complete the triad. Coordinate planes associated
with the triad are the normal plane containing N̂ and B̂, the tangent plane containing
T̂ and B̂, and the osculating plane containing T̂ and N̂. Two other scalar properties
of interest are the curvature κ (the reciprocal of the curvature radius) and the torsion
τ , which quantiÞes the rate at which the triad twists about the direction of T̂ as a
generic point moves along the curve. When a curve is parameterized in terms of arc
length s, the Þve quantities just mentioned are related by the Frenet formulas [91]
which are

dT̂

ds
= κN̂ ,

dB̂
ds

= −τN̂ ,
dN̂
ds

= −κT̂ + τB̂.

Since most curves are not easily parameterized in terms of arc length, more conve-
nient formulas are needed for computing T̂ , N̂, B̂, κ, and τ . All the desired quanti-
ties can be found in terms of R ′(t), R′′(t), and R′′′(t). Among the Þve properties,
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only torsion, τ , depends on R ′′′(t). The pertinent formulas are

T̂ =
R′(t)
|R′(t)| , B̂ =

R′(t) × R′′(t)
|R′(t) × R′′(t)|

N̂ = B̂ × T̂ , κ =
|R′(t) × R′′(t)|

|R′(t)|3
and

τ =
B̂ · R′′′(t)

|R′(t) × R′′(t)| .

When the independent variable t means time we get

V = velocity =
dR

dt
=
ds

dt

dR

ds
= vT̂

where v is the magnitude of velocity called speed. Differentiating again leads to

dV
dt

= acceleration =
dv

dt
T̂ + κv2N̂

so the acceleration involves a tangential component with magnitude equal to the time
rate of change of speed, and a normal component of magnitude κv 2 directed toward
the center of curvature. The torsion is only encountered when the time derivative of
acceleration is considered. This is seldom of interest in Newtonian mechanics.

A function crvprp3d was written to evaluate T̂ , N̂, B̂, κ, and τ in terms of R′(t),
R′′(t), and R′′′(t). Another function aspiral applies crvprp3d to the curve de-
scribed by

R(t) = [(ro + kt) cos(t); (ro + kt) sin(t); ht]

where t is the polar coordinate angle for cylindrical coordinates. Figure 2.14 depicts
results generated from the default data set where

ro = 2π , k = 1 , h = 2 , 2π ≤ t ≤ 8π,

with 101 data points being used. A cross section normal to the surface would produce
a right angle describing the directions of the normal and binormal at a typical point.
The spiral itself passes along the apex of the right angle. This surface illustrates how
the intrinsic triad of base vectors changes position and direction as a point moves
along the curve.

An additional function crvprpsp was written to test how well cubic spline in-
terpolation approximates curve properties for the spiral. MATLAB provides func-
tion spline to connect data points by a piecewise cubic interpolation curve having
continuous Þrst and second derivatives [27]. This function utilizes other intrinsic
functions1 such as unmkpp, mkpp, and ppval. Although basic MATLAB does not

1These functions are included with MATLAB and are a subset of the more comprehensive Spline Toolbox
also available from The MathWorks.
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Figure 2.14: Spiral Showing Osculating and Rectifying Planes

include functions for spline differentiation, this can be remedied by the short func-
tion splined which computes Þrst and second derivatives of the interpolation curve
deÞned by function spline. In our example using spline interpolation, approxima-
tion of τ was not obtained because a cubic spline only has its Þrst two derivatives
continuous. Approximations for R ′′′(t) could have been generated by interpolat-
ing the computed values of R ′(t) and differentiating the results twice. That idea
was not explored. To assess the accuracy of the spline interpolation, values for
norm(B̂ − B̂approx) and |(k − kapprox)/k| were obtained at 101 sample points along
the curve. Results depicted in Figure 2.15 show errors in the third decimal place
except near the ends of the interpolation interval where a �not a knot� boundary
condition is employed [27].
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Program Output and Code

Program splinerr

1: function splinerr
2: % Example: splinerr
3: % ~~~~~~~~~~~~~~~~~
4: %
5: % This program calculates the binormal and
6: % curvature error for a spiral space curve.
7: %
8: % User m functions called:
9: % aspiral, crvprpsp crvprp3d cubrange splined

10: %--------------------------------------------
11:

12: clear; hold off; clf;
13: [R,T,N,B,KAP]=aspiral; m=size(R,2);
14: [r,t,n,b,k]=crvprpsp(R,m);
15: disp(’ ’); disp(...
16: ’Press [Enter] to show error curves’); pause
17: errv=sqrt(sum((B-b).^2));
18: errk=abs((KAP-k)./KAP); hold off; clf;
19: semilogy(1:m,errv,’k-’,1:m,errk,’k--’);
20: xlabel(’point index’); ylabel(’error measure’);
21: title(’Error Plot’);
22: legend(’Binormal error’,’Curvature error’,3);
23: figure(gcf); disp(’ ’)
24: disp(’Press [Enter] to finish’); pause
25: disp(’ ’), disp(’All done’), disp(’ ’)
26:

27: %==============================================
28:

29: function [R,T,N,B,kap,tau,arclen]= ...
30: aspiral(r0,k,h,t)
31: %
32: % [R,T,N,B,kap,tau,arclen]=aspiral(r0,k,h,t)
33: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34: %
35: % This function computes geometrical properties
36: % of a spiral curve having the parametric
37: % equation
38: %
39: % R = [(r0+k*t)*cos(t);(r0+k*t)*sin(t);h*t]
40: %

© 2003 by CRC Press LLC



41: % A figure showing the curve along with the
42: % osculating plane and the rectifying plane
43: % at each point is also drawn.
44: %
45: % r0,k,h - parameters which define the spiral
46: % t - a vector of parameter values at
47: % which the curve is evaluated from
48: % the parametric form.
49: %
50: % R - matrix with columns containing
51: % position vectors for points on the
52: % curve
53: % T,N,B - matrices with columns containing the
54: % tangent,normal,and binormal vectors
55: % kap - vector of curvature values
56: % tau - vector of torsion values
57: % arclen - value of arc length approximated as
58: % the sum of chord values between
59: % successive points
60: %
61: % User m functions called:
62: % crvprp3d, cubrange
63: %----------------------------------------------
64:

65: if nargin==0
66: k=1; h=2; r0=2*pi; t=linspace(2*pi,8*pi,101);
67: end
68:

69: % Evaluate R, R’(t), R’’(t) and R’’’(t) for
70: % the spiral
71: t=t(:)’; s=sin(t); c=cos(t); kc=k*c; ks=k*s;
72: rk=r0+k*t; rks=rk.*s; rkc=rk.*c; n=length(t);
73: R=[rkc;rks;h*t]; R1=[kc-rks;ks+rkc;h*ones(1,n)];
74: R2=[-2*ks-rkc;2*kc-rks;zeros(1,n)];
75: R3=[-3*kc+rks;-3*ks-rkc;zeros(1,n)];
76:

77: % Obtain geometrical properties
78: [T,N,B,kap,tau]=crvprp3d(R1,R2,R3);
79: arclen=sum(sqrt(sum((R(:,2:n)-R(:,1:n-1)).^2)));
80:

81: % Generate points on the osculating plane and
82: % the rectifying plane along the curve.
83: w=arclen/100; Rn=R+w*N; Rb=R+w*B;
84: X=[Rn(1,:);R(1,:);Rb(1,:)];
85: Y=[Rn(2,:);R(2,:);Rb(2,:)];
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86: Z=[Rn(3,:);R(3,:);Rb(3,:)];
87:

88: % Draw the surface
89: v=cubrange([X(:),Y(:),Z(:)]); hold off; clf; close;
90: surf(X,Y,Z); axis(v); xlabel(’x axis’);
91: ylabel(’y axis’); zlabel(’z axis’);
92: title([’Spiral Showing Osculating and ’, ...
93: ’Rectifying Planes’]); grid on; drawnow;
94: figure(gcf);
95:

96: %==============================================
97:

98: function [T,N,B,kap,tau]=crvprp3d(R1,R2,R3)
99: %

100: % [T,N,B,kap,tau]=crvprp3d(R1,R2,R3)
101: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
102: %
103: % This function computes the primary
104: % differential properties of a three-dimensional
105: % curve parameterized in the form R(t) where t
106: % can be arc length or any other convenient
107: % parameter such as time.
108: %
109: % R1 - the matrix with columns containing R’(t)
110: % R2 - the matrix with columns containing R’’(t)
111: % R3 - the matrix with columns containing
112: % R’’’(t). This matrix is only needed
113: % when torsion is to be computed.
114: %
115: % T - matrix with columns containing the
116: % unit tangent
117: % N - matrix with columns containing the
118: % principal normal vector
119: % B - matrix with columns containing the
120: % binormal
121: % kap - vector of curvature values
122: % tau - vector of torsion values. This equals
123: % [] when R3 is not given
124: %
125: % User m functions called: none
126: %----------------------------------------------
127:

128: nr1=sqrt(dot(R1,R1)); T=R1./nr1(ones(3,1),:);
129: R12=cross(R1,R2); nr12=sqrt(dot(R12,R12));
130: B=R12./nr12(ones(3,1),:); N=cross(B,T);
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131: kap=nr12./nr1.^3;
132:

133: % Compute the torsion only when R’’’(t) is given
134: if nargin==3, tau=dot(B,R3)./nr12;
135: else, tau=[]; end
136:

137: %==============================================
138:

139: function [R,T,N,B,kappa]=crvprpsp(Rd,n)
140: %
141: % [R,T,N,B,kappa]=crvprpsp(Rd,n)
142: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
143: %
144: % This function computes spline interpolated
145: % values for coordinates, base vectors and
146: % curvature obtained by passing a spline curve
147: % through data values given in Rd.
148: %
149: % Rd - a matrix containing x,y and z values
150: % in rows 1, 2 and 3.
151: % n - the number of points at which
152: % properties are to be evaluated along
153: % the curve
154: %
155: % R - a 3 by n matrix with columns
156: % containing coordinates of interpolated
157: % points on the curve
158: % T,N,B - matrices of dimension 3 by n with
159: % columns containing components of the
160: % unit tangent, unit normal, and unit
161: % binormal vectors
162: % kappa - a vector of curvature values
163: %
164: % User m functions called:
165: % splined, crvprp3d
166: %----------------------------------------------
167:

168: % Create a spline curve through the data points,
169: % and evaluate the derivatives of R.
170: nd=size(Rd,2); td=0:nd-1; t=linspace(0,nd-1,n);
171: ud=Rd(1,:)+i*Rd(2,:); u=spline(td,ud,t);
172: u1=splined(td,ud,t); u2=splined(td,ud,t,2);
173: ud3=Rd(3,:); z=spline(td,ud3,t);
174: z1=splined(td,ud3,t); z2=splined(td,ud3,t,2);
175: R=[real(u);imag(u);z]; R1=[real(u1);imag(u1);z1];
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176: R2=[real(u2);imag(u2);z2];
177:

178: % Get curve properties from crvprp3d
179: [T,N,B,kappa]=crvprp3d(R1,R2);
180:

181: %==============================================
182:

183: function val=splined(xd,yd,x,if2)
184: %
185: % val=splined(xd,yd,x,if2)
186: % ~~~~~~~~~~~~~~~~~~~~~~~~
187: %
188: % This function evaluates the first or second
189: % derivative of the piecewise cubic
190: % interpolation curve defined by the intrinsic
191: % function spline provided in MATLAB.If fewer
192: % than four data points are input, then simple
193: % polynomial interpolation is employed
194: %
195: % xd,yd - data vectors determining the spline
196: % curve produced by function spline
197: % x - vector of values where the first or
198: % the second derivative are desired
199: % if2 - a parameter which is input only if
200: % y’’(x) is required. Otherwise, y’(x)
201: % is returned.
202: %
203: % val - the first or second derivative values
204: % for the spline
205: %
206: % User m functions called: none
207:

208: n=length(xd); [b,c]=unmkpp(spline(xd,yd));
209: if n>3 % Use a cubic spline
210: if nargin==3, c=[3*c(:,1),2*c(:,2),c(:,3)];
211: else, c=[6*c(:,1),2*c(:,2)]; end
212: val=ppval(mkpp(b,c),x);
213: else % Use a simple polynomial
214: c=polyder(polyfit(xd(:),yd(:),n-1));
215: if nargin==4, c=polyder(c); end
216: val=polyval(c,x);
217: end
218:

219: %=================================================
220:
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221: % function range=cubrange(xyz,ovrsiz)
222: % See Appendix B

2.8.2 Surface Properties

Surfaces are two-dimensional regions described parametrically as

R(u, v) = ı̂x(u, v) + ̂u(u, v) + k̂z(u, v)

where u and v are scalar parameters. This parametric form is helpful for generating a
grid of points on the surface as well as for computing surface tangents and the surface
normal. Holding v Þxed while u varies generates a curve in the surface called a u
coordinate line. A tangent vector to the u-line is given by

gu =
∂R

∂u
= ı̂

∂x

∂u
+ ̂

∂y

∂u
+ k̂

∂z

∂u
.

Similarly, holding u Þxed and varying v produces a v-line with tangent vector

gv =
∂R

∂v
= ı̂

∂x

∂v
+ ̂

∂y

∂v
+ k̂

∂z

∂v
.

Consider the following cross product.

gu × gv du dv = n̂ dS.

In this equation n̂ is the unit surface normal and dS is the area of a parallelogram
shaped surface element having sides deÞned by gu du and gv dv.

The intrinsic functions surf(X,Y,Z) and mesh(X,Y,Z) depict surfaces by showing
a grid network and related surface patches characterized when parameters u and v
are varied over constant limits. Thus, values

(uı, v) , 1 ≤ ı ≤ n , 1 ≤  ≤ m

lead to matrices

X = [x(uı, v)] , Y = [y(uı, v)] , Z = [z(uı, v)]

from which surface plots are obtained. Function surf colors the surface patches
whereas mesh colors the grid lines.

As a simple example, consider the ellipsoidal surface described parametrically as

x = a cos θ cosφ , y = b cos θ sinφ , z = c sin θ

where −π
2 ≤ θ ≤ π

2 , −π ≤ φ ≤ π. The surface equation evidently satisÞes the
familiar equation (x

a

)2

+
(y
b

)2

+
(z
c

)2

= 1
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for an ellipsoid. The function elipsoid(a,b,c) called with a = 2, b = 1.5, c = 1
produces the surface plot in Figure 2.18.

Many types of surfaces can be parameterized in a manner similar to the ellipsoid.
We will examine two more problems involving a torus and a conical frustum. Con-
sider a circle of radius b lying in the xz-plane with its center at [a,0,0]. Rotating
the circle about the z-axis produces a torus having the surface equation

x = [a+ b cos θ] cosφ , y = [a+ b cos θ] , sinφ , z = b sinφ

where −π ≤ θ ≤ π , −π ≤ φ ≤ π.
This type of equation is used below in an example involving several bodies. Let

us also produce a surface covering the ends and side of a conical frustum (a cone
with the top cut off). The frustum has base radius rb, top radius rt, and height h,
with the symmetry axis along the z-axis. The surface can be parameterized using an
azimuthal angle θ and an arc length parameter relating to the axial direction. The
lateral side length is

rs =
√
h2 + (rb − rt)2 .

Let us take 0 ≤ s ≤ (rb + rs + rt) and describe the surface R(s, θ) by coordinate
functions

x = r(s) cos θ , y = r(s) sin θ , z = z(s)

where 0 ≤ θ ≤ 2π and
r(s) = s , 0 ≤ s ≤ rb

r(s) = rb +
(rt − rb)(s− rb)

rs
, z =

h(s− rb)
rs

, rb ≤ s ≤ (rb + rs)

r(s) = rb + rs + rt − r , z = h , (rb + rs) ≤ s ≤ (rb + rs + rt) .

The function frus produces a grid of points on the surface in terms of r b, rt, h, the
number of increments on the base, the number of increments on the side, and the
number of increments on the top. Figure 2.16 shows the plot generated by frus.

An example called srfex employs the ideas just discussed and illustrates how
MATLAB represents several interesting surfaces. Points on the surface of an an-
nulus symmetric about the z-axis are created, and two more annuli are created by
interchanging axes. A pyramid with a square base is also created and the combina-
tion of four surfaces is plotted by Þnding a data range to include all points and then
plotting each surface in succession using the hold instruction (See Figure 2.16). Al-
though the rendering of surface intersections is not perfect, a useful description of a
fairly involved geometry results. Combined plotting of several intersecting surfaces
is implemented in a general purpose function surfmany. The default data case for
surfmany produces the six=legged geometry shown in Figure 2.17.

This section is concluded with a discussion of how a set of coordinate points can
be moved to a new position by translation and rotation of axes. Suppose a vector

r = ı̂x+ ̂y + k̂z
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Spike and Intersecting Toruses

Figure 2.16: Spike and Intersecting Toruses

undergoes a coordinate change which moves the initial coordinate origin to (X o, Yo, Zo)
and moves the base vectors ı̂, ̂, k̂ into ê1, ê2, ê3. Then the endpoint of r passes to

R = ı̂X + ̂Y + k̂Z = Ro + ê1x+ ê2y + ê3z

where
Ro = ı̂Xo + ̂Yo + k̂Zo .

Let us specify the directions of the new base vectors by employing the columns of a
matrix V where we take

ê3 =
V (:, 1)

norm[V (:, 1)]
.

If V (:, 2) exists we take V (:, 1) × V (:, 2) and unitize this vector to produce ê2. The
triad is completed by taking ê1 = ê2 × ê3. In the event that V (:, 2) is not provided,
we use [1;0;0] and proceed as before. The functions rgdbodmo and rotatran
can be used to transform points in the manner described above.
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2.8.3 Program Output and Code

Function srfex

1: function [x1,y1,x2,y2,x3,y3,xf,yf,zf]= ...
2: srfex(da,na,df,nf)
3: % [x1,y1,x2,y2,x3,y3,xf,yf,zf]= ...
4: % srfex(da,na,df,nf)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: %
7: % This graphics example draws three toruses
8: % intersecting a spike.
9: %

10: % User m functions called: frus, surfmany
11:

12: if nargin==0
13: da=[4.0,.45]; na=[42,15];
14: df=[2.2,0,15]; nf=[43,4];
15: end
16:

17: % Create a torus with polygonal cross section.
18: % Data for the torus is stored in da and na
19:

20: r0=da(1); r1=da(2); nfaces=na(1); nlat=na(2);
21: t=linspace(0,2*pi,nlat)’;
22: xz=[r0+r1*cos(t),r1*sin(t)];
23: z1=xz(:,2); z1=z1(:,ones(1,nfaces+1));
24: th=linspace(0,2*pi,nfaces+1);
25: x1=xz(:,1)*cos(th); y1=xz(:,1)*sin(th);
26: y2=x1; z2=y1; x2=z1; y3=x2; z3=y2; x3=z2;
27:

28: % Create a frustum of a pyramid. Data for the
29: % frustum is stored in df and nf
30: rb=df(1); rt=df(2); h=df(3);
31: [xf,yf,zf]=frus(rb,rt,h,nf); zf=zf-.35*h;
32:

33: % Plot four figures combined together
34: hold off; clf; close;
35: surfmany(x1,y1,z1,x2,y2,z2,x3,y3,z3,xf,yf,zf)
36: xlabel(’x axis’); ylabel(’y axis’);
37: zlabel(’z axis’);
38: title(’Spike and Intersecting Toruses’);
39: axis equal; axis(’off’);
40: colormap([1 1 1]); figure(gcf); hold off;
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41: % print -deps srfex
42:

43: %=============================================
44:

45: function [X,Y,Z]=frus(rb,rt,h,n,noplot)
46: %
47: % [X,Y,Z]=frus(rb,rt,h,n,noplot)
48: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
49: %
50: % This function computes points on the surface
51: % of a conical frustum which has its axis along
52: % the z axis.
53: %
54: % rb,rt,h - the base radius,top radius and
55: % height
56: % n - vector of two integers defining the
57: % axial and circumferential grid
58: % increments on the surface
59: % noplot - parameter input when no plot is
60: % desired
61: %
62: % X,Y,Z - points on the surface
63: %
64: % User m functions called: none
65:

66: if nargin==0
67: rb=2; rt=1; h=3; n=[23, 35];
68: end
69:

70: th=linspace(0,2*pi,n(2)+1)’-pi/n(2);
71: sl=sqrt(h^2+(rb-rt)^2); s=sl+rb+rt;
72: m=ceil(n(1)/s*[rb,sl,rt]);
73: rbot=linspace(0,rb,m(1));
74: rside=linspace(rb,rt,m(2));
75: rtop=linspace(rt,0,m(3));
76: r=[rbot,rside(2:end),rtop(2:end)];
77: hbot=zeros(1,m(1));
78: hside=linspace(0,h,m(2));
79: htop=h*ones(1,m(3));
80: H=[hbot,hside(2:end),htop(2:end)];
81: Z=repmat(H,n(2)+1,1);
82: xy=exp(i*th)*r; X=real(xy); Y=imag(xy);
83: if nargin<5
84: surf(X,Y,Z); title(’Frustum’); xlabel(’x axis’)
85: ylabel(’y axis’), zlabel(’z axis’)
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86: grid on, colormap([1 1 1]);
87: figure(gcf);
88: end
89:

90: %=============================================
91:

92: function surfmany(varargin)
93: %function surfmany(x1,y1,z1,x2,y2,z2,...
94: % x3,y3,z3,..,xn,yn,zn)
95: % This function plots any number of surfaces
96: % on the same set of axes without shape
97: % distortion. When no input is given then a
98: % six-legged solid composed of spheres and
99: % cylinders is shown.

100: %
101: % User m functions called: none
102: %----------------------------------------------
103:

104: if nargin==0
105: % Default data for a six-legged solid
106: n=10; rs=.25; d=7; rs=2; rc=.75;
107: [xs,ys,zs]=sphere; [xc,yc,zc]=cylinder;
108: xs=rs*xs; ys=rs*ys; zs=rs*zs;
109: xc=rc*xc; yc=rc*yc; zc=2*d*zc-d;
110: x1=xs; y1=ys; z1=zs;
111: x2=zs+d; y2=ys; z2=xs;
112: x3=zs-d; y3=ys; z3=xs;
113: x4=xs; y4=zs-d; z4=ys;
114: x5=xs; y5=zs+d; z5=ys;
115: x6=xs; y6=ys; z6=zs+d;
116: x7=xs; y7=ys; z7=zs-d;
117: x8=xc; y8=yc; z8=zc;
118: x9=zc; y9=xc; z9=yc;
119: x10=yc; y10=zc; z10=xc;
120: varargin={x1,y1,z1,x2,y2,z2,x3,y3,z3,...
121: x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7,...
122: x8,y8,z8,x9,y9,z9,x10,y10,z10};
123: end
124:

125: % Find the data range
126: n=length(varargin);
127: r=realmax*[1,-1,1,-1,1,-1];
128: s=inline(’min([a;b])’,’a’,’b’);
129: b=inline(’max([a;b])’,’a’,’b’);
130: for k=1:3:n
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131: x=varargin{k}; y=varargin{k+1};
132: z=varargin{k+2};
133: x=x(:); y=y(:); z=z(:);
134: r(1)=s(r(1),x); r(2)=b(r(2),x);
135: r(3)=s(r(3),y); r(4)=b(r(4),y);
136: r(5)=s(r(5),z); r(6)=b(r(6),z);
137: end
138:

139: % Plot each surface
140: hold off, newplot
141: for k=1:3:n
142: x=varargin{k}; y=varargin{k+1};
143: z=varargin{k+2};
144: surf(x,y,z); axis(r), hold on
145: end
146:

147: % Set axes and display the combined plot
148: axis equal, axis(r), grid on
149: xlabel(’x axis’), ylabel(’y axis’)
150: zlabel(’z axis’)
151: title(’SEVERAL SURFACES COMBINED’)
152: % colormap([127/255 1 212/255]); % aquamarine
153: colormap([1 1 1]);, figure(gcf), hold off

Function rgdbodmo

1: function [X,Y,Z]=rgdbodmo(x,y,z,v,R0)
2: %
3: % [X,Y,Z]=rgdbodmo(x,y,z,v,R0)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function transforms coordinates x,y,z to
7: % new coordinates X,Y,Z by rotating and
8: % translating the reference frames. When no
9: % input is given, an example involving an

10: % ellipsoid is run.
11: %
12: % x,y,z - initial coordinate matrices referred
13: % to base vectors [1;0;0], [0;1;0] and
14: % [0;0;1]. Columns of v are used to
15: % create new basis vectors i,j,k such
16: % that a typical point [a;b;c] is
17: % transformed into [A;B;C] according
18: % to the equation
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19: % [A;B;C]=R0(:)+[i,j,k]*[a;b;c]
20: % v - a matrix having three rows and either
21: % one or two columns used to construct
22: % the new basis [i,j,k] according to
23: % methods employed function rotatran
24: % R0 - a vector which translates the rotated
25: % coordinates when R0 is input.
26: % Otherwise no translation is imposed.
27: %
28: % X,Y,Z - matrices containing the transformed
29: % coordinates
30: %
31: % User m functions called: elipsoid, rotatran
32:

33: if nargin==0
34: [x,y,z]=elipsoid(1,1,2,[17,33],0);R0=[3;4;5];
35: v=[[1;1;1],[1;1;0]];
36: end
37: [n,m]=size(x); XYZ=[x(:),y(:),z(:)]*rotatran(v)’;
38: X=XYZ(:,1); Y=XYZ(:,2); Z=XYZ(:,3);
39: if ~isempty(R0)
40: X=X+R0(1); Y=Y+R0(2); Z=Z+R0(3);
41: end
42: X=reshape(X,n,m); Y=reshape(Y,n,m);
43: Z=reshape(Z,n,m);
44: if nargin==0
45: close; surf(X,Y,Z), axis equal, grid on
46: title(’ROTATED AND TRANSLATED ELLIPSOID’)
47: xlabel(’x axis’), ylabel(’y axis’)
48: zlabel(’z axis’),colormap([1 1 1]); shg
49: end
50:

51: %==============================================
52:

53: function [x,y,z]=elipsoid(a,b,c,n,noplot)
54: %
55: % [x,y,z]=elipsoid(a,b,c,n,noplot)
56: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
57: % This function plots an ellipsoid having semi-
58: % diameters a,b,c
59: % a,b,c - semidiameters of the ellipsoid defined
60: % by (x/a)^2+(y/b)^2+(z/c)^2=1
61: % n - vector [nth,nph] giving the number of
62: % theta values and phi values used to plot
63: % the surface
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64: % noplot - omit this parameter if no plot is desired
65: % x,y,z - matrices of points on the surface
66: %
67: % User m functions called: none
68: %----------------------------------------------
69:

70: if nargin==0, a=2; b=1.5; c=1; n=[17,33]; end
71: nth=n(1); nph=n(2);
72: th=linspace(-pi/2,pi/2,nth)’; ph=linspace(-pi,pi,nph);
73: x=a*cos(th)*cos(ph); y=b*cos(th)*sin(ph);
74: z=c*sin(th)*ones(size(ph));
75: if nargin<5
76: surf(x,y,z); axis equal
77: title(’ELLIPSOID’), xlabel(’x axis’)
78: ylabel(’y axis’), zlabel(’z axis’)
79: colormap([1 1 1]); grid on, figure(gcf)
80: end
81:

82: %==============================================
83:

84: function mat=rotatran(v)
85: %
86: % mat=rotatran(v)
87: % ~~~~~~~~~~~~~~~
88: % This function creates a rotation matrix based
89: % on the columns of v.
90: %
91: % v - a matrix having three rows and either
92: % one or two columns which are used to
93: % create an orthonormal triad [i,j,k]
94: % returned in the columns of mat. The
95: % third base vector k is defined as
96: % v(:,1)/norm(v(:,1)). If v has two
97: % columns then, v(:,1) and v(:,2) define
98: % the xz plane with the direction of j
99: % defined by cross(v(:,1),v(:2)). If only

100: % v(:,1) is input, then v(:,2) is set
101: % to [1;0;0].
102: %
103: % mat - the matrix having columns containing
104: % the basis vectors [i,j,k]
105: %
106: % User m functions called: none
107: %----------------------------------------------
108:

© 2003 by CRC Press LLC



109: k=v(:,1)/norm(v(:,1));
110: if size(v,2)==2, p=v(:,2); else, p=[1;0;0]; end
111: j=cross(k,p); nj=norm(j);
112: if nj~=0
113: j=j/nj; mat=[cross(j,k),j,k];
114: else
115: mat=[[0;1;0],cross(k,[0;1;0]),k];
116: end
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Chapter 3

Summary of Concepts from Linear Algebra

3.1 Introduction

This chapter brießy reviews important concepts of linear algebra. We assume the
reader already has some experience working with matrices, and linear algebra ap-
plied to solving simultaneous equations and eigenvalue problems. MATLAB has ex-
cellent capabilities to perform matrix operations using the fastest and most accurate
algorithms currently available. The books by Strang [96] and Golub and Van Loan
[47] give comprehensive treatments of matrix theory and of algorithm developments
accounting for effects of Þnite precision arithmetic. One beautiful aspect of matrix
theory is that fairly difÞcult proofs often lead to remarkably simple results valuable
to users not necessarily familiar with all of the theoretical developments. For in-
stance, the property that every real symmetric matrix of order n has real eigenvalues
and a set of n orthonormal eigenvectors can be understood and used by someone
unfamiliar with the proof. The current chapter summarizes a number of fundamen-
tal matrix properties and some of the related MATLAB functions. The intrinsic
matrix functions use highly efÞcient algorithms originally from the LINPACK and
EISPACK libraries which have now been superceded by LAPACK. [34, 42, 89]. Dr.
Cleve Moler, the Chairman and Chief Scientist at The MathWorks, contributed to
development of these systems. He also wrote the Þrst version of MATLAB. Readers
should simultaneously study the current chapter and the MATLAB demo program
on linear algebra.

3.2 Vectors, Norms, Linear Independence, and Rank

Consider an n by m matrix

A = [aı] , 1 ≤ ı ≤ n , 1 ≤  ≤ m,

having real or complex elements. The shape of a matrix is computed by size(A)
which returns a vector containing n and m. The matrix obtained by conjugating
the matrix elements and interchanging columns and rows is called the transpose.

© 2003 by CRC Press LLC



Transposition is accomplished with a ′ operator, so that

A transpose = A′.

Transposition without conjugation of the elements can be performed as A. ′ or as
conj(A′). Of course, whenever A is real, A′ is simply the traditional transpose.

The structure of a matrix A is characterized by the matrix rank and sets of basis
vectors spanning four fundamental subspaces. The rank r is the maximum number
of linearly independent rows or columns in the matrix. We discuss these spaces in
the context of real matrices. The basic subspaces are:

1. The column space containing all vectors representable as a linear combination
of the columns of A. The column space is also referred to as the range or the
span.

2. The null space consisting of all vectors perpendicular to every row of A.

3. The row space consisting of all vectors which are linear combinations of the
rows of A.

4. The left null space consisting of all vectors perpendicular to every column of
A.

MATLAB has intrinsic functions to compute rank and subspace bases

• matrix rank = rank(A)

• column space = orth(A)

• null space = null(A)

• row space = orth(A′)′

• left null space = null(A′)′

The basis vectors produced by null and orth are orthonormal. They are generated
using the singular value decomposition algorithm [47]. The MATLAB function to
perform this type of computation is named svd.

3.3 Systems of Linear Equations, Consistency, and Least Squares
Approximation

Let us discuss the problem of solving systems of simultaneous equations. Repre-
senting a vector B as a linear combination of the columns of A requires determina-
tion of a vector X to satisfy

AX = B ⇐⇒
m∑

=1

A(:, )x() = B

© 2003 by CRC Press LLC



where the �th column of A is scaled by the �th component of X to form the lin-
ear combination. The desired representation is possible if and only if B lies in the
column space of A. This implies the consistency requirement that A and [A,B]
must have the same rank. Even when a system is consistent, the solution will not be
unique unless all columns ofA are independent. When matrixA, with n rows andm
columns, has rank r less than m, the general solution of AX = B is expressible as
any particular solution plus an arbitrary linear combination of m − r vectors form-
ing a basis for the null space. MATLAB gives the solution vector as X = A\B.
When r is less than m, MATLAB produces a least squares solution having as many
components as possible set equal to zero.

In instances where the system is inconsistent, regardless of how X is chosen, the
error vector deÞned by

E = AX −B

can never be zero. An approximate solution can be obtained by makingE normal to
the columns of A. We get

A′AX = A′B

which is known as the system of normal equations. They are also referred to as least
squares error equations. It is not difÞcult to show that the same equations result by
requiring E to have minimum length. The normal equations are always consistent
and are uniquely solvable when rank(A) = m. A comprehensive discussion of least
squares approximation and methods for solving overdetermined systems is presented
by Lawson and Hanson [62]. It is instructive to examine the results obtained from
the normal equations when A is square and nonsingular. The least squares solution
would give

X = (A′A)−1A′B = A−1(A′)−1A′B = A−1B.

Therefore, the least squares solution simply reduces to the exact solution ofAX = B
for a consistent system. MATLAB handles both consistent and inconsistent systems
as X = A\B. However, it is only sensible to use the least squares solution of an
inconsistent system when AX produces an acceptable approximation to B. This
implies

norm(AX −B) < tol ∗ norm(B)

where tol is suitably small.
A simple but important application of overdetermined systems arises in curve Þt-

ting. An equation of the form

y(x) =
m∑

=1

f(x)c

involving known functions f(x), such as x−1 for polynomials, must approximately
match data values (Xı, Yı), 1 ≤ ı ≤ n, with n > m. We simply write an overdeter-
mined system

n∑
=1

f(Xı)c ≈ Yı , 1 ≤ ı ≤ n
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and obtain the least squares solution. The approximation is acceptable if the error
components

eı =
m∑

=1

f(Xı)c − Yı

are small enough and the function y(x) is also acceptably smooth between the data
points.

Let us illustrate how well MATLAB handles simultaneous equations by construct-
ing the steady-state solution of the matrix differential equation

Mẍ+ Cẋ+Kx = F1 cos(ωt) + F2 sin(ωt)

where M , C, and K are constant matrices and F1 and F2 are constant vectors. The
steady-state solution has the form

x = X1 cos(ωt) +X2 sin(ωt)

where X1 and X2 are chosen so that the differential equation is satisÞed. Evidently

ẋ = −ωX1 sin(ωt) + ωX2 cos(ωt)

and
ẍ = −ω2x.

Substituting the assumed form into the differential equation and comparing sine and
cosine terms on both sides yields

(K − ω2M)X1 + ωCX2 = F1,

−ωCX1 + (K − ω2M)X2 = F2.

The equivalent partitioned matrix is[
(K − ω2M) ωC

−ωC (K − ω2M)

] [
X1

X2

]
=

[
F1

F2

]
.

A simple MATLAB function to produce X1 and X2 when M , C, K , F1, F2, and ω
are known is

function [x1,x2,xmax]=forcresp(m,c,k,f1,f2,w)
kwm=k-(w*w)*m; wc=w*c;
x=[kwm,wc;-wc,kwm]\[f1;f2]; n=length(f1);
x1=x(1:n); x2=x(n+1:2*n);
xmax=sqrt(x1.*x1+x2.*x2);

The vector, xmax, deÞned in the last line of the function above, has components
specifying the maximum amplitude of each component of the steady-state solution.
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The main computation in this function occurs in the third line, where matrix concate-
nation is employed to form a system of 2n equations with x being the concatenation
of X1 and X2. The fourth line uses vector indexing to extract X1 and X2 from x.
The notational simplicity of MATLAB is elegantly illustrated by these features: a)
any required temporary storage is assigned and released dynamically, b) no looping
operations are needed, c) matrix concatenation and inversion are accomplished with
intrinsic functions using matrices and vectors as sub-elements of other matrices, and
d) extraction of sub-vectors is accomplished by use of vector indices. The impor-
tant differential equation just discussed will be studied further in Article 3.5.3 where
eigenvalues and complex arithmetic are used to obtain a general solution satisfying
arbitrary initial conditions.

3.4 Applications of Least Squares Approximation

The idea of solving an inconsistent system of equations in the least squares sense,
so that some required condition is approximately satisÞed, has numerous applica-
tions. Typically, we are dealing with a large number of equations (several hundred
is common) involving a smaller number of parameters used to closely Þt some con-
straint. Linear boundary value problems often require the solution of a differential
equation applicable in the interior of a region while the function values are known on
the boundary. This type of problem can sometimes be handled by using a series of
functions which satisfy the differential equation exactly. Weighting the component
solutions to approximately match the remaining boundary condition may lead to use-
ful results. Below, we examine three instances where least squares approximation is
helpful.

3.4.1 A Membrane Deßection Problem

Let us illustrate how least squares approximation can be used to compute the trans-
verse deßection of a membrane subjected to uniform pressure. The transverse de-
ßection u for a membrane which has zero deßection on a boundary L satisÞes the
differential equation

∂2u

∂x2
+
∂2u

∂y2
= −γ , (x,y) inside L

where γ is a physical constant. Properties of harmonic functions [18] imply that the
differential equation is satisÞed by a series of the form

u = γ

[
−|z|2

4
+

n∑
=1

c real(z−1)

]
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Figure 3.1: Surface Plot of Membrane

where z = x + ıy and constants c are chosen to make the boundary deßection as
small as possible, in the least squares sense. As a speciÞc example, we analyze a
membrane consisting of a rectangular part on the left joined with a semicircular part
on the right. The surface plot in Figure 3.1 and the contour plot in Figure 3.2 were
produced by the function membran listed below. This function generates boundary
data, solves for the series coefÞcients, and constructs plots depicting the deßection
pattern. The results obtained using a twenty-term series satisfy the boundary condi-
tions quite well.
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MATLAB Example

Function membran

1: function [dfl,cof]=membran(h,np,ns,nx,ny)
2: % [dfl,cof]=membran(h,np,ns,nx,ny)
3: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4: % This function computes the transverse
5: % deflection of a uniformly tensioned membrane
6: % which is subjected to uniform pressure. The
7: % membrane shape is a rectangle of width h and
8: % height two joined with a semicircle of
9: % diameter two.

10: %
11: % Example use: membran(0.75,100,50,40,40);
12: %
13: % h - the width of the rectangular part
14: % np - the number of least square points
15: % used to match the boundary
16: % conditions in the least square
17: % sense is about 3.5*np
18: % ns - the number of terms used in the
19: % approximating series to evaluate
20: % deflections. The series has the
21: % form
22: %
23: % dfl = abs(z)^2/4 +
24: % sum({j=1:ns},cof(j)*
25: % real(z^(j-1)))
26: %
27: % nx,ny - the number of x points and y points
28: % used to compute deflection values
29: % on a rectangular grid
30: % dfl - computed array of deflection values
31: % cof - coefficients in the series
32: % approximation
33: %
34: % User m functions called: none
35:

36: if nargin==0
37: h=.75; np=100; ns=50; nx=40; ny=40;
38: end
39:

40: % Generate boundary points for least square
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41: % approximation
42: z=[exp(i*linspace(0,pi/2,round(1.5*np))),...
43: linspace(i,-h+i,np),...
44: linspace(-h+i,-h,round(np/2))];
45: z=z(:); xb=real(z); xb=[xb;xb(end:-1:1)];
46: yb=imag(z); yb=[yb;-yb(end:-1:1)]; nb=length(xb);
47:

48: % Form the least square equations and solve
49: % for series coefficients
50: a=ones(length(z),ns);
51: for j=2:ns, a(:,j)=a(:,j-1).*z; end
52: cof=real(a)\(z.*conj(z))/4;
53:

54: % Generate a rectangular grid for evaluation
55: % of deflections
56: xv=linspace(-h,1,nx); yv=linspace(-1,1,ny);
57: [x,y]=meshgrid(xv,yv); z=x+i*y;
58:

59: % Evaluate the deflection series on the grid
60: dfl=-z.*conj(z)/4+ ...
61: real(polyval(cof(ns:-1:1),z));
62:

63: % Set values outside the physical region of
64: % interest to zero
65: dfl=real(dfl).*(1-((abs(z)>=1)&(real(z)>=0)));
66:

67: % Make surface and contour plots
68: hold off; close; surf(x,y,dfl);
69: xlabel(’x axis’); ylabel(’y axis’);
70: zlabel(’deflection’); view(-10,30);
71: title(’Membrane Deflection’); colormap([1 1 1]);
72: shg, disp(...
73: ’Press [Enter] to show a contour plot’), pause
74: % print -deps membdefl;
75: contour(x,y,dfl,15,’k’); hold on
76: plot(xb,yb,’k-’); axis(’equal’), hold off
77: xlabel(’x axis’); ylabel(’y axis’);
78: title(’Membrane Surface Contour Lines’), shg
79: % print -deps membcntr
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3.4.2 Mixed Boundary Value Problem for a Function Harmonic Inside
a Circular Disk

Problems where a partial differential equation is to be solved inside a region with
certain conditions imposed on the boundary occur in many situations. Often the dif-
ferential equation is solvable exactly in a series form containing arbitrary linear com-
binations of known functions. An approximation procedure imposing the boundary
conditions to compute the series coefÞcients produces a satisfactory solution if the
desired boundary conditions are found to be well satisÞed. Consider a mixed bound-
ary value problem in potential theory [73] pertaining to a circular disk of unit radius.
We seek u(r, θ) where function values are speciÞed on one part of the boundary
and normal derivative values are speciÞed on the remaining part. The mathematical
formulation is

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2
∂2u

∂θ2
= 0 , 0 ≤ r < 1 , 0 ≤ θ ≤ 2π,

u(1, θ) = f(θ) , −α < θ < α ,

∂u

∂r
(1, θ) = g(θ) , α < θ < 2π − α.

The differential equation has a series solution of the form

u(r, θ) = c0 +
∞∑

n=1

rn[cn cos(nθ) + dn sin(nθ)]

where the boundary conditions require

c0 +
∞∑

n=1

[cn cos(nθ) + dn sin(nθ)] = f(θ) , −α < θ < α,

and ∞∑
n=1

n[cn cos(nθ) + dn sin(nθ)] = g(θ) , α < θ < 2π − α.

The series coefÞcients can be obtained by least squares approximation. Let us ex-
plore the utility of this approach by considering a particular problem for a Þeld which
is symmetric about the x-axis. We want to solve

∇2u = 0 , r < 1,

u(1, θ) = cos(θ) , |θ| < π/2,
∂u

∂r
(1, θ) = 0 , π/2 < |θ| ≤ π.

This problem characterizes steady-state heat conduction in a cylinder with the left
half insulated and the right half held at a known temperature. The appropriate series
solution is

u =
∞∑

n=0

cnr
n cos(nθ)
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subject to
∞∑

n=0

cn cos(nθ) = cos(θ) for |θ| < π/2,

and ∞∑
n=0

ncn cos(nθ) = 0 for π/2 < |θ| ≤ π.

We solve the problem by truncating the series after a hundred or so terms and forming
an overdetermined system derived by imposition of both boundary conditions. The
success of this procedure depends on the series converging rapidly enough so that a
system of least squares equations having reasonable order and satisfactory numerical
condition results. It can be shown by complex variable methods (see Muskhelishvili
[73]) that the exact solution of our problem is given by

u = real
[
z + z−1 + (1 − z−1)

√
z2 + 1

]
/2 , |z| ≤ 1

where the square root is deÞned for a branch cut along the right half of the unit circle
with the chosen branch being that which equals +1 at z = 0. Readers familiar with
analytic function theory can verify that the boundary values of u yield

u(1, θ) = cos(θ) , |θ| ≤ π/2,

u(1, θ) = cos(θ) + sin(|θ|/2)
√

2| cos(θ)| , π/2 ≤ |θ| ≤ π.

A least squares solution is presented in function mbvp. Results from a series of
100 terms are shown in Figure 3.3. The series solution is accurate within about one
percent error except for points near θ = π/2. Although the results are not shown
here, using 300 terms gives a solution error nowhere exceeding 4 percent. Hence
the least squares series solution provides a reasonable method to handle the mixed
boundary value problem.
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MATLAB Example

Program mbvprun

1: function mbvprun(nser,nf,ng,neval)
2: % Example: mbvprun(nser,nf,ng,neval)
3: % ~~~~~~~~~~~~~~~~~
4: % Mixed boundary value problem for a function
5: % harmonic inside a circle.
6:

7: % User m functions required:
8: % mbvp
9:

10: disp(’Calculating’);
11:

12: % Set data for series term and boundary
13: % condition points
14: if nargin==0
15: nser=80; nf=100; ng=100; neval=500;
16: end
17:

18: % Compute the series coefficients
19: [cof,y]=mbvp(’cos’,pi/2,nser,nf,ng,neval);
20:

21: % Evaluate the exact solution for comparison
22: thp=linspace(0,pi,neval)’;
23: y=cos(thp*(0:nser-1))*cof;
24: ye=cos(thp)+sin(thp/2).* ...
25: sqrt(2*abs(cos(thp))).*(thp>=pi/2);
26:

27: % Plot results showing the accuracy of the
28: % least square solution
29: thp=thp*180/pi; plot(thp,y,’-’,thp,y-ye,’--’);
30: xlabel(’polar angle’);
31: ylabel(’function value and error’)
32: title([’Mixed Boundary Value Problem ’, ...
33: ’Solution for ’,int2str(nser),’ Terms’]);
34: legend(’Function value’,’Solution Error’);
35: figure(gcf); % print -deps mbvp
36:

37: %==============================================
38:

39: function [cof,y]= ...
40: mbvp(func,alp,nser,nf,ng,neval)
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41: %
42: % [cof,y]=mbvp(func,alp,nser,nf,ng,neval)
43: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
44: % This function solves approximately a mixed
45: % boundary value problem for a function which
46: % is harmonic inside the unit disk, symmetric
47: % about the x axis, and has boundary conditions
48: % involving function values on one part of the
49: % boundary and zero gradient elsewhere.
50: %
51: % func - function specifying the function
52: % value between zero and alp
53: % radians
54: % alp - angle between zero and pi which
55: % specifies the point where
56: % boundary conditions change from
57: % function value to zero gradient
58: % nser - number of series terms used
59: % nf - number of function values
60: % specified from zero to alp
61: % ng - number of points from alp to pi
62: % where zero normal derivative is
63: % specified
64: % neval - number of boundary points where
65: % the solution is evaluated
66: % cof - coefficients in the series
67: % solution
68: % y - function values for the solution
69: %
70: %----------------------------------------------
71:

72: % Create evenly spaced points to impose
73: % boundary conditions
74: th1=linspace(0,alp,nf);
75: th2=linspace(alp,pi,ng+1); th2(1)=[];
76:

77: % Form an overdetermined system based on the
78: % boundary conditions
79: yv=feval(func,th1);
80: cmat=cos([th1(:);th2(:)]*(0:nser-1));
81: [nr,nc]=size(cmat);
82: cmat(nf+1:nr,:)=...
83: (ones(ng,1)*(0:nser-1)).*cmat(nf+1:nr,:);
84: cof=cmat\[yv(:);zeros(ng,1)];
85:
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86: % Evaluate the solution on the boundary
87: thp=linspace(0,pi,neval)’;
88: y=cos(thp*(0:nser-1))*cof;

3.4.3 Using Rational Functions to Conformally Map a Circular Disk
onto a Square

Another problem illustrating the value of least squares approximation arises in
connection with an example discussed earlier in Section 2.4 where a slowly conver-
gent power series was used to map the interior of a circle onto the interior of a square
[75]. It is sometimes possible for slowly convergent power series of the form

w = f(z) =
N∑

=0

cz
 , |z| ≤ 1

to be replaceable by a rational function

w =

n∑
=0

az


1 +
m∑

=1

bz


.

Of course, the polynomial is simply a special rational function form withm = 0 and
n = N . This rational function implies

n∑
=0

az
 − w

m∑
=1

bz
 = w.

CoefÞcients a and b can be computed by forming least square equations based on
boundary data. In some cases, the resulting equations are rank deÞcient and it is
safer to solve a system of the form UY = V as Y = pinv(U) ∗ V rather than
using Y = U\V . The former solution uses the pseudo inverse function pinv which
automatically sets to zero any solution components that are undetermined.

Two functions ratcof and raterp were written to compute rational function co-
efÞcients and to evaluate the rational function for general matrix arguments. These
functions are useful to examine the conformal mapping of the circular disk |z| ≤ 1
onto the square deÞned by | real(w)| ≤ 1, | imag(w)| ≤ 1. A polynomial approxi-
mation of the mapping function has the form

w/z =
N∑

=0

c(z4)

where N must be quite large in order to avoid excessive corner rounding. If we
evaluate w versus z on the boundary for large N (500 or more), and then develop
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Figure 3.4: Rational Function Map Close to a Corner

a rational function Þt with n = m = 10, a reasonably good representation of the
square results without requiring a large number of series terms. The following pro-
gram illustrates the use of functions ratcof and raterp. It also includes a function
sqmp to generate coefÞcients in the Schwarz-Christoffel series.(See Chapter 11 for
further discussion.) Figure 3.4 shows the geometry mapping produced near a corner.

MATLAB Example

Program makratsq

1: function [ctop,cbot]=makratsq
2: % Example: [ctop,cbot]=makratsq
3: % ~~~~~~~~~~~~~~~~~~
4: % Create a rational function map of a unit disk
5: % onto a square.
6: %
7: % User m functions required:
8: % sqmp, ratcof, raterp
9:
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10: disp(’ ’);
11: disp(’RATIONAL FUNCTION MAPPING OF A CIRCULAR’);
12: disp(’ DISK ONTO A SQUARE’); disp(’ ’);
13: disp(’Calculating’); disp(’ ’);
14:

15: % Generate boundary points given by the
16: % Schwarz-Christoffel transformation
17: nsc=501; np=401; ntop=10; nbot=10;
18: z=exp(i*linspace(0,pi/4,np));
19: w=sqmp(nsc,1,1,1,0,45,np);
20: w=mean(real(w))+i*imag(w);
21: z=[z,conj(z)]; w=[w,conj(w)];
22:

23: % Compute the series coefficients for a
24: % rational function fit to the boundary data
25: [ctop,cbot]=ratcof(z.^4,w./z,ntop,nbot);
26: ctop=real(ctop); cbot=real(cbot);
27:

28: % The above calculations produce the following
29: % coefficients
30: % [top,bot]=
31: % 1.0787 1.4948
32: % 1.5045 0.1406
33: % 0.0353 -0.1594
34: % -0.1458 0.1751
35: % 0.1910 -0.1513
36: % -0.1797 0.0253
37: % 0.0489 0.2516
38: % 0.2595 0.1069
39: % 0.0945 0.0102
40: % 0.0068 0.0001
41:

42: % Generate a polar coordinate grid to describe
43: % the mapping near the corner of the square.
44: % Then evaluate the mapping function.
45: r1=.95; r2=1; nr=12;
46: t1=.9*pi/4; t2=1.1*pi/4; nt=101;
47: [r,th]=meshgrid(linspace(r1,r2,nr), ...
48: linspace(t1,t2,nt));
49: z=r.*exp(i*th); w=z.*raterp(ctop,cbot,z.^4);
50:

51: % Plot the mapped geometry
52: close; u=real(w); v=imag(w);
53: plot(u,v,’k’,u’,v’,’k’), axis equal
54: title(’Rational Function Map Close to a Corner’);
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55: xlabel(’real axis’); ylabel(’imaginary axis’);
56: figure(gcf); % print -deps ratsqmap
57:

58: %==============================================
59:

60: function [w,b]=sqmp(m,r1,r2,nr,t1,t2,nt)
61: %
62: % [w,b]=sqmp(m,r1,r2,nr,t1,t2,nt)
63: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
64: % This function evaluates the conformal
65: % mapping produced by the Schwarz-Christoffel
66: % transformation w(z) mapping abs(z)<=1 inside
67: % a square having a side length of two. The
68: % transformation is approximated in series form
69: % which converges very slowly near the corners.
70: % This function is the same as squarmap of
71: % chapter 2 with no plotting.
72: %
73: % m - number of series terms used
74: % r1,r2,nr - abs(z) varies from r1 to r2 in
75: % nr steps
76: % t1,t2,nt - arg(z) varies from t1 to t2 in
77: % nt steps (t1 and t2 are
78: % measured in degrees)
79: % w - points approximating the square
80: % b - coefficients in the truncated
81: % series expansion which has
82: % the form
83: %
84: % w(z)=sum({j=1:m},b(j)*z*(4*j-3))
85: %
86: % User m functions called: none.
87: %----------------------------------------------
88:

89: % Generate polar coordinate grid points for the
90: % map. Function linspace generates vectors with
91: % equally spaced components.
92: r=linspace(r1,r2,nr)’;
93: t=pi/180*linspace(t1,t2,nt);
94: z=(r*ones(1,nt)).*(ones(nr,1)*exp(i*t));
95:

96: % Compute the series coefficients and evaluate
97: % the series
98: k=1:m-1;
99: b=cumprod([1,-(k-.75).*(k-.5)./(k.*(k+.25))]);
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100: b=b/sum(b); w=z.*polyval(b(m:-1:1),z.^4);
101:

102: %==============================================
103:

104: function [a,b]=ratcof(xdata,ydata,ntop,nbot)
105: %
106: % [a,b]=ratcof(xdata,ydata,ntop,nbot)
107: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
108: %
109: % Determine a and b to approximate ydata as
110: % a rational function of the variable xdata.
111: % The function has the form:
112: %
113: % y(x) = sum(1=>ntop) ( a(j)*x^(j-1) ) /
114: % ( 1 + sum(1=>nbot) ( b(j)*x^(j)) )
115: %
116: % xdata,ydata - input data vectors (real or
117: % complex)
118: % ntop,nbot - number of series terms used in
119: % the numerator and the
120: % denominator.
121: %
122: % User m functions called: none
123: %----------------------------------------------
124:

125: ydata=ydata(:); xdata=xdata(:);
126: m=length(ydata);
127: if nargin==3, nbot=ntop; end;
128: x=ones(m,ntop+nbot); x(:,ntop+1)=-ydata.*xdata;
129: for i=2:ntop, x(:,i)=xdata.*x(:,i-1); end
130: for i=2:nbot
131: x(:,i+ntop)=xdata.*x(:,i+ntop-1);
132: end
133: ab=pinv(x)*ydata; %ab=x\ydata;
134: a=ab(1:ntop); b=ab(ntop+1:ntop+nbot);
135:

136: %==============================================
137:

138: function y=raterp(a,b,x)
139: %
140: % y=raterp(a,b,x)
141: % ~~~~~~~~~~~~~~~
142: % This function interpolates using coefficients
143: % from function ratcof.
144: %
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145: % a,b - polynomial coefficients from function
146: % ratcof
147: % x - argument at which function is evaluated
148: % y - computed rational function values
149: %
150: % User m functions called: none.
151: %----------------------------------------------
152:

153: a=flipud(a(:)); b=flipud(b(:));
154: y=polyval(a,x)./(1+x.*polyval(b,x));

3.5 Eigenvalue Problems

3.5.1 Statement of the Problem

Another important linear algebra problem involves the computation of nonzero
vectors X and numbers λ such that

AX = λX

where A is a square matrix of order n having elements which may be real or com-
plex. The number λ, which can also be real or complex, is called the eigenvalue
corresponding to the eigenvectorX . The eigenvalue equation implies

[Iλ−A]X = 0

so that λ values must be selected to make Iλ−A singular. The polynomial

f(λ) = det(Iλ−A) = λn + c1λ
n−1 + . . .+ cn

is called the characteristic equation and its roots are the eigenvalues. It can be fac-
tored into

f(λ) = (λ− λ1)(λ− λ2) · · · (λ − λn).

The eigenvalues are generally complex numbers and some of the roots may be re-
peated. In the usual situation, distinct roots λ1, · · · , λn yield n linearly independent
eigenvectors obtained by solving

(A− λI)X = 0 , 1 ≤  ≤ n.

The case involving repeated eigenvalues is more complicated. Suppose a particular
eigenvalue such as λ1 has multiplicity k. Then the general solution of

(A− λ1I)X = 0

will yield as few as one, or as many as k, linearly independent vectors. If fewer than
k independent eigenvectors are found for any root of multiplicity k, then matrixA is
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called defective. Occurrence of a defective matrix is not typical. It usually implies
special behavior of the related physical system. The combined set of eigenvectors
can be written as

A[X1, · · · , Xn] = [X1λ1, · · · , Xnλn] = [X1, · · · , Xn] diag(λ1, · · · , λn)

or
AU = UΛ

whereU has the eigenvectors as columns and Λ is a diagonal matrix with eigenvalues
on the diagonal. When the eigenvectors are independent, matrix U , known as the
modal matrix, is nonsingular. This allows A to be expressed as

A = UΛU−1

which is convenient for various computational purposes. With repeated eigenvalues,
the modal matrix is sometimes singular and the last form of decomposition fails.
However, the eigenvectors are always independent when the eigenvalues are distinct.
For the important special case of a symmetric matrix, a linearly independent set of
eigenvectors always exists, even when some eigenvalues are repeated.

A matrix A is symmetric if A = A′ where A′ is obtained by interchanging
columns and rows, and conjugating all elements. Symmetric matrices always have
real eigenvalues and a linearly independent set of eigenvectors which can be or-
thonormalized. The eigenvectors X and Xk for any two unequal eigenvalues auto-
matically satisfy an orthogonality condition

X ′
Xk = 0 ,  
= k.

Eigenvectors for the same repeated eigenvalue are not automatically orthogonal.
Nevertheless, they can be replaced by an equivalent orthogonal set by applying a
process called Gram-Schmidt orthogonalization [47]. In cases we care about here,
the symmetric matrixA always has real elements. Therefore the eigenvalues are real
with eigenvectors satisfying X ′

ıX = δı, where δı is the Kronecker delta symbol.
The orthogonality condition is equivalent to the statement that U ′U = I , so a real
symmetric matrix can be expressed as

A = UΛU ′

It is important in MATLAB that the symmetry condition A ′ = A be satisÞed per-
fectly. This implies a zero value for max(max(abs(A-A�))). Sometimes, results that
would be symmetric if roundoff error did not occur may produce unsymmetric re-
sults contrary to expectation. For example, A = BC B ′ should be symmetric if C
is symmetric. ReplacingA by (A+A′)/2 Þnally will assure perfect symmetry. The
MATLAB function eig computes eigenvalues and eigenvectors. When a matrix is
symmetric, eig generates real eigenvalues and orthonormalized eigenvectors.

An important property of symmetric matrices and the related orthonormal eigen-
vector set occurs in connection with quadratic forms expressed as

F (Y ) = Y ′AY
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where Y is an arbitrary real vector and A is real symmetric. The function F (Y ) is a
one-by-one matrix; hence, it is a scalar function. The algebraic sign of the form for
arbitrary nonzero choices of Y is important in physical applications. Let us use the
eigenvector decomposition of A to write

F = Y ′UΛU ′Y = (U ′Y )′Λ(U ′Y ).

Taking X = U ′Y and Y = UX gives

F = X ′ΛX = λ1x
2
1 + λ2x

2
2 + λ3x

2
3 + . . .+ λnx

2
n.

This diagonal form makes the algebraic character of F evident. If all λ ı are positive,
then F is evidently positive whenever X has at least one nonzero component. Then
the quadratic form is called positive deÞnite. If the eigenvalues are all positive or
zero, the form is called positive semideÞnite since the form cannot assume a negative
value but can equal zero without having X = 0. When both negative and positive
eigenvalues occur, the form can change sign and is termed indeÞnite. When the
eigenvalues are all negative, the form is classiÞed as negative deÞnite. Perhaps the
most important of these properties is that a necessary and sufÞcient condition for the
form to be positive deÞnite is that all eigenvalues of A be positive.

An important generalization of the standard eigenvalue problem has the form

AX = λBX

for arbitrary A and nonsingular B. If B is well conditioned, then it is computation-
ally attractive to simply solve

B−1AX = λX.

In general, it is safer, but much more time consuming, to call eig as

[EIGVECS,EIGVALS]=eig(A,B)

This returns the eigenvectors as columns of EIGVECS and also gives a diagonal
matrix EIGVALS containing the eigenvalues.

3.5.2 Application to Solution of Matrix Differential Equations

One of the most familiar applications of eigenvalues concerns the solution of the
linear, constant-coefÞcient matrix differential equation

B Y
′
(t) = AY (t) , Y (0) = Y0.

Component solutions can be written as

Y (t) = Xeλt , Y
′
(t) = λXeλt
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where X and λ are constant. Substitution into the differential equation gives

(A− λB)Xeλt = 0.

Since eλt cannot vanish we need

AX = λBX.

After the eigenvalues and eigenvectors have been computed, a general solution is
constructed as a linear combination of component solutions

Y =
n∑

=1

Xe
λtc.

The constants c are obtained by imposing the initial condition

Y (0) = [X1, X2, . . . , Xn]c.

Assuming that the eigenvectors are linearly independent we get

c = [X1, . . . , Xn]−1Y0.

3.5.3 The Structural Dynamics Equation

Eigenvalues are also useful to solve the important second order matrix differential
equation for which a particular solution was constructed earlier using real arithmetic.
We will now use complex arithmetic and the versatile matrix notation provided in
MATLAB. Structural mechanics applications often lead to the second order matrix
differential equation

MẌ(t) + CẊ(t) +KX(t) = F1 cos(ω t) + F2 sin(ω t)

where M , C, K are constant matrices of order n, and F1, F2 are constant vectors of
length n, and ω is the forcing function frequency. Initial conditions of the form

X(0) = X0, Ẋ(0) = V0

also apply. Solving this initial value problem involves combining a particular so-
lution and a homogeneous solution. The solution we present below applies subject
to the restriction that 1) the eigenvalues of the homogeneous equation should be
nonzero and 2) if matrix C is zero, then iω must not coincide with an eigenvalue of
the homogeneous differential equation. The particular solution is

Xp(t) = real(a eiωt), a = [K −M ω2 + iCω] \ [F1 − iF2].

where we must assume that the implied matrix inversion exists. The particular solu-
tion satisÞes initial conditions

Xp(0) = real(a), Ẋp(0) = real(i a ω).
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The particular solution plus the homogeneous solution, Xh(t), must satisfy the gen-
eral initial conditions. Let us introduce

Z(t) = [Xh(t) ; Ẋh(t) ]

which obeys the homogeneous Þrst order equation

Ż(t) = AZ(t) , A = [eye(n, n), zeros(n, n) ; −M \ [K, C] ]

and can be determined using the eigenvectors and eigenvalues of A. Denoting the
matrix of eigenvectors as U and the column of eigenvalues as Λ, we Þnd that

Z(t) = U diag(D) exp(iΛ t)

where
D = U \ [X0 −Xp(0) ; V0 − Ẋp(0)]

to satisfy the initial conditions. With t taken as a row of time values, the homoge-
neous solution is obtained as the Þrst n rows of Z , and the total solution is just

X(t) = Xp(t) +Xh(t).

A program was written to solve the structural dynamics equation. Error checks are
made for the exceptional cases mentioned above. If the system is undamped (C = 0)
and iω matches an eigenvalue of A, then program execution terminates. Occurrence
of zero or repeated eigenvalues is also avoided. The program consists of a driver
named strdyneq which reads data from a function provided by the user. An example
function named threemass is included as a model for data preparation. Function
fhrcmk constructs the general solution of the equation. Results of the computation
can be plotted one component at a time. In addition to plotting, the program outputs
the eigenvalues, a matrix of solution components, and vectors showing the lower and
upper limits of motion for each degree for freedom in the system. Function strdyneq
calls fhrmck at lines 25 and 34. The name of a function deÞning the input data is
requested. Users can employ function threemass to test the program. Threemass
models a conÞguration of three identical masses sliding on a smooth horizontal plane
and connected by four identical springs and viscous dampers. The outer two masses
are connected to walls and are subjected to forces having equal magnitude but op-
posite direction. The middle mass has no driving force. The system is initially at
rest with zero deßection when forcing functions are applied which nearly resonate
with the fourth eigenvalue of the damped homogeneous system. This example was
devised to illustrate how the system response grows rapidly when the forcing func-
tion is nearly resonant. Function fhrmck does most of the computation work which
occurs at lines 108-109, 132-134, and 139-140. This example illustrates nicely the
power of the intrinsic matrix operators provided in MATLAB. A Þnal caveat about
the solution method using eigenvalues is that it is somewhat limited by special cases
like repeated eigenvalues or a forcing function resonant with a natural frequency.
Numerical integration solvers like ode45 are not vulnerable to such difÞculties.
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MATLAB Example

Output Using Function Threemass

strdyneq;

SOLUTION OF THE DIFFERENTIAL EQUATION
M*Y��+C*Y�+K*Y=F1*COS(W*T)+F2*SIN(W*T)

Give the name of a function to create data values
(Try threemass as an example)
>? threemass

Input coordinate number, tmin and tmax
(only press return to stop execution)>? 1,0,50

The value of i*w is at distance 0.050001
from the eigenvalue -0.05+1.4133i

Input coordinate number, tmin and tmax
(only press return to stop execution)>? 2,0,50

Input coordinate number, tmin and tmax
(only press return to stop execution)>?

The system eigenvalues are:

lam =

-0.0146 - 0.7652i
-0.0146 + 0.7652i
-0.0500 - 1.4133i
-0.0500 + 1.4133i
-0.0854 - 1.8458i
-0.0854 + 1.8458i

Range of solution values for final times is:

maxy =

6.4255 0.0000 6.4935

miny =
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-6.4935 -0.0000 -6.4255

All done
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Figure 3.5: Motion of Mass 1 in Threemass Model
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Figure 3.6: Motion of Mass 2 in Threemass Model

© 2003 by CRC Press LLC



Motion of First and Second Mass

MATLAB Code

1: function [t,y,lam]=strdyneq
2: %
3: % [t,y,lam]=strdyneq
4: % ~~~~~~~~~~~~~~~~~~
5: % This program integrates the structural dynamics
6: % equation characterized by a general second order
7: % matrix differential equation having a harmonic
8: % forcing function. Input involves mass, stiffness,
9: % and damping matrices as well as force magnitudes,

10: % a forcing frequency, and initial conditions. Data
11: % parameters for the program are created in a user
12: % supplied function provided by the user. (For an
13: % example, see function threemass shown below.)
14:

15: titl=[’\nSOLUTION OF THE DIFFERENTIAL EQUATION\n’,...
16: ’M*Y’’’’+C*Y’’+K*Y=F1*COS(W*T)+F2*SIN(W*T)\n\n’];
17: fprintf(titl);
18: disp(...
19: ’Give the name of a function to create data values’)
20: disp(’(Try threemass as an example)’)
21: name=input(’>? ’,’s’);
22: eval([’[m,c,k,f1,f2,w,nt,y0,v0]=’,name,’;’]); jj=1;
23: while 1
24: fprintf(’\nInput coordinate number, tmin and tmax’)
25: fprintf(’\n(only press return to stop execution)’)
26: [j,t1,t2]=inputv(’>? ’);
27: if isnan(j), break; end; J=int2str(j);
28: [t,y,lam]=fhrmck(m,c,k,f1,f2,w,[t1,t2],nt,y0,v0);
29: if isnan(t), return, end
30: [dif,h]=min(abs(lam-i*w)); lj=num2str(lam(h));
31: if jj==1, jj=jj+1; disp(’ ’)
32: disp([’The value of i*w is at distance ’,...
33: num2str(dif)])
34: disp([’from the eigenvalue ’,lj])
35: end
36: plot(t,y(:,j),’k-’), xlabel(’time’)
37: ylabel([’y(’,J,’)’])
38: title([’RESPONSE VARIABLE NUMBER ’,J])
39: grid on, shg, dumy=input(’ ’,’s’);
40: end
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41: fprintf(’\nThe system eigenvalues are:\n’)
42: display(lam)
43: fprintf(...
44: ’Range of solution values for final times is:\n’)
45: maxy=max(y); miny=min(y); display(maxy)
46: display(miny), fprintf(’All done\n’)
47:

48: %================================================
49:

50: function [m,c,k,f1,f2,w,nt,y0,v0]=threemass
51: %
52: % [m,c,k,f1,f2,w,nt,y0,v0]=threemass
53: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54: % This function creates data for a three mass
55: % system. The name of the function should be
56: % changed to specify different problems. However,
57: % the output variable list should remain unchanged
58: % for compatibility with the data input program.
59:

60: m=eye(3,3); k=[2,-1,0;-1,2,-1;0,-1,2]; c=.05*k;
61:

62: % Data to excite the highest mode
63: f1=[-1;0;1]; f2=[0;0;0]; w=1.413; nt=1000;
64:

65: % Data to excite the lowest mode
66: % f1=[1;1;1]; f2=[0;0;0]; w=.7652; nt=1000;
67:

68: % Homogeneous initial conditions
69: y0=[-.5;0;.5]; v0=zeros(3,1); y0=0*y0;
70:

71: %================================================
72:

73: function [t,y,lam]=fhrmck(m,c,k,f1,f2,w,tlim,nt,y0,v0)
74: %
75: % [t,y,lam]=fhrmck(m,c,k,f1,f2,w,tlim,nt,y0,v0)
76: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
77: % This function uses eigenfunction analysis to solve
78: % the matrix differential equation
79: % m*y’’(t)+c*y’(t)+k*y(t)=f1*cos(w*t)+f2*sin(w*t)
80: % with initial conditions of y(0)=y0, y’(0)=v0
81: % The solution is general unless 1) a zero or repeated
82: % eigenvalue occurs or 2) the system is undamped and
83: % the forcing function matches a natural frequency.
84: % If either error condition occurs, program execution
85: % terminates with t and y set to nan.
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86: %
87: % m,c,k - mass, damping, and stiffness matrices
88: % f1,f2 - amplitude vectors for the sine and cosine
89: % forcing function components
90: % w - frequency of the forcing function
91: % tlim - a vector containing the minimum and
92: % maximum time limits for evaluation of
93: % the solution
94: % nt - the number of times at which the solution
95: % is evaluated within the chosen limits
96: % for which y(t) is computed
97: % y0,v0 - initial position and velocity vectors
98: %
99: % t - vector of time values for the solution

100: % y - matrix of solution values where y(i,j)
101: % is the value of component j at time t(i)
102: % lam - the complex natural frequencies arranged
103: % in order of increasing absolute value
104:

105: if nargin==0 % Generate default data using 2 masses
106: m=eye(2,2); k=[2,-1;-1,1]; c=.3*k;
107: f1=[0;1]; f2=[0;0]; w=0.6; tlim=[0,100]; nt=400;
108: end
109: n=size(m,1); t=linspace(tlim(1),tlim(2),nt);
110: if nargin<10, y0=zeros(n,1); v0=y0; end
111:

112: % Determine eigenvalues and eigenvectors for
113: % the homogeneous solution
114: A=[zeros(n,n), eye(n,n); -m\[k, c]];
115: [U,lam]=eig(A); [lam,j]=sort(diag(lam)); U=U(:,j);
116:

117: % Check for zero or repeated eigenvalues and
118: % for undamped resonance
119: wmin=abs(lam(1)); tol=wmin/1e6;
120: [dif,J]=min(abs(lam-i*w)); lj=num2str(lam(J));
121: if wmin==0, disp(’ ’)
122: disp(’The homogeneous equation has a zero’)
123: disp(’eigenvalue which is not allowed.’)
124: disp(’Execution is terminated’), disp(’ ’)
125: t=nan; y=nan; return
126: elseif any(abs(diff(lam))<tol)
127: disp(’A repeated eigenvalue occurred.’)
128: disp(’Execution is terminated’),disp(’ ’)
129: t=nan; y=nan; return
130: elseif dif<tol & sum(abs(c(:)))==0
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131: disp(’The system is undamped and the forcing’)
132: disp([’function resonates with ’,...
133: ’eigenvalue ’,lj])
134: disp(’Execution is terminated.’)
135: disp(’ ’), t=nan; y=nan; return
136: else
137: % Determine the particular solution
138: a=(-w^2*m+k+i*w*c)\(f1-i*f2);
139: yp=real(a*exp(i*w*t));
140: yp0=real(a); vp0=real(i*w*a);
141: end
142:

143: % Scale the homogeneous solution to satisfy the
144: % initial conditions
145: U=U*diag(U\[y0-yp0; v0-vp0]);
146: yh=real(U(1:n,:)*exp(lam*t));
147:

148: % Combine results to obtain the total solution
149: t=t(:); y=[yp+yh]’;
150:

151: % Show data graphically only for default case
152: if nargin==0
153: waterfall(t,(1:n),y’), xlabel(’time axis’)
154: ylabel(’mass index’), zlabel(’Displacements’)
155: title([’DISPLACEMENT HISTORY FOR A ’,...
156: int2str(n),’-MASS SYSTEM’])
157: colormap([1,0,0]), shg
158: end

3.6 Computing Natural Frequencies for a Rectangular
Membrane

One of the most useful applications of eigenvalue problems occurs in natural fre-
quency calculations for linear systems. Let us examine Þnite difference approx-
imation for the natural frequencies of a rectangular membrane and how well the
approximate results compare with exact values. Consider a tightly stretched elas-
tic membrane occupying a region R in the (x, y) bounded by a curve L on which
the transverse deßection is zero. The differential equation and boundary conditions
governing the transverse motion U(x, y, t) are

T (Uxx + Uyy) = ρUtt , (x, y)εR,
U(x, y, t) = 0 , (x, y)εL,
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where T and ρ denote membrane tension and mass density. The natural vibration
modes are motion states where all points of the system simultaneously move with
the same frequency, which says U(x, y, t) = u(x, y) sin(Ωt). It follows that u(x, y)
satisÞes

uxx + uyy = −ω2u , (x, y) εR,
u(x, y) = 0, (x, y)εL,

where ω =
√

ρ
T Ω. In the simple case of a rectangular membrane lying in the region

such that 0 ≤ x ≤ a and 0 ≤ y ≤ b, the natural frequencies and mode shapes turn
out to be

ωnm =

√(nπ
a

)2

+
(mπ
b

)2

, unm = sin
(nπx

a

)
sin

(mπy
b

)
where n and m are positive integers. It is interesting to see how closely these values
can be reproduced when the partial differential equation is replaced by a second
order Þnite difference approximation deÞned on a rectangular grid. We introduce
grid points expressed as

x(i) = (i− 1)∆x , i = 1, . . . , N,
y(j) = (j − 1)∆y , j = 1, . . . ,M,

where
∆x = a /(N − 1), ∆y = b /(M − 1),

and we call u(i, j) the value of u at x(i), y(j). Then the Helmholtz equation is
replaced by an algebraic eigenvalue problem of the form

∆2
y[u(i− 1, j) − 2u(i, j) + u(i+ 1, j)] + ∆2

x[u(i, j − 1)

− 2u(i, j) + u(i, j + 1)] = λu(i, j)

where
λ = (∆x∆yω)2

and associated homogeneous boundary conditions

u(1, j) = u(N, j) = u(i, 1) = u(i,M) = 0.

This combination of equations can be rearranged into familiar matrix form as

Au = λu, B u = 0.

The MATLAB function null can be used to solve the boundary condition equations.
We write as u = Qz where Q = null(B) has orthonormal columns. Substituting
into the eigenvalue equation and multiplying both sides byQ ′ then yields a standard
eigenvalue problem of the form Cz = λz where C = Q ′AQ. Denoting the eigen-
vector matrix of C by V , the eigenvector matrix of the original problem is obtained
as u = QV , and the desired eigenvalues are simply those of matrix C.
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A short function named recmemfr was written to form and solve the algebraic
equations just discussed. Although the ideas are simple, indexing the double in-
dexed quantities pertaining to the Þnite difference grid is slightly tedious. Intrinsic
functions ind2sub and sub2ind are helpful to perform the indexing. Lines 32-34
of rememfr compute a subset of the lowest frequency values and sort these in as-
cending order. Lines 37-45 form the homogeneous boundary conditions, and lines
51-56 construct the discretized Helmholtz equation at interior node points. The main
computation work is done in lines 59-61 where null and eig are used. Finally, the
results are sorted, the modal arrays are reshaped, and results are plotted to com-
pare the approximate and exact frequencies. In the graph shown below for the case
where (a,b)=(2,1), the frequencies obtained using the Þnite differences are seen to
be consistently low. Furthermore, the 50�th frequency is off by about 14 percent,
even though 200 grid points were used. Applications leading to eigenvalue problems
occur frequently. The ideas touched on in this simple example will be encountered
again in Chapters 9 and 10. Readers may Þnd it interesting to modify this exam-
ple using a higher order difference approximation to see how much the frequency
estimates improve.
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Function recmemfr

1: function [w,wex,modes,x,y,nx,ny,ax,by]=recmemfr(...
2: ax,by,nx,ny,noplt)
3: %
4: % [w,wex,modes,x,y,nx,ny,ax,by]=recmemfr(a,b,nx,ny,noplt)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: % This function employs finite difference methods to
7: % estimate the natural frequencies and mode shapes of
8: % a rectangular membrane having fixed edges.
9: % ax, by - membrane side lengths along the x and y axes

10: % nx,ny - number of finite difference points taken in
11: % the x and y directions including the edges
12: % w - vector of (nx-2)*(ny-2) frequencies obtained
13: % by finite difference approximation of the
14: % wave equation. These are arranged in
15: % increasing order
16: % wex - vector of exact frequencies
17: % modes - three dimensional array containing the mode
18: % shapes for various frequencies. The array
19: % size is [nx,ny,(nx-2)*(nx-2)] denoting
20: % the x direction, y direction, and the
21: % freqency numbers matching components of the
22: % w vector. The i’th mode shape is obtained
23: % as reshape(vecs(:,i),n,m)
24: % x,y - vectors defining the finite difference grid
25: % noplt - optional parameter included if no plot of
26: % the approximate and exact frequencies is to
27: % be made
28:

29: if nargin==0; ax=2; nx=20; by=1; ny=10; end
30: dx=ax/(nx-1); dy=by/(ny-1);
31: na=(1:nx-1)’/ax; nb=(1:ny-1)/by;
32:

33: % Compute exact frequencies for comparison
34: wex=pi*sqrt(repmat(na.^2,1,ny-1)+repmat(nb.^2,nx-1,1));
35: wex=sort(wex(:)’); x=linspace(0,ax,nx);
36: y=linspace(0,by,ny); neig=(nx-2)*(ny-2); nvar=nx*ny;
37:

38: % Form equations to fix membrane edges
39: k=0; s=[nx,ny]; c=zeros(2*(nx+ny),nvar);
40: for j=1:nx
41: m=sub2ind(s,[j,j],[1,ny]); k=k+1;
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42: c(k,m(1))=1; k=k+1; c(k,m(2))=1;
43: end
44: for j=1:ny
45: m=sub2ind(s,[1,nx],[j,j]); k=k+1;
46: c(k,m(1))=1; k=k+1; c(k,m(2))=1;
47: end
48:

49: % Form frequency equations at interior points
50: k=0; a=zeros(neig,nvar); b=a;
51: phi=(dx/dy)^2; psi=2*(1+phi);
52: for i=2:nx-1
53: for j=2:ny-1
54: m=sub2ind(s,[i-1,i,i+1,i,i],[j,j,j,j-1,j+1]);
55: k=k+1; a(k,m(1))=-1; a(k,m(2))=psi; a(k,m(3))=-1;
56: a(k,m(4))=-phi; a(k,m(5))=-phi; b(k,m(2))=1;
57: end
58: end
59:

60: % Compute frequencies and mode shapes
61: q=null(c); A=a*q; B=b*q; [modes,lam]=eig(B\A);
62: [lam,k]=sort(diag(lam)); w=sqrt(lam)’/dx;
63: modes=q*modes(:,k); modes=reshape(modes(:),nx,ny,neig);
64:

65: % Plot first fifty approximate and exact frequencies
66: if nargin>4, return, end
67: m=1:min([50,length(w),length(wex)]);
68: pcter=100*(wex(m)-w(m))./wex(m);
69:

70: clf; plot(m,wex(m),’k-’,m,w(m),’k.’,m,pcter,’k--’)
71: xlabel(’frequency number’);
72: ylabel(’frequency and % error’)
73: legend(’exact frequency’,’approx. frequency’,...
74: ’percent error’,2)
75: s=[’MEMBRANE FREQUENCIES FOR AX / BY = ’,...
76: num2str(ax/by,5),’ AND ’,num2str(nx*ny),...
77: ’ GRID POINTS’];
78: title(s), grid on, shg
79: % print -deps recmemfr

3.7 Column Space, Null Space, Orthonormal Bases, and SVD

One remaining advanced topic discussed in this chapter is the factorization known
as singular value decomposition, or SVD. We will brießy explain the structure of
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SVD and some of its applications. It is known that any real matrix having n rows, m
columns, and rank r can be decomposed into the form

A = USV ′

where

• U is an orthogonal n by n matrix such that U ′U = I

• V is an orthogonalm by m matrix such that V ′V = I

• S is an n by m diagonal matrix of the form

S =




σ1 0 0 0 0 0
0 σ2 0 0 0 0

0 0
. . . 0 0 0

0 0 0 σr 0 0
0 0 0 0 0 0
0 0 0 0 0 0




where σ1, . . . , σr are positive numbers on the main diagonal with σ ı ≥ σı+1.
Constants σ are called the singular values with the number of nonzero values
being equal to the rank r.

To understand the structure of this decomposition, let us study the case where
n ≥ m. Direct multiplication gives

A′AV = V diag([σ2
1 , . . . , σ

2
r , zeros(1,m− r)]),

and
AA′U = U diag([σ2

1 , . . . , σ
2
r , zeros(1, n− r)]).

Consequently, the singular values are square roots of the eigenvalues of the sym-
metric matrix A′A. Matrix V contains the orthonormalized eigenvectors arranged
so that σı ≥ σı+1. Although the eigenvalues of A ′A are obviously real, it may
appear that this matrix could have some negative eigenvalues leading to pure imag-
inary singular values. However, this cannot happen because A ′AY = λY implies
λ = (AY )′(AY )/(Y ′Y ), which clearly is nonnegative. Once the eigenvectors and
eigenvalues of A′A are computed, columns of matrix U can be found as orthonor-
malized solutions of

[A′A− σI]U = 0 , σ = 0 ,  > r.

The arguments just presented show that performing singular value decomposition in-
volves solving a symmetric eigenvalue problem. However, SVD requires additional
computation beyond solving a symmetric eigenvalue problem. It can be very time
consuming for large matrices. The SVD has various uses, such as solving the normal
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equations. Suppose an n by m matrix A has n > m and r = m. Substituting the
SVD into

A′AX = A′B

gives
V diag(σ2

1 , . . . , σ
2
m)V ′X = V S′U ′B.

Consequently, the solution of the normal equations is

X = V diag(σ−2
1 , . . . , σ−2

m )S′U ′B.

Another important application of the SVD concerns generation of orthonormal bases
for the column space and the row space. The column space has dimension r and the
null space has dimensionm− r. Consider a consistent system

AX = B = U(SV ′X).

Denote SV ′X as Y and observe that y = 0 for  > r since σ = 0. Because B can
be any vector in the column space, it follows that the Þrst r columns of U , which are
also orthonormal, are a basis for the column space. Furthermore, the decomposition
can be written as

AV = US.

This implies
AV = Uσ = 0 ,  > r

which shows that the Þnalm−r columns of V form an orthonormal basis for the null
space. The reader can verify that bases for the row space and left null space follow
analogously by considering A ′ = V S′U ′, which simply interchanges the roles of U
and V .

MATLAB provides numerous other useful matrix decompositions such as LU,
QR, and Cholesky. Some of these are employed in other sections of this book. The
reader will Þnd it instructive to read the built-in help information for MATLAB func-
tions describing these decomposition methods. For instance, the command help \
gives extensive documentation on the operation for matrix inversion.

3.8 Computation Time to Run a MATLAB Program

MATLAB is designed to perform matrix computation with maximum speed and
accuracy. Consequently, most standard operations like matrix multiplication, Gauss
reduction, eigenvalue calculation, SVD, etc. are implemented as highly optimized
and compiled intrinsic functions. EfÞcient program execution requires optimal use
of the built-in functions. Executing nested loops can take a lot of time, so using
coding with nested loops should be avoided when computation time is important. To
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illustrate how deeply nested loops can slow down execution speed we will compare
slow multiplication of square matrices by a Fortran style triple loop, and fast multi-
plication using the intrinsic matrix multiply capability. The ratio of the slow time to
the fast time is much larger than might initially be expected.

Before proceeding with our example, consider the difÞculties of accurately tim-
ing a computational process. In the Þrst place, the clock in Intel based systems has
a resolution of about 0.06 sec, whereas the time for MATLAB to do a 100 by 100
matrix multiply is about 0.005 secs on a 733 Mhz Pentium 4 computer. This implies
that, just to account for the crude clock increment, the matrix multiply has to be re-
peated at least 1200 times to get a total time accurate within one percent. However,
this is not the only timing difÞculty. MATLAB continuously performs housekeep-
ing tasks such as memory management. The operating system and other programs
running simultaneously in the background also use computer resources and affect
recorded times. Hence, any timing of algorithmic processes in MATLAB should be
done without having several other programs open. Even then, the authors have found
that times recorded for the same computation done repeatedly often vary around Þve
percent.

The following program named mattimer was written to compare slow and fast
matrix multiplication. The program input includes the matrix order, the number of
seconds a loop is performed to improve timing accuracy, and the number of times
the basic timing operation is repeated to show how recorded times vary among suc-
cessive computations. The program also gives the number of ßoating operations
performed per second (Mßops). An n by n matrix multiply involves n 2 dot prod-
ucts each requiring n adds and n multiplies. Hence, the number of ßoating point
operations is 2n3. An order 100 matrix multiply done in 0.005 seconds would give
400 megaßops. Function multimer does the matrix multiply repeatedly and reads
the elapsed time until the speciÞed total number of seconds is reached. Performing
loops and reading the clock takes some time, which is subtracted from the time to do
the looping, matrix multiplication, and clock reading. We also perform the intrinsic
matrix multiplication in a separate function so that both the fast and slow methods
have the same computational overhead associated with a function call. Results are
shown for matrices of order 100 and 1000. The fast time for an order 100 matrix
multiply only took 0.00503 seconds giving 398 megaßops. By comparison, the slow
method took more than eighteen hundred times as long as the fast method. This is
comparable to making a one hour task take about two and a half months, working
twenty-four hours a day, seven days a week. Evidently, intrinsic MATLAB matrix
multiply works very well, but nested looping is slow. Something else worth noting is
that a dense matrix of order 1000 does not stretch the capabilities of a modern micro-
computer. Storing a million word double-precision array only takes 8 megabytes of
RAM, which is a small fraction of the 128 megabytes or more typically provided for
scientiÞc work. Furthermore, the high order matrix multiply only took 4.6 seconds,
which is roughly 1000 times as long as the order 100 time. It turns out that the time
needed for most matrix operations increases like the cube of the order, even though
a complicated calculation such as singular value decomposition may take around
seventeen times as long as a Gauss elimination of the same order.
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>> mattimer(100,10,60);

MATRIX MULTIPLY TIMING TEST

Get results for a single timer call

The repeated multiplication of matrices
of order 100 may take considerable time.

Fast multiply takes 0.0050238 secs.
Megaflops = 398.1034

Slow multiply takes 9.0714 secs.
Megaflops = 398.1034

tslow/tfast = 1805.6723

Get results for several timer calls
tfast tslow ratio

5.0473e-003 8.8899e+000 1.7613e+003
5.0248e-003 8.8271e+000 1.7567e+003
4.9948e-003 8.9685e+000 1.7956e+003
5.0075e-003 8.8742e+000 1.7722e+003
5.3775e-003 8.9599e+000 1.6662e+003
4.9939e-003 8.8499e+000 1.7721e+003
5.0013e-003 8.8271e+000 1.7650e+003
5.0217e-003 8.9842e+000 1.7891e+003
5.0182e-003 9.0785e+000 1.8091e+003
4.9905e-003 8.9598e+000 1.7954e+003

Time variation defined by (max(t)-min(t))/mean(t)
Variation for tfast = 0.076656
Variation for tslow = 0.028181

>> mattimer(1000,0,60);

MATRIX MULTIPLY TIMING TEST

Get results for a single timer call

The repeated multiplication of matrices
of order 1000 may take considerable time.

Fast multiply takes 4.5699 secs.
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Megaflops = 437.6421

Slow multiply takes 8882.3899 secs.
Megaflops = 0.22516

tslow/tfast = 1943.654

Program mattimer

1: function mattimer(norder,ktimes,secs)
2: %
3: % mattimer(norder,ktimes,secs)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: if nargin==0
6: norder=100; ktimes=10; secs=30;
7: end
8: fprintf(’\nMATRIX MULTIPLY TIMING TEST\n\n’)
9:

10: disp(’Get results for a single timer call’)
11:

12: multimer(norder,secs,1); t=zeros(ktimes,3);
13:

14: secs=max(secs,30); if ktimes==0, return, end
15:

16: disp(’Get results for several timer calls’)
17: for j=1:ktimes
18: [t(j,3),t(j,1),t(j,2)]=multimer(norder,secs);
19: end
20: T=(max(t)-min(t))./mean(t);
21:

22: disp(...
23: ’ tfast tslow ratio’)
24: for j=1:ktimes
25: fprintf(’%13.4e %13.4e %13.4e\n’,t(j,:))
26: end
27: disp(’ ’), disp(...
28: ’Time variation defined by (max(t)-min(t))/mean(t)’)
29: disp([’Variation for tfast = ’,num2str(T(1))])
30: disp([’Variation for tslow = ’,num2str(T(2))])
31:

32: %============================================
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33:

34: function [ratio,tfast,tslow]=multimer(...
35: norder,secs,doprint)
36: % [ratio,tfast,tslow]=multimer(...
37: % norder,secs,doprint)
38:

39: % This function compares the times to perform a
40: % matrix multiply using the built-in matrix multiply
41: % and the slow method employing scalar triple looping.
42: % The ratio of compute times illustrates how much
43: % faster compiled and vectorized matrix operations
44: % can be compared to similar calculations using
45: % interpreted code with scalar looping.
46: % norder - order of the test matrices used. The
47: % default for norder is 100.
48: % secs - number of seconds each computation is run
49: % to get accurate timing. The default (and
50: % minimum value) is thirty seconds.
51: % doprint- print intermediate results only if this
52: % variable is given a value
53: % ratio - ratio of slow to fast multiply times
54: % tfast - time in seconds to perform a multiply
55: % using the built-in precompiled matrix
56: % multiply
57: % tslow - time in seconds to perform a multiply
58: % by triple loop method
59: %
60: % User m functions called: matmultf matmults
61: %
62: % Typical results obtained using a Dell Dimension
63: % XPS B733r computer with 128MB of RAM gave the
64: % following values:
65: %
66: % >> mattimer(100,0,60);
67: %
68: % MATRIX MULTIPLY TIMING TEST
69: %
70: % Fast multiply takes 0.0050238 secs.
71: % Megaflops = 398.1034
72: %
73: % Slow multiply takes 9.0714 secs.
74: % Megaflops = 398.1034
75: %
76: % tslow/tfast = 1805.6723
77:
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78: % >> mattimer(1000,0,60);
79: %
80: % MATRIX MULTIPLY TIMING TEST
81: %
82: % Fast multiply takes 4.5699 secs.
83: % Megaflops = 437.6421
84: %
85: % Slow multiply takes 8882.3899 secs.
86: % Megaflops = 0.22516
87: %
88: % tslow/tfast = 1943.654
89: % >>
90:

91: % Find time to make a loop and call the clock
92: nmax=5e3; nclock=0; tstart=cputime;
93: while nclock<nmax
94: tclock=cputime-tstart; nclock=nclock+1;
95: end
96: % Time to do one loop and call the timer
97: tclock=tclock/nclock;
98:

99: if nargin<3, doprint=0; else, doprint=1; end
100: if nargin<2, secs=30; end; secs=max(secs,30);
101: if nargin==0, norder=100; end
102: a=rand(norder,norder); b=rand(norder,norder);
103:

104: if doprint
105: disp(’ ’)
106: disp(’The repeated multiplication of matrices’)
107: disp([’of order ’,num2str(norder),...
108: ’ may take considerable time.’])
109: disp(’ ’)
110: end
111:

112: % Time using intrinsic multiply function
113: pack; tfast=0; nfast=0; tstart=cputime;
114: while tfast<secs
115: cf=matmultf(a,b); nfast=nfast+1;
116: tfast=cputime-tstart;
117: end
118: tfast=tfast/nfast-tclock;
119:

120: % Time using Fortran style, triple for:next looping
121: pack; tslow=0; nslow=0; tstart=cputime;
122: while tslow<secs
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123: cs=matmults(a,b); nslow=nslow+1;
124: tslow=cputime-tstart;
125: end
126:

127: tslow=tslow/nslow-tclock; ratio=tslow/tfast;
128: mflops=inline(’num2str(2*n^3/1e6/t)’,’n’,’t’);
129: if doprint
130: disp([’Fast multiply takes ’,...
131: num2str(tfast),’ secs.’])
132: disp([’Megaflops = ’,...
133: mflops(norder,tfast)]), disp(’ ’)
134: disp([’Slow multiply takes ’,...
135: num2str(tslow),’ secs.’])
136: disp([’Megaflops = ’,...
137: mflops(norder,tslow)]), disp(’ ’)
138: disp([’tslow/tfast = ’,...
139: num2str(tslow/tfast)]), disp(’ ’)
140: end
141:

142: %===========================================
143:

144: function v=matmultf(a,b)
145: % v=matmultf(a,b). Matrix multiply using
146: % precompiled function in MATLAB
147: v=a*b;
148:

149: %===========================================
150:

151: function v=matmults(a,b)
152: % v=matmults(a,b). Matrix multiply using
153: % Fortran like triple loop
154: n=size(a,1); m=size(b,2); K=size(a,2);
155: v=zeros(n,m);
156: for i=1:n
157: for j=1:m
158: t=0;
159: for k=1:K
160: t=t+a(i,k)*b(k,j);
161: end
162: v(i,j)=t;
163: end
164: end
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Chapter 4

Methods for Interpolation and Numerical
Differentiation

4.1 Concepts of Interpolation

Next we study three types of one-dimensional interpolation: polynomial, piece-
wise linear, and cubic spline. The MATLAB functions implementing these methods
are discussed along with some additional software developed by the authors to differ-
entiate and integrate splines. A simple discussion of cubic spline interpolation for-
mulated from the viewpoint of elastic beam ßexure is given. The chapter concludes
with a program to compute Þnite difference formulas for derivatives of general order.

Interpolation is a process whereby a function is approximated using data known
at a discrete set of points. Typically we have points (xi, yi) arranged such that
xi < xi+1. These points are to be connected by a continuous interpolation func-
tion inßuenced by smoothness requirements such as: a) the function should not de-
viate greatly from the data at points lying between the data values; and b) the func-
tion should satisfy a differentiability condition such as continuity of Þrst and second
derivatives.

Piecewise linear interpolation simply connects successive points by straight lines.
This has the disadvantage of producing a function with piecewise constant slope
and Þnite slope discontinuities. An obvious cure for slope discontinuity is to use a
curve such as a polynomial of degree n-1 (through n points) to produce an interpo-
lation function having all derivatives continuous. However, it was seen in Section
2.3 that a polynomial passing exactly through the data points may be highly irreg-
ular at intermediate values. Using polynomial interpolations higher than order Þve
or six often produces disappointing results. An excellent alternative to allowing ei-
ther slope discontinuities or demanding slope continuity of all orders is to use cubic
spline interpolation. This method connects successive points by cubic curves joined
such that function continuity as well as continuity of the Þrst two function derivatives
is achieved.

The MATLAB function polyÞt(xd,yd,n) can be used to obtain coefÞcients in a
polynomial of degree n which either passes through points in data vectors (xd,yd)
or Þts the data in the least square sense. Since a polynomial of degree n-1 can pass
through n data points, the computation c=polyÞt(xd,yd,length(xd)-1) would produce
coefÞcients in a polynomial passing through the data values. Evaluating the polyno-

© 2003 by CRC Press LLC



mial for an array argument x is accomplished by y=polyval(c,x). Combining the
two operations gives y=polyval(polyÞt(xd,yd,length(xd)-1),x). If the chosen poly-
nomial order is less than length(xd)-1, then a polynomial Þtting the data in the least
square sense is produced. For example, a polynomial of order 4 might be Þtted to
several hundred points. Of course, how well the least square polynomial actually Þts
the data should be assessed by examining a plot of the curve and the data. MATLAB
also has various utility functions to work with polynomials such as polyder, polyint,
conv, and deconv which differentiate, integrate, multiply, and divide.

Function interp1(xd,yd,x,�method�,�extrap�) is a general purpose interpolation func-
tion providing several types of interpolation including linear and spline. The default
value for �method� is �linear�, If the �extrap� parameter is omitted, then a value of
NaN (not a number) is returned for any input argument not lying between min(xd)
and max(xd). Otherwise, extrapolation is performed using the interpolation func-
tions for the outermost intervals. Readers should be cautious about extrapolating far
outside the known data range, because this often leads to unreasonable results.

Engineering applications often use idealized functions which are piecewise linear
and have Þnite jump discontinuities. Since function interp1 rejects cases where any
successive values in the xd vector are equal, we remedy this situation with function
lintrp(xd,yd,x) to search xd for any repeated values and separate these values by a
small fraction of max(xd)-min(xd). Then interp1 is used to perform the interpolation
as indicated below.

Function lintrp

1: function y=lintrp(xd,yd,x)
2: %
3: % y=lintrp(xd,yd,x)
4: % ~~~~~~~~~~~~~~~~~
5: % This function performs piecewise linear
6: % interpolation through data values stored in
7: % xd, yd, where xd values are arranged in
8: % nondecreasing order. The function can handle
9: % discontinuous functions specified when some

10: % successive values in xd are equal. Then the
11: % repeated xd values are shifted by a small
12: % amount to remove the discontinuities.
13: % Interpolation for any points outside the range
14: % of xd is also performed by continuing the line
15: % segments through the outermost data pairs.
16: %
17: % xd,yd - vectors of interpolation data values
18: % x - matrix of values where interpolated
19: % values are required
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20: %
21: % y - matrix of interpolated values
22:

23: k=find(diff(xd)==0);
24: if length(k)~=0
25: xd(k+1)=xd(k+1)+(xd(end)-xd(1))*1e3*eps;
26: end
27: y=interp1(xd,yd,x,’linear’,’extrap’);

4.2 Interpolation, Differentiation, and Integration by
Cubic Splines

Cubic spline interpolation is a versatile method to pass a smooth curve through a
sequence of data points. The technique connects the data values with a curve having
its third derivative piecewise constant. The curve is piecewise cubic with y(x), y�(x)
and y�(x) continuous over the whole data range. The MathWorks markets a Spline
Toolbox providing extensive capabilities to work with spline functions. A few func-
tions from that toolbox are included in standard MATLAB. The intrinsic functions
spline, ppval, mkpp, and unmkpp are extended here to handle differentiation and
integration. Spline interpolation, viewed from Euler beam theory, is also discussed
to amplify on the basic ideas. This simple formulation easily accommodates various
end conditions. Readers wanting more detail on spline theory will Þnd the books by
de Boor [27] and by Ahlberg and Nilson [2] to be helpful.

Cubic spline theory is motivated by a mechanical drafting tool consisting of a
ßexible strip bent over several supports with heights adjustable to Þt given data. Euler
beam theory [9] shows that the deßection curve has third derivative values which are
constant between successive supports. This implies that the curve is piecewise cubic
and the third derivative values (relating to internal shear forces in beam analysis)
can be determined to make the support deßections have chosen values. This is the
basis of cubic spline interpolation. The method is attractive because the interpolation
function y(x) is obtainable analytically as well as y ′(x), y′′(x) and

∫
y(x)dx.

Let us formulate the problem mathematically by taking a piecewise constant form
for y′′′(x) and integrating this repeatedly to get y(x). We assume data points (x i, yi),
1 ≤ i ≤ n with xi < xi+1. Each successive data pair can be connected by a cubic
curve with y′(x) and y′′(x) required to be continuous at all interior data points. If
values of y′(x) or y′′(x) are known at the curve ends, algebraic conditions to impose
those values can be written. Using known values of end slope is appropriate, but
specifying good second derivative values when end slopes are not known is usually
not obvious. As an alternative, it is customary to apply smoothness conditions re-
quiring continuity of y ′′′(x2) and y′′′(xn−1). Books on spline theory [7, 2] refer to
imposition of higher order continuity at interior points as �not-a-knot� conditions.
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The piecewise constant third derivative of the interpolation function is described as

y′′′(x) =
n−1∑
j=1

cj < x− xj >
0

where cj are constants to be determined, and the singularity function

< x− a >n= (x− a)n(x > a)

is used. This formula for y ′′′(x) is easy to integrate, and making the curve pass
through the data points is straightforward. It follows that

y′′(x) = y
′′
1 +

n−1∑
j=1

cj < x− xj >
1,

y′(x) = y
′
1 + y

′′
1 (x− x1) +

1
2

n−1∑
j=1

cj < x− xj >
2,

y(x) = y1 + y
′
1(x− x1) +

1
2
y

′′
1 (x− x1)2 +

1
6

n−1∑
j=1

cj < x− xj >
3,

x∫
x1

y(x)dx = y1(x− x1) +
1
2
y

′
1(x− x1)2 +

1
6
y

′′
1 (x− x1)3

+
1
24

n−1∑
j=1

cj < x− xj >
4 .

The interpolation function automatically goes through the Þrst data point, and the
remaining constants are required to satisfy

yi−y1 = y
′
1(xi −x1)+

1
2
y

′′
1 (xi −x1)2 +

1
6

n−1∑
j=1

cj < xi−xj >
3, i = 2, 3, . . . , n.

Since n + 1 unknowns are present in the above system, two more end conditions
must be included. Five familiar combinations of end conditions include: 1) the �not-
a-knot� condition applied at each end; 2) the slope given at each end; 3) the slope
given at the left end and the �not-a-knot� condition at the right end; 4) the �not-a-
knot� condition at the left end and the slope given at the right end; and 5) a periodic
spline is created by making the Þrst and last points have the same values of y, y ′, and
y′′.

Spline interpolation involves solution of linear simultaneous equations. A desktop
computer solves a system of 200 equations in less than 0.03 seconds; so, the equation
solving time is modest unless many points are used. The formulation described above
is easy to understand, handles general end conditions, and includes interpolation,
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differentiation, and integration. It was implemented in two general purpose functions
spterp and spcof used below with function curvprop to compute the length and area
bounded by a spline curve. Another function splineg using intrinsic function spline
is also discussed at the end of the present article. The spline routines provided here
are helpful additions for work with splines since they include spline differentiation
and integration which do not come in the standard MATLAB package.

4.2.1 Computing the Length and Area Bounded by a Curve

The ideas just described were implemented in functions spterp and spcof which
are called in the following program curvprop. This program computes the length of
a spline curve and the area bounded by the curve. The length of a curve parameter-
ized in complex form as

z(t) = x(t) + i y(t), a ≤ t ≤ b

can be computed as

length =
∫ b

a

abs(z′(t)) dt.

Furthermore, when the the curve is closed and is traversed in a counterclockwise
direction, the area is given by

area =
1
2

∫ b

a

imag(conj(z(t)) z ′(t)) dt.

The curve length is meaningful for an open or closed curve, but the bounded area
only makes sense for a closed curve. The next chapter discusses area properties for
shapes bounded by several spline curves. Our present example assumes a simple
geometry. It is worth mentioning that applying the last integral to an open curve
gives the area enclosed within the curve combined with a line from the last point to
the origin and a line from the origin to the Þrst point. This fact is clariÞed in the next
chapter which treats general areas bounded by several spline curves.

The following program curvprop passes a spline curve through data in vectors
x,y. The length, bounded area, and a set of data points on the curve are computed.
The curve is assumed to have a smoothly turning tangent. The default data example
uses points on an ellipse with semi-diameters of two and one. Readers can verify
that approximating the ellipse with a 21 point spline curve gives an area approxima-
tion accurate within 0.0055 percent and a boundary length accurate within 0.0068
percent. Of course, better accuracy is achievable with more data points.

4.2.2 Example: Length and Enclosed Area for a Spline Curve

Function curvprop

1: function [area,leng,X,Y,closed]=curvprop(x,y,doplot)
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2: %
3: % [area,leng,X,Y,closed]=curvprop(x,y,doplot)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function passes a cubic spline curve through
6: % a set of data values and computes the enclosed
7: % area, the curve length, and a set of points on
8: % the curve.
9: %

10: % x,y - data vectors defining the curve.
11: % doplot - plot the curve if a value is input for
12: % doplot. Otherwise, no plot is made.
13: % area - the enclosed area is computed. This
14: % parameter is valid only if the curve
15: % is closed and the boundary is traversed
16: % in counterclockwise. For a curve, the
17: % area agrees with a curve closed using
18: % a line from the last point to the
19: % origin, and a line from the origin to
20: % the first point.
21: % leng - length of the curve
22: % X,Y - set of points on the curve. The output
23: % intersperses three points on each segment
24: % between the starting data values.
25: % closed - equals one for a closed curve. Equals zero
26: % for an open curve.
27: %
28:

29: % For default test data, choose an ellipse with
30: % semi-diameters of 2 and 1.
31: if nargin==0
32: m=21; th=linspace(0,2*pi,m);
33: x=2*cos(th); y=sin(th); x(m)=2; y(m)=0;
34: end
35:

36: % Use complex data coordinates
37: z=x(:)+i*y(:); n=length(z); t=(1:n)’;
38: chord=sum(abs(diff(z))); d=abs(z(n)-z(1));
39:

40: % Use a periodic spline if the curve is closed
41: if d < (chord/1e6)
42: closed=1; z(n)=z(1); endc=5;
43: zp=spterp(t,z,1,t,endc);
44:

45: % Use the not-a-knot end condition for open curve
46: else
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47: closed=0; endc=1; zp=spterp(t,z,1,t,endc);
48: end
49:

50: % Compute length and area
51: % plot(abs(zp)),shg,pause
52: leng=spterp(t,abs(zp),3,n,1);
53: area=spterp(t,1/2*imag(conj(z).*zp),3,n,1);
54: Z=spterp(t,z,0,1:1/4:n,endc);
55: X=real(Z); Y=imag(Z);
56: if nargin>2
57: plot(X,Y,’-’,x,y,’.’), axis equal
58: xlabel(’x axis’), ylabel(’y axis’)
59: title(’SPLINE CURVE’), shg
60: end
61:

62: %============================================
63:

64: function [v,c]=spterp(xd,yd,id,x,endv,c)
65: %
66: % [v,c]=spterp(xd,yd,id,x,endv,c)
67: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
68: %
69: % This function performs cubic spline interpo-
70: % lation. Values of y(x),y’(x),y’’(x) or the
71: % integral(y(t)*dt, xd(1)..x) are obtained.
72: % Five types of end conditions are provided.
73: %
74: % xd, yd - data vectors with xd arranged in
75: % ascending order.
76: % id - id equals 0,1,2,3 to compute y(x),
77: % y’(x), integral(y(t)*dt,t=xd(1)..x),
78: % respectively.
79: % v - values of the function, first deriva-
80: % tive, second derivative, or integral
81: % from xd(1) to x
82: % c - the coefficients defining the spline
83: % curve. If these values are input from
84: % an earlier computation, then they
85: % are not recomputed.
86: % endv - vector giving the end conditions in
87: % one of the following five forms:
88: % endv=1 or endv omitted makes
89: % c(2) and c(n-1) zero
90: % endv=[2,left_end_slope,...
91: % right_end_slope] to impose slope
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92: % values at each end
93: % endv=[3,left_end_slope] imposes the
94: % left end slope value and makes
95: % c(n-1) zero
96: % endv=[4,right_end_slope] imposes the
97: % right end slope value and makes
98: % c(2) zero
99: % endv=5 defines a periodic spline by

100: % making y,y’,y" match at both ends
101:

102: if nargin<5 | isempty(endv), endv=1; end
103: n=length(xd); sx=size(x); x=x(:); X=x-xd(1);
104:

105: if nargin<6, c=spcof(xd,yd,endv); end
106:

107: C=c(1:n); s1=c(n+1); m1=c(n+2); X=x-xd(1);
108:

109: if id==0 % y(x)
110: v=yd(1)+s1*X+m1/2*X.*X+...
111: powermat(x,xd,3)*C/6;
112: elseif id==1 % y’(x)
113: v=s1+m1*X+powermat(x,xd,2)*C/2;
114: elseif id==2 % y’’(x)
115: v=m1+powermat(x,xd,1)*C;
116: else % integral(y(t)*dt, t=xd(1)..x)
117: v=yd(1)*X+s1/2*X.*X+m1/6*X.^3+...
118: powermat(x,xd,4)*C/24;
119: end
120: v=reshape(v,sx);
121:

122: %==============================================
123:

124: function c=spcof(x,y,endv)
125: %
126: % c=spcof(x,y,endv)
127: % ~~~~~~~~~~~~~~~~
128: % This function determines spline interpolation
129: % coefficients consisting of the support
130: % reactions concatenated with y’ and y’’ at
131: % the left end.
132: % x,y - data vectors of interplation points.
133: % Denote n as the length of x.
134: % endv - vector of data for end conditions
135: % described in function spterp.
136: %
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137: % c - a vector [c(1);...;c(n+2)] where the
138: % first n components are support
139: % reactions and the last two are
140: % values of y’(x(1)) and y’’(x(1)).
141:

142: if nargin<3, endv=1; end
143: x=x(:); y=y(:); n=length(x); u=x(2:n)-x(1);
144: a=zeros(n+2,n+2); a(1,1:n)=1;
145: a(2:n,:)=[powermat(x(2:n),x,3)/6,u,u.*u/2];
146: b=zeros(n+2,1); b(2:n)=y(2:n)-y(1);
147: if endv(1)==1 % Force, force condition
148: a(n+1,2)=1; a(n+2,n-1)=1;
149: elseif endv(1)==2 % Slope, slope condition
150: b(n+1)=endv(2); a(n+1,n+1)=1;
151: b(n+2)=endv(3); a(n+2,:)=...
152: [((x(n)-x’).^2)/2,1,x(n)-x(1)];
153: elseif endv(1)==3 % Slope, force condition
154: b(n+1)=endv(2); a(n+1,n+1)=1; a(n+2,n-1)=1;
155: elseif endv(1)==4 % Force, slope condition
156: a(n+1,2)=1; b(n+2)=endv(2);
157: a(n+2,:)=[((x(n)-x’).^2)/2,1,x(n)-x(1)];
158: elseif endv(1)==5
159: a(n+1,1:n)=x(n)-x’; b(n)=0;
160: a(n+2,1:n)=1/2*(x(n)-x’).^2;
161: a(n+2,n+2)=x(n)-x(1);
162: else
163: error(...
164: ’Invalid value of endv in function spcof’)
165: end
166: if endv(1)==1 & n<4, c=pinv(a)*b;
167: else, c=a\b; end
168:

169: %==============================================
170:

171: function a=powermat(x,X,p)
172: %
173: % a=powermat(x,X,p)
174: % ~~~~~~~~~~~~~~~~
175: % This function evaluates various powers of a
176: % matrix used in cubic spline interpolation.
177: %
178: % x,X - arbitrary vectors of length n and N
179: % a - an n by M matrix of elements such that
180: % a(i,j)=(x(i)>X(j))*abs(x(i)-X(j))^p
181:
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182: x=x(:); n=length(x); X=X(:)’; N=length(X);
183: a=x(:,ones(1,N))-X(ones(n,1),:); a=a.*(a>0);
184: switch p, case 0, a=sign(a); case 1, return;
185: case 2, a=a.*a; case 3; a=a.*a.*a;
186: case 4, a=a.*a; a=a.*a; otherwise, a=a.^p; end

4.2.3 Generalizing the Intrinsic Spline Function in MATLAB

The intrinsic MATLAB function spline employs an auxiliary function unmk to
create the piecewise polynomial deÞnitions deÞning the spline. The polynomials
can be differentiated or integrated, and then functions mkpp and ppval can be used
to evaluate results. We have employed the ideas from those routines to develop func-
tions splineg and splincof extending the minimal spline capabilities of MATLAB.
The function splincof(xd,yd,endc) computes arrays b and c usable by mkpp and pp-
val. The data vector endc deÞnes the Þrst four types of end conditions discussed
above. The function splineg(xd,yd,x,deriv,endc,b,c) handles the same kind of data
as function spterp. Sometimes arrays b and c may have been created from a previ-
ous call to splineg or spterp. Whenever these are passed through the call list, they
are used by splineg without recomputation. Readers wanting more details on spline
concepts should consult de Boor�s book [7].

Two examples illustrating spline interpolation are presented next. In the Þrst pro-
gram called, sinetrp, a series of equally spaced points between 0 and 2π is used to
approximate y = sin(x) which satisÞes

y′(x) = cos(x) , y′′(x) = − sin(x) ,
∫ x

0

y(x)dx = 1 − cos(x).

The approximations for the function, derivatives, and the integral are evaluated using
splineg. Results shown in Figure 4.1 are quite satisfactory, except for points outside
the data interval [0, 2π].
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Figure 4.1: Spline Differentiation and Integration of sin(x)
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Example: Spline Interpolation Applied to Sin(x)

Program sinetrp

1: function sinetrp
2: % Example: sinetrp
3: % ~~~~~~~~~~~~~~~~~
4: % This example illustrates cubic spline
5: % approximation of sin(x), its first two
6: % derivatives, and its integral.
7: %
8: % User m functions required:
9: % splineg, splincof

10:

11: % Create data points on the spline curve
12: xd=linspace(0,2*pi,21); yd=sin(xd);
13:

14: % Evaluate function values at a dense
15: % set of points
16: x=linspace(-pi/2,5/2*pi,61);
17: [y,b,c]=splineg(xd,yd,x,0);
18: yp=splineg(xd,yd,x,1,[],b,c);
19: ypp=splineg(xd,yd,x,2,[],b,c);
20: yint=splineg(xd,yd,x,3,[],b,c);
21:

22: % Plot results
23: z=x/pi; zd=xd/pi;
24: plot(z,y,’k-’,zd,yd,’ko’,z,yp,’k:’,...
25: z,ypp,’k-.’,z,yint,’k+’);
26: title([’Spline Differentiation and ’, ...
27: ’Integration of sin(x)’]);
28: xlabel(’x / pi’); ylabel(’function values’);
29: legend(’y=sin(x)’,’data’,’y’’(x)’,’y’’’’(x)’, ...
30: ’\int y(x) dx’,1); grid on
31: figure(gcf); pause;
32: % print -deps sinetrp
33:

34: %==============================================
35:

36: function [val,b,c]=splineg(xd,yd,x,deriv,endc,b,c)
37: %
38: % [val,b,c]=splineg(xd,yd,x,deriv,endc,b,c)
39: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
40: %
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41: % For a cubic spline curve through data points
42: % xd,yd, this function evaluates y(x), y’(x),
43: % y’’(x), or integral(y(x)*dx, xd(1) to x(j) )
44: % for j=1:length(x).The coefficients needed to
45: % evaluate the spline are also computed.
46: %
47: % xd,yd - data vectors defining the cubic
48: % spline curve
49: % x - vector of points where curve
50: % properties are computed.
51: % deriv - denoting the spline curve as y(x),
52: % deriv=0 gives a vector for y(x)
53: % deriv=1 gives a vector for y’(x)
54: % deriv=2 gives a vector for y’’(x)
55: % deriv=3 gives a vector of values
56: % for integral(y(z)*dz) from xd(1)
57: % to x(j) for j=1:length(x)
58: % endc - endc=1 makes y’’’(x) continuous at
59: % xd(2) and xd(end-1).
60: % endc=[2,left_slope,right_slope]
61: % imposes slope values at both ends.
62: % endc=[3,left_slope] imposes the left
63: % end slope and makes the discontinuity
64: % of y’’’ at xd(end-1) small.
65: % endc=[4,right_slope] imposes the right
66: % end slope and makes the discontinuity
67: % of y’’’ at xd(2) small.
68: % b,c coefficients needed to perform the
69: % spline interpolation. If these are not
70: % given, function unmkpp is called to
71: % generate them.
72: % val values y(x),y’(x),y’’(x) or
73: % integral(y(z)dz, z=xd(1)..x) for
74: % deriv=0,1,2, or 3, respectively.
75:

76: if nargin<5 | isempty(endc), endc=1; end
77: if nargin<7, [b,c]=splincof(xd,yd,endc); end
78: n=length(xd); [N,M]=size(c);
79:

80: switch deriv
81:

82: case 0 % Function value
83: val=ppval(mkpp(b,c),x);
84:

85: case 1 % First derivative
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86: C=[3*c(:,1),2*c(:,2),c(:,3)];
87: val=ppval(mkpp(b,C),x);
88:

89: case 2 % Second derivative
90: C=[6*c(:,1),2*c(:,2)];
91: val=ppval(mkpp(b,C),x);
92:

93: case 3 % Integral values from xd(1) to x
94: k=M:-1:1;
95: C=[c./k(ones(N,1),:),zeros(N,1)];
96: dx=xd(2:n)-xd(1:n-1); s=zeros(n-2,1);
97: for j=1:n-2, s(j)=polyval(C(j,:),dx(j)); end
98: C(:,5)=[0;cumsum(s)]; val=ppval(mkpp(b,C),x);
99:

100: end
101:

102: %==============================================
103:

104: function [b,c]=splincof(xd,yd,endc)
105: %
106: % [b,c]=splincof(xd,yd,endc)
107: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
108: % This function determines coefficients for
109: % cubic spline interpolation allowing four
110: % different types of end conditions.
111: % xd,yd - data vectors for the interpolation
112: % endc - endc=1 makes y’’’(x) continuous at
113: % xd(2) and xd(end-1).
114: % endc=[2,left_slope,right_slope]
115: % imposes slope values at both ends.
116: % endc=[3,left_slope] imposes the left
117: % end slope and makes the discontinuity
118: % of y’’’ at xd(end-1) small.
119: % endc=[4,right_slope] imposes the right
120: % end slope and makes the discontinuity
121: % of y’’’ at xd(2) small.
122: %
123: if nargin<3, endc=1; end;
124: type=endc(1); xd=xd(:); yd=yd(:);
125:

126: switch type
127:

128: case 1
129: % y’’’(x) continuous at the xd(2) and xd(end-1)
130: [b,c]=unmkpp(spline(xd,yd));
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131:

132: case 2
133: % Slope given at both ends
134: [b,c]=unmkpp(spline(xd,[endc(2);yd;endc(3)]));
135:

136: case 3
137: % Slope at left end given. Compute right end
138: % slope.
139: [b,c]=unmkpp(spline(xd,yd));
140: c=[3*c(:,1),2*c(:,2),c(:,3)];
141: sright=ppval(mkpp(b,c),xd(end));
142: [b,c]=unmkpp(spline(xd,[endc(2);yd;sright]));
143:

144: case 4
145: % Slope at right end known. Compute left end
146: % slope.
147: [b,c]=unmkpp(spline(xd,yd));
148: c=[3*c(:,1),2*c(:,2),c(:,3)];
149: sleft=ppval(mkpp(b,c),xd(1));
150: [b,c]=unmkpp(spline(xd,[sleft;yd;endc(2)]));
151:

152: end

4.2.4 Example: A Spline Curve with Several Parts and Corners

The Þnal spline example illustrates interpolation of a two-dimensional curve where
y cannot be expressed as a single valued function of x. Then we introduce a param-
eter tj having its value equal to the index  for each (xj , yj) used. Interpolating
x(t) and y(t) as continuous functions of t produces a smooth curve through the data.
Function matlbdat creates data points to deÞne the curve and calls function spcry2d
to compute points on a general plane curve. We also introduce the idea of �corner
points� where slope discontinuity allows the curve to make sharp turns needed to
describe letters such as the �t� in MATLAB. Each curve segment between successive
pairs of corner points is parameterized using function spline. Results in Figure 4.2
show clearly that spline interpolation can represent a complicated curve. The re-
lated code appears after the Þgure. The same kind of parameterization used for two
dimensions also works well for three dimensional curves.

Example: Spline Curve Drawing the Word MATLAB

Program matlbdat

1: function matlbdat
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A Spline Curve Drawing the Word MATLAB

Figure 4.2: Spline Curve Drawing the Word MATLAB
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2: % Example: matlbdat
3: % ~~~~~~~~~~~~~~~~~
4: % This example illustrates the use of splines
5: % to draw the word MATLAB.
6: %
7: % User m functions required: spcurv2d
8:

9: x=[13 17 17 16 17 19 21 22 21 21 23 26
10: 25 28 30 32 37 32 30 32 35 37 37 38
11: 41 42 42 42 45 39 42 42 44 47 48 48
12: 47 47 48 51 53 57 53 52 53 56 57 57
13: 58 61 63 62 61 64 66 64 61 64 67 67];
14: y=[63 64 58 52 57 62 62 58 51 58 63 63
15: 53 52 56 61 61 61 56 51 55 61 55 52
16: 54 59 63 59 59 59 59 54 52 54 58 62
17: 58 53 51 55 60 61 60 54 51 55 61 55
18: 52 53 58 62 53 57 53 51 53 51 51 51];
19: x=x’; x=x(:); y=y’; y=y(:);
20: ncrnr=[17 22 26 27 28 29 30 31 36 42 47 52];
21: clf; [xs,ys]=curv2d(x,y,10,ncrnr);
22: plot(xs,ys,’k-’,x,y,’k*’), axis off;
23: title(’A Spline Curve Drawing the Word MATLAB’);
24: figure(gcf);
25: % print -deps matlbdat
26:

27: %=============================================
28:

29: function [X,Y]=spcrv2d(xd,yd,nseg,icrnr)
30: %
31: % [X,Y]=spcrv2d(xd,yd,nseg,icrnr)
32: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
33: % This function computes points (X,Y) on a
34: % spline curve through (xd,yd) allowing slope
35: % discontinuities at points with corner
36: % indices in icrnr. nseg plot segments are
37: % used between each successive pair of points.
38:

39: if nargin<4, icrnr=[]; end
40: if nargin<3, nseg=10; end
41: zd=xd(:)+i*yd(:); n=length(zd);
42: N=[1;sort(icrnr(:));n]; Z=zd(1);
43: if N(1)==N(2); N(1)=[]; end
44: if N(end)==N(end-1); N(end)=[]; end
45: for k=1:length(N)-1
46: zk=zd(N(k):N(k+1)); sk=length(zk)-1;
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47: s=linspace(0,sk,1+sk*nseg)’;
48: Zk=spline(0:sk,zk,s); Z=[Z;Zk(2:end)];
49: end
50: X=real(Z); Y=imag(Z);

4.3 Numerical Differentiation Using Finite Differences

Differential equation problems are sometimes solved using difference formulas to
approximate the derivatives in terms of function values at adjacent points. Deriving
difference formulas by hand can be tedious, particularly when unequal point spacing
is used. For this reason, we develop a numerical procedure to construct formulas
of arbitrary order and arbitrary truncation error. Of course, as the desired order
of derivative and the order of truncation error increases, more points are needed to
interpolate the derivative. We will show below that approximating a derivative of
order k with a truncation error of order hm generally requires (k+m) points unless
symmetric central differences are used. Consider the Taylor series expansion

F (x + αh) =
∞∑

k=0

F (k)(x)
k!

(αh)k

where F (k)(x) means the k�th derivative of F (x). This relation expresses values of
F as linear combinations of the function derivatives at x. Conversely, the derivative
values can be cast in terms of function values by solving a system of simultaneous
equations. Let us take a series of points deÞned by

xı = x+ hαı , 1 ≤ ı ≤ n

where h is a Þxed step-size and αı are arbitrary parameters. Separating some leading
terms in the series expansion gives

F (xı) =
n−1∑
k=0

αk
ı

k!

[
hkF (k)(x)

]
+
αn

ı

n!

[
hnF (n)(x)

]
+

αn+1
ı

(n+ 1)!

[
h(n+1)F (n+1)(x)

]
+ O(hn+2) , 1 ≤ ı ≤ n.

It is helpful to use the following notation:
αk � a column vector with component ı being equal to α k

ı
f � a column vector with component ı being F (x ı)
fp � a column vector with component ı being h ıF (ı)(x)
A � [α0, α1, . . . , αn−1], a square matrix with columns which

are powers of α.
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Then the Taylor series expressed in matrix form is

f = A ∗ fp+
hnF (n)(x)

n!
αn +

hn+1F (n+1)(x)
(n+ 1)!

αn+1 + O(hn+2).

Solving this system for the derivative matrix fp yields

fp = A−1f − hnF (n)(x)
n!

A−1αn − hn+1F (n+1)(x)
(n+ 1)!

A−1αn+1 + O(hn+2).

In the last equation we have retained the Þrst two remainder terms in explicit form
to allow the magnitudes of these terms to be examined. Row k + 1 of the previous
equation implies

F (k)(x) = h−k(A−1f)k+1 − hn−k

n!
F (n)(x)(A−1αn)k+1−

hn−k+1

(n+ 1)!
F (n+1)(x)(A−1αn+1)k+1 + O(hn−k+1) .

Consequently, the rows ofA−1 provide coefÞcients in formulas to interpolate deriva-
tives. For a particular number of interpolation points, say N , the highest derivative
approximated will be F (N−1)(x) and the truncation error will normally be of or-
der h1. Conversely, if we need to compute a derivative formula of order k with the
truncation error being m, then it is necessary to use a number of points such that
n− k = m; therefore n = m+ k. For the case where interpolation points are sym-
metrically placed around the point where derivatives are desired, one higher power
of accuracy order is achieved than might be expected. We can show, for example,
that

d4F (x)
dx4

=
1
h4

(F (x − 2h) − 4F (x− h) + 6F (x) −
4F (x+ h) + F (x+ 2h)) + O(h2)

because the truncation error term associated with h1 is found to be zero. At the
same time, we can show that a forward difference formula for f ′′′(x) employing
equidistant point spacing is

d3F (x)
dx3

=
1
h3

(−2.5F (x) − 9F (x+ h) + 12F (x+ 2h) +

7F (x+ 3h) − 1.5F (x+ 4h)) + O(h2).

Although the last two formulas contain arithmetically simple interpolation coefÞ-
cients, due to equal point spacing, the method is certainly not restricted to equal
spacing. The following program contains the function derivtrp which implements
the ideas just developed. Since the program contains documentation that is output
when it is executed, no additional example problem is included.
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4.3.1 Example: Program to Derive Difference Formulas

Output from Example

finitdif;

COMPUTING F(x,k), THE K�TH DERIVATIVE OF
f(x), BY FINITE DIFFERENCE APPROXIMATION

Input the derivative order (give 0 to stop,
or ? for an explanation) > ?

Let f(x) have its k�th derivative denoted by
F(k,x). The finite difference formula for a
stepsize h is given by:

F(x,k)=Sum(c(j)*f(x+a(j)*h), j=1:n)/h�k +...
TruncationError

with m=n-k being the order of truncation
error which decreases like h�m according to:

TruncationError=-(h�m)*(e(1)*F(x,n)+...
e(2)*F(x,n+1)*h+e(3)*F(x,n+2)*h�2+O(h�3))

Input the derivative order (give 0 to stop,
or ? for an explanation) > 4

Give the required truncation order > 1

To define interpolation points X(j)=x+h*a(j),
input at least 5 components for vector a.

Components of a > -2,-1,0,1,2

The formula for a derivative of order 4 is:
F(x,k)=sum(c(j)*F(X(j),j=1:n)/h�4+order(h�1)
where c is given by:

1.0000 -4.0000 6.0000 -4.0000 1.0000

and the truncation error coefficients are:

-0.0000 0.1667 -0.0000 0.0125

Input the derivative order (give 0 to stop,
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or ? for an explanation) > 3

Give the required truncation order > 2

To define interpolation points X(j)=x+h*a(j),
input at least 5 components for vector a.

Components of a > 0,1,2,3,4

The formula for a derivative of order 3 is:
F(x,k)=sum(c(j)*F(X(j),j=1:n)/h�3+order(h�2)
where c is given by:

-2.5000 9.0000 -12.0000 7.0000 -1.5000

and the truncation error coefficients are:

-1.7500 -2.5000 -2.1417 -1.3750

Input the derivative order (give 0 to stop,
or ? for an explanation) > 0

Program Þnitdif

1: function [c,e,m,crat,k,a]=finitdif(k,a)
2: %
3: % [c,e,m,crat,k,a]=finitdif(k,a)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This program computes finite difference formulas of
6: % general order. For explanation of the input and
7: % output parameters, see the following function
8: % findifco. When the program is executed without input
9: % arguments, then input is read interactively.

10:

11: if nargin==0, disp(’ ’) % Use interactive input
12: disp(’COMPUTING F(x,k), THE K’’TH DERIVATIVE OF’)
13: disp(’f(x), BY FINITE DIFFERENCE APPROXIMATION’)
14: disp(’ ’)
15: while 1
16: disp(’Input the derivative order (give 0 to stop,’)
17: K=input(’or ? for an explanation) > ’,’s’);
18: k=str2num(K);
19: if strcmp(K,’’) | strcmp(K,’0’); disp(’ ’),return
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20: elseif strcmp(K,’?’)
21: disp(’ ’), disp(...
22: ’Let f(x) have its k’’th derivative denoted by’)
23: disp(...
24: ’F(k,x). The finite difference formula for a’)
25: disp(’stepsize h is given by:’), disp(’ ’)
26: disp(...
27: ’F(x,k)=Sum(c(j)*f(x+a(j)*h), j=1:n)/h^k +...’)
28: disp(’ TruncationError’), disp(’ ’)
29: disp(’with m=n-k being the order of truncation’)
30: disp(...
31: ’error which decreases like h^m according to:’)
32: disp(’ ’)
33: disp(’TruncationError=-(h^m)*(e(1)*F(x,n)+...’)
34: disp(...
35: ’e(2)*F(x,n+1)*h+e(3)*F(x,n+2)*h^2+O(h^3))’)
36: disp(’ ’)
37: else
38: disp(’ ’)
39: m=input(’Give the required truncation order > ’);
40: n=m+k; N=num2str(n); disp(’ ’), disp(...
41: ’To define interpolation points X(j)=x+h*a(j),’)
42: disp([’input at least ’,N,...
43: ’ components for vector a.’])
44: disp(’ ’), aa=input(’Components of a > ’,’s’);
45: a=eval([’[’,aa,’]’]); n=length(a); m=n-k;
46: [c,e,m,crat]=findifco(k,a); disp(’ ’), disp(...
47: [’The formula for a derivative of order ’,...
48: K,’ is:’])
49: disp([’F(x,k)=sum(c(j)*F(X(j),j=1:n)/h^’,K,...
50: ’+order(h^’,num2str(m),’)’])
51: disp(’where c is given by:’)
52: disp(’ ’), disp(c), disp(’ ’)
53: disp(...
54: ’and the truncation error coefficients are:’)
55: disp(’ ’), disp(e)
56: end
57: end
58: else
59: [c,e,m,crat]=findifco(k,a);
60: end
61:

62: %==================================================
63:

64: function [c,e,m,crat]=findifco(k,a)
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65: %
66: % [c,e,m,crat]=findifco(k,a)
67: % ~~~~~~~~~~~~~~~~~~~~~~~~~
68: % This function approximates the k’th derivative
69: % of a function using function values at n
70: % interpolation points. Let f(x) be a general
71: % function having its k’th derivative denoted
72: % by F(x,k). The finite difference approximation
73: % for the k’th derivative employing a stepsize h
74: % is given by:
75: % F(x,k)=Sum(c(j)*f(x+a(j)*h), j=1:n)/h^k +
76: % TruncationError
77: % with m=n-k being the order of truncation
78: % error which decreases like h^m and
79: % TruncationError=(h^m)*(e(1)*F(x,n)+...
80: % e(2)*F(x,n+1)*h+e(3)*F(x,n+2)*h^2+O(h^3))
81: %
82: % a - a vector of length n defining the
83: % interpolation points x+a(j)*h where
84: % x is an arbitrary parameter point
85: % k - order of derivative evaluated at x
86: % c - the weighting coeffients in the
87: % difference formula above. c(j) is
88: % the multiplier for value f(x+a(j)*h)
89: % e - error component vector in the above
90: % difference formula
91: % m - order of truncation order in the
92: % formula. The relation m=n-k applies.
93: % crat - a matrix of integers such that c is
94: % approximated by crat(1,:)./crat(2,:)
95:

96: a=a(:); n=length(a); m=n-k; mat=ones(n,n+4);
97: for j=2:n+4; mat(:,j)=a/(j-1).*mat(:,j-1); end
98: A=pinv(mat(:,1:n)); ec=-A*mat(:,n+1:n+4);
99: c=A(k+1,:); e=-ec(k+1,:);

100: [ctop,cbot]=rat(c,1e-8); crat=[ctop(:)’;cbot(:)’];

© 2003 by CRC Press LLC



Chapter 5

Gauss Integration with Geometric Property
Applications

5.1 Fundamental Concepts and Intrinsic Integration Tools
in MATLAB

Numerical integration methods approximate a deÞnite integral by evaluating the
integrand at several points and taking a weighted combination of those integrand
values. The weight factors can be obtained by interpolating the integrand at selected
points and integrating the interpolating function exactly. For example, the Newton-
Cotes formulas result from polynomial interpolation through equidistant base points.
This chapter discusses concepts of numerical integration needed in applications.

Let us assume that an integral over limits a to b is to be evaluated. We can write

∫ b

a

f(x)dx =
n∑

ı=1

Wıf(xı) + E

where E represents the error due to replacement of the integral by a Þnite sum. This
is called an n-point quadrature formula. The points x ı where the integrand is evalu-
ated are the base points and the constantsWı are the weight factors. Most integration
formulas depend on approximating the integrand by a polynomial. Consequently,
they give exact results when the integrand is a polynomial of sufÞciently low order.
Different choices of xı and Wı will be discussed below.

It is helpful to express an integral over general limits in terms of some Þxed limits,
say −1 to 1. This is accomplished by introducing a linear change of variables

x = α+ βt.

Requiring that x = a corresponds to t = −1 and that x = b corresponds to t = 1
gives α = (a+ b)/2 and β = (b− a)/2, so that one obtains

∫ b

a

f(x)dx =
1
2
(b − a)

∫ 1

−1

f

[
a+ b

2
+
b− a

2
t

]
dt =

∫ 1

−1

F (t)dt

where F (t) = f [(a + b)/2 + (b − a)t/2](b − a)/2. Thus, the dependence of the
integral on the integration limits can be represented parametrically by modifying the
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integrand. Consequently, if an integration formula is known for limits −1 to 1, we
can write ∫ b

a

f(x)dx = β

n∑
ı=1

Wıf(α+ βxı) + E.

The idea of shifting integration limits can be exploited further by dividing the interval
a to b into several parts and using the same numerical integration formula to evaluate
the contribution from each interval. Employingm intervals of length � = (b−a)/m,
we get ∫ b

a

f(x)dx =
m∑

=1

∫ a+�

a+(−1)�

f(x)dx.

Each of the integrals in the summation can be transformed to have limits −1 to 1 by
taking

x = α + βt

with
α = a+ (j − 1/2)� and β = �/2.

Therefore we obtain the identity

∫ b

a

f(x)dx =
m∑

=1

.
�

2

∫ 1

−1

f(α + βt)dt.

Applying the same n-point quadrature formula in each of m equal intervals gives
what is termed a composite formula

∫ b

a

f(x)dx =
�

2

m∑
=1

n∑
ı=1

Wıf(α + βxı) + E.

By interchanging the summation order in the previous equation we get

∫ b

a

f(x)dx =
�

2

n∑
ı=1

Wı

m∑
=1

f(α + βxı) + E.

Let us now turn to certain choices of weight factors and base points. Two of the most
widely used methods approximate the integrand as either piecewise linear or piece-
wise cubic. Approximating the integrand by a straight line through the integrand end
points gives the following formula∫ 1

−1

f(x)dx = f(−1) + f(1) + E.

A much more accurate formula results by using a cubic approximation matching the
integrand at x = −1, 0, 1. Let us write

f(x) = c1 + c2x+ c3x
2 + c4x

3.
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Then ∫ 1

−1

f(x)dx = 2c1 +
2
3
c3.

Evidently the linear and cubic terms do not inßuence the integral value. Also, c 1 =
f(0) and f(−1) + f(1) = 2 c1 + 2 c3 so that∫ 1

−1

f(x)dx =
1
3

[f(−1) + 4f(0) + f(1)] + E.

The error E in this formula is zero when the integrand is any polynomial of order 3
or lower. Expressed in terms of more general limits, this result is∫ b

a

f(x)dx =
(b− a)

6

[
f(a) + 4f(

a+ b

2
) + f(b)

]
+ E

which is known as Simpson�s rule.
Analyzing the integration error for a particular choice of integrand and quadrature

formula can be complex. In practice, the usual procedure taken is to apply a com-
posite formula with m chosen large enough so the integration error is expected to
be negligibly small. The value for m is then increased until no further signiÞcant
change in the integral approximation results. Although this procedure involves some
risk of error, adequate results can be obtained in most practical situations.

In the subsequent discussions the integration error that results by replacing an
integral by a weighted sum of integrand values will be neglected. It must nevertheless
be kept in mind that this error depends on the base points, weight factors, and the
particular integrand. Most importantly, the error typically decreases as the number
of function values is increased.

It is convenient to summarize the composite formulas obtained by employing a
piecewise linear or piecewise cubic integrand approximation. Usingm intervals and
letting � = (b − a)/m, it is easy to obtain the composite trapezoidal formula which
is ∫ b

a

f(x)dx = �

[
f(a) + f(b)

2
+

m−1∑
=1

f(a+ �)

]
.

This formula assumes that the integrand is satisfactorily approximated by piecewise
linear functions. The MATLAB function trapz implements the trapezoidal rule.
A similar but much more accurate result is obtained for the composite integration
formula based on cubic approximation. For this case, taking m intervals implies
2m+ 1 function evaluations. If we let g = (b− a)/(2m) and h = 2g, then

f = f(x) where x = a+ g ,  = 0, 1, 2, . . ., 2m,

with f(x0) = f(a) and f(x2m) = f(b). Combining results for all intervals gives

∫ b

a

f(x)dx =
h

6

[
f(a) + 4f1 + f(b) +

m−1∑
ı=1

(4f2ı+1 + 2f2ı)

]
.
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This formula, known as the composite Simpson rule, is one of the most commonly
used numerical integration methods. The following function simpson works for an
analytically deÞned function or a function deÞned by spline interpolating through
discrete data.

Function for Composite Simpson Rule

1: function area=simpson(funcname,a,b,n,varargin)
2: %
3: % area=simpson(funcname,a,b,n,varargin)
4: % -------------------------------------
5: % Simpson’s rule integration for a general function
6: % defined analytically or by a data array
7: %
8: % funcname - either the name of a function valid
9: % for a vector argument x, or an array

10: % having two columns with x data in the
11: % first column and y data in the second
12: % column. If array data is given, then
13: % the function is determined by piecewise
14: % cubic spline interpolation.
15: % a,b - limits of integration
16: % n - odd number of function evaluations. If
17: % n is given as even, then the next
18: % higher odd integer is used.
19: % varargin - variable number of arguments passed
20: % for use in funcname
21: % area - value of the integral when the integrand
22: % is approximated as a piecewise cubic
23: % function
24: %
25: % User functions called: function funcname in the
26: % argument list
27: %----------------------------------------------------

28: if 2*fix(n/2)==n; n=n+1; end; n=max(n,3);
29: x=linspace(a,b,n);
30: if isstr(funcname)
31: y=feval(funcname,x,varargin{:});
32: else
33: y=spline(funcname(:,1),funcname(:,2),x);
34: end
35: area=(b-a)/(n-1)/3*( y(1)-y(n)+...

© 2003 by CRC Press LLC



36: 4*sum(y(2:2:n))+2*sum(y(3:2:n)));

An important goal in numerical integration is to achieve accurate results with only
a few function evaluations. It was shown for Simpson�s rule that three function
evaluations are enough to exactly integrate a cubic polynomial. By choosing the
base point locations properly, a much higher accuracy can be achieved for a given
number of function evaluations than would be obtained by using evenly spaced base
points. Results from orthogonal function theory lead to the following conclusions. If
the base points are located at the zeros of the Legendre polynomials (all these zeros
are between −1 and 1) and the weight factors are computed as certain functions of
the base points, then the formula

∫ 1

−1

f(x)dx =
n∑

ı=1

Wıf(xı)

is exact for a polynomial integrand of degree 2n − 1. Although the theory proving
this property is not elementary, the Þnal results are quite simple. The base points
and weight factors for a particular order can be computed once and used repeatedly.
Formulas that use the Legendre polynomial roots as base points are called Gauss
quadrature formulas. In a typical application, Gauss integration gives much more
accurate results than Simpson�s rule for an equivalent number of function evalua-
tions. Since it is equally easy to use, the Gauss formula is preferable to Simpson�s
rule.

MATLAB also has three functions quad and quad8 and quadl to numerically
integrate by adaptive methods. These functions repeatedly modify approximations
for an integral until the estimated error becomes smaller than a speciÞed tolerance.
In the current text, the function quadl is preferable over the other two functions,
and quadl is always used when an adaptive quadrature function is needed. Readers
should study carefully the system documentation for quadl to understand the various
combinations of call list parameters allowed.

5.2 Concepts of Gauss Integration

This section summarizes properties of Gauss integration which, for the same num-
ber of function evaluations, are typically much more accurate than comparable Newton-
Cotes formulas. It can be shown for Gauss integration [20] that

∫ 1

−1

f(x) dx =
n∑

=1

wf(x) + E(f)
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Figure 5.1: Error CoefÞcient versus Number of Points for Gauss Integration

where the integration error term is

E =
22n−1(n!)4

(2n+ 1)[(2n)!]3
f (2n)(ξ) , −1 < ξ < 1.

The base points in the Gauss formula of order n are the roots of the Legendre poly-
nomial of order n and the weight factors are expressible concisely in terms of the
base points. The quadrature error term for an n-point formula involves the integrand
derivative of order 2n, which implies a zero error for any polynomial of order 2n−1
or lower. The coefÞcient of the derivative term in E decreases very rapidly with
increasing n, as can be seen in Figure 5.1.

For example, n = 10 gives a coefÞcient of 2.03× 10−21. Thus, a function having
well behaved high order derivatives can be integrated accurately with a formula of
fairly low order. The base points x are all distinct, lie between −1 and 1, and are
the eigenvalues of a symmetric tridiagonal matrix [26] which can be analyzed very
rapidly with the function eigen. Furthermore, the weight factors are simply twice
the squares of the Þrst components of the orthonormalized eigenvectors. Because
eigen returns orthonormalized eigenvectors for symmetric matrices, only lines 58-60
in function gcquad given below are needed to compute the base points and weight
factors.
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Function for Composite Gauss Integration

1: function [val,bp,wf]=gcquad(func,xlow,...
2: xhigh,nquad,mparts,varargin)
3: %
4: % [val,bp,wf]=gcquad(func,xlow,...
5: % xhigh,nquad,mparts,varargin)
6:

7: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8: %
9: % This function integrates a general function using

10: % a composite Gauss formula of arbitrary order. The
11: % integral value is returned along with base points
12: % and weight factors obtained by an eigenvalue based
13: % method. The integration interval is divided into
14: % mparts subintervals of equal length and integration
15: % over each part is performed with a Gauss formula
16: % making nquad function evaluations. Results are
17: % exact for polynomials of degree up to 2*nquad-1.
18: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19: % func - name of a function to be integrated
20: % having an argument list of the form
21: % func(x,p1,p2,...) where any auxiliary
22: % parameters p1,p2,.. are passed through
23: % variable varargin. Use [ ] for the
24: % function name if only the base points
25: % and weight factors are needed.
26: % xlow,xhigh - integration limits
27: % nquad - order of Gauss formula chosen
28: % mparts - number of subintervals selected in
29: % the composite integration
30: % varargin - variable length parameter used to
31: % pass additional arguments needed in
32: % the integrand func
33: % val - numerical value of the integral
34: % bp,wf - vectors containing base points and
35: % weight factors in the composite
36: % integral formula
37: %
38: % A typical calculation such as:
39: % Fun=inline(’(sin(w*t).^2).*exp(c*t)’,’t’,’w’,’c’);
40: % A=0; B=12; nquad=21; mparts=10; w=10; c=8;
41: % [value,pcterr]=integrate(Fun,A,B,nquad,mparts,w,c);
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42: % gives value = 1.935685556078172e+040 which is
43: % accurate within an error of 1.9e-13 percent.
44: %
45: % User m functions called: the function name passed
46: % in the argument list
47:

48: %----------------------------------------------
49:

50: if isempty(nquad), nquad=10; end
51: if isempty(mparts), mparts=1; end
52:

53: % Compute base points and weight factors
54: % for the single interval [-1,1]. (Ref:
55: % ’Methods of Numerical Integration’ by
56: % P. Davis and P. Rabinowitz, page 93)
57:

58: u=(1:nquad-1)./sqrt((2*(1:nquad-1)).^2-1);
59: [vc,bp]=eig(diag(u,-1)+diag(u,1));
60: [bp,k]=sort(diag(bp)); wf=2*vc(1,k)’.^2;
61:

62: % Modify the base points and weight factors
63: % to apply for a composite interval
64: d=(xhigh-xlow)/mparts; d1=d/2;
65: dbp=d1*bp(:); dwf=d1*wf(:); dr=d*(1:mparts);
66: cbp=dbp(:,ones(1,mparts))+ ...
67: dr(ones(nquad,1),:)+(xlow-d1);
68: cwf=dwf(:,ones(1,mparts)); wf=cwf(:); bp=cbp(:);
69:

70: % Compute the integral
71: if isempty(func)
72: val=[];
73: else
74: f=feval(func,bp,varargin{:}); val=wf’*f(:);
75: end

5.3 Comparing Results from Gauss Integration and
Function QUADL

A program was written to compare the performance of the Gauss quadrature func-
tion gcquad and the numerical integrator quadl provided in MATLAB. Quadl is a
robust adaptive integration routine which efÞciently handles most integrands. It can
even deal with special integrals having singularities, like log(x) or 1/ sqrt(x) at the
origin. Integrating these functions from zero to one yields correct answers although
messages occur warning about integrand singularities at the origin. No capabilities
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are provided in quadl to directly handle vector integrands (except one component at a
time), and no options are provided to suppress unwanted warning or error messages.
In the timing program given below, warning messages from quadl were temporarily
turned off for the tests.

Often there are examples involving vector-valued integrands that are to be inte-
grated many times over Þxed integration limits. A typical case is evaluation of coef-
Þcients in Fourier-Bessel series expansions. Then, computing a set of base points and
weight factors once and using these coefÞcients repeatedly is helpful. To illustrate
this kind of situation, let us numerically integrate the vector valued function

f(x) = [
√
x ; log(x) ; humps(x); exp(10x) cos(10πx) ; cos(20πx− 20 sin(πx))]

from x = 0 to x = 1. Several components of this function are hard to integrate
numerically because

√
x has inÞnite slope at x = 0, log(x) is singular at x = 0,

the fourth component is highly oscillatory with large magnitude variations, and the
last component is highly oscillatory (integrating the last component gives the value
of the integer order Bessel function J20(20)).

The following function quadtest uses functions quadl and gcquad to integrate
f(x) from x = 0 to x = 1. The Gauss integration employs a formula of order
100 with one subinterval, so integrands are effectively approximated by polynomials
of order 199. To achieve accurate timing, it was necessary to evaluate the integrals
repeatedly until a chosen number of seconds elapsed. Then average times were com-
puted. The program output shows that gcquad was more accurate than quadl for all
cases except for log(x) involving a singular integrand. Computations times shown
for each component of f(x) are the same when gcquad was used because the inte-
gration was done for all components at once, and then results were divided by Þve.
The total time used by quadl was about 3.5 times as large as the time for qcquad.
We are not arguing that these results show gcquad is superior to quadl. However, it
does imply that Gauss integration can be attractive in some instances. The geometry
problems in the remainder of this chapter include boundary curves deÞned by cu-
bic splines. Then, using Gauss integration of sufÞciently high order produces exact
results for the desired geometrical properties.

Output from Program quadtest

>> quadtest(10);
PRESS RETURN TO BEGIN COMPUTATION > ?

INTEGRATION TEST COMPARING FUNCTIONS QUADL AND GCQUAD
The functions being integrated are:
sqrt(x)
log(x)
humps(x)
exp(10*x).*cos(10*pi*x)
cos(20*pi*x-20*sin(pi*x))
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Results Using Function quadl
Integral Function Percent Computation
values evaluations error seconds

6.6667e-001 7.8000e+001 -1.9813e-004 6.9720e-003
-1.0000e+000 2.2900e+002 2.6064e-005 2.1071e-002
2.9858e+001 1.9800e+002 6.2164e-010 2.1162e-002
2.0263e+002 7.0800e+002 2.4425e-013 6.8660e-002
1.6475e-001 5.2800e+002 -1.0627e-008 5.1370e-002

Results Using Function gcquad
Integral Function Percent Computation
values evaluations error seconds

6.6667e-001 1.0000e+002 1.5215e-005 9.5628e-003
-9.9994e-001 1.0000e+002 -6.2513e-003 9.5628e-003
2.9858e+001 1.0000e+002 8.8818e-014 9.5628e-003
2.0263e+002 1.0000e+002 -4.1078e-013 9.5628e-003
1.6475e-001 1.0000e+002 -1.5543e-013 9.5628e-003

(Total time using quadl)/(Total time using gcquad)
equals 3.5395

>>

Program Comparing Numerical Integration Methods

1: function [L,G,names]=quadtest(secs)
2: %
3: % [L,G,names]=quadtest(secs)
4: % ~~~~~~~~~~~~~~~~~~~~~~
5: % This program compares the accuracy and
6: % computation times for several integrals
7: % evaluated using quadl and gcquad
8: %
9: % secs - the number of seconds each integration

10: % is repeated to get accurate timing. The
11: % default value is 60 seconds.
12: % L,G - matrices with columns containing
13: % results from quadl and from gcquad.
14: % The matrices are structured as:
15: % [IntegralValue,PercentError,...
16: % FunctionEvaluations,ComputationSeconds]
17: % names - character matrix with rows
18: % describing the functions
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19: % which were integrated
20: %
21: % User functions called: ftest, gcquad
22: %---------------------------------------------
23:

24: global nvals
25:

26: if nargin==0, secs=60; end
27:

28: fprintf(’\nPRESS RETURN TO BEGIN COMPUTATION > ’)
29: pause
30:

31: % Summary of the five integrands used
32: names=strvcat(’sqrt(x)’,’log(x)’,’humps(x)’,...
33: ’exp(10*x).*cos(10*pi*x)’,...
34: ’cos(20*pi*x-20*sin(pi*x))’);
35: fprintf([’\n\nINTEGRATION TEST COMPARING’,...
36: ’ FUNCTIONS QUADL AND GCQUAD\n’])
37: fprintf(’\nThe functions being integrated are:\n’)
38: disp(names)
39:

40: % Compute exact values of integrals
41: exact=[2/3; -1; quadl(@humps,0,1,1e-12);
42: real((exp(10+10*pi*i)-1)/(10+10*pi*i));
43: besselj(20,20)];
44:

45: % Find time to make a loop and call the clock
46: nmax=5000; nclock=0; t0=clock;
47: while nclock<nmax
48: nclock=nclock+1; tclock=etime(clock,t0);
49: end
50: tclock=tclock/nclock;
51:

52: % Evaluate each integral individually. Repeat
53: % the integrations for secs seconds to get
54: % accurate timing. Save results in array L.
55: L=zeros(5,4); tol=1e-6; e=exact; warning off;
56: for k=1:5
57: nquad=0; tim=0; t0=clock;
58: while tim<secs
59: [v,nfuns]=quadl(@ftest,0,1,tol,[],k);
60: nquad=nquad+1; tim=etime(clock,t0);
61: end
62: tim=tim/nquad-tclock; pe=100*(v/e(k)-1);
63: L(k,:)=[v,nfuns,pe,tim];
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64: end
65: warning on;
66:

67: % Obtain time to compute base points and weight
68: % factors for a Gauss formula of order 100
69: nloop=100; t0=clock;
70: for j=1:nloop
71: [dumy,bp,wf]=gcquad([],0,1,100,1);
72: end
73: tbpwf=etime(clock,t0)/nloop;
74:

75: % Perform the Gauss integration using a
76: % vector integrand. Save results in array G
77:

78: ngquad=0; tim=0; t0=clock;
79: while tim<secs
80: v=ftest(bp,6)*wf;
81: ngquad=ngquad+1; tim=etime(clock,t0);
82: end
83: tim=tim/ngquad+tbpwf-tclock; pe=100*(v./e-1);
84: G=[v,100*ones(5,1),pe,tim/5*ones(5,1)];
85:

86: format short e
87: disp(’ ’)
88: disp(’ Results Using Function quadl’)
89: disp(...
90: ’ Integral Function Percent Computation’)
91: disp(...
92: ’ values evaluations error seconds’)
93: disp(L)
94: disp(’ Results Using Function gcquad’)
95: disp(...
96: ’ Integral Function Percent Computation’)
97: disp(...
98: ’ values evaluations error seconds’)
99: disp(G)

100: format short
101: disp([’(Total time using quadl)/’,...
102: ’(Total time using gcquad)’])
103: disp([’equals ’,...
104: num2str(sum(L(:,end))/sum(G(:,end)))])
105: disp(’ ’)
106:

107: %=============================================
108:
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109: function y=ftest(x,n)
110: % Integrands used by function quadl
111: global nvals
112: switch n
113: case 1, y=sqrt(x); case 2, y=log(x);
114: case 3, y=humps(x);
115: case 4, y=exp(10*x).*cos(10*pi*x);
116: case 5, y=cos(20*pi*x-20*sin(pi*x));
117: otherwise
118: x=x(:)’; y=[sqrt(x);log(x);humps(x);
119: exp(10*x).*cos(10*pi*x);
120: cos(20*pi*x-20*sin(pi*x))];
121: end
122: if n<6, nvals=nvals+length(x);
123: else, nvals=nvals+5*length(x); end
124:

125: %=============================================
126:

127: % function [val,bp,wf]=gcquad(func,xlow,...
128: % xhigh,nquad,mparts,varargin)
129: % See Appendix B

5.4 Geometrical Properties of Areas and Volumes

Geometrical properties of areas and volumes are often needed in physical applica-
tions such as linear stress analysis and rigid body dynamics. For example, consider a
prismatic structural member having a general cross-section area denoted by A with
a boundary curve L. Analyzing the stresses occurring when the member undergoes
axial compression and bi-axial bending leads to integrals of the form

Cnm =
∫∫
A

xnymdxdy

for integers n and m. The six most important cases and the related property names
are:

n m Symbol Geometrical Parameter
0 0 a Area
1 0 ax First moment of area about the y-axis
0 1 ay First moment of area about the x-axis
2 0 axx Moment of inertia about the y-axis
1 1 axy Product of inertia with respect to the xy axes
0 2 ayy Moment of inertia about the x-axis

The integral Cnm can be evaluated for very general shapes by converting the area
integral to a line integral over the boundary. Then, approximating the boundary curve
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parametrically (by spline interpolation, for example) and using numerical integration
yield the desired values. Green�s theorem [119] relates area integrals and line inte-
grals according to

∫∫
A

[
∂U

∂x
+
∂V

∂y

]
dxdy =

∮
L

Udy − V dx

where U(x, y) and V (x, y) are single-valued and differentiable functions inside and
on L. This implies that

∫∫
A

xnymdxdy =
1

n+m+ 2

∫∫
A

[
∂

∂x
(xn+1ym) +

∂

∂y
(xnym+1)

]
dxdy

=
1

n+m+ 2

∮
L

xnym(xdy − ydx),

provided n+m+ 2 
= 0. We can even have negative n provided x = 0 is outside L,
and negative m provided y = 0 is outside L. The case (n,m) = (0,−1) occurring
in curved beam theory can also be treated by line integration, but we will conÞne
attention to the six cases listed above.

If the boundary curve, L, is parameterized as x(t), y(t), a ≤ t ≤ b, then

∮
L

xnym(xdy − y dx) =

b∫
a

x(t)ny(t)m[x(t)y′(t) − y(t)x′(t)] dt

which is a one-dimensional integral amenable to numerical integration. When cubic
spline interpolation is used to represent the boundary, then x(t)y ′(t)− y(t)x′(t) is a
piecewise polynomial function of degree four (not degree Þve as seems apparent at
Þrst glance). Since a Gaussian quadrature formula of orderN integrates exactly any
polynomial of degree 2N−1 or less, the integral of interest can be integrated exactly
by taking 2N − 1 ≥ 3n+ 3m+ 4. For our case, using a composite Gauss formula
of order six is appropriate. A program is given below to compute properties for a
general geometry that can have several separate parts, and these parts may contain
holes. The details of that program are discussed later.

The ideas for plane regions can be extended to three dimensions where volume,
gravity center location, and inertia tensor are the quantities being computed. Let

R = [x ; y ; z]

be the Cartesian radius vector for points in a three-dimensional regionW covered by
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a surface S. The Gauss divergence theorem [119] implies

V =
∫∫∫

W

dx dy dz =
1
3

∫∫
S

R · η̂ dS,

Vr =
∫∫∫

W

R dx dy dz =
1
4

∫∫
S

R(R · η̂) dS

Vrr =
∫∫∫

W

R R′dx dy dz =
1
5

∫∫
S

RR′(R · η̂) dS.

In the last equation, R R′ is the matrix product [x ; y ; z] ∗ [x , y , z] and η̂ is the
outward directed unit surface normal. We refer to V, V r, and Vrr as the volume,
the Þrst moment of volume, and the second moment of volume. These quantities
can be evaluated exactly for some special cases, such as polyhedra, and volumes of
revolution.

The quantity Vrr is useful in rigid body dynamics where the inertia tensor, I rr , is
needed to compute the rotational kinetic energy. The inertia tensor for a body having
unit mass density can be computed from Vrr as

Irr = eye(3, 3) sum(diag(Vrr)) − Vrr.

The corresponding inverse is

Vrr =
eye(3, 3)

2
sum(diag(Irr)) − Irr.

To illustrate the computation of volume properties, consider the instance where the
surface has a parametric equation of the form

R(u, v), u1 ≤ u ≤ u2, v1 ≤ v ≤ v2.

For example, the ellipsoid deÞned by(x
a

)2

+
(y
b

)2

+
(z
c

)2

≤ 1

has a surface equation

R = [a sin(u) cos(v); b sin(u) sin(v); c cos(v)], 0 ≤ u ≤ π, 0 ≤ v ≤ 2π.

The unit surface normal and the differential of surface area can be computed as

η̂ dS =
∂R

∂u
× ∂R

∂v
dudv

where the order of the cross product is chosen so that the outward directed normal is
produced. Then,

(R · η̂) dS = det([R , Ru, Rv]) = D(u, v) du dv
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Figure 5.2: Generation of a Volume of Revolution

and the integrals of interest become

V =
1
3

v2∫
v1

u2∫
u1

D(u, v)dudv,

Vr =
1
4

v2∫
v1

u2∫
u1

RD(u, v)dudv,

Vrr =
1
5

v2∫
v1

u2∫
u1

RR′ D(u, v)dudv.

Note that the function D(u, v) vanishes at points where the radius vector R is per-
pendicular to the surface normal. A useful instance of the parametric form occurs
when a closed curve is rotated to form a volume of revolution as illustrated in Fig-
ure 5.2.

Consider a curve deÞned parametrically in the (x, z) plane as x(t), z(t), a ≤ t ≤
b. If the curve is rotated about the z axis through angular limits θ 1 ≤ θ ≤ θ2, the
lateral surface of the body has a surface equation

R(t, θ) = [cos(θ); sin(θ); 1]. ∗ [x ; x ; z]
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and the volume property integrals reduce to

V =
1
3

∮
L

x[xdz − zdx],

Vr =
1
4

θ1∫
θ1

[cos(θ); sin(θ); 1] dθ. ∗
∮
L

[x2; x2; xz] dxdz,

Vrr =
1
5

θ1∫
θ1

[cos(θ); sin(θ); 1] ∗ [ cos(θ), sin(θ), 1] dθ.

∗
∮
L

[x ; x ; z] ∗ [x, x, z]xdxdz.

The line integrals in the last three formulas have similar structure to those for plane
area properties, but the highest polynomial power in the integrands of the form x nzm

is one higher than that encountered for plane area properties. Taking a composite
Gauss formula of order seven produces exact results for the volume properties when
a spline interpolated boundary curve is used. A program employing these formulas
is developed below.

5.4.1 Area Property Program

A program was written to compute the area, the centroidal coordinates, the inertial
moments, and the product of inertia for general plane areas bounded by a series
of spline curve segments. Shapes such as polygons, having one or more straight
boundary segments, are also handled by allowing slope discontinuities at the ends of
the straight segments. The program requires data points xd(j), yd(j), 1 ≤ j ≤ nd
with the boundary traversed in a counterclockwise sense. The Þrst and last points
should be identical to make the curve closed. A set of point indices designating any
slope discontinuities ( such as those at the corners of a square) are also needed.

A typical geometry for the program appears in Figure 5.3. Program data created
by the function makcrcsq employs 27 data points. A multiply connected geometry
is treated as if it were a simply connected region by introducing Þctitious cuts con-
necting outer boundaries and inner holes. Disconnected parts are also joined with
zero width strips. Including the cuts and strips has no effect on the area properties
because related boundary segments are traversed twice, but in opposite directions.
Consequently, the corresponding line integral contributions from the Þctitious parts
cancel. The complete boundary is parameterized as a spline curve in complex form

z(t) = x(t) + i y(t), 1 ≤ t ≤ nd

with
z(j) = xd(j) + i yd(j), j = 1, 2, . . . , nd.
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Figure 5.3: Geometry Showing Numbered Boundary Points

The boundary curve and its derivatives are piecewise polynomial functions. Exact
results for the geometrical properties are obtained by using the function gcquad to
generate Gauss base points and weight factors for integration limits from 1 to nd,
and a number of integration segments equal to nd − 1. The various area properties
are accumulated in vector mode for computational efÞciency.

The function runaprop is the main driver for the program. It accepts boundary
data, calls the function aprop to compute area properties, prints results, and plots
the geometry. If no input data are given, the function makcrcsq is called to create
data for the illustrative example. The plot produced by the program resembles the
one shown, without inclusion of point indices.

© 2003 by CRC Press LLC



The numerical output for our example has the following simple form:

>> runaprop;

GEOMETRICAL PROPERTY ANALYSIS USING FUNCTION APROP

A XCG YCG AXX AXY AYY
16.7147 3.0000 4.1254 176.3369 206.8620 359.6076

>>

Program for Properties of Spline Bounded Areas

1: function [p,x,y,xd,yd]=areaprog(xd,yd,icrnr)
2: %
3: % [p,x,y,xd,yd]=areaprog(xd,yd,icrnr)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function calls function aprop which
6: % computes geometrical properties for an area
7: % bounded by a spline curve through data
8: % points in (xd,yd).
9: %

10: % User functions called: aprop
11:

12: if nargin==2,icrnr=[1,length(xd)]; end
13: titl=’AREA IN THE XY PLANE’;
14:

15: if nargin==0
16: [xd,yd,icrnr]=makcrcsq;
17: titl=...
18: ’HALF ANNULUS ABOVE A SQUARE WITH A HOLE’;
19: end
20:

21: disp(’ ’)
22: disp([’ GEOMETRICAL PROPERTY ANALYSIS’,...
23: ’ USING FUNCTION APROP’])
24: [p,z]=aprop(xd,yd,icrnr); x=real(z); y=imag(z);
25: disp(’ ’);
26: disp([’ A XCG YCG ’,...
27: ’ AXX AXY AYY’])
28: disp(p), close, plot(xd,yd,’ko’,x,y,’k-’)
29:

30: xlabel(’x axis’), ylabel(’y axis’)
31: title(titl),axis(cubrange([x(:),y(:)],1.2));
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32: axis square; shg
33:

34: %=========================================
35:

36: function [p,zplot]=aprop(xd,yd,kn)
37: %
38: % [p,zplot]=aprop(xd,yd,kn)
39: % ~~~~~~~~~~~~~~~~~~~~~~~~~
40: % This function determines geometrical properties
41: % of a general plane area bounded by a spline
42: % curve
43: %
44: % xd,yd - data points for spline interpolation
45: % with the boundary traversed in counter-
46: % clockwise direction. The first and last
47: % points must match for boundary closure.
48: % kn - vector of indices of points where the
49: % slope is discontinuous to handle corners
50: % like those needed for shapes such as a
51: % rectangle.
52: % p - the vector [a,xcg,ycg,axx,axy,ayy]
53: % containing the area, centroid coordinates,
54: % moment of inertia about the y-axis,
55: % product of inertia, and moment of inertia
56: % about the x-axis
57: % zplot - complex vector of boundary points for
58: % plotting the spline interpolated geometry.
59: % The points include the numerical quadrature
60: % points interspersed with data values.
61: %
62: % User functions called: gcquad, curve2d
63: if nargin==0
64: td=linspace(0,2*pi,13); kn=[1,13];
65: xd=cos(td)+1; yd=sin(td)+1;
66: end
67: nd=length(xd); nseg=nd-1;
68: [dum,bp,wf]=gcquad([],1,nd,6,nseg);
69: [z,zplot,zp]=curve2d(xd,yd,kn,bp);
70: w=[ones(size(z)), z, z.*conj(z), z.^2].*...
71: repmat(imag(conj(z).*zp),1,4);
72: v=(wf’*w)./[2,3,8,8]; vr=real(v); vi=imag(v);
73: p=[vr(1:2),vi(2),vr(3)+vr(4),vi(4),vr(3)-vr(4)];
74: p(2)=p(2)/p(1); p(3)=p(3)/p(1);
75:

76: %=========================================
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77:

78: function [z,zplot,zp]=curve2d(xd,yd,kn,t)
79: %
80: % [z,zplot,zp]=curve2d(xd,yd,kn,t)
81: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
82: % This function generates a spline curve through
83: % given data points with corners(slope dis-
84: % continuities) allowed as selected points.
85: % xd,yd - real data vectors of length nd
86: % defining the curve traversed in
87: % counterclockwise order.
88: % kn - vectors of point indices, between one
89: % and nd, where slope discontinuities
90: % occur
91: % t - a vector of parameter values at which
92: % points on the spline curve are
93: % computed. The components of t normally
94: % range from one to nd, except when t is
95: % a negative integer,-m. Then t is
96: % replaced by a vector of equally spaced
97: % values using m steps between each
98: % successive pair of points.
99: % z - vector of points on the spline curve

100: % corresponding to the vector t
101: % zplot - a complex vector of points suitable
102: % for plotting the geometry
103: % zp - first derivative of z with respect to
104: % t for the same values of t as is used
105: % to compute z
106: %
107: % User m functions called: splined
108: %----------------------------------------------
109:

110: nd=length(xd); zd=xd(:)+i*yd(:); td=(1:nd)’;
111: if isempty(kn), kn=[1;nd]; end
112: kn=sort(kn(:)); if kn(1)~=1, kn=[1;kn]; end
113: if kn(end)~=nd, kn=[kn;nd]; end
114: N=length(kn)-1; m=round(abs(t(1)));
115: if -t(1)==m, t=linspace(1,nd,1+N*m)’; end
116: z=[]; zp=[]; zplot=[];
117: for j=1:N
118: k1=kn(j); k2=kn(j+1); K=k1:k2;
119: k=find(k1<=t & t<k2);
120: if j==N, k=find(k1<=t & t<=k2); end
121: if ~isempty(k)
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122: zk=spline(K,zd(K),t(k)); z=[z;zk];
123: zplot=[zplot;zd(k1);zk];
124: if nargout==3
125: zp=[zp;splined(K,zd(K),t(k))];
126: end
127: end
128: end
129: zplot=[zplot;zd(end)];
130:

131: %=========================================
132:

133: function [x,y,icrnr]=makcrcsq
134: %
135: % [x,y,icrnr]=makcrcsq
136: % ~~~~~~~~~~~~~~~~~~~~
137: % This function creates data for a geometry
138: % involving half of an annulus placed above a
139: % square containing a square hole.
140: %
141: % x,y - data points characterizing the data
142: % icrnr - index vector defining corner points
143: %
144: % User m functions called: none
145: %----------------------------------------------
146:

147: xshift=3.0; yshift=3.0;
148: a=2; b=1; narc=7; x0=0; y0=2*a-b;
149: xy=[a,-a,-b, b, b,-b,-b,-a,-a, a, a;
150: a, a, b, b,-b,-b, b, a,-a,-a, a]’;
151: theta=linspace(0,pi,narc)’;
152: c=cos(theta); s=sin(theta);
153: xy=[xy;[x0+a*c,y0+a*s]];
154: c=flipud(c); s=flipud(s);
155: xy=[xy;[x0+b*c,y0+b*s];[a,y0];[a,a]];
156: x=xy(:,1)+xshift; y=xy(:,2)+yshift;
157: icrnr=[(1:12)’;11+narc;12+narc; ...
158: 11+2*narc;12+2*narc;13+2*narc];
159:

160: %=========================================
161:

162: % function [val,bp,wf]=gcquad(func,xlow,...
163: % xhigh,nquad,mparts,varargin)
164: % See Appendix B
165:

166: %=========================================
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167:

168: % function range=cubrange(xyz,ovrsiz)
169: % See Appendix B
170:

171: %=========================================
172:

173: % function val=splined(xd,yd,x,if2)
174: % See Appendix B

5.4.2 Program Analyzing Volumes of Revolution

Since the geometrical property computation for a volume of revolution is quite
similar to that for area properties, the same functions gcquad and curve2d used in
the area program are employed below to compute the volume, centroidal coordinates,
and inertia tensor of a solid generated by rotating a spline curve through arbitrary an-
gular limits about the z axis. In the following program, the function volrevol calls
a general purpose function volrev which computes the geometrical properties and
plots the related volume of revolution. The function volrev depends on gcquad,
curve2d, function rotasurf to plot the body surface, and function anglefun which
deals with rotation angle dependence. The function returns volume properties and
surface coordinates on the solid. Area properties of the cross section are also ob-
tained.

The geometry in Figure 5.4 was analyzed. The area, rotated through 270 degrees,
consists of the bottom half of a semicircle capped on the outer radius by a square
which is also capped by a smaller semicircle. Results from volrev were conÞrmed to
agree closely with another function srfv, which is discussed in the next section. Be-
cause the function srfv employs triangular surface elements, the two computational
models are not identical. This accounts for the slight difference in numerical results.

In conclusion, the volume property program to handle volumes of revolution for
spline interpolated cross sections was found to be a useful extension of the methods
developed earlier for properties of areas.

Computer Output from Volume of Revolution Program

>> volrevol
PROPERTIES OF A VOLUME OF REVOLUTION
Results Using Function VOLREV
Volume = 59.1476
Rg = [0.91028 0.91028 0.13755]
Inertia Tensor =
1.0e+003 *
0.5773 0.1168 -0.0090
0.1168 0.5773 -0.0090
-0.0090 -0.0090 1.1010
Area Properties
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area xcentr zcentr.
2.9638 4.2350 0.1045
axx axz azz
53.8408 1.7264 1.3101
Results Using Function SRFV
Volume = 59.1056
Rg = [0.91016 0.91016 0.13749]
Inertia Tensor =
1.0e+003 *
0.5768 0.1167 -0.0090
0.1167 0.5768 -0.0090
-0.0090 -0.0090 1.0999
>>
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Figure 5.4: Partial Volume of Revolution

Program for Properties of a Volume of Revolution

1: function volrevol
2: %
3: % volrevol
4: % ~~~~~~~~
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5: % This program determines geometrical properties
6: % for a solid generated by rotating a closed spline
7: % curve through an arbitrary angle about the z-axis.
8: % A detailed description of the geometry is given in
9: % function volrev.

10: %
11: % User m functions called: volrev srfv
12: %----------------------------------------------
13: %
14: % Data for a cross section consisting of the lower
15: % half of a circle plus a square capped by the
16: % upper half of a smaller semicircle. The geometry
17: % is rotated through 270 degrees about the z-axis.
18:

19: n1=9; t1=-pi:pi/n1:0; n2=6; t2=0:pi/n2:pi;
20: Zd=[0,exp(i*t1),1/2+i+exp(i*t2)/2,0];
21: xd=real(Zd)+4; zd=imag(Zd);
22: th=[-pi/2,pi]; nth=31;
23: kn=[1,2,n1+2,n1+3,n1+n2+3,n1+n2+4];
24:

25:

26: % Compute the geometrical properties
27: [v,rg,Irr,x,y,z,aprop]=volrev(...
28: xd,zd,kn,th,nth);
29: disp(’ ’)
30: disp(’PROPERTIES OF A VOLUME OF REVOLUTION’)
31: disp(’ ’)
32: disp(’Results Using Function VOLREV’)
33: disp([’Volume = ’,num2str(v)]), %disp(’ ’)
34: disp([’Rg = [’,num2str(rg(:)’),’]’]), %disp(’ ’)
35: disp(’Inertia Tensor =’), disp(Irr), %disp(’ ’)
36: disp(’Area Properties’), %disp(’ ’)
37: disp(’ area xcentr zcentr.’)
38: disp(aprop(1:3))
39: disp(’ axx axz azz’)
40: disp(aprop(4:6))
41:

42: % Run a second case to generate a dense set of
43: % surface coordinates to check results using
44: % function srfv.
45:

46: N1=61; T1=-pi:pi/N1:0; N2=41; T2=0:pi/N2:pi;
47: Zd=[0,exp(i*T1),1/2+i+exp(i*T2)/2,0];
48: xxd=real(Zd)+4; zzd=imag(Zd);
49: th=[-pi/2,pi]; Nth=121;
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50: Kn=[1,2,N1+2,N1+3,N1+N2+3,N1+N2+4];
51:

52: [V,Rg,IRR,X,Y,Z]=volrev(...
53: xxd,zzd,Kn,th,Nth,1);
54: [vt,rct,vrrt]=srfv(X,Y,Z);
55: disp(’Results Using Function SRFV’)
56: disp([’Volume = ’,num2str(vt)])
57: disp([’Rg = [’,num2str(rct(:)’),’]’])
58: disp(’Inertia Tensor =’), disp(vrrt)
59:

60: %=========================================
61:

62: function [v,rg,Irr,X,Y,Z,aprop,xd,zd,kn]=...
63: volrev(xd,zd,kn,th,nth,noplot)
64: %
65: % [v,rg,Irr,X,Y,Z,aprop,xd,zd,kn]=...
66: % volrev(xd,zd,kn,th,nth,noplot)
67: %~~~~~~~~~~~~~~~~~~~~~~~~~
68:

69: % This function computes geometrical properties
70: % for a volume of revolution resulting when a
71: % closed curve in the (x,z) plane is rotated,
72: % through given angular limits, about the z axis.
73: % The cross section of the volume is defined by
74: % a spline curve passed through data points
75: % (xd,zd) in the same manner as was done in
76: % function areaprop for plane areas.
77:

78: % xd,zd - data vectors defining the spline
79: % interpolated boundary, which is
80: % traversed in a counterclockwise
81: % direction
82: % kn - indices of any points where slope
83: % discontinuity is allowed to turn
84: % sharp corners
85: % p - vector of volume properties containing
86: % [v, xcg, ycg, zcg, vxx, vyy, vzz,...
87: % vxy, vyz, vzx] where v is the volume,
88: % (xcg,ycg,zcg) are coordinates of the
89: % centroid, and the remaining properties
90: % are volume integrals of the following
91: % integrand:
92: % [x.^, y.^2, z.^2, xy, yz, zx]*dxdyxz
93: % X,Y,Z - data arrays containing points on the
94: % surface of revolution. Plotting these
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95: % points shows the solid volume with
96: % the ends left open. Function fill3
97: % is used to plot the surface with ends
98: % closed
99: % aprop - a vector containing properties of the

100: % area in the (x,z) plane which was used
101: % to generate the volume. aprop=[area,...
102: % xcentroidal, ycentroidal, axx, axz, azz].
103:

104: % User m functions called: rotasurf, gcquad,
105: % curve2d, anglefun, splined
106: %----------------------------------------------
107: if nargin==0
108: t1=-pi:pi/6:0; t2=0:pi/6:pi;
109: Zd=[0,exp(i*t1),1/2+i+exp(i*t2)/2,0,-1];
110: xd=real(Zd)+4; zd=imag(Zd);
111: kn=[1,2,8,9,15,16];
112: th=[-pi/2,pi]; nth=31;
113: end
114:

115: % Plot a surface of revolution based on the
116: % input data points
117: if nargin==6
118: [X,Y,Z]=rotasurf(xd,zd,th,nth,1);
119: else
120: [X,Y,Z]=rotasurf(xd,zd,th,nth); pause
121: end
122:

123: % Obtain base points and weight factors for the
124: % composite Gauss formula of order seven used in
125: % the numerical integration
126: nd=length(xd); nseg=nd-1;
127: [dum,bp,wf]=gcquad([],1,nd,7,nseg);
128:

129: % Evaluate complex points and derivative values
130: % on the spline curve which is rotated to form
131: % the volume of revolution
132: [u,uplot,up]=curve2d(xd,zd,kn,bp);
133: % plot(real(uplot),imag(uplot)), axis equal,shg
134: u=u(:); up=up(:); n=length(bp);
135: x=real(u); dx=real(up); z=imag(u);
136: dz=imag(up); da=x.*dz-z.*dx;
137:

138: % Evaluate line integrals for area properties
139: p=[ones(n,1), x, z, x.^2, x.*z, z.^2, x.^3,...
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140: (x.^2).*z, x.*(z.^2)].*repmat(da,1,9);
141: p=(wf(:)’*p)./[2 3 3 4 4 4 5 5 5];
142:

143: % Scale area properties by multipliers involving
144: % the rotation angle for the volume
145: f=anglefun(th(2))-anglefun(th(1));
146: v=f(1)*p(2); rg=f([2 3 1]).*p([4 4 5])/v;
147: vrr=[f([4 5 2]); f([5 6 3]); f([2 3 1])].*...
148: [p([7 7 8]); p([7 7 8]); p([8 8 9])];
149: Irr=eye(3)*sum(diag(vrr))-vrr;
150: aprop=[p(1),p(2:3)/p(1),p(4:6)];
151:

152: %=========================================
153:

154: function f=anglefun(t)
155: % f=anglefun computes multipliers involving
156: % t, the rotation angle of the volume.
157: c=cos(t); s=sin(t);
158: f=[t,s,-c,(t+c*s)/2,s*s/2,(t-c*s)/2];
159:

160: %=========================================
161:

162: function [x,y,z,xd,zd]=rotasurf(xd,zd,th,nth,noplot)
163: % [x,y,z,xd,zd]=rotasurf(xd,zd,th,nth,noplot)
164: % This function generates points on a surface of
165: % revolution generated by rotating an area in
166: % the (x,z) plane about the z-axis
167: %
168: % xd,yz - coordinate data for the curve in the
169: % (x,y) which forms the cross section
170: % th - [ThetaMin,ThetaMax] defining limits of
171: % rotation angle about the z-axis
172: % nth - number of theta values used to generate
173: % surface values
174: % noplot - option given any value if no plot is
175: % desired. Otherwise omit this value.
176: % x,y,z - arrays of points on the surface
177: %
178: % User m functions called: none
179: %----------------------------------------------
180:

181: if nargin==0
182: n1=9; t1=-pi:pi/n1:0; n2=6; t2=0:pi/n2:pi;
183: Zd=[0,exp(i*t1),1/2+i+exp(i*t2)/2,0];
184: xd=real(Zd)+4; zd=imag(Zd);
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185: th=[-pi/2,pi]; nth=31;
186: end
187: xd=xd(:); zd=zd(:); nd=length(xd);
188: t=linspace(th(1),th(2),nth);
189: x=xd*cos(t); y=xd*sin(t); z=repmat(zd,1,nth);
190: if nargin==5, return; end
191: close; surf(x,y,z), title(’VOLUME OF REVOLUTION’)
192: xlabel(’x axis’), ylabel(’y axis’)
193: zlabel(’z axis’), colormap([1 1 1]); hold on
194: fill3(x(:,1),y(:,1),z(:,1),’w’)
195: fill3(x(:,end),y(:,end),z(:,end),’w’)
196: axis equal, grid on, hold off, shg
197:

198: %=========================================
199:

200: % function [z,zplot,zp]=curve2d(xd,yd,kn,t)
201: % See Appendix B
202:

203: %=========================================
204:

205: % function [val,bp,wf]=gcquad(func,xlow,...
206: % xhigh,nquad,mparts,varargin)
207: % See Appendix B
208:

209: %=========================================
210:

211: % function range=cubrange(xyz,ovrsiz)
212: % See Appendix B
213:

214: %=========================================
215:

216: % function val=splined(xd,yd,x,if2)
217: % See Appendix B
218:

219: %=========================================
220:

221: % function [v,rc,vrr]=srfv(x,y,z)
222: % See Appendix B

5.5 Computing Solid Properties Using Triangular Surface
Elements and Using Symbolic Math

In this section a numerical method is developed to compute properties of a solid
covered by triangular surface elements. An example problem is analyzed by a nu-
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merical method and also by use of the symbolic math toolbox. Results of the two
analyses are compared.

Many familiar solid bodies such as an ellipsoid, a conical frustum, or a torus have
surfaces readily parameterized by equations of the form

R = R(u, v), U1 ≤ u ≤ U2, V1 ≤ v ≤ V2.

This is the type of equation implied when MATLAB function surf uses rectangular
X, Y, Z coordinate arrays to depict a curvilinear coordinate net covering a surface.
The surface is approximated by a series of quadrilateral surface patches. Geometri-
cal properties of the related solid can be computed approximately by dividing each
quadrilateral into two triangular patches, and accumulating the surface integral con-
tributions of the triangles. This approach is attractive because the surface integral
properties of triangles can be computed exactly, and all triangles can be processed
in parallel. Although the geometrical properties for a solid covered by triangular
patches can be computed exactly, the reader should realize that many surface ele-
ments may be required to achieve several digit accuracy for highly curved surfaces.

To Þx our ideas, consider the solid in Figure 5.5 which resembles a twisted rope.
This body has its outer surface (as distinguished from its ends) described by the
following set of equations:

x = x0 + ρ cos(p), y = y0 + ρ sin(p), z = z0 − ξ sin(mp) + η cos(mp),
ρ = a+ ξ cos(mp) + η sin(mp), 0 ≤ t ≤ 2π, 0 ≤ p ≤ 3π,
ξ = b cos(t) |cos(t)| , η = b sin(t) |cos(t)| .

The cross section of the solid is two circular disks touching tangentially. The solid is
swept out as the centroid of the area (where the circles touch) moves along a helical
path and twists simultaneously. The parameter choices used in our example are

a = 3, b = 1, m = 6, x0 = y0 = 0, z0 = 3π/2

which places the centroid of the solid on the y-axis and makes the ends of the rope lie
in the xz plane. Then the geometrical property contributions from both end surfaces
are zero because η̂ · R vanishes on the ends.

Let us next think about a solid with its surface composed of triangular patches.
For a generic patch with corners at Ri,Rj ,Rk , denote the surface area as ST and
the unit surface normal as η̂. Then

η̂ ST =
1
2
(Rj − Ri) × (Rk − Ri),

and the triangle centroid is at

RC =
1
3
(Ri + Rj + Rk).

If h is the normal distance from the origin to the plane containing the triangle, then
h = η̂ · Ri and ST = |η̂ ST |. The Þrst two volume properties are just

VT =
1
3

∫∫
ST

η̂ · R dS =
h

3
ST
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Figure 5.5: Solid Resembling a Twisted Rope
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and

(VR)T =
1
4

∫∫
ST

(η̂ · R)R dS =
h

4
ST RC .

The remaining inertial property integral is

(VRR)T =
1
5

∫∫
ST

(η̂·R)RR′ dS =
h

60
ST (Ri R′

i+Rj R′
j+Rk R′

k+9RC R′
C).

These formulas were used to develop the function srfv which computes geometrical
properties for a surface described by the same type of data arrays as those used by
the function surf. Each quadrilateral patch is divided into two triangles, and the
contributions of all triangles are accumulated in vectorized mode for computational
efÞciency.

The function ropesymu in the following program calls function twistrope to per-
form numerical computation, function twistprop to perform symbolic computation,
and function ropedraw to plot the geometry of the twisted rope. Twistrope calls the
function srfv which is a general routine to compute properties of solid bodies mod-
eled with triangular surface elements. The numerical example employs point arrays
of dimension 804 by 100 to obtain the numerical solution. Results for the numerical
and symbolic computations are shown next along with the computer code. Note that
the numerical and exact solutions agreed within 0.2 percent. The numerical solution
took about 1.3 secs compared with 314 seconds for the symbolic solution. Even
though the symbolic solution took 238 times as long to compute as the numerical so-
lution, the symbolic coding was simple and might be appealing in speciÞc situations
where the related integrals can be evaluated exactly.

5.6 Numerical and Symbolic Results for the Example

COMPARISON OF NUMERICAL AND SYMBOLIC
GEOMETRICAL PROPERTIES FOR A TWISTED ROPE

FOR THE TRIANGULAR SURFACE PATCH MODEL
Volume = 44.3239
Rg = [1.6932e-015 0.64979 3.0068e-015]
Irr =

548.6015 -0.0000 29.0040
-0.0000 548.6015 -0.0000
29.0040 -0.0000 423.7983

Computation Time = 1.3194 Secs.
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FOR THE SYMBOLIC MODEL
Volume = 44.4132
Rg = [0 0.64982 0]
Irr =

549.7423 0 29.0639
0 549.7423 0

29.0639 0 424.7014

Computation Time = 314.28 Secs.

NUMERICAL APPROXIMATION ERROR USING TRIANGULAR
SURFACE PATCHES. THE ERROR VALUES ARE DEFINED AS

NORM(APPROX.-EXACT)/NORM(EXACT)
Volume Error = 0.0020102
Centroidal Radius Error = 4.7287e-005
Inertia Tensor Error = 0.0020768

COMPARISON OF SOLUTION TIMES
(Symbolic Time)/(Numerical Time) = 238.1992

Program ropesymu

1: function [vn,rcn,irrn,vs,rcs,irrs,times,nt,np]=...
2: ropesymu(A,B,M,X0,Y0,Z0,nt,np)
3: %
4: % [vn,rcn,irrn,vs,rcs,irrs,times,nt,np]=ropesymu(...
5: % A,B,M,X0,Y0,Z0,nt,np)
6: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7: %
8: % This program computes geometrical properties of a
9: % twisted rope having a cross section which is two

10: % circles of diameter B touching tangentially. The
11: % tangency point is at distance A from the rotation
12: % axis z. As the area is rotated, it is also twisted
13: % in a helical fashion. For a complete revolution
14: % about the z axis, the area is twisted through m
15: % turns. The resulting surface resembles a rope
16: % composed of two strands. Two results are obtained
17: % 1) by a numerical method where the surface is
18: % modeled with triangular surface patches and
19: % 2) by symbolic math. See functions twistrope and
20: % twistprop for descriptions of the problem parameters.
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21: % Numerical results and computation times for the two
22: % methods are compared, and the related surface
23: % geometry is plotted
24: %
25: % User functions called: twistrope twistprop ropedraw
26: %----------------------------------------------------

27:

28: if nargin==0 % Default data case
29: A=3; B=1; m=6; np=201; nt=25;
30: X0=0; Y0=0; Z0=-3*pi/2; M=6;
31: end
32:

33: disp(’ ’)
34: disp(’ COMPARISON OF NUMERICAL AND SYMBOLIC’)
35: disp(’GEOMETRICAL PROPERTIES FOR A TWISTED ROPE’)
36:

37: % Run the first time to get a crude grid for plotting
38: [vn,rcn,irrn,x,y,z,c]=twistrope(A,B,M,X0,Y0,Z0,nt,np);
39:

40: % Numerical solution using a dense point grid to get
41: % close comparison with exact results. Calculations
42: % are run repeatedly for accurate timing.
43: Nt=4*nt; Np=4*np; n=50; tic;
44: for i=1:n
45: [vn,rcn,irrn]=twistrope(A,B,M,X0,Y0,Z0,Nt,Np);
46: end
47: timn=toc/n;
48:

49: % Perform the symbolic analysis. This takes a long
50: % time.
51: tic;
52: [v,rc,vrr,vs,rcs,irrs]=twistprop(A,B,M,X0,Y0,Z0);
53: tims=toc; times=[timn,tims];
54:

55: disp(’ ’)
56: disp(’FOR THE TRIANGULAR SURFACE PATCH MODEL’)
57: disp([’Volume = ’,num2str(vn)])
58: disp([’Rg = [’,num2str(rcn(:)’),’]’])
59: disp(’Irr = ’), disp(irrn)
60: disp([’Computation Time = ’,num2str(timn),’ Secs.’])
61:

62: % Print numerical comparisons of results
63: disp(’ ’)
64: disp(’FOR THE SYMBOLIC MODEL’)
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65: disp([’Volume = ’,num2str(vs)])
66: disp([’Rg = [’,num2str(rcs(:)’),’]’])
67: disp(’Irr = ’), disp(irrs)
68: disp([’Computation Time = ’,num2str(tims),’ Secs.’])
69:

70: disp(’ ’)
71: disp(’ NUMERICAL APPROXIMATION ERROR USING TRIANGULAR’)
72: disp(’SURFACE PATCHES. THE ERROR VALUES ARE DEFINED AS’)
73: disp(’ NORM(APPROX.-EXACT)/NORM(EXACT)’)
74: evol=abs(vn-vs)/vs; erad=norm(rcs(:)-rcn(:))/norm(rcs);
75: einert=norm(irrn-irrs)/norm(irrs);
76: disp([’Volume Error = ’,num2str(evol)])
77: disp([’Centroidal Radius Error = ’,num2str(erad)])
78: disp([’Inertia Tensor Error = ’,num2str(einert)])
79:

80: disp(’ ’)
81: disp(’COMPARISON OF SOLUTION TIMES’)
82: disp([’(Symbolic Time)/(Numerical Time) = ’,...
83: num2str(tims/timn)])
84: disp(’ ’)
85:

86: % Draw the surface using a crude grid to avoid
87: % crowded grid lines
88: ropedraw(A,B,np,nt,M,X0,Y0,Z0);
89:

90: %===========================================
91:

92: function [x,y,z,t]=ropedraw(a,b,np,nt,m,x0,y0,z0)
93: %
94: % [x,y,z,t]=ropedraw(a,b,np,mp,m,x0,y0,z0)
95: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96: % This function draws the twisted rope.
97: if nargin==0
98: a=3; b=1; np=200; nt=25; m=6;
99: x0=0; y0=0; z0=-3*pi/2;

100: end
101:

102: % Draw the surface
103: t=linspace(0,2*pi,nt); p=linspace(0,3*pi,np)’;
104: t=repmat(t,np,1); p=repmat(p,1,nt);
105: xi=b*cos(t).*abs(cos(t)); eta=b*sin(t).*abs(cos(t));
106: rho=a+xi.*cos(m*p)+eta.*sin(m*p);
107: x=rho.*cos(p)+x0; y=rho.*sin(p)+y0;
108: z=-xi.*sin(m*p)+eta.*cos(m*p)+p+z0;
109: close; surf(x,y,z,t), title(’TWISTED ROPE’)
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110: xlabel(’x axis’), ylabel(’y axis’), zlabel(’z axis’)
111: colormap(’prism(4)’), axis equal, hold on
112:

113: % Fill the ends
114: fill3(x(1,:),y(1,:),z(1,:),’w’)
115: fill3(x(end,:),y(end,:),z(end,:),’w’)
116: view([-40,10]), hold off, shg
117:

118: %===========================================
119:

120: function [v,rc,vrr,V,Rc,Irr]=twistprop(A,B,M,X0,Y0,Z0)
121: %
122: % [v,rc,vrr,V,Rc,Irr]=twistprop(A,B,M,X0,Y0,Z0)
123: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124: % This function computes geometrical properties of
125: % a twisted rope. Exact results are obtained using
126: % symbolic math to evaluate three surface integrals
127: % for the volume, centroidal radius, and inertia
128: % tensor. The symbolic calculations take about five
129: % minutes to run.
130: %
131: % A,B,N - parameters defining the twisted rope
132: % X0,Y0,Z0 - center coordinates for the centroid of
133: % the twisted rope
134: % v,rc - symbolic formulas for the volume and
135: % centroid radius
136: % vrr - symbolic formula for integral of
137: % r*r’*d(vol)
138: % V,Rc - numerical values for volume and
139: % centroid radius
140: % Irr - numerical value for the inertia tensor
141:

142: if nargin==0
143: A=6; B=1; M=6; X0=1; Y0=2; Z0=3;
144: end
145:

146: syms a b m t p xi eta rho x y z r rt rp real
147: syms x0 y0 z0 real
148: syms n dv dv1 v vr1 vr rg vrr1 vrr real
149: a=sym(A); b=sym(B); Pi=sym(’pi’);
150: x0=sym(X0); y0=sym(Y0); z0=sym(Z0);
151:

152: % Surface equation for the twisted rope
153: xi=b*cos(t)*abs(cos(t));
154: eta=b*sin(t)*abs(cos(t));
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155: rho=a+xi*cos(m*p)+eta*sin(m*p);
156: x=rho*cos(p)+x0; y=rho*sin(p)+y0;
157: z=-xi*sin(m*p)+eta*cos(m*p)+p+z0;
158: Pi=sym(’pi’);
159:

160: % Tangent vectors
161: r=[x;y;z]; rt=diff(r,t); rp=diff(r,p);
162:

163: % Integrate to get the volume
164: dv=det([r,rp,rt]); dv1=int(dv,t,0,2*Pi);
165: v=simple(int(dv1,p,0,3*Pi)/3);
166:

167: % First moment of volume
168: vr1=int(r*dv,t,0,2*Pi);
169: vr=simple(int(vr1,p,0,3*Pi)/4);
170:

171: % Radius to the centroid
172: rc=simple(vr/v);
173:

174: % Integral of r*r’*d(vol)
175: vrr1=int(r*r’*dv,t,0,2*Pi);
176: vrr=simple(int(vrr1,p,0,3*Pi)/5);
177:

178: % Obtain numerical values
179: V=double(subs(v,{a,b,m,x0,y0,z0},...
180: {A,B,M,X0,Y0,Z0}));
181: Rc=double(subs(rc,{a,b,m,x0,y0,z0},...
182: {A,B,M,X0,Y0,Z0}));
183: Irr=double(subs(vrr,{a,b,m,x0,y0,z0},...
184: {A,B,M,X0,Y0,Z0}));
185:

186: % Rigid body inertia tensor for a
187: % body of unit mass density
188: Irr=eye(3,3)*sum(diag(Irr))-Irr;
189:

190: %===========================================
191:

192: function [v,rc,vrr,x,y,z,t]=twistrope(...
193: a,b,m,x0,y0,z0,nt,np)
194: %
195: % [v,rc,vrr,x,y,z,t]=twistrope(...
196: % a,b,m,x0,y0,z0,nt,nm)
197: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
198: % Geometrical properties of a twisted rope.
199: % This example takes 1.3 seconds to run
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200: if nargin<8, np=321; end; if nargin<7, nt=161; end
201: if nargin==0
202: a=6; b=1; m=6; x0=1; y0=2; z0=3;
203: end
204: t=linspace(0,2*pi,nt); p=linspace(0,3*pi,np)’;
205: t=repmat(t,np,1); p=repmat(p,1,nt);
206:

207: % Surface equation for the twisted rope
208:

209: xi=b*cos(t).*abs(cos(t));
210: eta=b*sin(t).*abs(cos(t));
211: rho=a+xi.*cos(m*p)+eta.*sin(m*p);
212: x=rho.*cos(p)+x0; y=rho.*sin(p)+y0;
213: z=-xi.*sin(m*p)+eta.*cos(m*p)+p+z0;
214:

215: [v,rc,vrr]=srfv(x,y,z);
216:

217: %===========================================
218:

219: function [v,rc,vrr]=srfv(x,y,z)
220: %
221: % [v,rc,vrr]=srfv(x,y,z)
222: % ~~~~~~~~~~~~~~~~~~~~~~
223: %
224: % This function computes the volume, centroidal
225: % coordinates, and inertial tensor for a volume
226: % covered by surface coordinates contained in
227: % arrays x,y,z
228: %
229: % x,y,z - matrices containing the coordinates
230: % of a grid of points covering the
231: % surface of the solid
232: % v - volume of the solid
233: % rc - centroidal coordinate vector of the
234: % solid
235: % vrr - inertial tensor for the solid with the
236: % mass density taken as unity
237: %
238: % User functions called: scatripl proptet
239: %-----------------------------------------------
240:

241: % p=inline(...
242: % ’v*(eye(3)*(r(:)’’*r(:))-r(:)*r(:)’’)’,’v’,’r’);
243:

244: %d=mean([x(:),y(:),z(:)]);
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245: %x=x-d(1); y=y-d(2); z=z-d(3);
246:

247: [n,m]=size(x); i=1:n-1; I=i+1; j=1:m-1; J=j+1;
248: xij=x(i,j); yij=y(i,j); zij=z(i,j);
249: xIj=x(I,j); yIj=y(I,j); zIj=z(I,j);
250: xIJ=x(I,J); yIJ=y(I,J); zIJ=z(I,J);
251: xiJ=x(i,J); yiJ=y(i,J); ziJ=z(i,J);
252:

253: % Tetrahedron volumes
254: v1=scatripl(xij,yij,zij,xIj,yIj,zIj,xIJ,yIJ,zIJ);
255: v2=scatripl(xij,yij,zij,xIJ,yIJ,zIJ,xiJ,yiJ,ziJ);
256: v=sum(sum(v1+v2));
257:

258: % First moments of volume
259: X1=xij+xIj+xIJ; X2=xij+xIJ+xiJ;
260: Y1=yij+yIj+yIJ; Y2=yij+yIJ+yiJ;
261: Z1=zij+zIj+zIJ; Z2=zij+zIJ+ziJ;
262: vx=sum(sum(v1.*X1+v2.*X2));
263: vy=sum(sum(v1.*Y1+v2.*Y2));
264: vz=sum(sum(v1.*Z1+v2.*Z2));
265:

266: % Second moments of volume
267: vrr=proptet(v1,xij,yij,zij,xIj,yIj,zIj,...
268: xIJ,yIJ,zIJ,X1,Y1,Z1)+...
269: proptet(v2,xij,yij,zij,xIJ,yIJ,zIJ,...
270: xiJ,yiJ,ziJ,X2,Y2,Z2);
271: rc=[vx,vy,vz]/v/4; vs=sign(v);
272: v=abs(v)/6; vrr=vs*vrr/120;
273: vrr=[vrr([1 4 5]), vrr([4 2 6]), vrr([5 6 3])]’;
274: vrr=eye(3,3)*sum(diag(vrr))-vrr;
275:

276: %vrr=vrr-p(v,rc)+p(v,rc+d); rc=rc+d;
277:

278: %===========================================
279:

280: function v=scatripl(ax,ay,az,bx,by,bz,cx,cy,cz)
281: %
282: % v=scatripl(ax,ay,az,bx,by,bz,cx,cy,cz)
283: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
284: % Scalar triple product dot(cross(a,b),c) where
285: % the cartesian components of vectors a,b,and c
286: % are given in arrays of the same size.
287: v=ax.*(by.*cz-bz.*cy)+ay.*(bz.*cx-bx.*cz)...
288: +az.*(bx.*cy-by.*cx);
289:
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290: % =========================================
291:

292: function vrr=tensprod(v,x,y,z)
293: %
294: % vrr=tensprod(v,x,y,z)
295: % ~~~~~~~~~~~~~~~~~~~~
296: % This function forms the various components
297: % of v*R*R’. The calculation is vectorized
298: % over arrays of points
299: vxx=sum(sum(v.*x.*x)); vyy=sum(sum(v.*y.*y));
300: vzz=sum(sum(v.*z.*z)); vxy=sum(sum(v.*x.*y));
301: vxz=sum(sum(v.*x.*z)); vyz=sum(sum(v.*y.*z));
302: vrr=[vxx; vyy; vzz; vxy; vxz; vyz];
303:

304: % =========================================
305:

306: function vrr=proptet(v,x1,y1,z1,x2,y2,z2,...
307: x3,y3,z3,xc,yc,zc)
308: %
309: % vrr=proptet(v,x1,y1,z1,x2,y2,z2,x3,y3,z3,...
310: % xc,yc,zc)
311: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
312: % This function computes tensor properties of a
313: % tetrahedron with its base being a triangular
314: % surface and its apex at the origin
315: vrr=tensprod(v,x1,y1,z1)+tensprod(v,x2,y2,z2)+...
316: tensprod(v,x3,y3,z3)+tensprod(v,xc,yc,zc);

5.7 Geometrical Properties of a Polyhedron

A polyhedron is a solid covered by polygonal faces. Since polyhedra with sufÞ-
ciently many faces can approximate volumes of complex shape, computing the vol-
ume, centroidal position, and inertia tensor of a polyhedron has useful applications.
A polyhedron can be treated as the combination of a number of pyramids with bases
which are the polyhedron faces and apexes located at the coordinate origin. Once the
geometrical properties of a pyramid are known, results for a polyhedron are found
by combining results for all faces [111].

Consider a general volume V covered by surface S. It follows from the divergence
theorem of Gauss [59] that∫∫∫

V

XnY mZ� dX dY dZ =
1

n+m+ �+ 3

∫∫
S

XnY mZ�( η̂ · R)dS

where η̂ is the outward directed surface normal and R is the column vector [X ; Y ; Z].
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This formula implies

V =
∫∫∫

V

dX dY dZ =
1
3

∫∫
S

η̂ · R dS,

VR =
∫∫∫

V

R dX dY dZ =
1
4

∫∫
S

R (η̂ · R) dS,

and

VRR =
∫∫∫

V

RR
′
dX dY dZ =

1
5

∫∫
S

RR
′
(η̂ · R) dS

where R
′

means the transpose of R. Let us apply these formulas to a pyramid with
the apex at R = 0 and the base being a planar region S b of area A. For points on the
side of the pyramid of height h we Þnd that η̂ · R = 0, and for points on the base
η̂ · R = h. Consequently

V =
1
3

∫∫
Sb

h dS =
h

3
A,

VR =
1
4

∫∫
Sb

Rh dS =
h

4

∫∫
Sb

R dS,

VRR =
1
5

∫∫
Sb

RR
′
h dS =

h

5

∫∫
Sb

RR
′
dS.

The volume is equal to one third of the height times the base area, regardless of the
base shape. If Rb and Rp signify the centroidal radii of the base and the pyramid
volume, respectively, we get

Rp =
VR

V
=

h
4 RbA

h
3A

=
3
4
Rb.

Therefore, the centroid of the volume lies 3
4 of the way along a line from the apex

to the centroid of the base. For any planar area it is not hard to show that the area A
and unit surface normal η̂ can be computed using the line integral

η̂A =
1
2

∮
L

R × dR.

The last formula simpliÞes for a polygon having corners at R 1,R2, . . . ,Rn to yield

η̂A =
1
2

n∑
=1

R × R+1 where Rn+1 = R1.
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To compute the Þrst and second area moments for a general planar area, it is helpful
to introduce coordinates centered anywhere in the plane containing the base. We let

R = R0 + ı̂x+ ̂ y

where R0 is a vector to a point in the plane of the base, and ı̂ and ̂ are orthonormal
unit vectors which are tangent to the plane and are chosen such that ı̂, ̂, η̂ form a
right-handed system. The local coordinates (x, y) can be computed using

x = (R − R0)
′
ı̂ and y = (R − R0)

′
̂.

Then we get

VR =
h

4

∫∫
Sb

(R0 + ı̂ x+ ̂ y) dx dy

=
h

4
(R0 + ı̂ x̄+ ̂ ȳ)A

=
h

4
RbA

where (x̄, ȳ) are the centroidal coordinates of the area measured relative to the local
axes. Similarly we have

VRR =
h

5

∫∫
Sb

[ R0R
′
0 + (R0 ı̂

′
+ ı̂R

′
0)x+ (R0̂

′
+ ̂R

′
0)y +

(ı̂ ̂
′
+ ̂ ı̂

′
)xy + ı̂ ı̂

′
x2 + ̂ ̂

′
y2 ]dx dy

=
h

5

[
R0R

′
0 + (R0 ı̂

′
+ ı̂ R

′
0)x̄+ (R0̂

′
+ ̂R

′
0)ȳ

]
A+

h

5

[
ı̂ı̂

′
Axx + ̂ ̂

′
Ayy + (ı̂ ̂

′
+ ̂ ı̂

′
)Axy

]
where

Axx =
∫∫
Sb

x2 dx dy , Axy =
∫∫
Sb

xy dx dy , Ayy =
∫∫
Sb

y2 dx dy.

The formula for VRR simpliÞes when R0 is chosen as the centroidal radius Rb.
Then x̄ = ȳ = 0 so that

VRR =
h

5
[Rb R′

bA+ ı̂ ı̂
′
Ab

xx + ̂ ̂
′
Ab

yy + (ı̂ ̂
′
+ ̂ ı̂

′
)Ab

xy]

with the quantities Ab
xx, A

b
yy, A

b
xy denoting reference to the centroidal axes.

The analysis to compute polyhedron properties can now be completed using vec-
tor algebra along with area property calculations of the type introduced earlier. To
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deÞne data for a particular polyhedron we provide vectors x, y, z containing global
coordinates of all corners. We also employ a matrix named idface having a row
dimension equal to the number of faces on the polyhedron and a column dimension
equal to the largest number of corners on any face. Row ı of idface consists of
corner indices of the ı�th face with the row being padded with zeros on the right if
necessary. Each face is traversed in the counterclockwise sense relative to the out-
ward normal. Consider a Þgure showing a triangular block with a hole, having twelve
corners and eight faces as shown in Figure 5.6. The required geometry descriptions
are deÞned in example polhdrun. The results produced for this example are

>> polhdrun;

v = 15

rc =
0.0000
2.6667
1.3333

vrr =
5.0000 0.0000 0.0000
0.0000 120.8333 60.4167
0.0000 60.4167 40.8333

irr =
161.6667 -0.0000 -0.0000
-0.0000 45.8333 -60.4167
-0.0000 -60.4167 125.8333

These values can be easily veriÞed by manual calculations.
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Figure 5.6: Surface Plot of a General Polyhedron
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Program polhdrun

1: function polhdrun
2: % Example: polhdrun
3: % ~~~~~~~~~~~~~~~~~
4: %
5: % This program illustrates the use of routine
6: % polhedrn to calculate the geometrical
7: % properties of a polyhedron.
8: %
9: % User m functions called:

10: % crosmat, polyxy, cubrange, pyramid,
11: % polhdplt, polhedrn
12:

13: x=[2 2 2 2 2 2 0 0 0 0 0 0]-1;
14: y=[0 4 4 2 3 3 0 4 4 2 3 3];
15: z=[0 0 4 1 1 2 0 0 4 1 1 2];
16: idface=[1 2 3 6 5 4 6 3; ...
17: 1 3 9 7 0 0 0 0; ...
18: 1 7 8 2 0 0 0 0; ...
19: 2 8 9 3 0 0 0 0; ...
20: 7 9 12 10 11 12 9 8; ...
21: 4 10 12 6 0 0 0 0; ...
22: 4 5 11 10 0 0 0 0; ...
23: 5 6 12 11 0 0 0 0];
24: polhdplt(x,y,z,idface,[1,1,1]);
25: [v,rc,vrr,irr]=polhedrn(x,y,z,idface)
26:

27: %=============================================
28:

29: function [v,rc,vrr,irr]=polhedrn(x,y,z,idface)
30: %
31: % [v,rc,vrr,irr]=polhedrn(x,y,z,idface)
32: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
33: %
34: % This function determines the volume,
35: % centroidal coordinates and inertial moments
36: % for an arbitrary polyhedron.
37: %
38: % x,y,z - vectors containing the corner
39: % indices of the polyhedron
40: % idface - a matrix in which row j defines the
41: % corner indices of the j’th face.
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42: % Each face is traversed in a
43: % counterclockwise sense relative to
44: % the outward normal. The column
45: % dimension equals the largest number
46: % of indices needed to define a face.
47: % Rows requiring fewer than the
48: % maximum number of corner indices are
49: % padded with zeros on the right.
50: %
51: % v - the volume of the polyhedron
52: % rc - the centroidal radius
53: % vrr - the integral of R*R’*d(vol)
54: % irr - the inertia tensor for a rigid body
55: % of unit mass obtained from vrr as
56: % eye(3,3)*sum(diag(vrr))-vrr
57: %
58: % User m functions called: pyramid
59: %----------------------------------------------
60:

61: r=[x(:),y(:),z(:)]; nf=size(idface,1);
62: v=0; vr=0; vrr=0;
63: for k=1:nf
64: i=idface(k,:); i=i(find(i>0));
65: [u,ur,urr]=pyramid(r(i,:));
66: v=v+u; vr=vr+ur; vrr=vrr+urr;
67: end
68: rc=vr/v; irr=eye(3,3)*sum(diag(vrr))-vrr;
69:

70: %=============================================
71:

72: function [area,xbar,ybar,axx,axy,ayy]=polyxy(x,y)
73: %
74: % [area,xbar,ybar,axx,axy,ayy]=polyxy(x,y)
75: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
76: %
77: % This function computes the area, centroidal
78: % coordinates, and inertial moments of an
79: % arbitrary polygon.
80: %
81: % x,y - vectors containing the corner
82: % coordinates. The boundary is
83: % traversed in a counterclockwise
84: % direction
85: %
86: % area - the polygon area
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87: % xbar,ybar - the centroidal coordinates
88: % axx - integral of x^2*dxdy
89: % axy - integral of xy*dxdy
90: % ayy - integral of y^2*dxdy
91: %
92: % User m functions called: none
93: %----------------------------------------------
94:

95: n=1:length(x); n1=n+1;
96: x=[x(:);x(1)]; y=[y(:);y(1)];
97: a=(x(n).*y(n1)-y(n).*x(n1))’;
98: area=sum(a)/2; a6=6*area;
99: xbar=a*(x(n)+x(n1))/a6; ybar=a*(y(n)+y(n1))/a6;

100: ayy=a*(y(n).^2+y(n).*y(n1)+y(n1).^2)/12;
101: axy=a*(x(n).*(2*y(n)+y(n1))+x(n1).* ...
102: (2*y(n1)+y(n)))/24;
103: axx=a*(x(n).^2+x(n).*x(n1)+x(n1).^2)/12;
104:

105: %=============================================
106:

107: function [v,vr,vrr,h,area,n]=pyramid(r)
108: %
109: % [v,vr,vrr,h,area,n]=pyramid(r)
110: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111: %
112: % This function determines geometrical
113: % properties of a pyramid with the apex at the
114: % origin and corner coordinates of the base
115: % stored in the rows of r.
116: %
117: % r - matrix containing the corner
118: % coordinates of a polygonal base stored
119: % in the rows of matrix r.
120: %
121: % v - the volume of the pyramid
122: % vr - the first moment of volume relative to
123: % the origin
124: % vrr - the second moment of volume relative
125: % to the origin
126: % h - the pyramid height
127: % area - the base area
128: % n - the outward directed unit normal to
129: % the base
130: %
131: % User m functions called: crosmat, polyxy
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132: %----------------------------------------------
133:

134: ns=size(r,1);
135: na=sum(crosmat(r,r([2:ns,1],:)))’/2;
136: area=norm(na); n=na/area; p=null(n’);
137: i=p(:,1); j=p(:,2);
138: if det([p,n])<0, j=-j; end;
139: r1=r(1,:); rr=r-r1(ones(ns,1),:);
140: x=rr*i; y=rr*j;
141: [areat,xc,yc,axx,axy,ayy]=polyxy(x,y);
142: rc=r1’+xc*i+yc*j; h=r1*n;
143: v=h*area/3; vr=v*3/4*rc;
144: axx=axx-area*xc^2; ayy=ayy-area*yc^2;
145: axy=axy-area*xc*yc;
146: vrr=h/5*(area*rc*rc’+axx*i*i’+ayy*j*j’+ ...
147: axy*(i*j’+j*i’));
148:

149: %=============================================
150:

151: function polhdplt(x,y,z,idface,colr)
152: %
153: % polhdplt(x,y,z,idface,colr)
154: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
155: %
156: % This function makes a surface plot of an
157: % arbitrary polyhedron.
158: %
159: % x,y,z - vectors containing the corner
160: % indices of the polyhedron
161: % idface - a matrix in which row j defines the
162: % corner indices of the j’th face.
163: % Each face is traversed in a
164: % counterclockwise sense relative to
165: % the outward normal. The column
166: % dimension equals the largest number
167: % of indices needed to define a face.
168: % Rows requiring fewer than the
169: % maximum number of corner indices are
170: % padded with zeros on the right.
171: % colr - character string or a vector
172: % defining the surface color
173: %
174: % User m functions called: cubrange
175: %----------------------------------------------
176:
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177: if nargin<5, colr=[1 0 1]; end
178: hold off, close; nf=size(idface,1);
179: v=cubrange([x(:),y(:),z(:)],1.1);
180: for k=1:nf
181: i=idface(k,:); i=i(find(i>0));
182: xi=x(i); yi=y(i); zi=z(i);
183: fill3(xi,yi,zi,colr); hold on;
184: end
185: axis(v); grid on;
186: xlabel(’x axis’); ylabel(’y axis’);
187: zlabel(’z axis’);
188: title(’Surface Plot of a General Polyhedron’);
189: figure(gcf); hold off;
190:

191: %=============================================
192:

193: function c=crosmat(a,b)
194: %
195: % c=crosmat(a,b)
196: % ~~~~~~~~~~~~~~
197: %
198: % This function computes the vector cross
199: % product for vectors stored in the rows
200: % of matrices a and b, and returns the
201: % results in the rows of c.
202: %
203: % User m functions called: none
204: %----------------------------------------------
205:

206: c=[a(:,2).*b(:,3)-a(:,3).*b(:,2),...
207: a(:,3).*b(:,1)-a(:,1).*b(:,3),...
208: a(:,1).*b(:,2)-a(:,2).*b(:,1)];
209:

210: %=============================================
211:

212: % function range=cubrange(xyz,ovrsiz)
213: % See Appendix B
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5.8 Evaluating Integrals Having Square Root Type Singularities

Consider the problem of evaluating the following three integrals having square
root type singularities at one or both ends of the integration interval:

I1 =

b∫
a

f(x)√
x− a

dx , I2 =

b∫
a

f(x)√
b− x

dx , I3 =

b∫
a

f(x)√
(x− a)(b− x)

dx.

The singularities in these integrals can be removed using substitutions x − a =
t2, b− x = t2, and (x− a)(b− x) = (b+ a)/2 + (b− a)/2 cos(t) which lead to

I1 = 2

√
b−a∫
0

f(a+ t2) dt , I2 = 2

√
b−a∫
0

f(b− t2) dt

I3 =

π∫
0

f(
b+ a

2
+
b− a

2
cos(t) ) dt.

These modiÞed integrals can be evaluated using gcquad or quadl by creating in-
tegrands with appropriate argument shifts. Two integration functions quadgsqrt
and quadlsqrt were written to handle each of the three integral types. Shown be-
low is a program called sqrtquadtest which computes results for the case where
f(x) = eux cos(vx) with constants u and v being parameters passed to the inte-
grators using the varargin construct in MATLAB. Function quadgsqrt uses Gauss
quadrature to evaluate I1 and I2, and uses Chebyshev quadrature [1] to evaluate I3.
When f(x) is a polynomial, then taking parameter norder in function quadgsqrt
equal to the polynomial order gives exact results. With norder taken sufÞciently
high, more complicated functions can also be integrated accurately. Function quadl-
sqrt evaluates the three integral types using the adaptive integrator quadl, which
accommodates f(x) of quite general form. The program shown below integrates the
test function for parameter choices corresponding to [a, b, u, v] = [1, 4, 3, 10] with
norder=10 in quadgsqrt and tol=1e-12 in quadlsqrt . Output from the program
for this data case appears as comments at lines 14 thru 35 of sqrtquadtest. The
integrators apparently work well and give results agreeing to Þfteen digits. How-
ever, quadlsqrt took more than four hundred times as long to run as quadgsqrt.
Furthermore, the structure of quadgsqrt is such that it could easily be modiÞed to
accommodate a form of f(x) which returns a vector.

5.8.1 Program Listing

Singular Integral Program

1: function [vg,tg,vL,tL,pctdiff]=sqrtquadtest
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2: %
3: % [vg,tg,vL,tL,pctdiff]=sqrtquadtest
4: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function compares the accuracy and
6: % computation time for functions quadgsqrt
7: % and quadlsqrt to evaluate:
8: % integral(exp(u*x)*cos(v*x)/radical(x), a<x<b)
9: % where radical(x) is sqrt(x-a), sqrt(b-x), or

10: % sqrt((x-a)*(b-x))
11:

12: %----------------------------------
13: % Program Output
14:

15: % >> sqrtquadtest;
16:

17: % EVALUATING INTEGRALS WITH SQUARE ROOT TYPE
18: % SINGULARITIES AT THE END POINTS
19:

20: % Function integrated:
21: % ftest(x,u,v)=exp(u*x).*cos(v*x)
22:

23: % a = 1 b = 4
24: % u = 3 v = 10
25:

26: % Results from function gquadsqrt
27: % 4.836504484e+003 -8.060993912e+003 -4.264510048e+003
28: % Computation time = 0.0159 sec.
29:

30: % Results from function quadlsqrt
31: % 4.836504484e+003 -8.060993912e+003 -4.264510048e+003
32: % Computation time = 7.03 sec.
33:

34: % Percent difference for the two methods
35: % -3.6669e-012 -1.5344e-012 1.4929e-012
36: % >>
37:

38: %-------------------------------------
39:

40: % The test function
41: ftest=inline(’exp(u*x).*cos(v*x)’,’x’,’u’,’v’);
42:

43: % Limits and function parameters
44: a=1; b=4; u=3; v=10;
45:

46: nloop=100; tic;
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47: for j=1:nloop
48: v1g=quadgsqrt(ftest,1,a,b,40,1,u,v);
49: v2g=quadgsqrt(ftest,2,a,b,40,1,u,v);
50: v3g=quadgsqrt(ftest,3,a,b,40,1,u,v);
51: end
52: vg=[v1g,v2g,v3g]; tg=toc/nloop;
53: disp(’ ’)
54: disp(’EVALUATING INTEGRALS WITH SQUARE ROOT TYPE’)
55: disp(’ SINGULARITIES AT THE END POINTS’)
56: disp(’ ’)
57: disp(’Function integrated:’)
58: disp(’ftest(x,u,v)=exp(u*x).*cos(v*x)’)
59: disp(’ ’)
60: disp([’a = ’,num2str(a),’ b = ’,num2str(b)])
61: disp([’u = ’,num2str(u),’ v = ’,num2str(v)])
62: disp(’ ’)
63: disp(’Results from function gquadsqrt’)
64: fprintf(’%17.9e %17.9e %17.9e\n’,vg)
65: disp([’Computation time = ’,num2str(tg),’ sec.’])
66:

67: tol=1e-12; tic;
68: v1L=quadlsqrt(ftest,1,a,b,tol,[],u,v);
69: v2L=quadlsqrt(ftest,2,a,b,tol,[],u,v);
70: v3L=quadlsqrt(ftest,3,a,b,tol,[],u,v);
71: vL=[v1L,v2L,v3L]; tL=toc;
72:

73: disp(’ ’)
74: disp(’Results from function quadlsqrt’)
75: fprintf(’%17.9e %17.9e %17.9e\n’,vL)
76: disp([’Computation time = ’,num2str(tL),’ sec.’])
77:

78: pctdiff=100*(vg-vL)./vL; disp(’ ’)
79: disp(’Percent difference for the two methods’)
80: fprintf(’%13.4e %12.4e %12.4e\n’,pctdiff)
81:

82: %=========================================
83:

84: function v=quadgsqrt(...
85: func,type,a,b,norder,nsegs,varargin)
86: %
87: % v=quadgsqrt(func,type,a,b,norder,nsegs,varargin)
88: %
89: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90: %
91: % This function evaluates an integral having a
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92: % square root type singularity at one or both ends
93: % of the integration interval a<x<b. Composite
94: % Gauss integration is used with func(x) treated
95: % as a polynomial of degree norder.
96: % The integrand has the form:
97: % func(x)/sqrt(x-a) if type==1.
98: % func(x)/sqrt(b-x) if type==2.
99: % func(x)/sqrt((x-a)*(b-x)) if type==3.

100: % The integration interval is subdivided into
101: % nsegs subintervals of equal length.
102: %
103: % func - a character string or function handle
104: % naming a function continuous in the
105: % interval from x=a to x=b
106: % type - 1 if the integrand is singular at x=a
107: % 2 if the integrand is singular at x=b
108: % 3 if the integrand is singular at both
109: % x=a and x=b.
110: % a,b - integration limits with b>a
111: % norder - polynomial interpolation order within
112: % each interval. Lowest norder is 20.
113: % nsegs - number of integration subintervals
114: %
115: % User m functions called: gcquad
116: %
117: % Reference: Abromowitz and Stegun, ’Handbook of
118: % Mathematical Functions’, Chapter 25
119: % -------------------------------------------
120:

121: if nargin<6, nsegs=1; end;
122: if nargin<5, norder=50; end
123: switch type
124: case 1 % Singularity at the left end.
125: % Use Gauss quadrature
126: [dumy,bp,wf]=gcquad(...
127: ’’,0,sqrt(b-a),norder+1,nsegs);
128: t=a+bp.^2; y=feval(func,t,varargin{:});
129: v=wf(:)’*y(:)*2;
130: case 2 % Singularity at the right end.
131: % Use Gauss quadrature
132: [dumy,bp,wf]=gcquad(...
133: ’’,0,sqrt(b-a),norder+1,nsegs);
134: t=b-bp.^2; y=feval(func,t,varargin{:});
135: v=wf(:)’*y(:)*2;
136: case 3 % Singularity at both ends.
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137: % Use Chebyshev integration
138: n=norder; bp=cos(pi/(2*n+2)*(1:2:2*n+1));
139: c1=(b+a)/2; c2=(b-a)/2; t=c1+c2*bp;
140: y=feval(func,t,varargin{:});
141: v=pi/(n+1)*sum(y);
142: end
143:

144: %=========================================
145:

146: function v=quadlsqrt(fname,type,a,b,tol,trace,varargin)
147: %
148: % v=quadlsqrt(fname,type,a,b,tol,trace,varargin)
149: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
150: %
151: % This function uses the MATLAB integrator quadl
152: % to evaluate integrals having square root type
153: % singularities at one or both ends of the
154: % integration interval a < x < b.
155: % The integrand has the form:
156: % func(x)/sqrt(x-a) if type==1.
157: % func(x)/sqrt(b-x) if type==2.
158: % func(x)/sqrt((x-a)*(b-x)) if type==3.
159: %
160: % func - the handle for a function continuous
161: % from x=a to x=b
162: % type - 1 if the integrand is singular at x=a
163: % 2 if the integrand is singular at x=b
164: % 3 if the integrand is singular at both
165: % x=a and x=b.
166: % a,b - integration limits with b > a
167:

168: if nargin<6 | isempty(trace), trace=0; end
169: if nargin<5 | isempty(tol), tol=1e-8; end
170: if nargin<7
171: varargin{1}=type; varargin{2}=[a,b];
172: varargin{3}=fname;
173: else
174: n=length(varargin); c=[a,b]; varargin{n+1}=type;
175: varargin{n+2}=c; varargin{n+3}=fname;
176: end
177:

178: if type==1 | type==2
179: v=2*quadl(@fshift,0,sqrt(b-a),...
180: tol,trace,varargin{:});
181: else
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182: v=quadl(@fshift,0,pi,tol,trace,varargin{:});
183: end
184:

185: %=========================================
186:

187: function u=fshift(x,varargin)
188: % u=fshift(x,varargin)
189: % This function shifts arguments to produce
190: % a nonsingular integrand called by quadl
191: N=length(varargin); fname=varargin{N};
192: c=varargin{N-1}; type=varargin{N-2};
193: a=c(1); b=c(2); c1=(b+a)/2; c2=(b-a)/2;
194:

195: switch type
196: case 1, t=a+x.^2; case 2, t=b-x.^2;
197: case 3, t=c1+c2*cos(x);
198: end
199:

200: if N>3, u=feval(fname,t,varargin{1:N-3});
201: else, u=feval(fname,t); end
202:

203: %=========================================
204:

205: % function [val,bp,wf]=gcquad(func,xlow,...
206: % xhigh,nquad,mparts,varargin)
207: % See Appendix B

5.9 Gauss Integration of a Multiple Integral

Gauss integration can be used to evaluate multiple integrals having variable limits.
Consider the instance typiÞed by the following triple integral

I =
∫ c2

c1

∫ b2(z)

b1(z)

∫ a2(y,z)

a1(y,z)

F (x, y, z) dx dy dz.

This integral can be changed into one with constant limits by the substitutions

z = cp + cmu , −1 ≤ u ≤ 1,
y = bp + bmt , −1 ≤ t ≤ 1,
x = ap + ams , −1 ≤ s ≤ 1
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where

cp =
c2 + c1

2
, cm =

c2 − c1
2

,

bp =
b2 + b1

2
, bm =

b2 − b1
2

,

ap =
a2 + a1

2
, am =

a2 − a1

2
.

The above integral becomes

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1

cmbmamf(s, t, u) ds dt du

where

f(s, t, u) = F (ap + ams, bp + bmt, cp + cmu),
am = am(y, z) = am(bp + bmt, cp + cmu),
bm = bm(z) = bm(cp + cmu).

Thus, the integral has the form

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1

G(s, t, u) ds dt du

where
G = cmbmamf.

Performing the integration over each limit using an n-point quadrature formula with
weight factors wı and base points xı yields

I =
n∑

k=1

n∑
=1

n∑
ı=1

wkwwıG(xı, x, xk).

A function allowing an integrand and integration limits of general form was devel-
oped. An example is considered where the inertial moment of a sphere having unit
radius, unit mass density, and centered at (0, 0, 0) is to be obtained about an axis
through x = 2, y = 0, parallel to the z-axis. The related integral

I =
∫ 1

−1

∫ √
1−z2

−√
1−z2

∫ √
1−y2−z2

−
√

1−y2−z2

[
(x− 2)2 + y2

]
dx dy dz

has a value of 88π/15. Shown below is a function quadit3d and related limit and
integrand functions. The function triplint(n) computes the ratio of the numerically
integrated function to the exact result. The function speciÞcation triplint(20) yields
a value of 1.000067. Even though the triple integration procedure is not computa-
tionally very fast, it is nevertheless robust enough to produce accurate results when
a sufÞciently high integration order is chosen.
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5.9.1 Example: Evaluating a Multiple Integral

Triple Integration Program

1: function val=triplint(n)
2: %
3: % val=triplint(n)
4: % ~~~~~~~~~~~~~~~
5: % Triple integration example on inertial
6: % moment of a sphere.
7: %
8: % User m functions called: fsphere, bs1, bs2,
9: % as1, as2

10:

11: if nargin==0, n=20; end
12: val=quadit3d(’fsphere’,[-1,1],’bs1’,’bs2’,...
13: ’as1’,’as2’,n)/(88*pi/15);
14:

15: %=============================================
16:

17: function s = quadit3d(f,c,b1,b2,a1,a2,w)
18: %
19: % s = quadit3d(f,c,b1,b2,a1,a2,w)
20: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21: % This function computes the iterated integral
22: %
23: % s = integral(...
24: % f(x,y,z), x=a1..a2, y=b1..b2, z=c1..c2)
25: %
26: % where a1 and a2 are functions of y and z, b1
27: % and b2 are functions of z, and c is a vector
28: % containing constant limits on the z variable.
29: % Hence, as many as five external functions may
30: % be involved in the call list. For example,
31: % when the integrand and limits are:
32: %
33: % f = x.^2+y^2+z^2
34: % a2 = sqrt(4-y^2-z^2)
35: % a1 = -a2
36: % b2 = sqrt(4-z^2)
37: % b1 = -b2
38: % c = [-2,2]
39: %
40: % Then the exact value is 128*pi/5.
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41: % The approximation produced from a 20 point
42: % Gauss formula is accurate within .007 percent.
43: %
44: % f - a function f(x,y,z) which must return
45: % a vector value when x is a vector,
46: % and y and z are scalar.
47: % a1,a2 - integration limits on the x variable
48: % which may specify names of functions
49: % or have constant values. If a1 is a
50: % function it should have a call list
51: % of the form a1(y,z). A similar form
52: % applies to a2.
53: % b1,b2 - integration limits on the y variable
54: % which may specify functions of z or
55: % have constant values.
56: % c - a vector defined by c=[c1,c2] where
57: % c1 and c2 are fixed integration
58: % limits for the z direction.
59: % w - this argument defines the quadrature
60: % formula used. It has the following
61: % three possible forms. If w is omitted,
62: % a Gauss formula of order 12 is used.
63: % If w is a positive integer n, a Gauss
64: % formula of order n is used. If w is an
65: % n by 2 matrix, w(:,1) contains the base
66: % points and w(:,2) contains the weight
67: % factors for a quadrature formula over
68: % limits -1 to 1.
69: %
70: % s - the numerically evaluated integral
71: %
72: % User m functions called: gcquad
73: %----------------------------------------------
74:

75: if nargin<7
76: % function gcquad generates base points
77: % and weight factors
78: n=12; [dummy,x,W]=gcquad(’’,-1,1,n,1);
79: elseif size(w,1)==1 & size(w,2)==1
80: n=w; [dummy,x,W]=gcquad(’’,-1,1,n,1);
81: else
82: n=size(w,1); x=w(:,1); W=w(:,2);
83: end
84: s=0; cp=(c(1)+c(2))/2; cm=(c(2)-c(1))/2;
85:
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86: for k=1:n
87: zk=cp+cm*x(k);
88: if ischar(b1), B1=feval(b1,zk);
89: else, B1=b1; end
90:

91: if ischar(b2), B2=feval(b2,zk);
92: else, B2=b2; end
93:

94: Bp=(B2+B1)/2; Bm=(B2-B1)/2; sj=0;
95:

96: for j=1:n
97: yj=Bp+Bm*x(j);
98: if ischar(a1), A1=feval(a1,yj,zk);
99: else, A1=a1; end

100:

101: if ischar(a2), A2=feval(a2,yj,zk);
102: else, A2=a2; end
103:

104: Ap=(A2+A1)/2; Am=(A2-A1)/2;
105: fval=feval(f, Ap+Am*x, yj, zk);
106: si=fval(:).’*W(:); sj=sj+W(j)*Am*si;
107: end
108: s=s+W(k)*Bm*sj;
109: end
110: s=cm*s;
111:

112: %=============================================
113:

114: function v=fsphere(x,y,z)
115: %
116: % v=fsphere(x,y,z)
117: % ~~~~~~~~~~~~~~~~
118: % Integrand.
119: %----------------------------------------------
120:

121: v=(x-2).^2+y.^2;
122:

123: %=============================================
124:

125: function x=as1(y,z)
126: %
127: % x=as1(y,z)
128: % ~~~~~~~~~~
129: % Lower x integration limit.
130: %----------------------------------------------
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131:

132: x=-sqrt(1-y.^2-z.^2);
133:

134: %=============================================
135:

136: function x=as2(y,z)
137: %
138: % x=as2(y,z)
139: % ~~~~~~~~~~
140: % Upper x integration limit.
141: %----------------------------------------------
142:

143: x=sqrt(1-y.^2-z.^2);
144:

145: %=============================================
146:

147: function y=bs1(z)
148: %
149: % y=bs1(z)
150: % ~~~~~~~~
151: % Lower y integration limit.
152: %----------------------------------------------
153:

154: y=-sqrt(1-z.^2);
155:

156: %=============================================
157:

158: function y=bs2(z)
159: %
160: % y=bs2(z)
161: % ~~~~~~~~~~
162: % Upper y integration limit.
163: %----------------------------------------------
164:

165: y=sqrt(1-z.^2);
166:

167: %=============================================
168:

169: % function [val,bp,wf]=gcquad(func,xlow,...
170: % xhigh,nquad,mparts,varargin)
171: % See Appendix B
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Chapter 6

Fourier Series and the Fast Fourier
Transform

6.1 DeÞnitions and Computation of Fourier CoefÞcients

Trigonometric series are useful to represent periodic functions. A function deÞned
for −∞ < x <∞ has a period of 2π if f(x+2π) = f(x) for all x. In most practical
situations, such a function can be expressed as a complex Fourier series

f(x) =
∞∑

=−∞
ce

ıx where ı =
√−1.

The numbers c, called complex Fourier coefÞcients, are computed by integration as

c =
1
2π

∫ 2π

0

f(x)e−ıxdx.

The Fourier series can also be rewritten using sines and cosines as

f(x) = c0 +
∞∑

=1

(c + c−) cos(x) + ı(c − c−) sin(x).

Denoting
a = c + c− and b = ı(c − c−)

yields

f(x) =
1
2
a0 +

∞∑
=1

a cos(x) + b sin(x)

which is called a Fourier sine-cosine expansion. This series is especially appealing
when f(x) is real valued. For that case c− = c for all , which implies that c0 must
be real and

a = 2 real(c) , b = −2 imag(c) for  > 0.

Suppose we want a Fourier series expansion for a more general function f(x)
having period p instead of 2π. If we introduce a new function g(x) deÞned by

g(x) = f
(px

2π

)
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then g(x) has a period of 2π. Consequently, g(x) can be represented as

g(x) =
∞∑

=−∞
ce

ıx.

From the fact that f(x) = g(2πx/p) we deduce that

f(x) =
∞∑

=−∞
ce

2πıx/p.

A need sometimes occurs to expand a function as a series of sine terms only, or as a
series of cosine terms only. If the function is originally deÞned for 0 < x < p

2 , then
making f(x) = −f(p− x) for p

2 < x < p gives a series involving only sine terms.
Similarly, if f(x) = +f(p−x) for p

2 < x < p, only cosine terms arise. Thus we get

f(x) = c0 +
∞∑

=1

(c + c−) cos(2πx/p) if f(x) = f(p− x),

or

f(x) =
∞∑

=1

ı(c − c−) sin(2πx/p) if f(x) = −f(p− x).

When the Fourier series of a function is approximated using a Þnite number of terms,
the resulting approximating function may oscillate in regions where the actual func-
tion is discontinuous or changes rapidly. This undesirable behavior can be reduced
by using a smoothing procedure described by Lanczos [60]. Use is made of Fourier
series of a closely related function f̂(x) deÞned by a local averaging process accord-
ing to

f̂(x) =
1
∆

∫ x+∆
2

x−∆
2

f(ζ)dζ

where the averaging interval ∆ should be a small fraction of the period p. Hence we
write ∆ = αp with α < 1. The functions f̂(x) and f(x) are identical as α → 0.
Even for α > 0, these functions also match exactly at any point x where f(x) varies
linearly between x− ∆

2 and x + ∆
2 . An important property of f̂(x) is that it agrees

closely with f(x) for small α but has a Fourier series which converges more rapidly
than the series for f(x). Furthermore, from its deÞnition,

f̂(x) =
∞∑

=−∞
c

1
pα

∫ x+ αp
2

x−αp
2

e2πıx/p dx =
∞∑

=−∞
ĉe

2πıx/p

where ĉ0 = c0 and ĉ = c sin(πα)/(πα) for  
= 0. Evidently the Fourier coef-
Þcients of f̂(x) are easily obtainable from those of f(x). When the series for f(x)
converges slowly, using the same number of terms in the series for f̂(x) often gives
an approximation preferable to that provided by the series for f(x). This process is
called smoothing.
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6.1.1 Trigonometric Interpolation and the Fast Fourier Transform

Computing Fourier coefÞcients by numerical integration is very time consuming.
Consequently, we are led to investigate alternative methods employing trigonometric
polynomial interpolation through evenly spaced data. The resulting formulas are the
basis of an important algorithm called the Fast Fourier Transform (FFT) . Although
the Fourier coefÞcients obtained by interpolation are approximate, these coefÞcients
can be computed very rapidly when the number of sample points is an integer power
of 2 or a product of small primes. We will discuss next the ideas behind trigonometric
polynomial interpolation among evenly spaced data values.

Suppose we truncate the Fourier series and only use harmonics up to some order
N . We assume f(x) has period 2π so that

f(x) =
N∑

=−N

c e
ıx.

This trigonometric polynomial satisÞes f(0) = f(2π) even though the original func-
tion might actually have a Þnite discontinuity at 0 and 2π. Consequently, we may
choose to use, in place of f(0), the limit as ε→ 0 of [f(ε) + f(2π − ε)]/2.

It is well known that the functions eıx satisfy an orthogonality condition for inte-
gration over the interval 0 to 2π. They also satisfy an orthogonality condition regard-
ing summation over equally spaced data. The latter condition is useful for deriving a
discretized approximation of the integral formula for the exact Fourier coefÞcients.
Let us choose data points

x =
( π
N

)
 , 0 ≤  ≤ (2N − 1),

and write the simultaneous equations to make the trigonometric polynomial match
the original function at the equally spaced data points. To shorten the notation we let

t = eıπ/N ,

and write

fk =
N∑

=−N

ct
k.

Suppose we pick an arbitrary integer n in the range −N < n < N . Multiplying the
last equation by t−kn and summing from k = 0 to 2N − 1 gives

2N−1∑
k=0

fkt
−kn =

2N−1∑
k=0

t−kn
N∑

=−N

ct
k.

Interchanging the summation order in the last equation yields

2N−1∑
k=0

fkt
−kn =

N∑
=−N

c

2N−1∑
k=0

ζk
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where ζ = eı(−n)π/N . Summing the inner geometric series gives

2N−1∑
k=0

ζk =

{
1−ζ2N

1−ζ for ζ 
= 1,
2N for ζ = 1.

We Þnd, for all k and n in the stated range, that

ζ2N = eı2π(k−n) = 1.

Therefore we get

2N−1∑
k=0

fkt
−kn = 2Ncn , −N < n < N.

In the cases where n = ±N , the procedure just outlined only gives a relationship
governing cN + c−N . Since the Þrst and last terms cannot be computed uniquely, we
customarily take N large enough to discard these last two terms and write simply

cn =
1

2N

2N−1∑
k=0

fkt
−kn , −N < n < N.

This formula is the basis for fast algorithms (called FFT for Fast Fourier Transform)
to compute approximate Fourier coefÞcients. The periodicity of the terms depending
on various powers of eıπ/N can be utilized to greatly reduce the number of trigono-
metric function evaluations. The case where N equals a power of 2 is especially
attractive. The mathematical development is not provided here. However, the related
theory was presented by Cooley and Tukey in 1965 [21] and has been expounded in
many textbooks [53, 96]. The result is a remarkably concise algorithm which can
be comprehended without studying the details of the mathematical derivation. For
our present interests it is important to understand how to use MATLAB�s intrinsic
function for the FFT (fft).

Suppose a periodic function is evaluated at a number of equidistant points ranging
over one period. It is preferable for computational speed that the number of sample
points should equal an integer power of two (n = 2m). Let the function values for
argument vector

x = p/n ∗ (0 : n− 1)

be an array f denoted by
f ⇐⇒ [f1, f2, · · · , fn].

The function evaluation fft(f) produces an array of complex Fourier coefÞcients
multiplied by n and arranged in a peculiar fashion. Let us illustrate this result for
n = 8. If

f = [f1, f2, · · · , f8]
then fft(f)/8 produces

c = [c0, c1, c2, c3, c∗, c−3, c−2, c−1].
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The term denoted by c∗ actually turns out to equal c4 + c−4, so it would not be used
in subsequent calculations. We generalize this procedure for arbitrary n as follows.
Let N = n/2 − 1. In the transformed array, elements with indices of 1, · · · , N + 1
correspond to c0, · · · , cN and elements with indices of n, n − 1, n − 2, · · · , N +
3 correspond to c−1, c−2, c−3, · · · , c−N . It is also useful to remember that a real
valued function has c−n = conj(cn). To Þx our ideas about how to evaluate a
Fourier series, suppose we want to sum an approximation involving harmonics from
order zero to order (nsum− 1). We are dealing with a real valued function deÞned
by func with a real argument vector x. The following code expands func and sums
the series for argument x using nsum terms.

function fouval=fftaprox(func,period,nfft,nsum,x)
fc=feval(func,period/nfft*(0:nfft-1));
fc=fft(fc)/nfft; fc(1)=fc(1)/2;
w=2*pi/period*(0:nsum-1);
fouval=2*real(exp(i*x(:)*w)*fc(:));

6.2 Some Applications

Applications of Fourier series arise in numerous practical situations such as struc-
tural dynamics, signal analysis, solution of boundary value problems, and image
processing. Three examples are given below that illustrate use of the FFT. The Þrst
example calculates Bessel functions and the second problem studies forced dynamic
response of a lumped mass system. The Þnal example presents a program for con-
structing Fourier expansions and displaying graphical results for linearly interpolated
or analytically deÞned functions.

6.2.1 Using the FFT to Compute Integer Order Bessel Functions

The FFT provides an efÞcient way to compute integer order Bessel functions
Jn(x) which are important in various physical applications [119]. Function J n(x)
can be obtained as the complex Fourier coefÞcient of e ınθ in the generating function
described by

eıx sin(θ) =
∞∑

n=−∞
Jn(x)eınθ .

Orthogonality conditions imply

Jn(x) =
1
2π

∫ 2π

0

eı(x sin(θ)−nθ) dθ.
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Figure 6.1: Surface Plot for Jn(x)

The Fourier coefÞcients represented by Jn(x) can be computed approximately with
the FFT. The inÞnite series converges very rapidly because the function it represents
has continuous derivatives of all Þnite orders. Of course, e ıx sin(θ) is highly oscilla-
tory for large |x|, thereby requiring a large number of sample points in the FFT to
obtain accurate results. For n < 30 and |x| < 30, a 128-point transform is adequate
to give about ten digit accuracy for values of Jn(x). The following code implements
the above ideas and plots a surface showing how Jn changes in terms of n and x.
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MATLAB Example

Bessel Function Program plotjrun

1: function plotjrun
2: % Example: plotjrun
3: % ~~~~~~~~~~~~~~~~~
4: % This program computes integer order Bessel
5: % functions of the first kind by using the FFT.
6: %
7: % User m functions required: jnft
8:

9: x=0:.5:20; n=0:20; J=jnft(n,x); surf(x,n,J’);
10: title(’Surface Plot For J_{n}(x)’);
11: ylabel(’order n’), xlabel(’argument x’)
12: zlabel(’function value’), figure(gcf);
13: print -deps plotjrun
14:

15: %==============================================
16:

17: function J=jnft(n,z,nft)
18: %
19: % J=jnft(n,z,nft)
20: % ~~~~~~~~~~~~~~~~~~~~~
21: % Integer order Bessel functions of the
22: % first kind computed by use of the Fast
23: % Fourier Transform (FFT).
24: %
25: % n - integer vector defining the function
26: % orders
27: % z - a vector of values defining the
28: % arguments
29: % nft - number of function evaluations used
30: % in the FFT calculation. This value
31: % should be an integer power of 2 and
32: % should exceed twice the largest
33: % component of n. When nft is omitted
34: % from the argument list, then a value
35: % equal to 512 is used. More accurate
36: % values of J are computed as nft is
37: % increased. For max(n) < 30 and
38: % max(z) < 30, nft=256 gives about
39: % ten digit accuracy.
40: % J - a matrix of values for the integer
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41: % order Bessel function of the first
42: % kind. Row position matches orders
43: % defined by n, and column position
44: % corresponds to arguments defined by
45: % components of z.
46: %
47: % User m functions called: none.
48: %----------------------------------------------
49:

50: if nargin<3, nft=512; end;
51: J=exp(sin((0:nft-1)’* ...
52: (2*pi/nft))*(i*z(:).’))/nft;
53: J=fft(J); J=J(1+n,:).’;
54: if sum(abs(imag(z)))<max(abs(z))/1e10
55: J=real(J);
56: end

6.2.2 Dynamic Response of a Mass on an Oscillating Foundation

Fourier series are often used to describe time dependent phenomena such as earth-
quake ground motion. Understanding the effects of foundation motions on an elastic
structure is important in design. The model in Figure 6.2 embodies rudimentary as-
pects of this type of system and consists of a concentrated mass connected by a spring
and viscous damper to a base which oscillates with known displacement Y (t). The
system is assumed to have arbitrary initial conditions y(0) = y0 and ẏ(0) = v0 when
the base starts moving. The resulting displacement and acceleration of the mass are
to be computed.

We assume that Y (t) can be represented well over some time interval p by a Four-
ier series of the form

Y (t) =
∞∑

n=−∞
cne

ıωnt , ωn =
2nπ
p

where c−n = conj(cn) because Y is real valued. The differential equation governing
this problem is

mÿ + cẏ + ky = kY (t) + cẎ (t) = F (t)

where the forcing function can be expressed as

F (t) =
∞∑

n=−∞
cn[k + ıcωn]eıωnt = kc0 + 2 real

( ∞∑
n=1

fne
ıωnt

)

and
fn = cn(k + ıcωn).

The corresponding steady-state solution of the differential equation is representable
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Figure 6.2: Mass System

as

ys(t) =
∞∑

n=−∞
yne

ıωnt

where y−n = conj(yn) since ys(t) is real valued. Substituting the series solution
into the differential equation and comparing coefÞcients of e ıωnt on both sides leads
to

yn =
cn(k + ıcωn)

k −mω2
n + ıcωn

.

The displacement, velocity, and acceleration corresponding to the steady-state (also
called particular) solution are

ys(t) = c0 + 2 real

( ∞∑
n=1

yne
ıωnt

)
,

ẏs(t) = 2 real

( ∞∑
n=1

ıωnyne
ıωnt

)
,

ÿs(t) = −2 real

( ∞∑
n=1

ω2
nyne

ıωnt

)
.

The initial conditions satisÞed by ys are

ys(0) = c0 + 2 real

( ∞∑
n=1

yn

)
, ẏs(0) = 2 real

( ∞∑
n=1

ıωnyn

)
.

Because these values usually will not match the desired initial conditions, the total
solution consists of ys(t) and yh(t) which satisÞes the homogeneous differential
equation

mÿh + cẏh + kyh = 0.
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The solution is

yh = g1e
s1t + g2e

s2t

where s1 and s2 are roots satisfying

ms2 + cs+ k = 0.

The roots are

s1 =
−c+

√
c2 − 4mk
2m

, s2 =
−c−√

c2 − 4mk
2m

.

Since the total solution is

y(t) = ys(t) + yh(t)

the constants g1 and g2 are obtained by solving the two simultaneous equations

g1 + g2 = y(0) − ys(0) , s1g1 + s2g2 = ẏ(0) − ẏs(0).

The roots s1 and s2 are equal when c = 2
√
mk. Then the homogeneous solution

assumes an alternate form given by (g1 + g2t)est with s = −c/(2m). In this special
case we Þnd that

g1 = y(0) − ys(0) , g2 = ẏ(0) − ẏs(0) − sg1.

It should be noted that even though roots s1 and s2 will often be complex numbers,
this causes no difÞculty since MATLAB handles the complex arithmetic automat-
ically (just as it does when the FFT transforms real function values into complex
Fourier coefÞcients).

The harmonic response solution works satisfactorily for a general forcing function
as long as the damping coefÞcient c is nonzero. A special situation can occur when
c = 0, because the forcing function may resonate with the natural frequency of
the undamped system. If c is zero, and for some n we have

√
k/m = 2πn/p, a

condition of harmonic resonance is produced and a value of zero in the denominator
occurs when the corresponding yn is computed. In the undamped resonant case the
particular solution grows like [teıωnt], quickly becoming large. Even when c is small
and

√
k/m ≈ 2πn/p, undesirably large values of yn can result. Readers interested

in the important phenomenon of resonance can Þnd more detail in Meirovitch [68].
This example concludes by using a base motion resembling an actual earthquake

excitation. Seismograph output employing about 2700 points recorded during the
Imperial Valley, California, earthquake of 1940 provided the displacement history for
Figure 6.3. The period used to describe the motion is 53.8 seconds. A program was
written to analyze system response due to a simulated earthquake base excitation.
The following program modules are used:
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runimpv sets data values and generates graphical results
fouaprox generates Fourier series approximations for a general

function
imptp piecewise linear function approximating the Imperial

Valley earthquake data
shkbftss computes steady-state displacement and acceleration

for a spring-mass-dashpot system subjected to base
motion expandable in a Fourier series

hsmck computes the homogeneous solution for the spring-
mass-dashpot system subjected to general initial con-
ditions

Numerical results were obtained for a system having a natural period close to one
second (2π/6 ≈ 1.047) and a damping factor of 5 percent. The function imptp
was employed as an alternative to the actual seismograph data to provide a concisely
expressible function which still embodies characteristics of a realistic base motion.
Figure 6.4 shows a plot of function imptp along with its approximation by a twenty-
term Fourier series. The series representation is surprisingly good considering the
fact that such a small number of terms is used. The use of two-hundred terms gives
an approximation which graphically does not deviate perceptibly from the actual
function. Results showing how rapidly the Fourier coefÞcients diminish in magni-
tude with increasing order appear in Figure 6.5. The dynamical analysis produced
displacement and acceleration values for the mass. Figure 6.6 shows both the total
displacement as well as the displacement contributed from the homogeneous solution
alone. Evidently, the steady-state harmonic response function captures well most of
the motion, and the homogeneous part could probably be neglected without serious
error. Figure 6.7 also shows the total acceleration of the mass which is, of course,
proportional to the resultant force on the mass due to the base motion.

Before proceeding to the next example, the reader should be sure to appreciate the
following important fact. Once a truncated Fourier series expansion of the forcing
function using some appropriate number of terms is chosen, the truncated series
deÞnes an input function for which the response is computed exactly. If the user
takes enough terms in the truncated series so that he/she is well satisÞed with the
function it approximates, then the computed response value for y(t) will also be
acceptable. This situation is distinctly different from the more complicated type of
approximations occurring when Þnite difference or Þnite element methods produce
discrete approximations for continuous Þeld problems. Understanding the effects of
grid size discretization error is more complex than understanding the effects of series
truncation in the example given here.
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Figure 6.7: Acceleration Due to Base Oscillation

MATLAB Example

Program runimpv

1: function runimpv
2: % Example: runimpv
3: % ~~~~~~~~~~~~~~~~~
4: % This is a driver program for the
5: % earthquake example.
6: %
7: % User m functions required:
8: % fouaprox, imptp, hsmck,
9: % shkbftss, lintrp

10:

11: % Make the undamped period about one
12: % second long
13: m=1; k=36;
14:

15: % Use damping equal to 5 percent of critical
16: c=.05*(2*sqrt(m*k));
17:

© 2003 by CRC Press LLC



18: % Choose a period equal to length of
19: % Imperial Valley earthquake data
20: prd=53.8;
21:

22: nft=1024; tmin=0; tmax=prd;
23: ntimes=200; nsum=80; % ntimes=501; nsum=200;
24: tplt=linspace(0,prd,ntimes);
25: y20trm=fouaprox(’imptp’,prd,tplt,20);
26: plot(tplt,y20trm,’-’,tplt,imptp(tplt),’--’);
27: xlabel(’time, seconds’);
28: ylabel(’unitized displacement’);
29: title(’Result from a 20-Term Fourier Series’)
30: figure(gcf);
31: disp(’Press [Enter] to continue’);
32: dumy=input(’’,’s’);
33: % print -deps 20trmplt
34:

35: % Show how magnitudes of Fourier coefficients
36: % decrease with increasing harmonic order
37:

38: fcof=fft(imptp((0:1023)/1024,1))/1024;
39: clf; plot(abs(fcof(1:100)));
40: xlabel(’harmonic order’);
41: ylabel(’coefficient magnitude’);
42: title([’Coefficient Magnitude in Base ’ ...
43: ’Motion Expansion’]); figure(gcf);
44: disp(’Press [Enter] to continue’);
45: dumy=input(’’,’s’);
46: % print -deps coefsize
47:

48: % Compute forced response
49: [t,ys,ys0,vs0,as]= ...
50: shkbftss(m,c,k,’imptp’,prd,nft,nsum, ...
51: tmin,tmax,ntimes);
52:

53: % Compute homogeneous solution
54: [t,yh,ah]= ...
55: hsmck(m,c,k,-ys0,-vs0,tmin,tmax,ntimes);
56:

57: % Obtain the combined solution
58: y=ys(:)+yh(:); a=as(:)+ah(:);
59: clf; plot(t,y,’-’,t,yh,’--’);
60: xlabel(’time’); ylabel(’displacement’);
61: title(’Total and Homogeneous Response’);
62: legend(’Total response’,’Homogeneous response’);
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63: figure(gcf);
64: disp(’Press [Enter] to continue’);
65: dumy=input(’’,’s’);
66: print -deps displac;
67:

68: clf; plot(t,a,’-’);
69: xlabel(’time’); ylabel(’acceleration’)
70: title(’Acceleration Due to Base Oscillation’)
71: figure(gcf); print -deps accel
72:

73: %=============================================
74:

75: function y=fouaprox(func,per,t,nsum,nft)
76: %
77: % y=fouaprox(func,per,t,nsum,nft)
78: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
79: % Approximation of a function by a Fourier
80: % series.
81: %
82: % func - function being expanded
83: % per - period of the function
84: % t - vector of times at which the series
85: % is to be evaluated
86: % nsum - number of terms summed in the series
87: % nft - number of function values used to
88: % compute Fourier coefficients. This
89: % should be an integer power of 2.
90: % The default is 1024
91: %
92: % User m functions called: none.
93: %----------------------------------------------
94:

95: if nargin<5, nft=1024; end;
96: nsum=min(nsum,fix(nft/2));
97: c=fft(feval(func,per/nft*(0:nft-1)))/nft;
98: c(1)=c(1)/2; c=c(:); c=c(1:nsum);
99: w=2*pi/per*(0:nsum-1);

100: y=2*real(exp(i*t(:)*w)*c);
101:

102: %=============================================
103:

104: function ybase=imptp(t,period)
105: %
106: % ybase=imptp(t,period)
107: % ~~~~~~~~~~~~~~~~~~~~~
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108: % This function defines a piecewise linear
109: % function resembling the ground motion of
110: % the earthquake which occurred in 1940 in
111: % the Imperial Valley of California. The
112: % maximum amplitude of base motion is
113: % normalized to equal unity.
114: %
115: % period - period of the motion
116: % (optional argument)
117: % t - vector of times between
118: % tmin and tmax
119: % ybase - piecewise linearly interpolated
120: % base motion
121: %
122: % User m functions called: lintrp
123: %----------------------------------------------
124:

125: tft=[ ...
126: 0.00 1.26 2.64 4.01 5.10 ...
127: 5.79 7.74; 8.65 9.74 10.77 ...
128: 13.06 15.07 21.60 25.49; 27.38 ...
129: 31.56 34.94 36.66 38.03 40.67 ...
130: 41.87; 48.40 51.04 53.80 0 ...
131: 0 0 0 ]’;
132: yft=[ ...
133: 0 0.92 -0.25 1.00 -0.29 ...
134: 0.46 -0.16; -0.97 -0.49 -0.83 ...
135: 0.95 0.86 -0.76 0.85; -0.55 ...
136: 0.36 -0.52 -0.38 0.02 -0.19 ...
137: 0.08; -0.26 0.24 0.00 0 ...
138: 0 0 0 ]’;
139: tft=tft(:); yft=yft(:);
140: tft=tft(1:24); yft=yft(1:24);
141: if nargin == 2
142: tft=tft*period/max(tft);
143: end
144: ybase=lintrp(tft,yft,t);
145:

146: %=============================================
147:

148: function [t,ys,ys0,vs0,as]=...
149: shkbftss(m,c,k,ybase,prd,nft,nsum, ...
150: tmin,tmax,ntimes)
151: %
152: % [t,ys,ys0,vs0,as]=...
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153: % shkbftss(m,c,k,ybase,prd,nft,nsum, ...
154: % tmin,tmax,ntimes)
155: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
156: % This function determines the steady-state
157: % solution of the scalar differential equation
158: %
159: % m*y’’(t) + c*y’(t) + k*y(t) =
160: % k*ybase(t) + c*ybase’(t)
161: %
162: % where ybase is a function of period prd
163: % which is expandable in a Fourier series
164: %
165: % m,c,k - Mass, damping coefficient, and
166: % spring stiffness
167: % ybase - Function or vector of
168: % displacements equally spaced in
169: % time which describes the base
170: % motion over a period
171: % prd - Period used to expand xbase in a
172: % Fourier series
173: % nft - The number of components used
174: % in the FFT (should be a power
175: % of two). If nft is input as
176: % zero, then ybase must be a
177: % vector and nft is set to
178: % length(ybase)
179: % nsum - The number of terms to be used
180: % to sum the Fourier series
181: % expansion of ybase. This should
182: % not exceed nft/2.
183: % tmin,tmax - The minimum and maximum times
184: % for which the solution is to
185: % be computed
186: % t - A vector of times at which
187: % the solution is computed
188: % ys - Vector of steady-state solution
189: % values
190: % ys0,vs0 - Position and velocity at t=0
191: % as - Acceleration ys’’(t), if this
192: % quantity is required
193: %
194: % User m functions called: none.
195: %----------------------------------------------
196:

197: if nft==0
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198: nft=length(ybase); ybft=ybase(:)
199: else
200: tbft=prd/nft*(0:nft-1);
201: ybft=fft(feval(ybase,tbft))/nft;
202: ybft=ybft(:);
203: end
204: nsum=min(nsum,fix(nft/2)); ybft=ybft(1:nsum);
205: w=2*pi/prd*(0:nsum-1);
206: t=tmin+(tmax-tmin)/(ntimes-1)*(0:ntimes-1)’;
207: etw=exp(i*t*w); w=w(:);
208: ysft=ybft.*(k+i*c*w)./(k+w.*(i*c-m*w));
209: ysft(1)=ysft(1)/2;
210: ys=2*real(etw*ysft); ys0=2*real(sum(ysft));
211: vs0=2*real(sum(i*w.*ysft));
212: if nargout > 4
213: ysft=-ysft.*w.^2; as=2*real(etw*ysft);
214: end
215:

216: %=============================================
217:

218: function [t,yh,ah]= ...
219: hsmck(m,c,k,y0,v0,tmin,tmax,ntimes)
220: %
221: % [t,yh,ah]=hsmck(m,c,k,y0,v0,tmin,tmax,ntimes)
222: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
223: % Solution of
224: % m*yh’’(t) + c*yh’(t) + k*yh(t) = 0
225: % subject to initial conditions of
226: % yh(0) = y0 and yh’(0) = v0
227: %
228: % m,c,k - mass, damping and spring
229: % constants
230: % y0,v0 - initial position and velocity
231: % tmin,tmax - minimum and maximum times
232: % ntimes - number of times to evaluate
233: % solution
234: % t - vector of times
235: % yh - displacements for the
236: % homogeneous solution
237: % ah - accelerations for the
238: % homogeneous solution
239: %
240: % User m functions called: none.
241: %----------------------------------------------
242:
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243: t=tmin+(tmax-tmin)/(ntimes-1)*(0:ntimes-1);
244: r=sqrt(c*c-4*m*k);
245: if r~=0
246: s1=(-c+r)/(2*m); s2=(-c-r)/(2*m);
247: g=[1,1;s1,s2]\[y0;v0];
248: yh=real(g(1)*exp(s1*t)+g(2)*exp(s2*t));
249: if nargout > 2
250: ah=real(s1*s1*g(1)*exp(s1*t)+ ...
251: s2*s2*g(2)*exp(s2*t));
252: end
253: else
254: s=-c/(2*m);
255: g1=y0; g2=v0-s*g1; yh=(g1+g2*t).*exp(s*t);
256: if nargout > 2
257: ah=real(s*(2*g2+s*g1+s*g2*t).*exp(s*t));
258: end
259: end
260:

261: %=============================================
262:

263: % function y=lintrp(xd,yd,x)
264: % See Appendix B

6.2.3 General Program to Plot Fourier Expansions

The Þnal example in this chapter is a program to compute Fourier coefÞcients of
general real valued functions and to display series with varying numbers of terms
so that a user can see how rapidly such series converge. Since a truncated Fourier
series is a continuous differentiable function, it cannot perfectly represent a discon-
tinuous function such as a square wave. Near points where jump discontinuities
occur, Fourier series approximations oscillate [18]. The same kind of behavior oc-
curs less seriously near points of slope discontinuity. Adding more terms does not
cure the problem at jump discontinuities. The behavior, known as Gibbs phenom-
enon, produces approximations which overshoot the function on either side of the
discontinuity. Illustrations of this behavior appear below.

A program was written to expand real functions of arbitrary period using Fourier
series approximations computed with the FFT. A piecewise linear function can be
speciÞed interactively by giving data points over a period. Alternatively, a function
which is user deÞned can be employed. For instance, a function varying like a sine
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curve with the bottom half cut off would be

function y=chopsine(x,period)
y=sin(pi*x/period).*(x<period)

The program consists of the following functions.

fouseris main driver
sine example for exact function input
lintrp function for piecewise linear interpolation
fousum sum a real valued Fourier series
read reads several data items on one line

Comments within the program illustrate how to input data interactively. Details of
different input options can be found by executing the program.

Let us see how well the FFT approximates a function of period 3 deÞned by piece-
wise linear interpolation through (x, y) values of (0,1), (1,1), (1,�1), (2,�1), (3,1),
and (4,0). The function has jump discontinuities at x = 0, x = 1, and x = 4.
A slope discontinuity also occurs at x = 3. Program results using a twenty-term
approximation appear in Figure 6.8. Results produced by 100- and 250-term series
plotted near x = 1 are shown in Figures 6.9 and 6.10. Clearly, adding more terms
does not eliminate the oscillation. However, the oscillation at a jump discontinuity
can be reduced with the Lanczos smoothing procedure. Results for a series of 250
terms smoothed over an interval equal to the period times 0.01 appear in Figure 6.11.
The oscillation is reduced at the cost of replacing the inÞnite slope at a discontinuity
point by a steep slope of Þfty-to-one for this case. Figure 6.12 shows a plot produced
using an exact function deÞnition as indicated in the second program execution. The
reader may Þnd it instructive to investigate how well Fourier series converge by run-
ning the program for other function choices.
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Figure 6.8: Fourier Series for Harmonics up to Order 20
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Figure 6.9: Fourier Series for Harmonics up to Order 100
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Figure 6.10: Fourier Series for Harmonics up to Order 250
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Figure 6.11: Smoothed Fourier Series for Harmonics up to Order 250
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Figure 6.12: Exact Function Example for Harmonics up to Order 20
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Examples of Fourier Series Expansions

Output for Piecewise Linear Example

>> fouseris

FOURIER SERIES EXPANSION FOR A PIECEWISE LINEAR OR
ANALYTICALLY DEFINED FUNCTION

Input the period of the function
? > 4

Input the number of data points to define the function
by piecewise linear interpolation (input a zero if the
function is defined analytically by the user).
? > 6

Input the x,y values one pair per line
? > 0,1
? > 1,1
? > 1,-1
? > 2,-1
? > 3,1
? > 4,0

To plot the series input xmin, xmax, and the highest
harmonic not exceeding 255 (input 0,0,0 to stop)
(Use a negative harmonic number to save your graph)
? > 0,4,20

To plot the series smoothed over a fraction of the
period, input the smoothing fraction
(give 0.0 for no smoothing).
? > 0

Press RETURN to continue

To plot the series input xmin, xmax, and the highest
harmonic not exceeding 255 (input 0,0,0 to stop)
(Use a negative harmonic number to save your graph)
? > 0,0,0

Output for Analytically DeÞned Example

>> fouseris
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FOURIER SERIES EXPANSION FOR A PIECEWISE LINEAR OR
ANALYTICALLY DEFINED FUNCTION

Input the period of the function
? > pi/2

Input the number of data points to define the function
by piecewise linear interpolation (input a zero if the
function is defined analytically by the user).
? > 0

Select the method used for exact function definition:

1 <=> Use an existing function with syntax defined by
the following example:

function y=sine(x,period)
%
% y=sine(x,period)
% ����������������
% This function specifies all or part of
% a sine wave.
%
% x - vector of argument values
% period - period of the function
% y - vector of function values
%
% User m functions called: none
%----------------------------------------------
y=sin(rem(x,period));

or

2 <=> Use a one-line character string definition
involving argument x and period p. For example a sine
wave with the bottom cut off would be defined by:
sin(x*2*pi/p).*(x<p/2)

1 or 2 ? > 1

Enter the name of your function
? > sine

To plot the series input xmin, xmax, and the highest
harmonic not exceeding 255 (input 0,0,0 to stop)
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(Use a negative harmonic number to save your graph)
? > 0,pi,-20

To plot the series smoothed over a fraction of the
period, input the smoothing fraction
(give 0.0 for no smoothing).
? > 0

Give a file name to save the current graph >
exactplt

Press RETURN to continue

To plot the series input xmin, xmax, and the highest
harmonic not exceeding 255 (input 0,0,0 to stop)
(Use a negative harmonic number to save your graph)
? > 0,0,0

Fourier Series Program fouseris

1: function fouseris
2: % Example: fouseris
3: % ~~~~~~~~~~~~~~~~~
4: % This program illustrates the convergence rate
5: % of Fourier series approximations derived by
6: % applying the FFT to a general function which
7: % may be specified either by piecewise linear
8: % interpolation in a data table or by
9: % analytical definition in a function given by

10: % the user. The linear interpolation model
11: % permits inclusion of jump discontinuities.
12: % Series having varying numbers of terms can
13: % be graphed to demonstrate Gibbs phenomenon
14: % and to show how well the truncated Fourier
15: % series represents the original function.
16: % Provision is made to plot the Fourier series
17: % of the original function or a smoothed
18: % function derived by averaging the original
19: % function over an arbitrary fraction of the
20: % total period.
21: %
22: % User m functions required:
23: % fousum, lintrp, inputv, sine
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24:

25: % The following parameters control the number
26: % of fft points used and the number of points
27: % used for graphing.
28: nft=1024; ngph=1001; nmax=int2str(nft/2-1);
29:

30: fprintf(’\nFOURIER SERIES EXPANSION FOR’);
31: fprintf(’ A PIECEWISE LINEAR OR’);
32: fprintf(’\n ANALYTICALLY DEFINED ’);
33: fprintf(’FUNCTION\n’);
34:

35: fprintf(’\nInput the period of the function\n’);
36: period=input(’? > ’);
37: xfc=(period/nft)*(0:nft-1)’;
38: fprintf(’\nHow many points define the function’);
39: fprintf(’\nby piecewise linear interpolation?’);
40: fprintf(’\n(Give a zero for analytical definition)\n’)
41: nd=input(’> ? ’);
42: if nd > 0, xd=zeros(nd,1); yd=xd;
43: fprintf(’\nInput the x,y values one ’);
44: fprintf(’pair per line\n’);
45: for j=1:nd
46: [xd(j),yd(j)]=inputv(’> ? ’);
47: end
48:

49: % Use nft interpolated data points to
50: % compute the fft
51: yfc=lintrp(xd,yd,xfc); c=fft(yfc);
52: else
53: fprintf(’\nSelect the method for ’);
54: fprintf(’analytical function definition:\n’);
55: fprintf(’\n1 <=> Use an existing function ’);
56: fprintf(’with syntax of the form:’);
57: fprintf(’\nfunction y=funct(x,period), or \n’);
58: fprintf([’\n2 <=> Give a character string ’,...
59: ’in argument x and period p.’])
60: fprintf([’\n(Such as: sign(sin(2*pi*x/p)) ’...
61: ’to make a square wave)\n’])
62: nopt=input(’Enter 1 or 2 ? > ’);
63: if nopt == 1
64: fprintf(’\nEnter the name of your ’);
65: fprintf(’function\n’);
66: fnam=input(’> ? ’,’s’);
67: yfc=feval(fnam,xfc,period); c=fft(yfc);
68: else
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69: fprintf(’\nInput the one-line definition’);
70: fprintf(’ in terms of x and p\n’);
71: strng=input(’> ? ’,’s’);
72: x=xfc; p=period;
73: yfc=eval(strng); c=fft(yfc);
74: end
75: end
76:

77: while 1
78: fprintf(’\nTo plot the series input xmin,’);
79: fprintf(’ xmax, and the highest’);
80: fprintf([’\nharmonic not exceeding ’, ...
81: nmax,’ (press [Enter] to stop)’]);
82: fprintf(’\n(Use a negative harmonic number’);
83: fprintf(’ to save your graph)\n’);
84: [xl,xu,nh]=inputv(’> ? ’);
85: if isnan(xl), break; end
86: pltsav=(nh < 0); nh=abs(nh);
87: xtmp=xl+((xu-xl)/ngph)*(0:ngph);
88: fprintf(’\nTo plot the series smoothed ’);
89: fprintf(’over a fraction of the’);
90: fprintf(’\nperiod, input the smoothing ’);
91: fprintf(’fraction’);
92: fprintf(’\n(give 0.0 for no smoothing).\n’);
93: alpha=input(’> ? ’);
94: yfou=fousum(c,xtmp,period,nh,alpha);
95: xxtmp=xtmp; idneg=find(xtmp<0);
96: xng=abs(xtmp(idneg));
97: xxtmp(idneg)=xxtmp(idneg)+ ...
98: period*ceil(xng/period);
99: if nd>0

100: yexac=lintrp(xd,yd,rem(xxtmp,period));
101: else
102: if nopt == 1
103: yexac=feval(fnam,xtmp,period);
104: else
105: x=xxtmp; yexac=eval(strng);
106: end
107: end
108: in=int2str(nh);
109: if alpha == 0
110: titl=[’Fourier Series for Harmonics ’ ...
111: ’up to Order ’,in];
112: else
113: titl=[’Smoothed Fourier Series for ’ ...
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114: ’Harmonics up to Order ’,in];
115: end
116: clf; plot(xtmp,yfou,’-’,xtmp,yexac,’--’);
117: ylabel(’y axis’); xlabel(’x axis’); zoom on
118: title(titl); grid on; figure(gcf); disp(’ ’);
119: disp(’You can zoom in with the mouse button.’)
120: input(’You can press [Enter] to continue. ’,’s’);
121: if pltsav
122: disp(’ ’)
123: filnam=input([’Give a file name to ’ ...
124: ’save the current graph > ? ’],’s’);
125: if length(filnam) > 0
126: eval([’print -deps ’,filnam]);
127: end
128: end
129: end
130:

131: %=============================================
132:

133: function y=sine(x,period)
134: % y=sine(x,period)
135: % ~~~~~~~~~~~~~~~~
136: % Function for all or part of a sine wave.
137: % x,period - vector argument and period
138: % y - function value
139: %
140: y=sin(rem(x,period));
141:

142: %=============================================
143:

144: function yreal=fousum(c,x,period,k,alpha)
145: %
146: % yreal = fousum(c,x,period,k,alpha)
147: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
148: % Sum the Fourier series of a real
149: % valued function.
150: %
151: % x - The vector of real values at
152: % which the series is evaluated.
153: % c - A vector of length n containing
154: % Fourier coefficients output by
155: % the fft function
156: % period - The period of the function
157: % k - The highest harmonic used in
158: % the Fourier sum. This must
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159: % not exceed n/2-1
160: % alpha - If this parameter is nonzero,
161: % the Fourier coefficients are
162: % replaced by those of a function
163: % obtained by averaging the
164: % original function over alpha
165: % times the period
166: % yreal - The real valued Fourier sum
167: % for argument x
168: %
169: % The Fourier coefficients c must have been
170: % computed using the fft function which
171: % transforms the vector [y(1),...,y(n)] into
172: % an array of complex Fourier coefficients
173: % which have been multiplied by n and are
174: % arranged in the order:
175: %
176: % [c(0),c(1),...,c(n/2-1),c(n/2),
177: % c(-n/2+1),...,c(-1)].
178: %
179: % The coefficient c(n/2) cannot be used
180: % since it is actually the sum of c(n/2) and
181: % c(-n/2). For a particular value of n, the
182: % highest usable harmonic is n/2-1.
183: %
184: % User m functions called: none
185: %----------------------------------------------
186:

187: x=x(:); n=length(c);
188: if nargin <4, k=n/2-1; alpha=0; end
189: if nargin <5, alpha=0; end
190: if nargin <3, period=2*pi; end
191: L=period/2; k=min(k,n/2-1); th=(pi/L)*x;
192: i=sqrt(-1); z=exp(i*th);
193: y=c(k+1)*ones(size(th)); pa=pi*alpha;
194: if alpha > 0
195: jj=(1:k)’;
196: c(jj+1)=c(jj+1).*sin(jj*pa)./(jj*pa);
197: end
198: for j=k:-1:2, y=c(j)+y.*z; end
199: yreal=real(c(1)+2*y.*z)/n;
200:

201: %=============================================
202:

203: % function y=lintrp(xd,yd,x)
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204: % See Appendix B
205:

206: %=============================================
207:

208: % function varargout=inputv(prompt)
209: % See Appendix B
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Chapter 7

Dynamic Response of Linear Second Order
Systems

7.1 Solving the Structural Dynamics Equations for Periodic
Applied Forces

The dynamics of a linear structure subjected to periodic forces obeys the matrix
differential equation

MẌ + CẊ +KX = F (t),

with initial conditions
X(0) = D0 , Ẋ(0) = V0.

The solution vectorX(t) has dimension n andM , C, andK are real square matrices
of order n. The mass matrix, M , the damping matrix, C, and the stiffness matrix,
K , are all real. The forcing function F (t), assumed to be real and having period L,
can be approximated by a Þnite trigonometric series as

F (t) =
N∑

k=−N

cke
ıωkt where ωk = 2πk/L

and ı =
√−1. The Fourier coefÞcients ck are vectors that can be computed using

the FFT. The fact that F (t) is real also implies that c−k = conj(ck) and, therefore,

F (t) = c0 + 2 real

(
n∑

k=1

cke
ıωkt

)
.

The solution of the differential equation is naturally resolvable into two distinct parts.
The Þrst is the so called particular or forced response which is periodic and has the
same general mathematical form as the forcing function. Hence, we write

Xp =
n∑

k=−n

Xke
ıωkt = X0 + 2 real

(
n∑

k=1

Xke
ıωkt

)
.

Substituting this series into the differential equation and matching coefÞcients of
eıωkt on both sides yields

Xk = (K − ω2
kM + ıωkC)−1ck.
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The particular solution satisÞes initial conditions given by

Xp(0) = X0 + 2 real

(
n∑

k=1

ck

)
and Ẋp(0) = 2 real

(
n∑

k=1

ıωkck

)
.

Since these conditions usually will not equal the desired values, the particular so-
lution must be combined with what is called the homogeneous or transient solution
Xh, where

MẌh + cẊh +KXh = 0,

with
Xh(0) = D0 −Xp(0) , Ẋh(0) = V0 − Ẋp(0).

The homogeneous solution can be constructed by reducing the original differential
equation to Þrst order form. Let Z be the vector of dimension 2n which is the
concatenation of X and Ẋ = V . Hence, Z = [X ;V ] and the original equation of
motion is

dZ

dt
= AZ + P (t)

where

A =
[

0 I
−M−1K −M−1C

]
and P =

[
0

m−1F

]
.

The homogeneous differential equation resulting when P = 0 can be solved in terms
of the eigenvalues and eigenvectors of matrix A. If we know the eigenvalues λ j and
eigenvectors Uj satisfying

AU = λU , 1 ≤  ≤ 2n,

then the homogeneous solution can be written as

Z =
2n∑
=1

zUe
ıωt.

The weighting coefÞcients z are computed to satisfy the desired initial conditions
which require

[
U1, U2, · · · , U2n

]


z1
...
z2n


 =

[
X0 −Xp(0)
V0 − Ẋp(0)

]
.

We solve this system of equations for z1, · · · , z2n and replace each U by zU. Then
the homogeneous solution is

Xh =
n∑

=1

U(1 : n)eλt
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where U(1 : n) means we take only the Þrst n elements of column .
In most practical situations, the matrix C is nonzero and the eigenvalues λ 1, · · · ,

λ2n have negative real parts. Then the exponential terms eλt all decay with increas-
ing time, which is why Xh is often known as the transient solution . In other cases,
where the damping matrix C is zero, the eigenvalues λ  are typically purely imagi-
nary, and the homogeneous solution does not die out. In either instance, it is often
customary in practical situations to ignore the homogeneous solution because it is
usually small when compared to the contribution of the particular solution.

7.1.1 Application to Oscillations of a Vertically
Suspended Cable

Let us solve the problem of small transverse vibrations of a vertically suspended
cable. This system illustrates how the natural frequencies and mode shapes of a
linear system can be combined to satisfy general initial conditions on position and
velocity.

The cable in Figure 7.1 is idealized as a series of n rigid links connected at fric-
tionless joints. Two vectors, consisting of link lengths [�1, �2, · · · , �n] and masses
[m1,m2, · · · ,mn] lumped at the joints, characterize the system properties. The ac-
celerations in the vertical direction will be negligibly small compared to transverse
accelerations, because the transverse displacements are small. Consequently, the ten-
sion in the chain will remain close to the static equilibrium value. This means the
tension in link ı is

Tı = gbı where bı =
n∑

=ı

m.

We assume that the transverse displacement yı for mass mı is small compared to
the total length of the cable. A free body diagram for mass ı is shown in Fig-
ure 7.2. The small deßection angles are related to the transverse deßections by
θı+1 = (yı+1 − yı) �ı+1 and θı = (yı − yı−1) /�ı. Summation of forces shows
that the horizontal acceleration is governed by

mıÿı = g(bı+1/�ı+1) (yı+1 − yı) − g(bı/�ı) (yı − yı−1)
= g(bı/�ı)yı−1 − g(bı/�ı + bı+1/�ı+1)yı + g(bı+1/�ı+1)yı+1.

In matrix form this equation is

MŸ +KY = 0

where M is a diagonal matrix of mass coefÞcients and K is a symmetric tridiagonal
matrix. The natural modes of free vibration are dynamical states where each element
of the system simultaneously moves with harmonic motion of the same frequency.
This means we seek motions of the form Y = U cos(ωt), or equivalently Y =
U sin(ωt), which implies

KU = λMU where λ = ω2
 for 1 ≤  ≤ n.
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Figure 7.1: Transverse Cable Vibration

Solving the eigenvalue problem (M −1K)U = λU gives the natural frequencies
ω1, · · · , ωn and the modal vectors U1, · · · , Un. The response to general initial con-
ditions is then obtained by superposition of the component modes. We write

Y =
n∑

=1

cos(ωt)Uc + sin(ωt)Ud/ω

where the coefÞcients c1, · · · , cn and d1, · · · , dn (not to be confused with Fourier
coefÞcients) are determined from the initial conditions as

[
U1, · · · , Un

]


c1
...
cn


 = Y (0) , c = U−1Y (0),

[
U1, · · · , Un

]


d1

...
dn


 = Ẏ (0) , d = U−1Ẏ (0).

The following program determines the cable response for general initial conditions.
The natural frequencies and mode shapes are computed along with an animation of
the motion.

The cable motion produced when an initially vertical system is given the same
initial transverse velocity for all masses was studied. Graphical results of the analysis
appear in Figures 7.3 through 7.6. The surface plot in Figure 7.3 shows the cable
deßection pattern in terms of longitudinal position and time. Figure 7.4 shows the
deßection pattern at two times. Figure 7.5 traces the motion of the middle and the

© 2003 by CRC Press LLC



�

θı

θı+1

Tı = gbı

Tı+1 = gbı+1

mı

mıg

Figure 7.2: Forces on ı�th Mass

free end. At t = 1, the wave propagating downward from the support point is about
halfway down the cable. By t = 2, the wave has reached the free end and the cable
is about to swing back. Finally, traces of cable positions during successive stages of
motion appear in Figure 7.6.
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MATLAB Example

Program cablinea

1: function cablinea
2: % Example: cablinea
3: % ~~~~~~~~~~~~~~~~~
4: % This program uses modal superposition to
5: % compute the dynamic response of a cable
6: % suspended at one end and free at the other.
7: % The cable is given a uniform initial
8: % velocity. Time history plots and animation
9: % of the motion are provided.

10: %
11: % User m functions required:
12: % cablemk, udfrevib, canimate
13:

14: % Initialize graphics
15: hold off; axis(’normal’); close;
16:

17: % Set physical parameters
18: n=30; gravty=1.; masses=ones(n,1)/n;
19: lengths=ones(n,1)/n;
20:

21: % Obtain mass and stiffness matrices
22: [m,k]=cablemk(masses,lengths,gravty);
23:

24: % Assign initial conditions & time limit
25: % for solution
26: dsp=zeros(n,1); vel=ones(n,1);
27: tmin=0; tmax=10; ntim=30;
28:

29: % Compute the solution by modal superposition
30: [t,u,modvc,natfrq]=...
31: udfrevib(m,k,dsp,vel,tmin,tmax,ntim);
32:

33: % Interpret results graphically
34: nt1=sum(t<=tmin); nt2=sum(t<=tmax);
35: u=[zeros(ntim,1),u];
36: y=cumsum(lengths); y=[0;y(:)];
37:

38: % Plot deflection surface
39: disp(’ ’), disp(’TRANSVERSE MOTION OF A CABLE’)
40: surf(y,t,u); xlabel(’y axis’); ylabel(’time’);
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41: zlabel(’transverse deflection’);
42: title(’Surface Showing Cable Deflection’);
43: colormap(’default’), view([30,30]); figure(gcf);
44: disp([’Press [Enter] to see the cable ’,...
45: ’position at two times’])
46: pause, %print -deps surface
47:

48: % Show deflection configuration at two times
49: % Use closer time increment than was used
50: % for the surface plots.
51: mtim=4*ntim;
52: [tt,uu,modvc,natfrq]=...
53: udfrevib(m,k,dsp,vel,tmin,tmax,mtim);
54: uu=[zeros(mtim,1),uu];
55: tp1=.1*tmax; tp2=.2*tmax;
56: s1=num2str(tp1); s2=num2str(tp2);
57: np1=sum(tt<=tp1); np2=sum(tt<=tp2);
58: u1=uu(np1,:); u2=uu(np2,:);
59: yp=flipud(y(:)); ym=max(yp);
60: plot(u1,yp,’-’,u2,yp,’--’);
61: ylabel(’distance from bottom’);
62: xlabel(’transverse displacement’);
63: title([’Cable Transverse Deflection ’ ...
64: ’at t = ’,s1,’ and t = ’,s2]);
65: legend(’t = 1’, ’t = 2’);
66:

67: xm=.2*max([u1(:);u2(:)]);
68: ntxt=int2str(n); n2=1+fix(n/2);
69: str=strvcat(...
70: ’The cable was initially vertical and was’,...
71: ’given a uniform transverse velocity.’,...
72: [’A ’,ntxt,’ link model was used.’]);
73: text(xm,.9*ym,str), figure(gcf);
74: disp([’Press [Enter] to show the time ’,...
75: ’response at the middle and free end’])
76: pause, %print -deps twoposn
77:

78: % Plot time history for the middle and the end
79: clf; plot(tt,uu(:,n2),’--’,tt,uu(:,n+1),’-’);
80: xlabel(’dimensionless time’);
81: ylabel(’transverse displacement’);
82: title([’Position versus Time for the ’ ...
83: ’Cable Middle and End’])
84: legend(’Midpoint’,’Lower end’);
85: figure(gcf);
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86: disp(’Press [Enter] for a motion trace’)
87: pause, %print -deps 2timhist
88:

89: % Plot animation of motion history
90: clf; canimate(y,u,t,0,.5*max(t),1);
91: %print -deps motntrac
92: disp(’Press [Enter] to finish’), pause, close;
93:

94: %=============================================
95:

96: function [m,k]=cablemk(masses,lngths,gravty)
97: %
98: % [m,k]=cablemk(masses,lngths,gravty)
99: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

100: % Form the mass and stiffness matrices for
101: % the cable.
102: %
103: % masses - vector of masses
104: % lngths - vector of link lengths
105: % gravty - gravity constant
106: % m,k - mass and stiffness matrices
107: %
108: % User m functions called: none.
109: %----------------------------------------------
110:

111: m=diag(masses);
112: b=flipud(cumsum(flipud(masses(:))))* ...
113: gravty./lngths;
114: n=length(masses); k=zeros(n,n); k(n,n)=b(n);
115: for i=1:n-1
116: k(i,i)=b(i)+b(i+1); k(i,i+1)=-b(i+1);
117: k(i+1,i)=k(i,i+1);
118: end
119:

120: %=============================================
121:

122: function [t,u,mdvc,natfrq]=...
123: udfrevib(m,k,u0,v0,tmin,tmax,nt)
124: %
125: % [t,u,mdvc,natfrq]= ...
126: % udfrevib(m,k,u0,v0,tmin,tmax,nt)
127: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
128: % This function computes undamped natural
129: % frequencies, modal vectors, and time response
130: % by modal superposition. The matrix
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131: % differential equation and initial conditions
132: % are
133: %
134: % m u’’ + k u = 0, u(0) = u0, u’(0) = v0
135: %
136: % m,k - mass and stiffness matrices
137: % u0,v0 - initial position and velocity
138: % vectors
139: % tmin,tmax - time limits for solution
140: % evaluation
141: % nt - number of times for solution
142: % t - vector of solution times
143: % u - matrix with row j giving the
144: % system response at time t(j)
145: % mdvc - matrix with columns which are
146: % modal vectors
147: % natfrq - vector of natural frequencies
148: %
149: % User m functions called: none.
150: %----------------------------------------------
151:

152: % Call function eig to compute modal vectors
153: % and frequencies
154: [mdvc,w]=eig(m\k);
155: [w,id]=sort(diag(w)); w=sqrt(w);
156:

157: % Arrange frequencies in ascending order
158: mdvc=mdvc(:,id); z=mdvc\[u0(:),v0(:)];
159:

160: % Generate vector of equidistant times
161: t=linspace(tmin,tmax,nt);
162:

163: % Evaluate the displacement as a
164: % function of time
165: u=(mdvc*diag(z(:,1)))*cos(w*t)+...
166: (mdvc*diag(z(:,2)./w))*sin(w*t);
167: t=t(:); u=u’; natfrq=w;
168:

169: %=============================================
170:

171: function canimate(y,u,t,tmin,tmax,norub)
172: %
173: % canimate(y,u,t,tmin,tmax,norub)
174: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
175: % This function draws an animated plot of
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176: % data values stored in array u. The
177: % different columns of u correspond to position
178: % values in vector y. The successive rows of u
179: % correspond to different times. Parameter
180: % tpause controls the speed of the animation.
181: %
182: % u - matrix of values for which
183: % animated plots of u versus y
184: % are required
185: % y - spatial positions for different
186: % columns of u
187: % t - time vector at which positions
188: % are known
189: % tmin,tmax - time limits for graphing of the
190: % solution
191: % norub - parameter which makes all
192: % position images remain on the
193: % screen. Only one image at a
194: % time shows if norub is left out.
195: % A new cable position appears each
196: % time the user presses any key
197: %
198: % User m functions called: none.
199: %----------------------------------------------
200:

201: % If norub is input,
202: % all images are left on the screen
203: if nargin < 6
204: rubout = 1;
205: else
206: rubout = 0;
207: end
208:

209: % Determine window limits
210: umin=min(u(:)); umax=max(u(:)); udif=umax-umin;
211: uavg=.5*(umin+umax);
212: ymin=min(y); ymax=max(y); ydif=ymax-ymin;
213: yavg=.5*(ymin+ymax);
214: ywmin=yavg-.55*ydif; ywmax=yavg+.55*ydif;
215: uwmin=uavg-.55*udif; uwmax=uavg+.55*udif;
216: n1=sum(t<=tmin); n2=sum(t<=tmax);
217: t=t(n1:n2); u=u(n1:n2,:);
218: u=fliplr (u); [ntime,nxpts]=size(u);
219:

220: hold off; cla; ey=0; eu=0; axis(’square’);
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221: axis([uwmin,uwmax,ywmin,ywmax]);
222: axis off; hold on;
223: title(’Trace of Linearized Cable Motion’);
224:

225: % Plot successive positions
226: for j=1:ntime
227: ut=u(j,:); plot(ut,y,’-’);
228: figure(gcf); pause(.5);
229:

230: % Erase image before next one appears
231: if rubout & j < ntime, cla, end
232: end

7.2 Direct Integration Methods

Using stepwise integration methods to solve the structural dynamics equation pro-
vides an alternative to frequency analysis methods. If we invert the mass matrix and
save the result for later use, the n degree-of-freedom system can be expressed con-
cisely as a Þrst order system in 2n unknowns for a vector z = [x; v], where v is the
time derivative of x. The system can be solved by applying the variable step-size
differential equation integrator ode45 as indicated in the following function:

function [t,x]=strdynrk(t,x0,v0,m,c,k,functim)
% [t,x]=strdynrk(t,x0,v0,m,c,k,functim)
global Mi C K F n n1 n2
Mi=inv(m); C=c; K=k; F=functim;
n=size(m,1); n1=1:n; n2=n+1:2*n;
[t,z]=ode45(@sde,t,[x0(:);v0(:)]); x=z(:,n1);
%================================
function zp=sde(t,z)
global Mi C K F n n1 n2
zp=[z(n2); Mi*(feval(F,t)-C*z(n2)-K*z(n1))];
%================================
function f=func(t)
% m=eye(3,3); k=[2,-1,0;-1,2,-1;0,-1,2];
% c=.05*k;
f=[-1;0;1]*sin(1.413*t);

In this function, the inverted mass matrix is stored in a global variable Mi, the
damping and stiffness matrices are in C and K , and the forcing function name is
stored in a character string called functim. Although this approach is easy to im-
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plement, the resulting analysis can be very time consuming for systems involving
several hundred degrees of freedom. Variable step integrators make adjustments to
control stability and accuracy which can require very small integration steps. Con-
sequently, less sophisticated formulations employing Þxed step-size are often em-
ployed in Þnite element programs. We will investigate two such algorithms derived
from trapezoidal integration rules [7, 113]. The two fundamental integration formu-
las [26] needed are:

∫ b

a

f(t)dt =
h

2
[f(a) + f(b)] − h3

12
f ′′(ε1)

and ∫ b

a

f(t)dt =
h

2
[f(a) + f(b)] +

h2

12
[f ′(a) − f ′(b)] +

h5

720
f (4)(ε2)

where a < εi < b and h = b−a. The Þrst formula, called the trapezoidal rule , gives
a zero truncation error term when applied to a linear function. Similarly, the second
formula, called the trapezoidal rule with end correction , has a zero Þnal term for a
cubic integrand.

The idea is to multiply the differential equation by dt, integrate from t to (t+ h),
and employ numerical integration formulas while observing that M , C, and K are
constant matrices, or

M

∫ t+h

t

V̇ dt+ C

∫ t+h

t

Ẋ dt+K

∫ t+h

t

X dt =
∫ t+h

t

P (t) dt

and ∫ t+h

t

Ẋ dt =
∫ t+h

t

V dt.

For brevity we utilize a notation characterized by X(t) = X0, X(t + h) = X1,
X̃ = X1 −X0. The trapezoidal rule immediately leads to

[
M +

h

2
C +

h2

4
K

]
Ṽ =

∫ t+h

t

P (t)dt− h

[
CV0 +K(X0 +

h

2
V0)

]
+ O(h3).

The last equation is a balance of impulse and momentum change involving the effec-
tive mass matrix

Me =
[
M +

h

2
C +

h2

4
K

]

which can be inverted once and used repeatedly if the step-size is not changed.
To integrate the forcing function we can use the midpoint rule [26] which states

that ∫ b

a

P (t) dt = hP

(
a+ b

2

)
+ O(h3).
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Solving for Ṽ yields

Ṽ =
[
M +

h

2
C +

h2

4
K

]−1 [
P

(
t+

h

2

)
− CV0 −K

(
X0 +

h

2
V0

)
h

]
+O(h3).

The velocity and position at (t+ h) are then computed as

V1 = V0 + Ṽ , X1 = X0 +
h

2
[V0 + V1] +O(h3).

A more accurate formula with truncation error of order h 5 can be developed from
the extended trapezoidal rule. This leads to

MṼ + CX̃ +K

[
h

2
(X̃ + 2X0) − h2

12
Ṽ

]
=

∫ t+h

t

P (t)dt+O(h5)

and

X̃ =
h

2
[Ṽ + 2V0] +

h2

12
[V̇0 − V̇1] +O(h5).

Multiplying the last equation byM and employing the differential equation to reduce
the V̇0 − V̇1 terms gives

MX̃ =
h

2
M [Ṽ + 2V0] +

h2

12
[−P̃ + CṼ +KX̃] +O(h5).

These results can be arranged into a single matrix equation to be solved for X̃ and
Ṽ :[

−(h
2M + h2

12C) (M − h2

12K)
(M − h2

12K) (C + h
2K)

] [
Ṽ

X̃

]
=

[
hMV0 + h2

12 (P0 − P1)∫
Pdt− hKX0

]
+O(h5).

A Gauss two-point formula [26] evaluates the force integral consistent with the de-
sired error order so that∫ t+h

t

P (t)dt =
h

2
[P (t+ αh) + P (t+ βh)] +O(h5)

where α = 3−√
3

6 and β = 3+
√

3
6 .

7.2.1 Example on Cable Response by Direct Integration

Functions implementing the last two algorithms appear in the following program
which solves the previously considered cable dynamics example by direct integra-
tion. Questions of computational efÞciency and numerical accuracy are examined for
two different step-sizes. Figures 7.7 and 7.8 present solution times as multiples of
the times needed for a modal response solution. The accuracy measures employed
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Figure 7.7: Solution Error for Implicit 2nd Order Integrator

are described next. Note that the displacement response matrix has rows describ-
ing system positions at successive times. Consequently, a measure of the difference
between approximate and exact solutions is given by the vector

error_vector = \bsqrt(\bsum(((x_aprox-x_exact).�2)�));

Typically this vector has small initial components (near t = 0) and larger compo-
nents (near the Þnal time). The error measure is compared for different integrators
and time steps in the Þgures. Note that the fourth order integrator is more efÞcient
than the second order integrator because a larger integration step can be taken with-
out excessive loss in accuracy. Using h = 0.4 for mckde4i achieved nearly the same
accuracy as that given by mckde2i with h = 0.067. However, the computation time
for mckde2i was several times as large as that for mckde4i.

In the past it has been traditional to use only second order methods for solving
the structural dynamics equation. This may have been dictated by considerations on
computer memory. Since workstations widely available today have relatively large
memories and can invert a matrix of order two hundred in about half a second, it
appears that use of high order integrators may gain in popularity.

The following computer program concludes our chapter on the solution of linear,
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Figure 7.8: Solution Error for Implicit 4th Order Integrator

constant-coefÞcient matrix differential equations. Then we will study, in the next
chapter, the Runge-Kutta method for integrating nonlinear problems.
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MATLAB Example

Program deislner

1: sfunction deislner
2: %
3: % Example: deislner
4: % ~~~~~~~~~~~~~~~~~~
5: % Solution error for simulation of cable
6: % motion using a second or a fourth order
7: % implicit integrator.
8: %
9: % This program uses implicit second or fourth

10: % order integrators to compute the dynamical
11: % response of a cable which is suspended at
12: % one end and is free at the other end. The
13: % cable is given a uniform initial velocity.
14: % A plot of the solution error is given for
15: % two cases where approximate solutions are
16: % generated using numerical integration rather
17: % than modal response which is exact.
18: %
19: % User m functions required:
20: % mckde2i, mckde4i, cablemk, udfrevib,
21: % plterror
22:

23: % Choose a model having twenty links of
24: % equal length
25:

26: fprintf(...
27: ’\nPlease wait: solution takes a while\n’)
28: clear all
29: n=20; gravty=1.; n2=1+fix(n/2);
30: masses=ones(n,1)/n; lengths=ones(n,1)/n;
31:

32: % First generate the exact solution by
33: % modal superposition
34: [m,k]=cablemk(masses,lengths,gravty);
35: c=zeros(size(m));
36: dsp=zeros(n,1); vel=ones(n,1);
37: t0=0; tfin=50; ntim=126; h=(tfin-t0)/(ntim-1);
38:

39: % Numbers of repetitions each solution is
40: % performed to get accurate cpu times for
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41: % the chosen step sizes are shown below.
42: % Parameter jmr may need to be increased to
43: % give reliable cpu times on fast computers
44:

45: jmr=500;
46: j2=fix(jmr/50); J2=fix(jmr/25);
47: j4=fix(jmr/20); J4=fix(jmr/10);
48:

49: % Loop through all solutions repeatedly to
50: % obtain more reliable timing values on fast
51: % computers
52: tic;
53: for j=1:jmr;
54: [tmr,xmr]=udfrevib(m,k,dsp,vel,t0,tfin,ntim);
55: end
56: tcpmr=toc/jmr;
57:

58: % Second order implicit results
59: i2=10; h2=h/i2; tic;
60: for j=1:j2
61: [t2,x2]=mckde2i(m,c,k,t0,dsp,vel,tfin,h2,i2);
62: end
63: tcp2=toc/j2; tr2=tcp2/tcpmr;
64:

65: I2=5; H2=h/I2; tic;
66: for j=1:J2
67: [T2,X2]=mckde2i(m,c,k,t0,dsp,vel,tfin,H2,I2);
68: end
69: Tcp2=toc/J2; Tr2=Tcp2/tcpmr;
70:

71: % Fourth order implicit results
72: i4=2; h4=h/i4; tic;
73: for j=1:j4
74: [t4,x4]=mckde4i(m,c,k,t0,dsp,vel,tfin,h4,i4);
75: end
76: tcp4=toc/j4; tr4=tcp4/tcpmr;
77:

78: I4=1; H4=h/I4; tic;
79: for j=1:J4
80: [T4,X4]=mckde4i(m,c,k,t0,dsp,vel,tfin,H4,I4);
81: end
82: Tcp4=toc/J4; Tr4=Tcp4/tcpmr;
83:

84: % Plot error measures for each solution
85: plterror(xmr,t2,h2,x2,T2,H2,X2,...
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86: t4,h4,x4,T4,H4,X4,tr2,Tr2,tr4,Tr4)
87:

88: %=============================================
89:

90: function [t,x,tcp] = ...
91: mckde2i(m,c,k,t0,x0,v0,tmax,h,incout,forc)
92: %
93: % [t,x,tcp]= ...
94: % mckde2i(m,c,k,t0,x0,v0,tmax,h,incout,forc)
95: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96: % This function uses a second order implicit
97: % integrator % to solve the matrix differential
98: % equation
99: % m x’’ + c x’ + k x = forc(t)

100: % where m,c, and k are constant matrices and
101: % forc is an externally defined function.
102: %
103: % Input:
104: % ------
105: % m,c,k mass, damping and stiffness matrices
106: % t0 starting time
107: % x0,v0 initial displacement and velocity
108: % tmax maximum time for solution evaluation
109: % h integration stepsize
110: % incout number of integration steps between
111: % successive values of output
112: % forc externally defined time dependent
113: % forcing function. This parameter
114: % should be omitted if no forcing
115: % function is used.
116: %
117: % Output:
118: % -------
119: % t time vector going from t0 to tmax
120: % in steps of
121: % x h*incout to yield a matrix of
122: % solution values such that row j
123: % is the solution vector at time t(j)
124: % tcp computer time for the computation
125: %
126: % User m functions called: none.
127: %----------------------------------------------
128:

129: if (nargin > 9); force=1; else, force=0; end
130: if nargout ==3, tcp=clock; end
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131: hbig=h*incout;
132: t=(t0:hbig:tmax)’; n=length(t);
133: ns=(n-1)*incout; ts=t0+h*(0:ns)’;
134: xnow=x0(:); vnow=v0(:);
135: nvar=length(x0);
136: jrow=1; jstep=0; h2=h/2;
137:

138: % Form the inverse of the effective
139: % stiffness matrix
140: mnv=h*inv(m+h2*(c+h2*k));
141:

142: % Initialize the output matrix for x
143: x=zeros(n,nvar); x(1,:)=xnow’;
144: zroforc=zeros(length(x0),1);
145:

146: % Main integration loop
147: for j=1:ns
148: tj=ts(j);tjh=tj+h2;
149: if force
150: dv=feval(forc,tjh);
151: else
152: dv=zroforc;
153: end
154: dv=mnv*(dv-c*vnow-k*(xnow+h2*vnow));
155: vnext=vnow+dv;xnext=xnow+h2*(vnow+vnext);
156: jstep=jstep+1;
157: if jstep == incout
158: jstep=0; jrow=jrow+1; x(jrow,:)=xnext’;
159: end
160: xnow=xnext; vnow=vnext;
161: end
162: if nargout ==3
163: tcp=etime(clock,tcp);
164: else
165: tcp=[];
166: end
167:

168: %=============================================
169:

170: function [t,x,tcp] = ...
171: mckde4i(m,c,k,t0,x0,v0,tmax,h,incout,forc)
172: %
173: % [t,x,tcp]= ...
174: % mckde4i(m,c,k,t0,x0,v0,tmax,h,incout,forc)
175: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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176: % This function uses a fourth order implicit
177: % integrator with fixed stepsize to solve the
178: % matrix differential equation
179: % m x’’ + c x’ + k x = forc(t)
180: % where m,c, and k are constant matrices and
181: % forc is an externally defined function.
182: %
183: % Input:
184: % ------
185: % m,c,k mass, damping and stiffness matrices
186: % t0 starting time
187: % x0,v0 initial displacement and velocity
188: % tmax maximum time for solution evaluation
189: % h integration stepsize
190: % incout number of integration steps between
191: % successive values of output
192: % forc externally defined time dependent
193: % forcing function. This parameter
194: % should be omitted if no forcing
195: % function is used.
196: %
197: % Output:
198: % -------
199: % t time vector going from t0 to tmax
200: % in steps of h*incout
201: % x matrix of solution values such
202: % that row j is the solution vector
203: % at time t(j)
204: % tcp computer time for the computation
205: %
206: % User m functions called: none.
207: %----------------------------------------------
208:

209: if nargin > 9, force=1; else, force=0; end
210: if nargout ==3, tcp=clock; end
211: hbig=h*incout; t=(t0:hbig:tmax)’;
212: n=length(t); ns=(n-1)*incout; nvar=length(x0);
213: jrow=1; jstep=0; h2=h/2; h12=h*h/12;
214:

215: % Form the inverse of the effective stiffness
216: % matrix for later use.
217:

218: m12=m-h12*k;
219: mnv=inv([[(-h2*m-h12*c),m12];
220: [m12,(c+h2*k)]]);
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221:

222: % The forcing function is integrated using a
223: % 2 point Gauss rule
224: r3=sqrt(3); b1=h*(3-r3)/6; b2=h*(3+r3)/6;
225:

226: % Initialize output matrix for x and other
227: % variables
228: xnow=x0(:); vnow=v0(:);
229: tnow=t0; zroforc=zeros(length(x0),1);
230:

231: if force
232: fnow=feval(forc,tnow);
233: else
234: fnow=zroforc;
235: end
236: x=zeros(n,nvar); x(1,:)=xnow’; fnext=fnow;
237:

238: % Main integration loop
239: for j=1:ns
240: tnow=t0+(j-1)*h; tnext=tnow+h;
241: if force
242: fnext=feval(forc,tnext);
243: di1=h12*(fnow-fnext);
244: di2=h2*(feval(forc,tnow+b1)+ ...
245: feval(forc,tnow+b2));
246: z=mnv*[(di1+m*(h*vnow)); (di2-k*(h*xnow))];
247: fnow=fnext;
248: else
249: z=mnv*[m*(h*vnow); -k*(h*xnow)];
250: end
251: vnext=vnow + z(1:nvar);
252: xnext=xnow + z((nvar+1):2*nvar);
253: jstep=jstep+1;
254:

255: % Save results every incout steps
256: if jstep == incout
257: jstep=0; jrow=jrow+1; x(jrow,:)=xnext’;
258: end
259:

260: % Update quantities for next step
261: xnow=xnext; vnow=vnext; fnow=fnext;
262: end
263: if nargout==3
264: tcp=etime(clock,tcp);
265: else
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266: tcp=[];
267: end
268:

269: %=============================================
270:

271: function [m,k]=cablemk(masses,lngths,gravty)
272: %
273: % [m,k]=cablemk(masses,lngths,gravty)
274: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
275: % Form the mass and stiffness matrices for
276: % the cable.
277: %
278: % masses - vector of masses
279: % lngths - vector of link lengths
280: % gravty - gravity constant
281: % m,k - mass and stiffness matrices
282: %
283: % User m functions called: none.
284: %----------------------------------------------
285:

286: m=diag(masses);
287: b=flipud(cumsum(flipud(masses(:))))* ...
288: gravty./lngths;
289: n=length(masses); k=zeros(n,n); k(n,n)=b(n);
290: for i=1:n-1
291: k(i,i)=b(i)+b(i+1); k(i,i+1)=-b(i+1);
292: k(i+1,i)=k(i,i+1);
293: end
294:

295: %=============================================
296:

297: function plterror(xmr,t2,h2,x2,T2,H2,X2,...
298: t4,h4,x4,T4,H4,X4,tr2,Tr2,tr4,Tr4)
299: % plterror(xmr,t2,h2,x2,T2,H2,X2,...
300: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
301: % t4,h4,x4,T4,H4,X4,tr2,Tr2,tr4,Tr4)
302: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
303: % Plots error measures showing how different
304: % integrators and time steps compare with
305: % the exact solution using modal response.
306: %
307: % User m functions called: none
308: %----------------------------------------------
309:

310: % Compare the maximum error in any component
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311: % at each time with the largest deflection
312: % occurring during the complete time history
313: maxd=max(abs(xmr(:)));
314: er2=max(abs(x2-xmr)’)/maxd;
315: Er2=max(abs(X2-xmr)’)/maxd;
316: er4=max(abs(x4-xmr)’)/maxd;
317: Er4=max(abs(X4-xmr)’)/maxd;
318:

319: plot(t2,er2,’-’,T2,Er2,’--’);
320: title([’Solution Error For Implicit ’,...
321: ’2nd Order Integrator’]);
322: xlabel(’time’);
323: ylabel(’solution error measure’);
324: lg1=[’h= ’, num2str(h2), ...
325: ’, relative cputime= ’, num2str(tr2)];
326: lg2=[’h= ’, num2str(H2), ...
327: ’, relative cputime= ’, num2str(Tr2)];
328: legend(lg1,lg2,2); figure(gcf);
329: disp(’Press [Enter] to continue’); pause
330: % print -deps deislne2
331:

332: plot(t4,er4,’-’,T4,Er4,’--’);
333: title([’Solution Error For Implicit ’,...
334: ’4th Order Integrator’]);
335: xlabel(’time’);
336: ylabel(’solution error measure’);
337: lg1=[’h= ’, num2str(h4), ...
338: ’, relative cputime= ’, num2str(tr4)];
339: lg2=[’h= ’, num2str(H4), ...
340: ’, relative cputime= ’, num2str(Tr4)];
341: legend(lg1,lg2,2); figure(gcf);
342: % print -deps deislne4
343: disp(’ ’), disp(’All Done’)
344:

345: %=============================================
346:

347: % function [t,u,mdvc,natfrq]=...
348: % udfrevib(m,k,u0,v0,tmin,tmax,nt)
349: % See Appendix B
350:
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Chapter 8

Integration of Nonlinear Initial Value
Problems

8.1 General Concepts on Numerical Integration of Nonlinear Ma-
trix Differential Equations

Methods for solving differential equations numerically are one of the most valu-
able analysis tools now available. Inexpensive computer power and user friendly
software are stimulating wider use of digital simulation methods. At the same time,
intelligent use of numerically integrated solutions requires appreciation of inherent
limitations of the techniques employed. The present chapter discusses the widely
used Runge-Kutta method and applies it to some speciÞc examples.

When physical systems are described by mathematical models, it is common that
various system parameters are only known approximately. For example, to predict
the response of a building undergoing earthquake excitation, simpliÞed formulations
may be necessary to handle the elastic and frictional characteristics of the soil and the
building. Our observation that simple models are used often to investigate behavior
of complex systems does not necessarily amount to a rejection of such procedures. In
fact, good engineering analysis depends critically on development of reliable mod-
els which can capture salient features of a process without employing unnecessary
complexity. At the same time, analysts need to maintain proper caution regarding
trustworthiness of answers produced with computer models. Nonlinear system re-
sponse sometimes changes greatly when only small changes are made in the physical
parameters. Scientists today realize that, in dealing with highly nonlinear phenom-
ena such as weather prediction, it is simply impossible to make reliable long term
forecasts [45] because of various unalterable factors. Among these are a) uncertainty
about initial conditions, b) uncertainty about the adequacy of mathematical mod-
els describing relevant physical processes, c) uncertainty about error contributions
arising from use of spatial and time discretizations in construction of approximate
numerical solutions, and d) uncertainty about effects of arithmetic roundoff error. In
light of the criticism and cautions being stated about the dangers of using numerical
solutions, the thrust of the discussion is that idealized models must not be regarded
as infallible, and no numerical solution should be accepted as credible without ad-
equately investigating effects of parameter perturbation within uncertainty limits of
the parameters. To illustrate how sensitive a system can be to initial conditions, we
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might consider a very simple model concerning motion of a pendulum of length �
given an initial velocity v0 starting from a vertically downward position. If v0 ex-
ceeds 2

√
g�, the pendulum will reach a vertically upward position and will go over

the top. If v0 is less than 2
√
g�, the vertically upward position is never reached.

Instead, the pendulum oscillates about the bottom position. Consequently, initial
velocities of 1.999

√
g� and 2.001

√
g� produce quite different system behavior with

only a tiny change in initial velocity. Other examples illustrating the difÞculties of
computing the response of nonlinear systems are cited below. These examples are
not chosen to discourage use of the powerful tools now available for numerical in-
tegration of differential equations. Instead, the intent is to encourage users of these
methods to exercise proper caution so that conÞdence in the reliability of results is
fully justiÞed.

Many important physical processes are governed by differential equations. Typical
cases include dynamics of rigid and ßexible bodies, heat conduction, and electrical
current ßow. Solving a system of differential equations subject to known initial con-
ditions allows us to predict the future behavior of the related physical system. Since
very few important differential equations can be solved in closed form, approxima-
tions which are directly or indirectly founded on series expansion methods have been
developed. The basic problem addressed is that of accurately computing Y (t + h)
when Y (t) is known, along with a differential equation governing system behavior
from time t to (t + h). Recursive application of a satisfactory numerical approx-
imation procedure, with possible adjustment of step-size to maintain accuracy and
stability, allows approximate prediction of system response subsequent to the starting
time.

Numerical methods for solving differential equations are important tools for an-
alyzing engineering systems. Although valuable algorithms have been developed
which facilitate construction of approximate solutions, all available methods are
vulnerable to limitations inherent in the underlying approximation processes. The
essence of the difÞculty lies in the fact that, as long as a Þnite integration step-size
is used, integration error occurs at each time step. These errors sometimes have an
accumulative effect which grows exponentially and eventually destroys solution va-
lidity. To some extent, accuracy problems can be limited by regulating step-size to
keep local error within a desired tolerance. Typically, decreasing an integration tol-
erance increases the time span over which a numerical solution is valid. However,
high costs for supercomputer time to analyze large and complex systems sometimes
preclude generation of long time histories which may be more expensive than is
practically justiÞable.
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8.2 Runge-Kutta Methods and the ODE45 Integrator Provided
in MATLAB

Formulation of one method to solve differential equations is discussed in this sec-
tion. Suppose a function y(x) satisÞes a differential equation of the form y ′(x) =
f(x, y), subject to y(x0) = y0, where f is a known differentiable function. We
would like to compute an approximation of y(x0 + h) which agrees with a Taylor�s
series expansion up to a certain order of error. Hence,

y(x0 + h) = ỹ(x0, h) +O(hn+1)

where O(hn+1) denotes a quantity which decreases at least as fast as hn+1 for small
h. Taylor�s theorem allows us to write

y(x0 + h) = y(x0) + y′(x0)h+
1
2
y′′(x0)h2 +O(h3)

= y0 + f(x0, y0)h+
1
2
[fx(x0, y0) + fy(x0, y0)f0]h2 +O(h3)

where f0 = f(x0, y0). The last formula can be used to compute a second order
approximation ŷ(x0+h), provided the partial derivatives fx and fy can be evaluated.
However, this may be quite difÞcult since the function f(x, y) may not even be
known explicitly.

The idea leading to Runge-Kutta integration is to compute y(x0 + h) by making
several evaluations of function f instead of having to differentiate that function. Let
us seek an approximation in the form

ỹ(x0 + h) = y0 + h[k0f0 + k1f(x0 + αh, y0 + βhf0)].

We choose k0, k1, α, and β to make ỹ(x0 + h) match the series expansion of y(x)
as well as possible. Since

f(x0 + αh, y0 + βhf0) = f0 + [fx(x0, y0)α+ fy(x0, y0)f0β]h+O(h2),

we must have

ỹ(x0 + h) = y0 + h[(k0 + k1)f0 + k1〈fx(x0, y0)α+ fy(x0, y0)βf0〉]h+O(h2)

= y0 + (k0 + k1)f0h+ [fx(x0, y0)αk1 + fy(x0, y0)f0βk1]h2 +O(h3).

The last relation shows that

y(x0 + h) = ỹ(x0 + h) +O(h3)

provided

k0 + k1 = 1 , αk1 =
1
2
, βk1 =

1
2
.
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This system of three equations in four unknowns has an inÞnite number of solutions;
one of these is k0 = k1 = 1

2 , α = β = 1. This implies that

y(x0 + h) = y(x0) +
1
2
[f0 + f(x0 + h, y0 + hf0)]h+O(h3).

Neglecting the truncation error O(h3) gives a difference approximation known as
Heun�s method [61], which is classiÞed as a second order Runge-Kutta method. Re-
ducing the step-size by h reduces the truncation error by about a factor of ( 1

2 )3 =
1
8 . Of course, the formula can be used recursively to compute approximations to
y(x0 +h), y(x0 +2h), y(x0 + 3h), . . .. In most instances, the solution accuracy de-
creases as the number of integration steps is increased and results eventually become
unreliable. Decreasing h and taking more steps within a Þxed time span helps, but
this also has practical limits governed by computational time and arithmetic roundoff
error.

The idea leading to Heun�s method can be extended further to develop higher order
formulas. One of the best known is the fourth order Runge-Kutta method described
as follows

y(x0 + h) = y(x0) + h[k1 + 2k2 + 2k3 + k4]/6

where

k1 = f(x0, y0) , k2 = f(x0 +
h

2
, y0 + k1

h

2
),

k3 = f(x0 +
h

2
, y0 + k2

h

2
) , k4 = f(x0 + h, y0 + k3h).

The truncation error for this formula is order h 5; so, the error is reduced by about
a factor of 1

32 when the step-size is halved. The development of the fourth order
Runge-Kutta method is algebraically quite complicated [43]. We note that accuracy
of order four is achieved with four evaluations of f for each integration step. This
situation does not extend to higher orders. For instance, an eighth order formula
may require twelve evaluations per step. This price of more function evaluations
may be worthwhile provided the resulting truncation error is small enough to permit
much larger integration steps than could be achieved with formulas of lower order.
MATLAB provides the function ode45 which uses variable step-size and employs
formulas of order four and Þve. (Note: In MATLAB 6.x the integrators can output
results for an arbitrary time vector using, for instance, even time increments.)

8.3 Step-size Limits Necessary to Maintain Numerical Stability

It can be shown that, for many numerical integration methods, taking too large a
step-size produces absurdly large results that increase exponentially with successive
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time steps. This phenomenon, known as numerical instability, can be illustrated with
the simple differential equation

y′(t) = f(t, y) = λy

which has the solution y = ceλt. If the real part of λ is positive, the solution becomes
unbounded with increasing time. However, a pure imaginary λ produces a bounded
oscillatory solution, whereas the solution decays exponentially for real(λ) < 0.
Applying Heun�s method [43] gives

y(t+ h) = y(t)
[
1 + (λh) +

(λh)2

2

]
.

This shows that at each integration step the next value of y is obtained by multiplying
the previous value by a factor

p = 1 + (λh) +
(λh)2

2
,

which agrees with the Þrst three Taylor series terms of eλh. Clearly, the difference
relation leads to

yn = y0p
n.

As n increases, yn will approach inÞnity unless |p| ≤ 1. This stability condition can
be interpreted geometrically by regarding λh as a complex variable z and solving for
all values of z such that

1 + z +
z2

2
= ζeıθ , |ζ| ≤ 1 , 0 ≤ θ ≤ 2π.

Taking ζ = 1 identiÞes the boundary of the stability region, which is normally a
closed curve lying in the left half of the complex plane. Of course, h is assumed to
be positive and the real part of λ is nonpositive. Otherwise, even the exact solution
would grow exponentially. For a given λ, the step-size hmust be taken small enough
to make |λh| lie within the stability zone. The larger |λ| is, the smaller h must be to
prevent numerical instability.

The idea illustrated by Heun�s method can be easily extended to a Runge-Kutta
method of arbitrary order. A Runge-Kutta method of order n reproduces the exact
solution through terms of order n in the Taylor series expansion. The differential
equation y′ = λy implies

y(t+ h) = y(t)eλh

and

eλh =
n∑

k=0

(λh)k

k!
+O(hn+1).

Consequently, points on the boundary of the stability region for a Runge-Kutta method
of order n are found by solving the polynomial

1 − eıθ +
n∑

k=1

zk

k!
= 0
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for a dense set of θ-values ranging from 0 to 2π. Using MATLAB�s intrinsic function
roots allows easy calculation of the polynomial roots which may be plotted to show
the stability boundary. The following short program accomplishes the task. Program
output for integrators of order four and six is shown in Figures 8.1 and 8.2. Note
that the region for order 4 resembles a semicircle with radius close to 2.8. Using
|λh| > 2.8, with Runge-Kutta of order 4, would give results which rapidly become
unstable. The Þgures also show that the stability region for Runge-Kutta of order 6
extends farther out on the negative real axis than Runge-Kutta of order 4 does. The
root Þnding process also introduces some meaningless stability zones in the right
half plane which should be ignored.
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Figure 8.1: Stability Zone for Explicit Integrator of Order 4
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Figure 8.2: Stability Zone for Explicit Integrator of Order 6
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MATLAB Example

Program rkdestab

1: % Example: rkdestab
2: % ~~~~~~~~~~~~~~~~~~
3: % This program plots the boundary of the region
4: % of the complex plane governing the maximum
5: % step size which may be used for stability of
6: % a Runge-Kutta integrator of arbitrary order.
7: %
8: % npts - a value determining the number of
9: % points computed on the stability

10: % boundary of an explicit Runge-Kutta
11: % integrator.
12: % xrang - controls the square window within
13: % which the diagram is drawn.
14: % [ -3, 3, -3, 3] is appropriate for
15: % the fourth order integrator.
16: %
17: % User m functions required: none
18:

19: hold off; clf; close;
20: fprintf(’\nSTABILITY REGION FOR AN ’);
21: fprintf(’EXPLICIT RUNGE-KUTTA’);
22: fprintf(’\n INTEGRATOR OF ARBITRARY ’);
23: fprintf(’ORDER\n\n’);
24: while 1
25: disp(’ ’)
26: nordr=input(’Give the integrator order ? > ’);
27: if isempty(nordr) | nordr==0, break; end
28: % fprintf(’\nInput the number of points ’);
29: % fprintf(’used to define\n’);
30: % npts=input(’the boundary (100 is typical) ? > ’);
31: npts=100;
32: r=zeros(npts,nordr); v=1./gamma(nordr+1:-1:2);
33: d=2*pi/(npts-1); i=sqrt(-1);
34:

35: % Generate polynomial roots to define the
36: % stability boundary
37: for j=1:npts
38: % polynomial coefficients
39: v(nordr+1)=1-exp(i*(j-1)*d);
40: % complex roots
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41: t=roots(v); r(j,:)=t(:).’;
42: end
43:

44: % Plot the boundary
45: rel=real(r(:)); img=imag(r(:));
46: w=1.1*max(abs([rel;img]));
47: zoom on; plot(rel,img,’.’);
48: axis([-w,w,-w,w]); axis(’square’);
49: xlabel(’real part of h*\lambda’);
50: ylabel(’imaginary part of h*\lambda’);
51: ns=int2str(nordr);
52: st=[’Stability Zone for Explicit ’ ...
53: ’Integrator of Order ’,ns];
54: title(st); grid on; figure(gcf);
55: % print -deps rkdestab
56: end
57:

58: disp(’ ’); disp(’All Done’);

8.4 Discussion of Procedures to Maintain Accuracy by Varying
Integration Step-size

When we solve a differential equation numerically, our Þrst inclination is to seek
output at even increments of the independent variable. However, this is not the most
natural form of output appropriate to maintain integration accuracy. Whenever so-
lution components are changing rapidly, a small time step may be needed, whereas
using a small time step might be quite inefÞcient at times where the solution remains
smooth. Most modern ODE programs employ variable step-size algorithms which
decrease the integration step-size whenever some local error tolerance is violated and
conversely increase the step-size when the increase can be performed without loss of
accuracy. If results at even time increments are needed, these can be determined by
interpolation of the non-equidistant values. The differential equation integrators pro-
vide the capability to output results at an arbitrary vector of times over the integration
interval.

Although the derivation of algorithms to regulate step-size is an important topic,
development of these methods is not presented here. Several references [43, 46,
51, 61] discuss this topic with adequate detail. The primary objective in regulating
step-size is to gain computational efÞciency by taking as large a step-size as possible
while maintaining accuracy and minimizing the number of function evaluations.

Practical problems involving a single Þrst order differential equation are rarely
encountered. More commonly, a system of second order equations occurs which is
then transformed into a system involving twice as many Þrst order equations. Several
hundred, or even several thousand dependent variables may be involved. Evaluating
the necessary time derivatives at a single time step may require computationally in-
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tensive tasks such as matrix inversion. Furthermore, performing this fundamental
calculation several thousand times may be necessary in order to construct time re-
sponses over time intervals of practical interest. Integrating large systems of nonlin-
ear differential equations is one of the most important and most resource intensive
aspects of scientiÞc computing.

Instead of deriving the algorithms used for step-size control in ode45, we will
outline brießy the ideas employed to integrate y ′(t) = f(t, y) from t to (t + h). It
is helpful to think of y as a vector. For a given time step and y value, the program
makes six evaluations of f . These values allow evaluation of two Runge-Kutta for-
mulas, each having different truncation errors. These formulas permit estimation of
the actual truncation error and proper step-size adjustment to control accuracy. If the
estimated error is too large, the step-size is decreased until the error tolerance is sat-
isÞed or an error condition occurs because the necessary step-size has fallen below
a set limit. If the estimated error is found to be smaller than necessary, the integra-
tion result is accepted and the step-size is increased for the next pass. Even though
this type of process may not be extremely interesting to discuss, it is nevertheless an
essential part of any well designed program for integrating differential equations nu-
merically. Readers should become familiar with the error control features employed
by ODE solvers. Printing and studying the code for ode45 is worthwhile. Studying
the convergence tolerance used in connection with function odeset is also instructive.
It should be remembered that solutions generated with tools such as ode45 are vul-
nerable to accumulated errors from roundoff and arithmetic truncation. Such errors
usually render unreliable the results obtained sufÞciently far from the starting time.

This chapter concludes with the analysis of several realistic nonlinear problems
having certain properties of their exact solutions known. These known properties are
compared with numerical results to assess error growth. The Þrst problem involves
an inverted pendulum for which the loading function produces a simple exact dis-
placement function. Examples concerning top dynamics, a projectile trajectory, and
a falling chain are presented.

8.5 Example on Forced Oscillations of an Inverted Pendulum

The inverted pendulum in Figure 8.3 involves a weightless rigid rod of length l
which has a mass m attached to the end. Attached to the mass is a spring with
stiffness constant k and an unstretched length of γl. The spring has length l when
the pendulum is in the vertical position. Externally applied loads consist of a driv-
ing moment M(t), the particle weight, and a viscous damping moment cl 2θ̇. The
differential equation governing the motion of this system is

θ̈ = −(c/m)θ̇ + (g/l) sin(θ) +M(t)/(ml2) − (2k/m) sin(θ)(1 − α/λ)
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where
λ =

√
5 − 4 cos(θ).

This system can be changed to a more convenient form by introducing dimensionless
variables. We let t = (

√
l/g)τ where τ is dimensionless time. Then

θ̈ = −αθ̇ + sin(θ) + P (τ) − β sin(θ)(1 − γ/λ)

where

α = (c/m)
√
l/g = viscous damping factor,

β = 2(k/m)/(g/l),

λ =
√

5 − 4 cos(θ),
γ = (unstretched spring length)/l,

P (τ) = M/(mgl) = dimensionless driving moment.

It is interesting to test how well a numerical method can reconstruct a known exact
solution for a nonlinear function. Let us assume that the driving moment M(τ)
produces a motion having the equation

θe(τ) = θ0 sin(ωτ)

for arbitrary θ0 and ω. Then

θ̇e(τ) = ωθ0 cos(ωτ)

and
θ̈e(τ) = −ω2θe.

Consequently, the necessary driving moment is

P (τ) = −ω2θe − sin(θe) + γωθ0 cos(ωτ) + β sin(θe)
[
1 − γ/

√
5 − 4 cos(θe)

]
.

Applying this forcing function, along with the initial conditions

θ(0) = 0 , θ̇(0) = θ0ω

should return the solution θ = θe(τ). For a speciÞc numerical example we choose
θ0 = π/8, ω = 0.5, and four different combinations of β, γ, and tol. The second
order differential equation has the form θ̈ = f(τ, θ, θ̇). This is expressed as a Þrst
order matrix system by letting y1 = θ, y2 = θ̇, which gives

ẏ1 = y2 , ẏ2 = f(τ, y1, y2).

A function describing the system for solution by ode45 is provided at the end of this
section. Parameters θ0, ω0, α, ζ, and β are passed as global variables.
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We can examine how well the numerically integrated θ match θ e by using the error
measure

|θ(τ) − θe(τ)|.
Furthermore, the exact solution satisÞes

θ2e + (θ̇e/ω)2 = θ20.

Plotting θ̇/(θ0ω) on a horizontal axis and θ/θ0 on a vertical axis should produce a
unit circle. Violation of that condition signals loss of solution accuracy.

How certain physical parameters and numerical tolerances affect terms in this
problem can be demonstrated by the following four data cases:

1. The spring is soft and initially unstretched. A liberal integration tolerance is
used.

2. The spring is soft and initially unstretched. A stringent integration tolerance is
used.

3. The spring is stiff and initially stretched. A liberal integration tolerance is
used.

4. The spring is stiff and initially stretched. A stringent integration tolerance is
used.

The curves in Figure 8.4 show the following facts:

1. When the spring is unstretched initially, the numerical solution goes unstable
quickly.

2. Stretching the spring initially and increasing the spring constant improves nu-
merical stability of the solution.

3. Decreasing the integration tolerance increases the time period over which the
solution is valid.

An additional curve illustrating the numerical inaccuracy of results for Case 1 ap-
pears in Figure 8.5. A plot of θ(τ) versus θ̇(τ)/ω should produce a circle. However,
solution points quickly depart from the desired locus.
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MATLAB Example

Program prun

1: function prun
2: % Example: prun
3: % ~~~~~~~~~~~~~
4: % Dynamics of an inverted pendulum integrated
5: % by use of ode45.
6: %
7: % User m functions required: pinvert, mom
8:

9: global ncal
10: th0=pi/8; w=.5; tmax=30; ncal=0;
11:

12: fprintf(’\nFORCED OSCILLATION OF AN ’);
13: fprintf(’INVERTED PENDULUM\n’);
14: fprintf(’\nNote: Generating four sets of\n’);
15: fprintf(’numerical results takes a while.\n’);
16:

17: % loose spring with liberal tolerance
18: alp=0.1; bet=1.0; gam=1.0; tol=1.e-4;
19: a1=num2str(alp); b1=num2str(bet);
20: g1=num2str(gam); e1=num2str(tol);
21: options=odeset(’RelTol’,tol);
22: [t1,z1]= ...
23: ode45(@pinvert,[0,tmax],[0;w*th0],...
24: options,alp,bet,gam,th0,w);
25: n1=ncal; ncal=0;
26:

27: % loose spring with stringent tolerance
28: alp=0.1; bet=1.0; gam=1.0; tol=1.e-10;
29: a2=num2str(alp); b2=num2str(bet);
30: g2=num2str(gam); e2=num2str(tol);
31: options=odeset(’RelTol’,tol);
32: [t2,z2]= ...
33: ode45(@pinvert,[0,tmax],[0;w*th0],...
34: options,alp,bet,gam,th0,w);
35: n2=ncal; ncal=0;
36:

37: % tight spring with liberal tolerance
38: alp=0.1; bet=4.0; gam=0.5; tol=1.e-4;
39: a3=num2str(alp); b3=num2str(bet);
40: g3=num2str(gam); e3=num2str(tol);
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41: options=odeset(’RelTol’,tol);
42: [t3,z3]= ...
43: ode45(@pinvert,[0,tmax],[0;w*th0],...
44: options,alp,bet,gam,th0,w);
45: n3=ncal; ncal=0;
46:

47: % tight spring with stringent tolerance
48: alp=0.1; bet=4.0; gam=0.5; tol=1.e-10;
49: a4=num2str(alp); b4=num2str(bet);
50: g4=num2str(gam); e4=num2str(tol);
51: options=odeset(’RelTol’,tol);
52: [t4,z4]= ...
53: ode45(@pinvert,[0,tmax],[0;w*th0],...
54: options,alp,bet,gam,th0,w);
55: n4=ncal; ncal=0; save pinvert.mat;
56:

57: % Plot results
58: clf; semilogy( ...
59: t1,abs(z1(:,1)/th0-sin(w*t1)),’-r’,...
60: t2,abs(z2(:,1)/th0-sin(w*t2)),’--g’,...
61: t3,abs(z3(:,1)/th0-sin(w*t3)),’-.b’,...
62: t4,abs(z4(:,1)/th0-sin(w*t4)),’:m’);
63: title(’Error Growth in Numerical Solution’)
64: xlabel(’dimensionless time’);
65: ylabel(’error measure’);
66: c1=[’Case 1: alp=’,a1,’, bet=’,b1,’, gam=’, ...
67: g1,’, tol=’,e1];
68: c2=[’Case 2: alp=’,a2,’, bet=’,b2,’, gam=’, ...
69: g2,’, tol=’,e2];
70: c3=[’Case 3: alp=’,a3,’, bet=’,b3,’, gam=’, ...
71: g3,’, tol=’,e3];
72: c4=[’Case 4: alp=’,a4,’, bet=’,b4,’, gam=’, ...
73: g4,’, tol=’,e4];
74: legend(c1,c2,c3,c4,4); shg
75: dum=input(’\nPress [Enter] to continue\n’,’s’);
76: %print -deps pinvert
77:

78: % plot a phase diagram for case 1
79: clf; plot(z1(:,2)/w,z1(:,1));
80: axis(’square’); axis([-1,1,-1,1]);
81: xlabel(’\theta’’(\tau)/\omega’); ylabel(’\theta’);
82: title([’\theta versus ( \theta’’(\tau) / ’ ...
83: ’\omega ) for Case One’]); figure(gcf);
84: %print -deps crclplt
85: disp(’ ’); disp(’All Done’);
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86:

87: %=============================================
88:

89: function zdot=pinvert(t,z,alp,bet,gam,th0,w)
90: %
91: % zdot=pinvert(t,z,alp,bet,gam,th0,w)
92: % ~~~~~~~~~~~~~~~~~
93: % Equation of motion for the pendulum
94: %
95: % t - time value
96: % z - vector [theta ; thetadot]
97: % alp,bet,gam,th0,w
98: % - physical parameters in the
99: % differential equation

100: % zdot - time derivative of z
101: %
102: % User m functions called: mom
103: %----------------------------------------------
104:

105: global ncal
106: ncal=ncal+1; th=z(1); thd=z(2);
107: c=cos(th); s=sin(th); lam=sqrt(5-4*c);
108: zdot=[thd; mom(t,alp,bet,gam,th0,w)+...
109: s-alp*thd-bet*s*(1-gam/lam)];
110:

111: %=============================================
112:

113: function me=mom(t,alp,bet,gam,th0,w)
114: %
115: % me=mom(t,alp,bet,gam,th0,w)
116: % ~~~~~~~~~
117: % t - time
118: % alp,bet,gam,th0,w
119: % - physical parameters in the
120: % differential equation
121: % me - driving moment needed to produce
122: % exact solution
123: %
124: % User m functions called: none.
125: %----------------------------------------------
126:

127: th=th0*sin(w*t);
128: thd=w*th0*cos(w*t); thdd=-th*w^2;
129: s=sin(th); c=cos(th); lam=sqrt(5-4*c);
130: me=thdd-s+alp*thd+bet*s*(1-gam/lam);
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8.6 Dynamics of a Spinning Top

The dynamics of a symmetrical spinning top can be analyzed simply by computing
the path followed by the gravity center in Cartesian coordinates. Consider a top
spinning with its apex (or tip) constrained to remain at the origin. The gravity center
lies at position r along the axis of symmetry and the only applied forces are the
weight −mgk̂ through the gravity center and the support reaction at the tip of the
top. The inertial properties involve a moment of inertia Ja about the symmetry axis
and a transverse inertial moment Jt relative to an axis normal to the symmetry axis
and passing through the apex of the top. The velocity of the gravity center and the
angular velocity Ω are related by1

v = ṙ = Ω× r.

This implies that Ω can be expressed in terms of radial and transverse components
as

Ω = �−2 rv × v + �−1ωar

where � = |r| and ωa is the magnitude of the angular velocity component in the
radial direction. The angular momentum with respect to the origin is therefore

H = Jt�
−2 r × v + Ja�

−1ωar

and the potential plus kinetic energy is given by

K = mgz +
Jt�

−2 v · v + Jaω
2
a

2

where z is the height of the gravity center above the origin.
The equations of motion can be found using the principle that the moment of all

applied forces about the origin must equal the time rate of change of the correspond-
ing angular momentum. Hence

M = Jt�
−2 r × a + Ja�

−1 [ωav + ω̇ar]

where a = v̇ = r̈ is the total acceleration of the gravity center. The radial component
of the last equation is obtainable by a dot product with r to give

r · M = Ja�ω̇a

where simpliÞcations result because r · (r × a) = 0 and r · v = 0. The remaining
components of M for the transverse direction result by taking r × M and noting
that

r × (r × a) = (r · a)r − �2a = −�2at

1In this section the quantities v, r, Ω, H , M , and a all represent vector quantities.
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where at is the vector component of total acceleration normal to the direction of r.
This leads to

r × M = −Jtat + Ja�
−1ωa r × v.

Since the gravity center moves on a spherical surface of radius � centered at the
origin, the radial acceleration is given by

ar = −v · v �−2r

and the total acceleration equation becomes

a = −r × M

Jt
+
Ja�

−1ωa

Jt
r × v − v · v �−2r.

In the case studied here, only the body weight −mg k̂ causes a moment about the
origin so

M = −mg r × k̂ , r · M = 0

and
r × M = −mg

[
zr − �2k̂

]
.

The radial component of the moment equation simply gives ω̇ a = 0, so the axial
component of angular velocity retains its initial value throughout the motion.

Integrating the differential equations

v̇ = a , ṙ = v

numerically subject to appropriate initial conditions produces a trajectory of the grav-
ity center motion. The simple formulation presented here treats x, y, and z as if they
were independent variables even though

x2 + y2 + z2 = �2 , xvx + yvy + zvz = 0

are implied. The type of analysis traditionally used in advanced dynamics books [48]
would employ Euler angles, thereby assuring exact satisfaction of |r| = �. The accu-
racy of the solution method proposed here can be checked by Þnding a) whether the
total energy of the system remains constant and b) whether the component of angu-
lar momentum in the z-direction remains constant. However, even when constraint
conditions are satisÞed exactly, reliability of numerical simulations of nonlinear sys-
tems over long time periods becomes questionable due to accumulated inaccuracies
caused by arithmetic roundoff and the approximate nature of integration formulas.

The program toprun integrates the equations of motion and interprets the results.
This program reads data to specify properties of a conical top along with the initial
position and the angular velocity. Intrinsic function ode45 is employed to integrate
the motion equation deÞned in function topde. The path followed by the gravity
center is plotted and error measures regarding conservation of energy and angular
momentum are computed. Figures 8.6 and 8.7 show results for a top having prop-
erties given by the test case suggested in the interactive data input. A top which
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Figure 8.6: Path of the Top Gravity Center

has its symmetry axis initially horizontal along the y-axis is given an angular veloc-
ity of [0, 10, 2]. Integrating the equation of motion with an error tolerance of 10 −8

leads to the response shown in the Figure 8.6. Error measures computed regarding
the ßuctuation in predicted values of total energy and angular momentum about the
z-axis (Figure 8.7) ßuctuate about one part in 100,000. It appears that the analysis
employing Cartesian coordinates does produce good results.
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Program Output and Code

Program Toprun

1: function toprun
2: % Example: toprun
3: % ~~~~~~~~~~~~~~~
4: %
5: % Example that analyzes the response of a
6: % spinning conical top.
7: %
8: % User m functions required:
9: % topde, cubrange, inputv

10:

11: disp(’ ’);
12: disp([’*** Dynamics of a Homogeneous ’, ...
13: ’Conical Top ***’]); disp(’ ’);
14: disp([’Input the gravity constant and the ’, ...
15: ’body weight (try 32.2,5)’]);
16: [grav,wt]=inputv(’? ’);
17: mass=wt/grav; tmp=zeros(3,1);
18: disp(’ ’);
19: disp([’Input the height and base radius ’, ...
20: ’(try 1,.5)’]);
21: [ht,rb]=inputv(’? ’); len=.75*ht;
22: jtrans=3*mass/20*(rb*rb+4*ht*ht);
23: jaxial=3*mass*rb*rb/10;
24: disp(’ ’);
25: disp([’Input a vector along the initial ’, ...
26: ’axis direction (try 0,1,0)’]);
27: [tmp(1),tmp(2),tmp(3)]=inputv(’? ’);
28: e3=tmp(:)/norm(tmp); r0=len*e3;
29: disp(’ ’);
30: disp([’Input the initial angular velocity ’, ...
31: ’(try 0,10,2)’]);
32: [tmp(1),tmp(2),tmp(3)]=inputv(’? ’); omega0=tmp;
33: omegax=e3’*omega0(:); rdot0=cross(omega0,r0);
34: z0=[r0(:);rdot0(:)]; uz=[0;0;1];
35: c1=wt*len^2/jtrans; c2=omegax*jaxial/jtrans;
36: disp(’ ’);
37: disp([’Input tfinal,and the integration ’, ...
38: ’tolerance (try 4.2, 1e-8)’]);
39: [tfinl,tol]=inputv(’? ’); disp(’ ’);
40: fprintf( ...
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41: ’Please wait for solution of equations.\n’);
42:

43: % Integrate the equations of motion
44: odeoptn=odeset(’RelTol’,tol);
45: [tout,zout]=ode45(@topde,[0,tfinl],z0,...
46: odeoptn,uz,c1,c2);
47: t=tout; x=zout(:,1); y=zout(:,2); z=zout(:,3);
48: vx=zout(:,4); vy=zout(:,5); vz=zout(:,6);
49:

50: % Compute total energy and angular momentum
51: c3=jtrans/(len*len); taxial=jaxial/2*omegax^2;
52: r=zout(:,1:3)’; v=zout(:,4:6)’;
53: etotal=(wt*r(3,:)+taxial+c3/2*sum(v.*v))’;
54: h=(jaxial*omegax/len*r+c3*cross(r,v))’;
55:

56: % Plot the path of the gravity center
57: clf; axis(’equal’);
58: axis(cubrange([x(:),y(:),z(:)])); plot3(x,y,z);
59: title(’Path of the Top Gravity Center’);
60: xlabel(’x axis’); ylabel(’y axis’);
61: zlabel(’z axis’); grid on; figure(gcf);
62: disp(’ ’); disp(...
63: ’Press [Enter] to plot error measures’), pause
64: % print -deps toppath
65: n=2:length(t);
66:

67: % Compute energy and angular momentum error
68: % quantities and plot results
69: et=etotal(1); enrger=abs(100*(etotal(n)-et)/et);
70: hzs=abs(h(1,3));
71: angmzer=abs(100*(h(n,3)-hzs)/hzs);
72: vec=[enrger(:);angmzer(:)];
73: minv=min(vec); maxv=max(vec);
74:

75: clf;
76: semilogy(t(n),enrger,’-r’,t(n),angmzer,’:m’);
77: axis(’normal’); xlabel(’time’);
78: ylabel(’percent variation’);
79: title([’Percent Variation in Total Energy ’, ...
80: ’and z-axis Angular Momentum’]);
81: legend(’ Energy (Upper Curve)’, ...
82: ’ Ang. Mom. (Bottom Curve)’,4);
83: figure(gcf), pause
84: % print -deps topvar
85:
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86: disp(’ ’), disp(’All Done’)
87:

88: %=============================================
89:

90: function zdot=topde(t,z,uz,c1,c2)
91: %
92: % zdot=topde(t,z,uz,c1,c2)
93: % ~~~~~~~~~~~~~~~
94: %
95: % This function defines the equation of motion
96: % for a symmetrical top. The vector z equals
97: % [r(:);v(:)] which contains the Cartesian
98: % components of the gravity center radius and
99: % its velocity.

100: %
101: % t - the time variable
102: % z - the vector [x; y; z; vx; vy; vz]
103: % uz - the vector [0;0;1]
104: % c1 - wt*len^2/jtrans
105: % c2 - omegax*jaxial/jtrans
106: %
107: % zdot - the time derivative of z
108: %
109: % User m functions called: none
110: %----------------------------------------------
111:

112: z=z(:); r=z(1:3); len=norm(r); ur=r/len;
113:

114: % Make certain the input velocity is
115: % perpendicular to r
116: v=z(4:6); v=v-(ur’*v)*ur;
117: vdot=-c1*(uz-ur*ur(3))+c2*cross(ur,v)- ...
118: ((v’*v)/len)*ur;
119: zdot=[v;vdot];
120:

121: %=============================================
122:

123: % function varargout=inputv(prompt)
124: % See Appendix B
125:

126: % =============================================
127:

128: % function range=cubrange(xyz,ovrsiz)
129: % See Appendix B
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8.7 Motion of a Projectile

The problem of aiming a projectile to strike a distant target involves integrating a
system of differential equations governing the motion and adjusting the initial incli-
nation angle to achieve the desired hit [101]. A reasonable model for the projectile
motion assumes atmospheric drag proportional to the square of the velocity. Conse-
quently, the equations of motion are

v̇x = −cvvx , v̇y = −g − cvvy , ẋ = vx , ẏ = vy

where g is the gravity constant and c is a ballistic coefÞcient depending on such
physical properties as the projectile shape and air density.

The natural independent variable in the equations of motion is time. However,
horizontal position x is a more desirable independent variable, since the target will
be located at some distant point (xf , yf) relative to the initial position (0, 0) where
the projectile is launched. We can formulate the differential equations in terms of x
by using the relationship

dx = vx dt or
dt

dx
=

1
vx
.

Then
dy

dx
=
vy

vx
,
dvy

dt
= vx

dvy

dx
,
dvx

dt
= vx

dvx

dx
,

and the equations of motion become

dy

dx
=
vy

vx
,
dt

dx
=

1
vx

,
dvx

dx
= −cv , dvy

dx
=

−(g + cvvy)
vx

.

Taking a vector z deÞned by

z = [vx; vy; y; t]

leads to a Þrst order matrix differential equation

dz

dx
=

[−cvvx; −(g + cvvy); vy; 1]
vx

where
v =

√
v2

x + v2
y .

The reader should note that an ill-posed problem can occur if the initial velocity of
the projectile is not large enough so that the maximum desired value of x is reached
before vx is reduced to zero from atmospheric drag. Consequently, error checking
is needed to handle such a circumstance. The functions traject and projcteq em-
ploy intrinsic function ode45 to compute the projectile trajectory. Graphical results
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produced by the default data case appear in Figure 8.8. The function traject will be
employed again in Chapter 12 for an optimization problem where a search procedure
is used to compute the initial inclination angle needed to hit a target at some speci-
Þed distant position. In this section we simply provide the functions to integrate the
equations of motion.

Program Output and Code

Function traject

1: function [y,x,t]=traject ...
2: (angle,vinit,gravty,cdrag,xfinl,noplot)
3: % [y,x,t]=traject ...
4: % (angle,vinit,gravty,cdrag,xfinl,noplot)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: %
7: % This function integrates the dynamical
8: % equations for a projectile subjected to
9: % gravity loading and atmospheric drag

10: % proportional to the square of the velocity.
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11: %
12: % angle - initial inclination of the
13: % projectile in degrees
14: % vinit - initial velocity of the projectile
15: % (muzzle velocity)
16: % gravty - the gravitational constant
17: % cdrag - drag coefficient specifying the drag
18: % force per unit mass which equals
19: % cdrag*velocity^2.
20: % xfinl - the projectile is fired toward the
21: % right from x=0. xfinl is the
22: % largest x value for which the
23: % solution is computed. The initial
24: % velocity must be large enough that
25: % atmospheric damping does not reduce
26: % the horizontal velocity to zero
27: % before xfinl is reached. Otherwise
28: % an error termination will occur.
29: % noplot - plotting of the trajectory is
30: % omitted when this parameter is
31: % given an input value
32: %
33: % y,x,t - the y, x and time vectors produced
34: % by integrating the equations of
35: % motion
36: %
37: % Global variables:
38: %
39: % grav, - two constants replicating gravty and
40: % dragc cdrag, for use in function projcteq
41: % vtol - equal to vinit/1e6, used in projcteq
42: % to check whether the horizontal
43: % velocity has been reduced to zero
44: %
45: % User m functions called: projcteq
46:

47: global grav dragc vtol
48:

49: % Default data case generated when input is null
50: if nargin ==0
51: angle=45; vinit=600; gravty=32.2;
52: cdrag=0.002; xfinl=1000;
53: end;
54:

55: % Assign global variables and evaluate
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56: % initial velocity
57: grav=gravty; dragc=cdrag; ang=pi/180*angle;
58: vtol=vinit/1e6;
59: z0=[vinit*cos(ang); vinit*sin(ang); 0; 0];
60:

61: % Integrate the equations of motion defined
62: % in function projcteq
63: deoptn=odeset(’RelTol’,1e-6);
64: [x,z]=ode45(@projcteq,[0,xfinl],z0,deoptn);
65:

66: y=z(:,3); t=z(:,4); n=length(x);
67: xf=x(n); yf=y(n);
68:

69: % Plot the trajectory curve
70: if nargin < 6
71: plot(x,y,’-’,xf,yf,’o’);
72: xlabel(’x axis’); ylabel(’y axis’);
73: title([’Projectile Trajectory for ’, ...
74: ’Velocity Squared Drag’]);
75: axis(’equal’); grid on; figure(gcf);
76: % print -deps trajplot
77: end
78:

79: %=============================================
80:

81: function zp=projcteq(x,z)
82: %
83: % zp=projcteq(x,z)
84: % ~~~~~~~~~~~~~~~~
85: %
86: % This function defines the equation of motion
87: % for a projectile loaded by gravity and
88: % atmospheric drag proportional to the square
89: % of the velocity.
90: %
91: % x - the horizontal spatial variable
92: % z - a vector containing [vx; vy; y; t];
93: %
94: % zp - the derivative dz/dx which equals
95: % [vx’(x); vy’(x); y’(x); t’(x)];
96: %
97: % Global variables:
98: %
99: % grav - the gravity constant

100: % dragc - the drag coefficient divided by
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101: % gravity
102: % vtol - a global variable used to check
103: % whether vx is zero
104: %
105: % User m functions called: none
106: %----------------------------------------------
107:

108: global grav dragc vtol
109: vx=z(1); vy=z(2); v=sqrt(vx^2+vy^2);
110:

111: % Check to see whether drag reduced the
112: % horizontal velocity to zero before the
113: % xfinl was reached.
114: if abs(vx) < vtol
115: disp(’ ’);
116: disp(’*************************************’);
117: disp(’ERROR in function projcteq. The ’);
118: disp(’ initial velocity of the projectile’);
119: disp(’ was not large enough for xfinal to’);
120: disp(’ be reached.’);
121: disp(’EXECUTION IS TERMINATED.’);
122: disp(’*************************************’);
123: disp(’ ’),error(’ ’);
124: end
125: zp=[-dragc*v; -(grav+dragc*v*vy)/vx; ...
126: vy/vx; 1/vx];

8.8 Example on Dynamics of a Chain with SpeciÞed End Motion

The dynamics of ßexible cables is often modeled using a chain of rigid links con-
nected by frictionless joints. A chain having speciÞed end motions illustrates the
behavior of a system governed by nonlinear equations of motion and auxiliary al-
gebraic constraints. In particular, we will study a gravity loaded cable Þxed at both
ends. The total cable length exceeds the distance between supports, so that the static
deßection conÞguration resembles a catenary.

A simple derivation of the equations of motion employing principles of rigid body
dynamics is given next. Readers not versed in principles of rigid body dynamics [48]
may nevertheless understand the subsequent programs by analyzing the equations of
motion which have a concise mathematical form. The numerical solutions vividly
illustrate some numerical difÞculties typically encountered in multibody dynamical
studies. Such problems are both computationally intensive, as well as highly sensi-
tive to accumulated effects of numerical error.

The mathematical model of interest is the two-dimensional motion of a cable (or
chain) having n rigid links connected by frictionless joints. A typical link ı has its
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Figure 8.9: Chain with SpeciÞed End Motion

mass mı concentrated at one end. The geometry is depicted in Figure 8.9. The
chain ends undergo speciÞed motions R0(t) = [X0(t) ; Y0(t)] for the Þrst link
and Rn(t) = [Xn(t) ; Yn(t)] for the last link. The direction vector along link ı is
described by rı = [xı ; yı] = �ı[cos(θı) ; sin(θı)]. We assume that each joint ı is
subjected to a force F ı = [fxı ; fyı] where 0 ≤ ı ≤ n. Index values ı = 0 and
ı = n denote unknown constraint forces which must act at the outer ends of the Þrst
and last links to achieve the required end displacements. The forces applied at the
interior joints are arbitrary. It is convenient to characterize the dynamics of each link
in terms of its direction angle. Thus

ṙı = r
′
ıθ̇ı , r̈ı = r

′
ıθ̈ı + r

′′
ı θ̇

2
ı = r

′
ıθ̈ı − rıθ̇

2
ı

where primes and dots denote differentiation with respect to θ ı and t, respectively.
Therefore

ṙı = [−yı ; xı]θ̇ı , r̈ı = [−ÿı ; xı]θ̈ı − [xı ; yı]θ̇2ı .

The global position vector of joint ı is

Rı = R0 +
ı∑

=1

r = R0 +
n∑

=1

< ı−  > r

where the symbol < k >= 1 for k ≥ 0, and 0 for k < 0. Consequently, the velocity
and acceleration of joint ı are

Ṙı = Ṙ0 +
n∑

=1

< ı−  > r
′
θ̇,

R̈ı = R̈0 +
n∑

=1

< ı−  > r
′
θ̈ −

n∑
=1

< ı−  > rθ̇
2
 .
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The ends of the chain each have speciÞed motions; so not all of the inclination angles
are independent. Consequently,

n∑
=1

r = Rn − R0,

n∑
=1

r
′
θ̇ = Ṙn − Ṙ0,

n∑
=1

r
′
θ̈ −

n∑
=1

rθ̇
2
 = R̈n − R̈0.

Combining the last constraint equation with equations of motion written for masses
m1, · · · ,mn yields a complete system of (n+ 2) equations determining θ̈1, · · · , θ̈n

and the components of F n. The fact that all masses are concentrated at frictionless
joints shows that link ı is a two-force member carrying an internal load directed along
rı. Consequently, the D�Alembert principle [48] implies that the sum of all external
and inertial loads from joints ı, ı + 1, · · · , n must give a resultant passing through
joint ı in the direction of r ı. Since r

′
ı and rı are perpendicular, requiring a vector to

be in the direction of rı is equivalent to making it normal to r
′
ı. Therefore

r
′
ı ·

[
n∑

=1

< − ı >
{
F  −mR̈

}]
= 0 , 1 ≤ ı ≤ n.

The last n equations involve θ̈ı and two end force components fxn and fyn. Some
algebraic rearrangement results in a matrix differential equation of concise form con-
taining several auxiliary coefÞcients deÞned as follows:

bı =
n∑

k=ı

mk , mı = mı = bı , 1 ≤ ı ≤ n , 1 ≤  ≤ ı,

aı = mı(xıx + yıy) , 1 ≤ ı ≤ n , 1 ≤  ≤ n

bı = mı(xıy − xyı) , 1 ≤ ı ≤ n , 1 ≤  ≤ n

pxı =
n−1∑
=ı

fxı , pyı =
n−1∑
=ı

fyı , 1 ≤ ı ≤ n.

For ı = n, the last two sums mean pxn = pyn = 0. Furthermore, we denote the ac-
celeration components of the chain ends as R̈0 = [axo ; ay0] and R̈n = [axn ; ayn].
Using the various quantities just deÞned, the equations of motion become

n∑
=1

aıθ̈ + yıfxn − xıfyn =
n∑

=1

bıθ̇
2
 + xı(pyı − bıay0) − yı(pxı − bıax0)

= eı , 1 ≤ ı ≤ n.
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The remaining two components of the constraint equations completing the system
are

n∑
=1

yθ̈ = −
n∑

=1

xθ̇
2
 − axn + ax0 = en+1,

n∑
=1

xθ̈ =
n∑

=1

yθ̇
2
 + ayn − ay0 = en+2.

Consequently, we get the following symmetric matrix equation to solve for θ̈1, · · · , θ̈n,
fxn and fyn 

A X Y
XT 0 0
Y T 0 0




 θ̈

fxn

−fyn


 =

[
E

]

where X,Y,E and θ are column matrices, and the matrix A = [a ı] is symmetric.
Because most numerical integrators for differential equations solve Þrst order sys-
tems, it is convenient to employ the vector Z = [θ ; θ̇] having 2n components. Then
the differential equation Ż = H(t,Z) is completely deÞned when θ̈ has been com-
puted for known Z. The system is integrated numerically to give θ and θ̇ as functions
of time. These quantities can then be used to compute the global Cartesian coordi-
nates of the link conÞgurations, thereby completely describing the time history of
the chain.

The general equations of motion simplify somewhat when the chain ends are Þxed
and the external forces only involve gravity loads. Then p xı = 0 and pyı = −g(bı −
bn) which gives

n∑
=1

mı(xıx + yıy)θ̈ − xıfyn + yıfxn =

g(bı − bn) +
n∑

=1

mı(xıy − xyı)θ̇2 , 1 ≤ ı ≤ n.

The last two equations to complete the set are:

n∑
=1

xθ̈ =
n∑

=1

yθ̇
2
 ,

n∑
=1

yθ̈ = −
n∑

=1

xθ̇
2
 .

A program was written to simulate motion of a cable Þxed at both ends and released
from rest. The cable falls under the inßuence of gravity from an initially elevated
position. Function ode45 is used to perform the numerical integration. The program
consists of three functions cablenl, plotmotn, and equamo. Function cablenl cre-
ates the data, calls ode45 to perform the integration, and displays the output from the
simulation. Function plotmotn plots the motion for speciÞed time limits. Results
can be shown using animation or plots superimposing successive positions of the
cable. Most of the analysis in the program is performed in function equamo which
forms the equations of motion which are passed to ode45 for integration.
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A conÞguration with eight identical links was speciÞed. For simplicity, the total
mass, total cable length, and gravity constant were all normalized to equal unity.
The numerical integration error was controlled using a relative tolerance of 1e-6 and
an absolute error tolerance of 1e-8. Results of the simulation appear below. Fig-
ure 8.10 shows cable positions during the early stages of motion when results of
the numerical integration are reliable. However, the numerical solution eventually
becomes worthless due to accumulated numerical inaccuracies yielding the motion
predictions indicated in Figure 8.11. The nature of the error growth can be seen
clearly in Figure 8.12 which plots the x-coordinate of the chain midpoint as a func-
tion of time. Since the chosen mass distribution and initial deßection is symmetrical
about the middle, the subsequent motion will remain symmetrical unless the numer-
ical solution becomes invalid. The x coordinate of the midpoint should remain at a
constant value of

√
2 /4, but it appears to abruptly go unstable near t = 18. More

careful examination indicates that this numerical instability does not actually occur
suddenly. Instead, it grows exponentially from the outset of the simulation. The error
is caused by the accumulation of truncation errors intrinsic to the numerical integra-
tion process allowing errors at each step which are regulated within a small but Þnite
tolerance. A global measure of symmetry loss of the y deßection pattern is plotted
on a semilog scale in Figure 8.13. Note that the error curve has a nearly linear slope
until the solution degenerates completely near t = 18. The reader can verify that
choosing less stringent error tolerances produces solutions which become inaccurate
sooner than t = 18. It should also be observed that this dynamical model exhibits
another important characteristic of highly nonlinear systems, namely, extreme sen-
sitivity to physical properties. Note that shortening the last link by only one part
in ten thousand makes the system deßection quickly lose all appearance of symme-
try by t = 6. Hence, two systems having nearly identical physical parameters and
initial conditions may behave very differently a short time after motion is initiated.
The conclusion implied is that analysts should thoroughly explore how parameter
variations affect response predictions in nonlinear models.
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Figure 8.10: Motion During Initial Phase
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Figure 8.11: Motion After Solution Degenerates
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Figure 8.13: Growing Loss of Symmetry in Vertical Deßection
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Example on Nonlinear Cable Motion

Program cablenl

1: function [t,x,y,theta,cptim]=cablenl
2: % [t,x,y,theta,cptim]=cablenl
3: % Example: cablenl
4: % ~~~~~~~~~~~~~~~~
5: % Numerical integration of the matrix
6: % differential equations for the nonlinear
7: % dynamics of a cable of rigid links with
8: % the outer ends of the cable fixed.
9: %

10: % t - time vector for the solution
11: % x,y - matrices with nodal coordinates
12: % stored in the columns. The time
13: % history of point j is in x(:,j)
14: % and y(:,j)
15: % theta - matrix with inclination angles
16: % stored in the columns
17: % cptim - number of seconds to integrate
18: % the equations of motion
19: %
20: % User m functions required:
21: % plotmotn, equamo
22:

23: clear all; close;
24:

25: % Make variables global for use by
26: % function equamo
27: global first_ n_ m_ len_ grav_ b_ mas_ py_
28:

29: fprintf(’\nNONLINEAR DYNAMICS OF A ’)
30: fprintf(’FALLING CABLE\n’)
31: fprintf(...
32: ’\nNote: The calculations take awhile\n’)
33:

34: % Set up data for a cable of n_ links,
35: % initially arranged in a triangular
36: % deflection configuration.
37:

38: % parameter controlling initialization of
39: % auxiliary parameters used in function
40: % equamo
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41: first_=1;
42: % number of links in the cable
43: n_=8; n=n_; nh=n_/2;
44: % vector of lengths and gravity constant
45: len_=1/n*ones(n,1); grav_=1;
46: % vector of mass constants
47: m_=ones(1,n_)/n_;
48:

49: % initial position angles
50: th0=pi/4*[ones(nh,1);-ones(nh,1)];
51: td0=zeros(size(th0)); z0=[th0;td0];
52:

53: % time limits, integration tolerances,
54: % and the number of solution points
55: tmin=0; tmax=25; nt=201;
56: t=linspace(0,tmax,nt)’;
57: tolrel=1e-6; tolabs=1e-8; len=len_;
58:

59: % Perform the numerical integration using a
60: % variable stepsize Runge-Kutta integrator
61: tic;
62: odetol=odeset(’RelTol’,tolrel,’AbsTol’,tolabs);
63: [t,w]=ode45(@equamo,t,z0,odetol);
64: theta=w(:,1:n); cptim=toc;
65:

66: % Compute node point coordinates
67: Z=[zeros(nt,1),repmat(len’,nt,1).*exp(i*theta)];
68: Z=cumsum(Z.’).’; x=real(Z); y=imag(Z);
69:

70: % Plot the horizontal position of the midpoint
71: clf; plot(t,x(:,1+n_ /2));
72: ylabel(’x coordinate’); xlabel(’time’)
73: title([’Horizontal Position of the ’ ...
74: ’Cable Midpoint’])
75: grid on; figure(gcf);
76: % print -deps xmidl
77:

78: disp(’ ’), disp(...
79: ’Press [Enter] to see the error growth curve’);
80: pause, close
81:

82: % Show error growth indicated by symmetry
83: % loss of the vertical deflection symmetry.
84: % An approximately linear trend on the semilog
85: % plot indicates exponential growth of the error.
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86: unsymer=sqrt(sum((y-y(:,end:-1:1)).^2,2));
87: hold off; axis(’normal’); clf;
88: semilogy(t,unsymer);
89: xlabel(’time’); ylabel(’asymmetry error’);
90: title([’Growing Loss of Symmetry in ’ ...
91: ’Vertical Deflection’]);
92: grid on; figure(gcf);
93: % print -deps unsymerr
94:

95: disp(’ ’), disp(...
96: ’Press [Enter] to see the response animation’);
97:

98: % Show animation of the cable response
99: disp(’ ’)

100: disp(’The motion can be animated or a trace’)
101: disp(’can be shown for successive positions’)
102: disp([’between t = ’,num2str(tmin),...
103: ’ and t = ’,num2str(tmax)])
104:

105: % Plot the position for different times limits
106: titl=’CABLE MOTION FOR T = ’;
107: while 1
108: disp(’ ’), disp(...
109: [’Choose a plot option (1 <=> animate, ’,...
110: ’ 2 <=> trace,’])
111: opt=input(’3 <=> stop) > ? ’);
112: if opt==3, break, end
113: disp(’ ’), disp(...
114: ’Give a time vector such as 0:.1:15’)
115: Tp=input(’Time vector > ? ’,’s’);
116: if isempty(Tp), break, end
117: tp=eval(Tp); tp=tp(:); T=[titl,Tp];
118: xp=interp1q(t,x,tp); yp=interp1q(t,y,tp);
119: if opt ==1, plotmotn(xp,yp,T)
120: else, plotmotn(xp,yp,T,1), end
121: end
122: fprintf(’\nAll Done\n’)
123:

124: %=============================================
125:

126: function plotmotn(x,y,titl,isave)
127: %
128: % plotmotn(x,y,titl,isave)
129: % ~~~~~~~~~~~~~~~~~~~~
130: % This function plots the cable time
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131: % history described by coordinate values
132: % stored in the rows of matrices x and y.
133: %
134: % x,y - matrices having successive rows
135: % which describe position
136: % configurations for the cable
137: % titl - a title shown on the plots
138: % isave - parameter controlling the form
139: % of output. When isave is not input,
140: % only one position at a time is shown
141: % in rapid succession to animate the
142: % motion. If isave is given a value,
143: % then successive are all shown at
144: % once to illustrate a kinematic
145: % trace of the motion history.
146: %
147: % User m functions called: none
148: %----------------------------------------------
149:

150: % Set a square window to contain all
151: % possible positions
152: [nt,n]=size(x);
153: if nargin==4, save =1; else, save=0; end
154: xmin=min(x(:)); xmax=max(x(:));
155: ymin=min(y(:)); ymax=max(y(:));
156: w=max(xmax-xmin,ymax-ymin)/2;
157: xmd=(xmin+xmax)/2; ymd=(ymin+ymax)/2;
158: hold off; clf; axis(’normal’); axis(’equal’);
159: range=[xmd-w,xmd+w,ymd-w,ymd+w];
160: title(titl)
161: xlabel(’x axis’); ylabel(’y axis’)
162: if save==0
163: for j=1:nt
164: xj=x(j,:); yj=y(j,:);
165: plot(xj,yj,’-k’,xj,yj,’ok’);
166: axis(range), axis off
167: title(titl)
168: figure(gcf), drawnow, pause(.1)
169: end
170: pause(2)
171: else
172: hold off; close
173: for j=1:nt
174: xj=x(j,:); yj=y(j,:);
175: plot(xj,yj,’-k’,xj,yj,’ok’);
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176: axis(range), axis off, hold on
177: end
178: title(titl)
179: figure(gcf), drawnow, hold off, pause(2)
180: end
181:

182: % Save plot history for subsequent printing
183: % print -deps plotmotn
184:

185: %=============================================
186:

187: function zdot=equamo(t,z)
188: %
189: % zdot=equamo(t,z)
190: % ~~~~~~~~~~~~~~~~
191: % Equation of motion for a cable fixed at
192: % both ends and loaded by gravity forces only
193: %
194: % t current time value
195: % z column vector defined by
196: % [thet(t);theta’(t)]
197: % zdot column vector defined by
198: % the concatenation
199: % z’(t) = [theta’(t);theta’’(t)]
200: %
201: % User m functions called: none.
202: %----------------------------------------------
203:

204: % Values accessed as global variables
205: global first_ n_ m_ len_ grav_ b_ mas_ py_
206:

207: % Initialize parameters first time
208: % function is called
209: if first_==1, first_=0;
210: % mass parameters
211: m_=m_(:); b_=flipud(cumsum(flipud(m_)));
212: mas_=b_(:,ones(n_,1));
213: mas_=tril(mas_)+tril(mas_,-1)’;
214: % load effects from gravity forces
215: py_=-grav_*(b_-b_(n_));
216: end
217:

218: % Solve for zdot = [theta’(t); theta’’(t)];
219: n=n_; len=len_;
220: th=z(1:n); td=z(n+1:2*n); td2=td.*td;
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221: x=len.*cos(th); y=len.*sin(th);
222:

223: % Matrix of mass coefficients and
224: % constraint conditions
225: amat=[[mas_.*(x*x’+y*y’),x,y];
226: [x,y;zeros(2,2)]’];
227:

228: % Right side vector involves applied forces
229: % and inertial terms
230: bmat=x*y’; bmat=mas_.*(bmat-bmat’);
231:

232: % Solve for angular acceleration.
233: % Most computation occurs here.
234: soln=amat\[x.*py_+bmat*td2; y’*td2; -x’*td2];
235:

236: % Final result needed for use by the
237: % numerical integrator
238: zdot=[td; soln(1:n)];

8.9 Dynamics of an Elastic Chain

The preceding article analyzed a chain of rigid links requiring only one rotation
angle per link. Next we study a similar model of an elastic chain involving sev-
eral point masses connected by elastic springs which can only support tension. The
equations of motion are easy to formulate in terms of the horizontal and vertical coor-
dinates of each mass. The dimensionality needed to handle the elastic chain is twice
that needed for a similar rigid link model. It is natural to utilize a three-dimensional
model that easily simpliÞes for two dimensional motion.

Consider a chain having nmass particles

mj , 1 ≤ j ≤ n

connected by n+ 1 springs having unstretched lengths

lj , 1 ≤ j ≤ n+ 1.

The position of particle mj is denoted by vector rj with r0(t) and rn+1(t) signi-
fying the outer end positions of the Þrst and last springs, which are assumed to be
known functions of time. Furthermore, concentrated forces P j(t) are applied to the
particles. The tensile force in spring number j is

T j = kj (1 − lj/Lj) (Lj > lj)Rj

where
Rj = rj+1 − rj , Lj = |Rj |,
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and kj denotes a spring constant. Then the equations of motion are given by

ṙj(t) = vj , v̇j(t) = (P j + T j − T j−1 − cjvj) /mj , 1 ≤ j ≤ n

where viscous drag forces deÞned by the particle velocities times damping coefÞ-
cients cj are included. These equations are easy to form using array operations.
Furthermore, the two-dimensional case can be simpliÞed further by using complex
numbers to represent the particle positions.

A program was written to compute the response of a chain released from at rest in
a horizontal position with the springs unstretched. The chain is subjected to gravity
loading and the ends of the chain are rotated at constant speed around circular paths.
The left and right ends rotate counterclockwise and clockwise respectively. A special
case where the right end of the chain is free is provided by setting the last spring
constant to zero. Another case where the chain ends do not move occurs when the
radii of the end path motions are set to zero.

The following program called sprnchan computes the response of a chain with an
arbitrary number of identical masses connected by identical springs. The radii and
the rotation rate of the end motions, as well as the amount of viscous damping can
be changed easily. Function sprnchan reads data from function chaindata and calls
ode45 to integrate the equations of motion which are formed with functions spreq-
mof and endmo. Using the output from ode45, function plotmotn provides visual
descriptions of the response. The motion can be presented using either animation or
by superimposing plots of successive positions of the chain in chosen time intervals.
To run a different problem, the sample data function chaindata can be saved using
a different name; and the variables n, tmax, nt, Þxorfree, rend, omega, and cdamp
can be changed appropriately. Furthermore, modifying the program to handle dif-
ferent variations of stiffness and mass, as well as different end conditions would be
straightforward. Figures 8.14 and 8.15 show program results where 1) the left end of
the chain was rotated and the right end was detached and 2) both ends of the chain
were rotated simultaneously in opposite directions. The time response was computed
for a maximum time value of 20, but the chosen time traces only show small subin-
tervals chosen so that successive positions do not overlap excessively. Readers may
Þnd it interesting to observe the animation responses resulting from different data
choices.
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ELASTIC CHAIN MOTION FOR [cdamp,omega] = [1 , 6 ]  and T = 0:.08:1.5

Figure 8.14: Chain with Left End Rotating and Right End Free

[cdamp,omega] = [1 , 6 ]  , 0 < t < 0.6

Figure 8.15: Chain with Both Ends Rotating
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Program for Elastic Chain Dynamics

Program sprnchan

1: function [t,z,cptim]=sprnchan
2: %
3: % [t,z,cptim]=sprnchan
4: % ~~~~~~~~~~~~~~~~~~~~
5: % DYNAMIC SIMULATION OF AN ELASTIC CHAIN
6: % This program simulates the dynamics of an elastic
7: % chain modeled by a series of mass particles joined
8: % by elastic springs. The outer springs at each end
9: % are connected to foundations moving on circular

10: % paths at constant speed. The system is released from
11: % rest in a horizontal position. Forces on the system
12: % include gravity, linear viscous drag, and foundation
13: % motion. If the last spring in the chain is assigned
14: % zero stiffness, then the last particle is freed from
15: % the foundation and a swinging chain with the upper
16: % end shaken is analyzed. The principal variables for
17: % the problem are listed below. Different data choices
18: % can be made by changing function chaindata.
19: %
20: % tlim - vector of time values at which the
21: % solution is computed
22: % m - vector of mass values for the particles
23: % k - vector of stiffness values for springs
24: % connecting the particles. If the last
25: % spring constant is set to zero, then the
26: % right end constraint is removed
27: % L - vector of unstretched spring lengths
28: % zend - complex position coordinate of the outer
29: % end of the last spring (assuming the outer
30: % end of the first spring is held at z=0)
31: % zinit - vector of complex initial displacement
32: % values for each mass particle. Initial
33: % velocity values are zero.
34: % fext - vector of constant complex force components
35: % applied to the individual masses
36: % c - vector of damping coefficients specifying
37: % drag on each particle linearly proportional
38: % to the particle velocity
39: % tolrel - relative error tolerance for function ode45
40: % tolabs - absolute error tolerance for function ode45
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41: % t - vector of times returned by ode45
42: % z - matrix of complex position and velocity
43: % values returned by ode45. A typical row
44: % z(j,:) gives the system position and
45: % velocity for time t(j). The first half of
46: % the row contains complex position values
47: % and the last half contains velocity values
48: % omega - frequency at which the ends of the chain
49: % are shaken
50: % yend - amplitude of the vertical motion of the
51: % chain ends. If this is set to zero then
52: % the chain ends do not move
53: % endmo - the function defining the end motion of
54: % the chain
55: % spreqmof - the function defining the equation of
56: % motion to be integrated using ode45
57: %
58: % User m functions called: chaindata, spreqmof,
59: % endmo, plotmotn
60: %----------------------------------------------
61:

62: global zend omega Rend
63:

64: fprintf(’\nDYNAMICS OF A FALLING ELASTIC CHAIN\n\n’)
65: disp(’Give a file name to define the data. Try’)
66: datname=input(’chaindata as an example > ? ’,’s’);
67: eval([’[n,tmax,nt,fixorfree,rend,omega,cdamp]=’,...
68: datname,’;’]);
69:

70: % The following data values are scaled in terms of
71: % the parameters returned by the data input function
72:

73: % Time vector for solution output
74: tmin=0; tlim=linspace(tmin,tmax,nt)’;
75:

76: % Number of masses, gravity constant, mass vector
77: g=32.2; len0=1; mas=1/g; m=mas*ones(n,1);
78:

79: % Spring lengths and spring constants
80: L=len0*ones(n+1,1); ksp=5*mas*g*(n+1)/(2*len0);
81: k=ksp*ones(n+1,1);
82:

83: % If the far end of the chain is free, then the
84: % last spring constant is set equal to zero
85: k(n+1)=fixorfree*k(n+1);
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86:

87: % Viscous damping coefficients
88: c=cdamp*sqrt(mas*ksp)/40*ones(n,1);
89:

90: % Chain end position and initial position of
91: % each mass. Parameters concerning the end
92: % positions are passed as global variables.
93: % global zend omega Rend
94: zend=len0*(n+1); zinit=cumsum(L(1:n));
95: Rend=rend*zend;
96:

97: % Function name giving end position of the chain
98: re=@endmo;
99:

100: % Gravity forces and integration tolerance
101: fext=-i*g*m; tolrel=1e-6; tolabs=1e-8;
102:

103: % Initial conditions for the ode45 integrator
104: n=length(m); r0=[zinit;zeros(n,1)];
105:

106: % Integrate equations of motion
107: options = odeset(’reltol’,tolrel,’abstol’,tolabs);
108: fprintf(’\nPlease Wait While the Equations\n’)
109: fprintf(’of Motion Are Being Integrated\n’)
110: pause(1), tic;
111:

112: [t,r]=ode45(@spreqmof,tlim,r0,options,...
113: m,k,L,re,fext,c);
114:

115: cptim=toc; cpt=num2str(fix(10*cptim)/10);
116: fprintf(...
117: [’\nComputation time was ’,cpt,’ seconds\n’])
118:

119: % Extract displacement history and add
120: % end positions
121: R=endmo(t); z=[R(:,1),r(:,1:n)];
122: if k(n+1)~=0, z=[z,R(:,2)]; end
123: X=real(z); Y=imag(z);
124:

125: % Show animation or motion trace of the response.
126: % disp(’Press [Enter] to continue’), pause
127: disp(’ ’)
128: disp(’The motion can be animated or a trace’)
129: disp(’can be shown for successive positions’)
130: disp([’between t = ’,num2str(tmin),...
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131: ’ and t = ’,num2str(tmax)])
132: titl=[’ELASTIC CHAIN MOTION FOR ’,...
133: ’[cdamp,omega] = [’,num2str(cdamp),’ , ’,...
134: num2str(omega),’ ] and T = ’];
135:

136: % Plot the position for different times limits
137: while 1
138: disp(’ ’), disp(...
139: [’Choose a plot option (1 <=> animate, ’,...
140: ’ 2 <=> trace,’])
141: opt=input(’3 <=> stop) > ? ’);
142: if opt==3, break, end
143: disp(’ ’), disp(...
144: ’Give a time vector such as 0:.1:15’)
145: Tp=input(’Time vector > ? ’,’s’);
146: if isempty(Tp), break, end
147: tp=eval(Tp); tp=tp(:); T=[titl,Tp];
148: xp=interp1q(t,X,tp); yp=interp1q(t,Y,tp);
149: if opt ==1, plotmotn(xp,yp,T)
150: else, plotmotn(xp,yp,T,1), end
151: end
152:

153: % Save plot history for subsequent printing
154: % print -deps plotmotn
155:

156: fprintf(’\nAll Done\n’)
157:

158: %=====================================
159:

160: function [n,tmax,nt,fixorfree,rend,omega,...
161: cdamp]=chaindata
162: %
163: % [n,tmax,nt,fixorfree,rend,omega,...
164: % cdamp]=chaindata
165: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
166: % This example function creates data defining
167: % the chain. The function can be renamed and
168: % modified to handle different problems.
169:

170: n=8; % Number or point masses
171: tmax=20; % Maximum time for the solution
172: nt=401; % Number of time values from 0 to tmax
173: fixorfree=0; % Determines whether the right end
174: % position is controlled or free. Use
175: % zero for free or one for controlled.
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176: rend=0.05; % Amplitude factor for end motion. This
177: % can be zero if the ends are fixed.
178: omega=6; % Frequency at which the ends are
179: % rotated.
180: cdamp=1; % Coefficient regulating the amount of
181: % viscous damping. Reduce cdamp to give
182: % less damping.
183:

184: %=====================================
185:

186: function rdot=spreqmof(t,r,m,k,L,re,fext,c)
187: %
188: % rdot=spreqmof(t,r,m,k,L,re,fext,c)
189: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
190: % This function forms the two-dimensional equation
191: % of motion for a chain of spring-connected particles.
192: % The positions of the ends of the chain may be time
193: % dependent and are computed from a function named in
194: % the input parameter re. The applied external loading
195: % consists of constant loads on the particles and
196: % linear viscous damping proportional to the particle
197: % velocities. Data parameters for the problem are
198: % defined in a function file specified by the user.
199: % Function chaindata gives a typical example.
200: %
201: % t - current value of time
202: % r - vector containing complex displacements in
203: % the top half and complex velocity components
204: % in the bottom half
205: % m - vector of particle masses
206: % k - vector of spring constant values
207: % L - vector of unstretched spring lengths
208: % re - name of a function which returns the time
209: % dependent complex position coordinate for
210: % the ends of the chain
211: % fext - vector of constant force components applied
212: % to the spring
213: % c - vector of viscous damping coefficients for
214: % the particles
215:

216: N=length(r); n=N/2; z=r(1:n); v=r(n+1:N);
217: R=feval(re,t);
218: zdif=diff([R(1);z;R(2)]); len=abs(zdif);
219: fsp=zdif./len.*((len-L).*(len-L>0)).*k; fdamp=-c.*v;
220: accel=(fext+fdamp+fsp(2:n+1)-fsp(1:n))./m;
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221: rdot=[v;accel];
222:

223: %=====================================
224:

225: function rends=endmo(t)
226: %
227: % rends=endmo(t)
228: % ~~~~~~~~~~~~~
229: % This function specifies the varying end positions.
230: % In this example the ends rotate at frequency omega
231: % around circles of radius Rend.
232: %
233: % User m functions called: none
234: %----------------------------------------------
235:

236: global zend Rend omega
237:

238: s=Rend*exp(i*omega*t); rends=[s,zend-conj(s)];
239:

240: %=============================================
241:

242: % function plotmotn(x,y,titl,isave)
243: % See Appendix B
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Chapter 9

Boundary Value Problems for Partial
Differential Equations

9.1 Several Important Partial Differential Equations

Many physical phenomena are characterized by linear partial differential equa-
tions. Such equations are attractive to study because (a) principles of superposition
apply in the sense that linear combinations of component solutions can often be used
to build more general solutions and (b) Þnite difference or Þnite element approxima-
tions lead to systems of linear equations amenable to solution by matrix methods.
The accompanying table lists several frequently encountered equations and some ap-
plications. We only show one- or two-dimensional forms, although some of these
equations have relevant applications in three dimensions.

In most practical applications the differential equations must be solved within a
Þnite region of space while simultaneously prescribing boundary conditions on the
function and its derivatives. Furthermore, initial conditions may exist. In dealing
with the initial value problem, we are trying to predict future system behavior when
initial conditions, boundary conditions, and a governing physical process are known.
Solutions to such problems are seldom obtainable in a closed Þnite form. Even when
series solutions are developed, an inÞnite number of terms may be needed to pro-
vide generality. For example, the problem of transient heat conduction in a circular
cylinder leads to an inÞnite series of Bessel functions employing characteristic val-
ues which can only be computed approximately. Hence, the notion of an �exact�
solution expressed as an inÞnite series of transcendental functions is deceiving. At
best, we can hope to produce results containing insigniÞcantly small computation
errors.

The present chapter applies eigenfunction series to solve nine problems. Examples
involving the Laplace, wave, beam, and heat equations are given. Nonhomogeneous
boundary conditions are dealt with in several instances. Animation is also provided
whenever it is helpful to illustrate the nature of the solutions.

   © 2003 by CRC Press LLC



Equation Equation Applications
Name

uxx + uyy = αut Heat Transient heat conduction

uxx + uyy = αutt Wave Transverse vibrations of membranes
and other wave type phenomena

uxx + uyy = 0 Laplace Steady-state heat conduction and
electrostatics

uxx + uyy = f(x, y) Poisson Stress analysis of linearly elastic
bodies

uxx + uyy + ω2u = 0 Helmholtz Steady-state harmonic vibration
problems

EIyxxxx = −Aρytt + f(x, t) Beam Transverse ßexural vibrations of
elastic beams

9.2 Solving the Laplace Equation inside a Rectangular Region

Functions which satisfy Laplace�s equation are encountered often in practice. Such
functions are called harmonic; and the problem of determining a harmonic function
subject to given boundary values is known as the Dirichlet problem [119]. In a
few cases with simple geometries, the Dirichlet problem can be solved explicitly.
One instance is a rectangular region with the boundary values of the function being
expandable in a Fourier sine series. The following program employs the FFT to con-
struct a solution for boundary values represented by piecewise linear interpolation.
Surface and contour plots of the resulting Þeld values are also presented.

The problem of interest satisÞes the differential equation

∂2u

∂x2
+
∂2u

∂y2
= 0 , 0 < x < a , 0 < y < b

with the boundary conditions of the form

u(x, 0) = F (x) , 0 < x < a ,

u(x, b) = G(x) , 0 < x < a ,

u(0, y) = P (y) , 0 < y < b ,

u(a, y) = Q(y) , 0 < y < b .

The series solution can be represented as

u(x, y) =
∞∑

n=1

fnan(x, y) + gnan(x, b− y) + pnbn(x, y) + qnbn(a− x, y)
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where

an(x, y) = sin
[nπx
a

]
sinh

[
nπ(b− y)

a

]
/ sinh

[
nπb

a

]
,

bn(x, y) = sinh
[
nπ(a− x)

b

]
sin

[nπy
b

]
/ sinh

[nπa
b

]
,

and the constants fm, gm, pn, and qn are coefÞcients in the Fourier sine expansions
of the boundary value functions. This implies that

F (x) =
∞∑

n=1

fn sin
[nπx
a

]
, G(x) =

∞∑
n=1

gn sin
[nπx
a

]
,

P (y) =
∞∑

n=1

pn sin
[nπy
b

]
, Q(y) =

∞∑
n=1

qn sin
[nπy
b

]
.

The coefÞcients in the series can be computed by integration as

fn =
2
a

∫ a

0

F (x) sin
[nπx
a

]
dx , gn =

2
a

∫ a

0

G(x) sin
[nπx
a

]
dx,

pn =
2
a

∫ b

0

P (y) sin
[nπy
b

]
dy , qn =

2
a

∫ b

0

Q(y) sin
[nπy
b

]
dy,

or approximate coefÞcients can be obtained using the FFT. The latter approach is
chosen here and the solution is evaluated for an arbitrary number of terms in the
series.

The chosen problem solution has the disadvantage of employing eigenfunctions
that vanish at the ends of the expansion intervals. Consequently, it is desirable to
combine the series with an additional term allowing exact satisfaction of the corner
conditions for cases where the boundary value functions for adjacent sides agree.
This implies requirements such as F (a) = Q(0) and three other similar conditions.
It is evident that the function

up(x, y) = c1 + c2x+ c3y + c4xy

is harmonic and varies linearly along each side of the rectangle. Constants c 1, · · · , c4
can be computed to satisfy the corner values and the total solution is represented as
up plus a series solution involving modiÞed boundary conditions.

The following program laplarec solves the Dirichlet problem for the rectangle.
Function values and gradient components are computed and plotted. Functions used
in this program are described below. The example data set deÞned in the driver
program was chosen to produce interesting surface and contour plots. Different
boundary conditions can be handled by slight modiÞcations of the input data. In
this example 100 term series are used. Figure 9.1 through Figure 9.4 show function
and gradient components, as well as a contour plot of function values. Readers may
Þnd it instructive to run the program and view these Þgures from different angles

© 2003 by CRC Press LLC



laplarec inputs data, calls computation modules, and
plots results

datafunc deÞnes an example datacase
ulinbc particular solution for linearly varying

boundary conditions
recseris sums the series for function and gradient val-

ues
sincof generates coefÞcients in a Fourier sine series
lintrp piecewise linear interpolation function allow-

ing jump discontinuities

using the interactive Þgure rotating capability provided in MATLAB. Note that the
Þgure showing the function gradient in the x direction used view([225,20]) to show
clearly the jump discontinuity in this quantity.
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MATLAB Example

Program laplarec

1: function [u,ux,uy,X,Y]=laplarec(...
2: ubot,utop,ulft,urht,a,b,nx,ny,N)
3: %
4: % [u,ux,uy,X,Y]=laplarec(...
5: % ubot,utop,ulft,urht,a,b,nx,ny,N)
6: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7: % This program evaluates a harmonic function and its
8: % first partial derivatives in a rectangular region.
9: % The method employs a Fourier series expansion.

10: % ubot - defines the boundary values on the bottom
11: % side. This can be an array in which
12: % ubot(:,1) is x coordinates and ubot(:,2)
13: % is function values. Values at intermediate
14: % points are obtained by piecewise linear
15: % interpolation. A character string giving
16: % the name of a function can also be used.
17: % Then the function is evualuated using 200
18: % points along a side to convert ubot to an
19: % array. Similar comments apply for utop,
20: % ulft, and urht introduced below.
21: % utop - boundary value definition on the top side
22: % ulft - boundary value definition on the left side
23: % urht - boundary value definition on the right side
24: % a,b - rectangle dimensions in x and y directions
25: % nx,ny - number of x and y values for which the
26: % solution is evaluated
27: % N - number of terms used in the Fourier series
28: % u - function value for the solution
29: % ux,uy - first partial derivatives of the solution
30: % X,Y - coordinate point arrays where the solution
31: % is evaluated
32: %
33: % User m functions used: datafunc ulinbc
34: % recseris ftsincof
35:

36: disp(’ ’)
37: disp(’SOLVING THE LAPLACE EQUATION IN A RECTANGLE’)
38: disp(’ ’)
39:

40: if nargin==0

© 2003 by CRC Press LLC



41: disp(...
42: ’Give the name of a function defining the data’)
43: datfun=input(...
44: ’(try datafunc as an example): > ? ’,’s’);
45: [ubot,utop,ulft,urht,a,b,nx,ny,N]=feval(datfun);
46: end
47:

48: % Create a grid to evaluate the solution
49: x=linspace(0,a,nx); y=linspace(0,b,ny);
50: [X,Y]=meshgrid(x,y); d=(a+b)/1e6;
51: xd=linspace(0,a,201)’; yd=linspace(0,b,201)’;
52:

53: % Check whether boundary values are given using
54: % external functions. Convert these to arrays
55:

56: if isstr(ubot)
57: ud=feval(ubot,xd); ubot=[xd,ud(:)];
58: end
59: if isstr(utop)
60: ud=feval(utop,xd); utop=[xd,ud(:)];
61: end
62: if isstr(ulft)
63: ud=feval(ulft,yd); ulft=[yd,ud(:)];
64: end
65: if isstr(urht)
66: ud=feval(urht,yd); urht=[yd,ud(:)];
67: end
68:

69: % Determine function values at the corners
70: ub=interp1(ubot(:,1),ubot(:,2),[d,a-d]);
71: ut=interp1(utop(:,1),utop(:,2),[d,a-d]);
72: ul=interp1(ulft(:,1),ulft(:,2),[d,b-d]);
73: ur=interp1(urht(:,1),urht(:,2),[d,b-d]);
74: U=[ul(1)+ub(1),ub(2)+ur(1),ur(2)+ut(2),...
75: ut(1)+ul(2)]/2;
76:

77: % Obtain a solution satisfying the corner
78: % values and varying linearly along the sides
79:

80: [v,vx,vy]=ulinbc(U,a,b,X,Y);
81:

82: % Reduce the corner values to zero to improve
83: % behavior of the Fourier series solution
84: % near the corners
85:
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86: f=inline(’u0+(u1-u0)/L*x’,’x’,’u0’,’u1’,’L’);
87: ubot(:,2)=ubot(:,2)-f(ubot(:,1),U(1),U(2),a);
88: utop(:,2)=utop(:,2)-f(utop(:,1),U(4),U(3),a);
89: ulft(:,2)=ulft(:,2)-f(ulft(:,1),U(1),U(4),b);
90: urht(:,2)=urht(:,2)-f(urht(:,1),U(2),U(3),b);
91:

92: % Evaluate the series and combine results
93: % for the various component solutions
94:

95: [ub,ubx,uby]=recseris(ubot,a,b,1,x,y,N);
96: [ut,utx,uty]=recseris(utop,a,b,2,x,y,N);
97: [ul,ulx,uly]=recseris(ulft,a,b,3,x,y,N);
98: [ur,urx,ury]=recseris(urht,a,b,4,x,y,N);
99: u=v+ub+ut+ul+ur; ux=vx+ubx+utx+ulx+urx;

100: uy=vy+uby+uty+uly+ury; close
101:

102: % Show results graphically
103:

104: surfc(X,Y,u), xlabel(’x axis’), ylabel(’y axis’)
105: zlabel(’U(X,Y)’)
106: title(’HARMONIC FUNCTION IN A RECTANGLE’)
107: shg, pause
108: % print -deps laprecsr
109:

110: contour(X,Y,u,30); title(’Contour Plot’);
111: xlabel(’x direction’); ylabel(’y direction’);
112: colorbar, shg, pause
113: % print -deps laprecnt
114:

115: surf(X,Y,ux), xlabel(’x axis’), ylabel(’y axis’)
116: zlabel(’DU(X,Y)/DX’)
117: title(’DERIVATIVE OF U(X,Y) IN THE X DIRECTION’)
118: shg, pause
119: % print -deps laprecdx
120:

121: surf(X,Y,uy), xlabel(’x axis’), ylabel(’y axis’)
122: zlabel(’DU(X,Y)/DY’)
123: title(’DERIVATIVE OF U(X,Y) IN THE Y DIRECTION’)
124: % print -deps laprecdy
125: shg
126:

127: %============================================
128:

129: function [ubot,utop,ulft,urht,a,b,...
130: nx,ny,N]=datafunc
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131: %
132: % [ubot,utop,ulft,urht,a,b,...
133: % nx,ny,N]=datafunc
134: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
135: % This is a sample data case which can be
136: % modified to apply to other examples
137: %
138: % ubot, utop - vectors of function values on the
139: % bottom and top sides
140: % ulft, urht - vectors of function values on the
141: % right and left sides
142: % a, b - rectangle dimensions along the
143: % x and y axis
144: % nx, ny - number of grid values for the x
145: % and y directions
146: % N - number of terms used in the
147: % Fourier series solution
148:

149: a=3; b=2; e=1e-5; N=100;
150: x=linspace(0,1,201)’; s=sin(pi*x);
151: c=cos(pi*x); ubot=[a*x,2-4*s];
152: utop=[a*x,interp1([0,1/3,2/3,1],...
153: [-2,2,2,-2],x)];
154: ulft=[b*x,2*c]; urht=ulft; nx=51; ny=31;
155:

156: %============================================
157:

158: function [u,ux,uy]=ulinbc(U,a,b,X,Y)
159: %
160: % [u,ux,uy]=ulinbc(U,a,b,X,Y)
161: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
162: % This function determines a harmonic function
163: % varying linearly along the sides of a rectangle
164: % with specified corner values
165: %
166: % U - corner values of the harmonic function
167: % [U(1),...U(4)] <=> corner coordinates
168: % (0,0), (0,a), (a,b), (0,b)
169: % a,b - rectangle dimensions in the x and y
170: % directions
171: % X,Y - array coordinates where the solution
172: % is evaluated
173: % u - function values evaluated for X,Y
174: % ux,uy - first derivative components evaluated
175: % for the X,Y arrays
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176:

177: c=[1,0,0,0;1,a,0,0;1,a,b,a*b;1,0,b,0;]\U(:);
178: u=c(1)+c(2)*X+c(3)*Y+c(4)*X.*Y;
179: ux=c(2)+c(4)*Y; uy=c(3)+c(4)*X;
180:

181: %============================================
182:

183: function [u,ux,uy,X,Y]=recseris(udat,a,b,iside,x,y,N)
184: %
185: % [u,ux,uy,X,Y]=recseris(udat,a,b,iside,x,y,N)
186: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
187: % This function computes a function harmonic in
188: % a rectangle with general function values given
189: % on one side and zero function values on the
190: % other three sides.
191: % udat - a data array to determine the function
192: % values by piecewise linear interpolation
193: % along the side having nonzero values.
194: % udat(:,1) contains either x or y values
195: % along a side, and udat(:,2) contains
196: % corresponding function values
197: % a,b - side lengths for the x and y directions
198: % iside - an index indicating the side for which
199: % function values are given.
200: % [1,2,3,4]<=>[bottom,top,left,right]
201: % x,y data vectors defining a grid
202: % [X,Y]=meshgrid(x,y) on which the function
203: % and its first partial derivatives are
204: % computed
205: % N - number of series terms used (up to 500)
206: % u,ux,uy - arrays of values of the harmonic function
207: % and its first partial derivatives
208: % X,Y arrays of coordinate values for which
209: % function values were computed.
210:

211: x=x(:)’; y=y(:); ny=length(y); N=min(N,500);
212: if iside<3, period=2*a; else, period=2*b; end
213: c=ftsincof(udat,period); n=1:N; c=c(n);
214: if iside<3 % top or bottom sides
215: npa=pi/a*n; c=c./(1-exp(-2*b*npa));
216: sx=sin(npa(:)*x); cx=cos(npa(:)*x);
217: if iside==1 % bottom side
218: dy=exp(-y*npa); ey=exp(-(2*b-y)*npa);
219: u=repmat(c,ny,1).*(dy-ey)*sx;
220: c=repmat(c.*npa,ny,1);
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221: ux=c.*(dy-ey)*cx; uy=-c.*(dy+ey)*sx;
222: else % top side
223: dy=exp((y-b)*npa); ey=exp(-(y+b)*npa);
224: u=repmat(c,ny,1).*(dy-ey)*sx;
225: c=repmat(c.*npa,ny,1);
226: ux=c.*(dy-ey)*cx; uy=c.*(dy+ey)*sx;
227: end
228: else % left or right sides
229: npb=pi/b*n; c=c./(1-exp(-2*a*npb));
230: sy=sin(y*npb); cy=cos(y*npb);
231: if iside==3 % left side
232: dx=exp(-npb(:)*x);
233: ex=exp(-npb(:)*(2*a-x));
234: u=repmat(c,ny,1).*sy*(dx-ex);
235: c=repmat(c.*npb,ny,1);
236: ux=c.*sy*(-dx-ex); uy=c.*cy*(dx-ex);
237: else % right side
238: dx=exp(-npb(:)*(a-x));
239: ex=exp(-npb(:)*(a+x));
240: u=repmat(c,ny,1).*sy*(dx-ex);
241: c=repmat(c.*npb,ny,1);
242: ux=c.*sy*(dx+ex); uy=c.*cy*(dx-ex);
243: end
244: end
245: [X,Y]=meshgrid(x,y);
246:

247: %============================================
248:

249: function c=ftsincof(y,period)
250: %
251: % c=ftsincof(y,period)
252: % ~~~~~~~~~~~~~~~~~~~
253: % This function computes 500 Fourier sine
254: % coefficients for a piecewise linear
255: % function defined by a data array
256: % y - an array defining the function
257: % over half a period as
258: % Y(x)=interp1(y(:,1),y(:,2),x)
259: % period - the period of the function
260: %
261: xft=linspace(0,period/2,513);
262: uft=interp1(y(:,1),y(:,2)/512,xft);
263: c=fft([uft,-uft(512:-1:2)]);
264: c=-imag(c(2:501));
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9.3 The Vibrating String

Transverse motion of a tightly stretched string illustrates one of the simplest oc-
currences of one-dimensional wave propagation. The transverse deßection satisÞes
the wave equation

a2 ∂
2u

∂X2
=
∂2u

∂T 2

where u(X,T ) satisÞes initial conditions

u(X, 0) = F (X) ,
∂u(X, 0)
∂T

= G(X)

with boundary conditions

u(0, T ) = 0 , u(�, T ) = 0

where � is the string length. If we introduce the dimensionless variables x = X/�
and t = T/(�/a) the differential equation becomes

uxx = utt

where subscripts denote partial differentiation. The boundary conditions become

u(0, t) = u(1, t) = 0

and the initial conditions become

u(x, 0) = f(x) , ut(x, 0) = g(x).

Let us consider the case where the string is released from rest initially so g(x) = 0.
The solution can be found in series form as

u(x, t) =
∞∑

n=1

anpn(x) cos(ωnt)

where ωn are natural frequencies and satisfaction of the differential equation of mo-
tion requires

p′′n(x) + ω2
npn(x) = 0

so
pn = An sin(ωnx) +Bn cos(ωnx).

The boundary condition pn(0) = Bn = 0 and pn(1) = An sin(ωn) requiresAn 
= 0
and ωn = nπ, where n is an integer. This leads to a solution in the form

u(x, t) =
∞∑

n=1

an sin(nπx) cos(nπt).
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The remaining condition on initial conditions requires

∞∑
n=1

an sin(nπx) = f(x) , 0 < x < 1.

Therefore, the coefÞcients an are obtainable from an odd-valued Fourier series ex-
pansion of f(x) vanishing at x = 0 and x = 2. We see that f(−x) = −f(x) and
f(x+ 2) = f(x), and the coefÞcients are obtainable by integration as

an = 2
∫ 1

0

f(x) sin(nπx) dx.

However, an easier way to compute the coefÞcients is to use the FFT. A solution will
be given for an arbitrary piecewise linear initial condition.

Before implementing the Fourier series solution, let us digress brießy to examine
the case of an inÞnite string governed by

a2uXX = uTT , −∞ < X <∞

and initial conditions

u(X, 0) = F (X) , uT (X, 0) = G(X).

The reader can verify directly that the solution of this problem is given by

u(X,T ) =
1
2

[F (X − aT ) + F (X + aT )] +
1
2a

∫ X+aT

X−aT

G(x) dx.

When the string is released from rest, G(X) is zero and the solution reduces to

F (X − aT ) + F (X + aT )
2

which shows that the initial deßection splits into two parts with one half translating
to the left at speed a and the other half moving to the right at speed a. This solution
can also be adapted to solve the problem for a string of length � Þxed at each end.
The condition u(0, T ) = 0 implies

F (−aT ) = −F (aT )

which shows that F (X) must be odd valued. Similarly, u(�, T ) = 0 requires

F (�− aT ) + F (�+ aT ) = 0.

Combining this condition with F (X) = −F (X) shows that

F (X + 2�) = F (X)
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so, F (X) must have a period of 2�. In the string of length �, F (X) is only known
for 0 < X < �, and we must take

F (X) = −F (2�−X) , � < X < 2�.

Furthermore the solution has the form

u(X,T ) =
F (xp) + F (xm)

2

where xp = X + aT and xm = X − aT . The quantity xp will always be positive
and xm can be both positive and negative. The necessary sign change and periodicity
can be achieved by evaluating F (X) as

sign(X).*F (rem(abs(X)), 2 ∗ �)

where rem is the intrinsic remainder function used in the exact solution implemented
in function strngwav presented earlier in section 2.7.

A computer program employing the Fourier series solution was written for an
initial deßection that is piecewise linear. The series solution allows the user to select
varying numbers of terms in the series to examine how well the initial deßection
conÞguration is represented by a truncated sine series. A function animating the
time response shows clearly how the initial deßection splits in two parts translating
in opposite directions. In the Fourier solution, dimensionless variables are employed
to make the string length and the wave speed both equal one. Consequently, the
time required for the motion to exactly return to the starting position equals two,
representing how long it takes for a disturbance to propagate from one end to the
other and back. When the motion is observed for 0 < x < 1, it is evident that waves
reßected from a wall are inverted. The program employs the following functions.

stringft function to input initial deßection data
sincof uses fft to generate coefÞcients in a sine series
initdeß deÞnes the initial deßection by piecewise linear

interpolation
strvib evaluates the series solution for general x and t
smotion animates the string motion
inputv facilitates interactive data input
lintrp performs interpolation to evaluate a piecewise

linear function

Results are shown below for a string which was deßected initially in a square
wave. The example was chosen to illustrate the approximation produced when a
small number of Fourier coefÞcients, in this case 30, is used. Ripples are clearly
evident in the surface plot of u(x, t) in Figure 9.5. The deßection conÞguration of
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Figure 9.5: String Deßection as a Function of Position and Time

the string at t = 1 when the initial deßection form has passed through half a period
of motion appears in Figure 9.6. One other example given in Figure 9.7 shows the
deßection surface produced using 100 series terms and a triangular initial deßection
pattern. The surface describes u(x, t) through one period of motion.
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Wave Propagation in a String

Figure 9.6: Wave Propagation in a String

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2
−1

−0.5

0

0.5

1

x axis

String Deflection as a Function of Position and Time

time axis

tr
an

sv
er

se
 d

ef
le

ct
io

n

Figure 9.7: Surface for Triangular Initial Deßection
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Program Output and Code

Output from Example stringft

>> stringft;

FOURIER SERIES SOLUTION FOR WAVES
IN A STRING WITH LINEARLY INTERPOLATED

INITIAL DEFLECTION AND FIXED ENDS

Enter the number of interior data points (the fixed
end point coordinates are added automatically)
? 4

The string stretches between fixed endpoints at
x=zero and x=one.

Enter 4 sets of x,y to specify interior
initial deflections (one pair per line)

? .33,0
? .33,-1
? .67,-1
? .67,0

Give the number of series terms
and the maximum value of t
(give 0,0 to stop)
? 30,1

Press [Enter] to
see the animation

Give the number of series terms
and the maximum value of t
(give 0,0 to stop)
? 0,0

>>

String Vibration Program

1: function [x,t,y]=stringft(Xdat,Ydat)
2: %
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3: % Example: [x,t,y]=stringft(Xdat,Ydat)
4: % ~~~~~~~~~~~~~~~
5: % This program analyzes wave motion in a string
6: % having arbitrary piecewise linear initial
7: % deflection. A Fourier series expansion is used
8: % to construct the solution
9: %

10: % Xdat,Ydat -data vectors defining the initial
11: % deflections at interior points. The
12: % deflections at x=0 and x=1 are set
13: % to xero automatically. For example,
14: % try Xdat=[.2,.3,.7,.8],
15: % Ydat=[0,-1,-1,0]
16: %
17: % x,t,y - arrays containing the position, time
18: % and deflection values
19: %
20: % User m functions required:
21: % sincof, initdefl, strvib, smotion, inputv,
22: % lintrp
23:

24: global xdat ydat
25:

26: disp(’ ’), disp( ...
27: ’ FOURIER SERIES SOLUTION FOR WAVES’)
28: disp(....
29: ’IN A STRING WITH LINEARLY INTERPOLATED’)
30: disp(...’
31: ’ INITIAL DEFLECTION AND FIXED ENDS’)
32: if nargin==0
33: disp(’ ’)
34: disp([’Enter the number of interior ’,...
35: ’data points (the fixed’])
36: disp([’end point coordinates are ’,...
37: ’added automatically)’])
38: n=input(’? ’); if isempty(n), break, end
39: xdat=zeros(n+2,1); ydat=xdat; xdat(n+2)=1;
40: disp(’ ’)
41: disp([’The string stretches between ’,...
42: ’fixed endpoints at’])
43: disp(’x=zero and x=one. ’),disp(’ ’)
44: disp([’Enter ’,num2str(n),...
45: ’ sets of x,y to specify interior’])
46: disp([’initial deflections ’,...
47: ’(one pair per line)’]), disp(’ ’)
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48: for j=2:n+1,[xdat(j),ydat(j)]=inputv; end;
49: else
50: xdat=[0;Xdat(:);1]; ydat=[0;Ydat(:);0];
51: end
52:

53: a=sincof(@initdefl,1,1024); % sine coefficients
54: nx=51; x=linspace(0,1,nx);
55: xx=linspace(0,1,151);
56:

57: while 1
58: disp(’ ’)
59: disp(’Give the number of series terms’)
60: disp(’and the maximum value of t’)
61: disp(’(give 0,0 to stop)’)
62: [ntrms,tmax]=inputv;
63: if isnan(ntrms)| norm([ntrms,tmax])==0
64: break, end
65: nt=ceil(nx*tmax); t=linspace(0,tmax,nt);
66: y=strvib(a,t,x,1,ntrms); % time history
67: yy=strvib(a,t,xx,1,ntrms);
68: [xo,to]=meshgrid(x,t);
69: hold off; surf(xo,to,y);
70: grid on; colormap([1 1 1]);
71: %colormap([127/255 1 212/255]);
72: xlabel(’x axis’); ylabel(’time axis’);
73: zlabel(’transverse deflection’);
74: title([’String Deflection as a Function ’, ...
75: ’of Position and Time’]);
76: disp(’ ’), disp(’Press [Enter] to’)
77: disp(’see the animation’), shg, pause
78: % print -deps strdefl
79: smotion(xx,yy,’Wave Propagation in a String’);
80: disp(’’); pause(1);
81: end
82: % print -deps strwave
83:

84: %=============================================
85:

86: function y=initdefl(x)
87: %
88: % y=initdefl(x)
89: % ~~~~~~~~~~~~~
90: % This function defines the linearly
91: % interpolated initial deflection
92: % configuration.
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93: %
94: % x - a vector of points at which the initial
95: % deflection is to be computed
96: %
97: % y - transverse initial deflection value for
98: % argument x
99: %

100: % xdat, ydat - global data vectors used for
101: % linear interpolation
102: %
103: % User m functions required: lintrp
104: %----------------------------------------------
105:

106: global xdat ydat
107: y=lintrp(xdat,ydat,x);
108:

109: %=============================================
110:

111: function y=strvib(a,t,x,hp,n)
112: %
113: % y=strvib(a,t,x,hp,n)
114: % ~~~~~~~~~~~~~~~~~~~~
115: % Sum the Fourier series for the string motion.
116: %
117: % a - Fourier coefficients of initial
118: % deflection
119: % t,x - vectors of time and position values
120: % hp - the half period for the series
121: % expansion
122: % n - the number of series terms used
123: %
124: % y - matrix with y(i,j) equal to the
125: % deflection at position x(i) and
126: % time t(j)
127: %
128: % User m functions required: none
129: %----------------------------------------------
130:

131: w=pi/hp*(1:n); a=a(1:n); a=a(:)’;
132: x=x(:); t=t(:)’;
133: y=((a(ones(length(x),1),:).* ...
134: sin(x*w))*cos(w(:)*t))’;
135:

136: %=============================================
137:
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138: function smotion(x,y,titl)
139: %
140: % smotion(x,y,titl)
141: % ~~~~~~~~~~~~~~~~~
142: % This function animates the string motion.
143: %
144: % x - a vector of position values along the
145: % string
146: % y - a matrix of transverse deflection
147: % values where successive rows give
148: % deflections at successive times
149: % titl - a title shown on the plot (optional)
150: %
151: % User m functions required: none
152: %----------------------------------------------
153:

154: if nargin < 3, titl=’ ’; end
155: xmin=min(x); xmax=max(x);
156: ymin=min(y(:)); ymax=max(y(:));
157: [nt,nx]=size(y); clf reset;
158: for j=1:nt
159: plot(x,y(j,:),’k’);
160: axis([xmin,xmax,2*ymin,2*ymax]);
161: axis(’off’); title(titl);
162: drawnow; figure(gcf); pause(.1)
163: end
164:

165: %=============================================
166:

167: function a=sincof(func,hafper,nft)
168: %
169: % a=sincof(func,hafper,nft)
170: % ~~~~~~~~~~~~~~~~~~~~~~~~~
171: % This function calculates the sine
172: % coefficients.
173: %
174: % func - the name of a function defined over
175: % a half period
176: % hafper - the length of the half period of the
177: % function
178: % nft - the number of function values used
179: % in the Fourier series
180: %
181: % a - the vector of Fourier sine series
182: % coefficients
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183: %
184: % User m functions required: none
185: %----------------------------------------------
186:

187: n2=nft/2; x=hafper/n2*(0:n2);
188: y=feval(func,x); y=y(:);
189: a=fft([y;-y(n2:-1:2)]); a=-imag(a(2:n2))/n2;
190:

191: %=============================================
192:

193: % function y=lintrp(xd,yd,x)
194: % See Appendix B
195:

196: %=============================================
197:

198: % function varargout=inputv(prompt)
199: % See Appendix B

9.4 Force Moving on an Elastic String

The behavior of a semi-inÞnite string acted on by a moving transverse force illus-
trates an interesting aspect of wave propagation. Consider a taut string initially at
rest and un-deßected when a force moving at constant speed is applied. This simple
example shows how a wave front moves ahead of the force when the velocity of wave
propagation in the string exceeds the speed of the force, but the force acts at the front
of the disturbance when the force moves faster than the wave speed of the string. The
governing differential equations, initial conditions, and boundary conditions are:

a2uxx(x, t) = utt(x, t) +
F0

ρ
δ(x− vt) , t > 0 , 0 < x <∞,

u(0, t) = 0 , u(∞, t) = 0,

u(x, 0) = 0 , ut(x, 0) = 0 , 0 < x <∞.

In these equations a is the speed of wave propagation in the string and v is the speed
at which a concentrated downward force F0 moves toward the right along the string,
ρ is the mass per unit length of the string, and δ is the Dirac delta function. This
problem can be solved using the Fourier sine transform pair deÞned by

U(p, t) =

∞∫
0

u(x, t) sin(px)dx , u(x, t) =
2
π

∞∫
0

U(p, t) sin(px)dp.
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Transforming the differential equation and initial conditions, and making use of the
boundary conditions gives

−p2a2U(p, t) = Utt(p, t) +
F0

ρ
sin(pvt) , U(p, 0) = 0 , Ut(p, 0) = 0.

It follows that

U(p, t) =
F0

aρ(a2 − v2)

[
v sin(apt) − a sin(vpt)

p2

]
,

provided v 
= a. Applying the inverse transformation then gives the desired displace-
ment response as

u(x, t) =
F0

2aρ(a2 − v2)
[ (v − a)x− v |x− at| + a |x− vt| ] .

9.4.1 Computer Analysis

The following MATLAB program analyzes the response predicted by the last
equation. A surface plot shows u(x, t). Positions of the force at successive times
are also marked by a heavy dark line superimposed on the surface. Then an anima-
tion shows the string deßection and the point of action of the force throughout the
chosen time interval. As the force moves along the string, no deßection occurs ahead
of the force if the speed of the force exceeds the speed of wave propagation for the
string. Otherwise, a disturbance propagates ahead of the force at the wave speed of
the string. Graphical results from the program are shown Þrst. Then the computer
code is listed.

Let us Þrst consider what happens when the force moves slower than the wave
speed. Taking so v = 1.0, a = 1.2 gives the following results in Figure 9.8. Since
the point of application of the load is denoted by an arrow, it is clear from the last
Þgure that the disturbance moves ahead of the load when the load moves slower than
the wave speed for the string. Next consider what happens when the force moves
faster than the wave speed for the string. For example taking v = 1, a = 0.80 gives
signiÞcantly different output. In this instance, no disturbance occurs at a point until
the load passes the point. This case is illustrated in Figure 9.9. The reader may Þnd
it instructive to run the program for different combinations of force speed and wave
speed. The program does not account for the case where v exactly equals a, but these
values can be taken close enough together to see what the limiting case will give. We
simply increase a to 1.00001 times a.
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Program forcmove

1: function [u,X,T,uf,t]=forcmove(a,v,tmax,nt)
2: %
3: % [u,X,T,uf,t]=forcmove(a,v,tmax,nt)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function computes the dynamic response
6: % of a taut string subjected to an upward
7: % directed concentrated force moving along the
8: % string at constant speed. The string is
9: % fixed at x=0 and x=+infinity. The system

10: % is initially at rest when the force starts
11: % moving toward the right from the left end. If
12: % the force speed exceeds the wave propagation
13: % speed, then no disturbance occurs ahead of
14: % the force. If the force speed is slower
15: % than the wave propagation speed, then the
16: % deflection propagates ahead of the force at
17: % the wave propagation speed.
18: %
19: % v - speed of the moving load
20: % a - speed of wave propagation in the
21: % string
22: % tmax - maximum time for which the
23: % solution is computed
24: % u - matrix of deflection values where
25: % time and position vary row-wise and
26: % column-wise, respectively
27: % T,X - matrices of time and position values
28: % corresponding to the deflection
29: % matrix U
30: % uf - deflection values where the force acts
31: % t - vector of times (same as columns of T)
32: %
33: % User m functions used: ustring
34:

35: if nargin==0, a=.8; v=1; tmax=10; nt=15; end
36:

37: if a>v
38: titl=’FORCE SPEED SLOWER THAN THE WAVE SPEED’;
39: elseif a<v
40: titl=’FORCE SPEED FASTER THAN THE WAVE SPEED’;
41: else
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42: titl=’FORCE SPEED EQUAL TO THE WAVE SPEED’;
43: a=v*1.00001;
44: end
45:

46: % Obtain solution values and plot results
47: [u,X,T,uf,t]=ustring(a,v,tmax,nt);
48: if a>v, xf=X(:,2); uf=u(:,2); xw=X(:,3);
49: else, xf=X(:,3); uf=u(:,3); end
50: close, subplot(211)
51: waterfall(X,T,-u), xlabel(’x axis’)
52: ylabel(’time’), zlabel(’deflection’)
53:

54: title(titl), grid on, hold on
55: % plot3(xf,t,-uf,’.k’,xf,t,-uf,’k’)
56: plot3(xf,t,-uf,’k’,’linewidth’,2);
57: colormap([0 0 0]), view([-10,30]), shg
58: umin=min(u(:)); umax=max(u(:)); xmax=X(1,4);
59: range=[0,xmax,2*umin,2*umax]; hold on
60: Titl=[’A = ’,num2str(a),’, V = ’,num2str(v),...
61: ’, T = %4.2f’]; subplot(212) , axis off
62:

63: % Use a dense set of points for animation
64: nt=80; [uu,XX,TT,uuf,tt]=ustring(a,v,tmax,nt);
65: umax=max(abs(uu(:))); uu=uu/umax; uuf=uuf/umax;
66: XX=XX/xmax; range=[0,1,-1,1]; h=.4;
67: arx=h*[0,.02,-.02,0,0]; ary=h*[0,.25,.25,0,1];
68: for j=1:nt
69: uj=uu(j,:); xj=XX(j,:);
70: xfj=v/xmax*tt(j); ufj=uuf(j);
71: plot(xj,-uj,’k’,xfj+arx,-ufj-ary,’-k’)
72: axis off, time=(sprintf(Titl,tt(j)));
73: text(.3,-.5,time), axis(range), drawnow
74: pause(.05), figure(gcf), if j<nt, cla, end
75: end
76: % print -deps forcmove
77: hold off; subplot
78:

79: %=============================================
80:

81: function [u,X,T,uf,t]=ustring(a,v,tmax,nt)
82: %
83: % [u,X,T,uf,t]=ustring(a,v,tmax,nt)
84: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85: % This function computes the deflection u(x,t)
86: % of a semi-infinite string subjected to a
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87: % moving force. The equation for the normalized
88: % deflection is
89: % u(x,t)=1/a/(a^2-v^2)*((v-a-v*abs(x-a*t)...
90: % +a*abs(x-v*t));
91: % a - speed of wave propagation in the string
92: % v - speed of the force moving to the right
93: % tmax - maximum time for computing the solution
94: % nt - number of time values
95: % uu - array of displacement values normalized
96: % by dividing by a factor equal to the force
97: % magnitude over twice the density per unit
98: % length. Position varies column-wise and
99: % time varies row-wise in the array.

100: % X,T - position and time arrays for the solution
101: % uf - deflection vector under the force
102: % t - time vector for the solution (same as the
103: % columns of T)
104: %
105: t=linspace(0,tmax,nt)’; xmax=1.05*tmax*max(a,v);
106: u=zeros(nt,4); nx=4; X=zeros(nt,nx); X(:,nx)=xmax;
107: c=1/a/(a^2-v^2); xw=a*t; xf=v*t; T=repmat(t,1,4);
108: uw=c*xw*(v-a+abs(v-a)); uf=c*xf*(v-a-abs(v-a));
109: if a>v, X(:,2)=xf; X(:,3)=xw; u(:,2)=uf;
110: else, X(:,2)=xw; X(:,3)=xf; u(:,2)=uw; end

9.5 Waves in Rectangular or Circular Membranes

Wave propagation in two dimensions is illustrated well by the transverse vibration
of an elastic membrane. Membrane dynamics is discussed here for general boundary
shapes. Then speciÞc solutions are given for rectangular and circular membranes
subjected to a harmonically varying surface force. In the next chapter, natural mode
vibrations of an elliptical membrane are also discussed. We consider a membrane
occupying an area S of the x, y plane bounded by a curve L where the deßection is
zero. The differential equation, boundary conditions, and initial conditions govern-
ing the transverse deßection U(x, y, t) are

∇2U = c−2Utt − P (x, y, t) , (x, y) ∈ S,

U(x, y, 0) = U0(x, y) , Ut(x, y, 0) = V0(x, y) , (x, y) ∈ S,

U(x, y, t) = 0 , (x, y) ∈ L.

The parameter c is the speed of wave propagation in the membrane and P is the
applied normal load per unit area divided by the membrane tension per unit length.
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When P = 0 , the motion is resolvable into a series of normal mode vibrations [22]
of the form un(x, y) sin(Ωnt+ εn) satisfying

∇2un(x, y) = −Λ2
n un(x, y), (x, y) ∈ S , un(x, y) = 0 , (x, y) ∈ L

where Λn = Ωn/c is a positive real frequency parameter, and un satisÞes∫∫
un(x, y)um(x, y) dxdy = Cnδnm , Cn =

∫∫
un(x, y)2dxdy

where δnm is the Kronecker delta symbol. If the initial displacement and initial
velocity are representable by a series of the modal functions, then the homogeneous
solution satisfying general initial conditions is

U(x, y, t) =
∞∑

n=1

un(x, y) [An cos(Ωnt) +Bn sin(Ωnt)/Ωn]

where

An =
∫∫

U0(x, y)un(x, y) dxdy/Cn , Bn =
∫∫

V0(x, y)un(x, y) dxdy/Cn.

The nonhomogeneous case will be treated where the applied normal force on the
membrane varies harmonically as

P (x, y, t) = p(x, y) cos(Ω t)

and Ω does not match any natural frequency of the membrane. We assume that the
membrane is initially at rest with zero deßection and p(x, y) is expandable as

p(x, y) =
∞∑

n=1

Pnun(x, y) dxdy , Pn =
∫∫

p(x, y)un(x, y) dxdy/Cn.

Then the forced response solution satisfying zero initial conditions is found to be

U(x, y, t) =
∞∑

n=1

Pn

Λ2 − Λ2
n

un(x, y) [cos(Ω t) − cos(Ωnt)].

This equation shows clearly that when the frequency of the forcing function is close
to any one of the natural frequencies, then large deßection amplitudes can occur.

Next we turn to speciÞc solutions for rectangular and circular membranes. Con-
sider the normal mode functions for a rectangular region deÞned by 0 ≤ x ≤ a,
0 ≤ y ≤ b. It can be shown that the modal functions are

unm(x, y) = sin(nπx/a) sin(mπy/b) , Ωnm = cπ
√

(n/a)2 + (m/b)2

and Cn = ab/4. In the simple case where the applied surface force is a concentrated
load applied at (x0, y0), then

p(x, y) = p0δ(x− x0) δ(y − y0)
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where δ is the Dirac delta function. The series solution for a forced response solution
is found to be

U(x, y, t) = c2
∞∑

n=1

∞∑
m=1

Pnm

Ω2 − Ω2
nm

sin(
nπx

a
) sin(

mπy

b
) [cos(Ω t) − cos(Ωnmt)]

with

Pnm =
4p0

ab
sin(nπx0/a) sin(mπy0/b).

A similar kind of solution is obtainable as a series of Bessel functions when the
membrane is circular. Transforming the wave equation to polar coordinates (r, θ)
gives

Urr + r−1Ur + r−2Uθθ = c−2Utt − P (r, θ, t) , 0 ≤ r ≤ a , −π ≤ θ ≤ π , t > 0.

To reduce the algebraic complexity of the series solution developed below, it is help-
ful to introduce dimensionless variables ρ = r/a and τ = c t/a . Then the boundary
value problem involving a harmonic forcing function becomes

Uρρ+ρ−1Uρ+ρ−2Uθθ = Uττ−p(ρ, θ) sin(ω τ) , 0 ≤ ρ ≤ 1 , −π ≤ θ ≤ π , τ > 0,

U(ρ, θ, 0) = 0 , Uτ (ρ, θ, 0) = 0,

where ω = Ω a/c. The modal functions for this problem are

unm(ρ, θ) = Jn(λnmρ) cos(nθ + εn)

involving the integer order Bessel functions, with λnm being the mth positive root of
Jn(ρ) . These modal functions satisfy the orthogonality conditions discussed above
and we employ the series expansion

p(ρ, θ) =
∞∑

n=0

∞∑
m=1

Jn(λnmρ) real(Anme
inθ)

where

Anm =
2

π(1 + δn0)J2
n+1(λnm)

π∫
−π

1∫
0

p(ρ, θ)ρ Jn(λnmρ)e−inθdρ dθ.

Then the forced response solution becomes

U(ρ, θ, τ) =
∞∑

n=0

∞∑
m=1

Jn(λnmρ)
ω2 − λ2

nm

real(Anme
inθ) [cos(ωτ) − cos(λnmτ)].

In the special case where a concentrated force acts at ρ = ρ0, θ = 0 , so that

p(ρ, θ) = p0δ(ρ− ρ0)δ(θ),

then evaluating the double integral gives

Anm = p0ρ0Jn(λnmρ0)

and real(Anme
−inθ) simpliÞes to Anm cos(nθ).
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9.5.1 Computer Formulation

Program membwave was written to depict wave propagation in a rectangular or
circular membrane. Input data speciÞes information on membrane dimensions, forc-
ing function frequency, force position coordinates, wave speed, and maximum time
for solution generation. The primary computation tasks involve summing the double
series deÞning the solutions. In the case of the circular membrane, the Bessel func-
tion roots determining the natural frequencies must also be computed. The various
program modules are listed in the following table.

membwave reads data, calls other computational mod-
ules, and outputs time response

memrecwv sums the series for dynamic response of a
rectangular membrane

memcirwv calls besjroot to obtain the natural frequen-
cies and sums the series for the circular mem-
brane response

besjroot computes a table of Bessel function roots
membanim animates the dynamic response of the mem-

brane

9.5.2 Input Data for Program membwave

Listed below are data cases showing animations of both rectangular and circular
membranes. Waves propagate outward in a circular pattern from the point of appli-
cation of the oscillating concentrated load. The membrane response becomes more
complex as waves reßect from all parts of the boundary. In order to fully appreciate
the propagating wave phenomenon, readers should run the program for several com-
binations of forcing function frequency and maximum time. The two surface plots
below show deßected positions before waves have reached the entire boundary, so
some parts of the membrane surface still remain undisturbed.

>> membwave;

WAVE MOTION IN A RECTANGULAR OR CIRCULAR
MEMBRANE HAVING AN OSCILLATING LOAD

Select the geometry type:
Enter 1 for a rectangle, 2 for a circle > ? 1

Specify the rectangle dimensions:
Give values for a,b > ? 2,1

Give coordinates (x0,y0) where the
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force act. Enter x0,y0 > ? 1.5,.5

Enter the wave speed > ? 1

The first forty-two natural frequencies are:
3.5124 4.4429 5.6636 6.4766 7.0248 7.0248
7.8540 8.4590 8.8858 9.5548 9.9346 9.9346

10.0580 10.5372 11.3272 11.3272 11.4356 12.2683
12.6642 12.6642 12.9531 12.9531 13.3286 13.4209
14.0496 14.0496 14.4820 14.4820 14.8189 15.4705
15.7080 15.7080 15.7863 16.0190 16.0190 16.3996
16.6978 16.9180 16.9180 16.9908 17.5620 17.5620

Input the frequency of the forcing function ? 17.5

Input the maximum solution evaluation time.
> ? 5

Press return for animation
or enter 0 to stop > ?

Press return for animation
or enter 0 to stop > ? 0

All done

>> membwave;

WAVE MOTION IN A RECTANGULAR OR CIRCULAR
MEMBRANE HAVING AN OSCILLATING LOAD

Select the geoemtry type:
Enter 1 for a rectangle, 2 for a circle > ? 2

The circle radius equals one. Give the radial
distance r0 from the circle center to the
force > ? .5

Enter the wave speed > ? 1

The first forty-two natural frequencies are:
2.4048 3.8317 5.1356 5.5201 6.3801 7.0156
7.5883 8.4173 8.6537 8.7715 9.7611 9.9362

10.1735 11.0647 11.0864 11.6199 11.7916 12.2251
12.3385 13.0152 13.3237 13.3543 13.5893 14.3726
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14.4755 14.7960 14.8213 14.9309 15.5898 15.7002
16.0378 16.2234 16.4707 16.6983 17.0037 17.2412
17.6159 17.8014 17.9599 18.0711 18.2876 18.4335

Input the frequency of the forcing function ? 17.5

Input the maximum solution evaluation time.
> ? 5

Press return for animation
or enter 0 to stop > ?

Press return for animation
or enter 0 to stop > ? 0

All done
>>
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Figure 9.10: Wave Propagation in a Rectangular Membrane
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Figure 9.11: Wave Propagation in a Circular Membrane
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Program membwave

1: function [u,x,y,t]= membwave(type,dims,alp,w,tmax)
2: %
3: % [u,x,y,t]=membwave(type,dims,alp,w,tmax)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This program illustrates waves propagating in
6: % a membrane of rectangular or circular shape
7: % with an oscillatory concentrated load acting at
8: % an arbitrary interior point. The membrane has
9: % fixed edges and is initially undeflected and

10: % at rest. The response u(x,y,t) is computed and
11: % animated plots depicting the motion are shown.
12: %
13: % type - 1 for rectangle, 2 for circle
14: % dims - vector giving problem dimensions. For
15: % type=1, dims=[a,b,x0,y0] where a and
16: % b are rectangle dimensions along the
17: % x and y axes. Also the oscillating
18: % force acts at (x0,y0). For type=2,
19: % a circular membrane of unit radius is
20: % analyzed with the concentrated force
21: % acting at (r0,0) where r0=dims(1);
22: % alp - wave propagation velocity in the
23: % membrane
24: % w - frequency of the applied force. This
25: % can be zero if the force is constant.
26: % x0,y0 - coordinates of the point where
27: % the force acts
28: % x,y,t - vectors of position and time values
29: % for evaluation of the solution
30: % u - an array of size [length(x),...
31: % length(y),length(t)]
32: % in which u(i,j,k) contains the
33: % normalized displacement at
34: % y(i),x(j),t(k). The displacement is
35: % normalized by dividing by
36: % max(abs(u(:)))
37:

38: disp(’ ’)
39: disp(’WAVE MOTION IN A RECTANGULAR OR CIRCULAR’)
40: disp(’ MEMBRANE HAVING AN OSCILLATING LOAD’)
41:
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42: if nargin > 0 % Data passed through the call list
43: % must specify: type, dims, alp, w, tmax
44: % Typical values are: a=2; b=1; alp=1;
45: % w=18.4; x0=1; y0=0.5; tmax=5;
46: if type==1
47: a=dims(1); b=dims(2); x0=dims(3); y0=dims(4);
48: [u,x,y,t]=memrecwv(a,b,alp,w,x0,y0,tmax);
49: else
50: r0=dims(1);
51: end
52: else % Interactive data input
53:

54: disp(’ ’), disp(’Select the geometry type:’)
55: type=input([’Enter 1 for a rectangle, ’,...
56: ’2 for a circle > ? ’]);
57: if type ==1
58: disp(’ ’)
59: disp(’Specify the rectangle dimensions:’)
60: s=input(’Give values for a,b > ? ’,’s’);
61: s=eval([’[’,s,’]’]); a=s(1); b=s(2);
62: disp(’ ’)
63: disp(’Give coordinates (x0,y0) where the’)
64: s=input(’force acts. Enter x0,y0 > ? ’,’s’);
65: s=eval([’[’,s,’]’]); x0=s(1); y0=s(2);
66: disp(’ ’), alp=input(’Enter the wave speed > ? ’);
67:

68: N=40; M=40; pan=pi/a*(1:N)’; pbm=pi/b*(1:M);
69: W=alp*sqrt(repmat(pan.^2,1,M)+repmat(pbm.^2,N,1));
70: wsort=sort(W(:)); wsort=reshape(wsort(1:42),6,7)’;
71: disp(’ ’)
72: disp([’The first forty-two natural ’,...
73: ’frequencies are:’])
74: disp(wsort)
75: w=input(...
76: ’Input the frequency of the forcing function ? ’);
77:

78: else
79: disp(’ ’), disp(...
80: ’The circle radius equals one. Give the radial’)
81: disp(...
82: ’distance r0 from the circle center to the’)
83: r0=input(’force > ? ’);
84:

85: disp(’ ’), alp=input(’Enter the wave speed > ? ’);
86:
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87: % First 42 Bessel function roots
88: wsort=alp*[...
89: 2.4048 3.8317 5.1356 5.5201 6.3801 7.0156
90: 7.5883 8.4173 8.6537 8.7715 9.7611 9.9362
91: 10.1735 11.0647 11.0864 11.6199 11.7916 12.2251
92: 12.3385 13.0152 13.3237 13.3543 13.5893 14.3726
93: 14.4755 14.7960 14.8213 14.9309 15.5898 15.7002
94: 16.0378 16.2234 16.4707 16.6983 17.0037 17.2412
95: 17.6159 17.8014 17.9599 18.0711 18.2876 18.4335];
96:

97: disp(’ ’), disp([’The first forty-two ’,...
98: ’natural frequencies are:’])
99: disp(wsort)

100: w=input(...
101: ’Input the frequency of the forcing function ? ’);
102: end
103: disp(’ ’)
104: disp(’Input the maximum solution evaluation time.’)
105: tmax=input(’ > ? ’);
106: end
107:

108: if type==1
109: [u,x,y,t]=memrecwv(a,b,alp,w,x0,y0,tmax);
110: else
111: th=linspace(0,2*pi,81); r=linspace(0,1,20);
112: [u,x,y,t]=memcirwv(r,th,r0,alp,w,tmax);
113: end
114:

115: % Animate the solution
116: membanim(u,x,y,t);
117:

118: %================================================
119:

120: function [u,x,y,t]= memrecwv(a,b,alp,w,x0,y0,tmax)
121: %
122: % [u,x,y,t]=memrecwv(a,b,alp,w,x0,y0,tmax)
123: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
124: % This function illustrates wave motion in a
125: % rectangular membrane subjected to a concentrated
126: % oscillatory force applied at an arbitrary
127: % interior point. The membrane has fixed edges
128: % and is initially at rest in an undeflected
129: % position. The resulting response u(x,y,t)is
130: % computed and a plot of the motion is shown.
131: % a,b - side dimensions of the rectangle
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132: % alp - wave propagation velocity in the
133: % membrane
134: % w - frequency of the applied force. This
135: % can be zero if the force is constant.
136: % x0,y0 - coordinates of the point where
137: % the force acts
138: % x,y,t - vectors of position and time values
139: % for evaluation of the solution
140: % u - an array of size [length(y),...
141: % length(x),length(t)] in which u(i,j,k)
142: % contains the normalized displacement
143: % corresponding to y(i), x(j), t(k). The
144: % displacement is normalized by dividing
145: % by max(abs(u(:))).
146: %
147: % The solution is a double Fourier series of form
148: %
149: % u(x,y,t)=Sum(A(n,m,x,y,t), n=1..N, m=1..M)
150: % where
151: % A(n,m,x,y,t)=sin(n*pi*x0/a)*sin(n*pi*x/a)*...
152: % sin(m*pi*y0/b)*sin(m*pi*y/b)*...
153: % (cos(w*t)-cos(W(n,m)*t))/...
154: % ( w^2-W(n,m)^2)
155: % and the membrane natural frequencies are
156: % W(n,m)=pi*alp*sqrt((n/a)^2+(m/b)^2)
157:

158: if nargin==0
159: a=2; b=1; alp=1; tmax=3; w=13; x0=1.5; y0=0.5;
160: end
161: if a<b
162: nx=31; ny=round(b/a*21); ny=ny+rem(ny+1,2);
163: else
164: ny=31; nx=round(a/b*21); nx=nx+rem(nx+1,2);
165: end
166: x=linspace(0,a,nx); y=linspace(0,b,ny);
167:

168: N=40; M=40; pan=pi/a*(1:N)’; pbm=pi/b*(1:M);
169: W=alp*sqrt(repmat(pan.^2,1,M)+repmat(pbm.^2,N,1));
170: wsort=sort(W(:)); wsort=reshape(wsort(1:30),5,6)’;
171: Nt=ceil(40*tmax*alp/min(a,b));
172: t=tmax/(Nt-1)*(0:Nt-1);
173:

174: % Evaluate fixed terms in the series solution
175: mat=sin(x0*pan)*sin(y0*pbm)./(w^2-W.^2);
176: sxn=sin(x(:)*pan’); smy=sin(pbm’*y(:)’);
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177:

178: u=zeros(ny,nx,Nt);
179: for j=1:Nt
180: A=mat.*(cos(w*t(j))-cos(W*t(j)));
181: uj=sxn*(A*smy); u(:,:,j)=uj’;
182: end
183:

184: %================================================
185:

186: function [u,x,y,t,r,th]=memcirwv(r,th,r0,alp,w,tmax)
187: %
188: % [u,x,y,t,r,th]=memcirwv(r,th,r0,alp,w,tmax)
189: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
190: % This function computes the wave response in a
191: % circular membrane having an oscillating force
192: % applied at a point on the radius along the
193: % positive x axis.
194: %
195: % r,th - vectors of radius and polar angle values
196: % r0 - radial position of the concentrated force
197: % w - frequency of the applied force
198: % tmax - maximum time for computing the solution
199: %
200: % User m function used: besjroot
201:

202: if nargin==0
203: r0=.4; w=15.5; th=linspace(0,2*pi,81);
204: r=linspace(0,1,21); alp=1;
205: end
206:

207: Nt=ceil(20*alp*tmax); t=tmax/(Nt-1)*(0:Nt-1);
208:

209: % Compute the Bessel function roots needed in
210: % the series solution. This takes a while.
211: lam=besjroot(0:20,20,1e-3);
212:

213: % Compute the series coefficients
214: [nj,nk]=size(lam); r=r(:)’; nr=length(r);
215: th=th(:); nth=length(th); nt=length(t);
216: N=repmat((0:nj-1)’,1,nk); Nvec=N(:)’;
217: c=besselj(N,lam*r0)./(besselj(...
218: N+1,lam).^2.*(lam.^2-w^2));
219: c(1,:)=c(1,:)/2; c=c(:)’;
220:

221: % Sum the series of Bessel functions
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222: lamvec=lam(:)’; wlam=w./lamvec;
223: c=cos(th*Nvec).*repmat(c,nth,1);
224: rmat=besselj(repmat(Nvec’,1,nr),lamvec’*r);
225: u=zeros(nth,nr,nt);
226: for k=1:nt
227: tvec=-cos(w*t(k))+cos(lamvec*t(k));
228: u(:,:,k)=c.*repmat(tvec,nth,1)*rmat;
229: end
230: u=2/pi*u; x=cos(th)*r; y=sin(th)*r;
231:

232: %================================================
233:

234: function rts=besjroot(norder,nrts,tol)
235: %
236: % rts=besjroot(norder,nrts,tol)
237: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
238: % This function computes an array of positive roots
239: % of the integer order Bessel functions besselj of
240: % the first kind for various orders. A chosen number
241: % of roots is computed for each order
242: % norder - a vector of function orders for which
243: % roots are to be computed. Taking 3:5
244: % for norder would use orders 3,4 and 5.
245: % nrts - the number of positive roots computed for
246: % each order. Roots at x=0 are ignored.
247: % rts - an array of roots having length(norder)
248: % rows and nrts columns. The element in
249: % column k and row i is the k’th root of
250: % the function besselj(norder(i),x).
251: % tol - error tolerance for root computation.
252:

253: if nargin<3, tol=1e-5; end
254: jn=inline(’besselj(n,x)’,’x’,’n’);
255: N=length(norder); rts=ones(N,nrts)*nan;
256: opt=optimset(’TolFun’,tol,’TolX’,tol);
257: for k=1:N
258: n=norder(k); xmax=1.25*pi*(nrts-1/4+n/2);
259: xsrch=.1:pi/4:xmax; fb=besselj(n,xsrch);
260: nf=length(fb); K=find(fb(1:nf-1).*fb(2:nf)<=0);
261: if length(K)<nrts
262: disp(’Search error in function besjroot’)
263: rts=nan; return
264: else
265: K=K(1:nrts);
266: for i=1:nrts
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267: interval=xsrch(K(i):K(i)+1);
268: rts(k,i)=fzero(jn,interval,opt,n);
269: end
270: end
271: end
272:

273: %================================================
274:

275: function membanim(u,x,y,t)
276: %
277: % function membanim(u,x,y,t)
278: % ~~~~~~~~~~~~~~~~~~~~~~~~~
279: % This function animates the motion of a
280: % vibrating membrane
281: %
282: % u array in which component u(i,j,k) is the
283: % displacement for y(i),x(j),t(k)
284: % x,y arrays of x and y coordinates
285: % t vector of time values
286:

287: % Compute the plot range
288: if nargin==0;
289: [u,x,y,t]=memrecwv(2,1,1,15.5,1.5,.5,5);
290: end
291: xmin=min(x(:)); xmax=max(x(:));
292: ymin=min(y(:)); ymax=max(y(:));
293: xmid=(xmin+xmax)/2; ymid=(ymin+ymax)/2;
294: d=max(xmax-xmin,ymax-ymin)/2; Nt=length(t);
295: range=[xmid-d,xmid+d,ymid-d,ymid+d,...
296: 3*min(u(:)),3*max(u(:))];
297:

298: while 1 % Show the animation repeatedly
299: disp(’ ’), disp(’Press return for animation’)
300: dumy=input(’or enter 0 to stop > ? ’,’s’);
301: if ~isempty(dumy)
302: disp(’ ’), disp(’All done’), break
303: end
304:

305: % Plot positions for successive times
306: for j=1:Nt
307: surf(x,y,u(:,:,j)), axis(range)
308: xlabel(’x axis’), ylabel(’y axis’)
309: zlabel(’u axis’), titl=sprintf(...
310: ’MEMBRANE POSITION AT T=%5.2f’,t(j));
311: title(titl), colormap([1 1 1])
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312: colormap([127/255 1 212/255])
313: % axis off
314: drawnow, shg, pause(.1)
315: end
316: end

9.6 Wave Propagation in a Beam with an Impact
Moment Applied to One End

Analyzing the dynamic response caused when a time dependent moment acts on
the end of an Euler beam involves a boundary value problem for a fourth order linear
partial differential equation. In the following example we consider a beam of uniform
cross section which is pin-ended (hinged at the ends) and is initially at rest. Suddenly,
a harmonically varying momentM0 cos(Ω0T ) is applied to the right end as shown in
Figure 9.12. Determination of the resulting displacement and bending moment in the
beam is desired. Let U be the transverse displacement, X the longitudinal distance

���
���
���

E, I, L

M0cos(Ω0T)

Figure 9.12: Beam Geometry and Loading

from the right end, and T the time. The differential equation, boundary conditions,
and initial conditions characterizing the problem are

EI
∂4U

∂X4
= −Aρ∂

2U

∂T 2
, 0 < X < L , T > 0,

U(0, T ) = 0 ,
∂2U

∂X2
(0, T ) = 0 , U(L, T ) = 0 ,

∂2U

∂X2
(L, T ) = M0 cos(Ω0T )/(EI),

U(0, T ) = 0 ,
∂U

∂T
(0, T ) = 0,

where L is the beam length,EI is the product of the elastic modulus and the moment
of inertia, and Aρ is the product of the cross section area and the mass density.

This problem can be represented more conveniently by introducing dimensionless
variables

x =
X

L
, t =

√
EI

Aρ

T

L2
, u =

EI

M0L2
U , ω =

√
Aρ

EI
L2Ω0 , m =

∂2u

∂x2
.
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The new boundary value problem is then

∂4u

∂x4
= −∂

2u

∂t2
, 0 < x < 1 , t > 0,

u(0, t) = 0 ,
∂2u

∂x2
(0, t) = 0 , u(1, t) = 0 ,

∂2u

∂x2
(1, t) = cos(ωt),

u(x, 0) = 0 ,
∂u

∂t
(x, 0) = 0 , 0 < x < 1.

The problem can be solved by combining a particular solution w which satisÞes
the differential equation and nonhomogeneous boundary conditions with a homoge-
neous solution in series form which satisÞes the differential equation and homoge-
neous boundary conditions. Thus we have u = w + v. The particular solution can
be found in the form

w = f(x) cos(ωt)

where f(x) satisÞes
f ′′′′(x) = ω2f(x)

and
f(0) = f ′′(0) = f(1) = 0 , f ′′(1) = 1.

This ordinary differential equation is solvable as

f(x) =
4∑

k=1

cke
skx

where
sk =

√
ω eπı(k−1)/2

and ı =
√−1. The boundary conditions require

4∑
k=1

ck = 0 ,
4∑

k=1

s2kck = 1 ,
4∑

k=1

ck e
sk = 0 ,

4∑
k=1

cks
2
ke

sk = 0.

Solving these simultaneous equations determines the particular solution. The initial
displacement for the particular solution can be expanded in a Fourier series as an odd
valued function of period 2. Hence we can write

w(0, t) = f(x) =
∞∑

k=−∞
ck e

ıπkx =
∞∑

k=1

ak sin(kπx) ,
∂w

∂t
(0, t) = 0

involving complex Fourier coefÞcients, ck, and ak = −2 imag(ck). The homoge-
neous solution is representable as

v(x, t) = −
∞∑

k=1

ak cos(π2k2t) sin(kπx)
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so that w + v combine to satisfy the desired initial conditions of zero displacement
and velocity.

Of course, perfect satisfaction of the initial conditions cannot be achieved with-
out taking an inÞnite number of terms in the Fourier series. However, the series
converges very rapidly because the coefÞcients are of order n−3. When a hundred
or more terms are used, an approximate solution produces results which satisfy the
differential equation and boundary conditions, and which insigniÞcantly violate the
initial displacement condition. It is important to remember the nature of this er-
ror when examining the bending moment results presented below. Effects of high
frequency components are very evident in the moment. Despite the oscillatory char-
acter of the moments, these results are exact for the initial displacement conditions
produced by the truncated series. These displacements agree closely with the exact
solution.

A program was written to evaluate the series solution to compute displacements
and moments as functions of position and time. Plots and surfaces showing these
quantities are presented along with timewise animations of the displacement and
moment across the span. The computation involves the following steps:

1. Evaluate f(x);

2. Expand f(x) using the FFT to get coefÞcients for the homogeneous series
solution;

3. Combine the particular and homogeneous solution by summing the series for
any number of terms desired by the user;

4. Plot u and m for selected times;

5. Plot surfaces showing u(x, t) and m(x, t);

6. Show animated plots of u and m.

The principal parts of the program are shown in the table below.

bemimpac reads data and creates graphical output
beamresp converts material property data to dimension-

less form and calls ndbemrsp
ndbemrsp construct the solution using Fourier series
sumser sums the series for displacement and moment
animate animates the time history of displacement and

moment

The numerical results show the response for a beam subjected to a moment close
to the Þrst natural frequency of the beam. It can be shown that, in the dimensionless
problem, the system of equations deÞning the particular solution becomes singular
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Figure 9.13: Displacement Due to Impact Moment at Right End

when ω assumes values of the form k2π2 for integer k. In that instance the series
solution provided here will fail. However, values of ω near to resonance can be used
to show how the displacements and moments quickly become large. In our example
we let EI , Aρ, l, and M0 all equal unity, and ω = 0.95π2. Figures 9.13 and 9.14
show displacement and bending moment patterns shortly after motion is initiated.
The surfaces in Figures 9.15 and 9.16 also show how the displacement and moment
grow quickly with increasing time. The reader may Þnd it interesting to run the
program for various choices of ω and observe how dramatically the chosen forcing
frequency affects results.
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Figure 9.14: Bending Moment in the Beam
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Figure 9.15: Displacement Growth Near Resonance
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Figure 9.16: Moment Growth Near Resonance

MATLAB Example

Program bemimpac

1: function bemimpac
2: % Example: bemimpac
3: % ~~~~~~~~~~~~~~~~~
4: % This program analyzes an impact dynamics
5: % problem for an elastic Euler beam of
6: % constant cross section which is simply
7: % supported at each end. The beam is initially
8: % at rest when a harmonically varying moment
9: % m0*cos(w0*t) is applied to the right end.

10: % The resulting transverse displacement and
11: % bending moment are computed. The
12: % displacement and moment are plotted as
13: % functions of x for the three time values.
14: % Animated plots of the entire displacement
15: % and moment history are also given.
16: %
17: % User m functions required:
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18: % beamresp, beamanim, sumser, ndbemrsp
19:

20: fprintf(’\nDYNAMICS OF A BEAM WITH AN ’);
21: fprintf(’OSCILLATING END MOMENT\n’);
22: ei=1; arho=1; len=1; m0=1; w0=.90*pi^2;
23: tmin=0; tmax=5; nt=101;
24: xmin=0; xmax=len; nx=151; ntrms=200;
25: [t,x,displ,mom]=beamresp(ei,arho,len,m0,w0,...
26: tmin,tmax,nt,xmin,xmax,nx,ntrms);
27: disp(’ ’)
28: disp(’Press [Enter] to see the deflection’)
29: disp(’for three positions’), pause
30:

31: np=[3 5 8]; clf; pltsave=0;
32: dip=displ(np,:); mop=mom(np,:);
33: plot(x,dip(1,:),’-k’,x,dip(2,:),’:b’,...
34: x,dip(3,:),’--r’);
35: xlabel(’x axis’); ylabel(’displacement’);
36: hh=gca;
37: r(1:2)=get(hh,’XLim’); r(3:4)=get(hh,’YLim’);
38: xp=r(1)+(r(2)-r(1))/10;
39: dp=r(4)-(r(4)-r(3))/10;
40: tstr=[’Displacement for Nearly Resonant’ ...
41: ’ Moment Acting at Right End’];
42: title(tstr);
43: text(xp,dp,[’Number of series terms ’ ...
44: ’used = ’,int2str(ntrms)]);
45: legend(’t=0.10’,’t=0.20’,’t=0.35’,3)
46: disp(’ ’)
47: disp(’Press [Enter] to the bending moment’)
48: disp(’for three positions’)
49: shg; pause
50: if pltsave, print -deps 3positns, end
51:

52: clf;
53: plot(x,mop(1,:),’-k’,x,mop(2,:),’:b’,...
54: x,mop(3,:),’--r’);
55: h=gca;
56: r(1:2)=get(h,’XLim’); r(3:4)=get(h,’YLim’);
57: mp=r(3)+(r(4)-r(3))/10;
58: xlabel(’x axis’); ylabel(’moment’);
59: tstr=[’Bending Moment for Nearly Resonant’ ...
60: ’ Moment Acting at Right End’];
61: title(tstr);
62: text(xp,mp,[’Number of series terms ’ ...
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63: ’used = ’,int2str(ntrms)]);
64: legend(’t=0.10’,’t=0.20’,’t=0.35’,2),
65: disp(’ ’), disp(...
66: ’Press [Enter] to see the deflections surface’)
67: shg, pause
68: if pltsave, print -deps 3moments, end
69:

70: inct=2; incx=2;
71: ht=0.75; it=1:inct:.8*nt; ix=1:incx:nx;
72: tt=t(it); xx=x(ix);
73: dd=displ(it,ix); mm=mom(it,ix);
74: a=surf(xx,tt,dd);
75: tstr=[’Transverse Deflection as a ’ ...
76: ’Function of Time and Position’];
77: title(tstr);
78: xlabel(’x axis’); ylabel(’time’);
79: zlabel(’transverse deflection’);
80: disp(’ ’), disp([’Press [Enter] to ’,...
81: ’see the bending moment surface’])
82: shg, pause
83: if pltsave, print -deps bdeflsrf, end
84:

85: a=surf(xx,tt,mm);
86: title([’Bending Moment as a Function ’ ...
87: ’of Time and Position’])
88: xlabel(’x axis’); ylabel(’time’);
89: zlabel(’bending moment’); disp(’ ’)
90: disp(’Press [Enter] to see animation of’);
91: disp(’the beam deflection’), shg, pause
92: if pltsave, print -deps bmomsrf, end
93: beamanim(x,displ,.1,’Transverse Deflection’, ...
94: ’x axis’,’deflection’), disp(’ ’)
95: disp(’Press [Enter] to see animation’);
96: disp(’of the bending moment’); pause
97: beamanim(x,mom,.1,’Bending Moment History’, ...
98: ’x axis’,’moment’);
99: fprintf(’\nAll Done\n’); close;

100:

101: %=============================================
102:

103: function [t,x,displ,mom]= ...
104: beamresp(ei,arho,len,m0,w0,tmin,tmax, ...
105: nt,xmin,xmax,nx,ntrms)
106: %
107: % [t,x,displ,mom]=beamresp(ei,arho,len,m0, ...
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108: % w0,tmin,tmax,nt,xmin,xmax,nx,ntrms)
109: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
110: % This function evaluates the time dependent
111: % displacement and moment in a constant
112: % cross section, simply supported beam which
113: % is initially at rest when a harmonically
114: % varying moment is suddenly applied at the
115: % right end. The resulting time histories of
116: % displacement and moment are computed.
117: %
118: % ei - modulus of elasticity times
119: % moment of inertia
120: % arho - mass per unit length of the
121: % beam
122: % len - beam length
123: % m0,w0 - amplitude and frequency of the
124: % harmonically varying right end
125: % moment
126: % tmin,tmax - minimum and maximum times for
127: % the solution
128: % nt - number of evenly spaced
129: % solution times
130: % xmin,xmax - minimum and maximum position
131: % coordinates for the solution.
132: % These values should lie between
133: % zero and len (x=0 and x=len at
134: % the left and right ends).
135: % nx - number of evenly spaced solution
136: % positions
137: % ntrms - number of terms used in the
138: % Fourier sine series
139: % t - vector of nt equally spaced time
140: % values varying from tmin to tmax
141: % x - vector of nx equally spaced
142: % position values varying from
143: % xmin to xmax
144: % displ - matrix of transverse
145: % displacements with time varying
146: % from row to row, and position
147: % varying from column to column
148: % mom - matrix of bending moments with
149: % time varying from row to row,
150: % and position varying from column
151: % to column
152: %

© 2003 by CRC Press LLC



153: % User m functions called: ndbemrsp
154: %----------------------------------------------
155:

156: tcof=sqrt(arho/ei)*len^2; dcof=m0*len^2/ei;
157: tmin=tmin/tcof; tmax=tmax/tcof; w=w0*tcof;
158: xmin=xmin/len; xmax=xmax/len;
159: [t,x,displ,mom]=...
160: ndbemrsp(w,tmin,tmax,nt,xmin,xmax,nx,ntrms);
161: t=t*tcof; x=x*len;
162: displ=displ*dcof; mom=mom*m0;
163:

164: %=============================================
165:

166: function beamanim(x,u,tpause,titl,xlabl,ylabl)
167: %
168: % beamanim(x,u,tpause,titl,xlabl,ylabl,save)
169: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
170: % This function draws an animated plot of data
171: % values stored in array u. The different
172: % columns of u correspond to position values
173: % in vector x. The successive rows of u
174: % correspond to different times. Parameter
175: % tpause controls the speed of animation.
176: %
177: % u - matrix of values to animate plots
178: % of u versus x
179: % x - spatial positions for different
180: % columns of u
181: % tpause - clock seconds between output of
182: % frames. The default is .1 secs
183: % when tpause is left out. When
184: % tpause=0, a new frame appears
185: % when the user presses any key.
186: % titl - graph title
187: % xlabl - label for horizontal axis
188: % ylabl - label for vertical axis
189: %
190: % User m functions called: none
191: %----------------------------------------------
192:

193: if nargin<6, ylabl=’’; end;
194: if nargin<5, xlabl=’’; end
195: if nargin<4, titl=’’; end;
196: if nargin<3, tpause=.1; end;
197:
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198: [ntime,nxpts]=size(u);
199: umin=min(u(:)); umax=max(u(:));
200: udif=umax-umin; uavg=.5*(umin+umax);
201: xmin=min(x); xmax=max(x);
202: xdif=xmax-xmin; xavg=.5*(xmin+xmax);
203: xwmin=xavg-.55*xdif; xwmax=xavg+.55*xdif;
204: uwmin=uavg-.55*udif; uwmax=uavg+.55*udif; clf;
205: axis([xwmin,xwmax,uwmin,uwmax]); title(titl);
206: xlabel(xlabl); ylabel(ylabl); hold on;
207:

208: for j=1:ntime
209: ut=u(j,:);
210: plot(x,ut,’-’); axis(’off’); figure(gcf);
211: if tpause==0
212: pause;
213: else
214: pause(tpause);
215: end
216: if j==ntime, break, else, cla; end
217: end
218: % print -deps cntltrac
219: hold off; clf;
220:

221: %=============================================
222:

223: function [u,t,x] = sumser(a,b,c,funt,funx, ...
224: tmin,tmax,nt,xmin,xmax,nx)
225: %
226: % [u,t,x] = sumser(a,b,c,funt,funx,tmin, ...
227: % tmax,nt,xmin,xmax,nx)
228: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
229: % This function evaluates a function U(t,x)
230: % which is defined by a finite series. The
231: % series is evaluated for t and x values taken
232: % on a rectangular grid network. The matrix u
233: % has elements specified by the following
234: % series summation:
235: %
236: % u(i,j) = sum( a(k)*funt(t(i)*b(k))*...
237: % k=1:nsum
238: % funx(c(k)*x(j))
239: %
240: % where nsum is the length of each of the
241: % vectors a, b, and c.
242: %
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243: % a,b,c - vectors of coefficients in
244: % the series
245: % funt,funx - handles of functions accepting
246: % matrix argument. funt is
247: % evaluated for an argument of
248: % the form funt(t*b) where t is
249: % a column and b is a row. funx
250: % is evaluated for an argument
251: % of the form funx(c*x) where
252: % c is a column and x is a row.
253: % tmin,tmax,nt - produces vector t with nt
254: % evenly spaced values between
255: % tmin and tmax
256: % xmin,xmax,nx - produces vector x with nx
257: % evenly spaced values between
258: % xmin and xmax
259: % u - the nt by nx matrix
260: % containing values of the
261: % series evaluated at t(i),x(j),
262: % for i=1:nt and j=1:nx
263: % t,x - column vectors containing t
264: % and x values. These output
265: % values are optional.
266: %
267: % User m functions called: none.
268: %----------------------------------------------
269:

270: tt=(tmin:(tmax-tmin)/(nt-1):tmax)’;
271: xx=(xmin:(xmax-xmin)/(nx-1):xmax); a=a(:).’;
272: u=a(ones(nt,1),:).*feval(funt,tt*b(:).’)*...
273: feval(funx,c(:)*xx);
274: if nargout>1, t=tt; x=xx’; end
275:

276: %=============================================
277:

278: function [t,x,displ,mom]= ...
279: ndbemrsp(w,tmin,tmax,nt,xmin,xmax,nx,ntrms)
280: %
281: % [t,x,displ,mom]=ndbemrsp(w,tmin,tmax,nt,...
282: % xmin,xmax,nx,ntrms)
283: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
284: % This function evaluates the nondimensional
285: % displacement and moment in a constant
286: % cross section, simply supported beam which
287: % is initially at rest when a harmonically
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288: % varying moment of frequency w is suddenly
289: % applied at the right end. The resulting
290: % time history is computed.
291: %
292: % w - frequency of the harmonically
293: % varying end moment
294: % tmin,tmax - minimum and maximum
295: % dimensionless times
296: % nt - number of evenly spaced
297: % solution times
298: % xmin,xmax - minimum and maximum
299: % dimensionless position
300: % coordinates. These values
301: % should lie between zero and
302: % one (x=0 and x=1 give the
303: % left and right ends).
304: % nx - number of evenly spaced
305: % solution positions
306: % ntrms - number of terms used in the
307: % Fourier sine series
308: % t - vector of nt equally spaced
309: % time values varying from
310: % tmin to tmax
311: % x - vector of nx equally spaced
312: % position values varying
313: % from xmin to xmax
314: % displ - matrix of dimensionless
315: % displacements with time
316: % varying from row to row,
317: % and position varying from
318: % column to column
319: % mom - matrix of dimensionless
320: % bending moments with time
321: % varying from row to row, and
322: % position varying from column
323: % to column
324: %
325: % User m functions called: sumser
326: %----------------------------------------------
327:

328: if nargin < 8, w=0; end; nft=512; nh=nft/2;
329: xft=1/nh*(0:nh)’;
330: x=xmin+(xmax-xmin)/(nx-1)*(0:nx-1)’;
331: t=tmin+(tmax-tmin)/(nt-1)*(0:nt-1)’;
332: cwt=cos(w*t);
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333:

334: % Get particular solution for nonhomogeneous
335: % end condition
336: if w ==0 % Case for a constant end moment
337: cp=[1 0 0 0; 0 0 2 0; 1 1 1 1; 0 0 2 6]\ ...
338: [0;0;0;1];
339: yp=[ones(size(x)), x, x.^2, x.^3]*cp; yp=yp’;
340: mp=[zeros(nx,2), 2*ones(nx,1), 6*x]*cp;
341: mp=mp’;
342: ypft=[ones(size(xft)), xft, xft.^2, xft.^3]*cp;
343:

344: % Case where end moment oscillates
345: % with frequency w
346: else
347: s=sqrt(w)*[1, i, -1, -i]; es=exp(s);
348: cp=[ones(1,4); s.^2; es; es.*s.^2]\ ...
349: [0; 0; 0; 1];
350: yp=real(exp(x*s)*cp); yp=yp’;
351: mp=real(exp(x*s)*(cp.*s(:).^2)); mp=mp’;
352: ypft=real(exp(xft*s)*cp);
353: end
354:

355: % Fourier coefficients for
356: % particular solution
357: yft=-fft([ypft;-ypft(nh:-1:2)])/nft;
358:

359: % Sine series coefficients for
360: % homogeneous solution
361: acof=-2*imag(yft(2:ntrms+1));
362: ccof=pi*(1:ntrms)’; bcof=ccof.^2;
363:

364: % Sum series to evaluate Fourier
365: % series part of solution. Then combine
366: % with the particular solution.
367: displ=sumser(acof,bcof,ccof,@cos,@sin,...
368: tmin,tmax,nt,xmin,xmax,nx);
369: displ=displ+cwt*yp; acof=acof.*bcof;
370: mom=sumser(acof,bcof,ccof,’cos’,’sin’,...
371: tmin,tmax,nt,xmin,xmax,nx);
372: mom=-mom+cwt*mp;
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9.7 Forced Vibration of a Pile Embedded in an Elastic Medium

Structures are often supported by piles embedded in soil foundations. The re-
sponse of these systems, when the foundation is shaken in the manner occurring in
an earthquake, has considerable practical interest. Let us examine a simple model
approximating a single pile connected to an overlying structure. The pile is treated
as a beam of uniform cross section buried in an elastic medium. An attached mass
at the top causes inertial resistance to translation and rotation. The beam, shown in
Figure 9.19 in a deßected position, has length � with x = 0 denoting the lower end
and x = � denoting the top. Rotating the member 90◦ from the vertical is done to
agree with the coordinate referencing traditionally used in beam analysis. We are in-
terested in the steady-state response when the foundation displacement is y o cos(ωt).
For convenience we use a complex valued forcing function and get the Þnal results
by taking the real part of the complex valued solution. The transverse bending re-
sponse is to be computed when the surrounding elastic medium has an oscillatory
motion of the form

yf = yoe
iωt.

The differential equation governing transverse oscillations of the beam is

EI
∂4y(x, t)
∂x4

= −Aρ∂
2y(x, t)
∂t2

+ k
(
yoe

iωt − y
)

where EI is the product of the elastic modulus and the inertial moment of the beam,
Aρ is the product of the cross section area and the mass per unit volume, and k de-
scribes the foundation stiffness in terms of force per unit length per unit of transverse
deßection. The shear V and moment M in the beam are related to the deßection
y(x, t) by

V = EI
∂3y(x, t)
∂x3

, M = EI
∂2y(x, t)
∂x2

.

In the current analysis we consider forced response of frequency ω described in the
form

y(x, t) = f(x)eiωt

so that
V = EIf ′′′(x)eiωt , M = EIf ′′(x)eiωt.

The boundary conditions at x = 0 require vanishing moment and shear:

f ′′(0) = 0 , f ′′′(0) = 0.

The boundary conditions at x = � are more involved because inertial resistance of
the end mass must be handled. We assume that the gravity center of the end mass is
located along the axis of the beam at a distance h above the top end. Furthermore,
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Figure 9.17: Forced Vibration of a Pile in an Elastic Medium

the attached body has a massmo and inertial moment o about its gravity center. The
angular acceleration θ̈ and the transverse acceleration am are expressible as

θ̈ =
∂3y(�, t)
∂x∂t2

= −ω2f ′(�)eiωt

and

am =
∂2y(�, t)
∂t2

+ hθ̈ = −ω2eiωt [f(�) + hf ′(�)] .

Writing equations of motion for the end mass gives

moam = V (�, t) and oθ̈m = −hV (�, t) −M(�, t).

Representing these conditions in terms of f(x) yields

−ω2mo[f(�) + hf ′(�)] = EIf ′′′(�) and ω2of
′(�) = EI[f ′′(�) + hf ′′′(�)].

Furthermore, the factor eiωt cancels out of the differential equation

EIf ′′′′(x) = (Aρω2 − k)f(x) + yok.

The general solution of this fourth order linear differential equation is expressed as

f(x) =
yok

k −Aρω2

[
1 +

4∑
=1

ce
sx

]

where s are complex roots given by

s =
(
Aρω2 − k

EI

)1/4

ei(−1)π/2 ,  = 1, 2, 3, 4.
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The conditions of zero moment and shear at x = 0 lead to

4∑
=1

s2 c = 0 ,
4∑

=0

s3 c = 0.

The shear and moment conditions at x = � require

4∑
=1

s3e
s�c = −moω

2

[
1 +

4∑
=1

(1 + hs)es�c

]

and
4∑

=1

(s2 + hs3 )e
s�c = oω

2
4∑

=1

se
s�c.

The system of four simultaneous equations can be solved for c 1, . . . , c4. Then the
forced response solution corresponding to a foundation motion

real
(
yoe

ıωt
)

= yo cos(ωt)

is given by
y(x, t) = real

(
f(x)eiωt

)
where f(x) is complex valued.

The function pilevibs evaluates the displacement, moment, and shear for 0 ≤ x ≤
�, 0 ≤ t ≤ 2π/ω. Surface plots of these quantities are shown in Figures 9.18 through
9.20. Figure 9.21 is a single frame from an animation depicting how the pile and the
attached mass move.
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Figure 9.18: Deßection Surface for a Vibrating Pile
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Figure 9.19: Bending Moment in a Vibrating Pile
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Program Output and Code

Program pilevibs

1: function pilevibs
2: % Example: pilevibs
3: % ~~~~~~~~~~~~~~~~~
4: % The routine is used to solve an example
5: % problem using function pvibs. The example
6: % involves a steel pile 144 inches long which
7: % has a square cross section of 4 inch depth.
8: % The pile is immersed in soil having an elastic
9: % modulus of 200 psi. The attached mass weighs

10: % 736 lb. The foundation is shaken at an
11: % amplitude of 0.5 inch with a frequency of
12: % 20 cycles per second.
13: %
14: % User m functions required: pvibs
15:

16: clear;
17: L=144; d=4; a=d^2; I=d^4/12; e=30e6; ei=e*I;
18: g=32.2*12; Density_steel=0.284;
19: rho=Density_steel/g;
20: Cap_w=36; Cap_h=18; Cap_t=4;
21: m0=Cap_w*Cap_h*Cap_t*rho;
22: j0=m0/12*(Cap_h^2+Cap_w^2);
23: h=Cap_h/2; arho=a*rho;
24: e_soil=200; k=e_soil*d; y0=0.5; w=40*pi;
25: nx=42; nt=25;
26:

27: [t,x,y,m,v]= ...
28: pvibs(y0,ei,arho,L,k,w,h,m0,j0,nx,nt);
29:

30: %=============================================
31:

32: function [t,x,y,m,v]= ...
33: pvibs(y0,ei,arho,L,k,w,h,m0,j0,nx,nt)
34: %
35: % [t,x,y,m,v]=pvibs ...
36: % (y0,ei,arho,L,k,w,h,m0,j0,nx,nt)
37: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
38: %
39: % This function computes the forced harmonic
40: % response of a pile buried in an oscillating
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41: % elastic medium. The lower end of the pile is
42: % free from shear and moment. The top of the
43: % pile carries an attached body having general
44: % mass and inertial properties. The elastic
45: % foundation is given a horizontal oscillation
46: % of the form
47: %
48: % yf=real(y0*exp(i*w*t))
49: %
50: % The resulting transverse forced response of
51: % the pile is expressed as
52: %
53: % y(x,t)=real(f(x)*exp(i*w*t))
54: %
55: % where f(x) is a complex valued function. The
56: % bending moment and shear force in the pile
57: % are also computed.
58: %
59: % y0 - amplitude of the foundation oscillation
60: % ei - product of moment of inertia and
61: % elastic modulus for the pile
62: % arho - mass per unit length of the pile
63: % L - pile length
64: % k - the elastic resistance constant for the
65: % foundation described as force per unit
66: % length per unit of transverse
67: % deflection
68: % w - the circular frequency of the
69: % foundation oscillation which vibrates
70: % like real(y0*exp(i*w*t))
71: % h - the vertical distance above the pile
72: % upper end to the gravity center of the
73: % attached body
74: % m0 - the mass of the attached body
75: % j0 - the mass moment of inertia of the
76: % attached body with respect to its
77: % gravity center
78: % nx - the number of equidistant values along
79: % the pile at which the solution is
80: % computed
81: % nt - the number of values of t values at
82: % which the solution is computed such
83: % that 0 <= w*t <= 2*pi
84: %
85: % t - a vector of time values such that the
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86: % pile moves through a full period of
87: % motion. This means 0 <= t <= 2*pi/w
88: % x - a vector of x values with 0 <= x <= L
89: % y - the transverse deflection y(x,t) for
90: % the pile with t varying from row to
91: % row, and x varying from column to
92: % column
93: % m,v - matrices giving values bending moment
94: % and shear force
95: %
96: % User m functions called: none
97: %----------------------------------------------
98:

99: % Default data for a steel pile 144 inches long
100: if nargin==0
101: y0=0.5; ei=64e7; arho=0.0118; L=144; k=800;
102: w=125.6637; h=9; m0=1.9051; j0=257.1876;
103: nx=42; nt=25;
104: end
105:

106: w2=w^2; x=linspace(0,L,nx)’;
107: t=linspace(0,2*pi/w,nt);
108:

109: % Evaluate characteristic roots and complex
110: % exponentials
111: s=((arho*w2-k)/ei)^(1/4)*[1,i,-1,-i];
112: s2=s.^2; s3=s2.*s;
113: c0=y0*k/(k-w2*arho); esl=exp(s*L);
114: esx=exp(x*s); eiwt=exp(i*w*t);
115:

116: % Solve for coefficients to satisfy the
117: % boundary conditions
118: c=[s2; s3; esl.*(h*s3+s2-j0*w2/ei*s); ...
119: esl.*(s3+m0*w2/ei*(1+h*s))]\ ...
120: [0;0;0;-c0*m0*w2/ei];
121:

122: % Compute the deflection, moment and shear
123: y=real((c0+esx*c)*eiwt)’;
124: ype=real(s.*esl*c*eiwt)’;
125: m=real(ei*s2(ones(nx,1),:).*esx*c*eiwt)’;
126: v=real(ei*s3(ones(nx,1),:).*esx*c*eiwt)’;
127: t=t’; x=x’; hold off; clf;
128:

129: % Make surface plots showing the deflection,
130: % moment, and shear over a complete period of
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131: % the motion
132: surf(x,t*w,y);
133: xlabel(’x axis’); ylabel(’t*w axis’);
134: zlabel(’transverse deflection’);
135: title(’Deflection Surface for a Vibrating Pile’);
136: grid on; figure(gcf)
137: % print -deps pilesurf
138: disp(’Press [Enter] to continue’), pause
139:

140: surf(x,t*w,m);
141: xlabel(’x axis’); ylabel(’t*w axis’);
142: zlabel(’bending moment’);
143: title(’Bending Moment in the Pile’)
144: grid on; figure(gcf)
145: % print -deps pilemom;
146: disp(’Press [Enter] to continue’), pause
147:

148: surf(x,t*w,v);
149: xlabel(’x axis’); ylabel(’t*w axis’);
150: zlabel(’shear force’);
151: title(’Shear Force in the Pile’);
152: grid on; figure(gcf)
153: % print -deps pilesher
154: disp(’Press [Enter] to see animation’), pause
155:

156: % Draw an animation depicting the pile response
157: % to the oscillation of the foundation
158: fu=.10/max(y(:)); p=[-0.70, 0.70, -.1, 1.3];
159: u=fu*y; upe=fu*L*ype; d=.15;
160: xm=[0,0,1,1,0,0]*d;
161: ym=[0,-1,-1,1,1,0]*d; zm=xm+i*ym;
162: close;
163: for jj=1:4
164: for j=1:nt
165: z=exp(i*atan(upe(j)))*zm;
166: xx=real(z); yy=imag(z);
167: ut=[u(j,:),u(j,nx)+yy]; xt=[x/L,1+xx];
168: plot(ut,xt,’-’); axis(p); axis(’square’);
169: title(’Forced Vibration of a Pile’);
170: axis(’off’); drawnow; figure(gcf);
171: end
172: end
173: % print -deps pileanim
174: fprintf(’\nAll Done\n’);
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9.8 Transient Heat Conduction in a One-Dimensional Slab

Let us analyze the temperature history in a slab which has the left side insulated
while the right side temperature varies sinusoidally according to U 0 sin(ΩT ). The
initial temperature in the slab is speciÞed to be zero. The pertinent boundary value
problem is

α
∂2U

∂X2
(X,T ) =

∂U

∂T
(X,T ) , 0 < X < � , T > 0,

∂U

∂X
(0, T ) = 0 , U(�, T ) = U0 sin(ΩT ),

U(X, 0) = 0 , 0 < X < �

where U , X , T , and α are, respectively, the temperature, position, time, and thermal
diffusivity.

The problem can be converted to dimensionless form by letting

u =
U

U0
, x =

X

�
, t =

αT

�2
, ω =

Ω�2

α
.

Then we get
∂2u

∂x2
=
∂u

∂x
, 0 < x < 1 , t > 0,

∂u

∂x
(0, t) = 0 , u(1, t) = imag

(
eiωt

)
, u(x, 0) = 0.

The solution consists of two parts as u = w + v, where w is a particular solution
satisfying the differential equation and nonhomogeneous boundary conditions, and
v is a solution satisfying homogeneous boundary conditions and speciÞed to impose
the desired zero initial temperature when combined with w. The appropriate form
for the particular solution is

w = imag
[
f(x)eiωt

]
.

Making w satisfy the heat equation requires

f ′′(x) = iwf(x).

Consequently
f(x) = c1 sin(φx) + c2 cos(φx)

where φ =
√−ıω. The conditions of zero gradient at x = 0 and unit function value

at x = 1 determine c1 and c2. We get the particular solution as

w = imag
[
cos(φx)
cos(φ)

eiωt

]
.
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This forced response solution evaluated at t = 0 yields

w(x, 0) = imag
[
cos(φx)
cos(φ)

]
.

The general solution of the heat equation satisfying zero gradient at x = 0 and zero
function value at x = 1 is found to be

v(x, t) =
∞∑

n=1

an cos(λnx)e−λ2
nt

where λn = π(2n−1)/2. To make the initial temperature equal zero in the combined
solution, the coefÞcients an are chosen to satisfy

∞∑
n=1

an cos(λnx) = − imag
[
cos(φx)
cos(φ)

]
.

The orthogonality of the functions cos(λnx) implies

an = −2
∫ 1

0

imag
[
cos(φx)
cos(φ)

]
cos(λnx)dx

which can be integrated to give

an = − imag
[
(sin(λn + φ)/(λn + φ) + sin(λn − φ)/(λn − φ))

cos(φ)

]
.

This completely determines the solution. Taking any Þnite number of terms in the
series produces an approximate solution exactly satisfying the differential equation
and boundary conditions. Exact satisfaction of the zero initial condition would theo-
retically require an inÞnite number of series terms. However, the terms in the series
decrease like O(1/n3) and using a 250-term series produces initial temperature val-
ues not exceeding 10−6. Thus, the Þnite series is satisfactory for practical purposes.

The above equations were evaluated in a function called heat. Function slab-
heat was also written to plot numerical results. The code and resulting Figures 9.23
and 9.24 appear below. This example illustrates nicely how well MATLAB handles
complex arithmetic and complex valued functions.
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Heat Conduction Program

Program slabheat

1: function slabheat
2: % Example: slabheat
3: % ~~~~~~~~~~~~~~~~~
4: % This program computes the temperature
5: % variation in a one-dimensional slab with
6: % the left end insulated and the right end
7: % given a temperature variation sin(w*t).
8: %
9: % User m functions required: heat

10:

11: [u1,t1,x1]=heat(12,0,2,50,0,1,51,250);
12: surf(x1,t1,u1); axis([0 1 0 2 -2 2]);
13: title(’Temperature Variation in a Slab’);
14: xlabel(’x axis’); ylabel(’time’);
15: zlabel(’temperature’); view([45,30])
16: colormap(’default’), shg
17: disp(’ ’), disp(’Press [Enter] to continue’)
18: pause
19: % print -deps tempsurf
20:

21: [u2,t2,x2]=heat(12,0,2,150,0,1,3,250);
22: plot(t2,u2(:,1),’--’,t2,u2(:,2),’:’, ...
23: t2,u2(:,3),’-’);
24: title([’Temperature History at Ends’ ...
25: ’ and Middle’]);
26: xlabel(’dimensionless time’);
27: ylabel(’dimensionless temperature’);
28: text1=’Left End’; text2=’Middle’;
29: text3=’Right End’;
30: legend(text1,text2,text3,3); shg
31: % print -deps templot
32: disp(’ ’), disp(’All Done’);
33:

34: %=============================================
35:

36: function [u,t,x]= ...
37: heat(w,tmin,tmax,nt,xmin,xmax,nx,nsum)
38: %
39: %[u,t,x]=heat(w,tmin,tmax,nt,xmin,xmax,nx,nsum)
40: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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41: % This function evaluates transient heat
42: % conduction in a slab which has the left end
43: % (x=0) insulated and has the right end (x=1)
44: % subjected to a temperature variation
45: % sin(w*t). The initial temperature of the slab
46: % is zero.
47: %
48: % w - frequency of the right side
49: % temperature variation
50: % tmin,tmax - time limits for solution
51: % nt - number of uniformly spaced
52: % time values used
53: % xmin,xmax - position limits for solution.
54: % Values should lie between zero
55: % and one.
56: % nx - number of equidistant x values
57: % nsum - number of terms used in the
58: % series solution
59: % u - matrix of temperature values.
60: % Time varies from row to row.
61: % x varies from column to column.
62: % t,x - vectors of time and x values
63: %
64: % User m functions called: none.
65: %----------------------------------------------
66:

67: t=tmin+(tmax-tmin)/(nt-1)*(0:nt-1);
68: x=xmin+(xmax-xmin)/(nx-1)*(0:nx-1)’;
69: W=sqrt(-i*w); ln=pi*((1:nsum)-1/2);
70: v1=ln+W; v2=ln-W;
71: a=-imag((sin(v1)./v1+sin(v2)./v2)/cos(W));
72: u=imag(cos(W*x)*exp(i*w*t)/cos(W))+ ...
73: (a(ones(nx,1),:).*cos(x*ln))* ...
74: exp(-ln(:).^2*t);
75: u=u’; t=t(:);

9.9 Transient Heat Conduction in a Circular Cylinder with Spa-
tially Varying Boundary Temperature

9.9.1 Problem Formulation

Transient heat conduction in a circular cylinder can be analyzed using an inÞnite
series of Bessel functions. Consider a cylinder having an initial temperature distri-
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bution u0(r, θ) when the boundary is suddenly given a temperature variation f(θ)
depending on the polar angle but independent of time. The problem is conveniently
formulated in polar coordinates using dimensionless radius and time variables. The
differential equation, boundary conditions, and initial conditions are as follows:

urr +
1
r
ur +

1
r2
uθθ = ut , 0 ≤ r ≤ 1 , t > 0,

u(1, θ, t) = f(θ) =
∞∑

n=−∞
fne

inϑ , 0 ≤ θ ≤ 2π,

u(r, θ, 0) = u0(r, θ) , 0 ≤ r ≤ 1 , 0 ≤ θ ≤ 2π.

With the boundary condition expressed as a complex Fourier series, the steady-state
solution satisfying the differential equation and the boundary conditions is

v(r, θ) = −f0 + 2 real

( ∞∑
n=0

fnz
n

)
where z = reiθ .

The total solution is the steady-state solution combined with a transient solution
w(r, θ, t) chosen to satisfy the initial condition and boundary conditions expressed
as

w(r, θ, 0) = u0(r, θ) − v(r, θ) , w(1, θ, t) = 0.

The transient solution is a Fourier-Bessel series involving double subscripted coefÞ-
cients depending on the functions v(r, θ) and u0(r, θ). It is found that

w(r, θ, t) =
∞∑

n=0

∞∑
k=1

Jn(λnkr) [Ank cos(nθ) +Bnk sin(nθ)] exp(−λ2
nkt)

where, for n > 0 and k ≥ 1, we have

Ank + iBnk = Cnk =
2

πJ2
n+1(λnk)

2π∫
0

1∫
0

w(r, θ, 0)rJn(λnkr) exp(inθ)drdθ

with λnk denoting the k ′th positive root of Jn(r). The last formula almost applies for
n = 0 except that A0k = C0k/2 and B0k = 0. The coefÞcients for n = 0 pertain
to the radially symmetric case independent of the polar angle. Evaluating this series
solution involves several steps which are: 1) Expanding the boundary condition in a
complex Fourier series to obtain the steady-state solution; 2) Determining the zeros
of the integer order Bessel functions Jn(r); 3) Computing the series coefÞcients by
numerical integration; and 4) Summing the series solution for various (r, θ) values
with enough terms being used in the series to assure adequate satisfaction of the
initial conditions and boundary conditions.
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Figure 9.24: Initial Temperature

9.9.2 Computer Formulation

A computer program was written to analyze the time dependent temperature Þeld.
The program speciÞes general initial temperature and boundary temperature. The
series solution is evaluated on a polar coordinate grid and an animation of the tem-
perature variation from initial to steady state is shown. The program modules in-
clude: 1) heatcyln which calls the computational modules and plots results; 2)
besjtabl returns Bessel function roots used in the series solution; 3) tempinit spec-
iÞes the initial temperature Þeld; 4) tempstdy computes the steady state solution;
5) tempdif computes the difference in the initial and the Þnal temperature Þelds; 6)
foubesco evaluates coefÞcients in the Fourier-Bessel series; and (7) tempsum sums
the Fourier-Bessel series for a vector of time values. Figures 9.25 through 9.28 show
the initial, Þnal, and two intermediate temperature states. The program animates the
temperature history so the transition from initial to steady-state can be visualized.

© 2003 by CRC Press LLC



−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x axis

Temperature at time = 0.020

y axis

te
m

pe
ra

tu
re

Figure 9.25: Temperature at t=0.02
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Program heatcyln

1: function heatcyln
2: %
3: % heatcyln
4: % ~~~~~~~~
5: % This program analyzes the time varying temperature
6: % history in a circular cylinder which initially has
7: % a radially symmetric temperature varying para-
8: % bolically. Then a spatially varying but constant
9: % boundary temperature distribution is imposed. The

10: % total solution is composed of a harmonic steady
11: % state solution plus a transient component given by
12: % a Fourier-Bessel series.
13: % User functions called:
14: % besjtabl, tempinit, tempstdy, foubesco,
15: % tempsum, tempdif, gcquad
16:

17: global ubdry besjrt
18:

19: % Obtain Bessel function roots needed in the
20: % transient solution
21: besjrt=besjtabl(0:20,20);
22:

23: % Define the steady state temperature imposed
24: % on the outer boundary for t>0
25: th=linspace(0,pi,100)’;
26: ud=cos(2*th).*(th<=pi/2)+...
27: (-3+4/pi*th).*(th>pi/2&th<3*pi/4);
28: ud=[ud;ud(end-1:-1:1)];
29: ubdry=[linspace(0,360,199)’,ud];
30: theta=linspace(0,2*pi,65);
31: r=linspace(0,1,15);
32:

33: % Compute and plot the initial and final
34: % temperature fields
35: [uinit,z]=tempinit(theta,r);
36: [usteady,z]=tempstdy(theta,r);
37: umin=min([usteady(:);uinit(:)]);
38: umax=max([usteady(:);uinit(:)]);
39: range=[-1,1,-1,1,umin,umax];
40: x=real(z); y=imag(z);
41:
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42: surf(x,y,uinit), colormap(’default’)
43: title(’INITIAL TEMPERATURE DISTRIBUTION’)
44: xlabel(’x axis’), ylabel(’y axis’)
45: zlabel(’temperature’), axis(range), disp(’ ’)
46: disp(’Press [Enter] to see the steady’)
47: disp(’state temperature distribution’)
48: shg, pause, disp(’ ’)
49: % print -deps tempinit
50:

51: surf(x,y,usteady)
52: title(’STEADY STATE TEMPERATURE DISTRIBUTION’)
53: xlabel(’x axis’), ylabel(’y axis’)
54: zlabel(’temperature’), axis(range), shg
55: % print -deps tempstdy
56:

57: % Compute coefficients used in the Fourier-
58: % Bessel series for the transient solution
59: [c,lam,cptim]=foubesco(@tempdif,20,20,40,128);
60:

61: % Set a time interval sufficient to nearly
62: % reach steady state
63: tmax=.4; nt=81; t=linspace(0,tmax,nt);
64:

65: % Evaluate the transient solution
66: [u,tsum]=tempsum(c,theta,r,t,lam);
67: u(:,:,1)=uinit-usteady;
68:

69: % Plot time history for the total solution
70: while 1
71: disp(’Press [Enter] to see the animation’)
72: disp(’or enter 0 to stop’), v=input(’> ? ’);
73: if isempty(v), v=1; end
74: if v~=1, break, end
75: for j=1:nt
76: utotal=usteady+u(:,:,j);
77: surf(x,y,utotal)
78: titl=sprintf([’Temperature at time =’,...
79: ’%6.3f’],t(j)); title(titl)
80: xlabel(’x axis’), ylabel(’y axis’)
81: zlabel(’temperature’), axis(range);
82: drawnow; shg, pause(.3)
83: end
84: end
85:

86: %=============================================
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87:

88: function [u,z]=tempstdy(theta,r)
89: %
90: % [u,z]=tempstdy(theta,r)
91: % ~~~~~~~~~~~~~~~~~~~~~~
92: % Steady state temperature distribution in a
93: % circular cylinder of unit radius with
94: % piecewise linear boundary values
95: % described in global array ubdry.
96: global ubdry
97:

98: thft=2*pi/(1024)*(0:1023); n=100;
99: ufft=interp1(pi/180*ubdry(:,1),...

100: ubdry(:,2)/1024,thft);
101: c=fft(ufft); z=exp(i*theta(:))*r(:)’;
102: u=-real(c(1))+2*real(...
103: polyval(c(n:-1:1),z));
104:

105: %=============================================
106:

107: function [u,z]=tempinit(theta,r)
108: %
109: % [u,z]=tempinit(theta,r)
110: % ~~~~~~~~~~~~~~~~~~~~~~
111: % Initial temperature varying parabolically
112: % with the radius
113: theta=theta(:); r=r(:)’; z=exp(i*theta)*r;
114: u=ones(length(theta),1)*(1-r.^2);
115:

116: %=============================================
117:

118: function [u,z]=tempdif(theta,r)
119: %
120: % [u,z]=tempdif(theta,r)
121: % ~~~~~~~~~~~~~~~~~~~~~
122: % Difference between the steady state temp-
123: % erature and the initial temperature
124: u1=tempstdy(theta,r); [u2,z]=tempinit(theta,r);
125: u=u2-u1;
126:

127: %=============================================
128:

129: function [c,lam,cptim]=foubesco(...
130: f,nord,nrts,nrquad,nft)
131: %

© 2003 by CRC Press LLC



132: % [c,lam,cptim]=foubesco(f,nord,nrts,nrquad,nft)
133: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
134: % Fourier-Bessel coefficients computed using the
135: % FFT
136: global besjrt
137: if nargin<5, nft=128; end
138: if nargin<4, nrquad=50; end
139: if nargin<3, nrts=10; end
140: if nargin<2, nord=10; end
141: if nargin==0, f=’fbes’; end
142: tic; lam=besjrt(1:nord,1:nrts);
143: c=zeros(nord,nrts);
144: [dummy,r,w]=gcquad([],0,1,nrquad,1);
145: r=r(:)’; w=w(:)’; th=2*pi/nft*(0:nft-1)’;
146: fmat=fft(feval(f,th,r));
147: fmat=fmat(1:nord,:).*repmat(r.*w,nord,1);
148: for n=1:nord
149: for k=1:nrts
150: lnk=lam(n,k);
151: v=sum(fmat(n,:).*besselj(n-1,lnk*r));
152: c(n,k)=4*v/nft/besselj(n,lnk).^2;
153: end
154: end
155: c(1,:)=c(1,:)/2; cptim=toc;
156:

157: %=============================================
158:

159: function [u,tcpu]=tempsum(c,th,r,t,lam)
160: %
161: % [u,tsum]=tempsum(c,th,r,t,lam)
162: %
163: % This function sums a Fourier-Bessel series
164: % for transient temperature history in a circular
165: % cylinder with given initial conditions and
166: % zero temperature at the boundary. The series
167: % has the form
168: % u(theta,r,t)=sum({n=0:nord-1),k=1:nrts},...
169: % besselj(n,lam(n+1,k)*r)*real(...
170: % c(n+1,k)*exp(i*(n+1)*theta))*...
171: % exp(-lam(n+1,k)^2*t), where
172: % besselj(n-1,lam(n,k))=0 and
173: % [nord,nrts]=size(c)
174: %
175: % c - the series coefficients for the initial
176: % temperature distribution obtained using
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177: % function foubesco
178: % th - vector or theta values between
179: % zero and 2*pi
180: % r - vector of radius values between
181: % zero and one
182: % lam - matrix of bessel function roots.
183: % If this argument is omitted, then
184: % function besjroot is called to
185: % compute the roots
186: % u - a three-dimensional array of function
187: % values where u(i,j,k) contains the
188: % temperature for theta(i), r(j), t(k)
189: % tcpu - computation time in seconds
190:

191: tic; [nord,nrts]=size(c);
192: if nargin<5, lam=besjroot(0:nord-1,nrts); end
193: th=th(:); nth=length(th); r=r(:)’; nr=length(r);
194: nt=length(t); N=repmat((0:nord-1)’,1,nrts);
195: N=N(:)’; c=c(:).’; lam=lam(:); lam2=-(lam.^2)’;
196: u=zeros(nth,nr,nt); thmat=exp(i*th*N);
197: besmat=besselj(repmat(N’,1,nr),lam*r);
198: for I=1:nt
199: C=c.*exp(lam2*t(I));
200: u(:,:,I)=real(thmat.*repmat(C,nth,1))*besmat;
201: end
202: tcpu=toc;
203:

204: %=============================================
205:

206: function r=besjtabl(nordr,nrts)
207: %
208: % r=besjtable(nordr,nrts)
209: % ~~~~~~~~~~~~~~~~~~~~~
210: % This function returns a table for roots of
211: % besselj(n,x)=0 accurate to about five digits.
212: % r(k,:) - contains the first 20 positive roots of
213: % besselj(k-1,x)=0; for k=1:21
214: % nordr - a vector of function orders lying
215: % between 0 and 20
216: % nrts - the highest root order not to exceed
217: % the twentieth positive root
218:

219: if nargin==0, nordr=0:20; nrts=20; end
220: if max(nordr)>20 | nrts>20, r=nan; return; end
221: r=[2.4048 21.6415 40.7729 33.7758 53.7383 73.2731

© 2003 by CRC Press LLC



222: 3.8317 22.9452 42.0679 35.3323 55.1847 74.6738
223: 5.1356 24.2339 43.3551 36.8629 56.6196 76.0673
224: 6.3801 25.5094 44.6349 38.3705 58.0436 77.4536
225: 7.5883 26.7733 45.9076 39.8577 59.4575 78.8337
226: 8.7715 28.0267 47.1740 41.3263 60.8617 80.2071
227: 9.9362 29.2706 48.4345 42.7784 62.2572 81.5752
228: 11.0864 30.5060 24.3525 44.2154 63.6441 55.7655
229: 12.2251 31.7334 25.9037 45.6384 65.0231 57.3275
230: 13.3543 32.9537 27.4206 47.0487 66.3943 58.8730
231: 14.4755 34.1672 28.9084 48.4475 67.7586 60.4033
232: 15.5898 35.3747 30.3710 49.8346 69.1159 61.9193
233: 16.6983 36.5764 31.8117 51.2120 70.4668 63.4221
234: 17.8014 37.7729 33.2330 52.5798 71.8113 64.9128
235: 18.9000 14.9309 34.6371 53.9382 46.3412 66.3913
236: 19.9944 16.4707 36.0257 55.2892 47.9015 67.8594
237: 21.0852 17.9599 37.4001 56.6319 49.4422 69.3172
238: 22.1725 19.4094 38.7618 57.9672 50.9651 70.7653
239: 23.2568 20.8269 40.1118 59.2953 52.4716 72.2044
240: 24.3383 22.2178 41.4511 60.6170 53.9631 73.6347
241: 25.4171 23.5861 42.7804 61.9323 55.4405 75.0567
242: 5.5201 24.9350 44.1006 36.9171 56.9052 76.4710
243: 7.0156 26.2668 45.4122 38.4748 58.3579 77.8779
244: 8.4173 27.5839 46.7158 40.0085 59.7991 79.2776
245: 9.7611 28.8874 48.0122 41.5208 61.2302 80.6706
246: 11.0647 30.1790 49.3012 43.0138 62.6513 82.0570
247: 12.3385 31.4600 50.5836 44.4893 64.0629 83.4373
248: 13.5893 32.7310 51.8600 45.9489 65.4659 84.8116
249: 14.8213 33.9932 27.4935 47.3941 66.8607 58.9070
250: 16.0378 35.2471 29.0469 48.8259 68.2474 60.4695
251: 17.2412 36.4934 30.5692 50.2453 69.6268 62.0162
252: 18.4335 37.7327 32.0649 51.6533 70.9988 63.5484
253: 19.6160 38.9654 33.5372 53.0504 72.3637 65.0671
254: 20.7899 40.1921 34.9887 54.4378 73.7235 66.5730
255: 21.9563 41.4131 36.4220 55.8157 75.0763 68.0665
256: 23.1158 18.0711 37.8387 57.1850 49.4826 69.5496
257: 24.2692 19.6159 39.2405 58.5458 51.0436 71.0219
258: 25.4170 21.1170 40.6286 59.8990 52.5861 72.4843
259: 26.5598 22.5828 42.0041 61.2448 54.1117 73.9369
260: 27.6979 24.0190 43.3684 62.5840 55.6217 75.3814
261: 28.8317 25.4303 44.7220 63.9158 57.1174 76.8170
262: 29.9616 26.8202 46.0655 65.2418 58.5996 78.2440
263: 8.6537 28.1912 47.4003 40.0584 60.0694 79.6643
264: 10.1735 29.5456 48.7265 41.6171 61.5277 81.0769
265: 11.6199 30.8854 50.0446 43.1535 62.9751 82.4825
266: 13.0152 32.2119 51.3552 44.6698 64.4123 83.8815
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267: 14.3726 33.5265 52.6589 46.1679 65.8399 85.2738
268: 15.7002 34.8300 53.9559 47.6493 67.2577 86.6603
269: 17.0037 36.1237 55.2466 49.1157 68.6681 88.0408
270: 18.2876 37.4081 30.6346 50.5681 70.0699 62.0485
271: 19.5546 38.6843 32.1897 52.0077 71.4639 63.6114
272: 20.8070 39.9526 33.7166 53.4352 72.8506 65.1593
273: 22.0470 41.2135 35.2187 54.8517 74.2302 66.6933
274: 23.2758 42.4678 36.6990 56.2576 75.6032 68.2142
275: 24.4949 43.7155 38.1598 57.6538 76.9699 69.7230
276: 25.7051 44.9577 39.6032 59.0409 78.3305 71.2205
277: 26.9074 21.2117 41.0308 60.4194 52.6241 72.7065
278: 28.1024 22.7601 42.4439 61.7893 54.1856 74.1827
279: 29.2909 24.2702 43.8439 63.1524 55.7297 75.6493
280: 30.4733 25.7482 45.2315 64.5084 57.2577 77.1067
281: 31.6501 27.1990 46.6081 65.8564 58.7709 78.5555
282: 32.8218 28.6266 47.9743 67.1982 60.2703 79.9960
283: 33.9887 30.0337 49.3308 68.5339 61.7567 81.4291
284: 11.7916 31.4228 50.6782 43.1998 63.2313 82.8535
285: 13.3237 32.7958 52.0172 44.7593 64.6947 84.2714
286: 14.7960 34.1543 53.3483 46.2980 66.1476 85.6825
287: 16.2234 35.4999 54.6719 47.8178 67.5905 87.0870
288: 17.6159 36.8336 55.9885 49.3204 69.0240 88.4846
289: 18.9801 38.1563 57.2984 50.8072 70.4486 89.8772
290: 20.3208 39.4692 58.6020 52.2794 71.8648 91.2635];
291: r=reshape(r(:),21,20); r=r(1+nordr,1:nrts);
292:

293: %=============================================
294:

295: % function [val,bp,wf]=gcquad(func,xlow,...
296: % xhigh,nquad,mparts,varargin)
297: % See Appendix B

9.10 Torsional Stresses in a Beam of Rectangular Cross Section

Elastic beams of uniform cross section are commonly used structural members.
Evaluation of the stresses caused when beams undergo torsional moments depends
on Þnding a particular type of complex valued function. This function is analytic
inside the beam cross section and has its imaginary part known on the boundary
[72]. The shear stresses τXZ and τY Z are obtained from the stress function f(z) of
the complex variable z = x+ iy according to

τZX − iτZY

µα
= f ′(z) − iz̄
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where µ is the shear modulus and α is the twist per unit length. In the case for a
simply connected cross section, such as a rectangle or a semicircle, the necessary
boundary condition is

imag[f(z)] =
1
2
|z|2

at all boundary points. It can also be shown that the torsional moment causes the
beam cross section to warp. The warped shape is given by the real part of f(z).

The geometry we will analyze is rectangular. As long as the ratio of side length
remains fairly close to unity, f(z) can be well approximated by

f(z) = i
n∑

=1

c

(z
s

)2−2

where c1, . . . , cn are real coefÞcients computed to satisfy the boundary conditions in
the least square sense. The parameter s is used for scaling to prevent occurrence of
large numbers when n becomes large. We take a rectangle with sides parallel to the
coordinate axes and assume side lengths of 2a and 2b for the horizontal and vertical
directions, respectively. The scaling parameter will be chosen as the larger of a and
b. The boundary conditions state that for any point z ı on the boundary we should
have

n∑
=1

c real
[
(
zı

s
)2−2

]
=

1
2
|zı|2.

Once the series coefÞcients are found, then shear stresses are computed as

τXZ − iτY Z

µα
= −iz̄ + 2is−1

n∑
=2

(− 1)c
(z
s

)2−3

A program was written to compute stresses in a rectangular beam and to show graph-
ically the cross section warping and the dimensionless stress values. The program is
short and the necessary calculations are almost self explanatory. It is worthwhile to
observe, however, the ease with which MATLAB handles complex functions. Note
how intrinsic function linspace is used to generate boundary data and meshgrid is
used to generate a grid of complex values (see lines 50, 51, 72, 73, and 74 of function
recstrs). The sample problem employs a rectangle of dimension 2 units by 4 units.
The maximum stress occurs at the middle of the longest side. Figures 9.28 through
9.31 plot the results of this analysis.
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MATLAB Example

Output from Torsion Example

>> rector;

=== TORSIONAL STRESS CALCULATION IN A RECTANGULAR ===
=== BEAM USING LEAST SQUARE APPROXIMATION ===

Input the lengths of the horizontal and the vertical sides
(make the long side horizontal)
> ? 3,2

Input the number of terms used in the stress function
(30 terms is usually enough)
> ? 30

Press [Enter] to plot
the warping surface

Press [[Enter]] to plot the
total stress surface

Press [Enter] to plot the
stress contours

Press [Enter] to plot the maximum
stress on a rectangle side

The Maximum Shear Stress is 1.6951
at x = 0 and y = 1

All Done
>>

Program rector

1: function rector
2: % Example: rector
3: % ~~~~~~~~~~~~~~~~
4: % This program uses point matching to obtain an
5: % approximate solution for torsional stresses
6: % in a Saint Venant beam having a rectangular
7: % cross section. The complex stress function is
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8: % analytic inside the rectangle and has its
9: % real part equal to abs(z*z)/2 on the

10: % boundary. The problem is solved approximately
11: % using a polynomial stress function which fits
12: % the boundary condition in the least square
13: % sense. Surfaces and contour curves describing
14: % the stress and deformation pattern in the
15: % beam cross section are drawn.
16: %
17: % User m functions required: recstrs
18:

19: clear;
20: fprintf(’\n=== TORSIONAL STRESS CALCULATION’);
21: fprintf(’ IN A RECTANGULAR ===’);
22: fprintf(’\n=== BEAM USING LEAST SQUARE ’);
23: fprintf(’APPROXIMATION ===\n’);
24: fprintf(’\nInput the lengths of the ’);
25: fprintf(’horizontal and the vertical sides\n’);
26: fprintf(’(make the long side horizontal)\n’);
27: u=input(’> ? ’,’s’); u=eval([’[’,u,’]’]);
28: a=u(1)/2; b=u(2)/2;
29:

30: % The boundary conditions are approximated in
31: % terms of the number of least square points
32: % used along the sides
33: nsegb=100; nsega=ceil(a/b*nsegb);
34: nsega=fix(nsega/2); nsegb=fix(nsegb/2);
35: fprintf(’\nInput the number of terms ’);
36: fprintf(’used in the stress function’);
37: fprintf(’\n(30 terms is usually enough)\n’);
38: ntrms=input(’> ? ’);
39:

40: % Define a grid for evaluation of stresses.
41: % Include the middle of each side.
42: nx=41; ny=fix(b/a*nx); ny=ny+1-rem(ny,2);
43:

44: [c,phi,stres,z] = ...
45: recstrs(a,nsega,b,nsegb,ntrms,nx,ny);
46: [smax,k]=max(abs(stres(:))); zmax=z(:);
47: zmax=zmax(k); xmax=abs(real(zmax));
48: ymax=abs(imag(zmax));
49: disp(’ ’), disp([’The Maximum Shear ’,...
50: ’Stress is ’,num2str(smax)]);
51: disp([’at x = ’,num2str(xmax),’ and y = ’,...
52: num2str(ymax)]);
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53: disp(’ ’); disp(’All Done’);
54:

55: %=============================================
56:

57: function [c,phi,stres,z]=...
58: recstrs(a,nsega,b,nsegb,ntrms,nxout,nyout)
59: %
60: % [c,phi,stres,z]=...
61: % recstrs(a,nsega,b,nsegb,ntrms,nxout,nyout)
62: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
63: % This function uses least square fitting to
64: % obtain an approximate solution for torsional
65: % stresses in a Saint Venant beam having a
66: % rectangular cross section. The complex stress
67: % function is analytic inside the rectangle
68: % and has its real part equal to abs(z*z)/2 on
69: % the boundary. The problem is solved
70: % approximately using a polynomial stress
71: % function which fits the boundary condition
72: % in the least square sense. The beam is 2*a
73: % wide parallel to the x axis and 2*b deep
74: % parallel to the y axis. The shear stresses
75: % in the beam are given by the stress formula:
76: %
77: % (tauzx-i*tauzy)/(mu*alpha) = -i*conj(z)+f’(z)
78: %
79: % where
80: %
81: % f(z)=i*sum( c(j)*z^(2*j-2), j=1:ntrms )
82: %
83: % and c(j) are real.
84: %
85: % a,b - half the side lengths of the
86: % horizontal and vertical sides
87: % nsega, - numbers of subintervals used to
88: % nsegb form the least square equations
89: % ntrms - number of terms used in the
90: % polynomial stress function
91: % nxout, - number of grid points used to
92: % nyout evaluate output
93: % c - coefficients defining the stress
94: % function
95: % phi - values of the membrane function
96: % stres - array of complex stress values
97: % z - complex point array at which
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98: % stresses are found
99: %

100: % User m functions called: none
101: %----------------------------------------------
102:

103: % Generate vector zbdry of boundary points
104: % for point matching.
105: zbdry=[a+i*b/nsega*(0:nsega-1)’;
106: i*b+a/nsegb*(nsegb:-1:0)’];
107:

108: % Determine a scaling parameter used to
109: % prevent occurrence of large numbers when
110: % high powers of z are used
111: s=max(a,b);
112:

113: % Form the least square equations to impose
114: % the boundary conditions.
115: neq=length(zbdry); amat=ones(neq,ntrms);
116: ztmp=(zbdry/s).^2; bvec=.5*abs(zbdry).^2;
117: for j=2:ntrms
118: amat(:,j)=amat(:,j-1).*ztmp;
119: end
120:

121: % Solve the least square equations.
122: amat=real(amat); c=pinv(amat)*bvec;
123:

124: % Generate grid points to evaluate
125: % the solution.
126: xsid=linspace(-a,a,nxout);
127: ysid=linspace(-b,b,nyout);
128: [xg,yg]=meshgrid(xsid,ysid);
129: z=xg+i*yg; zz=(z/s).^2;
130:

131: % Evaluate the warping function
132: phi=-imag(polyval(flipud(c),zz));
133:

134: % Evaluate stresses and plot results
135: cc=(2*(1:ntrms)-2)’.*c;
136: stres=-i*conj(z)+i* ...
137: polyval(flipud(cc),zz)./(z+eps*(z==0));
138: am=num2str(-a);ap=num2str(a);
139: bm=num2str(-b);bp=num2str(b);
140:

141: % Plot results
142: disp(’ ’), disp(’Press [Enter] to plot’)
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143: disp(’the warping surface’), pause
144: [pa,k]=max(abs(phi(:)));
145: Phi=a/4*sign(phi(k))/phi(k)*phi;
146: close, colormap(’default’)
147: surfc(xg,yg,Phi)
148: title(’Warping of the Cross Section’)
149: xlabel(’x axis’), ylabel(’y axis’)
150: zlabel(’transverse warping’); axis(’equal’)
151: shg, disp(’ ’)
152: disp(’Press [[Enter]] to plot the’)
153: disp(’total stress surface’), pause
154: % print -deps warpsurf
155:

156: surfc(xg,yg,abs(stres));
157: title(’Total Shear Stress Surface’)
158: xlabel(’x axis’); ylabel(’y axis’)
159: zlabel(’total stress’), axis(’equal’), shg
160: disp(’ ’), disp(’Press [Enter] to plot the’)
161: disp(’stress contours’), pause
162: % print -deps rectorst
163:

164: contour(xg,yg,abs(stres),20); colorbar
165: title(’Total Stress Contours’);
166: xlabel(’x axis’); ylabel(’y axis’)
167: shg, disp(’ ’)
168: disp(’Press [Enter] to plot the maximum’)
169: disp(’stress on a rectangle side’), pause
170: % print -deps torcontu
171:

172: plot(xsid,abs(stres(1,:)),’k’);
173: grid; ylabel(’tangential stress’);
174: xlabel(’position on a horizontal side’);
175: title(’Stress for y = b/2’); shg
176: % print -deps torstsid
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Chapter 10

Eigenvalue Problems and Applications

10.1 Introduction

Eigenvalue problems occur often in mechanics, especially linear system dynam-
ics, and elastic stability. Usually nontrivial solutions are sought for homogeneous
systems of differential equations. For a few simple systems like the elastic string,
or a rectangular membrane, the eigenvalues and eigenfunctions can be determined
exactly. More often, some discretization methods such as Þnite difference or Þnite
element methods are employed to reduce the system to a linear algebraic form which
is numerically solvable. Several eigenvalue problems analyzed in earlier chapters
reduced easily to algebraic form where the function eig could immediately produce
the desired results. The present chapter deals with several instances where reduction
to eigenvalue problems is more involved. We will also make some comparisons of
exact, Þnite difference, and Þnite element analyses. Among the physical systems
studied are Euler beams and columns, two-dimensional trusses, and elliptical mem-
branes.

10.2 Approximation Accuracy in a Simple Eigenvalue Problem

One of the simplest but useful eigenvalue problems concerns determining nontriv-
ial solutions of

y′′(x) + λ2y(x) = 0, y(0) = y(1) = 0.

The eigenvalues and eigenfunctions are

yn = sin(nπx), 0 ≤ x ≤ 1, where λn = nπ, n = 1, 2, 3, . . .

It is instructive to examine the answers obtained for this problem using Þnite differ-
ences and spline approximations. We introduce a set of node points deÞned by

xj = j∆, j = 0, 1, 2, . . . , N + 1, ∆ = 1/(N + 1).
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Then a Þnite difference description for the differential equation and boundary condi-
tions is

yj−1 − 2yj + yj+1 + ω2yj = 0, 1 ≤ j ≤ N, y0 = yN+1 = 0, ω = ∆λ.

Solving the linear difference equation gives

λd
n = 2(N + 1) sin

(
πn

2(N + 1)

)
, n = 1, . . . , N,

yd
j = sin

(
πjn

N + 1

)
, n = 1, . . . , N , j = 0, . . . , N + 1

where the superscript d indicates a Þnite difference result. The ratio of the approxi-
mate eigenvalues to the exact eigenvalues is

λd
n / λn = sin

(
πn

2(N + 1)

)
/

(
πn

2(N + 1)

)
.

So, for large enough M, we get λd
1 / λ1 = 1 and λd

N / λN = 2
π ≈ 0.63. The

smallest eigenvalue is quite accurate, but the largest eigenvalue is too low by about
thirty-seven percent. This implies that the Þnite difference method is not very good
for computing high order eigenvalues. For instance, to get λ d

100 / λ100 = 0.999
requires a rather high value of N = 2027.

An alternate approach to the Þnite difference method is to use a series representa-
tion

y(x) =
N∑

k=1

fk(x) ck

where the fk(x) vanish at the end points. We then seek a least-squares approximate
solution imposing

N∑
k=1

f ′′
k (ξj)ck + λ2

N∑
k=1

fk(ξj) ck = 0

for a set of collocation points ξj , j = 1 . . . M with M taken much larger than N .
With the matrix form of the last equation denoted asBC+λ2AC = 0, we make the
error orthogonal to the columns of matrixA and get the resulting eigenvalue problem

(A\B)C + λ2 C = 0

employing the generalized inverse ofA. A short program eigverr written to compare
the accuracy of the Þnite difference and the spline algorithms produced Figure 10.1.
The program is also listed. The spline approximation method gives quite accurate
results, particularly if no more than half of the computed eigenvalues are used.
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Figure 10.1: Comparing an eigenvalue computation using the least squares
method and a second order Þnite differences method
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Program eigverr

1: function eigverr(nfd,nspl,kseg)
2: % eigverr(nfd,nspl,kseg)
3: % This function compares two methods of computing
4: % eigenvalues corresponding to
5: %
6: % y"(x)+w^2*y(x)=0, y(0)=y(1)=0.
7: %
8: % Results are obtained using 1) finite differences
9: % and 2) cubic splines.

10: %
11: % nfd - number of interior points used for the
12: % finite difference equations
13: % nspl - number of interior points used for the
14: % spline functions.
15: % kseg - the number of interior spline points is
16: % kseg*(nspl+1)+nspl
17:

18: if nargin==0, nfd=100; nspl=100; kseg=4; end
19: [ws,es]=spleig(nspl,kseg); [wd,ed]=findieig(nfd);
20: str=[’COMPARING TWO METHODS FOR EIGENVALUES ’,...
21: ’OF Y"(X)+W^2*Y(X)=0, Y(0)=Y(1)=0’];
22: plot(1:nspl,es,’k-’,1:nfd,ed,’k.’)
23: title(str), xlabel(’Eigenvalue Index’)
24: ylabel(’Percent Error’), Nfd=num2str(nfd);
25: Ns=num2str(nspl); M=num2str(nspl+(nspl+1)*kseg);
26: legend([’Using ’,Ns,’ cubic splines and ’,...
27: M,’ least square points’],...
28: [’Using ’,Nfd,’ finite differences points’],3)
29: grid on, shg
30: % print -deps eigverr
31:

32: %==========================================
33:

34: function [w,pcterr]=findieig(n)
35: % [w,pcterr]=findieig(n)
36: % This function determines eigenvalues of
37: % y’’(x)+w^2*y(x)=0, y(0)=y(1)=0
38: % The solution uses an n point finite
39: % difference approximation
40: if nargin==0, n=100; end
41: a=2*eye(n,n)-diag(ones(n-1,1),1)...
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42: -diag(ones(n-1,1),-1);
43: w=(n+1)*sqrt(sort(eig(a))); we=pi*(1:n)’;
44: pcterr=100*(w-we)./we;
45:

46: %==========================================
47:

48: function [w,pcterr]=spleig(n,nseg)
49: % [w,pcterr]=spleig(n,nseg)
50: % This function determines eigenvalues of
51: % y’’(x)+w^2*y(x)=0, y(0)=y(1)=0
52: % The solution uses n spline basis functions
53: % and nseg*(n+1)+n least square points
54:

55: if nargin==0, n=100; nseg=1; end
56: nls=(n+1)*nseg+n; xls=(1:nls)’/(nls+1);
57: a=zeros(nls,n); b=a;
58: for k=1:n
59: a(:,k)=splnf(k,n,1,xls,2);
60: b(:,k)=splnf(k,n,1,xls);
61: end
62: w=sqrt(sort(eig(-b\a))); we=pi*(1:n)’;
63: pcterr=100*(w-we)./we;
64:

65: %==========================================
66:

67: function y=splnf(n,N,len,x,ideriv)
68: % y=splnf(n,N,len,x,ideriv)
69: % This function computes the spline basis
70: % functions and derivatives
71: xd=len/(N+1)*(0:N+1)’; yd=zeros(N+2,1);
72: yd(n+1)=1;
73: if nargin<5, y=spline(xd,yd,x);
74: elseif ideriv==1, y=splined(xd,yd,x);
75: else, y=splined(xd,yd,x,2); end
76:

77: %==========================================
78:

79: % function val=splined(xd,yd,x,if2)
80: % See Appendix B
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10.3 Stress Transformation and Principal Coordinates

The state of stress at a point in a three-dimensional continuum is described in terms
of a symmetric 3 x 3 matrix t = [t(ı, )] where t(ı, ) denotes the stress component in
the direction of the xı axis on the plane with it normal in the direction of the x  axis
[9]. Suppose we introduce a rotation of axes deÞned by matrix b such that row b(ı, :)
represents the components of a unit vector along the new x̃ ı axis measured relative
to the initial reference state. It can be shown that the stress matrix t̃ corresponding
to the new axis system can be computed by the transformation

t̃ = btbT .

Sometimes it is desirable to locate a set of reference axes such that t̃ is diagonal,
in which case the diagonal components of t̃ represent the extremal values of normal
stress. This means that seeking maximum or minimum normal stress on a plane leads
to the same condition as requiring zero shear stress on the plane. The eigenfunction
operation

[eigvecs,eigvals]=\beig(t);

applied to a symmetric matrix t produces an orthonormal set of eigenvectors stored in
the columns of eigvecs, and a diagonal matrix eigvals having the eigenvalues
on the diagonal. These matrices satisfy

eigvecsT t eigvecs = eigvals.

Consequently, the rotation matrix b needed to transform to principal axes is simply
the transpose of the matrix of orthonormalized eigenvectors. In other words, the
eigenvectors of the stress tensor give the unit normals to the planes on which the
normal stresses are extremal and the shear stresses are zero. The function prnstres
performs the principal axis transformation.

10.3.1 Principal Stress Program

Function prnstres

1: function [pstres,pvecs]=prnstres(stress)
2: % [pstres,pvecs]=prnstres(stress)
3: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4: %
5: % This function computes principal stresses
6: % and principal stress directions for a three-
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7: % dimensional stress state.
8: %
9: % stress - a vector defining the stress

10: % components in the order
11: % [sxx,syy,szz,sxy,sxz,syz]
12: %
13: % pstres - the principal stresses arranged in
14: % ascending order
15: % pvecs - the transformation matrix defining
16: % the orientation of the principal
17: % axis system. The rows of this
18: % matrix define the surface normals to
19: % the planes on which the extremal
20: % normal stresses act
21: %
22: % User m functions called: none
23:

24: s=stress(:)’;
25: s=([s([1 4 5]); s([4 2 6]); s([5 6 3])]);
26: [pvecs,pstres]=eig(s);
27: [pstres,k]=sort(diag(pstres));
28: pvecs=pvecs(:,k)’;
29: if det(pvecs)<0, pvecs(3,:)=-pvecs(3,:); end

10.3.2 Principal Axes of the Inertia Tensor

A rigid body dynamics application quite similar to principal stress analysis occurs
in the kinetic energy computation for a rigid body rotating with angular velocity
ω = [ωx; ωy; ωz] about the reference origin [48]. The kinetic energy, K , of the
body can be obtained using the formula

K =
1
2
ωTJω

with the inertia tensor J computed as

J =
∫∫∫

V

ρ
[
IrT r − rrT

]
dV,

where ρ is the mass per unit volume, I is the identity matrix, and r is the Cartesian
radius vector. The inertia tensor is characterized by a symmetric matrix expressed in
component form as

J =
∫∫∫

V


y2 + z2 −xy −xz

−xy x2 + z2 −yz
−xz −yz x2 + y2


 dxdydz.
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Under the rotation transformation

r̃ = br with bT b = I,

we can see that the inertia tensor transforms as

J̃ = bJbT

which is identical to the transformation law for the stress component matrix dis-
cussed earlier. Consequently, the inertia tensor will also possess principal axes which
make the off-diagonal components zero. The kinetic energy is expressed more sim-
ply as

K =
1
2
(
ω2

1J11 + ω2
2J22 + ω2

3J33

)
where the components ofω and J must be referred to the principal axes. The function
prnstres can also be used to locate principal axes of the inertia tensor since the same
transformations apply. As an example of principal axis computation, consider the
inertia tensor for a cube of side length A and mass M which has a corner at (0, 0, 0)
and edges along the coordinate axes. The inertia tensor is found to be

J =


 2/3 −1/4 −1/4
−1/4 2/3 −1/4
−1/4 −1/4 2/3


MA2.

The computation

[pvl,pvc]=prnstres([2/3,2/3,2/3,-1/4,-1/4,-1/4]);

produces the results

pvl =


0.1667

0.9167
0.9167


 , pvc =


−0.5574 −0.5574 −0.5574
−0.1543 0.7715 −0.6172
0.8018 −0.2673 −0.5345


 .

This shows that the smallest possible inertial component equals 1/6(≈ 0.1667) about
the diagonal line through the origin while the maximal inertial moments of 11/12(≈
0.9167) occur about the axes normal to the diagonal.

10.4 Vibration of Truss Structures

Trusses are a familiar type of structure used in diverse applications such as bridges,
roof supports, and power transmission towers. These structures can be envisioned as
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a series of nodal points among which various axially loaded members are connected.
These members are assumed to act like linearly elastic springs supporting tension
or compression. Typically, displacement constraints apply at one or more points to
prevent movement of the truss from its supports. The natural frequencies and mode
shapes of two-dimensional trusses are computed when the member properties are
known and the loads of interest arise from inertial forces occurring during vibration.
A similar analysis pertaining to statically loaded trusses has been published recently
[102].

Consider an axially loaded member of constant cross section connected between
nodes ı and  which have displacement components (u ı, vı) and (u, v) as indicated
in Figure 10.2. The member length is given by

� =
√

(x − xı)2 + (y − yı)2,

and the member inclination is quantiÞed by the trigonometric functions

c = cos θ =
x − xı

�
and s = sin θ =

y − yı

�
.

The axial extension for small deßections is

∆ = (u − uı)c+ (v − vı)s.

The axial force needed to extend a member having length �, elastic modulus E, and
cross section area A is given by

Pı =
AE

�
∆ =

AE

�
[−c, −s, c, s]uı

where
uı = [uı; vı; u; v]

is a column matrix describing the nodal displacements of the member ends. The
corresponding end forces are represented by

Fı = [Fıx; Fıy ; Fx; Fy] = Pı [−c, −s, c, s] ,

so that the end forces and end displacements are related by the matrix equation

Fı = KıUı,

where the element stiffness matrix is

Kı =
AE

�
[−c; −s; c; s] [−c, −s, c, s] .

In regard to mass effects in a member, we will assume that any transverse motion is
negligible and half of the mass of each member can be lumped at each end. Hence
the mass placed at each end would be Aρ�/2 where ρ is the mass per unit volume.
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Figure 10.2: Typical Truss Element

The deßection of a truss with n nodal points can be represented using a generalized
displacement vector and a generalized nodal force vector:

U = [u1; v1; u2; v2; . . . ; un; vn] , F = [F1x; F1y ; F2x; F2y ; . . . ; Fnx; Fny] .

When the contributions of all members in the network are assembled together, a
global matrix relation results in the form

F = KU

where K is called the global stiffness matrix. Before we formulate procedures for
assembling the global stiffness matrix, dynamical aspects of the problem will be
discussed.

In the current application, the applied nodal forces are attributable to the accelera-
tion of masses located at the nodes and to support reactions at points where displace-
ment constraints occur. The mass concentrated at each node will equal half the sum
of the masses of all members connected to the node. According to D�Alembert�s
principle [48] a particle having mass m and acceleration ü is statically equivalent
to a force −mü. So, the equation of motion for the truss, without accounting for
support reactions, is

KU = −MÜ

where M is a global mass matrix given by

M = diag ([m1; m1; m2; m2; . . . ; mn; mn])

with mı denoting the mass concentrated at the ı�th node. The equation of motion
MÜ + KU = 0 will also be subjected to constraint equations arising when some
points are Þxed or have roller supports. This type of support implies a matrix equa-
tion of the form CU = 0.
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Natural frequency analysis investigates states-of-motion where each node of the
structure simultaneously moves with simple harmonic motion of the same frequency.
This means solutions are sought of the form

U = X cos(ωt)

where ω denotes a natural frequency and X is a modal vector describing the deßec-
tion pattern for the corresponding frequency. The assumed mode of motion implies
Ü = −λU where λ = ω2. We are led to an eigenvalue problem of the form

KX = λMX

with a side constraint CX = 0 needed to satisfy support conditions.
MATLAB provides the intrinsic functions eig and null which deal with the solu-

tion to this problem effectively. Using function null we can write

X = QY

where Q has columns that are an orthonormal basis for the null space of matrix C.
Expressing the eigenvalue equation in terms of Y and multiplying both sides by Q T

gives
KoY = λMoY

where
Ko = QTKQ andMo = QTMQ.

It can be shown from physical considerations that, in general,K andM are symmet-
ric matrices such that K has real non-negative eigenvalues and M has real positive
eigenvalues. This implies that Mo can be factored as

Mo = NTN

whereN is an upper triangular matrix. Then the eigenvalue problem can be rewritten
as

K1Z = λZ , Y = NZ , K1 =
(
NT

)−1
KoN

−1.

Because matrix K1 will be real and symmetric, the intrinsic function eig generates
orthonormal eigenvectors. The function eigsym used by program trusvibs produces
a set of eigenvectors in the columns of X which satisfy generalized orthogonality
conditions of the form

XTMX = I and XTKX = Λ,

where Λ is a diagonal matrix containing the squares of the natural frequencies ar-
ranged in ascending order. The calculations performed in function eigsym illustrate
the excellent matrix manipulative features that MATLAB embodies.

Before we discuss a physical example, the problem of assembling the global stiff-
ness matrix will be addressed. It is helpful to think of all nodal displacements as if
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they were known and then compute the nodal forces by adding the stiffness contri-
butions of all elements. Although the total force at each node results only from the
forces in members touching the node, it is better to accumulate force contributions
on an element-by-element basis instead of working node by node. For example, a
member connecting node ı and node  will involve displacement components at row
positions 2ı− 1, 2ı, 2− 1, and 2 in the global displacement vector and force com-
ponents at similar positions in the generalized force matrix. Because principles of
superposition apply, the stiffness contributions of individual members can be added,
one member at a time, into the global stiffness matrix. This process is implemented
in function assemble which also forms the mass matrix. First, selected points con-
strained to have zero displacement components are speciÞed. Next the global stiff-
ness and mass matrices are formed. This is followed by an eigenvalue analysis which
yields the natural frequencies and the modal vectors. Finally the motion associated
with each vibration mode is described by superimposing on the coordinates of each
nodal point a multiple of the corresponding modal vector varying sinusoidally with
time. Redrawing the structure produces an appearance of animated motion.

The complete program has several functions which should be studied individually
for complete understanding of the methods developed. These functions and their
purposes are summarized in the following table.

trusvibs reads data and guides interactive input to ani-
mate the various vibration modes

crossdat function typifying the nodal and element data
to deÞne a problem

assemble assembles the global stiffness and mass data
matrices

elmstf forms the stiffness matrix and calculates the
volume of an individual member

eigc forms the constraint equations implied when
selected displacement components are set to
zero

eigsym solves the constrained eigenvalue problem
pertaining to the global stiffness and mass
matrices

trifacsm factors a positive deÞnite matrix into upper
and lower global triangular parts

drawtrus draws the truss in deßected positions
cubrange a utility routine to determine a window for

drawing the truss without scale distortion

The data in function crossdat contains the information for node points, element
data, and constraint conditions needed to deÞne a problem. Once the data values are
read, mode shapes and frequencies are computed and the user is allowed to observe
the animation of modes ordered from the lowest to the highest frequency. The num-
ber of modes produced equals twice the number of nodal points minus the number
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of constraint conditions. The plot in Figure 10.3 shows mode eleven for the sample
problem. This mode has no special signiÞcance aside from the interesting deßection
pattern produced. The reader may Þnd it instructive to run the program and select
several modes by using input such as 3:5 or a single mode by specifying a single
mode number.

Figure 10.3: Truss Vibration Mode Number 11
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10.4.1 Truss Vibration Program

Program trusvibs

1: function trusvibs
2: % Example: trusvibs
3: % ~~~~~~~~~~~~~~~~~
4: %
5: % This program analyzes natural vibration modes
6: % for a general plane pin-connected truss. The
7: % direct stiffness method is employed in
8: % conjunction with eigenvalue calculation to
9: % evaluate the natural frequencies and mode

10: % shapes. The truss is defined in terms of a
11: % set of nodal coordinates and truss members
12: % connected to different nodal points. Global
13: % stiffness and mass matrices are formed. Then
14: % the frequencies and mode shapes are computed
15: % with provision for imposing zero deflection
16: % at selected nodes. The user is then allowed
17: % to observe animated motion of the various
18: % vibration modes.
19: %
20: % User m functions called:
21: % eigsym, crossdat, drawtrus, eigc,
22: % assemble, elmstf, cubrange
23:

24: global x y inode jnode elast area rho idux iduy
25: kf=1; idux=[]; iduy=[]; disp(’ ’)
26: disp([’Modal Vibrations for a Pin ’, ...
27: ’Connected Truss’]); disp(’ ’);
28:

29: % A sample data file defining a problem is
30: % given in crossdat.m
31: disp([’Give the name of a function which ’, ...
32: ’creates your input data’]);
33: disp([’Do not include .m in the name ’, ...
34: ’(use crossdat as an example)’]);
35: filename=input(’>? ’,’s’);
36: eval(filename); disp(’ ’);
37:

38: % Assemble the global stiffness and
39: % mass matrices
40: [stiff,masmat]= ...
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41: assemble(x,y,inode,jnode,area,elast,rho);
42:

43: % Compute natural frequencies and modal vectors
44: % accounting for the fixed nodes
45: ifixed=[2*idux(:)-1; 2*iduy(:)];
46: [modvcs,eigval]=eigc(stiff,masmat,ifixed);
47: natfreqs=sqrt(eigval);
48:

49: % Set parameters used in modal animation
50: nsteps=31; s=sin(linspace(0,6.5*pi,nsteps));
51: x=x(:); y=y(:); np=2*length(x);
52: bigxy=max(abs([x;y])); scafac=.05*bigxy;
53: highmod=size(modvcs,2); hm=num2str(highmod);
54:

55: % Show animated plots of the vibration modes
56: while 1
57: disp(’Give the mode numbers to be animated?’);
58: disp([’Do not exceed a total of ’,hm, ...
59: ’ modes.’]); disp(’Input 0 to stop’);
60: if kf==1, disp([’Try 1:’,hm]); kf=kf+1; end
61: str=input(’>? ’,’s’);
62: nmode=eval([’[’,str,’]’]);
63: nmode=nmode(find(nmode<=highmod));
64: if sum(nmode)==0; break; end
65: % Animate the various vibration modes
66: hold off; clf; ovrsiz=1.1;
67: w=cubrange([x(:),y(:)],ovrsiz);
68: axis(w); axis(’square’); axis(’off’); hold on;
69: for kk=1:length(nmode) % Loop over each mode
70: kkn=nmode(kk);
71: titl=[’Truss Vibration Mode Number ’, ...
72: num2str(kkn)];
73: dd=modvcs(:,kkn); mdd=max(abs(dd));
74: dx=dd(1:2:np); dy=dd(2:2:np);
75: clf; pause(1);
76: % Loop through several cycles of motion
77: for jj=1:nsteps
78: sf=scafac*s(jj)/mdd;
79: xd=x+sf*dx; yd=y+sf*dy; clf;
80: axis(w); axis(’square’); axis(’off’);
81: drawtrus(xd,yd,inode,jnode); title(titl);
82: drawnow; figure(gcf);
83: end
84: end
85: end

© 2003 by CRC Press LLC



86: disp(’ ’);
87:

88: %=============================================
89:

90: function crossdat
91: % [inode,jnode,elast,area,rho]=crossdat
92: % This function creates data for the truss
93: % vibration program. It can serve as a model
94: % for other configurations by changing the
95: % function name and data quantities
96: % Data set: crossdat
97: % ~~~~~~~~~~~~~~~~~~
98: %
99: % Data specifying a cross-shaped truss.

100: %
101: %----------------------------------------------
102:

103: global x y inode jnode elast area rho idux iduy
104:

105: % Nodal point data are defined by:
106: % x - a vector of x coordinates
107: % y - a vector of y coordinates
108: x=10*[.5 2.5 1 2 0 1 2 3 0 1 2 3 1 2];
109: y=10*[ 0 0 1 1 2 2 2 2 3 3 3 3 4 4];
110:

111: % Element data are defined by:
112: % inode - index vector defining the I-nodes
113: % jnode - index vector defining the J-nodes
114: % elast - vector of elastic modulus values
115: % area - vector of cross section area values
116: % rho - vector of mass per unit volume
117: % values
118: inode=[1 1 2 2 3 3 4 3 4 5 6 7 5 6 6 6 7 7 7 ...
119: 8 9 10 11 10 11 10 11 13];
120: jnode=[3 4 3 4 4 6 6 7 7 6 7 8 9 9 10 11 10 ...
121: 11 12 12 10 11 12 13 13 14 14 14];
122: elast=3e7*ones(1,28);
123: area=ones(1,28); rho=ones(1,28);
124:

125: % Any points constrained against displacement
126: % are defined by:
127: % idux - indices of nodes having zero
128: % x-displacement
129: % iduy - indices of nodes having zero
130: % y-displacement
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131: idux=[1 2]; iduy=[1 2];
132:

133: %=============================================
134:

135: function drawtrus(x,y,i,j)
136: %
137: % drawtrus(x,y,i,j)
138: % ~~~~~~~~~~~~~~~~~
139: %
140: % This function draws a truss defined by nodal
141: % coordinates defined in x,y and member indices
142: % defined in i,j.
143: %
144: % User m functions called: none
145: %----------------------------------------------
146:

147: hold on;
148: for k=1:length(i)
149: plot([x(i(k)),x(j(k))],[y(i(k)),y(j(k))]);
150: end
151:

152: %=============================================
153:

154: function [vecs,eigvals]=eigc(k,m,idzero)
155: %
156: % [vecs,eigvals]=eigc(k,m,idzero)
157: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
158: % This function computes eigenvalues and
159: % eigenvectors for the problem
160: % k*x=eigval*m*x
161: % with some components of x constrained to
162: % equal zero. The imposed constraint is
163: % x(idzero(j))=0
164: % for each component identified by the index
165: % matrix idzero.
166: %
167: % k - a real symmetric stiffness matrix
168: % m - a positive definite symmetric mass
169: % matrix
170: % idzero - the vector of indices identifying
171: % components to be made zero
172: %
173: % vecs - eigenvectors for the constrained
174: % problem. If matrix k has dimension
175: % n by n and the length of idzero is
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176: % m (with m<n), then vecs will be a
177: % set on n-m vectors in n space
178: % eigvals - eigenvalues for the constrained
179: % problem. These are all real.
180: %
181: % User m functions called: eigsym
182: %----------------------------------------------
183:

184: n=size(k,1); j=1:n; j(idzero)=[];
185: c=eye(n,n); c(j,:)=[];
186: [vecs,eigvals]=eigsym((k+k’)/2, (m+m’)/2, c);
187:

188: %=============================================
189:

190: function [evecs,eigvals]=eigsym(k,m,c)
191: %
192: % [evecs,eigvals]=eigsym(k,m,c)
193: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
194: % This function solves the constrained
195: % eigenvalue problem
196: % k*x=(lambda)*m*x, with c*x=0.
197: % Matrix k must be real symmetric and matrix
198: % m must be symmetric and positive definite;
199: % otherwise, computed results will be wrong.
200: %
201: % k - a real symmetric matrix
202: % m - a real symmetric positive
203: % definite matrix
204: % c - a matrix defining the constraint
205: % condition c*x=0. This matrix is
206: % omitted if no constraint exists.
207: %
208: % evecs - matrix of eigenvectors orthogonal
209: % with respect to k and m. The
210: % following relations apply:
211: % evecs’*m*evecs=identity_matrix
212: % evecs’*k*evecs=diag(eigvals).
213: % eigvals - a vector of the eigenvalues
214: % sorted in increasing order
215: %
216: % User m functions called: none
217: %----------------------------------------------
218:

219: if nargin==3
220: q=null(c); m=q’*m*q; k=q’*k*q;
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221: end
222: u=chol(m); k=u’\k/u; k=(k+k’)/2;
223: [evecs,eigvals]=eig(k);
224: [eigvals,j]=sort(diag(eigvals));
225: evecs=evecs(:,j); evecs=u\evecs;
226: if nargin==3, evecs=q*evecs; end
227:

228: %=============================================
229:

230: function [stif,masmat]= ...
231: assemble(x,y,id,jd,a,e,rho)
232: %
233: % [stif,masmat]=assemble(x,y,id,jd,a,e,rho)
234: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
235: %
236: % This function assembles the global
237: % stiffness matrix and mass matrix for a
238: % plane truss structure. The mass density of
239: % each element equals unity.
240: %
241: % x,y - nodal coordinate vectors
242: % id,jd - nodal indices of members
243: % a,e - areas and elastic moduli of members
244: % rho - mass per unit volume of members
245: %
246: % stif - global stiffness matrix
247: % masmat - global mass matrix
248: %
249: % User m functions called: elmstf
250: %----------------------------------------------
251:

252: numnod=length(x); numelm=length(a);
253: id=id(:); jd=jd(:);
254: stif=zeros(2*numnod); masmat=stif;
255: ij=[2*id-1,2*id,2*jd-1,2*jd];
256: for k=1:numelm, kk=ij(k,:);
257: [stfk,volmk]= ...
258: elmstf(x,y,a(k),e(k),id(k),jd(k));
259: stif(kk,kk)=stif(kk,kk)+stfk;
260: masmat(kk,kk)=masmat(kk,kk)+ ...
261: rho(k)*volmk/2*eye(4,4);
262: end
263:

264: %=============================================
265:
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266: function [k,vol]=elmstf(x,y,a,e,i,j)
267: %
268: % [k,vol]=elmstf(x,y,a,e,i,j)
269: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
270: %
271: % This function forms the stiffness matrix for
272: % a truss element. The member volume is also
273: % obtained.
274: %
275: % User m functions called: none
276: %----------------------------------------------
277:

278: xx=x(j)-x(i); yy=y(j)-y(i);
279: L=norm([xx,yy]); vol=a*L;
280: c=xx/L; s=yy/L; k=a*e/L*[-c;-s;c;s]*[-c,-s,c,s];
281:

282: %=============================================
283:

284: % function range=cubrange(xyz,ovrsiz)
285: % See Appendix B

10.5 Buckling of Axially Loaded Columns

Computing the buckling load and deßection curve for a slender axially loaded
column leads to an interesting type of eigenvalue problem. Let us analyze a column
of length L subjected to a critical value of axial load P just large enough to hold the
column in a deßected conÞguration. Reducing the load below the critical value will
allow the column to straighten out, whereas increasing the load above the buckling
value will result in a structural failure. To prevent sudden collapse of structures
using axially loaded members, designers must be able to calculate buckling loads
corresponding to various end constraints. We will present an analysis allowing the
ßexural rigidity EI to vary along the length. Four common types of end conditions
of interest are shown in Figure 10.4. For each of these systems we will assume that
the coordinate origin is at the left end of the column 1 with y(0) = 0. Cases I and
II involve statically determinate columns. Cases III and IV are different because
unknown end reactions occur in the boundary conditions.

All four problems lead to a homogeneous linear differential equation subjected
to homogeneous boundary conditions. All of these cases possess a trivial solu-
tion where y(x) vanishes identically. However, the solutions of practical interest
involve a nonzero deßection conÞguration which is only possible when P equals
the buckling load. Finite difference methods can be used to accurately approximate

1Although columns are usually positioned vertically, we show them as horizontal for convenience.
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the differential equation and boundary conditions. In this manner we obtain a lin-
ear algebraic eigenvalue problem subjected to side constraints characterized by an
underdetermined system of linear simultaneous equations.

Consider a beam element relating the bending moment m, the transverse shear v,
the axial loadP , and the transverse deßection y as shown in Figure 10.5. Equilibrium
considerations imply

v′(x) = 0 , m′(x) + Py′(x) = v.

Since no transverse external loading acts on the column between the end supports,
the shear v is constant. Differentiating the moment equation gives

m′′(x) + Py′′(x) = 0.

Furthermore, ßexural deformation theory of slender elastic beams implies

EIy′′(x) = m(x),

which leads to the following homogeneous differential equation governing the bend-
ing moment

EIm′′(x) + Pm(x) = 0.

We need to Þnd values of P allowing nontrivial solutions of this differential equation
subject to the required homogeneous boundary conditions. The four types of end
conditions shown in Figure 10.4 impose both deßection and moment conditions at
the ends. Cases I and II can be formulated completely in terms of displacements
because moment conditions evidently imply

EIy′′(x) = m = −Py.
To handle cases III and IV, we need to relate the displacement and slope conditions
at the ends to the bending moment. Let us denote the function 1/(EI) as k(x) so
that

y′′(x) = k(x)m(x).

Integration gives

y′(x) = y′(0) +
∫ x

0

k(ξ)m(ξ) dξ

© 2003 by CRC Press LLC



and

y(x) = y(0) + y′(0)x+
∫ x

0

(x− ξ)k(ξ)m(ξ) dξ.

The boundary conditions for the pinned-Þxed case require that

a) y(0) = 0, b) y′(L) = 0, c) y(L) = 0.

Condition b) requires

y′(0) = −
∫ L

0

k(ξ)m(ξ) dξ,

whereas a) and c) combined lead to

y(L) = y(0) − L

∫ L

0

kmdξ +
∫ L

0

(L− ξ)kmdξ.

Consequently for Cases III and IV the governing equation is

EIm′′(x) + Pm(x) = 0.

The boundary conditions for Case III are

m(0) = 0 and
∫ L

0

xk(x)m(x) dx = 0.

The boundary conditions for Case IV are handled similarly. Since we must have
y′(0) = y′(L) = 0 and y(0) = y(L) = 0, the conditions are∫ L

0

k(x)m(x) dx = 0 and
∫ L

0

xk(x)m(x) dx = 0.

The results for each case require a nontrivial solution of a homogeneous differ-
ential equation satisfying homogeneous boundary conditions as summarized in the
table below.

Each of these boundary value problems can be transformed to linear algebraic
form by choosing a set of evenly spaced grid points across the span and approximat-
ing y′′(x) by Þnite differences. It follows from Taylor�s series that

y′′(x) =
y(x− h) − 2y(x) + y(x+ h)

h2
+O(h2).

For sufÞciently small h, we neglect the truncation error and write

y′′ =
y−1 − 2y + y+1

h2

where y is the approximation to y at x = x = h for 1 ≤  ≤ n , where the stepsize
h = L/(n+ 1). Thus we have

(EI)[y−1 − 2y + y+1]
h2

+ Py = 0
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Case Differential Boundary
Equation Conditions

I: pinned-pinned EIy ′′(x) + Py(x) = 0 y(0) = 0

y(L) = 0

II: free-Þxed EIy ′′(x) + Py(x) = 0 y(0) = 0

y′(L) = 0

III: pinned-Þxed EIm′′(x) + Pm(x) = 0 m(0) = 0∫ L

0
k(x)m(x) dx = 0

IV: Þxed-Þxed EIm′′(x) + Pm(x) = 0
∫ L

0 k(x)m(x) dx = 0∫ L

0
xk(x)m(x) dx = 0

Buckling Problem Summary

for Cases I or II, and

(EI)[m−1 − 2m +m+1]
h2

+ Pm = 0

for Cases III or IV. At the left end, either y or m is zero in all cases. Case I also
has y(L) = yn+1 = 0. Case II requires y′(L) = 0. This is approximated in Þnite
difference form as

yn+1 =
4yn − yn−1

3
which implies for Case II that

y′′n =
2(yn−1 − yn)

3h2
.

Cases III and IV are slightly more involved than I and II . The condition that

∫ L

0

mx

EI
dx = 0

can be formulated using the trapezoidal rule to give

b1 ∗ [m1, . . . ,mn,mn+1]T = 0,

where the asterisk indicates matrix multiplication involving a row matrix b 1 deÞned
by

b1 = [1, 1, . . . , 1, 1/2] .* [x1, x2, . . . , xn, L] ./ [EI1, . . . , EIn, EIn+1].
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Similarly, the condition ∫ L

0

m

EI
dx = 0

leads to

b2 ∗ [m1, . . . ,mn]T +
1
2

[
m0

EI0
+
mn+1

EIn+1

]
= 0

with

b2 =
[

1
EI1

, . . . ,
1
EIn

]
.

The Þrst of these equations involving b1 allows mn+1 to be eliminated in Case III,
whereas the two equations involving b1 and b2 allow elimination of m0 and mn+1

(the moments at x = 0 and x = L) for Case IV. Hence, in all cases, we are led to an
eigenvalue problem typiÞed as

EI(−m−1 + 2m −m+1) = λm

with λ = h2P , and we understand that the equations for  = 1 and  = nmay require
modiÞcation to account for pertinent boundary conditions. We are led to solve

Am = λm

where the desired buckling loads are associated with the smallest positive eigenvalue
of matrix A. Cases I and II lead directly to the deßection curve forms. However,
Cases III and IV require that the deßection curve be computed from the trapezoidal
rule as

y′(x) = y′(0) +
∫ x

0

m

EI
dx

and

y(x) = y(0) + y′(0) + x

∫ x

0

m

EI
dx−

∫ x

0

mx

EI
dx.

The deßection curves can be normalized to make y max equal unity. This completes
the formulation needed in the buckling analysis for all four cases studied. These
solutions have been implemented in the program described later in this section. An
example, which is solvable exactly, will be discussed next to demonstrate that the
Þnite difference formulation actually produces good results.

10.5.1 Example for a Linearly Tapered Circular Cross Section

Consider a column with circular cross section tapered linearly from diameter h 1

at x = 0 to diameter h2 at x = L. The moment of inertia is given by

I =
πd4

64
,

which leads to

EI = EoIo

(
1 +

sx

L

)4

,
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where

s =
h2 − h1

h1
, Io =

πh4
1

64
and Eo is the elastic modulus which is assumed to have a constant value. The differ-
ential equation governing the moment in all cases (and for y in Case I or II) is(

1 +
sx

L

)4

m′′(x) +
P

EoIo
m(x) = 0.

This equation can be reduced to a simpler form by making a change of variables. Let
us replace x and m(x) by t and g(t) deÞned by

t =
(
1 +

sx

L

)−1

, g(t) = tm(x).

The differential equation for g(t) is found to be

g′′(t) + λ2g(t) = 0 where λ =
L

|s|

√
P

EoIo
.

Therefore,

m(x) =
(
1 +

sx

L

)[
c1 sin

(
λ

1 + sx
L

)
+ c2 cos

(
λ

1 + sx
L

)]

where c1 and c2 are arbitrary constants found by imposing the boundary conditions.
We will determine these constants for Cases I, II, and III. Case IV can be solved
similarly and is left as an exercise for the reader.

To deal with Cases I, II, and III it is convenient to begin with a solution that
vanishes at x = 0. A function satisfying this requirement has the form

m(x) =
(
1 +

sx

L

)
sin

(
λ

1 + sx
L

− λ

)
.

This equation can also represent the deßection curve for Cases I and II or the moment
curve for Case III. Imposition of the remaining boundary conditions leads to an
eigenvalue equation which is used to determine λ and the buckling load P . The
deßection curve for Case I is taken as

y(x) =
(
1 +

sx

L

)
sin

(
λ

1 + sx
L

− λ

)

and the requirement that y(L) = 0 yields

λs

1 + s
=

(
s

1 + s

)(
L

s

√
P

EoIo

)
= π.

This means that the buckling load is

P =
π2EoIo
L2

(1 + s)2 where s =
h2 − h1

h1
.
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Therefore the buckling load for the tapered column (s 
= 0) is simply obtained by
multiplying the buckling load for the constant cross section column (s = 0) by a
factor

(1 + s)2 =
(
h2

h1

)2

.

This is also true for Cases III and IV, but is not true for Case II. Let us derive the
characteristic equation for Case III. The constraint condition for the pinned-Þxed
case requires ∫ L

0

xm(x)
EI

dx = 0.

So we need ∫ L

0

x
(
1 +

sx

L

)−3

sin
(

λ

1 + sx
L

− λ

)
dx = 0.

This equation can be integrated using the substitution (1 + sx/L)−1 = t. This leads
to a characteristic equation of the form

θ = tan θ , θ =
λs

1 + s
=

L

1 + s

√
P

EoIo
.

The smallest positive root of this equation is θ = 4.4934, which yields

P =
20.1906EoIo

L2
(1 + s)2 for Case III.

Further analysis produces

P =
4π2EoIo
L2

(1 + s)2 for Case IV.

The characteristic equation for Case II can be obtained by starting with the Case I
deßection equation and imposing the condition y ′(L) = 0. This leads to

s sin θ + θ cos θ = 0 , θ =
L

1 + s

√
P

EoIo
.

When s = 0, the smallest positive root of this equation is θ = π/2. Therefore, the
buckling load (when s = 0) is

P =
π2EoIo

4L2

for Case II, and the dependence on s found in the other cases does not hold for the
free-Þxed problem.
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10.5.2 Numerical Results

The function colbuc, which uses the above relationships, was written to analyze
variable depth columns using any of the four types of end conditions discussed. The
program allows a piecewise linear variation of EI . The program employs the func-
tion lintrp for interpolation and the function trapsum to perform trapezoidal rule
integration. Comparisons were made with results presented by Beer and Johnston
[9] and a comprehensive handbook on stability [19]. We will present some examples
to show how well the program works. It is known that a column of length L and
constant cross section stiffness EoIo has buckling loads of

π2EoIo
L2

,
π2EoIo
(2L)2

,
π2EoIo

(0.6992L)2
,
π2EoIo
(0.5L)2

for the pinned-pinned, the free-Þxed, the pinned-Þxed, and the Þxed-Þxed end con-
ditions respectively. These cases were veriÞed using the program colbuc. Let us il-
lustrate the capability of the program to approximately handle a discontinuous cross
section change. We analyze a column twenty inches long consisting of a ten inch
section pinned at the outer end and joined to a ten inch long section which is consid-
ered rigid and Þxed at the outer end. We use EoIo = 1 for the ßexible section and
EoIo = 10000 for the rigid section. This conÞguration should behave much like a
pinned-Þxed column of length 100 with a buckling load of (π/6.992) 2 = 0.2019.

Using 100 segments (nseq=100) the program yields a value of 0.1976, which
agrees within 2.2% of the expected value. A graph of the computed deßection con-
Þguration is shown in Figure 10.6. The code necessary to solve this problem is:

ei=[1 0; 1 10; 10000 10; 10000 20];
nseg=100; endc=3; len=20;
[p,y,x]=colbuc(len,ei,nseg,endc)

For a second example we consider a ten inch long column of circular cross section
which is tapered from a one inch diameter at one end to a two inch diameter at the
other end. We employ a Þxed-Þxed end condition and use E o = 1. The theoretical
results for this conÞguration indicate a buckling load of π 3/400 = 0.07752.

Using 100 segments the program produces a value of 0.07728, which agrees
within 0.3% of the exact result. The code to generate this result utilizes function
eilt:

ei=eilt(1,2,10,101,1);
[p,y,x]=colbuc(10,ei,100,4);

The examples presented illustrate the effectiveness of using Þnite difference meth-
ods in conjunction with the intrinsic eigenvalue solver in MATLAB to compute buck-
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Figure 10.6: Analysis of Discontinuous Pinned-Fixed Column

ling loads. Furthermore, the provision for piecewise linear EI variation provided in
the program is adequate to handle various column shapes.

Program Output and Code

Function colbuc

1: function [p,y,x]=colbuc(len,ei,nseg,endc)
2: % [p,y,x]=colbuc(len,ei,nseg,endc)
3: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4: %
5: % This function determines the Euler buckling
6: % load for a slender column of variable cross
7: % section which can have any one of four
8: % constraint conditions at the column ends.
9: %

10: % len - the column length
11: % ei - the product of Young’s modulus and the
12: % cross section moment of inertia. This
13: % quantity is defined as a piecewise
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14: % linear function specified at one or
15: % more points along the length. ei(:,1)
16: % contains ei values at points
17: % corresponding to x values given in
18: % ei(:,2). Values at intermediate points
19: % are computed by linear interpolation
20: % using function lintrp which allows
21: % jump discontinuities in ei.
22: % nseg - the number of segments into which the
23: % column is divided to perform finite
24: % difference calculations.The stepsize h
25: % equals len/nseg.
26: % endc - a parameter specifying the type of end
27: % condition chosen.
28: % endc=1, both ends pinned
29: % endc=2, x=0 free, x=len fixed
30: % endc=3, x=0 pinned, x=len fixed
31: % endc=4, both ends fixed
32: %
33: % p - the Euler buckling load of the column
34: % x,y - vectors describing the shape of the
35: % column in the buckled mode. x varies
36: % between 0 and len. y is normalized to
37: % have a maximum value of one.
38: %
39: % User m functions called: lintrp, trapsum
40:

41: if nargin==0;
42: ei=[1 0; 1 10; 1000 10; 1000 20];
43: nseg=100; endc=3; len=20;
44: end
45:

46: % If the column has constant cross section,
47: % then ei can be given as a single number.
48: % Also, use at least 20 segments to assure
49: % that computed results will be reasonable.
50: if size(ei,1) < 2
51: ei=[ei(1,1),0; ei(1,1),len];
52: end
53: nseg=max(nseg,30);
54:

55: if endc==1
56: % pinned-pinned case (y=0 at x=0 and x=len)
57: str=’Pinned-Pinned Buckling Load = ’;
58: h=len/nseg; n=nseg-1; x=linspace(h,len-h,n);
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59: eiv=lintrp(ei(:,2),ei(:,1),x);
60: a=-diag(ones(n-1,1),1);
61: a=a+a’+diag(2*ones(n,1));
62: [yvecs,pvals]=eig(diag(eiv/h^2)*a);
63: pvals=diag(pvals);
64: % Discard any spurious nonpositive eigenvalues
65: j=find(pvals<=0);
66: if length(j)>0, pvals(j)=[]; yvecs(:,j)=[]; end
67: [p,k]=min(pvals); y=[0;yvecs(:,k);0];
68: [ym,j]=max(abs(y)); y=y/y(j); x=[0;x(:);len];
69: elseif endc==2
70: % free-fixed case (y=0 at x=0 and y’=0 at x=len)
71: str=’Free-Fixed Buckling Load = ’;
72: h=len/nseg; n=nseg-1; x=linspace(h,len-h,n);
73: eiv=lintrp(ei(:,2),ei(:,1),x);
74: a=-diag(ones(n-1,1),1);
75: a=a+a’+diag(2*ones(n,1));
76: % Zero slope at x=len implies
77: % y(n+1)=4/3*y(n)-1/3*y(n-1). This
78: % leads to y’’(n)=(y(n-1)-y(n))*2/(3*h^2).
79: a(n,[n-1,n])=[-2/3,2/3];
80: [yvecs,pvals]=eig(diag(eiv/h^2)*a);
81: pvals=diag(pvals);
82: % Discard any spurious nonpositive eigenvalues
83: j=find(pvals<=0);
84: if length(j)>0, pvals(j)=[]; yvecs(:,j)=[]; end
85: [p,k]=min(pvals); y=yvecs(:,k);
86: y=[0;y;4*y(n)/3-y(n-1)/3]; [ym,j]=max(abs(y));
87: y=y/y(j); x=[0;x(:);len];
88: elseif endc==3
89: % pinned-fixed case
90: % (y=0 at x=0 and x=len, y’=0 at x=len)
91: str=’Pinned-Fixed Buckling Load = ’;
92: h=len/nseg; n=nseg; x=linspace(h,len,n);
93: eiv=lintrp(ei(:,2),ei(:,1),x);
94: a=-diag(ones(n-1,1),1);
95: a=a+a’+diag(2*ones(n,1));
96: % Use a five point backward difference
97: % approximation for the second derivative
98: % at x=len.
99: v=-[35/12,-26/3,19/2,-14/3,11/12];

100: a(n,n:-1:n-4)=v; a=diag(eiv/h^2)*a;
101: % Form the equation requiring zero deflection
102: % at x=len.
103: b=x(:)’.*[ones(1,n-1),1/2]./eiv(:)’;
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104: % Impose the homogeneous boundary condition
105: q=null(b); [z,pvals]=eig(q’*a*q);
106: pvals=diag(pvals);
107: % Discard any spurious nonpositive eigenvalues
108: k=find(pvals<=0);
109: if length(k)>0, pvals(k)=[]; z(:,k)=[]; end;
110: vecs=q*z; [p,k]=min(pvals); mom=[0;vecs(:,k)];
111: % Compute the slope and deflection from
112: % moment values.
113: yp=trapsum(0,len,mom./[1;eiv(:)]);
114: yp=yp-yp(n+1); y=trapsum(0,len,yp);
115: [ym,j]=max(abs(y)); y=y/y(j); x=[0;x(:)];
116: else
117: % fixed-fixed case
118: % (y and y’ both zero at each end)
119: str=’Fixed-Fixed Buckling Load = ’;
120: h=len/nseg; n=nseg+1; x=linspace(0,len,n);
121: eiv=lintrp(ei(:,2),ei(:,1),x);
122: a=-diag(ones(n-1,1),1);
123: a=a+a’+diag(2*ones(n,1));
124: % Use five point forward and backward
125: % difference approximations for the second
126: % derivatives at each end.
127: v=-[35/12,-26/3,19/2,-14/3,11/12];
128: a(1,1:5)=v; a(n,n:-1:n-4)=v;
129: a=diag(eiv/h^2)*a;
130: % Write homogeneous equations to make the
131: % slope and deflection vanish at x=len.
132: b=[1/2,ones(1,n-2),1/2]./eiv(:)’;
133: b=[b;x(:)’.*b];
134: % Impose the homogeneous boundary conditions
135: q=null(b); [z,pvals]=eig(q’*a*q);
136: pvals=diag(pvals);
137: % Discard any spurious nonpositive eigenvalues
138: k=find(pvals<=0);
139: if length(k>0), pvals(k)=[]; z(:,k)=[]; end;
140: vecs=q*z; [p,k]=min(pvals); mom=vecs(:,k);
141: % Compute the moment and slope from moment
142: % values.
143: yp=trapsum(0,len,mom./eiv(:));
144: y=trapsum(0,len,yp);
145: [ym,j]=max(abs(y)); y=y/y(j);
146: end
147:

148: close;
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149: plot(x,y); grid on;
150: xlabel(’axial direction’);
151: ylabel(’transverse deflection’);
152: title([str,num2str(p)]); figure(gcf);
153: print -deps buck
154:

155: %=============================================
156:

157: function v=trapsum(a,b,y,n)
158: %
159: % v=trapsum(a,b,y,n)
160: % ~~~~~~~~~~~~~~~~~~
161: %
162: % This function evaluates:
163: %
164: % integral(a=>x, y(x)*dx) for a<=x<=b
165: %
166: % by the trapezoidal rule (which assumes linear
167: % function variation between succesive function
168: % values).
169: %
170: % a,b - limits of integration
171: % y - integrand which can be a vector valued
172: % function returning a matrix such that
173: % function values vary from row to row.
174: % It can also be input as a matrix with
175: % the row size being the number of
176: % function values and the column size
177: % being the number of components in the
178: % vector function.
179: % n - the number of function values used to
180: % perform the integration. When y is a
181: % matrix then n is computed as the number
182: % of rows in matrix y.
183: %
184: % v - integral value
185: %
186: % User m functions called: none
187: %----------------------------------------------
188:

189: if isstr(y)
190: % y is an externally defined function
191: x=linspace(a,b,n)’; h=x(2)-x(1);
192: Y=feval(y,x); % Function values must vary in
193: % row order rather than column
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194: % order or computed results
195: % will be wrong.
196: m=size(Y,2);
197: else
198: % y is column vector or a matrix
199: Y=y; [n,m]=size(Y); h=(b-a)/(n-1);
200: end
201: v=[zeros(1,m); ...
202: h/2*cumsum(Y(1:n-1,:)+Y(2:n,:))];
203:

204: %=============================================
205:

206: function ei=eilt(h1,h2,L,n,E)
207: %
208: % ei=eilt(h1,h2,L,n,E)
209: % ~~~~~~~~~~~~~~~~~~~~
210: %
211: % This function computes the moment of inertia
212: % along a linearly tapered circular cross
213: % section and then uses that value to produce
214: % the product EI.
215: %
216: % h1,h2 - column diameters at each end
217: % L - column length
218: % n - number of points at which ei is
219: % computed
220: % E - Young’s modulus
221: %
222: % ei - vector of EI values along column
223: %
224: % User m functions called: none
225: %----------------------------------------------
226:

227: if nargin<5, E=1; end;
228: x=linspace(0,L,n)’;
229: ei=E*pi/64*(h1+(h2-h1)/L*x).^4;
230: ei=[ei(:),x(:)];
231:

232: %=============================================
233:

234: % function y=lintrp(xd,yd,x)
235: % See Appendix B
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10.6 Accuracy Comparison for Euler Beam Natural Frequencies
by Finite Element and Finite Difference Methods

Next we consider three different methods of natural frequency computation for
a cantilever beam. Comparisons are made among results from: a) the solution of
the frequency equation for the true continuum model; b) the approximation of the
equations of motion using Þnite differences to replace the spatial derivatives; and c)
the use of Þnite element methods yielding a piecewise cubic spatial interpolation of
the displacement Þeld. The Þrst method is less appealing as a general tool than the
last two methods because the frequency equation is difÞcult to obtain for geometries
of variable cross section. Frequencies found using Þnite difference and Þnite ele-
ment methods are compared with results from the exact model; and it is observed
that the Þnite element method produces results that are superior to those from Þnite
differences for comparable degrees of freedom. In addition, the natural frequencies
and mode shapes given by Þnite elements are used to compute and animate the sys-
tem response produced when a beam, initially at rest, is suddenly subjected to two
concentrated loads.

10.6.1 Mathematical Formulation

The differential equation governing transverse vibrations of an elastic beam of
constant depth is [69]

EI
∂4Y

∂X4
= −ρ∂

2Y

∂T 2
+W (X,T ) 0 ≤ X ≤ �, T ≥ 0

where

Y (X,T ) � transverse displacement,
X � horizontal position along the beam length,
T � time,
EI � product of moment of inertia and Young�s modulus,
ρ � mass per unit length of the beam,

W (X,T ) � external applied force per unit length.

In the present study, we consider the cantilever beam shown in Figure 10.7, having
end conditions which are

Y (0, T ) = 0 ,
∂Y (0, T )
∂X

= 0 , EI
∂2Y (�, T )
∂X2

= ME(T ) , and EI
∂3Y (�, T )
∂X3

= VE(T ).

This problem can be expressed more concisely using dimensionless variables

x =
X

�
, y =

Y

�
and t =

√
EI

ρ

(
T

�2

)
.
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Figure 10.7: Cantilever Beam Subjected to Impact Loading

Then the differential equation becomes

∂4y

∂x4
= −∂

2y

∂t2
+ w(x, t),

and the boundary conditions reduce to

y(0, t) = 0 ,
∂y

∂x
(0, t) = 0 ,

∂2y

∂x2
(1, t) = me(t) and

∂3y

∂x3
(1, t) = ve(t)

where

w = (W�3)/(EI) , me = (ME�)/(EI) and ve = (VE�
2)/(EI).

The natural frequencies of the system are obtained by computing homogeneous so-
lutions of the form y(x, t) = f(x) sin(ωt) which exist when w = me = ve = 0.
This implies

d4f

dx4
= λ4f where λ =

√
ω,

subject to
f(0) = 0 , f ′(0) = 0 , f ′′(1) = 0 , f ′′′(1) = 0.

The solution satisfying this fourth order differential equation with homogeneous
boundary conditions has the form

f = [cos(λx)−cosh(λx)][sin(λ)+sinh(λ)]−[sin(λx)−sinh(λx)][cos(λ)+cosh(λ)],

where λ satisÞes the frequency equation

p(λ) = cos(λ) + 1/ cosh(λ) = 0.

Although the roots cannot be obtained explicitly, asymptotic approximations exist
for large n:

λn = (2k − 1)π/2.
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These estimates can be used as the starting points for Þnding approximate roots of
the frequency equation using Newton�s method:

λNEW = λOLD − p(λOLD)/p′(λOLD).

The exact solution will be used to compare related results produced by Þnite differ-
ence and Þnite element methods. First we consider Þnite differences. The following
difference formulas have a quadratic truncation error derivable from Taylor�s series
[1]:

y′(x) = [−y(x− h) + y(x+ h)]/(2h),
y′′(x) = [y(x− h) − 2y(x) + y(x+ h)]/h2,

y′′′(x) = [−y(x− 2h) + 2y(x− h) − 2y(x+ h) + y(x+ 2h)]/(2h3),
y′′′′(x) = [y(x− 2h) − 4y(x− h) + 6y(x) − 4y(x+ h) + y(x+ 2h)]/h4.

The step-size is h = 1/n so that x = h, 0 ≤  ≤ n, where x0 is at the left end
and xn is at the right end of the beam. It is desirable to include additional Þctitious
points x−1, xn+1 and xn+2. Then the left end conditions imply

y0 = y1 and y−1 = y1,

and the right end conditions imply

yn+1 = −yn−1 + 2yn and yn+2 = yn−2 − 4yn−1 + 4yn.

Using these relations, the algebraic eigenvalue problem derived from the difference
approximation is

7y1 − 4y2 + y3 = λ̃y1,

−4y1 + 6y2 − 4y3 + y4 = λ̃fy2,

y−2 − 4y−1 + 6y − 4y+1 + y+2 = λ̃y , 2 <  < (n− 1),

yn−3 − 4yn−2 + 5yn−1 − 2yn = λ̃yn−1,

2yn−2 − 4yn−1 + 2yn = λ̃yn,

where λ̃ = h4λ.
The Þnite element method leads to a similar problem involving global mass and

stiffness matrices [54]. When we consider a single beam element of mass m and
length �, the elemental mass and stiffness matrices found using a cubically varying
displacement approximation are

Me =
m

420




156 22� 54 −13�
22� 4�2 13� −3�2

54 13� 156 −22�
−13� −3�2 −22� 4�2


 , Ke =

EI

�3




6 3� −6 3�
3� 2�2 −3� �2

−6 −3� 6 −3�
3� �2 −3� 2�2


 ,

and the elemental equation of motion has the form

MeY
′′
e +KeYe = Fe
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where
Ye = [Y1, Y

′
1 , Y2, Y

′
2 ]T and Fe = [F1,M1, F2,M2]T

are generalized elemental displacement and force vectors. The global equation of
motion is obtained as an assembly of element matrices and has the form

MY ′′ +KY = F.

A system with N elements involves N + 1 nodal points. For the cantilever beam
studied here both Y0 and Y

′
0 are zero. So removing these two variables leaves a

system of n = 2N unknowns. The solution of this equation in the case of a non-
resonant harmonic forcing function will be discussed further. The matrix analog of
the simple harmonic equation is

MŸ +KY = F1 cos(ωt) + F2, sin(ωt)

with initial conditions
Y (0) = Y0 and Ẏ (0) = V0.

The solution of this differential equation is the sum of a particular solution and a
homogeneous solution:

Y = YP + YH ,

where
YH = Y1 cos(ωt) + Y2 sin(ωt)

with
Y = (K − ω2M)−1F  = 1, 2.

This assumes thatK−ω2M is nonsingular. The homogeneous equation satisÞes the
initial conditions

YH(0) = Y0 − Y1 , ẎH(0) = V0 − ωY2.

The homogeneous solution components have the form

YH = U cos(ωt+ φ)

where ω and U are natural frequencies and modal vectors satisfying the eigenvalue
equation

KU = ω2
MU.

Consequently, the homogeneous solution completing the modal response is

YH(t) =
n∑

=1

U[cos(ωt)c + sin(ωt)d/ω]

where c and d are computed to satisfy the initial conditions which require

C = U−1(Y0 − Y1) and D = U−1(V0 − ωY2).

The next section presents the MATLAB program. Natural frequencies from Þnite
difference and Þnite element matrices are compared and modal vectors from the
Þnite element method are used to analyze a time response problem.
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10.6.2 Discussion of the Code

A program was written to compare exact frequencies from the original continuous
beam model with approximations produced using Þnite differences and Þnite ele-
ments. The Þnite element results were also employed to calculate a time response by
modal superposition for any structure that has general mass and stiffness matrices,
and is subjected to loads which are constant or harmonically varying.

The code below is fairly long because various MATLAB capabilities are applied
to three different solution methods. The following function summary involves nine
functions, several of which were used earlier in the text.

cbfreq driver to input data, call computation modules, and
print results

cbfrqnwm function to compute exact natural frequencies by New-
ton�s method for root calculation

cbfrqfdm forms equations of motion using Þnite differences and
calls eig to compute natural frequencies

cbfrqfem uses the Þnite element method to form the equation
of motion and calls eig to compute natural frequencies
and modal vectors

frud function which solves the structural dynamics equation
by methods developed in Chapter 7

examplmo evaluates the response caused when a downward load
at the middle and an upward load at the free end are
applied

animate plots successive positions of the beam to animate the
motion

plotsave plots the beam frequencies for the three methods. Also
plots percent errors showing how accurate Þnite ele-
ment and Þnite difference methods are

inputv reads a sequence of numbers

Table 10.2: Functions Used in the Beam Code

Several characteristics of the functions assembled for this program are worth exam-
ining in detail. The next table contains remarks relevant to the code.

Routine Line Operation
Output Natural frequencies are printed along with er-

ror percentages. The output shown here has
been extracted from the actual output to show
only the highest and lowest frequencies.

continued on next page
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continued from previous page
Routine Line Operation
cbfrqnwm 99 Asymptotic estimates are used to start a New-

ton method iteration.
102-108 Root corrections are carried out for all roots

until the correction to any root is sufÞciently
small.

cbfrqfdm 135-136 The equations of motion are formed without
corrections for end conditions.

138-145 End conditions are applied.
149*150 eig computes the frequencies.

cbfrqfem 182-186 Form elemental mass matrix.
189-192 Form elemental stiffness matrix.
198-201 Global equations of motion are formed using

an element by element loop.
205 Boundary conditions are applied requiring

zero displacement and slope at the left end,
and zero moment and shear at the right end.

208-214 Frequencies and modal vectors are computed.
Note that modal vector computation is made
optional since this takes longer than only
computing frequencies.

frud Compute time response by modal superpo-
sition. Theoretical details pertaining to this
function appear in Chapter 7.

examplmo 292-296 The time step and maximum time for re-
sponse calculation is selected.

300-301 Function frud is used to compute displace-
ment and rotation response. Only displace-
ment is saved.

304-307 Free end displacement is plotted.
314-319 A surface showing displacement as a function

of position and time is shown.
324-326 Function animate is called.

animate 364-369 Window limits are determined.
373-381 Each position is plotted. Then it is erased be-

fore proceeding to the next position.
plotsave Plot and save graphs showing the frequencies

and error percentages.

Table 10.3: Description of Code in Example

10.6.3 Numerical Results

The dimensionless frequency estimates from the Þnite difference and the Þnite el-
ement methods were compared for various numbers of degrees-of-freedom. Typical
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Figure 10.8: Cantilever Beam Frequencies

program output for n = 100 is shown at the end of this section. The frequency results
and error percentages are shown in Figures 10.8 and 10.9. It is evident that the Þnite
difference frequencies are consistently low and the Þnite element results are consis-
tently high. The Þnite difference estimates degrade smoothly with increasing order.
The Þnite element frequencies are surprisingly accurate for ω k when k < n/2. At
k = n/2 and k = n, the Þnite element error jumps sharply. This peculiar error jump
halfway through the spectrum has also been observed in [54]. The most important
and useful result seen from Figure 10.9 is that in order to obtain a particular number
of frequencies, say N, which are accurate within 3.5%, it is necessary to employ
more than 2N elements and keep only half of the predicted values.

The Þnal result presented is the time response of a beam which is initially at rest
when a concentrated downward load of Þve units is applied at the middle and a one
unit upward load is applied at the free end. The time history was computed using
function frud. Figure 10.10 shows the time history of the free end. Figure 10.11
is a surface plot illustrating how the deßection pattern changes with time. Finally,
Figure 10.12 shows successive deßection positions produced by function animate.
The output was obtained by suppressing the graph clearing option for successive
conÞgurations.
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Figure 10.12: Beam Animation
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MATLAB Example

Output from Example

>> cbfreq

CANTILEVER BEAM FREQUENCIES BY FINITE DIFFERENCE AND
FINITE ELEMENT APPROXIMATION

Give the number of frequencies to be computed
(use an even number greater than 2)
? > 100

freq. exact. fdif. fd. pct. felt. fe. pct.
number freq. freq. error freq. error

1 3.51602e+00 3.51572e+00 -0.008 3.51602e+00 0.000
2 2.20345e+01 2.20250e+01 -0.043 2.20345e+01 0.000
3 6.16972e+01 6.16414e+01 -0.090 6.16972e+01 0.000
4 1.20902e+02 1.20714e+02 -0.155 1.20902e+02 0.000
5 1.99860e+02 1.99386e+02 -0.237 1.99860e+02 0.000
6 2.98556e+02 2.97558e+02 -0.334 2.98558e+02 0.001
7 4.16991e+02 4.15123e+02 -0.448 4.16999e+02 0.002
8 5.55165e+02 5.51957e+02 -0.578 5.55184e+02 0.003
9 7.13079e+02 7.07918e+02 -0.724 7.13119e+02 0.006

10 8.90732e+02 8.82842e+02 -0.886 8.90809e+02 0.009
11 1.08812e+03 1.07655e+03 -1.064 1.08826e+03 0.013
12 1.30526e+03 1.28884e+03 -1.257 1.30550e+03 0.019
13 1.54213e+03 1.51950e+03 -1.467 1.54252e+03 0.026
14 1.79874e+03 1.76830e+03 -1.692 1.79937e+03 0.035
15 2.07508e+03 2.03497e+03 -1.933 2.07605e+03 0.047
16 2.37117e+03 2.31926e+03 -2.189 2.37261e+03 0.061
17 2.68700e+03 2.62088e+03 -2.461 2.68908e+03 0.077
18 3.02257e+03 2.93951e+03 -2.748 3.02551e+03 0.098
19 3.37787e+03 3.27486e+03 -3.050 3.38197e+03 0.121
20 3.75292e+03 3.62657e+03 -3.367 3.75851e+03 0.149

====== INTERMEDIATE LINES OF OUTPUT DELETED ======

90 7.90580e+04 3.88340e+04 -50.879 1.09328e+05 38.288
91 8.08345e+04 3.90347e+04 -51.710 1.11989e+05 38.541
92 8.26308e+04 3.92169e+04 -52.540 1.14512e+05 38.582
93 8.44468e+04 3.93804e+04 -53.367 1.16860e+05 38.384
94 8.62825e+04 3.95250e+04 -54.191 1.18999e+05 37.917
95 8.81380e+04 3.96507e+04 -55.013 1.20889e+05 37.159
96 9.00133e+04 3.97572e+04 -55.832 1.22496e+05 36.086
97 9.19082e+04 3.98445e+04 -56.648 1.23786e+05 34.684
98 9.38229e+04 3.99125e+04 -57.460 1.24730e+05 32.941
99 9.57574e+04 3.99611e+04 -58.268 1.25305e+05 30.857

100 9.77116e+04 3.99903e+04 -59.073 1.49694e+05 53.200

Evaluate the time response from two
concentrated loads. One downward at the
middle and one upward at the free end.

input the time step and the maximum time
(0.04 and 5.0) are typical. Use 0,0 to stop
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? .04,5

Evaluate the time response resulting from a
concentrated downward load at the middle and
an upward end load.

input the time step and the maximum time
(0.04 and 5.0) are typical. Use 0,0 to stop

? 0,0

Program cbfrq

1: function cbfreq
2: % Example: cbfreq
3: % ~~~~~~~~~~~~~~~~
4: % This program computes approximate natural
5: % frequencies of a uniform depth cantilever
6: % beam using finite difference and finite
7: % element methods. Error results are presented
8: % which demonstrate that the finite element
9: % method is much more accurate than the finite

10: % difference method when the same matrix orders
11: % are used in computation of the eigenvalues.
12: %
13: % User m functions required:
14: % cbfrqnwm, cbfrqfdm, cbfrqfem, frud,
15: % examplmo, beamanim, plotsave, inputv
16:

17: clear, fprintf(’\n\n’)
18: fprintf(’CANTILEVER BEAM FREQUENCIES BY ’)
19: fprintf(’FINITE DIFFERENCE AND’)
20: fprintf(...
21: ’\n FINITE ELEMENT APPROXIMATION\n’)
22:

23: fprintf(’\nGive the number of frequencies ’)
24: fprintf(’to be computed’)
25: fprintf(’\n(use an even number greater ’)
26: fprintf(’than 2)\n’), n=input(’? > ’);
27: if rem(n,2) ~= 0, n=n+1; end
28:

29: % Exact frequencies from solution of
30: % the frequency equation
31: wex = cbfrqnwm(n,1e-12);
32:
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33: % Frequencies for the finite
34: % difference solution
35: wfd = cbfrqfdm(n);
36:

37: % Frequencies, modal vectors, mass matrix,
38: % and stiffness matrix from the finite
39: % element solution.
40: nelts=n/2; [wfe,mv,mm,kk] = cbfrqfem(nelts);
41: pefdm=(wfd-wex)./(.01*wex);
42: pefem=(wfe-wex)./(.01*wex);
43:

44: nlines=17; nloop=round(n/nlines);
45: v=[(1:n)’,wex,wfd,pefdm,wfe,pefem];
46: disp(’ ’), lo=1;
47: t1=[’ freq. exact. fdif.’ ...
48: ’ fd. pct.’];
49: t1=[t1,’ felt. fe. pct.’];
50: t2=[’number freq. freq.’ ...
51: ’ error ’];
52: t2=[t2,’ freq. error ’];
53: while lo < n
54: disp(t1),disp(t2)
55: hi=min(lo+nlines-1,n);
56: for j=lo:hi
57: s1=sprintf(’\n %4.0f %13.5e %13.5e’, ...
58: v(j,1),v(j,2),v(j,3));
59: s2=sprintf(’ %9.3f %13.5e %9.3f’, ...
60: v(j,4),v(j,5),v(j,6));
61: fprintf([s1,s2])
62: end
63: fprintf(’\n\nPress [Enter] to continue\n\n’);
64: pause;
65: lo=lo+nlines;
66: end
67: plotsave(wex,wfd,pefdm,wfe,pefem)
68: nfe=length(wfe); nmidl=nfe/2;
69: if rem(nmidl,2)==0, nmidl=nmidl+1; end
70: x0=zeros(nfe,1); v0=x0; w=0;
71: f1=zeros(nfe,1); f2=f1; f1(nfe-1)=1;
72: f1(nmidl)=-5;
73: xsav=examplmo(mm,kk,f1,f2,x0,v0,wfe,mv);
74: close; fprintf(’All Done\n’)
75:

76: %=============================================
77:
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78: function z=cbfrqnwm(n,tol)
79: %
80: % z=cbfrqnwm(n,tol)
81: % ~~~~~~~~~~~~~~~~~
82: % Cantilever beam frequencies by Newton’s
83: % method. Zeros of
84: % f(z) = cos(z) + 1/cosh(z)
85: % are computed.
86: %
87: % n - Number of frequencies required
88: % tol - Error tolerance for terminating
89: % the iteration
90: % z - Dimensionless frequencies are the
91: % squares of the roots of f(z)=0
92: %
93: % User m functions called: none
94: %----------------------------------------------
95:

96: if nargin ==1, tol=1.e-5; end
97:

98: % Base initial estimates on the asymptotic
99: % form of the frequency equation

100: zbegin=((1:n)-.5)’*pi; zbegin(1)=1.875; big=10;
101:

102: % Start Newton iteration
103: while big > tol
104: t=exp(-zbegin); tt=t.*t;
105: f=cos(zbegin)+2*t./(1+tt);
106: fp=-sin(zbegin)-2*t.*(1-tt)./(1+tt).^2;
107: delz=-f./fp;
108: z=zbegin+delz; big=max(abs(delz)); zbegin=z;
109: end
110: z=z.*z;
111:

112: %=============================================
113:

114: function [wfindif,mat]=cbfrqfdm(n)
115: %
116: % [wfindif,mat]=cbfrqfdm(n)
117: % ~~~~~~~~~~~~~~~~~~~~~~~~~
118: % This function computes approximate cantilever
119: % beam frequencies by the finite difference
120: % method. The truncation error for the
121: % differential equation and boundary
122: % conditions are of order h^2.
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123: %
124: % n - Number of frequencies to be
125: % computed
126: % wfindif - Approximate frequencies in
127: % dimensionless form
128: % mat - Matrix having eigenvalues which
129: % are the square roots of the
130: % frequencies
131: %
132: % User m functions called: none
133: %----------------------------------------------
134:

135: % Form the primary part of the frequency matrix
136: mat=3*diag(ones(n,1))-4*diag(ones(n-1,1),1)+...
137: diag(ones(n-2,1),2); mat=(mat+mat’);
138:

139: % Impose left end boundary conditions
140: % y(0)=0 and y’(0)=0
141: mat(1,[1:3])=[7,-4,1]; mat(2,[1:4])=[-4,6,-4,1];
142:

143: % Impose right end boundary conditions
144: % y’’(1)=0 and y’’’(1)=0
145: mat(n-1,[n-3:n])=[1,-4,5,-2];
146: mat(n,[n-2:n])=[2,-4,2];
147:

148: % Compute approximate frequencies and
149: % sort these values
150: w=eig(mat); w=sort(w); h=1/n;
151: wfindif=sqrt(w)/(h*h);
152:

153: %=============================================
154:

155: function [wfem,modvecs,mm,kk]= ...
156: cbfrqfem(nelts,mas,len,ei)
157: %
158: % [wfem,modvecs,mm,kk]=
159: % cbfrqfem(nelts,mas,len,ei)
160: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161: % Determination of natural frequencies of a
162: % uniform depth cantilever beam by the Finite
163: % Element Method.
164: %
165: % nelts - number of elements in the beam
166: % mas - total beam mass
167: % len - total beam length

© 2003 by CRC Press LLC



168: % ei - elastic modulus times moment
169: % of inertia
170: % wfem - dimensionless circular frequencies
171: % modvecs - modal vector matrix
172: % mm,kk - reduced mass and stiffness
173: % matrices
174: %
175: % User m functions called: none
176: %----------------------------------------------
177:

178: if nargin==1, mas=1; len=1; ei=1; end
179: n=nelts; le=len/n; me=mas/n;
180: c1=6/le^2; c2=3/le; c3=2*ei/le;
181:

182: % element mass matrix
183: masselt=me/420* ...
184: [ 156, 22*le, 54, -13*le
185: 22*le, 4*le^2, 13*le, -3*le^2
186: 54, 13*le, 156, -22*le
187: -13*le, -3*le^2, -22*le, 4*le^2];
188:

189: % element stiffness matrix
190: stifelt=c3*[ c1, c2, -c1, c2
191: c2, 2, -c2, 1
192: -c1, -c2, c1, -c2
193: c2, 1, -c2, 2];
194:

195: ndof=2*(n+1); jj=0:3;
196: mm=zeros(ndof); kk=zeros(ndof);
197:

198: % Assemble equations
199: for i=1:n
200: j=2*i-1+jj; mm(j,j)=mm(j,j)+masselt;
201: kk(j,j)=kk(j,j)+stifelt;
202: end
203:

204: % Remove degrees of freedom for zero
205: % deflection and zero slope at the left end.
206: mm=mm(3:ndof,3:ndof); kk=kk(3:ndof,3:ndof);
207:

208: % Compute frequencies
209: if nargout ==1
210: wfem=sqrt(sort(real(eig(mm\kk))));
211: else
212: [modvecs,wfem]=eig(mm\kk);
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213: [wfem,id]=sort(diag(wfem));
214: wfem=sqrt(wfem); modvecs=modvecs(:,id);
215: end
216:

217: %=============================================
218:

219: function [t,x]= ...
220: frud(m,k,f1,f2,w,x0,v0,wn,modvc,h,tmax)
221: %
222: % [t,x]=frud(m,k,f1,f2,w,x0,v0,wn,modvc,h,tmax)
223: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
224: % This function employs modal superposition
225: % to solve
226: %
227: % m*x’’ + k*x = f1*cos(w*t) + f2*sin(w*t)
228: %
229: % m,k - mass and stiffness matrices
230: % f1,f2 - amplitude vectors for the forcing
231: % function
232: % w - forcing frequency not matching any
233: % natural frequency component in wn
234: % wn - vector of natural frequency values
235: % x0,v0 - initial displacement and velocity
236: % vectors
237: % modvc - matrix with modal vectors as its
238: % columns
239: % h,tmax - time step and maximum time for
240: % evaluation of the solution
241: % t - column of times at which the
242: % solution is computed
243: % x - solution matrix in which row j
244: % is the solution vector at
245: % time t(j)
246: %
247: % User m functions called: none
248: %----------------------------------------------
249:

250: t=0:h:tmax; nt=length(t); nx=length(x0);
251: wn=wn(:); wnt=wn*t;
252:

253: % Evaluate the particular solution.
254: x12=(k-(w*w)*m)\[f1,f2];
255: x1=x12(:,1); x2=x12(:,2);
256: xp=x1*cos(w*t)+x2*sin(w*t);
257:
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258: % Evaluate the homogeneous solution.
259: cof=modvc\[x0-x1,v0-w*x2];
260: c1=cof(:,1)’; c2=(cof(:,2)./wn)’;
261: xh=(modvc.*c1(ones(1,nx),:))*cos(wnt)+...
262: (modvc.*c2(ones(1,nx),:))*sin(wnt);
263:

264: % Combine the particular and
265: % homogeneous solutions.
266: t=t(:); x=(xp+xh)’;
267:

268: %=============================================
269:

270: function x=examplmo(mm,kk,f1,f2,x0,v0,wfe,mv)
271: %
272: % x=examplmo(mm,kk,f1,f2,x0,v0,wfe,mv)
273: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
274: % Evaluate the response caused when a downward
275: % load at the middle and an upward load at the
276: % free end is applied.
277: %
278: % mm, kk - mass and stiffness matrices
279: % f1, f2 - forcing function magnitudes
280: % x0, v0 - initial position and velocity
281: % wfe - forcing function frequency
282: % mv - matrix of modal vectors
283: %
284: % User m functions called: frud, beamanim, inputv
285: %----------------------------------------------
286:

287: w=0; n=length(x0); t0=0; x=[];
288: s1=[’\nEvaluate the time response from two’,...
289: ’\nconcentrated loads. One downward at the’,...
290: ’\nmiddle and one upward at the free end.’];
291: while 1
292: fprintf(s1), fprintf(’\n\n’)
293: fprintf(’Input the time step and ’)
294: fprintf(’the maximum time ’)
295: fprintf(’\n(0.04 and 5.0) are typical.’)
296: fprintf(’ Use 0,0 to stop\n’)
297: [h,tmax]=inputv;
298: if norm([h,tmax])==0 | isnan(h), return, end
299: disp(’ ’)
300:

301: [t,x]= ...
302: frud(mm,kk,f1,f2,w,x0,v0,wfe,mv,h,tmax);
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303: x=x(:,1:2:n-1); x=[zeros(length(t),1),x];
304: [nt,nc]=size(x); hdist=linspace(0,1,nc);
305:

306: clf, plot(t,x(:,nc),’k-’)
307: title(’Position of the Free End of the Beam’)
308: xlabel(’dimensionless time’)
309: ylabel(’end deflection’), figure(gcf)
310: disp(’Press [Enter] for a surface plot of’)
311: disp(’transverse deflection versus x and t’)
312: pause
313: print -deps endpos1
314: xc=linspace(0,1,nc); zmax=1.2*max(abs(x(:)));
315:

316: clf, surf(xc,t,x), view(30,35)
317: colormap([1 1 1])
318: axis([0,1,0,tmax,-zmax,zmax])
319: xlabel(’x axis’); ylabel(’time’)
320: zlabel(’deflection’)
321: title([’Cantilever Beam Deflection ’ ...
322: ’for Varying Position and Time’])
323: figure(gcf);
324: print -deps endpos2
325: disp(’ ’), disp([’Press [Enter] to animate’,...
326: ’ the beam motion’])
327: pause
328:

329: titl=’Cantilever Beam Animation’;
330: xlab=’x axis’; ylab=’displacement’;
331: beamanim(hdist,x,0.1,titl,xlab,ylab), close
332: end
333:

334: %=============================================
335:

336: % function beamanim(x,u,tpause,titl,xlabl,ylabl)
337: % See Appendix B
338:

339: %=============================================
340:

341: function plotsave(wex,wfd,pefd,wfe,pefem)
342: %
343: % function plotsave(wex,wfd,pefd,wfe,pefem)
344: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
345: % This function plots errors in frequencies
346: % computed by two approximate methods.
347: %
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348: % wex - exact frequencies
349: % wfd - finite difference frequencies
350: % wfe - finite element frequencies
351: % pefd,pefem - percent errors by both methods
352: %
353: % User m functions called: none
354: %----------------------------------------------
355:

356: % plot results comparing accuracy
357: % of both frequency methods
358: w=[wex(:);wfd(:);wfd];
359: wmin=min(w); wmax=max(w);
360: n=length(wex); wht=wmin+.001*(wmax-wmin);
361: j=1:n;
362:

363: semilogy(j,wex,’k-’,j,wfe,’k--’,j,wfd,’k:’)
364: title(’Cantilever Beam Frequencies’)
365: xlabel(’frequency number’)
366: ylabel(’frequency values’)
367: legend(’Exact freq.’,’Felt. freq.’, ...
368: ’Fdif. freq.’,2); figure(gcf)
369: disp([’Press [Enter] for a frequency ’,...
370: ’error plot’]), pause
371: print -deps beamfrq1
372:

373: plot(j,abs(pefd),’k--’,j,abs(pefem),’k-’)
374: title([’Cantilever Beam Frequency ’ ...
375: ’Error Percentages’])
376: xlabel(’frequency number’)
377: ylabel(’percent frequency error’)
378: legend(’Fdif. pct. error’,’Felt. pct. error’,4)
379: figure(gcf)
380: disp([’Press [Enter] for a transient ’,...
381: ’response calculation’])
382: pause
383: print -deps beamfrq2
384:

385: %=============================================
386:

387: % function varargout=inputv(prompt)
388: % See Appendix B
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10.7 Vibration Modes of an Elliptic Membrane

10.7.1 Analytical Formulation

Examples using eigenvalues and modal functions of rectangular or circular mem-
branes were presented in chapter 9. In this section we analyze modal vibrations of
an elliptic membrane. In this case the natural frequencies and modal functions can-
not be obtained easily in explicit form. The problem can be formulated in elliptical
coordinates leading to Mathieu type differential equations [74]. Library routines to
compute these functions are not widely available; so, a different approach is em-
ployed using least squares approximation and the MATLAB function eig. Consider
a membrane with major and minor semi-diameters a and b. The analytic function
z = h cosh(ς) where h =

√
a2 − b2 and ζ = ξ + i η maps the rectangle deÞned by

0 ≤ ξ ≤ R = tanh−1(b/a), −π ≤ η ≤ π onto the interior of the ellipse. This
transformation takes lines of constant ξ into a system of confocal ellipses and lines
of constant η into hyperbolas intersecting the ellipses orthogonally. The following
function was used to produce the elliptic coordinate plot in Figure 10.13.

function z = elipmap(a,b,neta,nxi)
h=sqrt(a�2-b�2); R=atanh(b/a);
[xi,eta]=meshgrid(...
linspace(0,R,nxi),linspace(-pi,pi,neta));
z=h*cosh(xi+i*eta); x=real(z); y=imag(z);
plot(x,y,�k�,x�,y�,�k�)
title(�ELLIPTICAL COORDINATE SYSTEM�)
xlabel(�x axis�), ylabel(�y axis�)
axis equal, grid off, shg

Transforming the wave equation to (ξ, η) coordinates gives

Uξξ + Uηη =
h2

2
[cosh(2ξ) − cos(2η)]Utt,

and assuming separable solutions of the form

U = f(η)g(ξ) sin(Ω t)

leads to

f ′′(η)
f(η)

+
g′′(ξ)
g(ξ)

= −λ [cosh(2ξ) − cos(2η)],

where λ = Ω2h2/2. So f and g are found to satisfy the following two Mathieu type
differential equations:

f ′′(η) + [α− λ cos(2η)]f(η) = 0, −π ≤ η ≤ π
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Figure 10.13: Elliptic Coordinate Grid

and

g′′(ξ) − [α− λ cosh(2ξ)]g(ξ) = 0, 0 ≤ ξ ≤ R

where the eigenvalue parameters α and λ are determined to make f(η) have period
2π and make g(ξ) vanish at ξ = R. The modal functions can be written in terms of
Mathieu functions as products of the form

ce(η, q)Ce(ξ, q)

for modes symmetric about the x-axis and

se(η, q)Se(ξ, q)

for modes anti-symmetric about the x-axis. The functions ce and se are periodic
Mathieu functions pertaining to the circumferential direction, while Ce and Se are
modiÞed Mathieu functions pertaining to the radial direction. The structure of these
functions motivates using the following series approximation for the functions for
even modes:

f(η) =
N∑

k=1

cos(η(k − 1)) ak, g(ξ) =
M∑
l=1

cos(
πξ

R
(l − 1/2)) bl.
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The analogous approximations for the modes anti-symmetric about the x-axis are:

f(η) =
N∑

k=1

sin(ηk) ak, g(ξ) =
M∑
l=1

sin(
πξ

R
l) bl.

Thus the expressions for both cases take the form:

f(η) =
N∑

k=1

fk(η) ak and g(ξ) =
M∑
l=1

gl(ξ) bl.

Let us choose a set of collocation points ηi, i = 1, . . . , n, and ξj , j = 1, . . . ,m.
Then substituting the series approximation for f(η) into the differential equation
gives the following over-determined system of equations:

N∑
k=1

f
′′
k (ηi)ak + α

N∑
k=1

fk(ni)ak − λ cos(2ηi)
N∑

k=1

fk(ηi)ak = 0, i = 1, . . . , n.

Denote F as the matrix having fk(ηi) as the element in row i and column k. Then
multiplying the last equation on the left by the generalized inverse ofF gives a matrix
equation of the form

C A+ αA− λDA = 0,

where A is a column matrix consisting of the coefÞcients ak. A similar equation
results when the series for g(ξ) is substituted into the differential equation for the
radial direction. It reduces to

E B − αB + λGB = 0.

The parameter α can be eliminated from the last two equations to yield a single
eigenvalue equation

W E ′ + C W = λ (−W G ′ +DW )

where W = AB ′, and the tic mark indicates matrix transposition. By addressing
the two-dimensional array W in terms of a single index, the eigenvalues λ and the
modal multipliers deÞned by W can be computed using the function eig. Then the
values of the other eigenvalue parameter α can also be obtained using the known
λ, W combinations. The mathematical developments just given are implemented
below in a program which animates the various natural frequency vibration modes
for an elliptic membrane.

10.7.2 Computer Formulation

The program elipfreq was written to compute frequencies and mode shapes for
an elliptic membrane. The primary data input includes the ellipse semi-diameters, a
ßag indicating whether even modes, odd modes, or both are desired, the number of
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least squares points used, and the number of terms used in the approximation series.
Natural frequencies and data needed to produce modal surfaces are returned. The
program also animates the various mode shapes arranged in the order of increasing
frequency. The modules employed are described in the following table.

elipfreq reads data, calls other computational mod-
ules, and outputs modal plots

frqsimpl forms the matrix approximations of the Math-
ieu equations and calls eigenrec to generate
frequencies and mode shapes

eigenrec solves the rectangular eigenvalue problem
plotmode generates animated plots of the modal func-

tions
modeshap computes modal function shapes using the

approximating function series
funcxi approximating series functions in the xi vari-

able
funceta approximating series functions in the eta vari-

able

The accuracy of the formulation developed above was assessed by 1) comparison
with circular membrane frequencies known in terms of Bessel function roots and
2) results obtained from the commercial PDE toolbox from MathWorks employing
triangular Þnite element analysis. The elliptic coordinate formulation is singular for
a circular shape, but a nearly circular shape with a = 1 and b = 0.9999 causes no
numerical difÞculty. Figure 10.14 shows how well frequencies from elipfreq with
nlsq=[200,200] and nfuns=[30,30] compare with the roots of J n(r). The Þrst Þfty
frequencies were accurate to within 0.8 percent and the Þrst one hundred frequencies
were accurate to within 5 percent. The function pdetool from the PDE toolbox was
also used to compute circular membrane frequencies with a quarter circular shape
and 2233 node points. The Þrst two hundred even mode frequencies from this model
were accurate to within 1 percent for the Þrst one hundred frequencies and to within 7
percent for the Þrst 200 frequencies. Since the function pdetool would probably give
comparable accuracy for an elliptic membrane, results from elipfreq were compared
with those from pdetool using an ellipse with a = 1 and b = 0.5. The percent
difference between the frequencies from the two methods appears in Figure 10.15.
This comparison suggests that the Þrst Þfty frequencies produced by elipfreq for the
elliptic membrane are probably accurate to within about 2 percent.

The various modal surfaces of an elliptic membrane have interesting shapes. The
program elipfreq allows a sequence of modes to be exhibited by selecting vectors of
frequency numbers such as 1:10 or 10:2:20. Two typical shapes are shown in Figures
10.16 and 10.17. The particular modes shown have no special signiÞcance besides
their esthetic appeal. A listing of some interactive computer output and the source
code for elipfreq follows.
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Interactive Input-Output for Program elipfreq

>> elipfreq;

VIBRATION MODE SHAPES AND FREQUENCIES
OF AN ELLIPTIC MEMBRANE

Input the major and minor semi-diameters > ? 1,.5

Select the modal form option
1<=>even, 2<=>odd, 3<=>both > ? 1

The computation takes awhile. Please wait.

Computation time = 44.1 seconds.
Number of modes = 312
Highest frequency = 116.979

Press return to see modal plots.

Give a vector of mode indices (try 10:2:20)
enter 0 to stop > ? 1

Give a vector of mode indices (try 10:2:20)
enter 0 to stop > ? 2:6

Give a vector of mode indices (try 10:2:20)
enter 0 to stop > ? [20 25 30]

Give a vector of mode indices (try 10:2:20)
enter 0 to stop > ? 0
>>

Elliptic Membrane Program

1: function [frqs,modes,indx,x,y,alpha,cptim]=elipfreq(...
2: a,b,type,nlsq,nfuns,noplot)
3: % [frqs,modes,indx,x,y,alpha,cptim]=elipfreq(...
4: % a,b,type,nlsq,nfuns,noplot)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: % This function computes natural frequencies and mode
7: % shapes for an elliptical membrane. Modes that are
8: % symmetrical or anti-symmetrical about the x axis are
9: % included. An approximate solution is obtained using
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10: % a separation of variables formulation in elliptical
11: % coordinates.
12: %
13: % a,b - the ellipse major and minor semi-
14: % diameters along the x and y axes
15: % nlsq - two-component vector giving the number
16: % of least square points in the eta and
17: % xi directions
18: % nfuns - two-component vector giving the number of
19: % functions used to solve the differential
20: % equations for the eta and xi directions.
21: % type - use 1 for even modes symmetric about the
22: % x-axis. Use 2 for odd modes anti-
23: % symmetric about the x-axis. Use 3 to
24: % combine both even and odd modes.
25: %
26: % frqs - a vector of natural frequencies
27: % arranged in increasing order.
28: % modes - a three dimensional array in which
29: % modes(:,:,j) defines the modal
30: % deflection surface for frequency
31: % frqs(j).
32: % indx - a vector telling whether each
33: % mode is even (1) or odd (2)
34: % x,y - curvilinear coordinate arrays of
35: % points in the membrane where modal
36: % function values are computed.
37: % alpha - a vector of eigenvalue parameters in
38: % the Mathieu equation: u’’(eta)+...
39: % (alpha-lambda*cos(2*eta))*u(eta)=0
40: % where lambda=(h*freq)^2/2 and
41: % h=atanh(b/a)
42: % cptim - the cpu time in seconds used to
43: % form the equations and solve for
44: % eigenvalues and eigenvectors
45: % noplot - enter any value to skip mode plots
46: %
47: % User m functions called:
48: % frqsimpl eigenrec plotmode
49: % modeshap funcxi funceta
50:

51: if nargin==0
52: disp(’ ’)
53: disp(’VIBRATION MODE SHAPES AND FREQUENCIES’)
54: disp(’ OF AN ELLIPTIC MEMBRANE ’)

© 2003 by CRC Press LLC



55: disp(’ ’)
56:

57: nlsq=[300,300]; nfuns=[25,25];
58:

59: v=input([’Input the major and minor ’,...
60: ’semi-diameters > ? ’],’s’);
61: v=eval([’[’,v,’]’]); a=v(1); b=v(2); disp(’ ’)
62: disp(’Select the modal form option’)
63: type=input(...
64: ’1<=>even, 2<=>odd, 3<=>both > ? ’);
65: disp(’ ’)
66: disp([’The computation takes awhile.’,...
67: ’ PLEASE WAIT.’])
68: end
69:

70: if type ==1 | type==2 % Even or odd modes
71: [frqs,modes,x,y,alpha,cptim]=frqsimpl(...
72: a,b,type,nlsq,nfuns);
73: indx=ones(length(frqs),1)*type;
74: else % Both modes
75: [frqs,modes,x,y,alpha,cptim]=frqsimpl(...
76: a,b,1,nlsq,nfuns);
77: indx=ones(length(frqs),1);
78: [frqso,modeso,x,y,alphao,cpto]=frqsimpl(...
79: a,b,2,nlsq,nfuns);
80: frqs=[frqs;frqso]; alpha=[alpha;alphao];
81: modes=cat(3,modes,modeso);
82: indx=[indx;2*ones(length(frqso),1)];
83: [frqs,k]=sort(frqs); modes=modes(:,:,k);
84: indx=indx(k); cptim=cptim+cpto;
85: end
86:

87: if nargin==6, return, end
88:

89: % Plot a sequence of modal functions
90: neig=length(frqs);
91: disp(’ ’), disp([’Computation time = ’,...
92: num2str(sum(cptim)),’ seconds.’])
93: disp([’Number of modes = ’,num2str(neig)]);
94: disp([’Highest frequency = ’,...
95: num2str(frqs(end))]), disp(’ ’)
96: disp(’Press return to see modal plots.’)
97: pause, plotmode(a,b,x,y,frqs,modes,indx)
98:

99: %==============================================
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100:

101: function [frqs,Modes,x,y,alpha,cptim]=frqsimpl(...
102: a,b,type,nlsq,nfuns)
103: % [frqs,Modes,x,y,alpha,cptim]=frqsimpl(...
104: % a,b,type,nlsq,nfuns)
105: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
106:

107: % a,b - ellipse major and minor semi-diameters
108: % type - numerical values of one or two for modes
109: % symmetric or anti-symmetric about the x axis
110: % nlsq - vector [neta,nxi] giving the number of least
111: % square points used for the eta and xi
112: % directions
113: % nfuns - vector [meta,mxi] giving the number of
114: % approximating functions used for the eta and
115: % xi directions
116: % frqs - natural frequencies arranged in increasing
117: % order
118: % Modes - modal surface shapes in the ellipse
119: % x,y - coordinate points in the ellipse
120: % alpha - vector of values for the eigenvalues in the
121: % Mathieu differential equation:
122: % u’’(eta)+(alpha-lambda*cos(2*eta))*u(eta)=0
123: % cptim - vector of computation times
124: %
125: % User m functions called: funceta funcxi
126: % eigenrec modeshap
127: if nargin==0
128: a=cosh(2); b=sinh(2); type=1;
129: nlsq=[200,200]; nfuns=[30,30];
130: end
131: h=sqrt(a^2-b^2); R=atanh(b/a); neta=nlsq(1); alpha=[];
132: nxi=nlsq(2); meta=nfuns(1); mxi=nfuns(2);
133: eta=linspace(0,pi,neta)’; xi=linspace(0,R,nxi)’;
134: [Xi,Eta]=meshgrid(xi,eta); z=h*cosh(Xi+i*Eta);
135: x=real(z); y=imag(z); cptim=zeros(1,3);
136:

137: % Form the Mathieu equation for the circumferential
138: % direction as: A*E+alpha*E-lambda*B*E=0
139: tic; [Veta,A]=funceta(meta,type,eta);
140: A=Veta\[A,repmat(cos(2*eta),1,meta).*Veta];
141: B=A(:,meta+1:end); A=A(:,1:meta);
142:

143: % Form the modified Mathieu equation for the radial
144: % direction as: P*F-alpha*F+lambda*Q*F=0
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145: [Vxi,P]=funcxi(a,b,mxi,type,xi);
146: P=Vxi\[P,repmat(cosh(2*xi),1,mxi).*Vxi];
147: Q=P(:,mxi+1:end); P=P(:,1:mxi);
148: cptim(1)=toc; tic
149:

150: % Solve the eigenvalue problem. This takes most
151: % of the computation time
152: [frqs,modes]=eigenrec(P’,A,-Q’,B);
153: % Keep only half of the modes and frequencies
154: nmax=fix(length(frqs)/2); frqs=frqs(1:nmax);
155: modes=modes(:,:,1:nmax); cptim(2)=toc;
156:

157: % Compute values of the second eigenvalue
158: % parameter in Mathieu’s equation
159: alpha=zeros(1,nmax); tic;
160: s=size(modes); s=s(1:2); Vxi=Vxi’;
161:

162: % Obtain the modal surface shapes
163: Neta=91; Nxi=25; Modes=zeros(Neta,Nxi,nmax);
164: for k=1:nmax
165: Mk=modes(:,:,k); [dmk,K]=max(abs(Mk(:)));
166: [I,J]=ind2sub(s,K); Ej=Mk(:,J);
167: alpha(k)=(B(I,:)*Ej*frqs(k)-A(I,:)*Ej)/Mk(K);
168: [Modes(:,:,k),x,y]=modeshap(a,b,type,Mk,Nxi,Neta);
169: end
170: frqs=sqrt(2*frqs)/h; cptim(3)=toc;
171:

172: %==============================================
173:

174: function [eigs,vecs,Amat,Bmat]=eigenrec(A,B,C,D)
175: % [eigs,vecs,Amat,Bmat]=eigenrec(A,B,C,D)
176: % Solve a rectangular eigenvalue problem of the
177: % form: X*A+B*X=lambda*(X*C+D*X)
178: %
179: % A,B,C,D - square matrices defining the problem.
180: % A and C have the same size. B and D
181: % have the same size.
182: % eigs - vector of eigenvalues
183: % vecs - array of eigenvectors where vecs(:,:,j)
184: % contains the rectangular eigenvector
185: % for eigenvalue eigs(j)
186: % Amat,
187: % Bmat - matrices that express the eigenvalue
188: % problem as Amat*V=lambda*Bmat*V
189: %
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190: n=size(B,1); m=size(A,2); s=[n,m]; N=n*m;
191: Amat=zeros(N,N); Bmat=Amat; kn=1:n; km=1:m;
192: for i=1:n
193: IK=sub2ind(s,i*ones(1,m),km);
194: Bikn=B(i,kn); Dikn=D(i,kn);
195: for j=1:m
196: I=sub2ind(s,i,j);
197: Amat(I,IK)=A(km,j)’; Bmat(I,IK)=C(km,j)’;
198: KJ=sub2ind(s,kn,j*ones(1,n));
199: Amat(I,KJ)=Amat(I,KJ)+ Bikn;
200: Bmat(I,KJ)=Bmat(I,KJ)+ Dikn;
201: end
202: end
203: [vecs,eigs]=eig(Bmat\Amat);
204: [eigs,k]=sort(diag(eigs));
205: vecs=reshape(vecs(:,k),n,m,N);
206:

207: %===========================================
208:

209: function plotmode(a,b,x,y,eigs,modes,indx)
210: %
211: % plotdmode(a,b,x,y,eigs,modes,indx)
212: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
213: % This function makes animated plots of the
214: % mode shapes of an elliptic membrane for
215: % various frequencies
216: % a,b - major and minor semi-diameters
217: % x,y - arrays of points defining the
218: % curvilinear coordinate grid
219: % eigs - vector of sorted frequencies
220: % modes - array of modal surfaces for
221: % the corresponding frequencies
222: % indx - vector of indices designating
223: % each mode as even (1) or odd (2)
224:

225: range=[-a,a,-b,b,-a,a];
226: nf=25; ft=cos(linspace(0,4*pi,nf));
227: boa=[’, B/A = ’,num2str(b/a,4)];
228: while 1
229: jlim=[];
230: while isempty(jlim), disp(’ ’)
231: disp([’Give a vector of mode ’,...
232: ’indices (try 10:2:20) > ? ’]);
233: jlim=input(’(input 0 to stop > ? ’);
234: end
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235: if any(jlim==0)
236: disp(’ ’), disp(’All done’), break, end
237: for j=jlim
238: if indx(j)==1, type=’EVEN’; f=1;
239: else, type =’ODD ’; f=-1; end
240: u=a/2*modes(:,:,j);
241:

242: for kk=1:nf
243: surf(x,y,ft(kk)*u)
244: axis equal, axis(range)
245: xlabel(’x axis’), ylabel(’y axis’)
246: zlabel(’u(x,y)’)
247: title([type,’ MODE ’,num2str(j),...
248: ’, OMEGA = ’,num2str(eigs(j),4),boa])
249: %colormap([127/255 1 212/255])
250: colormap([1 1 0])
251: drawnow, shg
252: end
253: pause(1);
254: end
255: end
256:

257: %==================================================
258:

259: function [u,x,y]=modeshap(...
260: a,b,type,modemat,nxi,neta,H)
261: %
262: % [u,x,y]=modeshap(a,b,type,modemat,nxi,neta,H)
263: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
264: % This function uses the eigenvectors produced by
265: % the rectangular eigenvalue solver to form modal
266: % surface shapes in cartesian coordinates.
267: % a,b - major and minor semi-diameters
268: % type - 1 for even, 2 for odd
269: % modemat - eigenvector matrix output by eigenrec
270: % nxi,neta - number of radial and circumferential
271: % coordinate values
272: % H - maximum height of the modal surfaces.
273: % The default value is one.
274: % u,x,y - modal surface array and corresponding
275: % cartesian coordinate matrices. u(:,:j)
276: % gives the modal surface for the j’th
277: % natural frequency.
278:

279: if nargin<7, H=1; end
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280: if nargin<6, neta=81; end; if nargin<5, nxi=22; end
281: h=sqrt(a^2-b^2); r=atanh(b/a); x=[]; y=[];
282: xi=linspace(0,r,nxi); eta=linspace(-pi,pi,neta);
283: if nargout>1
284: [Xi,Eta]=meshgrid(xi,eta); z=h*cosh(Xi+i*Eta);
285: x=real(z); y=imag(z);
286: end
287: [Neta,Nxi]=size(modemat);
288: mateta=funceta(Neta,type,eta);
289: matxi=funcxi(a,b,Nxi,type,xi);
290: u=mateta*modemat*matxi’; [umax,k]=max(abs(u(:)));
291: u=H/u(k)*u;
292:

293: %==================================================
294:

295: function [f,f2]=funcxi(a,b,n,type,xi)
296: %
297: % [f,f2]=funcxi(a,b,n,type,xi)
298: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
299: % This function defines the approximating functions
300: % for the radial direction
301: % a,b - ellipse major and minor half-diameters
302: % n - number of series terms used
303: % type - 1 for even valued, 2 for odd valued
304: % xi - vector of radial coordinate values
305: % f,f2 - matrix of function and second derivative
306: % values
307:

308: xi=xi(:); nxi=length(xi); R=atanh(b/a);
309: if type==1, N=pi/R*(1/2:n); f=cos(xi*N);
310: else, N=pi/R*(1:n); f=sin(xi*N); end
311: f2=-repmat(N.^2,nxi,1).*f;
312:

313: %==================================================
314:

315: function [f,f2]=funceta(n,type,eta)
316: %
317: % [f,f2]=funceta(n,type,eta)
318: % ~~~~~~~~~~~~~~~~~~~~~~~~~
319: % This function defines the approximating functions
320: % for the circumferential direction
321: % n - number of series terms used
322: % type - 1 for even valued, 2 for odd valued
323: % xi - vector of circumferential coordinate values
324: % f,f2 - matrix of function and second derivative
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325: % values
326:

327: eta=eta(:); neta=length(eta);
328: if type==1, N=0:n-1; f=cos(eta*N);
329: else, N=1:n; f=sin(eta*N); end
330: f2=-repmat(N.^2,neta,1).*f;
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Chapter 11

Bending Analysis of Beams of General Cross
Section

11.1 Introduction

Elastic beams are important components in many types of structures. Conse-
quently methods to analyze the shear, moment, slope, and deßection in beams with
complex loading and general cross section variation are of signiÞcant interest. A
typical beam of the type considered is shown in Figure 11.1. The study of Euler
beam theory is generally regarded as an elementary topic dealt with in undergradu-
ate engineering courses. However, simple analyses presented in standard textbooks
usually do not reveal difÞculties encountered with statically indeterminate problems
and general geometries [115]. Finite element approximations intended to handle ar-
bitrary problems typically assume a piecewise constant depth proÞle and a piecewise
cubic transverse deßection curve. This contradicts even simple instances such as a
constant depth beam subjected to a linearly varying distributed load which actually
leads to a deßection curve which is a Þfth order polynomial. Exact solutions of more
involved problems where the beam depth changes linearly, for example, are more
complicated. Therefore, an exact analysis of the beam problem is desirable to handle
depth variation, a combination of concentrated and distributed loads, and static inde-
terminacy providing for general end conditions and multiple in-span supports. The
current formulation considers a beam carrying any number of concentrated loads
and linearly varying distributed loads. The equations for the shear and moment in
the beam are obtained explicitly. Expressions for slope and deßection are formulated
for evaluation by numerical integration allowing as many integration steps as neces-
sary to achieve high accuracy. A set of simultaneous equations imposing desired
constraints at the beam ends and at supports is solved for support reactions and any
unknown end conditions. Knowledge of these quantities then allows evaluation of
internal load and deformation quantities throughout the beam. The analytical formu-
lation is implemented in a program using a concise problem deÞnition specifying all
loading, geometry, and constraint conditions without reference to beam elements or
nodal points as might be typical in a Þnite element formulation. The program and
example problem are discussed next.
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Figure 11.1: General Beam

11.1.1 Analytical Formulation

Solution of beam problems utilizes some mathematical idealizations such as a con-
centrated load, which implies inÞnite load intensity acting over an inÞnitesimal area.
Also of importance are linearly varying distributed loads, or ramp loads. Treatment
of these entities is facilitated by use of singularity functions [9]. The singularity
function of order n is denoted by < x− x0 >

n and is deÞned as

< x− x0 >
n=

{
0, x < x0

(x− x0)n x ≥ x0.

For n ≥ 0, the function satisÞes∫ x

0

< x− x0 >
n dx =

< x− x0 >
n+1

n+ 1
.

The special case where n = −1 is appropriate for describing a concentrated load.
The term < x− x0 >

−1 means the limit as ε→ 0 of the following function

< x− x0 >
−1=




0 x < x0,
1
ε x0 ≤ x ≤ (x0 + ε),
0 x > (x0 + ε).

Consequently, in the limit as ε approaches zero the integral becomes∫ x

0

< x− x0 >
−1 dx = < x− x0 >

0 .

Analyzing the loads and deformations in the beam requires computation of the shear,
moment, slope, and deßection designated as v(x), m(x), y ′(x), and y(x). The beam
lies in the range 0 ≤ x ≤ L. A total of four end conditions are imposed at x = 0
and x = L. Normally, two conditions will be speciÞed at each end; so, two un-
known conditions applicable at x = 0 need to be found during the solution process.
Along with the end conditions, interior supports may exist at x = r , 1 ≤  ≤ Ns.
Displacements y will occur at supports, and the reactions R, as well as four end
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conditions, needed to cause the deßections will have to be determined during the
analysis. Within the beam span, the applied loading will consist of known external
loads described as we(x) and the support reactions. Fundamentals of Euler beam
theory developed in standard textbooks [9, 102] imply the following differential and
integral relations:

I) Load

v′(x) = we(x) +
Ns∑
=1

R < x− r >
−1;

II) Shear

v(x) = v0 + ve(x) +
Ns∑
=1

R < x− r >
0,

ve(x) =
∫ x

0

we(x) dx;

III) Moment and Second Derivative

m′(x) = v,

m(x) = m0 + v0x+me(x) +
Ns∑
=1

R < x− r >
1;

me(x) =
∫ x

0

ve(x) dx,

y′′(x) = k(x)

[
m0 + v0x+me(x) +

Ns∑
=1

R < x− r >
1

]
,

k(x) =
1

E(x) I(x)
;

IV) Slope

y′(x) = y′0 +m0

∫ x

0

k(x) dx + v0

∫ x

0

xk(x) dx +

∫ x

0

k(x)me(x) dx +
Ns∑
=1

R

∫ x

0

< x− r >
1 k(x) dx;
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V) Deßection

y(x) = y0 + y′0x+m0

∫ x

0

∫ x

0

k(x) dx dx +

v0

∫ x

0

∫ x

0

xk(x) dx dx +
∫ x

0

∫ x

0

k(x)me(x) dx dx +

Ns∑
=1

R

∫ x

0

∫ x

0

< x− r >
1 k(x) dx dx

where E(x)I(x) is the product of the Young�s modulus and the cross section mo-
ment of inertia, y0, y′0, v0, m0, are the left-end values of the deßection, slope, shear
and moment respectively. The property k(x) will be spatially variable unless EI is
constant, which yields the following simple formulas

EIy′(x) = EIy′0 +m0x+
v0x

2

2
+

∫ x

0

me(x) dx +
1
2

Ns∑
=1

R < x− r >
2,

EIy(x) = EI (y0 + y′0x) +
m0x

2

2
+
v0x

3

6
+

∫ x

0

∫ x

0

me(x) dx dx+

1
6

Ns∑
=1

R < x− r >
3 .

The external loading conditions employed here can handle most practical situations.
It is assumed that several concentrated loads F act at positions f, 1 ≤  ≤ Nf .
Distributed loads are described by linearly varying ramp loads. A typical ramp load
starts at position p with intensity P and varies linearly to magnitudeQ at position
q. The ramp load is zero unless p ≤ x ≤ q. A total of Nr ramp loads may be
present. Instances where P = Q can also occur, implying a uniformly distributed
load. The general external loading chosen can be represented as

we(x) =
Nf∑
=1

F < x− f >
−1 +

Nr∑
=1

[
P < x− p >

0 −Q < x− q >
0 +

S

(
< x− p >

1 − < x− q >
1
)]

where

S =
Q − P

q − p
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and each summation extends over the complete range of pertinent values. Similarly,
integration using the properties of singularity functions yields

ve(x) =
Nf∑
=1

F < x− f >
0 +

Nr∑
=1

[
P < x− p >

1 −Q < x− q >
1 +

S

2
(
< x− p >

2 − < x− q >
2
)
]

and

me(x) =
Nf∑
=1

F < x− f >
1 +

Nr∑
=1

[
P

2
< x− p >

2 −Q

2
< x− q >

2 +

S

6
(
< x− p >

3 − < x− q >
3
)]
.

The single and double integrals given earlier involving m e(x) and k(x) can easily
be evaluated exactly when EI is constant, but these are not needed here. Since
k(x) will generally be spatially variable in the target problem set, the integrations
to compute y ′(x) and y(x) are best performed numerically. Leaving the number of
integration increments as an independent parameter allows high accuracy evaluation
of all integrals whenever this is desirable. Typically, problems using several hundred
integration points only require a few seconds to solve using a personal computer.

Completing the problem solution requires formulations and solution of a system
of simultaneous equations involving v0, m0, y′0, y0, R1, . . ., RNs . The desired
equations are created by specifying the displacement constraints at the supports, as
well as four of eight possible end conditions. To present the equations more concisely
the following notation is adopted:∫ x

0

k(x) dx = K1(x) ,
∫ x

0

∫ x

0

k(x) dx dx = K2(x),∫ x

0

xk(x) dx = L1(x) ,
∫ x

0

∫ x

0

xk(x) dx dx = L2(x),∫ x

0

me(x) k(x) dx = I1(x) ,
∫ x

0

∫ x

0

me(x) k(x) dx dx = I2(x),∫ x

0

< x− r >
1 k(x) dx = J1(x, r)∫ x

0

∫ x

0

< x− r >
1 k(x) dx dx = J2(x, r),
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and it is evident from their deÞnitions that both J1(x, r) and J2(x, r) both equal
zero for x ≤ r.

At a typical support location rı, the deßection will have an imposed value y ı.
Consequently, the displacement constraints require

y0 + rıy
′
0 +K2(rı)m0 + L2(rı) v0 +

Ns∑
=ı+1

J2(rı, r)R = yı − I2(rı)

for 1 ≤ ı ≤ Ns. The remaining four end conditions can specify any legitimate com-
bination of conditions yielding a unique solution. For example, a beam cantilevered
at x = 0 and pin supported at x = L would require y(0) = 0, y ′(0) = 0, m(L) = 0,
and y(L) = 0. In general, conditions imposed at x = 0 have an obvious form
since only v0, m0, y0, or y′0 are explicitly involved. To illustrate a typical right end
condition, let us choose slope, for example. This yields

y0 + y′0 +K1(L)m0 + L1(L) v0 +
Ns∑
=1

J1(L, r)R = y′(L) − I1(L).

Equations for other end conditions have similar form, and all eight possibilities are
implemented in the computer program listed at the end of the chapter. Once the
reactions and any initially unknown left-end conditions have been determined, load
and deformation quantities anywhere in the beam can be readily found.

11.1.2 Program to Analyze Beams of General Cross Section

A program to solve general beam problems was written which tabulates and plots
the shear, moment, slope, and deßection. The driver program vdb deÞnes the data,
calls the analysis functions, and outputs the results. Six functions that implement the
methods given in this section were written. Understanding the program details can
best be achieved by studying the code closely. The program was checked extensively
using examples from several texts and reference books. The three span beam having
parabolically tapered haunches shown in Figure 11.2 was analyzed previously by
Arbabi and Li [5]. The program vdb was used to analyze the same problem and
produces the results in Figure 11.3, which agree well with the paper.

We believe that the computer program is general enough to handle a wide variety
of practical problems. Some readers may want to extend the program by adding
interactive input or input from a data Þle. Such a modiÞcation is straightforward.

11.1.3 Program Output and Code

Output from Arbabi and Li Example

Analysis of a Variable Depth Elastic Beam
-----------------------------------------

Title: Problem from Arbabi and Li
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Figure 11.2: Parabolic Beam from Arbabi and Li
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Figure 11.3: Results for Arbabi and Li Example
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Beam Length: 3
Number of integration segments: 301
Print frequency for results: 10

Interior Supports: (2)
| # X-location Deflection
| --- ------------ ------------
| 1 1.0000e+000 0.0000e+000
| 2 2.0000e+000 0.0000e+000

Concentrated Forces: (1)
| # X-location Force
| --- ------------ ------------
| 1 5.0000e-001 -1.0000e+000

Ramp loads: (1)
| # X-start Load X-end Load
| --- ------------ ------------ ------------ ------------
| 1 1.0000e+000 -1.0000e+000 2.0000e+000 -1.0000e+000

End conditions:
| End Function Value
| ------ ---------- ------------
| left slope 0.0000e+000
| left deflection 0.0000e+000
| right slope 0.0000e+000
| right deflection 0.0000e+000

EI values are specified
| # X-start EI-value
| --- ------------ ------------
| 1 0.0000e+000 7.9976e+000
| 2 1.0101e-002 7.5273e+000
| 3 2.0202e-002 7.0848e+000
| 4 3.0303e-002 6.6688e+000
| 5 4.0404e-002 6.2776e+000

Material deleted for publication

| 296 2.9596e+000 6.2776e+000
| 297 2.9697e+000 6.6688e+000
| 298 2.9798e+000 7.0848e+000
| 299 2.9899e+000 7.5273e+000
| 300 3.0000e+000 7.9976e+000

Solution time was 0.55 secs.

Reactions at Internal Supports:
| X-location Reaction
| ------------ ------------
| 1 1.0782e+000
| 2 4.7506e-001

Table of Results:
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| X-location Shear Moment Theta Delta
| ----------- ------------ ------------ ------------ ------------
| 0 5.2494e-001 -1.7415e-001 0.0000e+000 0.0000e+000
| 0.1 5.2494e-001 -1.2166e-001 -2.4859e-003 -1.1943e-004
| 0.2 5.2494e-001 -6.9164e-002 -5.3262e-003 -5.0996e-004
| 0.3 5.2494e-001 -1.6670e-002 -7.4251e-003 -1.1612e-003
| 0.4 5.2494e-001 3.5824e-002 -6.5761e-003 -1.8965e-003
| 0.5 -4.7506e-001 8.8318e-002 -5.5680e-004 -2.3003e-003
| 0.6 -4.7506e-001 4.0812e-002 5.6976e-003 -1.9998e-003
| 0.7 -4.7506e-001 -6.6940e-003 7.1119e-003 -1.3258e-003
| 0.8 -4.7506e-001 -5.4200e-002 5.6441e-003 -6.7385e-004
| 0.9 -4.7506e-001 -1.0171e-001 3.3302e-003 -2.2402e-004
| 1 6.0309e-001 -1.4921e-001 1.2242e-003 -2.4286e-017
| 1.1 5.0309e-001 -9.3903e-002 -7.9439e-004 2.3707e-005
| 1.2 4.0309e-001 -4.8593e-002 -2.8814e-003 -1.6165e-004
| 1.3 3.0309e-001 -1.3284e-002 -4.3574e-003 -5.3250e-004
| 1.4 2.0309e-001 1.2025e-002 -4.2883e-003 -9.8078e-004
| 1.5 1.0309e-001 2.7334e-002 -2.3015e-003 -1.3242e-003
| 1.6 3.0918e-003 3.2643e-002 6.5694e-004 -1.4078e-003
| 1.7 -9.6908e-002 2.7953e-002 3.0625e-003 -1.2125e-003
| 1.8 -1.9691e-001 1.3262e-002 4.1954e-003 -8.3907e-004
| 1.9 -2.9691e-001 -1.1429e-002 4.2843e-003 -4.0860e-004
| 2 7.8151e-002 -4.6120e-002 3.8358e-003 -1.1102e-016
| 2.1 7.8151e-002 -3.8305e-002 3.1202e-003 3.5021e-004
| 2.2 7.8151e-002 -3.0490e-002 2.0801e-003 6.1308e-004
| 2.3 7.8151e-002 -2.2675e-002 7.2881e-004 7.5555e-004
| 2.4 7.8151e-002 -1.4860e-002 -6.9898e-004 7.5597e-004
| 2.5 7.8151e-002 -7.0445e-003 -1.7447e-003 6.2865e-004
| 2.6 7.8151e-002 7.7058e-004 -2.0539e-003 4.3228e-004
| 2.7 7.8151e-002 8.5857e-003 -1.7105e-003 2.4008e-004
| 2.8 7.8151e-002 1.6401e-002 -1.0840e-003 9.9549e-005
| 2.9 7.8151e-002 2.4216e-002 -4.7454e-004 2.2493e-005
| 3 7.8151e-002 3.2031e-002 -4.4409e-016 -2.2204e-016

Variable Depth Beam Program

1: function vdb
2: % Example: vdb
3: % ~~~~~~~~~~~~
4: %
5: % This program calculates the shear, moment,
6: % slope, and deflection of a variable depth
7: % indeterminate beam subjected to complex
8: % loading and general end conditions. The
9: % input data are defined in the program

10: % statements below.
11: %
12: % User m functions required:
13: % bmvardep, extload, lintrp, oneovrei,
14: % sngf, trapsum

© 2003 by CRC Press LLC



15:

16: clear all; Problem=1;
17: if Problem == 1
18: Title=[’Problem from Arbabi and Li’];
19: Printout=10; % Output frequency
20: BeamLength=3; % Beam length
21: NoSegs=301; % # of beam divisions for
22: % integration
23: % External concentrated loads and location
24: ExtForce= [-1]; ExtForceX=[.5];
25: % External ramp loads and range
26: % q1 q2 x1 x2
27: ExtRamp=[-1 -1 1 2];
28: % Interior supports: initial displacement
29: % and location
30: IntSupX= [1; 2]; IntSupDelta=[0; 0];
31: % End (left and right) conditions
32: EndCondVal= [0; 0; 0; 0]; % magnitude
33: % 1=shear,2=moment,3=slope,4=delta
34: EndCondFunc=[3; 4; 3; 4];
35: % 1=left end,2=right end
36: EndCondEnd= [1; 1; 2; 2];
37: % EI or beam depth specification
38: EIorDepth=1; % 1=EI values specified
39: % 2=depth values specified
40: if EIorDepth == 1
41: % Discretize the parabolic haunch for the
42: % three spans
43: Width=1; E=1; a=0.5^2; Npts=100;
44: h1=0.5; k1=1; x1=linspace(0,1,Npts);
45: h2=1.5; k2=1; x2=linspace(1,2,Npts);
46: h3=2.5; k3=1; x3=linspace(2,3,Npts);
47: y1=(x1-h1).^2/a+k1; y2=(x2-h2).^2/a+k2;
48: y3=(x3-h3).^2/a+k3;
49: EIx=[x1 x2 x3]’; h=[y1 y2 y3]’;
50: EIvalue=E*Width/12*h.^3;
51: mn=min(EIvalue); EIvalue=EIvalue./mn;
52: else
53: % Beam width and Young’s modulus
54: BeamWidth=[]; BeamE=[]; Depth=[]; DepthX=[];
55: end
56: elseif Problem == 2
57: Title=[’From Timoshenko and Young,’, ...
58: ’ p 434, haunch beam’];
59: Printout=12; NoSegs=144*4+1; BeamLength=144;
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60: ExtForce=[]; ExtForceX=[];
61: ExtRamp=[-1 -1 0 108];
62: IntSupX=[36; 108]; IntSupDelta=[0; 0];
63: EndCondVal=[0; 0; 0; 0];
64: EndCondFunc=[2; 4; 2; 4];
65: EndCondEnd= [1; 1; 2; 2]; EIorDepth=2;
66: if EIorDepth == 1
67: EIvalue=[]; EIx=[];
68: else
69: BeamWidth=[1]; BeamE=[1];
70: % Discretize the parabolic sections
71: a=36^2/5; k=2.5; h1=0; h2=72; h3=144;
72: N1=36; N2=72; N3=36;
73: x1=linspace( 0, 36,N1); y1=(x1-h1).^2/a+k;
74: x2=linspace( 36,108,N2); y2=(x2-h2).^2/a+k;
75: x3=linspace(108,144,N3); y3=(x3-h3).^2/a+k;
76: Depth=[y1 y2 y3]’; DepthX=[x1 x2 x3]’;
77: % Comparison values
78: I=BeamWidth*Depth.^3/12; Imin=min(I); L1=36;
79: k1=BeamE*Imin/L1; k2=k1/2; k3=k1;
80: t0=10.46/k1; t1=15.33/k1; t2=22.24/k1;
81: t3=27.95/k1;
82: fprintf(’\n\nValues from reference’);
83: fprintf(’\n Theta (x= 0): %12.4e’,t0);
84: fprintf(’\n Theta (x= 36): %12.4e’,t1);
85: fprintf(’\n Theta (x=108): %12.4e’,t2);
86: fprintf(’\n Theta (x=144): %12.4e\n’,t3);
87: end
88: end
89:

90: % Load input parameters into matrices
91: Force=[ExtForce,ExtForceX];
92: NoExtForce=length(ExtForce);
93: [NoExtRamp,ncol]=size(ExtRamp);
94: IntSup=[IntSupDelta,IntSupX];
95: NoIntSup=length(IntSupX);
96: EndCond=[EndCondVal,EndCondFunc,EndCondEnd];
97: if EIorDepth == 1
98: BeamProp=[]; NoEIorDepths=length(EIx);
99: EIdata=[EIvalue EIx];

100: else
101: BeamProp=[BeamWidth BeamE];
102: NoEIorDepths=length(DepthX);
103: EIdata=[Depth DepthX];
104: end
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105:

106: % more on
107:

108: % Output input data
109: label1=[’shear ’;’moment ’; ...
110: ’slope ’;’deflection’];
111: label2=[’left ’;’right ’];
112: fprintf(’\n\nAnalysis of a Variable Depth ’);
113: fprintf(’Elastic Beam’);
114: fprintf(’\n--------------------------------’);
115: fprintf(’---------’);
116: fprintf(’\n\n’);
117: disp([’Title: ’ Title]);
118: fprintf...
119: (’\nBeam Length: %g’, ...
120: BeamLength);
121: fprintf...
122: (’\nNumber of integration segments: %g’, ...
123: NoSegs);
124: fprintf...
125: (’\nPrint frequency for results: %g’, ...
126: Printout);
127: fprintf(’\n\nInterior Supports: (%g)’, ...
128: NoIntSup);
129: if NoIntSup > 0
130: fprintf(’\n | # X-location Deflection’);
131: fprintf(’\n | --- ------------ ------------’);
132: for i=1:NoIntSup
133: fprintf(’\n |%4.0f %12.4e %12.4e’, ...
134: i,IntSup(i,2),IntSup(i,1));
135: end
136: end
137: fprintf(’\n\nConcentrated Forces: (%g)’, ...
138: NoExtForce);
139: if NoExtForce > 0
140: fprintf(’\n | # X-location Force’);
141: fprintf(’\n | --- ------------ ------------’);
142: for i=1:NoExtForce
143: fprintf(’\n |%4.0f %12.4e %12.4e’, ...
144: i,Force(i,2),Force(i,1));
145: end
146: end
147: fprintf(’\n\nRamp loads: (%g)’, NoExtRamp);
148: if NoExtRamp > 0
149: fprintf(’\n | # X-start Load’);
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150: fprintf(’ X-end Load’);
151: fprintf(’\n | --- ------------ ------------’);
152: fprintf(’ ------------ ------------’);
153: for i=1:NoExtRamp
154: fprintf(’\n |%4.0f %12.4e %12.4e ’, ...
155: i,ExtRamp(i,3),ExtRamp(i,1));
156: fprintf(’%12.4e %12.4e’, ...
157: ExtRamp(i,4),ExtRamp(i,2));
158: end
159: end
160: fprintf(’\n\nEnd conditions:’);
161: fprintf(’\n | End Function Value’);
162: fprintf(’\n ’);
163: fprintf(’| ------ ---------- ------------\n’);
164: for i=1:4
165: j=EndCond(i,3); k=EndCond(i,2);
166: strg=sprintf(’ %12.4e’,EndCond(i,1));
167: disp([’ | ’ label2(j,:) label1(k,:) strg]);
168: end
169: if EIorDepth == 1
170: fprintf(’\nEI values are specified’);
171: fprintf(’\n | # X-start EI-value’)
172: fprintf(’\n | --- ------------ ------------’);
173: for i=1:NoEIorDepths
174: fprintf(’\n |%4.0f %12.4e %12.4e’, ...
175: i,EIdata(i,2),EIdata(i,1));
176: end
177: else
178: fprintf(’\nDepth values are specified for ’);
179: fprintf(’rectangular cross section’);
180: fprintf(’\n | Beam width: %12.4e’, ...
181: BeamProp(1));
182: fprintf(’\n | Young’’s modulus: %12.4e’, ...
183: BeamProp(2));
184: fprintf(’\n |’);
185: fprintf(’\n | # X-start Depth’)
186: fprintf(’\n | --- ------------ ------------’);
187: for i=1:NoEIorDepths
188: fprintf(’\n |%4.0f %12.4e %12.4e’, ...
189: i,EIdata(i,2),EIdata(i,1));
190: end
191: end
192: disp(’ ’);
193:

194: % Begin analysis
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195: x=linspace(0,BeamLength,NoSegs)’; t=clock;
196: [V,M,Theta,Delta,Reactions]= ...
197: bmvardep(NoSegs,BeamLength,Force,ExtRamp, ...
198: EndCond,IntSup,EIdata,BeamProp);
199: t=etime(clock,t);
200:

201: % Output results
202: disp(’ ’);
203: disp([’Solution time was ’,num2str(t),’ secs.’]);
204: if NoIntSup > 0
205: fprintf(’\nReactions at Internal Supports:’);
206: fprintf(’\n | X-location Reaction’);
207: fprintf(’\n | ------------ ------------’);
208: for i=1:NoIntSup
209: fprintf(’\n | %12.8g %12.4e’, ...
210: IntSup(i,2),Reactions(i));
211: end
212: end
213: fprintf(’\n\nTable of Results:’);
214: fprintf(’\n | X-location Shear’);
215: fprintf(’ Moment’);
216: fprintf(’ Theta Delta’);
217: fprintf(’\n | ----------- ------------ ’);
218: fprintf(’------------’);
219: fprintf(’ ------------ ------------’);
220: if Printout > 0
221: for i=1:Printout:NoSegs
222: fprintf(’\n |%12.4g %12.4e %12.4e’, ...
223: x(i),V(i),M(i));
224: fprintf(’ %12.4e %12.4e’,Theta(i),Delta(i));
225: end
226: disp(’ ’);
227: else
228: i=1; j=NoSegs;
229: fprintf(’\n |%12.4g %12.4e %12.4e’, ...
230: x(i),V(i),M(i));
231: fprintf(’ %12.4e %12.4e’,Theta(i),Delta(i));
232: fprintf(’\n |%12.8g %12.4e %12.4e’, ...
233: x(j),V(j),M(j));
234: fprintf(’ %12.4e %12.4e’,Theta(j),Delta(j));
235: end
236: fprintf(’\n\n’);
237: subplot(2,2,1);
238: plot(x,V,’k-’); grid; xlabel(’x axis’);
239: ylabel(’Shear’); title(’Shear Diagram’);
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240: subplot(2,2,2);
241: plot(x,M,’k-’); grid; xlabel(’x axis’);
242: ylabel(’Moment’); title(’Moment Diagram’)
243: subplot(2,2,3);
244: plot(x,Theta,’k-’); grid; xlabel(’x axis’);
245: ylabel(’Slope’); title(’Slope Curve’);
246: subplot(2,2,4);
247: plot(x,Delta,’k-’); grid; xlabel(’y axis’);
248: ylabel(’Deflection’);
249: title(’Deflection Curve’); subplot
250: drawnow; figure(gcf)
251: %print -deps vdb
252:

253: % more off
254:

255: %=============================================
256:

257: function [V,M,Theta,Delta,Reactions]= ...
258: bmvardep(NoSegs,BeamLength,Force,ExtRamp, ...
259: EndCond,IntSup,EIdata,BeamProp)
260: % [V,M,Theta,Delta,Reactions]=bmvardep ...
261: % (NoSegs,BeamLength,Force,ExtRamp,EndCond, ...
262: % IntSup,EIdata,BeamProp)
263: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
264: %
265: % This function computes the shear, moment,
266: % slope, and deflection in a variable depth
267: % elastic beam having specified end conditions,
268: % intermediate supports with given
269: % displacements, and general applied loading,
270: % allowing concentrated loads and linearly
271: % varying ramp loads.
272: %
273: % NoSegs - number of beam divisions for
274: % integration
275: % BeamLength - beam length
276: % Force - matrix containing the magnitudes
277: % and locations for concentrated
278: % loads
279: % ExtRamp - matrix containing the end
280: % magnitudes and end locations
281: % for ramp loads
282: % EndCond - matrix containing the type of
283: % end conditions, the magnitudes,
284: % and whether values are for the
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285: % left or right ends
286: % IntSup - matrix containing the location
287: % and delta for interior supports
288: % EIdata - either EI or depth values
289: % BeamProp - either null or beam widths
290: %
291: % V - vector of shear values
292: % M - vector of moment values
293: % Theta - vector of slope values
294: % Delta - vector of deflection values
295: % Reactions - reactions at interior supports
296: %
297: % User m functions required:
298: % oneovrei, extload, sngf, trapsum
299: %----------------------------------------------
300:

301: if nargin < 8, BeamProp=[]; end
302: % Evaluate function value coordinates and 1/EI
303: x=linspace(0,BeamLength,NoSegs)’;
304: kk=oneovrei(x,EIdata,BeamProp);
305:

306: % External load contributions to shear and
307: % moment interior to span and at right end
308: [ve,me]=extload(x,Force,ExtRamp);
309: [vv,mm]=extload(BeamLength,Force,ExtRamp);
310:

311: % Deflections and position of interior supports
312: ns=size(IntSup,1);
313: if ns > 0
314: ysprt=IntSup(:,1); r=IntSup(:,2);
315: snf=sngf(x,r,1);
316: else
317: ysprt=[]; r=[]; snf=zeros(NoSegs,0);
318: end
319:

320: % Form matrix governing y’’(x)
321: smat=kk(:,ones(1,ns+3)).* ...
322: [x,ones(NoSegs,1),snf,me];
323:

324: % Integrate twice to get slope and deflection
325: % matrices
326: smat=trapsum(0,BeamLength,smat);
327: ymat=trapsum(0,BeamLength,smat);
328:

329: % External load contributions to
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330: % slope/deflection at the right end
331: ss=smat(NoSegs,ns+3); yy=ymat(NoSegs,ns+3);
332:

333: % Equations to solve for left end conditions
334: % and internal reactions
335: ns4=ns+4; j=1:4; a=zeros(ns4,ns4);
336: b=zeros(ns4,1); js=1:ns; js4=js+4;
337:

338: % Account for four independent boundary
339: % conditions. Usually two conditions will be
340: % imposed at each end.
341: for k=1:4
342: val=EndCond(k,1); typ=EndCond(k,2);
343: wchend=EndCond(k,3);
344: if wchend==1
345: b(k)=val; row=zeros(1,4); row(typ)=1;
346: a(k,j)=row;
347: else
348: if typ==1 % Shear
349: a(k,j)=[1,0,0,0]; b(k)=val-vv;
350: if ns>0
351: a(k,js4)=sngf(BeamLength,r,0);
352: end
353: elseif typ==2 % Moment
354: a(k,j)=[BeamLength,1,0,0]; b(k)=val-mm;
355: if ns>0
356: a(k,js4)=sngf(BeamLength,r,1);
357: end
358: elseif typ==3 % Slope
359: a(k,j)=[smat(NoSegs,1:2),1,0];
360: b(k)=val-ss;
361: if ns>0
362: a(k,js4)=smat(NoSegs,3:ns+2);
363: end
364: else % Deflection
365: a(k,j)=[ymat(NoSegs,1:2),BeamLength,1];
366: b(k)=val-yy;
367: if ns>0
368: a(k,js4)=ymat(NoSegs,3:ns+2);
369: end
370: end
371: end
372: end
373:

374: % Interpolate to assess how support deflections
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375: % are affected by end conditions, external
376: % loads, and support reactions.
377: if ns>0
378: a(js4,1)=interp1(x,ymat(:,1),r);
379: a(js4,2)=interp1(x,ymat(:,2),r);
380: a(js4,3)=r; a(js4,4)=ones(ns,1);
381: for j=1:ns-1
382: a(j+5:ns+4,j+4)= ...
383: interp1(x,ymat(:,j+2),r(j+1:ns));
384: end
385: end
386: b(js4)=ysprt-interp1(x,ymat(:,ns+3),r);
387:

388: % Solve for unknown reactions and end conditions
389: c=a\b; v0=c(1); m0=c(2); s0=c(3); y0=c(4);
390: Reactions=c(5:ns+4);
391:

392: % Compute the shear, moment, slope, deflection
393: % for all x
394: if ns > 0
395: V=v0+ve+sngf(x,r,0)*Reactions;
396: M=m0+v0*x+me+sngf(x,r,1)*Reactions;
397: Theta=s0+smat(:,ns+3)+smat(:,1:ns+2)* ...
398: [v0;m0;Reactions];
399: Delta=y0+s0*x+ymat(:,ns+3)+ ...
400: ymat(:,1:ns+2)*[v0;m0;Reactions];
401: else
402: Reactions=[]; V=v0+ve; M=m0+v0*x+me;
403: Theta=s0+smat(:,ns+3)+smat(:,1:2)*[v0;m0];
404: Delta=y0+s0*x+ymat(:,ns+3)+ ...
405: ymat(:,1:2)*[v0;m0];
406: end
407:

408: %=============================================
409:

410: function [V,M,EITheta,EIDelta]=extload ...
411: (x,Force,ExtRamp)
412: % [V,M,EITheta,EIDelta]=extload ...
413: % (x,Force,ExtRamp)
414: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
415: %
416: % This function computes the shear, moment,
417: % slope, and deflection in a uniform depth
418: % Euler beam which is loaded by a series of
419: % concentrated loads and ramp loads. The values
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420: % of shear, moment, slope and deflection all
421: % equal zero when x=0.
422: %
423: % x - location along beam
424: % Force - concentrated force matrix
425: % ExtRamp - distributed load matrix
426: %
427: % V - shear
428: % M - moment
429: % EITheta - slope
430: % EIDelta - deflection
431: %
432: % User m functions required: sngf
433: %----------------------------------------------
434:

435: nf=size(Force,1); nr=size(ExtRamp,1);
436: nx=length(x); V=zeros(nx,1); M=V;
437: EITheta=V; EIDelta=V;
438: % Concentrated load contributions
439: if nf > 0
440: F=Force(:,1); f=Force(:,2); V=V+sngf(x,f,0)*F;
441: M=M+sngf(x,f,1)*F;
442: if nargout > 2
443: EITheta=EITheta+sngf(x,f,2)*(F/2);
444: EIDelta=EIDelta+sngf(x,f,3)*(F/6);
445: end
446: end
447: % Ramp load contributions
448: if nr > 0
449: P=ExtRamp(:,1); Q=ExtRamp(:,2);
450: p=ExtRamp(:,3); q=ExtRamp(:,4);
451: S=(Q-P)./(q-p); sp2=sngf(x,p,2);
452: sq2=sngf(x,q,2); sp3=sngf(x,p,3);
453: sq3=sngf(x,q,3); sp4=sngf(x,p,4);
454: sq4=sngf(x,q,4);
455: V=V+sngf(x,p,1)*P-sngf(x,q,1)* ... % Shear
456: Q+(sp2-sq2)*(S/2);
457: M=M+sp2*(P/2)-sq2*(Q/2)+ ... % Moment
458: (sp3-sq3)*(S/6);
459: if nargout > 2
460: EITheta=EITheta+sp3*(P/6)- ... % EI*Theta
461: sq3*(Q/6)+(sp4-sq4)*(S/24);
462: EIDelta=EIDelta+sp4*(P/24)- ... % EI*Delta
463: sq4*(Q/24)+(sngf(x,p,5)- ...
464: sngf(x,q,5))*(S/120);

© 2003 by CRC Press LLC



465: end
466: end
467:

468: %=============================================
469:

470: function val=oneovrei(x,EIdata,BeamProp)
471: % [val]=oneovrei(x,EIdata,BeamProp)
472: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
473: %
474: % This function computes 1/EI by piecewise
475: % linear interpolation through a set of data
476: % values.
477: %
478: % x - location along beam
479: % EIdata - EI or depth values
480: % BeamProp - null or width values
481: %
482: % val - computed value for 1/EI
483: %
484: % User m functions required: none
485: %----------------------------------------------
486:

487: if size(EIdata,1) < 2 % uniform depth case
488: v=EIdata(1,1);
489: EIdata=[v,min(x);v,max(x)];
490: end
491: if ( nargin > 2 ) & ( sum(size(BeamProp)) > 0)
492: % Compute properties assuming the cross
493: % section is rectangular and EIdata(:,1)
494: % contains depth values
495: width=BeamProp(1); E=BeamProp(2);
496: EIdata(:,1)=E*width/12*EIdata(:,1).^3;
497: end
498: val=1./lintrp(EIdata(:,2),EIdata(:,1),x);
499:

500: %=============================================
501:

502: function y=sngf(x,x0,n)
503: % y=sngf(x,x0,n)
504: % ~~~~~~~~~~~~~~
505: %
506: % This function computes the singularity
507: % function defined by
508: % y=<x-x0>^n for n=0,1,2,...
509: %
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510: % User m functions required: none
511: %----------------------------------------------
512:

513: if nargin < 3, n=0; end
514: x=x(:); nx=length(x); x0=x0(:)’; n0=length(x0);
515: x=x(:,ones(1,n0)); x0=x0(ones(nx,1),:); d=x-x0;
516: s=(d>=zeros(size(d))); v=d.*s;
517: if n==0
518: y=s;
519: else
520: y=v;
521: for j=1:n-1; y=y.*v; end
522: end
523:

524: %=============================================
525:

526: function v=trapsum(a,b,y,n)
527: %
528: % v=trapsum(a,b,y,n)
529: % ~~~~~~~~~~~~~~~~~~
530: %
531: % This function evaluates:
532: %
533: % integral(a=>x, y(x)*dx) for a<=x<=b
534: %
535: % by the trapezoidal rule (which assumes linear
536: % function variation between succesive function
537: % values).
538: %
539: % a,b - limits of integration
540: % y - integrand that can be a vector-valued
541: % function returning a matrix such that
542: % function values vary from row to row.
543: % It can also be input as a matrix with
544: % the row size being the number of
545: % function values and the column size
546: % being the number of components in the
547: % vector function.
548: % n - the number of function values used to
549: % perform the integration. When y is a
550: % matrix then n is computed as the number
551: % of rows in matrix y.
552: %
553: % v - integral value
554: %

© 2003 by CRC Press LLC



555: % User m functions called: none
556: %----------------------------------------------
557:

558: if isstr(y)
559: % y is an externally defined function
560: x=linspace(a,b,n)’; h=x(2)-x(1);
561: Y=feval(y,x); % Function values must vary in
562: % row order rather than column
563: % order or computed results
564: % will be wrong.
565: m=size(Y,2);
566: else
567: % y is column vector or a matrix
568: Y=y; [n,m]=size(Y); h=(b-a)/(n-1);
569: end
570: v=[zeros(1,m); ...
571: h/2*cumsum(Y(1:n-1,:)+Y(2:n,:))];
572:

573: %=============================================
574:

575: % function y=lintrp(xd,yd,x)
576: % See Appendix B
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Chapter 12

Applications of Analytic Functions

12.1 Properties of Analytic Functions

Complex valued functions of a single complex variable are useful in various dis-
ciplines such as physics and numerical approximation theory. The current chap-
ter summarizes a number of attractive properties of analytic functions and presents
some applications in which MATLAB is helpful. Excellent textbooks presenting the
theory of analytic functions [18, 75, 119] are available which fully develop various
theoretical concepts employed in this chapter. Therefore, only the properties which
may be helpful in subsequent discussions are included.

12.2 DeÞnition of Analyticity

We consider a complex valued function

F (z) = u(x, y) + iv(x, y) , z = x+ iy

which depends on the complex variable z. The function F (z) is analytic at point z if
it is differentiable in the neighborhood of z. Differentiability requires that the limit

lim
|∆z|→0

[
F (z + ∆z) − F (z)

∆z

]
= F ′(z)

exists independent of how |∆z| approaches zero. Necessary and sufÞcient conditions
for analyticity are continuity of the Þrst partial derivatives of u and v and satisfaction
of the Cauchy-Riemann conditions (CRC)

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x

These conditions can be put in more general form as follows. Let n denote an ar-
bitrary direction in the z-plane and let s be the direction obtained by a 90 ◦ counter-
clockwise rotation from the direction of n. The generalized CRC are:

∂u

∂n
=
∂v

∂s
,

∂u

∂s
= − ∂v

∂n
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Satisfaction of the CRC implies that both u and v are solutions of Laplace�s equation

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0

and
∂2v

∂x2
+
∂2v

∂y2
= 0

These functions are called harmonic. Functions related by the CRC are also said to
be harmonic conjugates. When one function u is known, its harmonic conjugate v
can be found within an additive constant by using

v =
∫
dv =

∫
∂v

∂x
dx+

∫
∂v

∂y
dy =

∫ (
−∂u
∂y

dx+
∂u

∂x
dy

)
+ constant

Harmonic conjugates also have the properties that curves u = constant and v =
constant intersect orthogonally. This follows because u = constant implies ∂u

∂n is
zero in a direction tangent to the curve. However ∂u

∂n = ∂v
∂s so v = constant along a

curve intersecting u = constant orthogonally.
Sometimes it is helpful to regard a function of x and y as a function of z = x+ iy

and z̄ = x − iy. The inverse is x = (z + z̄)/2 and y = (z − z̄)/(2i). Chain rule
differentiation applied to a general function φ yields

∂φ

∂x
=
∂φ

∂z
+
∂φ

∂z̄
,

∂φ

∂y
= i

∂φ

∂z
− i

∂φ

∂z̄

so that (
∂

∂x
− i

∂

∂y

)
φ = 2

∂φ

∂z
,

(
∂

∂x
+ i

∂

∂y

)
φ = 2

∂φ

∂z̄

So Laplace�s equation becomes

∂2φ

∂x2
+
∂2φ

∂y2
= 4

∂2φ

∂z∂z̄
= 0

It is straightforward to show the condition that a function F be an analytic function
of z is expressible as

∂F

∂z̄
= 0

It is important to note that most of the functions routinely employed with real argu-
ments are analytic in some part of the z-plane. These include:

zn,
√
z, log(z), ez, sin(z), cos(z), arctan(z),

to mention a few. The real and imaginary parts of these functions are harmonic and
they arise in various physical applications. The integral powers of z are especially
signiÞcant. We can write

z = reıθ , r =
√
x2 + y2 , θ = tan−1

( y
x

)
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and get
zn = u+ iv , u = rn cos(nθ) , v = rn sin(nθ)

The reader can verify by direct differentiation that both u and v are harmonic.
Points where F (z) is nondifferentiable are called singular points and these are

categorized as isolated or nonisolated. Isolated singularities are termed either poles
or essential singularities. Branch points are the most common type of nonisolated
singularity. Singular points and their signiÞcance are discussed further below.

12.3 Series Expansions

If F (z) is analytic inside and on the boundary of an annulus deÞned by a ≤
|z − z0| ≤ b then F (z) is representable in a Laurent series of the form

F (z) =
∞∑

n=−∞
an(z − z0)n , a ≤ |z − z0| ≤ b

where

F (z) =
1

2πı

∫
L

F (t) dt
(t− z0)n+1

and L represents any closed curve encircling z0 and lying between the inner circle
|z − z0| = a and the outer circle |z − z0| = b. The direction of integration along
the curve is counterclockwise. If F (z) is also analytic for |z − z0| < a, the negative
powers in the Laurent series drop out to give Taylor�s series

F (z) =
∞∑

n=0

an(z − z0)n , |z − z0| ≤ b

Special cases of the Laurent series lead to classiÞcation of isolated singularities
as poles or essential singularities. Suppose the inner radius can be made arbitrarily
small but nonzero. If the coefÞcients below some order, say −m, vanish but a−m 
=
0, we classify z0 as a pole of orderm. Otherwise, we say z0 is an essential singularity.

Another term of importance in connection with Laurent series is a−1, the coefÞ-
cient of (z− z0)−1. This coefÞcient, called the residue at z0, is sometimes useful for
evaluating integrals.

12.4 Integral Properties

Analytic functions have many useful integral properties. One of these properties
that concerns integrals around closed curves is:
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Cauchy-Goursat Theorem: If F (z) is analytic at all points in a simply
connected region R, then ∫

L

F (z) dz = 0

for every closed curve L in the region.

An immediate consequence of this theorem is that the integral of F (z) along any
path between two end points z1 and z2 is independent of the path (this only applies
for simply connected regions).

12.4.1 Cauchy Integral Formula

If F (z) is analytic inside and on a closed curve L bounding a simply connected
region R then

F (z) =
1

2πı

∫
L

F (t) dt
t− z

for z inside L

F (z) = 0 for z outside L

The Cauchy integral formula provides a simple means for computingF (z) at interior
points when its boundary values are known. We refer to any integral of the form

I(z) =
1

2πi

∫
L

F (t) dt
t− z

as a Cauchy integral, regardless of whether F (t) is the boundary value of an ana-
lytic function. I(z) deÞnes a function analytic in the complex plane cut along the
curve L. When F (t) is the boundary value of a function analytic inside a closed
curve L, I(z) is evidently discontinuous across L since I(z) approaches F (z) as z
approaches L from the inside but gives zero for an approach from the outside. The
theory of Cauchy integrals for both open and closed curves is extensively developed
in Muskhelishvili�s texts [72, 73] and is used to solve many practical problems.

12.4.2 Residue Theorem

If F (z) is analytic inside and on a closed curve L except at isolated singularities
z1, z2, . . . , zn where it has Laurent expansions, then∫

L

F (z) dz = 2πı
j=n∑
j=1

Bj

where Bj is the residue of F (z) at z = zj . In the instance where zı is a pole of
order m, the residue can be computed as

a−1 =
1

(m− 1)!

{
dm−1

dzm−1
[F (z)(z − zı)m]

}
lim

z→zı
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12.5 Physical Problems Leading to Analytic Functions

Several physical phenomena require solutions involving real valued functions sat-
isfying Laplace�s equation. Since an analytic function has harmonic real and imag-
inary parts, a harmonic function can often be expressed concisely as the real part
of an analytic function. Useful tools such as Taylor series can yield effective com-
putational devices. One of the simplest practical examples involves determining a
function u harmonic inside the unit disk |z| ≤ 1 and having boundary values de-
scribed by a Fourier series. In the following equations, and in subsequent articles,
we will often refer to a function deÞned inside and on the unit circle in terms of polar
coordinates as u(r, θ) while we may, simultaneously, think of it as a function of the
complex variable z = rσ where σ = eiθ . Hence we write the boundary condition
for the circular disk as

u(1, θ) =
∞∑

n=−∞
cnσ

n , σ = eıθ

with c−n = c̄n because u is real. The desired function can be found as

u(r, θ) = mboxreal(F (z) )

where

F (z) = c0 + 2
∞∑

n=1

cnz
n , |z| ≤ 1

This solution is useful because the Fast Fourier Transform (FFT) can be employed
to generate Fourier coefÞcients for quite general boundary conditions, and the series
for F (z) converges rapidly when |z| < 1. This series will be employed below to
solve both the problem where boundary values are given (the Dirichlet problem) and
where normal derivative values are known on the boundary (the Neumann problem).
Several applications where analytic functions occur are mentioned below.

12.5.1 Steady-State Heat Conduction

The steady-state temperature distribution in a homogeneous two-dimensional body
is harmonic. We can take u = Real[F (z)]. Boundary curves where u = constant
lead to conditions

F (z) + F (z) = constant

in the complex plane. Boundary curves insulated to prevent transverse heat ßow lead
to ∂u

∂n = 0, which implies

F (z) − F (z) = constant
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12.5.2 Incompressible Inviscid Fluid Flow

Some ßow problems for incompressible, nonviscous ßuids involve velocity com-
ponents obtainable in terms of the Þrst derivative of an analytic function. A complex
velocity potential F (z) exists such that

u− iv = F ′(z)

At impermeable boundaries the ßow normal to the boundary must vanish which im-
plies

F (z) − F (z) = constant.

Furthermore, a uniform ßow Þeld with u = U , v = V is easily described by

F (z) = (U − iV )z

12.5.3 Torsion and Flexure of Elastic Beams

The distribution of stresses in a cylindrical elastic beam subjected to torsion or
bending can be computed using analytic functions [90]. For example, in the torsion
problem shear stresses τ

XZ
and τ

Y Z
can be sought as

τ
XZ

− iτ
Y Z

= µ ε[f ′(z) − iz̄]

and the condition of zero traction on the lateral faces of the beam is described by

f(z) − f(z) = izz̄

If the function z = ω(ζ) which maps |ζ| ≤ 1 onto the beam cross section is known,
then an explicit integral formula solution can be written as

f(ζ) =
1
2π

∫
|σ|=1

ω(σ)ω(σ)dσ
σ − ζ

Consequently, the torsion problem for a beam of simply connected cross section is
represented concisely in terms of the function which maps a circular disk onto the
cross section.

12.5.4 Plane Elastostatics

Analyzing the elastic equilibrium of two-dimensional bodies satisfying conditions
of plane stress or plane strain can be reduced to determining two analytic functions.
The formulas to Þnd three stress components and two displacement components are
more involved than the ones just stated. They will be investigated later when stress
concentrations in a plate having a circular or elliptic hole are discussed.
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12.5.5 Electric Field Intensity

Electromagnetic Þeld theory is concerned with the Þeld intensity ε which is de-
scribed in terms of the electrostatic potential E [92] such that

E = Ex + iEy = −∂φ
∂x

− i
∂φ

∂y

where φ is a harmonic function at all points not occupied by charge. Consequently a
complex electrostatic potential Ω(z) exists such that

E = −Ω′(z)

The electromagnetic problem is analogous to inviscid incompressible ßuid ßow prob-
lems. We will also Þnd that harmonic functions remain harmonic under the geometry
change of a conformal transformation, which will be discussed later. This produces
interesting situations where solutions for new problems can sometimes be derived by
simple geometry changes.

12.6 Branch Points and Multivalued Behavior

Before speciÞc types of maps are examined, we need to consider the concept of
branch points. A type of singular point quite different from isolated singularities such
as poles arises when a singular point of F (z) cannot be made the interior of a small
circle on which F (z) is single valued. Such singularities are called branch points
and the related behavior is typiÞed by functions such as

√
z − z0 and log(z − z0).

To deÞne p = log(z − z0), we accept any value p such that ep produces the value
z − z0. Using polar form we can write

(z − z0) = |z − z0|ei(θ+2πk) where θ = arg(z − z0)

with k being any integer. Taking

p = log |z − z0| + i(θ + 2πk)

yields an inÞnity of values all satisfying ep = z − z0. Furthermore, if z traverses a
counterclockwise circuit around a circle |z− z0| = δ, θ increases by 2π and log(z−
z0) does not return to its initial value. This shows that log(z − z0) is discontinuous
on a path containing z0. A similar behavior is exhibited by

√
z − z0, which changes

sign for a circuit about |z − z0| = δ.
Functions with branch points have the characteristic behavior that the relevant

functions are discontinuous on contours enclosing the branch points. Computing the
function involves selection among a multiplicity of possible values. Hence

√
4 can

equal +2 or −2, and choosing the proper value depends on the functions involved.
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For sake of deÞniteness MATLAB uses what are called principal branch deÞnitions
such that √

z = |z|1/2 eıθ/2 , −π < θ = tan−1
(y
x

)
≤ π

and

log(z) = log |z| + iθ

The functions deÞned this way have discontinuities across the negative real axis.
Futhermore, log(z) becomes inÞnite at z = 0.

Dealing carelessly with multivalued functions can produce strange results. Con-
sider the function

p =
√
z2 − 1

which will have discontinuities on lines such that z 2 − 1 = −|h| , where h is a
general parameter. Discontinuity trouble occurs when

z = ±
√

1 − |h|

Taking 0 ≤ |h| ≤ 1 gives a discontinuity line on the real axis between −1 and
+1, and taking |h| > 1 leads to a discontinuity on the imaginary axis. Figure 12.1
illustrates the odd behavior exhibited by sqrt(z.�2-1). The reader can easily
verify that using

sqrt(z-1).*sqrt(z+1)

deÞnes a different function that is continuous in the plane cut along a straight line
between −1 and +1.

Multivalued functions arise quite naturally in solutions of boundary value prob-
lems, and the choices of branch cuts and branch values are usually evident from
physical circumstances. For instance, consider a steady-state temperature problem
for the region |z| < 1 with boundary conditions requiring

u(1, θ) = 1 , 0 < θ < π and
∂u(1, θ)
∂r

= 0 , π < θ < 2π.

It can be shown that the desired solution is

u = real
{

1
πi

[log(z + 1) − log(z − 1)]
}

+
3
2

where the logarithms must be deÞned so u is continuous inside the unit circle and u
equals 1/2 at z = 0. Appropriate deÞnitions result by taking

−π < arg(z + 1) ≤ π , 0 ≤ arg(z − 1) ≤ 2π

MATLAB does not provide this deÞnition intrinsically; so, the user must handle each
problem individually when branch points arise.

© 2003 by CRC Press LLC



−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−3

−2

−1

0

1

2

3

real axis

Discontinuous Surface for imag( sqrt( z2 − 1 ) )

imaginary axis

im
ag

( 
sq

rt
( 

z2 −
1 

) 
)

Figure 12.1: Discontinuous Surface for imag (sqrt (z 2 − 1)1/2)

12.7 Conformal Mapping and Harmonic Functions

A transformation of the form

x = x(ξ, η) , y = y(ξ, η)

is said to be conformal if the angle between intersecting curves in the (ξ, η) plane
remains the same for corresponding mapped curves in the (x, y) plane. Consider the
transformation implied by z = ω(ζ) where ω is an analytic function of ζ. Since

dz = ω′(ζ) dζ

it follows that

|dz| = |ω′(ζ)| |dζ| and arg(dz) = arg(ω′(ζ) ) + arg(dζ)

This implies that the element of length |dζ| is stretched by a factor of |ω ′(ζ)| and the
line element dζ is rotated by an angle arg[ω ′(ζ)]. The transformation is conformal
at all points where ω′(ζ) exists and is nonzero.

Much of the interest in conformal mapping results from the fact that harmonic
functions remain harmonic under a conformal transformation. To see why this is
true, examine Laplace�s equation written in the form

∇2
xyu = 4

∂2u

∂z∂z̄
= 0
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For a conformal map we have

z = ω(ζ) , z̄ = ω(ζ)

∂u

∂z
=

1
ω′(ζ)

∂u

∂ζ
,

∂u

∂z̄
=

1
ω′(ζ)

∂u

∂ζ̄

Since z depends only on ζ and z̄ depends only on ζ̄ we Þnd that

∇2
xyu = 4

1
ω′(ζ)ω′(ζ)

∂2u

∂ζ∂ζ̄
=

1
|ω′(ζ)|2∇

2
ξηu

It follows that
∂2u

∂x2
+
∂2u

∂y2
= 0 implies

∂2u

∂ξ2
+
∂2u

∂η2
= 0

wherever ω′(ζ) 
= 0. The transformed differential equation in the new variables is
identical to that of the original differential equation. Hence, when u(x, y) is a har-
monic function of (x, y), then u(x(ξ, η), y(ξ, η)) is a harmonic function of (ξ, η),
provided ω(ζ) is an analytic function. This is a remarkable and highly useful prop-
erty. Normally, changing the independent variables in a differential equation changes
the form of the equation greatly. For instance, with the polar coordinate transforma-
tion

x = r cos(θ), y = r sin(θ)

the Laplace equation becomes

∇2u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2
∂2u

∂θ2
= 0

The appearance of this equation is very different from the Cartesian form because
x+iy is not an analytic function of r+iθ. On the other hand, using the transformation

z = log(ζ) = log(|ζ|) + i arg(ζ)

gives
∇2

xyu = (ζζ̄)∇2
ξηu

and ∇2
xyu = 0 implies ∇2

ξηu = 0 at points other than ζ = 0 or ζ = ∞.
Because solutions to Laplace�s equation are important in physical applications,

and such functions remain harmonic under a conformal map, an analogy between
problems in two regions often can be useful. This is particularly attractive for prob-
lems where the harmonic function has constant values or zero normal gradient on
critical boundaries. An instance pertaining to inviscid ßuid ßow about an elliptic
cylinder will be used later to illustrate the harmonic function analogy. In the sub-
sequent sections we discuss several transformations and their relevant geometrical
interpretation.
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12.8 Mapping onto the Exterior or the Interior of an Ellipse

We will examine in some detail the transformation

z =
(
a+ b

2

)
ζ +

(
a− b

2

)
ζ−1 = R(ζ +mζ−1) , ζ ≥ 1

where R = (a+ b)/2 and m = (a− b)/(a+ b). The derivative

z′(ζ) = R(1 −mζ−2)

becomes nonconformal when z ′(ζ) = 0 or ζ = ±√
m. For sake of discussion, we

temporarily assume a ≥ b to make
√
m real rather than purely imaginary. A circle

ζ = ρ0e
ıθ transforms into

x+ ıy = R(ρ0 +mρ−1
0 ) cos(θ) + iR(ρ0 −mρ−1

0 ) sin(θ)

yielding an ellipse. When ρ0 = 1 we get x = a cos(θ), y = b sin(θ). This mapping
function is useful in problems such as inviscid ßow around an elliptic cylinder or
stress concentration around an elliptic hole in a plate. Furthermore, the mapping
function is easy to invert by solving a quadratic equation to give

ζ =
z +

√
(z − α)(z + α)
a+ b

, α =
√
a2 − b2

The radical should be deÞned to have a branch cut on the x-axis from −α to α and
to behave like +z for large |z|. Computing the radical in MATLAB as

sqrt(z-alpha).*sqrt(z+alpha)

works Þne when α is real because MATLAB uses

−π < arg(z ± α) ≤ π

and the sign change discontinuities experienced by both factors on the negative real
axis cancel to make the product of radicals continuous. However, when a < b the
branch points occur at ±z0 where z0 = i

√
b2 − a2, and a branch cut is needed along

the imaginary axis. We can give a satisfactory deÞnition by requiring

−π
2
< arg(z ± z0) ≤ 3π

2

The function elipinvr provided below handles general a and b.
Before leaving the problem of ellipse mapping we mention the fact that mapping

the interior of a circle onto the interior of an ellipse is rather complicated but can be
formulated by use of elliptic functions [75]. However, a simple solution to compute
boundary point correspondence between points on the circle and points on the ellipse
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appears in [52]. This can be used to obtain mapping functions in rational form which
are quite accurate. The function elipdplt produces the mapping. Results showing
how a polar coordinate grid in the ζ-plane maps onto a two to one ellipse appears
in Figure 12.2. In these examples and other similar ones, grid networks in polar
coordinates always use constant radial increments and constant angular increments.
Only the region corresponding to 0.3 ≤ |ζ| ≤ 1 and 0 ≤ arg(ζ) ≤ π

2 is shown. Note
that the distortion of line elements at different points of the grid is surprisingly large.
This implies that the stretching effect, depending on |ω ′(ζ)| ,varies more than might
at Þrst be expected.

Often it is desirable to see how a rectangular or polar coordinate grid distorts
under a mapping transformation. This is accomplished by taking the point arrays and
simultaneously plotting rows against rows and columns against columns as computed
by the following function gridview which works for general input arrays x, y. If the
input data are vectors instead of arrays, then the routine draws a single curve instead
of a surface. When gridview is executed with no input, it generates the plot in
Figure 12.3 which shows how a polar coordinate grid in the ζ-plane maps under the
transformation

z = R

(
ζ +

m

ζ

)
The new grid consists of a system of confocal ellipses orthogonally intersecting a
system of hyperbolas.
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12.8.1 Program Output and Code

Function sqrtsurf

1: function sqrtsurf
2: %
3: % sqrtsurf
4: % ~~~~~~~~
5: %
6: % This function illustrates the discontinuity
7: % in the function w=sqrt(z*z-1).
8:

9: xx=linspace(-2,2,41); [x,y]=meshgrid(xx,xx);
10: z=x+i*y; w=sqrt(z.*z-1); close
11: surf(x,y,imag(w)); view(-40,50);
12: xlabel(’real axis’); ylabel(’imaginary axis’);
13: zlabel(’imag( sqrt( z^2-1 ) )’);
14: title([’Discontinuous Surface for imag( sqrt’, ...
15: ’( z^2 - 1 ) )’]);
16: grid on; figure(gcf);
17: %print -deps sqrtsurf

Function elipinvr

1: function zeta=elipinvr(a,b,z)
2: %
3: % zeta=elipinvr(a,b,z)
4: % ~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function inverts the transformation
7: % z=(a+b)/2*zeta+(a-b)/2/zeta which maps
8: % abs(zeta)>=1 onto (x/a).^2+(y/b).^2 >= 1
9: %

10: % a - semi-diameter on x-axis
11: % b - semi-diameter on y-axis
12: % z - array of complex values
13: %
14: % zeta - array of complex values for the
15: % inverse mapping function
16: %
17: % User m functions called: none
18:
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19: z0=sqrt(a^2-b^2); ab=a+b;
20: if a==b
21: zeta=z/a;
22: elseif a>b % branch cut along the real axis
23: zeta=(z+sqrt(z-z0).*sqrt(z+z0))/ab;
24: else % branch cut along the imaginary axis
25: ap=angle(z+z0); ap=ap+2*pi*(ap<=-pi/2);
26: am=angle(z-z0); am=am+2*pi*(am<=-pi/2);
27: zeta=(z+sqrt(abs(z.^2-z0.^2)).*exp(...
28: i/2*(ap+am)))/ab;
29: end

Function elipdplt

1: function [z,a,b]=elipdplt(rx,ry)
2: % [z,a,b]=elipdplt(rx,ry)
3: % ~~~~~~~~~~~~~~~~~~~~~~~
4: % This function plots contour lines showing
5: % how a polar coordinate grid in a circular
6: % disk maps onto an elliptic disk.
7: %
8: % User m functions called: elipdisk, gridview
9:

10: if nargin==0, rx=2; ry=1; end
11: zeta=linspace(.3,1,12)’* ...
12: exp(i*linspace(0,pi/2,61));
13: [z,a,b]=elipdisk(zeta,rx,ry);
14: x=real(z); y=imag(z);
15: gridview(x,y,’x axis’,’y axis’,...
16: ’Mapping abs(ZETA)<1 onto an Elliptic Disk’);
17: colormap([1 1 1]); shg
18: print -deps elipdisk
19:

20: %=============================================
21:

22: function gridview(x,y,xlabl,ylabl,titl)
23: %
24: % gridview(x,y,xlabl,ylabl,titl)
25: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26: %
27: % This function views a surface from the top

© 2003 by CRC Press LLC



28: % to show the coordinate lines of the surface.
29: % It is useful for illustrating how coordinate
30: % lines distort under a conformal transformation.
31: % Calling gridview with no arguments depicts the
32: % mapping of a polar coordinate grid map under
33: % a transformation of the form
34: % z=R*(zeta+m/zeta).
35: %
36: % x,y - real matrices defining a
37: % curvilinear coordinate system
38: % xlabl,ylabl - labels for x and y axes
39: % titl - title for the graph
40: %
41: % User m functions called: cubrange
42: %----------------------------------------------
43:

44: % close
45: if nargin<5
46: xlabl=’real axis’; ylabl=’imaginary axis’;
47: titl=’’;
48: end
49:

50: % Default example using z=R*(zeta+m/zeta)
51: if nargin==0
52: zeta=linspace(1,3,10)’* ...
53: exp(i*linspace(0,2*pi,81));
54: a=2; b=1; R=(a+b)/2; m=(a-b)/(a+b);
55: z=R*(zeta+m./zeta); x=real(z); y=imag(z);
56: titl=[’Circular Annulus Mapped onto an ’, ...
57: ’Elliptical Annulus’];
58: end
59:

60: range=cubrange([x(:),y(:)],1.1);
61:

62: % The data defin a curve
63: if size(x,1)==1 | size(x,2)==1
64: plot(x,y,’-k’); xlabel(xlabl); ylabel(ylabl);
65: title(titl); axis(’equal’); axis(range);
66: grid on; figure(gcf);
67: if nargin==0
68: print -deps gridviewl
69: end
70: % The data defin a surface
71: else
72: plot(x,y,’k-’,x’,y’,’k-’)
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73: xlabel(xlabl); ylabel(ylabl); title(titl);
74: axis(’equal’); axis(range); grid on;
75: figure(gcf);
76: if nargin==0
77: print -deps gridview
78: end
79: end
80:

81: %=============================================
82:

83: function [z,a,b]=elipdisk(zeta,rx,ry)
84: %
85: % [z,a,b]=elipdisk(zeta,rx,ry)
86: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
87: %
88: % This function computes a rational function
89: % mapping abs(zeta)<=1 onto an elliptical disk
90: % defined by (x/rx)^2+(y/ry)^2<=1. Boundary
91: % points are computed using theory from
92: % P. Henrici, Applied Complex Analysis,
93: % Vol 3, p391.
94: % The rational function approximation has the
95: % form:
96: % z=sum(a(j)*zeta^(2*j-1)) /
97: % (1+sum(b(j)*zeta^(2*j));
98: %
99: % zeta - matrix of points with abs(zeta)<=1

100: % rx,ry - ellipse semidiameters on x and y
101: % axes
102: %
103: % z - points into which zeta maps
104: % a,b - coefficients in the rational
105: % function defining the map
106: %
107: % User m functions called: ratcof
108: %----------------------------------------------
109:

110: ntrms=100; ntheta=251;
111: tau=(0:2*pi/ntheta:2*pi)’;
112: ep=(rx-ry)/(rx+ry);
113: z=exp(i*tau); z=z+ep*conj(z);
114: j=1:ntrms; ep=ep.^j; ep=ep./(j.*(1+ep.*ep));
115: theta=tau+2*( sin((2*tau+pi)*j)*ep’);
116: zta=exp(i*theta); z=rx/max(real(z))*z;
117: [a,b]=ratcof(zta.^2,z./zta,8);
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118: a=fix(real(1e8*a))/1e8; b=fix(real(1e8*b))/1e8;
119: af=flipud(a(:)); bf=flipud([1;b(:)]);
120: zta2=zeta.^2;
121: z=zeta.*polyval(af,zta2)./polyval(bf,zta2);
122:

123: %=============================================
124:

125: function [a,b]=ratcof(xdata,ydata,ntop,nbot)
126: %
127: % [a,b]=ratcof(xdata,ydata,ntop,nbot)
128: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
129: %
130: % Determine a and b to approximate ydata as
131: % a rational function of the variable xdata.
132: % The function has the form:
133: %
134: % y(x) = sum(1=>ntop) ( a(j)*x^(j-1) ) /
135: % ( 1 + sum(1=>nbot) ( b(j)*x^(j)) )
136: %
137: % xdata,ydata - input data vectors (real or
138: % complex)
139: % ntop,nbot - number of series terms used in
140: % the numerator and the
141: % denominator.
142: %
143: % User m functions called: none
144: %----------------------------------------------
145:

146: ydata=ydata(:); xdata=xdata(:);
147: m=length(ydata);
148: if nargin==3, nbot=ntop; end;
149: x=ones(m,ntop+nbot); x(:,ntop+1)=-ydata.*xdata;
150: for i=2:ntop, x(:,i)=xdata.*x(:,i-1); end
151: for i=2:nbot
152: x(:,i+ntop)=xdata.*x(:,i+ntop-1);
153: end
154: ab=x\ydata;
155: a=ab(1:ntop); b=ab(ntop+1:ntop+nbot);
156:

157: %==============================================
158:

159: % function range=cubrange(xyz,ovrsiz)
160: % See Appendix B
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12.9 Linear Fractional Transformations

The mapping function deÞned by

w =
az + b

cz + d

is called a linear fractional, or bilinear, transformation where a, b, c, and d are con-
stants. It can be inverted to yield

z =
−dw + b

cw − a

If c is zero the transformation is linear. Otherwise, we can divide out c to get

w =
Az +B

z +D

The three remaining constants can be found by making three points in the z-plane
map to three given points in the w-plane. Note that z = ∞ maps to w = A and
z = −D maps to w = ∞.

The transformation has the attractive property that circles or straight lines map into
circles or straight lines. An equation deÞning a circle or straight line in the z-plane
has the form

Pzz̄ +Qz + Q̄z̄ + S = 0

where P and S are real. A straight line is obtained when P is zero. Expressing z in
terms of w and clearing fractions leads to an equation of the form

P0ww̄ +Q0w + Q̄0w̄0 + S0 = 0

which deÞnes a circle in the w-plane when P0 is nonzero. Otherwise, a straight line
in the w-plane results.

Determining the bilinear transformation to take three z-points to three w-points is
straightforward except for special cases. Let

Z=[z1;z2;z3] and W=[w1;w2;w3]

If det([Z,W,ones(3,1)]) vanishes then a linear transformation with c = 0
and d = 1 applies. If z = ∞ maps to w1 we take a = w1, c = 1. If z = z1
maps to w = ∞ we take c = 1, d = −z1. In the usual situation we simply write
w(z +D) = Az +B and solve the system

[Z,ones(3,1),-W]*[A;B;D]=W.*Z
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Function linfrac, used to compute the coefÞcients in the transformation, is pro-
vided at the end of this section. Points at inÞnity are handled by including ∞ (repre-
sented in MATLAB by inf) as a legitimate value in the components of z or w. For
example, the transformationw = (2z + 3)/(z − 1) takes z = ∞ to w = 2, z = 1 to
w = ∞, and z = 1 + ı to w = 2 − 5ı. The expression

cz=linfrac([inf,1,1+i],[2,inf,2-5i]);

produces the coefÞcients in the transformation. Similarly, the transformation is in-
verted by

cw=linfrac([2,inf,2-5i],[inf,1,1+i]);

or equivalently by

cw=linfrac([0,1,2i],[-1.5,-4,-0.25-1.25i]);

Another type of problem of interest in connection with a known bilinear transfor-
mation is to Þnd the circle or straight line into which a given circle or straight line
maps. Function crc2crc performs this task. The coefÞcients c are given along with
three points lying on a circle or a straight line. Then parameters w 0, r0 pertaining to
the w-plane are computed. If parameter type equals 1, then w 0 and r0 specify the
center and radius of a circle. Otherwise, w0 and r0 are two points deÞning a straight
line.

The linear fractional transformation can be used to map an eccentric annulus such
as that in Figure 12.4 onto a concentric annulus. Suppose a region 1 ≤ |z| ≤ R is to
be mapped onto the region deÞned by

|w| ≥ R1 , |w − w0| ≤ R0

The radiusR and mapping coefÞcients c can be obtained by solving a system of non-
linear simultaneous equations. Function ecentric accomplishes the task. A function
call of

[c,r]=ecentric(0.25,-0.25,1);

produces

w =
3.4821z + 0.25
z + 13.9282

, R = 3.7321

and the plot in Figure 12.4 shows the mapped image of a polar coordinate grid using
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Figure 12.4: Concentric Annulus Mapped onto Eccentric Annulus

constant radial and angular increment in the z plane.
To demonstrate the utility of the transformation just discussed, consider the prob-

lem of determining the steady-state temperature Þeld in an eccentric annulus with
the inner and outer boundaries held at u1 and u0, respectively. The temperature Þeld
will be a harmonic function that remains harmonic under a conformal transforma-
tion. The related problem for the concentric annulus has the simple form

u = u1 +
(u0 − u1) ln(r)

ln(R)
, 1 ≤ r ≤ R

By analogy, expressing r = |z| in terms of w gives the temperature distribution at
points in the w-plane.
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12.9.1 Program Output and Code

Function linfrac

1: function c=linfrac(z,w)
2: %
3: % c=linfrac(z,w)
4: % ~~~~~~~~~~~~~~
5: %
6: % This function determines the linear
7: % fractional transformation to map any three
8: % points in the z-plane into any three points
9: % in the w plane. Not more than one point in

10: % either the z or w plane may be located at
11: % infinity.
12: %
13: % z - vector of complex values [z1,z2,z3]
14: % w - vector of complex values [w1,w2,w3]
15: %
16: % c - vector defining the bilinear
17: % transformation
18: % w=(c(1)*z + c(2))/(c(3)*z + c(4))
19: %
20: % User m functions called: none
21: %----------------------------------------------
22:

23: z=z(:); w=w(:); c=ones(4,1);
24: k=find(z==inf); j=find(w==inf); kj=[k;j];
25:

26: % z and w both contain points at infinity
27: if length(kj)==2
28: c(1)=w(k); c(4)=-z(j); w(kj)=[]; z(kj)=[];
29: c(2)=(w-c(1))*z+w*c(4);
30: return
31: end
32:

33: % z=infinity maps to a finite w point
34: if ~isempty(k) & isempty(j)
35: c(1)=w(k); z(k)=[]; w(k)=[];
36: c([2 4])=[[1;1],-w]\[(w-c(1)).*z];
37: return
38: end
39:

40: % a finite z point maps to w = infinity
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41: if ~isempty(j) & isempty(k)
42: c(4)=-z(j); z(j)=[]; w(j)=[];
43: c([1 2])=[z,[1;1]]\[w.*(z+c(4))];
44: return
45: end
46:

47: % case where all points are finite
48: mat=[z,ones(3,1),-w];
49:

50: % case for a general transformation
51: if det(mat)~=0
52: c([1 2 4])=mat\[w.*z];
53: % case where transformation is linear
54: else
55: c(3)=0; c([1 2])=[z,ones(3,1)]\w;
56: end

Function crc2crc

1: function [w0,r0,type]=crc2crc(c,z)
2: %
3: % [w0,r0,type]=crc2crc(c,z)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function determines the circle or
7: % straight line into which a circle or straight
8: % line maps under a linear fractional
9: % transformation.

10: %
11: % c - coefficients defining a linear
12: % fractional transformation
13: % w=(c(1)*z+c(2))/(c(3)*z*c(4))
14: % where c(2)*c(3)-c(1)*c(4) is nonzero
15: % z - a vector of three complex values
16: % lying on a circle or a straight line
17: %
18: % w0 - center of a circle in the w plane
19: % if type=1, or a point on a straight
20: % line if type=2
21: % r0 - radius of a circle in the w plane
22: % if type=1, or a point on a straight
23: % line if type=2
24: % type - equals 1 to denote a circle or 2 to
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25: % denote a straight line in the w plane
26: %
27: % User m functions called: none
28: %----------------------------------------------
29:

30: % check for degenerate transformation
31: if c(2)*c(3)==c(1)*c(4)
32: disp([’Degenerate transformation in ’, ...
33: ’function crc2crc’]);
34: w0=[]; r0=[]; type=[]; return;
35: end
36:

37: % evaluate the mapping of the z points
38: w=(c(1)*z(:)+c(2))./(c(3)*z(:)+c(4));
39:

40: % check whether a point passes to infinity or
41: % the three z points define a straight line
42: k=find(w==inf);
43: dt=det([real(w),imag(w),ones(3,1)]);
44: if ~isempty(k); w(k)=[]; end
45:

46: % case for a straight line in the w plane
47: % defined by two points on the line
48: if dt==0 | ~isempty(k)
49: type=2; w0=w(1); r0=w(2);
50: % case for a circle in the w plane defined by
51: % a center point and the circle radius
52: else
53: type =1;
54: v=[2*real(w),2*imag(w),ones(3,1)]\abs(w).^2;
55: w0=v(1)+i*v(2); r0=sqrt(v(3)+abs(w0)^2);
56: end

Function ecentric

1: function [c,r]=ecentric(ri,wo,ro,nopl)
2: %
3: % [c,r]=ecentric(ri,wo,ro,nopl)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function determines the bilinear
7: % transformation which maps the region
8: % 1<=abs(z)<=r onto an eccentric annulus
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9: % defined by
10: % abs(w)>=ri & abs(w-wo)<=ro
11: %
12: % The coefficients c in the transformation
13: % w=(c(1)*z+c(2))/(c(3)*z+c(4))
14: % must be found as well as the outer radius r
15: % of the annulus in the z plane.
16: %
17: % ri - radius of inner circle abs(w)=ri
18: % wo - center of outer circle abs(w-wo)=ro
19: % ro - radius of outer circle
20: %
21: % c - coefficients in the mapping function
22: % r - radius of outer circle abs(z)=r
23: % nopl- no plot is given if nopl is input
24: %
25: % User m functions called: gridview
26:

27: if nargin==0, ri=.25; wo=-.25; ro=1; end
28:

29: if wo~=0
30: c1=(wo+ro)/ri; c2=(wo-ro)/ri; c3=2/(c1+c2);
31: c4=(c2-c1)/(c1+c2); c5=c3-c1-c1*c4; c6=1-c1*c3;
32: rt=sqrt(c5^2-4*c4*c6);
33: r1=(-c5+rt)/(2*c4); r2=(-c5-rt)/(2*c4);
34: r=max([r1,r2]); d=c3+c4*r; c=[ri*d;ri;1;d];
35: else
36: c=[ri;0;0;1]; r=ro/ri;
37: end
38: if nargin > 3, return, end
39:

40: % Show the region onto which a polar coordinate
41: % grid in the z-plane maps.
42: z=linspace(1,r,20)’*exp(i*linspace(0,2*pi,81));
43: w=(c(1)*z+c(2))./(c(3)*z+c(4));
44: titl=[’Concentric Annulus Mapped onto ’, ...
45: ’Eccentric Annulus’];
46: gridview(real(w),imag(w),...
47: ’real axis’,’imaginary axis’,titl); shg
48: % print -deps ecentric
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12.10 Schwarz-Christoffel Mapping onto a Square

The Schwarz-Christoffel transformation [75] provides integral formulas deÞning
transformations to map the interior of a circle onto the interior or exterior of a poly-
gon. Special cases obtained by allowing selected vertices to pass to inÞnity lead
to a variety of results [58]. In general situations, evaluating the parameters and inte-
grals in the Schwarz-Christoffel transformation is difÞcult and requires use of special
software [35]. We will examine only two cases: a) where the interior of a circle is
mapped onto the interior of a square, and b) where the exterior of a circle is mapped
onto the exterior of a square. The function

z = C

∫ ζ

0

(1 + t4)−1/2 dt,

where C is a scaling constant, maps |ζ| ≤ 1 inside the square deÞned by

(|x| ≤ 1) ∩ (|y| ≤ 1).

Expanding this radical by the binominal expansion and integrating gives

z = c

∞∑
n=0

(−1)n

[
Γ(n+ 1

2 )
n!(4n+ 1)

]
ζ1+4n , |ζ| ≤ 1

A reasonably good approximation to the mapping function can be obtained by tak-
ing several hundred terms in the mapping function and adjusting the constant c to
make ζ = 1 match z = 1. This series expansion converges slowly and rounds the
corners of the square because the derivative of the mapping function behaves like
(ζ − ζo)−1/2 at ζo = ±e±ıπ/4.

The transformation to map |ζ| ≥ 1 onto the square exterior deÞned by

(|x| ≥ 1) ∪ (|y| ≥ 1)

has the form

z = c0

∫ ζ

1

(1 + t−4)1/2 dt+ c1,

where c0 and c1 are arbitrary constants. Using the binomial expansion again and
term by term integration leads to

z = c

∞∑
n=0

(−1)n

[
Γ(n− 1

2 )
n!(4n− 1)

]
ζ1−4n , |ζ| ≥ 1

The function swcsqmap provides both interior and exterior polynomial maps. Once
again, truncating the series after a speciÞed number of terms and making ζ = 1
map to z = 1 gives an approximate mapping function which converges much more

© 2003 by CRC Press LLC



rapidly than the series for the interior problem. Rounding of the square corners is
greatly reduced because the mapping function derivative behaves like (ζ − ζ o)1/2 at
ζo = ±e±ıπ/4. Figure 12.5 illustrates results produced by the ten term series for
both interior and exterior regions. Using rational functions to produce better results
than polynomials was discussed earlier in Chapter 3. The function squarat, which
provides both interior and exterior maps, appears below.

It should be noted that inverting a mapping function z = ω(ζ) to get ζ = g(z)
explicitly is often difÞcult, if not impossible. For example, consider the form

z =
ζ(a+ bζ4 + cζ8)
1 + dζ4 + eζ8

, |ζ| ≤ 1

which requires solving the polynomial

cζ9 − ezζ8 + bζ5 − dzζ4 + aζ − z = 0

and picking the root inside or on the unit circle. Although the MATLAB function
roots efÞciently factors polynomials with complex coefÞcients, inverting the map-
ping function for hundreds or thousands of values can be time consuming.
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Figure 12.5: Square Maps Using a 10-term Series
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12.10.1 Program Output and Code

Function swcsq10

1: function swcsq10
2: % Example: swcsq10
3: % ~~~~~~~~~~~~~~~~
4: %
5: % This example demonstrates square map
6: % approximations pertaining to truncated
7: % Schwarz-Christoffel transformations.
8: %
9: % User m functions called: swcsqmap, gridview

10:

11: zeta=linspace(0.2,1,8)’* ...
12: exp(i*linspace(0,pi/2,61));
13: [z,a]=swcsqmap(zeta,10);
14: subplot(211)
15: gridview(real(z),imag(z),’x axis’,’y axis’, ...
16: [’Interior Map of a Square Using’, ...
17: ’ a 10-term Series’]);
18: subplot(212)
19: zeta=linspace(1,1.25,8)’* ...
20: exp(i*linspace(0,pi/2,61));
21: [z0,a]=swcsqmap(zeta,10,1);
22: gridview(real(z0),imag(z0),’x axis’,’y axis’, ...
23: [’Exterior Map of a Square Using ’, ...
24: ’a 10-term Series’]);
25: print -deps sqrplt10
26: subplot
27:

28: %=============================================
29:

30: function [z,a]=swcsqmap(zeta,ntrms,ifout)
31: %
32: % [z,a]=swcsqmap(zeta,ntrms,ifout)
33: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
34: %
35: % This function evaluates power series
36: % approximations for mapping either the inside
37: % of a circle onto the inside of a square, or
38: % mapping the outside of a circle onto the
39: % outside of a square. The Schwarz-Christoffel
40: % integrals defining the mapping functions are
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41: % expanded in Taylor series and are truncated
42: % to produce approximations in the following
43: % polynomial forms:
44: %
45: % For the interior problem:
46: % z=sum(a(n)*zeta^(4*n-3),n=1:ntrms)
47: %
48: % For the exterior problem:
49: % z=sum(a(n)*zeta^(-4*n+5),n=1:ntrms)
50: %
51: % The side length of the square is adjusted
52: % to equal 2.
53: %
54: % zeta - complex values where the mapping
55: % function is evaluated
56: % ntrms - number of terms used in the
57: % truncated series
58: % ifout - a parameter omitted if an interior
59: % map applies. ifout can have any
60: % value (such as 1) to show that an
61: % exterior map is to be performed.
62: %
63: % z - values of the mapping function
64: % a - coefficients in the mapping series
65: %
66: % User m functions called: none
67: %----------------------------------------------
68:

69: n=0:ntrms-2;
70: if nargin==2 % recursion formula for mapping
71: % interior on interior
72: p1=(n+1/2)./(n+1); p2=(n+1/4)./(n+5/4);
73: else % recursion formula for mapping
74: %exterior on exterior
75: p1=(n-1/2)./(n+1); p2=(n-1/4)./(n+3/4);
76: end
77: a=[1,cumprod(-p1.*p2)]; a=a(:)/sum(a);
78: z4=zeta.^4;
79: if nargin ==3, z4=1./z4; end;
80: z=zeta.*polyval(flipud(a(:)),z4);
81:

82: %=============================================
83:

84: % function gridview(x,y,xlabl,ylabl,titl)
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85: % See Appendix B

Function squarat

1: function [z,a,b]=squarat(zeta,ifout)
2: %
3: % [z,a,b]=squarat(zeta,ifout)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function maps either the interior of a
7: % circle onto the interior of a square, or maps
8: % the exterior of a circle onto the exterior of
9: % a square using a rational function having the

10: % approximate form:
11: %
12: % z(zeta) = zeta *
13: %
14: % Sum(a(j)*zeta4^j)/(1+Sum(b(j)*zeta4^j),
15: %
16: % where zeta4=zeta^4 for an interior problem,
17: % or zeta4=zeta^(-4) for an exterior problem.
18: %
19: % zeta - matrix of complex values such that
20: % abs(zeta)<=1 for an interior map,
21: % or abs(zeta)>=1 for an exterior map
22: % ifout - parameter present in the call list
23: % only when an exterior mapping is
24: % required
25: %
26: % z - matrix of values of the mapping
27: % function
28: % a,b - coefficients of the polynomials
29: % defining the rational mapping
30: % function
31: %
32: % User m functions called: none
33: %----------------------------------------------
34:

35: zeta4=zeta.^4;
36:

37: if nargin==1 % map interior on interior
38: a=[ 1.07835, 1.37751,-0.02642, -0.09129, ...
39: 0.13460,-0.15763, 0.07430, 0.14858, ...
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40: 0.01878,-0.00354 ]’;
41: b=[ 1.37743, 0.07157,-0.11085, 0.12778, ...
42: -0.13750, 0.05313, 0.14931, 0.02683, ...
43: -0.00350,-0.000120 ]’;
44: else % map exterior on exterior
45: a = [1.18038, 1.10892, 0.13365, -0.02910]’;
46: b = [1.10612, 0.27972, 0.00788]’;
47: zeta4=1./zeta4;
48: end
49:

50: % Evaluate the mapping function
51: af=flipud(a); bf=flipud([1;b]);
52: z=zeta.*polyval(af,zeta4)./polyval(bf,zeta4);

12.11 Determining Harmonic Functions in a Circular Disk

The problem of determining a function that is harmonic for |z| < 1 and satisÞes
certain boundary conditions can be analyzed effectively using series methods. In
problems pertaining to the unit circle, it is often convenient to consider a function
u, in polar cordinates, and write u(r, θ). Simultaneously, we may wish to think in
terms of the related complex variable z = r σwhere σ = e iθ . Three basic problems
will be considered.

I) Dirichlet Problem
∇2u = 0 , |z| < 1

u(1, θ) = f(θ) , 0 ≤ θ ≤ 2π

We assume f(θ) is a real piecewise continuous function expandable in a Four-
ier series as

f(θ) =
∞∑

n=−∞
fnσ

n , f−n = fn

Then u is given by the series

u = f0 + 2 real(
∞∑

n=1

fnz
n) , |z| ≤ 1

II) Neumann Problem
∇2u = 0 , |z| < 1

∂u(1, θ)
∂r

= g(θ) , 0 ≤ θ ≤ 2π
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We assume that the gradient function g is expandable in a Fourier series as

g(θ) =
∞∑

n=−∞
gnσ

n , g−n = gn.

The solution only exists if the integral of g(θ) with respect to arc length around
the boundary is zero. Hence, when

g0 =
1
2π

∫ 2π

0

g(θ) dθ = 0,

then the series solution is

u = 2 real(
∞∑

n=1

(gn

n

)
zn) + c , |z| ≤ 1

where c is an arbitrary real constant.

III) Mixed Problem

In the third type of problem the function value is speciÞed on one part of the
boundary and the normal gradient is speciÞed on the remainder. In the general
situation a solution can be constructed by methods using Cauchy integrals [73].
Only a simple case will be examined here. We require

∇2u = 0 |z| < 1

u(1, θ) = f(θ) , θ1 < θ < θ2

∂u(1, θ)
∂r

= g(θ) , θ2 < θ < (2π + θ1)

For convenience use the notation

L : z = eıθ , θ1 < θ < θ2
L′ : z = eıθ , θ2 < θ < (2π + θ1)

The mixed problem can be reduced to a case where g is zero by Þrst solving a
Neumann problem for a harmonic function v such that

∂v

∂r
= g(θ) , z ∈ L′

∂v

∂r
= −

∫ 2π+θ1

θ2
g(θ) dθ

θ2 − θ1
, z ∈ L

Then we replace f(θ) by f(θ) − v(1, θ) to get a problem where

u = f(θ) − v(1, θ) , z ∈ L
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∂u

∂r
= 0 , z ∈ L′

The complete solution then equals the sum of u and v. Consequently, no loss
of generality results in dealing with the problem

u = f , z ∈ L

∂u

∂r
= 0 , z ∈ L′

Consider the function

R(z) =
√

(z − a)(z − b) , a = eıθ1 , b = eıθ2

deÞned in the complex plane cut along L. We choose the branch of R satisfy-
ing

R(0) = ei(θ1+θ2)/2

The solution to the mixed boundary value problem can be expressed as

u = real(
R(z)
πi

∫
L

f(t) dt
R+(t)(t− z)

) , t = eıθ , θ1 < θ < θ2

where R+(t) means the boundary value of R(z) on the inside of the arc. As
an example take

θ1 = −π
2

, θ2 =
π

2

R(z) =
√
z2 + 1 , R(0) = 1

u = cos(θ) , −π
2
≤ θ ≤ π

2
Carrying out the integration gives

u = real(F (z) )

where

F (z) =
z + z−1 + (1 − z−1)

√
z2 + 1

2
, |z| ≤ 1

and the square root equals +1 at z = 0. This function is employed as a test
case in subsequent calculations. The exact solution is evaluated in function
mbvtest.

12.11.1 Numerical Results

The function lapcrcl solves either Dirichlet or Neumann problems for the unit
disk. The boundary values are speciÞed as piecewise linear functions of the polar
angle. Then function lintrp is used to obtain a dense set of boundary values which
are transformed by the FFT to produce coefÞcients in the series solution. When
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lapcrcl is executed with no input data, a Dirichlet problem is solved having the
boundary condition

u(1, θ) = 1 +
cos(16θ)

10
, −π

2
< θ <

π

2

u(1, θ) =
cos(16θ)

10
,

π

2
< θ <

3π
2

This chosen boundary condition produces the interesting surface plot shown in Fig-
ure 12.6 where the solution was evaluated on a polar coordinate grid employing
constant radial and angular increments.

The mixed boundary value problem is more difÞcult to handle than the Dirichlet
or Neumann problems because numerical evaluation of the Cauchy integral must be
performed cautiously. As z approaches a point onL, the integrand becomes singular.
Theoretical developments involving Cauchy principal value integrals and the Plemelj
formulas are needed to handle this situation thoroughly [73]. Even when z is close to
the boundary, large integrand magnitude may cause inaccurate numerical integration.
Furthermore, the integrand will have square root type singularities at the ends of L
unless f(a) = f(b) = 0. Regularization procedures that can cope fully with these
difÞculties [26] will not be investigated in this text. Instead a simpliÞed approach is
presented.

The function cauchint was written to evaluate a contour integral involving a gen-
eral density function f(ζ) deÞned on a curve L of general shape.We consider

F (z) =
1

2πi

∫
L

f(ζ) dζ
ζ − z

with both the density function f and the shape of L being deÞned using cubic spline
interpolation. A set of points

[ζ1, ζ2, . . . , ζm] , ζ = ξ + iη

lying on L, along with boundary values

[f(ζ1), f(ζ2), . . . , f(ζm)] = [f1, f2, . . . , fm]

are given. Spline functions ζ(t), f(t) are deÞned for 1 ≤ t ≤ m such that

ζ() = ζ and f() = f  = 1, 2, . . . , n

The integrand in parametric form becomes

F (z) =
1

2πi

∫ n

1

f(t) [ξ′(t) + iη′(t)] dt
ζ(t) − z

and this integral is evaluated using function gcquad which computes Gaussian base
points and weight factors using eigenvalue methods. It should be remembered that
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Figure 12.6: Dirichlet Problem Inside the Unit Circle

when z is a point on the contour of integration, the integrand has a Þrst order sin-
gularity. Hence, procedures to regularize the integrand would be needed to achieve
accurate numerical integration in such cases.

Function cauchtst was employed to produce an approximate solution of the prob-
lem cited above. A surface plot of the exact solution appears in Figure 12.7. A plot
of the difference between the exact and approximate solutions for 0 ≤ r ≤ 0.99 is
shown in Figure 12.8. This error is about three orders-of-magnitude smaller than the
maximum function values in the solution. The reader can verify that using r = 0.999
and −π/2 < θ < π/2 leads to much larger errors. The authors have found function
cauchint to be helpful if proper caution is exercised for results involving points near
the boundary.
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12.11.2 Program Output and Code

Function lapcrcl

1: function [u,r,th]=lapcrcl ...
2: (bvtyp,bvdat,rvec,thvec,nsum)
3: %
4: % [u,r,th]=lapcrcl(bvtyp,bvdat,rvec,thvec,nsum)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: %
7: % This function solves Laplace’s equation
8: % inside a circle of unit radius. Either a
9: % Dirichlet problem or a Neumann problem can be

10: % analyzed using boundary values defined by
11: % piecewise linear interpolation of data
12: % specified in terms of the polar angle.
13: %
14: % bvtyp - parameter determining what type
15: % of boundary value problem is
16: % solved. If bvtyp equals one,
17: % boundary data specify function
18: % values and a Dirichlet problem
19: % is solved. Otherwise, the
20: % boundary data specify values
21: % of normal gradient, and a Neumann
22: % problem is solved if, in accord
23: % with the existence conditions for
24: % this problem, the average value
25: % of gradient on the boundary is
26: % zero (negligibly small in an
27: % approximate solution).
28: % bvdat - a matrix of boundary data. Each
29: % bvdat(j,:) gives a function value
30: % and polar angle (in degrees) of
31: % a data point used by function
32: % lintrp to linearly interpolate
33: % for all other boundary values
34: % needed to generate the solution.
35: % rvec,thvec - vectors of radii and polar
36: % coordinate values used to form a
37: % polar coordinate grid of points
38: % inside the unit circle. No values
39: % of r exceeding unity are allowed.
40: % nsum - the number of terms summed in the
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41: % series expansion of the analytic
42: % function which has u as its real
43: % part. Typically, no more than one
44: % hundred terms are needed to
45: % produce a good solution.
46: %
47: % u - values of the harmonic function
48: % evaluated at a set of points on
49: % a polar coordinate grid inside
50: % the unit circle.
51: % r,th - the grid of polar coordinate
52: % values in which the function is
53: % evaluated
54: %
55: % User m functions called: lintrp
56:

57: % Default test case solves a Dirichlet problem
58: % for a function having the following exact
59: % solution:
60: %
61: % -1/2+imag(log((z-i)/(z+i))/pi)+real(z^16)/10
62: %
63: if nargin ==0
64: bvtyp=1; th=linspace(0,2*pi,201)’;
65: bv=1-(th>pi/2)+(th>3*pi/2)+cos(16*th)/10;
66: bvdat=[bv,180/pi*th];
67: rvec=linspace(1,0,10);
68: thvec=linspace(0,360,161); nsum=200;
69: end
70:

71: nft=512;
72: thfft=linspace(0,2*pi*(nft-1)/nft,nft);
73: if nargin<5, nsum=200; end;
74: nsum=min(nsum,nft/2-1);
75: fbv=bvdat(:,1); thbv=pi/180*bvdat(:,2);
76: nev=size(bvdat,1); nr=length(rvec);
77: nth=length(thvec); neval=nr*nth;
78: [R,Th]=meshgrid(rvec,pi/180*thvec);
79: r=R(:); th=Th(:);
80:

81: % Check for any erroneous points outside the
82: % unit circle
83: rvec=rvec(:);
84: kout=find(rvec>1); nout=length(kout);
85: if length(kout)>0
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86: print(’Input data are incorrect. The ’);
87: print(’following r values lie outside the ’);
88: print(’unit circle:’); disp(rvec(kout)’);
89: return
90: end
91:

92: if bvtyp==1 % Solve a Dirichlet problem
93: % Check for points on the boundary where
94: % function values are known. Interpolate
95: % these directly
96: konbd=find(r==1); onbndry=length(konbd);
97: if onbndry > 0
98: u(konbd)=lintrp(thbv,fbv,th(konbd));
99: end

100:

101: % Evaluate the series solution
102: kinsid=find(r<1); inside=length(kinsid);
103:

104: if inside > 0
105: a=fft(lintrp(thbv,fbv,thfft));
106: a=a(1:nsum)/(nft/2);
107: a(1)=a(1)/2; Z=r(kinsid).*exp(i*th(kinsid));
108: u(kinsid)=real(polyval(flipud(a(:)),Z));
109: end
110:

111: titl= ...
112: ’Dirichlet Problem Inside the Unit Circle’;
113:

114: else % Solve a Neumann problem
115: gbv=lintrp(thbv,fbv,thfft);
116: a=fft(gbv)/(nft/2);
117: erchek=abs(a(1))/sum(abs(gbv));
118: if erchek>1e-3
119: disp(’ ’);
120: disp(’ERROR DUE TO NONZERO AVERAGE VALUE’);
121: disp(’OF NORMAL GRADIENT ON THE BOUNDARY.’);
122: disp(’CORRECT THE INPUT DATA AND RERUN.’);
123: disp(’ ’); u=[]; r=[]; th=[]; return;
124: end
125: a=a(2:nsum)./(1:nsum-1)’; z=r.*exp(i*th);
126: u=real(polyval(flipud([0;a(:)]),z));
127: titl=’Neumann Problem Inside the Unit Circle’;
128: end
129:

130: u=reshape(u,nth,nr); r=R; th=Th;
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131: surf(r.*cos(th),r.*sin(th),u);
132: xlabel(’x axis’); ylabel(’y axis’);
133: zlabel(’function u’); title(titl);
134: colormap(’default’);
135: grid on; figure(gcf);
136: % print -deps dirich
137:

138: %=============================================
139:

140: % function y=lintrp(xd,yd,x)
141: % See Appendix B

Function cauchtst

1: function u=cauchtst(z,nquad)
2: %
3: % u=cauchtst(z,nquad)
4: % ~~~~~~~~~~~~~~~~~~~
5: %
6: % This function solves a mixed boundary
7: % value problem for the interior of a circle
8: % by numerically evaluating a Cauchy integral.
9: %

10: % z - matrix of complex coordinates where
11: % function values are computed
12: % nquad - order of Gauss quadrature used to
13: % perform numerical integration
14: %
15: % u - computed values of the approximate
16: % solution
17: %
18: % User m functions called: cauchint, mbvtest,
19: % gcquad, splined
20:

21: if nargin<2, nquad=50; end; nbdat=61;
22: if nargin==0
23: z=linspace(0,.99,10)’* ...
24: exp(i*linspace(0,2*pi,91));
25: end
26: th=linspace(-pi/2,pi/2,nbdat); zb=exp(i*th);
27: fb=sqrt(zb-i).*sqrt(zb+i); fb(1)=1; fb(nbdat)=1;

© 2003 by CRC Press LLC



28: fb=cos(th)./fb; fb(1)=0; fb(end)=0;
29: F=cauchint(fb,zb,z,nquad);
30: F=F.*sqrt(z-i).*sqrt(z+i); u=2*real(F);
31:

32: surf(real(z),imag(z),u); xlabel(’x axis’);
33: ylabel(’y axis’); zlabel(’Solution Value’)
34: title([’Approximate Solution to ’, ...
35: ’a Mixed Boundary Value Problem’]);
36: grid on; figure(gcf); %gra(.4);
37: fprintf(’\nPress [Enter] to solution error\n’);
38: pause
39: %print -deps caucher1
40: uexact=mbvtest(z,1); udif=u-uexact;
41: clf; surf(real(z),imag(z),udif);
42: title([’Difference Between Exact and ’, ...
43: ’Approximate Solutions’]);
44: xlabel(’x axis’); ylabel(’y axis’);
45: zlabel(’Solution Error’)
46: grid on; figure(gcf); %gra(.4)
47: %print -deps caucher2
48:

49: %=============================================
50:

51: function u=mbvtest(z,noplot)
52: %
53: % u=mbvtest(z,noplot)
54: % ~~~~~~~~~~~~~~~~~~~
55: %
56: % This function determines a function which is
57: % harmonic for abs(z)<1 and satisfies at r=1,
58: % u=cos(theta), -pi/2<theta<pi/2
59: % du/dr=0, pi/2<theta<3*pi/2
60: % The solution only applies for points inside
61: % or on the unit circle.
62: %
63: % z - matrix of complex values where the
64: % solution is computed.
65: % noplot - option set to one if no plot is
66: % requested, otherwise option is not
67: % required.
68: %
69: % u - values of the harmonic function
70: % defined inside the unit circle
71: %
72: % User m functions called: none
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73: %----------------------------------------------
74:

75: if nargin==0
76: noplot=0;
77: z=linspace(0,1,10)’* ...
78: exp(i*linspace(0,2*pi,81));
79: end
80: [n,m]=size(z); z=z(:); u=1/2*ones(size(z));
81: k=find(abs(z)>0); Z=z(k);
82: U=(Z+1./Z+(1-1./Z).*sqrt(Z-i).*sqrt(Z+i))/2;
83: u(k)=real(U); u=reshape(u,n,m);
84: if nargin==1 | noplot==0
85: z=reshape(z,n,m);
86: surf(real(z),imag(z),u); xlabel(’x axis’);
87: ylabel(’y axis’);
88: title([’Mixed Boundary Value Problem ’, ...
89: ’for a Circular Disk’]);
90: grid; figure(gcf); %gra(.4), pause
91: %print -deps mbvtest
92: end
93:

94: %=============================================
95:

96: function F=cauchint(fb,zb,z,nquad)
97: %
98: % F=cauchint(fb,zb,z,nquad)
99: % ~~~~~~~~~~~~~~~~~~~~~~~~~

100: %
101: % This function numerically evaluates a Cauchy
102: % integral of the form:
103: %
104: % F(z)=1/(2*pi*i)*Integral(f(t)/(t-z)*dt)
105: %
106: % where t denotes points on a curve in the
107: % complex plane. The boundary curve is defined
108: % by spline interpolation through data points
109: % zb lying on the curve. The values of f(t)
110: % are also specified by spline interpolation
111: % through values fb corresponding to the
112: % points zb. Numerical evaluation of the
113: % integral is performed using a composite
114: % Gauss formula of arbitrary order.
115: %
116: % fb - values of density function f
117: % at point on the curve

© 2003 by CRC Press LLC



118: % zb - points where fb is given. The
119: % number of values of zb must be
120: % adequate to define the curve
121: % accurately.
122: % z - a matrix of values at which the
123: % Cauchy integral is to be evaluated.
124: % If any of the z-values lie on path
125: % of integration or too close to the
126: % path of integration, incorrect
127: % results will be obtained.
128: % nquad - the order of Gauss quadrature
129: % formula used to perform numerical
130: % integration
131: %
132: % F - The value of the Cauchy integral
133: % corresponding to matrix argument z
134: %
135: % User m functions called: gcquad splined
136: %----------------------------------------------
137:

138: n=length(fb); [nr,nc]=size(z); z=z(:).’;
139: nz=length(z); t=1:n;
140: [dummy,bp,wf]=gcquad(’’,1,n,nquad,n-1);
141: fq=spline(t,fb,bp); zq=spline(t,zb,bp);
142: zqd=splined(t,zb,bp); nq=length(fq);
143: fq=fq(:).*zqd(:);
144:

145: bdrylen=sum(abs(zq(2:nq)-zq(1:nq-1)));
146:

147: closnes=1e100; bigz=max(abs(z));
148: for j=1:nq
149: closnes=min([closnes,abs(zq(j)-z)]);
150: end
151: if closnes/bdrylen<.01 | closnes/bigz<.01
152: disp(’ ’)
153: disp([’WARNING! SOME DATA VALUES ARE ’, ...
154: ’EITHER NEAR OR ON’]);
155: disp([’THE BOUNDARY. COMPUTED RESULTS ’, ...
156: ’MAY BE INACCURATE’]); disp(’ ’)
157: end
158: F=wf(:)’*(fq(:,ones(1,nz))./(zq(:,ones(1,nz))...
159: -z(ones(nq,1),:)));
160: F=reshape(F,nr,nc)/(2*pi*i);
161:

162: %=============================================
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163:

164: % function [val,bp,wf]=gcquad(func,xlow,...
165: % xhigh,nquad,mparts,varargin)
166: % See Appendix B
167:

168: %=============================================
169:

170: % function val=splined(xd,yd,x,if2)
171: % See Appendix B

12.12 Inviscid Fluid Flow around an Elliptic Cylinder

This section analyzes inviscid ßow around an elliptic cylinder in an inÞnite Þeld.
Flow around a circular cylinder is treated Þrst. Then the function conformally map-
ping the exterior of a circle onto the exterior of an ellipse is used in conjunction with
the invariance of harmonic functions under a conformal transformation. Results de-
scribing the elliptic cylinder ßow Þeld for uniform velocity components at inÞnity
are presented.

Let us solve for the ßow around a circular cylinder in the region |ζ| ≥ 1, ζ = ξ+iη
with the requirement that the velocity components at inÞnity have constant values

u = U , v = V

where (u, v) are the horizontal and vertical components of velocity. These compo-
nents are derivable from a potential function φ such that

u =
∂φ

∂ξ
, v =

∂φ

∂η

where φ is a harmonic function. The velocity normal to the cylinder boundary must
be zero. This requires that the functionψ, the harmonic conjugate of φ, must be con-
stant on the boundary. The constant can be taken as zero without loss of generality.
In terms of the complex velocity potential

f(ζ) = φ+ iψ

we need
f(ζ) − f(ζ) = 0 on |ζ| = 1

The velocity Þeld is related to the complex velocity potential by

u− iv = f ′(ζ)

so the ßow condition at inÞnity is satisÞed by

f(ζ) = pζ +O(1) where p = U − iV
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A Laurent series can be used to represent f(ζ) in the form

f(ζ) = pζ + a0 +
∞∑

n=1

anζ
−n

Imposition of the boundary condition on the cylinder surface requiring

f(σ) − f(σ) = 0 where σ = eıθ

leads to

pσ + a0 +
∞∑

n=1

anσ
−n − p̄σ−1 − a0 −

∞∑
n=1

anσ
n = 0

Taking a0 = 0, a1 = p̄, and an = 0, n ≥ 2 satisÞes all conditions of the problem
and yields

f(ζ) = pζ + p̄ζ−1

as the desired complex potential function giving the velocity Þeld as

u− iv = f ′(ζ) = p− p̄ζ−2 , |ζ| ≥ 1

Now consider ßow about an elliptic cylinder lying in the z-plane. If the velocity
at inÞnity has components (U, V ) then we need a velocity potential F (z) such that
F ′(∞) = U − iV and

F (z) − F (z) = 0 for
(x
a

)2

+
(y
b

)2

= 1

This is nearly the same problem as was already solved in the ζ-plane except that

dF

dz
=
dζ

dz

dF

dζ
=

1
ω′(ζ)

dF

dζ

where ω(ζ) is the mapping function

z = ω(ζ) = R(ζ +mζ−1) , R =
a+ b

2
, m =

a− b

a+ b

In terms of ζ we would need

dF

dζ
= ω′(∞)[U − iV ] = R(U − iV ) at ζ = ∞

Consequently, the velocity potential for the elliptic cylinder problem expressed in
terms of ζ is

F = pζ + p̄ζ−1 , p = R(U − ıV )

and the velocity components in the z-plane are given by

u− iv =
1

ω′(ζ)
[
p− p̄ζ−2

]
=

(U − iV ) − (U − iV )ζ−2

1 −mζ−2
.
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To get values for a particular choice of z we can use the inverse mapping function

ζ =
z +

√
z2 − 4mR2

2R

to eliminate ζ or we can compute results in terms of ζ.
To complete our discussion of this ßow problem we will graph the lines charac-

terizing the directions of ßow. The velocity potential F = φ+ iψ satisÞes

u =
∂φ

∂x
=
∂ψ

∂y
, v =

∂φ

∂y
= −∂ψ

∂x

so a curve tangent to the velocity Þeld obeys

dy

dx
=
v

u
= −∂ψ/∂x

∂ψ/∂y

or
∂ψ

∂x
dx+

∂ψ

∂y
dy = 0 , ψ = constant

Consequently, the ßow lines are the contours of function ψ, which is called the
stream function. The function we want to contour does not exist inside the ellipse,
but we can circumvent this problem by computing ψ in the ellipse exterior and then
setting ψ to zero inside the ellipse. The function elipcyl analyzes the cylinder ßow
and produces the accompanying contour plot shown in Figure 12.9.

© 2003 by CRC Press LLC



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x axis

y 
ax

is

Elliptic Cylinder Flow Field for Angle = 30 Degrees

Figure 12.9: Elliptic Cylinder Flow Field for Angle = 30◦

12.12.1 Program Output and Code

Function elipcyl

1: function [x,y,F]=elipcyl(a,n,rx,ry,ang)
2: %
3: % [x,y,F]=elipcyl(a,n,rx,ry,ang)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function computes the flow field around
7: % an elliptic cylinder. The velocity direction
8: % at infinity is arbitrary.
9: %

10: % a - defines the region -a<x<a, -a<y<a
11: % within which the flow field is
12: % computed
13: % n - this determines the grid size which
14: % uses n by n points
15: % rx,ry - major and minor semi-diameters af the
16: % ellipse lying on the x and y axes,
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17: % respectively
18: % ang - the angle in degrees which the
19: % velocity at infinity makes with the
20: % x axis
21: %
22: % x,y - matrices of points where the velocity
23: % potential is computed
24: % F - matrix of complex velocity potential
25: % values. This function is set to zero
26: % inside the ellipse, where the
27: % potential is actually not defined
28: %
29: % User m functions called: none
30:

31: % default data for a 2 by 1 ellipse
32: if nargin==0
33: a=5; n=81; rx=2; ry=1; ang=30;
34: end
35:

36: % Compute a square grid in the z plane.
37: ar=pi/180*ang; p=(rx+ry)/2*exp(-i*ar);
38: cp=conj(p); d=linspace(-a,a,n);
39: [x,y]=meshgrid(d,d); m=sqrt(rx^2-ry^2);
40:

41: % Obtain points in the zeta plane outside
42: % the ellipse
43: z=x(:)+i*y(:); k=find((x/rx).^2+(y/ry).^2>=1);
44: Z=z(k); zeta=(Z+sqrt(Z-m).*sqrt(Z+m))/(rx+ry);
45: F=zeros(n*n,1);
46:

47: % Evaluate the potential for a circular
48: % cylinder
49: F(k)=p*zeta+cp./zeta; F=reshape(F,n,n);
50:

51: % Contour the stream function to show the
52: % direction of flow
53:

54: clf; contourf(x(1,:),y(:,1),abs(imag(F)),30);
55: axis(’square’); zb=exp(i*linspace(0,2*pi,101));
56: xb=rx*real(zb); yb=ry*imag(zb);
57: xb(end)=xb(1); yb(end)=yb(1);
58: hold on; fill(xb,yb,[127/255 1 212/255]);
59: xlabel(’x axis’); ylabel(’y axis’);
60: title([’Elliptic Cylinder Flow Field for ’, ...
61: ’Angle = ’,num2str(ang),’ Degrees’]);
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62: colormap hsv; figure(gcf); hold off;
63: %print -deps elipcyl

12.13 Torsional Stresses in a Beam Mapped onto a Unit Disk

Torsional stresses in a cylindrical beam can be computed from an integral formula
when the function z = ω(ζ) mapping the unit disk, |ζ| ≤ 1, onto the beam cross
section is known [90]. The complex stress function

f(ζ) =
1
2π

∫
γ

ω(σ)ω(σ) dσ
σ − ζ

+ constant,

where γ denotes the unit circle, can be evaluated exactly by contour integration in
some cases. However, an approach employing series methods is easy to implement
and gives satisfactory results if enough series terms are taken. When ω(ζ) is a poly-
nomial, f(ζ) is a polynomial of the same order as ω(ζ). Furthermore, when ω(ζ)
is a rational function, residue calculus can be employed to compute f(ζ) exactly,
provided the poles of ω(1/ζ) can be found. A much simpler approach is to use the
FFT to expand ω(σ)ω(σ) in a complex Fourier series and write

ω(σ)ω(σ) =
∞∑

n=−∞
cnσ

n , σ = eıθ

Then the complex stress function is

f(ζ) = i

∞∑
n=1

cnζ
n + constant

where the constant has no inßuence on the stress state. The shear stresses relative to
the curvilinear coordinate system are obtainable from the formula

τ
ρZ

− iτ
αZ

µ ε
=

[
f ′(ζ) − iω(ζ)ω′(ζ)

]
ζ

|ζω′(ζ)|
where µ is the shear modulus and ε is the angle of twist per unit length. The capital
Z subscript on shear stresses refers to the direction of the beam axis normal to the
xy plane rather than the complex variable z = x+ ıy. The series expansion gives

f ′(ζ) = i
∞∑

n=1

ncnζ
n−1

and this can be used to compute stresses. Differentiated series expansions often
converge slowly or may even be divergent. To test the series expansion solution, a
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Figure 12.10: Torsional Shear Stresses on a Square Cross Section

rational function mapping |ζ| < 1 onto a square deÞned by |x| ≤ 1 and |y| ≤ 1 was
employed. Function mapsqr which computes z(ζ) and z ′(ζ) is used by function
torstres to evaluate stresses in terms of ζ. A short driver program runtors evaluates
stresses on the boundary for x = 1, 0 ≤ y ≤ 1. Stresses divided by the side length of
2 are plotted and results produced from a highly accurate solution [90] are compared
with values produced using 800 terms in f(ζ). Results depicted in Figure 12.10
show that the error in maximum shear stress was only 0.44% and the torsional stiff-
ness was accurate within 0.05%. The numerical solution gives a nonzero stress value
for y = 1, which disagree with the exact solution. This error is probably due more to
the mapping function giving slightly rounded corners than to slow convergence of the
series solution. Even though the differentiated series converges slowly, computation
time is still small. The reader can verify that using 1500 terms reduces the bound-
ary stress oscillations to negligible magnitude and produces a maximum stress error
of 0.03%. Although taking 1500 terms to achieve accurate results seems excessive,
less than 400 nonzero terms are actually involved because geometrical symmetry im-
plies a series increasing in powers of four. For simplicity and generality, no attempt
was made to account for geometrical symmetry exhibited by a particular mapping
function. It appears that a series solution employing a mapping function is a viable
computational tool to deal with torsion problems.
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12.13.1 Program Output and Code

Program runtors

1: function runtors(ntrms)
2: % Example: runtors(ntrms)
3: % ~~~~~~~~~~~~~~~~
4: %
5: % Example showing torsional stress computation
6: % for a beam of square cross section using
7: % conformal mapping and a complex stress
8: % function.
9: %

10: % ntrms - number of series terms used to
11: % represent abs(w(zeta))^2
12: %
13: % User m functions called: torstres, mapsqr
14:

15: % Generate zeta values defining half of a side
16: theta=linspace(0,pi/4,501); zeta=exp(i*theta);
17: if nargin==0, ntrms=800; end
18:

19: % Compute stresses using an approximate rational
20: % function mapping function for the square
21: [tr,ta,z,c,C]= ...
22: torstres(’mapsqr’,zeta,ntrms,4*1024);
23:

24: % Results from the exact solution
25: n=1:2:13;
26: tmexact=1-8/pi^2*sum(1./(n.^2.*cosh(n*pi/2)));
27: err=abs(ta(1)/2-tmexact)*100/tmexact;
28: stfexct=16/3-1024/pi^5*sum(tanh(pi/2*n)./n.^5);
29: stfaprx=8/3-pi*sum((1:ntrms)’.* ...
30: abs(C(2:ntrms+1)).^2);
31: ster=100*abs(stfaprx-stfexct)/stfexct;
32:

33: % Plot circumferential and normal stresses at
34: % the boundary
35: th=180/pi*theta;
36: clf; plot(imag(z),tr/2,’k:’,imag(z),ta/2,’k-’)
37: xlabel(’y distance along the side’);
38: ylabel(’shear stresses at the boundary’);
39: title([’Torsional Shear Stresses on a ’, ...
40: ’Square Cross Section’]);
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41: text(.05,.40, ...
42: [’Max Shear Stress = ’,num2str(max(ta)/2)]);
43: text(.05,.34, ...
44: [’Number of Series Terms = ’,num2str(ntrms)]);
45: text(.05,.28, ...
46: [’Maximum Stress Error = ’,num2str(err),’%’]);
47: text(.05,.22,[’Stiffness Factor Error = ’, ...
48: num2str(ster),’%’]);
49: legend(’Radial shear stress’,...
50: ’Tangential shear stress’);
51: figure(gcf);
52: %disp(’Use mouse to locate legend block’);
53: %disp(’Press [Enter] when finished’);
54: %print -deps torsion
55:

56: %=============================================
57:

58: function [trho,talpha,z,c,C]= ...
59: torstres(mapfun,zeta,ntrms,nft)
60: %
61: % [trho,talpha,z,c,C]= ...
62: % torstres(mapfun,zeta,ntrms,nft)
63: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
64: %
65: % This function computes torsional stresses in
66: % a beam such that abs(zeta)<=1 is mapped onto
67: % the beam cross section by a function named
68: % mapfun.
69: %
70: % mapfun - a character string giving the name
71: % of the mapping function
72: % zeta - values in the zeta plane
73: % corresponding to which torsional
74: % stresses are computed
75: % ntrms - the number of terms used in the
76: % series expansion of the mapping
77: % function
78: % nft - the number of function values
79: % employed to compute Fourier
80: % coefficients of the complex stress
81: % function
82: %
83: % trho - torsional stresses in directions
84: % normal to the lines into which
85: % abs(zeta)=const map. These values
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86: % should be zero at the boundary
87: % corresponding to abs(zeta)=1.
88: % talpha - torsional stresses in directions
89: % tangent to the curves into which
90: % abs(zeta)=const map. The maximum
91: % value of shear stress always occurs
92: % at some point on the boundary defined
93: % by abs(zeta)=1.
94: % z - values of z where stresses are
95: % computed
96: % c - coefficients in the series expansion
97: % of the complex stress function
98: % C - complex Fourier coefficients of
99: % z.*conj(z) on the boundary of the

100: % beam cross section
101: %
102: % User m functions called: none
103: %----------------------------------------------
104:

105: if nargin<4, nft=4096; end;
106: if nargin<3, ntrms=800; end
107:

108: % Compute boundary values of the mapping
109: % function needed to construct the complex
110: % stress function
111: zetab=exp(i*linspace(0,2*pi*(nft-1)/nft,nft));
112: zb=feval(mapfun,zetab); zb=zb(:);
113:

114: % Evaluate z and z’(zeta) at other
115: % desired points
116: [z,zp]=feval(mapfun,zeta);
117:

118: % Compute Fourier coefficients for the complex
119: % stress function and its derivative
120: C=fft(zb.*conj(zb))/nft;
121: c=i*C(2:ntrms+1).*(1:ntrms)’;
122: fp=polyval(flipud(c),zeta);
123:

124: % Evaluate stresses relative to the curvilinear
125: % coordinate system
126: tcplx=zeta./abs(zeta.*zp).*(fp-i*conj(z).*zp);
127:

128: % trho is the radial shear stress that should
129: % vanish at the boundary
130: trho=real(tcplx);
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131:

132: % talpha is the circumferential stress which
133: % gives the maximum stress of interest at the
134: % boundary
135: talpha=-imag(tcplx);
136:

137: %=============================================
138:

139: function [z,zp]=mapsqr(zeta);
140: %
141: % [z,zp]=mapsqr(zeta)
142: % ~~~~~~~~~~~~~~~~~~~
143: %
144: % This function maps the interior of a circle
145: % onto the interior of a square using a rational
146: % function of the approximate form:
147: %
148: % z(zeta)=zeta*Sum(a(j)* ...
149: % zeta4^(j-1)/(1+Sum(b(j)*zeta4^(j-1))
150: %
151: % where zeta4=zeta^4
152: %
153: % zeta - matrix of complex values such that
154: % abs(zeta)<=1
155: % z,zp - matrices of values of the mapping
156: % function and its first derivative
157: %
158: % User m functions called: none
159: %----------------------------------------------
160:

161: a=[ 1.07835, 1.37751, -0.02642, -0.09129, ...
162: 0.13460, -0.15763, 0.07430, 0.14858, ...
163: 0.01878, -0.00354 ]’;
164: b=[ 1.37743, 0.07157, -0.11085, 0.12778, ...
165: -0.13750, 0.05313, 0.14931, 0.02683, ...
166: -0.00350, -0.000120 ]’;
167:

168: % Evaluate the mapping function
169: zeta4=zeta.^4; p=zeta.*polyval(flipud(a),zeta4);
170: q=polyval(flipud([1;b]),zeta4); z=p./q;
171:

172: % Exit if the derivative of z is not needed
173: if nargout==1, return, end
174:

175: % evaluate z’(zeta)
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176: na=length(a); nb=length(b);
177: pp=polyval(flipud((4*(1:na)’-3).*a),zeta4);
178: qp=4*zeta.^3.*polyval(flipud((1:nb)’.*b),zeta4);
179: zp=(q.*pp-p.*qp)./q.^2;

12.14 Stress Analysis by the Kolosov-Muskhelishvili Method

Two-dimensional problems in linear elastostatics of homogeneous bodies can be
analyzed with the use of analytic functions. The primary quantities of interest are
cartesian stress components τxx, τyy , and τxy and displacement components u and
v. These can be expressed as

τxx + τyy = 2[Φ(z) + Φ(z)]

−τxx + τyy + 2iτxy = 2[z̄Φ′(z) + Ψ(z)]

2µ(u+ iv) = κφ(z) − zΦ(z) − ψ(z)

φ(z) =
∫

Φ(z) dz , ψ(z) =
∫

Ψ(z) dz

where µ is the shear modulus and κ depends on Poisson�s ratio ν according to
κ = 3 − 4ν for plane strain or κ = (3 − ν)/(1 + ν) for plane stress. The above
relations are known as the Kolosov-Muskhelishvili formulas [73] and they have been
used to solve many practical problems employing series or integral methods. Bod-
ies such as a circular disk, a plate with a circular hole, and a circular annulus can
be handled for quite general boundary conditions. Solutions can also be developed
for geometries where a rational function is known that maps the interior of a circle
onto the desired geometry. Futhermore, complex variable methods provide the most
general techniques available for solving a meaningful class of mixed boundary value
problems such as contact problems typiÞed by pressing a rigid punch into a half
plane.

Fully understanding all of the analyses presented in [72, 73] requires familiarity
with contour integration, conformal mapping, and multivalued functions. However,
some of the closed form solutions given in these texts can be used without extensive
background in complex variable methods or the physical concepts of elasticity the-
ory. With that perspective let us examine the problem of computing stresses in an
inÞnite plate uniformly stressed at inÞnity and having a general normal stress N(θ)
and tangential shear T (θ) applied to the hole. We will use the general solution of
Muskhelishvili1 [72] to evaluate stresses anywhere in the plate with particular inter-
est on stress concentrations occurring around the hole. The stress functions Ψ and Φ

1Chapter 20.
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can be represented as follows

Φ(z) = − 1
2πı

∫
γ

(N + ıT )dσ
σ − z

+ α+ βz−1 + δz−2 , σ = eıθ

where γ denotes counterclockwise contour integration around the boundary of the
hole and the other constants are given by

α =
τ∞xx + τ∞yy

4
, δ =

−τ∞xx + τ∞yy + 2ıτ∞xy

2

β = − κ

1 + κ

1
2π

∫ 2π

0

(N + ıT )eiθ dθ

Parameters α and δ depend only on the components of stress at inÞnity, while β is
determined by the force resultant on the hole caused by the applied loading. The
quantity N + ıT is the boundary value of radial stress τrr and shear stress τrθ in
polar coordinates. Hence

N + ıT = τrr + iτrθ , |z| = 1

The transformation formulas relating Cartesian stresses τxx, τyy , τxy and polar co-
ordinate stresses τrr, τθθ, τrθ are

τrr + τθθ = τxx + τyy , −τrr + τθθ + 2ıτrθ = (−τxx + τyy + 2iτxy)e2ıθ

Let us assume that N + ıT is expandable in a Fourier series of the form

N + ıT =
∞∑

n=−∞
cnσ

n , σ = eiθ

where cn can be obtained by integration as

cn =
1
2π

∫ 2π

0

(N + iT )σ−n dθ

or we can compute the approximate coefÞcients more readily using the FFT.
The stress function Ψ(z) is related to Φ(z) according to

Ψ =
1
z2

Φ
(

1
z̄

)
− d

dz

[
1
z
Φ(z)

]
, |z| ≥ 1

Substituting the complex Fourier series into the integral formula for Φ gives

Φ = −
∞∑

n=0

cnz
n + α+ βz−1 + δz−2 , |z| ≤ 1

Φ =
∞∑

n=1

c−nz
−n + α+ βz−1 + δz−2 , |z| ≥ 1
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which has the form

Φ =
∞∑

n=0

anz
−n , |z| ≥ 1

These two relations then determine Ψ as

Ψ = δ̄ + β̄z−1 + (α+ a0 − c0)z−2 +
∞∑

n=3

[(n− 1)an−2 − cn−2] z−n

The last equation has the form

Ψ =
∞∑

n=0

bnz
−n , |z| ≥ 1

where the coefÞcients bn are obtainable by comparing coefÞcients of corresponding
powers in the two series. Hence, the series expansions of functions Φ(z) and Ψ(z)
can be generated in terms of the coefÞcients cn and the stress components at inÞn-
ity. The stresses can be evaluated by using the stress functions. Displacements can
also be obtained by integrating Φ and Ψ, but this straightforward calculation is not
discussed here.

The program runplate was written to evaluate the above formulas by expanding
N + iT using the FFT. Truncating the series for harmonics above some speciÞed
order, say np, gives approximations for Φ(z) and Ψ(z), which exactly represent
the solution corresponding to the boundary loading deÞned by the truncated Fourier
series. Using the same approach employed in Chapter 6 we can deÞne N and T as
piecewise linear functions of the polar angle θ.

The program utilizes several routines described in the table below.

runplate deÞne N , T , stresses at inÞnity, z-points
where results are requested, and the number
of series terms used.

platecrc computes series coefÞcients deÞning the
stress functions.

strfun evaluates Φ, Ψ, and Φ′.
cartstrs evaluates Cartesian stresses for given values

of z and the stress functions.
rec2polr transforms from Cartesian stresses to polar

coordinate stresses.
polßip simpliÞed interface to function polyval.

The program solves two sample problems. The Þrst one analyzes a plate having
no loading on the hole, and stresses at inÞnity given by τ∞

yy = 1, τ∞xx = τ∞xy = 0.
Figure 12.11 shows that the circumferential stress on the hole varies between −1 and
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Figure 12.11: Stress Concentration around a Circular Hole in a Plate

3, producing a stress concentration factor of three due to the presence of the hole.
The second problem applies a sinusoidally varying normal stress on the hole while
the stresses at inÞnity are zero. Taking

T=0; ti=[0,0,0];
th=linspace(0,2*pi,81);
N=[cos(4*th), 180/pi*th];

gives the results depicted in Figure 12.12. Readers may Þnd it interesting to inves-
tigate how stresses around the hole change with different combinations of stress at
inÞnity and normal stress distributions on the hole.
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Figure 12.12: Harmonic Loading on a Circular Hole in a Plate
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12.14.1 Program Output and Code

Program runplate

1: function runplate(WhichProblem)
2: % Example: runplate(WhichProblem)
3: % ~~~~~~~~~~~~~~~~~
4: %
5: % Example to compute stresses around a
6: % circular hole in a plate using the
7: % Kolosov-Muskhelishvili method.
8: %
9: % User m functions required:

10: % platecrc, strfun, cartstrs,
11: % rec2polr, polflip, lintrp
12:

13: if nargin==0
14: titl=[’Stress Concentration Around a ’, ...
15: ’Circular Hole in a Plate’];
16: N=0; T=0; ti=[0,1,0]; kapa=2; np=50;
17: Nn=’N = 0’; Tt=’T = 0’;
18: rz=linspace(1,3,20)’; tz=linspace(0,2*pi,81);
19: z=rz*exp(i*tz); x=real(z); y=imag(z);
20: viewpnt=[-40,10];
21: else
22: titl=[’Harmonic Loading on a Circular’, ...
23: ’ Hole in a Plate’];
24: th=linspace(0,2*pi,81)’;
25: N=[cos(4*th),180/pi*th];
26: Nn=’N = cos(4*theta)’; Tt=’T = 0’;
27: T=0; ti=[0,0,0]; kapa=2; np=10;
28: rz=linspace(1,2,10)’; tz=linspace(0,2*pi,81);
29: z=rz*exp(i*tz); x=real(z); y=imag(z);
30: viewpnt=[-20,20];
31: end
32:

33: fprintf(’\nSTRESSES IN A PLATE WITH A ’)
34: fprintf(’CIRCULAR HOLE’)
35: fprintf(’\n\nStress components at infinity ’)
36: fprintf(’are: ’); fprintf(’%g ’,ti);
37: fprintf(’\nNormal stresses on the hole are ’)
38: fprintf([’defined by ’,Nn]);
39: fprintf(’\nTangential stresses on the hole ’)
40: fprintf([’are defined by ’,Tt])
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41: fprintf(’\nElastic constant kappa equals: ’)
42: fprintf(’%s’,num2str(kapa));
43: fprintf(’\nHighest harmonic order used is: ’)
44: fprintf(’%s’,num2str(np));
45:

46: [a,b,c]=platecrc(N,T,ti,kapa,np);
47:

48: fprintf(’\n’);
49: fprintf(’\nThe Kolosov-Muskhelishvili stress ’);
50: fprintf(’functions have\nthe series forms:’);
51: fprintf(’\nPhi=sum(a(k)*z^(-k+1), k=1:np+1)’);
52: fprintf(’\nPsi=sum(b(k)*z^(-k+1), k=1:np+3)’);
53: fprintf(’\n’);
54: fprintf(’\nCoefficients defining stress ’);
55: fprintf(’function Phi are:\n’);
56: disp(a(:));
57: fprintf(’Coefficients defining stress ’);
58: fprintf(’function Psi are:\n’);
59: disp(b(:));
60:

61: % Evaluate the stress functions
62: [Phi,Psi,Phip]=strfun(a,b,z);
63:

64: % Compute the Cartesian stresses and the
65: % principal stresses
66: [tx,ty,txy,pt1,pt2]=cartstrs(z,Phi,Psi,Phip);
67: theta=angle(z./abs(z)); x=real(z); y=imag(z);
68: [tr,tt,trt]=rec2polr(tx,ty,txy,theta);
69: pmin=num2str(min([pt1(:);pt2(:)]));
70: pmax=num2str(max([pt1(:);pt2(:)]));
71:

72: disp(...
73: [’Minimum Principal Stress = ’,num2str(pmin)]);
74: disp(...
75: [’Maximum Principal Stress = ’,num2str(pmax)]);
76: fprintf(’\nPress [Enter] for a surface ’);
77: fprintf(’plot of the\ncircumferential stress ’);
78: fprintf(’in the plate\n’); input(’’,’s’); clf;
79: close; colormap(’hsv’);
80: surf(x,y,tt); xlabel(’x axis’); ylabel(’y axis’);
81: zlabel(’Circumferential Stress’);
82: title(titl); grid on; view(viewpnt); figure(gcf);
83: %if nargin==0, print -deps strconc1
84: %else, print -deps strconc2; end
85: fprintf(’All Done\n’);
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86:

87: %=============================================
88:

89: function [a,b,c]=platecrc(N,T,ti,kapa,np)
90: %
91: % [a,b,c]=platecrc(N,T,ti,kapa,np)
92: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
93: %
94: % This function computes coefficients in the
95: % series expansions that define the Kolosov-
96: % Muskhelishvili stress functions for a plate
97: % having a circular hole of unit radius. The
98: % plate is uniformly stressed at infinity. On
99: % the surface of the hole, normal and tangential

100: % stress distributions N and T defined as
101: % piecewise linear functions are applied.
102: %
103: % N - a two column matrix with each row
104: % containing a value of normal stress
105: % and polar angle in degrees used to
106: % specify N as a piecewise linear
107: % function of the polar angle. Step
108: % discontinuities can be included by
109: % using successive values of N with the
110: % same polar angle values. The data
111: % should cover the range of theta from
112: % 0 to 360. N represents boundary values
113: % of the polar coordinate radial stress.
114: % A single constant value can be input
115: % when N is constant (including zero
116: % if desired).
117: % T - a two column matrix defining values of
118: % the polar coordinate shear stress on
119: % the hole defined as a piecewise linear
120: % function. The points where function
121: % values of T are specified do not need
122: % to be the same as as those used to
123: % specify N. Input a single constant
124: % when T is constant on the boundary.
125: % ti - vector of Cartesian stress components
126: % [tx,ty,txy] at infinity.
127: % kapa - a constant depending on Poisson’s ratio
128: % nu.
129: % kapa=3-4*nu for plane strain
130: % kapa=(3-nu)/(1+nu) for plane stress
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131: % When the resultant force on the hole
132: % is zero, then kapa has no effect on
133: % the solution.
134: % np - the highest power of exp(i*theta) used
135: % in the series expansion of N+i*T. This
136: % should not exceed 255.
137: %
138: % a - coefficients in the series expansion
139: % defining the stress function
140: % Phi=sum(a(k)*z^(-k+1), k=1:np+1)
141: % b - coefficients in the series expansion
142: % defining the stress function
143: % Psi=sum(b(k)*z^(-k+1), k=1:np+3)
144: %
145: % User m functions called: lintrp
146: %----------------------------------------------
147:

148: % Handle case of constant boundary stresses
149: if length(N(:))==1; N=[N,0;N,360]; end
150: if length(T(:))==1; T=[T,0;T,360]; end
151:

152: % Expand the boundary stresses in a Fourier
153: % series
154: f=pi/180; nft=512; np=min(np,nft/2-1);
155: thta=linspace(0,2*pi*(nft-1)/nft,nft);
156:

157: % Interpolate linearly for values at the
158: % Fourier points
159: Nft=lintrp(f*N(:,2),N(:,1),thta);
160: Tft=lintrp(f*T(:,2),T(:,1),thta);
161: c=fft(Nft(:)+i*Tft(:))/nft;
162:

163: % Evaluate auxiliary parameters in the
164: % series solutions
165: alp=(ti(1)+ti(2))/4; bet=-kapa*c(nft)/(1+kapa);
166: sig=(-ti(1)+ti(2)-2*i*ti(3))/2;
167:

168: % Generate a and b coefficients using the
169: % Fourier coefficients of N+i*T.
170: a=zeros(np+1,1); b=zeros(np+3,1); j=(1:np)’;
171: a(j+1)=c(nft+1-j); a(1)=alp;
172: a(2)=bet+c(nft); a(3)=sig+c(nft-1);
173: j=(3:np+2)’; b(j+1)=(j-1).*a(j-1)-conj(c(j-1));
174: b(1)=conj(sig); b(2)=conj(bet);
175: b(3)=alp+a(1)-conj(c(1));
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176:

177: % Discard any negligibly small high order
178: % coefficients.
179: tol=max(abs([N(:);T(:);ti(:)]))/1e4;
180: ka=max(find(abs(a)>tol));
181: if isempty(ka), a=0; else, a(ka+1:np+1)=[]; end
182: kb=max(find(abs(b)>tol));
183: if isempty(kb), b=0; else, b(kb+1:np+3)=[]; end
184:

185: %=============================================
186:

187: function [Phi,Psi,Phip]=strfun(a,b,z)
188: %
189: % [Phi,Psi,Phip]=strfun(a,b,z)
190: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
191: %
192: % This function evaluates the complex
193: % stress functions Phi(z) and Psi(z)
194: % as well as the derivative function Phi’(z)
195: % using series coefficients determined from
196: % function platecrc. The calculation also
197: % uses a function polflip defined such that
198: % polflip(a,z)=polyval(flipud(a(:)),z).
199: %
200: % a,b - series coefficients defining Phi
201: % and Psi
202: % z - matrix of complex values
203: %
204: % Phi,Psi - complex stress function values
205: % Phip - derivative Phi’(z)
206: %
207: % User m functions called: polflip
208: %----------------------------------------------
209:

210: zi=1./z; np=length(a); a=a(:);
211: Phi=polflip(a,zi); Psi=polflip(b,zi);
212: Phip=-polflip((1:np-1)’.*a(2:np),zi)./z.^2;
213:

214: %==============================================
215:

216: function [tx,ty,txy,tp1,tp2]= ...
217: cartstrs(z,Phi,Psi,Phip)
218: %
219: % [tx,ty,txy,tp1,tp2]=cartstrs(z,Phi,Psi,Phip)
220: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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221: %
222: % This function uses values of the complex
223: % stress functions to evaluate Cartesian stress
224: % components relative to the x,y axes.
225: %
226: % z - matrix of complex values where
227: % stresses are required
228: % Phi,Psi - matrices containing complex stress
229: % function values
230: % Phip - values of Phi’(z)
231: %
232: % tx,ty,txy - values of the Cartesian stress
233: % components for the x,y axes
234: % tp1,tp2 - values of maximum and minimum
235: % principal stresses
236: %
237: % User m functions called: none
238: %----------------------------------------------
239:

240: A=2*real(Phi); B=conj(z).*Phip+Psi;
241: C=A-B; R=abs(B);
242: tx=real(C); ty=2*A-tx; txy=-imag(C);
243: tp1=A+R; tp2=A-R;
244:

245: %==============================================
246:

247: function [tr,tt,trt]=rec2polr(tx,ty,txy,theta)
248: %
249: % [tr,tt,trt]=rec2polr(tx,ty,txy,theta)
250: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
251: %
252: % This function transforms Cartesian stress
253: % components tx,ty,txy to polar coordinate
254: % stresses tr,tt,trt.
255: %
256: % tx,ty,txy - matrices of Cartesian stress
257: % components
258: % theta - a matrix of polar coordinate
259: % values. This can also be a
260: % single value if all stress
261: % components are rotated by the
262: % same angle.
263: %
264: % tr,tt,trt - matrices of polar coordinate
265: % stresses
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266: %
267: % User m functions called: none
268: %----------------------------------------------
269:

270: if length(theta(:))==1
271: theta=theta*ones(size(tx)); end
272: a=(tx+ty)/2;
273: b=((tx-ty)/2-i*txy).*exp(2*i*theta);
274: c=a+b; tr=real(c); tt=2*a-tr; trt=-imag(c);
275:

276: %=============================================
277:

278: function y=polflip(a,x)
279: %
280: % y=polflip(a,x)
281: % ~~~~~~~~~~~~~~
282: %
283: % This function evaluates polyval(a,x) with
284: % the order of the elements reversed.
285: %
286: %----------------------------------------------
287:

288: y=polyval(a(end:-1:1),x);
289:

290: %=============================================
291:

292: % function y=lintrp(xd,yd,x)
293: % See Appendix B

12.14.2 Stressed Plate with an Elliptic Hole

This chapter is concluded with an example using conformal mapping in elasticity
theory. We discussed earlier the useful property that harmonic functions remain
harmonic under a conformal transformation. However, linear elasticity leads to the
biharmonic Airy stress function which satisÞes[

∂2

∂x2
+

∂2

∂y2

]2

U = 0

Unfortunately, a conformal transformation x+ iy = ω(ξ + iη) does not imply[
∂2

∂ξ2
+

∂2

∂η2

]2

U = 0

except when the mapping function has the trivial linear form z = c 1ζ + c0. Conse-
quently, the analogy employed in the ideal ßow problem is not applicable in linear
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elasticity. This does not preclude use of conformal mapping in elasticity, but we
encounter equations of very different structure in the mapped variables. We will
examine that problem enough to illustrate the kind of differences involved. Let a
mapping function z = ω(ζ) deÞne curvilinear coordinate lines in the z-plane. A po-
lar coordinate grid corresponding to arg(ζ) = constant and |ζ| = constant maps into
curves we term ρ lines and α lines, respectively. Plotting of such lines was demon-
strated previously with function gridview (mapping the exterior of a circle onto the
exterior of an ellipse). It can be shown that curvilinear coordinate stresses τ ρρ, ταα,
τρα are related to cartesian stresses according to

τρρ + ταα = τxx + τyy , −τρρ + ταα + 2iτρα = h(−τxx + τyy + 2iτxy)

where

h =
ζω′(ζ)
ζω′(ζ)

Muskhelishvili [72] has developed a general solution for a plate with an elliptic
hole allowing general boundary tractions. Here we use one solution from his text
which employs the mapping function

z = ω(ζ) = R

(
ζ +

m

ζ

)

and the stress functions

φ(z) =
∫

Φ(z) dz ψ(z) =
∫

Ψ(z) dz

When ζ is selected as the primary reference variable, we have to perform chain rule
differentiation and write

Φ(z) =
φ′(ζ)
ω′(ζ)

Ψ(z) =
ψ′(ζ)
ω′(ζ)

Φ′(z) =
ω′(ζ)φ′′(ζ) − ω′′(ζ)φ′(ζ)

ω′(ζ)3

in order to compute stresses in terms of the ζ-variable. Readers unaccustomed to
using conformal mapping in this context should remember that there is no stress
state in the ζ-plane comparable to the analogous velocity components which can
be envisioned in a potential ßow problem. We are simply using ζ as a convenient
reference variable to analyze physical stress and displacement quantities existing
only in the z-plane.

Suppose the inÞnite plate has an elliptic hole deÞned by

(
x

rx

)2

+
(
y

ry

)2

= 1
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and the hole is free of applied tractions. The stress state at inÞnity consists of a
tension p inclined at angle λ with the x-axis. The stress functions relating to that
problem are found to be ([72], page 338)

φ(ζ) = bζ +
c

ζ

ψ(ζ) = dζ +
e

ζ
+

fζ

ζ2 −m
, |ζ| ≥ 1

a = e2ıλ , b =
pr

4
, c = b(2a−m)

d = −prā
2

, e = −pra
2m

, f =
pr(m+ 1

m )
2

Clearly these functions have no obvious relation to the simpler results shown earlier
for a plate with a circular hole. The function eliphole computes curvilinear coordi-
nate stresses in the z-plane expressed in terms of the ζ-variable. When λ = π/2, the
plate tension acts along the y-axis and the maximum circumferential stress occurs at
z = rx corresponding to ζ = 1. A surface plot produced by eliphole for the default
data case using rx = 2 and ry = 1 is shown in Figure 12.13. It is also interesting to
graph τ max

αα/τ
∞
yy as a function of rx/ry . The program elpmaxst produces the plot in

Figure 12.14 showing that the circumferential stress concentration increases linearly
according to

τmax
αα

p
= 1 + 2

(
rx
ry

)

which can also be veriÞed directly from the stress functions.
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12.14.3 Program Output and Code

Program elpmaxst

1: function elpmaxst
2: % Example: elpmaxst
3: % ~~~~~~~~~~~~~~~~~
4: %
5: % MATLAB example to plot the stress
6: % concentration around an elliptic hole
7: % as a function of the semi-diameter ratio.
8: %
9: % User m functions required: eliphole

10:

11: rx=2; ry=1; p=1; ang=90; ifplot=1;
12: zeta=linspace(1,2,11)’* ...
13: exp(i*linspace(0,2*pi,121));
14: eliphole(rx,ry,p,ang,zeta,1);
15:

16: r=linspace(1.001,10,19); tamax=zeros(size(r));
17: for j=1:19
18: [tr,tamax(j)]=eliphole(r(j),1,1,90,1);
19: end
20: plot(r,tamax,’-’,r,tamax,’o’);
21: title([’Stress Concentration Around an ’, ...
22: ’Elliptical Hole’]);
23: xlabel([’ratio ( max diameter ) / ’, ...
24: ’( min diameter )’]);
25: ylabel([’( max circumferential stress ) / ’,...
26: ’( plate tension at infinity )’]);
27: grid on; figure(gcf);
28: %print -deps elpmaxst
29:

30: %=============================================
31:

32: function [tr,ta,tra,z]=eliphole...
33: (rx,ry,p,ang,zeta,ifplot)
34: %
35: % [tr,ta,tra,z]=eliphole(rx,ry,p,ang,...
36: % zeta,ifplot)
37: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
38: %
39: % This function determines curvilinear
40: % coordinate stresses around an elliptic hole
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41: % in a plate uniformly stressed at infinity.
42: %
43: % rx,ry - ellipse semidiameters on the x and
44: % y axes
45: % p - values of uniaxial tension at
46: % infinity
47: % ang - angle of inclination in degrees
48: % of the tensile stress at infinity
49: % zeta - curvilinear coordinate values for
50: % which stresses are evaluated
51: % ifplot - optional parameter that is given
52: % a value if a surface plot of the
53: % circumferential stress is desired
54: %
55: % tr - tensile stress normal to an
56: % elliptical coordinate line
57: % ta - tensile stress in a direction
58: % tangential to the elliptical
59: % coordinate line
60: % tra - shear stress complementary to the
61: % normal stresses
62: % z - points in the z plane where
63: % stresses are computed
64: %
65: % User m functions called: none
66: %----------------------------------------------
67:

68: if nargin<6, ifplot=0; end
69: if nargin==0
70: rx=2; ry=1; p=1; ang=90; ifplot=1;
71: zeta=linspace(1,2,11)’* ...
72: exp(i*linspace(0,2*pi,121));
73: end
74:

75: % The complex stress functions and mapping
76: % function have the form
77: % phi(zeta)=b*zeta+c/zeta
78: % psi(zeta)=d*zeta+e/zeta+f*zeta/(zeta^2-m)
79: % z=w(zeta)=r(zeta+m/zeta)
80: % Phi(zeta)=phi’(zeta)/w’(zeta)
81: % Psi(zeta)=psi’(zeta)/w’(zeta)
82: % d(Phi)/dz=(w’(zeta)*phi’’(zeta)-...
83: % w’’(zeta)*phi’(zeta))/w’(zeta)^3
84:

85: r=(rx+ry)/2; m=(rx-ry)/(rx+ry);
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86: z=r*(zeta+m./zeta); zeta2=zeta.^2;
87: zeta3=zeta.^3; wp=r*(1-m./zeta2);
88: wpp=2*r*m./zeta3; a=exp(2*i*pi/180*ang);
89: b=p*r/4; c=b*(2*a-m); d=-p*r/2*conj(a);
90: e=-p*r/2*a/m; f=p*r/2*(m+1/m)*(a-m);
91: phip=b-c./zeta2; phipp=2*c./zeta3;
92: h=wp.*zeta; h=h./conj(h);
93: Phi=phip./wp; Phipz=(wp.*phipp-wpp.*phip)./wp.^3;
94: Psi=(d-e./zeta2-f*(zeta2+m)./(zeta2-m).^2)./wp;
95: A=2*real(Phi); B=(conj(z).*Phipz+Psi).*h;
96: C=A-B; tr=real(C); ta=2*A-tr; tra=imag(B);
97: if ifplot>0
98: %colormap(’gray’); brighten(.95);
99: surf(real(z),imag(z),ta);

100: xlabel(’x axis’); ylabel(’y axis’);
101: zlabel(’circumferential stress’);
102: title([’Circumferential Stress Around ’, ...
103: ’an Elliptical Hole’]);
104: grid on; figure(gcf); input(’’,’s’);
105: %print -deps eliphole
106: end
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Chapter 13

Nonlinear Optimization Applications

13.1 Basic Concepts

Optimization problems occur for a diverse range of topics. Perhaps the simplest
type of optimization problem involves a scalar function of several variables. For ex-
ample, the cost of a product having several ingredients may need to be minimized.
This problem can be represented by a function F (x) which depends on the vec-
tor x = [x1;x2; . . . ;xn] in n-dimensional space. Function F is called the objec-
tive function and cases where the independent variables x ı can vary arbitrarily are
considered unconstrained. Most problems have constraints requiring x ı to remain
within given bounds or satisfy other functional equations. Different analysis proce-
dures exist for solving problems depending on whether they are linear or nonlinear,
constrained or unconstrained. General solutions are available to handle linear objec-
tive functions with linear equality and inequality constraints. The discipline devoted
to such problems is known as linear programming [41] and applications involving
thousands of independent variables can be analyzed. 1 Although this class of linear
problems is important, it does not offer the versatility of methods used to address
nonlinear problems (which are more compute intensive for problems of similar di-
mensionality).2 The material in this chapter addresses nonlinear problems with a few
independent variables which are either constrained or restricted to lie within bounds
of the form

aı ≤ xı ≤ bı.

This type of constraint can be satisÞed by taking

xı = aı + (bı − aı) sin2(zı)

and letting zı vary arbitrarily. The MATLAB intrinsic functions fminbnd and fmin-
search are employed for solving this class of problems. The following Þve examples
are presented to illustrate the nature of nonlinear optimization methods:

1. Computing the inclination angle necessary to cause a projectile to strike a
stationary distant object;

1High dimensionality linear problems should always be solved using the appropriate specialized software.
2The MathWorks markets an �Optimization Toolbox� intended to satisfy a number of specialized opti-
mization needs.
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2. Finding parameters of a nonlinear equation to closely Þt a set of data values;

3. Determining components of end force on a statically loaded cable necessary
to make the endpoint assume a desired position;

4. Computing the shape of a curve between two points such that a smooth particle
slides from one end to the other in the minimum time;

5. Determining the closest points on two surfaces.

Before addressing speciÞc problems, some of the general concepts of optimization
will be discussed.

The minimum of an unconstrained differentiable function

F (x1, x2, . . . , xn)

will occur at a point where the function has a zero gradient. Thus the condition

∂F

∂xı
= 0 , 1 ≤ ı ≤ n

leads to n nonlinear simultaneous equations. Such systems often have multiple so-
lutions, and a zero gradient indicates either a maximum, or a minimum, or a saddle
point. No reliable general methods currently exist to obtain all solutions to a general
system of nonlinear equations. However, practical situations do occur where one
unique point providing a relative minimum is expected. In such cases F (x) is called
unimodal and we seek x0 which makes

F (x0) < F (x0 + ∆) for |∆| > 0.

Most unconstrained nonlinear programming software starts from an initial point and
searches iteratively for a point where the gradient vanishes. Multimodal, or non-
unimodal, functions can sometimes be solved by initiating searches from multiple
starting points and using the best result obtained among all the searches. Since sit-
uations such as false convergence are fairly common with nonlinear optimization
methods, results obtained warrant greater scrutiny than might be necessary for linear
problems.

The intrinsic MATLAB functions fminbnd and fminsearch are adequate to ad-
dress many optimization problems. Readers should study the documentation avail-
able for fminbnd, which performs a one-dimensional search within speciÞed limits,
and fminsearch, which performs an unconstrained multi-dimensional search starting
from a user selected point. Both functions require objective functions of acceptable
syntactical form. Various options controlling convergence tolerances and function
evaluation counts should be studied to insure that the parameter choices are appro-
priately deÞned.
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Figure 13.1: Projectile Trajectory for v 2 Drag Condition

13.2 Initial Angle for a Projectile

In Chapter 8, equations of motion for motion of a projectile with atmospheric drag
were formulated and a function traject producing a solution y(x) passing through
(x, y) = (0, 0) with arbitrary inclination was developed. The solution is generated
for 0 ≤ x ≤ xf assuming the initial velocity is large enough for the projectile to
reach xf . Therefore, program execution terminates if dx/dt goes to zero. In order to
hit a target at position (xf , yf ), the starting angle of the trajectory must be selected
iteratively because the equations of motion cannot be solved exactly (except for the
undamped case). With the aid of an optimization method we calculate |y(x f )− yf)|
and minimize this quantity (described in function missdis which has the Þring angle
as its argument). Function fminbnd seeks the angle to minimize the �miss� distance.
Program runtraj illustrates the solution to the problem described and Figure 13.1
shows the trajectory required for the projectile to strike the object.

Depending on the starting conditions, zero, one, or two solutions exist to cause
the �miss� distance to approach zero. Function fminbnd terminates at either a local
minimum or at one of the search limits. The reader will need to examine how the
initial data correlate to the Þnal answers. For example, if the projectile misses the
target by a signiÞcant amount, the initial projectile velocity was not large enough to
reach the target.
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Program Output and Code

Trajectory Analysis Program

1: function runtraj
2: % Example: runtraj
3: % ~~~~~~~~~~~~~~~~
4: %
5: % This program integrates the differential
6: % equations governing two-dimensional motion
7: % of a projectile subjected to gravity loading
8: % and atmospheric drag proportional to the
9: % velocity squared. The initial inclination

10: % angle needed to hit a distant target is
11: % computed repeatedly and function fmin is
12: % employed to minimize the square of the
13: % distance by which the target is missed. The
14: % optimal value of the miss distance is zero
15: % and the optimum angle will typically be found
16: % unless the initial velocity is too small
17: % and the horizontal velocity becomes zero
18: % before the target is passed. The initial
19: % velocity of the projectile must be large
20: % enough to make the problem well posed.
21: % Otherwise, the program will terminate with
22: % an error message.
23: %
24: % User m functions called: missdis, traject,
25: % projcteq
26:

27: clear all;
28: global Vinit Gravty Cdrag Xfinl Yfinl
29:

30: vinit=600; gravty=32.2; cdrag=0.002;
31: xfinl=1000; yfinl=100;
32:

33: disp(’ ’);
34: disp(’SEARCH FOR INITIAL INCLINATION ANGLE ’);
35: disp(’TO MAKE A PROJECTILE STRIKE A DISTANT’);
36: disp(’OBJECT’); disp(’ ’);
37: disp([’Initial velocity = ’,num2str(vinit)]);
38: disp([’Gravity constant = ’,num2str(gravty)]);
39: disp([’Drag coefficient = ’,num2str(cdrag)]);
40: disp([’Coordinates of target = (’, ...
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41: num2str(xfinl),’,’,...
42: num2str(yfinl),’)’]); disp(’ ’);
43:

44: % Replicate input data as global variables
45: Vinit=vinit; Gravty=gravty; Cdrag=cdrag;
46: Xfinl=xfinl; Yfinl=yfinl;
47:

48: % Perform the minimization search
49: fstart=180/pi*atan(yfinl/xfinl); fend=75;
50: disp(’Please wait for completion of the’)
51: disp(’minimization search’);
52: bestang=fminbnd(@missdis,fstart,fend);
53:

54: % Display final results
55: [y,x,t]=traject ...
56: (bestang,vinit,gravty,cdrag,xfinl);
57: dmiss=abs(yfinl-y(length(y))); disp(’ ’)
58: disp([’Final miss distance is ’, ...
59: num2str(dmiss),’ when the’]);
60: disp([’initial inclination angle is ’, ...
61: num2str(bestang),...
62: ’ degrees’]);
63:

64: %=============================================
65:

66: function [dsq,x,y]=missdis(angle)
67: %
68: % [dsq,x,y]=missdis(angle)
69: % ~~~~~~~~~~~~~~~~~~~~~~~~
70: %
71: % This function is used by fminbnd. It returns
72: % an error measure indicating how much the
73: % target is missed for a particular initial
74: % inclination angle of the projectile.
75: %
76: % angle - the initial inclination angle of
77: % the projectile in degrees
78: %
79: % dsq - the square of the difference between
80: % Yfinal and the final value of y found
81: % using function traject.
82: % x,y - points on the trajectory.
83: %
84: % Several global parameters (Vinit, Gravty,
85: % Cdrag, Xfinl) are passed to missdis by the
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86: % driver program runtraj.
87: %
88: % User m functions called: traject
89: %----------------------------------------------
90:

91: global Vinit Gravty Cdrag Xfinl Yfinl
92: [y,x,t]=traject ...
93: (angle,Vinit,Gravty,Cdrag,Xfinl,1);
94: dsq=(y(length(y))-Yfinl)^2;
95:

96: %=============================================
97:

98: function [y,x,t]=traject ...
99: (angle,vinit,gravty,cdrag,xfinl,noplot)

100: %
101: % [y,x,t]=traject ...
102: % (angle,vinit,gravty,cdrag,xfinl,noplot)
103: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
104: %
105: % This function integrates the dynamical
106: % equations for a projectile subjected to
107: % gravity loading and atmospheric drag
108: % proportional to the square of the velocity.
109: %
110: % angle - initial inclination of the
111: % projectile in degrees
112: % vinit - initial velocity of the projectile
113: % (muzzle velocity)
114: % gravty - the gravitational constant
115: % cdrag - drag coefficient specifying the
116: % drag force per unit mass which
117: % equals cdrag*velocity^2.
118: % xfinl - the projectile is fired toward the
119: % right from x=0. xfinl is the
120: % largest x value for which the
121: % solution is computed. The initial
122: % velocity must be large enough that
123: % atmospheric damping does not reduce
124: % the horizontal velocity to zero
125: % before xfinl is reached. Otherwise
126: % an error termination will occur.
127: % noplot - plotting of the trajectory is
128: % omitted when this parameter is
129: % given an input value
130: %
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131: % y,x,t - the y, x and time vectors produced
132: % by integrating the equations of
133: % motion
134: %
135: % Global variables:
136: %
137: % grav, - two constants replicating gravty and
138: % dragc cdrag, for use in function projcteq
139: % vtol - equal to vinit/1e6, used in projcteq
140: % to check whether the horizontal
141: % velocity has been reduced to zero
142: %
143: % User m functions called: projcteq
144: %----------------------------------------------
145:

146: global grav dragc vtol
147:

148: % Default data case generated when input is null
149: if nargin ==0
150: angle=45; vinit=600; gravty=32.2;
151: cdrag=0.002; xfinl=1000;
152: end;
153:

154: % Assign global variables and evaluate
155: % initial velocity
156: grav=gravty; dragc=cdrag; ang=pi/180*angle;
157: vtol=vinit/1e6;
158: z0=[vinit*cos(ang); vinit*sin(ang); 0; 0];
159:

160: % Integrate the equations of motion defined
161: % in function projcteq
162: deoptn=odeset(’RelTol’,1e-6);
163: [x,z]=ode45(’projcteq’,[0,xfinl],z0,deoptn);
164:

165: y=z(:,3); t=z(:,4); n=length(x);
166: xf=x(n); yf=y(n);
167:

168: % Plot the trajectory curve
169: if nargin < 6
170: plot(x,y,’k-’,xf,yf,’ko’);
171: xlabel(’x axis’); ylabel(’y axis’);
172: title([’Projectile Trajectory for ’, ...
173: ’Velocity Squared Drag’]);
174: axis(’equal’); grid on; figure(gcf);
175: %print -deps trajplot
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176: end
177:

178: %=============================================
179:

180: function zp=projcteq(x,z)
181: %
182: % zp=projcteq(x,z)
183: % ~~~~~~~~~~~~~~~~
184: %
185: % This function defines the equation of motion
186: % for a projectile loaded by gravity and
187: % atmospheric drag proportional to the square
188: % of the velocity.
189: %
190: % x - the horizontal spatial variable
191: % z - a vector containing [vx; vy; y; t];
192: %
193: % zp - the derivative dz/dx which equals
194: % [vx’(x); vy’(x); y’(x); t’(x)];
195: %
196: % Global variables:
197: %
198: % grav - the gravity constant
199: % dragc - the drag coefficient divided by
200: % gravity
201: % vtol - a global variable used to check
202: % whether vx is zero
203: %
204: % User m functions called: none
205: %----------------------------------------------
206:

207: global grav dragc vtol
208: vx=z(1); vy=z(2); v=sqrt(vx^2+vy^2);
209:

210: % Check to see whether drag reduced the
211: % horizontal velocity to zero before the
212: % xfinl was reached.
213: if abs(vx) < vtol
214: disp(’ ’);
215: disp(’*************************************’);
216: disp(’ERROR in function projcteq. The ’);
217: disp(’ initial velocity of the projectile’);
218: disp(’ was not large enough for xfinal to’);
219: disp(’ be reached.’);
220: disp(’EXECUTION IS TERMINATED.’);
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221: disp(’*************************************’);
222: disp(’ ’),error(’ ’);
223: end
224: zp=[-dragc*v; -(grav+dragc*v*vy)/vx; ...
225: vy/vx; 1/vx];

13.3 Fitting Nonlinear Equations to Data

Often an equation of known form is needed to approximately Þt some given data
values. An equation y(t) to Þt m data values (tı, yı) might be sought from an equa-
tion expressible as

y = f(a1, a2, . . . , an, t)

where n parameters a1, a2, . . . , an are needed to minimize the least squares error

ε(a1, a2, . . . , an) =
n∑

=1

[y − f(a1, a2, . . . , an, t)]
2
.

The smallest possible error would be zero when the equation passes exactly through
all the data values. Function ε can be minimized with an optimizer such as fmin-
search, or conditions seeking a zero gradient of ε which require

∂ε

∂aı
= 2

n∑
=1

[f(a1, a2, . . . , an, t) − y]
(
∂f

∂aı

)

can be written. Note that the problem of minimizing a function and the problem of
solving a set of nonlinear simultaneous equations are closely related. Solving large
systems of nonlinear equations is difÞcult. Therefore, data Þtting by use of function
minimization procedures is typically more effective.

The formulation assuming y depends on a single independent variable could just
as easily have involved several independent variables x1, x2, . . . , xN , which would
yield an equation of the form

y = f(a1, a2, . . . , an, x1, x2, . . . , xN ).

For instance, we might choose the simplest useful equation depending linearly on
the independent variables

y =
N∑

k=0

xkak

where x0 = 1. The least squares error can be expressed as

ε(a0, a1, . . . , an) =
n∑

=1

[
y −

N∑
k=0

Xkak

]2
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where Xk means the value of the k th independent variable at the j th data point. The
condition that ε have a zero gradient gives

N∑
k=0

[
n∑

=1

XıXk

]
ak =

n∑
=1

Xıy , 1 ≤ ı ≤ N.

This linear system can be solved using traditional methods. Since the multiple in-
dices in the equation are slightly cryptic, expressing the relationship in matrix nota-
tion is helpful. We get

Y ≈ XA

where

Y =



y1
y2
...
yn


 , X = [1, X1, X2, . . . , XN ] , A =



a0

a1

...
aN




with Xı being the column matrix [xı1, xı2, . . . , xın] and the Þrst column of X con-
tains all ones. The requirement to minimize ε is simply

(XTX)A = XTY

and MATLAB produces the desired solution using

A=X\Y;

Although taking y as a linear function of parameters a 0, a1, . . . , aN produces solv-
able linear equations, the general situation yields nonlinear equations, and a min-
imization search procedure has greater appeal. We conclude this section with an
example employing a minimization search.

Consider an experiment where data values (t ı, yı) are expected to conform to the
transient response of a linear harmonic oscillator governed by the differential equa-
tion

m0ÿ + c0ẏ + k0y = 0.

This equation has a solution representable as

y = a1e
−|a2|t cos(|a3|t+ a4)

where |a2| makes the response decay exponentially and |a3| assures that the damped
natural frequency is positive. Minimizing the error function

ε(a1, a2, a3, a4) =
n∑

=1

[
y − a1e

−1|a2|t cos(|a3|t + a4)
]2

requires a four-dimensional search.
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Data Approximating y = 1.5*exp(−.1*t)*cos(2.5*t+pi/4)

Figure 13.2: Data Approximating y = 1.5 exp(−0.1t) cos(2.5t+ π/4)

The program vibÞt tests data deviating slightly from an equation employing spe-
ciÞc values of a1, a2, a3, a4. Then function fminsearch is used to verify whether the
coefÞcients can be recovered from the data points. Figure 13.2 shows the data values
and the equation resulting from the nonlinear least square Þt. The results produced
are quite acceptable.

Program Output and Code

Program vibÞt

1: function vibfit
2: %
3: % Example: vibfit
4: % ~~~~~~~~~~~~~~~
5: %
6: % This program illustrates use of the Nelder
7: % and Mead multi-dimensional function
8: % minimization method to determine an equation
9: % for y(t) which depends nonlinearly on several

10: % parameters chosen to closely fit known data
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11: % values. The program minimizes the sum of the
12: % squares of error deviations between the data
13: % values and results produced by the chosen
14: % equation. The example pertains to the time
15: % response curve characterizing free vibrations
16: % of a damped linear harmonic oscillator.
17: %
18: % User m functions called: vibfun
19: %
20: % Make the data vectors global to allow
21: % access from function vibfun
22: global timdat ydat
23:

24: echo off;
25: disp(’ ’);
26: disp(’ CHOOSING PARAMETERS’);
27: disp(’ IN THE THE NONLINEAR EQUATION’);
28: disp(’ Y = A*EXP(B*T)*COS(C*T+D)’);
29: disp(’TO OBTAIN THE BEST FIT TO GIVEN DATA’);
30: fprintf(’\nPress [Enter] to list function\n’);
31: fprintf(’vibfun which is to be minimized\n’);
32: pause;
33:

34: % Generate a set of data to be fitted by a
35: % chosen equation.
36: a=1.5; b=-.1; c=2.5; d=pi/5;
37: timdat=0:.2:20;
38: ydat=a*exp(b*timdat).*cos(c*timdat+d);
39:

40: % Add some random noise to the data
41: ydat=ydat+.1*(-.5+rand(size(ydat)));
42:

43: % Function vibfun defines the quantity to be
44: % minimized by a search using function fmins.
45: disp(’ ’);
46: disp(’The function to be minimized is:’);
47: type vibfun.m; disp(’ ’);
48: disp(’The input data will be plotted next.’);
49: disp(’Press [Enter] to continue’); pause;
50: plot(timdat,ydat,’k.’);
51: title(’Input Data’); xlabel(’time’);
52: ylabel(’y axis’); grid off; figure(gcf);
53: input(’’,’s’);
54:

55: % Initiate the four-dimensional search
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56: x=fminsearch(@vibfun,[1 1 1 1]);
57:

58: % Check how well the computed parameters
59: % fit the data.
60: aa=x(1); bb=-abs(x(2)); cc=abs(x(3)); dd=x(4);
61: as=num2str(aa); bs=num2str(bb);
62: cs=num2str(cc); ds=num2str(dd);
63: ttrp=0:.05:20;
64: ytrp=aa*exp(bb*ttrp).*cos(cc*ttrp+dd);
65: disp(’ ’);
66: disp(’Press [Enter] to see how well’);
67: disp(’the equation fits the data’); pause;
68: plot(ttrp,ytrp,’k-’,timdat,ydat,’k.’);
69: str1=[’Approx. equation is y = ’, ...
70: ’a*exp(b*t)*cos(c*t+d)’];
71: str2=[’a = ’,as,’ b = ’,bs,’ c = ’, ...
72: cs,’ d = ’,ds];
73: text(6,-1.1,str1); text(6,-1.25,str2);
74: xlabel(’time’); ylabel(’y axis’);
75: title([’Data Approximating ’, ...
76: ’y = 1.5*exp(-.1*t)*cos(2.5*t+pi/4)’]);
77: grid off; figure(gcf);
78: print -deps apprxdat
79:

80: %=============================================
81:

82: function z=vibfun(x)
83: %
84: % z=vibfun(x)
85: % ~~~~~~~~~~~
86: %
87: % This function evalautes the least square
88: % error for a set of vibration data. The data
89: % vectors timdat and ydat are passed as global
90: % variables. The function to be fitted is:
91: %
92: % y=a*exp(b*t)*cos(c*t+d)
93: %
94: % x - a vector defining a,b,c and d
95: %
96: % z - the square of the norm for the vector
97: % of error deviations between the data and
98: % results the equation gives for current
99: % parameter values

100: %
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101: % User m functions called: none
102: %----------------------------------------------
103:

104: global timdat ydat
105: a=x(1); b=-abs(x(2)); c=abs(x(3)); d=x(4);
106: z=a*exp(b*timdat).*cos(c*timdat+d);
107: z=norm(z-ydat)^2;

13.4 Nonlinear Deßections of a Cable

We will now present an optimization procedure to determine the static equilibrium
position of a perfectly ßexible inextensible cable having given end positions and a
known distributed load per unit length. If R(s) is the position of any point on the
cable as a function of arc length 0 ≤ s ≤ L, then the internal tension at position s is

T (s) = F e +
∫ L

s

q(s) ds

with q(s) being the applied force per unit length and F e being the support force at
s = L. The end force to produce a desired end deßection has to be determined in
the analysis. However, the end deßection resulting from any particular choice of end
force can be computed by observing that the tangent to the deßection curve will point
along the direction of the cable tension. This means

dR

ds
=

T (s)
|T (s)|

and

R(s) =
∫ s

0

T (s)ds
|T (s)| =

∫ s

0

(
F e +

∫ L

s
q ds

)
ds

|F e +
∫ L

s
q ds|

where R(0) = 0 is taken as the position at the starting end. The deßection at s = L
will have some speciÞed position Re so that requiring R(L) = Re gives a vector
equation depending parametrically on F e. Thus, we need to solve three nonlinear
simultaneous equations in the Cartesian components of force F e. A reasonable an-
alytical approach is to employ an optimization search to minimize |R(L) − R e| in
terms of the components of F e.

The procedure described for a cable with continuous loading extends easily to
a cable having several rigid links connected at frictionless joints where arbitrary
concentrated forces are applied. The function cabldeß evaluates the position of each
joint when the joint forces and outer end force are given. With the end force on the
last link treated as a parameter, function endß computes an error measure |F (L) −
RE |2 to be minimized using function fminsearch. The optimization search seeks the
components of F e needed to reduce the error measure to zero. Specifying a sensible
problem obviously requires that |Re| must not exceed the total length of all members
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Figure 13.3: Deßected Shape for a Loaded Cable

in the chain. Initiating the search with a randomly generated starting force leads to
a Þnal force produced by fminsearch, which is then employed in another call to
cabldeß to determine and plot the Þnal deßection position as shown in Figure 13.3.
Using a random initial guess for the end force was done to show that choosing bad
starting data, insufÞciently stringent convergence tolerances, or too few allowable
function iterations can sometimes produce erroneous results. This emphasizes the
need to always examine the results from nonlinear search procedures to assure that
satisfactory answers are obtained.

Program Output and Code

Program cablsolv

1: function [r,t,pends]=cablsolv(Len,P,Rend)
2: %
3: % [r,t,pends]=cablsolv(Len,P,Rend)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function computes the equilibrium
7: % position for a cable composed of rigid
8: % weightless links with loads applied at the
9: % frictionless joints. The ends of the cable

10: % are assumed to have a known position.
11: %
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12: % Len - a vector containing the lengths
13: % Len(1), ..., Len(n)
14: % P - matrix of force components applied
15: % at the interior joints. P(:,i)
16: % contains the Cartesian components of
17: % the force at joint i.
18: % Rend - the coordinate vector giving the
19: % position of the outer end of the last
20: % link, assuming the outer end of the
21: % first link is at [0,0,0].
22: %
23: % r - a matrix with rows giving the
24: % computed equilibrium positions of all
25: % ends
26: % t - a vector of tension values in the
27: % links
28: % pends - a matrix having two rows which
29: % contain the force components acting
30: % at both ends of the chain to maintain
31: % equilibrium
32: %
33: % User m functions called: endfl, cabldefl
34:

35: if nargin < 3
36: % Example for a ten link cable with vertical
37: % and lateral loads
38: Len=1.5*ones(10,1); Rend=[10,0,0];
39: P=ones(9,1)*[0,-2,-1];
40: end
41:

42: global len p rend
43: len=Len; rend=Rend; p=P; tol=sum(Len)/1e8;
44:

45: % Start the search with a random force applied
46: % at the far end
47:

48: % Perform several searches to minimize the
49: % length of the vector from the outer end of
50: % the last link to the desired position Rend
51: % where the link is to be connected to a
52: % support. The final end force should reduce
53: % the deflection error to zero if the search
54: % is successful.
55:

56: opts=optimset(’tolx’,tol,’tolfun’,tol,...
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57: ’maxfunevals’,2000);
58: endval=realmax;
59:

60: % Iterate several times to avoid false
61: % convergence
62: for k=1:5
63: p0=10*max(abs(p(:)))*rand(size(p,2),1);
64: [pendk,endvalk,exitf]=...
65: fminsearch(@endfl,p0,opts);
66: if endvalk < endval
67: pend=pendk(:); endval=endvalk;
68: end
69: end
70:

71: % Use the computed end force to obtain the
72: % final deflection. Also return the
73: % support forces.
74: [r,t,pstart]=cabldefl(len,[p;pend’]);
75: x=r(:,1); y=r(:,2); z=r(:,3);
76: pends=[pstart(:)’;pend(:)’];
77:

78: % Plot the deflection curve of the cable
79: plot3(x,y,z,’k-’,x,y,z,’ko’); xlabel(’x axis’);
80: ylabel(’yaxis’); zlabel(’z axis’);
81: title(’Deflection Shape for a Loaded Cable’);
82: axis(’equal’); grid on; figure(gcf);
83: print -deps defcable
84:

85: %=============================================
86:

87: function enderr=endfl(pend)
88: %
89: % enderr=endfl(pend)
90: % ~~~~~~~~~~~~~~~~~~
91: %
92: % This function computes how much the
93: % position of the outer end of the last link
94: % deviates from the desired position when an
95: % arbitrary force pend acts at the cable end.
96: %
97: % pend - vector of force components applied
98: % at the outer end of the last link
99: %

100: % enderr - the deflection error defined by the
101: % square of the norm of the vector
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102: % from the computed end position and
103: % the desired end position. This error
104: % should be zero for the final
105: % equilibrium position
106: %
107: % User m functions called: cabldefl
108: %----------------------------------------------
109:

110: % Pass the lengths, the interior forces and the
111: % desired position of the outer end of the last
112: % link as global variables.
113: global len p rend
114:

115: % use function cabldefl to compute the
116: % desired error
117: r=cabldefl(len,[p;pend(:)’]);
118: rlast=r(size(r,1),:);
119: d=rlast(:)-rend(:); enderr=d’*d;
120:

121: %=============================================
122:

123: function [r,t,pbegin]=cabldefl(len,p)
124: %
125: % [r,t,pbegin]=cabldefl(len,p)
126: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
127: %
128: % This function computes the static equilibrium
129: % position for a cable of rigid weightless
130: % links having concentrated loads applied at
131: % the joints and the outside of the last link.
132: % The outside of the first link is positioned
133: % at the origin.
134: %
135: % len - a vector of link lengths
136: % len(1), ..., len(n)
137: % p - a matrix with rows giving the
138: % force components acting at the
139: % interior joints and at the outer
140: % end of the last link
141: %
142: % r - matrix having rows which give the
143: % final positions of each node
144: % t - vector of member tensions
145: % pbegin - force acting at the outer end of
146: % the first link to achieve
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147: % equilibrium
148: %
149: % User m functions called: none
150: %----------------------------------------------
151:

152: n=length(len); len=len(:); nd=size(p,2);
153:

154: % Compute the forces in the links
155: T=flipud(cumsum(flipud(p)));
156: t=sqrt(sum((T.^2)’)’);
157:

158: % Obtain the deflections of the outer ends
159: % and the interior joints
160: r=cumsum(T./t(:,ones(1,nd)).*len(:,ones(1,nd)));
161: r=[zeros(1,nd);r]; pbegin=-t(1)*r(2,:)/len(1);

13.5 Quickest Time Descent Curve (the Brachistochrone)

The subject of variational calculus addresses methods to Þnd a function producing
the minimum value for an integral depending parametrically on the function. Typi-
cally, we have a relationship of the form

I(y) =
∫ x2

x1

G(x, y, y′(x)) dx

where values of y at x = x1 and x = x2 are known, and y(x) for x1 < x < x2

is sought to minimize I . A classical example in this subject is determining a curve
starting at (0, 0) and ending at (a, b) so that a smooth particle will slide from one
end to the other in the shortest possible time. Let X and Y be measured positive to
the right and downward. Then the descent time for frictionless movement along the
curve will be

t =
1√
2g

∫ a

0

√
1 + Y ′(X)2

Y (X)
dX , Y (0) = 0 , Y (a) = b.

This problem is solved in various advanced calculus books. 3 The curve is a cycloid
expressed in parametric form as

X = k[θ − sin(θ)] , Y = k[1 − cos(θ)]

3Weinstock [105] provides an excellent discussion of the brachistochrone problem using calculus of vari-
ation methods.
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where 0 < θ < θf . Values of θf and k are found to make x(θf ) = a and Y (θf ) = b.
The exact descent time is

tbest = θf

√
k

g

which is signiÞcantly smaller than the descent time for a straight line, which is

tline =

√
2(a2 + b2)

gb
.

Two functions, brfaltim and bracifun, are used to compute points on the brachis-
tochrone curve and evaluate the descent time.

The main purpose of this section is to illustrate how optimization search can be
used to minimize an integral depending parametrically on a function. The method
used chooses a set of base points through which an interpolation curve is constructed
to specify the function. Using numerical integration gives a value for the integral.
Holding the x values for the interpolation points constant and allowing the y values
to vary expresses the integral as a function of the y values at a Þnite number of
points. Then a multi-dimensional search function such as fminsearch can optimize
the choice of Y values. Before carrying out this process for the brachistochrone
problem it is convenient to change variables so that x = X/a and

Y (X) = b[x+ y(x)] , 0 ≤ x ≤ 1,

with
y(0) = y(1) = 0.

Then the descent integral becomes

t =
a√
2gb

∫ 1

0

√
1 + (b/a)2[1 + y′(x)]2

x+ y
dx.

For any selected set of interpolation points, functions spline and splined can eval-
uate y(x) and y′(x) needed in the integrand, and function gcquad can be used to
perform Gaussian integration. An optimization search employing fminsearch pro-
duces the curve heights yielding an approximation to the brachistochrone as shown
in Figure 13.4.
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Program Output and Code

Program brachist

1: function brachist
2: % Example: brachist
3: % ~~~~~~~~~~~~~~~~~
4: % This program determines the shape of a
5: % smooth curve down which a particle can slide
6: % in minimum possible time. The analysis
7: % employs a piecewise cubic spline to define
8: % the curve by interpolation using a fixed set
9: % of base point positions. The curve shape

10: % becomes a function of the heights chosen at
11: % the base points. These heights are determined
12: % by computing the descent time as a function
13: % of the heights and minimizing the descent
14: % time by use of an optimization program. The
15: % Nelder and Mead unconstrained search
16: % procedure is used to compute the minimum.
17: %
18: % User m functions called:
19: % chbpts, brfaltim, fltim, gcquad,
20: % bracifun, splined
21:

22: global cbp cwf cofs n xc yc a b b_over_a ...
23: grav nparts nquad nfcls
24:

25: fprintf(...
26: ’\nBRACHISTOCHRONE DETERMINATION BY NONLINEAR’);
27: fprintf(’\n OPTIMIZATION SEARCH \n’);
28: fprintf([’\nPlease wait. The ’,...
29: ’calculation takes a while.\n’]);
30:

31: % Initialize
32: a=30; b=10; grav=32.2; nparts=1; nquad=50;
33: tol=1e-4; n=6; b_over_a = b/a;
34:

35: [dummy,cbp,cwf]=gcquad(’’,0,1,nquad,nparts);
36: xc=chbpts(0,1,n); xc=xc(:);
37: y0=5*sin(pi*xc); xc=[0;xc;1];
38:

39: % Calculate results from the exact solution
40: [texact,xexact,yexact]=brfaltim(a,b,grav,100);

© 2003 by CRC Press LLC



41:

42: % Perform minimization search for
43: % approximate solution
44: opts=optimset(’tolx’,tol,’tolfun’,tol);
45: [yfmin,fmin,flag,outp] =...
46: fminsearch(@fltim,y0,opts);
47:

48: % Evaluate final position and approximate
49: % descent time
50: Xfmin=xc; Yfmin=Xfmin+[0;yfmin(:);0];
51: % tfmin=a/sqrt(2*grav*b)*fltim(yfmin(:));
52: tfmin=a/sqrt(2*grav*b)*fmin;
53: nfcls=1+outp.funcCount;
54:

55: % Summary of calculations
56: fprintf(’\nBrachistochrone Summary’);
57: fprintf(’\n-----------------------’);
58: fprintf(’\nNumber of function calls: ’);
59: fprintf(’%g’,nfcls);
60: fprintf(’\nDescent time: ’);
61: fprintf(’%g’,tfmin), fprintf(’\n’)
62:

63: % Plot results comparing the approximate
64: % and exact solutions
65: xplot=linspace(0,1,100);
66: yplot=spline(Xfmin,Yfmin,xplot);
67: plot(xplot,-yplot,’-’,Xfmin,-Yfmin,’o’, ...
68: xexact/a,-yexact/b,’--’);
69: xlabel(’x/a’); ylabel(’y/b’); % grid
70: title([’Brachistochrone Curve for ’, ...
71: ’a/b = ’,num2str(a/b)]);
72: text(.5,-.1, ’Descent time (secs)’)
73: text(.5,-.175,[’Approximate: ’,num2str(tfmin)])
74: text(.5,-.25, [’Exact: ’,num2str(texact)]);
75: text(.5,-.325, ...
76: sprintf(’Error tolerance: %g’,tol));
77: legend(’Approximate Curve’, ...
78: ’Computed Points’,’Exact Curve’,3);
79: figure(gcf);
80: print -deps brachist
81:

82: %=============================================
83:

84: function [tfall,xbrac,ybrac]=brfaltim ...
85: (a,b,grav,npts)
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86: %
87: %
88: % [tfall,xbrac,ybrac]=brfaltim(a,b,grav,npts)
89: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
90: %
91: % This function determines the descent time
92: % and a set of points on the brachistochrone
93: % curve passing through (0,0) and (a,b).
94: % The curve is a cycloid expressible in
95: % parametric form as
96: %
97: % x=k*(th-sin(th)),
98: % y=k*(1-cos(th)) for 0<=th<=thf
99: %

100: % where thf is found by solving the equation
101: %
102: % b/a=(1-cos(thf))/(thf-sin(thf)).
103: %
104: % Once thf is known then k is found from
105: %
106: % k=a/(th-sin(th)).
107: %
108: % The exact value of the descent time is given
109: % by
110: %
111: % tfall=sqrt(k/g)*thf
112: %
113: % a,b - final values of (x,y) on the curve
114: % grav - the gravity constant
115: % npts - the number of points computed on
116: % the curve
117: %
118: % tfall - the time required for a smooth
119: % particle to slide along the curve
120: % from (0,0) to (a,b)
121: % xbrac - x points on the curve with x
122: % increasing to the right
123: % ybrac - y points on the curve with y
124: % increasing downward
125: %
126: % User m functions called: none
127: %----------------------------------------------
128:

129: brfn=inline(’cos(th)-1+cof*(th-sin(th))’,’th’,’cof’);
130:
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131: ba=b/a; [th,fval,flag]=fzero(...
132: brfn,[.01,10],optimset(’fzero’),ba);
133:

134: k=a/(th-sin(th)); tfall=sqrt(k/grav)*th;
135: if nargin==4
136: thvec=(0:npts-1)’*(th/(npts-1));
137: xbrac=k*(thvec-sin(thvec));
138: ybrac=k*(1-cos(thvec));
139: end
140:

141: %=============================================
142:

143: function x=chbpts(xmin,xmax,n)
144: %
145: % x=chbpts(xmin,xmax,n)
146: % ~~~~~~~~~~~~~~~~~~~~~
147: % Determine n points with Chebyshev spacing
148: % between xmin and xmax.
149: %
150: % User m functions called: none
151: %----------------------------------------------
152:

153: x=(xmin+xmax)/2+((xmin-xmax)/2)* ...
154: cos(pi/n*((0:n-1)’+.5));
155:

156: %=============================================
157:

158: function t=fltim(y)
159: %
160: % t=fltim(y)
161: % ~~~~~~~~~~
162: %
163: % This function evaluates the time descent
164: % integral for a spline curve having heights
165: % stored in y.
166: %
167: % y - vector defining the curve heights at
168: % interior points corresponding to base
169: % positions in xc
170: %
171: % t - the numerically integrated time descent
172: % integral evaluated by use of base points
173: % cbp and weight factors cwf passed as
174: % global variables
175: %
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176: % User m functions called: splined
177: %----------------------------------------------
178:

179: global xc cofs nparts bp wf nfcls cbp cwf ...
180: b_over_a
181:

182: nfcls=nfcls+1; x=cbp;
183:

184: % Generate coefficients used in spline
185: % interpolation
186: yc=[0;y(:);0];
187: y=spline(xc,yc,x); yp=splined(xc,yc,x);
188:

189: % Evaluate the integrand
190: f=(1+(b_over_a*(1+yp)).^2)./(x+y); f=sqrt(f);
191:

192: % Evaluate the integral
193: t=cwf(:)’*f(:);
194:

195: %==============================================
196:

197: % function [val,bp,wf]=gcquad(func,xlow,...
198: % xhigh,nquad,mparts,varargin)
199: % See Appendix B
200:

201: %==============================================
202:

203: % function val=splined(xd,yd,x,if2)
204: % See Appendix B

13.6 Determining the Closest Points on Two Surfaces

Determining the closest points on two surfaces arises in applications such as robotic
collision avoidance and container packing. Many types of surfaces can be parameter-
ized using two curvilinear coordinates; so, the problem reduces to a four dimensional
search to minimize the length of a line from a point on one surface to a point on the
other surface. We call this the proximity problem and will consider typical instances
involving two circular cylinders arbitrarily positioned in space as illustrated by the
test examples of Figure 13.5. This application illustrates that, despite the appar-
ent simplicity of this problem, convergence difÞculties can occur with minimization
search procedures, and several runs may be needed to get correct results.

An elementary way to analyze the proximity of two surfaces is to describe each
surface by a grid of points and Þnd the smallest element in a matrix describing the
distance from point i of the Þrst surface to a point j of the second surface. Large array
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dimensions can occur since a typical 100 by 100 surface grid involves 10,000 points
and 30,000 coordinate values. The adjacency matrix for two surfaces, each using
10,000 points, has one hundred million points and would consume 2400 megabytes
of memory when stored unpartitioned. However, memory limitations can be over-
come by processing a few points at a time. In the program given below, a function
surf2surf is presented to perform exhaustive search. It works well for the cylinder to
cylinder problem and also handles some special cases. Since points and space curves
are degenerate examples of surfaces, surf2surf can solve problems like obtaining
the point on a curve closest to an arbitrary point in space.

For surfaces described by equations of the form r(s1, s2) and R(s3, s4), the prox-
imity problem can be treated by minimizing norm(r − R)2as a function of [s1 , s2,
s3 , s4]. In this context, let us discuss brießy the concepts used in function fmin-
search based on the ßexible polyhedron search procedure developed by Nelder and
Mead [ ]. The search employs a polyhedron having n+ 1 corners in n space, which
are initially aggregated about a starting point x0. A sequence of moves repeatedly
replaces corners at which the objective function has maximum values, with new cor-
ners corresponding to smaller values. Ultimately, the polyhedron is reduced in size
and contracts to a point where the objective function is perceived to have a rela-
tive minimum. The algorithm embodied in fminsearch is useful but it sometimes
gives false convergence. This experience led the authors to implement, for compari-
son purposes, a somewhat shorter version of the Nelder and Mead algorithm given in
function nelmed shown in the following program cylclose. This program is designed
to solve four test problems using functions fminsearch, nelmed, or surf2surf. Both
implementations of the ßexible polyhedron search are vulnerable to false conver-
gence; so, it is necessary to initiate the search several times using random starting
points. By making enough trials so that the same best result is obtained several
times, reasonable conÞdence in the answers can be achieved. Furthermore, the pro-
gram shows images of the cylinders and connecting minimum distance lines. These
images can be rotated interactively to observe the validity of results. In the test cases
considered, about eight trials was sufÞcient to produce the same best results at least
twice. Some results showing computer output for case 4 are typical.

cylclose(1);

CASE 4 USING FUNCTION NELMED
Trial Minimum Function
Number Distance Evaluations

1 1.915 163
2 1.916 161
3 1.710 207
4 2.293 156
5 1.710 154
6 2.165 139
7 2.165 122
8 1.710 182
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The analysis used FUNCTION NELMED
Shortest Distance = 1.710
Function Evaluations = 1284
Compute Time = 4.450 secs

cylclose(1);

CASE 4 USING FUNCTION FMINSEARCH
Trial Minimum Function
Number Distance Evaluations

1 1.710 223
2 2.293 472
3 2.293 693
4 2.293 295
5 2.165 286
6 2.165 585
7 1.710 265
8 1.915 231

The analysis used FUNCTION FMINSEARCH
Shortest Distance = 1.710
Function Evaluations = 3050
Compute Time = 10.930 secs

cylclose(3);

CASE 4 USING EXHAUSTIVE SEARCH
Shortest Distance = 1.729
Function Evaluations = 546
Compute Time = 0.440 secs

Note that incorrect answers were obtained repeatedly by fminsearch and nelmed,
whereas exhaustive search gave the fastest and most reliable solution. Readers in-
terested in exploring the convergence problems occurring with the Nelder and Mead
search will Þnd it instructive to run program cylclose to observe the variations in re-
sults produced from randomly chosen starting points. This example problem shows
clearly that, unless the best result among a number of trials is taken, an incorrect
answer may occur.

13.6.1 Discussion of the Computer Code

Program cylclose uses minimization search to determine the closest points on two
arbitrarily positioned circular cylinders. Three solution methods are provided using
functions fminsearch, nelmed, or surf2surf. Four test cases are included, and other

© 2003 by CRC Press LLC



geometries can be analyzed by modifying data lines in function cylclose. The various
modules in the program are listed in the following table.

Routine Line Operation
cylclose 1-155 several functions are called to plot the geom-

etry and perform the minimization search
cylpoint 159-178 gives the position of a point on a cylinder sur-

face
dcyl2cyl 182-197 computes the distance between points on two

cylinders
cylÞgs 201 -244 plots the geometries for four data cases
plot2cyls 248-276 plots the geometry for two cylinders
cylpts 280-300 generates a grid of points on a cylinder sur-

face
crnrpts 304-321 generates a dense set of points in an increas-

ing set of data set
ortbas 325-332 creates orthonormal base vectors needed to

deÞne cylinder geometry
nelmed 336-475 function which performs the Nelder-Mead

search
surf2surf 479-513 uses discrete search to compute closest points

on two surfaces deÞned by coordinate grids.
Large grids can be handled by calling func-
tion srf2srf

srf2srf 517-534 uses discrete search to compute closest points
on two surfaces deÞned by coordinate grids

rads 538-550 gives base radii for example problems

Program cylclose

1: function [dbest,r,R]= cylclose(srchtype,...
2: ntrials,sidlen,tolx,tolf)
3: % [dbest,r,R]= cylclose(srchtype,ntrials,...
4: % sidlen,tolx,tolf)
5: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6: %
7: % This program locates the points closest
8: % together on the surfaces of two circular
9: % cylinders arbitrarily positioned in space.

10: % A four-dimensional unconstrained search
11: % is performed using functions NELMED,
12: % FMINSEARCH, or SURF2SURF. The quantity
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13: % minimized is the square of the distance
14: % from an arbitrary point on one cylinder
15: % to an arbitrary point on the other cylinder.
16: % The search parameters specify axial and
17: % circumferential coordinates of points on
18: % the cylinder surfaces.
19: %
20: % srchtype - selects the solution method. Use
21: % 1,2, or 3 for NELMED, FMINSEARCH,
22: % or SURF2SURF
23: % ntrials - Number of times the solution is
24: % repeated to avoid false
25: % convergence
26: % sidlen - initial polyhedron side length
27: % tolx - Convergence tolerance on solution
28: % vector
29: % tolf - Convergence tolerance on function
30: % value
31: %
32: % User m functions called:
33: % cylpoint, dcyl2cyl, cylfigs, plot2cyls
34: % cylpts, cornrpts, ortbasis, nelmed,
35: % surfmany, surf2surf, srf2srf, rads
36:

37: if nargin<5, tolf=1e-4; end
38: if nargin<4, tolx=1e-2; end
39: if nargin<3, sidlen=.5; end
40: if nargin<2, ntrials=8; end
41: if nargin<1, srchtype=1; end
42:

43: if srchtype==1
44: fname=’FUNCTION NELMED’;
45: elseif srchtype==2
46: fname=’FUNCTION FMINSEARCH’;
47: else
48: fname=’EXHAUSTIVE SEARCH’;
49: end
50:

51: disp(’ ’),
52: disp(’ CYLINDER PROXIMITY ANALYSIS’)
53: disp(’USING A FOUR-DIMENSIONAL SEARCH’)
54:

55: cylfigs, drawnow, disp(’ ’), dumy=input(...
56: ’Press return to begin the search’,’s’);
57: close; ncases=4;
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58:

59: for jcase=1:ncases
60: disp(’ ’), disp([’CASE ’,...
61: num2str(jcase),’ USING ’,fname])
62:

63: % Define several data cases
64: switch jcase
65: case 1
66: rad=1; len=3; r0=[4,0,0]; v=[0,0,1];
67: Rad=1; Len=3; R0=[0,4,0]; V=[0,0,1];
68: case 2
69: rad=1; len=3; r0=[4,0,0]; v=[3,0,4];
70: Rad=1; Len=3; R0=[0,4,0]; V=[0,3,4];
71: case 3
72: rad=1; len=5; r0=[4,0,0]; v=[-4,0,3];
73: Rad=1; Len=5; R0=[0,4,0]; V=[0,0,1];
74: case 4
75: rad=1; len=4*sqrt(2); r0=[4,0,0];
76: v=[-1,1,0];
77: Rad=1; Len=3; R0=[0,0,-2]; V=[0,0,-1];
78: end
79:

80: % Create data parameters used repeatedly
81: % during the search process
82:

83: % First cylinder
84: dat=cumsum([0;rad;len;rad]);
85: dat=dat/max(dat); zdat=[dat,[0;0;len;len]];
86: rdat=[dat,[0;rad;rad;0]]; m=ortbasis(v);
87:

88: % Second cylinder
89: dat=cumsum([0;Rad;Len;Rad]);
90: dat=dat/max(dat); Zdat=[dat,[0;0;Len;Len]];
91: Rdat=[dat,[0;Rad;Rad;0]]; M=ortbasis(V);
92:

93: % Make several searches starting from
94: % randomly chosen points and keep
95: % the best answer obtained
96: ntotal=0; ntype=zeros(1,5); disp(’ ’)
97: tic; dbest=realmax; opts=optimset;
98: if srchtype<3
99: disp(’Trial Minimum Function’)

100: disp(’Number Distance Evaluations’)
101: for k=1:ntrials
102: winit=2*pi*rand(4,1);
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103: if srchtype==1 % Search using nelmed
104: [w,fmin,nvals,ntyp]=nelmed(@dcyl2cyl,...
105: winit,sidlen,tolx,tolf,2000,0,...
106: r0,m,rdat,zdat,R0,M,Rdat,Zdat);
107: elseif srchtype==2 % Search using fminsearch
108: [w,fmin,xflag,outp]=fminsearch(@dcyl2cyl,...
109: winit,opts,r0,m,rdat,zdat,R0,M,Rdat,Zdat);
110: nvals=outp.funcCount; ntyp=zeros(1,5);
111: end
112: dk=sqrt(dcyl2cyl(w,r0,m,rdat,zdat,...
113: R0,M,Rdat,Zdat));
114: fprintf(’%4i %8.3f %7i\n’,k,dk,nvals)
115: if dk<dbest, dbest=dk; W=w; end
116: ntotal=ntotal+nvals; ntype=ntype+ntyp;
117: end
118: w=W; r=cylpoint(w(1),w(2),r0,m,rdat,zdat);
119: R=cylpoint(w(3),w(4),R0,M,Rdat,Zdat);
120: t=toc;
121: fprintf([’\nThe analysis used ’,fname,’\n’])
122: %if srchtype==1
123: % fprintf([’\nReflect Expand Contract ’,...
124: % ’Shrink \n%4i %7i %9i %7i\n’],ntype(2),...
125: % ntype(3),ntype(4),ntype(5))
126: %end
127: else
128: dplot=0.3; tic;
129: [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,v,...
130: Rad,Len,R0,V,dplot,’ ’); close;
131: [dbest,r,R]=surf2surf(x,y,z,X,Y,Z);
132: ntotal=length(x)*length(X); t=toc;
133: end
134: fprintf(...
135: [’Shortest Distance = %8.3f\n’,...
136: ’Function Evaluations = %8i\n’,...
137: ’Compute Time = %8.3f secs\n’],...
138: dbest,ntotal,t)
139:

140: n=1; Rr=repmat(R,1,n+1)+(r-R)*(0:n)/n;
141: hold off; clf,
142: titl=[’CASE ’,num2str(jcase),’ USING ’,fname];
143: dplot=0.3; plot2cyls(...
144: rad,len,r0,v,Rad,Len,R0,V,dplot,titl);
145: colormap([1 1 0]), hold on,
146: plot3(Rr(1,:),Rr(2,:),Rr(3,:),’linewidth’,2)
147: title([titl,’ : DISTANCE = ’,...
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148: num2str(dbest),’, CPU TIME = ’,...
149: num2str(t),’ SECS’])
150: rotate3d on, shg, disp(’ ’)
151: disp(’Rotate the figure or press’)
152: disp(’return to continue’)
153: dumy=input(’ ’,’s’); close
154:

155: end
156:

157: %===========================================
158:

159: function r=cylpoint(w1,w2,r0,m,rdat,zdat)
160: % r=cylpoint(w1,w2,v,r0,m,rdat,zdat)
161: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162: % This function computes the position of a
163: % point on the surface of a circular cylinder
164: % arbitrarily positioned in space. The argument
165: % list parameters have the following form,
166: % where rad means cylinder radius, and len
167: % means cylinder length.
168: % b=2*rad+len;
169: % zdat=[[0,0]; [rad/b, 0];
170: % [(rad+len)/b, len];[ 1, len]];
171: % rdat=zdat; rdat(2,2)=rad;
172: % rdat(3,2)=rad; rdat(4,2)=0;
173:

174: u=2*pi*sin(w1)^2; v=sin(w2)^2;
175: z=interp1(zdat(:,1),zdat(:,2),v);
176: rho=interp1(rdat(:,1),rdat(:,2),v);
177: x=rho*cos(u); y=rho*sin(u);
178: r=r0(:)+m*[x;y;z];
179:

180: %===========================================
181:

182: function dsqr=dcyl2cyl(...
183: w,r0,m,rdat,zdat,R0,M,Rdat,Zdat)
184: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
185: % dsqr=dcyl2cyl(w,r0,m,rdat,zdat,R0,M,Rdat,Zdat)
186: % This function computes the square of the
187: % distance between generic points on the
188: % surfaces of two circular cylinders in three
189: % dimensions.
190: %
191: % User m functions called: cylpoint
192:
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193: global fcount
194: fcount=fcount+1;
195: r=cylpoint(w(1),w(2),r0,m,rdat,zdat);
196: R=cylpoint(w(3),w(4),R0,M,Rdat,Zdat);
197: dsqr=norm(r-R)^2;
198:

199: %===========================================
200:

201: function cylfigs
202: % cylfigs
203: % ~~~~~~~
204: % This function plots the geometries
205: % pertaining to four data cases used
206: % to test closest proximity problems
207: % involving two circular cylinders
208: %
209: % User m functions called: plot2cyls
210:

211: w=rads; p=1:2; q=3:4; s=5:6; t=7:8;
212:

213: rad=1; len=3; r0=[4,0,0]; v=[0,0,1];
214: Rad=1; Len=3; R0=[0,4,0]; V=[0,0,1];
215: d=.4; subplot(2,2,1)
216: [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,v,Rad,Len,...
217: R0,V,d,’CASE 1’); hold on
218: plot3(w(p,1),w(p,2),w(p,3),’linewidth’,2’)
219: hold off
220:

221: rad=1; len=3; r0=[4,0,0]; v=[3,0,4];
222: Rad=1; Len=3; R0=[0,4,0]; V=[0,3,4];
223: d=.4; subplot(2,2,2);
224: [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,v,Rad,Len,...
225: R0,V,d,’CASE 2’); hold on
226: plot3(w(q,1),w(q,2),w(q,3),’linewidth’,2’)
227: hold off
228:

229: rad=1; len=5; r0=[4,0,0]; v=[-4,0,3];
230: Rad=1; Len=5; R0=[0,4,0]; V=[0,0,1];
231: d=.4; subplot(2,2,3)
232: [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,v,Rad,Len,...
233: R0,V,d,’CASE 3’); hold on
234: plot3(w(s,1),w(s,2),w(s,3),’linewidth’,2’)
235: hold off
236:

237: rad=1; len=4*sqrt(2); r0=[4,0,0]; v=[-1,1,0];
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238: Rad=1; Len=3; R0=[0,0,-2]; V=[0,0,-1];
239: d=.4; subplot(2,2,4);
240: [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,v,Rad,Len,...
241: R0,V,d,’CASE 4’); hold on
242: plot3(w(t,1),w(t,2),w(t,3),’linewidth’,2’)
243: hold off, subplot
244: % print -deps cylclose
245:

246: %===========================================
247:

248: function [x,y,z,X,Y,Z]=plot2cyls(...
249: rad,len,r0,vc,Rad,Len,R0,Vc,d,titl)
250: % [x,y,z,X,Y,Z]=plot2cyls(rad,len,r0,vc,Rad,...
251: % Len,R0,Vc,d,titl)
252: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
253: % This function generates point grids on the
254: % surfaces of two circular cylinders and plots
255: % both cylinders together
256: %
257: % User m functions called: cornrpts surfmany
258: % cylpts
259: if nargin==0
260: titl=’TWO CYLINDERS’;
261: rad=1; len=3; r0=[4,0,0]; vc=[3,0,4];
262: Rad=1; Len=3; R0=[0,4,0]; Vc=[0,3,4]; d=.2;
263: end
264: if isempty(titl), titl=’ ’; end
265: u=2*rad+len; v=2*pi*rad;
266: nu=ceil(u/d); nv=ceil(v/d);
267: u=cornrpts([0,rad,rad+len,u],nu)/u;
268: v=linspace(0,1,nv);
269: [x,y,z]=cylpts(u,v,rad,len,r0,vc);
270: U=2*Rad+Len; V=2*pi*Rad;
271: Nu=ceil(U/d); Nv=ceil(V/d);
272: U=cornrpts([0,Rad,Rad+Len,U],Nu)/U;
273: V=linspace(0,1,Nv);
274: [X,Y,Z]=cylpts(U,V,Rad,Len,R0,Vc);
275: surfmany(x,y,z,X,Y,Z), title(titl)
276: colormap([1 1 0]), shg
277:

278: %===========================================
279:

280: function [x,y,z]=cylpts(...
281: axial,circum,rad,len,r0,vectax)
282: % [x,y,z]=cylpts(axial,circum,rad,len,r0,vectax)
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283: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
284: % This function computes a grid of points on the
285: % surface of a circular cylinder
286: %
287: % User m functions called: ortbasis
288:

289: U=2*rad+len; u=U*axial(:); n=length(u);
290: v=2*pi*circum(:)’; m=length(v);
291: ud=[0,rad,rad+len,U];
292: r=interp1(ud,[0,rad,rad,0],u);
293: z=interp1(ud,[0,0,len,len],u);
294: x=r*cos(v); y=r*sin(v); z=repmat(z,1,m);
295: % w=basis(vectax)*[x(:),y(:),z(:)]’;
296: w=ortbasis(vectax)*[x(:),y(:),z(:)]’;
297:

298: x=r0(1)+reshape(w(1,:),n,m);
299: y=r0(2)+reshape(w(2,:),n,m);
300: z=r0(3)+reshape(w(3,:),n,m);
301:

302: %===========================================
303:

304: function v=cornrpts(u,N)
305: % v=cornrpts(u,N)
306: % ~~~~~~~~~~~~~~
307: % This function generates approximately N
308: % points between min(u) and max(u) including
309: % all points in u plus additional points evenly
310: % spaced in each successive interval.
311: % u - vector of points
312: % N - approximate number of output points
313: % between min(u(:)) and max(u(:))
314: % v - vector of points in increasing order
315:

316: u=sort(u(:))’; np=length(u);
317: d=u(np)-u(1); v=u(1);
318: for j=1:np-1
319: dj=u(j+1)-u(j); nj=max(1,fix(N*dj/d));
320: v=[v,[u(j)+dj/nj*(1:nj)]];
321: end
322:

323: %===========================================
324:

325: function mat=ortbasis(v)
326: % mat=ortbasis(v)
327: % ~~~~~~~~~~~~~~
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328: % This function generates a rotation matrix
329: % having v(:)/norm(v) as the third column
330:

331: v=v(:)/norm(v); mat=[null(v’),v];
332: if det(mat)<0, mat(:,1)=-mat(:,1); end
333:

334: %===========================================
335:

336: function [xmin,fmin,m,ntype]=nelmed(...
337: F,x0,dx,epsx,epsf,M,ifpr,varargin)
338: % [xmin,fmin,m,ntype]=nelmed(...
339: % F,x0,dx,epsx,epsf,M,ifpr,varargin)
340: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
341: % This function performs multidimensional
342: % unconstrained function minimization using the
343: % direct search procedure developed by
344: % J. A. Nelder and R. Mead. The method is
345: % described in various books such as:
346: % ’Nonlinear Optimization’, by M. Avriel
347: %
348: % F - objective function of the form
349: % F(x,p1,p2,...) where x is vector
350: % in n space and p1,p2,... are any
351: % auxiliary parameters needed to
352: % define F
353: % x0 - starting vector to initiate
354: % the search
355: % dx - initial polyhedron side length
356: % epsx - convergence tolerance on x
357: % epsf - convergence tolerance on
358: % function values
359: % M - function evaluation limit to
360: % terminate search
361: % ifpr - when this parameter equals one,
362: % different stages in the search
363: % are printed
364: % varargin - variable length list of parameters
365: % which can be passed to function F
366: % xmin - coordinates of the smallest
367: % function value
368: % fmin - smallest function value found
369: % m - total number of function
370: % evaluations made
371: % ntype - a vector containing
372: % [ninit,nrefl,nexpn,ncontr,nshrnk]
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373: % which tells the number of reflect-
374: % ions, expansions, contractions,and
375: % shrinkages performed
376: %
377: % User m functions called: objective function
378: % named in the argument list
379:

380: if isempty(ifpr), ifpr=0; end
381: if isempty(M), M=500; end;
382: if isempty(epsf), epsf=1e-5; end
383: if isempty(epsx), epsx=1e-5; end
384:

385: % Initialize the simplex array
386: x0=x0(:); n=length(x0); N=n+1; f=zeros(1,N);
387: x=repmat(x0,1,N)+[zeros(n,1),dx*eye(n,n)];
388: for k=1:N
389: f(k)=feval(F,x(:,k),varargin{:});
390: end
391:

392: ninit=N; nrefl=0; nexpn=0; ncontr=0;
393: nshrnk=0; m=N;
394:

395: Erx=realmax; Erf=realmax;
396: alpha=1.0; % Reflection coefficient
397: beta= 0.5; % Contraction coefficient
398: gamma=2.0; % Expansion coefficient
399:

400: % Top of the minimization loop
401:

402: while Erx>epsx | Erf>epsf
403:

404: [f,k]=sort(f); x=x(:,k);
405:

406: % Exit if maximum allowable number of
407: % function values is exceeded
408: if m>M, xmin=x(:,1); fmin=f(1); return; end
409:

410: % Generate the reflected point and
411: % function value
412: c=sum(x(:,1:n),2)/n; xr=c+alpha*(c-x(:,N));
413: fr=feval(F,xr,varargin{:}); m=m+1;
414: nrefl=nrefl+1;
415: if ifpr==1, fprintf(’ :RFL \n’); end
416:

417: if fr<f(1)

© 2003 by CRC Press LLC



418: % Expand and take best from expansion
419: % or reflection
420: xe=c+gamma*(xr-c);
421: fe=feval(F,xe,varargin{:});
422: m=m+1; nexpn=nexpn+1;
423: if ifpr==1, fprintf(’ :EXP \n’); end
424:

425: if fr<fe
426: % The reflected point was best
427: f(N)=fr; x(:,N)=xr;
428: else
429: % The expanded point was best
430: f(N)=fe; x(:,N)=xe;
431: end
432:

433: elseif fr<=f(n) % In the middle zone
434: f(N)=fr; x(:,N)=xr;
435:

436: else
437: % Reflected point exceeds the second
438: % highest value so either use contraction
439: % or shrinkage
440: if fr<f(N)
441: xx=xr; ff=fr;
442: else
443: xx=x(:,N); ff=f(N);
444: end
445:

446: xc=c+beta*(xx-c);
447: fc=feval(F,xc,varargin{:});
448: m=m+1; ncontr=ncontr+1;
449:

450: if fc<=ff
451: % Accept the contracted value
452: x(:,N)=xc; f(N)=fc;
453: if ifpr==1, fprintf(’ :CNT \n’); end
454:

455: else
456: % Shrink the simplex toward
457: % the best point
458: x=(x+repmat(x(:,1),1,N))/2;
459: for j=2:N
460: f(j)=feval(F,x(:,j),varargin{:});
461: end
462: m=m+n; nshrnk=nshrnk+n;
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463: if ifpr==1, fprintf(’ :SHR \n’); end
464: end
465: end
466:

467: % Evaluate parameters to check convergence
468: favg=sum(f)/N; Erf=sqrt(sum((f-favg).^2)/n);
469: xcent=sum(x,2)/N; xdif=x-repmat(xcent,1,N);
470: Erx=max(sqrt(sum(xdif.^2)));
471:

472: end % Bottom of the optimization loop
473:

474: xmin=x(:,1); fmin=f(1);
475: ntype=[ninit,nrefl,nexpn,ncontr,nshrnk];
476:

477: %=================================================
478:

479: function [d,r,R]=surf2surf(x,y,z,X,Y,Z,n)
480: % [d,r,R]=surf2surf(x,y,z,X,Y,Z,n)
481: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
482: % This function determines the closest points on two
483: % surfaces and the distance between these points. It
484: % is similar to function srf2srf except that large
485: % arrays can be processed.
486: %
487: % x,y,z - arrays of points on the first surface
488: % X,Y,Z - arrays of points on the second surface
489: % d - the minimum distance between the surfaces
490: % r,R - vectors containing the coordinates of the
491: % nearest points on the first and the
492: % second surface
493: % n - length of subvectors used to process the
494: % data arrays. Sending vectors of length
495: % n to srf2srf and taking the best of the
496: % subresults allows processing of large
497: % arrays of data points
498: %
499: % User m functions used: srf2srf
500:

501: if nargin<7, n=500; end
502: N=prod(size(x)); M=prod(size(X)); d=realmax;
503: kN=max(1,floor(N/n)); kM=max(1,floor(M/n));
504: for i=1:kN
505: i1=1+(i-1)*n; i2=min(i1+n,N); i12=i1:i2;
506: xi=x(i12); yi=y(i12); zi=z(i12);
507: for j=1:kM
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508: j1=1+(j-1)*n; j2=min(j1+n,M); j12=j1:j2;
509: [dij,rij,Rij]=srf2srf(...
510: xi,yi,zi,X(j12),Y(j12),Z(j12));
511: if dij<d, d=dij; r=rij; R=Rij; end
512: end
513: end
514:

515: %=================================================
516:

517: function [d,r,R]=srf2srf(x,y,z,X,Y,Z)
518: % [d,r,R]=srf2srf(x,y,z,X,Y,Z)
519: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
520: % This function determines the closest points on two
521: % surfaces and the distance between these points.
522: % x,y,z - arrays of points on the first surface
523: % X,Y,Z - arrays of points on the second surface
524: % d - the minimum distance between the surfaces
525: % r,R - vectors containing the coordinates of the
526: % nearest points on the first and the
527: % second surface
528:

529: x=x(:); y=y(:); z=z(:); n=length(x); v=ones(n,1);
530: X=X(:)’; Y=Y(:)’; Z=Z(:)’; N=length(X); h=ones(1,N);
531: d2=(x(:,h)-X(v,:)).^2; d2=d2+(y(:,h)-Y(v,:)).^2;
532: d2=d2+(z(:,h)-Z(v,:)).^2;
533: [u,i]=min(d2); [d,j]=min(u); i=i(j); d=sqrt(d);
534: r=[x(i);y(i);z(i)]; R=[X(j);Y(j);Z(j)];
535:

536: %=================================================
537:

538: function R=rads
539: % R=rads
540: % Radii for the problem solutions
541:

542: R=[...
543: 0.7045 3.2903 0.8263
544: 3.2932 0.7074 0.8295
545: 0.7783 3.4977 0.3767
546: 3.4994 0.7800 0.3755
547: 0.0026 3.0000 2.9934
548: 0.0028 1.0000 3.0001
549: 0.7034 0.7107 -2.0000
550: 1.5139 1.5320 -0.7382];
551:

552: %=================================================
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553:

554: % surfmany(x1,y1,z1,x2,y2,z2,x3,y3,z3,...
555: % xn,yn,zn)
556: % See Appendix B
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Appendix A

List of MATLAB Routines with Descriptions

Table A.1: Description of MATLAB Programs and Selected Functions

Routine Chapter Description
Þnance 1 Financial analysis program illustrating

programming methods.
inputv 1 Function to read several data items on

one line.
polyplot 2 Program comparing polynomial and

spline Interpolation.
squarrun 2 Program illustrating conformal map-

ping of a square.
squarmap 2 Function for Schwarz-Christoffel map-

ping of a circular disk inside a square.
cubrange 2 Function to compute data range limits

for 2D or 3D data.
pendulum 2 Program showing animated large oscil-

lations of a pendulum.
animpen 2 Function showing pendulum anima-

tion.
smdplot 2 Program to animate forced motion of a

spring-mass-damper system.
smdsolve 2 Function to solve a constant coefÞcient

linear second order differential equa-
tion with a harmonic forcing function.

strngrun 2 Program animating wave motion in a
string with given initial deßection.

strngwav 2 Function to compute deßections of a
vibrating string.

animate 2 Function to show animation of a vibrat-
ing string.

continued on next page
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608 ADVANCED MATH AND MECHANICS APPLICATIONS USING MATLAB

Routine Chapter Description
splinerr 2 Program showing differential geome-

try properties of a space curve.
curvprpsp 2 Function using spline interpolation to

compute differential properties of a
space curve.

splined 2 Function to compute Þrst or second
derivatives of a cubic spline.

srfex 2 Program illustrating combined plotting
of several surfaces.

frus 2 Function to compute points on a frus-
tum.

surfmany 2 Function to plot several functions to-
gether without distortion.

rgdbodmo 2 Program illustrating 3D rigid body ro-
tation and translation.

rotatran 2 Function to perform coordinate rota-
tion.

membran 3 Program illustrating static deßection of
a membrane.

mbvprun 3 Program to solve a mixed boundary
value problem for a circular disk.

makratsq 3 Program showing conformal mapping
of a square using rational functions.

ratcof 3 Function to compute coefÞcients for
rational function interpolation.

raterp 3 Function to evaluate a rational func-
tion using coefÞcients from function
raterp.

strdyneq 3 Program to solve the structural dy-
namics equation using eigenvalue-
eigenvector methods.

fhrmck 3 Function to solve a linear second or-
der matrix differential equation having
a harmonic forcing function.

recmemfr 3 Program illustrating use of functions
null and eig to compute rectangular
membrane frequencies.

continued on next page
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LIST OF MATLAB ROUTINES WITH DESCRIPTIONS 609

Routine Chapter Description
multimer 3 Program comparing execution of in-

trinsic MATLAB matrix multiplication
and slow Fortran style using loops.

lintrp 4 Function for piecewise linear interpo-
lation allowing Þnite jump discontinu-
ities.

curvprop 4 Program to compute the length and
area bounded by a curve deÞned by
spline interpolation.

spcof 4 Function to compute spline interpo-
lation coefÞcients used by function
spterp.

spterp 4 Function to interpolate, differentiate,
and integrate a cubic spline having
general end conditions.

powermat 4 Function used by functions spcof and
spterp.

splineq 4 Function to interpolate, integrate, and
differentiate using the intrinsic func-
tion spline.

splincof 4 Function that computes coefÞcients
used by splineg to handle general end
conditions.

matlbdat 4 Program that draws the word MAT-
LAB using a spline.

Þnitdif 4 Program to compute Þnite difference
formulas.

Þndifco 4 Function to compute Þnite difference
formulas for derivatives of arbitrary or-
der.

simpson 5 Function using Simpson�s rule to inte-
grate an exact function or one deÞned
by spline interpolation.

gcquad 5 Function to perform composite Gauss
integration of arbitrary order, and re-
turn the base points and weight factors.

quadtest 5 Program comparing the performance
of gcquad and quadl for several test
functions.

continued on next page
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610 ADVANCED MATH AND MECHANICS APPLICATIONS USING MATLAB

Routine Chapter Description
areaprog 5 Program to compute area, centroidal

coordinates and inertial properties
of general areas bounded by spline
curves.

aprop 5 Function to compute geometrical prop-
erties of general areas.

volrevol 5 Program to compute geometrical prop-
erties of partial volumes of revolution
bounded by spline curves.

volrev 5 Function to compute geometrical prop-
erties of partial volumes of revolution.

rotasurf 5 Function to plot a partial surface of rev-
olution.

ropesymu 5 Program using numerical and symbolic
computation to evaluate geometrical
properties of a rope shaped solid.

ropedraw 5 Function to draw a twisted rope shaped
surface.

twistprop 5 Function using symbolic computation
to obtain geometrical properties.

srfv 5 Function to compute geometrical prop-
erties of a solid speciÞed by general
surface coordinates.

polhdrun 5 Program to produce geometrical prop-
erties and a surface plot of an arbitrary
polyhedron.

polhedron 5 Function for geometrical properties of
a polyhedron.

polyxy 5 Function for geometrical properties of
a polygon.

sqrtquadtest 5 Program using quadl and gcquad to
evaluate integrals having square root
type singularities at the integration end
points.

quadqsqrt 5 Function applying gcquad to integrals
having square root type singularities.

quadlsqrt 5 Function applying quadl to integrals
having square root type singularities.

continued on next page
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LIST OF MATLAB ROUTINES WITH DESCRIPTIONS 611

Routine Chapter Description
triplint 5 Program applying Gauss quadrature to

evaluate a triple integral with variable
integration limits.

plotjrun 6 Program to compute and plot integer
order Bessel functions using the FFT.

runimpv 6 Program using the FFT to analyze
earthquake data.

fouapprox 6 Function for Fourier series approxima-
tion of a general function.

fouseris 6 Program to plot truncated Fourier se-
ries expansions of general functions.

fousum 6 Function to sum a Fourier series and in-
clude coefÞcient smoothing.

cablinea 7 Program showing modal superposition
analysis of a swinging cable.

udfrevib 7 Function computing undamped re-
sponse of a second order matrix differ-
ential equation with general initial con-
ditions.

strdynrk 7 Function using ode45 to solve a second
order matrix differential equation.

deislner 7 Program comparing implicit second
and fourth order integrators which use
Þxed stepsize.

mckde2i 7 Function to solve a matrix ODE using a
second order Þxed stepsize integrator.

mckde4i 7 Function to solve a matrix ODE using
a fourth order Þxed stepsize integrator.

rkdestab 8 Program to plot stability zones for
Runge-Kutta integrators.

prun 8 Program illustrating ode45 response
calculation of an inverted pendulum.

toprun 8 Program for dynamic response of a
spinning top.

traject 8 Program for a projectile trajectory.
cablenl 8 Program illustrating animated nonlin-

ear dynamic response for a multi-link
cable of rigid links.

continued on next page
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612 ADVANCED MATH AND MECHANICS APPLICATIONS USING MATLAB

Routine Chapter Description
plotmotn 8 Function to animate the dynamic re-

sponse of a cable.
sprchan 8 Program for animated nonlinear dy-

namics of an elastic cable shaken at
both ends.

laplarec 9 Program using Fourier series to solve
the Laplace equation in a rectangle
having general boundary conditions.

recseris 9 Function to compute a harmonic func-
tion and gradient components in a rect-
angular region.

stringft 9 Program for Fourier series solution and
animated response for a string with
given initial displacement.

forcmove 9 Program for response of a string sub-
jected to a moving concentrated load.

membwave 9 Program animating the response of a
rectangular or circular membrane sub-
jected to an oscillating concentrated
force.

memrecwv 9 Function for dynamic response of a
rectangular membrane.

memcirwv 9 Function for dynamic response of a cir-
cular membrane.

besjroot 9 Function to compute a table of integer
order Bessel function roots.

membanim 9 Function to show animated membrane
response.

bemimpac 9 Program showing wave propagation in
a simply supported beam subjected to
an oscillating end moment.

beamanim 9 Function to animate the motion of a vi-
brating beam.

pilevibs 9 Program illustrating the response of a
pile embedded in an oscillating elastic
foundation.

slabheat 9 Program for heat conduction in a slab
having sinusoidally varying end tem-
perature.

continued on next page
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LIST OF MATLAB ROUTINES WITH DESCRIPTIONS 613

Routine Chapter Description
heatcyln 9 Program analyzing transient heat con-

duction in a circular cylinder.
tempstdy 9 Function for the steady-state tempera-

ture in a circular cylinder with general
boundary conditions.

foubesco 9 Function to compute coefÞcients in a
Fourier-Bessel series.

besjtabl 9 Function giving a table of integer order
Bessel function roots.

rector 9 Program to compute torsional stresses
in a beam of rectangular cross section.

eigverr 10 Program comparing eigenvalues of
a second order differential equation
computed using Þnite difference meth-
ods and using collocation with spline
interpolation.

prnstres 10 Function to compute principal stresses
and principal directions for a symmet-
ric second order stress tensor.

trusvibs 10 Program to compute and show anima-
tion of the natural vibration modes of a
general pin connected truss.

drawtruss 10 Function to draw the deßection modes
of a truss.

eigsym 10 Function solving the constrained
eigenvalue problem associated with
an elastic structure Þxed as selected
points.

elmstf 10 Function to form mass and stiffness
matrices of a pin connected truss.

colbuc 10 Program to compute buckling loads of
a variable depth column with general
end conditions.

cbfreq 10 Program comparing cantilever beam
natural frequencies computed by ex-
act, Þnite difference, and Þnite element
methods.

continued on next page
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614 ADVANCED MATH AND MECHANICS APPLICATIONS USING MATLAB

Routine Chapter Description
cbfrqnwm 10 Function to compute exact cantilever

beam frequencies.
cbfrqfdm 10 Function to compute cantilever beam

frequencies using Þnite difference
methods.

cbfrqfem 10 Function to compute cantilever beam
frequencies using the Þnite element
method.

elipfreq 10 Program for natural frequencies and
animation of the mode shapes of an el-
liptic membrane.

frqsimpl 10 Function to compute elliptic membrane
natural frequencies and mode shapes.

eigenrec 10 Function to solve a rectangular eigen-
value problem of the form: XA +
BX = λ(XC +DX).

plotmode 10 Function to plot the mode shapes of the
membrane.

vdb 11 Program to compute shear, moment,
slope, and deßection in a variable
depth multi-support beam with general
external loading conditions.

extload 11 Function to compute load and defor-
mation quantities for distributed and
concentrated loading on a beam.

sngf 11 Singularity function used to describe
beam loads.

trapsum 11 Trapezoidal rule function used to inte-
grate beam functions.

sqrtsurf 12 Function used to illustrate branch cut
discontinuities for an analytic function.

elipinvr 12 Function to invert the function map-
ping the exterior of a circle onto the ex-
terior of an ellipse.

elipdplt 12 Program showing grid lines for confor-
mal mapping of a circular disk onto an
elliptic disk.

continued on next page

© 2003 by CRC Press LLC



LIST OF MATLAB ROUTINES WITH DESCRIPTIONS 615

Routine Chapter Description
elipdisk 12 Function mapping an elliptic disk onto

a circular disk.
gridview 12 Function to plot a curvilinear coordi-

nate grid.
linfrac 12 Function to perform linear fractional

transformations.
crc2crc 12 Function analyzing mapping of circles

and straight lines under a linear frac-
tional transformation.

ecentric 12 Function to determine a concentric an-
nulus which maps onto a given eccen-
tric annulus.

swcsq10 12 Program illustrating both interior and
exterior maps regarding a circle and a
square.

squarat 12 Rational function map taking the inside
of a circle onto the interior of a square
or the exterior of a square onto the ex-
terior of a square.

swcsqmap 12 Function using truncated series expan-
sions in relation to circle to square
maps.

lapcrcl 12 Program solving the Laplace equation
in a circular disk for either Dirichlet or
Neumann boundary conditions.

cauchtst 12 Program using a Cauchy integral to
solve a mixed boundary value problem
for a circular disk.

cauchint 12 Function to numerically evaluate a
Cauchy integral.

elipcyl 12 Program illustrating inviscid ßuid ßow
about an elliptic cylinder in an inÞnite
stream.

runtors 12 Program using a Cauchy integral and
conformal mapping to compute tor-
sional stresses in a beam.

runplate 12 Program using complex stress func-
tions to compute stresses in a plate with
a circular hole.

continued on next page
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616 ADVANCED MATH AND MECHANICS APPLICATIONS USING MATLAB

Routine Chapter Description
platecrc 12 Function computing series coefÞcients

for complex stress functions pertaining
to a plate with a circular hole.

strfun 12 Function to evaluate stress functions
phi and psi.

cartstrs 12 Function using complex stress func-
tions to evaluate Cartesian stress com-
ponents.

rec2polr 12 Function transforming stress compo-
nents from Cartesian to polar coordi-
nates.

elipmaxst 12 Program using conformal mapping and
complex stress functions to compute
stress in a plate with an elliptic hole.

runtraj 13 Program using one-dimensional search
to optimize a projectile trajectory.

vibÞt 13 Program using multi-dimensional
search to Þt a nonlinear equation to
vibration response data.

cablsolv 13 Program to compute large deßection
static equilibrium of a loaded cable.

brachist 13 Program to determine a minimum time
descent curve (brachistochrone).

cylclose 13 Program using multi-dimensional
search to Þnd the closest points on two
adjacent circular cylinders.

surf2surf 13 Function using exhaustive search to
Þnd the closest points on two surfaces.

nelmed 13 Function similar to fminsearch which
implements the Nelder and Mead algo-
rithm for multi-dimensional search.
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Appendix B

Selected Utility and Application Functions

Function animate

1: function animate(x,y,titl,tim,trace)
2: %
3: % animate(x,y,titl,tim,trace)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function performs animation of a 2D curve
6: % x,y - arrays with columns containing curve positions
7: % for successive times. x can also be a single
8: % vector if x values do not change. The animation
9: % is done by plotting (x(:,j),y(:,j)) for

10: % j=1:size(y,2).
11: % titl- title for the graph
12: % tim - the time in seconds between successive plots
13:

14: if nargin<5, trace=0; else, trace=1; end;
15: if nargin<4, tim=.05; end
16: if nargin<3, trac=’’; end; [np,nt]=size(y);
17: if min(size(x))==1, j=ones(1,nt); x=x(:);
18: else, j=1:nt; end; ax=newplot;
19: if trace, XOR=’none’; else, XOR=’xor’; end
20: r=[min(x(:)),max(x(:)),min(y(:)),max(y(:))];
21: %axis(’equal’) % Needed for an undistorted plot
22: axis(r), % axis(’off’)
23: curve = line(’color’,’k’,’linestyle’,’-’,...
24: ’erase’,XOR, ’xdata’,[],’ydata’,[]);
25: xlabel(’x axis’), ylabel(’y axis’), title(titl)
26: for k = 1:nt
27: set(curve,’xdata’,x(:,j(k)),’ydata’,y(:,k))
28: if tim>0, pause(tim), end, drawnow, shg
29: end
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Function aprop

1: function [p,zplot]=aprop(xd,yd,kn)
2: %
3: % [p,zplot]=aprop(xd,yd,kn)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function determines geometrical properties
6: % of a general plane area bounded by a spline
7: % curve
8: %
9: % xd,yd - data points for spline interpolation

10: % with the boundary traversed in counter-
11: % clockwise direction. The first and last
12: % points must match for boundary closure.
13: % kn - vector of indices of points where the
14: % slope is discontinuous to handle corners
15: % like those needed for shapes such as a
16: % rectangle.
17: % p - the vector [a,xcg,ycg,axx,axy,ayy]
18: % containing the area, centroid coordinates,
19: % moment of inertia about the y-axis,
20: % product of inertia, and moment of inertia
21: % about the x-axis.
22: % zplot - complex vector of boundary points for
23: % plotting the spline interpolated geometry.
24: % The points include the numerical quadrature
25: % points interspersed with data values.
26: %
27: % User functions called: gcquad, curve2d
28: if nargin==0
29: td=linspace(0,2*pi,13); kn=[1,13];
30: xd=cos(td)+1; yd=sin(td)+1;
31: end
32: nd=length(xd); nseg=nd-1;
33: [dum,bp,wf]=gcquad([],1,nd,6,nseg);
34: [z,zplot,zp]=curve2d(xd,yd,kn,bp);
35: w=[ones(size(z)), z, z.*conj(z), z.^2].*...
36: repmat(imag(conj(z).*zp),1,4);
37: v=(wf’*w)./[2,3,8,8]; vr=real(v); vi=imag(v);
38: p=[vr(1:2),vi(2),vr(3)+vr(4),vi(4),vr(3)-vr(4)];
39: p(2)=p(2)/p(1); p(3)=p(3)/p(1);
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Function besjroot

1: function rts=besjroot(norder,nrts,tol)
2: %
3: % rts=besjroot(norder,nrts,tol)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function computes an array of positive roots
6: % of the integer order Bessel functions besselj of
7: % the first kind for various orders. A chosen number
8: % of roots is computed for each order
9: % norder - a vector of function orders for which

10: % roots are to be computed. Taking 3:5
11: % for norder would use orders 3,4, and 5.
12: % nrts - the number of positive roots computed for
13: % each order. Roots at x=0 are ignored.
14: % rts - an array of roots having length(norder)
15: % rows and nrts columns. The element in
16: % column k and row i is the k’th root of
17: % the function besselj(norder(i),x).
18: % tol - error tolerance for root computation.
19:

20: if nargin<3, tol=1e-5; end
21: jn=inline(’besselj(n,x)’,’x’,’n’);
22: N=length(norder); rts=ones(N,nrts)*nan;
23: opt=optimset(’TolFun’,tol,’TolX’,tol);
24: for k=1:N
25: n=norder(k); xmax=1.25*pi*(nrts-1/4+n/2);
26: xsrch=.1:pi/4:xmax; fb=besselj(n,xsrch);
27: nf=length(fb); K=find(fb(1:nf-1).*fb(2:nf)<=0);
28: if length(K)<nrts
29: disp(’Search error in function besjroot’)
30: rts=nan; return
31: else
32: K=K(1:nrts);
33: for i=1:nrts
34: interval=xsrch(K(i):K(i)+1);
35: rts(k,i)=fzero(jn,interval,opt,n);
36: end
37: end
38: end
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Function cubrange

1: function range=cubrange(xyz,ovrsiz)
2: %
3: % range=cubrange(xyz,ovrsiz)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function determines limits for a square
6: % or cube shaped region for plotting data values
7: % in the columns of array xyz to an undistorted
8: % scale
9: %

10: % xyz - a matrix of the form [x,y] or [x,y,z]
11: % where x,y,z are vectors of coordinate
12: % points
13: % ovrsiz - a scale factor for increasing the
14: % window size. This parameter is set to
15: % one if only one input is given.
16: %
17: % range - a vector used by function axis to set
18: % window limits to plot x,y,z points
19: % undistorted. This vector has the form
20: % [xmin,xmax,ymin,ymax] when xyz has
21: % only two columns or the form
22: % [xmin,xmax,ymin,ymax,zmin,zmax]
23: % when xyz has three columns.
24: %
25: % User m functions called: none
26: %----------------------------------------------
27:

28: if nargin==1, ovrsiz=1; end
29: pmin=min(xyz); pmax=max(xyz); pm=(pmin+pmax)/2;
30: pd=max(ovrsiz/2*(pmax-pmin));
31: if length(pmin)==2
32: range=pm([1,1,2,2])+pd*[-1,1,-1,1];
33: else
34: range=pm([1 1 2 2 3 3])+pd*[-1,1,-1,1,-1,1];
35: end

Function curve2d

1: function [z,zplot,zp]=curve2d(xd,yd,kn,t)
2: %
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3: % [z,zplot,zp]=curve2d(xd,yd,kn,t)
4: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function generates a spline curve through
6: % given data points with corners (slope dis-
7: % continuities) allowed as selected points.
8: % xd,yd - real data vectors of length nd
9: % defining the curve traversed in

10: % counterclockwise order.
11: % kn - vectors of point indices, between one
12: % and nd, where slope discontinuities
13: % occur
14: % t - a vector of parameter values at which
15: % points on the spline curve are
16: % computed. The components of t normally
17: % range from one to nd, except when t is
18: % a negative integer,-m. Then t is
19: % replaced by a vector of equally spaced
20: % values using m steps between each
21: % successive pair of points.
22: % z - vector of points on the spline curve
23: % corresponding to the vector t
24: % zplot - a complex vector of points suitable
25: % for plotting the geometry
26: % zp - first derivative of z with respect to
27: % t for the same values of t as is used
28: % to compute z
29: %
30: % User m functions called: splined
31: %----------------------------------------------
32:

33: nd=length(xd); zd=xd(:)+i*yd(:); td=(1:nd)’;
34: if isempty(kn), kn=[1;nd]; end
35: kn=sort(kn(:)); if kn(1)~=1, kn=[1;kn]; end
36: if kn(end)~=nd, kn=[kn;nd]; end
37: N=length(kn)-1; m=round(abs(t(1)));
38: if -t(1)==m, t=linspace(1,nd,1+N*m)’; end
39: z=[]; zp=[]; zplot=[];
40: for j=1:N
41: k1=kn(j); k2=kn(j+1); K=k1:k2;
42: k=find(k1<=t & t<k2);
43: if j==N, k=find(k1<=t & t<=k2); end
44: if ~isempty(k)
45: zk=spline(K,zd(K),t(k)); z=[z;zk];
46: zplot=[zplot;zd(k1);zk];
47: if nargout==3
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48: zp=[zp;splined(K,zd(K),t(k))];
49: end
50: end
51: end
52: zplot=[zplot;zd(end)];

Function eigenrec

1: function [eigs,vecs,Amat,Bmat]=eigenrec(A,B,C,D)
2: % [eigs,vecs,Amat,Bmat]=eigenrec(A,B,C,D)
3: % Solve a rectangular eigenvalue problem of the
4: % form: X*A+B*X=lambda*(X*C+D*X)
5: n=size(B,1); m=size(A,2); s=[n,m]; N=n*m;
6: Amat=zeros(N,N); Bmat=Amat; kn=1:n; km=1:m;
7: for i=1:n
8: IK=sub2ind(s,i*ones(1,m),km);
9: Bikn=B(i,kn); Dikn=D(i,kn);

10: for j=1:m
11: I=sub2ind(s,i,j);
12: Amat(I,IK)=A(km,j)’; Bmat(I,IK)=C(km,j)’;
13: KJ=sub2ind(s,kn,j*ones(1,n));
14: Amat(I,KJ)=Amat(I,KJ)+ Bikn;
15: Bmat(I,KJ)=Bmat(I,KJ)+ Dikn;
16: end
17: end
18: [vecs,eigs]=eig(Bmat\Amat);
19: [eigs,k]=sort(diag(eigs));
20: vecs=reshape(vecs(:,k),n,m,N);

Function eigsym

1: function [evecs,eigvals]=eigsym(k,m,c)
2: %
3: % [evecs,eigvals]=eigsym(k,m,c)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function solves the eigenvalue of the
6: % constrained eigenvalue problem
7: % k*x=(lambda)*m*x, with c*x=0.
8: % Matrix k must be real symmetric and matrix
9: % m must be symmetric and positive definite;

10: % otherwise, computed results will be wrong.
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11: %
12: % k - a real symmetric matrix
13: % m - a real symmetric positive
14: % definite matrix
15: % c - a matrix defining the constraint
16: % condition c*x=0. This matrix is
17: % omitted if no constraint exists.
18: %
19: % evecs - matrix of eigenvectors orthogonal
20: % with respect to k and m. The
21: % following relations apply:
22: % evecs’*m*evecs=identity_matrix
23: % evecs’*k*evecs=diag(eigvals).
24: % eigvals - a vector of the eigenvalues
25: % sorted in increasing order
26: %
27: % User m functions called: trifacsm
28: %----------------------------------------------
29:

30: if nargin==3
31: q=null(c); m=q’*m*q; k=q’*k*q;
32: end
33: u=trifacsm(m); k=u’\k/u; k=(k+k’)/2;
34: [evecs,eigvals]=eig(k);
35: [eigvals,j]=sort(diag(eigvals));
36: evecs=evecs(:,j); evecs=u\evecs;
37: if nargin==3, evecs=q*evecs; end

Function fhrmck

1: function [t,y,lam]=fhrmck(m,c,k,f1,f2,w,tlim,nt,y0,v0)
2: %
3: % [t,y,lam]=fhrmck(m,c,k,f1,f2,w,tlim,nt,y0,v0)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function uses eigenfunction analysis to solve
6: % the matrix differential equation
7: % m*y’’(t)+c*y’(t)+k*y(t)=f1*cos(w*t)+f2*sin(w*t)
8: % with initial conditions of y(0)=y0, y’(0)=v0
9: % The solution is general unless 1) a zero or repeated

10: % eigenvalue occurs or 2) the system is undamped and
11: % the forcing function matches a natural frequency.
12: % If either error condition occurs, program execution
13: % terminates with t and y set to nan.
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14: %
15: % m,c,k - mass, damping, and stiffness matrices
16: % f1,f2 - amplitude vectors for the sine and cosine
17: % forcing function components
18: % w - frequency of the forcing function
19: % tlim - a vector containing the minimum and
20: % maximum time limits for evaluation of
21: % the solution
22: % nt - the number of times at which the solution
23: % is evaluated within the chosen limits
24: % for which y(t) is computed
25: % y0,v0 - initial position and velocity vectors
26: %
27: % t - vector of time values for the solution
28: % y - matrix of solution values where y(i,j)
29: % is the value of component j at time t(i)
30: % lam - the complex natural frequencies arranged
31: % in order of increasing absolute value
32:

33: if nargin==0 % Generate default data using 2 masses
34: m=eye(2,2); k=[2,-1;-1,1]; c=.3*k;
35: f1=[0;1]; f2=[0;0]; w=0.6; tlim=[0,100]; nt=400;
36: end
37: n=size(m,1); t=linspace(tlim(1),tlim(2),nt);
38: if nargin<10, y0=zeros(n,1); v0=y0; end
39:

40: % Determine eigenvalues and eigenvectors for
41: % the homogeneous solution
42: A=[zeros(n,n), eye(n,n); -m\[k, c]];
43: [U,lam]=eig(A); [lam,j]=sort(diag(lam)); U=U(:,j);
44:

45: % Check for zero or repeated eigenvalues and
46: % for undamped resonance
47: wmin=abs(lam(1)); tol=wmin/1e6;
48: [dif,J]=min(abs(lam-i*w)); lj=num2str(lam(J));
49: if wmin==0, disp(’ ’)
50: disp(’The homogeneous equation has a zero’)
51: disp(’eigenvalue which is not allowed.’)
52: disp(’Execution is terminated’), disp(’ ’)
53: t=nan; y=nan; return
54: elseif any(abs(diff(lam))<tol)
55: disp(’A repeated eigenvalue occurred.’)
56: disp(’Execution is terminated’),disp(’ ’)
57: t=nan; y=nan; return
58: elseif dif<tol & sum(abs(c(:)))==0
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59: disp(’The system is undamped and the forcing’)
60: disp([’function resonates with ’,...
61: ’eigenvalue ’,lj])
62: disp(’Execution is terminated.’)
63: disp(’ ’), t=nan; y=nan; return
64: else
65: % Determine the particular solution
66: a=(-w^2*m+k+i*w*c)\(f1-i*f2);
67: yp=real(a*exp(i*w*t));
68: yp0=real(a); vp0=real(i*w*a);
69: end
70:

71: % Scale the homogeneous solution to satisfy the
72: % initial conditions
73: U=U*diag(U\[y0-yp0; v0-vp0]);
74: yh=real(U(1:n,:)*exp(lam*t));
75:

76: % Combine results to obtain the total solution
77: t=t(:); y=[yp+yh]’;
78:

79: % Show data graphically only for default case
80: if nargin==0
81: waterfall(t,(1:n),y’), xlabel(’time axis’)
82: ylabel(’mass index’), zlabel(’Displacements’)
83: title([’DISPLACEMENT HISTORY FOR A ’,...
84: int2str(n),’-MASS SYSTEM’])
85: colormap([1,0,0]), shg
86: end

Function Þndifco

1: function [c,e,m,crat]=findifco(k,a)
2: %
3: % [c,e,m,crat]=findifco(k,a)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function approximates the k’th derivative
6: % of a function using function values at n
7: % interpolation points. Let f(x) be a general
8: % function having its k’th derivative denoted
9: % by F(x,k). The finite difference approximation

10: % for the k’th derivative employing a stepsize h
11: % is given by:
12: % F(x,k)=Sum(c(j)*f(x+a(j)*h), j=1:n)/h^k +
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13: % TruncationError
14: % with m=n-k being the order of truncation
15: % error which decreases like h^m and
16: % TruncationError=(h^m)*(e(1)*F(x,n)+...
17: % e(2)*F(x,n+1)*h+e(3)*F(x,n+2)*h^2+O(h^3))
18: %
19: % a - a vector of length n defining the
20: % interpolation points x+a(j)*h where
21: % x is an arbitrary parameter point
22: % k - order of derivative evaluated at x
23: % c - the weighting coeffients in the
24: % difference formula above. c(j) is
25: % the multiplier for value f(x+a(j)*h)
26: % e - error component vector in the above
27: % difference formula
28: % m - order of truncation order in the
29: % formula. The relation m=n-k applies.
30: % crat - a matrix of integers such that c is
31: % approximated by crat(1,:)./crat(2,:)
32:

33: a=a(:); n=length(a); m=n-k; mat=ones(n,n+4);
34: for j=2:n+4; mat(:,j)=a/(j-1).*mat(:,j-1); end
35: A=pinv(mat(:,1:n)); ec=-A*mat(:,n+1:n+4);
36: c=A(k+1,:); e=-ec(k+1,:);
37: [ctop,cbot]=rat(c,1e-8); crat=[ctop(:)’;cbot(:)’];

Function gcquad

1: function [val,bp,wf]=gcquad(func,xlow,...
2: xhigh,nquad,mparts,varargin)
3: %
4: % [val,bp,wf]=gcquad(func,xlow,...
5: % xhigh,nquad,mparts,varargin)
6:

7: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8: %
9: % This function integrates a general function using

10: % a composite Gauss formula of arbitrary order. The
11: % integral value is returned along with base points
12: % and weight factors obtained by an eigenvalue based
13: % method. The integration interval is divided into
14: % mparts subintervals of equal length and integration
15: % over each part is performed with a Gauss formula
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16: % making nquad function evaluations. Results are
17: % exact for polynomials of degree up to 2*nquad-1.
18: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
19: % func - name of a function to be integrated
20: % having an argument list of the form
21: % func(x,p1,p2,...) where any auxiliary
22: % parameters p1,p2,.. are passed through
23: % variable varargin. Use [ ] for the
24: % function name if only the base points
25: % and weight factors are needed.
26: % xlow,xhigh - integration limits
27: % nquad - order of Gauss formula chosen
28: % mparts - number of subintervals selected in
29: % the composite integration
30: % varargin - variable length parameter used to
31: % pass additional arguments needed in
32: % the integrand func
33: % val - numerical value of the integral
34: % bp,wf - vectors containing base points and
35: % weight factors in the composite
36: % integral formula
37: %
38: % A typical calculation such as:
39: % Fun=inline(’(sin(w*t).^2).*exp(c*t)’,’t’,’w’,’c’);
40: % A=0; B=12; nquad=21; mparts=10; w=10; c=8;
41: % [value,pcterr]=integrate(Fun,A,B,nquad,mparts,w,c);
42: % gives value = 1.935685556078172e+040 which is
43: % accurate within an error of 1.9e-13 percent.
44: %
45: % User m functions called: the function name passed
46: % in the argument list
47:

48: %----------------------------------------------
49:

50: if isempty(nquad), nquad=10; end
51: if isempty(mparts), mparts=1; end
52:

53: % Compute base points and weight factors
54: % for the single interval [-1,1]. (Ref:
55: % ’Methods of Numerical Integration’ by
56: % P. Davis and P. Rabinowitz, page 93)
57:

58: u=(1:nquad-1)./sqrt((2*(1:nquad-1)).^2-1);
59: [vc,bp]=eig(diag(u,-1)+diag(u,1));
60: [bp,k]=sort(diag(bp)); wf=2*vc(1,k)’.^2;
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61:

62: % Modify the base points and weight factors
63: % to apply for a composite interval
64: d=(xhigh-xlow)/mparts; d1=d/2;
65: dbp=d1*bp(:); dwf=d1*wf(:); dr=d*(1:mparts);
66: cbp=dbp(:,ones(1,mparts))+ ...
67: dr(ones(nquad,1),:)+(xlow-d1);
68: cwf=dwf(:,ones(1,mparts)); wf=cwf(:); bp=cbp(:);
69:

70: % Compute the integral
71: if isempty(func)
72: val=[];
73: else
74: f=feval(func,bp,varargin{:}); val=wf’*f(:);
75: end

Function gridview

1: function gridview(x,y,xlabl,ylabl,titl)
2: %
3: % gridview(x,y,xlabl,ylabl,titl)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function views a surface from the top
7: % to show the coordinate lines of the surface.
8: % It is useful for illustrating how coordinate
9: % lines distort in a conformal transformation.

10: % Calling gridview with no arguments depicts the
11: % mapping of a polar coordinate grid map under
12: % a transformation of the form
13: % z=R*(zeta+m/zeta).
14: %
15: % x,y - real matrices defining a
16: % curvilinear coordinate system
17: % xlabl,ylabl - labels for x and y axes
18: % titl - title for the graph
19: %
20: % User m functions called: cubrange
21: %----------------------------------------------
22:

23: % close
24: if nargin<5
25: xlabl=’real axis’; ylabl=’imaginary axis’;
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26: titl=’’;
27: end
28:

29: % Default example using z=R*(zeta+m/zeta)
30: if nargin==0
31: zeta=linspace(1,3,10)’* ...
32: exp(i*linspace(0,2*pi,81));
33: a=2; b=1; R=(a+b)/2; m=(a-b)/(a+b);
34: z=R*(zeta+m./zeta); x=real(z); y=imag(z);
35: titl=[’Circular Annulus Mapped onto an ’, ...
36: ’Elliptical Annulus’];
37: end
38:

39: range=cubrange([x(:),y(:)],1.1);
40:

41: % The data define a curve
42: if size(x,1)==1 | size(x,2)==1
43: plot(x,y,’-k’); xlabel(xlabl); ylabel(ylabl);
44: title(titl); axis(’equal’); axis(range);
45: grid on; figure(gcf);
46: if nargin==0
47: print -deps gridviewl;
48: end
49: % The data define a surface
50: else
51: plot(x,y,’k-’,x’,y’,’k-’)
52: xlabel(xlabl); ylabel(ylabl); title(titl);
53: axis(’equal’); axis(range); grid on;
54: figure(gcf);
55: if nargin==0
56: print -deps gridview;
57: end
58: end
59:

60: %==============================================
61:

62: function range=cubrange(xyz,ovrsiz)
63: %
64: % range=cubrange(xyz,ovrsiz)
65: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
66: % This function determines limits for a square
67: % or cube shaped region for plotting data values
68: % in the columns of array xyz to an undistorted
69: % scale
70: %
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71: % xyz - a matrix of the form [x,y] or [x,y,z]
72: % where x,y,z are vectors of coordinate
73: % points
74: % ovrsiz - a scale factor for increasing the
75: % window size. This parameter is set to
76: % one if only one input is given.
77: %
78: % range - a vector used by function axis to set
79: % window limits to plot x,y,z points
80: % undistorted. This vector has the form
81: % [xmin,xmax,ymin,ymax] when xyz has
82: % only two columns or the form
83: % [xmin,xmax,ymin,ymax,zmin,zmax]
84: % when xyz has three columns.
85: %
86: % User m functions called: none
87: %----------------------------------------------
88:

89: if nargin==1, ovrsiz=1; end
90: pmin=min(xyz); pmax=max(xyz); pm=(pmin+pmax)/2;
91: pd=max(ovrsiz/2*(pmax-pmin));
92: if length(pmin)==2
93: range=pm([1,1,2,2])+pd*[-1,1,-1,1];
94: else
95: range=pm([1 1 2 2 3 3])+pd*[-1,1,-1,1,-1,1];
96: end

Function inputv

1: function varargout=inputv(prompt)
2: %
3: % [a1,a2,...,a_nargout]=inputv(prompt)
4: %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function reads several values on one line.
7: % The items should be separated by commas or
8: % blanks.
9: %

10: % prompt - A string preceding the
11: % data entry. It is set
12: % to ’ ? ’ if no value of
13: % prompt is given.
14: % a1,a2,...,a_nargout - The output variables
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15: % that are created. If
16: % not enough data values
17: % are given following the
18: % prompt, the remaining
19: % undefined values are
20: % set equal to NaN
21: %
22: % A typical function call is:
23: % [A,B,C,D]=inputv(’Enter values of A,B,C,D: ’)
24: %
25: %----------------------------------------------
26:

27: if nargin==0, prompt=’ ? ’; end
28: u=input(prompt,’s’); v=eval([’[’,u,’]’]);
29: ni=length(v); no=nargout;
30: varargout=cell(1,no); k=min(ni,no);
31: for j=1:k, varargout{j}=v(j); end
32: if no>ni
33: for j=ni+1:no, varargout{j}=nan; end
34: end

Function lintrp

1: function y=lintrp(xd,yd,x)
2: %
3: % y=lintrp(xd,yd,x)
4: % ~~~~~~~~~~~~~~~~~
5: % This function performs piecewise linear
6: % interpolation through data values stored in
7: % xd, yd, where xd values are arranged in
8: % nondecreasing order. The function can handle
9: % discontinuous functions specified when some

10: % successive values in xd are equal. Then the
11: % repeated xd values are shifted by a small
12: % amount to remove the discontinuities.
13: % Interpolation for any points outside the range
14: % of xd is also performed by continuing the line
15: % segments through the outermost data pairs.
16: %
17: % xd,yd - vectors of interpolation data values
18: % x - matrix of values where interpolated
19: % values are required
20: %
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21: % y - matrix of interpolated values
22:

23: k=find(diff(xd)==0);
24: if length(k)~=0
25: xd(k+1)=xd(k+1)+(xd(end)-xd(1))*1e3*eps;
26: end
27: y=interp1(xd,yd,x,’linear’,’extrap’);

Function manyrts

1: function roots=manyrts(func,a,b,nsteps,...
2: maxrts,tol,varargin)
3: %
4: % roots=manyrts(func,a,b,nsteps,maxrts,tol,...
5: % varargin)
6: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7: % This function attempts to find multiple roots
8: % of a function by searching an interval in steps
9: % of equal length and finding a root in each

10: % interval where a sign change occurs
11: % func - name of a function of the form
12: % func(x,p1,p2,...) where additional
13: % parameters after the first are
14: % passed through varargin
15: % a,b - upper and lower limits of the
16: % search interval
17: % nsteps - number of intervals from a to b
18: % which are checked to detect a
19: % sign change
20: % maxrts - maximum number of roots sought
21: % within the search limits. The
22: % search terminates when the number
23: % of roots found equals maxrts.
24: % tol - the root tolerance passed to
25: % function fzero. A default value of
26: % 1e-10 is used if no value is given
27: % varargin - the cell variable provided to pass
28: % multiple arguments to function func
29:

30: if nargin<6, tol=1e-10; end;
31: if nargin<5, maxrts=100; end
32: if isstruct(tol), options=tol;
33: else
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34: options=optimset(’tolfun’,tol,’tolx’,tol);
35: end
36: x=linspace(a,b,nsteps); roots=[];
37: rtlast=-realmax;
38: for j=1:nsteps-1
39: xj=x(j); xj1=x(j+1);
40: fj=feval(func,xj,varargin{:});
41: fj1=feval(func,xj1,varargin{:});
42: if fj.*fj1<=0
43: rt=fzero(func,[xj,xj1],...
44: options,varargin{:});
45: if (rt-rtlast)>tol
46: roots=[roots,rt]; rtlast=rt;
47: end
48: end
49: if length(roots)==maxrts, break, end
50: end

Function membanim

1: function membanim(u,x,y,t)
2: %
3: % function membanim(u,x,y,t)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function animates the motion of a
6: % vibrating membrane
7: %
8: % u array in which component u(i,j,k) is the
9: % displacement for y(i),x(j),t(k)

10: % x,y arrays of x and y coordinates
11: % t vector of time values
12:

13: % Compute the plot range
14: if nargin==0;
15: [u,x,y,t]=memrecwv(2,1,1,15.5,1.5,.5,5);
16: end
17: xmin=min(x(:)); xmax=max(x(:));
18: ymin=min(y(:)); ymax=max(y(:));
19: xmid=(xmin+xmax)/2; ymid=(ymin+ymax)/2;
20: d=max(xmax-xmin,ymax-ymin)/2; Nt=length(t);
21: range=[xmid-d,xmid+d,ymid-d,ymid+d,...
22: 3*min(u(:)),3*max(u(:))];
23:
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24: while 1 % Show the animation repeatedly
25: disp(’ ’), disp(’Press return for animation’)
26: dumy=input(’or enter 0 to stop > ? ’,’s’);
27: if ~isempty(dumy)
28: disp(’ ’), disp(’All done’), break
29: end
30:

31: % Plot positions for successive times
32: for j=1:Nt
33: surf(x,y,u(:,:,j)), axis(range)
34: xlabel(’x axis’), ylabel(’y axis’)
35: zlabel(’u axis’), titl=sprintf(...
36: ’MEMBRANE POSITION AT T=%5.2f’,t(j));
37: title(titl), colormap([1 1 1])
38: colormap([127/255 1 212/255])
39: % axis off
40: drawnow, shg, pause(.1)
41: end
42: end

Function plotmotn

1: function plotmotn(x,y,titl,isave)
2: %
3: % plotmotn(x,y,titl,isave)
4: % ~~~~~~~~~~~~~~~~~~~~
5: % This function plots the cable time
6: % history described by coordinate values
7: % stored in the rows of matrices x and y.
8: %
9: % x,y - matrices having successive rows

10: % which describe position
11: % configurations for the cable
12: % titl - a title shown on the plots
13: % isave - parameter controlling the form
14: % of output. When isave is not input,
15: % only one position at a time is shown
16: % in rapid succession to animate the
17: % motion. If isave is given a value,
18: % then successive are all shown at
19: % once to illustrate a kinematic
20: % trace of the motion history.
21: %
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22: % User m functions called: none
23: %----------------------------------------------
24:

25: % Set a square window to contain all
26: % possible positions
27: [nt,n]=size(x);
28: if nargin==4, save =1; else, save=0; end
29: xmin=min(x(:)); xmax=max(x(:));
30: ymin=min(y(:)); ymax=max(y(:));
31: w=max(xmax-xmin,ymax-ymin)/2;
32: xmd=(xmin+xmax)/2; ymd=(ymin+ymax)/2;
33: hold off; clf; axis(’normal’); axis(’equal’);
34: range=[xmd-w,xmd+w,ymd-w,ymd+w];
35: title(titl)
36: xlabel(’x axis’); ylabel(’y axis’)
37: if save==0
38: for j=1:nt
39: xj=x(j,:); yj=y(j,:);
40: plot(xj,yj,’-k’,xj,yj,’ok’);
41: axis(range), axis off
42: title(titl)
43: figure(gcf), drawnow, pause(.1)
44: end
45: pause(2)
46: else
47: hold off; close
48: for j=1:nt
49: xj=x(j,:); yj=y(j,:);
50: plot(xj,yj,’-k’,xj,yj,’ok’);
51: axis(range), axis off, hold on
52: end
53: title(titl)
54: figure(gcf), drawnow, hold off, pause(2)
55: end
56:

57: % Save plot history for subsequent printing
58: % print -deps plotmotn

Function polhedrn

1: function [v,rc,vrr,irr]=polhedrn(x,y,z,idface)
2: %
3: % [v,rc,vrr,irr]=polhedrn(x,y,z,idface)
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4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function determines the volume,
7: % centroidal coordinates and inertial moments
8: % for an arbitrary polyhedron.
9: %

10: % x,y,z - vectors containing the corner
11: % indices of the polyhedron
12: % idface - a matrix in which row j defines the
13: % corner indices of the j’th face.
14: % Each face is traversed in a
15: % counterclockwise sense relative to
16: % the outward normal. The column
17: % dimension equals the largest number
18: % of indices needed to define a face.
19: % Rows requiring fewer than the
20: % maximum number of corner indices are
21: % padded with zeros on the right.
22: %
23: % v - the volume of the polyhedron
24: % rc - the centroidal radius
25: % vrr - the integral of R*R’*d(vol)
26: % irr - the inertia tensor for a rigid body
27: % of unit mass obtained from vrr as
28: % eye(3,3)*sum(diag(vrr))-vrr
29: %
30: % User m functions called: pyramid
31: %----------------------------------------------
32:

33: r=[x(:),y(:),z(:)]; nf=size(idface,1);
34: v=0; vr=0; vrr=0;
35: for k=1:nf
36: i=idface(k,:); i=i(find(i>0));
37: [u,ur,urr]=pyramid(r(i,:));
38: v=v+u; vr=vr+ur; vrr=vrr+urr;
39: end
40: rc=vr/v; irr=eye(3,3)*sum(diag(vrr))-vrr;

Function polyxy

1: function [area,xbar,ybar,axx,axy,ayy]=polyxy(x,y)
2: %
3: % [area,xbar,ybar,axx,axy,ayy]=polyxy(x,y)
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4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function computes the area, centroidal
7: % coordinates, and inertial moments of an
8: % arbitrary polygon.
9: %

10: % x,y - vectors containing the corner
11: % coordinates. The boundary is
12: % traversed in a counterclockwise
13: % direction
14: %
15: % area - the polygon area
16: % xbar,ybar - the centroidal coordinates
17: % axx - integral of x^2*dxdy
18: % axy - integral of xy*dxdy
19: % ayy - integral of y^2*dxdy
20: %
21: % User m functions called: none
22: %----------------------------------------------
23:

24: n=1:length(x); n1=n+1;
25: x=[x(:);x(1)]; y=[y(:);y(1)];
26: a=(x(n).*y(n1)-y(n).*x(n1))’;
27: area=sum(a)/2; a6=6*area;
28: xbar=a*(x(n)+x(n1))/a6; ybar=a*(y(n)+y(n1))/a6;
29: ayy=a*(y(n).^2+y(n).*y(n1)+y(n1).^2)/12;
30: axy=a*(x(n).*(2*y(n)+y(n1))+x(n1).* ...
31: (2*y(n1)+y(n)))/24;
32: axx=a*(x(n).^2+x(n).*x(n1)+x(n1).^2)/12;

Function quadlsqrt

1: function v=quadlsqrt(fname,type,a,b,tol,trace,varargin)
2: %
3: % v=quadlsqrt(fname,type,a,b,tol,trace,varargin)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function uses the MATLAB integrator quadl
7: % to evaluate integrals having square root type
8: % singularities at one or both ends of the
9: % integration interval a < x < b.

10: % The integrand has the form:
11: % func(x)/sqrt(x-a) if type==1.
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12: % func(x)/sqrt(b-x) if type==2.
13: % func(x)/sqrt((x-a)*(b-x)) if type==3.
14: %
15: % func - the handle for a function continuous
16: % from x=a to x=b
17: % type - 1 if the integrand is singular at x=a
18: % 2 if the integrand is singular at x=b
19: % 3 if the integrand is singular at both
20: % x=a and x=b.
21: % a,b - integration limits with b > a
22:

23: if nargin<6 | isempty(trace), trace=0; end
24: if nargin<5 | isempty(tol), tol=1e-8; end
25: if nargin<7
26: varargin{1}=type; varargin{2}=[a,b];
27: varargin{3}=fname;
28: else
29: n=length(varargin); c=[a,b]; varargin{n+1}=type;
30: varargin{n+2}=c; varargin{n+3}=fname;
31: end
32:

33: if type==1 | type==2
34: v=2*quadl(@fshift,0,sqrt(b-a),...
35: tol,trace,varargin{:});
36: else
37: v=quadl(@fshift,0,pi,tol,trace,varargin{:});
38: end
39:

40: %=========================================
41:

42: function u=fshift(x,varargin)
43: % u=fshift(x,varargin)
44: % This function shifts arguments to produce
45: % a nonsingular integrand called by quadl
46: N=length(varargin); fname=varargin{N};
47: c=varargin{N-1}; type=varargin{N-2};
48: a=c(1); b=c(2); c1=(b+a)/2; c2=(b-a)/2;
49:

50: switch type
51: case 1, t=a+x.^2; case 2, t=b-x.^2;
52: case 3, t=c1+c2*cos(x);
53: end
54:

55: if N>3, u=feval(fname,t,varargin{1:N-3});
56: else, u=feval(fname,t); end
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Function ratcof

1: function [a,b]=ratcof(xdata,ydata,ntop,nbot)
2: %
3: % [a,b]=ratcof(xdata,ydata,ntop,nbot)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % Determine a and b to approximate ydata as
7: % a rational function of the variable xdata.
8: % The function has the form:
9: %

10: % y(x) = sum(1=>ntop) ( a(j)*x^(j-1) ) /
11: % ( 1 + sum(1=>nbot) ( b(j)*x^(j)) )
12: %
13: % xdata,ydata - input data vectors (real or
14: % complex)
15: % ntop,nbot - number of series terms used in
16: % the numerator and the
17: % denominator.
18: %
19: %----------------------------------------------
20:

21: ydata=ydata(:); xdata=xdata(:);
22: m=length(ydata);
23: if nargin==3, nbot=ntop; end;
24: x=ones(m,ntop+nbot); x(:,ntop+1)=-ydata.*xdata;
25: for i=2:ntop, x(:,i)=xdata.*x(:,i-1); end
26: for i=2:nbot
27: x(:,i+ntop)=xdata.*x(:,i+ntop-1);
28: end
29: ab=pinv(x)*ydata; %ab=x\ydata;
30: a=ab(1:ntop); b=ab(ntop+1:ntop+nbot);

Function raterp

1: function y=raterp(a,b,x)
2: %
3: % y=raterp(a,b,x)
4: % ~~~~~~~~~~~~~~~
5: % This function interpolates using coefficients
6: % from function ratcof.
7: %
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8: % a,b - polynomial coefficients from function
9: % ratcof

10: % x - argument at which function is evaluated
11: % y - computed rational function values
12: %
13: %----------------------------------------------
14:

15: a=flipud(a(:)); b=flipud(b(:));
16: y=polyval(a,x)./(1+x.*polyval(b,x));

Function smdsolve

1: function [x,v]=smdsolve(m,c,k,f1,f2,w,x0,v0,t)
2: %
3: % [x,v]=smdsolve(m,c,k,f1,f2,w,x0,v0,t)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: % This function solves the differential equation
6: % m*x’’(t)+c*x’(t)+k*x(t)=f1*cos(w*t)+f2*sin(w*t)
7: % with x(0)=x0 and x’(0)=v0
8: %
9: % m,c,k - mass, damping and stiffness coefficients

10: % f1,f2 - magnitudes of cosine and sine terms in
11: % the forcing function
12: % w - frequency of the forcing function
13: % t - vector of times to evaluate the solution
14: % x,v - computed position and velocity vectors
15:

16: ccrit=2*sqrt(m*k); wn=sqrt(k/m);
17:

18: % If the system is undamped and resonance will
19: % occur, add a little damping
20: if c==0 & w==wn; c=ccrit/1e6; end;
21:

22: % If damping is critical, modify the damping
23: % very slightly to avoid repeated roots
24: if c==ccrit; c=c*(1+1e-6); end
25:

26: % Forced response solution
27: a=(f1-i*f2)/(k-m*w^2+i*c*w);
28: X0=real(a); V0=real(i*w*a);
29: X=real(a*exp(i*w*t)); V=real(i*w*a*exp(i*w*t));
30:

31: % Homogeneous solution
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32: r=sqrt(c^2-4*m*k);
33: s1=(-c+r)/(2*m); s2=(-c-r)/(2*m);
34: p=[1,1;s1,s2]\[x0-X0;v0-V0];
35:

36: % Total solution satisfying the initial conditions
37: x=X+real(p(1)*exp(s1*t)+p(2)*exp(s2*t));
38: v=V+real(p(1)*s1*exp(s1*t)+p(2)*s2*exp(s2*t));

Function splined

1: function val=splined(xd,yd,x,if2)
2: %
3: % val=splined(xd,yd,x,if2)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function evaluates the first or second
7: % derivative of the piecewise cubic
8: % interpolation curve defined by the intrinsic
9: % function spline provided in MATLAB.If fewer

10: % than four data points are input, then simple
11: % polynomial interpolation is employed
12: %
13: % xd,yd - data vectors determining the spline
14: % curve produced by function spline
15: % x - vector of values where the first or
16: % the second derivative are desired
17: % if2 - a parameter which is input only if
18: % y’’(x) is required. Otherwise, y’(x)
19: % is returned.
20: %
21: % val - the first or second derivative values
22: % for the spline
23: %
24: % User m functions called: none
25:

26: n=length(xd); [b,c]=unmkpp(spline(xd,yd));
27: if n>3 % Use a cubic spline
28: if nargin==3, c=[3*c(:,1),2*c(:,2),c(:,3)];
29: else, c=[6*c(:,1),2*c(:,2)]; end
30: val=ppval(mkpp(b,c),x);
31: else % Use a simple polynomial
32: c=polyder(polyfit(xd(:),yd(:),n-1));
33: if nargin==4, c=polyder(c); end
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34: val=polyval(c,x);
35: end

Function splineg

1: function [val,b,c]=splineg(xd,yd,x,deriv,endc,b,c)
2: %
3: % [val,b,c]=splineg(xd,yd,x,deriv,endc,b,c)
4: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % For a cubic spline curve through data points
7: % xd,yd, this function evaluates y(x), y’(x),
8: % y’’(x), or integral(y(x)*dx, xd(1) to x(j) )
9: % for j=1:length(x).The coefficients needed to

10: % evaluate the spline are also computed.
11: %
12: % xd,yd - data vectors defining the cubic
13: % spline curve
14: % x - vector of points where curve
15: % properties are computed.
16: % deriv - denoting the spline curve as y(x),
17: % deriv=0 gives a vector for y(x)
18: % deriv=1 gives a vector for y’(x)
19: % deriv=2 gives a vector for y’’(x)
20: % deriv=3 gives a vector of values
21: % for integral(y(z)*dz) from xd(1)
22: % to x(j) for j=1:length(x)
23: % endc - endc=1 makes y’’’(x) continuous at
24: % xd(2) and xd(end-1).
25: % endc=[2,left_slope,right_slope]
26: % imposes slope values at both ends.
27: % endc=[3,left_slope] imposes the left
28: % end slope and makes the discontinuity
29: % of y’’’ at xd(end-1) small.
30: % endc=[4,right_slope] imposes the right
31: % end slope and makes the discontinuity
32: % of y’’’ at xd(2) small.
33: % b,c coefficients needed to perform the
34: % spline interpolation. If these are not
35: % given, function unmkpp is called to
36: % generate them.
37: % val values y(x),y’(x),y’’(x) or
38: % integral(y(z)dz, z=xd(1)..x) for
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39: % deriv=0,1,2, or 3, respectively.
40: %
41: % User m files called: splincof
42: % -------------------------------------------
43: if nargin<5 | isempty(endc), endc=1; end
44: if nargin<7, [b,c]=splincof(xd,yd,endc); end
45: n=length(xd); [N,M]=size(c);
46:

47: switch deriv
48:

49: case 0 % Function value
50: val=ppval(mkpp(b,c),x);
51:

52: case 1 % First derivative
53: C=[3*c(:,1),2*c(:,2),c(:,3)];
54: val=ppval(mkpp(b,C),x);
55:

56: case 2 % Second derivative
57: C=[6*c(:,1),2*c(:,2)];
58: val=ppval(mkpp(b,C),x);
59:

60: case 3 % Integral values from xd(1) to x
61: k=M:-1:1;
62: C=[c./k(ones(N,1),:),zeros(N,1)];
63: dx=xd(2:n)-xd(1:n-1); s=zeros(n-2,1);
64: for j=1:n-2, s(j)=polyval(C(j,:),dx(j)); end
65: C(:,5)=[0;cumsum(s)]; val=ppval(mkpp(b,C),x);
66:

67: end
68:

69: %=============================================
70:

71: function [b,c]=splincof(xd,yd,endc)
72: %
73: % [b,c]=splincof(xd,yd,endc)
74: % ~~~~~~~~~~~~~~~~~~~~~~~~~~
75: % This function determines coefficients for
76: % cubic spline interpolation allowing four
77: % different types of end conditions.
78: % xd,yd - data vectors for the interpolation
79: % endc - endc=1 makes y’’’(x) continuous at
80: % xd(2) and xd(end-1).
81: % endc=[2,left_slope,right_slope]
82: % imposes slope values at both ends.
83: % endc=[3,left_slope] imposes the left
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84: % end slope and makes the discontinuity
85: % of y’’’ at xd(end-1) small.
86: % endc=[4,right_slope] imposes the right
87: % end slope and makes the discontinuity
88: % of y’’’ at xd(2) small.
89: %
90: if nargin<3, endc=1; end;
91: type=endc(1); xd=xd(:); yd=yd(:);
92:

93: switch type
94:

95: case 1
96: % y’’’(x) continuous at the xd(2) and xd(end-1)
97: [b,c]=unmkpp(spline(xd,yd));
98:

99: case 2
100: % Slope given at both ends
101: [b,c]=unmkpp(spline(xd,[endc(2);yd;endc(3)]));
102:

103: case 3
104: % Slope at left end given. Compute right end
105: % slope.
106: [b,c]=unmkpp(spline(xd,yd));
107: c=[3*c(:,1),2*c(:,2),c(:,3)];
108: sright=ppval(mkpp(b,c),xd(end));
109: [b,c]=unmkpp(spline(xd,[endc(2);yd;sright]));
110:

111: case 4
112: % Slope at right end known. Compute left end
113: % slope.
114: [b,c]=unmkpp(spline(xd,yd));
115: c=[3*c(:,1),2*c(:,2),c(:,3)];
116: sleft=ppval(mkpp(b,c),xd(1));
117: [b,c]=unmkpp(spline(xd,[sleft;yd;endc(2)]));
118:

119: end

Function spterp

1: function [v,c]=spterp(xd,yd,id,x,endv,c)
2: % [v,c]=spterp(xd,yd,id,x,endv,c)
3:

4: % This function performs cubic spline interpo-
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5: % lation. Values of y(x),y’(x),y’’(x) or the
6: % integral(y(t)*dt, xd(1)..x) are obtained.
7: % xd, yd - data vectors with xd arranged in
8: % ascending order.
9: % id - id equals 0,1,2,3 to compute y(x),

10: % y’(x), integral(y(t)*dt,t=xd(1)..x),
11: % respectively.
12: % v - values of the function, first deriva-
13: % tive, second derivative, or integral
14: % from xd(1) to x
15: % c - the coefficients defining the spline
16: % curve.
17: % endv - vector giving the end conditions in
18: % one of the following five forms:
19: % endv=1 or endv omitted makes
20: % c(2) and c(n-1) zero
21: % endv=[2,left_end_slope,...
22: % right_end_slope] to impose slope
23: % values at each end
24: % endv=[3,left_end_slope] imposes the
25: % left end slope value and makes
26: % c(n-1) zero
27: % endv=[4,right_end_slope] imposes the
28: % right end slope value and makes
29: % c(2) zero
30: % endv=5 defines a periodic spline by
31: % making y,y’,y" match at both ends
32:

33: if nargin<5 | isempty(endv), endv=1; end
34: n=length(xd); sx=size(x); x=x(:); X=x-xd(1);
35:

36: if nargin<6, c=spcof(xd,yd,endv); end
37:

38: C=c(1:n); s1=c(n+1); m1=c(n+2); X=x-xd(1);
39:

40: if id==0 % y(x)
41: v=yd(1)+s1*X+m1/2*X.*X+...
42: powermat(x,xd,3)*C/6;
43: elseif id==1 % y’(x)
44: v=s1+m1*X+powermat(x,xd,2)*C/2;
45: elseif id==2 % y’’(x)
46: v=m1+powermat(x,xd,1)*C;
47: else % integral(y(t)*dt, t=xd(1)..x)
48: v=yd(1)*X+s1/2*X.*X+m1/6*X.^3+...
49: powermat(x,xd,4)*C/24;
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50: end
51: v=reshape(v,sx);
52:

53: %==============================================
54:

55: function c=spcof(x,y,endv)
56: % c=spcof(x,y,endv)
57: % This function determines spline interpolation
58: % coefficients consisting of the support
59: % reactions concatenated with y’ and y’’ at
60: % the left end.
61: % x,y - data vectors of interplation points.
62: % Denote n as the length of x.
63: % endv - vector of data for end conditions
64: % described in function spterp.
65: %
66: % c - a vector [c(1);...;c(n+2)] where the
67: % first n components are support
68: % reactions and the last two are
69: % values of y’(x(1)) and y’’(x(1)).
70:

71: if nargin<3, endv=1; end
72: x=x(:); y=y(:); n=length(x); u=x(2:n)-x(1);
73: a=zeros(n+2,n+2); a(1,1:n)=1;
74: a(2:n,:)=[powermat(x(2:n),x,3)/6,u,u.*u/2];
75: b=zeros(n+2,1); b(2:n)=y(2:n)-y(1);
76: if endv(1)==1 % Force, force condition
77: a(n+1,2)=1; a(n+2,n-1)=1;
78: elseif endv(1)==2 % Slope, slope condition
79: b(n+1)=endv(2); a(n+1,n+1)=1;
80: b(n+2)=endv(3); a(n+2,:)=...
81: [((x(n)-x’).^2)/2,1,x(n)-x(1)];
82: elseif endv(1)==3 % Slope, force condition
83: b(n+1)=endv(2); a(n+1,n+1)=1; a(n+2,n-1)=1;
84: elseif endv(1)==4 % Force, slope condition
85: a(n+1,2)=1; b(n+2)=endv(2);
86: a(n+2,:)=[((x(n)-x’).^2)/2,1,x(n)-x(1)];
87: elseif endv(1)==5
88: a(n+1,1:n)=x(n)-x’; b(n)=0;
89: a(n+2,1:n)=1/2*(x(n)-x’).^2;
90: a(n+2,n+2)=x(n)-x(1);
91: else
92: error(...
93: ’Invalid value of endv in function spcof’)
94: end
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95: if endv(1)==1 & n<4, c=pinv(a)*b;
96: else, c=a\b; end
97:

98: %==============================================
99:

100: function a=powermat(x,X,p)
101: % a=powermat(x,X,p)
102: % This function evaluates various powers of a
103: % matrix used in cubic spline interpolation.
104: %
105: % x,X - arbitrary vectors of length n and N
106: % a - an n by M matrix of elements such that
107: % a(i,j)=(x(i)>X(j))*abs(x(i)-X(j))^p
108: x=x(:); n=length(x); X=X(:)’; N=length(X);
109: a=x(:,ones(1,N))-X(ones(n,1),:); a=a.*(a>0);
110: switch p, case 0, a=sign(a); case 1, return;
111: case 2, a=a.*a; case 3; a=a.*a.*a;
112: case 4, a=a.*a; a=a.*a; otherwise, a=a.^p; end

Function srfv

1: function [v,rc,vrr]=srfv(x,y,z)
2: %
3: % [v,rc,vrr]=srfv(x,y,z)
4: % ~~~~~~~~~~~~~~~~~~~~~~
5: %
6: % This function computes the volume, centroidal
7: % coordinates, and inertial tensor for a volume
8: % covered by surface coordinates contained in
9: % arrays x,y,z

10: %
11: % x,y,z - matrices containing the coordinates
12: % of a grid of points covering the
13: % surface of the solid
14: % v - volume of the solid
15: % rc - centroidal coordinate vector of the
16: % solid
17: % vrr - inertial tensor for the solid with the
18: % mass density taken as unity
19: %
20: % User functions called: scatripl proptet
21: %-----------------------------------------------
22:
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23: % p=inline(...
24: % ’v*(eye(3)*(r(:)’’*r(:))-r(:)*r(:)’’)’,’v’,’r’);
25:

26: %d=mean([x(:),y(:),z(:)]);
27: %x=x-d(1); y=y-d(2); z=z-d(3);
28:

29: [n,m]=size(x); i=1:n-1; I=i+1; j=1:m-1; J=j+1;
30: xij=x(i,j); yij=y(i,j); zij=z(i,j);
31: xIj=x(I,j); yIj=y(I,j); zIj=z(I,j);
32: xIJ=x(I,J); yIJ=y(I,J); zIJ=z(I,J);
33: xiJ=x(i,J); yiJ=y(i,J); ziJ=z(i,J);
34:

35: % Tetrahedron volumes
36: v1=scatripl(xij,yij,zij,xIj,yIj,zIj,xIJ,yIJ,zIJ);
37: v2=scatripl(xij,yij,zij,xIJ,yIJ,zIJ,xiJ,yiJ,ziJ);
38: v=sum(sum(v1+v2));
39:

40: % First moments of volume
41: X1=xij+xIj+xIJ; X2=xij+xIJ+xiJ;
42: Y1=yij+yIj+yIJ; Y2=yij+yIJ+yiJ;
43: Z1=zij+zIj+zIJ; Z2=zij+zIJ+ziJ;
44: vx=sum(sum(v1.*X1+v2.*X2));
45: vy=sum(sum(v1.*Y1+v2.*Y2));
46: vz=sum(sum(v1.*Z1+v2.*Z2));
47:

48: % Second moments of volume
49: vrr=proptet(v1,xij,yij,zij,xIj,yIj,zIj,...
50: xIJ,yIJ,zIJ,X1,Y1,Z1)+...
51: proptet(v2,xij,yij,zij,xIJ,yIJ,zIJ,...
52: xiJ,yiJ,ziJ,X2,Y2,Z2);
53: rc=[vx,vy,vz]/v/4; vs=sign(v);
54: v=abs(v)/6; vrr=vs*vrr/120;
55: vrr=[vrr([1 4 5]), vrr([4 2 6]), vrr([5 6 3])]’;
56: vrr=eye(3,3)*sum(diag(vrr))-vrr;
57:

58: %vrr=vrr-p(v,rc)+p(v,rc+d); rc=rc+d;

Function strdynrk

1: function [t,x,v]=strdynrk(t,x0,v0,m,c,k,functim)
2: % [t,x,v]=strdynrk(t,x0,v0,m,c,k,functim)
3: % This function uses ode45 to solve the matrix
4: % differential equation: M*X"+C*X’+K*X=F(t)
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5: % t - vector of solution times
6: % x0,v0 - initial position and velocity vectors
7: % m,c,k - mass, damping and stiffness matrices
8: % functim - character name for the driving force
9: % x,v - arrays containing solution values for

10: % position and velocity
11: %
12: % A typical call to strdynrk function is:
13: % m=eye(3,3); k=[2,-1,0;-1,2,-1;0,-1,2];
14: % c=.05*k; x0=zeros(3,1); v0=zeros(3,1);
15: % t=linspace(0,10,101);
16: % [t,x,v]=strdynrk(t,x0,v0,m,c,k,’func’);
17:

18: global Mi C K F n n1 n2
19: Mi=inv(m); C=c; K=k; F=functim;
20: n=size(m,1); n1=1:n; n2=n+1:2*n;
21: [t,z]=ode45(@sde,t,[x0(:);v0(:)]);
22: x=z(:,n1); v=z(:,n2);
23:

24: %================================
25:

26: function zp=sde(t,z)
27: % zp=sde(t,z)
28: global Mi C K F n n1 n2
29: zp=[z(n2); Mi*(feval(F,t)-C*z(n2)-K*z(n1))];
30:

31: %================================
32:

33: function f=func(t)
34: % f=func(t)
35: % This is an example forcing function for
36: % function strdynrk in the case of three
37: % degrees of freedom.
38: f=[-1;0;2]*sin(1.413*t);

Function surf2surf

1: function [d,r,R]=surf2surf(x,y,z,X,Y,Z,n)
2: % [d,r,R]=surf2surf(x,y,z,X,Y,Z,n)
3: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4: % This function determines the closest points on two
5: % surfaces and the distance between these points. It
6: % is similar to function srf2srf except that large
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7: % arrays can be processed.
8: %
9: % x,y,z - arrays of points on the first surface

10: % X,Y,Z - arrays of points on the second surface
11: % d - the minimum distance between the surfaces
12: % r,R - vectors containing the coordinates of the
13: % nearest points on the first and the
14: % second surface
15: % n - length of subvectors used to process the
16: % data arrays. Sending vectors of length
17: % n to srf2srf and taking the best of the
18: % subresults allows processing of large
19: % arrays of data points
20: %
21: % User m functions used: srf2srf
22:

23: if nargin<7, n=500; end
24: N=prod(size(x)); M=prod(size(X)); d=realmax;
25: kN=max(1,floor(N/n)); kM=max(1,floor(M/n));
26: for i=1:kN
27: i1=1+(i-1)*n; i2=min(i1+n,N); i12=i1:i2;
28: xi=x(i12); yi=y(i12); zi=z(i12);
29: for j=1:kM
30: j1=1+(j-1)*n; j2=min(j1+n,M); j12=j1:j2;
31: [dij,rij,Rij]=srf2srf(...
32: xi,yi,zi,X(j12),Y(j12),Z(j12));
33: if dij<d, d=dij; r=rij; R=Rij; end
34: end
35: end
36:

37: %=================================================
38:

39: function [d,r,R]=srf2srf(x,y,z,X,Y,Z)
40: % [d,r,R]=srf2srf(x,y,z,X,Y,Z)
41: % ~~~~~~~~~~~~~~~~~~~~~~~~~~~
42: % This function determines the closest points on two
43: % surfaces and the distance between these points.
44: % x,y,z - arrays of points on the first surface
45: % X,Y,Z - arrays of points on the second surface
46: % d - the minimum distance between the surfaces
47: % r,R - vectors containing the coordinates of the
48: % nearest points on the first and the
49: % second surface
50:

51: x=x(:); y=y(:); z=z(:); n=length(x); v=ones(n,1);
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52: X=X(:)’; Y=Y(:)’; Z=Z(:)’; N=length(X); h=ones(1,N);
53: d2=(x(:,h)-X(v,:)).^2; d2=d2+(y(:,h)-Y(v,:)).^2;
54: d2=d2+(z(:,h)-Z(v,:)).^2;
55: [u,i]=min(d2); [d,j]=min(u); i=i(j); d=sqrt(d);
56: r=[x(i);y(i);z(i)]; R=[X(j);Y(j);Z(j)];

Function surfmany

1: function surfmany(varargin)
2: %function surfmany(x1,y1,z1,x2,y2,z2,...
3: % x3,y3,z3,..,xn,yn,zn)
4: % This function plots any number of surfaces
5: % on the same set of axes without shape
6: % distortion. When no input is given, then a
7: % six-legged solid composed of spheres and
8: % cylinders is shown.
9: %

10: % User m functions called: none
11: %----------------------------------------------
12:

13: if nargin==0
14: % Default data for a six-legged solid
15: n=10; rs=.25; d=7; rs=2; rc=.75;
16: [xs,ys,zs]=sphere; [xc,yc,zc]=cylinder;
17: xs=rs*xs; ys=rs*ys; zs=rs*zs;
18: xc=rc*xc; yc=rc*yc; zc=2*d*zc-d;
19: x1=xs; y1=ys; z1=zs;
20: x2=zs+d; y2=ys; z2=xs;
21: x3=zs-d; y3=ys; z3=xs;
22: x4=xs; y4=zs-d; z4=ys;
23: x5=xs; y5=zs+d; z5=ys;
24: x6=xs; y6=ys; z6=zs+d;
25: x7=xs; y7=ys; z7=zs-d;
26: x8=xc; y8=yc; z8=zc;
27: x9=zc; y9=xc; z9=yc;
28: x10=yc; y10=zc; z10=xc;
29: varargin={x1,y1,z1,x2,y2,z2,x3,y3,z3,...
30: x4,y4,z4,x5,y5,z5,x6,y6,z6,x7,y7,z7,...
31: x8,y8,z8,x9,y9,z9,x10,y10,z10};
32: end
33:

34: % Find the data range
35: n=length(varargin);
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36: r=realmax*[1,-1,1,-1,1,-1];
37: s=inline(’min([a;b])’,’a’,’b’);
38: b=inline(’max([a;b])’,’a’,’b’);
39: for k=1:3:n
40: x=varargin{k}; y=varargin{k+1};
41: z=varargin{k+2};
42: x=x(:); y=y(:); z=z(:);
43: r(1)=s(r(1),x); r(2)=b(r(2),x);
44: r(3)=s(r(3),y); r(4)=b(r(4),y);
45: r(5)=s(r(5),z); r(6)=b(r(6),z);
46: end
47:

48: % Plot each surface
49: hold off, newplot
50: for k=1:3:n
51: x=varargin{k}; y=varargin{k+1};
52: z=varargin{k+2};
53: surf(x,y,z); axis(r), hold on
54: end
55:

56: % Set axes and display the combined plot
57: axis equal, axis(r), grid on
58: xlabel(’x axis’), ylabel(’y axis’)
59: zlabel(’z axis’)
60: title(’SEVERAL SURFACES COMBINED’)
61: % colormap([127/255 1 212/255]); % aquamarine
62: colormap([1 1 1]);, figure(gcf), hold off

Function volrevol

1: function [v,rg,Irr,X,Y,Z,aprop,xd,zd,kn]=...
2: volrev(xd,zd,kn,th,nth,noplot)
3: %
4: % [v,rg,Irr,X,Y,Z,aprop,xd,zd,kn]=...
5: % volrev(xd,zd,kn,th,nth,noplot)
6: %~~~~~~~~~~~~~~~~~~~~~~~~~
7:

8: % This function computes geometrical properties
9: % for a volume of revolution resulting when a

10: % closed curve in the (x,z) plane is rotated,
11: % through given angular limits, about the z axis.
12: % The cross section of the volume is defined by
13: % a spline curve passed through data points
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14: % (xd,zd) in the same manner as was done in
15: % function areaprop for plane areas.
16:

17: % xd,zd - data vectors defining the spline
18: % interpolated boundary, which is
19: % traversed in a counterclockwise
20: % direction
21: % kn - indices of any points where slope
22: % discontinuity is allowed to turn
23: % sharp corners
24: % p - vector of volume properties containing
25: % [v, xcg, ycg, zcg, vxx, vyy, vzz,...
26: % vxy, vyz, vzx] where v is the volume,
27: % (xcg,ycg,zcg) are coordinates of the
28: % centroid, and the remaining properties
29: % are volume integrals of the following
30: % integrand:
31: % [x.^, y.^2, z.^2, xy, yz, zx]*dxdyxz
32: % X,Y,Z - data arrays containing points on the
33: % surface of revolution. Plotting these
34: % points shows the solid volume with
35: % the ends left open. Function fill3
36: % is used to plot the surface with ends
37: % closed
38: % aprop - a vector containing properties of the
39: % area in the (x,z) plane that was used
40: % to generate the volume. aprop=[area,...
41: % xcentroidal, ycentroidal, axx, axz, azz].
42:

43: % User m functions called: rotasurf, gcquad,
44: % curve2d, anglefun, splined
45: %----------------------------------------------
46: if nargin==0
47: t1=-pi:pi/6:0; t2=0:pi/6:pi;
48: Zd=[0,exp(i*t1),1/2+i+exp(i*t2)/2,0,-1];
49: xd=real(Zd)+4; zd=imag(Zd);
50: kn=[1,2,8,9,15,16];
51: th=[-pi/2,pi]; nth=31;
52: end
53:

54: % Plot a surface of revolution based on the
55: % input data points
56: if nargin==6
57: [X,Y,Z]=rotasurf(xd,zd,th,nth,1);
58: else
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59: [X,Y,Z]=rotasurf(xd,zd,th,nth); pause
60: end
61:

62: % Obtain base points and weight factors for the
63: % composite Gauss formula of order seven used in
64: % the numerical integration
65: nd=length(xd); nseg=nd-1;
66: [dum,bp,wf]=gcquad([],1,nd,7,nseg);
67:

68: % Evaluate complex points and derivative values
69: % on the spline curve which is rotated to form
70: % the volume of revolution
71: [u,uplot,up]=curve2d(xd,zd,kn,bp);
72: % plot(real(uplot),imag(uplot)), axis equal,shg
73: u=u(:); up=up(:); n=length(bp);
74: x=real(u); dx=real(up); z=imag(u);
75: dz=imag(up); da=x.*dz-z.*dx;
76:

77: % Evaluate line integrals for area properties
78: p=[ones(n,1), x, z, x.^2, x.*z, z.^2, x.^3,...
79: (x.^2).*z, x.*(z.^2)].*repmat(da,1,9);
80: p=(wf(:)’*p)./[2 3 3 4 4 4 5 5 5];
81:

82: % Scale area properties by multipliers involving
83: % the rotation angle for the volume
84: f=anglefun(th(2))-anglefun(th(1));
85: v=f(1)*p(2); rg=f([2 3 1]).*p([4 4 5])/v;
86: vrr=[f([4 5 2]); f([5 6 3]); f([2 3 1])].*...
87: [p([7 7 8]); p([7 7 8]); p([8 8 9])];
88: Irr=eye(3)*sum(diag(vrr))-vrr;
89: aprop=[p(1),p(2:3)/p(1),p(4:6)];
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