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PREFACE

This handbook contains most of the basic and advanced calculation procedures
required for machining and metalworking applications. These calculation proce-
dures should be performed on a modern pocket calculator in order to save time and
reduce or eliminate errors while improving accuracy. Correct bracketing procedures
are required when entering equations into the pocket calculator, and it is for this
reason that I recommend the selection of a calculator that shows all entered data on
the calculator display and that can be scrolled. That type of calculator will allow you
to scroll or review the entered equation and check for proper bracketing sequences,
prior to pressing “ENTER” or =. If the bracketing sequences of an entered equation
are incorrect, the calculator will indicate “Syntax error,” or give an incorrect solution
to the problem. Examples of proper bracketing for entering equations in the pocket
calculator are shown in Chap. 1 and in Chap. 11, where the complex four-bar linkage
is analyzed and explained.

This book is written in a user-friendly format, so that the mathematical equations
and examples shown for solutions to machining and metalworking problems are not
only highly useful and relatively easy to use, but are also practical and efficient. This
book covers metalworking mathematics problems, from the simple to the highly
complex, in a manner that should be valuable to all readers.

It should be understood that these mathematical procedures are applicable for:

¢ Master machinists

e Machinists

¢ Tool designers and toolmakers

e Metalworkers in various fields

e Mechanical designers

¢ Tool engineering personnel

¢ CNC machining programmers

¢ The gunsmithing trade

¢ Students in technical teaching facilities

R.A. Walsh

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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CHAPTER 1

MATHEMATICS
FOR MACHINISTS
AND METALWORKERS

This chapter covers all the basic and special mathematical procedures of value to the
modern machinist and metalworker. Geometry and plane trigonometry are of prime
importance, as are the basic algebraic manipulations. Solutions to many basic and
complex machining and metalworking operations would be difficult or impossible
without the use of these branches of mathematics. In this chapter and other subsec-
tions of the handbook, all the basic and important aspects of these branches of math-
ematics will be covered in detail. Examples of typical machining and metalworking
problems and their solutions are presented throughout this handbook.

1.1 GEOMETRIC PRINCIPLES—
PLANE GEOMETRY

In any triangle, angle A + angle B + angle C = 180°, and angle A = 180° — (angle A +
angle B), and so on (see Fig. 1.1). If three sides of one triangle are proportional to the
corresponding sides of another triangle, the triangles are similar. Also, if a:b:c =a’:b’:c,
then angle A = angle A’, angle B = angle B’, angle C = angle C’, and a/a’ = b/b’ = ¢/’
Conversely, if the angles of one triangle are equal to the respective angles of another
triangle, the triangles are similar and their sides proportional; thus if angle A = angle
A’, angle B = angle B’, and angle C = angle C’, then a:b:c =a’:b":¢" and a/a’ = b/b" = c/c’
(see Fig. 1.2).

A C
FIGURE 1.1 Triangle.
1.1

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



1.2 CHAPTER ONE

b b’
FIGURE 1.2 Similar triangles.

Isosceles triangle (see Fig. 1.3). 1If side ¢ = side b, then angle C = angle B.
Equilateral triangle (see Fig. 1.4). If side a = side b =side ¢, angles A, B, and C
are equal (60°).

Right triangle (see Fig.1.5). ¢*=a*+b? and c=(a*+ b*)"? when angle C=90°.There-
fore, a = (c*— b*)" and b = (¢* — a*)". This relationship in all right-angle triangles is
called the Pythagorean theorem.

Exterior angle of a triangle (see Fig. 1.6). Angle C = angle A + angle B.

A
B
c b c a
B C A C
a b
FIGURE 1.3 Isosceles FIGURE 1.4 Equilateral triangle.
triangle.
8 A
c C
a
A B
¢ b

FIGURE 1.5 Right-angled triangle. FIGURE 1.6 Exterior angle of a triangle.
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Intersecting straight lines (see Fig.1.7). Angle A =angle A’, and angle B =angle B'.

FIGURE 1.7 Intersecting straight lines.

Two parallel lines intersected by a straight line (see Fig. 1.8). Alternate interior
and exterior angles are equal: angle A = angle A’; angle B = angle B".

Any four-sided geometric figure (see Fig. 1.9). The sum of all interior angles =
360°; angle A + angle B + angle C + angle D =360°.

A line tangent to a point on a circle is at 90°, or normal, to a radial line drawn to the
tangent point (see Fig. 1.10).

FIGURE 1.8 Straight line intersecting two parallel lines.

90°

|

A D T
TANGENT PQOINT

FIGURE 1.9 Quadrilateral (four-sided

figure). FIGURE 1.10 Tangent at a point on a circle.
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Two circles’ common point of tangency is intersected by a line drawn between their
centers (see Fig. 1.11).

Side a = a’; angle A = angle A’ (see Fig. 1.12).
Angle A =% angle B (see Fig. 1.13).

TANGENT POINT

FIGURE 1.11 Common point of tangency.

TANGENT POINT

- TANGENT POINT
FIGURE 1.12 Tangents and angles.

FIGURE

CHORD

NORMAL

TANGENT POINT
FIGURE 1.13 Half-angle (A4).
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Angle A = angle B = angle C. All perimeter angles of a chord are equal (see
Fig. 1.14).
Angle B =Y angle A (see Fig. 1.15).
a* = bc (see Fig. 1.16).
All perimeter angles in a circle, drawn from the diameter, are 90° (see Fig. 1.17).
Arc lengths are proportional to internal angles (see Fig. 1.18). Angle A:angle

B = a:b. Thus, if angle A = 89°, angle B = 30°, and arc a = 2.15 units of length,
arc b would be calculated as

CHORD
FIGURE 1.14 Perimeter angles of a chord. FIGURE 1.15 Half-angle (B).

TANGENT POINT

FIGURE 1.16 Line and circle relationship (a* = bc).
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- N
P N

90°
ZC/E; TER
FIGURE 1.17 90° perimeter angles. FIGURE 1.18 Proportional arcs and angles.
AngleA a
Angle B~ b
89 2.5
30 b
89b=30x2.15
64.5
b=—=
89

b =0.7247 units of length

NOTE. The angles may be given in decimal degrees or radians, consistently.

Circumferences are proportional to their respective radii (see Fig.1.19). C:C'=r:R,
and areas are proportional to the squares of the respective radii.

FIGURE 1.19 Circumference and radii proportionality.
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1.2 BASIC ALGEBRA

1.2.1 Algebraic Procedures

Solving a Typical Algebraic Equation. An algebraic equation is solved by substi-
tuting the numerical values assigned to the variables which are denoted by letters,
and then finding the unknown value, using algebraic procedures.

EXAMPLE

(D - d)* .
L=2C+157(D+d)+ i (belt-length equation)
If C=16,D =5.56, and d = 3.12 (the variables), solve for L (substituting the values

of the variables into the equation):

B (5.56 — 3.12)>
L=2(16) +1.57(5.56 +3.12) + 74(16)
(2.44)
=32+1. . —
32 +1.57(8.68) + o
5.954

=32+13.628 +

=32+13.628 +0.093
=45.721

Most of the equations shown in this handbook are solved in a similar manner, that
is, by substituting known values for the variables in the equations and solving for the
unknown quantity using standard algebraic and trigonometric rules and procedures.

Ratios and Proportions. 1f a/b = ¢/d, then

atb c+d a—b_c—d d u—b_c—d
b d b d an a+b c+d

Quadratic Equations. Any quadratic equation may be reduced to the form
ax’+bx+c=0

The two roots, x; and x,, equal

-b+Vb?-4ac

2 (x; use +; x, use —)

When g, b, and c are real, if b> — 4ac is positive, the roots are real and unequal. If b*— 4ac
is zero, the roots are real and equal. If b* — 4ac is negative, the roots are imaginary and
unequal.
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Radicals
a’=1
(Vay'=a
Va'=a
Vab=nVaxnVb
[ =Va s Vb

n 3
a*=a™" hence V/72 = 7%
"

Va=a" hence V3 = 312

RS

—n
a'=
n

a

Factorial. 5!is termed 5 factorial and is equivalent to
S5x4x3x2x1=120
N=9x8XxTXx6Xx5%x4x3x2x1=362,880

Logarithms. The logarithm of a number N to base a is the exponent power to
which a must be raised to obtain N. Thus N = a* and x = log, N. Also log, 1 =0 and
log,a=1.

Other relationships follow:

log, MN =log, M +log, N

M
log, N log, M —log, N

log, N*=klog, N

n 1
log, VN=— log, N
n

1
log,,azlO b letN=a

Base 10 logarithms are referred to as common logarithms or Briggs logarithms,
after their inventor.

Base e logarithms (where e = 2.71828) are designated as natural, hyperbolic, or
Naperian logarithms, the last label referring to their inventor. The base of the natural
logarithm system is defined by the infinite series
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—1+l+i+i+i+i+ =lim, — 1+l”
R T TR TR TR TR n

e=271828 ...
If @ and b are any two bases, then

IOga N= (lOg,, b) (logb N)

log, N
or log, N = log, b
log. N
1 = =0.434291
ogio N 230261 0.43429 log, N
logiy N
log. N= 043429 = 2.30261 log;y N

Simply multiply the natural log by 0.43429 (a modulus) to obtain the equivalent
common log.

Similarly, multiply the common log by 2.30261 to obtain the equivalent natural
log. (Accuracy is to four decimal places for both cases.)

1.2.2 Transposing Equations (Simple and Complex)

Transposing an Equation. We may solve for any one unknown if all other vari-
ables are known. The given equation is:

_ Gd

" 8ND?

An equation with five variables, shown in terms of R. Solving for G:

Gd*=R8ND* (cross-multiplied)

8RND?
G= 7 (divide both sides by d*)
Solving for d:
Gd*=8RND?
8RND?
d‘=
G

[SRND?
d="_
G
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Solving for D:
Gd*=8RND?

_ Gd*
" 8RN

5| Gd*
b= 8RN

Solve for N using the same transposition procedures shown before.

3

NOTE. When a complex equation needs to be transposed, shop personnel can con-
tact their engineering or tool engineering departments, where the MathCad pro-
gram is usually available.

Transposing Equations using MathCad (Complex Equations). The transposition
of basic algebraic equations has many uses in the solution of machining and metal-
working problems. Transposing a complex equation requires considerable skill in
mathematics. To simplify this procedure, the use of MathCad is invaluable. As an
example, a basic equation involving trigonometric functions is shown here, in its
original and transposed forms. The transpositions are done using symbolic methods,
with degrees or radians for the angular values.

L:X+d-[(tan<90_

]
Transposed Equations (Angles in Degrees)
(-L+X+d)
d

Basic Equation

Solve, o0 — 90 + 2 - atan Solved for o

1
Solve, X — L +d - tan (—45 + 7 a) —d Solved for X

(L+X)
(tan (—45 +% . oc) - 1)

NOTE. The angular values are expressed in degrees.

Solve,d — Solved for d

Basic Equation

-

N a

L=X+d-|\tan 2 +1



MATHEMATICS FOR MACHINISTS AND METALWORKERS 1.1

Transposed Equations (Angles in Radians)

(-L+X+4d)

3
Solve,(x%§<n—2-acot[ p

} Solved for o

1 1

Solve, X — L —d - cot Z-n+5-0c —d Solved for X
—(-L+X)

cot l 1t+l ol+1
4 2

NOTE. The angular values are expressed in radians, i.e., 90 degrees = /2 radians; 21
radians = 360°; © radians = 180°.

Solve,d — Solved for d

1.3 PLANE TRIGONOMETRY

There are six trigonometric functions: sine, cosine, tangent, cotangent, secant, and
cosecant. The relationships of the trigonometric functions are shown in Fig. 1.20.
Trigonometric functions shown for angle A (right-angled triangle) include

sin A = a/c (sine)

cos A = b/c (cosine)

tan A = a/b (tangent)

cot A = b/a (cotangent)

sec A = ¢/b (secant)

csc A = ¢/a (cosecant)
For angle B, the functions would become (see Fig. 1.20)

sin B = b/c (sine)

cos B = a/c (cosine)

b
FIGURE 1.20 Right-angled triangle.
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tan B = b/a (tangent)
cot B = a/b (cotangent)
sec B = ¢/a (secant)

csc B = c/b (cosecant)

As can be seen from the preceding, the sine of a given angle is always the side oppo-
site the given angle divided by the hypotenuse of the triangle. The cosine is always the
side adjacent to the given angle divided by the hypotenuse, and the tangent is always
the side opposite the given angle divided by the side adjacent to the angle. These rela-
tionships must be remembered at all times when performing trigonometric operations.
Also:

1
A=
sm csc A
A=
€os sec A
tan A =
an cot A

This reflects the important fact that the cosecant, secant, and cotangent are the
reciprocals of the sine, cosine, and tangent, respectively. This fact also must be
remembered when performing trigonometric operations.

Signs and Limits of the Trigonometric Functions. The following coordinate chart
shows the sign of the function in each quadrant and its numerical limits. As an exam-
ple, the sine of any angle between 0 and 90° will always be positive, and its numerical
value will range between 0 and 1, while the cosine of any angle between 90 and 180°
will always be negative, and its numerical value will range between 0 and 1. Each quad-
rant contains 90°; thus the fourth quadrant ranges between 270 and 360°.

Quadrant IT y Quadrant I
(1-0) +sin sin+(0—-1)
(0-1)—cos cos+(1-0)
(o —0) — tan tan + (0 — )
(0 — o) —cot cot + (o —0)
(e0o—1) —sec sec+ (1 — o)
(1 —o0) +csc csC+ (0 — 1)
X" X
Quadrant 111 0 Quadrant IV
(0-1)-sin sin — (1 -0)
(1-0)-cos cos+(0-1)
(0 — ) + tan tan — (e —0)
(o= 0) +cot cot — (0 — o)
(1 —o0) —sec sec+ (o —1)
(e0o—1)—csc ¥y csc—(1—e0)
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1.3.1 Trigonometric Laws

The trigonometric laws show the relationships between the sides and angles of non-
right-angle triangles or oblique triangles and allow us to calculate the unknown
parts of the triangle when certain values are known. Refer to Fig. 1.21 for illustra-
tions of the trigonometric laws that follow.

B
a
c
A c
b
FIGURE 1.21 Oblique triangle.
The Law of Sines. See Fig. 1.21.
a b c

sinA  sinB  sinC

sin A b B sin B

a sinA

a
And, b sinB ¢ sinC ¢ sinC

Also,a xsin B=b xsin A; b xsin C =c¢ X sin B, etc.

The Law of Cosines. See Fig.1.21.

a*=b*+c*—-2bc cos A
b*=a*+ ¢* — 2ac cos B | May be transposed as required
?=a*+b*>—2ab cos C

The Law of Tangents. See Fig. 1.21. ¢ A+B

a+b

a-b  tan

With the preceding laws, the trigonometric functions for right-angled triangles, the
Pythagorean theorem, and the following triangle solution chart, it will be possible to
find the solution to any plane triangle problem, provided the correct parts are spec-
ified.
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The Solution of Triangles

CHAPTER ONE

In right-angled triangles

To solve

Known: Any two sides

Known: Any one side and either
one angle that is not 90°

Known: Three angles and no sides
(all triangles)

Known: Three sides

Use the Pythagorean theorem to solve
unknown side; then use the trigonometric
functions to solve the two unknown angles.
The third angle is 90°.

Use trigonometric functions to solve the two
unknown sides. The third angle is 180° —
sum of two known angles.

Cannot be solved because there are an infinite
number of triangles which satisfy three
known internal angles.

Use trigonometric functions to solve the two
unknown angles.

In oblique triangles

To solve

Known: Two sides and any one of
two nonincluded angles

Known: Two sides and the included
angle
Known: Two angles and any one side

Known: Three sides

Known: One angle and one side
(non right triangle)

Use the law of sines to solve the second
unknown angle. The third angle is 180° —
sum of two known angles. Then find the
other sides using the law of sines or the law
of tangents.

Use the law of cosines for one side and the law

of sines for the two angles.

Use the law of sines to solve the other sides or
the law of tangents. The third angle is 180° —
sum of two known angles.

Use the law of cosines to solve two of the
unknown angles. The third angle is 180° —
sum of two known angles.

Cannot be solved except under certain
conditions. If the triangle is equilateral or
isosceles, it may be solved if the known
angle is opposite the known side.

Finding Heights of Non-Right-Angled Triangles. The height x shown in Figs. 1.22

and 1.23 is found from

sin A sin C

b

sin (A+C) ~ cot A+cot C

(for Fig. 1.22)

A

FIGURE 1.22 Height of triangle x.
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B
|
: x
S |
A
(®)
FIGURE 1.23 Height of triangle x.
sin A sin C b
= = for Fig. 1.2
x=b sin (C"—A) cotA—-cot(C’ (for Fig. 1.23)
Areas of Triangles. See Fig. 1.24a and b.
|
|
h l h
o |
00" 90"
b b
() (b)

FIGURE 1.24 Triangles: (a) right triangle; (b) oblique triangle.
1
=—bh
2

The area when the three sides are known (see Fig. 1.25) (this holds true for any tri-
angle):
A=Vs(s—a)(s—b)(s—c)

_atb+c

)

where

C

FIGURE 1.25 Triangle.
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The Pythagorean Theorem. For right-angled triangles:

F=a+b
=
L= b

NOTE. Side c is the hypotenuse.

Practical Solutions to Triangles. The preceding sections concerning the basic
trigonometric functions and trigonometric laws, together with the triangle solution
chart, will allow you to solve all plane triangles, both their parts and areas. Whenever
you solve a triangle, the question always arises, “Is the solution correct?” In the engi-
neering office, the triangle could be drawn to scale using AutoCad and its angles and
sides measured, but in the shop this cannot be done with accuracy. In machining,
gearing, and tool engineering problems, the triangle must be solved with great accu-
racy and its solution verified.

To verify or check the solution of triangles, we have the Mollweide equation,
which involves all parts of the triangle. By using this classic equation, we know if the
solution to any given triangle is correct or if it has been calculated correctly.

The Mollweide Equation

Substitute the calculated values of all sides and angles into the Mollweide equation
and see if the equation balances algebraically. Use of the Mollweide equation will be
shown in a later section. Note that the angles must be specified in decimal degrees
when using this equation.

Converting Angles to Decimal Degrees. Angles given in degrees, minutes, and sec-
onds must be converted to decimal degrees prior to finding the trigonometric func-
tions of the angle on modern hand-held calculators.

Converting Degrees, Minutes, and Seconds to Decimal Degrees
Procedure. Convert 26°41°26” to decimal degrees.

Degrees = 26.000000 in decimal degrees

Minutes = 41/60 = 0.683333 in decimal parts of a degree

Seconds = 26/3600 = 0.007222 in decimal parts of a degree
The angle in decimal degrees is then

26.000000 + 0.683333 + 0.007222 = 26.690555°
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Converting Decimal Degrees to Degrees, Minutes, and Seconds

Procedure. Convert 56.5675 decimal degrees to degrees, minutes, and seconds.
Degrees = 56 degrees
Minutes = 0.5675 x 60 = 34.05 =34 minutes

Seconds = 0.05 (minutes) x 60 = 3 seconds

The answer, therefore, is 56°34'3”.

Summary of Trigonometric Procedures for Triangles. There are four possible
cases in the solution of oblique triangles:

Case 1. Given one side and two angles: a, A, B

Case 2. Given two sides and the angle opposite them: a, b, A or B
Case 3. Given two sides and their included angle: a, b, C

Case 4. Given the three sides: a, b, ¢

All oblique (non-right-angle) triangles can be solved by use of natural trigono-

metric functions: the law of sines, the law of cosines, and the angle formula, angle
A + angle B + angle C = 180°. This may be done in the following manner:

Case 1. Given a, A, and B, angle C may be found from the angle formula; then
sides b and ¢ may be found by using the law of sines twice.

Case 2. Given a, b, and A, angle B may be found by the law of sines, angle
C from the angle formula, and side ¢ by the law of sines again.

Case 3. Given a, b, and C, side ¢ may be found by the law of cosines, and angles
A and B may be found by the law of sines used twice; or angle A from the law of
sines and angle B from the angle formula.

Case 4. Given g, b, and ¢, the angles may all be found by the law of cosines; or
angle A may be found from the law of cosines, and angles B and C from the law
of sines; or angle A from the law of cosines, angle B from the law of sines, and
angle C from the angle formula.

In all cases, the solutions may be checked with the Mollweide equation.

NOTE. Case 2 is called the ambiguous case, in which there may be one solution, two
solutions, or no solution, given a, b, and A.

If angle A <90° and a < b sin A, there is no solution.

If angle A <90° and a = b sin A, there is one solution—a right triangle.

If angle A <90° and b > a > b sin A, there are two solutions—oblique triangles.
If angle A <90° and a = b, there is one solution—an oblique triangle.

If angle A <90° and a = b, there is no solution.

If angle A > 90° and a > b, there is one solution—an oblique triangle.
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Mollweide Equation Variations. There are two forms for the Mollweide equation:

A-B
cos
a+b 2

c_s'n£
)

A—B)

sin(
a-b _

¢ cos (E)
2

Use either form for checking triangles.

The Accuracy of Calculated Angles

Significant figures required

Required accuracy of the angle in distances
10 minutes 3
1 minute 4
10 seconds 5
1 second 6

Special Half-Angle Formulas. In case 4 triangles where only the three sides a, b,
and c are known, the sets of half-angle formulas shown here may be used to find the
angles:

sin % _ (s— b;is -c) cos B _ s(s—b)

sin g /(s—c)(s—a) o % s(s c)

. C (s—a)(s—b) A (s=b)(s—c¢)
sy = ab tan 2 s(s—a)

A [s(s-a) B [(s-o(-a)
85 = bc tan 7= N s(s—b)
C [(s—a)(s—b)
tan 2 s(s—c¢)
where oo /%bﬂ
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Additional Relations of the Trigonometric Functions
sin x = cos (90° — x) = sin (180° — x)
cos x =sin (90° — x) = —cos (180° — x)
tan x = cot (90° — x) = —tan (180° — x)

cot x = tan (90° — x) = —cot (180° — x)

X
Cscx=cot5—cotx

Functions of Half-Angles

sin1 + 1-cosx
= 2T
2 2
coslx—+ [1+cosx
27T 2
1 [1-cosx 1-cosx sin x
tan —x == = - =
2 1+cosx sin x 1+cosx

NOTE. The sign before the radical depends on the quadrant in which x/2 falls. See
functions in the four quadrants chart in the text.

Functions of Multiple Angles
sin 2x =2 sin x cos x

cos2x=cos’x —sinx=2cos’x—1=1-2sin’x

2 tan x
tan2x=—"—-—
1-tan*x
cot?x -1
cot2x=—""
2 cotx

Functions of Sums of Angles
sin (x £ y) =sin x cos y £ cos x sin y
cos(xty)=cosxcosy F sinxsiny

tan (x+) tan x £ tany
an (x =
Y 1 ¥tanxtany
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Miscellaneous Relations

tsin (x £
tanxitany=M

sin x sin y
1+tanx
—————=tan (45°+
1-tanx an ( %)
COtx+1—COt(45° )
cotx—1" ) *

tang(x+y)
sinx+siny

sinx—siny tan E(x -y)

Relations Between Sides and Angles of Any Plane Triangle

a=bcosC+ccosB

P+ P—a?
cosA=%
tan (A28 a2l C

2 T a+b 2

sin A = bic Vs(s—a)(s—b)(s—c)

1
where s = E(a +b+c)

e [(s—a)(s—b)(s—c)
s
sin%z /(s—blzis—c)

A [s(s-a)
cos - = e

A [(s=b)s-c) r
tan?‘ s(s—a)  s-a
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1 1
tan E(A +B) cot EC

atb sinA+sinB i 3 i
a-B sinA-sinB tanz(A—B) - tanz(A—B)

Trigonometric Functions Reduced to the First Quadrant. See Fig. 1.26.

FIGURE 1.26 Trigonometric functions reduced to first quadrant.

If £ o in degrees, is between:

90-180 180-270 270-360
First subtract:
o—90 0.~ 180 o270
Then:

sin o =+cos (o — 90) =—sin (0. — 180) =—cos (o —270)
cos o =-sin (0. — 90) =—cos (a.— 180) =+sin (0. —270)
tan o =—cot (0. —90) =+tan (o0 — 180) =—cot (0. —270)
cota =—tan (o — 90) =+cot (0. — 180) =—tan (o —270)
sec o =—csc (o —90) =-sec (0. — 180) =+csc (o —270)
csc o =+sec (0. —90) =—csc (o — 180) =-sec (o.—270)

1.3.2 Sample Problems Using Trigonometry

Samples of Solutions to Triangles
Solving Right-Angled Triangles by Trigonometry. Required: Any one side and
angle A or angle B (see Fig. 1.27). Solve for side a:

. a
sin A =—
c

A

FIGURE 1.27 Solve the triangle.
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. . a
sin 33.162° = 3605
a=3.625 x sin 33.162°
=3.625 x 0.5470
=1.9829

Solve for side b:

b
COS A =—
c

b
cos 33.162° = m

b =3.625 x cos 33.162°
b=3.625%0.8371
b=3.0345
Then angle B =180° — (angle A + 90°)
=180°-123.162°
=56.838°

We now know sides a, b, and ¢ and angles A, B, and C.
Solving Non-Right-Angled Triangles Using the Trigonometric Laws.
triangle in Fig. 1.28. Given: Two angles and one side:

A =45°
B=109°
a=3.250

N

3.250
(o]

109°

45"

A C
b

FIGURE 1.28 Solve the triangle.

Solve the
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First, find angle C:
Angle C =180° — (angle A + angle B)
=180° — (45° + 109°)
=180° — 154°
=26°

Second, find side b by the law of sines:

a b
sinA  sinB
3.250 b

0.7071 ~ 0.9455

Therefore,

_3.250 x 0.9455
T 07071

=4.3457

Third, find side ¢ by the law of sines:

a c
sinA  sinC

3250 ¢
0.7071 ~ 0.4384

Therefore,

_3.250x 04384
T 07071

=2.0150

The solution to this triangle has been calculated as a = 3.250, b = 4.3457, ¢ = 2.0150,
angle A =45°, angle B =109°, and angle C = 26°.

We now use the Mollweide equation to check the calculated answer by substitut-
ing the parts into the equation and checking for a balance, which signifies equality

and the correct solution.
. (A - B)
sin
a-b 2

c - cos£
2
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(45 - 109)

sm{\———

3.250 - 4.3457 2

20150 (26)
COS

-1.0957  sin (-32°)
20150 ~ cos13°

(Find sin —32° and cos 13° on a calculator.)

-1.0957 _ -0.5299
20150 ~ 0.9744

(Divide both sides.)

—0.5438 = -0.5438 (Cross-multiplying will also show an equality.)

This equality shows that the calculated solution to the triangle shown in Fig. 1.28 is
correct.

Solve the triangle in Fig. 1.29. Given: Two sides and one angle:

! 2.509 !

FIGURE 1.29 Solve the triangle.

Angle A =16°
a=1.562
b=2509

First, find angle B from the law of sines:

a b
sinA  sinB
1.562  2.509
sin16 ~ sin B
1.562 2509

0.2756 ~ sin B

1.562 - sin B =0.6915 (by cross-multiplication)
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sin B = 0.4427
arccos 0.4427 =26.276° = angle B
Second, find angle C:
Angle C =180° — (angle A + angle B)
=180° - 42.276°

=137.724°

Third, find side ¢ from the law of sines:

a ¢
sinA ~ sinC
1.562 c

02756 _ 0.6727

0.2756¢ = 1.0508
c=3.813

We may now find the altitude or height x of this triangle (see Fig. 1.29). Refer to Fig.
1.23 and text for the following equation for x.

in A sin C

x=b % (where angle C’ = 180° — 137.724° = 42.276° in Fig. 1.29)
0.2756 x 0.6727
sin (42.276 — 16)

0.1854
0.4427

=2.509 x

=2.509 x

=2.509 x 0.4188
=1.051

This height x also can be found from the sine function of angle C’, when side a is
known, as shown here:

e
sin C'=756

x=1.562sin C"=1.562 x 0.6727 =1.051
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Both methods yield the same numerical solution: 1.051. Also, the preceding solu-
tion to the triangle shown in Fig. 1.29 is correct because it will balance the Mollweide

equation.

Solve the triangle in Fig. 1.30. Given: Three sides and no angles. According to the
preceding triangle solution chart, solving this triangle requires use of the law of

cosines. Proceed as follows. First, solve for any angle (we will take angle C first):

} 2.4375 }

FIGURE 1.30 Solve the triangle.

?=a*+b*>—2ab cos C
(17500 = (1.1875)" + (2.4375) — 2(1.1875 x 2.4375) cos C
3.0625 =1.4102 + 5.9414 — 5.7891 cos C
5.7891 cos C =1.4102 + 5.9414 — 3.0625

42891
s C=37801
cos C =0.7409

arccos 0.7409 = 42.192° = angle C (the angle whose cosine is 0.7409)
Second, by the law of cosines, find angle B:
b*=a*+c*—2ac cos B
(2.4375)* = (1.1875)* + (1.7500)* — 2(1.1875 x 1.7500) cos B
5.9414 =1.4102 + 3.0625 — 4.1563 cos B
4.1563 cos B =1.4102 + 3.0625 — 5.9414

L4687
€08 = 1563
cos B=-0.3534

arccos —0.3534 = 110.695° = angle B (the angle whose cosine is —0.3534)
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Then, angle A is found from
angle A =180 — (42.192 + 110.695)
=180 - 152.887
=27.113°

The solution to the triangle shown in Fig. 1.30 is therefore a = 1.1875,b =2.4375,c =
1.7500 (given), angle A = 27.113°, angle B = 110.695°, and angle C = 42.192° (calcu-
lated). This also may be checked using the Mollweide equation.

Proof of the Mollweide Equation. From the Pythagorean theorem it is known and
can be proved that any triangle with sides equal to 3 and 4 and a hypotenuse of 5 will
be a perfect right-angled triangle. Multiples of the numbers 3, 4, and 5 also produce
perfect right-angled triangles, such as 6, 8, and 10, etc. (¢* = a* + b?).

If you solve the 3,4, and 5 proportioned triangle for the internal angles and then
substitute the sides and angles into the Mollweide equation, it will balance, indicat-
ing that the solution is valid mathematically.

A note on use of the Mollweide equation when checking triangles: If the Moll-
weide equation does not balance,

e The solution to the triangle is incorrect.
¢ The solution is not accurate.
e The Mollweide equation was incorrectly calculated.

e The triangle is not “closed,” or the sum of the internal angles does not equal 180°.

Natural Trigonometric Functions. There are no tables of natural trigonometric
functions or logarithms in this handbook. This is due to the widespread availability
of the electronic digital calculator. You may find these numerical values quicker and
more accurately than any table can provide. See Sec. 1.4 for calculator uses and tech-
niques applicable to machining and metalworking practices.

The natural trigonometric functions for sine, cosine, and tangent may be calcu-
lated using the following infinite-series equations. The cotangent, secant, and co-
secant functions are merely the numerical reciprocals of the tangent, cosine, and sine
functions, respectively.

= cotangent
tangent
1
— =secant
cosine

1
——— = cosecant
sine

Calculating the Natural Trigonometric Functions. Infinite series for the sine
(angle x must be given in radians):
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x3 xS x7 xg xll

sinx:x—§+§—%+a_ﬁ+m

Infinite series for the cosine (angle x must be given in radians):

x2 X4 x6 x8 xlO

cosx=1l-—+——-——+——-———+
2041 6! 8! 10!
The natural tangent may now be found from the sine and cosine series using the
equality

sin x (series)

tan x = -
cos x (series)

1.4 MODERN POCKET CALCULATOR
PROCEDURES

1.4.1 Types of Calculators

The modern hand-held or pocket digital electronic calculator is an invaluable tool to
the machinist and metalworker. Many cumbersome tables such as natural trigono-
metric functions, powers and roots, sine bar tables, involute functions, and logarith-
mic tables are not included in this handbook because of the ready availability,
simplicity, speed, and great accuracy of these devices.

Typical multifunction pocket calculators are shown in Fig. 1.31. This type of
device will be used to illustrate the calculator methods shown in Sec. 1.4.2 following.

FIGURE 1.31 Typical standard pocket calculators.
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The advent of the latest generation of hand-held programmable calculators—
including the Texas Instruments TI-85 and Hewlett Packard HP-48G (see Fig.
1.32)—has made possible many formerly difficult or nearly impossible engineering
computations. Both instruments have enormous capabilities in solving complex gen-
eral mathematical problems. See Sec. 11.5 for a complete explanation for applying
these calculators to the important and useful four-bar linkage mechanism, based on
use of the standard Freudenstein equation.

FIGURE 1.32 Programmable calculators with complex equation-
solving ability and other advanced features. HP-48G on the right and
the TI-85 on the left.

Some of the newer machines also do not rely on battery power, since they have a
built-in high-sensitivity solar conversion panel that converts room light into electri-
cal energy for powering the calculator. The widespread use of these devices has
increased industrial productivity considerably since their introduction in the 1970s.

1.4.2 Modern Calculator Techniques

Finding Natural Trigonometric Functions. The natural trigonometric functions of
all angles are obtained easily, with great speed and precision.

EXAMPLE. Find the natural trigonometric function of sin 26°41"26”.
First, convert from degrees, minutes, and seconds to decimal degrees (see Sec.1.3.1):

26°41726” = 26.690555°
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Press: sin
Enter: 26.690555, then =
Answer: 0.4491717 (the natural function)

The natural sine, cosine, and tangent of any angle may thus be found. Negative
angles are found by pressing sin, cos, or tan; entering the decimal degrees; changing
sign to minus; and then pressing =.

The cotangent, secant, and cosecant are found by using the reciprocal button (x™)
on the calculator.

Finding Common and Natural Logarithms of Numbers. The common, or Briggs,
logarithm system is constructed with a base of 10 (see Sec. 1.2.1).

EXAMPLE
10'=10  and logi 10 =1
102 =100 and log;y 100 =2
10° = 1000 and log;, 1000 =3

Therefore, log;, 110.235 is found by pressing log and entering the number into the
calculator:

Press: log
Enter: 110.235, then =
Answer: 2.042319506

Since the logarithmic value is the exponent to which 10 is raised to obtain the
number, we will perform this calculation:

102.()42319506 =110.235

PROOF

Enter: 10

Press: b

Enter: 2.042319506
Press: =

Answer: 110.2349999, or 110.235 to three decimal places.

The natural, or hyperbolic, logarithm of a number is found in a similar manner.

EXAMPLE. Find the natural, or hyperbolic, logarithm of 110.235.

Press: In
Enter: 110.235, then =
Answer: 4.702614451
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Powers and Roots (Exponentials). Finding powers and roots (exponentials) of
numbers is simple on the pocket calculator and renders logarithmic procedures and
tables of logarithms obsolete, as well as the functions of numbers tables found in
outdated handbooks.

EXAMPLE. Find the square root of 3.4575.

Press: Vix
Enter: 3.4575, then =
Answer: 1.859435398

The procedure takes but a few seconds.

EXAMPLE. Find (0.0625)*.

Enter: 0.0625
Press: XY
Enter: 4
Press: =

Answer: 1.525879 x 107

EXAMPLE. Find the cube root of 5.2795, or (5.2795)'".

Enter: 3 or Enter: 5.2795
Press: x\/; Press: XY
Enter: 5.2795 Enter: 0.33333
Press: = Press: =
Answer: 1.7412626 Answer: 1.74126

NOTE. Radicals written in exponential notation:

V5= (5)13 = (5)33
V6 = (6)" = (6)°3
\B/m = (6.245)%* = (6.245)"-c0660

1.4.3 Pocket Calculator Bracketing Procedures

When entering an equation into the pocket calculator, correct bracketing proce-
dures must be used in order to prevent calculation errors. An incorrect procedure
results in a SYN ERROR or MATH ERROR message on the calculator display, or
an incorrect numerical answer.
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EXAMPLES. x=unknown to be calculated.

Equation Enter as Shown, Then Press = or EXE
b
x=a+d (a+b)/(c—d)=or EXE
c—

_(6x7N+1
X= (6x7)+1)/(m+7)

_ (a+D)2
x_i(axd)+2 (a+b)2/((axd)+2)

_ (U/tan 40) +2

x= 1/(2 x sin 30) (1/tan 40) + 2/1/(2 sin 30)

2215 % 4.188 X 6235
x= x o x (2.215)(4.188)(6.235)/(2 + d)

_ b
= c—d

bl(c - d)

The examples shown are some of the more common types of bracketing. The brack-
eting will become more difficult on long, complex equations. Explanations of the
order of entry and the bracketing procedures are usually shown in the instruction
book that comes with the pocket calculator. A calculator that displays the equation
as it is being entered into the calculator is the preferred type. The Casio calculator
shown in Fig. 1.31 is of this type. The more advanced TI and HP calculators shown in
Fig. 1.32 also display the entire entered equation, making them easier to use and
reducing the chance of bracket entry error.

1.5 ANGLE CONVERSIONS—
DEGREES AND RADIANS

Converting Degrees to Radians and Radians to Degrees. To convert from degrees
to radians, you must first find the degrees as decimal degrees (see previous section).
If R represents radians, then

2nR = 360° or nR =180°

From this,
1 radian = % =57.2957795°

And

b .
1°= 180 = 0.0174533 radian
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EXAMPLE. Convert 56.785° to radians.
56.785 % 0.0174533 = 0.9911 radian
So
56.785° =0.9911 radian
EXAMPLE. Convert 2.0978R to decimal degrees.
57.2957795 x 2.0978 = 120.0591°
So

2.0978 radians = 120.0591°

See the radians and degrees template—Fig. 1.33.

RADIANS

1.33

K] 12
20 i1
21 0
%
100 80
22 Yo l % 0.9
23 120 © 08
b 07
130 DEGREES =
25 / \ o
& :
140
1) 2 a3
27 150 » 2 o4
28
% 2% 03
29
L¥]
=170 o
303 ol
il L o i 0 q
= 130 Y 350 en3
12 o=
62
= %0
1 190 o
14 - 0 60
15 59
210 130
36 58
, 20
W 20 &7
18 3 9 5.6
9 0 0 38
40 250 29 5.4
af 0 m B 5.3
42 5.2
3 5.4
(X 5.0

FIGURE 1.33 Degrees to radians conversion chart.
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Important Mathematical Constants

7 =3.1415926535898

1 radian = 57.295779513082°
1°=0.0174532925199 radian

2nR =360°

R =180°

1 radian = 180/m°

1° =n/180 radians

e =2.718281828 (base of natural logarithms)

1.6 POWERS-OF-TEN NOTATION

Numbers written in the form 1.875 x 10° or 3.452 x 107 are so stated in powers-of-
ten notation. Arithmetic operations on numbers which are either very large or very
small are easily and conveniently processed using the powers-of-ten notation and
procedures. This process is automatically carried out by the hand-held scientific cal-
culator. If the calculated answer is larger or smaller than the digital display can han-
dle, the answer will be given in powers-of-ten notation.

This method of handling numbers is always used in scientific and engineering cal-
culations when the values of the numbers so dictate. Engineering notation is usually
given in multiples of 3, such as 1.246 x 10°,6.983 x 107, etc.

How to Calculate with Powers-of-Ten Notation. Numbers with many digits may
be expressed more conveniently in powers-of-ten notation, as shown here.

0.000001389 = 1.389 x 10°°
3,768,145 = 3.768145 x 10°

You are actually counting the number of places that the decimal point is shifted,
either to the right or to the left. Shifting to the right produces a negative exponent,
and shifting to the left produces a positive exponent.

Multiplication, division, exponents, and radicals in powers-of-ten notation are
easily handled, as shown here.

1.246 x 10* (2.573 x 10%) =3.206 x 10°=3.206  (Note: 10°=1)
1.785 x 107 + (1.039 x 10) = (1.785/1.039) x 1079 = 1.718 x 10!
(1.447 x 10°) = (1.447)> x 10" = 2.094 x 1010
V1391 x 10° = 13911 x 10°2 = 1.179 x 10

In the preceding examples, you must use the standard algebraic rules for addi-
tion, subtraction, multiplication, and division of exponents or powers of numbers.
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Thus,

e Exponents are algebraically added for multiplication.
¢ Exponents are algebraically subtracted for division.
¢ Exponents are algebraically multiplied for power raising.

¢ Exponents are algebraically divided for taking roots.

1.7 PERCENTAGE CALCULATIONS

Percentage calculation procedures have many applications in machining, design, and
metalworking problems. Although the procedures are relatively simple, it is easy to
make mistakes in the manipulations of the numbers involved.

Ordinarily, 100 percent of any quantity is represented by the number 1.00, mean-
ing the total quantity. Thus, if we take 50 percent of any quantity, or any multiple of
100 percent, it must be expressed as a decimal:

1% =0.01
10% =0.10
65.5% =0.655
145% =1.45

In effect, we are dividing the percentage figure, such as 65.5 percent, by 100 to arrive
at the decimal equivalent required for calculations.
Let us take a percentage of a given number:

45% of 136.5 = 0.45 x 136.5 = 61.425
33.5% of 235.7 = 0.335 x 235.7 = 78.9595

Let us now compare two arbitrary numbers, 33 and 52, as an illustration:

52-33

=0.5758

Thus, the number 52 is 57.58 percent larger than the number 33. We also can say that
33 increased by 57.58 percent is equal to 52; that is, 0.5758 x 33 + 33 = 52. Now,

52-33
52

=0.3654

Thus, the number 52 minus 36.54 percent of itself is 33. We also can say that 33 is
36.54 percent less than 52, that is,0.3654 x 52 =19 and 52 — 19 = 33. The number 33 is
what percent of 52? That is, 33/52 = 0.6346. Therefore, 33 is 63.46 percent of 52.
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Example of a Practical Percentage Calculation. A spring is compressed to 417 Ibf
and later decompressed to 400 Ibf, or load. The percentage pressure drop is (417 —
400)/417 =0.0408, or 4.08 percent. The pressure, or load, is then increased to 515 Ibf. The
percentage increase over 400 1bf is therefore (515 —400)/515 = 0.2875, or 28.75 percent.

Percentage problem errors are quite common, even though the calculations are
simple. In most cases, if you remember that the divisor is the number of which you
want the percentage, either increasing or decreasing, the simple errors can be avoided.
Always back-check your answers using the percentages against the numbers.

1.8 TEMPERATURE SYSTEMS
AND CONVERSIONS

There are four common temperature systems used in engineering and design calcula-
tions: Fahrenheit (°F), Celsius (formerly centigrade; °C), Kelvin (K),and Rankine (°R).
The conversion equation for Celsius to Fahrenheit or Fahrenheit to Celsius is

°C
°F-32

3_
5"

This exact relational equation is all that you need to convert from either system.
Enter the known temperature, and solve the equation for the unknown value.

EXAMPLE. You wish to convert 66°C to Fahrenheit.

5 66
9 °F-32
5°F — 160 = 594
°F =150.8

This method is much easier than trying to remember the two equivalent equa-
tions, which are:

5
°C=—(°F-32
5 (F-32)
and
9
F=—"° 32
B C+

The other two systems, Kelvin and Rankine, are converted as described here. The
Kelvin and Celsius scales are related by
K=273.18+°C

Thus, 0°C =273.18 K. Absolute zero is equal to —273.18°C.
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EXAMPLE. A temperature of —75°C =273.18 + (-75°C) =198.18 K.
The Rankine and Fahrenheit scales are related by

°R =459.69 + °F
Thus, 0°F = 459.69°R. Absolute zero is equal to —459.69°F.

EXAMPLE. A temperature of 75°F = 459.69 + (75°F) = 534.69°R.

1.9 DECIMAL AND MILLIMETER EQUIVALENTS

See Fig. 1.34.

DECIMALS MILLIMETERS QECIMALS MILLIMETERS N NCNES - s
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078125— 1,984 T s1e125—14884 | - wmw  sszomes

64 64 9— 0354  54—2.1260

.09375 — 2.381 ¥ 59375 —15.081 | - s-riest

T 3175 6250 —15.875 || 4= em  s_2ak
& 140625— 3.572 o B40625—16.272 | o= me  H-tum
15625 — 3.969 465625 —16.669 | o -t

w -109375— 2.778 g £ 0oars—15478 | TN moime

2 4
171875~ 4.366 & 67187517066 | 53  s-2um
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203125— 5. J03125—17.850 | - =
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~%_ 2500 - 6.350 3 TS0 1.0 P
T 265625 6.747 & T65625-19.447 | 3= Tie
5Tl By Tem ol ) Aodd i
il -1 .796876-20.241 =l mpi)
53125 — 7938 | B2 8125 —20638 | s nsom
& 328125- 8.334 8 828125—21.034 | Boross  se-sm
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8 359375— 9.128 o 85037521828 | m-Tuv  w-aam
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2 390625 9.922 800625—22.622 | 2-la  w-tas
o 40625 —10319 B 90625 ~23.019 | Moinw i
_ 59 _ 3513780 §9--3.5039
84 -421875—10.716 o -921875—23.416 B—14T3  90-3.3433
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FIGURE 1.34 Decimal and millimeter equivalents.



1.38 CHAPTER ONE

1.10 SMALL WEIGHT EQUIVALENTS:
U.S. CUSTOMARY (GRAINS AND OUNCES)

VERSUS METRIC (GRAMS)

1 gram =15.43 grains

1 gram = 15,430 milligrains

1 pound = 7000 grains

1 ounce =437.5 grains

1 ounce =28.35 grams

1 grain =0.0648 grams

1 grain = 64.8 milligrams

0.1 grain = 6.48 milligrams

1 micrograin =0.0000648 milligrams

1000 micrograins = 0.0648 milligrams

1 grain =0.002286 ounces

10 grains =0.02286 ounces or 0.648 grams
100 grains =0.2286 ounces or 6.48 grams

EXAMPLE. To obtain the weight in grams, multiply the weight in grains by 0.0648.
Or, divide the weight in grains by 15.43.

EXAMPLE. To obtain the weight in grains, multiply the weight in grams by 15.43. Or,
divide the weight in grams by 0.0648.
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1.11 MATHEMATICAL SIGNS AND SYMBOLS

1.39

TABLE 1.1

Mathematical Signs and Symbols

X or -
+or/

L 1 T

L8 HHE®VA
o)
==
aa
v A

YA
IV 1IA

o
tm
o

%

Zor X

orn

1,/

[

Se———~8
—_——

A

1/x or x!

RIS

:

~. ~ g

Plus, positive

Minus, negative

Times, multiplied by

Divided by

Is equal to

Is identical to

Is congruent to or approximately equal to
Is approximately equal to or is similar to
Is less than, is not less than

Is greater than, is not greater than
Is not equal to

Plus or minus, respectively

Minus or plus, respectively

Is proportional to

Approaches, e.g.,as x - 0

Less than or equal to

More than or equal to

Therefore

Is to, is proportional to

Which was to be proved, end of proof
Percent

Number

At

Angle

Degrees, minutes, seconds
Parallel to

Perpendicular to

Base of natural logs, 2.71828 . . .
Pi,3.14159 . ..

Parentheses

Brackets

Braces

Prime, f'(x)

Double prime, f”(x)

Square root, nth root

Reciprocal of x

Factorial

Infinity

Delta, increment of

Curly d, partial differentiation
Sigma, summation of terms

The product of terms, product

As in arcsine (the angle whose sine is)
Function, as f(x)

Root mean square

Absolute value of x

For -1

Operator, equal to —1
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TABLE 1.2 The Greek Alphabet

o A alpha ! I iota

B B beta K K kappa

Y r gamma A A lambda
8 A delta u M mu

€ E epsilon \Y N nu

C Z zeta o) E xi

n H eta o (0] omicron
) (€] theta n I pi

cexocAaqgo

OHEXBS<-aMT

rho
sigma
tau
upsilon
phi

chi

psi
omega




CHAPTER 2

MENSURATION OF PLANE
AND SOLID FIGURES

2.1 MENSURATION

Mensuration is the mathematical name for calculating the areas, volumes, length of
sides, and other geometric parts of standard geometric shapes such as circles,
spheres, polygons, prisms, cylinders, cones, etc., through the use of mathematical
equations or formulas. Included here are the most frequently used and important
mensuration formulas for the common geometric figures, both plane and solid. (See
Figs. 2.1 through 2.36.)

Symbols
A area
a, b, etc. sides
A B C angles
h height perpendicular to base b
L length of side or edge
r radius
n number of sides
C circumference
|4 volume
N surface area
|
|h = Ebh

FIGURE 2.1 Oblique triangle.

2.1
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1
A =§ab sin C

A=Vs(s—a)(s-b)(s—c)

A G C 1
wheres:i(a+b+c)

FIGURE 2.2 Oblique triangle.

a A=ab
b
FIGURE 2.3 Rectangle.
e A=Dbh
b
FIGURE 2.4 Parallelogram.
2 A=—cd
b
FIGURE 2.5 Rhombus.
a
l 1
I'h A=—(a+b)h
| 2
|

b
FIGURE 2.6 Trapezoid.
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Surfaces and Volumes of Polyhedra:
(Where L = leg or edge)

Polyhedron Surface Volume
Tetrahedron 1.73205L> 0.11785L°
Hexahedron 6L? 1L}

Octahedron 3.46410L2 0.47140L3

FIGURE 2.7 Polyhedra.

: (H+ h)a+bh+cH

A=—r—"1 "
L 2
|

In a polygon of n sides of L, the radius of the
inscribed circle is:
L 180

r=—cot—;
2 n

The radius of the circumscribed circle is:

_L 180
r172 csc P

FIGURE 2.9 Regular polygon.

The radius of a circle inscribed in any triangle
whose sides are a, b, ¢ is:

Vs(s—a)(s—b)(s—c)

N

1
wherex:E(aerJrc)
FIGURE 2.10 Inscribed circle.

A In any triangle, the radius of the circumscribed cir-
cle is:

abc

"= 4Vs(s—a)s—-b)(s—c)

1
wherex:E(aerJrc)

FIGURE 2.11 Circumscribed circle.
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.
Area of an inscribed polygon is:
1, . 2«
=—nr’sin —
2 n
where r=radius of circumscribed circle
n =number of sides

FIGURE 2.12 Inscribed polygon.

r
Area of a circumscribed polygon is:

T

A =nr?tan —

n
where r=radius of inscribed circle

n =number of sides
n

FIGURE 2.13 Circumscribed polygon.

d
r
C=2nr=nd

FIGURE 2.14 Circle—circumference.

.
A=nrt= lrtd2
4
d

FIGURE 2.15 Circle—area.
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FIGURE 2.16 Length of arc.

FIGURE 2.17 Chord and sector.

FIGURE 2.18 Segment of a circle.

i

FIGURE 2.19 Ring.

Length of arc L:

nrd ..
L= 130 (when ¢ is in degrees)

L=m¢ (when ¢ isin radians)

Length of chord:
1
AB =2rsin 5(1)

Area of the sector:
_mwr rL
T30 2
where L =length of the arc

Area of segment of a circle:
w0 P sing
"~ 360 2

where: ¢ =180° — 2 arcsin (%)
If ¢ is in radians:

1 .
=7 2 (¢ — sind)

Area of the ring between circles.
Circles need not be concentric:
A=n(R+r)(R-r)
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¢ Circumference and area of an ellipse (approximate):
@+ b?
b
\—’/ Area:
A =mnab

FIGURE 2.20 Ellipse.

Volume of a pyramid:
1
V:;xarea of base x h

where & = altitude

o>

FIGURE 2.21 Pyramid.

Surface and volume of a sphere:
S =4nr’ = nd*

4 1
V=§TIZI‘3=gTCd3

2

FIGURE 2.22 Sphere.

Surface and volume of a cylinder:
S=2nrh

V=nr*h

l il
-
%]

FIGURE 2.23 Cylinder.

Surface and volume of a cone:

S=nrVr+h
V=§r2h

>

FIGURE 2.24 Cone.
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FIGURE 2.25 Spherical segment.

-

FIGURE 2.26 Frustum of a cone.

FIGURE 2.28 Spherical zone.

=

FIGURE 2.29 Spherical wedge.

Area and volume of a curved surface of a spherical
segment:

A=2nrh V:(n;r>(3r—h)

When a is radius of base of segment:

h
V=" 4 3a)

Surface area and volume of a frustum of a cone:

S=m(r+n) VA +(rn-n)

h
V= 3 R +rn+rin

Area and volume of a truncated cylinder:

A=mnr(h+hy)

n
=E r? (h1 +h_7)

Area and volume of a spherical zone:

A=2nrh
;o (34, 34,
_6h<4+4 h

Area and volume of a spherical wedge:

_0
A—3604nr
0 4nr?
V=30 "3
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/\ i ! Volume of a paraboloid:
o nrth
h—]

FIGURE 2.30 Paraboloid.

- ¢ Area and volume of a spherical sector (yields total
——h area):
. c
A= 2h+—
wr2n+5)
r 2nr’h
V= “3’ c=2Vh@r—h)

FIGURE 2.31 Spherical sector.

| ¢ Area and volume of a spherical segment:
‘ A =2nrh

L—nh CZ
Spherical surface = n(; + hz)

2 4, 2

' c=2Vh@2r—h) r:%
/ h
— 2 _
V=nh (r 3>

FIGURE 2.32 Spherical segment.

\\/ / Area and volume of a torus:

N A=4n’cr (total surface)

! . V=2n%r* (total volume)
CREGE
k-C —,L-c —

FIGURE 2.33 Torus.
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Area and volume of a portion of a cylinder (base
edge = diameter):

2
A=2rh Vzgrzh

FIGURE 2.34 Portion of a cylinder.

Area and volume of a portion of a cylinder (special

cases):
A h(ad * ¢ x perimeter of base)
B rtc
2
h(§ @+ cA)

rtc

where d = diameter of base circle
FIGURE 2.35 Special case of a cylinder.

Note. Use +c when base area is larger than half the base circle; use —c when base area is smaller than
half the base circle.

i e |

T Volume of a wedge

\\ :h Ve (2b +c)ah

e 6
/ L)

o

a

FIGURE 2.36 Wedge.
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2.2 PROPERTIES OF THE CIRCLE

See Fig. 2.37.

Are:
wre°

~ 7180

Angle:
0= 180° {

™y

Radius:
U

8 4b

Chord:

c=2V2r — b = 27sind = dsin
2 2

Rise:

=y L P = S O o 2 2

b=r 2\/472 ¢ 2t¢m4 2rsm4

Rise:

berty - Vi -yt

Wherey:b~—7'+\/r2~x2and;t: V2~ (r vy - b

FIGURE 2.37 Properties of the circle



CHAPTER 3

LAYOUT PROCEDURES FOR
GEOMETRIC FIGURES

3.1 GEOMETRIC CONSTRUCTION

The following figures show the methods used to perform most of the basic geomet-
ric constructions used in standard drawing and layout practices. Many of these con-
structions have widespread use in the machine shop, the sheet metal shop, and in
engineering.

e To divide any straight line into any number of equal spaces (Fig.3.1).To divide line
AB into five equal spaces, draw line AC at any convenient angle such as angle
BAC. With a divider or compass, mark off five equal spaces along line AC with a
divider or compass. Now connect point 5 on line AC with the endpoint of line AB.
Draw line CB, and parallel transfer the other points along line AC to intersect line
AB, thus dividing it into five equal spaces.

FIGURE 3.1 Dividing a line equally.

¢ To bisect any angle BAC (Fig. 3.2),swing an arc from point A through points d and
e. Swing an arc from point d and another equal arc from point e. The intersection
of these two arcs will be at point £ Draw a line from point A to point f, forming the
bisector line AD.

3.1
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FIGURE 3.2 Bisecting an angle.

e To divide any line into two equal parts and erect a perpendicular (Fig. 3.3), draw an
arc from point A that is more than half the length of line AB. Using the same arc
length, draw another arc from point B. The intersection points of the two arcs
meet at points ¢ and d. Draw the perpendicular bisector line cd.

FIGURE 3.3 Erecting a perpendicular.

¢ To erect a perpendicular line through any point along a line (Fig. 3.4), from point ¢
along line AB, mark points 1 and 2 equidistant from point c¢. Select an arc length
on the compass greater than the distance from points 1 to c or points 2 to c¢. Swing
this arc from point 1 and point 2. The intersection of the arcs is at point f. Draw a
line from point f to point ¢, which is perpendicular to line AB.
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] ) |
A K] C 2} B

FIGURE 3.4 Perpendicular to a point.

e To draw a perpendicular to a line AB, from a point f; a distance from it (Fig. 3.5),
with point f as a center, draw a circular arc intersecting line AB at points ¢ and d.
With points ¢ and d as centers, draw circular arcs with radii longer than half the
distance between points ¢ and d. These arcs intersect at point e, and line fe is the

required perpendicular.

d/B

i
—+

A<

FIGURE 3.5 Drawing a perpendicular to a line from a point.

e To draw a circular arc with a given radius through two given points (Fig. 3.6), with
points A and B as centers and the set given radius, draw circular arcs intersecting
at point f With point f as a center, draw the circular arc which will intersect both

points A and B.
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e

FIGURE 3.6 Drawing a circular arc through given
points.

e To find the center of a circle or the arc of a circle (Fig. 3.7), select three points on
the perimeter of the given circle such as A, B, and C. With each of these points as
a center and the same radius, describe arcs which intersect each other. Through
the points of intersection, draw lines fb and fd. The intersection point of these two
lines is the center of the circle or circular arc.

f
/
\
< Cc
A P a
, i

’ e “‘SE"/ d
~/\b

A\
FIGURE 3.7 Finding the center of a circle.

e To draw a tangent to a circle from any given point on the circumference (Fig. 3.8),
through the tangent point f; draw a radial line OA. At point f, draw a line CD at
right angles to OA. Line CD is the required tangent to point f on the circle.

e To draw a geometrically correct pentagon within a circle (Fig.3.9), draw a diameter
AB and a radius OC perpendicular to it. Bisect OB and with this point d as center
and a radius dC, draw arc Ce. With center C and radius Ce, draw arc ef. Cfis then
a side of the pentagon. Step off distance Cf around the circle using a divider.
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C
o A
\ b
A
a -~ ~
o X \
f

\,

AN

\J// D
FIGURE 3.8 Drawing a tangent to a given point on a circle.
A B

FIGURE 3.9 Drawing a pentagon.
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e To draw a geometrically correct hexagon given the distance across the points (Fig.
3.10), draw a circle on ab with a diameter. With the same radius, Of, and with
points 6 and 3 as centers, draw arcs intersecting the circle at points 1, 2,4, and 5,
and connect the points.

il
|

2 —1’-\ 1
T

FIGURE 3.10 Drawing a hexagon.

e To draw a geometrically correct octagon in a square (Fig.3.11), draw the diagonals
of the square. With the corners of the square b and d as centers and a radius of half
the diagonal distance Od, draw arcs intersecting the sides of the square at points
1 through 8, and connect these points.

a 1L \z b
}o)
8 13
I
(o)
— ——
7 4
o))
d 6] Is R

FIGURE 3.11 Drawing an octagon.
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e Angles of the pentagon, hexagon, and octagon (Fig. 3.12).

108°

72°

L-— S —a—l Pentagon

(2)

120°

60°

‘ s l Hexagon
(b)

\SO

45°

‘ Octagon
S

(©

FIGURE 3.12 (a) Angles of the pentagon. (b)
Hexagon. (c) Octagon.

3.7
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e To draw an ellipse given the major and minor axes (Fig. 3.13). The concentric-circle
method: On the two principle diameters ef and cd which intersect at point O, draw
circles. From a number of points on the outer circle, such as g and /4, draw radii Og
and Ok intersecting the inner circle at points g” and /#”. From g and A, draw lines
parallel to Oq, and from g" and /4’, draw lines parallel to Od. The intersection of
the lines through g and g’ and 4 and A’ describe points on the ellipse. Each quad-
rant of the concentric circles may be divided into as many equal angles as required
or as dictated by the size and accuracy required.

FIGURE 3.13 Drawing an ellipse.

e To draw an ellipse using the parallelogram method (Fig. 3.14), on the axes ab and
cd, construct a parallelogram. Divide aO into any number of equal parts, and
divide ae into the same number of equal parts. Draw lines through points 1
through 4 from points c and d. The intersection of these lines will be points on the
ellipse.

e To draw a parabola using the parallelogram method (Fig. 3.15), divide Oa and ba
into the same number of equal parts. From the divisions on ab, draw lines con-
verging at O. Lines drawn parallel to line OA and intersecting the divisions on Oa
will intersect the lines drawn from point O. These intersections are points on the
parabola.
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FIGURE 3.14 An ellipse by the parallelogram method.

FIGURE 3.15 A parabola by the parallelogram method.

3.9
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e To draw a parabola using the offset method (Fig. 3.16), the parabola may be plot-
ted by computing the offsets from line O5.These offsets vary as the square of their
distance from point O. If O5 is divided into five equal parts, distance 1e will be s
distance 5a. Offset 2d will be %s distance 5a; offset 3¢ will be %s distance 5a, etc.

FIGURE 3.16 A parabola by the offset method.

e To draw a parabolic envelope (Fig.3.17), divide Oa and Ob into the same number
of equal parts. Number the divisions from Oa and Ob, 1 through 6, etc. The inter-
section of points 1 and 6,2 and 5,3 and 4,4 and 3,5 and 2, and 6 and 1 will be points
on the parabola. This parabola’s axis is not parallel to either ordinate.

e To draw a parabola when the focus and directorix are given (Fig. 3.18), draw axis
Op through point f and perpendicular to directorix AB. Through any point k on
the axis Op, draw lines parallel to AB. With distance kO as a radius and f as a cen-
ter, draw an arc intersecting the line through k, thus locating a point on the
parabola. Repeat for Oj, O, etc.
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6 5 4 3 2 1 b
FIGURE 3.17 A parabolic envelope.

]k\'
. TN
h T~

o o T
'3
cj / Nt LK - J
0
\ ic\K %\K
- 0 K% 02\’\7
T

B
FIGURE 3.18 A parabolic curve.
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e To draw a helix (Fig. 3.19), draw the two views of the cylinder and measure the
lead along one of the contour elements. Divide the lead into a number of equal
parts, say 12. Divide the circle of the front view into the same number of equal
parts, say 12. Project points 1 through 12 from the top view to the stretch-out of
the helix in the right view. Angle ¢ is the helix angle, whose tangent is equal to
L/nD, where L is the lead and D is the diameter.

e To draw the involute of a circle (Fig. 3.20), divide the circle into a convenient num-
ber of parts, preferably equal. Draw tangents at these points. Line a2 is perpen-
dicular to radial line O2, line b3 is perpendicular to radial line O3, etc. Lay off on
these tangent lines the true lengths of the arcs from the point of tangency to the
starting point, 1. For accuracy, the true lengths of the arcs may be calculated (see
Fig. 2.37 in the chapter on mensuration for calculating arc lengths). The involute
of the circle is the basis for the involute system of gearing. Another method for
finding points mathematically on the involute is shown in Sec. 7.1.

To draw the spiral of Archimedes (Fig. 3.21), divide the circle into a number of
equal parts, drawing the radii and assigning numbers to them. Divide the radius
08 into the same number of equal parts, numbering from the center of the circle.
With O as a center, draw a series of concentric circles from the marked points on

r— "
SNWR - - - -~ B4
T
A
i

-

O
»
©
£y
@

|
|
i
[
[
|
|
i

W

FIGURE 3.19 To draw a helix.
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FIGURE 3.20 To draw the involute of the circle.

FIGURE 3.21 To draw the spiral of Archimedes.

the radius, 1 through 8. The spiral curve is defined by the points of intersection of
the radii and the concentric circles at points a, b, ¢, d, ¢, f, g, and h. Connect the
points with a smooth curve. The Archimedean spiral is the curve of the heart cam,
which is used to convert uniform rotary motion into uniform reciprocating
motion. See Chap. 8 on ratchets and cam geometry.
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CHAPTER 4

MEASUREMENT AND
CALCULATION PROCEDURES
FOR MACHINISTS

4.1 SINE BAR AND SINE PLATE CALCULATIONS

Sine Bar Procedures. Referring to Figs. 4.1a and b, find the sine bar setting height
for an angle of 34°25’ using a 5-in sine bar.

sin 34°25" = % (34°25" = 34.416667 decimal degrees)

X

sin 34.416667° = 5

x =5x0.565207
x=2.8261in

Set the sine bar height with Jo-blocks or precision blocks to 2.826 in.

From this example it is apparent that the setting height can be found for any sine
bar length simply by multiplying the length of the sine bar times the natural sine
value of the required angle. The simplicity, speed, and accuracy possible for setting
sine bars with the aid of the pocket calculator renders sine bar tables obsolete. No
sine bar table will give you the required setting height for such an angle as 42°1726”,
but by using the calculator procedure, this becomes a routine, simple process with
less chance for error.

Method
1. Convert the required angle to decimal degrees.
2. Find the natural sine of the required angle.

3. Multiply the natural sine of the angle by the length of the sine bar to find the bar
setting height (see Fig. 4.1b).

4.1
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/—— Sine bar

V7
gy 5.000" ———-“J

Sine bar length

(a)
1
/—— Sine bar
2.828"
34025’
Precision
! surface plate
_,*_‘ N
/ ' »
Precision
gauge btocks
(b)

FIGURE 4.1 (a) Sine bar. (b) Sine bar setting at 34°25".

Formulas for Finding Angles. Refer to Fig. 4.2 when angles o and ¢ are known to
find angles X, A, B, and C.

X ‘.
Ret. /. Gj / R .

FIGURE 4.2 Finding the unknown angles.
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NOTE. X (8)=90°- X o

X G=90°— % T
XA+XB+x C=180°
X X+ % M=90°

tan X =tan a cos ¢

Angle B =180° — (angle A + angle C)

sin ¢ sin C

tanA=————"—
an sin ¢ — (sin o cos C)

D =true angle

tan D =tan ¢ sin ©

tan M =V (tan ©) + (tan T)?
cos A=cos Ecos G

cos A=sin®sin T

Formulas and Development for Finding True and Apparent Angles. See Fig. 4.3aq,
where o = apparent angle, © = true angle, and ¢ = angle of rotation.

NOTE. Apparent angle o is OA triangle projected onto plane OB. See also Fig. 4.3b.

tan © K
ne=—
mE=T
tan o= K
" Lcosd

K
tan(xcosq):f

=~ =

=tan © =cos ¢ tan o
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Tilted view
(for clarity)

¢ Ref.

} Apparent angle after
triangie has been
rotated (ref}

(b)
FIGURE 4.3 True and apparent angles.

or
tan ©® =cos ¢ tan o

and

Tilted view
{for clarity)
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The three-dimensional relationships shown for the angles and triangles in the
preceding figures and formulas are of importance and should be understood. This
will help in the setting of compound sine plates when it is required to set a com-
pound angle.

Setting Compound Sine Plates. For setting two known angles at 90° to each other,
proceed as shown in Figs. 4.44, b, and c.

First angle

Second angle

Compound sine plate

——First angle

S

x

Second angle

©
FIGURE 4.4 Setting angles on a sine plate.
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EXAMPLE. First angle = 22.45°. Second angle = 38.58° (see Fig. 4.4). To find the
amount the intermediate plate must be raised from the base plate (X dimension in
Fig. 4.4b) to obtain the desired first angle,

1. Find the natural cosine of the second angle (38.58°), and multiply this times the
natural tangent of the first angle (22.45°).

2. Find the arctangent of this product, and then find the natural sine of this angle.

3. This natural sine is now multiplied by the length of the sine plate to find the X
dimension in Fig. 4.4b to which the intermediate plate must be set.

4. Set up the Jo-blocks to equal the X dimension, and set in position between base
plate and intermediate plate.
EXAMPLE
cos 38.58°=0.781738
tan 22.45° = 0.413192
0.781738 x 0.413192 = 0.323008
arctan 0.323008 = 17.900872°
sin 17.900872° = 0.307371
0.307371 x 10 in (for 10-in sine plate) = 3.0737 in

Therefore, set X dimension to 3.074 in (to three decimal places).
To find the amount the top plate must be raised (Y dimension in Fig. 4.4c) above
the intermediate plate to obtain the desired second angle,

1. Find the natural sine of the second angle, and multiply this times the length of the
sine plate.

2. Set up the Jo-blocks to equal the Y dimension, and set in position between the
top plate and the intermediate plate.
EXAMPLE
sin 38.58° = 0.632607
0.632607 x 10 in (for 10-in sine plate) = 6.32607

Therefore, set Y dimension to 6.326 in (to three decimal places).

4.2 SOLUTIONS TO PROBLEMS IN MACHINING
AND METALWORKING

The following sample problems will show in detail the importance of trigonometry
and basic algebraic operations as apply to machining and metalworking. By using the
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methods and procedures shown in Chap. 1 and this chapter of the handbook, you will
be able to solve many basic and complex machining and metalworking problems.

Taper (Fig. 4.5). Solve for x if y is given; solve for y if x is given; solve for d. Use
the tangent function:

tan A =

= |

d=D -2y

where A = taper angle
D = outside diameter of rod
d = diameter at end of taper
x =length of taper
y =drop of taper

X
_ / #
Y
° = > —
20°

FIGURE 4.5 Taper.

EXAMPLE. If the rod diameter = 0.9375 diameter, taper length = 0.875 = x, and taper
angle = 20° = angle A, find y and d from

tan 20° = X
X
y =x tan 20°
=0.875(0.36397)
=0318
d=D -2y

=0.9375 - 2(0.318)
=0.9375 - 0.636
=0.3015
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Countersink Depths (Three Methods for Calculating). See Fig.4.6.

0.9’38' \\ //
| N1,
|
+ = Tool travel
2 [ 82 7] 'y

FIGURE 4.6 Countersink depth.

Method 1. To find the tool travel y from the top surface of the part for a given
countersink finished diameter at the part surface,

D2
" tan %A

y (Fig. 4.6)
where D =finished countersink diameter
A = countersink angle
y =tool advance from surface of part
09382 0.469

Y= dle - 0869 0.5397, or 0.540

Method 2. To find the tool travel from the edge of the hole (Fig. 4.7) where D =
finished countersink diameter, H = hole diameter, and A =/ countersink angle, 41°,

X
tan A =—
y

X X
= or B SR
tan A % countersink angle

y

First, find x from
D=H+2x
If D =0.875 and H =0.500,
0.875=10.500 + 2x
2x=0.375
x=0.1875
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N~ o N

41° = A

H = Hole diameter

|
FIGURE 4.7 Tool travel in countersinking.

Now, solve for y, the tool advance:

_ X
" tan A

y

01875
" tan 41°

_ 01875
~ 0.8693

=0.2157, or 0.216 (tool advance from edge of hole)

Method 3. To find tool travel from edge of hole (Fig. 4.8) where D = finished
countersink diameter, d = hole diameter, ¢ = /4 countersink angle, and H = counter-
sink tool advance from edge of hole,

D-d

H="%D —d) cotan ¢ or H= 2 tan o

(Remember that cotan ¢ = 1/tan ¢ or tan ¢ = 1/cotan ¢.)
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Countersink

FIGURE 4.8 Tool travel from the edge of the hole,
countersinking.

Finding Taper Angle 0. Given dimensions shown in Fig. 4.9, find angle o and
length x.

2.178"

2
Y a
~JA
B K ,
A
0.500"

X
1
FIGURE 4.9 Finding taper angle o.
First, find angle o from
1.875-0.500 1.375
= = =0.6875
2 2
Then solve triangle ABC for % angle o
1 0.6875
tan F0=5775 = 0.316092

arctan % o= 0.316092
% ou=17.541326°
o =2x17.541326°
angle o = 35.082652°
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Then solve triangle A’B’C, where y’ = 0.9375 or % diameter of rod:

Angle C=90° - 17.541326°
=172.458674°

Now the x dimension is found from

1 0 9375

2 X

_ 09375
T tan¥%o

09375
0316092

=2.966 (side A’B’ or length x)

Geometry of the Pentagon, Hexagon, and Octagon. The following figures show in

detail how basic trigonometry and algebra are used to formulate the solutions to
these geometric figures.

The Pentagon. See Fig. 4.10.

FIGURE 4.10 Pentagon geometry.

Where R =radius of circumscribed circle
R, =radius of inscribed circle
S =length of side
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From the law of sines, we know the following relation:

S R

sin 72°  sin 54°

S sin 54° = R sin 72°
_ R sin 72
T sin 54

_ R(0.9511)
= 0.8090

=1.1756R (where R = radius of circumscribed circle)
Also,

R, sin 72°

R,
= Note: 36°=—-
cos 36 sin 54 ( ote: cos )

R

_ R(0.9511)
~ (0.8090)(0.8090)

_ Ri(0.9511)
T 0.6545

=1.4532R, (where R, =radius of inscribed circle)

The area of the pentagon is thus

1/S
A]—E(E)Rl
_ SR,
T4
R R
:M Note: cos 36 = —- and R, =R cos 36
4 R
SR,
Ar=3 ( 4 )

=1.258R, (the total area of the pentagon)
The Hexagon. See Fig.4.11.

Where R =radius of inscribed circle
R, =radius of circumscribed circle
S =length of side
W = width across points

From Fig. 4.11 we know the following relation:
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120¢

FIGURE 4.11 Hexagon geometry.

X S
tan 30 =R and §S=2x or x=5
x =R tan 30
Then S=2R tan 30
=2R(0.57735)
=1.1457R
R
cos 30°=—
1
R =R, cos 30
R < R
' cos 30
R

Ri=jgecos o Ri=LIS467R
and W=2(1.15467)R

=2.30934R (diameter of the circumscribed circle)
Area: A =2.598§*
=3.464r
=2.598R}

4.13
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The Octagon. See Fig. 4.12.

FIGURE 4.12 Octagon geometry.

Where R =radius of inscribed circle
R, =radius of circumscribed circle
S =length of side
W = width across points

From Fig. 4.12 we know the following relation:
%S = R tan 22°30’
S =2R tan 22°30’
S=2R(0.414214)
S§=0.828428R
Also: R=1.207118

R
Th 22°30" = —
en, cos R

1

R =R, cos 22°30/
R

Ri= cos 22°3(0

R
Then, W= Z(W)

=2.165R
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Area: A =4.8285”
=3.3147

In the preceding three figures of the pentagon, hexagon, and octagon, you may
calculate the other relationships between §, R, and R, as required using the proce-
dures shown as a guide. When one of these parts is known, the other parts may be
found in relation to the given part.

4.3 CALCULATIONS FOR SPECIFIC MACHINING
PROBLEMS (TOOL ADVANCE, TAPERS, NOTCHES
AND PLUGS, DIAMETERS, RADII, AND
DOVETAILS)

Drill-Point Advance. When drilling a hole, it is often useful to know the distance
from the cylindrical end of the drilled hole to the point of the drill for any angle point
and any diameter drill. Refer to Fig. 4.13, where the advance ¢ is calculated from

D ————

>

i
i
/ a
8 ™ 8
LE_,
2
FIGURE 4.13 Drill advance.

(180—0() t
tan

2 )" bn

Then

D (180—0()
t=— tan
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where D = diameter of drill, in
o = drill-point angle
EXAMPLE. What is the advance ¢ for a 0.875-in-diameter drill with a 118° point angle?

0.875 180 -118 180 — o
t= ) tan 2 Note:

= X O (reference)

=0.4375 tan 31°
=0.4375 x 0.60086 = 0.2629 in

Tapers. Finding taper angles under a variety of given conditions is an essential part
of machining mathematics. Following are a variety of taper problems with their asso-
ciated equations and solutions.

For taper in inches per foot, see Fig. 4.14a. If the taper in inches per foot is
denoted by 7, then

Nio

D1 - - D, 2]

0.4894

__{ (b)

FIGURE 4.14 Taper angles.

_12(D,-Dy)

g L

where D, =diameter of larger end, in
D, = diameter of smaller end, in
L =length of tapered part along axis, in
T = taper, in/ft
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Also, to find the angle ©, use the relationship

_12(D, - Dy)

tan ©
an I

then find arctan © for angle ©.

EXAMPLE. D;=1.255in,D,=0.875in,and L =3.5 in. Find angle ©.

_1.255-0.875 _ 0.380

tan © 35 0875

=0.43429

=0.43429
And arctan 0.43429 = 23.475° or 23°28.5".

Figure 4.14b shows a taper angle of 27.5° in 1 in, and the taper per inch is there-
fore 0.4894. This is found simply by solving the triangle formed by the axis line,
which is 1 in long, and half the taper angle, which is 13.75°. Solve one of the right-
angled triangles formed by the tangent function:

tan 13.75° = %

and x =tan 13.75° = 0.2447
and 2 x 0.2447 = 0.4894

as shown in Fig. 4.14b.
The taper in inches per foot is equal to 12 times the taper in inches per inch. Thus,
in Fig. 4.14b, the taper per foot is 12 x 0.4894 = 5.8728 in.

Typical Taper Problems

1. Set two disks of known diameter and a required taper angle at the correct center
distance L (see Fig. 4.15).

FIGURE 4.15 Taper.
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Given: Two disks of known diameter d and D and the required angle ©.
Solve for L.
D-d

L= (S]
2| sin —
(sm 2)

2. Find the angle of the taper when given the taper per foot (see Fig. 4.16).

FIGURE 4.16 Angle of taper.

Given: Taper per foot T. Solve for angle ©.

0=2 actanl
i Y

3. Find the taper per foot when the diameters of the disks and the length between
them are known (see Fig. 4.17).

L L
FIGURE 4.17 Taper per foot.

Given: d, D, and L. Solve for T.

. D-d
T = tan | arcsin 3 X 24

4. Find the angle of the taper when the disk dimensions and their center distance is
known (see Fig. 4.18).
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FIGURE 4.18 Angle of taper.

Given: d, D, and L. Solve for angle ©.
D- d)

0= 2<arcsin

5. Find the taper in inches per foot measured at right angles to one side when the
disk diameters and their center distance are known (see Fig. 4.19).

! %

FIGURE 4.19 Taper in inches per foot.

L

Given: d, D, and L. Solve for T, in inches per foot.

. D-d
T =tan [Z(arcsm oL )} x 12

6. Set a given angle with two disks in contact when the diameter of the smaller disk
is known (see Fig. 4.20).

FIGURE 4.20 Setting a given angle.
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Given: d and ©. Solve for D, diameter of the larger disk.
2d sin >

D=< . @>+d
1_ —_
Sll’l2

Figure 4.21 shows an angle-setting template which may be easily constructed in
any machine shop. Angles of extreme precision are possible to set using this type of
tool. The diameters of the disks may be machined precisely, and the center distances
between the disks may be set with a gauge or Jo-blocks. Also, any angle may be
repeated when a record is kept of the disk diameters and the precise center distance.
The angle O, taper per inch, or taper per foot may be calculated using some of the
preceding equations.

FIGURE 4.21 Angle-setting template.

Checking Angles and Notches with Plugs. A machined plug may be used to check
the correct width of an angular opening or machined notch or to check templates or
parts which have corners cut off or in which the body is notched with a right angle.
This is done using the following techniques and simple equations.

In Figs. 4.22,4.23,and 4.24, D = a + b — ¢ (right-angle notches). To check the width
of a notched opening, see Fig. 4.25 and the following equation:

FIGURE 4.22 Right-angle notch.
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FIGURE 4.23 Right-angle notch.

~7A
Lklb‘ |
T

FIGURE 4.24 Right-angle notch.

FIGURE 4.25 Width of notched opening.
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D =W tan (45" - %)

When the correct size plug is inserted into the notch, it should be tangent to the
opening indicated by the dashed line.

Also, the equation for finding the correct plug diameter that will contact all sides
of an oblique or non-right-angle triangular notch is as follows (see Fig. 4.26):

FIGURE 4.26 Finding plug diameter.

2w

D= A C or 2w tan£+tan£
cot—|+(cot— 2 2
2 2
where W = width of notch, in
A=angle A
B =angle B

Finding Diameters. When the diameter of a part is too large to measure accu-
rately with a micrometer or vernier caliper, you may use a 90° or any convenient
included angle on the tool (which determines angle A) and measure the height H as
shown in Fig. 4.27. The simple equation for calculating the diameter D for any angle
A is as follows:

2
D=H m (Note. csc 45° = 14142)

Thus, the equation for measuring the diameter D with a 90° square reduces to
D =4.828H
Then, if the height H measured was 2.655 in, the diameter of the part would be

D =4.828 x2.655=12.818 in
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FIGURE 4.27 Finding the diameter.

When measuring large gears, a more convenient angle for the measuring tool
would be 60°, as shown in Fig. 4.28. In this case, the calculation becomes simple.
When the measuring angle of the tool is 60° (angle A = 30°), the diameter D of the
partis 2H.

—‘__—/’A

FIGURE 4.28 Finding the diameter.
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For measuring either inside or outside radii on any type of part, such as a casting
or a broken segment of a wheel, the calculation for the radius of the part is as follows

S

FIGURE 4.29 Finding the radius.

(see Figs. 4.29 and 4.30):

- c
b

PN
A7 \ O

FIGURE 4.30 Finding the radius.

_ 4b* + 2
"= %

where r=radius of part, in
b = chordal height, in
¢ =chord length, in
S =straight edge
The chord should be made from a precisely measured piece of tool steel flat, and the
chordal height b may be measured with an inside telescoping gauge or micrometer.
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Measuring Radius of Arc by Measuring over Rolls or Plugs. Another accurate
method of finding or checking the radius on a part is illustrated in Figs.4.31 and 4.32.
In this method, we may calculate either an inside or an outside radius by the follow-
ing equations:

FIGURE 4.31 Finding the radius.

A
s \

: S
L S—
\

R
FIGURE 4.32 Finding the radius.

L+ D)?
r= % (for convex radii, Fig. 4.31)
_(L+D) h

r= m ey (for concave radii, Fig. 4.32)

where L =length over rolls or plugs, in
D = diameter of rolls or plugs, in
h = height of concave high point above the rolls or plugs, in
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For accuracy, the rolls or plugs must be placed on a tool plate or plane table and
the distance L across the rolls measured accurately. The diameter D of the rolls or
plugs also must be measured precisely and the height 42 measured with a telescoping
gauge or inside micrometers.

Measuring Dovetail Slides. The accuracy of machining of dovetail slides and their

given widths may be checked using cylindrical rolls (such as a drill rod) or wires and
the following equations (see Figs. 4.33a and b):

P ; L@lsﬁj@

(2) (b)

FIGURE 4.33 Measuring dovetail slides.

(€]
x= D(cot ?) +a (for male dovetails, Fig. 4.33a)

y=b- D(l + cot %) (for female dovetails, Fig. 4.33b)

NOTE. c¢=h cot ©. Also, the diameter of the rolls or wire should be sized so that the
point of contact e is below the corner or edge of the dovetail.

Taper Problem and Calculation Procedures. Figure 4.34 shows a typical machined
part with two intersecting tapers. The given or known dimensions are shown here, and
it is required to solve for the unknown dimensions and the weight of the part in
ounces, after machining.

Given: Ly, Ry, d,, angle a, and angle f.
Find: Ry, Rs, be, d,, L,, L3, and L,; then calculate the volume and weight of the

part, when the material is specified.

=6.000 in, R, =0.250 in, d; = 0.875 in, angle o. = 15°, and angle § = 60°.
Solution.

d, 0875
R, x2=d, R3:71:T:0.43751n

0.250 x2=d, =0.500 in
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—— Ly |

Cﬂf

R N
T . L

] do dq

L3
Ly
FIGURE 434 Double taper.
L4=%—0.250 tanoc:b—i
_0.875

Ly= - 0.250

L,=0.4375-0.250
L,=0.18751in

Ly
t =—
an B I

— L4
" tan P

2

01875 0.1875
T tan60°  1.732

L,=0.108 in
Li=L,-L,
L;=6.000-0.108
L;=5.8921in

bc=L;tan o

bc =5.892 x tan 15°
bc=5.892 x 0.2680
bc=1.579 in

R, =R;+ bc

R, =0.4375+1.579

R, =2.017in

D =2R,

D =2x2.017
D =4.034 in dia.

4.27
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From Fig. 4.35, the volume and weight of the machined tapered part can be cal-
culated as follows.

SE

.CTION 1

%

4.034 in dia. — — —— — —— 0.500 0.875

— SECTION 2

FIGURE 4.35 Volume of double taper part.

Per the dimensions given in Fig. 4.35, find the volume in cubic inches and the part
weight, when the part is made from 7075-T651 aluminum alloy stock:

Solution. The part consists of two sections, both of which are frustums of a cone.
The equation for calculating the volume of a frustum of a cone is:

V= %(r% +rir, + r%)n

Section 1: r,=2.017,r,=0.438,and h = L;=5.892

5.892
Vi= 7(2.0172 +2.017 x 0.438 + 0.438%)3.1416

V1 =1.964(4.068 + 0.883 + 0.192)3.1416

V1 =1.964 x 5.143 x 3.1416

V,=31.733 in®

Section 2:  r,=0.438,r,=0.250, and & =0.108

0.108
V,= T(O.4382 +0.438 x 0.250 + 0.250%)3.1416

V,=0.036(0.192 + 0.110 + 0.063)3.1416
V,=10.036 x 0.365 x 3.1416

V,=0.041 in®

Volume of the part=V;+V,

Ve = 31.733 + 0.041

Viot = 31.774 in®
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Since 7075-T651 aluminum alloy weighs 0.101 1b/in®, the part weighs:
W = volume, in® X density of 7075-T651

W=31.774 x 0.101

W=3211lbor51.350z

Find the diameter of a tapered end for a given radius r (see Fig. 4.36).
Problem. To find the diameter d, when the radius r and angle of taper o are
known:

o o
[ — [ 1[ . -— 4
‘\
r f
FIGURE 4.36 Finding diameter d.
Given: o,=25°r=0.250in
Using the equation:
90°
d= Zr(cot * oc>
solve for d:
d=2x 0.250<cot M)

d= 0.500<cot 15 )
2
d =0.500(cot 57.5°)

d= 0'500( tan 57.5° )

d= 0.500<ﬁ)

d =0.500 x 0.637
d=0.3191in
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Checking the Angle of a Tapered Part by Measuring over Cylindrical Pins

Problem. Calculate what the measurement L over pins should be, when the
diameter of the pins is 0.250 in, and the angle o on the machined part is given as 41°
(see Fig. 4.37).

FIGURE 4.37 Checking the angle of a tapered part.

Solution. 'With an X dimension of 2.125 in, d = 0.250 in, and angle o = 41°, the
solution for the measured distance L can be found by using the following equation:

o

9
L:X+d[tan< 0(>+1] angle f=90° - a

L=2125+ O‘ZSO[tan (%) + 1}

L =2.125+0.250[tan (24.5°) + 1]
L =2.125 +0.250(1.456)

L =2.125+0.364

L =2489in

If the L dimension is measured as 2.502 in, and X remains 2.125 in, calculate for the
new angle o using the transposed equation:

-L+X+d
oy =90° + 2 arctan (T) (see MathCad in Sec. 1.2.2)
R -2.502 +2.125 + 0.250
o, =90 +2arctan( 0250 )

-0.127
o, =90° + 2 arctan ( 0250 )
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oy =90° + 2 arctan (—0.508)

o =90° +2(-26.931°)

oy =90° — 53.862°

0, =36.138° or  36°08'16.8”

NOTE. The MathCad-generated equations are the transpositions of the basic equa-
tion, set up to solve for a, X, and d. These equations were calculated symbolically for
these other variables in the basic equation; Sec. 1.2.2 shows the results both when the
angles are given in degrees and when the angles are given in radians.

Note. There are 2r rad in 360°, 1 rad = (180/m)°; 1° = (n/180) rad. That is, 1 rad =
57.2957795°;1° = 0.0174533 rad.

Forces and Vector Forces on Taper Keys or Wedges. Refer to Figs. 4.38a and b and
the following equations to determine the forces on taper keys and wedges.
For Fig. 4.38a we have:

8 = angle of friction = arctan p; tan § =y, or tan™ p=3§

W = coefficient of friction (you must know or estimate this coefficient prior to
solving the equations, because & depends on p, the coefficient of friction at the
taper key or wedge surfaces). The coefficient of friction of steel on steel is gener-
ally taken as 0.150 to 0.200.

.. tan o
Efficiency,n = m

_ M
" tano
Pt
Fe an o

n

__
" sino

For Fig. 4.38b we have:

__ M
T 2tana

_2Ptanoc
n

__In

" 2sina

F
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F

FIGURE 4.38 (a) Forces of a single tapered wedge; (b) forces
of a double tapered wedge.

In Fig. 4.39, for milling cutter angles o = 20°, B = 45°, cutter nose radius of 0.125
in, and a groove width x = 0.875 in, we can solve for the plunge depth y, and the dis-
tance d to the tool vertical centerline, using the following equations:

X cos oL cos B S S B-o
el e

Bracket the equation in the calculator as follows:

(x cos a cos P/sin (o + B)) — r((1/sin ((ov + B)/2)) (cos (B — a)/2)) — 1)
Then press ENTER or =.
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vertical

“V” groove

FIGURE 4.39 Solving plunge depth on angled notches.

The value for y” is calculated from the following equation:
1
N | ey B-o
y —r{[sin<a+ﬁ>]cos< 2 1 (Eq.4.2)
2
Bracket the equation in the calculator as follows:
r((1/sin ((oe+ B)/2)) (cos ((B—o)/2)) — 1)

Then press ENTER or =.
The distance d to the centerline of the cutter is calculated as follows:

tan B

S +y)
Then,
d=(y+y)tanf (Eq.4.3)
An actual problem is next shown in calculator entry form, following these basic
equations.
Problem.

Given: o.=20° [ =45° nose radius r = 0.125 in, groove width x = 0.875 in
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Find: Tool plunge distance y, distance y’, and distance d from the preceding
equations (see Fig. 4.39).
From Eq. 4.1:

v = (0.875 cos 20° cos 45°/sin (20° + 45°)) — 0.125((1/sin ((20° + 45°)/2))
(cos ((45°-20°)/2)) - 1)

y=0.539%1in
From Eq. 4.2:
¥ =0.125((1/sin ((20° + 45°)/2)) (cos ((45° —20°)/2)) - 1)
y'=0.1021 in
From Eq. 4.3:
d=1(0.5394 + 0.1021) tan 45° [Note: h=(y+y')]
d =(0.6415) 1.000
d=0.64151in

Problem. A cutting tool with a nose radius r and angle 6 is to cut a groove of x
width. How deep is the plunge % from the surface of the work piece? (See Fig. 4.40.)

FIGURE 4.40 Solving plunge depth A.

Given: Width of groove x =0.875 in, 0 = 82°,and r = 0.125 in

Step 1. Find distance ab from:

ab = Zr[cot ( 900; ¢ )]
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1
e - @ @
NOTE. ¢=— or ab=2r|: (90°+¢)]
2 tan | ———

Step 2. Find y’ from:

cb
tan ¢ = —;
, ¢b
r= tan ¢
ab
NOTE. c¢b= 7
Step 3. Find y from:
tan ¢ = ﬁ
y
X2
r= tan ¢
Step 4. Find h from:
h=y-y

The solution to the preceding problem is numerically calculated as follows:

Step 1.
ab =2(0.125) (cot ((90° + 41°)/2)
ab =0.250 (cot 65.5°)
ab =0.250 (1/tan 65.5°)
ab =0.250 x 0.4557

ab =0.1139 in
NOTE. CB =ab/2
Step 2.
, b
Y= tan ¢

y = (0.1139/2)/tan 41°
" =0.0570/0.8693
' =0.0656 in

4.35
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Step 3.
y=(0.875/2)/tan 41°
y=10.4375/0.8693
y=0.5033 in
Step 4.
h=y-y

h=0.5033 - 0.0656
h=0.4377 in

Calculating and Checking V Grooves. Sce Fig. 4.41.

Problem. AV groove is to be machined to a width of 0.875 in, with an angle of
82°. Calculate the tool plunge depth y, and then check the width of the groove by cal-
culating the height 4 that should be measured when a ball bearing of 0.500 in diam-
eter is placed in the groove.

w D
/ #
h
r (j_ T
el a2

~

FIGURE 4.41 Checking groove width on angled notches.

Solution. Use the following two equations to calculate distances y and A:
Given: Groove width W =0.875 in, groove angle o = 82°
0.875
x=—o—= 0.4375

o
6=90 -5
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. 8
0=90"- =
0=90° - 41°
8=49°

tan 6 = % (Eq.4.4)

y=xtan 6

y =0.4375 x tan 49°
y=0.4375x1.1504

y =0.5033 in depth of tool plunge

Height £ is calculated from the following equation, which is to be transposed for
solving h:

W =2 tan %(r csc%+r—h) (Eq.4.5)

82°
0.875=2tan ) <r csc % +0.250 - h) (Transpose this equation for A.)

0.875 =2 tan 41°(r csc 41° + 0.250 — h)

0.875 =2 x0.8693 [r < ) +0.250 — h]

sin 41°

0.875=1.7386 [0.250 ( ) +0.250 - h}

0.6561
0.875 = 1.7386 [0.250(1.5242) + 0.250 — h]
0.875 = 1.7386(0.3811 + 0.250 — h)

0.875 = 0.6626 + 0.4347 — 1.7386h

1.7386h = 0.6626 + 0.4347 — 0.875

1.7386h = 0.2223

0.2223
T 17368

h=0.1280 in

NOTE. In the preceding equation, csc o/2 was replaced with 1/(sin /2), which is its
equivalent. The reason for this substitution is that the cosecant function cannot be
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directly calculated on the pocket calculator. Since the cosecant, secant, and cotan-
gent are equal to the reciprocals of the sine, cosine, and tangent, respectively, this
substitution must be made, i.e., csc 41° = 1/sin 41°.

Arc Height Calculations. Figure 4.42 shows a method for finding the height / if an
arc of known radius R is drawn tangent to two lines that are at a known angle A to
each other. The simple equation for calculating 4 is given as follows:

A = 50"
B = A/2 = 25°
R = 2.125"

SCLVE FOR: h

FIGURE 4.42 Finding height £ of an arc of known radius.

A
bc=h= R(l —sin 7),
where A =50°
R=2.125in

Therefore,
h=R(1-sin B)
h=2.125(1 —sin 25°)
h=2.125(1-0.42262)
h=2.125x0.57738
h=1.2269
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Calculating Radii and Diameters Using Rollers or Pins. To calculate an inside
radius or arc, see Fig. 4.43, and use the following equation:

PART
SPREADER

ANy

TQ

r

FIGURE 4.43 Calculating radius and diameter (inside).

Given: d=0.750-in rollers or pins, 4 =1.765 in measured, and L = 10.688 in mea-
sured

_(L=ady h

T 8h-d) 2

(10688 — 0.750) . 1.1765

"T8(1765-0750) T 2

r

98.7638
8.120

+0.8825

r=12.1636 + 0.8825
r=13.046 in

To calculate an outside radius, diameter, or arc, see Fig. 4.44, and use the follow-
ing equations:

FIGURE 4.44 Calculating radius and diameter (outside).
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Given: L =10.688in,d =0.750 in; calculate r and D.
(L-ay
F=—
8d

~ (10.688 - 0.750)°
T 8(0.750)

987638
"6

r

r=16.461 in

_(10.688 — 0.750)°
T 4(0.750)

98.7638
D= 3

D =32.921

Calculating Blending Radius to Existing Arc. See Fig.4.45.

Problem. Calculate the blending radius R, that is tangent to a given arc of
radius R;.

Solution. Distances X and Y and radius R, are known. Find radius R, when X =
2.575in, Y =4.125in,and R, =5.198 in.

| |
| X |

FIGURE 4.45 Calculating blending radii.
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Use the following equation to solve for R;:

R _X+Y-2RX
T 2Y-2R,

_ (2.575)°+ (4.125)* ~2(5.198)(2.575)

R
? 2(4.125) — 2(5.198)

_ 6.6306 + 17.0156 — 26.770

:T 8.250 — 10.396
-3.124
R = -2.146
R,=1.456in

Plunge Depth of Milling Cutter for Keyways. See Fig. 4.46.

-

| i

— ]

x

t |
.
T

SHAFT

a=x—-h
r = radius of shaft
W =0.250
h=0125

FIGURE 4.46 Keyway depth, calculating.

EXAMPLE. Find the depth x the milling cutter must be sunk from the radial surface
of the shaft to cut a shaft keyway with a width W of 0.250 in and a depth 4 of 0.125 in.
Given: W =0.2501in, 4 =0.125 in, » = 0.500 in (shaft diameter = 1.000 in)
Using the following equation, find the cutter plunge dimension x:

WZ
x=h+r- /I’Z—T

0.250°
x=0.125+0.500 — _/0.500° —
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x=0.125+ 0.500 — V' 0.234375
x=0.625-0.484
x=0.141 in

From the figure,a =x — h=0.141 — 0.125 = 0.016 in (reference dimension).

Keyway Cutting Dimensions. See Fig. 4.47 for calculation procedures.

X=\(D1d) ~(W/2)’ +d+D/2

X'=2X-D
FIGURE 4.47 Keyway cutting dimensions.

Compound Trigonometric Problem. In Fig. 4.48, we will solve for sides a and a’
and length D, the distance from point 1 to point 2.
For side a, use the law of sines:

sin B sin A
12~ a

sin 63°  sin 54°

12 a

12(sin 54°)
a=——"—-
sin 63°
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b=12

A

FIGURE 4.48 Compound trigonometric calculations. Note that angles
A, B, and C form an isosceles triangle, as do angles A’, B, and C". Sides
b, ¢, and ¢’ =12. When arm b moves from an angle of 54° to 62°, find the
lengths of sides a and a’, and the distance D from B to B’ (P; to P,).

For side a’, also use the law of sines:

sin B sin A’
b a

sin 59° B sin 62°

12 a

, _ 12(sin 62°)
" sin59°

4.43

For distance D, (P, — P,), use the law of cosines (0. =4°,a = 10.896, a’ = 12.364):

D?=(a)* + (a’)* - 2(a)(a’) cos o,

D? = (10.896)* + (12.364)* — 2(10.896)(12.364)0.998
D*=2311

D=V2811=1677 (distance between P; and P»)
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If sides a, a’, and D are known, angle o can be calculated by transposing the law
of cosines (see Fig. 4.48):
D*=(a)’ + (a')* - 2(a)(a’) cos o,
2(a)(a’) cos o.= (a)* + (a’)* - D?
(a)z + (a/)z _ DZ
2(a)(a’)

_ (10.896)° + (12.364) — (1.677)°
- 2(10.896) (12.364)

_ 268.778983
" 269.436288

Cos oL =

COoS O =10.997560

arccos o = 4.003° (accuracy = 117)

(If more accuracy is required, sides a, @’, and D should be calculated to 6 decimal
places.)

NOTE. Triangle C, B, B’ can be checked with the Molleweide equation, after the
other two angles are solved using the law of sines (see Chap. 1).

Transposing the Law of Cosines to Solve for the Angle

=a*+b*-2ab cos C

2ab cos C=a*+b*-¢? (rearranging)
a+b-c?
cos C= omb (transposed)

Then take arccos C to find the angle C.
Transpose as shown to find cos A and cos B from:

a*=b*+c*—2bc cos A and b*>=a*+c?-2ac cos B

Solving Heights of Triangles. From Fig. 4.49,if angle A =28°, angle C =120°, angle
C’=60°, and side b = 14 in, find the height X.
sin 28° sin 120°
X=4|—7——=
( sin (60° — 28°) )
0.46947 % 0.86603
sin 32°

X:14< (0‘40658>

0.52992
X =14(0.76725) = 10.7415

Or, we can use:
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_,sinAsinC b

=b or

sin(C'-A) X- cotA-cotC

FIGURE 4.49 Solving heights of oblique triangles.

14 b
X= (1/tan A) — (1/tan C") from cot A —cot C’

o 14
"~ 1.88073 — 0.57735

X =10.7413

NOTE. 1l/tan A=cot A
Both equations check within 0.0002 in. If you need more accuracy, use more dec-

imal places in the variables.
For oblique triangles, where no angle is greater than 90°, use the equations from

Chap. 1 shown in the text.

Calculations Involving Properties of the Circle. These include finding arc length,
chord length, maximum height b, and the x, y ordinates. Refer to Fig. 4.50.

Given: Angle © =42°, radius r = 6.250 in
Find: Arc length ¢, chord length ¢, maximum height b, height y when x = 1.625,
and length x when y = 0.125.

_ we° —orsi 6
=130 c=2rsin
_ 3.1416(6.250)42 - .
== 130 ¢=2(6.250) sin 21
824.668
(= 180 ¢=2(6.250)0.3584

€=4.581in ¢=4.4801in
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r = 6.250 in
6=42"
\
FIGURE 4.50 Calculation using properties of the circle.

c ) 5
b—2<tan4) from y=b-r+Vr-x

4.480 42
b= T(tan T) y=0.4151 - 6.250 + V6.250° — 1.625*
b =2.240(tan 10.5) y=0.4151 - 6.250 + V36.4219
b =2.240(0.1853) y=0.4151 - 6.250 + 6.0351
b=0.41511n y=0.2002 in

Find x when y = 0.125 in.
x=V6.250% - (6250 +0.125 — 0.4151)
x=V35421

x=1.88201in

Using Simple Algebra to Solve Dimension-Scaling Problems. In Fig. 4.51, we
have a scale drawing that has been reduced in size, such that the dimensions are not
to actual scale. If we want to find a missing dimension, such as x in Fig. 4.51, we can
ascertain the missing dimension using the simple proportion a/b = ¢/d, as follows:
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s

!
1.0390
2.1450
Measured
value = 1.885 in
Y
p.——— - 2 8044 — ———
Measured Find dimension X
size = 0.655 in exact size.

FIGURE 4.51 Dimension scaling by proportion.

The dimension 2.1450 was measured on the drawing as 1.885 in, and the missing
dimension was measured on the drawing as 0.655 in. Therefore, a and c are the mea-
sured dimensions; b and x are the actual sizes. d = x.

a_c
b~ d
1.885 0655
21450 x

1.885x =2.1450(0.655)

_ 2.1450(0.655)
T 1885

1.405
X=Tges = 0.745

Therefore, 0.745 in is the actual size of the missing dimension. This procedure is
useful, but is only as accurate as the drawing and the measurements taken on the
drawing. This procedure can also be used on objects in photographs that do not have
perspective distortion, where one aspect or dimensional feature is known and can be
measured.

Useful Geometric Proportions. In reference to Fig. 4.52, when ab is the diameter,
and dc is a perpendicular line drawn from the diameter that intersects the circle, the
following proportion is valid:
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Center

Diameter (ab)

I=db=arc length

If ac = 6 and dc =5, find the length cb.

6_5
5 ¢b
6¢cb =25

cb= % =4.167 in

The diameter ab is then:
ab=6+4.167

ab =10.167 in

10.1
R= 0267 =5.084 in (radius)

The internal angle of the arc db can be calculated by finding the length oc:
oc=R-cb
0c=5.084-4.167=0.917 in

and then solving the right triangle ocd:

dc
tan A=—
oc

5
=———=15.452
tan A 0917 5.4526



MEASUREMENT AND CALCULATION PROCEDURES FOR MACHINISTS 4.49

arctan 5.4526 = 79.6075°
angle A =79.6075°
The arc length db can then be calculated from the properties of the circle:

TRA
=4
180

_ (3.1416)(5.084)(79.6075)
N 180

db=

¢

1271483

¢ 180

=7.064 in

The sum of all the internal angles of any polygon (Fig. 4.53) is equal to the num-
ber of sides minus 2, times 180°:

9

a+b+c+d+e+f+g=(7-2)x180°
5(180°) = 900° (sum of internal angles)

e In any triangle, a straight line drawn
between two sides, which is parallel to the third
side, divides those sides proportionally (see
Fig. 4.54). Therefore:

c Ad Ae
FIGURE 4.53 Polygon. dB ~ eC

Ad  Ae
dB eC

FIGURE 4.54 Proportions in triangles.

EXAMPLE. If Ad=41in,dB=1in,and Ae =6 in,find eC:
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4eC=6
6
eC=Z=1.5in

In the same triangle, the following proportions are also true:

Ad de Ae de

4B~ BC " AcTBC

Proof of the Proportions Shown in Fig. 4.54. If angle A = 50°, solve the triangle
for side BC.
From the law of cosines (units in degrees and inches):

a=BC
c=Ad+dB=4+1=5
b=Ae+eC=6+15=175
Then:
@ =b*+ ¢* - 2bc cos 50°
@ = (1.5 + (5 - 2(5 x 7.5)0.64278
a="/33.0409
a=5.748

Solving side de by the law of cosines, de = 4.5985. Therefore:

Ad  de
E—R AB=Ad+dB=5
d _AdxBC
Y
4%x5.748
de=%

de =4.5984 (Proof of the proportion)

Lengths of circular arcs with the same center angle are proportional to the
lengths of the radii (see Fig. 4.55).

EXAMPLE. Ifa=2.125,r=3,and R =4.250, find arc length b.

> =
|~



MEASUREMENT AND CALCULATION PROCEDURES FOR MACHINISTS

If angle A = angle B
e _r

b R
FIGURE 4.55 Lengths of circular arcs.

2125 3
b 425
3b = 9.031225

b 9.02125 30104

Sample Trigonometry Problem. See Fig. 4.56.
Problem. The dimensions of three sides of a triangle are known.

Find: Altitude x, and the location of x by dimensions y and z.

6.00

- |
\ Y | z |
\ |
\ |

FIGURE 4.56 Solving the oblique triangle.

4.51
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First, find angles C and A from the law of cosines and then the law of sines.
Finding angle C:
?=a*+b*—2ab cos C
a+b*-c*
2ab

(4174 (6 — (5.45)
N 2(4.17 x 6)

_ 23.6864
T 5004

arccos 0.473349 = 61.7481°
angle C =61.7481°

cos C=

os C

=0.473349

Find angle A from the law of sines:

sinA sin C
a ¢

. asin C
sinA=———
c

4.17 sin 61.7481  3.67325
5.45 T 545

sin A = =0.67399

arcsin 0.67399 = 42.3758°
angle A =42.3758°
Now, angle B=180°—- (A + C):
B =180° — (42.3758 + 61.7481)
B =180°-104.1239°
angle B =75.8761°
Now, solve for altitude x (see previous calculations for angles A and C):

sin A sin C
sin (A + C)

. ( 0.67399 x 0.473349
=7\ sin (42.3758 + 61.7481)

_ (031903
*=210.96977

x=6(0.32897)
x=1.974in
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Now, find y and z:

tan C = i
Z
x 1974
T %n C  tan 61.7481
1974
=861
z=1.061 in

Sincey=b-zand b =6,
y=6-1.061=4.939in

Sample Countersinking Problem. See Fig.4.57.
Problem. What is the diameter of the countersink D when we want the head of

the flathead bolt or screw to be 0.010 in below the surface of the part? (See Fig.
4.57a.)
Given: Head diameter of an 82°, 0.250-in-diameter flathead screw Hd = 0.740
in; depth of head below the surface of the part x =0.010 in.
p I—— |

B
Y Lfmedy T

p=x(tan 41°)

FIGURE 4.57 Countersinking calculations.

Solve the right triangle shown in Fig. 4.57b, for side p:

tan 41° = L
X

p =x(tan 41°)
p =0.010(0.8693)
p =0.00869 in
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Then, the final diameter of the countersink D is found:
D =Hd+2(p)
D =0.740 + 2(0.00869)
D =0.740 + 0.017
D =0.757 in

NOTE. Measure the diameter of the head of the screw or bolt Hd with a microme-
ter prior to doing the calculations. Different manufacturers produce different head
diameters on flathead screws or bolts, according to the tolerances allowed by ANSI
standards for fasteners. The diameter of 0.740 in used in the preceding problem is an
average value.

4.4 FINDING COMPLEX ANGLES FOR
MACHINED SURFACES

Compound Angle Problems. Figure 4.58 shows a quadrangular pyramid with four
right-angle triangles as sides and a rectangular base, OBCD.

— TRUE FACE ANGLE

NOTE: e

JAOB = 90" B
FAGD = 907
JABC = 90"
JADC = 90"

FIGURE 4.58 Compound angles in solid shapes.

Problem. 1If a plane is passed through AOC, find the compound angles o, B, and
¢ when angle B and angle D are known.

Given: Angle B =24° angle D =25°.
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Solution. From the compound angle relations shown in Fig. 4.2, the following
equations are used to find angles f, ¢, and ou:

tan f =tan B cot D (Eq.4.6)
tan ¢ = cot B tan D (Eq.4.7)
cot oo="Vcot®> B+ cot* D (Eq.4.8)

Solving for angle B (from Eq. 4.6):

tan = tan 24° x cot 35°

1
tan = 0.4452 x (m)
tan = 0.4452 x 1.4281
tan = 0.6358
arctan 0.6358 = 32.448° = angle
Solving for angle ¢ (from Eq. 4.7):

tan ¢ = cot 24° x tan 35°

1
tan ¢ = (m) X tan 35

tan ¢ = 2.2460 x 0.7002
tan ¢ = 1.5726
arctan 1.5726 = 57.548° = angle ¢
Solving for angle o (from Eq. 4.8):
cot o= Vcot> B + cot? D
cot o= V/(2.2460)” + (1.4281)
cot a="V7.084
cot o =2.6615

1
tan o= eels

tan o = 0.3757
arctan 0.3757 =20.591° = angle o
Problem. Find the true face angle 6.

Given: Side OB =6.000 in.
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Solution.  First, calculate the length of side OA:

0A
tan B = —~
ME=0B
. 0A
tan 24% =000

OA =6.000 tan 24°
OA =6.000 x 0.4452
OA =2.6712

Next, calculate the length OD (note that length BC = OD):

0A

D=——

P =00
0A

- tan D

26712
"~ tan 35°

2.6712
0.7002

OD =

OD =3.8149 in

Problem. Find the true face angle 6.
Solution.  First, calculate the length of side AB:
OB

B=——
CcOos AB

6.000
cos24°=——+

AB

6,000
" cos 24°

_6.000
T 09135

AB =6.5681
Next, calculate the length of side AC from the pythagorean theorem:
AC*=AB*+ BC?
AC=V(6.5681) + (3.8152)
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AC=V/57.6957
AC=17.5958 in
Then, calculate the face angle 6 from the law of cosines:
BC?=AB?>+ AC? - 2(AB)(AC) cos 0
(3.8152)* = (6.5681)* + (7.5958)* — 2(6.5681)(7.5958) cos 6
14.5558 = 43.1399 + 57.6962 — 99.7799 cos 6
99.7799 cos 6 = 43.1399 + 57.6962 — 14.5558

_ 86.2803
~99.7799

cos 0 =0.8647
arccos 0.8647 = 30.152° = angle 0

The true face angle 6 is therefore 30.152°.
Problem. Check angle ABC for a right triangle.
Solution. Solve angle ACB (note that BC = OD =3.8149 in):

AB
tan X ACB = B—C

6.5681
tan X ACB = 38149

tan X ACB =1.7217
arctan 1.7217 = 59.851°
Therefore,
6 +59.851° 4+ 90° = 30.152° + 59.851° + 90° = 180.003°

This indicates that the calculated angles ACB and 6 are accurate within 0.003° or
0.18’ of arc. Using more decimal places for the calculated sides and angles will pro-
duce more accurate results, if required.

Compound Angle Problem—Milling an Angled Plane. See Fig. 4.59.

Problem. A rectangular block, shown in Fig. 4.59, is milled off to form a trian-
gular plane ABC, and the angles formed by the edges of the rectangular plane to the
bottom of the block are known. Calculate the compound angle 6; sides a, b, and ¢;
and angles A and B.

Given: Length of block =5.250 in, width = 3.750 in, and height =2.500 in; angles
o.=23°and B =33°h =0.625 in; and A" = 2.500 — 0.625 = 1.875 in.
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FIGURE 4.59 Milling an angular plane, problem.

Solution.
=angle C):

Use the compound angle equation for angle 6 (note that angle
cos 0 =sin a sin
cos 0 =sin 23° x sin 33°
cos 6.=0.39073 x 0.54464
cos 6=0.21821
arccos 0.21821 = 77.7129° = angle 0

Calculate side a:

sin23°=2
a
a= Y
sin 23°
1875
4=039073

a=4.7987 in
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Calculate side b:

’

sin 33° = % ' =2.500 - 0.625 = 1.875

’

__Y
sin 33°

1875
~0.546

b=3.4429 in

Now, calculate side ¢ using the law of cosines:

=a*+b>-2ab cos O

¢ =V/(4.7987) + (3.4426)" — 2(4.7987)(3.4426)0.21281
c=V278478
¢=52771in

Calculate angle A using the law of sines:

c a
sin® sin A

sin A asin 0
c
. 4.7987 x 0.9771
sin A = 52071 =0.8970

arcsin 0.8970 = 63.7665° = angle A

Calculate angle B using the law of sines:

c b
sin®  sin B
sin B bsin 6
. 3.4426 x 0.9771
sin B = 52771 =0.6374

arcsin 0.6374 = 39.5982° = angle B

4.59
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Now, check the sum of the angles in triangle ABC. Rule: The sum of the angles in
any triangle must equal 180°. Therefore:

X A+ X B+ x C=180°
62.6879° + 39.5982° + 77.7129° = 180°
179.999° = 180°
The calculated angles check within 0.001°, which is within 0.06” or 3.6”.

To find the volume of material removed from the block, use the following equa-
tion and the other distances, @, ', and #’, which can be easily calculated, as shown in

Fig. 4.59.
SoL[(Exmy
"3\ 2 a

Sample Problems for Calculating Compound Angles in Three-Dimensional Parts.
Referring to Table 4.1, we will find angle y when we know angles o and B, using the
following equation:

tan
cosY= tan o

TABLE 4.1 Trigonometric Relations for
Compound Angles (See Fig. 4.60)

Given To find Equation
tan B
d =
o and B Y cosy=—o
o and B 8 cos &= s'm[?)
sin o
o and y B tan B =cos ytan o
o and y ) tan = cos o tan ¥
o and & B sin B =sin o cos &
tan &
o and & Y tany= cos o
tan B
Bandy o tan o = cos Y
Bandy 1) sin 8 — cos P sin y
sin 3
d ino =
B and & o sina=—"-s
sin &
dd iny=
B an Y sin Y= B
tan &
yand § o cos o= an
tany
in &
yand & B cosB= S
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NOTE. In Fig. 4.60, the corner angles marked with a box are 90° right angles. To
solve the problem, we must first calculate angles o and f3.
Solution. 'We must know or measure the distances ov, om, and mn. If ov =2.125
in, om =4.875 in, and mn = 6.500 in, first find angle o
ov 2125

an o= = 4875

tan o = 0.435897

arctan 0.435897 =23.5523° = angle o

FIGURE 4.60 Calculating compound angles.
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To find angle B, we must first find the diagonal length on:
on*=om?+mn®>  (where om and mn are known)
on* = (4.875)* + (6.500)*
on’ = 66.015625
on=V66.015625
on=_8.125in

Then, find angle B:

arctan 0.261538 = 14.656751° = angle B

We now know angles o and B, and we can find angle y using the equation from
Table 4.1:

tan
ST tan o

where tan B =0.261538 (from previous calculation)
tan o= 0.435897 (from previous calculation)

Then,

_ 0.261538
COST= 0435897
cos 7= 0.599999
arccos 0.599999 = 53.130174° = angle y

Problem. Prove the following relationship from Table 4.1:

sin
cos &= —B
sin o,

Solution. First, find the length of the diagonal vmn:
vm? = ov* + om?
vm? = (2.125)> + (4.875)*
vm? =28.28125
vm =\/28.28125

vm =5.318012 in
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Then, calculate angle &:

tan 8 = mn
vm
6.500
tan 6 = m =1.222261

arctan 1.222261 = 50.711490° = angle &

Then, use the equation from Table 4.1 to see if angle § = 50.711490°:

08 8 = ﬂ
Sin o
5 $in 14.656751°
08 0= " Gin 23.5523°
5 0253028
€08 0= 399586

cos 8 =0.633225
arccos 0.633225 =50.71154° = angle &

Previously, we calculated angle & = 50.71149°. So, the relationship is valid. The
accuracy of the preceding relationship, as calculated, is accurate to within 50.71154°
—50.71149° = 0.00005°, or 0.18” of arc.

Also, from the relationship tan § = cos y tan o, we will check angle B, which was
previously calculated as 14.656751°; angle o. = 23.5523°; and angle y=53.130174°, as
follows:

tan B = cos 53.130174° x tan 23.5523°
tan = 0.261538
arctan 0.261538 = 14.656726° = angle B

Angle B was previously calculated as 14.656751°, which also checks within 14.656751
—14.656726 = 0.000025°, or 0.09” of arc.

The preceding calculations are useful in machining work and tool setup, and also
show the validity of the angular and trigonometric relationships of compound angles
on three-dimensional objects, as shown in Figs. 4.2 and 4.60 and Table 4.1.
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CHAPTER §

FORMULAS AND
CALCULATIONS FOR
MACHINING OPERATIONS

5.1 TURNING OPERATIONS

Metal removal from cylindrical parts is accomplished using standard types of engine
lathes or modern machining centers, the latter operated by computer numerical con-
trol (CNC). Figure 5.1 shows a typical large geared-head engine lathe with a digital
two-axis readout panel at the upper left of the machine. Figure 5.2a shows a modern
high-speed CNC machining center. The machining center is capable of highly accu-
rate and rapid production of machined parts. These modern machining centers are
the counterparts of engine lathes, turret lathes, and automatic screw machines when
the turned parts are within the capacity or rating of the machining center. Figure
5.2b shows a view of the CNC turning center’s control panel.

Cutting Speed. Cutting speed is given in surface feet per minute (sfpm) and is the
speed of the workpiece in relation to the stationary tool bit at the cutting point sur-
face. The cutting speed is given by the simple relation

d
S= d; (rpm) for inch units
12
_ md; (rpm) L
and S= 1000 for metric units

where S = cutting speed, sfpm or m/min
dy= diameter of work, in or mm
rpm = revolutions per minute of the workpiece

When the cutting speed (sfpm) is given for the material, the revolutions per
minute (rpm) of the workpiece or lathe spindle can be found from

128 for inch unit
mm=—- or 1nch units
P nd,

;
5.1
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FIGURE 5.2a A modern CNC turning center.

10008 R
and rpm = for metric units
TCdf

EXAMPLE. A 2-in-diameter metal rod has an allowable cutting speed of 300 sfpm
for a given depth of cut and feed. At what revolutions per minute (rpm) should the
machine be set to rotate the work?

125 12(300) 3600

Set the machine speed to the next closest lower speed that the machine is capable of
attaining.

Lathe Cutting Time. The time required to make any particular cut on a lathe or
turning center may be found using two methods. When the cutting speed is given, the
following simple relation may be used:

_ mdL
" 12FS

for inch units

and T= md,L

= T000FS for metric units
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FIGURE 5.2b Turning center control panel.

where T =time for the cut, min
dy= diameter of work, in or mm
L =length of cut, in or mm
F =feed, inches per revolution (ipr) or millimeters per revolution (mmpr)
S = cutting speed, sfpm or m/min
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EXAMPLE. What is the cutting time in minutes for one pass over a 10-in length of
2.25-in-diameter rod when the cutting speed allowable is 250 sfpm with a feed of
0.03 ipr?

_mdL 3.1416(2.25)10  70.686
T12FS T 12(0.03)250 90

=0.785 min, or 47 sec

When the speed in rpm of the machine spindle is known, the cutting time may be
found from

T L
~ F(rpm)
where L =length of work, in
T = cutting time, min
F=feed,ipr

rpm = spindle speed or workpiece speed, rpm

Volume of Metal Removed. The volume of metal removed during a lathe cutting
operation can be calculated as follows:

V,.=12C,FS for inch units
and V.= C,FS for metric units

where  V, = volume of metal removed, in®/min or cm*min
C,=depth of cut,in or mm
F =feed, ipr or mmpr
S = cutting speed, sfpm or m/min

NOTE. 1in’®=16.387 cm®

EXAMPLE. With a depth of cut of 0.25 in and a feed of 0.125 in, what volume of
material is removed in 1 min when the cutting speed is 120 sfpm?

V,=12C,FS =12 x 0.25 x 0.125 x 120 = 45 in*/min

For convenience, the chart shown in Fig. 5.3 may be used for quick calculations of
volume of material removed for various depths of cut, feeds, and speeds.

Machine Power Requirements (Horsepower or Kilowatts). It is often necessary to
know the machine power requirements for an anticipated feed, speed, and depth of
cut for a particular material or class of materials to see if the machine is capable of
sustaining the desired production rate. The following simple formulas for calculating
required horsepower are approximate only because of the complex nature and
many variables involved in cutting any material.

The following formula is for approximating machine power requirements for
making a particular cut:
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T FEED /—AREA OF CUT, SQUARE INCHES  /—— FPM [FEET PER MINUTE)

T T/T/
/

S 08 A A
XL—»————-——‘—-All—- »# // //
07 |
i 7
% | 5/ |71 P
06
AR / /
0 J 9
SN 05//*?/%////
i\ ) / [ A \QQ\Q y/
h\ ) o4 q Ay
525 | / /)(/7 L /
| \;\ * 7 / / %
1 ~ : N 02 //
+ o
7 o] 5 | 4 3| . \;\ |
L0 1 ] 1 i |
68 62 .56 50 44 38 31 25 18 12 .06 (l) 0 20 /30 0 S0 60 70 80
DEPTH OF CUT, INCHES 27 CUBIC INCHES PER MINUTE

FIGURE 5.3 Metal-removal rate (mrr) chart.
hp=dfSC

where hp =required machine horsepower
d =depth of cut,in
f={feed,ipr
S = cutting speed, sfpm
C = power constant for the particular material (see Fig. 5.4)

EXAMPLE. With a depth of cut of 0.06 in and a feed of 0.025 in, what is the power
requirement for turning aluminum-alloy bar stock at a speed of 350 sfpm?

hp = dfSC =0.06 x 0.025 x 350 x 4 (see Fig.5.4)
=21hp
For the metric system, the kilowatt requirement is 2.1 hp x 0.746 kW/hp = 1.76 kW.

NOTE. 0.746 kW =1hp or 746 W =1 hp.

The national manufacturers of cutting tools at one time provided the users of
their materials with various devices for quickly approximating the various machin-
ing calculations shown in the preceding formulas. With the pocket calculator, these
devices are no longer required, and the calculations are more accurate.
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Although formulas and calculators are available for doing the various machining
calculations, it is to be cautioned that these calculations are approximations and that
the following factors must be taken into consideration when metals and other mate-
rials are cut at high powers and speeds using modern cutting tools.

1. Available machine power

2. Condition of the machine

3. Size, strength, and rigidity of the workpiece
4. Size, strength, and rigidity of the cutting tool

Prior to beginning a large production run of turned parts, sample pieces are run in
order to determine the exact feeds and speeds required for a particular material and
cutting tool combination.

Power Constants. Figure 5.4 shows a table of constants for various materials which
may be used when calculating the approximate power requirements of the cutting
machines.

Speeds, Cuts, and Feeds for Turning Operations

High-Speed Steel (HSS), Cast-Alloy, and Carbide Tools (See Fig. 5.5). The sur-
face speed (sfpm), depth of cut (in), and feed (ipr) for various materials using high-
speed steel (HSS), cast-alloy, and carbide cutting tools are shown in Fig. 5.5. In all
cases, especially where combinations of values are selected that have not been used
previously on a given machine, the selected values should have their required horse-
power or kilowatts calculated. Use the approximate calculations shown previously,
or use one of the machining calculators available from the cutting tool manufactur-
ers. The method indicated earlier for calculating the required horsepower gives a
conservative value that is higher than the actual power required. In any event, on a
manually controlled machine, the machinist or machine operator will know if the
selected speed, depth of cut, and feed are more than the given machine can tolerate
and can make corrections accordingly. On computer numerically controlled and
direct numerically controlled (CNC/DNC) automatic turning centers and other
automatic machines, the cutting parameters must be selected carefully, with the
machine operator carefully watching the first trial program run so that he or she may
intervene if problems of overloading or tool damage occur.

Procedures for Selection of Speed, Feed, and Depth of Cut. Use the preceding
speed, feed, and depth of cut figures as a basis for these choices. Useful tool life is
influenced most by cutting speed. The feed rate is the next most influential factor in
tool life, followed by the depth of cut (doc).

When the depth of cut exceeds approximately 10 times the feed rate, a further
increase in depth of cut has little effect on tool life. In selecting the cutting conditions
for a turning or boring operation, the first step is to select the depth of cut, followed
by selection of the feed rate and then the cutting speed. Use the preceding horse-
power/kilowatt equations to determine the approximate power requirements for a
particular depth of cut, feed rate, and cutting speed to see if the machine can handle
the power required.
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Select the heaviest depth of cut and feed rate that the machine can sustain, con-
sidering its horsepower or kilowatt rating, in conjunction with the required surface
finish desired on the workpiece.

Relation of Speed to Feed. The following general rules apply to most turning
and boring operations:

¢ If the tool shows a built-up edge, increase feed or increase speed.
¢ If the tool shows excessive cratering, reduce feed or reduce speed.

¢ If the tool shows excessive edge wear, increase feed or reduce speed.

Caution. The productivity settings from the machining calculators and any hand-
book speed and feed tables are suggestions and guides only. A safety hazard may
exist if the user calculates or uses a table-selected machine setting without also con-
sidering the machine power and the condition, size, strength, and rigidity of the
workpiece, machine, and cutting tools.

5.2 THREADING AND THREAD SYSTEMS

Thread-turning inserts are available in different styles or types for turning external and
internal thread systems such as UN series, 60° metric, Whitworth (BSW), Acme, ISO,
American buttress, etc. Figure 5.6 shows some of the typical thread-cutting inserts.

The defining dimensions and forms for various thread systems are shown in Fig.
5.7a to k with indications of their normal industrial uses. The dimensions in the figure
are in U.S. customary and metric systems as indicated. In all parts of the figure, P =
pitch, reciprocal of threads per inch (for U.S. customary) or millimeters (for metric).

Figure 5.7a defines the ISO thread system: M (metric) and UN (unified national).
Typical uses: All branches of the mechanical industries. Figure 5.7b defines the UNJ
thread system (controlled-root radii). Typical uses: Aerospace industries. Figure
5.7¢ defines the Whitworth system (BSW). Typical uses: Fittings and pipe couplings
for water, sewer, and gas lines. Presently replaced by ISO system. Figure 5.7d defines
the American buttress system, 7° face. Typical uses: Machine design. Figure 5.7e
defines the NPT (American national pipe thread) system. Typical uses: Pipe
threads, fittings, and couplings. Figure 5.7f defines the BSPT (British standard pipe
thread) system. Typical uses: Pipe thread for water, gas, and steam lines. Figure 5.7g
defines the Acme thread system, 29°. Typical uses: Mechanical industries for
motion-transmission screws. Figure 5.7 defines the stub Acme thread system, 29°.
Typical uses: Same as Acme, but used where normal Acme thread is too deep. Fig-
ure 5.7i defines the API 1:6 tapered-thread system. Typical uses: Petroleum indus-
tries. Figure 5.7j defines the TR DIN 103 thread system. Typical uses: Mechanical
industries for motion-transmission screws. Figure 5.7k defines the RD DIN 405
(round) thread system. Typical uses: Pipe couplings and fittings in the fire-
protection and food industries.

Threading Operations. Prior to cutting (turning) any particular thread, the fol-
lowing should be determined:
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FIGURE 5.6 Typical thread cutting inserts.

Machining toward the spindle (standard helix)

Machining away from the spindle (reverse helix)

Helix angle (see following equation)
e Insert and toolholder

¢ Insert grade

* Speed (sfpm)

e Number of thread passes

e Method of infeed

Calculating the Thread Helix Angle. To calculate the helix angle of a given
thread system, use the following simple equation (see Fig. 5.8):

p

tano=——
nD,



5.14 CHAPTER FIVE
P
nut
\ T ’- 0.125 P 0.1082 P
\‘ [ ‘
0.8660 P 0.0722 P 06134 P
60" |
LAV | f
seréw 025 P -— 0.1443 P
(a) ISO - M (Metric)
(UN) (Unified National)
FIGURE 5.7 Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.
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FIGURE 5.7 (Continued) Thread systems and dimensional geometry.

where tan o = natural tangent of the helix angle (natural function)
D, = effective diameter of thread, in or mm
n=3.1416
p = pitch of thread, in or mm

EXAMPLE. Find the helix angle of a unified national coarse 0.375-16 thread, using
the effective diameter of the thread:

p= 1176 =0.0625
(The pitch is the reciprocal of the number of threads per inch in the U.S. customary
system.)
D,=0.375in
Therefore,

0.0625  0.0625
3.1416x0.375 ~ 1.1781

tan o = =0.05305

arctan 0.05305=3.037° or 3°2.22°
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7]

FIGURE 5.8 Calculating the helix angle o (alpha).

The helix angle of any helical thread system can be found by using the preceding
procedure.

NOTE. For more data and calculations for threads, see Chap. 9.
Cutting Procedures for External and Internal Threads: Machine Setups. Figure
5.9 illustrates the methods for turning the external thread systems (standard and

reverse helix). Figure 5.10 illustrates the methods for turning the internal thread sys-
tems (standard and reverse helix).

Problems in Thread Cutting

Problem Possible remedy

Burr on crest of thread 1. Increase surface feet per minute (rpm).
2. Use positive rake.
3. Use full-profile insert (NTC type).
Poor tool life 1. Increase surface feet per minute (rpm).
2. Increase chip load.
3. Use more wear-resistant tool.
Built-up edge 1. Increase surface feet per minute (rpm).
2. Increase chip load.
3. Use positive rake, sharp tool.
4. Use coolant or increase concentration.
Torn threads on workpiece 1. Use neutral rake.
2. Alter infeed angle.
3. Decrease chip load.
4. Increase coolant concentration.
5. Increase surface feet per minute (rpm).
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(a) (D)

External Left Hand

External Right Hand

Feed Direction Towards Spindle (Standard Helix)

External Right Hand

External Left Hand

Feed Direction Away from Spindle (Reverse Helix)

FIGURE 5.9 Methods for cutting external threads.
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B E

(D)

Internal Left Hand Internai Right Hand

Feed Direction Away from Spindle (Reverse Helix)

(©) (d)

Internal Right Hand Internal Left Hand

Feed Direction Towards Spindle {Standard Helix}
FIGURE 5.10 Methods for cutting internal threads.

5.3 MILLING

Milling is a machining process for generating machined surfaces by removing a pre-
determined amount of material progressively from the workpiece. The milling pro-
cess employs relative motion between the workpiece and the rotating cutting tool to
generate the required surfaces. In some applications the workpiece is stationary and
the cutting tool moves, while in others the cutting tool and the workpiece are moved
in relation to each other and to the machine. A characteristic feature of the milling
process is that each tooth of the cutting tool takes a portion of the stock in the form
of small, individual chips.

Typical cutting tool types for milling-machine operations are shown in Figs. 5.11a
tol
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Milling Cutter Styles - High-Speed Steel and Carbide Insert

G
H
|

J
K
L

Face milling cutter

Face milling head

Double-angle carbide insert milling cutter
Single-angle milling cutter

Double-angle mitling cutter

Left hand slab milling cutter

Disk type milling cutter

Convex half-round milling cutter
Concave half-round milling cutter
Three-side milling cutter
Staggered-tooth milling cutter
Inserted blade milling cutter

TmoO®>

FIGURE 5.11 Typical cutting tools for milling.

Milling Methods

¢ Peripheral milling (slab milling)
¢ Face milling and straddle milling
¢ End milling

¢ Single-piece milling

e String or “gang” milling

5.23
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e Slot milling
¢ Profile milling
e Thread milling
e Worm milling
¢ Gear milling
Modern milling machines have many forms, but the most common types are
shown in Figs. 5.12 and 5.13. The well-known and highly popular Bridgeport-type
milling machine is shown in Fig. 5.12. The Bridgeport machine is often used in tool

and die making operations and in model shops, where prototype work is done. The
great stability and accuracy of the Bridgeport makes this machine popular with

FIGURE 5.12 The Bridgeport milling machine.
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FIGURE 5.13 Modern CNC machining center.

many experienced machinists and die makers. The Bridgeport shown in Fig. 5.12 is
equipped with digital sensing controls and read-out panel, reading to £0.0005 in.

The modern machining center is being used to replace the conventional milling
machine in many industrial applications. Figure 5.13 shows a machining center, with
its control panel at the right side of the machine. Machines such as these generally
cost $250,000 or more depending on the accessories and auxiliary equipment
obtained with the machine. These machines are the modern workhorses of industry
and cannot remain idle for long periods owing to their cost.

The modern machining center may be equipped for three-, four-, or five-axis
operation. The normal or common operations usually call for three-axis machining,
while more involved machining procedures require four- or even five-axis opera-
tion. Three-axis operation consists of x and y table movements and z-axis vertical
spindle movements. The four-axis operation includes the addition of spindle rotation
with three-axis operation. Five-axis operation includes a horizontal fixture for rotat-
ing the workpiece on a horizontal axis at a predetermined speed (rpm), together
with the functions of the four-axis machine. This allows all types of screw threads to
be machined on the part and other operations such as producing a worm for worm-
gear applications, segment cuts, arcs, etc. Very complex parts may be mass produced
economically on a three-, four-, or five-axis machining center, all automatically, using
computer numerical control (CNC).
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The control panels on these machining centers contain a microprocessor that is,
in turn, controlled by a host computer, generally located in the tool or manufactur-
ing engineering office; the host computer controls one or more machines with
direct numerical control (DNC) or distributed numerical control. Various machin-
ing programs are available for writing the operational instructions sent to the con-
troller on the machining center. Figure 5.14 shows a detailed view of a typical
microprocessor (CNC) control panel used on a machining center. This particular
control panel is from an Enshu 550-V machining center, a photograph of which
appears in Fig. 5.13.

Milling Calculations. The following calculation methods and procedures for
milling operations are intended to be guidelines and not absolute because of the
many variables encountered in actual practice.

Metal-Removal Rates. The metal-removal rate R (sometimes indicated as mrr)
for all types of milling is equal to the volume of metal removed by the cutting pro-
cess in a given time, usually expressed as cubic inches per minute (in*/min). Thus,

R=WHf

where R =metal-removal rate, in’/min.
W = width of cut, in
H = depth of cut, in
f={feed rate, inches per minute (ipm)

FIGURE 5.14 The control panel from machine shown in Fig. 5.13.
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In peripheral or slab milling, W is measured parallel to the cutter axis and H per-
pendicular to the axis. In face milling, W is measured perpendicular to the axis and
H parallel to the axis.

Feed Rate. The speed or rate at which the workpiece moves past the cutter is the
feed rate f, which is measured in inches per minute (ipm). Thus,

f: ENCrpm

where f=1feed rate, ipm
F,=feed per tooth (chip thickness), in or cpt
N =number of cutter teeth
C.pm = rotation of the cutter, rpm

Feed per Tooth. Production rates of milled parts are directly related to the feed
rate that can be used. The feed rate should be as high as possible, considering
machine rigidity and power available at the cutter. To prevent overloading the
machine drive motor, the feed per tooth allowable F, may be calculated from

Khp,

F=—r—
" NCy,wWH

where  hp. = horsepower available at the cutter (80 to 90 percent of motor rat-
ing), i.e., if motor nameplate states 15 hp, then hp available at the
cutter is 0.8 to 0.9 x 15 (80 to 90 percent represents motor effi-
ciency)
K = machinability factor (see Fig. 5.15)

Other symbols are as in preceding equation.

Figure 5.16 gives the suggested feed per tooth for milling using high-speed-steel
(HSS) cutters for the various cutter types. For carbide, cermets, and ceramic tools,
see the figures in the cutting tool manufacturers’ catalogs.

Material K(n"/min/thp))
Cold drawn steel, SAE 1112, 1120, 1315 1.0
Forged and alloy steel, SAE 3120, 1020, 2320, 2345, 150-300 BHN ... ccoooceeeces 0.63 - 0.87
Alloy steel, 300 - 400 BHN, 0.8
Malleable iron and cold drawn steel, SAE 6140, 09
Cast irons:
Soft 15
Medium 08-L0
Hard 0.6-08
Stainless steel, AISI 4186, fr i 11
Stainless steed, austenitic, ATST 303, fr ‘hini 0.83
Stainless steel, austenitic, AISI 304, 072
‘Tool steel 0.51
Bronze and brass:
Soft. 1.7.2.5
Medium 10-14
Hard . 06-1.0
Alumi and i 25-4.0
Monel metal 0.55
Copper, annealed 0.84
Nickel 0.53
Titanium & alloy: 0.75-1.1

NOTE: "K" values are in cubic inches per minute per cutter hoesepower (in%min/hp,)
K" values for carbide cutters are approx. 25% highcr,

FIGURE 5.15 K factor table.
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Suggested Feed per Tooth for Milling - High-Speed Steel Cutters (Tabuated Data in Inches)

Material Face Helical Slot/side End Form-relieved
mills mills milis mills cutters
Magnesium & alloys 0.022 0.018 0.013 0.011 0.007
Alumiinum & Alloys 0.022 0.018 0.013 0.011 0.007
Free-cutting brasses & bronzes 0.022 0.018 0.013 0.011 0.007
Medium brasses & bronzes 0.014 0.011 0.008 0.007 0.004
Hard brasses & bronzes 0.009 0.007 0.006 0.005 0.003
Copper 0.012 0.010 0.007 0.008 0.004
Cast iron, soft (150-180 Bhn) 0.016 0.013 0.009 0.008 0.005
Cast iron, medium (180-220 Bhn) 0.013 0.010 0.007 0.007 0.004
Cast iren, hard (220-300 Bha) 0.01L 0.008 0.006 0.006 0.003
Malleable iron 0.012 0.010 9.007 0.008 0.004
Cast steel 0.012 0.010 0.007 0.006 0.0C4
Low-carbon steel, free-machining 0.012 0.010 0.007 0.008 0.004
Low-carbon steels 0.010 0.008 0.008 0.005 0.003
Medium.carbon steels 0.010 0.008 0.006 0.005 0.003
Alloy steel, ann'ld (180-220 Bhn) 0.008 0.007 0.005 0.004 0.003
Alloy steel, tough (220-300 Bhn) 0.008 0.005 0.004 0.003 0.002
Alloy steel, hard (300400 Bhn) 0.004 0.003 0.003 0.002 0.002
Stainless steels, free-machining 0.010 0.008 0.006 0.005 0.003
Stainless steels 0.006 0.005 0.004 0.003 0.002
Monel metal 0.008 0.007 0.005 0.004 0.003
Titanium & alloys 0.008 0.007 0.005 0.004 0.003
Machinable plastics 0.013 0.010 0.008 0.007 0.004

NOTE: Tabular date in inches. For %eed per tooth in millimeters, multiply sabular data by 25.4. For carbon-steel cutters,
multiply tabular data by 0.50 or divide by 2. Source: Cincinnati Milicron, Tnc

FIGURE 5.16 Milling feed table, HSS.

Cutting Speed. The cutting speed of a milling cutter is the peripheral linear
speed resulting from the rotation of the cutter. The cutting speed is expressed in feet
per minute (fpm or ft/min) or surface feet per minute (sfpm or sfm) and is deter-
mined from

_ mD(rpm)
5= 12
where S = cutting speed, fpm or sfpm (sfpm is also termed spm)

D = outside diameter of the cutter, in
rpm = rotational speed of cutter, rpm

The required rotational speed of the cutter may be found from the following sim-
ple equation:

S

s
PN="Dnr % 026D

When it is necessary to increase the production rate, it is better to change the cut-
ter material rather than to increase the cutting speed. Increasing the cutting speed
alone may shorten the life of the cutter, since the cutter is usually being operated at
its maximum speed for optimal productivity.

General Rules for Selection of the Cutting Speed

e Use lower cutting speeds for longer tool life.
¢ Take into account the Brinell hardness of the material.
e Use the lower range of recommended cutting speeds when starting a job.

¢ For a fine finish, use a lower feed rate in preference to a higher cutting speed.
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Number of Teeth: Cutter. 'The number of cutter teeth N required for a particular
application may be found from the simple expression (not applicable to carbide or
other high-speed cutters)

where f={feed rate, ipm
F, =feed per tooth (chip thickness), in
C.pm = rotational speed of cutter, rpm
N =number of cutter teeth

An industry-recommended equation for calculating the number of cutter teeth
required for a particular operation is

N=195VR-58

where N =number of cutter teeth
R =radius of cutter, in

This simple equation is suitable for HSS cutters only and is not valid for carbide,
cobalt cast alloy, or other high-speed cutting tool materials.

Figure 5.17 gives recommended cutting speed ranges (sfpm) for HSS cutters.
Check the cutting tool manufacturers’ catalogs for feeds, speeds, etc. for advanced
cutting tool materials (i.e., carbide, cermet, ceramic, etc.).

Milling Horsepower. Ratios for metal removal per horsepower (cubic inches
per minute per horsepower at the milling cutter) have been given for various mate-
rials (see Fig. 5.17). The general equation is

Milling Cutting Speeds for Various Materials
(sfpm) Surface feet per minute (High-speed steel tools only)

Material High-speed steel tools
Rough Finish
Cast Ir0M. e e ssnssseess s 50 - 60 80- 110
isteel 40 - 50 65 - 90
Malleable iron 80 - 100 110 - 130
45 - 60 70 - 90
100 - 150 150 - 200
200 - 300 200 - 300
- 100 - 150 150 - 180
Aluminum 400 - 450 700 - 750
* Magnesiti.... .veesvesoonesserriene 600 - 800 1,000 - 1,500
SAE steels:
1020 {coarse feed), low-carbon. 60 - 80 60 - 30
1020 (fine feed), low-carbon. 100 - 120 100 - 120
1035, medium-carbo: 75 -90 90 - 120
1330, alloy steel...... 90 - 110 90 -110
1050, Med-high-carbon. 60 -80 100 - 125
2315, nickel steel.... 90 -110 90 - 110
3150, nickel.chromium, 50-60 70 - 90
4150, chrome-molybdenum, 40 -850 70 - 90
4340, nickel.chrome-molybdenum.. 40 . 50 60 - 70
i teel 60 - 80 100 - 120
Titanium, hard alloy......cccvoveirerenns 80 - 100 110 - 130
NOTE: Tabular data ranges are in sfpm (surface feet per minute

for HSS cutters only). For carbide cutters, increase sfpm by 25% (min.).
* A fire hazaed is present when machining magnesium at high-speeds.

FIGURE 5.17 Milling cutting speeds, HSS.
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in’min  WHf
K=——=
hp. hp.

where K = metal removal factor, in*/min/hp, (see Fig. 5.17)
hp, = horsepower at the cutter
W = width of cut, in
H = depth of cut, in
f=1feed rate, ipm

The total horsepower required at the cutter may then be expressed as

in*/min WHf
hp,. = % or e

The K factor varies with type and hardness of material, and for the same material
varies with the feed per tooth, increasing as the chip thickness increases. The K fac-
tor represents a particular rate of metal removal and not a general or average rate.
For a quick approximation of total power requirements at the machine motor, see
Fig. 5.18, which gives the maximum metal-removal rates for different horsepower-
rated milling machines cutting different materials.

Milling-Machine Horsepower Ratings - for maximum metal removal rates (in*/min)
for HSS (high-speed steel cutters)

Rated hp of Machine

Workpiece Material 3 5 75 10 15 20 25 30 40 50

Max. Metal Removal (in*/min)

Aluminum,
Brass, soft..
Bronze, hard

2.7 5.5 8.7 12 18 27 37 48 69 91
24 4.7 7.5 10 16 24 32 41 60 79
7 33 5.3 73 11 17 23 30 43 56
078 1.8 2.5 34 5.3 18 11 15 20 26
1.6 32 5.2 71 11 16 22 28 41 54

1 2 3.3 4.6 7 10 14 18 26 35
Cast iron, chilles 0.78 L6 2.5 34 5.3 18 10 13 19 26
Malleable iron 1 21 34 47 73 11 14 18 26 36
Steel, soft... 1 2 3.3 4.6 7 10 14 18 26 35

078 1.6 2.5 3.4 53 7.8 10 13 19 26
056 1.1 1.8 2.5 3.9 5.7 7.7 10 14 19

FIGURE 5.18 Milling machine horsepower ratings.

Typical Milling Problem and Calculations

Problem. We want to slot or side mill the maximum amount of material,
in*/min, from an aluminum alloy part with a milling machine rated at 5 hp at the cut-
ter. The milling cutter has 16 teeth, and has a tooth width of 0.750 in.

Use the following calculations as a guide for milling different materials.

Solution. Since production rates of milled parts are directly related to the feed
rate allowed, the feed rate f should be as high as possible for a particular machine.
Feed rate, ipm, is expressed as:

f: ENCrpm
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To prevent overloading the machine drive motor, the feed per tooth allowable F,
also called chip thickness (cpt), may be calculated as:

Khp,

F=—
NCopWH

After selecting the machinability factor K from Fig. 5.15 (for aluminum it is 2.5 to
4,or an average of 3.25), calculate the depth of cut H when the cutter C,,, is 200 and
the feed per tooth F, is selected from Fig. 5.16 (i.e., 0.013 for slot or side milling).
Solve the preceding equation for H:

_ 325x%5
"7 16 x200%0.75 x H

0.013 x 2400H = 16.25
31.2H =16.25
H =0.521 in depth of cut
The feed rate f, in/min, is then found from:
f=FNCyn
f=0.013x 16 x 200
f=41.6 linear in/min
The maximum metal removal rate R is then calculated from:
R=WHf

where f=feed rate =41.6 in/min (previously calculated)
W =0.750 in (given width of the milling cutter)
H =0.521 (previously calculated depth of cut)

Then,
R=0.750x0.521 x 41.6
R =16.26 in’/min

The K factor for aluminum was previously listed as an average 3.25 in*/min/hp.
We previously listed the horsepower at the cutter as 5 hp. Then,

3.25%5=16.25 in*/min

which agrees with the previously calculated R = 16.26 in*/min.
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The diameter of the cutter can then be calculated from:

_ nD(rpm)

§ 12

Selecting S, sfpm, from Fig. 5.17 as 400 for aluminum, and solving the preceding
equation for the cutter diameter D:

3.1416 x D x 200

400 = D
628D = 4800
D =7.61n dia.

Now, let us select a cutter of 6-in diameter, and recalculate S:

P 3.1414 x 6 x 200
B 12

128 =3770
§=314.2 sfpm

which is allowable for aluminum, using HSS cutters.

NOTE. The preceding calculations are for high-speed steel (HSS) cutters. For car-
bide, ceramic, cermet, and advanced cutting tool materials, the cutter speed rpm can
generally be increased by 25 percent or more, keeping the same feed per tooth F,
where the higher rpm will increase the feed rate fand give higher productivity. Also,
the recommended cutting parameters or values for depth of cut, surface speed, rpm
of the cutter, and other data for the advanced cutting tool inserts are given in the cut-
ting tool manufacturers’ catalogs. These catalogs also list the various types and
shapes of inserts for different materials to be cut and types of machining applica-
tions such as turning, boring, and milling.

Modern Theory of Milling. The key characteristics of the milling process are

¢ Simultaneous motion of cutter rotation and feed movement of the workpiece
¢ Interrupted cut

¢ Production of tapered chips

It was common practice for many years in the industry to mill against the direc-
tion of feed. This was due to the type of tool materials then available (HSS) and the
absence of antibacklash devices on the machines. This method became known as
conventional or up milling and is illustrated in Fig. 5.19b. Climb milling or down
milling is now the preferred method of milling with advanced cutting tool materials
such as carbides, cermets, CBN, etc. Climb milling is illustrated in Fig. 5.19a. Here,
the insert enters the cut with some chip load and proceeds to produce a chip that
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“=%—— Feed Direction ~=— Feed Direction

(a) (b)
FIGURE 5.19 (a) Climb milling (preferred method); () up milling (conventional method).

thins as it progresses toward the end of the cut. This allows the heat generated in the
cutting process to dissipate into the chip. Climb-milling forces push the workpiece
toward the clamping fixture, in the direction of the feed. Conventional-milling (up-
milling) forces are against the direction of feed and produce a lifting force on the
workpiece and clamping fixture.

The angle of entry is determined by the position of the cutter centerline in rela-
tion to the edge of the workpiece. A negative angle of entry B is preferred and is
illustrated in Fig. 5.20b, where the centerline of the cutter is below the edge of the
workpiece. A negative angle is preferred because it ensures contact with the work-
piece at the strongest point of the insert cutter. A positive angle of entry will increase
insert chipping. If a positive angle of entry must be employed, use an insert with a
honed or negative land.

Figure 5.20a shows an eight-tooth cutter climb milling a workpiece using a nega-
tive angle of entry, and the feed, or advance, per revolution is 0.048 in with a chip
load per tooth of 0.006 in. The following milling formulas will allow you to calculate
the various milling parameters.

In the following formulas,

nt = number of teeth or inserts in the cutter
cpt = chip load per tooth or insert, in
ipm = feed, inches per minute
fpr = feed (advance) per revolution, in
D = cutter effective cutting diameter, in
rpm = revolutions per minute
stpm = surface feet per minute (also termed sfm)

nD(rpm) . 12(sfpm) fpr = ipm

stpm = 12 nD rpm
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Rotation

(2)

o

Rotation

(b)
FIGURE 5.20 (a) Positive entry; (b) negative entry.

ipm fpr

ipm = cpt X nt X rpm cpt= m or ¢

EXAMPLE. Given a cutter of 5-in diameter, 8 teeth, 500 sfpm, and 0.007 cpt,

ipm=0.007 x § x382=21.4in

21.4 .
fpr= 3% 0.056 in
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Slotting.  Special consideration is given for slot milling, and the following equa-
tions may be used effectively to calculate chip load per tooth (cpt) and inches per
minute (ipm):

. [V(D - x)x/r](ipm/rpm)
P umber of effective teeth
\ (D -
ipm = rpm x number of effective teeth [M]

where D = diameter of slot cutter, in
r =radius of cutter, in
x =depth of slot, in
cpt = chip load per tooth, in
ipm = feed, inches per minute
rpm = rotational speed of cutter, rpms

Milling Horsepower for Advanced Cutting Tool Materials

Horsepower Consumption. It is advantageous to calculate the milling operational
horsepower requirements before starting a job. Lower-horsepower machining centers
take advantage of the ability of the modern cutting tools to cut at extremely high sur-
face speeds (sfpm). Knowing your machine’s speed and feed limits could be critical to
your obtaining the desired productivity goals. The condition of your milling machine is
also critical to obtaining these productivity goals. Older machines with low-spindle-
speed capability should use the uncoated grades of carbide cutters and inserts.

Horsepower Calculation. A popular equation used in industry for calculating
horsepower at the spindle is

where M., = metal removal rate, in’/min
P;=power constant factor (see Fig. 5.21b)
E; = spindle efficiency, 0.80 to 0.90 (80 to 90 percent)

NOTE. The spindle efficiency is a reflection of losses from the machine’s motor to
actual power delivered at the cutter and must be taken into account, as the equation
shows.

A table of P,factors is shown in Fig. 5.21b.

NOTE. The metal removal rate M,, = depth of cut x width of cut x ipm = in*/min.

Axial Cutting Forces at Various Lead Angles. Axial cutting forces vary as you
change the lead angle of the cutting insert. The 0° lead angle produces the minimum
axial force into the part. This is advantageous for weak fixtures and thin web sec-
tions. The 45° lead angle loads the spindle with the maximum axial force, which is
advantageous when using the older machines.

Tangential Cutting Forces. 'The use of a tangential force equation is appropriate
for finding the approximate forces that fixtures, part walls or webs, and the spindle
bearings are subjected to during the milling operation. The tangential force is easily
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Direction of Feed ———&

()

Power Constant Factor (P) for Milling Various Materials

Material P, Factor
Free-machining aluminum alloys.... ...0.20
Gray cast irons. 0.25
Non-ferrous free-machining alloys. ... 045

Alloy cast irons and ductile irons.
Martensitic stainless steels.

Free-machining carbon steel..
Standard carbon steel..
Alloy steels....
Austenitic stainless stee

High-temperature alloys.

Tool steels.......

Cobalt based alloy

0.50
0.81

calculated when you have determined the horsepower being used at the spindle or cut-
ter. It is important to remember that the tangential forces decrease as the spindle
speed (rpm) increases, i.e., at higher surface feet per minute. The ability of the newer
advanced cutting tools to operate at higher speeds thus produces fewer fixture- and
web-deflecting forces with a decrease in horsepower requirements for any particular
machine. Some of the new high-speed cutter inserts can operate efficiently at speeds
of 10,000 sfpm or higher when machining such materials as free-machining aluminum
and magnesium alloys.

The tangential force developed during the milling operations may be calculated
from

Note: The P, factors will vary per feed rate (ipm) and Brinell hardness (Bhn).
The P, factors in the table are for normal feed rates and material hardness ranges to 285 Bhn.

(b)

FIGURE 5.21 (a) Milling principle; (b) power constants for milling.
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| _ 126000 hp
" D(rpm)

where t,= tangential force, 1bf
hp = horsepower at the spindle or cutter
D = effective diameter of cutter, in
rpm = rotational speed, rpm

The preceding calculation procedure for finding the tangential forces developed on
the workpiece being cut may be used in conjunction with the clamping fixture types
and clamping calculations shown in Sec. 11.4, “Clamping Mechanisms and Calcula-
tion Procedures.”

Cutter Speed, rpm, from Surface Speed, sfpm. A time-saving table of surface
speed versus cutter speed is shown in Fig. 5.22 for cutter diameters from 0.25
through 5 in. For cutter speed rpm values when the surface speed is greater than 200
sfpm, use the simple equation

_ 12(sfpm)
="

where D is the effective diameter of cutter in inches.

Applying Range of Conditions: Milling Operations. A convenient chart for mod-
ifying the speed and feed during a milling operation is shown in Fig. 5.23. As an
example, if there seems to be a problem during a finishing cut on a milling operation,
follow the arrows in the chart, and increase the speed while lowering the feed. For
longer tool life, lower the speed while maintaining the same feed.

Surlace speed ((t. per min. )

Diameter|
of culter| 25

160 | 180
(in.}

35 200

40‘50155

!
70 l 75 [ 80 F 90 100
|

120 } 140

Cutter revolutions per minute

1/4 |382 [458 (535 (611 764 (851 |[917 |[1,070 |[1,147 [1,222 gl,375 1,528 | 1,834 |2,13912, 4452, 75013, 056
5/18 |306 (367 |428 (489 [611 672 |733 836 917 878 yl, 100 (1,222 | 1,466 |1,711f1,955/2,200(2, 444
3/8 {255 [306 (357 (408 509 [560 )611 713 764 815 916 {1,018 |1,222 |1,425(1,629(1,832(2, 036
T/16 (218 [262 (306 [349 437 (481 524 611 656 899 786 874 | 1,049 |1,224{1,398(1,573[1,748

1/2 {181 [228 (268 [306 (382 (420 [459 $35 573 611 688 164 917 | 1,0701,222(1,375(1, 528

5/8 |183 1184 214 (245 [306 |37 387 428 458 489 352 812 138 857) 9791,102)1,224

3/4 [127 (153 [178 [203 (254 {279 |306 357 381 408 458 508 610 T 813| 914/1,016

7/8 109 [131 [153 (175 219 [241 (262 306 329 349 392 438 526 813] 701 7T88| 876
1 $5.5(115 (134 153 (191 |210 229 267 287 306 344 382 458 5351 611 688 764
1-1/4 76.3| 91.8)107 (123 153 [168 183 214 230 245 274 306 367 428 490 551 €12
1-1/2 @3.7( 76.3| 89.2{102 (127 |140 {153 178 191 204 230 254 305 356] 406 457| 508
1-3/4 54.5(65.5| 76.4] 87.3(109 120 {131 153 164 175 196 218 262 305( 34| 392| 436
2 47.8| 57.3| 66.9! 76.4| 95.5(105 (115 134 143 153 172 191 229 267| 308| J344| 382
2.1/2 | 38.2(45.8] 53.5] 61.2| 76.3| 84.2} 91.7| 107 14 122 138 153 184 213 245| 275| 306
3 31.8038.2)44.6{ 51 | 63.7) 69.9| 76.4] 89.1] 95.3] 102 114 127 152 1781 208 228} 254
3-1/2 27.3{32.7]38.2} 44.6) 54.5) 80 65.5 6.4 81.8 87.4 98.1, 109 131 163 174| 196) 218
4 23.9]28.7] 33.4/ 38.2| 47.8) 52.6{ 57.3 66.9 T 76.4 86 95.6| 115 134 153) 172 191
5 19.1]22.9{26.7 30.6( 38.2| 42 45.9 53,5 §7.3 611 68.8 6.4 91,70 107 122f 138] 153

NOTE: Tabular values are in revolutions per minute (rpm).

FIGURE 5.22 Cutter revolutions per minute from surface speed.
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-GENERAL APPLICATIONS FOR CUTTING CONDITIONS-

CONDITION -SPEED- -FEED-

Roughing

Finishing

End Milling

Slotting

Hard Material

Soft Material

Scale

Toot Life

eRelRa = al o inY[w3la
QoD || ¢ Q0|

Heavy d.o.c.

Higher- {}
Lower- O
Same- ;>

FIGURE 5.23 Applying range of conditions—milling operations.

5.4 DRILLING AND SPADE DRILLING

Drilling is a machining operation for producing round holes in metallic and non-
metallic materials. A drill is a rotary-end cutting tool with one or more cutting edges
or lips and one or more straight or helical grooves or flutes for the passage of chips
and cutting fluids and coolants. When the depth of the drilled hole reaches three or
four times the drill diameter, a reduction must be made in the drilling feed and
speed. A coolant-hole drill can produce drilled depths to eight or more times the
diameter of the drill. The gundrill can produce an accurate hole to depths of more
than 100 times the diameter of the drill with great precision.

Enlarging a drilled hole for a portion of its depth is called counterboring, while a
counterbore for cleaning the surface a small amount around the hole is called spot-
facing. Cutting an angular bevel at the perimeter of a drilled hole is termed counter-
sinking. Countersinking tools are available to produce 82°,90°, and 100° countersinks
and other special angles.
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Drills are classified by material, length, shape, number, and type of helix or flute,
shank, point characteristics, and size series. Most drills are made for right-hand rota-
tion. Right-hand drills, as viewed from their point, with the shank facing away from
your view, are rotated in a counterclockwise direction in order to cut. Left-hand
drills cut when rotated clockwise in a similar manner.

Drill Types or Styles

¢ HSS jobber drills

¢ Solid-carbide jobber drills

e Carbide-tipped screw-machine drills

¢ HSS screw-machine drills

Carbide-tipped glass drills

e HSS extralong straight-shank drills (24 in)
e Taper-shank drills (0 through number 7 ANSI taper)
e Core drills

¢ Coolant-hole drills

¢ HSS taper-shank extralong drills (24 in)

¢ Aircraft extension drills (6 and 12 in)

e Gun drills

e HSS half-round jobber drills

Spotting and centering drills

Parabolic drills

S-point drills

Square solid-carbide die drills
e Spade drills
e Miniature drills

¢ Microdrills and microtools

Drill Point Styles and Angles. Over a period of many years, the metalworking
industry has developed many different drill point styles for a wide variety of appli-
cations from drilling soft plastics to drilling the hardest types of metal alloys. All the
standard point styles and special points are shown in Fig. 5.24, including the impor-
tant point angles which differentiate these different points. New drill styles are being
introduced periodically, but the styles shown in Fig. 5.24 include some of the newer
types as well as the commonly used older configurations.

The old practice of grinding drill points by hand and eye is, at the least, ineffec-
tive with today’s modern drills and materials. For a drill to perform accurately and
efficiently, modern drill-grinding machines such as the models produced by the
Darex Corporation are required. Models are also produced which are also capable
of sharpening taps, reamers, end mills, and countersinks.

Recommended general uses for drill point angles shown in Fig. 5.24 are shown
here. Figure 5.24k illustrates web thinning of a standard twist drill.
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>

FIGURE 5.24 Dirill-point styles and angles.

Typical Uses

Copper and medium to soft copper alloys

Molded plastics, Bakelite, etc.

Brasses and soft bronzes

Alternate for G, cast irons, die castings, and aluminum
Crankshafts and deep holes

Manganese steel and hard alloys (point angle 125 to 135°)

Tog O w
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FIGURE 5.24 (Continued) Drill-point styles and angles.

Wood, fiber, hard rubber, and aluminum

Heat-treated steels and drop forgings

Split point, 118° or 135° point, self-centering (CNC applications)
Parabolic flute for accurate, deep holes and rapid cutting

Web thinning (thin the web as the drill wears from resharpening; this restores
the chisel point to its proper length)
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b
M,

FIGURE 5.24 (Continued) Drill-point styles and angles.

Other drill styles which are used today include the helical or S-point, which is
self-centering and permits higher feed rates, and the chamfered point, which is effec-
tive in reducing burr generation in many materials.

Drills are produced from high-speed steel (HSS) or solid carbide, or are made
with carbide brazed inserts. Drill systems are made by many of the leading tool man-
ufacturers which allow the use of removable inserts of carbide, cermet, ceramics, and
cubic boron nitride (CBN). Many of the HSS twist drills used today have coatings
such as titanium nitride, titanium carbide, aluminum oxide, and other tremendously
hard and wear-resistant coatings. These coatings can increase drill life by as much as
three to five times over premium HSS and plain-carbide drills.

Conversion of Surface Speed to Revolutions per Minute for Drills

Fractional Drill Sizes. Figure 5.25 shows the standard fractional drill sizes and
the revolutions per minute of each fractional drill size for various surface speeds.
The drilling speed tables that follow give the allowable drilling speed (sfpm) of the
various materials. From these values, the correct rpm setting for drilling can be
ascertained using the speed/rpm tables given here.

Wire Drill Sizes (1 through 80). See Fig. 5.26a and b.

Letter Drill Sizes. See Fig.5.27.
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FRACTIONAL SIZE DRILLS
Surface Feet per Minute

35

5.43

40" 45" 50" 80° 70 80 80" 100’
Diam,
Inches Revolutions per Minute
1164 2445 2934 3667 4889 6112 7334 8556 9778 11001 12223 14668 17112 19557 22001 24446
1132 1222 1467 1833 2445 3056 3667 4278 4889 5500 6112 7334 8556 9778 11001 12222
364 815 978 1222 1630 2037 2445 2852 3259 3667 4074 4889 5704 6518 7334 8149
1116 €11 733 917 1222 1528 1833 2138 2445 2750 3056 3667 4278 4889 5500 6112
5164 289 587 733 978 1222 1467 1711 1956 2200 2445 2934 3422 3911 4400 4889
332 407 489 611 815 1019 1222 1426 1630 1833 2037 2445 2852 3253 3667 4074
7184 349 419 524 6398 873 1048 1222 1397 1572 1746 2095 2445 2794 3143 3492
118 306 387 458 811 764 917 107¢ 1222 1375 1528 1B33 2139 2445 2750 3056
8164 272 326 407 843 679 815 §51 1086 1222 1358 1630 1801 2173 2445 2716
5132 244 293 367 489 511 732 856 978 1100 1222 1467 1711 1956 2200 2445
11784 222 267 333 444 556 667 778 883 1000 1111 1333 1556 1778 2000 2222
18 204 244 306 407 509 611 713 815 917 1018 1222 1426 1830 1833 2037
13/84 188 226 282 78 470 564 658 752 846 940 1128 1316 1504 1892 1880
7132 178 210 262 349 437 524 €11 638 786 873 1048 1222 1397 1572 1746
15/84 163 196 244 326 407 489 570 852 733 815 978 1141 1304 1467 1630
14 153 183 229 306 382 458 535 811 688 784 917 1070 1222 1375 1528
932 136 163 204 272 340 407 475 543 611 679 815 851 10BE 1222 1358
518 122 147 183 244 306 367 428 489 550 611 733 858 g78 1100 1222
11132 M 133 167 222 278 333 389 444 500 556 867 778 B83 10600 1111
318 102 122 153 204 255 306 357 407 458 508 611 713 815 917 1019
13132 94 13 141 188 238 282 328 378 423 470 564 658 752 846 940
7Me 87 105 131 175 218 262 306 349 393 437 524 611 698 786 873
15/32 81 98 122 163 204 244 285 326 367 407 489 570 652 733 815
"2 76 92 115 153 191 229 267 306 344 382 458 535 611 688 764
9118 68 81 102 136 170 204 238 272 306 340 407 478 543 611 879
si8 61 73 92 1220 153 183 214 2a4 275 306 367 428 489 550 611
1118 56 67 83 AR 138 167 194 222 250 278 333 389 444 500 556
s 51 81 76 102 127 153 178 204 229 255 306 357 407 458 508
1318 47 56 71 94 18 141 185 188 212 235 282 328 376 423 470
78 4 52 85 87 108 131 153 175 186 218 262 306 349 393 437
1518 41 49 A1 81 102 122 143 163 183 204 244 285 328 367 407
1 38 46 57 76 95 115 134 153 172 il 229 267 306 344 382
118 34 41 51 68 8s 102 19 136 153 170 204 238 272 306 340
1-9/4 Ehl 37 &6 61 7€ 92 107 122 138 153 183 214 244 275 306
1.3/8 28 33 42 56 69 83 97 111 125 138 167 194 222 250 278
1112 25 31 38 81 84 76 89 102 115 127 153 178 204 229 258
1518 24 28 35 47 59 71 82 94 108 118 141 165 188 212 235
1-3/4 22 26 33 44 58 65 76 87 98 108 131 153 175 196 218
17i8 20 24 31 41 51 61 il 81 92 102 122 143 163 183 204
2 19 23 28 38 48 57 67 7% 086 95 15 134 183 172 191
2-1/4 7 20 25 34 42 51 58 68 76 85 102 118 136 153 170
2.112 15 18 23 31 38 46 53 &1 89 76 92 07 122 138 153
2:3/4 14 17 21 28 35 42 43 56 83 €9 83 97 111 125 139
3 i 15 19 25 az 38 45 51 57 €4 76 89 102 115 127
312 1 13 18 22 27 33 38 a4 49 55 65 7% 87 98 108
Forspeeds Mgrerhar iabuates muiloy ol values by “06r 100 Sor speecs lower “an iabu ated o

FIGURE 5.25 Dirill rpm/surface speed, fractional drills.

2 al valieshy 'O

Tap-Drill Sizes for Producing Unified Inch and Metric Screw Threads and Pipe

Threads

Tap-Drills for Unified Inch Screw Threads.
Tap-Drill Sizes for Producing Metric Screw Threads.

See Fig. 5.28.
See Fig. 5.29.

Tap-Drill Sizes for Pipe Threads (Taper and Straight Pipe).

Equation for Obtaining Tap-Drill Sizes for Cutting Taps

D), = Dy —0.0130

% of full thread desired

n;

See Fig. 5.30.

for unified inch-size threads
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WIRE SIZE DRILLS
Surtace Feet per Minute

10 12" 15" 20 25 30" 35 40 45" 50" 60" 70" 80" 90" 100"
Diam.

No. Revolutions per Minute
1 168 201 251 335 418 503 586 870 754 838 1005 1173 1340 1508 1675
2 173 207 259 346 432 519 605 631 778 864 1037 1210 1382 1555 1728
3 179 215 269 358 448 538 628 nv 807 897 1076 1255 1434 18614 1793
4 183 219 274 366 457 548 640 731 822 914 1087 1280 1462 1645 1828
5 186 223 279 372 465 558 851 743 836 630 11156 1301 1487 1673 1859
8 187 225 281 374 4BB 562 655 749 843 936 1123 1310 1498 1685 1872
7 190 228 285 380 475 570 685 760 855 950 1140 1330 1520 1710 1900
8 192 230 288 384  4BO 576 &T2 768 B64 U0 1151 1343 1535 1727 1919
9 195 234 282 390 487 585 682 780 877 975 1169 1364 1559 1754 1949
10 197 287 206 395 494 592 89 790 888 987 1184 1382 1579 1777 1974
" 200 240 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000
12 202 243 305 404 506 606 707 808 90§ 1010 1213 w415 1617 1819 2021
13 205 248 310 413 S16 619 723 826 929 1032 1239 1450 1652 1859 2065
14 210 252 315 420 525 630 735 839 944 1050 1259 1468 1679 1889 2099
15 212 255 318 424 531 837 743 849 955 1064 1276 1489 1702 1914 27
18 216 259 324 432 540 847 755 863 971 1079 1295 1511 1728 1942 2158
17 22 265 33 442 552 €62 773 883 994 104 1325 1546 1766 1987 2208
18 225 270 338 451 563 676 789 901 1014 1130 1356 1582 1808 2034 2260
19 230 276 345 460 575 690 805 920 1035 115t 1381 1611 1841 2071 2301
20 237 285 356 474 583 72 830 949 1068 1186 1423 1660 1898 2135 2372
Fal 240 288 360 480 601 72 B4y 961 1081 1201 1441 168V 1922 2162 2402
22 243 232 365 487 €08 780 852 973 1085 1217 1460 1703 1846 2190 2433
23 248 298 372 496 620 744 868 992 1116 1240 1488 1736 1884 2232 2480
24 251 302 377 503 628 754 830 1005 1131 1257 1508 1759 2010 2262 2913
F<3 255 307 383 511 639 786 894 1022 18C 1276 1533 1789 2044 2300 2555
28 260 312 390 520 650 780 908 1039 1189 1299 1559 1818 2078 2338 2598
27 265 318 398 53 663 196 928 1061 1984 1327 1592 1857 2122 2388 2653
28 272 326 408 544 680 816 952 1087 1223 1360 1831 1803 2175 2447 2719
28 281 337 421 562 702 843 983 1123 1264 1405 1685 1966 2247 2528 2809
30 297 357 446 595 743 892 1040 1189 1338 1487 1784 2081 2378 2676 2972
3 318 382 477 637 796 955 1114 1273 1432 1532 1910 2228 2546 2865 3183
32 329 395 494 659 823 988 1152 1317 1482 1647 1976 2305 2634 2964 3293
33 338 406 507 676 845 1014 1183 1352 1521 1690 2028 2366 2704 3042 3380
34 344 413 516 688 BBO 1032 1204 1376 1543 1721 2065 2408 2753 3097 3442
35 347 a7 521 694 868 1042 1215 1389 1563 1736 2083 2430 2778 31256 3472
36 359 430 538 N7 897 1078 1255 1435 1614 1794 2152 2511 2870 3228 3587
a7 367 441 551 735 918 1102 1285 1489 1653 1837 2204 2571 2938 3306 3673
38 376 452 564 753 941 1128 1317 1505 1693 1882 2258 2634 3010 3387 3763
39 384 481 576 768 960 1152 1344 1536 1728 1920 2303 2687 3071 3455 3839
a0 330 488 585 780 974 1189 1364 1559 1754 1949 2339 2728 3118 3508 3896

For speeos higher 1han rabulated. mulply all vaues by 106r 100, For speeds lower Lhan tabulated, divide all values by 10

FIGURE 5.26a Drill rpm/surface speed, wire-size drills.

where

% of full thread desired

Dy = Dymi — 76.98

D, = drilled hole size, in

D, = drilled hole size, mm

Dy, = basic major diameter of thread, in
Dy = basic major diameter of thread, mm
n; =number of threads per inch

for metric series threads
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WIRE SIZE DRILLS

Surtaca Feet per Minuta

10 12 15 200 2§ 30 3§ 40 48 500 80" 70 80" 90' 100"
Diam.
No. Revolutions per Minute
41 398 477 597 796 995 1194 1383 1592 1790 1990 2387 2785 3183 3581 3979
42 408 43C 613 817 1021 1226 1430 1634 1838 2043 2451 2860 3268 3677 4085
43 429 515 644 858 1073 1288 1502 1717 1831 2146 2575 3004 3434 3863 4292
44 444 533 666 883 1110 1332 1555 1777 1999 2221 2665 3109 3554 3999 4442
45 466 S50 699 922 1165 1397 1630 1863 2096 2320 2765 3261 3726 4192 4658
46 472 566 707 943 1179 1415 1650 1886 2122 2358 283C 3301 3773 4244 4716
47 487 584 730 973 1216 1460 1703 1846 2190 2433 2920 3405 3893 4379 4866
48 503 603 75 1005 1256 1508 1759 2010 2262 2513 3016 3518 4U21 4523 5026
49 523 628 785 1046 1308 1570 1831 2093 2355 26!7 3140 3663 4186 4710 5233
50 646 655 819 1091 1364 1637 1910 2183 2456 2720 3274 3820 4366 4911 5457
51 570 684 855 1140 1425 1710 1995 2280 2565 2851 3421 3931 4561 5131 5701
52 602 722 902 1203 1504 1805 2105 2406 2707 3008 3609 4211 4812 5414 6015
53 642 770 963 1284 1BC5 Q26 2247 2568 2889 3207 2B4B 4490 5131 5773 6414
54 694 833 1042 1389 1736 2083 243 2778 3125 3473 4167 4862 5556 6251 6945
55 735 88 1102 1469 1836 2208 2571 2938 3306 3673 4408 5142 5877 6611 7346
56 821 986 1232 1643 2054 2484 2875 3286 3696 4108 4929 5751 6572 7394 B21S
57 888 1086 1332 1777 2221 2665 3109 3553 3997 4452 5342 6232 7122 8013 8903
58 903 1031 1354 1813 2274 2728 3183 3638 4093 4547 5456 6367 7275 8186 9095
59 932 1118 1337 863 2329 2795 3261 3726 4192 4658 5590 6521 7453 8388 9316
60 955 1145 1432 1910 2387 2865 3342 3820 4207 4775 5729 6684 7639 8584 9549
61 979 1176 1469 1959 2449 2938 3428 3818 4407 4837 5876 6856 7R3 B8RS 9794
62 1005 1208 1508 2010 2513 3016 3518 4021 4523 5025 6030 7035 8040 8045 10050
63 1032 1239 1249 Z0B5 2581 3097 3613 4129 4646 5160 6192 7224 B256 9288 10320
64 1081 1273 1592 2122 2653 3183 3714 4244 4775 5305 6366 7427 8488 9549 10810
85 1091 1310 1637 2183 2728 3274 3820 4365 4911 5455 6546 7637 8728 9819 10910
68 157 1389 1736 2315 2894 3472 4051 4630 5207 5730 6948 8106 9264 10422 11580
&7 1194 1432 1790 2087 2984 3581 4178 4775 5371 5370 7°64 8358 9552 10746 11940
68 1232 1479 1848 2464 3080 3696 4313 4829 5545 G160 7392 8624 3856 11088 12320
69 1308 1570 1962 2616 3270 3924 4578 5232 5887 6530 7836 9142 10488 11754 13060
70 1356 1637 2046 2728 3410 4093 4775 5457 ©139 6820 8184 9548 10012 12276 13640
Ial 1469 1763 2204 2838 3673 4407 5142 5876 6611 7365 BB3a 10311 11784 13257 14730
72 1528 1833 2272 3056 3620 4584 5348 6112 6875 7640 9168 10696 12224 13752' 15280
73 1592 1910 2387 3183 3979 4775 5570 6366 7162 7960 9552 11144 12736 14328 15920
74 1698 2037 2546 3395 4244 5093 5942 6791 7639 8510 10212 11914 13616 15318 17020
75 1819 2183 2728 3638 4647 5457 6385 7276 8185 9095 10914 12733 14552 16371 18190
76 1910 2292 28E5 3820 4775 5730 8684 7639 8594 9550 1140 13370 15280 17180 110G
77 2122 2546 3183 4244 5305 6366 7427 8488 9549 10610 12732 14854 15976 19098 21220
78 2387 2865 3581 4775 5968 7162 B358 9543 10743 11935 14322 16709 18096 21483 2387C
79 2634 3161 3951 5289 6586 7903 9220 10537 11854 13170 15804 18438 21072 23706 26340
80 2820 3305 4244 5659 7074 6488 9903 11318 12732 14150 16980 19810 22640 25470 28300

For soeeds higrer t-ar 1atulaied. Mt oy al. va ues by 10 01 100, FOI speecs cwer ira- iabuiated Jvide 3 |vaues o 10

FIGURE 5.26b Drill rpm/surface speed, wire-size drills.

NOTE. In the preceding equations, use the percentage whole number; i.e., for 84
percent, use 84.

EXAMPLE. What is the drilled hole size in inches for a
percent of full thread?

-16 tapped thread with 84

=0.375-0.0130 x Lind =0.375 - 0.06825 = 0.30675 in

b 16
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LETTER SIZE DRILLS
Surface Feel per Minute

10” 12" 15" 20 25 30 35" 40 45" 50 60 70 80" 90’ 100
Letter
Size Revolutions per Minute

A 163 196 245 326 408 490  5T1 653 735 818 982 1145 1309 1472 1636
B 160 183 241 321 401 481 562 642 722 803 963 1124 1284 1445 1605
C 158 189 237 316 395 473 552 631 70 789 947 1105 1262 1420 1578
D 155 186 233 31 388 466 543 €621 €99 778 934 1089 1245 1406 1556
€ 153 183 228 306 382 458 535 611 687 764 917 1070 1222 1375 1528
F 149 178 223 297 372 445 520 595 669 743 892 1040 1189 1337 1486
G 146 176 220 293 366 439 512 585 659 732 878 1024 1170 1317 1463
H 144 172 215 287 359 431 503 574 646 718 862 1005 1149 1294 1438
1 140 169 21 281 353 421 492 S62 632 702 842 983 1123 1264 1404
J 138 185 207 276 345 414 483 552 621 600 827 965 1103 1241 1379
K 136 163 204 272 340 408 476 544 612 680 €15 951 1087 1223 135¢
L 132 158 198 263 329 395 451 527 593 659 790 922 1054 1185 1317
M 129 155 194 259 324 388 453 518 583 648 77 907 1036 1166 1295
N 126 152 190 253 316 379 442 506 569 633 759 886 1012 1139 1265
] 121 145 181 242 302 383 423 484 544 605 725 846 967 08B 1209
P 18 142 177 237 236 355 414 473 532 592 710 828 946 1065 1183
Q 15 138 173 230 288 345 403 450 518 575 690 805 920 1035 115Q
R 113135 169 225 282 338 394 451 507 564 676 789 902 1014 1127
S 10 132 165 220 274 329 384 439 494 549 659 763 878 988 1098
T 107 128 160 213 267 320 373 427 480 533 640 746 853 959 1066
u 104 125 156 208 258 31 363 415 467 513 623 727 B30 934 1038
v 101 122 152 203 253 304 355 405 456 507 608 709 810 912 10138
w 99 119 148 198 247 297 348 496 445 495 584 693 792 891 989
X 96 115 144 192 240 289 337 385 433 4B1 576 672 763 865 962
Y 95 13 142 189 236 284 331 378 425 473 567 662 756 851 945
2 92 it 13% 185 27 277 324 370 416 462 555 647 740 832 926

For speeds higher than tabulated. mulliply all values by 1007 100, For Spaeds lower 1han tabulated cwide all values by 10

FIGURE 5.27 Dirill rpm/surface speed, letter-size drills.

0.30675 in is then the decimal equivalent of the required tap drill for 84 percent of
full thread. Use the next closest drill size, which would be letter size N (0.302 in). The
diameters of the American standard wire and lettersize drills are shown in Fig. 5.31.
For metric drill sizes see Fig. 5.32.

When producing the tapped hole, be sure that the correct class of fit is satisfied,
i.e,, class 2B, 3B, interference fit, etc. The different classes of fits for the thread sys-
tems are shown in the section of standards of the American National Standards
Institute (ANSI) and the American Society of Mechanical Engineers (ASME).

Speeds and Feeds, Drill Geometry, and Cutting Recommendations for Drills.
The composite drilling table shown in Fig. 5.33 has been derived from data origi-
nated by the Society of Manufacturing Engineers (SME) and various major drill
manufacturers.

Spade Drills and Drilling. Spade drills are used to produce holes ranging from 1
in to over 6 in in diameter. Very deep holes can be produced with spade drills, includ-
ing core drilling, counterboring, and bottoming to a flat or other shape. The spade
drill consists of the spade drill bit and holder. The holder may contain coolant holes
through which coolant can be delivered to the cutting edges, under pressure, which
cools the spade and flushes the chips from the drilled hole.

The standard point angle on a spade drill is 130°. The rake angle ranges from 10
to 12° for average-hardness materials. The rake angle should be 5 to 7° for hard



FORMULAS AND CALCULATIONS FOR MACHINING OPERATIONS

Decimal Probable Probable
Tap equiv. Theoretical mean Probable  percent of
Tap drill of tap percent of over- hole thread,
size size drill, in thread, % size, in size, in %
0-80 56 0.0465 83 0.0015 0.0480 74
Y 0.0469 81 0.0015 0.0484 71
1.20 mm 0.0472 79 0.0015 0.0487 69
1.25 mm 0.0492 67 0.0015 0.0507 57
1-64 54 0.0550 89 0.0015 0.0565 81
1.45 mm 0.0571 78 0.0015 0.0586 71
53 0.0595 67 0.0015 0.0610 59
1-72 1.5mm 0.0591 77 0.0015 0.0606 68
53 0.0595 75 0.0015 0.0610 67
1.55 mm 0610 67 0.0015 0.0606 68
2-56 51 0.0670 82 0.0017 0.0687 74
1.75 mm 0.0689 73 0.0017 0.0706 66
50 0.0700 69 0.0017 0.0717 62
1.80 mm 0.0709 65 0.0017 0.0726 58
2-64 50 0.0700 79 0.0017 0.0717 70
1.80 mm 0.0709 74 0.0017 0.0726 66
49 0.0730 64 0.0017 0.0747 56
3-48 48 0.0760 85 0.0019 0.0779 78
Yo 0.0781 77 0.0019 0.0800 70
47 0.0785 76 0.0019 0.0804 69
2.00 mm 0.0787 75 0.0019 0.0806 68
46 0.0810 67 0.0019 0.0829 60
45 0.0820 63 0.0019 0.0839 56
3-56 46 0.0810 78 0.0019 0.0829 69
45 0.0820 73 0.0019 0.0839 65
2.10 mm 0.0827 70 0.0019 0.0846 62
2.15 mm 0.0846 62 0.0019 0.0865 54
4-40 44 0.0860 80 0.0020 0.0880 74
2.20 mm 0.0866 78 0.0020 0.0886 72
43 0.0890 71 0.0020 0.0910 65
2.30 mm 0.0906 66 0.0020 0.0926 60
4-48  2.35mm 0.0925 72 0.0020 0.0926 72
42 0.0935 68 0.0020 0.0955 61
Yo 0.0938 68 0.0020 0.0958 60
2.40 mm 0.0945 65 0.0020 0.0965 57
5-40 40 0.0980 83 0.0023 0.1003 76
39 0.0995 79 0.0023 0.1018 71
38 0.1015 72 0.0023 0.1038 65
2.60 mm 0.1024 70 0.0023 0.1047 63

FIGURE 5.28 Tap-drill sizes, unified inch screw threads.

5.47

steels and 15 to 20° for soft, ductile materials. The back-taper angle should be 0.001
to 0.002 in per inch of blade depth. The outside diameter clearance angle is generally
between 7 to 10°.

The cutting speeds for spade drills are normally 10 to 15 percent lower than those
for standard twist drills. See the tables of drill speeds and feeds in the preceding sec-
tion for approximate starting speeds. Heavy feed rates should be used with spade
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CHAPTER FIVE
Decimal Probable Probable
Tap equiv. Theoretical mean Probable  percent of
Tap drill of tap percent of over- hole thread,
size size drill, in thread, % size, in size, in %
5-44 38 0.1015 79 0.0023 0.1038 72
2.60 mm 0.1024 77 0.0023 0.1047 69
37 0.1040 71 0.0023 0.1063 63
6-32 37 0.1040 84 0.0023 0.1063 78
36 0.1065 78 0.0023 0.1088 72
Ta 0.1095 70 0.0026 0.1120 64
35 0.1100 69 0.0026 0.1126 63
34 0.1100 67 0.0026 0.1136 60
6-40 34 0.1110 83 0.0026 0.1136 75
33 0.1130 77 0.0026 0.1156 69
2.90 mm 0.1142 73 0.0026 0.1168 65
32 0.1160 68 0.0026 0.1186 60
8-32 3.40 mm 0.1339 74 0.0029 0.1368 67
29 0.1360 69 0.0029 0.1389 62
8-36 29 0.1360 78 0.0029 0.1389 70
3.5 mm 0.1378 72 0.0029 0.1407 65
1024 27 0.1440 85 0.0032 0.1472 79
3.70 mm 0.1457 82 0.0032 0.1489 76
26 0.1470 79 0.0032 0.1502 74
25 0.1495 75 0.0032 0.1527 69
24 0.1520 70 0.0032 0.1552 64
10-32 % 0.1563 83 0.0032 0.1595 75
22 0.1570 81 0.0032 0.1602 73
21 0.1590 76 0.0032 0.1622 68
12-24 % 0.1719 82 0.0035 0.1754 75
17 0.1730 79 0.0035 0.1765 73
16 0.1770 72 0.0035 0.1805 66
1228 16 0.1770 84 0.0035 0.1805 77
15 0.1800 78 0.0035 0.1835 70
4.60 mm 0.1811 75 0.0035 0.1846 67
14 0.1820 73 0.0035 0.1855 66
%-20 9 0.1960 83 0.0038 0.1998 77
8 0.1990 79 0.0038 0.2028 73
7 0.2010 75 0.0038 0.2048 70
%4 0.2031 72 0.0038 0.2069 66
%-28  5.40 mm 0.2126 81 0.0038 0.2164 72
3 0.2130 80 0.0038 0.2168 72
%—18 F 0.2570 77 0.0038 0.2608 72
6.60 mm 0.2598 73 0.0038 0.2636 68
G 0.2610 71 0.0041 0.2651 66
%e—24 H 0.2660 86 0.0041 0.2701 78
6.80 mm 0.2677 83 0.0041 0.2718 75

FIGURE 5.28 (Continued) Tap-drill sizes, unified inch screw threads.




FORMULAS AND CALCULATIONS FOR MACHINING OPERATIONS

Decimal Probable Probable
Tap equiv. Theoretical mean Probable  percent of
Tap drill of tap percent of over- hole thread,
size size drill, in thread, % size, in size, in %
I 0.2720 75 0.0041 0.2761 67
%-16  7.80 mm 0.3071 84 0.0044 0.3115 78
7.90 mm 0.3110 79 0.0044 0.3154 73
Hs 0.3125 77 0.0044 0.3169 72
o 0.3160 73 0.0044 0.3204 68
8-24 U 0.3281 87 0.0044 0.3325 79
8.40 mm 0.3307 82 0.0044 0.3351 74
Q 0.3320 79 0.0044 0.3364 71
8.50 mm 0.3346 75 0.0044 0.3390 67
%14 T 0.3580 86 0.0046 0.3626 81
2 0.3594 84 0.0046 0.3640 79
9.20 mm 0.3622 81 0.0046 0.3668 76
9.30 mm 0.3661 77 0.0046 0.3707 72
U 0.3680 75 0.0046 0.3726 70
9.40 mm 0.3701 73 0.0046 0.3747 68
%e—20 W 0.3860 79 0.0046 0.3906 72
2 0.3906 72 0.0046 0.3952 65
%-13 1050 mm  0.4134 87 0.0047 0.4181 82
2 0.4219 78 0.0047 0.4266 73
%20 %% 0.4531 72 0.0047 0.4578 65
Ae—12 % 0.4688 87 0.0048 0.4736 82
W 0.4844 72 0.0048 0.4892 68
Ae—18 % 0.5000 87 0.0048 0.5048 80
%-11 % 0.5313 79 0.0049 0.5362 75
%-18 % 0.5625 87 0.0049 0.5674 80
%-10 Y 0.6406 84 0.0050 0.6456 80
2y 0.6563 72 0.0050 0.6613 68
Y%-16 Vi 0.6875 77 0.0050 0.6925 71
1750 mm  0.6890 75 0.0050 0.6940 69
%-9 % 0.7656 76 0.0052 0.7708 72
%-14 Y 0.7969 84 0.0052 0.8021 79
1-8 %4 0.8594 87 0.0059 0.8653 83
% 0.8750 77 0.0059 0.8809 73
1-12 % 0.9063 87 0.0059 0.9122 81
%4 0.9219 72 0.0060 0.9279 67
1-14 % 0.9219 84 0.0060 0.9279 78
1%-7 % 0.9688 84 0.0062 0.9750 81
%4 0.9844 76 0.0067 0.9911 72
1%-12 1% 1.0313 87 0.0071 1.0384 80
FIGURE 5.28 (Continued) Tap-drill sizes, unified inch screw threads.
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Decimal Probable Probable
Metric Tap equiv. Theoretical mean Probable percent of
Tap drill of tap percent of over- hole thread,

size size drill, in thread, % size, in size, in %
M1.6 x 0.35 1.20 mm 0.0472 88 0.0014 0.0486 80
1.25 mm 0.0492 77 0.0014 0.0506 69
M2 x 0.4 Y 0.0625 79 0.0015 0.0640 72
1.60 mm 0.0630 77 0.0017 0.0647 69
52 0.0635 74 0.0017 0.0652 66
M2.5x0.45  2.05 mm 0.0807 77 0.0019 0.0826 69
46 0.0810 76 0.0019 0.0829 67
45 0.0820 71 0.0019 0.0839 63
M3 x 0.5 40 0.0980 79 0.0023 0.1003 70
2.5 mm 0.0984 77 0.0023 0.1007 68
39 0.0995 73 0.0023 0.1018 64
M3.5x 0.6 33 0.1130 81 0.0026 0.1156 72
2.9 mm 0.1142 77 0.0026 0.1163 68
32 0.1160 71 0.0026 0.1186 63
M4 x 0.7 3.2mm 0.1260 88 0.0029 0.1289 80
30 0.1285 81 0.0029 0.1314 73
3.3 mm 0.1299 77 0.0029 0.1328 69
M4.5x0.75 3.7 mm 0.1457 82 0.0032 0.1489 74
26 0.1470 79 0.0032 0.1502 70
25 0.1495 72 0.0032 0.1527 64
M5 % 0.8 4.2 mm 0.1654 77 0.0032 0.1686 69
19 0.1660 75 0.0032 0.1692 68
M6 x 1 10 0.1935 84 0.0038 0.1973 76
9 0.1960 79 0.0038 0.1998 71
5 mm 0.1968 77 0.0038 0.2006 70
8 0.1990 73 0.0038 0.2028 65
M7x1 A 0.2340 81 0.0038 0.2378 74
6 mm 0.2362 77 0.0038 0.2400 70
B 0.2380 74 0.0038 0.2418 66
M8x1.25  6.7mm 0.2638 80 0.0041 0.2679 74
a 0.2656 77 0.0041 0.2697 71
H 0.2660 77 0.0041 0.2701 70
6.8 mm 0.2677 74 0.0041 0.2718 68
M10x 1.5 8.4 mm 0.3307 82 0.0044 0.3351 76
Q 0.3320 80 0.0044 0.3364 75
8.5 mm 0.3346 77 0.0044 0.3390 71
M12 x 1.75 10.25 mm  0.4035 77 0.0047 0.4082 72
Y 0.4040 76 0.0047 0.4087 71
Yo 0.4062 74 0.0047 0.4109 69
M14 x 2 1% 0.4688 81 0.0048 0.4736 76
12 mm 0.4724 77 0.0048 0.4772 72

FIGURE 5.29 Tap-drill sizes, metric screw threads.

drilling. The table shown in Fig. 5.34 gives recommended feed rates for spade drilling
various materials.

Horsepower and Thrust Forces for Spade Drilling. The following simplified equa-
tions will allow you to calculate the approximate horsepower requirements and
thrust needed to spade drill various materials with different diameter spade drills. In
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Decimal Probable Probable
Metric  Tap equiv. Theoretical mean Probable  percent of
Tap drill of tap percent of over- hole thread,
size size drill, in thread, % size, in size, in %
M16 x 2 s 0.5469 81 0.0049 0.5518 76
14 mm 0.5512 7 0.0049 0.5561 72
M20 x 2.5 e 0.6875 78 0.0050 0.6925 74
17.5 mm 0.6890 77 0.0052 0.6942 73
M24 x 3 0 0.8125 86 0.0052 0.8177 82
21 mm 0.8268 76 0.0054 0.8322 73
5% 0.8281 76 0.0054 0.8335 73
M30 x 3.5 1% 1.0312 83 0.0071 1.0383 80
25.1 mm 1.0394 79 0.0071 1.0465 75
Ps 1.0469 75 0.0072 1.0541 70
M36 x 4 1% 1.2656 74 Reaming recommended

FIGURE 5.29 (Continued) Tap-drill sizes, metric screw threads.

order to do this, you must find the feed rate for your particular spade drill diameter,
as shown in Fig. 5.34, and then select the P factor for your material, as tabulated in
Fig. 5.35.

The following equations may then be used to estimate the required horsepower
at the machine’s motor and the thrust required in pounds force for the drilling pro-
cess.

nD?
Cyp= P( 1 )FN
Taper pipe Straight pipe

Thread Drill Thread Drill

%-27 R %27 S

%i—18 s %-18 2%4

%-18 s %-18 195

%-14 22 %-14 s

%-14 5% %—14 e

1-11% 1% 1-11% 1%
1%-11% 1% 1%4-11% 1%%s
1%-1% 1% 1%-11% 1%

2-11% 2% 2-11% 2%
2%-8 2% 2%-8 225

3-8 3% 3-8 3%:
3%-8 3% 3%-8 3%%s

4-8 4% 4-8 4%

FIGURE 5.30 Pipe taps.
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DRILL NO. DECIMAL | DRILIL. NO. | DECIMAL | DRILLNO. | DECIMAL
57 0.0059 36 0.0465 13 0.180
56 0.0063 55 0052 14 0.182
95 0.0067 54 0055 13 0.185
2] 0.0071 53 0.0595 12 0.189
93 0.0075 53 0.0635 10 0191
92 00079 51 0.067 10 0.1933
o1 0.0083 50 0.070 9 0.196
50 0.0087 a9 6073 8 0,199
89 0.0091 48 0.076 7 0.201
&8 0.0095 &7 00785 6 0.204
&7 0.010 46 0.076 5 0.2053
86 0.0105 45 0.082 4 0.209
85 0.011 43 0.086 3 0313
84 0.0115 43 0.089 2 0221
33 0.012 42 0.0935 1 0228
82 0.0125 4i 0096 A 0234
81 0.013 40 0.098 B 0.238
&0 00135 39 0.0995 § 0247
75 00145 38 01015 D 0.246
78 04016 37 0.104 E 0.250
77 0018 36 0.1065 F 0257
76 0.020 35 0110 G 0261
73 0.021 4 0.111 H 0366
74 00225 33 0113 T 0272
73 0024 33 0116 i 0.277
72 0.025 3i 0120 X 0281
g 0.026 30 0.1285 L 0.290
70 0028 9 0.136 M 0293
& 00292 78 01405 N 0302
& 0031 27 0144 0 0316
67 0032 38 0.147 P 0323
66 04033 35 0.1495 q 0332
65 G035 24 0152 R 0330
64 0036 p5) 0.154 S 0348
) 0037 p7) 0157 T 0358
52 G038 71 G158 U 0368
51 0.039 20 0.161 v 0377
60 0.040 0 0.166 W 0386
55 0041 18 0.1695 X 0357
53 0.042 7 0173 ¥ 0.404

57 0.043 13 0177 Z E

FIGURE 5.31 Dirill sizes (American national standard).
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Material Hardness "P" Factor
Bhn
Plain carbon & alloy steels 90-200 0.75
200-275 0.92
300-375 1.02
375450 1.18
45.52R, 1.45
Gray cast irons 0 e 0.25
Alloy cast irons
& ductile irons 00000 e 0.50
Stainless steel (austeniticy = e 0.96
Stainless steels (martensitic) J— 0.81
Titanium alloys e 0.87
Aluminum alloys J— 0.20
Magnesium alloys j— 0.15
Copper alloys Soft - Ry 20-80 042
Hard - Ry 80-100 0.75
Tool steels [ 1.10
Cobalt based alloys s 1.25
High-temperature alloys = 1.45
Non-ferrous free-machining alloys e 045

Note: Where no hardness range is given, the maximum hardness
is 300 Bhn. For harder materials, use a higher "P" factor.

FIGURE 5.35 P factor for spade drilling various materials.

where

TP

=148,500PFD

Gy, = horsepower at the cutter

M,,, = required motor horsepower
T, = thrust for spade drilling, 1bf
D =drill diameter, in
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F =feed, ipr (see Fig. 5.34 for ipr/diameter/material)
P =power factor constant (see Fig. 5.35)
fm="feed,ipm
N = spindle speed, rpm
e = drive motor efficiency factor (0.90 for direct belt drive to the spin-
dle; 0.80 for geared head drive to the spindle)

NOTE. The P factors must be increased by 40 to 50 percent for dull tools, although
dull cutters should not be utilized if productivity is to remain high.

Problem. Calculate the horsepower at the cutter, required horsepower of the
motor, the required thrust force, and the feed in inches per minute, to spade drill car-
bon steel with a hardness of 275 to 325 Bhn, using a 2.250-in-diameter spade drill
rotating at 200 rpm.

Step 1. Find the feed rate for the 2.250-in-diameter drill for the selected carbon
steel, from Figure 5.34:

F =feed,ipr =0.013
Step 2. Select the P factor for the material and drill size from Figure 5.35:

P=1.02

Step 3. Calculate cutter horsepower:

DZ
Cop = P(ET)FN

3.1416(2.250)

Cip= 1.02[ ;

] x 0.013 x 200

Cip = 1.02(3.976) x 0.013 x 200
Cip =105 hp

Step 4. Calculate motor horsepower:

Step 5. Calculate thrust force:
T,=148,000PFD
T,=148,000 x 1.02 x 0.013 x 2.250

T,=4,430 Ibf
Step 6. Calculate feed, ipm:

fu=FN
fn=0.013 X 200 = 2.60 ipm
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NOTE. If the thrust force cannot be obtained, reduce the feed, ipr, from Fig. 5.34 to
a lower value and recalculate the preceding equations. This will lower the horse-
power requirement and thrust force, but will also reduce the feed, in/min, taking
longer to drill the previously calculated depth per minute, in/min.

5.5 REAMING

A reamer is a rotary cutting tool, either cyclindrical or conical in shape, used for
enlarging drilled holes to accurate dimensions, normally on the order of £0.0001 in
and closer. Reamers usually have two or more flutes which may be straight or spiral
in either left-hand or right hand spiral. Reamers are made for manual or machine
operation.

Reamers are made in various forms, including

¢ Hand reamers

¢ Machine reamers

e Left-hand flute

¢ Right-hand flute

¢ Expansion reamers

¢ Chucking reamers

¢ Stub screw-machine reamers
¢ End-cutting reamers

e Jobbers reamers

e Shell reamers

¢ Combined drill and reamer

Most reamers are produced from premium-grade HSS. Reamers are also pro-
duced in cobalt alloys, and these may be run at speeds 25 percent faster than HSS
reamers. Reamer feeds depend on the type of reamer, the material and amount to be
removed, and the final finish required. Material-removal rates depend on the size of
the reamer and material, but general figures may be used on a trial basis and are
summarized here:

Hole diameter Material to be removed

Up to 0.500 in diameter 0.005 in for finishing

More than 0.500 in diameter 0.015 in for finishing

Up to 0.500 in diameter 0.015 in for semifinished holes
More than 0.500 in diameter 0.030 in for semifinished holes

This is an important consideration when using the expansion reamer owing to the
maximum amount of expansion allowed by the adjustment on the expansion
reamer.
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Machine Speeds and Feeds for HSS Reamers. See Fig. 5.36.

NOTE. Cobalt-alloy and carbide reamers may be run at speeds 25 percent faster
than those shown in Fig. 5.36.

Carbide-tipped and solid-carbide chucking reamers are also available and afford
greater effective life than HHS and cobalt reamers without losing their nominal size
dimensions. Speeds and feeds for carbide reamers are generally similar to those for
the cobalt-alloy types.

Forms of Reamers. Other forms of reamers include the following:

Material Speed Feed Code
(sfpm) (ipr)
Steel - 150 Bhn 80 1
Steel - 200 Bhn 55 2
Steel - 250 Bhn 35 3
Steel - 300 Bhn 30 3
Steel - 350 Bhn 17 4
Steel - 400 Bhn 10 4
Steel, cast 25 3
Steel, forged alloys 30 3
Steel, low carbon 75 2
Steel, high carbon 45 4
Steel, stainless 15 3
Steel, tool 35 4
Titanium 40 1
Zine alloy 150 1
Aluminum & alloys 150 1
Brass, leaded 175 1
Brass, red & yellow 150 1
Bronzes 160 1
Copper 45 3
Cast iron, chilled 10 4
Cast iron, hard 50 3
Cast iron, pearlitic 60 1
Cast iron, soft 95 1
Malleable iron 65 2
Monels 30 3
Nickels 40 3
Plastic, hard 50 1
Plastic, soft 65 3

Feed Code, ipr (inches per revolution)

Reamer Diameter Code 1 Code 2 Code 3 Code 4
0.125" 0.006 0.005 0.004 0.003
0.500" 0.012 0.010 0.007 0.005
1.00" 0.020 0.015 0.012 0.008
2.00" 0.032 0.025 0.020 0.012
2.25 - 2,50" 0.043 0.035 0,028 0.018
2.75 - 3.00" 0.055 0.045 0.035 0.024

Note: Reamer feeds may be interpolated for intermediate sizes than those shown in the table.
Cobalt reamers may be run at speeds 25% faster than those shown in the table for HSS.

FIGURE 5.36 Machine speeds and feeds for HSS reamers.



FORMULAS AND CALCULATIONS FOR MACHINING OPERATIONS 5.63

Morse taper reamers. These reamers are used to produce and maintain holes for
Anmerican standard Morse taper shanks. They usually come in a set of two, one
for roughing and the other for finishing the tapered hole.

Taper-pin reamers. Taper-pin reamers are produced in HSS with straight, spiral,
and helical flutes. They range in size from pin size 7/0 through 14 and include 21
different sizes to accommodate all standard taper pins.

Dowel-pin reamers. Dowel-pin reamers are produced in HSS for standard
length and jobbers’ lengths in 14 different sizes from 0.125 through 0.500 in. The
nominal reamer size is slightly smaller than the pin diameter to afford a force fit.

Helical-flute die-makers’ reamers. These reamers are used as milling cutters to
join closely drilled holes. They are produced from HSS and are available in 16
sizes ranging from size AAA through O.

Reamer blanks. Reamer blanks are available for use as gauges, guide pins, or
punches. They are made of HSS in jobbers’ lengths from 0.015- through 0.500-in
diameters. Fractional sizes through 1.00-in diameter and wire-gauge sizes are also
available.

Shell reamers. These reamers are designed for mounting on arbors and are best
suited for sizing and finishing operations. Most shell reamers are produced from
HSS. The inside hole in the shell reamer is tapered % in per foot and fits the taper
on the reamer arbor.

Expansion reamers. The hand expansion reamer has an adjusting screw at the
cutting end which allows the reamer flutes to expand within certain limits. The
recommended expansion limits are listed here for sizes through 1.00-in diameter:

Reamer size: 0.25- to 0.625-in diameter Expansion limit =0.010 in
Reamer size: 0.75- to 1.000-in diameter Expansion limit =0.013 in

NOTE. Expansion reamer stock sizes up to 3.00-in diameter are available.

5.6 BROACHING

Broaching is a precision machining operation wherein a broach tool is either pulled
or pushed through a hole in a workpiece or over the surface of a workpiece to pro-
duce a very accurate shape such as round, square, hexagonal, spline, keyway, and so
on. Keyways in gear and sprocket hubs are broached to an exact dimension so that
the key will fit with very little clearance between the hub of the gear or sprocket and
the shaft. The cutting teeth on broaches are increased in size along the axis of the
broach so that as the broach is pushed or pulled through the workpiece, a progres-
sive series of cuts is made to the finished size in a single pass.

Broaches are driven or pulled by manual arbor presses and horizontal or vertical
broaching machines. A single stroke of the broaching tool completes the machining
operation. Broaches are commonly made from premium-quality HSS and are sup-
plied either in single tools or as sets in graduated sizes and different shapes.

Broaches may be used to cut internal or external shapes on workpieces. Blind
holes also can be broached with specially designed broaching tools. The broaching
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tool teeth along the length of the broach are normally divided into three separate
sections. The teeth of a broach include roughing teeth, semifinishing teeth, and fin-
ishing teeth. All finishing teeth of a broach are the same size, while the semifinishing
and roughing teeth are progressive in size up to the finishing teeth.

A broaching tool must have sufficient strength and stock-removal and chip-
carrying capacity for its intended operation. An interval-pull broach must have suf-
ficient tensile strength to withstand the maximum pulling forces that occur during
the pulling operation. An internal-push broach must have sufficient compressive
strength as well as the ability to withstand buckling or breaking under the pushing
forces that occur during the pushing operation.

Broaches are produced in sizes ranging from 0.050 in to as large as 20 in or more.
The term button broach is used for broaching tools which produce the spiral lands
that form the rifling in gun barrels from small to large caliber. Broaches may be
rotated to produce a predetermined spiral angle during the pull or push operations.

Calculation of Pull Forces During Broaching. The allowable pulling force P is
determined by first calculating the cross-sectional area at the minimum root of the
broach. The allowable pull in pounds force is determined from

_AE
fs
where A, =minimum tool cross section, in’

F, = tensile yield strength or yield point of tool steel, psi
f; =factor of safety (generally 3 for pull broaching)

P

The minimum root cross section for a round broach is

nD?
A, = .
Ty

or 0.7854D?

where D, = minimum root diameter, in
The minimum pull-end cross section A, is

A =

P

D:-WD, or 0.7854Di-WD,

~|a

where D, =pull-end diameter, in
W = pull-slot width, in

Calculation of Push Forces During Broaching. Knowing the length L and the
compressive yield point of the tool steel used in the broach, the following relations
may be used in designing or determining the maximum push forces allowed in push
broaching.

If the length of the broach is L and the minimum tool diameter is D,, the ratio
L/D, should be less than 25 so that the tool will not bend under maximum load. Most
push broaches are short enough that the maximum compressive strength of the
broach material will allow much greater forces than the forces applied during the
broaching operation.
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If the L/D, ratio is greater than 25, compressive broaching forces may bend or
break the broach tool if they exceed the maximum allowable force for the tool. The
maximum allowable compressive force (pounds force) for a long push broach is
determined from the following equation:

5.6 x10'D}
(A%

where L is measured from the push end to the first tooth in inches.

Minimum Forces Required for Broaching Different Materials. For flat-surface
broaches,

F=WnRy
For round-hole internal broaches,
nDnR
F=
5 v
For spline-hole broaches,
nSWR
F=——
2

where  F=minimum pulling or pushing force required, Ibf
W = width of cut per tooth or spline, in
D =hole diameter before broaching, in
R =rise per tooth, in
n = maximum number of broach teeth engaged in the workpiece
S =number of splines (for splined holes only)
y = broaching constant (see Fig. 5.37 for values)

Material Value of ¢
Aluminum 200,000 - 300,000
Babbitt 25,000 - 85,000
Brass 200,000 - 300,000
Bronze 300,000 - 350,000
Cast irons 200,000 - 350,000
High temperature alloys 350,000 - 600,000
Mild steels 350,000 - 450,000
Steel castings 350,000 - 400,000
Titanium 325,000 - 375,000
Zinc alloys 200,000 - 250,000

Note: The tabular values given in the table have a limited value due
to the many variables involved in broaching, such as chipbreakers,

lubricating and cutting {luid efTects and other factors which tend to

increase or reduce the required cutting force as calculated using the
preceding equations.

FIGURE 5.37 Broaching constants y for various materials.
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Problem. You need to push-broach a 0.625-in-square hole through a 0.3125-in-
thick bar made of C-1018 mild steel. Your square broach has a rise per tooth R of
0.0035 in and a tooth pitch of 0.250 in.

Solution. Use the following equation (shown previously for flat-surface
broaches). Before broaching, drill a hole through the bar using a *-in-diameter
drill, or a drill which is 0.015 to 0.20 in larger than a side of the square hole.

F=WnRy

where W =0.625 in (side of square)
n =4 sides x 2 rows in contact = 8§ (maximum teeth in engagement)
R =0.0035 in, given or measured on the broach
v =400,000 (mean value given in Fig. 5.37 for mild steel)
F = maximum force, Ib, required on the broach, 1bf

So,
F=0.625x 8 x0.0035 x 400,000
F=7000 Ibf (maximum push force on the broach)

Now, measure the root diameter D, and length L of the broach, and use a factor
of safety f; of 2. Then check to see if your broach can withstand the 7000-1b push
force P required to broach the hole:

_5.6x10'(D,)*
A

If the root diameter D, of the square broach = 0.500 in, and the effective broach
length L =14 in, then:

5.6 x107(0.500)°
N 2(14)?
3,500,000
P= ’3T’2 =89291bf  (allowed push on the broach)

The calculations indicate that the square broach described will withstand the 7000-
Ib push, even though its /D, ratio is 14/0.500 = 28, which is greater than the ratio of 25.
We used the preceding equation because the broach L/D, ratio was greater than 25,
and we considered it a long broach, requiring the use of this equation. If the L/D, ratio
of the broach is less than 25, the use of this equation is normally not required.

5.7 VERTICAL BORING AND JIG BORING

The increased demand for accuracy in producing large parts initiated the refined
development of modern vertical and jig boring machines. Although the modern CNC
machining centers can handle small to medium-sized jig boring operations, very large
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and heavy work of high precision is done on modern CNC jig boring machines or ver-
tical boring machines. Also, any size work which requires extreme accuracy is usually
jig bored. The modern jig boring machines are equipped with high-precision spindles
and x/y coordinate table movements of high precision and may be CNC machines with
digital read-out panels. For a modern CNC/DNC jig boring operation, the circle diam-
eter and number of equally spaced holes or other geometric pattern is entered into the
DNC program and the computer calculates all the coordinates and orientation of the
holes from a reference point. This information is either sent to the CNC jig boring
machine’s controller or the machine operator can load this information into the con-
troller, which controls the machine movements to complete the machining operation.

Extensive tables of jig boring coordinates are not necessary with the modern
CNC jig boring or vertical boring machines. Figures 5.38 and 5.39 are for manually
controlled machines, where the machine operator makes the movements and coor-
dinate settings manually.

Vertical boring machines with tables up to 192 in in diameter are produced for
machining very large and heavy workpieces.

For manually controlled machines with vernier or digital readouts, a table of jig
boring dimensional coordinates is shown in Fig. 5.38 for dividing a 1-in circle into a
number of equal divisions. Since the dimensions or coordinates given in the table are
for xy table movements, the machine operator may use these directly to make the
appropriate machine settings after converting the coordinates for the required circle
diameter to be divided.

Figure 5.39 is a coordinate diagram of a jig bore layout for 11 equally spaced
holes on a 1-in-diameter circle. The coordinates are taken from the table in Fig. 5.38.
If a different-diameter circle is to be divided, simply multiply the coordinate values
in the table by the diameter of the required circle; i.e., for an 11-hole circle of 5-in
diameter, multiply the coordinates for the 11-hole circle by 5. Thus the first hole x
dimension would be 5 x 0.50000 = 2.50000 in, and so on. Figure 5.40 shows a typical
boring head for removable inserts.

5.8 BOLT CIRCLES (BCS) AND HOLE
COORDINATE CALCULATIONS

This covers calculating the hole coordinates when the bolt circle diameter and angle of
the hole is given. Refer to Fig. 5.41, where we wish to find the coordinates of the hole
in quadrant II, when the bolt circle diameter is 4.75 in, and the angle given is 37.5184°.

The radius R is therefore 2.375 in, and we can proceed to find the x or horizontal
ordinate from:

37.5184 = el
cos 37. =R
H=2.375 % cos 37.5184

H=2.375x%x0.7932
H=1.8839in
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Horizontal | Vertical Horizontal | Vertical
Hole No. X Y Hole No. X Y

Three holes: Thirteen holes:

1 0.50000 ! 0.50000

2 0.75000 0.43301 2 0.05727 0.23236

3 o 0.86602 3,13 0.15870 0.17913

Five holes: 4,12 0.22376 0.08486

1 0.50000 5,11 0.23757 0.02885

2 0.34549 0.47553 6,10 0.19695 0.13594

3,5 0.55902 0.18164 7,9 0.11121 0.21190

4 Pntanand 0.58778 8§ E— 0.23932

Six holes: Fourteen holes:

1,3,6 0.50000 1 0.50000

2,4,5 0.25000 0.4330] 2,89 0.04951 0.21694

Seven holes: 3,7,10, 14 (.13875 0.17397

i 0.50000 4,6,11,13 0.20048 0.09655

2 0.18826 0.39091 5,12 0.22252

3,7 0.42300 0.09655 Fifteen holes:

4,6 0.33923 0.27052 1 0.50000

5 - 0.43388 2 004323 0.20337

Eight holes: 3,15 0.12221 0.16820

1 0.50000 4,14 0.18005 0.1039¢6

2,5,6 0.14645 0.35355 5,13 0.20677 0.02173

3,4,7,8 0.35355 0.14645 6,12 0.19774 0.06425

Nine holes: 7,11 0.15451 0.13912

1 0.50000 8, 10 0.08456 0.18994

2 0.11698 0.32139 9 R 0.20790

3,9 0.29620 0.17101 Sixteen holes:

4,8 0.33682 0.05939 1 0.50000

5,7 0.21084 0.26200 2,9,10 0.03806 0.19134

[ 0.34202 3,811, 16 0.10839 0.16221

Ten holes: 4,7,12,15 0.16221 0.10839

! 0.50000 5,6,13,14 0.19134 0.03806

2,6,7 0.09549 0.29389 Seventeen holes

3,58, 10 0.25000 0.18164 1 0.50000

4,9 0.30902 2 0.03377 0.18062

Eleven holes: 3,17 0.09672 0.15623

1 0.50000 4,16 0.14664 0.11073

2 0.07937 0.27032 5,15 0.17674 0.05028

3,11 0.21292 0.18450 6, 14 0.18296 0.01695

4,10 0.27887 0.04009 7,13 0.16449 0.08190

59 0.25626 0.11704 8,12 012379 0.13580

6,8 0.15233 0.23701 9,11 0.06637 0.17134

A 028172 10 ] e 0.18374

Twelve holes: Eighteen holes:

1 0.50000 1 0.50000

2,7,8 0.06699 0.25000 2,10, 11 0.03016 0.17101

3,6,9,12 0.18301 0.18301 3,9,12,18 0.08682 0.15038

4,5,10,11 0.25000 0.06699 4,8,13,17 0.13302 0.11162
5,7,14,16 0.16318 0.05939
6,15 0.17364

FIGURE 5.38 Jig-boring coordinates for dividing the circle.
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Horizontal | Vertical Horizontal | Vertical

Hole No. X Y Hole No. X Y
Nineteen holes: 11,15 0.07076 0.11634
1 0.50000 12, 14 0.03673 0.13112
2 0.02709 0.16235 13 ] e 0.13616
3,10 0.07834 0.14475 Twenty-four holes
4,18 0.12110 0.11148 1 0.50000
5,17 0.15073 0.06612 2,13, 14 0.01704 0.12941
6,16 0.16403 0.01358 3,12,15,24 0.04995 0.12059
7,15 0.15956 0.04039 4,11,16,23 0.07946 0.10355
8,14 0.13779 0.09003 5,10,17,22 0.10355 0.07946
9,13 0.10110 0.12989 6,9,18,21 0.12059 0.04995
10, 12 0.05344 0.15567 7,8,19,20 0.12941 0.01704
L 0.16460 Twenty-five holes:
Twenty holes: 1 0.50000
1 0.50000 2 0.01508 0.12434
2,11,12 0.02447 0.15451 3,25 0.04677 0.11653
3,10,13,20 0.07102 0.13938 4,24 0.07367 0.10140
4,9,14,19 0.11062 0.11062 5,23 0.09657 0.07989
5,8,15,18 0.13938 0.07102 6,22 0.11340 0.05337
6,7, 16,17 0.15451 0.02447 7,21 0.12312 0.02348
Twenty-one holes: 8, 20 0.12508 0.00787
1 0.50000 9, 19 0.11920 0.03873
2 0.0222] 0.14738 10, 15 0.10582 0.06716
3,21 0.06467 0.13428 11,17 0.08580 0.09136
4,20 0.10138 0.10925 12,16 0.06038 0.10983
5,19 0.12908 0.07452 13,15 0.03116 0.12140
6,18 0.14530 0.03317 4 e 0.12532
7,17 0.14862 0.01114 Twenty-six holes:
8,16 0.13874 0.05445 1 0.50000
9,15 0.11652 0.09293 2,14,15 0.01454 0.11966
10, 14 0.08397 0.12314 3,13, 16,26 0.04273 0.11270
11,13 0.04393 0.14242 4,12,17,25 0.06848 0.09920
120 ] e 0.14904 5,11,18,24 0.09022 0.07993
Twenty-two holes: 6,10, 19,23 0.10673 0.05601
1 0.50000 7,9,20,22 0.11703 0.02885
2,12,13 0.02025 0.14086 8,21 0.12054
3,11, 14,22 0.05912 0.12946 Twenty-seven holes
4, 10, 15, 21 0.09321 0.10755 1 0.50000
5,9,16,20 0.11971 0.07695 2 0.01348 0.11530
6,8,17,19 0.13655 0.04009 3,27 0.03971 0.10910
7,18 0.14232 4,26 0.06379 0.09699
Twenty-three hole 35,25 0.08444 0.07967
1 0.50000 6,24 0.10054 0.05805
2 0.01854 0.13490 7,23 0.11121 0.03329
3,23 0.05425 0,12480 8,22 0.11580 0.00675
4,22 0.08593 0.10562 9,21 0.11433 0.02016
5,21 0.11125 0.07853 10,20 0.10660 0.04598
6,20 0.12830 0.04560 11,19 0.09312 0.06933
7,19 0.13585 0.00930 12,18 0.07462 0.08893
8,18 0.13331 0.02771 13,17 0.05210 0.10374
9,17 0.12091 0.06264 14, 16 0.02678 0.11297
10, 16 0.09951 0.09295 15 e 0.11608

FIGURE 5.38 (Continued) Jig-boring coordinates for dividing the circle.
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0.27887

0.04008
0.11704 0.18450

3
- 0.21202

4
0.26626 A

0.27032

! 1 X

L 0.50000 ‘- 0.07937
—— on
! /
X
| 0.21292
‘

@’/ 0.18450
N 0.27887

0.04008

0.25626

0.11704

FIGURE 5.39 Coordinate diagram.

FIGURE 540 A modern removable insert boring head.
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Find coordinates
BC =4.751n./—

Pt

RN

37.5184°

T AN
\ Origin

- Finding the given coordinates of holes
on any given bolt circle, (BC)
when angle A is known:
Boltcircle (BC)

sind = V=RsinA

»

where r = radius of BC
v = vertical ordinate (Y axis)
h = horizontal ordinate (X axis)
a =angle of hole from X axis

:alm :"‘.<

cosA=—; H=RcosA

FIGURE 5.41 Bolt circle and coordinate calculations.

The y or vertical ordinate is then found from:

. |4
sin 37.5184 = R

V' =2.375 x sin 37.5184°
V =2.375x%0.6090
V' =1.4464 in

Therefore, the x dimension = 1.8839 in, and the y dimension = 1.4464 in.
We can check these answers by using the pythagorean theorem:

R*=x*+y*
2.375%=1.8839> + 1.44647
5.6406 = 3.5491 + 2.0921

5.641 =5.641 (showing an equality accurate to 3 decimal places)
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(1.7573, 1.5197) Coordinates of hole

- $4.6465
/ \
~
e
]
\LO_8524' 2
v / 2.3233
1,5197 R

—_—

ft 1,7573 —m

Vertical ordinate Horizontal ordinate

. V H
= e 540.8524 =
sin40.8524 = cos )

H = Rcos40.8524
H =23233x0.7564
H =17573

V = Rsin40.8524
V =23233%x 06541
V =15197

FIGURE 5.42 Sample problem for locating coordinates.

Figure 5.42 shows another sample calculation for obtaining the coordinates of a

hole at 40.8524° on a bolt circle with a diameter of 4.6465 in.



CHAPTER 6

FORMULAS FOR SHEET
METAL LAYOUT AND
FABRICATION

The branch of metalworking known as sheet metal comprises a large and important
element. Sheet metal parts are used in countless commercial and military products.
Sheet metal parts are found on almost every product produced by the metalworking
industries throughout the world.

Sheet metal gauges run from under 0.001 in to 0.500 in. Hot-rolled steel products
can run from % in thick to no. 18 gauge (0.0478 in) and still be considered sheet.
Cold-rolled steel sheets are generally available from stock in sizes from 10 gauge
(0.1345 in) down to 28 gauge (0.0148 in). Other sheet thicknesses are available as
special-order “mill-run” products when the order is large enough. Large manufac-
turers who use vast tonnages of steel products, such as the automobile makers,
switch-gear producers, and other sheet metal fabricators, may order their steel to
their own specifications (composition, gauges, and physical properties).

The steel sheets are supplied in flat form or rolled into coils. Flat-form sheets are
made to specific standard sizes unless ordered to special nonstandard dimensions.

The following sections show the methods used to calculate flat patterns for
brake-bent or die-formed sheet metal parts. The later sections describe the geome-
try and instructions for laying out sheet metal developments and transitions. Also
included are calculations for punching requirements of sheet metal parts and tooling
requirements for punching and bending sheet metals.

Tables of sheet metal gauges and recommended bend radii and shear strengths
for different metals and alloys are shown also.

The designer and tool engineer should be familiar with all machinery used to
manufacture parts in a factory. These specialists must know the limitations of the
machinery that will produce the parts as designed and tooled. Coordination of
design with the tooling and manufacturing departments within a company is essen-
tial to the quality and economics of the products that are manufactured. Modern
machinery has been designed and is constantly being improved to allow the manu-
facture of a quality product at an affordable price to the consumer. Medium- to
large-sized companies can no longer afford to manufacture products whose quality
standards do not meet the demands and requirements of the end user.

6.1
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Modern Sheet Metal Manufacturing Machinery. The processing of sheet metal
begins with the hydraulic shear, where the material is squared and cut to size for the
next operation. These types of machines are the workhorses of the typical sheet
metal department, since all operations on sheet metal parts start at the shear.

Figure 6.1 shows a Wiedemann Optishear, which shears and squares the sheet
metal to a high degree of accuracy. Blanks which are used in blanking, punching, and
forming dies are produced on this machine, as are other flat and accurate pieces
which proceed to the next stage of manufacture.

FIGURE 6.1 Sheet metal shear.

The flat, sheared sheet metal parts may then be routed to the punch presses,
where holes of various sizes and patterns are produced. Figure 6.2 shows a medium-
sized computer numerically controlled (CNC) multistation turret punch press, which
is both highly accurate and very high speed.

Many branches of industry use large quantities of sheet steels in their products.
The electrical power distribution industries use very large quantities of sheet
steels in 7-, 11-, 13-, and 16-gauge thicknesses. A lineup of electrical power distri-
bution switchgear is shown in Fig. 6.3; the majority of the sheet metal is 11 gauge
(0.1196 in thick).

Gauging Systems. To specify the thickness of different metal products, such as
steel sheet, wire, strip, tubing, music wire, and others, a host of gauging systems were
developed over the course of many years. Shown in Fig. 6.4 are the common gauging
systems used for commercial steel sheet, strip, and tubing and brass and steel wire.
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FIGURE 6.2 CNC multistation turret punch press.

FIGURE 6.3 Industrial equipment made from sheet metal.
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Brass . . .
B & |Steel Sheets Strip & Steel Wire
Gauge No. | (Brown . Y
8 : * Tubin G
Sharpe) g a. ¢
6-0 05800 ] e ] e - 0.4615
50 0.5165 0.500 0.4305
40 0.4600 0.454 0.3938
30 0.4096 0.425 0.3625
2-0 0.3648 0.380 0.3310
[] 0.3249 04.340 0.3065
1 0.2893 0.300 0.2830
2 0.2576 0.284 0.2625
3 0.2294 0.2391 0.259 0.2437
4 0.2043 0.2242 0.238 0.2253
5 0.1819 0.2092 0.220 0.2070
6 0.1620 0.1943 0.203 0.1920
7 0.1443 0.1793 0.180 0.1770
8 .1285 0.1644 0.165 0.1620
9 0.1144 0.1495 0.148 0.1483
10 0.1019 0.1345 \/ 0.134 0.1350
11 0.0907 0.1196 0.120 0.1205
12 0.0808 0.1046 0.109 0.1055
13 0.0720 0.0897 0.095 0.0915
14 0.0641 0.0747 0.083 0.0800
15 0.0571 0.0673 0.072 0.0720
16 0.0508 0.0598 0.065 0.0625
17 0.0453 0.0538 0.058 0.0540
18 0.0403 0.0478 0.049 0.0475
19 0.0359 00418 0.042 0.0410
20 0.0320 0.0359 0.035 0.0348
21 0.0285 0.0329 0.032 0.0317
22 0.0253 0.0299 0.028 0.0286
23 0.0226 0.0269 0.025 00258
24 0.0201 0.0239 0.022 0.0230
25 0.0179 0.0209 0.020 0.0204
26 0.015% 0.0179 0.018 0.0181
27 0.0142 0.0164 0.016 0.0173
28 0.0126 0.0149 0014 0.0162
29 0.0113 0.0135 0.013 0.0150
30 0.0100 0.0120 0.012 0.0140
31 0.0089 0.0105 0010 0.0132
32 0.0080 0.0097 0.009 0.0[28
33 0.0071 0.0090 0.008 0.01(8
34 0.0063 0.0082 0.0104
35 0.0056 0.0075 0.0095
36 0.0050 0.0067 0.0090
37 0.0045 0.0064 0.0085
38 0.0040 0.0060 0.0080

*= Clommon Commercial Standard; ¢ = Reference only

FIGURE 64 Modern gauging system chart.

The steel sheets column in Fig. 6.4 lists the gauges and equivalent thicknesses used
by American steel sheet manufacturers and steelmakers. This gauging system can be
recognized immediately by its 11-gauge equivalent of 0.1196 in, which is standard
today for this very common and high-usage gauge of sheet steel.

Figure 6.5 shows a table of gauging systems that were used widely in the past,
although some are still in use today, including the American or Brown and Sharpe
system. The Brown and Sharpe system is also shown in Fig. 6.4, but there it is indi-
cated in only four-place decimal equivalents.

Figure 6.6 shows weights versus thicknesses of steel sheets.
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Standard gauge
number Weight, oz/ft? Weight, 1b/ft? Thickness, in

3 160 10.0000 0.2391

4 150 9.3750 0.2242

5 140 8.7500 0.2092

6 130 8.1250 0.1943

7 120 7.5000 0.1793

8 110 6.8750 0.1644

9 100 6.2500 0.1495
10 90 5.6250 0.1345
11 80 5.0000 0.1196
12 70 4.3750 0.1046
13 60 3.7500 0.0897
14 50 3.1250 0.0747
15 45 2.8125 0.0673
16 40 2.5000 0.0598
17 36 2.2500 0.0538
18 32 2.0000 0.0478
19 28 1.7500 0.0418
20 24 1.5000 0.0359
21 22 1.3750 0.0329
22 20 1.2500 0.0299
23 18 1.1250 0.0269
24 16 1.0000 0.0239
25 14 0.87500 0.0209
26 12 0.75000 0.0179
27 11 0.68750 0.0164
28 10 0.62500 0.0149
29 9 0.56250 0.0135
30 8 0.50000 0.0120
31 7 0.43750 0.0105
32 6.5 0.40625 0.0097
33 6 0.37500 0.0090
34 55 0.34375 0.0082
35 5 0.31250 0.0075
36 4.5 0.28125 0.0067
37 4.25 0.26562 0.0064
38 4 0.25000 0.0060

FIGURE 6.6 Standard gauges and weights of steel sheets.

Aluminum Sheet Metal Standard Thicknesses. Aluminum is used widely in the
aerospace industry, and over the years, the gauge thicknesses of aluminum sheets
have developed on their own. Aluminum sheet is now generally available in the
thicknesses shown in Fig. 6.7. The fact that the final weight of an aerospace vehicle is
very critical to its performance has played an important role in the development of
the standard aluminum sheet gauge sizes.
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Standard Thickness, in. Weight, Ibs/sq. ft.
0.010 0.141
0.016 0.226
0.020 0.282
0.025 0.353
0.032 0.452
0.040 0.564
0.050 0.706
0.063 0.889
0.071 1.002
0.080 1.129
0.080 1.270
0.100 1417
0.125 1.764
0.160 2.258
0.190 2.681
0.250 3.528

Weight based on an average aluminum weight of 0.038 Ib/in®

FIGURE 6.7 Standard aluminum sheet metal thicknesses and weights.

6.1 SHEET METAL FLAT-PATTERN
DEVELOPMENT AND BENDING

The correct determination of the flat-pattern dimensions of a sheet metal part which
is formed or bent is of prime importance to sheet metal workers, designers, and
design drafters. There are three methods for performing the calculations to deter-
mine flat patterns which are considered normal practice. The method chosen also
can determine the accuracy of the results. The three common methods employed for
doing the work include

1. By bend deduction (BD) or setback
2. By bend allowance (BA)
3. By inside dimensions (IML), for sharply bent parts only

Other methods are also used for calculating the flat-pattern length of sheet metal
parts. Some take into consideration the ductility of the material, and others are
based on extensive experimental data for determining the bend allowances. The
methods included in this section are accurate when the bend radius has been
selected properly for each particular gauge and condition of the material. When the
proper bend radius is selected, there is no stretching of the neutral axis within the
part (the neutral axis is generally accepted as being located 0.445 x material thick-
ness inside the inside mold line [IML]) (see Figs. 6.8a and b for calculations, and also
see Fig. 6.9).

Methods of Determining Flat Patterns. Refer to Fig. 6.9.
Method 1. By bend deduction or setback:

L =a+ b —setback
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(Neutral axis)
44.5% line

radius l—————’Flat dimension *
——L T=0.250

0.611R" 0.445 x T IML

b7 1

0.750R 0.500R

Calculate the neutral axis radius
and length of the natural axis at
radius = 0.611%

Flat
Dimension

Neutral axis radius =
(0445 x 0.250) + 0500 =0611R

2MR
Length of neutral axis = -

ML
2(31416)0.611 _ 3839

4
——JI 3.25 :<—

4

3.50

T,
()

FIGURE 6.8 Calculating the neutral axis radius and length.

=0.960

Method 2. By bend allowance:
L=d+b +c

where ¢ = bend allowance or length along neutral axis (see Fig. 6.9).
Method 3. By inside dimensions or inside mold line (IML):

L=(a-T)+(b-T)

The calculation of bend allowance and bend deduction (setback) is keyed to Fig.
6.10 and is as follows:
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7.710
( Flat pattern length )

3.50 3.25

S
|

e —-— (Q.960

(Length of ncutral axis)

ceL ( Center of bend line)
(b)

FIGURE 6.8 (Continued) Calculating the neutral axis radius and length.

Ll

FIGURE 6.9 Bend allowance by neutral axis c.
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/>¥ =5

/
R A el
L— Neutral axis
44.5% out from i.m.l.

X

—— —f

i.m.l = Inside mold line

o m.l (Heel of angle) " !
o.m.l. = Outside mold line

FIGURE 6.10 Bend allowance and deduction.

Bend allowance (BA) = A(0.01745R + 0.007787)
1
Bend deduction (BD) = (2 tan — )(R +7T)-(BA)

X= (tan % A)(R +7)

1
Z= T(tan 2 A)

1
Y=X-Z or R(tanEA>
On “open” angles that are bent less than 90° (see Fig. 6.11),

X= (tan = )(R+T)

Setback or J Chart for Determining Bend Deductions. Figure 6.12 shows a form of
bend deduction (BD) or setback chart known as a J chart. You may use this chart to
determine bend deduction or setback when the angle of bend, material thickness, and
inside bend radius are known. The chart in the figure shows a sample line running
from the top to the bottom and drawn through the ¥s-in radius and the material thick-
ness of 0.075 in. For a 90° bend, read across from the right to where the line intersects
the closest curved line in the body of the chart. In this case, it can be seen that the line
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/\ Tangent point

/ /T

Heel point

X (Intersection of o.m.l."'s)

FIGURE 6.11 Open angles less than 90 degrees.

intersects the curve whose value is 0.18. This value is then the required setback or

bend deduction for a bend of 90° in a part whose thickness is 0.075 in with an inside

bend radius of ¥ in. If we check this setback or bend deduction value using the appro-

priate equations shown previously, we can check the value given by the J chart.
Checking. Bend deduction (BD) or setback is given as

1
Bend deduction or setback = (2 tan 2 A)(R +T)—-(BA)

We must first find the bend allowance from
Bend allowance = A(0.01745R + 0.00778T)
=90(0.01745 x 0.1875 + 0.00778 x 0.075)
=90(0.003855)
=0.34695

Now, substituting the bend allowance of 0.34695 into the bend deduction equation
yields

1
Bend deduction or setback = [2 tan £} (90)](0.1875 +0.075) — 0.34695

= (2 x 1)(0.2625) — 0.34695
=0.525 - 0.34695
=0.178 or 0.18, as shown in the chart (Fig. 6.12)

The J chart in Fig. 6.12 is thus an important tool for determining the bend deduc-
tion or setback of sheet metal flat patterns without recourse to tedious calculations.
The accuracy of this chart has been shown to be of a high order. This chart as well as



FORMULAS FOR SHEET METAL LAYOUT AND FABRICATION

RADIUS

I%x l'ls-i !%1 rz.[ [Jf%l F%J [§§1 [‘LJ &1 r‘%x P%I [';’J 321 [‘I‘Gl

!
32

!
SET BACK CR J CHART

CLOSED
BEVEL
4
o
RADIUS
3
e

[

Y— OPEN BEVEL

A

6.13

(=}
2
d
9
v
e g
b
Y
= g
o
20| . — " J;// Il z
T n g by
aefer - /”/ /'l/ / s

2 : fo e 2

et A /
) i 1 = / 0
= N /ﬂ‘/ P / |
o . /
as Y £
o P
[ = T ) / /
4 /A B,
e s o5 /
- Y ; /
45 L I 2 < ~—as
—— T by / /
//‘/ 02 /
/ o
55— / - - 55
7
" |
DEVELGPED LENGTH = A+ B-J (J = AMOUNT TO BE DEDUCTED FROM SUM OF FINISHED DIMENTIONS AOS)

vm“mrmpmrmvmrmpmrmwmrmlmrmpmrﬂpmrmpmrmpmvmpﬂrm“mrmpm
] QT 060 030 030 Qo
THICKNESS

120 Jo 400 [s0 080 020

FIGURE 6.12 ] chart for setback.

the equations were developed after extensive experimentation and practical work-
ing experience in the aerospace industry.

Bend Radii for Aluminum Alloys and Steel Sheets (Average). Figures 6.13 and
6.14 show average bend radii for various aluminum alloys and steel sheets. For other
bend radii in different materials and gauges, see Table 6.1 for bend radii of different
alloys, in terms of material thickness.



6.14 CHAPTER SIX

Aluminum Alloy Designation
Material 6061-T6
Gauge 5052-H36 5052-H22
1100-H18 3003-H14 2024-T3

0.010 0.062 0.031 0.062
0.020 0.062 0.031 0.062
0.030 0.062 0.031 0.125
0.040 0.125 0.031 0.250
0.050 0.125 0.031 0.250
0.070 0.250 0.062 0.250
0.080 0.250 0.062 0.375
0.090 0.375 0.125 0.375
0.120 0.375 0.125 0.500
0.190 0.750 0.250 0.750
0.250 1.000 0.500 1.000

FIGURE 6.13 Bend radii for aluminum sheet metal.

6.2 SHEET METAL DEVELOPMENTS,
TRANSITIONS, AND ANGLED CORNER
FLANGE NOTCHING

The layout of sheet metal as required in development and transition parts is an
important phase of sheet metal design and practice. The methods included here will
prove useful in many design and working applications. These methods have applica-
tion in ductwork, aerospace vehicles, automotive equipment, and other areas of
product design and development requiring the use of transitions and developments.

Steel Designation
Material Gauge
AISI 1020 302-303-304S/S
0.010 0.031 0.031
0.020 0.031 0.031
0.030 0.031 0.031
0.040 0.031 0,031
0.050 0.031 0.031
0.060 0.031 0.062
0.070 0.031 0.062
0.080 0.031 0.062
0.090 0.062 0.062
0.120 0.062 0.125
0.190 0.125 0.250
0.250 0.126 0.250

FIGURE 6.14 Bend radii for steel sheets.
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TABLE 6.1 Minimum Bend Radii for Metals and Alloys in Multiples of Material Thickness, in

Thickness, in

Material 0.015 0.031 0.063 0.093 0125 0.18  0.250
Carbon steels
SAE 1010 S S S S S 0.5 0.5
SAE 1020-1025 0.5 0.5 1.0 1.0 1.0 1.1 1.25
SAE 1070 & 1095 3.75 3.0 2.6 2.7 2.5 2.7 2.8
Alloy steels
SAE 4130 & 8630 0.5 2.0 1.5 1.7 1.5 1.7 1.9
Stainless steels
AISI 301,302,304 (A) 0.5 0.5 0.75
AISI 316 (A) 0.5 0.5 0.75
AISI 410,430 (A) 1.0 1.0 1.25
AISI 301,302,304 (CR) 4 H 05— 05 10— 1.0 1.25
AISI316 %4 H 1.0 1.0 1.25
AISI 301,302,304 4 H 1.0 1.0 1.25
AISI 316 4 H 2.0 2.0 3.0 2.0 2.0 2.0 2.5
AISI 301,302,304 H 2.0 2.0 1.5 1.5 1.5 1.5 1.5
Aluminum alloys
1100 (6] 0 0 0 0 0 0 0
Hi12 0 0 0 0 0 3.0 6.0
H14 0 0 0 0 0 3.0 6.0
H1 0 0 2.0 3.0 4.0 8.0 16.0
Hi18 1.0 2.0 4.0 6.0 8.0 16.0 240
2014 & Alclad (6] 0 0 0 0 0 3.0 6.0
T6 2.0 4.0 8.0 15.0 20.0 36.0 64.0
2024 & Alclad (6] 0 0 0 0 0 3.0 6.0
T3 2.0 4.0 8.0 15.0 20.0 30.0 48.0
3003, 5005, (6] 0 0 0 0 0 0 0
5357,5457 HI12/H32 0 0 0 0 0 3.0 6.0
H14/H34 0 0 0 1.0 2.0 4.0 8.0
H16/H36 0 1.0 3.0 5.0 6.0 120 240
HI18/H38 1.0 2.0 5.0 9.0 12.0 240  40.0
5050, 5052, (6] 0 0 0 0 2.0 3.0 4.0
5652 H32 0 0 2.0 3.0 4.0 6.0 12.0
H34 0 0 2.0 4.0 5.0 9.0 16.0
H36 1.0 1.0 4.0 5.0 8.0 180 240
H38 1.0 2.0 6.0 9.0 12.0 240  40.0
6061 (6] 0 0 0 0 2.0 3.0 4.0
T6 1.0 2.0 4.0 6.0 9.0 180  28.0
7075 & Alclad (0] 0 0 2.0 3.0 5.0 9.0 18.0
T6 2.0 4.0 12.0 18.0 24.0 36.0 64.0
7178 (6] 0 0 2.0 3.0 5.0 9.0 18.0
T6 2.0 4.0 12.0 21.0 28.0 420  80.0
Copper & alloys
ETP 110 Soft S S S S 0.5 0.5 1.0
Hard S 1.0 15 2.0 2.0 2.0 2.0

(Continues)
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TABLE 6.1 (Continued) Minimum Bend Radii for Metals and Alloys in Multiples of
Material Thickness, in

Thickness, in

Material 0.015 0.031 0.063 0.093 0125 0.18  0.250
Copper & alloys
Alloy 210 %“H S S S S S 0.5 1.0
% H S S S S S 1.0 1.5
H S S S S S — —
EH S 0.5 0.5 0.5 0.5 — —
Alloy 260 %“H S S S N S 0.5 1.0
%»H S S S 0.3 0.3 — —
H S 0.5 0.5 0.5 1.0 — —
EH 2.0 2.0 1.5 2.0 2.0 — —
Alloy 353 % H N S S S S 0.5 1.0
%»H S 0.5 0.5 0.7 0.3 — —
H 2.0 2.0 1.5 2.0 2.0 — —
EH 6.0 6.0 4.0 4.0 4.0 — —
Magnesium sheet @ 70°F
AZ31B-O (SB) 3.0 3.0
AZ31B-O 5.5 55
AZ31B-H24 8.0 8.0
HK31A-O 6.0 6.0
HK31A-H24 13.0 13.0
HM21A-T8 9.0 9.0
HM21A-T81 10.0 10.0
LA141A-O 3.0 3.0
ZE10A-O 5.5 5.5
ZE10A-H24 8.0 8.0
Titanium & alloys @ 70°F
Pure (A) 3.0 3.0 3.0 35 35 35 35
Ti-8Mn (A) 4.0 4.0 4.0 4.0 5.0 5.0 5.0
Ti-5A1-2.5Sn (A) 5.5 5.5 55 55 6.0 6.0 6.0
Ti-6Al-4V (A) 45 45 45 5.0 5.0 5.0 5.0
Ti-6Al-4V (ST) 7.0 7.0
Ti-6Al-6V-2Sn (A) 4.0 4.0
Ti-13V-11Cr-3Al (A) 3.0 3.0 3.0 35 35 35 35
Ti-4Al-3Mo-1V (A) 35 35 35 4.0 4.0 4.0 4.0
Ti-4Al-3Mo-1V (ST) 5.5 5.5 5.5 6.0 6.0 6.0 6.0

Note: S =sharp bend; O =sharp bend; SB =special bending quality; A = annealed; ST = solution treated;
H = hard; EH = extra hard. Magnesium sheet may be bent at temperatures to 800°F. Titanium may be bent
at temperatures to 1000°F. On copper and alloys, direction of bending is at 90° to direction of rolling (bend
radii must be increased 10 to 20 percent at 45° and 25 to 35 percent parallel to direction of rolling). The tab-
ulated values of the minimum bend radii are given in multiples of the material thickness. The values of the
bend radii should be tested on a test specimen prior to die design or production bending finished parts.

When sheet metal is to be formed into a curved section, it may be laid out, or
developed, with reasonable accuracy by triangulation if it forms a simple curved sur-
face without compound curves or curves in multiple directions. Sheet metal curved
sections are found on many products, and if a straight edge can be placed flat against
elements of the curved section, accurate layout or development is possible using the
methods shown in this section.
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On double-curved surfaces such as are found on automobile and truck bodies and
aircraft,forming dies are created from a full-scale model in order to duplicate these com-
pound curved surfaces in sheet metal. The full-scale models used in aerospace vehicle
manufacturing facilities are commonly called mock-ups, and the models used to trans-
fer the compound curved surfaces are made by tool makers in the tooling department.

Skin Development (Outside Coverings). Skin development on aerospace vehicles
or other applications may be accomplished by triangulation when the surface is not
double curved. Figure 6.15 presents a side view of the nose section of a simple air-
craft. If we wish to develop the outer skin or sheet metal between stations 20.00 and
50.00, the general procedure is as follows: The master lines of the curves at stations
20.00 and 50.00 must be determined. In actual practice, the curves are developed by
the master lines engineering group of the company, or you may know or develop your
own curves. The procedure for layout of the flat pattern is as follows (see Fig. 6.16):

1. Divide curve A into a number of equally spaced points. Use the spline lengths
(arc distances), not chordal distances.

2. Lay an accurate triangle tangent to one point on curve A, and by parallel action,
transfer the edge of the triangle back to curve B and mark a point where the edge

0.00 20.00

Profile view

» =

Curved section
| | l
' /

]
Flat pattern

FIGURE 6.15 Skin development.
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FIGURE 6.16 Skin development method.

of the triangle is tangent to curve B (e.g., point b on curve A back to point 4 on
curve B; see Fig. 6.16b). Then parallel transfer all points on curve A back to curve
B and label all points for identification. Draw the element lines and diagonals on
the frontal view, that is, 1A, 2B, 3C, etc.

. Construct a true-length diagram as shown in Fig. 6.16a, where all the element and
diagonal true lengths can be found (elements are 1,2, 3, 4, etc.: diagonals are A,
B, C, D, etc.). The true distance between the two curves is 30.00; that is, 50.00 —
20.00, from Fig. 6.15.

. Transfer the element and diagonal true-length lines to the triangulation flat-
pattern layout as shown in Fig. 6.16¢c. The triangulated flat pattern is completed
by transferring all elements and diagonals to the flat-pattern layout.

Canted-Station Skin Development (Bulkheads at an Angle to Axis). When the
planes of the curves A and B (Fig. 6.17) are not perpendicular to the axis of the
curved section, layout procedures to determine the true lengths of the element and
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FIGURE 6.17 Canted-station skin development.

diagonal lines are as shown in Fig. 6.17. The remainder of the procedure is as
explained in Fig. 6.16 to develop the triangulated flat pattern.

In aerospace terminology, the locations of points on the craft are determined by
station, waterline, and buttline. These terms are defined as follows:

Station: The numbered locations from the front to the rear of the craft.

Waterline: The vertical locations from the lowest point to the highest point of the
craft.

Buttline: The lateral locations from the centerline of the axis of the craft to the
right and to the left of the axis of the craft. There are right buttlines and left butt-
lines.

With these three axes, any exact point on the craft may be described or dimensioned.

Developing Flat Patterns for Multiple Bends. Developing flat patterns can be
done by bend deduction or setback. Figure 6.18 shows a type of sheet metal part that
may be bent on a press brake. The flat-pattern part is bent on the brake, with the cen-
ter of bend line (CBL) held on the bending die centerline. The machine’s back gauge
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FIGURE 6.18 Flat pattern development.

is set by the operator in order to form the part. If you study the figure closely, you can
see how the dimensions progress: The bend deduction is drawn in, and the next
dimension is taken from the end of the first bend deduction. The next dimension is
then measured, the bend deduction is drawn in for that bend, and then the next
dimension is taken from the end of the second bend deduction, etc. Note that the sec-
ond bend deduction is larger because of the larger radius of the second bend (0.16R).
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Stiffening Sheet Metal Parts. On many sheet metal parts that have large areas,
stiffening can be achieved by creasing the metal in an X configuration by means of
brake bending. On certain parts where great stiffness and rigidity are required, a
method called beading is employed. The beading is carried out at the same time as
the part is being hydropressed, Marformed, or hard-die formed. See Sec. 6.5 for data
on beading sheet metal parts, and other tooling requirements for sheet metal.

Another method for stiffening the edge of a long sheet metal part is to hem or
Dutch bend the edge. In aerospace and automotive sheet metal parts, flanged light-
ening holes are used. The lightening hole not only makes the part lighter in weight
but also more rigid. This method is used commonly in wing ribs, airframes, and gus-
sets or brackets. The lightening hole need not be circular but can take any conve-
nient shape as required by the application.

Typical Transitions and Developments. The following transitions and develop-
ments are the most common types, and learning or using them for reference will
prove helpful in many industrial applications. Using the principles shown will enable
you to apply these to many different variations or geometric forms.

Development of a Truncated Right Pyramid. Refer to Fig. 6.19. Draw the projec-
tions of the pyramid that show (1) a normal view of the base or right section and (2)
anormal view of the axis. Lay out the pattern for the pyramid and then superimpose
the pattern on the truncation.

Since this is a portion of a right regular pyramid, the lateral edges are all of equal
length. The lateral edges OA and OD are parallel to the frontal plane and conse-
quently show in their true length on the front view. With the center at O,, taken at
any convenient place, and a radius OAr, draw an arc that is the stretchout of the

Stretchout
( or ginth

Right section and base

FIGURE 6.19 Development of a truncated right pyramid.
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pattern. On it, step off the six equal sides of the hexagonal base obtained from the
top view, and connect these points successively with each other and with the vertex
O, thus forming the pattern for the pyramid.

The intersection of the cutting plane and lateral surfaces is developed by laying
off the true length of the intercept of each lateral edge on the corresponding line of
the development. The true length of each of these intercepts, such as OH, OJ, etc.,is
found by rotating it about the axis of the pyramid until it coincides with OzAr as pre-
viously explained. The path of any point, such as H, will be projected on the front
view as a horizontal line. To obtain the development of the entire surface of the trun-
cated pyramid, attach the base; also find the true size of the cut face, and attach it on
a common line.

Development of an Oblique Pyramid. Refer to Fig. 6.20. Since the lateral edges
are unequal in length, the true length of each must be found separately by rotating
it parallel to the frontal plane. With O, taken at any convenient place, lay off the
seam line O;A; equal to OpAg. With A; as center and radius O;B; equal to OBk,
describe a second arc intersecting the first in vertex B;. Connect the vertices Oy, A;,
and Bj, thus forming the pattern for the lateral surface OAB. Similarly, lay out the
pattern for the remaining three lateral surfaces, joining them on their common
edges. The stretchout is equal to the summation of the base edges. If the complete
development is required, attach the base on a common line.

Development of a Truncated Right Cylinder. Refer to Fig. 6.21. The development
of a cylinder is similar to the development of a prism. Draw two projections of the
cylinder:

A, 4~ Seam line O,

C, Dy
N

Or

b e e s

S

B

Stretchout or girth

Ca Ba As  Dn

FIGURE 6.20 Development of an oblique pyramid.
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and base

FIGURE 6.21 Development of a truncated right cylinder.

1. A normal view of a right section

2. A normal view of the elements

In rolling the cylinder out on a tangent plane, the base or right section, being per-
pendicular to the axis, will develop into a straight line. For convenience in drawing,
divide the normal view of the base, shown here in the bottom view, into a number of
equal parts by points that represent elements. These divisions should be spaced so
that the chordal distances approximate the arc closely enough to make the
stretchout practically equal to the periphery of the base or right section.

Project these elements to the front view. Draw the stretchout and measuring
lines, the cylinder now being treated as a many-sided prism. Transfer the lengths of
the elements in order, either by projection or by using dividers, and join the points
thus found by a smooth curve. Sketch the curve in very lightly, freehand, before fit-
ting the French curve or ship’s curve to it. This development might be the pattern for
one-half of a two-piece elbow.

Three-piece, four-piece, and five-piece elbows may be drawn similarly, as illus-
trated in Fig. 6.22. Since the base is symmetrical, only one-half of it need be
drawn. In these cases, the intermediate pieces such as B, C, and D are developed
on a stretchout line formed by laying off the perimeter of a right section. If the
right section is taken through the middle of the piece, the stretchout line
becomes the center of the development. Evidently, any elbow could be cut from
a single sheet without waste if the seams were made alternately on the long and
short sides.

Development of a Truncated Right Circular Cone. Refer to Fig. 6.23. Draw the
projection of the cone that will show (1) a normal view of the base or right section
and (2) a normal view of the axis. First, develop the surface of the complete cone and
then superimpose the pattern for the truncation.
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FIGURE 6.22 Development of a five-piece elbow.

Divide the top view of the base into a sufficient number of equal parts that the
sum of the resulting chordal distances will closely approximate the periphery of the
base. Project these points to the front view, and draw front views of the elements
through them. With center A, and a radius equal to the slant height A I, which is the
true length of all the elements, draw an arc, which is the stretchout. Lay off on it the
chordal divisions of the base, obtained from the top view. Connect these points 2, 3,
4,5, etc. with Ay, thus forming the pattern for the cone.

Stretchout or girth

7

Right section and base

FIGURE 6.23 Development of a truncated circular cone.
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Find the true length of each element from vertex to cutting plane by rotating it to
coincide with the contour element A,, and lay off this distance on the corresponding
line of the development. Draw a smooth curve through these points. The pattern for
the cut surface is obtained from the auxiliary view.

Triangulation. Nondevelopable surfaces are developed approximately by assum-
ing them to be made of narrow sections of developable surfaces. The most common
and best method for approximate development is triangulation, that is, the surface is
assumed to be made up of a large number of triangular strips or plane triangles with
very short bases. This method is used for all warped surfaces as well as for oblique
cones. Oblique cones are single-curved surfaces that are capable of true theoretical
development, but they can be developed much more easily and accurately by trian-
gulation.

Development of an Oblique Cone. Refer to Fig. 6.24. An oblique cone differs from
a cone of revolution in that the elements are all of different lengths. The develop-
ment of a right circular cone is made up of a number of equal triangles meeting at
the vertex whose sides are elements and whose bases are the chords of short arcs of
the base of the cone. In the oblique cone, each triangle must be found separately.

One haif of deveiopment

Elements

7
///////// /

Ce —_—
123 4¢ S5¢ 66 76 8:9:10¢

T108 8 76 54 321C

FIGURE 6.24 Development of an oblique cone.

Draw two views of the cone showing (1) a normal view of the base and (2) a
normal view of the altitude. Divide the true size of the base, shown here in the
top view, into a number of equal parts such that the sum of the chordal distances
will closely approximate the length of the base curve. Project these points to the
front view of the base. Through these points and the vertex, draw the elements in
each view.

Since the cone is symmetrical about a frontal plane through the vertex, the ele-
ments are shown only on the front half of it. Also, only one-half of the development
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is drawn. With the seam on the shortest element, the element OC will be the center-
line of the development and may be drawn directly at O,Cy, since its true length is
given by O;Cr.

Find the true length of the elements by rotating them until they are parallel to the
frontal plane or by constructing a true-length diagram. The true length of any ele-
ment will be the hypotenuse of a triangle with one leg the length of the projected
element, as seen in the top view, and the other leg equal to the altitude of the cone.
Thus, to make the diagram, draw the leg OD coinciding with or parallel to OrDr. At
D and perpendicular to OD, draw the other leg, and lay off on it the lengths D1, D2,
etc. equal to D14, D424, etc., respectively. Distances from point O to points on the
base of the diagram are the true lengths of the elements.

Construct the pattern for the front half of the cone as follows. With O, as the cen-
ter and radius O1, draw an arc. With C; as center and the radius C;1;, draw a second
arc intersecting the first at 1,. Then O,1, will be the developed position of the ele-
ment O1. With 1, as the center and radius 1,27, draw an arc intersecting a second arc
with O, as center and radius O2, thus locating 2,. Continue this procedure until all
the elements have been transferred to the development. Connect the points Cy, 14,
24, etc. with a smooth curve, the stretchout line, to complete the development.

Conical Connection Between Two Cylindrical Pipes. Refer to Fig. 6.24. The
method used in drawing the pattern is the application of the development of an
oblique cone. One-half the elliptical base is shown in true size in an auxiliary view
(here attached to the front view). Find the true size of the base from its major and
minor axes; divide it into a number of equal parts so that the sum of these chordal
distances closely approximates the periphery of the curve. Project these points to the
front and top views. Draw the elements in each view through these points, and find
the vertex O by extending the contour elements until they intersect.

The true length of each element is found by using the vertical distance between
its ends as the vertical leg of the diagram and its horizontal projection as the other
leg. As each true length from vertex to base is found, project the upper end of the
intercept horizontally across from the front view to the true length of the corre-
sponding element to find the true length of the intercept. The development is drawn
by laying out each triangle in turn, from vertex to base, as in Fig. 6.25, starting on the
centerline O,Cy, and then measuring on each element its intercept length. Draw
smooth curves through these points to complete the pattern.

Development of Transition Pieces. Refer to Figs. 6.26 and 6.27. Transitions are
used to connect pipes or openings of different shapes or cross sections. Figure 6.26,
showing a transition piece for connecting a round pipe and a rectangular pipe, is typ-
ical. These pieces are always developed by triangulation. The piece shown in Fig. 6.26
is, evidently, made up of four triangular planes whose bases are the sides of the rect-
angle and four parts of oblique cones whose common bases are arcs of the circle and
whose vertices are at the corners of the rectangle. To develop the piece, make a true-
length diagram as shown in Fig. 6.24. The true length of O1 being found, all the sides
of triangle A will be known. Attach the developments of cones B and B', then those
of triangle C and C', and so on.
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FIGURE 6.25 Development of a conical connection between two cylinders.

Figure 6.27 is another transition piece joining a rectangle to a circular pipe whose
axes are not parallel. By using a partial right-side view of the round opening, the
divisions of the bases of the oblique cones can be found. (Since the object is sym-
metrical, only one-half the opening need be divided.) The true lengths of the ele-
ments are obtained as shown in Fig. 6.26.

Triangulation of Warped Surfaces. The approximate development of a warped
surface is made by dividing it into a number of narrow quadrilaterals and then split-

Stretchout

AN —a
34251 6756 9

FIGURE 6.26 Development of a transition piece.
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Vv,

~ Stretchout

FIGURE 6.27 Development of a transition piece.

ting each of these into two triangles by a diagonal line, which is assumed to be a
straight line, although it is really a curve. Figure 6.28 shows a warped transition piece
that connects on ovular (upper) pipe with a right-circular cylindrical pipe (lower).
Find the true size of one-half the elliptical base by rotating it until horizontal about
an axis through 1, when its true shape will be seen.

Sheet Metal Angled Corner Flange Notching: Flat-Pattern Development. Sheet
metal parts sometimes have angled flanges that must be bent up for an exact angu-
lar fit. Figure 6.29 shows a typical sheet metal part with 45° bent-up flanges. In order
to lay out the corner notch angle for this type of part, you may use PC programs such
as AutoCad to find the correct dimensions and angular cut at the corners, or you may
calculate the corner angular cut by using trigonometry. To trigonometrically calcu-
late the corner angular notch, proceed as follows:

From Fig. 6.29, sketch the flat-pattern edges and true lengths as shown in Fig. 6.30,
forming a triangle ABC which may now be solved by first using the law of cosines to
find side b, and then the law of sines to determine the corner half-notch angle, angle C.

The triangle ABC begins with known dimensions: a = 4, angle B = 45°, and ¢ =
0.828.That is a triangle where you know two sides and the included angle B. You will
need to first find side b, using the law of cosines as follows:

b*=a*+c*—2accos B

b*=(4)*+(0.828)* -2 - 4-0.828 - 0.707 (by the law of cosines)
b*=12.00242

b=\12=3.464
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Elements Diagonals
- 7.7 ,
- = 6.6 b— - 5.7
= 5-5' = —88
r_ 4.4’ b~ - 4-5
— ¥ 35 F——y34
—— 2:2 b — —J332:3

11 1.2

FIGURE 6.28 Development of a warped transition piece.

. L Light-gauge
sheet metal

PLAN VIEW

~——— Bend line

{

Point X Seam

ANGLLD LANGL NOTCHING /

2.00  Bent flange height

o

= 7
Lighl-gaugeJ 41}3'
sheet metal
Point X
2.00

2.828

\/ \ SIN 45 = 2.00/x (SOLVE)

SIDE VIFW 2828 = 2.00/SIN 45"
FIGURE 6.29 Angled flanges.
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7l

Half-notch angle €

/ Bend line
C

2.828

0.828

© DETAIL VIEW
Half-noich angle = 9.737

FIGURE 6.30 Layout of angled flange notching.

Then, find angle C using the law of sines: sin B/b = sin C/c.

sinB  sin C

3464 0828
sin 45 _ sin C
3.464 ~ 0.828

3.464 sin C=0.707 - 0.828 (by the law of sines)

0.5854
3.464

sin C =

sin C =0.16899
arcsin 0.16899 =9.729
s C=944

Therefore, the notch angle =2 x 9°44” = 19°28’.
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This procedure may be used for determining the notch angle for flanges bent on
any angle.

The angle given previously as 19°28’ is valid for any flange length, as long as the
bent-up angle is 45°. This notch angle will increase as the bent-up flanges approach
90°, until the angle of notch becomes 90° for a bent-up angle of 90°.

NOTE. The triangle ABC shown in this example is actually the overlap angle of the
metal flanges as they become bent up 45°, which must be removed as the corner
notch. On thicker sheet metal, such as 16 through 7 gauge, you should do measure-
ments and the calculations from the inside mold line (IML) of the flat-pattern sheet
metal. Also, the flange height, shown as 2 in Fig. 6.29, could have been 1 in, or any
other dimension, in order to do the calculations. Thus, the corner notch angle is a
constant angle for every given bent-up angle; i.e., the angular notch for all 45° bent-
up flanges is always 19°28’, and will always be a different constant angular notch for
every different bent-up flange angle.

Figure 6.31 shows an AutoCad scale drawing confirming the calculations given
for Figs. 6.29 and 6.30.

2.828

— - 828 e

2.828 9.752"
\ 7

45.000°
StB 3.899 / \ \

FIGURE 6.31 An AutoCad scaled layout confirming calculations for Figs. 6.29 and 6.30.
Note that the shaded area is the half-notch cutout.
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6.3 PUNCHING AND BLANKING
PRESSURES AND LOADS

Force Required for Punching or Blanking. The simple equation for calculating the
punching or blanking force P in pounds for a given material and thickness is given as

P=SLt For any shape or aperture
P=SnDt For round holes

where P = force required to punch or blank, Ibf
S = shear strength of material, psi (see Fig. 6.32)
L =sheared length, in
D = diameter of hole, in
t = thickness of material, in

Stripping Forces. Stripping forces vary from 2.5 to 20 percent of the punching or
blanking forces. A frequently used equation for determining the stripping forces is

F,=3500Lt

where F; = stripping force, Ibf
L = perimeter of cut (sheared length), in
t = thickness of material, in

NOTE. This equation is approximate and may not be suitable for all conditions of
punching and blanking due to the many variables encountered in this type of metal-
working.

6.4 SHEAR STRENGTHS OF VARIOUS
MATERIALS

The shear strength (in pounds per square inch) of the material to be punched or
blanked is required in order to calculate the force required to punch or blank any
particular part. Figure 6.32 lists the average shear strengths of various materials,
both metallic and nonmetallic. If you require the shear strength of a material that is
not listed in Fig. 6.32, an approximation of the shear strength may be made as follows
(for relatively ductile materials only): Go to a handbook on materials and their uses,
and find the ultimate tensile strength of the given material. Take 45 to 55 percent of
this value as the approximate shear strength. For example, if the ultimate tensile
strength of the given material is 75,000 psi,

Shear strength = 0.45 x 75,000 = 30,750 psi approximately (low value)
=0.55 x 75,000 = 41,250 psi approximately (high value)
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Material

Shear Strength, psi

Carbon Steels:
SAE 1010 HR
SAE 1020 HR
SAE 1045 QT
SAE 1045 A

SAE 1095 QT
SAE 1095 A

SAE 1117 HR

Alloy Steels:

SAE 4130 N

SAE 4130 T (150,000}
SAE 4140 N

SAE 3120 HT-D (800°F)
SAE 3140 HT-D (800°F)
SAE 3250 HT-D (800°F)

Stainless Steels:
AISI 201
AISI 301
AISI 302
AIST 304
AISI 310
AISI 316
AISI 321

Cold rolled S/S strip (full hard)
AISI 300 Series

Stainless Steels: Annealed
AISI 410

AISI 416

AISI 440C

AIST 430

Monel Metal:
70,000 UTS
110,000 UTS
K Monel:
155,500 UTS

Nickel:
68,000 UTS
121,000 UTS

Inconel Alloys:
80,000 UTS
100,000 UTS
150,000 UTS
175,000 UTS

21,500
32,000
55,000
44,000
90,000
63,000

32,000

43,500
90,000
66,500
95,000
130,000
165,000

52,000
50,000
41,000
38,500
42,750
38,250
38,250

112,000

38,750
33,750
49,500
33750

42,900
65,500

98,500

52,300
75,300

59,000
66,000
80,000
87,000

FIGURE 6.32 Shear Strengths of Metallic and Nonmetallic Materials—psi
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Copper and Alloys:

CA 110 (ETP 110) 22,000-28,000
CA 210 (Guilding) 26,000-37,000
CA 220 (Bronze) 28,000-38,000
CA 230 (Red brass) 31,000-42,000
CA 260 (Cartridge brass) 33,00044,000
CA 268 (Yellow brass) 33,00043,000

Beryllium copper: Strip & sheet
C 17200 25)

C 17000 (165)

C 17510 )

C 17500 10)

C 17410 (174) HT

Beryllium Nickel:

TUNS-N033 HT

Aluminum and Alloys:
1100-0

1100-H18

2014-0

2014.T4, T451
2014-T6, T651
2024-0

2024-T3, T4, T351
3003-0

3003-H14
3003-H18

5052-0

5052-H32, H38
6061-0

6061-T4, T451
6061-T6, T651
7075-0

7075-T6, T651
71780

7178-T6, T651

Magnesium Alloys:
Soft (annealed)
Hardened

Titanium & Alloys:
Pure
Typical alloys

Nonmetallics:

Polyester-glass (GPO-1, 2 & 3)
Polycarbonate (Lexan)

Cycolac

ABS (Acrylonitrile Butadene Styrene)
Acetal (Delrin)

Acetate (Cellulose)

Epoxy-glass

Nylon

34,200-54,000
34,200.94,500
24.750.67,500
24,750-67,500
58,500

123,750

9,000
13,000
18,000
38,000
42,000
18,000
41,000
11,000
14,000
16,000
18,000
60,000-77,000
12,000
24,000
30,000
22,000
48,000
23,000
53,300

19,000
28,500 max.

27,000-49,500
45,000-77,000

12,000-17,000
6,000-10,000
4,400-7,400
1,5004,000
3,000-6,000
2,000-4,000
4,000-10,000
3,000-12,000

FIGURE 6.32 (Continued) Shear Strengths of Metallic and Nonmetallic Materials—psi
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Phenolic resins (cloth) 26,000 (Hot-blanked)
Paper 3,500-6,400

Mica 10,000

Teflon, rigid (TFE) 1,500-3,000

Hard rubber 20,000

Polystyrene 10,000 max.
Asbestos board 5,000

Notes: For metallic materials- when the tabulated shear values are given in ranges, the shear values run from the annealed or
soft condition to the hardest condition. Interpolate intermediate values between ranges. For nonmetallic materials. the shear
value ranges are given from soft to hard grades or glass-filled grades.

A= led; HR = hotwrolled; N= normalized; T = tempered; HT-D = heat-treated and drawn (tempered); QT = quenched and
tempered; UTS = ultimate tensile strength; HT ~ heat treated.

FIGURE 6.32 (Continued) Shear Strengths of Metallic and Nonmetallic Materials—psi

Manufacturers’ Standard Gauges for Steel Sheets. The decimal equivalents of the
Anmerican standard manufacturers’ gauges for steel sheets are shown in Figs. 6.4 and
6.5. Sheet steels in the United States are purchased to these gauge equivalents, and
tools and dies are designed for this standard gauging system.

A
A
— ] A w— | A g
Material Minimum Distance
= 0.12 Min.

Up to 0.062" A
Over 0.062" A

2 x Metal Thickness
(a)

FIGURE 6.33 Punching requirements.
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— ] (D -

| B ——-B}-—-

Material Minimum Distance
Up to 0.090" B =0.18"
Over 0.090" B = 2 x Metal Thickness

(b)

FIGURE 6.33 (Continued) Punching requirements.

6.5 TOOLING REQUIREMENTS FOR SHEET
METAL PARTS—LIMITATIONS

Minimum distances for hole spacings and edge distances for punched holes in sheet
parts are shown in Figs. 6.33a and b. Following these guidelines will prevent buckling
or tearing of the sheet metal.

Corner relief notches for areas where a bent flange is required is shown in Fig.
6.34a. The minimum edge distance for angled flange chamfer height is shown in Fig.
6.34b. The X dimension in Fig. 6.34b is determined by the height from the center of
the bend radius (2 x 7). If the inside bend radius is 0.25 in, and the material thickness
is 0.125 in, the dimension X would be:

0.25+0.125 + (2 x 0.125) = 0.625 in

or X =2t+ R, per the figure.
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2t Min. Flange

(@)

[—2t Minimum

N
b ]

L
il

el X [~e—— Die wall

R:4t
/ Stiffening Rib

Rib @ heel of angle

Die-block J

(c)
FIGURE 6.35 Sheet metal requirements for bending.
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T

T
B

A B (Radius) C (Radius) D (Radius) E (Radius)

0.25 2T 27 47 T

0.38 2T 27 47 T

0.50 2T 27 4T 2T

0.62 4T a7 4T 2T

0.75 5T 5T 4T 3T

1.00 5T 5T 4T 3T

(a)
FIGURE 6.36 Stiffening beads in sheet metal.

Minimum flanges on bent sheet metal parts are shown in Fig. 6.35a. Flanges’ and
holes” minimum dimensions are shown in Fig. 6.35b. Bending dies are usually
employed to achieve these dimensions, although on a press brake, bottoming dies
may be used if the gauges are not too heavy.

Stiffening ribs placed in the heel of sheet metal angles should maintain the
dimensions shown in Fig. 6.35c.
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2

=~/ - ‘u_ . j D
F f
B
A B (Radius) C (Radius) D E (Radius) F {Radius}
1.00 3T 27 0.25 4T 4T
1.50 3T 2T 0.31 4T aT

(b)
FIGURE 6.36 (Continued) Stiffening beads in sheet metal.

Stiffening beads placed in the webs of sheet metal parts for stiffness should be
controlled by the dimensions shown in Figs. 6.36a and b. The dimensions shown in
these figures determine the allowable depth of the bead, which depends on the
thickness (gauge) of the material.
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CHAPTER 7

GEAR AND SPROCKET
CALCULATIONS

7.1 INVOLUTE FUNCTION CALCULATIONS

Involute functions are used in some of the equations required to perform involute
gear design. These functional values of the involute curve are easily calculated with
the aid of the pocket calculator. Refer to the following text for the procedure
required to calculate the involute function.

The Involute Function: inv ¢ = tan ¢ — arc ¢. 'The involute function is widely used
in gear calculations. The angle ¢ for which involute tables are tabulated is the slope
of the involute with respect to a radius vector R (see Fig.7.1).

FIGURE 7.1 Involute geometry.

71
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Involute Geometry (See Fig. 7.1). The involute of a circle is defined as the curve
traced by a point on a straight line which rolls without slipping on the circle. It is also
described as the curve generated by a point on a nonstretching string as it is unwound
from a circle. The circle is called the base circle of the involute. A single involute curve
has two branches of opposite hand, meeting at a point on the base circle, where the
radius of curvature is zero. All involutes of the same base circle are congruent and par-
allel, while involutes of different base circles are geometrically similar.

Figure 7.1 shows the elements of involute geometry. The generating line was orig-
inally in position G, tangent to the base circle at P,. The line then rolled about the
base circle through the roll angle € to position G,, where it is tangent to the base cir-
cle at K. The point P, on the generating line has moved to P, generating the involute
curve I. Another point on the generating line, such as Q, generates another involute
curve which is congruent and parallel to curve /.

Since the generating line is always normal to the involute, the angle ¢ is the slope
of the involute with respect to the radius vector R. The polar angle 6 together with
R constitute the coordinates of the involute curve. The parametric polar equations of
the involute are

R=R,sec¢
6=tan(])—(T)

The quantity (tan ¢ — ¢) is called the involute function of §.

NOTE. The roll angle € in radians is equal to tan ¢.
Calculating the Involute Function (inv ¢ = tan ¢ —arc ¢). Find the involute func-
tion for 20.00°.

inv ¢ =tan ¢ — arc

where tan ¢ = natural tangent of the given angle
arc ¢ = numerical value, in radians, of the given angle

Therefore,
inv ¢ = tan 20° — 20° converted to radians

inv ¢ = 0.3639702 — (20 x 0.0174533)

NOTE. 1°=0.0174533 rad.
inv ¢ = 0.3639702 - 0.3490659
inv 20° = 0.0149043

The involute function for 20° is 0.0149043 (accurate to 7 decimal places).

Using the procedure shown here, it becomes obvious that a table of involute func-
tions is not required for gearing calculation procedures. It is also safer to calculate your
own involute functions because handbook tables may contain typographical errors.
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EXAMPLE. To plot an involute curve for a base circle of 3.500-in diameter, proceed as
follows. Refer to Fig. 7.2 and the preceding equations for the x and y coordinates. The
solution for angle 6 = 60° will be calculated longhand, and then the MathCad program
will be used to calculate all coordinates from 0° to 120°, by using range variables in
nine 15° increments.

NOTE. Angle 6 must be given in radians; 1 rad = ©/180° = 0.0174532; 2nR = 360°.

xX=rcos0O+r0sin0

e ) o o )

x=2.750 cos (1.04719755) + [2.750(1.04719755) sin (1.04719755)]
x =2.750(0.5000000) + [2.750(1.04719755)(0.8660254)]

x =1.37500 + 2.493974

x=3.868974

FIGURE 7.2 Plotting the involute curve.
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y=rsin®—r0 cos 6

ez |-l o )

y =2.750(0.8660254) — [2.750(1.04719755)(0.500000)]
y =2.3815699 — 1.4398966
y=0.9416733

Therefore, the x ordinate is 3.868974, and the y ordinate is 0.9416733.

The MathCad 8 calculation sheet seen in Fig. 7.3 will give the complete set of
coordinates for the x and y axes, to describe the involute curve from 6 = 0 to
120°. The coordinates just calculated check with the MathCad calculation sheet
for 60°.

Plotting the Involute Curve (See Fig.7.2). The x and y coordinates of the points
on an involute curve may be calculated from

xX=rcos0+r0sin0

y=rsin®—rf cos 6

Calculating the Inverse Involute Function. Calculating the involute function for a
given angle is an easy proposition, as shown in the previous calculations. But the
problem of calculating the angle ¢ for a given involute function 6 is difficult, to say
the least. In certain gearing and measurement equations involving involute func-
tions, it is sometimes required to find the angle ¢ for a given involute function 6. In
the past, this was done by calculating an extensive table of involute functions from
an extensive number of angles, in small increments of minutes.

But since you don’t know the angle for all involute functions, this can be a very
tedious task. The author has developed a mathematical procedure for calculating
the angle for any given involute function. The procedure involves the infinite series
for the sine and cosine, using the MathCad 8 program. A self-explanatory example
is shown in Fig. 7.4, where the unknown angle ¢ is solved for a given arbitrary value
of the involute function 6. This procedure is valid for all angles ¢ from any involute
function value 6.

MathCad 8 solves for all roots for angle ¢ in radians, and only one of the many
roots representing the involute function is applicable, as shown in Fig. 7.4. This pro-
cedure is then aptly termed finding the inverse involute function.

7.2 GEARING FORMULAS—SPUR, HELICAL,
MITER/BEVEL, AND WORM GEARS

The standard definitions for spur gear terms are shown in Fig. 7.5.
Equivalent diametral pitch (DP), circular pitch (CP), and module values are
shown in Fig. 7.6. DP and CP are U.S. customary units and module values are SI units.
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75

x ordinates
r-cos(8) +18-sin(f) =
275
2.84263236
3.10151818
3.47178466
3.86897413
4.18883574
4.3196899
415616433
3.61294825

-
1-cos| 45 }‘——'i
180/

8:=0

l"Sil’l[45'<L\y} _ r‘[45,/L\)
180/ 1180,

Note: The angle 6 in the above calculations is expressed in radians.

/ \
]-cos[zis-(il] = 0.41730264
| 180,

Range variables

Radius of base circle

r=2.750
[ {7\
.{L},IS. L\ 1201
\180) 180/ 180

Range variables in 15-degree increments,
expressed in radians from O to 120 degrees.

y ordinates
r-sin(8) — r-8-cos(6) =
0
0.0163357
0.12801294
0.41730264
0.94167323
1.72461434
2.75
3.96065037
526136313

347178466 for 45 degrees)

for 45 degrees)

The actual involute curve, as expressed by the problem, may be
drawn to scale using the AutoCad 14 program.

x ordinate{calculated

y ordinate (calculated

FIGURE 7.3 Solving involute curve coordinates with MathCad 8.
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Solving for Angle ¢, when the Involute Function 6 is Known:

From the equation - Jor tang, we use the identity :

O =1ang - ¢ tan ¢

_ sing(series)
cos@(series)

First, tan ¢ is set up as a sin p/cos ¢ series, from inv function 8 = tan () - arc ¢, and set equal
to O.

Next, MathCad 8 solves the following equation for angle ¢, in radians, when 6 = 0.0352580

Series equation for solving the angle ¢,
for a given Imvolute function ¢

— ¢ — 0.0352580=0

Listing of possible solutions from

-4.9011781603967077339 — 2.3707879433169639105-1 MathCad 8.

-4.9011781603967077339 + 2.3707879433169639105-1
-4.1465476786869627765
-.25076559865530748077 ~ 40920868023059962248-i
-.25076559865530748077 + 40920868023059962248

% 45922131714482631829 #£0.4592213817145 is the only possible

value for the angle ¢, in radians, for
4.1482411156481640729 the involute function 9 of 0.035258,

4.9016537569990014073 — 2.3723594854887197671 1
4.9016537569990014073 +2.3723594854887197671 1

0.4592213171 ‘ 2631144333 Degrees 31160 = 18.66 Minutes

6660 = 39.6 Seconds

0.4592218171 radians = ¢ = 26°19 39,6': for involute {unction 0.035258.

Last. we will let MathCad solve the original involute equation, by inserting the calculated
angle ¢, to see if this will give us the original involute function 0.035258.

$:=0.4592213171

tan(§)— ¢ = 0.03525800  Which proves the angle calculation for ¢
was correct.

Here we have solved the inverse involute function. That is, when the involute function iy
given or calculated, we may now find the angle for the involute function. Prior to the
availability of PC programs such as MathCad, performing these operations with any
degree of accuracy was next to impossible.

FIGURE 7.4 Calculating the inverse involute function in MathCad 8.
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PINION
PITCH CIRCLE
LINE OF ACTION ,:
/ \ TOOTH PROFILE
“ DUTSIDE (INVOLUTE)
{; o L
PRESSURE )
ANGLE N / BASE CIRCLE
N, , Y%
&?isﬁ PITCH CIRCLE CENTER
-t} <&

WHOLE DEPTH DISTANCE
WORKING " ,/‘T = {
DEPTH - 209

CLEARANCE N
1 A\

7 N3 ADDENDUM
N
™y PEDENDUM™ A ROOT (TOOTH)
CIRCULAR TOOTH j T FILLET
THICKNESS \ —_— -—
|l [
€\ ROOT
AP ~D
2N DIA. \”,
‘ \\ // ‘
AN 7O
CIRCULAR A
PITCH o,
GEAR

FIGURE 7.5 Definitions for spur gear terms.

For example, a U.S. customary gear of 1.6933 DP is equivalent to 1.8553 CP and to 15
module.

Proportions of standard gear teeth (U.S. customary) in relation to pitch diameter
P, are shown in Fig. 7.7.

The following figures give the formulas or equations for the different types of
gear systems:
e Spur gear equations—Fig. 7.8
e Helical gear equations—Fig. 7.9
e Miter and bevel gear equations—Fig. 7.10
e Worm and worm gear equations—Fig. 7.11
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Egquivalent DP, CP and Module

Diametral Pitch Circular Pitch Module
3/4 4.1888 33.8661
0.7854 4 32.3397
0.8467 3.7106 30
1 3.1415 25,3995
1.0160 3.0922 25
1.0472 3 24.2548
1-1/4 2.5133 20.3196
1.2700 2.4737 20
1.4111 2.2264 18
1-1/2 2.0944 16.9330
1.5708 2 16.1698
1.5875 1.9790 16
1.6933 1.8553 15
1-3/4 1.7952 14.5140
1.8143 1.7316 14
1.9538 1.6079 13
2 1.5708 12.6998
2.0944 1-1/2 12.1274
2.1166 1.4842 12
2-1/4 1.3963 11.2887
2.3090 1.3606 11
2-1/2 1.2560 10.1598
2.5400 1.2369 10
2.8222 1.1132 9
3 1.0472 8.4665
3.1416 1 8.0849
3.1749 0.9895 8
3-1/2 0.8976 7.2570
3.6285 0.8658 7
4 0.7854 6.3499
4.1888 3/4 6.0637
4.2333 0.7421 6
5 0.6283 5.07998
5.0799 0.6184 5
6 0.5236 4.2333
6.2832 1/2 4.04235
6.3499 0.4947 4
8 0.3927 3.1749
8.4665 0.3711 3
10 0.31492 2.5400

FIGURE 7.6 Equivalent DP, CP, and module.
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14.5° 14.5° 20° 20°
Tooth Type Composite Full Depth Full Depth Stub
Involute Involute Involute
Addendum 172, 1/P, 1/P, 0.8/P,
Minimum dedendum 1.157/P, 1.157/P, 1.157/p, 1P,
Whole depth 2.157/P; 2.157/P, 2.157/P, 1.8/P;
Clearance 0.157/P, 0.157/P, 0.157/P, 0.2/P,

Note: In the composite tooth form, the middle third of the tooth profile has an involute

shape, while the remainder is cycloidal.

FIGURE 7.7 Proportions of standard gear teeth.

To measure the size (diametral pitch) of standard U.S. customary gears, gear
gauges are often used. A typical set of gear gauges is shown in Fig. 7.12. The measur-

ing techniques for using gear gauges are shown in Figs. 7.13 and 7.14.

A simple planetary or epicyclic gear system is shown in Fig. 7.15a, together with
the speed-ratio equations and the gear-train schematic. Extensive gear design equa-
tions and gear manufacturing methods are contained in the McGraw-Hill hand-
books, Electromechanical Design Handbook, Third Edition (2000) and Machining
and Metalworking Handbook, Second Edition (1999). Figure 7.15b shows an actual
epicyclic gear system in a power tool. A chart of gear and sprocket mechanics equa-

tions is shown in Fig. 7.16.



To obtain Having Formula
Circular pitch p P= 3.1416
p
Diametral pitch P Number of teeth N and pitch pP= N
diameter D D
Number of teeth N and outside ~ 1.5708
diameter D, - P
Circular pitch p Diametral pitch P = %
N
Number of teeth N and diametral pitch P D= P
Pitch diameter D
2
Outside diameter D, and diametral pitch P D=D,- F
Base diameter D, Pitch diameter D and pressure angle ¢ D, =D cos ¢
Number of teeth N Diametral pitch P and pitch N=PxD
diameter D
Tooth thickness ¢ at pitch Diametral pitch P = 1.5708
diameter D P
Addendum a Diametral pitch P a= %
Outside diameter D, Pitch diameter D and addendum a D,=D+2a
Whole depth /i, 20 P and finer Diametral pitch P =22 10,002
p
. . 2.157
Whole depth A, coarser than 20 P Diametral pitch P hy = =5
Working depth £, Addendum a a= %
Clearance ¢ Whole depth £, and addendum a c=h,—2(a)
Dedendum b ‘Whole depth /, and addendum a b=h—a
Contact ratio M, Outside radii, base radii, center U
distance C, and pressure angle ¢
VR =R+ Vr2=r—Ccos ¢
M= P cos ¢
Root diameter D, Pitch diameter D and dedendum b D,=D-2(b)
D, +D
C - 1 2
2
Center distance C Pitch diameter D or number of teeth N
and pitch P
or Mt N,
2P

Note: R, = outside radius, gear; r, = outside radius, pinion; R, = base circle radius, gear; r, = base circle radius, pinion.

FIGURE 7.8 Spur gear equations.
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To obtain Having Formula
Number of teeth N and pitch pN
diameter D D
Transverse diametral pitch P
Normal diametral pitch P, and _
helix angle ¥ P=Pycosy
Pitch diameter D Number of teeth N and transverse D= N
diametral pitch P P
Normal diametral pitch Py Transverse diametral pitch P and P
helix angle ¥ M cos \J
. . . . 1.5708
Normal circular tooth thickness T | Normal diametral pitch Py ==
N
Transverse circular pitch p, Transverse diametral pitch P pi= %
Normal circular pitch p, Transverse circular pitch p, Dn=Di1COS Y
. . . nD
Lead L Pitch diameter D and helix angle ¥ =
tan y
FIGURE 7.9 Helical gear equations.
Formula
To obtain Having Pinion Gear
Pitch diameter | Number of teeth and d=" p="
D, d diametral pitch P P P
Whole depth i, Diametral pitch P hy = % +0.002 | by = 2188 + 0.002
. . 1 1
Addendum a Diametral pitch P a=45 a=4
Dedendum b Whole depth #; and addenduma | b=h,—a b=h—a
Clearance Whole depth a, and addenduma | c=h,-2a c=h,—-2a
1.5708 1.5708
Circular tooth Diametral pitch P =5 ==>p
thickness ©
itch angl f teeth in pini L,=tan™ N
Pitch angle Number of teeth in pinion N, p = tan N L,=90-L,
and gear N 8
Outside diameter | Pinion and gear pitch diameter
D,d, (D, + D,) addendum a and d,=D,+2a(cos L,) | D,=D,+2a(cos L,)
pitch angle (L, + L,)

FIGURE 7.10 Miter and bevel gear equations.
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To obtain Having Formula
3.1416
Circular pitch p Diametral pitch p =5
141
Diametral pitch P Circular pitch p P= 31416
p
Lead of worm L Numl_aer of thljeads in worm Ny, L=pxNy
and circular pitch p
1
Addendum a Diametral pitch P a=5
Pitch diameter of worm Dy, Outside diameter d, and Dy=d,~-2(a)
addendum a
Pitch diameter of worm gear D | Circular pitch p and number D= Na(p)
of teeth on gear N 3.1416
Center distance between worm Pitch diameter of worm Dy and D = Dy+Dg
and worm gear CD worm gear D¢ 2
Circular pitch p hy =0.6866p
Whole depth of teeth &, . . 2157
Diametral pitch P h = 5
Bottom diameter of worm d,; Whole depth h, and outside d=d,-2h
diameter dy,
Throat diameter of worm gear D, Pitch diameter of worm gear D D,=D+2(a)
and addendum a
Pitch diameter of worm Dy, and o
Lead angle of worm y the lead L Y= tan (73.1416Dw)
Ratio Number of teeth on gear N and Ratio = Neg
number of threads on worm Ny Ny

FIGURE 7.11 Worm and worm gear equations.

FIGURE 7.12 A set of gear gauges.
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FIGURE 7.13 Measuring miter/bevel gears.

FIGURE 7.14 Measuring helical gears.
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Ring Gear 2 Planet Gears 3
2
3
Output
1
Sun Gear 1 .
Inpute Simple Epicyclic Gears and Inversions
Input Fixed Qutput
Member Member Member Speed-ratio Equation
.l Ca 2~ R = -N,/N,
2 C 1 R = -N,/N,
1 2 C R =1+ (NN}
2 1 C R =1+ (NN,
C 2 1 R = 141 + {N,/N)J)
C 1 2 R =11 + (NJ/N))

Note: The minus sign indicates opposite rotation from input.
(2)
FIGURE 7.15a A planetary or epicyclic gear system.

FIGURE 7.15b An actual epicyclic gear system in a power
tool.
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7.15

To obtain

Having

Formula

Velocity v, ft/min

Revolutions per minute
(rpm)

Pitch diameter D of

Pitch diameter D of gear or sprocket,
in, and revolutions per minute (rpm)

Velocity v, ft/min, and pitch

diameter D of gear or sprocket, in

Velocity v, ft/min, and revolutions

v=0.2618 x D x rpm

v
TPM=0.2618 x D

v

gear or sprocket, in per minute (rpm) b= 0.2618 x rpm
Torque, 1b - in Force W, 1b, and radius, in T=WxR
. . Wxvy
Horsepower (hp) Force W, b, and velocity v, ft/min hp =
33,000
Horsepower (hp) Torque 7 Ib - in, and revolutions T x rpm
per minute (rpm) hp = 63,025
Torque 7, Ib - in Horsepower (hp) and revolutions 7 63,025 x hp
per minute (rpm) " rpm
Force W, Ib Horsepower (hp) and velocity v, We 33,000 x hp
ft/min - v
Revolutions per minute Horsepower (hp) and torque 7, _ 63,025 x hp
(rpm) Ib - in - T

FIGURE 7.16 Gear and sprocket mechanics equations.

7.3 SPROCKETS—GEOMETRY

AND DIMENSIONING

Figure 7.17 shows the geometry of ANSI standard roller chain sprockets and deriva-
tion of the dimensions for design engineering or tool engineering use. With the fol-
lowing relational data and equations, dimensions may be derived for input to CNC
machining centers or EDM machines for either manufacturing the different-size

sprockets or producing the dies to stamp and shave the sprockets.
The equations for calculating sprockets are as follows:

P =pitch (ae)

N =number of teeth

D, =nominal roller diameter

D, = seating curve diameter = 1.005D, + 0.003, in
R=YD,

A =35°+ (60°/N)

B =18°—-(56°/N)

ac=0.8D,

M =0.8D, cos [(35° + (60°/N)]

T=0.8D, sin (35° + (60°/N))
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E=1.3025D, + 0.0015, in

Chord xy = (2.605 D, + 0.003) sin (9° — (28°/N), in

yz=D, {1.4sin [17° — (64°/N) — 0.8 sin (18° — (56°/N)]}

Length of line between a and b =1.4D,

W =1.4D, cos (180°/N)

V' =14D, sin (180°/N)

F=D,{0.8 cos [18° — (56°/N)] + 1.4 cos [17° — (64°/N)] — 1.3025} — 0.0015 in

R D,
P D, min. min. D, tolerance*
Ya 0.130 0.0670 0.134 0.0055
¥ 0.200 0.1020 0.204 0.0055
72 0.306 0.1585 0.317 0.0060
Y 0.312 0.1585 0.317 0.0060
7 0.400 0.2025 0.405 0.0060
Y4 0.469 0.2370 0.474 0.0065
1 0.625 0.3155 0.631 0.0070
1% 0.750 0.3785 0.757 0.0070
1% 0.875 0.4410 0.882 0.0075
1% 1.000 0.5040 1.008 0.0080
2 1.125 0.5670 1.134 0.0085
24 1.406 0.7080 1.416 0.0090
2 1.562 0.7870 1.573 0.0095
3 1.875 0.9435 1.887 0.0105

* Denotes plus tolerance only.

FIGURE 7.18 Seating curve data for ANSI roller chain (inches).

Chain number Carbon steel, 1b Stainless steel, Ib
25% 925 700
35% 2,100 1,700
40 3,700 3,000
S41 2,000 1,700
S43 1,700 —
50 6,100 4,700
60 8,500 6,750
80 14,500 12,000
100 24,000 18,750
120 34,000 27,500
140 46,000 —
160 58,000 —
180 80,000 —
200 95,000 —
240 130,000 —

* Rollerless chain.

FIGURE 7.19 Maximum loads in tension for standard ANSI chains.
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ANS] STANDARD ROLLER CHAIN

Single Strand

— 7 e S —— o]
T
=i e - ininintninjui]
Sr— 1+ &K [SEe====aie
-P\TCN‘LP(VCN
CONN. LINK CONN. LINK PIN LINK PIN LINK PIN LINK PIN LINK N LINK OFFSET
SPRING CLIP COTTER SOLID LONG LONG SINGLE ROLLPIN SPLIT RIVETED LINK
TYPE SCCLK TYPE CTCLKCTP COTTER COTTER TYPE RP CQTTER TYPE RIV TYPE OLKCTP
TYPE 5LC TYPE LC TYPE DC
(a)
Chain Weight,
number Pitch w D C B A T H E Ib/ft
25% Vi 0.125 0.130 031 0.19 0.15 0.030 0.23 0.0905 0.104
35% % 0.187 0.200 047 034 023 0.050 036 0.141 0.21
40 % 0312 0312 0.65 042 032 0.060 046 0.156 0.41
S41 % 0250 0306 051 037 026 0.050 039 0.141 0.28
S43 % 0.125 0306 039 031 020 0.050 039 0.141 0.22
%

0375 0400 079 056 040 0.080 059 0200 0.69
60 % 0.500 0.468 098 0.64 049 0.09 070 0234 0.96
80 1 0.625 0.625 0128 0.74 0.64 0.125 093 0.312 1.60

100 1% 0.750 0.750 154 091 0.77 0156 1.16 0375 2.56
120 1% 1.00 0875 194 114 097 0.187 138 0437 3.60

140 1% 1.00  1.00 208 122 1.04 0218 1.63 0.500 4.90

160 2 125 112 248 146 124 0250 1.88 0.562 6.40

180 2% 141 141 281 174 140 0281 213 0.687 8.70

200 2% 1.50  1.56 302 186 151 0312 232 0781 10.30

240 3 1.88  1.88 376 227 188 0375 280 0937 16.99

* Rollerless chain.

(b)
FIGURE 7.20 ANSI standard roller chain and dimensions.

H=VF-(14D,-05P)
§=0.5P cos (180°/N) + H sin (180°/N)
Approximate o.d. of sprocket when J is 0.3P = P[0.6 + cot (180°/N)]

Outer diameter of sprocket with tooth pointed = p cot (180°/N) + cos (180°N)
(D,-D,) +2H

Pressure angle for new chain = xab = 35° — (120°/N)
Minimum pressure angle = xab — B = 17° — (64°/N)
Average pressure angle = 26° — (92°/N)
The seating curve data for the preceding equations are shown in Fig. 7.18.

For maximum loads in pounds force in tension for standard ANSI chains, see Fig.
7.19. ANSI standard roller chain and dimensions are shown in Figs. 7.20a and b.



CHAPTER 8

RATCHETS AND CAM
GEOMETRY

8.1 RATCHETS AND RATCHET GEARING

A ratchet is a form of gear in which the teeth are cut for one-way operation or to
transmit intermittent motion. The ratchet wheel is used widely in machinery and
many mechanisms. Ratchet-wheel teeth can be either on the perimeter of a disk or
on the inner edge of a ring.

The pawl, which engages the ratchet teeth, is a beam member pivoted at one end,
the other end being shaped to fit the ratchet-tooth flank.

Ratchet Gear Design. In the design of ratchet gearing, the teeth must be designed
so that the pawl will remain in engagement under ratchet-wheel loading. In ratchet
gear systems, the pawl will either push the ratchet wheel or the ratchet wheel will
push on the pawl and/or the pawl will pull the ratchet wheel or the ratchet wheel will
pull on the pawl. See Figs. 8.1a and b for the four variations of ratchet and pawl
action. In the figure, F indicates the origin and direction of the force and R indicates
the reaction direction.

FIGURE 8.1a Variation of ratchet and pawl action (F = force; R = reaction).

8.1
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F
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F

FIGURE 8.1 Variation of ratchet and pawl action (F = force; R = reaction).

Tooth geometry for case I in Fig. 8.1a is shown in Fig. 8.2. A line perpendicular to
the face of the ratchet-wheel tooth must pass between the center of the ratchet
wheel and the center of the pawl pivot point.

Tooth geometry for case II in Fig. 8.1b is shown in Fig. 8.3. A line perpendicular
to the face of the ratchet-wheel tooth must fall outside the pivot center of the pawl
and the ratchet wheel.

Spring loading the pawl is usually employed to maintain constant contact
between the ratchet wheel and pawl (gravity or weight on the pawl is also some-
times used). The pawl should be pulled automatically in and kept in engagement
with the ratchet wheel, independent of the spring or weight loading imposed on
the pawl.

—

i

FIGURE 8.2 Tooth geometry for case I.
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FIGURE 8.3 Tooth geometry for case II.

8.2 METHODS FOR LAYING OUT RATCHET GEAR
SYSTEMS

8.2.1 External Tooth Ratchet Wheels

See Fig. 8.4.

1. Determine the pitch, tooth size, and radius R to meet the strength and
mechanical requirements of the ratchet gear system (see Sec. 8.2.3, “Calculating the
Pitch and Face of Ratchet-Wheel Teeth”).

2. Select the position points O, Oy, and A so that they all fall on a circle C with
angle OAO; equal to 90°.

3. Determine angle ¢ through the relationship tan ¢ = r/c = a value greater than
the coefficient of static friction of the ratchet wheel and pawl material—0.25 is suf-
ficient for standard low- to medium-carbon steel. Or r/R = 0.25, since the sine and
tangent of angle ¢ are close for angles from 0 to 30°.

NOTE. The value c is determined by the required ratchet wheel geometry; there-
fore, you must solve for 7, so

r=ctan¢ or r=Rtan ¢
=¢(0.25) =R(0.25)

4. Angle ¢ is also equal to arctan (a/b), and to keep the pawl as small as practical,
the center pivot point of the pawl O; may be moved along line ¢ toward point A to
satisfy space requirements.
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FIGURE 8.4 Ratchet wheel geometry, external teeth.

5. The pawl is then self-engaging. This follows the principle stated earlier that a
line perpendicular to the tooth face must fall between the centers of the ratchet
wheel and pawl pivot points.

8.2.2 Internal-Tooth Ratchet Wheels

See Fig. 8.5.

1. Determine the pitch, tooth size, and radii R and R, to meet the strength and
mechanical requirements of the ratchet gear system. For simplicity, let points O and
O, be on the same centerline.

2. Select r so that fig > 0.20.

3. A convenient angle for B is 30°, and tan B = fig = 0.557, which is greater than
the coefficient of static friction for steel (0.15). This makes angle o. = 60° because o +
B =90°.

NOTE. Locations of tooth faces are generated by element lines e.
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FIGURE 8.5 Ratchet wheel geometry, internal teeth.

For self-engagement of the pawl, note that a line ¢ perpendicular to the tooth face
must fall outside the pawl pivot point O;.

8.2.3 Calculating the Pitch and Face of Ratchet-Wheel Teeth

The following equation may be used in calculating the pitch or the length of the
tooth face (thickness of ratchet wheel) and is applicable to most general ratchet-
wheel designs. Note that selection of the values for S; (safe stress, psi) may be made
more or less conservatively, according to the requirements of the application. Low
values for S, are selected for applications involving safety conditions. Note also that
the shock stress allowable levels (psi) are 10 times less than for normal loading
applications, where a safety factor is not a consideration.
The general pitch design equation and transpositions are given as

[ oum oum oumn om
P= P= N=—— |=———
ISSN ISSN IS,P* NS, P?
where P =circular pitch measured at the outside circumference, in
m = turning moment (torque) at ratchet-wheel shaft, Ib - in

I =length of tooth face, thickness of ratchet wheel, in
S, = safe stress (steel C-1018; 4000 psi shock and 25,000 psi static)
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N =number of teeth in ratchet wheel
a = coefficient: 50 for 12 teeth or less, 35 for 13 to 20 teeth, and 20 for more
than 20 teeth

For other materials such as brass, bronze, stainless steel, zinc castings, etc., the S,
rating may be proportioned to the values given for C-1018 steel, versus other types
or grades of steels.

Laser Cutting Ratchet Wheels. A ratchet wheel cut on a wire electric discharge
machine (EDM) is shown in Fig. 8.6. Note the clean, accurate cut on the teeth.

’ )

FIGURE 8.6 Ratchet wheel cut by a wire electric discharge machine (EDM).

Figure 8.7 shows the EDM that was used to cut the ratchet wheel shown in Fig. 8.6.

8.2 CAM LAYOUT AND CALCULATIONS

Cams are mechanical components which convert rotary motion into a selective or
controlled translating or oscillating motion or action by way of a cam follower which
bears against the working surface of the cam profile or perimeter. As the cam
rotates, the cam follower rises and falls according to the motions described by the
displacement curve.

Cams can be used to translate power and motion, such as the cams on the
camshaft of an internal combustion engine, or for selective motions as in timing
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FIGURE 8.7 The wire EDM which cut the ratchet wheel shown in Fig. 8.6.

devices or generating functions. The operating and timing cycles of many machines
are controlled by the action of cams.

There are basically two classes of cams; uniform-motion cams and accelerated-
motion cams.

Cam Motions. The most important cam motions and displacement curves in com-
mon use are

e Uniform-velocity motion, for low speeds
e Uniform acceleration, for moderate speeds

e Parabolic motion used in conjunction with uniform motion or uniform accelera-
tion, for low to moderate speeds

e Cycloidal, for high speeds
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The design of a typical cam is initiated with a displacement curve as shown in Fig. 8.8.
Here, the Y dimension corresponds to the cam rise or fall, and the X dimension cor-
responds either to degrees, radians, or time displacement. The slope lines of the rise
and fall intervals should be terminated with a parabolic curve to prevent shock loads
on the follower. The total length of the displacement (X dimension) on the displace-
ment diagram represents one complete revolution of the cam. Standard graphical
layout methods may be used to develop the displacement curves and simple cam
profiles. The placement of the parabolic curves at the terminations of the rise/fall
intervals on uniform-motion and uniform-acceleration cams is depicted in the detail
view of Fig. 8.8. The graphical construction of the parabolic curves which begin and
end the rise/fall intervals may be accomplished using the principles of geometric
construction shown in drafting manuals or in Chap. 3 of this book.

Rise
Dwell Interval pwell £all Interval | Dwell
-re
| AT
Y 1
{ FN
/
7 i e M
’ I
| T
0° 40° 70° 100° L
—— i X 250°

Parabolic Curves

Parabolic

380°

Detail
Parabolic Curve

FIGURE 8.8 Cam displacement diagram (the developed cam is as shown in Fig. 8.9).
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The layout of the cam shown in Fig. 8.9 is a development of the displacement dia-
gram shown in Fig. 8.8. In this cam, we have a dwell interval followed by a uniform-
motion and uniform-velocity rise, a short dwell period, a uniform fall, and then the
remainder of the dwell to complete the cycle of one revolution.

360°
0o 40°

\
/]
/

110° v s =3 30°
| w\ 700
/ / =
4 /

o "i‘fv"y///"" .

— 1500

L]
R
|
W

FIGURE 8.9 Development of a cam whose displacement diagram is shown in Fig. 8.8.

The layout of a cam such as shown in Fig. 8.9 is relatively simple. The rise/fall peri-
ods are developed by dividing the rise or fall into the same number of parts as the
angular period of the rise and fall. The points of intersection of the rise/fall divisions
with the angular divisions are then connected by a smooth curve, terminating in a
small parabolic curve interval at the beginning and end of the rise/fall periods. Cams
of this type have many uses in industry and are economical to manufacture because
of their simple geometries.

Uniform-Motion Cam Layout. The cam shown in Fig. 8.10 is a uniform or
harmonic-motion cam, often called a heart cam because of its shape. The layout of
this type of cam is simple, as the curve is a development of the intersection of the rise
intervals with the angular displacement intervals. The points of intersection are then
connected by a smooth curve.
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Equal
{ Spaces

1

faN
/

22%°
Typical

FIGURE 8.10 Uniform-motion cam layout (harmonic motion).

Accelerated-Motion Cam Layout. The cam shown in Fig. 8.11 is a uniform-
acceleration cam. The layout of this type of cam is also simple. The rise interval is
divided into increments of 1-3-5-5-3-1 as shown in the figure. The angular rise inter-
val is then divided into six equal angular sections as shown. The intersection of the
projected rise intervals with the radial lines of the six equal angular intervals are
then connected by a smooth curve, completing the section of the cam described. The
displacement diagram that is generated for the cam follower motion by the designer
will determine the final configuration of the complete cam.

Cylindrical Cam Layout. A cylindrical cam is shown in Fig. 8.12 and is layed out
in a similar manner described for the cams of Figs. 8.9 and 8.10. A displacement dia-
gram is made first, followed by the cam stretchout view shown in Fig. 8.12. The points
describing the curve that the follower rides in may be calculated mathematically for
a precise motion of the follower. Four- and five-axis machining centers are used to
cut the finished cams from a computer program generated in the engineering
department and fed into the controller of the machining center.
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FIGURE 8.11 Uniform-acceleration cam layout.

Tracer cutting and incremental cutting are also used to manufacture cams, but are
seldom used when the manufacturing facility is equipped with four- and five-axis
machining centers, which do the work faster and more accurately than previously
possible.

The design of cycloidal motion cams is not discussed in this handbook because of
their mathematical complexity and many special requirements. Cycloidal cams are
also expensive to manufacture because of the requirements of the design and pro-
gramming functions required in the engineering department.

Eccentric Cams. A cam which is required to actuate a roller limit switch in a sim-
ple application or to provide a simple rise function may be made from an eccentric
shape as shown in Fig. 8.13. The rise, diameter, and offset are calculated as shown in
the figure. This type of cam is the most simple to design and economical to manu-
facture and has many practical applications. Materials used for this type of cam
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Keyway- 0.375" x 0.188"

Shaft Diameter- 1,500

3.750"

4.000"

Displacement Diagram

FIGURE 8.12 Development of a cylindrical cam.
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FIGURE 8.13 Eccentric cam geometry.
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design can be steel, alloys, or plastics and compositions. Simple functions and light
loads at low to moderate speeds are limiting factors for these types of cams.
In Fig. 8.13a and 8.13b, the simple relationships of the cam variables are as follows:

R=(x+r)—a a=r-x rise=D—d
The eccentric cam may be designed using these relationships.

The Cam Follower. The most common types of cam follower systems are the radial
translating, offset translating, and swinging roller as depicted in Fig. 8.14a to 8.14c.

The cams in Figs. 8.14a and 8.14b are open-track cams, in which the follower must
be held against the cam surface at all times, usually by a spring. A closed-track cam
is one in which a roller follower travels in a slot or groove cut in the face of the cam.
The cylindrical cam shown in Fig. 8.12 is a typical example of a closed-track cam. The
closed-track cam follower system is termed positive because the follower translates
in the track without recourse to a spring holding the follower against the cam sur-
face. The positive, closed-track cam has wide use on machines in which the breakage
of a spring on the follower could otherwise cause damage to the machine.

Note that in Fig. 8.14b, where the cam follower is offset from the axis of the cam,
the offset must be in a direction opposite that of the cam’s rotation.

On cam follower systems which use a spring to hold the cam follower against the
working curve or surface of the cam, the spring must be designed properly to prevent
“floating” of the spring during high-speed operation of the cam. The cyclic rate of the

Foliower
Offset

() (®) (©
FIGURE 8.14 (a) In-line follower; (b) offset follower; (c) swinging-arm follower.
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spring must be kept below the natural frequency of the spring in order to prevent
floating. Chapter 10 of the handbook shows procedures for the design of high-
pressure, high-cyclic-rate springs in order to prevent this phenomenon from occurring.
When you know the cyclic rate of the spring used on the cam follower and its working
stress and material, you can design the spring to have a natural frequency which is
below the cyclic rate of operation. The placement of springs in parallel is often
required to achieve the proper results. The valve springs on high-speed automotive
engines are a good example of this practice, wherein we wish to control natural fre-
quency and at the same time have a spring with a high spring rate to keep the engine
valves tightly closed. The spring rate must also be high enough to prevent separation
of the follower from the cam surface during acceleration, deceleration, and shock
loads in operation. The cam follower spring is often preloaded to accomplish this.

Pressure Angle of the Cam Follower. The pressure angle ¢ (see Fig. 8.15) is gener-
ally made 30° or less for a reciprocating cam follower and 45° or less for an oscillat-

ing cam follower. These typical pressure angles also depend on the cam mechanism
design and may be more or less than indicated above.

rise

1
/-1 @/ /A

FIGURE 8.15 The pressure angle of the cam follower.
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The pressure angle ¢ is the angle between a common normal to both the roller
and the cam profile and the direction of the follower motion, with one leg of the
angle passing through the axis of the follower roller axis. This pressure angle is eas-
ily found using graphical layout methods.

To avoid undercutting cams with a roller follower, the radius r of the roller must
be less than C,, which is the minimum radius of curvature along the cam profile.

Pressure Angle Calculations. The pressure angle is an important factor in the
design of cams. Variations in the pressure angle affect the transverse forces acting on
the follower.

The simple equations which define the maximum pressure angle o and the cam
angle 0 at o are as follows (see Fig. 8.16a):

Normal

Roller Faliower

Cam
Surface

FIGURE 8.16a Diagram for pressure angle calculations.
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n
<

F.cosa
(Vertical)

F,sina
(Horizontal}

FIGURE 8.16b Normal load diagram and vectors, cam, and follower.

For simple harmonic motion:

arctan & (SR 4B (
O = arctan ZB 1+(S/R) = p arccos

For constant-velocity motion:

o = arcta ! 0=0
=ar n—|— —
B R

For constant-acceleration motion:

2 S/R
o = arctan E (m) 0=p

/R
2+ (SIR) )
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For cycloidal motion:

1/(S 020
o = arctan ) (R) =

where o =maximum pressure angle of the cam, degrees

S = total lift for a given cam motion during cam rotation, in

R =initial base radius of cam; center of cam to center of roller, in

B = cam rotation angle during which the total lift S occurs for a given cam

motion, rad
0 = cam angle at pressure angle o

Contact Stresses Between Follower and Cam. To calculate the approximate stress
S; developed between the roller and the cam surface, we can use the simple equation

s-c B 1)

w\r; R.

where C = constant (2300 for steel to steel; 1900 for steel roller and cast-iron cam)
S, = calculated compressive stress, psi
f,»=normal load between follower and cam surface, Ibf
w = width of cam and roller common contact surface, in
R, = minimum radius of curvature of cam profile, in
ry=radius of roller follower, in

The highest stress is developed at the minimum radius of curvature of the cam pro-
file. The calculated stress S, should be less than the maximum allowable stress of the
weaker material of the cam or roller follower. The roller follower would normally be
the harder material.

Cam or follower failure is usually due to fatigue when the surface endurance limit
(permissible compressive stress) is exceeded.

Some typical maximum allowable compressive stresses for various materials used
for cams, when the roller follower is hardened steel (Rockwell C45 to C55) include

Gray iron—cast (200 Bhn) 55,000 psi
ASTM A48-48

SAE 1020 steel (150 Bhn) 80,000 psi
SAE 4150 steel HT (300 Bhn) 180,000 psi
SAE 4340 steel HT (R, 50) 220,000 psi

NOTE. Bhn designates Brinnel hardness number; R, is Rockwell C scale.

Cam Torque. As the follower bears against the cam, resisting torque develops dur-
ing rise S, and assisting torque develops during fall or return. The maximum torque
developed during cam rise operation determines the cam drive requirements.

The instantaneous torque values 7; may be calculated using the equation

_ 9.55yF, cos a

T;
N
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FIGURE 8.17 Typical simple cams: (a) quick-rise cam; (b) eccentric
cam; (c) set of special rotary profile cams.

where T;=instantaneous torque,lb - in
v = velocity of follower, in/sec
F,, =normal load, 1b
o= maximum pressure angle, degrees
N = cam speed, rpm

The normal load F, may be found graphically or calculated from the vector diagram
shown in Fig. 8.16b. Here, the horizontal or lateral pressure on the follower = F, sin
o and the vertical component or axial load on the follower = F, cos a.

When we know the vertical load (axial load) on the follower, we solve for F, (the
normal load) on the follower from

F,cosa=F,

given o = pressure angle, degrees
F, = axial load on follower (from preceding equation), Ibf
F, =normal load at the cam profile and follower, 1bf

EXAMPLE. Spring load on the follower is 80 1b and the pressure angle o is 17.5°.
Then

F, 80 80

coso  cos17.5  0.954 =841b

F,=F,cosa F,=

Knowing the normal force F,, we can calculate the pressure (stress) in pounds per
square inch between the cam profile and roller on the follower (see Fig. 8.16b).
Figure 8.17 shows typical simple cams.



CHAPTER 9

BOLTS, SCREWS, AND THREAD
CALCULATIONS

9.1 PULLOUT CALCULATIONS AND BOLT
CLAMP LOADS

Screw thread systems are shown with their basic geometries and dimensions in
Sec.5.2.

Engagement of Threads. The length of engagement of a stud end or bolt end E can
be stated in terms of the major diameter D of the thread. In general,

¢ For a steel stud in cast iron or steel, E =1.50D.

¢ For a steel stud in hardened steel or high-strength bronze, E = D.

e For a steel stud in aluminum or magnesium alloys subjected to shock loads, E =
2.00D + 0.062.

¢ For a steel stud as described, subjected to normal loads, £ = 1.50D + 0.062.
Load to Break a Threaded Section. For screws or bolts,
Pb = SA[S

where P, =1load to break the screw or bolt, Ibf
S = ultimate tensile strength of screw or bolt material, 1b/in*
A, = tensile stress area of screw or bolt thread, in?

NOTE. UNIJ round-root threads will develop higher loads and have higher endur-
ance limits.

Tensile Stress Area Calculation. The tensile stress area A, of screws and bolts is
derived from

0.9743
A= %(D -

2
) (for inch-series threads)
n

9.1

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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where A, = tensile stress area, in’
D = basic major diameter of thread, in
n =number of threads per inch

NOTE. You may select the stress areas for unified bolts or screws by using Figs. 9.5
and 9.6 in Sec. 9.3, while the metric stress areas may be derived by converting mil-
limeters to inches for each metric fastener and using the preceding equation.

Thread Engagement to Prevent Stripping. The calculation approach depends on
materials selected.

1. Same materials chosen for both external threaded part and internal threaded
part:
2A

Ev= an{% +[n(pa- Dm)/\/i]}

where E; =length of engagement of the thread, in
D,, = maximum minor diameter of internal thread, in
n =number of threads per in
A, = tensile stress area of screw thread as given in previous equation
pq=minimum pitch diameter of external thread, in

2. Different materials; i.e., internal threaded part of lower strength than external
threaded part:
a. Determine relative strength of external thread and internal thread from

_ Ase(Se)
- Asi(Si)

where R = relative strength factor
A, = shear area of external thread, in?
Ag = shear area of internal thread, in®
S, = tensile strength of external thread material, psi
S, = tensile strength of internal thread material, psi

b. If Ris <1, the length of engagement as determined by the equation in item 1
(preceding) is adequate to prevent stripping of the internal thread. If Ris > 1,
the length of engagement G to prevent internal thread strip is

G=ER

In the immediately preceding equation, A, and A are the shear areas and are cal-
culated as follows:

1 (pd - Dm)
A= TmELD,,,[ o + V3 }

1 Dy-D,
A= nnE,ADM[— + M]

2n V3
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where D, = maximum pitch diameter of internal thread, in
D), = minimum major diameter of external thread, in (Other symbols have
been defined previously.)

Thread Engagement to Prevent Stripping and Bolt Clamp Loads
Problem. What is the minimum length of thread engagement required to pre-
vent stripping threads for the following conditions:

1. Bolt size =0.375-16 UNC-2A.
2. Torque on bolt=321b - ft.
3. Internal threads will be in aluminum alloy, type 2024-T4.

Solution. From condition 2, the clamp load L developed by the bolt is calcu-
lated from:

T

T=KLD =—
KD

Given: K=0.15,D=0.375in, T=32x12=3841b - in

I 384
T 0.15%0.375

384
7 0.5625

= 6827 Ibf

We have two different materials involved: (1) a steel bolt and (2) internal threads
in aluminum alloy. So, we need to determine the relative strength factor R of the
materials from the following equation (see previous symbols):

_ Ass(Se)

R= Asi(Si)

Next, we need to find the effective engagement length E;, from the following
equation:

2A;
an{% +[n(Py - Dm)/\/i]}

E, =

where A, for 0.375-16 bolt = 0.0775 in?

D,,=0.321in
P,=0.3287 in
n=16

NOTE. For A, see thread data table or calculate tensile stress area from previous
equation.
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~ 2%0.0775
~ 3.1416 x 0.321{0.500 + [16(0.3287 — 0.321)/1.732]}

E,

0.155

Ej=—
L7 1.008451(0.57113)

0.1550

L= 05760 =0.269 in

NOTE. If E; seems low in value, consider the facts that a 0.375-16 UNC steel hex
nut is 0.337 in thick, that the jamb nut in this size is only 0.227 in thick, and that these
nuts are designed so that the bolt will break before the threads will strip.

Next, calculate A, and A from the following:

A =nE,D,| -+ L= Do)
se — TnLy, m 2” \/5
A, =4.4304(0.03125 + 0.00445)
A, =0.158 in?
where D,, =0.321
P,=0.3287
E; =0.269
and
1 (Du-Dy)
Ay = nnELDm[E + %]
Ag=4.8610(0.03125 + 0.01068)

Ag=0.204 in?

where D, =0.3595
D, =0.3401

Next, use materials tables to find ultimate or tensile strength of a grade 5, 0.375-
16 UNC-2A bolt, and the ultimate or tensile strength of 2024-T4 aluminum alloy:

S, =120,000 psi for grade 5 bolt
S;: = 64,000 psi for 2024-T4 aluminum alloy
_ Asc(Se)
- AY(S)
_0.158(120,000)
~0.204(64,000)

and
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Per the text, if R is greater than 1 (>1), the adjusted length of engagement G is:
G=ER
G=0.269x1.452
G=0.391in (adjusted length of engagement)

Therefore, the minimum length of thread engagement for a grade 5 steel bolt
tightened into a tapped hole in 2024-T4 aluminum alloy is 0.391 in. In practice, an
additional 0.06 in should be added to 0.391 in, to allow for imperfect threads on the
end of the bolt, thereby arriving at the final length of 0.451 in. This would then be the
minimum amount of thread engagement allowed into the aluminum alloy part that
would satisfy the conditions of the problem.

9.2 MEASURING AND CALCULATING PITCH
DIAMETERS OF THREADS

Calculating the Pitch Diameter of Unified (UN) and Metric (M) Threads. 1tis often
necessary to find the pitch diameter of the various unified (UN) and metric (M) thread
sizes. This is necessary for threads that are not listed in the tables of thread sizes in Sec.
9.3 and when the thread is larger than that normally listed in handbooks. These include
threads on large bolts and threads on jack screws and lead screws used on various
machinery or machine tools. In order to calculate the pitch diameters, refer to Fig. 9.1.

H=05V3p=0.866025p

where p = pitch of the thread. In the UN system, this is equal to the reciprocal of the
number of threads per inch (i.e., for a %-16 thread the pitch would be %s =
0.0625 in). For the M system, the pitch is given in millimeters on the
thread listing (i.e., on an M12 x 1.5 metric thread, the pitch would be 1.5
mm or 1.5 % 0.03937 in = 0.059055 in).
d =basic diameter of the external thread (i.e., %-16 would be 0.375 in; #8-32
would be 0.164 in, etc.).

EXAMPLE. Find the pitch diameter of a 0.375-16 UNC-3A thread.
Using Fig. 9.1,

d = basic outside diameter of the thread = 0.375 in
H =0.866025 x p = 0.866025 x 0.0625 = 0.054127 in (for this case only)

We would next perform the following:

. . d 5H H
Pltchdla._<2— 3 + 4>><2

_ | 0375 5><0.054127 N 0.054127 2
L2 8 4
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Pitch diameter

l ﬂp/&[v Internal threads /

'} uye ‘/A\

p/2 p/2
5H/8 \h {

External threads Dl, d

¢ Thread axis
L

D, (d) = basic major diameter of internal (external) thread
Dy, (d)) = basic minor diameter of internal (external) thread
D,, {d;) = basic pitch diameter of internal (external) thread
p = pitch
H=05Fp

FIGURE 9.1 Basic thread profile for unified (UN) and metric (M) threads (ISO 68).

=(0.1875 - 0.033829 + 0.013532) x 2
= 0.3344 in pitch dia. for a 3/8-16 UNC-3A thread

If you check the basic pitch diameter for this thread in a table of pitch diameters,
you will find that this is the correct answer when the thread is class 3A and the pitch
diameter is maximum. Thus, you may calculate any pitch diameter for the different
classes of fits on any UN- or M-profile thread, since the thread geometry is shown in
Fig. 9.1. Pitch diameters for other classes or types of thread systems may be calcu-
lated when you know the basic thread geometry, as in this case for the UN and M
thread systems. (See Chap. 5.)

The various thread systems used worldwide include ISO-M and UN, UNJ (con-
trolled root radii), Whitworth (BSW), American Buttress (7° face), NPT (American
National Pipe Thread), BSPT (British Standard Pipe Thread), Acme (29°), Acme
(stub 29°), API (taper 1:6), TR DIN 103, and RD DIN 405 (round). The geometry of
all these systems is shown in Sec. 5.2.

Three-Wire Method for Measuring the Pitch Diameter of V and Acme Threads.
See Fig. 9.2.

Problem. Determine the measurement M over three wires, and confirm the
accuracy of the pitch diameter for given sizes and angles of V threads and 29° Acme
threads.
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Axis

FIGURE 9.2 Three-wire method for measuring pitch diameter.

Solution. There are three useful equations for measuring over three wires to
determine the pitch diameter of the different thread systems, in all classes of fits. Fol-
lowing are the application data for using the three equations.

1. The Buckingham simplified equation includes the effect of the screw thread lead
angle, for good results on V threads with small lead angles.

T cos B

M=D,+W,(1+sinA,) W, = =required wire size (Eq.9.1)

COs A,

2. For very good accuracy, the following equation is used by the National Institute
of Standards Technology (NIST), taking the lead angle into consideration:

M=D,—TcotA+W,(1+cscA+0.5tan’ Bcos AcotA) (Eq.9.2)
Transposed for D,

D,=TcotA-W,(1+cscA+0.5tan* B cos A cot A) + M
3. For very high accuracy for the measured value of M, use the Buckingham exact
involute helicoid equation applied to screw threads:

2R,
" cos G

W, (Eq.9.3)

Aucxiliary equations required for solving Eq. 9.3 include Egs. 9.3a through 9.3f:

_tanA  tan A,

tan F= =—
tan B sin B

(Eq.9.3a)
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D
R,= 7” cos F (Eq.9.3b)
T
= Eq.9.
‘" tan B (Eq.93¢)
tan H, = cos Ftan H (Eq.9.3d)
. T, . Wa T
=— Ft o Eq.9.3
inv G D, +inv F+ R,cosH, S (Eq.9.3¢)
T cos B
= Eq.9.3
=08 A, (Eq.9.3)

NOTE. H=90°-B

Symbols for Egs. 9.1, 9.2, 9.3, and 9.3a to 9.3f

B =lead angle at pitch diameter = helix angle; tan B = L/nD,

D, = pitch diameter for which M is required, or pitch diameter according to the
M measurement

A =Y included thread angle in the axial plane

A, =" included thread angle in the plane perpendicular to the sides of the thread;
tan A,=tan A cos B

L =lead of the thread = pitch x number of threads or leads (i.e., pitch x 2 for two
leads)

M =measurement over three wires per Fig. 9.2
p =pitch = I/number of threads per inch (U.S. customary) or per mm (metric)
T =0.5p = width of thread in the axial plane at the pitch diameter

T, = arc thickness on pitch circle on a plane perpendicular to the axis (calculate
from Eq. 9.3¢)

W, = wire diameter for measuring M (see Eqs. 9.3f and 9.4)
H =helix angle at the pitch diameter from axis = 90° — B or tan H =cot B
H, = helix angle at R, measured from axis (calculate from Eq. 9.3d)
F = angle required for Eq. 9.3 group (calculate from Eq. 9.3a)
G = angle required for Eq. 9.3 group
R, =radius required for Eq. 9.3 group (calculate from Eq. 9.3b)
S =number of starts or threads on a multiple-thread screw (used in Eq. 9.3¢)

Equations for Determining Wire Sizes. For precise results:

_TcosB

= Eq.9.
W Cos A, (Eq.9.3/)
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For good results:

T
" cosA

(Eq.9.4)

Use Eq. 9.2 for best size commercial wire which makes contact at or very near the
pitch diameter. Use Eq. 9.1 for relatively large lead angles, using special wire sizes as
calculated from the wire size equations. Use Eq. 9.3 for precise accuracy, using the
wire sizes calculated from Eq. 9.3f

Problem. What should be the nominal M measurement for a class 2A, 0.500-13
UNC thread?
Solution.  See Fig. 9.2.

Step 1. Select the equation (9.1, 9.2, or 9.3) for the accuracy required.

Step 2. Measure M using commercial wire size or wire size calculated from Eq.
9.3for 9.4.

Step 3. Calculate M using the selected equation for the required pitch diameter
accuracy. Then determine the tolerance of the calculated M to the measured M
for the class of thread being checked, using a table of screw thread standard
dimensional limits for pitch diameters.

Problem. How do you find the actual machined pitch diameter of a thread spec-
ified as 0.3125-18 UNC, class 1, for a particular measurement of the M dimension
shown in Fig. 9.2?

Solution. See Fig.9.2.

Step 1. Select the correct wire size and measure the M dimension of the thread
being checked.

Step 2. Use Eq.9.2 in its transposed form and calculate the actual pitch diame-
ter D, per the measurement M, taken across three wires as shown in Fig. 9.2.

Step 3. Check the thread table value of the pitch diameter limits, to see if the
calculated pitch diameter of the thread size being checked is within acceptable
tolerances or specifications.

Measuring M, Checking Pitch Diameter, and Calculating Wire Size (New Method).
Calculate the measurement M over three wires, to confirm the accuracy of the pitch
diameter for a given size of V thread (see Fig.9.2).

Using the Buckingham simplified equation:

M=D,+W,(1-sinA,)

where W, = T cos B/cos A,
tan B=L/nD,
tan A,=tan A cos B
L = pitch x no. of leads
D, = mean or average pitch diameter
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(See symbols given for previous equations.)
Given: Thread size = 0.500-13 UNC-2A; mean pitch diameter = 0.4460 in (from
table of threads); pitch = 1/13 = 0.076923 in

0.076923
3.1416 x 0.4460

tan B =
tan B =0.0549
arctan 0.0549 = 3.1424° = angle B
tan A,=tan A cos B
tan A, = tan 30° X cos 3.1424°
tan A, =0.57735 x 0.99850
tan A, =0.5765
arctan 0.5765 =29.9634° = angle A,
Then, calculate the wire diameter from:

_Tcos B

COsS A,

_ 0.5(1/13) cos 3.1424°
B cos 29.9634°

d

~0.03840
47 0.86634

W,=0.04432 in

Next, calculate M from:
M=D,+W,(1-sinA,)
M =0.4460 + 0.04432(1 + sin 29.9634°)
M =0.4460 + 0.06646
M =051251in

The wire diameter W, can also be determined by using a scale AutoCad drawing
of the V thread, as shown in Fig. 9.3.

The AutoCad drawing was made using a scale of 10:1, and then AutoCad mea-
sured the diameter of the wire. It measured the wire diameter as 0.0447 in, while
the diameter was calculated previously as 0.04432 in. That is a difference of only
0.0004 in, which is sufficient for moderate accuracy, and indicates a low thread lead
angle, as found on single-lead V threads. Acme 29° standard and stub threads may
also be measured in this manner, when the thread geometry is known. See Sec. 5.2 for
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Pitch dia.

Minor dia.

H/8

60°
?\ 80.00° }
_ A C D/Zr‘ o
|
d

|

(-]

R=0.2234 — <
Wire = 0.0447
(see text)

L0.500713 thread

\ Axis

B

dia.

FIGURE 9.3 AutoCad scale drawing of V thread.

1
H
!

9.11

the geometry of international thread systems, including buttress, Acme, Whitworth

55°, etc.

A new method for calculating the wire diameter needed to check the accuracy of
60° V threads is as follows. As shown in Fig. 9.4, the triangle ABC is equilateral, all
sides being equal. This shows that the slope lengths of the thread teeth are equal to
the pitch p of the given thread. Since the circle within the triangle ABC is tangent to
the sides of the triangle, we may calculate the diameter of the circle (wire diameter)

as follows (see Fig.2.10):

Vs(s—a)(a-b)(s—c)

a+b+c

h =
where s )

N

FIGURE 9.4 New method for calculating the wire diameter.
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In the triangle ABC of Fig. 9.4, a = b = ¢ = pitch p, and s = 3(p)/2. Therefore, the equa-
tion may be rewritten as:

_NsG—py

N

where p = pitch
W,=2r
which is the new working equation for finding the wire diameter W, of 60° V threads.
If we wish to find the wire diameter W, in order to calculate the M dimension and

check the pitch diameter accuracy of a 0.750-10 UNC-2A thread, we can use the pre-
ceding simplified equation for calculating the appropriate wire size, as follows:

Given: p =pitch=1/10=0.10in; s =3 x 0.10/2 = 0.150

Then:
_ Vs(s-p)
- s
~ V/0.150(0.150 — 0.10)°
0.150
e V0.00001875  0.00433
0150 0.150
r=0.02887
and W,=2x0.02887 =0.0577 in

The wire diameter for calculating the M dimension would then be 0.0577 in.
You may check this diameter of 0.0577 in against the calculated diameter using
the previous equation

B T cos B

=

cos A,

which requires one to first calculate the angles B and A, and the width 7 for the 0.750-
10 UNC-2A thread. The difference between the wire diameters calculated using both
methods will be negligibly small. So, to save time, the new equation for calculating r
and W, may be used in conjunction with the Buckingham simplified equation for M.

The calculated wire diameter W, for checking the pitch diameter of the 0.750-10
UNC-2A thread using the preceding equation is 0.0576 in. So, the difference in cal-
culated wire size between the two methods shown is 0.0577 — 0.0576 = 0.0001 in. As
can be seen, the difference is indeed negligible for all but the most precision work
involving 60° V threads.
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9.3 THREAD DATA (UN AND METRIC)
AND TORQUE REQUIREMENTS (GRADES 2, 5,
AND 8 U.S. STANDARD 60° V)

Figure 9.5 shows data for UNC (coarse) threads.

Figure 9.6 shows data for UNF (fine) threads.

Figure 9.7 shows data for metric M-profile threads.

Table 9.1 shows recommended tightening torques for U.S. UN SAE grade 2, 5,
and 8 bolts.

Thread Tap drill Decimal, in Stress area, in* Basic pitch diameter,
#1-64 #53 0.0595 0.0026 0.0629
#2-56 #50 0.0700 0.0037 0.0744
#3-48 #47 0.0785 0.0048 0.0855
#4-40 #43 0.0890 0.0060 0.0958
#5-40 #38 0.1015 0.0080 0.1088
#6-32 #36 0.1065 0.0090 0.1177
#8-32 #29 0.1360 0.0140 0.1437

#10-24 #25 0.1495 0.0175 0.1629

Y20 #7 0.2010 0.0318 0.2175
%—18 F 0.2570 0.0524 0.2764
%-16 Yo 0.3125 0.0775 0.3344
Ye—14 T 0.3580 0.1063 0.3911
%-13 s 0.4219 0.1419 0.4500
Y12 Yo 0.4844 0.1820 0.5084
%11 Y 0.5312 0.2260 0.5660
%-10 Yo 0.6406 0.3340 0.6850
%9 Yos 0.7656 0.4620 0.8028
1-8 % 0.8750 0.6060 0.9188

FIGURE 9.5 Screw thread data, Unified National Coarse (UNC).
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Thread Tap drill Decimal, in Stress area, in’ Basic pitch diameter, in
#0-80 Yot 0.0469 0.0018 0.0519
#1-72 #53 0.0595 0.0027 0.0640
#2-64 #50 0.0700 0.0039 0.0759
#3-56 #45 0.0820 0.0052 0.0874
#4-48 #42 0.0935 0.0066 0.0985
#5-44 #37 0.1040 0.0083 0.1102
#0640 #33 0.1130 0.0102 0.1218
#8-36 #29 0.1360 0.0147 0.1460

#10-32 #21 0.1590 0.0200 0.1697

%28 #3 0.2130 0.0364 0.22268
Y24 I 0.2720 0.0580 0.2854
%24 Q 0.3320 0.0878 0.3479
%20 e 0.3906 0.1187 0.4050
%20 s 0.4531 0.1599 0.4675
%618 Vs 0.5156 0.2030 0.5264
#-18 Va 0.5625 0.2560 0.5889
%-16 s 0.6875 0.3730 0.7094
%-14 Yo 0.8125 0.5090 0.8286
1-12 % 0.9063 0.6630 0.9459

FIGURE 9.6 Screw thread data, Unified National Fine (UNF).
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Thread designation Pitch dia. Pitch dia. 6G,
dia x pitch, mm Tap drill, mm 6H, internal, mm external, mm
M1.6 x0.35 1.25 1.373 1.291
M2 x04 1.60 1.740 1.654
M2.5 % 0.45 2.05 2.208 2.117
M3 x0.5 2.50 2.675 2.580
M3.5x%0.6 2.90 3.110 3.004
M4 x0.7 3.30 3.545 3.433
M5 % 0.8 4.20 4.480 4.361
M6 x 1 5.00 5.350 5212
M8 x1.25 6.70 7.188 7.042
M8 x1 7.00 7.350 7212
M10x 1.5 8.50 9.026 8.862
M10 x 1.25 8.70 9.188 9.042
M10 % 0.75 — 9.513 9.391
M12 x1.75 10.20 10.863 10.679
M12x 1.5 — 11.026 10.854
M12x1.25 10.80 11.188 11.028
Mi12x1 — 11.350 11.206
M14x2 12.00 12.701 12.503
Ml14x1.5 12.50 13.026 12.854
Mi15x1 — 14.350 14.206
M16 x2 14.00 14.701 14.503
Ml16x1.5 14.50 15.026 14.854
M17x1 — 16.350 16.206
M18x 1.5 16.50 17.026 16.854
M20 % 2.5 17.50 18.376 18.164
M20x 1.5 18.50 19.026 18.854
M20x 1 — 19.350 19.206
M22x2.5 19.50 20.376 20.164
M22x1.5 20.50 21.026 20.854
M24 x3 21.00 22.051 21.803
M24 x2 22.00 22.701 22.493
M25x%x1.5 — 24.026 23.854

FIGURE 9.7 Metric thread data, M profile, internal and external.
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CHAPTER 10

SPRING CALCULATIONS—
DIE AND STANDARD TYPES

Springs and die springs are important mechanical components used in countless
mechanisms, mechanical systems, and tooling applications. This chapter contains
data and calculation procedures that are used to design springs and that also allow
the machinist, toolmaker or tool engineer, metalworker, and designer to measure an
existing spring and determine its spring rate. In most applications, normal spring
materials are spring steel or music wire, while other applications require stainless
steel, high-alloy steels, or beryllium-copper alloys. The main applications contained
in this chapter apply to helical compression die springs and standard springs using
round, square, and rectangular spring wire. Included are compression, extension, tor-
sion, and flat or bowed spring equations used in design, specification, and replace-
ment applications. Figure 10.1 shows some typical types of springs.

Material Selection. 1t is important to adhere to proper procedures and design con-
siderations when designing springs.

Economy. Will economical materials such as ASTM A-229 wire suffice for the
intended application?

Corrosion Resistance. 1If the spring is used in a corrosive environment, you may
select materials such as 17-7 PH stainless steel or the other stainless steels, i.e., 301,
302,303, 304, etc.

Electrical Conductivity. If you require the spring to carry an electric current,
materials such as beryllium copper and phosphor bronze are available.

Temperature Range. Whereas low temperatures induced by weather are seldom
a consideration, high-temperature applications call for materials such as 301 and 302
stainless steel, nickel-chrome A-286,17-7 PH, Inconel 600, and Inconel X750. Design
stresses should be as low as possible for springs designed for use at high operating
temperatures.

Shock Loads, High Endurance Limit, and High Strength. Materials such as
music wire, chrome-vanadium, chrome-silicon, 17-7 stainless steel, and beryllium
copper are indicated for these applications.

General Spring Design Recommendations. Try to keep the ends of the spring,
where possible, within such standard forms as closed loops, full loops to center,
closed and ground, open loops, and so on.

10.1

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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Pitch. Keep the coil pitch constant unless you have a special requirement for a
variable-pitch spring.

Keep the spring index D/d between 6.5 and 10 wherever possible. Stress prob-
lems occur when the index is too low, and entanglement and waste of material occur
when the index is too high.

Do not electroplate the spring unless it is required by the design application. The
spring will be subject to hydrogen embrittlement unless it is processed correctly
after electroplating. Hydrogen embrittlement causes abrupt and unexpected spring
failures. Plated springs must be baked at a specified temperature for a definite time
interval immediately after electroplating to prevent hydrogen embrittlement. For
cosmetic purposes and minimal corrosion protection, zinc electroplating is generally
used, although other plating, such as chromium, cadmium, tin, etc., is also used
according to the application requirements. Die springs usually come from the die-
spring manufacturers with colored enamel paint finishes for identification purposes.
Black oxide and blueing are also used for spring finishes.

Special Processing Either During or After Manufacture. Shot peening improves
surface qualities from the standpoint of reducing stress concentration points on the
spring wire material. This process also can improve the endurance limit and maxi-
mum allowable stress on the spring. Subjecting the spring to a certain amount of
permanent set during manufacture eliminates the set problem of high energy versus
mass on springs that have been designed with stresses in excess of the recom-
mended values. This practice is not recommended for springs that are used in criti-
cal applications.

Stress Considerations. Design the spring to stay within the allowable stress limit
when the spring is fully compressed, or “bottomed.” This can be done when there is
sufficient space available in the mechanism and economy is not a consideration.
When space is not available, design the spring so that its maximum working stress at
its maximum working deflection does not exceed 40 to 45 percent of its minimum
yield strength for compression and extension springs and 75 percent for torsion
springs. Remember that the minimum yield strength allowable is different for dif-
fering wire diameters, the higher yield strengths being indicated for smaller wire
diameters. See the later subsections for figures and tables indicating the minimum
yield strengths for different wire sizes and different materials.

Direction of Winding on Helical Springs. Confusion sometimes exists as to what
constitutes a right-hand or left-hand wound spring. Standard practice recognizes
that the winding hand of helical springs is the same as standard right-hand screw
thread and left-hand screw thread. A right-hand wound spring has its coils going in
the same direction as a right-hand screw thread and the opposite for a left-hand
spring. On a right-hand helical spring, the coil helix progresses away from your line
of sight in a clockwise direction when viewed on end. This seems like a small prob-
lem, but it can be quite serious when designing torsion springs, where the direction
of wind is critical to proper spring function. In a torsion spring, the coils must “close
down” or tighten when the spring is deflected during normal operation, going back
to its initial position when the load is removed. If a torsion spring is operated in the
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wrong direction, or “opened” as the load is applied, the working stresses become
much higher and the spring could fail. The torsion spring coils also increase in diam-
eter when operated in the wrong direction and likewise decrease in diameter when
operated in the correct direction. See equations in Sec. 10.4.4 for calculations that
show the final diameter of torsion springs when they are deflected during operation.

Also note that when two helical compression springs are placed one inside the
other for a higher combined rate, the coil helixes must be wound opposite hand from
each other. This prevents the coils from jambing or tangling during operation. Com-
pression springs employed in this manner are said to be in parallel, with the final rate
equal to the combined rate of the two springs added together. Springs that are
employed one atop the other or in a straight line are said to be in series, with their
final rate equal to 1 divided by the sum of the reciprocals of the separate spring
rates.

EXAMPLE. Springs in parallel:
Ri=Ri+R,+R;+--+R,
Springs in series:

LU N U W
R, R R R R,
where R, = final combined rate
R, ,; =rate of each individual spring

In the following subsections you will find all the design equations, tables, and
charts required to do the majority of spring work today. Special springs such as irreg-
ularly shaped flat springs and other nonstandard forms are calculated using the stan-
dard beam and column equations found in other handbooks, or they must be
analyzed using involved stress calculations or prototypes made and tested for proper
function.

Spring Design Procedures

1. Determine what spring rate and deflection or spring travel are required for your
particular application.

2. Determine the space limitations the spring is required to work in, and try to
design the spring accordingly using a parallel arrangement, if required, or allow
space in the mechanism for the spring according to its calculated design dimen-
sions.

3. Make a preliminary selection of the spring material dictated by the application or
economics.

4. Make preliminary calculations to determine wire size or other stock size, mean
diameter, number of coils, length, and so forth.

5. Perform the working stress calculations with the Wahl stress correction factor
applied to see if the working stress is below the allowable stress.
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The working stress is calculated using the appropriate equation with the working
load applied to the spring. The load on the spring is found by multiplying the spring
rate times the deflection length of the spring. For example, if the spring rate was cal-
culated to be 25 Ibf/in and the spring is deflected 0.5 in, then the load on the spring
is 25 x0.5=12.51bf.

The maximum allowable stress is found by multiplying the minimum tensile
strength allowable for the particular wire diameter or size used in your spring times
the appropriate multiplier. See the figures and tables in this chapter for minimum
tensile strength allowables for different wire sizes and materials and the appropriate
multipliers.

EXAMPLE. You are designing a compression spring using 0.130-in-diameter music
wire, ASTM A-228. The allowable maximum stress for this wire size is

0.45 x 258,000 = 116,100 psi (see wire tables)

NOTE. A more conservatively designed spring would use a multiplier of 40 percent
(0.40), while a spring that is not cycled frequently can use a multiplier of 50 percent
(0.50), with the spring possibly taking a slight set during repeated operations or
cycles. The multiplier for torsion springs is 75 percent (0.75) in all cases and is con-
servative.

If the working stress in the spring is below the maximum allowable stress, the
spring is properly designed relative to its stress level during operation. Remember
that the modulus of elasticity of spring materials diminishes as the working temper-
ature rises. This factor causes a decline in the spring rate. Also, working stresses
should be decreased as the operating temperature rises. The figures and tables in this
chapter show the maximum working temperature limits for different spring and
spring wire materials. Only appropriate tests will determine to what extent these rec-
ommended limits may be altered.

10.1 HELICAL COMPRESSION SPRING
CALCULATIONS

This section contains equations for calculating compression springs. Note that all
equations throughout this chapter may be transposed for solving the required vari-
able when all variables are known except one. The nomenclature for all symbols con-
tained in the compression and extension spring design equations is listed in
subsections of this chapter.

10.1.1 Round Wire

Rate:

4

R, Ib/in = W

} Transpose for d, N, or D
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Torsional stress:

8K,DP
S, total corrected stress, psi = wd }Transpose for D, P, ord
Wahl curvature-stress correction factor:
4C-1 0615 D
K”=4C7—4+T whereC—;

10.1.2 Square Wire

Rate:

4

. t
R, Ib/in = S6ND®

}Transpose fort, N, or D

Torsional stress:

. 24K, DP
S, total corrected stress, psi = 5 Transpose for D, P, or ¢
Wahl curvature-stress correction factor:
1.2 056 05 D
Ka1:1+F+ o2 +F whereC:T

10.1.3 Rectangular Wire

Rate (see Fig. 10.2 for a table of factors K, and Kj):
Gb?P
R, Ib/in = —— K, { Transpose for b, t, N, or D
ND’
Torsional stress, corrected:

PD
S, psi=——7+= B ; Transpose for b, t, P, or D
P = B T

NOTE. [ is obtained from Fig. 10.2.

10.1.4 Solid Height of Compression Springs

For round wire, see Fig. 10.3.

For Square and Rectangular Wire. Due to distortion of the cross section of square
and rectangular wire when the spring is formed, the compressed solid height can be
determined from
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TABLE FACTORS FOR SQUARE AND RECTANGULAR SECTIONS

b-t 1 12 15 2 25 3 5 10 ®
Factor

Ky 0416 | 0438 | 0,462 | 0492 | (516 | 0.534 | 0582 | 0.624 | 0,666
Factor

K, 0180 | 0,212 | 0.250 | 0,202 | 0.317 | 0.335 | 0.371 | 0.398 | 0424

STRESS FACTOR 3 FOR RECTANGULAR WIRE (b and t as shown)

4.2
4.0
38

3.6
@ 3.4

3.2

Constant

3.0

2.8

2.6

2.4

T 50

10.7

D
R R:=2 R=P
"3 2 2 o0
< € 5
a a &
» A »
w ° » 4
[ 2 Lol £ L-—b—o-’ <HAs6
D = Coil Dia 1y 4.4
NE 4.2
N
A 4.0
A P o N 7
e - 3.8
"\%“\ N Index ¢ = 0 L
~NC N Y] 136
HEAS NN IS = P c @
AN NN ) P 3.4
RN N P = | S
ORI g
S,
~ aNE [T 2011307
< BN 6 x bt
N NN A
N N8 et Lt 2.8
y N /C\‘\
S 2.6
i S
3 2.4
403632 28 24 201816 1.4 1.2 10 12 14 161820 24 28 323640 50
Rato t/b Ratia bt

FIGURE 10.2 Stress factors for rectangular wire and K factors.

Type ot End
Open or
Open or Plain Squared or
Plain {with ends Closed Closed and
(not ground) ground} {not ground) Ground
Feature Formuta
Pitch FL-d FlL FL - 30 FL-2d
o} N c N N
s | acs o Texd c+d TCxd
Number of N=TC N=TC-1 N=TC-2 N=TC-2
Active Coils orFL—d FL_ o FL- 30 or FL-2d
™ 3 op ! P °
Total Coils FL-g FL FL~3d FL-2d
) o ) P 2 o 2
Feoemd®™ | oxTo+e pxTC PxM+3d | @xN+20
d = wire dia.

FIGURE 10.3 Compression-spring features.
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f:0.481<%+]>

where ¢’ = new thickness of inner edge of section in the axial direction, after coiling
t = thickness of section before coiling
D = mean diameter of the spring
OD = outside diameter

Active Coils in Compression Springs. Style of ends may be selected as follows:

e Open ends, not ground. All coils are active.

e Open ends, ground. One coil is inactive.

e Closed ends, not ground. Two coils are inactive.
e Closed ends, ground. 'Two coils are inactive.

When using the compression spring equations, the variable N refers to the number
of active coils in the spring being calculated.

10.2 HELICAL EXTENSION SPRINGS
(CLOSE-WOUND)

This type of spring is calculated using the same equations for the standard helical
compression spring, namely, rate, stress, and Wahl stress-correction factor. One
exception when working with helical extension springs is that this type of spring is
sometimes wound by the spring manufacturer with an initial tension in the wire. This
initial tension keeps the coils tightly closed together and creates a pretension in the
spring. When designing the spring, you may specify the initial tension on the spring,
in pounds. When you do specify the initial tension, you must calculate the torsional
stress developed in the spring as a result of this initial tension.

First, calculate torsional stress S; due to initial tension P; in

_ 8DP,
T ond

where P, = initial tension, 1b. Second, for the value of §; calculated and the known
spring index D/d, determine on the graph in Fig. 10.4 whether or not §; appears in
the preferred (shaded) area. If S; falls in the shaded area, the spring can be produced
readily. If §; is above the shaded area, reduce it by increasing the wire size. If S; is
below the shaded area, select a smaller wire size. In either case, recalculate the stress
and alter the number of coils, axial space, and initial tension as necessary.

10.3 SPRING ENERGY CONTENT OF
COMPRESSION AND EXTENSION SPRINGS

The potential energy which may be stored in a deflected compression or extension
spring is given by
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Torsional stress due to initial tension
in extension springs (steel wire)

36 ‘
B 32
o
X
-
2o 28
(2]
&
- 24
«© .
= Initial
< 20 % tension in
e this area is
g readily
o 16 obtainable.
% />7 Use when
+= ossible.
B 1 7 p
E <
2 /
4 8 Y
(o]
l._
4
3 4 6 8 10 12 14 16

_Initial tension Spring index D/d

in this area is

difficult to

maintain with

accuracy.

FIGURE 10.4 Graph for preferred initial tension for extension springs.

Also:
1 s . . .
P,= > R(s5 — si in moving from point s; to s,

where R = rate of the spring, Ib/in, 1b/ft, N/m
s = distance spring is compressed or extended, in, m
P, =potential energy, in - Ib, ft - 1b,J
s1, 5, = distances moved, in

EXAMPLE. A compression spring with a rate of 50 1b/in is compressed 4 in. What is
the potential energy stored in the loaded spring?
50(4)
P,= % =400in-1bor33.33 ft - 1b

Thus the spring will perform 33.33 ft - Ib of work energy when released from its
loaded position. Internal losses are negligible. This procedure is useful to mechani-
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cal designers and tool engineers who need to know the work a spring will produce in
a mechanism or die set and the input energy required to load the spring.

Expansion of Compression Springs When Deflected. A compression spring outside
diameter will expand when the spring is compressed. This may pose a problem if the
spring must work within a tube or cylinder and its outside diameter is close to the inside
diameter of the containment. The following equation may be used to calculate the
amount of expansion that takes place when the spring is compressed to solid height. For
intermediate heights, use the percent of compression multiplied by the total expansion.

Total expansion = outside diameter (solid) — outside diameter

Expanded diameter is

pz_dz

+d
TCZ

Outside diameter, solid = _/ D? +

where p = pitch (distance between adjacent coil center lines), in
d = wire diameter, in
D = mean diameter of the spring, in

and outside diameter, solid = expanded diameter when compressed solid, in

Symbols for Compression and Extension Springs

R =rate, pounds of load per inch of deflection

P =load, b

F = deflection, in

D =mean coil diameter, OD —d

d = wire diameter, in
t = side of square wire or thickness of rectangular wire, in
b = width of rectangular wire, in

G = torsional modulus of elasticity, psi

N =number of active coils, determined by the types of ends on a compression
spring; equal to all the coils of an extension spring

S = torsional stress, psi
OD = outside diameter of coils, in
ID =inside diameter, in
C =spring index D/d
L =length of spring, in
H =solid height, in
K, =Wahl stress-correction factor
K, K, B (see Fig. 10.2)

For preferred and special end designs for extension springs, see Fig. 10.5.
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@ © —Hp @ Od

Machine Loop and Machine Machine Loop and Machine
Hook Shown in Line Hook Shown at Right Angles

DG db @ ©di

Full Loop on Side and Small Eye Over Center

Hand Loop and Hook
at Right Angles Small Eye From Center

=} i~ S

Double Twisted Single Full Loop Centered

Full Loop Over Center

Full Loo; g Small Machine Half-Hook Hand Half-1.oop

p
at Side Off-set Hook at Side Over Center Over Center

ALL THE ABOVE ENDS ARE STANDARD TYPES FOR WHICH
NO SPECIAL TOOLS ARE REQUIRED

Coned End with

Long Round-End  Long Square-End V-Hook
Over Center  Short Swivel Eye

Hook Over Center Hook Over Center

Coned End to Hold

Extended Eye From Straight End Annealed
Either Center or Side to Allow Forming Long Swivel Eye
THIS GROUP OF SPECIAL ENDS REQUIRES SPECIAL TOOLS

FIGURE 10.5 Preferred and special ends, extension springs.

10.4 TORSION SPRINGS

Refer to Fig. 10.6.

10.4.1 Round Wire

Moment (torque) is

. Ed‘T
M, Ib-in= 108ND }Transpose ford, T, N, or D
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- 2 [

FIGURE 10.6 Torsion spring.

Tensile stress is

32M
S, psi= e K } Transpose for M or d

10.4.2 Square Wire

Moment (torque) is

4

M.lb-in= 24T
S0 INE T 6ND

} Transpose for t, T, N, or D
Tensile stress is

oM
S, psi= - K } Transpose for M or ¢

The stress-correction factor K or K; for torsion springs with round or square wire,
respectively, is applied according to the spring index as follows:

When spring index=6, K=1.15 A
=8, K=1.11 } for round wire
=10, K=1.08 |

When spring index =6, K;=1.13 A

=8, K;=1.09  forsquare wire

=10, k=107 |

For spring indexes that fall between the values shown, interpolate the new correc-
tion factor value. Use standard interpolation procedures.
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10.4.3 Rectangular Wire

Moment (torque) is

M,1b-in= EbeT

6.6ND }Transpose for b, t, T, N, or D

Tensile stress is

6M
S, psi= e }Transpose for M, t, or b

10.4.4 Symbols, Diameter Reduction, and Energy Content

Symbols for Torsion Springs

D = mean coil diameter, in

d = diameter of round wire, in

N = total number of coils, i.e., 6 turns, 7.5 turns, etc.

E = torsional modulus of elasticity (see charts in this chapter)

T = revolutions through which the spring works (e.g., 90° arc = 90/360 = 0.25
revolutions, etc.)

S = bending stress, psi
M = moment or torque, 1b - in
b = width of rectangular wire, in

t = thickness of rectangular wire, in

K, K, = stress-correction factor for round and square wire, respectively

Torsion Spring Reduction of Diameter During Deflection. When a torsion spring
is operated in the correct direction (coils close down when load is applied), the
spring’s inside diameter (ID) is reduced as a function of the number of degrees the
spring is rotated in the closing direction and the number of coils. This may be calcu-
lated from the following equation:

_ 360N(ID)

D, = 360N + R°

where ID, = inside diameter after deflection (closing), in

ID; = inside diameter before deflection (free), in
N = number of coils
R° =number of degrees rotated in the closing direction

NOTE. When a spring is manufactured, great care must be taken to ensure that no
marks or indentations are formed on the spring coils.



10.14 CHAPTER TEN

Spring Energy Content (Torsion, Coil, or Spiral Springs). In the case of a torsion
or spiral spring, the potential energy P, the spring will contain when deflected in the
closing direction can be calculated from

1
P.= 7 RO? also M=R6,

where M = resisting torque, 1b - ft, N - m
R =spring rate, Ib/rad, N/rad
0, = angle of deflection, rad

Remember that 2r rad = 360° and 1 rad = 0.01745°.

NOTE. Units of elastic potential energy are the same as those for work and are
expressed in foot pounds in the U.S. customary system and in joules in SI. Although
spring rates for most commercial springs are not strictly linear, they are close enough
for most calculations where extreme accuracy is not required.

In a similar manner, the potential energy content of leaf and beam springs can be
derived approximately by finding the apparent rate and the distance through which
the spring moves.

Symbols for Spiral Torsion Springs (and Flat Springs,* Sec. 10.5)

*F = bending modulus of elasticity, psi (e.g., 30 x 10° for most steels)
6, = angular deflection, rad (for energy equations)
6 = angular deflection, revolutions (e.g., 90° = 0.25 revolutions)
*L = length of active spring material, in
M = moment or torque, Ib - in
*b = material width, in
*t = material thickness, in
A = arbor diameter, in

ODy = outside diameter in the free condition

10.5 FLAT SPRINGS

Cantilever Spring. Load (see Figs. 10.7a, b, and c) is

_ EFb?

Plb= TR }Transpose for E b, t, or L

Stress is

o 3EFt_6PL
P =T T e

}Transpose for Kt L, b, or P
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F
O \

A&

0 b

FIGURE 10.7 Flat springs, cantilever.

Simple Beam Springs. Load (see Figs. 10.8a and b) is

4EFbP
Plb= 7 }Transpose for E b, t, or L
L.
Stress is
. 6EFt 3PL
S, psi= 2 = b }Transpose for Kb, t, L, or P

10.15

In highly stressed spring designs, the spring manufacturer should be consulted
and its recommendations followed. Whenever possible in mechanism design, space
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R
%fL\J
|

L

(2)

P

(b)
FIGURE 10.8 Flat springs, beam.

for a moderately stressed spring should be allowed. This will avoid the problem of
marginally designed springs, that is, springs that tend to be stressed close to or
beyond the maximum allowable stress. This, of course, is not always possible, and
adequate space for moderately stressed springs is not always available. Music wire
and some of the other high-stress wire materials are commonly used when high
stress is a factor in design and cannot be avoided.

10.6 SPRING MATERIALS AND PROPERTIES

See Fig. 10.9 for physical properties of spring wire and strip that are used for spring
design calculations.

Minimum Yield Strength for Spring-Wire Materials. See Fig. 10.10 for minimum
yield strengths of spring-wire materials in various diameters: (a) stainless steels, (b)
chrome-silicon/chrome vanadium alloys, (¢) copper-base alloys, (d) nickel-base
alloys, and (e) ferrous.

Buckling of Unsupported Helical Compression Springs. Unsupported or
unguided helical compression springs become unstable in relation to their slender-
ness ratio and deflection percentage of their free length. Figure 10.11 may be used to
determine the unstable condition of any particular helical compression spring under
a particular deflection load or percent of free length.
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Design Max.
Material E, G, stress, Conduc- operating
and 106 10° % min. tivity, Density,  temperature,
specification psi psi yield % IACS 1b/in® °F FA* SA*
High-carbon steel wire
Music
ASTM A228 30 11.5 45 7 0.284 250 E H
Hard-drawn
ASTM A227 30 11.5 40 7 0.284 250 P M
ASTM A679 30 11.5 45 7 0.284 250 P M
Oil-tempered
ASTM A229 30 11.5 45 7 0.284 300 P M
Carbon valve 30 11.5
ASTM A230 30 11.5 45 7 0.284 300 E H
Alloy steel wire
Chrome- 30 11.5 45 7 0.284 425 E H
vanadium
ASTM A231
Chrome-silicon 30 11.5 45 5 0.284 475 F H
ASTM A401
Silicon- 30 11.5 45 4.5 0.284 450 F H
manganese
AISI 9260
Stainless steel wire
AISI 302/304 28 10 35 2 0.286 550 G M
ASTM A313
AISI 316 28 10 40 2 0.286 550 G M
ASTM A313
17-7PH 29.5 11 45 2 0.286 650 G H
ASTM
A313(631)
Nonferrous alloy wire
Phosphor- 15 6.25 40 18 0.320 200 G M
bronze
ASTM B159
Beryllium- 18.5 7 45 21 0.297 400 E H
copper
ASTM B197
Monel 400 26 9.5 40 — — 450 F M
AMS 7233
Monel K500 26 9.5 40 — — 550 F M
QQ-N-286

FIGURE 10.9 Spring materials and properties.
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Design Max.
Material E, G, stress, Conduct- operating
and 10° 106 % min. ivity, Density,  temperature,
specification psi psi yield % IACS 1b/in® °F FA* SA*
High-temperature alloy wire
Nickel-chrome 29 10.4 35 2 0.290 510 — L
ASTM A286
Inconel 600 31 11 40 15 0.307 700 F L
QQ-W-390
Inconel X750 31 12 40 1 0.298 1100 F L
AMS 5698,
5699
High-carbon steel strip
AISI 1065 30 11.5 75 7 0.284 200 F M
AISI 1075 30 11.5 75 7 0.284 250 G H
AISI 1095 30 11.5 75 7 0.284 250 E H
Stainless steel strip
AISI 301 28 10.5 75 2 0.286 300 G M
AISI 302 28 10.5 75 2 0.286 550 G M
AISI 316 28 10.5 75 2 0.286 550 G M
17-7PH 29 11 75 2 0.286 650 G H
ASTM A693
Nonferrous alloy strip
Phosphor- 15 6.3 75 18 0.320 200 G M
bronze
ASTM B103
Beryllium- 18.5 7 75 21 0.297 400 E H
copper
ASTM B1%4
Monnel 400 26 — 75 — — 450 — —
AMS 4544
Monel K500 26 — 75 — — 550 — —
QQ-N-286
High-temperature alloy strip
Nickel-chrome 29 104 75 2 0.290 510 — L
ASTM A286
Inconel 600 31 11 40 1.5 0.307 700 F L
ASTM B168
Inconel X750 31 12 40 1 0.298 1100 F L
AMS 5542

* Letter designations of the last two columns indicate: FA = fatigue applications; SA = strength applications; E = excel-
lent; G = good; F = fair; L = low; H = high; M = medium; P = poor.

FIGURE 10.9 (Continued) Spring materials and properties.



Stainless steels

Wire Type Type Wire Type Type Wire Type Type
size, in 302 17-7 PH* size, in 302 17-7 PH* size, in 302 17-7 PH*
0.008 325 345 0.033 276 0.060 256
0.009 325 0.034 275 0.061 255 305
0.010 320 345 0.035 274 0.062 255 297
0.011 318 340 0.036 273 0.063 254
0.012 316 0.037 272 0.065 254
0.013 314 0.038 271 0.066 250
0.014 312 0.039 270 0.071 250 297
0.015 310 340 0.040 270 0.072 250 292
0.016 308 335 0.041 269 320 0.075 250
0.017 306 0.042 268 310 0.076 245
0.018 304 0.043 267 0.080 245 292
0.019 302 0.044 266 0.092 240 279
0.020 300 335 0.045 264 0.105 232 274
0.021 298 330 0.046 263 0.120 272
0.022 296 0.047 262 0.125 272
0.023 294 0.048 262 0.131 260
0.024 292 0.049 261 0.148 210 256
0.025 290 330 0.051 261 310 0.162 205 256
0.026 289 325 0.052 260 305 0.177 195
0.027 267 0.055 260 0.192
0.028 266 0.056 259 0.207 185
0.029 284 0.057 258 0.225 180
0.030 282 325 0.058 258 0.250 175
0.031 280 320 0.059 257 0.375 140
0.032 277
FIGURE 10.10a Stainless steel wire.
Chrome-silicon/chrome-vanadium steels Copper-base alloys
Wire size, Chrome- Chrome-  Wire size range, 1 in Strength
n silicon vanadium Phosphor-bronze (grade A)
0.020 300 0.007-0.025 145
0.032 300 290 0.026-0.062 135
0.041 298 280 0.063 and over 130
0.054 292 270
0.062 290 265 Beryllium-copper (alloy 25 pretempered)
0.080 285 255 0.005-0.040 180
0.092 280 0.041 and over 170
0.105 245 Spring brass (all sizes) 120
0.120 275
8}2; ;Zg ggg FIGURE 10.10c Copper-base alloys.
0.177 260
0.192 260 220 Nickel-base alloys
0.218 255 .
0.250 250 210 Inconel (spring temper)
0.312 245 203 Wire size range, 1 in Strength
0375 240 200 Up 10 0.057 185
0.437 195 0.057-0.114 175
0.500 190 0.114-0318 170
FIGURE 10.10b  Chrome silicon/chrome vanadium. Inconel X (spring temper)* 190-220

FIGURE 10.10d Nickel-base alloys.

10.19
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100

Deflection (% of free length)
{Deflection)/(Free length) x 100

80

60 N
UNSTABLE AREA
40

20 \

—

0 1 2 3 4 5 3 7 8 9 10
Slenderness Ratio = (Free length}/(Mean diameter)

FIGURE 10.11 Buckling of helical compression springs.

10.7 ELASTOMER SPRINGS

Elastomer springs have proven to be the safest, most efficient, and most reliable
compression material for use with punching, stamping, and drawing dies and blank-
holding and stripper plates. These springs feature no maintenance and very long life,
coupled with higher loads and increased durability. Other stock sizes are available
than those shown in Tables 10.1 and 10.2. Elastomer springs are used where metallic
springs cannot be used, i.e., in situations requiring chemical resistance, nonmagnetic
properties, long life, or other special properties. See Fig. 10.12 for dimensional refer-
ence to Tables 10.1 and 10.2.

TABLE 10.1 Elastomer Springs (Standard)

D,in d,in L,in R* Deflection® T#

0.630 0.25 0.625 353 0.22 77
0.630 0.25 1.000 236 0.34 83
0.787 0.33 0.625 610 0.22 133
0.787 0.33 1.000 381 0.35 133
1.000 0.41 1.000 598 0.35 209
1.000 0.41 1.250 524 0.44 229
1.250 0.53 1.250 1030 0.44 451
1.250 0.53 2.500 517 0.87 452
1.560 0.53 1.250 1790 0.44 783
1.560 0.53 2.500 930 0.87 815
2.000 0.66 2.500 1480 0.87 1297
2.500 0.66 2.500 2286 0.87 2000
3.150 0.83 2.500 4572 0.87 4000

See Fig. 10.11 for dimensions D, d, and L.

* Spring rate, Ib/in, +20%.

 Maximum deflection = 35% of L.

* Approximate total load at maximum deflection +20%.

Source: Reid Tool Supply Company, Muskegon, MI 49444-2684.
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TABLE 10.2 Urethane Springs (95 Durometer, Shore A Scale)

D,in d,in L,in Load, Ib, %-in deflection
0.875 0.250 1.000 425
0.875 0.250 1.250 325
0.875 0.250 1.750 250
1.000 0.375 1.000 525
1.500 0.375 1.500 325
1.125 0.500 1.000 600
1.125 0.500 2.000 275
1.250 0.625 1.000 700
1.250 0.625 2.000 325
1.500 0.750 1.250 875
1.500 0.750 2.000 525
2.000 1.000 1.250 1550
2.000 1.000 2.750 625

See Fig. 10.12 for dimensions D, d, and L.
Temperature range: —40°F to +180°F, color black.
Source: Reid Tool Supply Company, Muskegon, MI 49444-2684.

T

FIGURE 10.12 Dimensional reference to Tables
10.1 and 10.2.

10.8 BENDING AND TORSIONAL STRESSES
IN ENDS OF EXTENSION SPRINGS

Bending and torsional stresses develop at the bends in the ends of an extension
spring when the spring is stretched under load. These stresses should be checked by
the spring designer after the spring has been designed and dimensioned. Alterations
to the ends and radii may be required to bring the stresses into their allowable range
(see Sec. 10.5 and Fig. 10.13).

The bending stress may be calculated from

16PD
Bending stress at point A =S, = ——— (ﬂ)
ntd’ r

The torsional stress may be calculated from

. R 8PD (r;
Torsional stress at point B =S, = | —
nd® \ry
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Check the allowable stresses for each particular wire size of the spring being calcu-
lated from the wire tables. The calculated bending and torsional stresses cannot
exceed the allowable stresses for each particular wire size. As a safety precaution,
take 75 percent of the allowable stress shown in the tables as the minimum allowable

when using the preceding equations.

I

|
==
I

Ts

5

Bending Stress at A Torsional Stress at B

FIGURE 10.13 Bending and torsional stresses at ends of extension springs.

10.9 SPECIFYING SPRINGS, SPRING
DRAWINGS, AND TYPICAL PROBLEMS
AND SOLUTIONS

When a standard spring or a die spring collapses or breaks in operation, the reasons
are usually as indicated by the following causes:

¢ Defective spring material
¢ Incorrect material for the application
¢ Spring cycled beyond its normal life

¢ Defect in manufacture such as nicks, notches, and deep forming marks on spring
surface

e Spring incorrectly designed and overstressed beyond maximum allowable level
¢ Hydrogen embrittlement due to plating and poor processing (no postbaking used)

¢ Incorrect heat treatment

Specifying Springs and Spring Drawings. The correct dimensions must be speci-
fied to the spring manufacturer. See Figs. 10.14a, b, and ¢ for dimensioning compres-
sion, extension, and torsion springs.

A typical engineering drawing for specifying a compression spring is shown in
Fig. 10.15. Extension and torsion springs are also specified with a drawing similar to
that shown in Fig. 10.15, using Figs. 10.14a, b, and c as a guide.
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FREE_LENGTH .

DIa

MEAN
COiL.

OUTSIDE DI

SRE OF MATERIAL #k_

(a)

SIZE OF MATERIAL
OPENING
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[T :{

FIGURE 10.14 Dimensions required for springs: () compression springs; (b) exten-
sion springs; (c) torsion springs.

Typical Spring Problems and Solutions

Problem. A compression type die spring, using square wire, broke during use,
and the original specification drawing is not available.

Solution. Measure the outside diameter, inside diameter, cross section or diam-
eter of wire, free length of spring, number of coils or turns, and the distance the
spring was deflected in operation. Remember, if a compression spring has closed and
ground ends (which die springs usually have), count the total number of coils or
turns and subtract 2 coils to find the number of active coils. See Fig. 10.3 for the
number of active coils for each type of end on compression springs. Most die springs
use hard-drawn, oil-tempered, or valve spring material (see Fig. 10.9 for material
specifications).

Then, use the appropriate minimum stress allowable for the spring’s measured
wire size, as shown in Fig. 10.9a. Stress levels in these figures represent thousands of
pounds per square inch (i.e., if the charted value is 325, then the allowable minimum
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SPRING_DATA

RH TYPE : COMPRESSION
0.D.-3.43" MAX.
WIRE DIA.0.375°
NO. OF COILS

. | MEAN DIA,
=] 3057 fam TOTAL=10.5

| | 0.37S ACTIVE=8.5

MATERIAL -CHROME-
. /V SILICON
=
5 R ASTM-A401
u COMPRESSIONCMAX > foce | 11 —g 257, 06
& T =
b = RATE-118 LBS/INCH.
D Zy o
0 225, ENDS-CLOSED & GROUND
o Y o A
s§¢- F INISH-NONE
X 1 38

WIND-RIGHT HAND HELIX
_>1 3.437 |00 MAX, REF: A =87,300 PSI
FIGURE 10.15 Typical engineering drawing for use by spring manufacturers.

tensile stress is 325,000 psi). Multiply this value by the appropriate correct stress
allowable for compression springs, which is 45 percent or 0.45 x 325,000 = 146,250 psi.

With the preceding data and measurements, calculate the spring rate and the
maximum stress the spring was subjected to during operation using the following
procedure.

Step 1. See the equations shown in Sec. 10.1 for your application (round, square,
or rectangular wire).

Step 2. Calculate the spring rate R.

Step 3. Calculate the working stress (torsional stress S) to see if it is within the
allowable stress as indicated previously. If the stress level calculated for the bro-
ken spring is higher than the maximum allowable stress, select a material such as
chrome-silicon or chrome-vanadium steel.

Step 4. If the calculated working stress level is below the maximum allowable,
the spring may be ordered with all the dimensions and spring rate provided to the
spring manufacturer.
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G :=11500000 d:=0.250 D:=1.700 N:=13 % =6.8 Index C

C:=6.8 P:=250,260..400 K :=1.22 Wahl stress correction factor

4-C-1 0.615 G-d* )

T c_a c - 1.22 3 N.D =87.918 RATE =87.92 1b/in

8§-K-D-P .

T =STRESS, psi

8.45 . 10°* By assigping a range variable to P, which is the load on the spring, Math-

8.788 - 10°* Cad 7 will present a table of stress values from which the maximum allow-

9.126 - 10* able stress can be determined for a particular load P. In this problem, the

9.464 - 10* maximum stress is indicated in the table as 118,300 psi, when the spring is

0.802 - 10* loaded to 350 Ibf. Maximum tensile strength for 0.250 diameter music wire

1.014 - 10° (ASTM A-228) is 0.50 x 230,000 = 115,090 psi, which is cl'ose to the value

1.048 - 10° in the table for the 350 lbf load. The spring is stressed s‘hght‘ly above the

1.082 - 10° allowable of 50% of maximum tensile strength for the wire diameter indi-

1.115 - 10° cated in the problem. This proved to be adequate design for this particular

1.149 - 10° spring, which was cycled' mffequently in operation. Operating tempera-
#1183 - 10° ture range for this application was from —40 to 150°F. Approx1mat§1y

1217 -10° 9Q,000 springs were used over a time span of 15 years without any spring

1251 - 10° failures.

1.284-10°

1.318-10°

1.352-10° * Maximum stress level, psi, when the load is 350 Ibf.

FIGURE 10.16

Compression spring calculation using MathCad PC program.

NOTE. Figure 10.15 shows a typical engineering drawing for ordering springs from
the spring manufacturer, and Fig. 10.16 shows a typical compression spring calcula-

tion procedure.
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CHAPTER 11

MECHANISMS, LINKAGE
GEOMETRY, AND
CALCULATIONS

The mechanisms and linkages discussed in this chapter have many applications for the
product designer, tool engineer, and others involved in the design and manufacture of
machinery, tooling, and mechanical devices and assemblies used in the industrial con-
text. A number of important mechanical linkages are shown in Sec. 11.5, together with
the mathematical calculations that govern their operation.

Mechanisms and Principles of Operation. 'When you study the operating principles
of these devices, you will be able to see the relationships they have with the basic simple
machines such as the lever, wheel and axle, inclined plane or wedge, gear wheel, and so
forth. There are seven basic simple machines from which all machines and mechanisms
may be constructed either singly or in combination, including the Rolomite mechanism.
The hydraulic cylinder and gear wheel are also considered members of the basic simple
machines.

Shown in Sec. 11.4 are other mechanisms which are used for tool-clamping pur-
poses.

A number of practical mechanisms are shown in Sec. 11.3 together with explana-
tions of their operation, in terms of their operational equations.

11.1 MATHEMATICS OF THE EXTERNAL
GENEVA MECHANISM

See Figs. 11.1 and 11.2.

1.1

Copyright 2001 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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FIGURE 11.1 External Geneva mechanism.
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FIGURE 11.2 External Geneva geometry.

11.2
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Kinematics of the External Geneva Drive. Assumed or given:a, n, d, and p.
1
a = crank radius of driving member and m= m
n =number of slots in drive
d =roller diameter
p = constant velocity of driving crank, rpm

b = center distance = am

d? 180
D = diameter of driven Geneva wheel =2 o + a? cot? o

= constant angular velocity of driving crank = pn/30 rad/sec
o = angular position of driving crank at any time
[ = angular displacement of driven member corresponding to crank angle o.

B m — oS O
cosB=
V1+ m?-2mcosa

. . dap mcos o —1
Angular velocity of driven member = 7 w( P w— )

@:M( m sin a1 — m?) )

Angular acceleration of driven member =
& dr (1 +m?*=2m cos o)

. . 1+m*\? 1+m?
Maximum angular acceleration occurs when cos o = 1 +2- 1
m m

. . ®
Maximum angular velocity occurs at o= 0° and equals 1 rad/sec
m—

11.2 MATHEMATICS OF THE INTERNAL
GENEVA MECHANISM

See Figs. 11.3 and 11.4.

Equations for the Internal Geneva Wheel. Assumed or given: a, n, d, and p.
1
a = crank radius of driving member and m= m
n =number of slots
d =roller diameter
p = constant velocity of driving crank, rpm

b = center distance = am

d? 180

D = inside diameter of driven member =2 = +a* cot> —
n
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Driving
roller

J Zero line
or l‘/d(x = 0"

FIGURE 11.3 Internal Geneva mechanism (six-slot internal Geneva wheel).

. .. B
o = constant angular velocity of driving crank, rad/sec = pr rad/sec

o= angular position of driving crank at any time, degrees

B = angular displacement of driven member corresponding to crank angle o
m+cos o

cos fp=—F————

V1 + m? +2m cos o

d
Angular velocity of driven member = B =

1+ mcosa
dt

1+ m?+2m cos

fz_ig_ z[ m sin o(1 — m?) ]

Angular acceleration of driven member = =
& (1 +m?+ 2m cos o)?

Maximum angular velocity occurs at o= 0° and equals

®
rad/sec
m

Maximum angular acceleration occurs when roller enters slot and equals
o 5
————=rad/sec

Vm? -1
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b+acosa

Zero line
o=20

FIGURE 11.4 Internal Geneva geometry.

11.3 STANDARD MECHANISMS

e Figure 11.5 shows the scotch yoke mechanism for generating sine and cosine
functions.

¢ Figure 11.6 shows the tangent and cotangent functions.

¢ Figure 11.7 shows the formulas for the roller-detent mechanism.

¢ Figure 11.8 shows the formulas for the plunger-detent mechanism.

¢ Figure 11.9 shows the slider-crank mechanism.
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11.6

Y=Csin a
X

C cos o

ctions.

fun

Scotch yoke mechanism for sine an

FIGURE 11.5

‘N

\

N

22

FIGURE 11.6 Tangent-cotangent mechanism.
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N tan o R(lf cos (z)
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ROLLER RADIUS R =

N tan o s cos o
2 1-cos u

FIGURE 11.7 Roller-detent mechanism.

/Spring
%

= “’4\/_’ A
T
N

o

Z
>
\

FIGURE 11.8 Plunger-detent mechanism. Holding power R = P tan o. For friction coefficient F at
contact surface, R = P (tan o. + F).

11.7
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Displacement of slider:
R
X=Lcosdp+Rcos®  cosdh= [1 - (f)z sin? 9}
Angular velocity of connecting rod:

o (R/L)cosod
O = TZ(R/ L) sin? 0]

Linear velocity of piston:

Angular acceleration of connecting rod:

"

_ W(R/L)sin0[(R/L?) 1]
T [1~(R/L?)sin? 6]

Slider acceleration:

R " .
X"= —m2<—)[cos 0+ ¢—2 sin 6 + L cos G}L
L W o)

where L = length of connecting rod

R = Radius of crank

X = distance from center of crankshaft A to wrist pin C

X’ =slider velocity (linear velocity of point C)

X” = Slider acceleration
6 = crank angle measured from dead center when slider is fully extended
¢ = angular position of connecting rod; ¢ =0 when 6 =0
¢" = connecting rod angular velocity = do/dt

¢” = connecting rod angular acceleration = d¢/dr*
= constant angular velocity of the crank

FIGURE 11.9 Slider-crank mechanism.
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11.4 CLAMPING MECHANISMS
AND CALCULATION PROCEDURES

Clamping mechanisms are an integral part of nearly all tooling fixtures. Countless
numbers of clamping designs may be used by the tooling fixture designer and tool-
maker, but only the basic types are described in this section. With these basic clamp
types, it is possible to design a vast number of different tools. Both manual and pneu-
matic/hydraulic clamping mechanisms are shown, together with the equations used
to calculate each basic type. The forces generated by the pneumatic and hydraulic
mechanisms may be calculated initially by using pneumatic and hydraulic formulas
or equations.

The basic clamping mechanisms used by many tooling fixture designers are out-
lined in Fig. 11.10, types 1 through 12. These basic clamping mechanisms also may be
used for other mechanical design applications.

Eccentric Clamp, Round (Fig. 11.10, Type 12). The eccentric clamp, such as that
shown in Fig. 11.10, type 12, is a fast-action clamp compared with threaded clamps,
but threaded clamps have higher clamping forces. The eccentric clamp usually
develops clamping forces that are 10 to 15 times higher than the force applied to the
handle.

The ratio of the handle length to the eccentric radius normally does not exceed 5
to 6, while for a swinging clamp or strap clamp (threaded clamps), the ratio of the
handle length to the thread pitch diameter is 12 to 15. The round eccentrics are rel-
atively cheap and have a wide range of applications in tooling.

The angle o in Fig. 11.10, type 12, is the rising angle of the round eccentric clamp.
Because this angle changes with rotation of the eccentric, the clamping force is not pro-
portional at all handle rotation angles. The clamping stroke of the round eccentric at 90°
of its handle rotation equals the roller eccentricity e. The machining allowance for the
clamped part or blank x must be less than the eccentricity e. To provide secure clamp-
ing, eccentricity e > x to 1.5x is suggested.

The round eccentric clamp is supposed to have a self-holding characteristic to
prevent loosening in operation. This property is gained by choosing the correct
ratio of the roller diameter D to the eccentricity e. The holding ability depends on
the coefficient of static friction. In design practice, the coefficient of friction fwould
normally be 0.1 to 0.15, and the self-holding quality is maintained when f exceeds
tan o.

The equation for determining the clamping force P is

l
[tan (ot + @) + tan 0,]r

P=0l

Then the necessary handle torque (M = PI) is
M = P[tan (o + ¢;) + tan 0,]r

where r = distance from pivot point to contact point of the eccentric and the
machined part surface, in or mm
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o = rotation angle of the eccentric at clamping (reference only)
tan ¢, = friction coefficient at the clamping point
tan ¢, = friction coefficient in the pivot axle
[ =handle length, in or mm
QO =force applied to handle, Ibf or N
D = diameter of eccentric blank or disc, in or mm
P = clamping force, Ibf or N

NOTE. tan (o + ¢;) =0.2 and tan ¢, = 0.05 in actual practice.
See Fig. 11.11 for listed clamping forces for the eccentric clamp shown in Fig.
11.10, type 12.

The Cam Lock. Another clamping device that may be used instead of the eccentric
clamp is the standard cam lock. In this type of clamping device, the clamping action is
more uniform than in the round eccentric, although it is more difficult to manufac-
ture. A true camming action is produced with this type of clamping device. The
method for producing the cam geometry is shown in Fig. 11.12. The layout shown is
for a cam surface generated in 90° of rotation of the device, which is the general appli-
cation. Note that the cam angle should not exceed 9° in order for the clamp to func-
tion properly and be self-holding. The cam wear surface should be hardened to
approximately Rockwell C30 to C50, or according to the application and the hard-
ness of the materials which are being clamped. The cam geometry may be developed
using CAD, and the program for machining the cam lock may be loaded into the CNC
of a wire EDM machine.

FIGURE 11.11 Torque values for listed clamping forces—eccentric clamps (type 12, Fig. 11.10).

Clamping force P, N

D 490 735 980 1225 1470 1715 1960
40 mm (1.58 in) 2.65 3.97 5.40 6.67 8.00 9.37 10.64
50 mm (1.98 in) 3.34 5.00 6.67 8.39 10.01 11.77 13.68

60 mm (2.36 in) 4.02 6.03 8.00 10.01 11.97 14.03 16.48
70 mm (2.76 in) 4.71 7.06 9.42 11.77 14.08 16.48 18.79

Note: Tabulated values are torques, N - m.

To convert clamping forces in newtons to pounds force, multiply table values by 0.2248 - (i.e., 1960 N =
1960 x 0.2248 = 441 1bf).

To convert tabulated torques in newton-meters to pound-feet , multiply values by 0.7376 (i.e., 18.79N - m =
18.79x0.7376 =139 b - ft).
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L =length of arc

r =pase circle radius

H = height of cam curve

o= cam angle; 9° maximum

3

CDE
TasH

R S

Developed
cam curve

FIGURE 11.12  Cam lock geometry.

11.5 LINKAGES—SIMPLE AND COMPLEX

Linkages are an important element of machine design and are therefore detailed in
this section, together with their mathematical solutions. Some of the more commonly
used linkages are shown in Figs. 11.13 through 11.17. By applying these linkages to
applications containing the simple machines, a wide assortment of workable mecha-
nisms may be produced.

Toggle-Joint Linkages. Figure 11.13 shows the well-known and often-used toggle
mechanism. The mathematical relationships are shown in the figure. The famous
Luger pistol action is based on the toggle-joint mechanism.

The Four-Bar Linkage. Figure 11.14 shows the very important four-bar linkage,
which is used in countless mechanisms. The linkage looks simple, but it was not until the
1950s that a mathematician was able to find the mathematical relationship between this
linkage and all its parts. The equational relationship of the four-bar linkage is known as
the Freudenstein relationship and is shown in the figure. The geometry of the linkage



CHAPTER ELEVEN
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As angle o approaches 90°, the links come into toggle, and the mechanical advantage and velocity ratio both approach infinity.
M, = Mechanical advantage (ratio)
Fy = Force at point B
F, = Force at point A
V, = Velocity at paint A
V, = Velocity at point B
= Horizontal displacement
Y = Vertical displacement
FIGURE 11.13 Toggle joint mechanism.
/‘W
a — pumpip
AN
N\ _ab
\
N\
Q
Licoso—L,cos P+ L;=cos (o.—B)
Where:
I a o9 b* -+ d*+
1=\ 75 2= 3=
d b 2bd
or
a a 8 b* -+ d*+ (- P)
—COSO——COSP+——,—F——=cos (00—
d b 2bd

FIGURE 11.14 Four-bar mechanism. 4, b, ¢, and d are the links. Angle o is the link
b angle, and angle B is the follower link angle for link d. When links a, b, and d are
known, link ¢ can be calculated as shown. The transmission angle 6 can also be cal-

culated using the equations.
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may be ascertained with the use of trigonometry, but the velocity ratios and the actions
are extremely complex and can be solved only using advanced mathematics.

The use of high-speed photography on a four-bar mechanism makes its analysis
possible without recourse to advanced mathematical methods, provided that the
mechanism can be photographed.

Simple Linkages. 1n Fig.11.15,the torque applied at point 7'is known, and we wish
to find the force along link £ We proceed as follows: First, find the effective value of
force F;, which is:

FIxR=T
Rl
R
Then
b
sin ¢ = 7
F T/R
=— or -
sin ¢ sin ¢

NOTE. 7/R=F, =torque at 7 divided by radius R.

In Fig. 11.16, the force F acting at an angle 6 is known, and we wish to find the
torque at point 7. First, we determine angle o from o = 90° — 6 and then proceed to
find the vector component force F;, which is

FIGURE 11.15 Simple linkage.
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F
cosoc:?1 and F,=Fcosa

The torque at point 7'is F cos oR, which is FiR. (Note that F, is at 90° to R.)

Crank Linkage. 1n Fig.11.17,a downward force F will produce a vector force F, in
link AB. The instantaneous force at 90° to the radius arm R, which is P,, will be

F
F, or P=
cos o,
and
F .
P,=F, or P cos A or P,= sin (¢ — 6)
cos ¢

The resulting torque at 7' will be 7= P,R, where R is the arm BT.

The preceding case is typical of a piston acting through a connecting rod to a
crankshaft. This particular linkage is used many times in machine design, and the
applications are countless.

The preceding linkage solutions have their roots in engineering mechanics, fur-
ther practical study of which may be made using the McGraw-Hill Electromechani-
cal Design Handbook, Third Edition (2000), also written by the author.

FIGURE 11.16 Simple linkage.
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A
Pn(\/ 4 o R /T
f

FIGURE 11.17 Crank linkage.

Four-Bar Linkage Solutions Using a Hand-Held Calculator. Figure 11.14 illus-
trates the standard Freudenstein equation which is the basis for deriving the very
important four-bar linkage used in many engineering mechanical applications. Prac-
tical solutions using the equation were formerly limited because of the complex
mathematics involved. Such computations have become readily possible, however,
with the advent of the latest generation of hand-held programmable calculators,
such as the Texas Instruments TI-85 and the Hewlett Packard HP-48G. Both of these
new-generation calculators operate like small computers, and both have enormous
capabilities in solving general and very difficult engineering mathematics problems.

Refer to Fig. 11.14 for the geometry of the four-bar linkage. The short form of the
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general four-bar-linkage equation is:
Licoso—L,cos P+ L;=cos (o.—B)

where L, =ald
L,=alb
Ly=b*>-+d*+a*2bd

The correct working form for the equation is:

- +d*+a®

bd =cos (o.—P)

a a
—cos(x—zcos[i+

d

Transposing the equation to solve for ¢, we obtain:

c= [({[— cos (o — B)] + (%) cos 0 (%) cos B} Zbd) MO aZ]oj

This equation must be entered into the calculator as shown, except that the brackets
and braces must be replaced by parentheses in the calculator. If the equation is not
correctly separated with parentheses according to the proper algebraic order of
operations, the calculator will give an error message. Thus, on the TI-85 the equation
must appear as shown here:

¢=((((- cos (A= B)) + (RIT) cos A — (R/S) cos B)(2ST)) +s* + T* + R»)*>

NOTE. A=0o,B=p,R=a,T=d, and S =b. (The TI-85 cannot show o, B,4, b, and d.)
When we know angle o, angle B may be solved by:
AP+ a b + cos! R+d -7
2ha 2hd

B=cos

where i = (a® + b* + 2ab cos o)
h=(a®+ b*+ 2ab cos 0)*®

The transmission angle 6 is therefore:

A +d*—a* - b*—2ab cos a.
2cd

6 =cos™

In the figure, the driver link is b and the driven link is d. When driver link b moves
through a different angle o, we may compute the final follower angle B and the trans-
mission angle 6.

The equation for the follower angles B, shown previously, must be entered into the
calculators as shown here (note that cos™ = arccos):

B=(cos™ ((F + R* — S?)/(2HR))) + (cos™ (I + T* — K*)/(2HT)))

and the transmission angles 6 must be entered as shown here:
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0=cos! ((K>+ T* - R*— $* - 2RS cos A)/(2KT))

As before, the capital letters must be substituted for actual equation letters as codes.

NOTE. In the preceding calculator entry form equations, the calculator exponent
symbols () have been omitted for clarity; for example,

cos?' (K*+T"*-R™...))

It is therefore of great importance to learn the proper entry and bracketing form for
equations used on the modern calculators, as illustrated in the preceding explana-
tions and in Sec. 1.4.

Figure 11.18 shows a printout from the MathCad PC program, which presents a
complete mathematical solution of a four-bar linkage. As a second proof of the prob-
lem shown in Fig. 11.18, the linkage was drawn to scale using AutoCad LT in Fig.
11.19. As can be seen from these two figures, the basic Freudenstein equations are
mathematically exact.

Freudenstein's Equation for 4-Bar Linkages
a:=deg 95 P = deg 98 b= 1875 d:=2.500 a:= 12625

/ \ f 0.5
H~cos(a —p) +cos(a)-‘\3_‘; - cos(gw\li”-z bd4(d+b +al)| = 12823928
\a/ Wb

The above equation for solving the "c" link of a 4-bar equation was transposed from
the Freudenstein relational equation shown below. The other important relational
equations for angles and sides follow the Freudenstein equation.

From the above, ¢ := 12.823928 = the unknown link length (c).

Freudenstein's Equation: Standard form.

/ N 22,2, .2

/ a al (b*=c"+d +a%) .
lcos(a)——cos(P)—| + o~ = cos{a =}
ostery D) 7hd

FIGURE 11.18 Four-bar linkage solved by MathCad.
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Relational Equations: h = 12600792 « = 95 deg =98
When we know angle o, angle B may be solved by the following when:

05
h? = 158.779959 and (a’+b’+2abcos(a)) = 12.600792 =h

f1.2 2 2 2 2 23
-b )i 47 -
b= acos| TE ) + acos( Y T T ). 98000018 deg
2ha |/ \' 2hd |
This chacks with 3 above
within 0.000018 degrees, or
0.06 seconds.
The transmission angle 0 is therefore: cos(a) = ~0.087156

/

2 2 242 \
-a“-b"=2ab
o = acoskc +d°-a"-b a'b-cos( @ )> = 79.283374 2deg

2-¢cd ]

FIGURE 11.18 Four-bar linkage solved by MathCad.

6.4120 —

95.0000° 98.0000"

85.0000°

0.9375 79.2834°

97.7166°
4

TRANSMISSION

ANGLE
| 6.3125 ! |

FIGURE 11.19 A scaled AutoCad drawing confirming calculations shown in Fig. 11.18.



CHAPTER 12

CLASSES OF FITS FOR
MACHINED PARTS—
CALCULATIONS

12.1 CALCULATING BASIC FIT CLASSES
(PRACTICAL METHOD)

The following examples of calculations for determining the sizes of cylindrical parts
fit into holes were accepted as an industry standard before the newer U.S. custom-
ary and ISO fit standards were established. This older method is still valid when
part tolerance specifications do not require the use of the newer standard fit
classes. Refer to Fig. 12.1 for the tolerances and allowances shown in the following
calculations.

From Fig. 12.1a, upper and lower fit limits are selected for a class A hole and a
class Z shaft of 1.250-in nominal diameter.

For the class A hole:

1.250 in — 0.00025 in = high limit = 1.25025 in
1.250 in — 0.00150 in = low limit = 1.24975 in

The hole dimension will then be 1.24975- to 1.25025-in diameter (see Fig. 12.2).
For a class Z fit of the shaft:

1.250 in — 0.00075 in = high limit = 1.24925 in
1.250 in — 0.00150 in = low limit = 1.24850 in

The shaft dimension will then be 1.24925- to 1.24850-in diameter (see Fig. 12.2).
The minimum and maximum clearances will then be:

1.24975 in = min. hole dia. 1.25025 in = max. hole dia.
—1.24925 in = max. shaft dia. —1.24850 in = min. shaft dia.

0.00050 in minimum clearance 0.00175 in maximum clearance

121
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1.2498/1.2503in. dia.hole
(Class A hole)

( M

— — 1.2493/1.2485in. dic.shaft

N il

(Class Z shaft)

FIGURE 12.2 Class A hole to class Z shaft fit dimensions.

The hole and shaft dimensions may be rounded to 4 decimal places for a more
practical application.

NOTE. In using Fig. 12.1a and b, class A and B entries are for the holes, and all the
other classes are used for the shaft or other cylindrical parts. You may also use Fig.
12.1b to calculate the upper and lower limits for holes and cylindrical parts, using the
equations shown in the figure.

Problem. Using Fig. 12.1a, find the hole- and bearing-diameter dimensions for
a bearing of 1.7500 in OD to be a class D driving or arbor press fit in a class A bored
hole.

Solution. From Fig. 12.1a, the class A hole for a 1.750-in-diameter bearing is:

1.7500 in + 0.00075 in = high limit = 1.75075 in
1.7500 in — 0.00025 in = low limit = 1.74975 in

The hole dimension is therefore 1.74975- to 1.75075-in diameter.
The bearing diameter for a class D driving or press fit is:

1.7500 in + 0.0015 in = high limit = 1.7515 in
1.7500 in + 0.0010 in = low limit = 1.7510 in

The bearing OD dimension is therefore 1.7515- to 1.7510-in diameter.
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The minimum and maximum interferences are then:
1.75100 in min. bearing dia. 1.75150 in max. bearing dia.
—1.75075 in max. bore dia. —1.74975 in min. bore dia.
0.00025 in min. interference 0.00175 in max. interference

Rounded to 4 decimal places:
0.0003 in minimum interference 0.0018 in maximum interference

For the new U.S. customary and ISO fit classes and their calculations, see Sec. 12.2.

12.2 U.S. CUSTOMARY AND METRIC (ISO) FIT
CLASSES AND CALCULATIONS

Limits and fits of shafts and holes are important design and manufacturing consid-
erations. Fits should be carefully selected according to function. The fits outlined in
this section are all on a unilateral hole basis. Table 12.1 describes the various U.S.
customary fit designations. Classes RC9, LC10, and LC11 are described in the ANSI
standards but are not included here. Table 12.1 is valid for sizes up to approximately
20 in diameter and is in accordance with American, British, and Canadian recom-
mendations.

The coefficients C listed in Table 12.2 are to be used with the equation L = CD'?,
where L is the limit in thousandths of an inch corresponding to the coefficients C
and the basic size D in inches. The resulting calculated values of L are then summed
algebraically to the basic shaft size to obtain the four limiting dimensions for the
shaft and hole. The limits obtained by the preceding equation and Table 12.2 are very
close approximations to the standards, and are applicable in all cases except where
exact conformance to the standards is required by specifications.

EXAMPLE. A precision running fit is required for a nominal 1.5000-in-diameter
shaft (designated as an RC3 fit per Table 12.2).

Lower Limit for the Hole Upper Limit for the Hole

cD" cD"
Lr=T000 L= 000
LI 0907 (1L5)"
1000 1000
-
d, =0+ 1.5000 dy =0.001038 + 1.5000
d, =1.50000 dy=1.50104
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TABLE 12.2 Coefficient C for Fit Equations

Class Hole limits Shaft limits

of fit Lower Upper Lower Upper
RC1 0 0.392 —0.588 —0.308
RC2 0 0.571 —0.700 —0.308
RC3 0 0.907 -1.542 -0.971
RC4 0 1.413 -1.879 -0.971
RC5 0 1.413 —2.840 -1.932
RC6 0 2.278 -3.345 -1.932
RC7 0 2.278 —4.631 —3.218
RC8 0 3.570 —-7.531 —5.253
LC1 0 0.571 —-0.392 0
LC2 0 0.907 -0.571 0
LC3 0 1.413 —0.907 0
LC4 0 3.570 —2.278 0
LGS 0 0.907 -0.879 -0.308
LC6 0 2.278 —2.384 —0.971
LC7 0 3.570 —4.211 -1.933
LC8 0 3.570 —5.496 -3.218
LC9 0 5.697 -8.823 —5.253
LT1 0 0.907 —0.281 0.290
LT2 0 1.413 —0.442 0.465
LT3* 0 0.907 0.083 0.654
LT4* 0 1.413 0.083 0.990
LT5 0 0.907 0.656 1.227
LTé 0 0.907 0.656 1.563
LN1 0 0.571 0.656 1.048
LN2 0 0.907 0.994 1.565
LN3 0 0.907 1.582 2.153
FN1 0 0.571 1.660 2.052
FN2 0 0.907 2.717 3.288
FN3' 0 0.907 3.739 4.310
FN4 0 0.907 5.440 6.011
FNS5 0 1.413 7.701 8.608

Note: Above coefficients for use with equation L = CD'".

* Not for sizes under 0.24 in.
" Not for sizes under 0.95 in.
Source:

Lower Limit for the Shaft

CD1/3
L=
>~ 1000
L (-1.542)(1.5)2
T 1000
_ -1.76513
*~ 1000

D, =1.500 + (-0.00176513)

D, =1.49823

Shigley and Mischke, Standard Handbook of Machine Design, McGraw-Hill, 1986.

Upper Limit for the Shaft

CD1/3
~ 1000

(0.971)(1.5)"
- 1000

Ly

L,
_ -L11150
‘71000
Dy=1.500 + (=0.0011115)
Dy =1.49889
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Therefore, the hole and shaft limits are as follows:

. 1.50000 .
Hole size = 150104 ia.

. 1.49889 .
Shaft size = 149323 ia.

NOTE. Another often-used procedure for fit classes for shafts and holes is given in
Fig. 12.1. Figure 12.1a shows tolerances in fits and Fig. 12.1b gives the equations for
calculating allowances for the different classes of fits shown there. The procedures
shown in Fig. 12.1 have often been used in industrial applications for bearing fits and
fits of other cylindrical machined parts.

Table 12.3 shows the metric preferred fits for cylindrical parts in holes. The pro-
cedures for calculating the limits of fit for the metric standards are shown in the
ANSI standards. The appropriate standard is ANSI B4.2—1978 (R1984). An alter-

TABLE 12.3 SI (Metric) Standard Fit Class Designations

Hole Shaft
Type basis basis Name and application
Clearance Hill/cll C11/h11 Loose-running fits are for wide commercial toler-
ances or allowances on external parts.

H9/d9 D9/h9 Free-running fits are not for use where accuracy is
essential, but are good for large temperature varia-
tions, high running speeds, or heavy journal pres-
sures.

H8/f7 F8/h7 Close-running fits are for running on accurate
machines and accurate location at moderate
speeds and journal pressures.

H7/g6 G7/h6 Sliding fits are not intended for running freely, but
allow free movement and turning for accurate
location.

H7/h6 H7/h6 Locational-clearance fits provide snug fits for
locating stationary parts, but can be freely assem-
bled and disassembled.

Transition H7/k6 K7/h6 Locational-transition fits are for accurate location,
a compromise between clearance and interference.

H7/m6 N7/h6 Locational-transition fits are for more accurate

location where greater interference is permitted.

Interference H7/p6 P7/h6 Locational-interference fits are for parts requiring
rigidity and alignment with prime accuracy of loca-
tion but with special bore pressures required.

H7/s6 S7/h6 Medium-drive fits are for ordinary steel parts or

shrink fits on light sections, the tightest fit usable
with cast iron.

H7/u6 U7/h6 Force fits are suitable for parts which can be highly
stressed or for shrink fits where the heavy pressing
forces required are not practical.
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native to this procedure would be to correlate the type of fit between the metric
standard fits shown in Table 12.3 with the U.S. customary fits shown in Table 12.1 and
proceed to convert the metric measurements in millimeters to inches, and then cal-
culate the limits of fit according to the method shown in this section for the U.S. cus-
tomary system. The calculated answers would then be converted back to millimeters.

There should be no technical problem with this procedure except conflict with
mandatory specifications, in which case you will need to concur with ANSI B4.2—
1978(R1984) for the metric standard. The U.S. customary standard for preferred lim-
its and fits is ANSI B4.1—1967(R1987).

The preceding procedures for limits and fits are mandatory practice for design
engineers, tool design engineers, and toolmakers, in order for parts to function
according to their intended design requirements. Assigning arbitrary or rule-of-
thumb procedures to the fitting of cylindrical parts in holes is not good practice and
can create many problems in the finished product.

12.3 CALCULATING PRESSURES, STRESSES,
AND FORCES DUE TO INTERFERENCE FITS,
FORCE FITS, AND SHRINK FITS

Interference- or Force-Fit Pressures and Stresses (Method 1). The stresses caused by
interference fits may be calculated by considering the fitted parts as thick-walled cylin-
ders,as shown in Fig. 12.3.The following equations are used to determine these stresses:

Inner Member

\ OCuter Member

dg -

FIGURE 12.3 Cylindrical fit figure for use in calculations in Sec. 12.3.
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)
d? + d? d2+d?

|

E(d—d?) " E(di-d?)

where P, = pressure at the contact surface, psi
d = the total interference, in (diametral interference)

d; = inside diameter of the inner member, in

d, = diameter of the contact surface, in

d, = outside diameter of outer member, in
W, = Poisson’s ratio for outer member

W; = Poisson’s ratio for inner member

E, =modulus of elasticity of outer member, psi
E; = modulus of elasticity of inner member, psi

(See Table 12.4 for p and E values.)

WM
EE,

TABLE 12.4 Poisson’s Ratio and Modulus of Elasticity Values

]

Material

Modulus of elasticity E, 10° psi

Poisson’s ratio 1

Aluminum, various alloys
Aluminum, 6061-T6
Aluminum, 2024-T4
Beryllium copper

Brass, 70-30

Brass, cast

Bronze

Copper

Glass ceramic, machinable
Inconel

Iron, cast

Iron, ductile

Iron, grey cast

Iron, malleable

Lead

Magnesium alloy
Molybdenum

Monel metal

Nickel silver

Nickel steel

Phosphor bronze
Stainless steel, 18-8

Steel, cast

Steel, cold-rolled

Steel, all others
Titanium, 99.0 Ti
Titanium, Ti-8Al-1Mo-1V
Zinc, cast alloys

Zinc, wrought alloys

9.9-10.3
10.2
10.6
18
15.9
14.5
14.9

0.330-0.334
0.35
0.32
0.29
0.331
0.357
0.14
0.355
0.29

0.27-0.38
0.221-0.299
0.26-0.31

0.211
0.271
0.43
0.281
0.307
0.315
0.322
0.291
0.359
0.305
0.265
0.287

0.283-0.292
0.24
0.32
0.33
0.33
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If the outer and inner members are of the same material, the equation reduces to:

S R
2d3(d; - d?)
E(d - d})(d; - d?)

After P, has been determined, then the actual tangential stresses at the various
surfaces, in accordance with Lame’s equation, for use in conjunction with the maxi-
mum shear theory of failure, may be determined by the following four equations:

On the surface at d,:

2P
T2

On the surface at d, for the outer member:

d2+d?
d2—d?

Sico= PL(

On the surface at d,. for the inner member:

d?+d?
Swi:_PL(d%— d,2>

On the surface at d;:

—2P.d?
Si= i—d2

Interference-Fit Pressures and Stresses (Method 2). The pressure for interference
fit with reference to Fig. 12.3 is obtained from the following equations (symbol des-
ignations follow):

)

1(bP+a N 1/(+b? N (Eq.12.1)
3 vt g v

P=

b —a

-’
If the inner cylinder is solid, then a =0, and Eq. 12.1 becomes:

P= o

1 1/c*+b? (Eq.12.2)
bE,-(l -v)+ E0(627b2 +vo>

If the force-fit parts have identical moduli, Eq. 12.1 becomes:

(Eq.12.3)

E3| (& -b)(b*-a?)
P= T[ 2b*(* - d®) ]

If the inner cylinder is solid, Eq. 12.3 simplifies to become:
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P= (=) (Eq.12.4)

where P = pressure, psi
8 =radial interference (total maximum interference divided by 2), in
E =modulus of elasticity, Young’s modulus (tension), 30 x 10° psi for most
steels
v = Poisson’s ratio, 0.30 for most steels
V, = Poisson’s ratio of outer member
V;=Poisson’s ratio of inner member
a, b, ¢ =radii of the force-fit cylinders; @ = 0 when the inner cylinder is solid (see
Fig. 12.3)

NOTE. Equation 12.1 is used for two force-fit cylinders with different moduli; Eq.
12.2 is used for two force-fit cylinders with different moduli and the inner member is
a solid cylinder; Eq. 12.3 is used in place of Eq. 12.1 if the moduli are identical; and
Eq. 12.4 is used in place of Eq. 12.3 if the moduli are identical and the inner cylinder
is solid, such as a shaft.

The maximum stresses occur at the contact surfaces. These are known as biaxial
stresses, where t and r designate tangential and radial directions. Then, for the outer
member, the stress is:

2 2
c*+b .
Oy = Pm while O, = -P
For the inner member, the stresses at the contact surface are:

b’ +a?
b? - a?

(RS while o, =-P

Use stress concentration factors of 1.5 to 2.0 for conditions such as a thick hub
press-fit to a shaft. This will eliminate the possibility of a brittle fracture or fatigue
failure in these instances.

(Source: Shigley and Mischke, Standard Handbook of Machine Design,
McGraw-Hill, 1986.)

Forces and Torques for Force Fits. The maximum axial force F, required to assem-
ble a force fit varies directly as the thickness of the outer member, the length of the
outer member, the difference in diameters of the force-fitted members, and the coef-
ficient of friction. This force in pounds may be approximated with the following
equation:

F,=frdLP.

The torque that can be transmitted by an interference fit without slipping
between the hub and shaft can be estimated by the following equation (parts must
be clean and unlubricated):
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_ fPmd’L

="

where F, = axial load, 1b
T = torque transmitted, Ib - in
d = nominal shaft diameter, in
f=coefficient of static friction
L =length of external member, in
P.=pressure at the contact surfaces, psi

Shrink-Fit Assemblies. Assembly of shrink-fit parts is facilitated by heating the
outer member or hub until it has expanded by an amount at least as much as the
diametral interference 8. The temperature change AT required to effect 8 (diametral
interference) on the outer member or hub may be determined by:

) )
AT = od, d=ATod; d;= AT
where 8 = diametral interference, in
o = coefficient of linear expansion per °F
AT = change in temperature on outer member above ambient or initial tem-
perature, °F
d; = initial diameter of the hole before expansion, in

An alternative to heating the hub or outer member is to cool the shaft or inner
member by means of a coolant such as dry ice (solid CO,) or liquid nitrogen.
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Algebra, 1.7-1.11
Algebraic procedures, 1.7
bracketing in, 1.31-1.32
Angles, 1.32-1.33
calculating, 4.15-4.20
complex, finding, 4.54-4.63
cutting, 4.58-4.60
setting, 4.1-4.6

Boring calculations, 5.66-5.67
Boring coordinates, 5.68-5.72
Bracketing equations for pocket calculators,
1.31-1.32
Broaching calculations, 5.63-5.66
pulling forces, 5.64
pushing forces, 5.64-5.65

Calculations (see individual topics)
Calculator techniques, 1.29-1.31
Cams, 8.6-8.18
calculations for, 8.13, 8.15-8.18
followers, 8.17
layout of, 8.7-8.13
Circle, properties of, 2.10
Clamps, tooling, calculations for,
11.9-11.17
Compound angles, calculating, 4.54-4.63
Countersinking, 4.8-4.10
advance, 4.8-4.9
calculations, 4.8-4.10

Drill point angles, 5.39-5.42
Drill point advance, 4.8-4.10
Drilling and boring coordinates, 5.67-5.72

Equations, 1.9-1.11
bracketing, 1.31-1.32
solving algebraic and trigonometric,
1.7-1.27

External mechanisms
Geneva mechanism, 11.1-11.3
ratchets, 8.3-8.4

Fits, classes and calculations for, 12.1-12.9
common practice tables, 12.2-12.3
SI fits (ISO), 12.8
stresses in force fits, 12.9-12.13
U.S. Customary fits, 12.6

Gears, 7.1-7.15
formulas for, 7.4-7.12
bevel, 7.11
miter, 7.11
helical, 7.11
spur, 7.10
worm, 7.12
Geometric figures, 3.1-3.13
calculations for areas, volumes, and sur-
faces of, 2.1-2.10
Geometric constructions, 3.1-3.13
Geometry, principles and laws of, 1.1-1.6

Horsepower requirements
for milling, 5.27,5.30
for turning, 5.5-5.70

Internal mechanisms
Geneva mechanism, 11.3-11.5
ratchets, 8.4-8.5

Jig boring coordinates, 5.67-5.72
calculations for, 5.71-5.72
Jigs and fixtures, clamps for, 11.9-11.17

Linkages
calculations for, 11.17-11.24
complex, 11.17,11.22-11.24
simple, 11.17-11.21
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Mathematical series and uses, 7.4-7.6 Sheet metal (Cont.)
Mechanisms, calculations for, 11.1-11.24 development of, 6.17-6.29
clamping mechanisms, 11.9-11.17 flat-pattern calculations for, 6.8-6.13
common mechanisms, 11.1-11.8 gauges of, standard, 6.4-6.8
four-bar linkage, 11.17-11.18,11.21-11.24 punching pressures for, 6.32
Geneva mechanisms, internal and exter- shear strengths of, 6.32-6.35
nal, 11.1-11.5 tooling requirements for, 6.36-6.41
linkages, 11.17-11.24 Sine bars, 4.1-4.2
slider-crank, 11.8 Sine plates, 4.5-4.6
Mensuration Spade-drilling forces, 5.57-5.61
formulas for, 2.1-2.9 Spring materials, properties of, 10.16-10.21
of plane and solid shapes, 2.1-2.9 Springs, calculations for, 10.1-10.27
Metal removal rate (mrr), 5.6, 5.26-5.27 compression, 10.5-10.8
Milling calculations, 5.26-5.38 elastomer, 10.22-10.23
angular cuts, 4.54-4.63 extension, 10.8-10.11
metal removal rate (mrr), 5.6,5.26-5.27 flat and beam, 10.14-10.16
notches and V grooves, 4.20-4.22, problems with, 10.24-10.26
4.26-4.31 torsion, 10.11-10.14
tables for, 5.27-5.30, 5.36-5.38 Sprockets, geometry of, 7.15-7.18

Milling feeds and speeds, 5.26-5.30
Temperature systems, 1.36-1.37

Notches, checking, 4.20-4.22,4.26-4.31 Threads, 5.12-5.20
Notching, 4.32-4.38 calculating pitch diameters of, 9.5-9.6
measuring pitch diameters of, 9.6-9.12
Open angles, sheet metal, 6.12 pitch diameters of, 9.13-9.15
pull out calculations for, 9.1-9.5
Plunge depth calculations for milling notch tap drills for, 5.47-5.53
widths, 4.33-4.36 turning, 5.20-5.22
Punching Thread systems, 5.12-5.20
and blanking, 6.32 Toggle linkage, 11.18
sheet metal, forces for, 6.32 Tooling clamps, 11.9-11.17
Torque tables, screw and bolt, 9.16
Quadratic equations, 1.7 Transposing equations, 1.9-1.11
Trigonometric identities, 1.18-1.21
Ratchets, internal and external, 8.1-8.6 Trigonometry, 1.11-1.28
calculations, 8.3-8.6 problems, samples of, 1.21-1.27
geometry of, 8.4,8.5 Turning, 5.1-5.8
pawls, 8.1-8.2 calculations for, 5.1-5.8
feed tables for, 5.9-5.11
Sheet metal, 6.1-6.41 horsepower requirements for, 5.5-5.6
angled corner notching of, 6.28-6.31 metal removal rate (mrr), lathe,
bend radii of, 6.14-6.16 5.6,5.12

bending calculations for, 6.8-6.13 speed tables for, 5.9-5.11
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