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Preface

In this book, we tried to explain digital signal processing topics in detail. We paid
attention to the simplicity of the explanation language. And we provided examples
with increasing difficulty. The reader of this book should have some background
about signals. If it is possible, the reader should learn fundamental concepts on
signals and systems since, in this book, more attention is paid on digital signal
processing concepts rather than continuous time signal processing topics. Hence,
we assume that the reader has fundamental knowledge about all types of signals and
transforms.

All the topics in this book are presented in an orderly manner. We tried to
simplify the language of this book as possible as we can. We also provided original
examples explaining the aim of the subjects studied in this book. Numerical
examples are provided for the comprehension of the subjects. Unnecessary abun-
dance of mathematical details is omitted for the simplicity of the presentation
language. In addition, to indicate both continuous and digital time frequencies, we
preferred to use the same parameter. We thought that using two different parameters
mixes the students’ mind and it is not necessarily needed.

This book includes four different chapters. And in these chapters, sampling of
continuous time signals, multirate signal processing, discrete Fourier transform, and
filter design concepts are covered. In sampling of continuous time signals and
multirate signal processing chapters, we provided some original practical tech-
niques to draw the spectrum of aliased signals. In discrete time Fourier transform
chapter, well-designed numerical examples are provided to illustrate the operation
of the fast Fourier transform algorithm. In filter design chapter, both analog and
digital filter design techniques are explained in detail. For the analog filters, we also
provided analog filter circuit design methods for the designed analog filter transfer
function.

Maltepe/Ankara, Turkey Orhan Gazi
November 2016
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Chapter 1
Sampling of Continuous Time Signals

Signal is a physical phenomenon that carries information. This physical phe-
nomenon is described by mathematical functions, and usually the signal and its
mathematical function are used for one another, i.e., synonymous. For instance,
when we talk about a sinusoidal signal, we use the sinusoidal function, a mathe-
matical function, to characterize the signal, and the name sinusoidal is used for the
signal. Signals are usually depicted in graphs to observe their behavior and analyze
them. Sinusoidal signals are the main signals and all the other signals can be
considered as being made up of sinusoidal signals with different frequencies and
amplitudes. That is to say, any continuous time signal can be written as sum of
sinusoidal signals with different frequencies and amplitudes. Rectangular signal,
square pulse signal, impulse train signal, triangle signal can be given as examples of
continuous time signals.

Digital signals are obtained from continuous time signals via sampling opera-
tion. Digital signals are represented as mathematical sequences, and the elements of
these sequences are nothing but the amplitude values taken from continuous time
signals at every multiple of the sampling period. Since in the last several decades a
huge improvement is achieved at the development of the digital devices, it has
become almost a must especially for electrical engineers to have a good knowledge
of digital signals. Digital signals are almost available in every part of our life.
Computers, TVs, speakers, mobile phones, house equipment, and most of the other
electronic devices process digital signals. In this chapter, we discuss the con-
struction of digital signals via sampling operation, their spectral analyses, the case
of aliasing, and reconstruction of a continuous time signal from its samples.

© Springer Nature Singapore Pte Ltd. 2018
O. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_1
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1.1 Sampling Operation for Continuous Time Signals

Let xcðtÞ be a continuous time signal. We take samples from the amplitudes of this
signal at every multiple of Ts which is called sampling period and form a mathe-
matical sequence. The obtained mathematical sequence is called digital signal.

The sampling operation is described by the formula

x n½ � ¼ xc nTsð Þ n 2 Z; Ts 2 R ð1:1Þ

where n is of integer type and Ts is the sampling period.
The block diagram of the sampling operation is depicted in Fig. 1.1.
Let’s now try to explain the sampling operation on a sinusoidal signal. The graph

of the sinusoidal signal with period T is given in Fig. 1.2.
Let’s now take some samples from the sine signal in Fig. 1.2, and within this

purpose, let’s choose sampling period as Ts ¼ T
6. Samples from signal amplitude are

taken at every multiple of Ts, and this operation is illustrated in Fig. 1.3.
The sampled amplitude values are placed into an array and expressed as a

mathematical sequence. The mathematical sequence obtained from the above
sampling operation can be written as

x n½ � ¼ a b c d e f g|{z}
n¼0

h i j k l
� �

which is a digital signal obtained from a continuous time signal. The obtained
mathematical sequence can also be displayed graphically as in Fig. 1.4.

Fig. 1.1 Sampling operation
of a continuous time signal

Fig. 1.2 Sine signal with period T
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If starting index value, i.e., n ¼ 0, is not indicated in the mathematical sequence,
the index of the first element is accepted as n ¼ 0.

Graphical illustration is usually employed for easy understanding of the sam-
pling operation and to interpret the meaning of the received signal. Let’s consider
the sampling of sine signal again and write a mathematical expression for the digital
sine signal. The continuous time sinus signal with period T is written as

xc tð Þ ¼ sin
2p
T

t

� �
: ð1:2Þ

If the continuous time signal in (1.2) is sampled with sampling period Ts ¼ T
6, we

obtain the digital signal x½n� whose mathematical expression can be calculated as

x n½ � ¼ xc tð Þjt¼nTs! x n½ � ¼ sin
2p
T

n
T
6

� �
! x n½ � ¼ sin

p
3
n

� �
: ð1:3Þ

By giving negative and positive values to n we obtain the amplitude values of
digital sine signal which can be shown as

Fig. 1.3 Sampling of the sine signal

n0
2 51 44 63 2 1 356

a

l

h i

j

k

g

fe

d

b c
][nx

Fig. 1.4 Digital sine signal
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x n½ � ¼ . . . sin � 2p
3

� �
sin � p

3

� �
sin

0p
3

� �
|fflffl{zfflffl}
n¼0

sin
2p
3

� �
. . .

2
6664

3
7775: ð1:4Þ

Example 1.1 Find the frequency and period of the continuous time signal
xc tð Þ ¼ cosð2ptÞ. Sample the given continuous time signal with sampling period
Ts = 1/8 s and obtain the digital signal x½n�.
Solution 1.1 If xc tð Þ ¼ cosð2ptÞ is compared to the general form of cosine signal
cosð2pftÞ, it is seen that the frequency of xc tð Þ is f = 1 Hz which can be used to find
the period of the signal using T ¼ 1=f leading to T = 1 s. The sampling operation
for xc tð Þ ¼ cosð2ptÞ with sampling period Ts = 1/8 s is done as

x n½ � ¼ xc tð Þjt¼nTs ! x n½ � ¼ cos 2ptð Þjt¼nTs
! x n½ � ¼ cos 2pn

1
8

� �

! x n½ � ¼ cos
pn
4

� �
:

ð1:5Þ

1.1.1 Sampling Frequency

In communication theory; sampling frequency is one of the most important
parameters. Sampling frequency is used more than sampling period. Sampling
frequency shows the number of samples taken from a continuous time signal
per-second. For this reason, it is an indicator of the quality of the
continuous-to-digital converters. As sampling frequency increases more samples
are taken per-second but this leads to an increase in transmission overhead.

As an example, if the sampling frequency is 1000 Hz i.e., 1 kHz, it means that
every second, 1000 samples are taken from continuous time signal.

Verification
Let’s now prove the above claim (the meaning of sampling frequency) for a con-
tinuous time periodic signal. Let xcðtÞ be a continuous time periodic signal, with
period T and Ts be the sampling period. In this case, from one period of the signal a
total of T

Ts
samples are collected. The continuous time period signal repeats itself 1

T

times in 1 s. According to this information, in one second, the total number of
samples taken from the signal equals to T

Ts
� 1

T ! 1
Ts

which is nothing but the
sampling frequency.
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Example 1.2 The continuous time signal xc tð Þ ¼ cos 2pftð Þ where f ¼ 1 kHz is
sampled with sampling frequency fs ¼ 16 kHz, and the digital signal x n½ � ¼ xc nTsð Þ
is obtained. According to the given information, find

(a) The number of samples taken from one period of the continuous time signal.
(b) The number of samples taken per-second from continuous time signal.

Solution 1.2 The number of samples taken per-second from continuous time signal
equals the sampling frequency, i.e., fs ¼ 16000 samples are taken per-second. Since
the period of the continuous time signal is T ¼ 1

1 kHz! T ¼ 1 ms, the number of

samples taken from one period of the signal is 16000� 1 ms! 16 samples.

1.1.2 Mathematical Characterization of the Sampling
Operation

Impulse Train
Impulse train function is one of the most widely used mathematical expression
appearing in sampling operation. For this reason, we will first inspect the impulse
train function in details. The impulse train function is given as

s tð Þ ¼
X1
n¼�1

dðt � nTsÞ ð1:6Þ

where Ts is the sampling period. The graph of impulse train function is given in
Fig. 1.5.
Continuous time periodic signals have Fourier series representation. Impulse train
signal (function) also has Fourier series representation which can be written as

s tð Þ ¼
X1
k¼�1

S k½ �ejk2pTst ð1:7Þ

)(ts

sT sT2 sT3 sT4 sT5sTsT2sT3sT4sT5
t

0

1

Fig. 1.5 Impulse train function
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where S½k� are the Fourier series coefficients which are calculated using

S½k� ¼ 1
Ts

X1
k¼�1

s tð Þe�jk2pTstdt: ð1:8Þ

Let’s now calculate the Fourier series coefficients of impulse train. Using (1.8)
the Fourier series coefficients of the impulse train function can be calculated as

S½k� ¼ 1
Ts

Z1

�1
dðtÞe�jk2pTstdt! S½k� ¼ 1

Ts
e0 ! S½k� ¼ 1

Ts
ð1:9Þ

Replacing the calculated coefficients in (1.8) we get the Fourier series repre-
sentation of the impulse train as

s tð Þ ¼ 1
Ts

X1
k¼�1

ejk
2p
Ts
t ð1:10Þ

Using the Fourier series representation of the impulse train function, we can
calculate its Fourier transform. For this purpose, we first need to know the Fourier
transform of the exponential function. The Fourier transform of the exponential
function is given as

ejw0t$FT 2pd w� w0ð Þ: ð1:11Þ

When the expression in (1.11) is used while taking the Fourier transform of
(1.10), we obtain the Fourier transform of the impulse train

S wð Þ ¼ 2p
Ts

X1
k¼�1

d w� kwsð Þ; ws ¼ 2p
Ts

: ð1:12Þ

1.2 Sampling Operation

The first step in sampling operation is to multiply the continuous time signal to be
sampled by an impulse train. This multiplication operation for the sampling of sine
signal is depicted in Fig. 1.6.

When the continuous time signal xc tð Þ is multiplied by the impulse train s tð Þ; we
obtain

xs tð Þ ¼ xc tð Þ � s tð Þ ð1:13Þ

in which, if the explicit expression for the impulse train is inserted we get the
mathematical expression

6 1 Sampling of Continuous Time Signals



xs tð Þ ¼ xc tð Þ
X1
n¼�1

d t � nTsð Þ ð1:14Þ

which can be simplified using the impulse function property R f tð Þd t � t0ð Þdt ¼
f ðt0Þ as

xs tð Þ ¼
X1
n¼�1

xc nTsð Þd t � nTsð Þ ð1:15Þ

where substituting x n½ � ¼ xcðnTsÞ, we obtain

xs tð Þ ¼
X1

n¼�1
x½n�d t � nTsð Þ ð1:16Þ

1.2.1 The Fourier Transform of the Product Signal

We obtained the time domain expression for the product signal xsðtÞ. Let’s now
consider the Fourier transform of the product signal xsðtÞ. The Fourier transform of
xsðtÞ is computed using

t0
sT2

sT5

sT
sT4

sT4 sT6sT3
sT2 sT

sT3sT5sT6

)()()( tstxtx cs

t0
sT2

sT5

sT
sT4

sT4 sT6sT3
sT2 sT

sT3sT5sT6

)()()( tstxtx cs

Fig. 1.6 Multiplication of sine signal by an impulse train
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Xs wð Þ ¼
Z1
�1

xs tð Þe�jwtdt!

Xs wð Þ ¼
Z1
�1

X1
n¼�1

x½n�d t � nTsð Þe�jwtdt
ð1:17Þ

where if the integration and summation expressions are interchanged we get

Xs wð Þ ¼
X1
n¼�1

x½n�
Z1
�1

d t � nTsð Þe�jwtdt ð1:18Þ

on which by using the impulse function properties for the calculation of the inte-
gration, Fourier transform of the product signal is obtained as

Xs wð Þ ¼
X1
n¼�1

x½n�e�jwnTs : ð1:19Þ

The right hand side of the (1.19) contains parameters from time domain.
However, there is not only one single expression for the Fourier transform of the

product signal. We can find an alternative expression for the Fourier transform of
product signal. Let’s now find an alternative expression for the Fourier transform of
product signal where both left and right sides only include expressions in frequency
domain. Consider the product signal expression again

xs tð Þ ¼ xc tð Þ � s tð Þ ð1:20Þ

where the right hand side is the product of two expressions, for this reason, the
Fourier transform of xs tð Þ can be written as

Xs wð Þ ¼ 1
2p

Xc wð Þ � S wð Þ: ð1:21Þ

where substituting the expression in (1.12) for S wð Þ; we get

Xs wð Þ ¼ 1
2p

Xc wð Þ � 2p
Ts

X1
k¼�1

dðw� kwsÞ ð1:22Þ

where by using the impulse function property and linearity of the convolution
operation we obtain

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xcðw� kwsÞ: ð1:23Þ
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We have obtained a second alternative expression for the Fourier transform of
product signal. Let’s write both Fourier expressions again

Xs wð Þ ¼
X1
n¼�1

x½n�e�j2pnTs Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xcðw� kwsÞ: ð1:24Þ

In these expressions the left hand sides are both Xs wð Þ. So the right hand sides
should also be equal to each other. Equating the right hand sides of the expressions
in (1.24), we obtain the equation

X1
n¼�1

x n½ �e�jwnTs ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ: ð1:25Þ

The Fourier transform of the digital signal x½n� is calculated using

Xn wð Þ ¼
X1
n¼�1

x n½ �e�jwn

which resembles to the left term in (1.25). We can write the left hand side of (1.25)
in terms of Xn wð Þ as

X1
n¼�1

x n½ �e�jwnTs
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

XnðwTsÞ

¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ ð1:26Þ

which yields

Xn wTsð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ ð1:27Þ

from which XnðwÞ can be obtained by replacing w with w
Ts
and we obtain

Xn wð Þ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� kws

� �
: ð1:28Þ

In the expression (1.28) the left hand side represents the Fourier transform of the
digital signal obtained from an analog signal via sampling operation. In other
words, it represents the Fourier transform of the mathematical sequence obtained
from analog signal via sampling operation. The right hand side consists of shifted
and scaled replicas of XcðwÞ which is the Fourier transform of analog signal on
which sampling operation is performed. Since XnðwÞ is the Fourier transform of a
digital signal, it is periodic with period 2p. If the digital signal is also periodic in
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time domain, then its Fourier transform is periodic with period 2p consisting of
impulses spaced by multiples of 2p.

Now, let’s summarize the formulas we have derived up to this point.

In Time Domain

Continuous time signal xcðtÞ
Sampling operation x n½ � ¼ xc nTsð Þ
Sampling period Ts
Impulse train s tð Þ ¼P1

n¼�1 dðt � nTsÞ
Product signal xs tð Þ ¼ xc tð Þ � s tð Þ
Product signal xs tð Þ ¼

P1
k¼�1 xcðnTsÞdðt � nTsÞ

Product signal xs tð Þ ¼
P1

k¼�1 x½n�dðt � nTsÞ
In Frequency Domain

Fourier transform of product function xs tð ÞXs wð Þ ¼
R1
�1 xs tð Þe�jwtdt

Fourier transform of product function xs tð ÞXs wð Þ ¼ 1
2pXcðwÞ � SðwÞ

Sampling frequency in rad/sec ws ¼ 2p
Ts

Fourier transform of product function xs tð ÞXs wð Þ ¼ 1
Ts

P1
k¼�1 Xc w� kwsð Þ

Fourier transform of x n½ � digital signal Xn wð Þ ¼P1
n¼�1 x n½ �e�jwn

Fourier transform of x n½ � digital signal Xn wð Þ ¼ 1
Ts

P1
k¼�1 Xc

w
Ts
� kws

� �

Exercise: Given the digital signal x n½ � ¼ 2 3:5|{z}
n¼0

�4 5 6 3 �2� �
draw the graphs of

(a) yðtÞ ¼P1
n¼�1 x n½ �dðt � nTsÞ where Ts = 1/4 s.

(b) gðtÞ ¼P1
n¼�1 x 2n½ �dðt � nTsÞ where Ts = 1/8 s.

(c) hðtÞ ¼P1
n¼�1 x n=2½ �dðt � nTsÞ where Ts = 1/4 s.

Exercise: Calculate the Fourier transforms of

xc tð Þ ¼ d tð Þþ d t � 1ð Þ

and

x½n� ¼ d½n� þ d½n� 1�

and draw their magnitude and phase responses.
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1.3 How to Draw Fourier Transforms of Product
Signal and Digital Signal

The derived mathematical expression for Xs wð Þ is given as

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ ð1:29Þ

which is a periodic function and one period of this function around the origin,
assuming no overlapping among shifted replicas, can be written as

1
Ts

Xc wð Þ: ð1:30Þ

The period of Xs wð Þ is denoted by ws whose value equals to 2p
Ts
. Drawing the

graph of Xs wð Þ consists of two steps. In the first step, we draw the graph of 1
Ts
Xc wð Þ

around the origin. Then in the next step, the drawn graph around the origin is
shifted to the left and right by integer multiples of ws ¼ 2p

Ts
, i.e., by kws; k 2 Z, and

the shifted replicas together with the one around the origin are all summed.
Before studying some problems on the drawing of Xs wð Þ, let’s inspect some

examples to prepare ourselves for the drawing of Xs wð Þ.
Example 1.3 In Fig. 1.7, the graphics of X1ðwÞ and X2ðwÞ are given for the interval
0�w� 4. Draw the graph of X1 wð ÞþX2 wð Þ for the same interval.

Solution 1.3 To draw the graphic of X1 wð ÞþX2 wð Þ, let’s first write the mathe-
matical expressions for each function, then sum these functions to get the mathe-
matical expression for the summed signals. The mathematical expressions for the
signals X1 wð Þ and X2 wð Þ are given as

X1 wð Þ ¼ �w
2
þ 2 X2 wð Þ ¼ w

2
If we sum mathematical expressions for the signals X1 wð Þ and X2 wð Þ, we get

X1 wð ÞþX2 wð Þ ¼ 2:

w

2

4

)(1 wX )(2 wX

0

Fig. 1.7 The graphics of
X1ðwÞ and X2ðwÞ
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The obtained result is graphically shown in Fig. 1.8.

Example 1.4 The graphics of X1ðwÞ and X2ðwÞ for the interval 0�w� 4 are shown
in Fig. 1.9. The slopes of the lines in Fig. 1.9 are �1=2 and 1=2. According to the
given information, draw the graphic of X1 wð ÞþX2 wð Þ for the same interval.

Solution 1.4 To draw the graph of X1 wð ÞþX2 wð Þ we need to find its mathematical
expression. For this purpose, let’s first write the mathematical expressions for X1ðwÞ
and X2ðwÞ using the given information for the interval 0�w� 4 as

X1 wð Þ ¼ �w
2
þ a X2 wð Þ ¼ w

2
þ b

When the mathematical expressions for X1 wð Þ and X2 wð Þ are summed, we obtain

X1 wð ÞþX2 wð Þ ¼ aþ b

which is graphically depicted in Fig. 1.10.

Example 1.5 The graphics of X1ðwÞ and X2ðwÞ functions for the interval 0�w� 4
are shown in Fig. 1.11. The slopes of the lines in Fig. 1.11 are �1=2 and 1=2.
According to the given information, draw the graphic of X1 wð ÞþX2 wð Þ.

w

2

4

)(1 wX )(2 wX

0
w

2

4

)()( 21 wXwX

0

Fig. 1.8 The graphics of X1 wð ÞþX2ðwÞ

w

a

4

)(1 wX )(2 wX

0

b

Fig. 1.9 The graphics of
X1ðwÞ and X2ðwÞ functions
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Solution 1.5 We can follow the same steps as in the previous two examples. The
line equations of X1 wð Þ and X2 wð Þ can be written as

X1 wð Þ ¼ �mwþ a X2 wð Þ ¼ mwþ b:

If we sum the line equations of these two functions, we obtain

X1 wð ÞþX2 wð Þ ¼ aþ b:

The obtained result is depicted in Fig. 1.12. We will use this result to draw the
graphs of the digital signals having the spectral overlapping problem.

Example 1.6 xc tð Þ is a continuous time signal and its Fourier transform is denoted
by Xc wð Þ. The graph of Xc wð Þ is depicted in Fig. 1.13. As it is seen from the Fourier
transform graph, xcðtÞ is a low-pass signal with bandwidth wN .

Let xs tð Þ ¼ xcðtÞ � sðtÞ where sðtÞ is the impulse train signal. Draw the Fourier
transform of xs tð Þ assuming that ws [ 2wN , i.e., draw XsðwÞ.

w

a

4

)(1 wX )(2 wX

0

b

w

ba

4

)()( 21 wXwX

0

Fig. 1.10 The graphic of X1 wð ÞþX2ðwÞ

w

a

4

)(1 wX

)(2 wX

0

b

Fig. 1.11 The graphic of
X1ðwÞ and X2ðwÞ
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Solution 1.6 The Fourier transform of the product signal xs tð Þ is

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ

which is a periodic function with period ws ¼ 2p
Ts
: When the summation expression

in Xs wð Þ is expanded, we get

Xs wð Þ ¼ � � � þ 1
Ts

Xc wþwsð Þþ 1
Ts

Xc wð Þþ 1
Ts

Xc w� wsð Þþ � � �

where the graphs of the terms 1
Ts
Xc wð Þ; 1

Ts
Xc wþwsð Þ, and 1

Ts
Xc w� wsð Þ are

depicted in Fig. 1.14.
The other shifted and scaled replicas can be drawn in a similar manner as in

Fig. 1.14. When the shifted and scaled replicas are summed, we obtain the graphic
of Xs wð Þ as depicted in Fig. 1.15.

Example 1.7 xc tð Þ is a continuous time signal and its Fourier transform Xc wð Þ is
depicted in Fig. 1.16. xc tð Þ is sampled by the sampling period Ts ¼ 1

2000 s. Draw the
graph of XsðwÞ

w

ba

4

)()( 21 wXwX

0
w

a

4

)(1 wX

)(2 wX

0

b

Fig. 1.12 The graphic of X1 wð ÞþX2ðwÞ

)(wXc

NwNw 0

A

w

Fig. 1.13 Graph of XcðwÞ
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Solution 1.7 The sampling frequency in rad/sec is

ws ¼ 2p
Ts
! ws ¼ 4000p rad=s

The shifted Xc wð Þ signals by multiples of ws are shown in Fig. 1.17.
As it is clear from Fig. 1.17, shifted replicas overlap. Summing the overlapped

amplitudes, we obtain the signal shown in Fig. 1.18.

)(1 wX
T c
s

Nw 0

sT
A

w
Nw

0

sT
A

w
swNs ww Ns ww

)(1
sc

s
wwX

T

0

sT
A

w
Ns ww Ns wwsw

)(1
sc

s
wwX

T

Fig. 1.14 The graphics of 1
Ts
Xc wð Þ; 1

Ts
Xc wþwsð Þ and 1

Ts
Xc w� wsð Þ

)(wXs

Nw 0

sT
A

w
Nw swNs ww Ns wwNs ww Ns wwsw

Fig. 1.15 The graphic of XsðwÞ
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In the last stage, we divide the amplitudes of the summed signal shown in
Fig. 1.18 by Ts. Since Ts ¼ 1

2000 dividing the amplitudes by Ts equals to multiplying
the amplitudes by 2000. After multiplying the amplitudes by 2000 we obtain the
graphic of the function XsðwÞ as depicted in Fig. 1.19.

)(wXc

w
2000 4000

1

Fig. 1.16 The graphic of Xc wð Þ

2000 400020004000 6000 80006000

)(wXc )4000(wXc)4000(wXc

1

w
2000 400020004000 6000 8000 10000 120006000800010000

)(wXc )4000(wXc)4000(wXc )8000(wXc)8000(wXc

1

Fig. 1.17 Shifted XcðwÞ signals

w
2000 400020004000 6000 8000 10000 120006000800010000

2

1

Fig. 1.18 Summation of the shifted replicas
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Example 1.8 The graphic of XcðwÞ is shown in Fig. 1.20. Draw the graphic of

Xs wð Þ ¼ 250
X1
k¼�1

Xc w� k500pð Þ

Solution 1.8 From the equation

Xs wð Þ ¼ 250
X1
k¼�1

Xc w� k500pð Þ

it is seen that the sampling frequency in rad/sec is ws ¼ 500p rad=s. Let’s
partition the horizontal axis of XcðwÞ as in Fig. 1.21 considering the sampling
frequency value.

Now let’s draw the shifted XcðwÞ signals as shown in Fig. 1.22.
The graphs of XcðwÞ, Xcðw� wsÞ and XcðwþwsÞ altogether are given in

Fig. 1.23.
More shifted graphs of XcðwÞ are given in Fig. 1.24.
If the above graph is carefully inspected, it is seen that a portion of the graph

repeats itself along the horizontal axis. The repeated part is indicated by bold lines
in Fig. 1.25.

Now let’s write the mathematical equations for the line segments, a, b, c, d, e, f,
g, h appearing in the repeating pattern in Fig. 1.25 as

w
2000 400020004000 6000 8000 10000 120006000800010000

4000

2000

)(wXs

Fig. 1.19 The graphic of XsðwÞ

)(wXc

1000
0

1

w
1000

Fig. 1.20 The graphic
of XcðwÞ
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)(wcX

0

1

w10005002501000 500 250

Fig. 1.21 The graphic
of XcðwÞ

)500(wcX

1

w

)(wcX

10005002501000 500 250

1

w

)500(wcX
)(wcX

10005002501000 500 250

Fig. 1.22 Shifted graphs
of XcðwÞ

)500(wcX

1

w

)500(wcX
)(wcX

10005002501000 500 250

Fig. 1.23 Shifted graphs
of XcðwÞ
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m ¼ 1
1000p

� 250p�w� 250p

ya ¼ mwþ 1 yb ¼ �mwþ 1 yc ¼ �mwþ 1
2

yd ¼ mwþ 1
2

ye ¼ mwþ 1
2

yf ¼ �mwþ 1
2

yg ¼ �mw yh ¼ mw:

If we sum the equations for the line segments, a, c, e, g and b, d, f, g we get the
results

yaþ ycþ yeþ yg ¼ 2 ybþ yd þ yf þ yg ¼ 2:

and the graph of Xs wð Þ is drawn as in Fig. 1.26.

1

w
10005002501000 500 250

Fig. 1.24 Shifted graphs of XcðwÞ

Fig. 1.25 Shifted graphs of XcðwÞ and repeating pattern

1000
0

w
1000

2

Fig. 1.26 Summation result
of shifted XcðwÞ functions
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In the last step to get the graph of

Xs wð Þ ¼ 250
X1
k¼�1

Xc w� k500pð Þ

it is sufficient to multiply the amplitude values of the signal depicted in Fig. 1.26.
After amplitude multiplication, we obtain the graph of Xs wð Þ as depicted in
Fig. 1.27.

Example 1.9 The graphic of XcðwÞ is shown in Fig. 1.28. Draw the graphic of

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� k
2p
Ts

� �

for Ts ¼ 1
375 s.

Solution 1.9 We can write the sampling frequency in rad=san unit as
ws ¼ 2p

Ts
! ws ¼ 750prad=s. In the next step, we shift the function XcðwÞ to the left

and right by kws; k 2 Z. Some shifted replicas of XcðwÞ are displayed in Fig. 1.29.
If the graph in Fig. 1.29 is inspected carefully, it can be seen that a define pattern

repeats itself along the shape. The repeating pattern is indicated in bold lines in
Fig. 1.30.

The repeating pattern in Fig. 1.30 is redrawn alone in Fig. 1.31 in details.

1000 0
w

1000

500

)(wXsFig. 1.27 The graphic of
XsðwÞ

)(wXc

4

w
10005002501000 500 250

Fig. 1.28 The graphic of
XcðwÞ for Example 1.9
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If the graphic in Fig. 1.31 is inspected carefully, it is seen that the line pairs in
the upper left and upper right shadowed rectangles overlap each other and their
slopes are equal in magnitude but opposite in sign. For this reason, the sum of the
line equations for line pairs is a constant number and it equals to 1 + 4 = 5. After
summing the overlapping line equations, we get the graphic in Fig. 1.32.

If the triangle shape and horizontal line in Fig. 1.32 are summed, we get the
graphic in Fig. 1.33.

The graphic shown in Fig. 1.33 corresponds to one period of the function XsðwÞ
around origin. If one period of XsðwÞ around origin is shifted to the right and left by
multiples of ws ¼ 750p and shifted replicas are all summed together with the graph
around origin, we get the graphic of XsðwÞ as in Fig. 1.34.

Solution 2 In fact, the second solution provided here is more complex than the first
solution. However, we find it useful to illustrate the different perspectives for the
solution of a problem.

The repeating pattern chosen in solution can be interpreted in a different manner.
In fact, the interpretation of the repeating patterns depends on the reader’s

1000500250 7502505007501000

4

w

)(wXc )750(wXc)750(wXc

4

10005002501000 500 250
w

Fig. 1.29 Shifted XcðwÞ functions

4

w

Fig. 1.30 The repeating pattern
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Fig. 1.31 The repeating
pattern drawn in details

Fig. 1.32 The graphic
obtained after summing the
overlapping lines

Fig. 1.33 The graphic
obtained after summing the
triangle shape and horizontal
line
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perception. The overlapped lines in the repeating pattern are shown inside circles in
Fig. 1.35 in a different approach than the one in solution 1.

In Fig. 1.35 the sum of the overlapped lines inside circles results in constant
numbers, and when the constants are added to the top triangle shape, we obtain one
period of XsðwÞ around origin. This is illustrated in Fig. 1.36.

When the obtained one period around the origin is shifted to the left and right,
we obtain XsðwÞ function in Fig. 1.37.

Exercise: The graphic of XcðwÞ function is depicted in Fig. 1.38. Using the
given figure draw the graph of

Fig. 1.34 The graphic of Xs wð Þ:

Fig. 1.35 Repeating part in
details
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Fig. 1.36 The sum of the overlapped lines inside circles in repeating pattern

w
250 250 500500

5

6

)(wXs

Fig. 1.37 XsðwÞ graph

)(wXc

1000 0

1

w
1000

2

500

Fig. 1.38 Fourier transform
of an input signal
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Xs wð Þ ¼ 500
X1
k¼�1

Xc w� k1000pð Þ:

Exercise: The Fourier transform of a continuous time signal is given as

Xc wð Þ ¼ p d w� 500pð Þþ d þ 500pð Þð Þ:

Using the given Fourier transform draw the graph of

Xs wð Þ ¼ 200
X1
k¼�1

Xc w� k400pð Þ:

1.3.1 Drawing the Fourier Transform of Digital Signal

Assume that XnðwÞ is the Fourier transform of x½n� which is obtained from xcðtÞ via
sampling operation, i.e., x n½ � ¼ xcðtÞjt¼nTs! x n½ � ¼ xcðnTsÞ and the mathematical
expression for XnðwÞ is given as

Xn wð Þ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� kws

� �
: ð1:31Þ

To draw the graph of XnðwÞ two different methods can be followed. Below, we
explain these two methods separately.

Method 1: First draw the graph of XsðwÞ, i.e., draw the Fourier transform of the
product signal xs tð Þ ¼ xcðtÞsðtÞ as discussed in the previous section. Once you have
the graph of XsðwÞ, to get the graph of XnðwÞ, multiply the horizontal axis of XsðwÞ
by sampling period Ts.

Method 2: Since XnðwÞ is the Fourier transform of the digital signal x½n�, it is a
periodic signal and its period equals 2p. To draw the graph of Xn wð Þ; first draw the

graph of 1
Ts
Xc

w
Ts

� �
around origin, then shift the drawn signal to the left and right by

multiples of 2p, and sum the shifted replicas. Note that to draw the graph of
1
Ts
Xc

w
Ts

� �
; we multiply the amplitude values of XcðwÞ by 1=Ts and multiply hori-

zontal axis of XcðwÞ by Ts, i.e., divide the horizontal axis of XcðwÞ by 1=Ts.
Let’s now provide some examples to comprehend the subject better.

Example 1.10 The Fourier transform of a continuous time signal xcðtÞ is depicted in
Fig. 1.39. Draw XnðwÞ, the Fourier transform of x n½ � ¼ xc nTsð Þ where Ts is the
sampling period. Assume that ws [ 2wN .
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Solution 1.10
Method 1: Let’s first draw the graph of

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ

which is a periodic function with period ws ¼ 2p
Ts
: The graph of Xs wð Þ is shown in

Fig. 1.40.
In the second step, we multiply the horizontal axis of XsðwÞ by Ts to get the

graph of XnðwÞ. The graph of XnðwÞ is shown in Fig. 1.41.

)(wXc

NwNw 0

A

w

Fig. 1.39 Fourier transform of a low pass input signal

)(wXn

NswT 0

sT
A

w
NswT 2Nsss wTwT Nsss wTwTNsss wTwT Nsss wTwT2

Fig. 1.41 Graph of XnðwÞ

)(wXs

Nw 0

sT
A

w
Nw swNs ww Ns wwNs ww Ns wwsw

Fig. 1.40 Graph of XsðwÞ
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Method 2: In the second method, we first draw the graph of

1
Ts

Xc
w
Ts

� �

then we shift the drawn graph to the left and right by multiples of 2p and obtain the

graph of XnðwÞ. To draw the graph of 1
Ts
Xc

w
Ts

� �
; we multiply the vertical and

horizontal axes of XcðwÞ by 1
Ts

and Ts respectively. In Fig. 1.42 the graph of
1
Ts
Xc

w
Ts

� �
is depicted.

Let’s denote 1
Ts
Xc

w
Ts

� �
by Xn1ðwÞ. To get the graph of XnðwÞ, we shift Xn1ðwÞ to

the left and right by multiples of 2p and sum the shifted replicas. This operation is
illustrated in Fig. 1.43.

Example 1.11 The continuous time signal xcðtÞ is given as

xc tð Þ ¼ cos 4000ptð Þ:

(a) Draw XcðwÞ, the Fourier transform of xcðtÞ.
(b) Let xs tð Þ ¼ xcðtÞsðtÞ where sðtÞ is the impulse train and Ts ¼ 1

8000 s. Draw
XsðwÞ, the Fourier transform of xsðtÞ.

(c) Let x n½ � ¼ xcðnTsÞ where Ts ¼ 1
8000 s. Draw XnðwÞ, the Fourier transform of

x½n�.

Solution 1.11 Before computing the Fourier transform of the given cosine signal,
let’s review some properties of the exponential signal. The Fourier transform of an
exponential signal is given as

ejwNt!FT 2pdðw� wNÞ ð1:32Þ

)(1
s

c
s T

wX
T

NswT 0

sT
A

w
NswT

Fig. 1.42 The graph of 1
Ts
Xc

w
Ts

� �
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and sine and cosine signals can be written in terms of the exponential signals as

sin wNtð Þ ¼ 1
2j

eþ jwN t � e�jwN t
	 


cos wNtð Þ ¼ 1
2

eþ jwN t þ e�jwN t
	 
 ð1:33Þ

And the Fourier transforms of the sinusoidal signals are given as

sin wNtð Þ!FT p
j
d w� wNð Þ � d wþwNð Þð Þ

cos wNtð Þ!FT p d w� wNð Þþ d wþwNð Þð Þ:
ð1:34Þ

(a) Since we refreshed some background information we can start to solve our
problem. The Fourier transform of xc tð Þ ¼ cosð4000ptÞ can be calculated as

Fig. 1.43 XnðwÞ graph
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cosð4000ptÞ!FT p d w� 4000pð Þþ d wþ 4000pð Þð Þ

and its graph is depicted as in Fig. 1.44.
(b) Since xs tð Þ ¼ xcðtÞsðtÞ, and s tð Þ ¼P1

k¼�1 dðt � kTsÞ, where Ts is the sampling
period, Fourier transform of xs tð Þ is

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ

where ws ¼ 2p
Ts
! 2p

1=8000 ¼ 16000p. Using the Fourier transform expression

XcðwÞ found in the previous part, Xs wð Þ can be calculated as

Xs wð Þ ¼ 8000
X1
k¼�1

Xc w� k16000pð Þ !

Xs wð Þ ¼ 8000p
X1
k¼�1

d w� 4000p� k16000pð Þþ d wþ 4000p� k16000pð Þð Þ

and the graph of Xs wð Þ is displayed in Fig. 1.45.

)(wXc

w
40004000

Fig. 1.44 Fourier transform of xc tð Þ ¼ cosð4000ptÞ

)(wXs

w
40004000

8000

1600016000

Fig. 1.45 Fourier transform of the product signal xs tð Þ
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(c) To get the graph of Xn wð Þ; it is sufficient to multiply the horizontal axis of
XsðwÞ by Ts. Thus, the graph of XnðwÞ is obtained as in Fig. 1.46.

1.4 Aliasing (Spectral Overlapping)

Let the Fourier transform of a continuous time signal be as given as in Fig. 1.47.
Using the Fourier transform in Fig. 1.47, let’s draw the graph of

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þ ð1:35Þ

as in Fig. 1.48.
It is clear from Fig. 1.48 that the condition for the shifted graphs not to overlap

can be written as

ws � w1 [w2 ! ws [w1þw2 ð1:36Þ

and if w1\w2 then no aliasing condition in (1.36) can also be written as ws [ 2w2.
If ws\w1þw2, then the shifted graphs overlap and this condition is named as

aliasing (overlapping). The case of aliasing is depicted in Fig. 1.49.

Fig. 1.47 The Fourier transform of a low pass signal

Fig. 1.46 Fourier transform
of Xn wð Þ
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For many signals the Fourier transform is symmetric with respect to the vertical
axis, i.e., w1 ¼ w2. And for the symmetric case, let w1 ¼ w2 ¼ wN and the con-
dition for no aliasing in this case can be stated as

ws [ 2wN ð1:37Þ

where the unit of the frequencies is rad/sec. If we write the explicit expressions for
the frequencies in (1.37), we get

2p
Ts

[ 2
2p
TN

ð1:38Þ

and the condition for no aliasing can be written as fs [ 2fN . This means that for no
aliasing, the sampling frequency in unit of Hertz should be greater than twice of the
highest frequency available in the signal.

Fig. 1.49 Aliasing case

Fig. 1.48 The graph of XsðwÞ
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Note: If Xc wð Þ is a complex function, to see the overlapping case graphically we
first draw the graph of jXc wð Þj, and then the graph of

Xs wð Þ ¼ 1
Ts

X1
k¼�1

Xc w� kwsð Þj j ð1:39Þ

is drawn.

Example 1.12 The Fourier transform of continuous time signal is shown in
Fig. 1.50. Draw the Fourier transform of the product signal xs tð Þ ¼ xcðtÞsðtÞ and
decide on the aliasing case.

Solution 1.12 The graph of Xs wð Þ ¼ 1
Ts

P1
k¼�1 Xc w� kwsð Þ is depicted in

Fig. 1.51.
It is clear from Fig. 1.51 that for no overlapping, we should have

ws � wN [wN ð1:40Þ

leading to

ws [ 2wN ð1:41Þ

)(wXs

Nw 0

sT
A

w
Nw swNs ww Ns wwNs ww Ns wwsw

Fig. 1.51 Graph of XsðwÞ

Fig. 1.50 Graph of XcðwÞ
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and no aliasing condition in (1.41) can also be expressed as

ws [ 2wN ! 2pfs [ 2� 2pfN ! fs [ 2fN : ð1:42Þ

1.4.1 The Meaning of the Aliasing (Overlapping)

Sampling frequency implies the number of samples taken per-second from a con-
tinuous time signal. The collected samples are either transmitted, stored, or pro-
cessed, and the analog signal can be reconstructed from the digital samples.

If sampling frequency is not high enough, the analog signal cannot be recon-
structed due to insufficient number of received samples or it can only be partially
reconstructed. In frequency domain, the effect of insufficient number of samples is
seen as aliasing or spectral overlapping.

Example 1.13 The continuous time signal xc tð Þ ¼ cos 20ptð Þþ sin 40ptð Þ is to be
sampled. Choose a sampling frequency such that no aliasing occurs for the gen-
erated digital signal in frequency domain.

Solution 1.13 Let’s first calculate the Fourier transform of the continuous
time signal. For this purpose, the Fourier transforms of sinusoidal signals are
reminded as

cos w0tð Þ $FT pðd w� w0ð Þþ dðwþw0ÞÞ
sin w0tð Þ $FT p

j
ðd w� w0ð Þ � dðwþw0ÞÞ

where substituting w0 ¼ 2pf0;w ¼ 2pf , we get the alternative form for the Fourier
transform of the sinusoidal signals as

cos 2pf0tð Þ $FT 1
2

d f � f0ð Þþ d f þ f0ð Þð Þ

sin 2pf0tð Þ $FT 1
2j

d f � f0ð Þ � d f þ f0ð Þð Þ
While obtaining the alternative forms, we made use of the property

d 2p f � f0ð Þð Þ ¼ 1
2p

d f � f0ð Þ: ð1:43Þ

Using the Fourier transform formulas for the sinusoidal signals, we can calculate
the Fourier transform of the continuous time signal given in the example and plot its
graph as in Fig. 1.52.
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The Fourier transform of the summed sinusoids given in Fig. 1.52 seems to be
complex to judge although not impossible. For easiness of the illustration, let’s take
the absolute value of the Fourier transforms and depict them as in Fig. 1.53.

As it is seen from Fig. 1.53 that the highest frequency available in the contin-
uous time signal xcðtÞ is 40p rad/s or 20 Hz and the lowest positive frequency is 0.
The analog signal is a low pass signal. The sampling frequency preventing aliasing
should satisfy

ws [ 2� 40p

or in terms of unit of Hz, fs [ 40 Hz.

)(wXc

020 20 4040
w

Fig. 1.53 Graph of jXc wð Þj

Fig. 1.52 Fourier transform of the composite signal xcðtÞ
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Method 2: Comparing the given sinusoidal functions to cos 2pf1tð Þ and sin 2pf2tð Þ
expressions, we find the frequencies of the sinusoidal signals as f1 ¼ 10 Hz and
f2 ¼ 20 Hz, and decide on the sampling frequency as

fs [ 2� 20 Hz! fs [ 40 Hz

Example 1.14 If x n½ � ¼ xc nTsð Þ then the Fourier transform of x½n� is written as

Xn wð Þ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� kws

� �
ð1:44Þ

where XcðwÞ is the Fourier transform of continuous time signal xcðtÞ. The Fourier
transform of the digital signal x n½ � can also be calculated using the Fourier trans-
form formula directly, i.e.,

Xn wð Þ ¼
X1
n¼�1

x n½ �e�jwn ð1:45Þ

Derive (1.44) starting from the right hand side of (1.45).

Solution 1.14 Before starting to the derivation, let’s remember the Fourier and
inverse Fourier transforms of continuous time signal

Xc wð Þ ¼
Z1
�1

xc tð Þe�jwtdt xc tð Þ ¼ 1
2p

Z1
�1

Xc wð Þejwtdw:

If the time parameter ‘t’ is replaced by ‘nTs’ in inverse Fourier transform
expression, we get

xc nTsð Þ ¼ 1
2p

Z1
�1

Xc wð ÞejwnTsdw: ð1:46Þ

For the digital signal x½n�, we have the Fourier transform expression

Xn wð Þ ¼
X1
n¼�1

x n½ �e�jwn ð1:47Þ

in which if we substitute x n½ � ¼ XcðnTsÞ, we get

Xn wð Þ ¼
X1
n¼�1

xc nTsð Þe�jwn: ð1:48Þ

In (1.48) if xc nTsð Þ is replaced by (1.46), we get
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Xn wð Þ ¼
X1
n¼�1

1
2p

Z1

�1
Xc kð ÞejknTsdke�jwn ð1:49Þ

which can be re-arranged as

Xn wð Þ ¼ 1
2p

X1
n¼�1

Xc kð Þ Z1

�1
e�j w�kTsð Þndk ð1:50Þ

and exchanging the places of summation and integration operators, we obtain

Xn wð Þ ¼ 1
2p

Z1

�1
Xc kð Þ

X1
n¼�1

e�j w�kTsð Þndk ð1:51Þ

on which we can use the property

X1
n¼�1

e�j w�kTsð Þn ¼ 2p
X1
k¼�1

dðw� kTs � k2pÞ ð1:52Þ

d w� kTs � k2pð Þ ¼ d Ts
w
Ts
� k� k

2p
Ts

� �� �

¼ 1
Ts

d
w
Ts
� k� k

2p
Ts

� � ð1:53Þ

X1
n¼�1

e�j w�kTsð Þn ¼ 2p
Ts

X1
k¼�1

d
w
Ts
� k� k

2p
Ts

� �
ð1:54Þ

leading to the expression

Xn wð Þ ¼ 1
2p

Z1

�1
Xc kð Þ 2p

Ts

X1
k¼�1

d
w
Ts
� k� k

2p
Ts

� �
dk ð1:55Þ

where upon exchanging summation and integration operators, we get

Xn wð Þ ¼ 1
Ts

X1
k¼�1

1
2p

Z1

�1
Xc kð Þd w

Ts
� k� k

2p
Ts

� �
dk ð1:56Þ

in which the integration expression can be simplified using the impulse function
property

Z1

�1
Xc kð Þd k0 � kð Þdk ¼ Xc k0ð Þ ð1:57Þ
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as follows

1
2p

Z1

�1
Xc kð Þd w

Ts
� k� k

2p
Ts

� �
dk ¼ 1

2p
Xc

w
Ts
� k

2p
Ts

� �
ð1:58Þ

Finally, when (1.58) is used in (1.56), we get the desired final expression as

Xn wð Þ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� k

2p
Ts

� �
: ð1:59Þ

Exercise: The inverse Fourier transform for digital signals is given as

x n½ � ¼ 1
2p

Z

2p

XnðwÞejwndw: ð1:60Þ

Starting from the right hand side of (1.60) and replacing XnðwÞ in (1.60) by
(1.59) obtain the left hand side of (1.60).

Example 1.15 The time domain signal given in Fig. 1.54 is to be sampled.
Determine the sampling frequency such that the digital signal contains sufficient
information about analog signal and analog signal can be reconstructed from the
digital samples.

Solution 1.15 To determine the sampling frequency, we need to know the largest
and smallest positive frequencies available in the signal spectrum. For this purpose,
we calculate the Fourier transform of the continuous time signal and determine the
largest and smallest positive frequencies available in the signal spectrum. The
Fourier of the continuous time signal is computed as

)(txc

t

1

TT

Fig. 1.54 xcðtÞ graph for
Example 1.15
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Xc wð Þ ¼ Z1

�1
xc tð Þe�jwtdt

¼ ZT

�T
1e�jwtdt

¼ ejwT � e�jwT

jw

¼ 2 sin wTð Þ
w

The graph of the Fourier transform is depicted in Fig. 1.55. Since

Xc 0ð Þ ¼ 0
0

the value of the Fourier transform at origin can be computed using the L’Hôpital’s
rule. If we take the derivatives of numerator and denominator of Xc wð Þ w.r.t w and
evaluate it for w ¼ 0, we obtain

dXc wð Þ
dw

����
w¼0
¼ 2Tcos wTð Þ

1

����
w¼0
! dXc wð Þ

dw

����
w¼0
¼ 2T

which is nothing but the value of Xc wð Þ at origin, i.e., Xc 0ð Þ.
As it is seen from Fig. 1.55, the largest positive frequency in the signal spectrum

goes to infinity and the smallest non-negative frequency is 0. We need to choose
infinity as sampling frequency and this is not a feasible value for practical imple-
mentations. However, as it is seen from the Fourier transform graph, the amplitude
of the signal spectrum decreases sharply when frequency is beyond p

T. So, we can
assume that the spectrum amplitude is negligible beyond a frequency value. We can

T

T2

)(wXc

w

T

2

T

3

T

4

T

5

TT

2

T

3

T

4

T

5

0

Fig. 1.55 Fourier transform of xcðtÞ in Fig. 1.54
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choose the largest frequency as wN ¼ 4p
T , and according to the chosen frequency, we

can write the lower bound for sampling frequency as

ws [ 2wN ! ws [ 2
4p
T

ws [
8p
T
! 2p

Ts
[

8p
T
! Ts\

T
4

fs [
4
T

Let’s assume that the sampling period is chosen as Ts ¼ T
8. This means that we

take 2T
T
8
¼ 16 samples from rectangle signal per second. And these 16 samples are

sufficient for reconstruction of the rectangle signal.

1.4.2 Drawing the Frequency Response of Digital Signal
in Case of Aliasing (Practical Method)

In sampling operation if the sampling frequency is chosen as

fs\2wN

where wN is the bandwidth of the low pass analog signal, then aliasing occurs in
Fourier transform of the digital signal x½n�, i.e., in graph of XnðwÞ. The relations
between digital signal and continuous time signal in time and frequency domains
are as

x n½ � ¼ xcðtÞjt¼nTs! x n½ � ¼ xcðnTsÞ

Xn wð Þ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� kws

� �
:

Let the Fourier transform of the continuous time signal to be sampled be as in
Fig. 1.56.

If fs\2wN , then the graph of 1
Ts
Xc

w
Ts

� �
happens to be as in Fig. 1.57.

If Fig. 1.57 is inspected carefully it is seen that when fs\2wN , the function
1
Ts
Xc

w
Ts

� �
takes values outside the interval �p; pð Þ on horizontal axis. In Fig. 1.58,

the shadowed triangles denoted by ‘A’ and ‘B’ show the intervals outside �p; pð Þ
where the function 1

Ts
Xc

w
Ts

� �
has nonzero value.
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If the shadowed triangles ‘A’ and ‘B’ in Fig. 1.58 are shifted to the right and left
by 2p, we obtain the graphic in Fig. 1.59.

If the overlapping lines in Fig. 1.59 are summed, we obtain the graphic shown in
bold lines in Fig. 1.60. As it is clear from Fig. 1.60, due to the overlapping regions
the original signal is spectrum is destroyed.

)(wXc

NwNw 0

A

w

Fig. 1.56 Fourier transform
of a continuous time signal

Fig. 1.57 Graph of 1
Ts
Xc

w
Ts

� �

Fig. 1.58 The graph of
1
Ts
Xc

w
Ts

� �

40 1 Sampling of Continuous Time Signals



The amount of this destruction depends on the widths of the shadowed triangles.

In other words, as the function 1
Ts
Xc

w
Ts

� �
extends outside the interval �p; pð Þ more,

the amount of distortion on the original signal due to overlapping increases.
The graph obtained after summing the overlapping lines is depicted alone in

Fig. 1.61.
Let’s now, step by step, describe drawing the graph of Xn wð Þ in case of aliasing

in an easy and practical manner.

Step 1: First we draw the graph of 1
Ts
Xc

w
Ts

� �
. For this purpose, we divide the

horizontal axis of the graph of Xc wð Þ by 1=Ts i.e., we multiply the horizontal axis
by Ts, and multiply the amplitude values by 1=Ts.
Step 2: If the sampling frequency is chosen as fs\2wN , then aliasing occurs in the
Fourier transform of x½n�, i.e., aliasing occurs in XnðwÞ. And in this case, the graph

of 1
Ts
Xc

w
Ts

� �
extends beyond the interval ð�p; pÞ. The portion of the graph

extending to the left of �p is denoted by ‘A’, and the potion extending to the right
of p is denoted by ‘B’.

Fig. 1.59 Shifting of the shadowed triangles

Fig. 1.60 Summation of the overlapping lines
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Step 3: The portion of the graph denoted by ‘A’ in Step 2 is shifted to the right by
2p, and the portion denoted by ‘B’ is shifted to the left by 2p. The overlapping lines
are summed and one period of XnðwÞ around origin is obtained. Let’s denote this
one period by Xn1 wð Þ.
Step 4: In the last step, one period of XnðwÞ around origin denoted by Xn1 wð Þ is
shifted to the left and right by multiples of 2p and all the shifted replicas are
summed to get XnðwÞ, this is mathematically stated as

Xn wð Þ ¼
X1
k¼�1

Xn1 w� k2pð Þ:

Example 1.16 The Fourier transform of continuous time signal xcðtÞ is shown in
Fig. 1.62. This signal is sampled and digital signal x n½ � ¼ xcðtÞjt¼nTs! x n½ � ¼
xcðnTsÞ, Ts ¼ 1=64 is obtained. Draw the graph of the Fourier transform digital
signal, i.e., draw the graph of Xn wð Þ.
Solution 1.16

Step 1: First we draw the graph of 1
Ts
Xc

w
Ts

� �
, for this purpose, we multiply the

horizontal axis of XcðwÞ in Fig. 1.62 by Ts ¼ 1=64 and multiply the vertical axis of
XcðwÞ in Fig. 1.62 by 1=Ts ¼ 64. The resulting graph is shown in Fig. 1.63.

Fig. 1.62 Fourier transform
of a low pass input signal

Fig. 1.61 The resulting graph after summing the overlapping lines
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The graph in Fig. 1.63 is drawn more in details as in Fig. 1.64 where we see that
the graph extends to the outside of the (�p; p) interval. And in fact, the parts of the
1
Ts
Xc

w
Ts

� �
extending beyond (�p; p) cause the spectral overlapping problem due to

the 2p periodicity of Xn wð Þ:
Step 2: We shadow the portion of the graphs outside the �p; pð Þ interval and denote
them by the letters ‘A’ and ‘B’, we obtain the graph in Fig. 1.65.
If the shadowed portions labelled by ‘A’ and ‘B’ are shifted to the right and to the
left by 2p, we obtain the graph in Fig. 1.66.
In Fig. 1.66, we can write the equations of the overlapping lines for the interval
�p;�3p=4ð Þ as 128

3p wþ 64 and � 256
5p w� 192

5 , and when these two equations are
summed, we obtain � 128

15pwþ 128
5 . In a similar manner, if we write the equations of

the overlapping lines for the interval p=2; pð Þ and sum them, we obtain

Fig. 1.65 The portions of
graph outside �p;pð Þ interval
are labelled by ‘A’ and ‘B’

Fig. 1.63 The graph of
1
Ts
Xc

w
Ts

� �

Fig. 1.64 The graph of
1
Ts
Xc

w
Ts

� �
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� 128
15pwþ 128

3 . After summing the overlapping line equations, we can draw one
period of XnðwÞ around origin as in Fig. 1.67.
Step 3: In the last step, we shift one period of XnðwÞ around origin to the left and
right by multiples of 2p and summing all the non-overlapping shifted replicas, we
obtain the graph of XnðwÞ.

Exercise: The Fourier transform of a continuous time signal xcðtÞ is depicted in
Fig. 1.68.

This signal is sampled with sampling period Ts ¼ 1=32 and digital signal x n½ � is
obtained. Draw the Fourier transform of x n½ �.

Exercise: The Fourier transform of a continuous time signal xcðtÞ is depicted in
Fig. 1.69.

This signal is sampled with sampling period Ts ¼ 1=32 and digital signal x n½ � is
obtained. Draw the Fourier transform of x n½ �.

Fig. 1.67 One period of
XnðwÞ around origin

Fig. 1.66 Shadowed portions
are shifted to the right and to
the left by 2p

Fig. 1.68 Fourier transform
of a continuous time signal
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1.5 Reconstruction of an Analog Signal from Its Samples

To obtain a digital signal x½n� from an analog signal xcðtÞ via sampling operation,
we first multiply the analog signal by an impulse train sðtÞ and obtain the product
signal xs tð Þ ¼ xcðtÞsðtÞ. Then we collect the amplitude values of impulses from xsðtÞ
and form the digital sequence x½n�.

Now we wonder the reverse operation, i.e., assume that we have the digital
sequence x½n�, then how can we construct the analog signal xcðtÞ? To achieve this,
we will just follow the reverse operations. That is, we will first obtain xsðtÞ from
x½n�, then from xsðtÞ we will extract xcðtÞ.

Let’s study the reconstruction operation in time domain as shown in Fig. 1.70.
As it is depicted in Fig. 1.70, we can write mathematical expression for the

product signal xsðtÞ in terms of the elements of digital signal x½n� but we have no
way to write an expression for xcðtÞ using xsðtÞ. Hence, we cannot solve the
reconstruction problem in time domain. Let’s inspect the reconstruction operation
in frequency domain then. Assume that xcðtÞ is a low pass signal and its Fourier
transform is as given in Fig. 1.71.

Considering the Fourier transform in Fig. 1.71, we can draw the Fourier trans-
form of the product signal xsðtÞ as in Fig. 1.72. The Fourier transform of xsðtÞ is a
periodic signal with period ws and it’s one period around origin equals to 1

Ts
XcðwÞ in

case of no aliasing.
It is clear from Fig. 1.72 that for no aliasing, we should have

ws [ 2wN ! 2p
Ts

[ 2wN ð1:61Þ

Fig. 1.70 Reconstruction operation in time domain

Fig. 1.69 Fourier transform
of a continuous time signal
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2p
Ts

[ 2wN ! wN\
p
Ts

: ð1:62Þ

Now consider the reconstruction operation in frequency domain. We had
problem in converting xsðtÞ to xcðtÞ in time domain. However, it is clear from
Fig. 1.72 that it is easy to get the Fourier transform of xcðtÞ, i.e., XcðwÞ from the
Fourier transform of xsðtÞ, i.e., XsðwÞ. To get XcðwÞ from XsðwÞ, it is sufficient to
multiply XsðwÞ by a rectangle function centered around the origin. This operation is
depicted in Fig. 1.73 where rectangle function is denoted by HrðwÞ which is
nothing but the transfer function of a low pass analog filter.

Fig. 1.71 Fourier transform of xcðtÞ

Fig. 1.72 Fourier transform of xsðtÞ

Fig. 1.73 Multiplication of XsðwÞ by rectangle function HrðwÞ
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The Fourier transform of the low pass analog filter is depicted in Fig. 1.74 alone.
In fact, the filter under consideration is an ideal lowpass filter, and it is used just to
illustrate the reconstruction operation. In practice, such ideal filters are not avail-
able, and practical non-ideal filters are employed for reconstruction operations.

The time domain expression of the analog filter with the frequency response
depicted in Fig. 1.74 can be calculated using the inverse Fourier transform formula
as follows:

hr tð Þ ¼ 1
2p

Z1

�1
Hr wð Þejwtdw

¼ 1
2p

Z
p
Ts

� p
Ts

Tse
jwtdw

¼ Ts
2p

ejwt
�� p
Ts
� p

Ts

¼ Ts
j2pt

ej
p
Ts
t � e�j

p
Ts
t	 


where using the property sin hð Þ ¼ 1
2j ejh � e�jh
	 


; we obtain

hr tð Þ ¼
sin pt

Ts

� �
pt
Ts

: ð1:63Þ

Since

sin c xð Þ ¼ sin pxð Þ
px

ð1:64Þ

the mathematical expression in (1.63) can be written in terms of sin cð�Þ function as

Fig. 1.74 Fourier transform
of the reconstruction filter
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hr tð Þ ¼ sin c
t
Ts

� �
: ð1:65Þ

The graph of the reconstruction filter hrðtÞ is depicted in Fig. 1.75 where it is
clear that the reconstruction filter takes 0 value at every multiple of Ts.

As we explained before the Fourier transform of the continuous time signal can
be written as the multiplication of XsðwÞ and HrðwÞ i.e.,

Xc wð Þ ¼ Xs wð ÞHr wð Þ: ð1:66Þ

Since multiplication in frequency domain equals to convolution in time domain,
(1.66) can be also be expressed as

xc tð Þ ¼ xs tð Þ � hr tð Þ ð1:67Þ

where substituting

X1
n¼�1

x n½ �dðt � nTsÞ

for xsðtÞ, we obtain

xc tð Þ ¼
X1
n¼�1

x n½ �d t � nTsð Þ � hr tð Þ

¼
X1
n¼�1

x n½ �hr t � nTsð Þ
ð1:68Þ

which is nothing but the reconstruction expression of the analog signal xc tð Þ.

Fig. 1.75 Reconstruction filter impulse response
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Note: f tð Þ � d t � t0ð Þ ¼ f ðt � t0Þ
Using (1.63) in (1.68) the reconstructed analog signal from its samples can be

written as

xc tð Þ ¼
X1

n¼�1
x n½ �

sin p ðt�nTsÞTs

� �
pðt�nTsÞ

Ts

ð1:69Þ

or in terms of sin cð�Þ function, it is written as

xc tð Þ ¼
X1

n¼�1
x n½ � sin c t � nTs

Ts

� �
ð1:70Þ

Example 1.17 The continuous time signal xc tð Þ ¼ sinð2ptÞ is sampled by sampling
period Ts ¼ 1

4 s.

(a) Write the digital sequence x½n� obtained after sampling operation.
(b) Assume that x½n� is transmitted and available at the receiver. Reconstruct the

analog signal at the receiver side from its samples, i.e., using x n½ � reconstruct
the analog signal xc tð Þ.

Solution 1.17

(a) The frequency of the sinusoidal signal xc tð Þ ¼ sinð2ptÞ is 1 Hz, and its period
is 1 s. Sampling period is Ts ¼ 1

4 s. Every multiple of Ts, we take a sample from
the sinusoidal signal. The graph of the sinusoidal signal and the samples taken
from its one period are indicated in Fig. 1.76.
Since sampling frequency is fs ¼ 4 Hz, we take 4 samples per-second from the
signal. The samples taken from one period of the sinusoidal signal can be
written as ½ 0 1 0 �1 �. Since the sine signal is defined from �1 to 1.
The obtained digital signal is a periodic signal and in this digital signal, the
repeating pattern happens to be ½ 0 1 0 �1 �. The digital signal obtained
from the sampling operation can be written as

Fig. 1.76 Sampling of sine
signal
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x n½ � ¼ . . . 0 1 0 �1
0

z}|{n¼0

1 0 �1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Repeating pattern

0 1 0 �1 . . .

2
64

3
75
ð1:71Þ

(b) At the receiver, the analog signal can be reconstructed from its samples using

xc tð Þ ¼
X1
n¼�1

x n½ �hrðt � nTsÞ ð1:72Þ

where Ts ¼ 1
4 and

hr tð Þ ¼
sin pt

Ts

� �
pt
Ts

: ð1:73Þ

Using the x½n� in (1.72), the reconstructed signal can be written as

xc tð Þ ¼ � � � þ hr tþ 3Tsð Þ � hr tþ Tsð Þþ hr t � Tsð Þ � hr t � 3Tsð Þþ � � � ð1:74Þ

The graph of hrðtÞ in (1.73) is depicted in Fig. 1.77 where it is clear that the
amplitude of the main lobe of hrðtÞ equals to 1, and the function equals to 0 when t
is a multiple of Ts.

The shifted copies of hr tð Þ and their summation is illustrated in Fig. 1.78.

Fig. 1.77 Reconstruction filter impulse response
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If we only pay attention to the main lobes in Fig. 1.78, we see that the recon-
struction signal resembles to the sine signal. Overlapping tails improve the accuracy
of the reconstructed signal.

1.5.1 Approximation of the Reconstruction Filter

The reconstruction filter hr tð Þ ¼ sin c t
Ts

� �
is depicted in Fig. 1.79 where it is seen

that the filter has a large main lobe and small side lobes, and as the time values

Fig. 1.78 Summing the shifted sin cð�Þ functions to reconstruct the analog signal

1

)(thr

t
0

sT3 sTsTsT2sT4sT5 sT2 sT3 sT4 sT5

Fig. 1.79 Reconstruction filter impulse response
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increase, the amplitudes of the side lobes decrease. To construct a simplified model
for the reconstruction filter, we can approximate the lobes by isosceles triangles.

In Fig. 1.80 the main lobe of the reconstruction filter is approximated by an
isosceles triangle and the side lobes are all omitted. This type of approximation can
also be called as linear approximation.

For the triangle in Fig. 1.80, we can write line equations for the left and right
edges. For the left edge, the line equation is

t
Ts
þ 1; �Ts� t\0;

for the right edge, the line equation is

� t
Ts
þ 1; 0� t� Ts

and combining these two line equations into a single expression, we can write the
linearly approximated filter expression as

har ¼ � tj j
Ts
þ 1 0� tj j � Ts

0 otherwise
:

�

Example 1.18 The continuous time signal xc tð Þ ¼ sinð2ptÞ is sampled by sampling
period Ts ¼ 1

4.

sTsT sTsT tt

11

)(thr

Approximation

0 0

)(thar

Fig. 1.80 Approximation of the reconstruction filter
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(a) Write the digital sequence x½n� obtained after sampling operation.
(b) Assume that x½n� is transmitted and available at the receiver. Reconstruct the

analog signal at the receiver side from its samples using approximated recon-
struction filter.

Solution 1.18

(a) We solved this problem before and found the digital signal as

x n½ � ¼ . . . 0 1 0 �1
0

z}|{n¼0

1 0 �1|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Repeating pattern

0 1 0 �1 . . .

2
64

3
75:
ð1:75Þ

(b) At the receiver side, the analog signal can be reconstructed from its samples
using

xc tð Þ ¼
X1
n¼�1

x n½ �harðt � nTsÞ ð1:76Þ

where Ts ¼ 1
4 and har tð Þ is the approximated reconstruction filter. Using the x½n�

found in the previous part, and expanding (1.76), the reconstructed signal can
be written as

Fig. 1.81 Reconstruction of analog signal using approximated filter
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xc tð Þ ¼ � � � þ har tþ 3Tsð Þ � har tþ Tsð Þþ har t � Tsð Þ � har t � 3Tsð Þþ � � �
ð1:77Þ

The shifted copies of har tð Þ in (1.77) and their summation is illustrated in
Fig. 1.81.

As it is seen from Fig. 1.81, the reconstructed signal resembles to the sine signal.
Now we ask the question: How can we obtain a better reconstructed sine

signal?

Answer
Either we can use a better approximated filter or take more samples from one period
of the signal, i.e., increase the sampling frequency which means, decrease the
sampling period. To get a better approximated filter, we can represent the side-lobes
by the small triangles.

A better approximation of the reconstruction filter is illustrated in Fig. 1.82
where it is seen that two side lobes are approximated by triangles. Although
improved linear approximation improves the accuracy of the reconstructed signal,
the sharp discontinuities of the linear approximated filter makes the realization of
the filter difficult.

Reconstruction operation can be illustrated using block diagrams as in Fig. 1.83.

Fig. 1.83 Reconstruction
operation using block diagram

Fig. 1.82 Better approximation of the reconstruction filter
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In Fig. 1.83, if hr tð Þ ¼ sin c t
Ts

� �
; then perfect reconstruction occurs, i.e.,

xr tð Þ ¼ xcðtÞ.

1.6 Discrete Time Processing of Continuous Time Signals

Currently most of the electronic devices are produced using digital technology. For
this reason, analog signals are usually converted to digital signals and processed by
digital electronic systems. These electronic units can be digital filters, equalizers,
amplifiers, etc. In Fig. 1.84, the general system for digital processing of analog
system is depicted.

The system in Fig. 1.84 can be inspected both in time and frequency domains
assuming that discrete time system is linear and time invariant. Let’s first write the
relations among signals in time, and then in frequency domain.

Time Domain Relations:

x n½ � ¼ xc nTs1ð Þy n½ � ¼ x n½ � � h n½ � yr tð Þ ¼
X1
n¼�1

y n½ �hrðt � nTs2Þ ð1:78Þ

If perfect reconstruction filter is to be employed, then

hr tð Þ ¼ sin c
t
Ts2

� �
: ð1:79Þ

Frequency Domain Relations:

XnðwÞ ¼ 1
Ts1

X1
k¼�1

Xc
w
Ts1
� kws1

� �
ð1:80Þ

where

ws1 ¼ 2p
Ts1

; Yn wð Þ ¼ Xn wð ÞHn wð Þ: ð1:81Þ

To write the frequency domain relation between y½n� and yrðtÞ, let’s remember
the two-stage reconstruction process illustrated as follows

Fig. 1.84 Digital processing
of a continuous time signal
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We have

Ys wð Þ ¼ 1
Ts2

X1
k¼�1

Yc w� kws2ð Þ Yn wð Þ ¼ 1
Ts2

X1
k¼�1

Yc
w
Ts2
� kws2

� �
ð1:82Þ

Yn wð Þ ¼ Ys
w
Ts2

� �
! Yr wð Þ ¼ Hr wð ÞYs wð Þ ! Yr wð Þ ¼ Hr wð ÞYn Ts2wð Þ: ð1:83Þ

By combining XnðwÞ ¼ 1
Ts

P1
k¼�1

Xc
w
Ts
� kws

� �
; Yn wð Þ ¼ Xn wð ÞHnðwÞ and

Yr wð Þ ¼ Hr wð ÞYnðTs2wÞ, we get the relation between YrðwÞ and XcðwÞ as

Yr wð Þ ¼ Hr wð ÞHnðTs2wÞ 1
Ts1

X1
k¼�1

Xc
Ts2
Ts1

w� kws1

� �
ð1:84Þ

If Ts1 ¼ Ts2 ¼ Ts, then (1.84) reduces to

Yr wð Þ ¼ TsHn Tswð ÞXcðwÞ; � p
Ts
�w� p

Ts
0; otherwise

�
: ð1:85Þ

Note: Hr wð Þ ¼ Ts if � p
Ts
�w� p

Ts
0 otherwise

�

Example 1.19 In Fig. 1.85, the graphs of XcðwÞ and XnðwÞ are depicted. In addi-
tion, x n½ � ¼ xcðtÞjt¼nTs . By comparing the graphs of XcðwÞ and XnðwÞ, write XcðwÞ
in terms of XnðwÞ.

Fig. 1.85 Graphs for Example 1.19
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Solution 1.19 First let’swrite the expression for one period ofXnðwÞ around origin as

Xn wð Þ � p�w\p ð1:86Þ

which is graphically shown as in Fig. 1.86.
If we divide the horizontal axis of XnðwÞ by Ts, we get

Xn Tswð Þ � p
Ts
�w\

p
Ts

ð1:87Þ

which is graphically depicted in Fig. 1.87.
If we multiply the amplitudes by Ts, we obtain

TsXn Tswð Þ � p
Ts
�w\

p
Ts

: ð1:88Þ

which is graphically depicted in Fig. 1.88.
Figure 1.88 is nothing but the graph of XcðwÞ. As a result, we can conclude that

if x n½ � ¼ xcðtÞjt¼nTs , then we can express Fourier transform of xcðtÞ i.e., XcðwÞ in
terms of Fourier transform of x½n� i.e., XnðwÞ as

Xc wð Þ ¼ TsXn Tswð Þ � p
Ts
�w\

p
Ts

: ð1:89Þ

Fig. 1.87 One period of
XnðTswÞ around origin

Fig. 1.86 One period of
XnðwÞ around origin
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Example 1.20 For the continuous to digital converter given in Fig. 1.89, assume
that the sampling frequency is high enough so that there is no aliasing in frequency
domain. XnðwÞ is the Fourier transform of x½n�, and XcðwÞ is the Fourier transform
of xcðtÞ. Write one period of XnðwÞ in terms of XcðwÞ.
Solution 1.20 Since XnðwÞ is the Fourier transform of a digital signal, XnðwÞ is
periodic and its period equals 2p, the relation between XnðwÞ and XcðwÞ is given as

XnðwÞ ¼ 1
Ts

X1
k¼�1

Xc
w
Ts
� k

2p
Ts

� �
ð1:90Þ

which is written explicitly as

Xn wð Þ ¼ � � � þ 1
Ts

Xc
w
Ts
þ 2p

Ts

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n¼�1

þ 1
Ts

Xc
w
Ts

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

n¼0

þ 1
Ts

Xc
w
Ts
� 2p

Ts

� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

n¼1

þ � � � ð1:91Þ

In (1.91), let Yc wð Þ ¼ 1
Ts
Xc

w
Ts

� �
, then it is obvious that Yc w� 2pð Þ ¼

1
Ts
Xc

w
Ts
� 2p

Ts

� �
. The explicit expression of XnðwÞ can be written as

Xn wð Þ ¼ � � � þ Ycðwþ 2pÞþ YcðwÞþ Ycðw� 2pÞþ � � � ð1:92Þ

From (1.92), it is obvious that one period of XnðwÞ is YcðwÞ, that is to say, one

period of XnðwÞ is 1
Ts
Xc

w
Ts

� �
and this can mathematically be written as

Fig. 1.88 One period of
TsXn Tswð Þ around origin

Fig. 1.89 Continuous to
digital converter
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Xn wð Þ ¼ 1
Ts

Xc
w
Ts

� �
� p�w\p ð1:93Þ

which can also be written as

TsXn wTsð Þ ¼ Xc wð Þ � p
Ts
�w\

p
Ts

: ð1:94Þ

Example 1.21 For the digital to continuous converter given in Fig. 1.90, let YnðwÞ
be the Fourier transform of y½n�. Because YnðwÞ is the Fourier transform of a digital
signal, it is periodic and its period equals 2p. Let YnopðwÞ be the one period of
YnðwÞ around origin. That is Ynop wð Þ ¼ Yn wð Þ � p�w\p. Write the Fourier
transform of yrðtÞ, i.e., YrðwÞ in terms of YnopðwÞ.
Solution 1.21 Digital to continuous conversion operation is reminded in Fig. 1.91.

As a result, we can write the relation between one period of YnðwÞ and YrðwÞ as

Yr wð Þ ¼ TsYnopðTswÞ ð1:95Þ

The expression in (1.95) can also be written as

Yr wð Þ ¼ TsYn Tswð Þ � p
Ts
�w� p

Ts
: ð1:96Þ

Fig. 1.90 Digital to continuous converter

Fig. 1.91 Digital to continuous conversion
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Example 1.22 If x n½ � ¼ TsycðtÞjt¼nTs , write one period of the Fourier transform of
x½n� in terms of Fourier transform of ycðtÞ. Assume that there is no aliasing.

Solution 1.22 Using the expression below

XnðwÞ ¼ Ts
Ts

X1
k¼�1

Yc
w
Ts
� k

2p
Ts

� �
ð1:97Þ

the relation in one period can be written as

Xn wð Þ ¼ Yc
w
Ts

� �
! Yc wð Þ ¼ Xn Tswð Þ: ð1:98Þ

Example 1.23 In Fig. 1.92 two signal processing systems are depicted. If both
systems produce the same output yrðtÞ for the same input signal xcðtÞ, find the
relation between the impulse responses of continuous time and discrete time
systems.

Solution 1.23 For the first system, the frequency domain relation between system
input and output is

Yr wð Þ ¼ Hc wð ÞXcðwÞ ð1:99Þ
Considering only one period (op) of the Fourier transforms of the digital signals

around origin, the relations between input and output of each unit can be written as
C/D:

Xn�op wð Þ ¼ 1
Ts

Xc
w
Ts

� �
ð1:100Þ

Disc.Time System:

Yn�op wð Þ ¼ Hn wð ÞXn�opðwÞ ð1:101Þ

Fig. 1.92 Signal processing
systems for Example 1.23
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D/C:

Yr wð Þ ¼ TsYn�op Tswð Þ ð1:102Þ

If we combine the expressions (1.100–1.102), we get

Yr wð Þ ¼ Hn�op Tswð ÞXc wð Þ: ð1:103Þ

If we equate the right hand sides of the Eqs. (1.99) and (1.103), we get

Hc wð Þ ¼ Hn�op Tswð Þ ! Hn�op wð Þ ¼ Hc
w
Ts

� �
ð1:104Þ

from which we can write the time domain relation for h n½ � and hcðtÞ as

h n½ � ¼ TshcðtÞjt¼nTs : ð1:105Þ

1.7 Continuous Time Processing of Digital Signals

Digital signals can be processed by continuous time systems. For this purpose, the
digital signal is first converted to continuous time signal then processed by a
continuous time system whose output is back converted to a digital signal. The
overall procedure is depicted in Fig. 1.93.

For the system in Fig. 1.93, time and frequency domain relations between block
inputs and outputs are as follows:

Time domain relations are

xc tð Þ ¼
X1
n¼�1

x n½ � sin c t � nTs
Ts

� �
yc tð Þ ¼ xcðtÞ � hcðtÞ ð1:106Þ

y n½ � ¼ ycðtÞjt¼nTs : ð1:107Þ

Frequency domains relations are

Xc wð Þ ¼ TsXn Tswð Þ if � p
Ts
�w� p

Ts
0 otherwise

�
Yc wð Þ ¼ Xc wð ÞHcðwÞ ð1:108Þ

Fig. 1.93 Continuous time
processing of digital signals
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Yn wð Þ ¼ 1
Ts

X1
k¼�1

Yc
w
Ts
� k

2p
Ts

� �
: ð1:109Þ

Example 1.24 The signal processing units given in Figs. 1.94 and 1.95 have the
same outputs for the same given inputs. Find the relation between the impulse
responses of discrete and continuous time systems.

Solution 1.24 For the first system, the relation between input and output is

Yn wð Þ ¼ Hn wð ÞXn wð Þ: ð1:110Þ
Here Yn wð Þ is periodic with period 2p and one period of it can be written as

either

Yn wð Þ ¼ Hn wð ÞXn wð Þ � p�w\p ð1:111Þ

or

Yn�op wð Þ ¼ Hn wð ÞXn�op wð Þ ð1:112Þ

For the second system, the relations between block inputs and outputs are given as

Xc wð Þ ¼ TsXn Tswð Þ if � p
Ts
�w� p

Ts
0 otherwise

�
Yc wð Þ ¼ Xc wð ÞHcðwÞ ð1:113Þ

Yn wð Þ ¼ 1
Ts

X1
k¼�1

Yc
w
Ts
� k

2p
Ts

� �
: ð1:114Þ

If we combine the expressions in (1.113), we get

Yc wð Þ ¼ HcðwÞTsXn Tswð Þ if � p
Ts
�w� p

Ts
0 otherwise

�
ð1:115Þ

and substituting (1.115) into (1.114), we obtain

Fig. 1.94 Signal processing
units for Example 1.24

Fig. 1.95 Signal processing
units for Example 1.24
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Yn wð Þ ¼
X1
k¼�1

Hc
w
Ts
� k

2p
Ts

� �
Xn w� k2pð Þ: ð1:116Þ

One period of YnðwÞ is

Yn�op wð Þ ¼ Hc
w
Ts

� �
Xn�opðwÞ ð1:117Þ

If we equate the right hand sides of (1.112) and (1.117)

Hn wð ÞXn�op wð Þ ¼ Hc
w
Ts

� �
Xn�opðwÞ ! Hn wð Þ ¼ Hc

w
Ts

� �
ð1:118Þ

which is can be expressed in time domain as

h n½ � ¼ TshcðtÞjt¼nTs : ð1:119Þ

Example 1.25 Sample continuous time signal in Fig. 1.96, and reconstruct the
continuous time signal from its samples. Use triangle approximated reconstruction
filter during reconstruction process.

Solution 1.25 The Fourier transform graph of a rectangle signal of length 2T
around origin is repeated in Fig. 1.97.

For our example; T ¼ 2, let’s choose the approximate bandwidth of the rect-
angle pulse as wN ¼ 2p=T ! wN ¼ 2p=2! wN ¼ p. We can choose the sampling
frequency according to

ws [ 2wN  ws [ 2p ð1:120Þ

as

2pfs [ 2p! fs [ 1! fs ¼ 2 ð1:121Þ

which means that the sampling period is Ts ¼ 1
2. The sampling operation of the

rectangle pulse is depicted in Fig. 1.98.
The digital sequence obtained after sampling of the rectangular signal is

Fig. 1.96 Continuous time
signal for Example 1.25
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x n½ � ¼ 1 1 1 1 1|{z}
n¼0

1 1 1
� �

: ð1:122Þ

The construction of the approximated reconstruction filter is repeated in
Fig. 1.99.

Fig. 1.97 Fourier transform of a rectangle signal

Fig. 1.98 Sampling of the rectangular signal

Fig. 1.99 Linear approximation of the reconstruction filter
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Note that our sampling period is Ts ¼ 1
2, then the approximated reconstruction

filter becomes as in Fig. 1.100.
Now we can start the reconstruction operation, the reconstruction expression is

given as

xr tð Þ ¼
X1

n¼�1
x n½ �harðt � nTsÞ ð1:123Þ

where Ts ¼ 1
2 s, and using our digital signal x½n� and expanding the summation in

(1.123), we obtain

xr tð Þ ¼ har tþ 4
2

� �
þ har tþ 3

2

� �
þ har tþ 2

2

� �
þ har tþ 1

2

� �

þ har tð Þþ har t � 1
2

� �
þ har t � 2

2

� �
þ har t � 3

2

� �
:

ð1:124Þ

The shifted filters appearing in (1.124) is depicted in Fig. 1.101.

Fig. 1.101 Shifted triangle reconstruction filters

Fig. 1.100 Linear
approximation of the
reconstruction filter for Ts ¼ 1

2
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If the shifted graphs given in Fig. 1.101 are summed, we get the resulting graph
shown in bold lines in Fig. 1.102.

In Fig. 1.103 the reconstructed signal is depicted alone.
As it is seen from Fig. 1.103, the reconstructed signal resembles to the rectangle

signal given in the exercise. However, at the left and right sides we have some
problems. To increase the accuracy of the reconstructed signal, we should either
take more samples from the continuous time signal or increase the accuracy of the
reconstruction filter.

Let’s take more samples. For this reason, we can increase the sampling fre-
quency, meaning, decrease the sampling period. Accordingly, we can choose
Ts ¼ 1=16, which means that we take ð2� ð�2ÞÞ � 16 ¼ 64 samples from the
given continuous time signal. The triangular approximated reconstruction filter for
this new sampling period is shown in Fig. 1.104.

As it is seen from Fig. 1.104, the edges of the triangle have larger slopes in
magnitude. It is not difficult to see from Fig. 1.104 that as the sampling frequency
goes to infinity, the reconstruction filter converges to impulse function. Applying
the same steps for the new sampling period, we find the reconstructed signal as in
Fig. 1.105.

Fig. 1.102 Sum of the shifted reconstruction filters

Fig. 1.103 Reconstructed
signal for Ts ¼ 1

16
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As it is seen from Fig. 1.105, we have a better reconstructed signal. Left and
right edges of the reconstructed signal have larger slopes.

Note: If unit is not provided for sampling period or for signal axis we accept it as
“second” by default.

Example 1.26 Is the signal given in Fig. 1.106 a digital signal?

Solution 1.26 Time axis of a digital signal consist of only integers. For the given
signal, real values appear along time axis. Hence, the signal is not a digital signal
but it is discrete amplitude continuous time signal. In fact the signal consists of
shifted impulses dðt � t0Þ which is a continuous function.

Fig. 1.104 Linear
approximation of the
reconstruction filter for Ts ¼ 1

2

Fig. 1.105 Reconstructed
signal for Ts ¼ 1

16

Fig. 1.106 Signal graph for
Example 1.26
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1.8 Problems

(1) For the sampling periods Ts ¼ 1 s and Ts ¼ 1:5 s, draw the graph of

s tð Þ ¼
X1
n¼�1

dðt � nTsÞ:

(2) The signal depicted in Fig. 1.107 is sampled.

(a) For the sampling period Ts ¼ 1 s, first draw the graph of impulse train
function sðtÞ, then draw the graph of the product signal xs tð Þ ¼ xcðtÞsðtÞ.
Find the digital signal x½n� and draw its graph.

(b) For the sampling period Ts ¼ 0:5 s repeat part (a)

(3) For the impulse train function

s tð Þ ¼
X1

n¼�1
dðt � nTsÞ

find

(a) Fourier series coefficients.
(b) Fourier series representation.
(c) Fourier transform.

(4) If xs tð Þ ¼ xcðtÞsðtÞ where sðtÞ is the impulse train and xcðtÞ is a continuous
time signal, derive the Fourier transform expression of xs tð Þ in terms of the
Fourier transform of xcðtÞ.

(5) If x n½ � ¼ xcðnTsÞ, then derive the expression for the Fourier transform of x n½ �
in terms of the Fourier transform of xcðtÞ.

(6) Write mathematical equation for the lines depicted in Fig. 1.108, and then find
the sum of these line equations.

(7) xc tð Þ ¼ cosð8ptÞ is sampled and x n½ � ¼ xcðnTsÞ digital signal is obtained.
According to this information, answer the following.

(a) If the sampling period is Ts ¼ 1
4 s, write the mathematical sequence

consisting of the samples taken from the interval 0� t� 1.
(b) Repeat the previous part for the sampling period Ts ¼ 1

16 s.
(c) Which sampling period is preferred Ts ¼ 1

4 s or Ts ¼ 1
16 s?

Fig. 1.107 Continuous time
signal
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(8) The continuous time signal xcðtÞ is sampled with sampling period Ts ¼ 1
5000 s

and the digital signal x n½ � ¼ xcðnTsÞ is obtained. The Fourier transform of the
continuous time signal is depicted in Fig. 1.109. Draw the Fourier transform
of the digital signal x½n�.

(9) If Ts ¼ 1
8 s and x n½ � ¼ 2 �3 5 1 2 3 1:5 4:3 2:5 �2:5 2½ �,

then draw the graph of

xs tð Þ ¼
X1
n¼�1

x n½ �d n� Tsð Þ:

(10) The Fourier transform of a continuous time signal is depicted in Fig. 1.110.
Using inverse Fourier transform formula, calculate the time domain expression
of this signal.

0 t

a

b

Fig. 1.108 Two lines for
Question-6

Fig. 1.109 Fourier transform
of a continuous time signal

Fig. 1.110 Fourier transform
of a continuous time signal
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(11) Let xsðtÞ be the product of xcðtÞ and the impulse train function sðtÞ. Using the
product signal expression, write the mathematical expression for the recon-
structed signal which is evaluated as xr tð Þ ¼ xs tð Þ � hrðtÞ.

(12) For the sampling period Ts ¼ 1
8 s, draw the linearly approximated recon-

struction filter graph.
(13) The graph of the continuous time signal xcðtÞ is displayed in Fig. 1.111.

The signal xcðtÞ is sampled with sampling periods Ts ¼ 1 s, Ts ¼ 1
4 s and

Ts ¼ 1
8 s. Find the digital signal x½n� for each sampling period.

(14) A continuous time signal is sampled with sampling period Ts ¼ 1
8 s and the

digital signal x n½ � ¼ 1 0:7 0 �0:7 �1 �0:7 0 0:7½ � is obtained.
Using the approximated triangle reconstruction filter, rebuild the continuous
time signal.

(15) The Fourier transform of a continuous time signal xcðtÞ is depicted in
Fig. 1.112.
The continuous time signal is sampled with sampling period Ts ¼ 1

3000 s and
the digital signal x n½ � ¼ xcðtÞjt¼nTs is obtained. Draw the Fourier transform of
x n½ �.

(16) The continuous time signal xc tð Þ ¼ cos 2p� 100� tð Þþ cos 2p� 400� tð Þ is
sampled with sampling frequency fs. How should fs be chosen such that no
aliasing occurs in the spectrum of digital signal.

(17) A continuous time signal is sampled with sampling frequency fs ¼ 1000 Hz.
How many samples per second are taken from continuous time signal?

Fig. 1.111 Continuous time
signal graph for Question-13

Fig. 1.112 Fourier transform
of a continuous time signal
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Chapter 2
Multirate Signal Processing

Digital signals are obtained from continuous time signals via sampling operation.
Continuous time signals can be considered as digital signals having infinite number
of samples. Sampling is nothing but selecting some of these samples and forming a
mathematical sequence called digital signal. And these digital signals can be in
periodic or non-periodic forms. The number of samples taken from a continuous
time signal per-second is determined by sampling frequency. As the sampling
frequency increases, the number of samples taken from a continuous time signal
per-second increases, as well. As the technology improves, new and better elec-
tronic devices are being produced. This also brings the compatibility problem
between old and new devices. One such problem is the speed issue of the devices.
Consider a communication device transmitting digital samples taken from a con-
tinuous time signal at a high speed. This means high sampling frequency, as well. If
the speed of the receiver device is not as high as the speed of the transmitter device,
then the receiver device cannot accommodate the samples taken from the trans-
mitter. This results in communication error. Hence, we should be able to change the
sampling frequency according to our needs.

We should be able to increase or decrease the sampling frequency without
changing the hardware. We can do this using additional hardware components at
the output of the sampling devices. One way of decreasing the sampling frequency
is the elimination of some of the samples of the digital signal. This is also called
sampling of digital signals, or decimation of digital signals, or compression of
digital signals. On the other hand, after digital transmission, at the receiver side
before digital to analog conversion operation, we can increase the number of
samples. This is called upsampling, or increasing sampling rate, or increasing
sampling frequency. If we have more samples for a continuous time signal, when it
is reconstructed from its samples, we obtain a better continuous time signal. In this
chapter, we will learn how to manipulate digital signals, which means, changing
their sampling rates, reconstruction of a long digital sequence from a short version
of it, de-multiplexing and multiplexing of digital signals via hardware units etc.

© Springer Nature Singapore Pte Ltd. 2018
O. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_2
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2.1 Sampling Rate Reduction by an Integer Factor
(Downsampling, Compression)

To represent a continuous time by digital sequences, we take samples from the
continuous time signal according a sampling frequency and form a mathematical
sequence. If the mathematical sequence contains too many samples, we can omit
some of these samples and keep the rest of the samples for transmission, storage,
processing etc.

Let’s give another example from real life. Assume that you want to send 500
students to a university in a foreign country. The selected students represent your
university and from each department 10 students were selected. Later on you think
that the travel cost of 500 students is too much and decide on reducing the number
of selected students.

A continuous time signal can be considered as a digital signal containing infinite
number of samples for any time interval. Sampling of analog signals is nothing but
selecting a finite number of samples from the infinite sample sets of the analog
signals for the given time interval. The downsampling operation can be considered
as the sampling of digital signals. In this case a digital signal containing a number
of samples for a given time interval is considered and for the given interval, some of
the samples of the digital signal are selected and a new digital signal is formed. This
operation is called downsampling. During the downsampling some of the samples
of a digital signal are selected and the remaining samples are omitted.

The downsampling operation is illustrated in Fig. 2.1 where x½n� is the signal to
be downsampled and y n½ � is the signal obtained after downsampling x½n�, i.e., after
omitting sampled from x½n�, and M is the downsampling factor.

Given x½n� to find the compressed signal, i.e., downsampled signal, y½n�, we
divide the time axis of x½n� by M and keep only integer division results and omit all
non-integer division results. Let’s illustrate this operation by an example.

Example 2.1 A digital signal expressed as a mathematical sequence is given as

x½n� ¼ ½3:3 � 2:5 1:2 4:5 5:5 � 2:3 5:0|{z}
n¼0

6:2 3:4 2:3 � 4:4 3:2 2:0�

Find the downsampled y n½ � ¼ x½3n�.

][][ Mnxny =][nx M
Fig. 2.1 Downsampling
operation
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Solution 2.1 Let’s write the time index values of the signal, x½n� explicitly follows

x n½ � ¼ ½ 3:3|{z}
n¼�6

�2:5|ffl{zffl}
n¼�5

�1:2|ffl{zffl}
n¼�4

4:5|{z}
n¼�3

5:5|{z}
n¼�2

�2:3|ffl{zffl}
n¼�1

5:0|{z}
n¼�0

6:2|{z}
n¼1

3:4|{z}
n¼2

2:3|{z}
n¼3

�4:4|ffl{zffl}
n¼4

3:2|{z}
n¼5

2:0|{z}
n¼6

�:

In the second step, we divide the time axis of x½n� by 3, this is illustrated in

½ 3:3|{z}
n¼�6

3

�2:5|ffl{zffl}
n¼�5

3

�1:2|ffl{zffl}
n¼�4

3

4:5|{z}
n¼�3

3

5:5|{z}
n¼�2

3

�2:3|ffl{zffl}
n¼�1

3

5:0|{z}
n¼�0

3

6:2|{z}
n¼1

3

3:4|{z}
n¼2

3

2:3|{z}
n¼3

3

�4:4|ffl{zffl}
n¼4

3

3:2|{z}
n¼5

3

2:0|{z}
n¼6

3

�:

where divisions’ yielding integer results are shown in bold numbers and these
divisions are given alone as follows

½ 3:3|{z}
n¼�6

3

4:5|{z}
n¼�3

3

5:0|{z}
n¼�0

3

2:3|{z}
n¼�3

3

2:0|{z}
n¼6

3

�

and when the divisions are done, we obtain the downsampled signal as

y n½ � ¼ ½ 3:3|{z}
n¼�2

4:5|{z}
n¼�1

5:0|{z}
n¼0

2:3|{z}
n¼1

2:0|{z}
n¼1

�

As it is seen from the previous example, downsampling a digital signal by
M means that from every M samples of the digital signal only one of them is
selected and the rest of them are eliminated. As an example, if y n½ � ¼ x½6n�, then
from every 6 samples of x½n� only one of them is kept and the other 5 samples are
omitted.

Now we ask the question, if sampling frequency is fs and downsampling factor is
M, after downsampling operation how many samples per-second are available at the
downsampler output? The answer is given in the block diagram in Fig. 2.2.

Where :d e is the upper-floor operation. If fs is a multiple of M, the diagram in
Fig. 2.2 reduces to the one in Fig. 2.3.

Example 2.2 Interpret the block diagram given in Fig. 2.4.

Solution 2.2 At the input of the block, we receive 300 samples per-second which
are obtained from an analog signal via sampling operation. At the output of the
downsampler only 1 of every 3 samples is kept and the other 2 samples are omitted.

sf M ⎥⎥
⎤

⎢⎢
⎡
M
fsFig. 2.2 Sampling frequency

at the downsampler output
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That means at the output of the downsampler, 100 samples every per-second are
released.

Example 2.3 Find the Fourier series representation of

p n½ � ¼
X1
r¼�1

d½n� rM�: ð2:1Þ

Solution 2.3 The given signal is a periodic signal with period M. Its Fourier series
coefficients are computed as

P k½ � ¼ 1
M

XMþ 1
2

n¼�M�1
2

p n½ �e�j2pMkn ! P k½ � ¼ 1
M

XMþ 1
2

n¼�M�1
2

d n½ �e�j2pMkn ! P k½ � ¼ 1
M

: ð2:2Þ

Using the Fourier series coefficients in (2.2), the Fourier series representation of
(2.1) can be written as

p n½ � ¼
X
k;M

P k½ �ej2pMkn ! p n½ � ¼ 1
M

X
k;M

ej
2p
Mkn: ð2:3Þ

The mathematical expression p n½ � ¼ P1
r¼�1 d½n� rM� can also be written as

p n½ � ¼ 1 if n ¼ 0;�M;�2M; . . .
0 otherwise:

�
ð2:4Þ

And equating the right hand sides of (2.3) and (2.4) to each other, we get the
equality

1
M

XM�1

k¼0

ej
2p
Mkn ¼ 1 n ¼ 0;�M;�2M; . . .

0 otherwise:

�
ð2:5Þ

sf M
M
fs

Fig. 2.3 Sampling frequency at the downsampler output when fs is a multiple of M

300=sf 3 100
3

=→= ds
s

ds f
f

f

Fig. 2.4 Downsampler for Example 2.2
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For the expression in (2.5), if we change the sign of n appearing on both sides of
the equation, we obtain an alternative expression for (2.5) as

1
M

XM�1

k¼0

e�j2pMkn ¼ 1 n ¼ 0;�M;�2M; . . .
0 otherwise:

�
ð2:6Þ

2.1.1 Fourier Transform of the Downsampled Signal

Let’s find the Fourier transform of the compressed signal y n½ � ¼ x½Mn�. The Fourier
transform of y n½ � can be calculated using

Yn wð Þ ¼
X1
n¼�1

x½Mn�e�jwn ð2:7Þ

where defining r,Mn, we obtain

YnðwÞ ¼
X

r¼0;�M;�2M

x r½ �e�jw r
M ð2:8Þ

which can be written after parameter changes as

YnðwÞ ¼
X

n¼0;�M;�2M

x n½ �e�jw n
M ð2:9Þ

The frontiers of the sum symbol in (2.9) can be changed to �1 and1 if (2.1) is
used in (2.9) as

YnðwÞ ¼
X1
n¼�1

x½n�
X1
r¼�1

d½n� rM�e�jw n
M

where replacing
P1

r¼�1 d½n� rM� by its Fourier series representation, we get

YnðwÞ ¼
X1
n¼�1

x½n� 1
M

X
k;M

e�j2pMkne�jw n
M ð2:10Þ

which can be rearranged as

YnðwÞ ¼ 1
M

X
k;M

X1
n¼�1

x n½ �e�jwþ k2p
M n

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Xnðwþ k2p

M Þ

ð2:11Þ
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The expression in (2.11) can be reduced to

YnðwÞ ¼ 1
M

X
k;M

Xn
wþ k2p

M

� �
: ð2:12Þ

In (2.10), if (2.5) was used, then we would obtain

YnðwÞ ¼ 1
M

X
k;M

Xn
w� k2p

M

� �
: ð2:13Þ

Hence, considering (2.12) and (2.13), we can write the Fourier transform of
y n½ � ¼ x½Mn� as

YnðwÞ ¼ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �
: ð2:14Þ

Example 2.4 If y n½ � ¼ x½Mn� the relation between Fourier transforms of x½n� and
y½n� is given as

YnðwÞ ¼ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �
:

Using the inverse Fourier transform expression for y½n�, i.e.,

y½n� ¼ 1
2p

Z2p
w¼0

YnðwÞejwndw ð2:15Þ

show that y n½ � ¼ x½Mn�.
Solution 2.4 The inverse Fourier transform is given as

y n½ � ¼ 1
2p

Z2p
0

Yn wð Þejwndw

where inserting

Yn wð Þ ¼ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �
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we get

y n½ � ¼ 1
2pM

XM�1

k¼0

Z2p
0

Xn
wþ k2p

M

� �
ejwndw ð2:16Þ

In (2.16), if we let k ¼ wþ k2p
M , then dw ¼ Mdk, and changing the frontiers of the

integral (2.16) reduces to

y n½ � ¼ 1
2p

XM�1

k¼0

Zkþ 1ð Þ2p
M

k2p
M

XnðkÞejMkndk: ð2:17Þ

If (2.17) is expanded for all k values, we obtain

y n½ � ¼ 1
2p

Z2p
M

0

Xn kð ÞejMkndkþ 1
2p

Z4p
M

2p
M

Xn kð ÞejMkndkþ � � �

þ 1
2p

Z2p

M�1
M 2p

XnðkÞejMkndk

ð2:18Þ

where using the property
R b
a ð�Þ þ

R c
b ð�Þ ¼

R c
a ð�Þ and changing k with w, we get the

expression

y n½ � ¼ 1
2p

Z2p
0

XnðwÞejMwndw: ð2:19Þ

When (2.19) is compared to

x n½ � ¼ 1
2p

Z2p
0

XnðwÞejwndw

it is seen that y n½ � ¼ x½Mn�.
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2.1.2 How to Draw the Frequency Response
of Downsampled Signal

To draw the graph of

Yn wð Þ ¼ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �

students usually expand the summation as

Yn wð Þ ¼ 1
M

Xn
w
M

� �
þ 1

M
Xn

w� 2p
M

� �
þ 1

M
Xn

w� 4p
M

� �
þ � � � ð2:20Þ

and try to draw each shifted graph and sum the shifted graphs. However, this
approach is too time consuming and error-prone. Instead of this approach, we will
suggest a simpler method to draw the graph of YnðwÞ as explained in the following
lines.

Since YnðwÞ is the Fourier transform of the digital signal y½n�, then YnðwÞ is a
periodic signal and its period equals to 2p.

To draw the graph of YnðwÞ, we can follow the following steps.

Step 1: First one period of XnðwÞ around origin is drawn. For this purpose, the
frequency interval is chosen as �p\w� p.
Step 2: Considering one period of XnðwÞ around origin, we draw one period of
1
M Xn

w
M

� 	
. To draw (in one period) the graph of 1

M Xn
w
M

� 	
, we multiply the horizontal

axis of XnðwÞ by M, and multiply the vertical axis of XnðwÞ by 1
M :

Step 3: In Step 3, we shift the resulting graph in Step 2 to the left and right by
multiples of 2p and sum the shifted replicas.

Let’s now give an example to illustrate the topic.

Example 2.5 One period of the Fourier transform of x½n� is depicted in Fig. 2.5.
Draw the Fourier transform of y n½ � ¼ x 2n½ �, i.e., draw YnðwÞ.

3 3

w

)(wXn

1

w

Fig. 2.5 One period of the Fourier transform of x½n�
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Solution 2.5 First let’s draw the graph of Y1n wð Þ ¼ 1
2Xnðw2Þ. For this purpose, we

multiply the frequency axis of XnðwÞ by 2 and vertical axis of XnðwÞ by 1
2. The

resulting graph is shown in Fig. 2.6.
In the second step, we shift the graph of Y1n wð Þ to the left and right by multiples

of 2p and sum the shifted graphs. In other words, we draw the graph of
Yn wð Þ ¼ P1

k¼�1 Y1nðw� k2pÞ. The shifted graphs and their summation result are
depicted in Figs. 2.7, 2.8, and 2.9.

Right Shifted Functions:
Left Shifted Functions:
Sum of the Shifted Functions:
Exercise: One period of the Fourier transform of x½n� is depicted in Fig. 2.10.

Draw the Fourier transform of y n½ � ¼ x 3n½ �, i.e., draw YnðwÞ.

)
2

2
(

2

1
)2(1

wXwY nn

2

1

2 2

3

2
2 3
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w

Fig. 2.7 Right shifted functions
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Fig. 2.6 The graph of 1
2Xnðw2Þ
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Fig. 2.8 Left shifted functions
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2.1.3 Aliasing in Downsampling

A digital signal is nothing but a mathematical sequence obtained via sampling of a
continuous time signal. If we have sufficient number of samples, we can reconstruct
the continuous time signal from its samples.

If we have too many samples, generated during the sampling operation we can
eliminate some of these excessive samples via the downsampling operation.
However, while performing the downsampling operation, we should be careful to
keep sufficient number of samples in the digital signal such that the reconstruction
of the continuous time signal is still possible after downsampling operation.

If we eliminate a number of samples more than a threshold value, the rest of the
samples may not be sufficient to reconstruct the continuous time signal and this
effect is seen as the aliasing in the spectrum graph of the downsampled signal.

Example 2.6 Assume that we have a low pass continuous time signal with band-
width fN ¼ 40 Hz. We choose the sampling frequency according to the criteria
fs [ 2fN ! fs [ 80 as fs ¼ 120. This means that we take 120 samples per-second
from the continuous time signal. However, our chosen sampling frequency is not
very cost efficient.

The lower limit for the sampling frequency is fs [ 80 which means that the
minimum sampling frequency can be chosen as fs ¼ 81: However we use fs ¼ 120
which means that every per-second we transmit 120 − 81 = 39 excessive samples
which are not necessary to reconstruct the continuous time signal. We can

)(wYn

2

1

2
3

2
2

3

2
2 2

w
3

2
2

3

2
2

3

2

3

2

Fig. 2.9 Sum of the shifted functions

3 3

w

)(wXn

1

wFig. 2.10 One period of the
Fourier transform of x½n�
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reconstruct the continuous time signal using only 81 samples. We can omit the
excessive 39 samples via downsampling operation.

Let’s now determine the criteria for no aliasing in downsampling operation.
After downsampling operation, we have fs

M remaining samples per-second. If this
number of remaining samples is greater than 2fN , then no aliasing occurs. That is if

fs
M

[ 2fN ! M\
fs
2fN

ð2:21Þ

is satisfied, then aliasing is not seen in the spectrum of the downsampled signal.
Let’s simplify (2.21) more as

M\
fs
2fN

! M\
1

2 TsfN|{z}
fD

ð2:22Þ

where fD is the digital frequency, and manipulating more, we have

M\
1
2fD

! M\
p

2pfD
! M\

p
wD

! MwD\p ð2:23Þ

where wD is the angular digital frequency.
Let’s now graphically illustrate the no aliasing criteria after downsampling

operation. Assume that one period of the Fourier transform of the digital signal x½n�
to be downsampled is given as in Fig. 2.11. Let y n½ � ¼ x½Mn� be the downsampled
signal.

Depending on the value of M, we can draw the two possible graphs of 1
M Xn

w
M

� 	
as shown in Figs. 2.12 and 2.13.

When the graph in Fig. 2.12 is shifted to the left and right by multiples of 2p, no
overlapping occurs among shifted graphs. However, this case does not hold for the
graph shown in Fig. 2.13. If the graph shown in Fig. 2.13 is shifted to the left and
right by multiples of 2p, overlapping is observed between shifted replicas, and this
situation is depicted in Fig. 2.14.

Example 2.7 The continuous time signal xcðtÞ ¼ cos ð6000ptÞ is sampled with
sampling period Ts ¼ 1

8000 and the digital sequence x½n� is obtained. Next the digital

Dw
w

)(wXn

1

w

Dw

Fig. 2.11 One period of the
Fourier transform of the
digital signal x½n� to be
downsampled
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signal x½n� is downsampled and y n½ � ¼ x½4n� is obtained. Decide whether aliasing
occurs in spectrum of y n½ � or not.
Solution 2.7 If the given continuous time signal is compared to cos ð2pftÞ, the
frequency of the continuous time signal is found as f ¼ 3000 Hz. And the sampling
frequency is fs ¼ 8000Hz. After downsampling operation sampling frequency
reduces to fs ¼ 8000

4 ¼ 2000 Hz and this value is less than 2f ¼ 6000 Hz. This
means that aliasing is seen in the spectrum of y n½ �.

Exercise: For the system in Fig. 2.15, xcðtÞ ¼ cos ð5000ptÞ, Ts ¼ 1
10;000, and

M ¼ 2. According to given information, draw the Fourier transforms of the signals
xc tð Þ; x n½ �; y n½ �, and yrðtÞ, and also write the time domain expression for yrðtÞ.

DMw
w

)/( MwX n MwM

DMwM M

M
1

Fig. 2.12 Case-1: Graph of 1
M Xn

w
M

� 	

DMw
w

)/( MwX n
MwM

DMw MM

M
1

Fig. 2.13 Case-2: Graph of 1
M Xn

w
M

� 	

DMw
w

)(wYn

M
1

DMw 22

Fig. 2.14 Aliasing in downsampled signal spectrum graph
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2.1.4 Interpretation of the Downsampling in Terms
of the Sampling Period

If x n½ � ¼ xcðnTsÞ, then for the downsampled signal y n½ � ¼ x Mn½ � ! y n½ � ¼

xcðn MTs|{z}
T 0
s

Þ new sampling period is T 0
s ¼ MTs which is an integer multiple of Ts. The

digital signal obtained from xcðtÞ using sampling period Ts is shown in Fig. 2.16.
The digital signal x½n� in Fig. 2.16 is written as a mathematical sequence as

x n½ � ¼ ½� � � a b c d e f g|{z}
n¼0

h i j k l m � � ��:

Now consider y n½ � ¼ x 2n½ � ! y n½ � ¼ xcðn2TsÞ, in this case the samples are taken
from xcðtÞ at every T 0

s ¼ 2Ts. This operation is illustrated in Fig. 2.17.
The digital signal y½n� in Fig. 2.17 can be written as a mathematical sequence as

y n½ � ¼ ½� � � a c e g|{z}
n¼0

i k m � � ��:

Similarly, if g n½ � ¼ x 4n½ � ! g n½ � ¼ xcðn4TsÞ, the samples are taken from xcðtÞ at
every T 0

s ¼ 4Ts. This operation is illustrated in Fig. 2.18.

)(txc

t
sT sT2 sT3 sT4 sT5sT−sT2−sT3−sT4−sT5− sT6sT6− 0

a

l
kj

i

hg

f

edc
b

m

Fig. 2.16 Sampling of the continuous time signal with sampling period Ts

)(txc

][][ Mnxny

M
][nx

)(tyr

sT sT

C/D D/C

Fig. 2.15 Signal processing system for exercise
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The digital signal g½n� in Fig. 2.18 can be written as a mathematical sequence as

y n½ � ¼ ½� � � c g|{z}
n¼0

k � � ��:

Example 2.8 For the signal processing system given in Fig. 2.19, xc tð Þ ¼
cosð5000ptÞ, Ts ¼ 1

8000, and M ¼ 3. Using the given information, calculate and
draw the Fourier transforms of the signals xc tð Þ; x n½ �; y n½ �, and yrðtÞ. Besides, write
the time domain expression for yrðtÞ.

)(txc

t
sT2 sT4sT2sT4 sT6sT6 0

a

k
i

g

ec

m

Fig. 2.17 Sampling of the continuous time signal with sampling period 2Ts

)(txc

t
sT4sT4 0

k

g

c

Fig. 2.18 Sampling of the continuous time signal with sampling period 4Ts

)(txc

][][ Mnxny

M
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)(tyr

sT sT

C/D D/C
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Solution 2.8 Before starting to the solution, let’s provide some background
information as

Cos hð Þ ¼ 1
2

ejh þ e�jh
� 	

FT ejw0t

 � ¼ 2pd w� w0ð Þ ð2:24Þ

FT cos wNtð Þf g ¼ p d w� wNð Þþ d wþwNð Þð Þ: ð2:25Þ

Accordingly, the Fourier transform of xcðtÞ is found as

Xc wð Þ ¼ p d w� 5000pð Þþ d wþ 5000pð Þð Þ:

and graphically it is shown in Fig. 2.20.
For the given example, since fs [ 2fN ! 8000[ 2� 2500 criteria is satisfied,

no aliasing is observed in the Fourier transform of x½n�, and for this reason, one

period of the Fourier transform of x½n� for the interval �p�w\p equals Xn wð Þ ¼
1
Ts
Xc

w
Ts

� �
which is depicted in Fig. 2.21.

For the downsampled signal, we have y n½ � ¼ x½3n�, let’s draw one period of
Yn wð Þ ¼ 1

3Xn
w
3

� 	
using one period of XnðwÞ around origin as in Fig. 2.22 where

impulses are labeled with letters so that we can distinguish them while forming the
Fourier transform of y½n�.

If the graph in Fig. 2.22 is carefully inspected, we see that after downsampling
operation one period of the Fourier transform of the downsampled signal extends
beyond the interval ð�p; pÞ in frequency axis. This means that the number of
samples omitted is greater than the allowed threshold and for this reason perfect
reconstruction of the continuous time signal is not possible anymore. It may be
reconstructed with some distortion or the reconstructed signal may be a totally

)(wXc

w
50005000 0

Fig. 2.20 Fourier transform
of xcðtÞ in Example 2.8

)(wXn

w

8

5

8

5 0

8000

wFig. 2.21 One period of the
Fourier transform of x½n� for
Example 2.8
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different one. The amount of distortion in the reconstructed continuous time signal
depends on the rate of the omitted samples, i.e., rate of the compression or rate of
the downsampling. As the number of omitted samples increases, the amount of
distortion in the reconstructed signal increases, as well.

To get the graph of YnðwÞ, we shift its one period depicted in Fig. 2.22 to the left
and to the right by multiples of 2p and sum the shifted replicas. The right shifted
graph by 2p is given in Fig. 2.23.

And the left shifted graph by 2p is shown in Fig. 2.24a.
Summing the centered, right shifted, and left shifted graphs, we get the graph of

YnðwÞ as shown in Fig. 2.24b.
Now let’s find the expression for the reconstructed signal yrðtÞ. For this purpose,

we consider the graph of YnðwÞ for the interval �p�w\p and draw
Yr wð Þ ¼ TsXnðTswÞ. To achieve this, we divide the frequency axis by Ts and
multiply the amplitudes by Ts. These operations generate the graph depicted in
Fig. 2.25.

If the inverse Fourier transform of YrðwÞ depicted in Fig. 2.25 is calculated, we
obtain the time domain expression of the reconstructed signal as

yrðtÞ ¼ 1
3
cos ð1000ptÞ

)
3

(
3

1 wXn

0

3

8000

8
15

8

15 w

A B

Fig. 2.22 The graph of 1
3Xn

w
3

� 	
for Example 2.8

3

8000

8 8

312
w

Ar Br

Fig. 2.23 One period of YnðwÞ shifted to the right by 2p
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which is quite different from the sampled signal xcðtÞ ¼ cos ð5000ptÞ. The reason
for this is that during the downsampling operation too many samples, beyond the
allowable threshold, are omitted and this resulted in aliasing in frequency domain
and perfect reconstruction of the original signal is not possible anymore.

Question: During the downsampling operation we have to omit more samples
than the number of allowable one. However, we want to decrease the effect of
aliasing at the spectrum of the digital signal. What can we do for this?

Answer: If y n½ � ¼ x½Mn� alising occurs in YnðwÞ, if the largest frequency of
XnðwÞ in the interval �p�w\p is greater than p

M. This situation is depicted in
Fig. 2.26.

For the conversion of y½n� to continuous time signal yrðtÞ, the portion of YnðwÞ
for the interval �p�w\p in Fig. 2.26 is used. This portion is depicted alone in
Fig. 2.27.

As it is seen from Fig. 2.27, the overlapping shaded parts cause distortion in the
reconstructed signal. Then how can we decrease the distortion amount? If we can

3
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Al Bl
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Fig. 2.24 a One period of YnðwÞ shifted to the left by 2p. b The graph of YnðwÞ for Example 2.8
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Fig. 2.25 Fourier transform
of the reconstructed signal for
Example 2.8
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eliminate the shaded regions in the spectrum of the downsampled signal, the
reconstructed signal will have less distortion.

However due to the clipping of the parts extending beyond the interval ð�p; pÞ,
some distortion will always be available in the reconstructed signal. This distortion
is due to the information loss owing to the clipping of the spectrum regions in
Fig. 2.26 for the intervals p�w\Mwd and �Mp�w\p. What we do here is that
we want try to decrease the amount of distortion, not complete elimination of it.

Then if we can get a spectrum graph for YnðwÞ; �p�w\p as shown in
Fig. 2.28 the reconstructed signal will have less distortion.

M

w

)(wXn
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w
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wY nn
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Fig. 2.26 Aliasing case in downsampled signal
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)(wYn wFig. 2.27 Yn wð Þ, �p�w\p

w

M
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)(wYn wFig. 2.28 After elimination
of the overlapping shaded
parts in Fig. 2.27
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We can omit the overlapping shaded parts if we can filter high frequency por-
tions of XnðwÞ before downsampling operation, i.e., the portions of XnðwÞ for the
intervals p

M �w\p and �p�w\� p
M should be filtered out. This can be achieved

using a low pass filter as shown in bold lines Fig. 2.29. The lowpass filter clips the
wigs of the signal that extends beyond the interval ð�p; pÞ. And this clipping
prevents the overlapping problem in downsampled signal spectrum.

The lowpass filter used in Fig. 2.29 is called decimator filter whose frequency
domain expression for its one period around origin is written as

HdnðwÞ ¼ 1 if jwj\ p
M

0 if p
M\ wj j\p:

�
ð2:26Þ

The time domain expression of the decimator filter can be computed using the
inverse Fourier transform as

hdn n½ � ¼ 1
2p

Z
w;2p

Hdn wð Þejwndw ! hdn n½ � ¼ 1
2p

Zp
M

�p
M

1� ejwndw ð2:27Þ

yielding the expression

hdn n½ � ¼ sin pn
M

� 	
pn

! hdn n½ � ¼ 1
M

sin c
n
M

� �
: ð2:28Þ

The filtering process before downsampling operation is illustrated in Fig. 2.30.
The system in Fig. 2.30 is called decimator system, and the overall operation in
Fig. 2.30 is named as decimation.

For the system in Fig. 2.30, we have Y1n wð Þ ¼ Hdn wð ÞXnðwÞ and y n½ � ¼ y1½Mn�.
One period of YnðwÞ is written as Yn wð Þ ¼ 1

M Y1nðwMÞ; �p�w\p. One period of
YnðwÞ is shown in Fig. 2.31.

M

w

)(wX n

1

w

M
DwDw

)(wHdn

)()( wXwH ndn

M

w

1

w

M

Fig. 2.29 Elimination of the high frequency parts by a decimator filter
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One period of YnðwÞ can be expressed as

YnopðwÞ ¼ YnðwÞ �p�w\p
0 otherwise

�
ð2:29Þ

which can be used for the calculation of the Fourier transform of y½n� as

Yn wð Þ ¼
X1
k¼�1

Ynopðw� k2pÞ: ð2:30Þ

Considering Fig. 2.31 the graph of (2.30) can be drawn as in Fig. 2.32.
Exercise: If y n½ � ¼ x½3n� and the Fourier transform of x½n� for �p�w\p is as

given in Fig. 2.33, draw the Fourier transform of y½n�, i.e., draw YnðwÞ.
Downsampling can also be used for de-multiplexing operations, i.e., separating

digital data to its components. We below give some examples to illustrate the use of
downsampling for de-multiplexing operations.

][][ 1 Mnyny][nx ][nhd M
][1 ny

)(wHdn
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M M

1

Fig. 2.30 Decimator system
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Fig. 2.31 One period of
YnðwÞ
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M
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Fig. 2.32 Fourier transform of filtered and dowsampled signal

90 2 Multirate Signal Processing



Note: The simplest de-multiplexer is the serial to parallel converter.

Example 2.9 The delay system is described in Fig. 2.34.
If

x½n� ¼ ½1 2 3 4 5 6 7 8 9|{z}
n¼0

10 11 12 13 14 15�

find the output of each unit given in Fig. 2.35.

Solution 2.9 To get y n½ � ¼ x n� n0½ �; n0 [ 0, it is sufficient to shift n ¼ 0 pointer to
the left by n0 units in x½n� sequence. For negative n0, we shift the n ¼ 0 pointer to
the right by n0 units. According to this information, x½n� 1� can be calculated as

x½n� 1� ¼ ½1 2 3 4 5 6 7 8|{z}
n¼0

9 10 11 12 13 14 15�:

If we divide the time axis by 2 and take only the integer division results, we get
the signals

y1½n� ¼ ½1 3 5 7 9|{z}
n¼0

11 13 15� y2½n� ¼ ½2 4 6 8|{z}
n¼0

10 12 14�

at the outputs of the downsamplers.
As it is seen from the obtained sequences, the system separates the odd and even

indexed samples.

3

2
w

)(wXn

1

w

3

2

Fig. 2.33 One period of the
Fourier transform of a digital
signal

0nz][nx ][ 0nnx
Fig. 2.34 Delay system
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Fig. 2.35 Signal processing
system for Example 2.9
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Example 2.10 The delay system is shown in Fig. 2.36.
If

x½n� ¼ ½1 2 3 4 5 6 7 8 9|{z}
n¼0

10 11 12 13 14 15�

find the output of each unit given in Fig. 2.37.

Solution 2.10 Following similar steps as in the previous example, we find the
digital signals at the outputs of the downsamplers as

y1½n� ¼ 3 6 9 12 15½ � y2½n� ¼ 2 5 8 11 14½ �
y3½n� ¼ 1 4 7 10 13½ �

which are nothing but sub-sequences obtained by dividing data signal x½n� into
non-overlapping sequences.

2.1.5 Drawing the Fourier Transform of Downsampled
Signal in Case of Aliasing (Practical Method)

Let y n½ � ¼ x½Mn� be the downsampled digital signal. To draw the Fourier transform
of y½n� in case of aliasing, we follow the subsequent steps.

Step 1: First we draw the graph of 1
M Xn

w
M

� 	
. For this purpose, we divide the

horizontal axis of the graph of Xn wð Þ by 1
M, i.e., we multiply the horizontal axis by

M, and multiply the amplitude values by 1=M.
Step 2: In case of aliasing, the graph of 1

M Xn
w
M

� 	
extends beyond the interval

ð�p; pÞ. The portion of the graph extending to the left of �p is denoted by ‘A’, and
the potion extending to the right of p is denoted by ‘B’.

0nz][nx ][ 0nnx
Fig. 2.36 Delay system
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3
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][1 ny
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Fig. 2.37 Signal processing
system for Example 2.10
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Step 3: The portion of the graph denoted by ‘A’ in Step 2 is shifted to the right by
2p, and the portion denoted by ‘B’ is shifted to the left by 2p. The overlapping lines
are summed and one period of YnðwÞ around origin is obtained. Let’s denote this
one period by Yn1 wð Þ.
Step 4: In the last step, one period of YnðwÞ around origin denoted by Yn1 wð Þ is
shifted to the left and right by multiples of 2p and all the shifted replicas are
summed to get YnðwÞ, this is mathematically stated as

YnðwÞ ¼
X1
k¼�1

Yn1 w� k2pð Þ:

Now let’s explain these steps using graphics.
Let the Fourier transform of x½n� be as shown in Fig. 2.38.
In case of aliasing, one period of 1

M Xn
w
M

� 	
around origin will be as shown in

Fig. 2.39.
If Fig. 2.39 is inspected carefully, it is seen that the function 1

M Xn
w
M

� 	
takes

values outside the interval �p; pð Þ on horizontal axis. In Fig. 2.40, the shadowed
triangles denoted by ‘A’ and ‘B’ show the portion of 1

M Xn
w
M

� 	
extending outside of

�p; pð Þ.

)(wXn

dwdw 0

A

w

Fig. 2.38 Fourier transform
of x½n�
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around origin in case

of aliasing
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If the shadowed triangles ‘A’ and ‘B’ in Fig. 2.40 are shifted to the right and left
by 2p, we obtain the graphic in Fig. 2.41. If the overlapping lines in Fig. 2.41 are
summed, we obtain the graphic shown in bold lines in Fig. 2.42. As it is clear from
Fig. 2.41, overlapping regions distorts the original signal. The amount of distortion
depends on the widths of the shadowed triangles. In other words, as the function
1
M Xn

w
M

� 	
extends outside the interval �p; pð Þ more, the amount of distortion on the

original signal due to overlapping increases.
The graph obtained after summing the overlapping lines is depicted alone in

Fig. 2.43.

)(
1

M
wX

M n

dMw 0

M
A

w
dMw

A B

Fig. 2.40 One period of
1
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Exercise 2.11 The Fourier transform of x½n�, i.e., XnðwÞ, is shown in Fig. 2.44.
Draw the Fourier transform of the downsampled signal y½n� ¼ x½Mn�; M ¼ 4.

Solution 2.11

Step 1: First we draw the graph of 1
M Xn

w
M

� 	
as in Fig. 2.45.

For the graph of Fig. 2.45, the parts that fall outside of the interval �p; pð Þ are
denoted by the shaded triangles ‘A’ and ‘B’ in Fig. 2.46.

If the shaded parts ‘A’ and ‘B’ in Fig. 2.46 are shifted to the right and to the left
by 2p, we obtain the graph in Fig. 2.47.

The equations of the overlapping line on the interval �p;�p=2ð Þ in Fig. 2.47
can be written as 1

12pwþ 1
4 and � 1

12pw� 1
24, and when these equations are summed,

we obtain 5
24. In a similar manner, the sum of the equations of the overlapping line

on the interval p=2; pð Þ can be found as 5
24. Hence one period of YnðwÞ around

origin can be drawn as shown in Fig. 2.48.
In the last step, shifting one period of YnðwÞ to the left and right by multiples of

2p and summing the shifted replicas we obtain the graph of YnðwÞ.
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Fig. 2.43 The resulting
graph after summing the
overlapping lines
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Exercise: One period of the Fourier transform of x½n� is shown in Fig. 2.49.
Draw the Fourier transform of the downsampled signal y n½ � ¼ x½4n�.
Exercise: One period of the Fourier transform of x½n� is shown in Fig. 2.50.
Draw the Fourier transform of the downsampled signal y n½ � ¼ x½8n�.
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2.2 Upsampling: Increasing the Sampling Rate
by an Integer Factor

Assume that we want to transmit an analog signal. For this purpose, we first take
some samples from the continuous time signal and form a mathematical sequence,
and this process is called sampling. To decrease the transmission overhead, we omit
some of the digital samples and this process is called downsampling. After
downsampling operation, we transmit the remaining samples. At the receiver side,
for better reconstruction of the analog signal, we try to find a method to increase the
number of digital samples. For this purpose, we try to find the samples omitted
during the downsampling operation. After finding the omitted samples, we can
reconstruct the analog signal in a better manner.

This means that first we reconstruct the original digital signal from downsampled
digital signal then by using the reconstructed digital signal, we reconstruct the
continuous time signal.

Reconstruction of the original digital signal from the downsampled signal
includes a two-step process. The first step is called up sampling also named as
signal-expansion. In this step, the compressed signal, i.e., downsampled signal, is
expanded in time axis, and for the new time instants, 0 values are assigned for the
new amplitudes. The second step is called interpolation which is the reconstruction
part for the omitted digital samples. In this part, the 0 values assigned to new time
amplitudes for the expanded signal are replaced by the estimated values.

Now let’s explain the upsampling operation.

2.2.1 Upsampling (Expansion)

The block diagram of the upsampler (expander) is shown in Fig. 2.51.
The mathematical expression of the upsampling operation is

)(wXn
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Fig. 2.50 XnðwÞ bir periyodu
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Fig. 2.51 Upsampling
operation
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y n½ � ¼ x n
L

� 
n ¼ 0;�L;�2L; . . .

0 otherwise:

�
ð2:31Þ

For simplicity of the expression we will assume that for the new time indices in
the expanded signal, the amplitude values are 0, so we will not always explicitly
write the second condition in (2.31), i.e., we will only use y n½ � ¼ x n

L

� 
to describe

the signal expansion.
To draw the graph of y n½ � ¼ x n

L

� 
, or to obtain the expanded signal, y n½ � ¼ x n

L

� 
we divide the time axis of x½n� by 1=L, i.e., we multiply the time axis of x½n� by L.
This operation is illustrated with an example now.

Example 2.12 If x n½ � ¼ ½1 3 5 7 9 11|{z}
n¼0

13 15 17� find y n½ � ¼ x n
3

� 
.

Solution 2.12 The indices for amplitude values of x½n� are explicitly written in

x n½ � ¼ ½ 1|{z}
n¼�5

3|{z}
n¼�4

5|{z}
n¼�3

7|{z}
n¼�2

9|{z}
n¼�1

11|{z}
n¼0

13|{z}
n¼1

15|{z}
n¼�2

17|{z}
n¼3

�:

Dividing the indices of x½n� by 1=3, i.e., multiplying the indices by 3, we get the
sequence

½ 1|{z}
n¼�15

3|{z}
n¼�12

5|{z}
n¼�9

7|{z}
n¼�6

9|{z}
n¼�3

11|{z}
n¼0

13|{z}
n¼3

15|{z}
n¼6

17|{z}
n¼9

�:

Inserting missing indices and inserting 0 for amplitudes of the missing indices,
we obtain the signal y½n� as

y n½ � ¼ ½1 0 0 3 0 0 5 0 0 7 0 0 9 0 0 11|{z}
n¼0

0 0 13

0 0 15 0 0 17�:

2.2.2 Mathematical Formulization of Upsampling

The upsampling, expansion, of x½n� by L is defined as

y n½ � ¼ x n
L

� 
n ¼ 0;�L;�2L; . . .

0 otherwise

�
ð2:32Þ
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which can be written in terms of impulse function as

y n½ � ¼
X1
k¼�1

x k½ �d n� kL½ �: ð2:33Þ

When the summation in (2.33) is expanded, we obtain

y n½ � ¼ � � � þ x �1½ �d nþ L½ � þ x 0½ �d n½ � þ x 1½ �d n� L½ � þ � � �

Note that to find x n
L

� 
, we simply insert L� 1 zeros between two samples of x½n�,

that is, if

x n½ � ¼ ½ a b c d e �;

then to get x n
4

� 
simply insert 3 zeros between every two samples of x½n�, and this

operation yields

x
n
4

h i
¼ a 0 0 0 b 0 0 0 c 0 0 0 d 0 0 0 e½ �:

2.2.3 Frequency Domain Analysis of Upsampling

Let’s try to find the Fourier transform of

y n½ � ¼ x n
L

� 
n ¼ 0;�L;�2L; . . .

0 otherwise:

�
ð2:34Þ

For this purpose, let’s start with the definition of the Fourier transform of y½n�

Yn wð Þ ¼
X1
n¼�1

y½n�e�jwn ð2:35Þ

where substituting
P1

k¼�1 x k½ �d½n� kL� for y½n�, we get

Yn wð Þ ¼
X1
n¼�1

X1
k¼�1

x k½ �d½n� kL�e�jwn ð2:36Þ

in which changing the order of summation terms, we obtain

Yn wð Þ ¼
X1
k¼�1

X1
n¼�1

x k½ �d½n� kL�e�jwn ð2:37Þ
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which can be rearranged as

Yn wð Þ ¼
X1
k¼�1

x k½ �
X1
n¼�1

d½n� kL�e�jwn

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
e�jwkL

ð2:38Þ

yielding the expression

Yn wð Þ ¼
X1
k¼�1

x k½ �e�jwkL: ð2:39Þ

If (2.39) is compared to the Fourier transform of x½n�

Xn wð Þ ¼
X1
n¼�1

x½n�e�jwn ð2:40Þ

it is seen that

Yn wð Þ ¼ Xn Lwð Þ ð2:41Þ

Referring to (2.41), it is understood that the graph of YnðwÞ can be obtained by
dividing the frequency axis of XnðwÞ by L. As it is clear from (2.41) that the
spectrum of the upsampled signal gets compressed in frequency domain. In fact, if a
signal is expanded in time domain, it is compressed in frequency domain, similarly,
if a signal is compressed in time domain, its spectrum expands in frequency
domain.

Example 2.13 One period of the Fourier transform of x½n� around origin is given in
Fig. 2.52. Draw one period of the Fourier transform of y n½ � ¼ x n

L

� 
.

Solution 2.13 Dividing the frequency axis of XnðwÞ by L, we obtain the Fourier
transform of y½n� which is depicted in Fig. 2.53.

Note: Don’t forget that the Fourier transforms XnðwÞ and YnðwÞ are periodic
functions with common period 2p. In fact, the Fourier transform of any digital
signal is a periodic function with period 2p regardless whether the digital signal is
periodic or not in time domain. If the digital signal is periodic in time domain then

Dw
w

)(wX n

1

w

Dw

Fig. 2.52 One period of the
Fourier transform of a digital
signal
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its Fourier transform is an impulse train with period 2p, i.e., its Fourier transform is
a discrete signal.

Example 2.14 One period of the Fourier transform of x½n� around origin is given in
Fig. 2.54. Draw one period of the Fourier transform of y n½ � ¼ x n

2

� 
.

Solution 2.14 Dividing the frequency axis of XnðwÞ by 2, we get the graph in
Fig. 2.55 for the Fourier transform of y½n�.

To get the graph in Fig. 2.55, we divided the horizontal axis of XnðwÞ by 2.
Since YnðwÞ is a periodic function with period 2p, the graph in Fig. 2.55 can also be
drawn for the interval �p�w\p as shown in Fig. 2.56.

Example 2.15 For the system given in Fig. 2.44 M ¼ L ¼ 2, and

x n½ � ¼ ½ 1|{z}
n¼0

2 3 4 5 6 7 8 9 10�:

Find the signals xd½n� and y½n� in Fig. 2.57.

L LL
wD

w

)(wYn

1
L

w
L

L
wD

Fig. 2.53 One period of the
Fourier transform of
upsampled signal for Example
2.12

3

2
w

)(wX n

1

w

3

2

Fig. 2.54 One period of the
Fourier transform of a digital
signal

2 23

w

)(wYn

1 22
w

3

Fig. 2.55 One period of the
Fourier transform of
upsampled signal for Example
2.13

2.2 Upsampling: Increasing the Sampling Rate by an Integer Factor 101



Solution 2.15 To find xd ½n�, we divide the time indices of x½n� by 2 and keep only
integer division results. This operation yields

xd n½ � ¼ ½ 1|{z}
n¼0

3 5 7 9�:

To find y½n�, we divide the time indices of xd ½n� by 1
2, i.e., multiply the time

indices of xd ½n� by 2. For new indices, amplitude values are equated to 0. The result
of this operation is the signal

y n½ � ¼ ½1 0|ffl{zffl}
n¼0

3 0 5 0 7 0 9�:

The overall procedure is illustrated in Fig. 2.58.

w

)(wYn

1
w

3 3

Fig. 2.56 One period of the
Fourier transform of
upsampled signal for Example
2.13

)(txc C/D M
][nx

sT

L
][ny][nxdFig. 2.57 Signal processing

system for Example 2.14

2

2

10]987654321[][
0n

nx 9]7531[][
0n

nxd

0]907050301[][
0n

ny

Fig. 2.58 Downsampling and upsampling
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2.2.4 Interpolation

Let’s consider the signal processing system shown in Fig. 2.59. The system
includes one downsampler, one upsampler and one D/C converter. Let’s study the
reconstructed signal yrðtÞ.

Assume that y½n� is a causal signal. The signal yrðtÞ is calculated from the digital
signal y½n� using

yr tð Þ ¼
X1
n¼�1

y n½ �hrðt � nTsÞ ð2:42Þ

where hrðtÞ can either be ideal reconstuction filter, i.e., hr tð Þ ¼ sincðt=TsÞ or tri-
angular approximated reconstruction filter, or any other approximated filter. When
we expand the summation in (2.42), we see that some of the shifted filters are
multiplied by 0, since some of the samples of y½n� are 0. The expansion of (2.42)
happens to be as

yr tð Þ ¼ y 0½ �hr tð Þþ y 1½ �hr t � Tsð Þþ y 2½ �hr t � 2Tsð Þþ y 3½ �hr t � 3Tsð Þþ � � � ð2:43Þ

yielding

yr tð Þ ¼ 1� hr tð Þþ 0� hr t � Tsð Þþ 3� hr t � 2Tsð Þþ 0� hr t � 3Tsð Þþ � � �
ð2:44Þ

Multiplication of some of the shifted filters by 0 results in information loss in the
reconstructed signal.

Question: So how can we increase the quality of the reconstructed signal?
Answer: If we can replace 0 values in the expanded signal y½n� by their esti-

mated values, yr tð Þ expression in (2.44) will not include 0 multiplication terms and
reconstructed signal becomes better. That is,

{ 0]907050301[ ] [
n = 0

{
n = 0

=ny

[ ] [ 1 2 3 4 5 6 7 8 9 ]01=n

Replace 0's by the estimated values of the omitted samples

Omitted samples are 2, 4, 6, 8, 10

x

)(txc C/D M
][nx

D/C )(tyr

sT

L
][ny][nxd

Fig. 2.59 Signal processing system
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So how can we find a method to find approximate values for the omitted samples
of original signal x½n�? If we can approximate omitted samples, we can replace 0’s
in the expanded signal by the approximated values, then reconstruct the continuous
time signal. The quality of the reconstructed signal will be better.

We know that the amplitude values of a continuous time signal at time instants ti
and tiþ 1 does not change sharply. Otherwise, it violates the definition of continuous
time signal. For instance, the amplitude values of a continuous time signal for three
time instants are given in Fig. 2.60.

Hence for the omitted samples, we can make a linear estimation. Assume that
L ¼ M ¼ 2, in this case, during the downsampling operation; we omit one sample
from every other 2 samples. After upsampling operation, we have 0 in the place of
omitted sample. We can estimate the omitted sample using the neighbor samples of
the omitted sample.

In Fig. 2.60, assume that after sampling operation, we obtain the digital signal
[a b c], and in this case, downsampled signal can be calculated as ½a c�. The
expanded signal or upsampled signal becomes as ½ a 0 c � where 0 can be
replaced by the estimated value aþ c

2 . In general if there are L� 1 zeros between two
samples of the expanded signal, we can estimate the omitted samples drawing a line
between the amplitudes of these two samples as illustrated in Fig. 2.61.

The missing samples in Fig. 2.61. can be calculated using

y ni½ � ¼ bþ a� b
L

nkþL�1 � nið Þ; i ¼ k : kþ L� 1: ð2:45Þ

0t 1t 2t
t

a

cb

Fig. 2.60 Amplitude values of a continuous time signal for three distinct time instants

kn
0 n

a

1Lkn

b

0 0 0

1kn

Estimated Values for
Omitted Samples

Fig. 2.61 Linear estimation of the missing samples
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Let D ¼ a�b
L , when (2.45) is expanded for i ¼ k : kþ L� 1; we get the ampli-

tude vector

bþ L� 1ð ÞD bþ L� 2ð ÞD � � � bþ 2D bþD½ �: ð2:46Þ

Example 2.16 Let x½n� ¼ ½ 1|{z}
n¼0

2 5 7 9 10 10� find the signals xd n½ � ¼

x 3n½ � y n½ � ¼ xd n
3

� 
and using linear estimation method, estimate the missing samples

in y½n�.
Solution 2.16 To calculate the downsampled signal, we divide the time axis of x½n�
by 3 and keep only integer division results, and in a similar manner, to calculate the
upsampled signal, we multiply the time axis of the downsampled signal by 3, and
for the new time instants 0’s are assigned for amplitude values. The downsampled
and upsampled signals can be calculated as

xd n½ � ¼ ½ 1|{z}
n¼0

7 10� y n½ � ¼ ½ 1|{z}
n¼0

0 0 7 0 0 10�:

and these signals are graphically shown in Fig. 2.62.
The missing samples in upsampled signal can be calculated using

D ¼ a� b
L

; and ½bþ L� 1ð ÞD bþ L� 2ð ÞD � � � bþ 2D bþD�

For the first 2 missing samples

D ¼ 1� 7
3

! D ¼ �2

6543210
n

1

2

5

7

9
1010

][nx

6543210
n

1

7

10

]3[ nxd

6543210
n

1

7

10

]
3

[
nxd

Fig. 2.62 Original signal, downsampled signal, upsampled signal
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and the missing samples are

7þ 2 �2ð Þ 7þ 1 �2ð Þ½ � ! 3 4½ �:

For the next 2 missing samples

D ¼ 7� 10
3

! D ¼ �1

and the missing samples are

10 + 2 �1ð Þ 10þ 1 �1ð Þ½ � ! 8 9½ �:

The calculation of the missing samples is graphically illustrated in Fig. 2.63.
Hence with the estimated values, the upsampled signal becomes as

y½n� ¼ ½ 1|{z}
n¼0

3 4 7 8 9 10�: ð2:47Þ

The original sequence before downsampling operation was

x½n� ¼ ½ 1|{z}
n¼0

2 5 7 9 10 10�: ð2:48Þ

When (2.47) is compared to (2.48), we see that the calculated samples are close
to the original omitted samples.

6543210
n

1

7

10

Estimated omitted samples 

3

4

9
8

Fig. 2.63 Calculation of the
missing samples
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2.2.5 Mathematical Analysis of Interpolation

We explained an estimation method for the calculation of missing samples in
expanded signal. However, we did not follow a mathematical analysis. How can we
find the missing samples in upsampled (expanded) signal using a mathematical
approach?

In time domain, it is difficult to find a mathematical approach for the estimation
of missing samples. Let’s approach to the problem in frequency domain. Let’s
consider the system involving downsampling and upsampling operations given in
Fig. 2.64 where we assume that L ¼ M.

Let’s assume that the Fourier transform of x½n� is as in Fig. 2.65. We will inspect
the Fourier transforms of y½n� and x½n� in Fig. 2.64 and find a relation between them.

Considering Fig. 2.65 the Fourier transform of xd ½Mn� can be drawn as in
Fig. 2.66.

)(txc M
][nx

)(tyr

sT

L
][ny][nxd

C/D D/C

Fig. 2.64 Signal processing system including upsampling and downsampling operations

M

w

)(wXn

1

M
22 0

Fig. 2.65 Fourier transform of a digital signal

w

)(wXnd

M
1

22 0

Fig. 2.66 Fourier transform of xd ½Mn�
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Dividing the horizontal axis of the graph in Fig. 2.66 by L, we obtain the graph
of Yn wð Þ as Fig. 2.67.

If we compare the graph of XnðwÞ in Fig. 2.65 to the graph of YnðwÞ in Fig. 2.67,
it is seen that for p

L � wj j\2p� p
L Xn wð Þ ¼ 0 but YnðwÞ 6¼ 0, and for other fre-

quency intervals, Yn wð Þ ¼ 1
M XnðwÞ. This is illustrated in Fig. 2.68.

How can we make Yn wð Þ to be equal to XnðwÞ for all frequency values? This is
possible if we multiply YnðwÞ by a lowpass digital filter with the transfer function as
in Fig. 2.69.

Since L ¼ M and Yi wð Þ ¼ Hi wð ÞYnðwÞ, we can show the multiplication of
Hi wð ÞYnðwÞ as in Fig. 2.70.

The result of the above multiplication is depicted in Fig. 2.71.
For L ¼ M; we have YiðwÞ ¼ XnðwÞ which means that yi n½ � ¼ x½n�, that is

omitted samples are reconstructed perfectly.
Let’s now do the time domain analysis of this reconstruction process. If

Yi wð Þ ¼ Hi wð ÞYnðwÞ, then yi n½ � ¼ hi½n� � y½n�. The time domain expression hi n½ �
can be obtained via inverse Fourier transform

hi n½ � ¼ 1
2p

Z
2p

Hi wð Þejwndw ð2:49Þ

L L

w

)(wYn

M
1

L
2

L
2 0 22

Fig. 2.67 Fourier transform of the signal y½n� in Fig. 2.64

L L

w

M
1

L
2

L
2 0 22

)(wX nThese regions are not available in

Fig. 2.68 Comparison of XnðwÞ and YnðwÞ
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where using the frontiers � p
L ;

p
L, we get

hi n½ � ¼ 1
2p

Zp
L

�p
L

Lejwndw ! hi n½ � ¼ sin pn
L

� 	
pn
L

ð2:50Þ

L L

w

)(wHi

L

0 22

Fig. 2.69 Lowpass digital filter

L L

w

)()()( wYwHwY nii

M
1

L
2

L
2 0 22

L

Fig. 2.70 The multiplication of Hi wð ÞYnðwÞ

L L

w

)(wYi

1

0 22

Fig. 2.71 The graph of Yi wð Þ ¼ Hi wð ÞYnðwÞ
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which can be expressed in terms of sin cð�Þ function as

hi n½ � ¼ sin c
n
L

� �
: ð2:51Þ

The graph of sin cðn=LÞ is depicted in Fig. 2.72.
As it is seen from Fig. 2.72 that hi n½ � ¼ sin c n

L

� 	
equals to 0 when n is a multiple

of L. The digital filter with impulse response hi n½ � ¼ sin c n
L

� 	
is called interpolating

filter which is used to reconstruct those digital samples omitted during downsam-
pling operation, i.e., used to reconstruct missing samples in the expanded, or
upsampled signal.

Exercise: The continuous time signal xc tð Þ ¼ cosð2ptÞ is sampled with sampling
period Ts ¼ 1=8 s:

(a) For a mathematical sequence x½n� from the samples taken from continuous time
signal in the interval 0–1 s.

(b) x½n� is downsampled byM ¼ 2, and xd ½n� is the downsampled signal, find xd ½n�.
(c) The downsampled signal xd½n� is upsampled and let y½n� be the upsampled

signal, find y½n�.
(d) Calculate the missing samples in y½n� using the ideal interpolation filter.

][nhi

0
L L3L2L L4L2L3L4

1

n

Fig. 2.72 The graph of sin cðn=LÞ
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2.2.6 Approximation of the Ideal Interpolation Filter

Since digital sin cð�Þ filter is an ideal filter, it is difficult to implement such filters,
instead we can use an approximation of this digital filter. As it is clear from
Fig. 2.72, the digital sin cð�Þ filter includes a large main lobe centered upon origin,
and many other side lobes. To approximate the digital sin cð�Þ filter, we can use
triangles for the lobes in Fig. 2.72. The simplest approximation is to use an
isosceles triangle for the main lobe and omit the other side lobes.

The simplest approximated digital can filter can be obtained as shown in
Fig. 2.73.

Referring to Fig. 2.73 the approximated interpolation filter can mathematically
be expressed as

hai½n� ¼
n
L þ 1; if � L� n\0
� n

L þ 1; if 0� n\L
0; otherwise

8<
: ð2:52Þ

which can be expressed in more compact form as

hai½n� ¼ � nj j
L þ 1; if � L� n\L

0; otherwise:

�
ð2:53Þ

][nhi

1

n
0 L

L3L2
L

L4L2L3L4

][nhai

Fig. 2.73 Approximation of the ideal interpolation filter
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With the interpolation filter our complete signal processing system becomes as in
Fig. 2.74.

For the reconstruction of the samples omitted during downsampling operation, if
approximated interpolating filter is used, the reconstructed digital signal can be
written as

yi n½ � ¼ hai½n� * y½n� ! yi n½ � ¼
X1
k¼�1

y½k�hai½n� k� ð2:54Þ

where hai½n� denotes the approximated reconstruction filter, or interpolation filter.
Now let’s try to write a relation between xd ½n� and yi½n� given in Fig. 2.74. We
know that

y n½ � ¼
X1
k¼�1

xd k½ �d½n� kL�: ð2:55Þ

When (2.53) is replaced into

yi n½ � ¼ hi½n� * y½n� ð2:56Þ

we get

yi n½ � ¼ hi½n� *
X1
k¼�1

xd k½ �d½n� kL� ð2:57Þ

which is simplified as

yi n½ � ¼
X1
k¼�1

xd k½ �hi½n� kL�: ð2:58Þ

)(txc M
][nx

)(tyr

sT

L
][ny][nxd

][nhd ][nhi
][nyiC/D

Decimator
Filter

Downsampler
Compressor

Upsampler
Expander

Interpolation
Filter

Used to prevent the aliasing 
after downsampling  operation

Used to reconstruct the 
samples omitted during 
downsampling operation

D/C

Fig. 2.74 Signal processing system with interpolation filter
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When (2.58) is expanded, we get the explicit form of yi½n� as

yi n½ � ¼ � � � þ xd �1½ �hi nþ L½ � þ xd 0½ �hi n½ � þ xd 1½ �hi n� L½ � þ � � � ð2:59Þ

Using the ideal interpolation filter, i.e., ideal reconstruction filter,

hi n½ � ¼ sin pn
L

� 	
pn
L

in (2.58), we can write the reconstructed digital signal as

yi n½ � ¼
X1
k¼�1

xd k½ �
sin p n�kLð Þ

L

� �
p n�kLð Þ

L

ð2:60Þ

or in terms of sin cð�Þ function, we can write (2.60) as

yi n½ � ¼
X1
k¼�1

xd k½ � sin c n� kL
L

� �
: ð2:61Þ

Note: Digital reconstructed signal expression yi n½ � ¼ P1
k¼�1 xd k½ �hi½n� kL� is

quite similar to the analog reconstructed signal expression xrðtÞ ¼
P1

k¼�1 x k½ �
hrðt � kTsÞ.
Example 2.17 For the system given in Fig. 2.75 L ¼ M ¼ 3 and
x n½ � ¼ 1 2 3 4½ �. Find xd n½ �; y n½ �; and yi½n�. Use approximated linear digital
filter for hi½n�.
Solution 2.17 For L ¼ M ¼ 3, if x n½ � ¼ 1 2 3 4½ �, then xd n½ � ¼ ½1 4� and
y n½ � ¼ ½1 0 0 4�.

To find yi½n� we can use either

yi n½ � ¼
X1
k¼�1

y½k�hai½n� k� ð2:62Þ

or

yi n½ � ¼
X1
k¼�1

xd k½ �hi½n� kL� ð2:63Þ

Let’s use both of them separately. First using (2.53), let’s calculate and draw the
linear approximated digital interpolation filter as in Fig. 2.76.

M
][nx

L
][ny][nxd

][nhi
][nyiFig. 2.75 Signal processing

system for Example 2.16
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Expanding (2.62), we get

yi n½ � ¼ y 0½ �hai n½ � þ y 1½ �hai n� 1½ � þ y 2½ �hai n� 2½ � þ y 3½ �hai n� 3½ �: ð2:64Þ

If y n½ � ¼ ½1 0 0 4� is considered, we see that the amplitude values at indices
n ¼ 1; and n ¼ 2, are missing. When n ¼ 1 is placed into (2.64), we get

yi 1½ � ¼ y½0�|{z}
1

hai½1�|ffl{zffl}
2=3

þ y½1�|{z}
0

hai½0�|ffl{zffl}
1

þ y½2�|{z}
0

hai½�1�|fflfflffl{zfflfflffl}
2=3

þ y½3�|{z}
4

hai½�2�|fflfflffl{zfflfflffl}
1=3

ð2:65Þ

which yields

yi 1½ � ¼ 2
3
þ 4

3
! yi 1½ � ¼ 2 ð2:66Þ

and when n ¼ 2 is placed into (2.64), we obtain

yi 2½ � ¼ y½0�|{z}
1

hai½2�|ffl{zffl}
1=3

þ y½1�|{z}
0

hai½1�|ffl{zffl}
1

þ y½2�|{z}
0

hai½0�|ffl{zffl}
2=3

þ y½3�|{z}
4

hai½�1�|fflfflffl{zfflfflffl}
2=3

ð2:67Þ

which yields

yi 2½ � ¼ 1
3
þ 8

3
! yi 2½ � ¼ 3 ð2:68Þ

So missing samples are found as yi 1½ � ¼ 2 and yi 2½ � ¼ 3, and when these sam-
ples are replaced by 0’s in y½n�, we get

yi n½ � ¼ ½1 2 3 4�

n

][nhai

1

3 32 1 0 1 2

3

1

3

2

3n3

1
3

||
][

n
naih

3

1
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2

Fig. 2.76 Approximated
interpolation filter

114 2 Multirate Signal Processing



Now let’s use the formula

yi n½ � ¼
X1
k¼�1

xd k½ �hi½n� kL�: ð2:69Þ

When (2.69) is expanded, noting that xd n½ � ¼ ½1 4� and L ¼ 3, we get

yi n½ � ¼ xd 0½ �hai n½ � þ xd 1½ �hai n� 3½ �: ð2:70Þ

When (2.70) is evaluated for n ¼ 1, we obtain

yi 1½ � ¼ xd 0½ �|ffl{zffl}
1

hai½1�|ffl{zffl}
2=3

þ xd½1�|ffl{zffl}
4

hai½�2�|fflfflffl{zfflfflffl}
1=3

which yields

yi 1½ � ¼ 2
3
þ 4

3
! yi 1½ � ¼ 2 ð2:71Þ

and when (2.69) is evaluated for n ¼ 2, we get

yi 2½ � ¼ xd ½0�|ffl{zffl}
1

hai 2½ �|ffl{zffl}
1=3

þ xd 1½ �|ffl{zffl}
4

hai �1½ �|fflfflffl{zfflfflffl}
2=3

ð2:72Þ

which yields

yi 2½ � ¼ 1
3
þ 8

3
! yi 2½ � ¼ 3: ð2:73Þ

Hence, both formulas give the same results. In addition, we had already intro-
duced the linear estimation method using the continuity property of analog signals.
It is now very clear that the linear estimation method is nothing but the use of
triangle approximated digital reconstruction filter.

Example 2.18 Show that the systems given in Fig. 2.77 have the same outputs for
the same inputs.

M][nx )(wHn ][ny
][nxa

][nx ][ny)(MwHn

][nxb
M

Fig. 2.77 Signal processing
systems for Example 2.17
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Solution 2.18 For the first system we have

Xan wð Þ ¼ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �
ð2:74Þ

and

Yn wð Þ ¼ HnðwÞXan wð Þ ! Yn wð Þ ¼ HnðwÞ
M

XM�1

k¼0

Xn
w� k2p

M

� �
ð2:75Þ

For the second system we have

Xbn wð Þ ¼ Hn Mwð ÞXnðwÞ ð2:76Þ

and

Yn wð Þ ¼ 1
M

XM�1

k¼0

Xbn
w� k2p

M

� �
: ð2:77Þ

When (2.76) is inserted into (2.77), we obtain

Yn wð Þ ¼ 1
M

XM�1

k¼0

Hn M
w� k2p

M

� �
Xn

w� k2p
M

� �
: ð2:78Þ

Since HnðwÞ is a periodic function with period 2p, (2.78) can be written as

Yn wð Þ ¼ 1
M

XM�1

k¼0

Hn wð ÞXn
w� k2p

M

� �
ð2:79Þ

which is equal to

Yn wð Þ ¼ Hn wð Þ 1
M

XM�1

k¼0

Xn
w� k2p

M

� �
! Yn wð Þ ¼ Hn wð ÞXan wð Þ: ð2:80Þ

When (2.75) is compared to (2.80), we see that both systems have the same
outputs for the same inputs.

Exercise: Show that the systems given below have the same outputs for the same
inputs (Fig. 2.78).

Example 2.19 For the system given in Fig. 2.79, find a relation in time domain
between system input x½n� and system output y½n�.
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Solution 2.19 We have xd n½ � ¼ x½Ln� and y n½ � ¼ xd n
L

� 
. Putting xd ½n� expression

into y½n� expression, we get y n½ � ¼ x½LnL � ! y n½ � ¼ x½n�. However, this is not always
correct. Since we know that for L ¼ 2 if x n½ � ¼ ½1 2 3�, then xd n½ � ¼ ½1 3� and
y n½ � ¼ ½1 0 3�, it is obvious that x½n� 6¼ y½n�.

But using xd n½ � ¼ x½Ln� and y n½ � ¼ xd n
L

� 
; we found y n½ � ¼ x½n�. So, what is

wrong with our approach to the problem?
Because, we did not pay attention to the criteria in upsampling operation. That

is, y n½ � ¼ xd n
L

� 
if n ¼ kL; k 2 Z; otherwise, y n½ � ¼ 0. Then y n½ � ¼ x½n� is valid only

for some values of n and these n values are multiples of L. That is for L ¼ 2 if
x n½ � ¼ ½1 2 3�, then xd n½ � ¼ ½1 3� and y n½ � ¼ ½1 0 3�, and y n½ � ¼ x½n� for
n ¼ 0; 2 only.

However, for some signals, no information loss occurs after compression
operation. This is possible if the omitted samples are also zeros. In this case,
expanded signal equals to the original signal. For example, if

x n½ � ¼ ½ a|{z}
n¼0

0 b 0 c 0 d�

then after downsampling by L ¼ 2, we get

xd n½ � ¼ ½a b c d�

and after expansion by L ¼ 2, we obtain

y n½ � ¼ ½ a|{z}
n¼0

0 b 0 c 0 d�

Thus, we see that y n½ � ¼ x½n� for every n values.
To write a mathematical expression between x½n� and y½n�, let’s express xd ½n� in

terms of x½n� as

L][nx ][ny
][nxd L

Fig. 2.79 Signal processing
system for Example 2.18

L][nx )(LwHn ][ny
][nxa

][nx ][ny)(wHn

][nxb
L

Fig. 2.78 Signal processing
system for exercise
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xd n½ � ¼
X1

n¼�1
x n½ �

X1
r¼�1

d½n� rM� ð2:81Þ

and express y½n� in terms of xd n½ � as

y n½ � ¼
X1
k¼�1

xd k½ �d½n� kL�: ð2:82Þ

Inserting (2.81) into (2.82), we obtain

y n½ � ¼
X1
k¼�1

x k½ �
X1
r¼�1

d½k � rM�
X1
n¼�1

d½n� kL� ð2:83Þ

which is the final expression showing the relation between x½n� and y½n�.
Example 2.20 Find a method to check whether information loss occurs or not after
downsampling by M.

Solution 2.20 If x½n� is downsampled by M, we omit M � 1 samples from every M
samples. If we denote the information bit indices by the numbers 0; 1; 2; . . .;M. . .;
then the first omitted samples have indices 1; 2; . . .;M � 1 and the second set of
omitted indices have indices Mþ 1;Mþ 2; . . .; 2M � 1, and so on.

Hence, by summing the absolute values of the omitted samples and checking
whether it equals to zero or not, we can conclude whether information loss occurs
or not after downsampling operation. That is, we calculate

Loss ¼
X1
k¼�1

XM�1

n¼1

x½nþ kM�j j ð2:84Þ

and if Loss 6¼ 0, then information loss occurs after downsampling of x½n�, otherwise
not.

Example 2.21 If

y n½ � ¼ x n½ � if n is even
0 otherwise

�
ð2:85Þ

then write a mathematical expression between x½n� and y½n�.
Solution 2.21 Using (2.85), we can express y½n� in terms of x½n� as

y n½ � ¼ 1þ �1ð Þn
2

x n½ �: ð2:86Þ
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Since cos pnð Þ ¼ �1ð Þn, then (2.86) can also be written as

y n½ � ¼ 1þ cos pnð Þ
2

x n½ �:

Example 2.22 For the system given in Fig. 2.80, xc tð Þ ¼ cosð2000ptÞ, Ts ¼ 1
4000

sec find x n½ �; xd½n� and y½n�.
Solution 2.22 When continuous time signal is sampled, we get

x n½ � ¼ xcðtÞjt¼nTs! x n½ � ¼ cos 2000pn
1

4000

� �
! x n½ � ¼ cos

p
2
n

� �
: ð2:87Þ

After downsampling operation, we have

xd n½ � ¼ x½3n� ! xd n½ � ¼ cos
3p
2
n

� �
ð2:88Þ

After upsampling operation, we have

y n½ � ¼ xd n
2

� 
n is even

0 otherwise

�
ð2:89Þ

which yields

y n½ � ¼ cos p
4 n
� 	

n is even
0 otherwise

�
ð2:90Þ

The mathematical expression in (2.90) can be written in a more compact manner
as

y n½ � ¼ 1þ cos pnð Þ
2

cos
p
4
n

� �
: ð2:91Þ

Using the property

cos að Þ cos bð Þ ¼ 1
2
ðcos aþ bð Þþ cosða� bÞÞ ð2:92Þ

)(txc 3
][nx

sT

2 ][ny
][nxd

C/D
Fig. 2.80 Signal processing
system for Example 2.21
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Equation (2.91) can be written as

y n½ � ¼ 1
2
cos

p
4
n

� �
þ 1

4
cos

5p
4
n

� �
þ 1

4
cos

3p
4
n

� �
ð2:93Þ

where using cos hð Þ ¼ cosð2p� hÞ Eq. (2.93) can be written as

y n½ � ¼ 1
2
cos

p
4
n

� �
þ 1

2
cos

3p
4
n

� �
: ð2:94Þ

Note: cos 5p
4 n

� 	 ¼ cos 2pn� 5p
4 n

� 	 ! cos 5p
4 n

� 	 ¼ cos 3p
4 n

� 	
Example 2.23 xc tð Þ ¼ ejwNt and x n½ � ¼ xcðtÞjt¼nTs , Ts ¼ 1 find the Fourier trans-
forms of xcðtÞ and x½n�.
Solution 2.23 The Fourier transform of the continuous time exponential signal is

XcðwÞ ¼ 2pd w� wNð Þ ð2:95Þ

which is depicted in Fig. 2.81.
If x n½ � ¼ xcðtÞjt¼nTs , then one period of the Fourier transform of x½n� is

Xn wð Þ ¼ 1
Ts

Xc
w
Ts

� �
; wj j\p ð2:96Þ

which is shown in Fig. 2.82.
Figure 2.82 can mathematically be expressed as Xn wð Þ ¼ 2pdðw� wDÞ,

wj j\2p. Since XnðwÞ is the Fourier transform of a digital signal, it is a periodic
function and its period equals to 2p and it can be written as

Xn wð Þ ¼ 2p
X1
k¼�1

dðw� wD � k2pÞ: ð2:97Þ

Nw

π2

)(wXc

w
0

Fig. 2.81 Fourier transform
of continuous time
exponential signal

ND ww

2

)(wXn

w
0

|| wFig. 2.82 One period of the
Fourier transform of digital
exponential signal
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After sampling of the continuous time exponential signal, we obtain

x n½ � ¼ e

jwNTsn|fflffl{zfflffl}
wD ! x n½ � ¼ ejwDn:

Hence we can write the following transform pair in general

ejw0n $FT 2p
X1
k¼�1

dðw� w0 � k2pÞ: ð2:98Þ

Example 2.24 Given x n½ � ¼ ej
p
3n, find Fourier transform of x½n�, i.e., Xn wð Þ:

Solution 2.24 Xn wð Þ ¼ 2pdðw� p
3Þ, wj j\p and Xn wð Þ is periodic with period 2p,

so in more compact form, we can write it as

Xn wð Þ ¼ 2p
X1
k¼�1

dðw� p
3
� k2pÞ ð2:99Þ

Example 2.25 x n½ � ¼ cosðw0nÞ, y n½ � ¼ cosðp3 nÞ, w n½ � ¼ cosð2p3 nÞ, find the Fourier
transforms of x n½ �; y n½ �; and w½n�.
Solution 2.25 We know that cos hð Þ ¼ 1

2 ejh þ e�jh
� 	

and sin hð Þ ¼ 1
2j ejh � e�jh
� 	

,
and using the Fourier transform of digital exponential function, we obtain the
results

Xn wð Þ ¼ p d w� w0ð Þþ d wþw0ð Þð Þ; wj j\p

Yn wð Þ ¼ p d w� p
3

� �
þ d wþ p

3

� �� �
; wj j\p

Wn wð Þ ¼ p d w� 2p
3

� �
þ d wþ 2p

3

� �� �
; wj j\p:

XnðwÞ, YnðwÞ, and WnðwÞ are periodic functions with period 2p.

Example 2.26 The transfer function of a lowpass digital filter is depicted in
Fig. 2.84. Accordingly, find the output of the block diagram shown in Fig. 2.83 for
the input signal

x n½ � ¼ cos
p
3
n

� �
þ cos

2p
3
n

� �
:

The Fourier transform of the filter impulse is given as in Fig. 2.84.

)(wHn][nx ][nx f
Fig. 2.83 Lowpass filtering
of digital signals
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Solution 2.26 If digital frequency w is between � p
2 and p

2, that is if wj j\ p
2, the

digital frequency is accepted as low frequency. On the other hand, if p
2\ wj j\p, the

digital frequency is accepted as high frequency.
One period of Fourier transform of x n½ � can be calculated as

Xn wð Þ ¼ p d w� p
3

� �
þ d wþ p

3

� �� �
þ p d w� 2p

3

� �
þ d wþ 2p

3

� �� �
; wj j\p

ð2:100Þ

which is graphically illustrated in Fig. 2.85.
At the output of the block diagram, we have Xfn wð Þ ¼ Hn wð ÞXnðwÞ and this

multiplication is graphically illustrated in Fig. 2.86.
As it is obvious from Fig. 2.86, the signal Xfn wð Þ ¼ Hn wð ÞXnðwÞ equals to

Xfn wð Þ ¼ p d w� p
3

� �
þ d wþ p

3

� �� �
: ð2:101Þ

w
0

3 33

2

3

2

2 2

)(wXn || wFig. 2.85 Fourier transform
of the input signal in Example
2.25

1

)(wHn

w
0

2 2
22

Fig. 2.84 Digital lowpass
filter transfer function

w
0

3 33

2

3

2

2 2

)(wXn

1

)(wHn

|| wFig. 2.86 Multiplication of
XnðwÞ and Hn wð Þ
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That is, high frequency part of the signal is filtered by the low pass filter, and at
the output of the filter, only low frequency components exist. In time domain, the
filter output equals to

xf n½ � ¼ cos
p
3
n

� �
: ð2:102Þ

Example 2.27 In the system of Fig. 2.87, xc tð Þ ¼ cos 2000ptð Þþ cosð5000ptÞ, Ts ¼
1

3000 and transfer function of the digital filter is depicted in Fig. 2.88.
Find x n½ �; xf n½ �; and xd½n�.

Solution 2.27 x n½ � ¼ xcðtÞjt¼nTs leads to

x n½ � ¼ cos
2p
3
n

� �
þ cos

5p
3
n

� �
: ð2:103Þ

Since cos 5p
3 n

� 	 ¼ cos 2pn� 5p
3 n

� 	 ! cos 5p
3 n

� 	 ¼ cos p
3 n
� 	

, then (2.103)
becomes as

x n½ � ¼ cos
2p
3
n

� �
þ cos

p
3
n

� �
: ð2:104Þ

The digital filter eliminates high frequency component of x½n�, hence at the
output of the filter we have

xf n½ � ¼ cos
p
3
n

� �
: ð2:105Þ

)(txc )(wHn

][nx

sT

2
][nx f

][nxdC/D
Fig. 2.87 Signal processing
system for Example 2.26

1

)(wHn

w
0

2 2
22

Fig. 2.88 Digital lowpass
filter transfer function
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After downsampling operation, we get

xd n½ � ¼ xf ½2n� ! xd n½ � ¼ cos
2p
3
n

� �
: ð2:106Þ

Example 2.28 The delay system is shown in Fig. 2.89.
In the system shown in Fig. 2.90, M ¼ 2 and x n½ � ¼ ½ 1 2 3 4 5 6 �.

Find xa n½ �; xb n½ �; xc n½ �; xd n½ �; xe n½ �; xf ½n� and xr½n�.
Solution 2.28 If x n½ � ¼ ½ 1 2 3 4 5 6 �, then xa n½ � ¼ ½ 1|{z}

n¼0

2 3 4

5 6� and since xb n½ � ¼ x½nþ 1� moving n ¼ 0 pointer to the right by one unit, we
get

xb n½ � ¼ ½1 2|{z}
n¼0

3 4 5 6�

After downsampling, we have

xc n½ � ¼ ½ 1|{z}
n¼0

3 5� xd n½ � ¼ ½ 2|{z}
n¼0

4 6�:

After upsampling, we have

xe n½ � ¼ ½ 1|{z}
n¼0

0 3 0 5� xf n½ � ¼ ½ 2|{z}
n¼0

0 4 0 6�:

After delay operator z�1, we have

xg n½ � ¼ ½ 0|{z}
n¼0

2 0 4 0 6�:

][nx M

M

z

M

M

1z

][nxr
][nxa

][nxb

][nxc

][nxd

][nxe

][nx f

][nxg

Fig. 2.90 Signal processing system for Example 2.27

0nz][nx ][ 0nnx

Fig. 2.89 Delay system
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And at the system output, we have

xr n½ � ¼ xe n½ � þ xg½n�

where

xe n½ � ¼ ½ 1|{z}
n¼0

0 3 0 5� xg n½ � ¼ ½ 0|{z}
n¼0

2 0 4 0 6�:

Hence,

xr n½ � ¼ 1 2 3 4 5 6½ �:

The signal flow of the system in Fig. 2.90 is shown in Fig. 2.91.
Exercise: For the system given in Fig. 2.92, M ¼ 3 and

x n½ � ¼ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15½ �:

Find the output of every block and finally find xr½n�.

2
6]54321[

0n

22

2

6]5432[1
0n

5]31[
0n

6]42[
0n

0]50301[
0n

0]60402[
0n

6]04020[
0n

1z

6]54321[
0n

Fig. 2.91 Signal flow for the system in Fig. 2.90

][nx M
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M ][nxr
][nxa

][nxb

][nxc

][nxd

][nxe

][nx f

][nxh

MM

][nx j

][nxg

z

z

][nxi

1z

1z

Fig. 2.92 Signal processing system for exercise
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Example 2.29 For the system shown in Fig. 2.93, x n½ � ¼ cos 2p
3 n

� 	þ cosðp3 nÞ,
M ¼ 2.

Find H0ðwÞ, H1 wð Þ;G0 wð Þ; and G1ðwÞ such that xr n½ � ¼ x½n�.
Solution 2.29 H0ðwÞ can be chosen as a low pass digital filter. H1ðwÞ can be
chosen as a high pass digital filter. G0ðwÞ and G1ðwÞ are interpolating sin cð�Þ
filters.

2.2.7 Anti-aliasing Filter

Consider the continuous to digital conversion system shown in Fig. 2.94.
We know that to obtain one period the Fourier transform of x½n�, we multiply the

frequency axis of the Fourier transform of xcðtÞ by Ts and multiply the amplitude

axis of the Fourier transform of xcðtÞ by 1=Ts, i.e., we calculate 1
Ts
Xc

w
Ts

� �
. If the

Fourier transform of xcðtÞ has a bandwidth greater than p=Ts, then 1
Ts
Xc

w
Ts

� �
extends

beyond (�p; p) and aliasing observed in the Fourier transform of x½n�. This situation
is described in Fig. 2.95.

Since XnðwÞ is periodic with period 2p when 1
Ts
Xc

w
Ts

� �
extends beyond (�p; p),

overlapping will be observed in XnðwÞ as shown in Fig. 2.96.
The portion of XnðwÞ in Fig. 2.96 for wj j\p is shown in Fig. 2.96.
To decrease the effect of aliasing (overlapping) in the digital signal, we can filter

the spectral components for wj j[ p=Ts in XcðwÞ before sampling operation. In this
way, we can eliminate the overlapping shaded parts in Fig. 2.97. We name this
filter as anti-aliasing filter and it is mathematically defined as

][nx M

MM

M ][nxr
][nxa

][nxb

][nxd

][nxe ][nxh

][nx j

][nxg

)(1 wH 1z

)(0 wH )(0 wG

)(1 wG

Fig. 2.93 Signal processing system for Example 2.28

sT

c /)(tx DC ][nx
Fig. 2.94 Continuous to
digital conversion
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Haa wð Þ ¼ 1 if wj j\ p
Ts

0 otherwise

�
ð2:107Þ

whose time domain expression can be computed using inverse Fourier transform

haa tð Þ ¼ 1
2p

Z1
�1

Haa wð Þejwtdw

NswTNswT
w

0

sT
1

)(wXn

22

Fig. 2.96 Aliasing in XnðwÞ

w
0

sT
1

)(wXn || wFig. 2.97 XnðwÞ in Fig. 2.96
for wj j\p

sT

)(wXc

1

sT
NwNw

w
0

NswTNswT
w

0

)(
1

)(
s

c
s

n T
wX

T
wX || w

sT
1

)(][ sc nTxnx

Fig. 2.95 Aliasing case in the Fourier transform of x½n�
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as

haa tð Þ ¼
sin pt

Ts

� �
pt

: ð2:108Þ

Anti-aliasing filtering is shown in Fig. 2.98.
The digital signal obtained after sampling of the filtered analog signal shown in

Fig. 2.98 has the Fourier transform depicted in Fig. 2.99.

2.3 Practical Implementations of C/D and D/C Converters

Up to now we have studied theoretical C/D and D/C converter systems. However,
the practical implementation of these units in real life shows some differences. The
practical implementation of the C/D converter is shown in the first part of
Fig. 2.100, and in a similar manner, the practical implementation of the D/C
converter is shown in the second part of Fig. 2.100.

C/D and D/C conversion systems include analog-to-digital and digital-to-analog
converter units and the contents of these units are shown in Fig. 2.100. Now we
will inspect every component of the complete system shown in Fig. 2.100.

sT

w

)(wXc

1

sT

)(wHaa

)()( wXwH caa

w

1

sT sT
Nw Nw

Fig. 2.98 Anti-aliasing filtering

)(wXn

w

sT
1

2 2

Fig. 2.99 The Fourier transform of a digital signal obtained by sampling of a continuous time
signal filtered by an anti-aliasing filter
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2.3.1 C/D Conversion

A practical C/D converter includes the units shown in Fig. 2.101.
Where antialiasing filter is used to decrease of amount of distortion in digital

signal in case of aliasing. Antialiasing filter is defined as

Haa ¼ 1 wj j\ p
Ts

0 otherwise

�
ð2:109Þ

Inside A=D converter, we have Sample-and-Hold and Quantizer-Coder units
which are shown in Fig. 2.102.

For the coding of quantization levels, two’s complement, one’s complement or
unsigned binary representations can be used.

Once the analog signal is represented by bit sequences, i.e., codes, these bit
sequences are processed depending on the application. For instance, in digital
communication, these bit sequences are encoded by channel codes and obtained bit
sequences are converted to complex symbols, i.e., digitally modulated, and trans-
mitted. In data storage, these bit sequences are again coded using forward error
corrections codes, such as Reed Solomon codes as in compact disc storage, and
stored. Alternatively, these bit sequences can be passed through data compression
algorithms and then stored.

)(txc )(wHaa DA /
)(txa

Anti-Aliasing
Filter

Analog to Digital 
Conversion

Digital
Code

Fig. 2.101 Practical C/D
converter.
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Digital
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Filter
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and
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and

Coding

Digital
Code Convert Digital 

Codes to Real 
Numbers

Zero
Order
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)(
^
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)(txo)(txo

)(txr

Digital
Code

sT

^

Fig. 2.100 Practical implementations of C/D and D/C converter systems
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2.3.2 Sample and Hold

The aim of the sample and hold circuit is to produce a rectangular signal and the
amplitudes of the rectangles are determined at the sampling time instants. The
simplest sample and hold circuit as shown in Fig. 2.103 which is constructed using
a capacitor.

Since usually sampling frequency fs is a large number, such as 10 kHz etc., it is
logical to use a digital switch for the place of a mechanical switch as shown in
Fig. 2.104.

In the literature, much better sample and hold circuits are available. To give an
idea about design improvement, the circuit in Fig. 2.104 can be improved by
appending a buffer to the output preventing back current flows etc., and this
improved circuit is shown in Fig. 2.105.

The sample and hold operation for the input sine signal is illustrated in
Fig. 2.106.

sT

DA /
)(txa

)(txa
)(txo

Digital
Code

Sample
and

Hold

Quantization
and

Coding

Digital
Code

Fig. 2.102 Components of
A/D converter

)(txo)(txc
Fig. 2.103 A simple sample
and hold circuit

Hzsf

)(txo)(txc

sT

Fig. 2.104 Mechanical
switch is replaced by an
electronic switch
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For sine input signal after sample and hold operation, we obtain the signal xoðtÞ
which is depicted alone in Fig. 2.107.

Question: Can we write a mathematical expression for the signal xo tð Þ shown in
Fig. 2.107.

Yes, we can write. For this purpose, let’s first define hoðtÞ function as shown in
Fig. 2.108.

If the graph of xo tð Þ in Fig. 2.107 is inspected, it is seen that xo tð Þ signal is
nothing but sum of the shifted and scaled hoðtÞ functions. Using hoðtÞ functions, we
can write xoðtÞ as

xo tð Þ ¼
X1
k¼�1

xcðnTsÞhoðt � nTsÞ ! xo tð Þ ¼
X1
k¼�1

x½n�hoðt � nTsÞ: ð2:110Þ

sT sT2 sT3 sT4

)(txo)(txc

t
sT12sT11

sT9
sT5 sT6

sT7 sT8 sT10

s13T

Fig. 2.106 Calculation of the output of the sample and hold circuit for sine input signal
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Fig. 2.107 Output of the sample and hold circuit for sine input signal

Hzsf

)(txo)(txc

sT

Fig. 2.105 Sample and hold circuit with a buffer at its output
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Example 2.30 The signal shown in Fig. 2.109 is passed through a sample and hold
circuit. Find the signal at the output of the sample and hold circuit. Take sampling
period as Ts ¼ 2.

Solution 2.30 First we determine the amplitude values for the time instants t such
that t ¼ nTs where Ts ¼ 2 and n is integer. This operation result is shown in
Fig. 2.110. In addition, we also write the line equations for the computation of the
amplitude values for the given time instants.

The amplitude values of the continuous time signal at time instants t ¼ nTs are
shown clearly in Fig. 2.111.

In the next step, we draw horizontal lines for the determined amplitudes, and for
the first two samples, the drawn horizontal lines are shown in Fig. 2.112.

And for the first 4 samples, the horizontal drawn lines are shown in Fig. 2.113.
Repeating this procedure for all the other samples, we obtain the graph shown in

Fig. 2.114.
The drawn horizontal lines for all the samples are depicted alone in Fig. 2.115.
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Fig. 2.110 The continuous
time signal in details
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Fig. 2.112 Horizontal lines
are drawn for the first two
samples
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shown explicitly for the time
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Fig. 2.114 Horizontal lines
are drawn for all the samples
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2.3.3 Quantization and Coding

During data storage or data transmission, we use bit sequences to represent real
number. Since there are an infinite number of real numbers, it is not possible to
represent this vast amount of real numbers by limited length bit streams. For this
reason, we choose a number of real numbers to represent by bit streams and try to
round other real numbers to the chosen ones when it is necessary to represent them
by bit streams.

Mid-Level Quantizer
A typical quantizer includes the real number intervals used to map real numbers

falling into these intervals to the quantization levels as shown in Fig. 2.116.
The quantizer in Fig. 2.116 is called mid-level quantizer. The quantizer maps the

real numbers in the range � D
2 ;

D
2

� 	
to Q0, maps the real numbers in the range D

2 ;
3D
2

� 	
to Q1 etc. In this quantizer, D is called the step size of the quantizer. Smaller D
means more sensitive quantizer. The mapping between real numbers and quanti-
zation levels is defined as Qi ¼ QðxÞ where Qi may be chosen as the center of
interleaves.

If Fig. 2.116 is inspected, it is seen that if we have equal number of intervals on
the negative and positive regions, it means that the total number of intervals is an
odd number, which is not a desired situation. Since using N bits, it is possible to
represent 2N levels. For this reason, we design these quantizers such that if one side
has even number of intervals, then the other side has odd number of intervals.

16

2 2012 1684 14 18106 t

4

8
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14

0

)(txoFig. 2.115 Output of the
sample and hold system
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Fig. 2.116 A typical mid-level quantizer
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Example 2.31 A 3-bit quantizer includes 23 ¼ 8 quantization intervals. A mid-level
type quantizer consisting of 8 levels can be shown as in Fig. 2.117.

Or alternatively as in Fig. 2.118.
We will use mid-level quantizers as in Fig. 2.117.
As it is clear from the Example 2.30, for an N-bit mid-level quantizer, the

minimum number that can be quantized is �ð2N þ 1Þ=2 and the maximum number
that can be quantized is ð2N � 1Þ=2.

The quantization levels are represented by binary sequences, such as two’s
complement, one’s complements, unsigned representation, or private bit sequences
can be assigned for quantization levels.

Example 2.32 Design a 3-bit quantizer for the real numbers in the range
�14 � � � 14½ �.
Solution 2.32 For a 3-bit quantizer Xm1 ¼ �9D=2 and Xm2 ¼ 7D=2. Equating Xm2

to �14, we obtain

7D
2

¼ 14 ! D ¼ 4:

So our quantizer can quantize the real numbers in the range

� 9D
2

� � � 7D
2

� �
¼ �18 � � � 14½ �:

The bit sequences for our quantizer can be assigned to the intervals as in
Fig. 2.119 and centers of the interleavers can be calculated as in Fig. 2.120.

Mid-Rise Quantizer
The mid-rise quantizer is shown in Fig. 2.121. As it is clear from Fig. 2.121,

there is no interval centered at the origin.
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Fig. 2.117 Mid-level quantizer for Example 2.31
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Fig. 2.118 An alternative mid-level quantizer for Example 2.31
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Assume that we want to quantize a sequence of digital samples represented by
x½n�. Let x̂½n� be the sequence obtained after quantization. Since quantization distorts
the original signal, the quantized samples mathematically can be written as

x̂ n½ � ¼ Q x n½ �ð Þ ! x̂ n½ � ¼ x n½ � þ e½n� ð2:111Þ

where e½n� is called quantization noise.

2.3.4 D/C Converter

The practical implementation of D/C converter is shown in Fig. 2.122.
The content of the D/A converter is detailed in Fig. 2.123.
The digital codes are converted to real numbers according to the used coding

scheme. At the output of the code-to-digital converter, we have digital samples
which can be written as

26 21418 10

3Q
3Q2Q 1Q 2Q1Q0Q

0

)(xQ

4Q
x

106 14

000 001 111110101100011010

Fig. 2.119 Bit sequences assigned to the quantization intervals
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12 88 4 640
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)(xQ

16
x
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Fig. 2.120 Mid-level quantizer
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Fig. 2.121 Mid-rise quantizer
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x̂ n½ � ¼ x n½ � þ e½n� ð2:112Þ

where e½n� is the quantization error. The zero order hold filter impulse response is
shown Fig. 2.124.

The output of the code-to-digital converter in Fig. 2.123 is

x̂o tð Þ ¼
X1
n¼�1

x̂ n½ �d t� nTsð Þ: ð2:113Þ

When x̂oðtÞ is passed through zero order hold filter, we obtain

xo tð Þ ¼ x̂oðtÞ * hoðtÞ ! xo tð Þ ¼
X1
n¼�1

x̂ n½ �ho t� nTsð Þ: ð2:114Þ

Substituting x̂ n½ � ¼ x n½ � þ e½n� in (2.114), we get

xo tð Þ ¼
X1
n¼�1

x n½ �ho t� nTsð Þþ
X1
n¼�1

e n½ �ho t� nTsð Þ: ð2:115Þ

AD /

)(txo

)(txo

sT
n

s )nT(t

(t)xo
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Convert Digital 
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Numbers
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Fig. 2.123 D/A conversion
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Fig. 2.124 Impulse response
of zero order hold
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Fig. 2.125 Reconstruction
filter block diagram
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Now let’s consider the last unit of the D/C converter the reconstruction filter as
shown in Fig. 2.125.

The Fourier transform of xoðtÞ in (2.115) can be calculated using

Xo wð Þ ¼
X1
n¼�1

x n½ �Ho wð Þe�jwnTs þ
X1
n¼�1

e½n�Eo wð Þe�jwnTs ð2:116Þ

where taking the common term Ho wð Þ outside the parenthesis, we obtain

Xo wð Þ ¼
X1
n¼�1

x n½ �e�jwnTs

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
XnðTswÞ

þ
X1

n¼�1
e n½ �e�jwnTs

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
EnðTswÞ

0
BBBB@

1
CCCCA Ho wð Þ ð2:117Þ

which can be written as

Xo wð Þ ¼ Xn Tswð ÞþEn Tswð Þð ÞHo wð Þ: ð2:118Þ

From Fig. 2.125, we can write

Xr wð Þ ¼ Hr wð ÞXo wð Þ ð2:119Þ

where Hr wð Þ is the frequency response of the reconstruction filter. If we choose
HrðwÞ as

Hr wð Þ ¼
Ts

Ho wð Þ wj j\ p
Ts

0 otherwise

�
ð2:120Þ

and substituting it into (2.119) and using (2.118) in (2.119), we obtain

Xr wð Þ ¼ TsXn Tswð Þþ TsEn Tswð Þ wj j\ p
Ts

ð2:121Þ

which is the Fourier transform of

xr tð Þ ¼ xa tð Þþ e tð Þ: ð2:122Þ

Since x n½ � ¼ xaðnTsÞ, e n½ � ¼ eðnTsÞ, the continuous time signals xa tð Þ and e tð Þ
can be obtained from their samples using
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xa tð Þ ¼
X1
n¼�1

x n½ � sin c t � nTs
Ts

� �
ð2:123Þ

and

e tð Þ ¼
X1
n¼�1

e n½ � sin c t � nTs
Ts

� �
: ð2:124Þ

Then xr tð Þ in (2.122) using (2.123) and (2.124) can be written as

xr tð Þ ¼
X1
n¼�1

x n½ � sin c t � nTs
Ts

� �
þ

X1
n¼�1

e n½ � sin c t � nTs
Ts

� �
:

2.4 Problems

(1) x n½ � ¼ ½1 2 0 � 3 � 1 1 4 � 1 0 1 � 2 5 1 3� is
given. Find the signals x 2n½ �, x 3n½ �, x 4n½ �, x n=2½ �, x n=3½ �, and x n=4½ �.

(2) One period of the Fourier transform of x½n� around origin is shown in
Fig. 2.126. Draw the Fourier transform of the downsampled signal
y n½ � ¼ x 2n½ �.

(3) The delay system is described in Fig. 2.127.

4
3

4
3 w

)(wX n

1

wFig. 2.126 One period of
XnðwÞ around origin

0nz][nx ][ 0nnx
Fig. 2.127 Delay system
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If

x n½ � ¼ ½a b c d e f g
n¼0

h ı j k l m n o p r�

find the output of each unit in Fig. 2.128.

(4) Calculate the inverse Fourier transform of the digital filter

Hdn wð Þ ¼ 1 if wj\ p
M

0 if p
M\ wj j\p:

�
ð2:125Þ

(5) Draw the graph of

hdn n½ � ¼ sin pn
M

� 	
pn

ð2:126Þ

roughly, and find the triangle approximation of (2.126). Calculate the approximated
model for n ¼ �5; . . .; 5.

(6) The graph of XðtÞ is shown in Fig. 2.129. Considering Fig. 2.129 draw the
graph of

Y tð Þ ¼
X1
k¼�1

Xðt � kTÞ; T ¼ 3: ð2:127Þ

t

)(tX

1

22

Fig. 2.129 The graph of XðtÞ

1z

][nx ][1 ny

][2 ny

2

2

Fig. 2.128 Signal processing
system
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(7) Repeat Question-6 for T ¼ 1, T ¼ 4 and T ¼ 5.
(8) Comment on the system shown in Fig. 2.130.
(9) For the system of Fig. 2.131, xc tð Þ is a lowpass signal with bandwidth

3000 Hz, Ts ¼ 1
8000 s and M ¼ 2. Is system output yrðtÞ equal to system input

xc tð Þ? If they are equal to each other, justify the reasoning behind it. If they are
not equal to each other, again explain the reasoning behind it.

(10) If x n½ � ¼ ½1 2 3 4 5 6 7� and L ¼ 4, draw the graph of

y n½ � ¼
X1
k¼�1

x k½ �d n� kL½ �:

(11) For the system of Fig. 2.132, M ¼ L ¼ 2 and

x n½ � ¼ ½a b c d e f g h l|{z}
n¼0

j k l m n o p r s�:

Find xd ½n� and y½n�.
(12) Draw the graph of hai n½ � ¼ � nj j

L þ 1, �L� n� L for L ¼ 3 and L ¼ 8.

(13) xd k½ � ¼ ½1 4 7 10 13�, hai n½ � ¼ � nj j
L þ 1, �L� n� L, L ¼ 3, calculate

and draw

Hzfs 1000 4 Hzfff ds
s

ds 250
4

Fig. 2.130 Downsampler

)(txc

][][ Mnxny

M
][nx

)(tyr

sT sT

C/D D/C

Fig. 2.131 System for
Question 9

)(txc M
][nx

sT

L
][ny][nxdC/D

Fig. 2.132 Signal processing
system
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yi n½ � ¼
X1
k¼�1

xd k½ �hai½n� kL�:

(14) For the system of Fig. 2.133, x n½ � ¼ cos p
4 n
� 	

0� n� 10, hai½n� is the triangle
approximated reconstruction filter. Find xd n½ �; y½n� and yi½n� for M ¼ L ¼ 2.

(15) For the system of Fig. 2.134,

Haa wð Þ ¼ 1 if wj j\ p
Ts

0 otherwise

�

Express the Fourier transform of x n½ � in terms of the Fourier transform of xcðtÞ.
(16) For the system of Fig. 2.135, M ¼ 3, XnðwÞ is the one period of the Fourier

transform of x½n�. Draw the Fourier transform of xd ½n�.
(17) For the system of Fig. 2.136, M ¼ L ¼ 2 and XnðwÞ is the one period of the

Fourier transform of x½n�.

M L
][ny][nxd

][nhai
][nyi][nx

Downsampler
Compressor

Upsampler
Expander

 Interpolating 
Filter

Fig. 2.133 Signal processing system for Question 14

sT

)(txc DC / ][nx)(wHaa

Fig. 2.134 Signal processing system for Question 15
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Fig. 2.135 Downsampling of digital signal
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(a) Draw the Fourier transforms of xc n½ �; xd n½ �, and y n½ �.
(b) Draw the triangle approximation model of the interpolation filter for L ¼ 2.
(c) Draw the Fourier transform of yi½n� for sin cð�Þ interpolation filter.
(d) If xc n½ � ¼ ½1:0 1:7 2:4 3:2 4�, calculate xd n½ �; y n½ �, using triangle

approximated interpolation filter.

(18) For the system of Fig. 2.137, M ¼ 2, and Hd wð Þ is defined as

Hd wð Þ ¼ 1 if wj j � p
M

0 otherwise

�
ð2:128Þ

(a) Calculate the inverse Fourier transform of Hd wð Þ, i.e., calculate hd½n�. Next,
find the triangle approximated model of hd ½n�.

(b) For x n½ � ¼ ½ 1 2 3 4 � calculate xo½n� and xd ½n�.

)(wXn

w

1

3
2

2

M
][nxc

L
][ny][nxd

][nhd ][nhi
][nyi][nx
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Downsampling Upsampling Interpolation
Filter

Fig. 2.136 Signal processing system for Question 17
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(19) The delay system is shown in Fig. 2.138.

For the system of Fig. 2.139, M ¼ 3, x n½ � ¼ a b c d e f g½
h i j k l m n o p r s t u v w x y�: Find the signal at the
output of each unit, and find the system output.

][nx M

M
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M

1z
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M

1z

][nxg ][nxh ][nxi
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Fig. 2.139 Signal processing system for Question 19
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Chapter 3
Discrete Fourier Transform

In linear algebra, basis vectors span the entire vector space. And any vector of the
vector space can be written as the linear combination of the basis vectors. For any
vector in vector space, finding the coefficients of basis vectors used for the con-
struction of the vector can be considered as a transformation. Fourier series are used
to represent periodic signals. Fourier series are used to construct any periodic signal
from sinusoidal signals. The sinusoidal signals can be considered as the basis
signals, and linear combination of these signals with complex coefficients produce
any periodic signal. Once we obtain the coefficients of the base signals necessary
for the construction of a periodic signal, then we have full knowledge of the
periodic signal and instead of transmitting the periodic signal, we can transmit the
coefficients of the base signals. Since at the receiver side, the periodic signal can be
reconstructed using the base coefficients.

In this chapter we will study a new transformation technique called discrete
Fourier transform used for aperiodic digital signals. We will show that similar to the
Fourier series representation of periodic digital signals, aperiodic digital signals can
also be written as a linear combination of sinusoidal digital aperiodic signals. In this
case, aperiodic digital sinusoidal signals can be considered as base signals. And
finding the coefficients of base signals such that their linear combination yields the
aperiodic digital signal is called discrete Fourier transformation of the aperiodic
digital signal. Thus, the discrete Fourier transformation is nothing but finding the
set of coefficients of the base signals for an aperiodic digital signal. And once we
have these coefficients, then we have full knowledge on the aperiodic signal in
another digital sequence.

© Springer Nature Singapore Pte Ltd. 2018
O. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_3
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3.1 Manipulation of Digital Signals

Before studying discrete Fourier transform, let’s prepare ourselves for the subject,
for this purpose, we will first study the manipulation of digital signals.

Manipulation of Non-periodic Digital Signals
A non-periodic or aperiodic digital signal has finite number of samples. And

these signals are illustrated either by graphics or by number vectors, or by number
sequences. As an example, a digital signal and its vector representation is shown in
Fig. 3.1.

Manipulation of digital signals includes shifting, scaling in time domain and
change in amplitudes.

Shifting of Digital Signals in Time Domain
Given x½n�, to obtain x n� n0½ �; n0 [ 0, we shift the amplitudes of x½n� to the

right by n0 units. If n0\0, amplitudes are shifted to the left.
Shifting amplitudes to the right by n0 equals to the shifting n ¼ 0 index to the

left by n0 units. This operation is illustrated in the following example.

Example 3.1 Given
x n½ � ¼ ½a b c d e|{z}

n¼0
f g h i j k�; find x n� 1½ �

x n� 3½ �; x nþ 1½ �; x nþ 2½ �; and x n� 7½ �:
Solution 3.1 To get x½n� 1�, we shift amplitudes of x½n� to the right by ‘1’ unit.
Shifting amplitudes to the right by ‘1’ unit is the same as shifting n ¼ 0 index to the
left by ‘1’ unit, the result of this operation is

x n� 1½ � ¼ ½a b c d|{z}
n¼0

e f g h i j k�:

Following a similar approach for x½n� 3�; we obtain

x n� 3½ � ¼ ½a b|{z}
n¼0

c d e f g h i j k�:

x[n]

n
0 1 2 3 4123

3

5.1

5.22
25.15.1

7.1

1.25]2.521.5331.5[1.7x[n]
0n

3

Fig. 3.1 A digital signal and its representation by a number vector
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To get x nþ 1½ �, we shift amplitudes of x½n� to the left by ‘1’ unit obtaining

x nþ 1½ � ¼ ½a b c d e f|{z}
n¼0

g h i j k�:

Following similar steps, we obtain

x nþ 2½ � ¼ ½a b c d e f g|{z}
n¼0

h i j k�;

and

x n� 7½ � ¼ ½ 0|{z}
n¼0

0 0 a b c d e f g h i j k�:

where it is clear that if the shifting amount goes beyond the signal frontiers, for the
new time instants, 0 values are assigned for the signal amplitudes.

Scaling of Digital Signals in Time Domain
To find x½Mn�, we divide the time axis of x½n� by M, and keep only integer

division results and omit the non-integer division results. The resulting signal is
nothing but x½Mn�.
Example 3.2 If x n½ � ¼ ½a b c d e|{z}

n¼0
f g h i j k�; find x½2n� and

x½3n�.
Solution 3.2 To get x½2n�; we divide time axis of x½n� by 2 and keep only integer
division results. First, let’s write all the time indices as shown in

½ a|{z}
�4

b|{z}
�3

c|{z}
�2

d|{z}
�1

e|{z}
n¼0

f|{z}
1

g|{z}
2

h|{z}
3

i|{z}
4

j|{z}
5

k|{z}
6

�:

ð3:1Þ

Next, we divide the indices as in

½ a|{z}
�4

2

b|{z}
�3

2

c|{z}
�2

2

d|{z}
�1

2

e|{z}
0
2

f|{z}
1
2

g|{z}
2
2

h|{z}
3
2

i|{z}
4
2

j|{z}
5
2

k|{z}
6
2

�

ð3:2Þ

where keeping only integer division results, we obtain

x 2n½ � ¼ ½ a|{z}
�2

b|{z}
�2

c|{z}
0

g|{z}
1

i|{z}
2

k|{z}
3

�
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which can be written in its simple form as

x 2n½ � ¼ ½a c e|{z}
0

g i k�:

Following a similar approach for x½3n�, we obtain

x 3n½ � ¼ ½b e|{z}
n¼0

h k�:

Combined Shifting and Scaling
To obtain x Mn� n0½ �, we follow a two-step procedure as listed below.

(1) First, the shifted signal, x½n� n0� is obtained, and this signal is denoted by
x1½n�; i.e., x1 n½ � ¼ x½n� n0�

(2) Then using x1 n½ �, we obtain the scaled signal x1 Mn½ � which is nothing but
x½Mn� n0�
That is, we first obtain the shifted signal x1 n½ � ¼ x½n� n0�, and then using x1½n�

we get the scaled signal x1 Mn½ � ¼ x Mn� n0½ �:
Example 3.3 If x n½ � ¼ ½a b c d e|{z}

n¼0
f g h i j k�, find x 3nþ 3½ �.

Solution 3.3 First, we obtain the shifted signal x½nþ 3� as

x nþ 3½ � ¼ ½a b c d e f g h|{z}
n¼0

i j k�:

Let x1 n½ � ¼ x nþ 3½ �; i.e., x1 n½ � ¼ ½a b c d e f g h|{z}
n¼0

i j k�;

then the scaled signal x1½3n� can be calculated as

x1 3n½ � ¼ ½b e h|{z}
n¼0

k�

which is nothing but x 3nþ 3½ �; that is

x 3nþ 3½ � ¼ ½b e h|{z}
n¼0

k�:

Note: If n ¼ 0 index is not indicated in the digital signal vector representation,
then the first element index is accepted as n ¼ 0:
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3.1.1 Manipulation of Periodic Digital Signals

Manipulation of periodic digital signals includes shifting, scaling and combined
shifting, scaling operations. There is no difference in manipulating non-periodic and
periodic digital signals. The same set of operations are applied for the manipulation
of periodic signals as in the manipulation of non-periodic signals.

However, since periodic signals are of infinite lengths, for easy of manipulation,
it is logical to consider just one period of the periodic signal and perform manip-
ulations on it.

Let ~x½n� be a periodic signal with fundamental period N; i.e., ~x½n� ¼ ~x½nþ lN�
l;N 2 Z.

Let’s define one period of ~x½n� as

x n½ � ¼ ~x½n� 0� n�N � 1
0 otherwise:

�
ð3:3Þ

Using (3.3), we can write ~x½n� in terms of x n½ � as

~x½n� ¼
X1
k¼�1

x½n� kN�: ð3:4Þ

3.1.2 Shifting of Periodic Digital Signals

First let’s make definitions as follows:
Rotate Right
When the signal x n½ � ¼ 1 2 3 4 � � � N½ � is rotated right, we get

RR x n½ �ð Þ ¼ N 1 2 3 4 � � � N � 1½ �: ð3:5Þ

RR x n½ �;mð Þ is the m unit rotated (right) signal.
Rotate Left
When the signal x n½ � ¼ 1 2 3 4 � � � N½ � is rotated left, we get

RL x n½ �ð Þ ¼ 2 3 4 � � � N � 1 N 1½ �: ð3:6Þ

RL x n½ �;mð Þ is the m unit rotated (left) signal.
Rotate Inside
When the signal x n½ � ¼ 1 2 3 4 � � � N½ � is rotated inside, we get
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RI x n½ �ð Þ ¼ 1 N N � 1 N � 2 � � � 2½ �: ð3:7Þ

Shifting of Periodic Digital Signals
If x n½ � is the one period of the periodic signal, ~x½n� such that 0� n�N � 1; one

period of the shifted signal ~x½n� n0�, n0 [ 0 is obtained by rotating amplitudes of
x½n� to the right (left if n0\0) by n0 units.

Example 3.4 The signal given in Fig. 3.2 is a periodic signal, i.e., ~x½n� ¼ ~x½nþN�.
Find the period of this signal, and determine its one period for 0� n�N � 1.

Solution 3.4 To find the period of the signal, we need to find the repeating pattern
in the signal graph. If the signal shown in Fig. 3.2 is carefully inspected the
repeating pattern can be easily determined. The repeating pattern of Fig. 3.2 is
shown in Fig. 3.3 in bold. The number of samples in the repeating pattern is
nothing but the period of the signal. Hence, for this example, N the period of the
signal is 5, i.e., ~x½n� ¼ ~x½nþ 5�:

One period of the signal in Fig. 3.3 for 0� n� 4 is shown in Fig. 3.4.
Using one period of the signal starting at origin, we can write the periodic signal

as

~x½n� ¼ ½� � � 3|{z}
n¼0

�1:5 1:7 1:5 �3 � � ��:

[n]x

n

3

0 1123

5.1

5.1
7.1

5.1
7.1

5.3 5.3

3

5.1

2 3 4 5 6

Fig. 3.2 A periodic digital
signal

[n]x

n

3

0 1123

5.1

5.1
7.1

5.1
7.1

5.3 5.3

3

5.1

2 3 4 5 6

Fig. 3.3 The repeating
pattern of Fig. 3.2 is shown in
bold

150 3 Discrete Fourier Transform



Example 3.5 The periodic signal ~x½n� is shown in Fig. 3.5, find ~x½n� 3�; and
~x½nþ 2�.
Solution 3.5 The period of the signal is N ¼ 5, and signal amplitudes for one
period are

x n½ � ¼ ½ 3|{z}
n¼0

�1:5 1:7 1:5 �3:5�: ð3:8Þ

When x½n� is rotated to the right by 3 units, we get

RRðx n½ �; 3Þ ¼ ½ 1:7|{z}
n¼0

1:5 �3:5 3 �1:5�: ð3:9Þ

And using (3.9), we can write the shifted periodic signal as

~x n� 3½ � ¼ ½� � � 1:7 1:5 �3:5 3 �1:5 1:7|{z}
n¼0

1:5 �3:5 3 �1:5 � � ��:

ð3:10Þ

To find ~x½nþ 2�, one period of ~x½n� is rotated to the left by 2 units yielding

RL x n½ �; 2ð Þ ¼ ½ 1:7|{z}
n¼0

1:5 �3:5 3 �1:5�: ð3:11Þ

[n]x

n

3

0 1123

5.1

5.1
7.1

5.1
7.1

5.3 5.3

3

5.1

2 3 4 5 6

Fig. 3.4 One period of the
signal in Fig. 3.3 for
0� n� 4

[n]x

n

3

0 1123

5.1

5.1
7.1

5.1
7.1

5.3 5.3

3

5.1

2 3 4 5 6

Fig. 3.5 The periodic signal
~x n½ � for Example 3.5

3.1 Manipulation of Digital Signals 151



Hence, shifted periodic signal ~x½nþ 2� becomes as

~x½nþ 2� ¼ ½� � � 1:5 �3:5 3 �1:5 1:7|{z}
n¼0

1:5 �3:5 3 �1:5 1:7 � � ��:

ð3:12Þ

Time Scaling of Periodic Signals
To perform time scaling on periodic signals, we consider one period of the signal

and perform time scaling on it.
The resulting signal is nothing but the one period of the scaled signal. If the

period of the digital signal ~x½n� is N, then the period of the scaled signal ~x½Mn� is
N=M.

Example 3.6 The periodic signal ~x½n� in its one interval equals to

x n½ � ¼ ½ 3|{z}
n¼0

�1:5 1:7 1:5 �3:5 2:2 4� ð3:13Þ

where it is obvious that the period of the signal is N ¼ 7. Find ~x½2n� and ~x½3n�.
Solution 3.6 One period of ~x½2n� equals to x½2n�, and one period of ~x½3n� equals to
x½3n�. The time scaled signals x½2n� and x½3n� can be calculated as

x 2n½ � ¼ ½ 3|{z}
n¼0

1:7 �3:5 4�

x 3n½ � ¼ ½ 3|{z}
n¼0

1:5 4�: ð3:14Þ

And using (3.14) the periodic signals ~x½2n� and ~x½3n� can be written as

~x½2n� ¼ ½� � � 1:7 �3:5 4 3|{z}
n¼0

1:7 �3:5 4 3 1:7 �3:5 4 � � ��

~x½3n� ¼ ½� � � 3 1:5 4 3|{z}
n¼0

1:5 4 3 1:5 4 � � ��:

Combined Shifting and Scaling
The periodic digital signal ~x½n� can be shifted and scaled in time domain yielding

the periodic signal ~x½Mn� n0�. The shifted and scaled signal ~x½Mn� n0� can be
obtained from ~x½n� via a two-step procedure as explained below.

(1) To get ~x Mn� n0½ �; first the shifted signal ~x n� n0½ � is obtained. Let’s call this
signal ~x1½n�, i.e., ~x1½n� ¼ ~x½n� n0�.

(2) In the next step, ~x1½n� is scaled in time domain and ~y½n� ¼ ~x1½Mn� is obtained,
and ~y½n� is nothing but ~x½Mn� n0�, i.e., ~y½n� ¼ ~x½Mn� n0�.
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Example 3.7 The periodic signal ~x½n� in its one interval equals to

x n½ � ¼ ½ 3|{z}
n¼0

�1:5 1:7 1:5 �3:5 2:2 4�

where it is obvious that the period of the signal is N ¼ 7. Find ~x½2n� 3�.
Solution 3.7 To obtain ~x½2n� 3�, let’s first find one period of the shifted signal
~x½n� 3�: One period of ~x½n� 3� is obtained by rotating one period of ~x½n� to the
right by 3 yielding

RRðx n½ �; 3Þ ¼ ½�3:5|ffl{zffl}
n¼0

2:2 4 3 �1:5 1:7 1:5� ð3:15Þ

Let’s denote (3.15) by x1½n�, i.e., one period of ~x½n� ¼ ~x½n� 3�, then we have

x1½n� ¼ ½�3:5|ffl{zffl}
n¼0

2:2 4 3 �1:5 1:7 1:5�: ð3:16Þ

Next using (3.16), we can evaluate x1½2n� which is nothing but one period of
~x½2n� 3� as

x1½2n� ¼ ½�3:5|ffl{zffl}
n¼0

4 �1:5 1:5�:

Hence, our periodic signal ~x½2n� 3� becomes as

~x½2n� 3� ¼ ½� � � � 1:5 1:5 �3:5|ffl{zffl}
n¼0

4 �1:5 1:5 �3:5 4 �1:5 � � ��:

Example 3.8 Periodic signal ~x½n� is shown in Fig. 3.6.
Find ~x½�n�.

Solution 3.8 To find ~x½�n�, we divide the time axis of ~x½n� by �1. This operation is
illustrated in Fig. 3.7.

The division operations in Fig. 3.7 yields the signal in Fig. 3.8.
When amplitudes and time indices are re-ordered together, we obtain the graph

in Fig. 3.9.
Practical way to find ~x½�n� signal

n
0 1123 2 3 44

a cb ada cb d
[n]xFig. 3.6 Periodic signal ~x n½ �

for Example 3.8
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If one period of ~x½n� is denoted by x n½ � ¼ 1 2 3 4 � � � N½ �; then one
period of ~x½�n� can be obtained rotating x n½ � inside by 1 unit. That is, one period of
~x½�n� is

RI x n½ �ð Þ ¼ 1 N N � 1 N � 2 � � � 2½ � ð3:17Þ

We can apply this practical method to the previous example where the periodic
signal had been given as in Fig. 3.10.

One period of is ~x½n� in Fig. 3.10 is

x n½ � ¼ a b c d½ �: ð3:18Þ

When (3.18) is rotated inside, we obtain

RRðx n½ �Þ ¼ ½ a b c d � ð3:19Þ

which is nothing but one period of ~x½�n�. Hence ~x½�n� equals to

~x½�n� ¼ ½� � � d c b a|{z}
n¼0

d c b a d c b � � ��:

Calculation of the periodic signal ~x½n0 � n�

n

1
0

1
1

1
1

1
2

1
3

1
2

1
3

1
4

1
4

a cb ada cb d
[-n]xFig. 3.7 Calculation of ~x �n½ �

n
01 1 2 3234 4

a cb ada cb d
[-n]xFig. 3.8 After division of the

time axis in Fig. 3.7

n
0 1123 2 3 44

a c b ada c bd
[-n]xFig. 3.9 Time axis

re-ordered

n
0 1123 2 3 44

a cb ada cb d
[n]xFig. 3.10 Periodic signal ~x n½ �
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Calculation of the periodic signal ~x½n0 � n� can be achieved via the following
steps.

(1) We first find one period of ~x1½n� ¼ ~x½�n� using rotate inside operation.
(2) Then one period of ~x1½n� is rotated to the right if n0 [ 0 to the left if n0\0 by
jn0j units and one period of ~x1½n0 � n� is obtained.

Example 3.9 The periodic signal ~x1½n� is shown in Fig. 3.11. Find ~x1½2� n�.
Solution 3.9 From Fig. 3.11 one period of ~x½n� can be found as

x n½ � ¼ a b c d½ �: ð3:20Þ

When (3.20) is rotated inside, we obtain

RRðx n½ �Þ ¼ a d c b½ � ð3:21Þ

which is nothing but one period of ~x½�n�, i.e., ~x½�n�op ¼ a d c b½ �, ‘op’
means one period. To find one period of ~x½2� n� one period of ~x½�n� is rotated to
the right by 2 units yielding

RR ~x �n½ �op; 2
� �

¼ a b c d½ �: ð3:22Þ

Using (3.22) the periodic signal ~x½2� n� can be written as

~x½2� n� ¼ ½� � � c b a d c|{z}
n¼0

b a d c b a d � � ��:

Example 3.10 The periodic signal ~x½n� is shown in Fig. 3.11. Find ~x½�2� n�.
Fig. 3.12

Solution 3.10 One period of ~x½n� equals to

x½n� ¼ a b c d½ �: ð3:23Þ

n
0 1123 2 3 44

a cb ada cb d
[n]xFig. 3.11 The periodic signal

~x n½ � for Example 3.9

n
0 1123 2 3 44

a cb ada cb d
[n]xFig. 3.12 The periodic signal

~x n½ � for Example 3.10
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When (3.23) is rotated inside, we obtain

RRðx n½ �Þ ¼ a d c b½ �

which is nothing but one period of ~x½�n�, i.e., ~x½�n�op ¼ a d c b½ �: To find
one period of ~x½�2� n�, one period of ~x� n� is rotated to the left by 2 units
yielding

RR ~x �n½ �op; 2
� �

¼ c b a d½ �: ð3:24Þ

Using (3.24) the periodic signal ~x½�2� n� can be written as

~x½�2� n� ¼ ½� � � c b a d c|{z}
n¼0

b a d c b a d � � ��:

Exercise: For the previous exercise find ~x½�4� n� and ~x½4� n�.

3.1.3 Some Well Known Digital Signals

In this subsection, we will review some well-known digital signals.
Unit Step:
The unit step signal is defined as

u n½ � ¼ 1 if n� 0
0 otherwise

�
ð3:25Þ

whose graph is shown in Fig. 3.13.
Unit Impulse:
The unit impulse signal is defined as

d n½ � ¼ 1 if n ¼ 0
0 otherwise

�
ð3:26Þ

whose graph is shown in Fig. 3.14.

u[n]

n
0

1

123 1 2 3

1 1 1

Fig. 3.13 Unit step function,
i.e., signal
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The relation between u½n� and d½n� can be written as

d n½ � ¼ u n½ � � u½n� 1� ð3:27Þ

or as

u n½ � ¼
X1
k¼0

d½n� k� ð3:28Þ

which is equal to

u n½ � ¼
Xn
k¼�1

d½k�: ð3:29Þ

Exponential Digital Signal
The exponential digital signal is defined as

x n½ � ¼ ejw0n ð3:30Þ

which can also be written in the form

x n½ � ¼ cos w0nð Þþ j sin w0nð Þ: ð3:31Þ

Example 3.11 Simplify e�jk2p.

Solution 3.11 Using (3.31), we have

e�jk2p ¼ cos �k2pð Þþ j sin �k2pð Þ ¼ cos k2pð Þ|fflfflfflfflffl{zfflfflfflfflffl}
¼1

þ j sin �k2pð Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

As a special case for k ¼ 1, we have e�j2p ¼ 1:

Example 3.12 Verify the following equality

XN�1
k¼0

e�j
2p
N km ¼ N if m ¼ 0

0 otherwise:

�
ð3:32Þ

[n]

n
0

1

123 1 2 3

Fig. 3.14 Unit impulse
function, i.e., signal
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Solution 3.12 Let’s open the summation expression in (3.32) as follows

XN�1
k¼0

e�j
2p
N km ¼ 1þ e�j

2p
Nmþ e�j

2p
N 2mþ � � � þ e

�j2pN N�1ð Þm
� �

: ð3:33Þ

The right hand side of (3.33) can be simplified using the property

1þ xþ x2þ x3þ � � � þ xN�1 ¼ 1� xN

1� x
ð3:34Þ

as in

1þ e�j
2p
Nmþ e�j

2p
N 2mþ � � � þ e�j

2p
N N�1ð Þm

� �
¼ 1� e�j

2p
NmN

1� e�j
2p
Nm
¼ 1� e�j2pm

1� e�j
2p
Nm

: ð3:35Þ

And for m 6¼ 0 using the result in, (3.35), we obtain

1� e�j2pm

1� e�j
2p
Nm
¼ 1� 1

1� e�j
2p
Nm
! 0: ð3:36Þ

Hence we have

XN�1
k¼0

e�j
2p
N km ¼ 0; m 6¼ 0: ð3:37Þ

And for m ¼ 0 using the result in (3.35), we obtain

XN�1
k¼0

e�j
2p
N km ¼

XN�1
k¼0

1! N: ð3:38Þ

Combining (3.37) and (3.38), we obtain

XN�1
k¼0

e�j
2p
N km ¼ N if m ¼ 0

0 otherwise:

�
ð3:39Þ

3.2 Review of Signal Types

Basically we can divide signals into two categories as, continuous and digital
signals. And in both classes, we can have periodic and non-periodic (aperiodic)
signals, and Fourier transform and representation methods are defined for these
classes of signals. In Fig. 3.15; the relation between signals and their transform or
representation types are summarized.
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Let’s briefly review the signal types, their transformations and representations.
Non-periodic Continuous Time Signals
If xcðtÞ is a non-periodic continuous time signal, then its Fourier is defined as

Xc wð Þ ¼
Z1
�1

xc tð Þe�jwtdt ð3:40Þ

and its inverse Fourier transform is given as

xc tð Þ ¼ 1
2p

Z1
�1

Xc wð Þejwtdw ð3:41Þ

where w ¼ 2pf is the angular frequency. The Fourier transform and inverse Fourier
transform pairs show small differences in their coefficients in literature. In general,
Fourier transform and inverse Fourier transform can be defined as

Xc wð Þ ¼ K1

Z1
�1

xc tð Þe�jwtdt ð3:42Þ

Signals

Periodic Continuous 
Time Signals

Continuous Time 
Signals

 Digital Signals

Aperiodic Continuous 
Time Signals

Periodic Digital 
Signals

Aperiodic Digital 
Signals

Fourier Series 
Representation

Fourier Transform

Fourier Transform Discrete Time Fourier 
Series Representation

Discrete Time Fourier 
Transform

Discrete Time Fourier 
Transform

Discrete Fourier 
Trasform

Fig. 3.15 Signals types, their transformations and representations
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and

xc tð Þ ¼ K2

Z1
�1

Xc wð Þejwtdw ð3:43Þ

where

K1 � K2 ¼ 1
2p

: ð3:44Þ

Thus if K1 ¼ 1=
ffiffiffiffiffiffi
2p
p

, then K2 should be 1=
ffiffiffiffiffiffi
2p
p

so that K1 � K2 ¼ 1=2p. As
another example if K1 ¼ 1=2p then K2 ¼ 1:

Periodic Continuous Time Signals
If ~xc tð Þ is a periodic signal with fundamental period T , then

~xc tð Þ ¼ ~xc tþmTð Þ: ð3:45Þ

And for the periodic signal ~xc tð Þ the Fourier series representation is defined as

~xc tð Þ ¼ 1
T

X1
k¼�1

~x k½ �ejk2pT t ð3:46Þ

where the Fourier series coefficients ~x k½ � are computed by using

~xc k½ � ¼
Z
T

~xcðtÞe�jk2pT tdt: ð3:47Þ

If we define 2p=T by w0, i.e., w0 ¼ 2p=T , then the above equations can also be
written as

~xc tð Þ ¼ 1
T

X1
k¼�1

~xc k½ �ejkw0t ð3:48Þ

and

~xc k½ � ¼
Z
T

~xcðtÞe�jkw0tdt ð3:49Þ

In general, the Fourier series representation of ~xc tð Þ and its Fourier series
coefficients are given as
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~xc tð Þ ¼ K1

X1
k¼�1

~xc k½ �ejkw0t ð3:50Þ

and

~xc k½ � ¼ K2

Z
T

~xcðtÞe�jkw0tdt ð3:51Þ

where the coefficients satisfy K1 � K2 ¼ 1=T . Hence, if K1 ¼ 1=
ffiffiffiffi
T
p

then K2 ¼
1=

ffiffiffiffi
T
p

and Fourier series representation and Fourier coefficients expressions
becomes as

~xcðtÞ ¼ 1ffiffiffiffi
T
p

X1
k¼�1

~xc½k�ejkw0t ð3:52Þ

and

~xc½k� ¼ 1ffiffiffiffi
T
p

Z
T

~xcðtÞe�jkw0tdt: ð3:53Þ

Now let’s assume that one period of ~xc tð Þ is xc tð Þ, i.e., xc tð Þ is an aperiodic
signal. Then the Fourier series coefficients of ~xcðtÞ is computed as

~xc½k� ¼
Z
T

~xcðtÞe�jkw0tdt! ~xc½k� ¼
Z1
1

xcðtÞe�jkw0tdt: ð3:54Þ

And the Fourier transform of xc tð Þ is

Xc wð Þ ¼
Z1
�1

xc tð Þe�jwtdt ð3:55Þ

When (3.54) and (3.55) are compared to each other as in

~xc k½ � ¼
Z1
1

xcðtÞe�jkw0tdt$ Xc wð Þ ¼
Z1
�1

xc tð Þe�jwtdt ð3:56Þ
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we see that

~xc k½ � ¼ Xc wð Þjw¼kw0
ð3:57Þ

where

w0 ¼ 2p
T

: ð3:58Þ

And the relation between ~xcðtÞ and xc tð Þ can be written as

~xcðtÞ ¼
X1
k¼�1

xc t � kTð Þ: ð3:59Þ

The Fourier transform of the periodic continuous time signal is defined as

~xc wð Þ ¼ 2p
T

X1
k¼�1

~xc k½ �d w� kw0ð Þ; w0 ¼ 2p=T : ð3:60Þ

Aperiodic Digital Signals
The discrete time Fourier transform for the aperiodic digital signal x½n� is defined

as

Xn wð Þ ¼
X1
n¼�1

x n½ �e�jwn ð3:61Þ

where w ¼ 2pf is the angular frequency, and the inverse Fourier transform is
defined as

x n½ � ¼ 1
2p

Z
2p

Xn wð Þejwndw: ð3:62Þ

The Fourier transform function of x½n�, i.e., Xn wð Þ is a continuous function of w
and it is also a periodic function with period 2p, i.e.,

Xn wð Þ ¼ Xn wþ k2pð Þ: ð3:63Þ

Periodic Digital Signals
If the digital signal ~x½n� is a periodic signal, then ~x n½ � ¼ ~x nþ lN½ � l;N 2 Z and N

is called fundamental period of ~x n½ �:
For the digital periodic signal ~x n½ �, the Fourier series representation is defined as
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~x n½ � ¼ 1
N

X
k;N

~xn k½ �ejk2pN n ð3:64Þ

where the Fourier series coefficients are computed using

~xn k½ � ¼
X
n;N

~x n½ �e�jk2pN n: ð3:65Þ

Note:
P
n;N
�ð Þ means summation is taken over any interval of length N; i.e.,

summation is taken over one period length.
In general, the Fourier series representation and calculation of Fourier series

coefficient of periodic signals are done via

~x n½ � ¼ K1

X
k;N

~xn k½ �ejk2pN n ð3:66Þ

and

~xn k½ � ¼ K2

X
n;N

~x n½ �e�jk2pN n ð3:67Þ

such that

K1 � K2 ¼ 1
N
: ð3:68Þ

The Fourier transform of the periodic digital signal ~x n½ � is

~x wð Þ ¼ 2p
N

X1
k¼�1

~xn k½ �d w� kw0ð Þ; w0 ¼ 2p
N

: ð3:69Þ

Example 3.13 If the Fourier series representation of digital periodic signal ~x n½ � is

~x n½ � ¼ 1
N

X
k;N

~xn k½ �ejk2pN n ð3:70Þ

then verify that the Fourier series coefficients as obtained using

~xn k½ � ¼
X
n;N

~x n½ �e�jk2pN n: ð3:71Þ
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Solution 3.13 If the Fourier series coefficients are obtained using

~xn k½ � ¼
X
n;N

~x n½ �e�jk2pN n ð3:72Þ

then when (3.72) is substituted into

~x n½ � ¼ 1
N

X
k;N

~xn k½ �ejk2pN n ð3:73Þ

we should get ~x n½ � on the right hand side of (3.73). That is

~x n½ � ¼ 1
N

X
k;N

X
r;N

~x r½ �e�jk2pN r
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

~xn k½ �

ejk
2p
N n

¼ 1
N

XN�1
k¼0

XN�1
r¼0

~x r½ �e�jk2pN rejk2pN n

¼ 1
N

XN�1
k¼0

XN�1
r¼0

~x r½ �e�jk2pN r�nð Þ

¼ 1
N

XN�1
r¼0

~x r½ �
XN�1
k¼0

e�jk
2p
N r�nð Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼

N if r ¼ n

0 otherwise

�

¼ 1
N
N~x n½ �

¼ ~x n½ �

ð3:74Þ

Convolution of Aperiodic Digital Signals
For aperiodic digital signals x n½ �; y½n�, the convolution operation is defined as

x n½ � 	 y n½ � ¼
X1
k¼�1

x k½ �y n� k½ � ð3:75Þ

or

x n½ � 	 y n½ � ¼
X1
k¼�1

x n� k½ �y k½ �: ð3:76Þ
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3.3 Convolution of Periodic Digital Signals

Let ~xn n½ � and ~x2 n½ � be digital periodic signals with common period N, i.e., ~x1 n½ � ¼
~x1 nþN½ � and ~x2 n½ � ¼ ~x2 nþN½ �:

The period convolution of ~x1 n½ � and ~x2 n½ � is defined as

~x3 n½ � ¼
XN�1
m¼0

~x1 m½ �~x2 n� m½ �: ð3:77Þ

The digital sequence ~x3 n½ � is also periodic with period N. How to calculate
periodic convolution? This is explained as follows.

(1) Since ~x3 n½ � is periodic with the same period N; we can focus on the calculation
of one period of ~x3 n½ � starting from 0, i.e., consider 0� n�N � 1.

(2) When the summation in (3.77) is expanded, we get

~x3 n½ � ¼ ~x1 0½ �~x2 n½ � þ~x1 1½ �~x2 n� 1½ � þ � � � þ~x1 N � 1½ �~x2 n� ðN � 1Þ½ � ð3:78Þ

where we can use only one period of ~x2 n½ �;~x2 n� 1½ �; and ~x2 N � 1½ �; 0� n�N � 1.

Example 3.14 The periodic signals ~x1 n½ � and ~x2 n½ � with period N ¼ 4 are shown in
Fig. 3.16. Calculate their 4-point periodic convolution.

Solution 3.14 The periodic convolution for the given signals is calculated using

~x3 n½ � ¼
XN�1
m¼0

~x1 m½ �~x2 n� m½ �: ð3:79Þ
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Fig. 3.16 The periodic signals ~x1 n½ � and ~x2 n½ � for Example 3.14
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When the summation in (3.79) is expanded for N ¼ 4; we get

~x3 n½ � ¼ ~x1 0½ �~x2 n½ � þ~x1 1½ �~x2 n� 1½ � þ~x1 2½ �~x2 n� 2½ � þ~x1 3½ �~x2 n� 3½ �: ð3:80Þ

One period of ~x2 n½ �;~x2 n� 1½ �;~x2 n� 2½ �; and ~x2 n� 3½ � for 0� n� 3 can be
calculated using rotate right operation yielding

~x2op n½ � ¼ �1 1 1 �1½ �
~x2op n� 1½ � ¼ �1 �1 1 1½ �
~x2op n� 2½ � ¼ 1 �1 �1 1½ �
~x2op n� 3½ � ¼ 1 1 �1 �1½ �:

ð3:81Þ

Substituting (3.81) into (3.80), one period of ~x3 n½ � is calculated as

~x3op n½ � ¼ ~x1 0½ �~x2op n½ � þ~x1 1½ �~x2op n� 1½ � þ~x1 2½ �~x2op n� 2½ �
þ~x1 3½ �~x2op n� 3½ �

yielding

~x3op n½ � ¼ 1� �1 1 1 �1½ � þ 1� �1 �1 1 1½ � � 1� 1 �1 �1 1½ �
þ 2� 1 1 �1 �1½ �

which can be simplified as

~x3op n½ � ¼ �1 3 1 �3½ �: ð3:82Þ

Using (3.82), the periodic convolution result can be written as

~x3 n½ � ¼ ½� � � � 1 3 1� 3 �1|{z}
n¼0

3 1� 3 �1 3 1 �3 � � ��:

3.3.1 Alternative Method to Compute the Periodic
Convolution

The periodic convolution expression

~x3 n½ � ¼
XN�1
m¼0

~x1 m½ �~x2 n� m½ � ð3:83Þ
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can be computed for n ¼ 0; 1; . . .;N � 1 as

n ¼ 0; ~x3 0½ � ¼
PN�1
m¼0

~x1 m½ �~x2 �m½ �

n ¼ 1; ~x3 1½ � ¼
PN�1
m¼0

~x1 m½ �~x2 1� m½ �

n ¼ 2; ~x3 2½ � ¼
PN�1
m¼0

~x1 m½ �~x2 2� m½ �

..

.

n ¼ N � 1; ~x3 N � 1½ � ¼ PN�1
m¼0

~x1 m½ �~x2 ðN � 1Þ � m½ �:

Now let’s consider

~x3 0½ � ¼
XN�1
m¼0

~x1 m½ �~x2 �m½ � ð3:84Þ

when expanded for N ¼ 3; we get

~x3 0½ � ¼ ~x1 0½ �~x2 0½ � þ~x1 1½ �~x2 �1½ � þ~x1 2½ �~x2 �2½ � þ~x1 3½ �~x2 �3½ � ð3:85Þ

Since ~x3 n½ � ¼ ~x3 nþ 4½ �, we have

~x2 �1½ � ¼ ~x2 3½ �; ~x2 �2½ � ¼ ~x2 2½ �; ~x2 �3½ � ¼ ~x2 1½ �: ð3:86Þ

Using (3.86) in (3.85), we obtain

~x3 0½ � ¼ ~x1 0½ �~x2 0½ � þ~x1 1½ �~x2 3½ � þ~x1 2½ �~x2 2½ � þ~x1 3½ �~x2 1½ � ð3:87Þ

which can be written as the dot product of the vectors

½~x1 0½ � ~x1 1½ � ~x1 2½ � ~x1 3½ �� and ½~x2 0½ � ~x2 0½ � ~x2 2½ � ~x2 1½ � �

where it is clear that the vector ½~x2 0½ � ~x2 3½ � ~x2 3½ � ~x2 1½ � � can be obtained from
one period of ~x2 n½ � via rotate inside operation.

Hence we can write

~x3 0½ � ¼
XN�1
m¼0

~x1 m½ �~x2 �m½ � ! ~x3 0½ � ¼ ~x1op m½ � 	 ~x2op �m½ � ð3:88Þ

~x3 1½ � ¼
XN�1
m¼0

~x1 m½ �~x2 1� m½ � ! ~x3 1½ � ¼ ~x1op m½ � 	 ~x2op 1� m½ �: ð3:89Þ
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Equation (3.89) can be written as

~x3 1½ � ¼
XN�1
m¼0

~x1 m½ �~x2 1� m½ � ! ~x3 1½ � ¼ ~x1op m½ � 	 RR ~x2op �m½ �	 
 ð3:90Þ

and in a similar manner

~x3 2½ � ¼
XN�1
m¼0

~x1 m½ �~x2 2� m½ � ! ~x3 2½ � ¼ ~x1op m½ � 	 RR ~x2op 1� m½ �	 
 ð3:91Þ

~x3 3½ � ¼
XN�1
m¼0

~x1 m½ �~x2 3� m½ � ! ~x3 3½ � ¼ ~x1op m½ � 	 RR ~x2op 2� m½ �	 
 ð3:92Þ

..

.

~x3 N � 1½ � ¼
XN�1
m¼0

~x1 m½ �~x2 N � 1� m½ � !

~x3 N � 1½ � ¼ ~x1op m½ � 	 RR ~x2op N � 2� m½ �	 
 ð3:93Þ

Example 3.15 The periodic signals ~x1 n½ � and ~x2 n½ � with period ¼ 4 are shown in
Fig. 3.17. Calculate their 4-point periodic convolution using alternative periodic
convolution method.
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Fig. 3.17 The periodic signals ~x1 n½ � and ~x2 n½ � for Example 3.15
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Solution 3.15 When the periodic convolution expression

~x3 n½ � ¼
XN�1
m¼0

~x1 m½ �~x2 n� m½ �

is calculated for n ¼ 0; 1; . . .;N � 1, we get

~x3 0½ � ¼ ~x1op m½ � 	 ~x2op �m½ �
~x3 1½ � ¼ ~x1op m½ � 	 ~x2op 1� m½ �
~x3 2½ � ¼ ~x1op m½ � 	 RR ~x2op 1� m½ �	 

~x3 3½ � ¼ ~x1op m½ � 	 RR ~x2op 2� m½ �	 


:

ð3:94Þ

One period of ~x2 n½ � for 0� n� 3 is

~x2op m½ � ¼ �1 1 1 �1½ �:

Then

~x2op �m½ � ¼ �1 �1 1 1½ �
~x2op 1� m½ � ¼ RRð~x2op �m½ �Þ ! RRð~x2op �m½ �Þ ¼ 1 �1 �1 1½ �
~x2op 2� m½ � ¼ RRð~x2op 1� m½ �Þ ! RRð~x2op �m½ �Þ ¼ 1 1 �1 �1½ �
~x2op 3� m½ � ¼ RRð~x2op 2� m½ �Þ ! RRð~x2op �m½ �Þ ¼ �1 1 1 �1½ �

ð3:95Þ

and

~x1op m½ � ¼ 1 1 �1 2½ �: ð3:96Þ

Using (3.95) and (3.96) in (3.94), we can calculate the periodic convolution
values as

~x3 0½ � ¼ 1 1 �1 2½ � 	 �1 �1 1 1½ � !
~x3 0½ � ¼ 1 �1ð Þþ 1 �1ð Þþ �1ð Þ1þ 2� 1!
~x3 3½ � ¼ �1

~x3 1½ � ¼ 1 1 �1 2½ � 	 1 �1 �1 1½ � ! ~x3 1½ � ¼ 3

~x3 2½ � ¼ 1 1 �1 2½ � 	 1 1 �1 �1½ � ! ~x3 2½ � ¼ 1

~x3 3½ � ¼ 1 1 �1 2½ � 	 �1 1 1 �1½ � ! ~x3 3½ � ¼ �3

3.3 Convolution of Periodic Digital Signals 169



Hence,

~x3op n½ � ¼ �1 3 1 �3½ �:

Then the periodic convolution result becomes as

~x3 n½ � ¼ ½� � � �1 3 1 �3 �1|{z}
n¼0

3 1 �3 1 3 1 �3 � � ��:

3.4 Sampling of Fourier Transform

The Fourier transform XnðwÞ of a non-periodic digital signal x½n� is a continuous
function of w and it is periodic with period 2p, i.e., Xn wð Þ ¼ Xnðwþ 2pÞ .
Example 3.16 The Fourier transform of the signal x n½ � ¼ 1

2 d nþ 1½ � þ 1
2 d n� 1½ � is

calculated as

Xn wð Þ ¼
X1
n¼�1

x n½ �e�jwn

¼
X1
n¼�1

1
2
d nþ 1½ � þ 1

2
d n� 1½ �

� �
e�jwn

¼ 1
2

ejwþ e�jw
	 


¼ cos wð Þ:

ð3:97Þ

The aperiodic digital signal x n½ � and its Fourier transform is shown in Fig. 3.18.
Let’s generate the periodic signal ~x n½ � with period N from x½n� via

~x n½ � ¼
X1
l¼�1

x½n� lN�: ð3:98Þ
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Fig. 3.18 The aperiodic digital signal x n½ � in Example 3.16 and its Fourier transform
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The Fourier series coefficients of the periodic signal ~x n½ � in (3.98) are obtained
from the Fourier transform of x½n�, i.e., XnðwÞ, via sampling operation in frequency
domain as in

~X k½ � ¼ XnðwÞjw¼kws
ð3:99Þ

where ws ¼ 2p
N is the sampling period in radian unit.

Example 3.17 ~x n½ � is a periodic signal with period N ¼ 4, and we have x n½ � ¼
1
2 d nþ 1½ � þ 1

2 d n� 1½ � for one period of this signal. In addition, the periodic signal
can be obtained from its one period via

~x n½ � ¼
X1
l¼�1

x½n� lN�: ð3:100Þ

Find the Fourier series coefficients of ~x n½ � using XnðwÞ the Fourier transform of
x n½ �:
Solution 3.17 In Example 3.17, we found the Fourier transform of x n½ � ¼
1
2 d nþ 1½ � þ 1

2 d n� 1½ � as

Xn wð Þ ¼ cos wð Þ:

The Fourier series coefficients, i.e., ~X k½ �, of ~x n½ � can be obtained via sampling
operation in frequency using

~X k½ � ¼ XnðwÞjw¼kws
ð3:101Þ

where ws ¼ 2p
N ! ws ¼ 2p

4 ! ws ¼ p
2. Hence (3.101) yields

~X k½ � ¼ XnðwÞjw¼kws
! ~X k½ � ¼ cosðwÞjw¼kp

2
! ~X k½ � ¼ cos

kp
2

� �
: ð3:102Þ

The graphical illustration of the sampling operation in frequency domain is
explained in Fig. 3.19.
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3.5 Discrete Fourier Transform

The Fourier series coefficients, i.e., ~X k½ �, is a periodic function which can have
complex or real values. The Fourier series coefficients ~X k½ � satisfy ~X k½ � ¼ ~X kþN½ �
where N is the period of the digital signal ~x n½ �.

The periodic signal ~x n½ � with period N has the Fourier series coefficients

~X k½ � ¼
XN�1
n¼0

~x n½ �e�j2pN kn ð3:103Þ

and for 0� n\N, ~x n½ � ¼ x½n� where x½n� is one period of ~x n½ �. Then (3.103) can be
written as

~X k½ � ¼
XN�1
n¼0

x n½ �e�j2pN kn ð3:104Þ

which is also a periodic signal with the same period as the time domain signal ~x n½ �.
Let’s consider one period of ~X k½ �
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Fig. 3.19 Fourier series coefficients are obtained from Fourier transform via sampling operation
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X k½ � ¼ ~X k½ � if 0� k\N
0 otherwise

�
ð3:105Þ

which is called the discrete Fourier transform of x½n�. Thus, N � point discrete
Fourier transform of x½n� is defined as

X k½ � ¼
XN�1
n¼0

x n½ �e�j2pN kn; 0� k\N: ð3:106Þ

Similarly, N � point inverse Fourier transform is defined as

x n½ � ¼ 1
N

XN�1
k¼0

X k½ �ej2pN kn; 0� n\N:

A more general definition for N-point DFT is

X k½ � ¼
X
n;N

x n½ �e�j2pN kn; k;N: ð3:107Þ

and for the N-point inverse DFT, a more general definition is

x n½ � ¼ 1
N

X
k;N

X k½ �ej2pN kn; n;N: ð3:108Þ

In addition, Fourier series coefficients of a periodic signal can be obtained from
the Fourier transform of its one period using

~X k½ � ¼ XnðwÞjw¼kws
ws ¼ 2p

N
: ð3:109Þ

And using the definition

X k½ � ¼ ~X k½ � if 0� k\N
0 otherwise

�
ð3:110Þ

we can write

X k½ � ¼ XnðwÞjw¼kws
; ws ¼ 2p

N
; 0� k\N ð3:111Þ

which means that the discrete Fourier transform of x½n� is nothing but a mathe-
matical sequence obtained from one period of XnðwÞ via sampling operation in
frequency domain, and the sampling period is chosen as ws ¼ 2p

N .
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Example 3.18 Find the discrete Fourier transform of

x n½ � ¼ 1 1 �1 2½ �:
Solution 3.18 For the given signal if the DFT formula

X k½ � ¼
X4�1
n¼0

x n½ �e�j2p4 kn; 0� k\4 ð3:112Þ

is expanded, the coefficients are found as

X k½ � ¼ x 0½ �|{z}
1

�e0þ x 1½ �|{z}
1

�e�j2p4 k þ x 2½ �|{z}
�1

�e�j2p4 k2þ x 3½ �|{z}
2

�e�j2p4 k3: ð3:113Þ

When (3.113) is simplified, we obtain

X k½ � ¼ 1þ e�j
p
2k � 1e�jpk þ 2e�j

3p
2 k ð3:114Þ

Evaluating (3.114), i.e., X k½ �, for k ¼ 0; 1; 2; 3, we get

X 0½ � ¼ 3 X 1½ � ¼ 2þ j X 2½ � ¼ �3 X 3½ � ¼ 2� j

which can be written in short as

X k½ � ¼ 3 2þ j �3 2� j½ �:

Example 3.19 Find the aperiodic digital signal whose DFT coefficients are given as

X k½ � ¼ 3 2þ j �3 2� j½ �:
Solution 3.19 Using X k½ � in inverse DFT formula

x½n� ¼ 1
4

X4�1
k¼0

X½k�ej2p4 kn; 0� n\4 ð3:115Þ

we obtain

x n½ � ¼ 1
4

X 0½ �|{z}
3

ej0þ X 1½ �|{z}
2þ j

ej
2p
4 1nþ X 2½ �|{z}

�3

ej
2p
4 2nþ X 3½ �|{z}

2�j

ej
2p
4 3n

0
B@

1
CA: ð3:115Þ
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When (3.115) is simplified, we get

x n½ � ¼ 1
4

3þð2þ jÞejp2n � 3ejpnþð2� jÞej3p2 n
� �

ð3:116Þ

Evaluating (3.116), i.e., x½n�, for n ¼ 0; 1; 2; 3, we obtain,

x 0½ � ¼ 1 x 1½ � ¼ 1 x 2½ � ¼ �1 x 3½ � ¼ 2

which can be written in short as

x n½ � ¼ 1 1 �1 2½ �:

Note: Remember that ejh ¼ cos hð Þþ j sinðhÞ.
Example 3.20 Find the discrete Fourier transform of the signal shown in Fig. 3.20.

Solution 3.20 Using the DFT formula

X k½ � ¼
X
n;N

x n½ �e�j2pN kn k;N

for N ¼ 3, we obtain

X k½ � ¼
X1
n¼�1

x n½ �e�j2pN kn � 1� k� 1: ð3:117Þ

When (3.117) is expanded, we get

X k½ � ¼ x �1½ �|fflffl{zfflffl}
1=2

e�j
2p
3 kð�1Þ þ x 1½ �|{z}

1=2

e�j
2p
3 k1; �1� k� 1 ð3:118Þ

which is simplified as

X k½ � ¼ cos
2p
3
k

� �
; �1� k� 1: ð3:119Þ
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Fig. 3.20 Aperiodic signal
for Example 3.20
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From (3.115) DFT coefficients can be calculated as

k ¼ �1! X �1½ � ¼ � 1
2

k ¼ 0! X 0½ � ¼ 1

k ¼ 1! X 1½ � ¼ � 1
2

That is,

X k½ � ¼ ½�
1
2

1
1|{z}

k¼0

� 1
2 �:

Note: For the previous example, discrete Fourier transform is calculated for
N ¼ 3 which is equal to the length of the aperiodic sequence x n½ �. Hence, if it is not
clearly mentioned, the default length of the DFT computation is the same as the
length of the aperiodic sequence x½n�.
Example 3.21 DFT coefficients of an aperiodic signal are given as

X k½ � ¼ ½�
1
2

1
1|{z}

k¼0

� 1
2 �: ð3:120Þ

Find x½n� whose DFT coefficients are X½k�.
Solution 3.21 If we use inverse DFT formula

x n½ � ¼ 1
N

X
k;N

X k½ �ej2pN kn; n;N

for the given signal, we get

x n½ � ¼ 1
3

X1
k¼�1

X k½ �ej2p3 kn; �1� n� 1: ð3:121Þ

When the summation term in (3.121) is expanded, we obtain

x n½ � ¼ 1
3

X �1½ �|fflffl{zfflffl}
�1=2

e�j
2p
3 nþ X 0½ �|{z}

1

e0þ X 1½ �|{z}
�1=2

ej
2p
3 n

0
B@

1
CA

176 3 Discrete Fourier Transform



which is simplified as

x n½ � ¼ 1
3
� 1
2
e�j

2p
3 nþ 1� 1

2
ej

2p
3 n

� �
: ð3:122Þ

Let’s evaluate (3.122), i.e., x½n�, for n ¼ �1; 0; 1. We first calculate for n ¼ �1
as

x �1½ � ¼ 1
3
� 1
2
e�j

2p
3 ð�1Þ þ 1� 1

2
ej

2p
3 ð�1Þ

� �

which is simplified as

x �1½ � ¼ 1
3
�cosð2p

3
Þþ 1

� �
! x �1½ � ¼ 1

3
1
2
þ 1

� �
! x �1½ � ¼ 1

2

and for n ¼ 0, we have

x n½ � ¼ 1
3
� 1
2
e0þ 1� 1

2
e0

� �
! x n½ � ¼ 0

and finally for n ¼ 1, we get

x 1½ � ¼ 1
3
� 1
2
e�j

2p
3 ð1Þ þ 1� 1

2
ej

2p
3 ð1Þ

� �

which is simplified as

x 1½ � ¼ 1
3
�cosð2p

3
Þþ 1

� �
! x 1½ � ¼ 1

3
1
2
þ 1

� �
! x 1½ � ¼ 1

2
:

Thus the signal x½n� has the values

x �1½ � ¼ 1
2 x 0½ � ¼ 0 x 1½ � ¼ 1

2

which is written in more compact form as

x n½ � ¼ ½
1
2 0|{z}

n¼0

1
2 �: ð3:123Þ

Question: For the previous example if we evaluate

x n½ � ¼ 1
3
� 1
2
e�j

2p
3 nþ 1� 1

2
ej

2p
3 n

� �
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for n ¼ 0; 1; and 2, we obtain

x n½ � ¼ ½ 0|{z}
n¼0

1
2

1
2 �: ð3:124Þ

When (3.123) and (3.124) are compared to each other, we see that (3.124) can be
obtained from (3.123) by rotate left or rotate right operations.

Example 3.22 Find the 8-point discrete Fourier transform of the signal in Fig. 3.21.

Solution 3.22 Although the length of the aperiodic signal equals to 2, the DFT will
be calculated for 8-points. For this reason, we first pad the signal by zeros so that its
length equals to 8. So the finite length signal becomes as

x n½ � ¼ ½�1 0|{z}
n¼0

1 0 0 0 0 0�:

And the 8-point DFT is computed using

X k½ � ¼
X6
n¼�1

x n½ �e�j2p8 kn; �1� k� 6: ð3:125Þ

When the summation in (3.125) is expanded, we get

X k½ � ¼ 1
2

� �
� e�j

2p
8 k �1ð Þ þ 0� e�j

2p
8 k0þ 1

2

� �
� e�j

2p
8 k1þ 0� e�j

2p
8 k2

þ 0� e�j
2p
8 k3þ 0� e�j

2p
8 k4þ 0� e�j

2p
8 k5þ 0� e�j

2p
8 k6

which is simplified as

X k½ � ¼ 1
2

ej
2p
8 k þ e�j

2p
8 kn

� �
: ð3:126Þ
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Fig. 3.21 Aperiodic signal
for Example 3.22
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Equation (3.126) can be written in terms of cosð�Þ function as

X k½ � ¼ cos
2p
8
k

� �
; �1� k� 6: ð3:127Þ

And when the Fourier series coefficients in (3.127) are explicitly calculated, we
obtain

X k½ � ¼ cos � 2p
8

	 

cos 0ð Þ cos 2p

8

	 

cos 4p

8

	 

cos 6p

8

	 

cos 8p

8

	 

cos 10p

8

	 

cos 12p

8

	 
� �
which is simplified as

X k½ � ¼ ½0:7071 1|{z}
k¼0

0:7071 0 �0:7071 �1 �0:7071 0�:

Example 3.23 DFT coefficients are complex numbers. And those complex coeffi-
cients have magnitude and phase values. For the DFT coefficients

X k½ � ¼ 3 2þ j �3þ j 2� j½ �

find X k½ �j j, i.e., magnitudes of the DFT coefficients, and \X k½ �, i.e., phase infor-
mation of DFT coefficients.

Solution 3.23 For the complex number x ¼ aþ bj the magnitude and phase
information is calculated as

xj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ b2ð Þ

p
; \ tan�1

b
a

� �
: ð3:128Þ

Using (3.128) the magnitude and phase of each DFT coefficient is calculated as

X 0½ �j j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ 02
p ! 3 \X 0½ � ¼ tan�1 0

3! 0
X 1½ �j j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22þ 12
p ! ffiffiffi

5
p

\X 1½ � ¼ tan�1 1
2! 0:15p

X 2½ �j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�3Þ2þ 12

q
! ffiffiffiffiffi

10
p

\X 2½ � ¼ tan�1� 1
3! �0:1p

X 3½ �j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22þð�1Þ2

q
! ffiffiffi

5
p

\X 3½ � ¼ tan�1� 1
2! �0:15p

Magnitude and phase values are plotted in Fig. 3.22.

Example 3.24 One period of the discrete time Fourier transform of the non-periodic
signal x½n� is given in Fig. 3.23. Using the given Fourier transform graph:

(a) Find the 4-point DFT of x n½ �. (b) Find the 8-point DFT of x½n�. (c) Find the
16-point DFT of x½n�.
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Solution 3.24

(a) DFT coefficients are obtained by sampling of XnðwÞ in frequency domain. That
is,

X k½ � ¼ XnðwÞjw¼kws
ws ¼ 2p

N
: ð3:129Þ

Since N ¼ 4, we take 4 samples from one period of XnðwÞ. The sampling period
is

ws ¼ 2p
8
! ws ¼ 2p

4
:

The sampling operation is illustrated in Fig. 3.24.

k0 1 2 3

|][| kX

3
5

10

5

][kX

k0 1 2 3

15.0

15.01.0

Fig. 3.22 Magnitude and phase plot of DFT coefficients in Example 3.23
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Fig. 3.23 One period of the discrete time Fourier transform of a non-periodic signal
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Considering Fig. 3.24, the DFT coefficients can be written as

X k½ � ¼ 0 3 1:25 0:75½ �:

(b) For N ¼ 8, we take 8 samples from one period of XnðwÞ. The sampling period
is

ws ¼ 2p
8
! ws ¼ p

4
:

The sampling operation for N ¼ 8 is illustrated in Fig. 3.25.
Thus the DFT coefficients obtained in Fig. 3.25 can be written as a mathematical

sequence as

X k½ � ¼ 0 2 3 3 1:25 0:75 0:75 0:32½ �:

4 4
4

4
2

4
5

4
3

4
6

)(wX n
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3

25.1
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4
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4
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0k 1k 2k 3k 4k 5k 7k6k

Fig. 3.25 Sampling of the Fourier transform for N ¼ 8

4
4

4
2

4
6

)(wX n

w

2

3

25.1
75.0

4
80

32.0

0k 1k 2k 3k

skww
4

2
sw

Fig. 3.24 Sampling of the Fourier transform for N ¼ 4
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Exercise: The aperiodic signal is given as x n½ � ¼ d n½ � þ d½n� 1�.
(a) Find the Fourier transform of x½n�, i.e., Xn wð Þ ¼ ?
(b) Find jXnðwÞj and \Xn wð Þ.
(c) If ~x n½ � ¼P1l¼�1 x½n� 4l�, draw ~x n½ � and using Xn wð Þ, find the Fourier series

coefficients of ~x n½ �, i.e., ~X k½ � ¼ ?
(d) Find 4-point DFT of x½n�

3.5.1 Aliasing in Time Domain

When we study sampling theorem, we have seen that during sampling operation if
we do not take sufficient number of samples from analog signal, we cannot per-
fectly reconstruct analog signal at the receiver side from its digital samples. And the
effect of this situation is seen as aliasing or overlapping in frequency domain.

We have seen that DFT coefficients of a non-periodic digital signal x½n� are
nothing but the samples taken from one period of its Fourier transform, for instance,
samples taken for 0�w\2p. We can reconstruct the digital signal x½n� from its
DFT coefficients using

xr n½ � ¼ 1
N

XN�1
k¼0

X k½ �ej2pN kn; 0� n\N: ð3:130Þ

Now we ask the question: Is xr n½ � always equal to x½n� ? If not always, then what
is the criteria for xr n½ � to be equal to x½n� ?

We know that N-point DFT coeffcients of x½n� equals to the one period of the
DFS coefficients of the periodic signal ~x½n�, and the relation between x½n� and ~x½n�
can be stated as

~x n½ � ¼
X1
k¼�1

x n� kN½ �: ð3:131Þ

Let the length of the digital signal x n½ � be M. If M[N, then the shifted suc-
cessor signals x n� kN½ � overlap each other. And when the shifted signals are
summed, one period of ~x n½ � is not equal to x½n� anymore. This means that using the
inverse DFT operation, x½n� cannot be obtained exactly. The amount of distortion in
the reconstructed signal depends on the overlapping amount.

Example 3.25 For x n½ � ¼ ½� 1 1 1 � and N ¼ 2, calculate

~x n½ � ¼
X1
k¼�1

x n� kN½ �:

Find one period of ~x n½ � and compare it to x½n�.
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Solution 3.25 The shifted signals are shown in Fig. 3.26.
The sum of the shifted signals in Fig. 3.26 yields the signal in Fig. 3.27.
As it is seen from Fig. 3.27, one period of ~x n½ � is [0 1] which is totally different

than x n½ � ¼ �1 1 1½ �.
Example 3.26 x n½ � ¼ �1 1 1½ �, calculate 2-point DFT of x½n� and using 2-point
DFT coefficients, calculate x½n� using the inverse DFT formula and comment on the
results.

Solution 3.26 2-point DFT coefficients of x n½ � ¼ �1 1 1½ � can be calculated
using

X k½ � ¼
X1
n¼0

x n½ �e�j2p2 kn; 0� k� 1

yielding

X2 k½ � ¼ 0 �2½ �:

and proceeding in a similar manner 3-point DFT coefficients can be found as

X3 k½ � ¼ 1 �2 2½ �:

If we use the 2-point inverse DFT formula for X2 k½ �

x n½ � ¼ 1
2

X1
k¼0

X2 k½ �ej2p2 kn; 0� n� 1

0 1 2 3 4 5 6
n123456

0 1 0 1 0 10 10 10 1

][nx
~

Fig. 3.27 Sum of the shifted signals in Fig. 3.26
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1 11

n
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][ nx

]2[nx
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]2[nx

]4[nx

1 11
1 11

1 11
1 11

Fig. 3.26 Shifted signals
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the aperiodic signal is found as

x n½ � ¼ �1 1½ �

which is truncated version of

x n½ � ¼ �1 1 1½ �:

3.5.2 Matrix Representation of DFT and Inverse DFT

Before generalizing the concept, let’s consider 3-point DFT of an aperiodic
sequence

X k½ � ¼
X2
n¼0

x n½ �e�j2p3 kn; 0� k� 2 ð3:132Þ

When the summation in (3.132) is expanded for each k value, we obtain the
following equations

X 0½ � ¼ x 0½ �e0þ x 1½ �e0þ x 2½ �e0

X 1½ � ¼ x 0½ �e0þ x 1½ �e�j2p3 þ x 2½ �e�j4p3
X 2½ � ¼ x 0½ �e0þ x 1½ �e�j4p3 þ x 2½ �e�j8p3 :

ð3:133Þ

The equation set in (3.133) can be written as

X½0�
X½1�
X½2�

2
4

3
5 ¼ x 0½ � x 1½ � x 2½ �½ � �

e0 e0 e0

e0 e�j
2p
3 e�j

4p
3

e0 e�j
4p
3 e�j

8p
3

2
4

3
5

which can be expressed in short as

�X k½ � ¼ �x n½ � � EN; N ¼ 3: ð3:134Þ

From (3.134) �x n½ � can be written as

�x n½ � ¼ �X k½ � � E�1N : ð3:135Þ
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In a similar manner, the inverse 3-point DFT formula can be written in matrix
form. Expanding

x n½ � ¼ 1
3

X2
k¼0

X k½ �ej2p3 kn; 0� n� 2 ð3:136Þ

we get

x 0½ � ¼ 1
3

X 0½ �e0þX 1½ �e0þX 2½ �e0	 

x 1½ � ¼ 1

3
X 0½ �e0þX 1½ �ej2p3 þX 2½ �ej4p3
� �

x 2½ � ¼ 1
3

X 0½ �e0þX 1½ �ej4p3 þX 2½ �ej8p3
� �

:

ð3:137Þ

The equation set in (3.137) can be written in matrix form as

x½0�
x½1�
x½2�

2
4

3
5 ¼ 1

3
� X 0½ � X 1½ � X 2½ �½ � �

e0 e0 e0

e0 ej
2p
3 ej

4p
3

e0 ej
4p
3 ej

8p
3

2
4

3
5: ð3:138Þ

When (3.138) is compared to (3.139)

�x n½ � ¼ �X k½ � � E�1N ð3:139Þ

we obtain

E�1N ¼
1
N
E	N: ð3:140Þ

Note: E	N is the conjugate of EN . If e ¼ aþ jb then conjugate of e is e	 ¼ a� jb
and if e ¼ ejh then e	 ¼ e�jh.

3.5.3 Properties of the Discrete Fourier Transform

Since there is a close relationship between discrete Fourier series coefficients of a
periodic signal and the discrete Fourier transform of its one period, it is logical to
review the properties of the discrete Fourier series coefficients of a periodic signal.

For the three periodic signals

~x n½ � ! Periodic with period N
~x1 n½ � ! Periodic with period N
~x2 n½ � ! Periodic with period N
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let’s denote the Fourier series coefficients by

~X k½ � ! Periodic with period N

~X1 k½ � ! Periodic with period N

~X2 k½ � ! Periodic with period N:

And the correspondence between signals and their DFS coefficients are shown as

~x n½ � $DFS ~X½k�
~x1 n½ � $DFS ~X1 k½ �
~x2 n½ � $DFS ~X2 k½ �:

Properties
Linearity:

a~x1 n½ � þ b~x2 n½ � $DFS a~X1 k½ � þ b~X2 k½ �

Duality:

~X n½ � $DFSN~x½�k�

Shifting in time:

~x n� m½ � $DFS e�j2pN km~X½k�

Shifting in frequency:

ej
2p
N ln~x n½ � $DFS ~X½k � l�

Convolution in time domain:

XN�1
m¼0

~x1 m½ �~x2½n� m� $DFS ~X1 k½ �~X2 k½ �

Convolution in frequency domain:

~x1 n½ �~x2 n½ � $DFS 1N
XN�1
k¼0

~X1 m½ �~X2½k � m�
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Conjugate:

~x	 �n½ � $DFS ~X	½k�

Real part DFS:

Re ~x n½ �f g $DFS 1
2

~X k½ � þ ~X	 �k½ �	 

Imaginary part DFS:

jIm ~x n½ �f g $DFS 1
2

~X k½ � � ~X	 �k½ �	 

Real part:

1
2

~x n½ � þ~x	 �n½ �ð Þ $DFSRef~X½k�g

Imaginary part:

1
2
ð~x n½ � � ~x	 �n½ �Þ $DFS jImf~X½k�g

For real ~x n½ �, we have the following properties
Conjugate:

~X k½ � ¼ ~X	½�k�

Real DFT coefficients:

Re ~X k½ � � ¼ Ref~X	 �k½ �g

Imaginary DFT coefficients:

Im ~X k½ � � ¼ �Imf~X	 �k½ �g

Absolute value:

~X k½ ��� �� ¼ ~X �k½ ��� ��
Phase value:

\~X k½ � ¼ �\~X �k½ �
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Real part:

1
2

~x n½ � þ~x �n½ �ð Þ $DFSRef~X½k�g

Imaginary part:

1
2
ð~x n½ � � ~x �n½ �Þ $DFS jImf~X½k�g

Note: If x n½ � ¼ a n½ � þ jb½n�, then x	 n½ � ¼ a n½ � � jb½n�

3.5.4 Circular Convolution

The discrete Fourier transform of an aperiodic sequence x½n� with length N equals to
the one period of the Fourier series coefficients of the periodic signal ~x n½ � obtained
from x½n� as

~x n½ � ¼
X1
k¼�1

x½n� kN�

and the relation between DFT coefficients of x½n� and one period of Fourier series
coefficients of the periodic signal ~x n½ � is given as

X k½ � ¼ ~X k½ � if 0� k�N � 1
0 otherwise:

�

Let’s denote one period of ~x n½ � for 0� n�N � 1 by x½ðnÞN �. It is clear that if the
length of x½n� is N then x nð ÞN

� � ¼ x½n�. However, if the length of x½n� is a number
other than N then

x nð ÞN
� � 6¼ x½n�:

If not indicated otherwise, we will assume that the length of x½n� and period of
~x½n� are equal to each other.

Properties

x1 n½ � ! Aperiodic signal with length N1

x2 n½ � ! Aperiodic signal with length N2

N ¼ maxfN1;N2g
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x1 n½ � $N�pointDFT
X1 k½ �

x2 n½ � $N�pointDFT
X2 k½ �

Linearity:

ax1 n½ � þ bx2 n½ � $DFT aX1 k½ � þ aX2 k½ �

Circular Shifting:

x n� mð ÞN
� � $DFT e�j2pN kmX k½ �

Duality:

x n½ � $DFTX k½ �

X n½ � $DFTNx �kð ÞN
� �

Symmetry:

x	 n½ � $DFTX	 �kð ÞN
� �

X	 �nð ÞN
� � $DFTX	 k½ �

Symmetry property leads to the following properties

Re x n½ �f g $DFTXep k½ �; ep :even part

jIm x n½ �f g $DFTXop k½ �; op :odd part

xep n½ � $DFTRe X k½ �f g

xop n½ � $DFT jIm X k½ �f g

Circular Convolution:

x1 n½ � $DFTX1 k½ �
x2 n½ � $DFTX2 k½ �
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If

Y k½ � ¼ X1 k½ �X2½k�

then

y n½ � ¼
XN�1
m¼0

x1 m½ �x2½ n� mð ÞN �

or

y n½ � ¼
XN�1
m¼0

x2 m½ �x1½ n� mð ÞN �:

And the expression

XN�1
m¼0

x1 m½ �x2½ n� mð ÞN �

is called the circular convolution of x1½n� and x2½n� and denoted by

Example 3.27 What does x �nð Þ5
� �

0� n� 4 mean?

Solution 3.27 x½ �nð Þ5� equals to one period of ~x½�n� in the interval 0� n� 4, i.e.,

x �nð Þ5
� � ¼ ~x �n½ � 0� n� 4

and

~x n½ � ¼
X1
l¼�1

x½n� 5l�:

Note: We assumed that the length of x½n� and period of ~x½n� are equal to each
other.

Example 3.28 If x n½ � ¼ �1 1 �1 0:5 �1½ �, find x �nð Þ5
� �

0� n� 4.

Solution 3.28 x½ �nð Þ5� equals to ~y n½ � ¼ ~x½�n� for 0� n� 4 and ~x½n� is given as
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~x n½ � ¼
X1
l¼�1

x½n� 5l�:

One period of ~x½�n� in the interval 0� n� 4 is found by employing rotate inside
operation on one period of ~x½n�, i.e., on x½n�. That is

x �nð Þ5
� � ¼ RI x n½ �ð Þ

which can be calculated as

x �nð Þ5
� � ¼ �1 1 0:5 �1 1½ �:

Example 3.29 If x n½ � ¼ �1 1 �1 0:5 �1½ �, find x 1� nð Þ5
� �

.

Solution 3.29 x 1� nð Þ5
� �

equals to ~x½1� n� for 0� n� 4 and ~x½n� is calculated as

~x n½ � ¼
X1
l¼�1

x½n� 5l�:

One period of ~x½1� n� is obtained by rotating one period of ~x½�n� to the right by
‘1’ unit. That is

x 1� nð Þ5
� � ¼ RR x �nð Þ5

� �	 

:

Using the result of the previous example, i.e.,

x �nð Þ5
� � ¼ �1 �1 0:5 �1 1½ �

we can calculate x 1� nð Þ5
� �

via

x 1� nð Þ5
� � ¼ RR x �nð Þ5

� �	 

which yields

x 1� nð Þ5
� � ¼ 1 �1 �1 0:5 �1½ �:

Note: x 2� nð Þ5
� �

is obtained by rotating x 1� nð Þ5
� �

to the right by ‘1’ unit.
And x �1� nð Þ5

� �
is obtained by rotating x �nð Þ5

� �
to the left by ‘1’ unit.

Example 3.30 If x n½ � ¼ �1 �1 1 1½ �, find x �nð Þ3
� �

.

Solution 3.30 x �nð Þ3
� � ¼ ~x½�n� for 0� n� 3 and ~x½n� is obtained as
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~x n½ � ¼
X1
l¼�1

x½n� 3l�:

Since the length of x½n� is 4, the shifted successor copies in
P1

l¼�1 x½n� 3l�
overlap with each other. For this reason, one period of ~x n½ � is not equal to x½n�
anymore. It should be calculated explicitly. This calculation is explained in
Fig. 3.28.

x nð Þ3
� �

for 0� n� 3 equals to one period of ~x½n� and from Fig. 3.28, it is found
as

~xop n½ � ¼ 0 �1 1½ �

which is denoted by x nð Þ3
� �

, that is,

x nð Þ3
� � ¼ 0 �1 1½ �:

And x �nð Þ3
� �

which is equal to one period of ~x½�n� can be found using the
rotate inside operation as

x �nð Þ3
� � ¼ RI ~xop n½ �

	 

yielding

x �nð Þ3
� � ¼ 0 1 �1½ �:

Exercise: For the previous example find x 2� nð Þ3
� �

.

Example 3.31 If x n½ � ¼ 0:5 0:5 �0:5 1 �1½ �, find x½ n� 2ð Þ5�.
Solution 3.31 x½ n� 2ð Þ5� equals to ~x½n� 2� for 0� n� 4 and ~x½n� is obtained as

0 1 2 3 4 5 6
n

123456

][nx
]3[nx

]6[nx
]3[nx

]6[nx

0 1 2 3 4 5 6
n

123456

][
~
nx

1 1 11
1 1 11

1 1 111 1 11
1 1 11

0 11 0 11

0 11

0 110 11

Fig. 3.28 Shifted replicas of x½n� and calculation of ~x n½ �
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~x n½ � ¼
X1
l¼�1

x½n� lN�

where N ¼ 5. Since the length of x½n� equals to the period value of the ~x½n�, then
~x½n� in one period interval 0� n� 4 equals to x½n�. And one period of the shifted
periodic signal for 0� n� 4 can be obtained by rotate right operation as

~xop n� 2½ � ¼ RRðx n½ �; 2Þ

which can be calculated in two steps as follows

~xop n� 1½ � ¼ RR x n½ �; 1ð Þ
¼ �1 0:5 0:5 �0:5 1½ �

~xop n� 2½ � ¼ RR ~xop n� 1½ �; 1	 

¼ 1 �1 0:5 0:5 �0:5½ �:

As a result x½ n� 2ð Þ5� is found as

x n� 2ð Þ5
� � ¼ 1 �1 0:5 0:5 �0:5½ �:

Example 3.32 If x1 n½ � ¼ �1 �1 1 0:5½ � and x2 n½ � ¼ �1 �1 �1 1½ �,
find 4-point circular convolution of x1½n� and x2½n�. That is,

Solution 3.32 Method 1: N-point circular convolution of x1½n� and x2½n� can be
calculated using

ð3:141Þ

Let expanding the right hand side of (3.141) for
N ¼ 4 we get

y n½ � ¼ x1 0½ �x2 nð Þ4
� �þ x1 1½ �x2 n� 1ð Þ4

� �þ x1 2½ �x2 n� 2ð Þ4
� �

þ x1 3½ �x2 n� 3ð Þ4
� � ð3:142Þ

where the signals x2 nð Þ4
� �

, x2 n� 1ð Þ4
� �

, x2 n� 2ð Þ4
� �

, and x2 n� 3ð Þ4
� �

can be
calculated as
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x2 nð Þ4
� � ¼ x2 n½ � ! x2 nð Þ4

� � ¼ 1 �1 �1 1½ �
x2 n� 1ð Þ4
� � ¼ RRðx2 n½ �; 1Þ ! x2 n� 1ð Þ4

� � ¼ 1 1 �1 �1½ �
x2 n� 2ð Þ4
� � ¼ RRðx2½n; 2�Þ ! x2 n� 2ð Þ4

� � ¼ �1 1 1 �1½ �
x2 n� 3ð Þ4
� � ¼ RR x2 n½ �; 3ð Þ ! x2 n� 3ð Þ4

� � ¼ �1 �1 1 1½ �:

ð3:143Þ

Substituting the calculated values in (3.143) into (3.142), we get

y n½ � ¼ �1ð Þ � 1 �1 �1 1½ � þ �1ð Þ � 1 1 �1 �1½ �
þ 1ð Þ � �1 1 1 �1½ � þ 0:5ð Þ � �1 �1 1 1½ �

which is simplified as

y n½ � ¼ �3:5 0:5 3:5 �0:5½ �:

Method 2: N-point circular convolution of x1½n� and x2½n� can be calculated as

y n½ � ¼
XN�1
m¼0

x1 m½ �x2 n� mð ÞN
� �

: ð3:144Þ

Evaluating the right hand side of (3.144) for the n values in the range
0� n�N � 1, we get the equation set

y½0� ¼ PN�1
m¼0

x1 m½ �x2 0� mð ÞN
� �

y½1� ¼ PN�1
m¼0

x1 m½ �x2 1� mð ÞN
� �

..

.

y N � 1½ � ¼ PN�1
m¼0

x1 m½ �x2 N � 1� mð ÞN
� �

:

ð3:145Þ

For N ¼ 4 equation set (3.145) becomes as
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y½0� ¼
X3
m¼0

x1 m½ �x2 0� mð Þ4
� �

y½1� ¼
X3
m¼0

x1 m½ �x2 1� mð Þ4
� �

y½2� ¼
X3
m¼0

x1 m½ �x2 2� mð Þ4
� �

y½3� ¼
X3
m¼0

x1 m½ �x2 3� mð Þ4
� �

ð3:146Þ

where the signals x2 �mð Þ4
� �

, x2 1� mð Þ4
� �

, x2 2� mð Þ4
� �

, and x2 3� mð Þ4
� �

are
calculated as

x2 �mð Þ4
� � ¼ RI x2 m½ �ð Þ ! x2 �mð Þ4

� � ¼ 1 1 �1 �1½ �
x2 1� mð Þ4
� � ¼ RR x2 �mð Þ4

� �
; 1

	 
! x2 1� mð Þ4
� � ¼ �1 1 1 �1½ �

x2 2� mð Þ4
� � ¼ RR x2 1� mð Þ4

� �
; 1

	 
! x2 2� mð Þ4
� � ¼ �1 �1 1 1½ �

x2 3� mð Þ4
� � ¼ RR x2 2� mð Þ4

� �
; 1

	 
! x2 3� mð Þ4
� � ¼ 1 �1 �1 1½ �:

Now consider the summation term

y 0½ � ¼
X3
m¼0

x1 m½ �x2 0� mð Þ4
� �

: ð3:147Þ

Let w m½ � ¼ x2 �mð Þ4
� �

i.e., w m½ � ¼ 1 1 �1 �1½ �; then expanding (3.147),
we obtain

y 0½ � ¼ x1 0½ �w 0½ � þ x1 1½ �w 1½ � þ x1 2½ �w 2½ � þ x1 3½ �w 3½ �

which is nothing but dot product of two vectors x1½n� and w½n�, that is

y 0½ � ¼ x1 0½ � x1 1½ � x1 2½ � x1 3½ �½ � � w 0½ � w 1½ � w 2½ � w 3½ �½ �

which can also be written as

y 0½ � ¼ x1 m½ � � w½m�

or

y 0½ � ¼ x1 m½ � � x2 �mð Þ4
� �

:

Then
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y 0½ � ¼ �1ð Þ � 1ð Þþ �1ð Þ � 1ð Þþ 1ð Þ � �1ð Þþ 0:5ð Þ � �1ð Þ
y 0½ � ¼ �3:5:

In a similar manner,

y 1½ � ¼ x1 m½ � � x2 1� mð Þ4
� �

y 1½ � ¼ �1ð Þ � �1ð Þþ �1ð Þ � 1ð Þþ 1ð Þ � 1ð Þþ 0:5ð Þ � �1ð Þ
y 1½ � ¼ 0:5

y 2½ � ¼ x1 m½ � � x2 2� mð Þ4
� �

y 2½ � ¼ �1ð Þ � �1ð Þþ �1ð Þ � �1ð Þþ 1ð Þ � 1ð Þþ 0:5ð Þ � 1ð Þ
y 2½ � ¼ 3:5

y 3½ � ¼ x1 m½ � � x2 3� mð Þ4
� �

y 3½ � ¼ �1ð Þ � 1ð Þþ �1ð Þ � �1ð Þþ 1ð Þ � �1ð Þþ 0:5ð Þ � 1ð Þ
y 3½ � ¼ �0:5

As a result;

y n½ � ¼ �3:5 0:5 3:5 �0:5½ �:

Note: If and the length of x1½n� or x2½n� is shorter
than N then the shorter sequence is padded by zeros so that its length equals to N. If
both sequences are shorter than N samples then both sequences are padded by zeros
so that their lengths equal to N.

Example 3.33 If x1 n½ � ¼ �1 �1 1 0:5½ � and x2 n½ � ¼ 1 �1 �2½ �, find
6-point circular convolution of x1½n� and x2½n�. That is,

Solution 3.33 The lengths of the sequences x1½n� and x2½n� are 4 and 3 respectively.
Both sequences should be padded by zeros so that their lengths equals to 6. That is,

x1 n½ � ¼ �1 �1 1 0:5 0 0½ � x2 n½ � ¼ 1 �1 �2 0 0 0½ �:

Then circular convolution operations can be performed as in Example 3.32.
Matrix Representation of Circular Convolution

Example 3.34 If x1 n½ � ¼ x1 0½ � x1 1½ � x1 2½ �½ � x2 n½ � ¼ x2 0½ � x2 1½ � x2 2½ �½ �
Express 3-point circular convolution of x1½n� and x2½n� as matrix multiplication.
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Solution 3.34 Expanding the expression

y½n� ¼
XN�1
m¼0

x1 m½ �x2 n� mð ÞN
� �

for N ¼ 3, we get

y n½ � ¼ x1 0½ �x2 nð ÞN
� �þ x1 1½ �x2 n� 1ð ÞN

� �þ x1½2�x2 n� 2ð ÞN
� �

which is calculated as

y n½ � ¼ x1 0½ � x2 0½ � x2 1½ � x2 2½ � þ x1 1½ � x2 2½ � x2 0½ � x2 1½ �½ �
þ x1 2½ � x2 1½ � x2 2½ � x2 0½ �½ �:

The expression in (3.48) can be written using matrix multiplication as

y½0�
y½1�
y½2�

0
@

1
A ¼ x1 0½ � x1 1½ � x1½2�ð Þ �

x2 0½ � x2 2½ � x2 1½ �
x2 1½ � x2 0½ � x2 2½ �
x2 2½ � x2 1½ � x2 0½ �

0
@

1
A:

Example 3.35 If x n½ � ¼ ½�1 0 1|{z}
n¼0

�1 2 1�, find

Solution 3.35 Since the index n ¼ 0 is not at the first element in x½n�, it is easier to
calculate the circular convolution using the first method we introduced. That is
expanding

y½n� ¼
X3
m¼�2

x1 m½ �x1 n� mð ÞN
� �

for m values, we obtain

y n½ � ¼ x1 �2½ �x1 nþ 2ð Þ6
� �þ x1 �1½ �x1 nþ 1ð Þ6

� �þ x1 0½ �x1 nð Þ6
� �

þ x1 1½ �x1 n� 1ð Þ6
� �þ x1 2½ �x1 n� 2ð Þ6

� �þ x1 3½ �x1 n� 3ð Þ6
� �

and placing the n values in the range �2� n� 3 for y½n�, we can find the 6-point
circular convolution result.
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Exercise: Prove the following property

x n� mð ÞN
� � $DFT e�j2pN kmX k½ �:

The Relationship between Circular and Linear Convolution:

x1 n½ � ! Aperiodic signal with length L
x2 n½ � ! Aperiodic signal with length P

Linear convolution of x1 n½ � and x2 n½ � is calculated using

ylc n½ � ¼
X1

m¼�1
x1 m½ �x2 n� m½ �:

The length of ylc½n� is LþP� 1. N-point circular convolution of x1 n½ � and x2 n½ �
is

The relationship between ylc½n� and ycc½n� is given as

ycc n½ � ¼
P1

r¼�1
ylc n� rN½ � 0� n�N � 1

0 otherwise:

8<
:

If N � LþP� 1 then the circular convolution and linear convolution results are
the same, i.e., ylc½n� ¼ ycc n½ �.

3.6 Practical Calculation of the Linear Convolution

Overlap Add and Overlap Save Methods

For practical communication systems, the input signal may not be of finite duration.
It may be of infinite duration or may be a very long sequence, such as TV signal,
video or speech signal.

The input signal x½n� is usually passed through a filter with an impulse response
h½n�. Filtering operation is nothing but the convolution of the input signal with the
impulse response of the filter, the filter output is

y n½ � ¼ x n½ � 	 h n½ �:

If the input signal is very long, then convolution operation takes too much time,
or sometimes it may not still be possible to evaluate the convolution result.
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To overcome this issue, two approaches are followed to evaluate the convolution
of a very long input and a short impulse response sequences. These methods are
called overlap-add and overlap-save. Let’s first explain the overlap-add method.

3.6.1 Evaluation of Convolution Using Overlap-Add
Method

Let x½n� be the input signal with length N and h½n� be the filter response with length
P such that N[P. The overlap-add method to evaluate

x½n� 	 h½n�

consists of the following steps:

(1) Divide the input sequence to frames such that each frame has length L.

Let’s denote the frames by x0 n½ �; x1 n½ �; x2 n½ � � � � 0� n� L� 1

(2) Evaluate the convolution of each frame with h½n�, i.e., evaluate

yk n½ � ¼ xk n½ � 	 h n½ � k ¼ 0; 1; 2; . . .

(3) Calculate the convolution result as

y n½ � ¼
X1
k¼0

yk½n� Lk�:

Let’s explain overlap-add method with an example.

Example 3.36 If x n½ � ¼ �1 1 0 1 �1 0 1 1 �1 1 0 �1½ � and
h n½ � ¼ ½ 1 �1 �, find x½n� 	 h½n� using overlap-add method.

Solution 3.36

(1) In step 1, we divide the input sequence into frames of length L. The length of
the impulse response h½n� is P ¼ 2. The length of the frames depends on our
choice. Let’s choose the length of the frames as L ¼ 3 and divide the sequence
x½n� into frames as shown in (3.148)

x n½ � ¼ ½�1 1 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x0½n�

1 �1 0|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x1½n�

1 1 �1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x½n�

1 0 �1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
x3½n�

� ð3:148Þ

If the last frame had a length smaller than 3, then we would pad it by zeros until
its length equals to 3. The divided frames are
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x0 n½ � ¼ �1 1 0½ � x1 n½ � ¼ 1 �1 0½ �
x2 n½ � ¼ 1 1 �1½ � x3 n½ � ¼ 1 0 �1½ �: ð3:149Þ

(2) In step 2, we take the convolution of each frame in (3.149) with impulse
response h½n�.
Let’s first calculate the convolution of x0½n� and h½n�, i.e., calculate y0 n½ � ¼

x0 n½ � 	 h n½ � which is written as

y0 n½ � ¼
X1
k¼�1

h k½ �x½n� k� ð3:150Þ

When (3.150) is expanded for n ¼ 0; 1; 2; 3; we obtain

y0 n½ � ¼ x0 n½ � 	 h n½ � ! y0 n½ � ¼ �1 1 0½ � 	 1 �1½ � ! y0 n½ � ¼ �1 �2 �1 0½ �

y1 n½ � ¼ x1 n½ � 	 h n½ � ! y0 n½ � ¼ 1 �1 0½ � 	 1 �1½ � ! y1 n½ � ¼ �1 �2 1 0½ �
y2 n½ � ¼ x2 n½ � 	 h n½ � ! y0 n½ � ¼ 1 1 �1½ � 	 1 �1½ � ! y2 n½ � ¼ ½ 1 2 �1 0 �

y3 n½ � ¼ x3 n½ � 	 h n½ � ! y0 n½ � ¼ 1 0 �1½ � 	 1 �1½ � ! y3 n½ � ¼ 1 �1 �1 1½ �:
ð3:151Þ

(3) In this step, using the results of (3.151) in

y n½ � ¼
X1
k¼0

yk½n� Lk�

1 2 1 0
n

0 1 2 3

][1 ny

1 2 1 0
n

0 1 2 3

]3[1 ny

0 00

4 5 6

Fig. 3.29 Shifting of y1½n�
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for L ¼ 3, we obtain

y n½ � ¼
X3
k¼0

yk½n� k3�

which is expanded as

y n½ � ¼ y0 n½ � þ y1 n� 3½ � þ y2 n� 6½ � þ y3 n� 9½ �: ð3:152Þ

The signal y1 n� 3½ � in (3.152) is obtained by shifting the amplitudes of y1½n� to
the right by 3 units. When amplitudes are shifted to the right, zero amplitude values
are inserted into the old positions.

This means that y1 n� 3½ � can be obtained by padding 3 zeros to the beginning of
y1½n�. This operation is illustrated in Fig. 3.29.

Thus, the shifted signals together with y0½n� can be written as

0
n

1L L L2

][nx

Fig. 3.30 Dividing x½n� into frames

0
n

1L

0
n

L 12L

0
n

L2

][0 nw

][1 nw

][2 nw

Fig. 3.31 Divided frames of x½n� are shown separately
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y0 n½ � ¼ ½ �1|{z}
n¼0

2 �1 0�

y1 n� 3½ � ¼ ½ 0|{z}
n¼0

0 0 1 �2 1 0�

y2 n� 6½ � ¼ ½ 0|{z}
n¼0

0 0 0 0 0 1 0 �2 1�

y3 n� 9½ � ¼ ½ 0|{z}
n¼0

0 0 0 0 0 0 0 0 1 �1 �1 1�:

ð3:153Þ

When the shifted signals in (3.153) are summed, we obtain the convolution
result as

0
n

1L

0
n

L 12L

0
n

L2

][0 nx

][1 Lnx

]2[2 Lnx

Fig. 3.33 Frames starting at n ¼ 0 are shifted by multiples of L

0
n

1L

0
n

0
n

1L

1L

][0 nx

][1 nx

][2 nx

Fig. 3.32 Divided frames of x½n� start at n ¼ 0
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y n½ � ¼ �1 2 �1 1 �2 1 1 0 �2 2 �1 �1 1½ �:

Now let’s see the mathematical derivation of the overlap-add method.
Assume that the digital sequence x½n� is divided into frames as shown in

Fig. 3.30.
And the frames are separately shown in Fig. 3.31.
Let’s make the starting index of every frame be equal to n ¼ 0. This is shown in

Fig. 3.32.
We can obtain the digital signal x½n� by shifting and summing the frames that

starts at n ¼ 0 as shown in Fig. 3.33.
This operation is mathematically written as

x n½ � ¼
X1
k¼0

xk½n� Lk�:

Then the convolution of x½n� and h½n� can be written as

y n½ � ¼ h n½ � 	 x n½ �

¼ h n½ � 	
X1
k¼0

xk n� Lk½ �: ð3:154Þ

When the summation term in (3.154) is expanded, we get

y n½ � ¼ h n½ � 	 x0 n½ � þ x1 n� L½ � þ x2 n� 2L½ � þ � � �ð Þ: ð3:155Þ

And for linear time invariant systems if

y1 n½ � ¼ h½n� 	 x1½n�

then

y1 n� L½ � ¼ h n½ � 	 x1 n� L½ �:

Using a similar approach for the other convolutional expressions appearing in
(3.155), we get

y n½ � ¼ y0 n½ � þ y1 n� L½ � þ y2 n� 2L½ � þ � � �

where

y0 n½ � ¼ h n½ � 	 x0 n½ �; y1 n½ � ¼ h n½ � 	 x1 n½ �; y2 n½ � ¼ h n½ � 	 x2 n½ �:
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As a result;

y n½ � ¼
X1
k¼0

yk½n� Lk�:

3.6.2 Overlap-Save Method

Assume that the impulse response h½n� has length P. The convolution of x½n� and
h½n� using overlap-save method is achieved via the following steps.

(1) Pad the front of x½n� by P� 1 zeros.
(2) Divide x½n� into frames of length L such that the successor frame overlaps with

the predecessor frame with P� 1 points.
(3) Let xk½n� be a frame, calculate the L point circular convolution of xk½n� and h n½ �,

i.e., calculate

yk n½ � ¼ xk m½ � Lð Þh n½ �:

(4) Discard the first P� 1 points of yk½n�.
(5) Concatenate yk½n� and obtain y½n�, i.e., y n½ � ¼ y0 n½ �y1 n½ � � � �½ �:

Let’s explain overlap-save method with an example.

Example 3.37 Using h½n� and x½n� given below, find the convolution of h½n� and
x½n� using overlap-save method.

h n½ � ¼ �1 1 1½ �

x n½ � ¼ 1 0 �1 1 1 �1 1 0 0 1 1 �1½ �

Take frame length as L ¼ 4.

Solution 3.37 The length of the impulse response h½n� is 3, i.e., P ¼ 3. And frame
length is L ¼ 4 which is given the question, otherwise we can choose it according
to our will.

Let’s follow the steps of the overlap-save method for the calculation of con-
volution of h½n� and x½n�.
(1) Add P� 1 ¼ 3� 1! 2 zeros to the beginning of x½n�. This is shown in

204 3 Discrete Fourier Transform



x n½ � ¼ ½ 0 0|ffl{zffl}
P� 1 zeros

are added

to the

beginning

of x n½ �

1 0 � 1 1 1 � 1 1 0 0 1 1 � 1�

(2) Divide x½n� into frames such that frames overlap by P� 1 ¼ 2 samples. This
operation is illustrated in

where we padded the last divided frame by 2 zeros such that its length equals 4.
The divided frames are separately written as

x0 n½ � ¼ 0 0 1 0½ � x1 n½ � ¼ 1 0 �1 1½ � x2 n½ � ¼ �1 1 1 �1½ �
x3 n½ � ¼ 1 �1 1 0½ � x4 n½ � ¼ 1 0 0 1½ � x5 n½ � ¼ 0 1 1 �1½ �

(3) In step 3 we calculate the L ¼ 4-point circular convolution of each frame with
h½n�, i.e., we calculate

y0 n½ � ¼ h n½ � 4ð Þx0 n½ � y1 n½ � ¼ h n½ � 4ð Þx1 n½ � y2 n½ � ¼ h n½ � 4ð Þx2½n�
y3 n½ � ¼ h n½ � 4ð Þx3 n½ � y4 n½ � ¼ h n½ � 4ð Þx4 n½ � y5 n½ � ¼ h n½ � 4ð Þx5 n½ � :

As a reminder we below provide the 4-points circular convolution of x0½n� and
h½n�. N-point circular convolution of x½n� and h½n� is given as

y0 n½ � ¼
XN�1
k¼0

x k½ �h½ n� kð ÞN �: ð3:156Þ

For N ¼ 4 when (3.156) is expanded, we obtain

y0 n½ � ¼ x 0½ �h nð Þ4
� �þ x 1½ �h n� 1ð Þ4

� �þ x 2½ �h n� 2ð Þ4
� �þ x 3½ �h n� 3ð Þ4

� �
:

Since N ¼ 4 we pad h½n� by zeros such that its length equals N ¼ 4 and h½n�
becomes as
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h n½ � ¼ �1 1 1 0½ �:

Noting that h n� n0ð Þ4
� �

is obtained rotating h½n� to the right by n0 units, we get
the following expression for y0 n½ �

y0 n½ � ¼ 0� h nð Þ4
� �þ 0� h n� 1ð Þ4

� �þ 1� h n� 2ð Þ4
� �þ 0� h n� 3ð Þ4

� �
which leads to

y0 n½ � ¼ 1 0 �1 1½ �:

4-point circular convolution of each frame with h½n� is given in (3.157).

y0 n½ � ¼ 1 0 �1 1½ � y1 n½ � ¼ �1 2 2 �2½ � y2 n½ � ¼ 1 �3 �1 3½ �
y3 n½ � ¼ 0 2 �1 0½ � y4 n½ � ¼ 0 2 1 �1½ � y5 n½ � ¼ 0 �2 0 3½ �
y6 n½ � ¼ ½�1 2 0 �1 �

ð3:157Þ

(4) In step-4, we discard the first P� 1 ¼ 2 samples from the beginning of each
yk n½ �; k ¼ 0; 1; 2; 3; 4: This operation is illustrated in

y0 n½ � ¼ 1 0|fflffl{zfflffl}
omit

�1 1
� �

! y0 n½ � ¼ �1 1½ �

y1 n½ � ¼ �1 2|fflfflfflffl{zfflfflfflffl}
omit

2 �2� �
! y1 n½ � ¼ 2 �2½ �

y2 n½ � ¼ 1 �3|fflfflfflffl{zfflfflfflffl}
omit

�1 3
� �

! y2 n½ � ¼ �1 3½ �

y3 n½ � ¼ 0 2|fflffl{zfflffl}
omit

�1 0
� �

! y3 n½ � ¼ �1 0½ �

y4 n½ � ¼ 0 2|fflffl{zfflffl}
omit

�1 1
� �

! y4 n½ � ¼ 1 �1½ �

y5 n½ � ¼ 0 �2|fflfflfflffl{zfflfflfflffl}
omit

0 3
� �

! y5 n½ � ¼ 0 3½ �

y6 n½ � ¼ �1 2|fflfflfflffl{zfflfflfflffl}
omit

0 �1� �
! y5 n½ � ¼ 0 �1½ �:

(5) Finally in the last step, we concatenate the truncated sequences to find the
convolution result, i.e.,
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y n½ � ¼ y0 n½ �y1 n½ �y2 n½ �y3 n½ �y4 n½ �y5 n½ �½ �

which leads to

y n½ � ¼ �1 1 2 �2 �1 3 �1 0 1 �1 0 3 0 �1½ �:

Exercise: If x n½ � ¼ �1 1 1 �1 1 1 �1½ �111�1�111�1�1� and

h n½ � ¼ 1 �1 �1½ �, calculate x½n� 	 h½n�
(a) Using overlap-add method.

(b) Using overlap-save method.

3.7 Computation of the Discrete Fourier Transform

3.7.1 Fast Fourier Transform (FFT) Algorithms

There are two types of Fast Fourier transform algorithm. These are:

(1) Decimation in time FFT algorithm.
(2) Decimation in frequency FFT algorithm.

Let’s first explain decimation in time FFT algorithm then decimation in fre-
quency FFT algorithm.

3.7.2 Decimation in Time FFT Algorithm

Before starting to the derivation of the algorithm, let’s consider some motivating
examples.

The DFT formula is

X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n

where k takes values in the range 0; 1; . . .;N � 1, i.e., if N ¼ 4, then the range of k
is 0; 1; 2; 3.
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Example 3.38 If ekN is defined as ekN ¼ e�jk
2p
N k 2 Z, write ek4 for k ¼ 0; 1; 2; 3 as a

vector.

Solution 3.38 ek4 ¼ e�j0
2p
4 e�j1

2p
4 e�j2

2p
4 e�j3

2p
4

� �
which can be simplified as

ek4 ¼ 1 �j �1 j½ �

Exercise: Write ek8 for k ¼ 0; 1; . . .; 7 as a vector.

Example 3.39 Given x n½ � ¼ ½ a b � find 2-point DFT of x½n�.
Solution 3.39 Using the formula

X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n; k ¼ 0; 1; . . .;N � 1

for N ¼ 2, we get

X k½ � ¼
X1
n¼0

x n½ �e�jk2p2 n; k ¼ 0; 1 ð3:158Þ

When (3.158) is expanded for k ¼ 0 and k ¼ 1, we get

X 0½ � ¼ x 0½ � þ x 1½ � X 1½ � ¼ x 0½ � þ x 1½ �ejp ! X 1½ � ¼ x 0½ � � x 1½ �:

Then 2-point DFT of x n½ � ¼ a b½ � is

X k½ � ¼ aþ b a� b½ �:

Example 3.40 If x n½ � ¼ 3 �2½ �, find 2-point DFT of x½n�.
Solution 3.40 Using X k½ � ¼ aþ b a� b½ �, we find the 2-point DFT of x n½ � ¼
3 �2½ � as

X k½ � ¼ 1 5½ �:

Example 3.41 If x n½ � ¼ a b½ �, find X½k� for k ¼ 0; 1; 2; 3:

Solution 3.41 Expanding the formula

208 3 Discrete Fourier Transform



X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n

for N ¼ 2 and k ¼ 0; 1; 2; 3; we obtain

X 0½ � ¼
X1
n¼0

x n½ �e�j02p2 n

X 1½ � ¼
X1
n¼0

x n½ �e�j12p2 n

X 2½ � ¼
X1
n¼0

x n½ �e�j22p2 n

X 3½ � ¼
X1
n¼0

x n½ �e�j32p2 n:

If we look at the exponential terms in X½0� and X½2�, we see that e�j02p2 n ¼ e�j2
2p
2 n

this means that
X 2½ � ¼ X½0�

In a similar manner; we find that

X 3½ � ¼ X½1�

Then X½k� for k ¼ 0; 1; 2; 3; happens to be

X k½ � ¼ X 0½ � X 1½ � X 2½ �|{z}
¼X½0�

X 3½ �|{z}
¼X½1�

" #

That is

X k½ � ¼ X 0½ � X 1½ � X 0½ � X 1½ �½ �

And using our previous example results, we can write X½k� as

X k½ � ¼ aþ b a� b aþ b a� b½ �

Example 3.42 Calculate X½k� for

x n½ � ¼ 1 3 2 �1½ �

using the DFT formula but take k range as 0; 1; . . .; 7 instead of 0; 1; . . .; 3.
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Solution 3.42 Using the DFT formula the DFT coefficients for k ¼ 0; 1; . . .; 7 can
be calculated as

X 0½ � ¼ P3
n¼0

x n½ �e�j02p4 n

X 1½ � ¼ P3
n¼0

x n½ �e�j12p4 n

X 2½ � ¼ P3
n¼0

x n½ �e�j22p4 n

X 3½ � ¼ P3
n¼0

x n½ �e�j32p4 n

X 4½ � ¼ P3
n¼0

x n½ �e�j42p4 n

X 5½ � ¼ P3
n¼0

x n½ �e�j52p4 n

X 6½ � ¼ P3
n¼0

x n½ �e�j62p4 n

X 7½ � ¼ P3
n¼0

x n½ �e�j72p4 n:

ð3:159Þ

If we inspect the exponential terms in X½0� and X½4� in the equation set (3.159),
we see that e�j0

2p
4 n ¼ e�j4

2p
4 n this means that

X 4½ � ¼ X 0½ �:

In a similar manner; we have

X 5½ � ¼ X 1½ � X 6½ � ¼ X 2½ � X 7½ � ¼ X 3½ �:

If we calculate X½k� for k ¼ 0; 1; . . .; 3; we get

X k½ � ¼ X 0½ � X 1½ � X 2½ � X 3½ �½ �:

And on the other hand if we calculate X½k� for k ¼ 0; 1; . . .; 7; we get

X k½ � ¼ X 0½ � X 1½ � X 2½ � X 3½ � X 4½ �|{z}
¼X½0�

X 5½ �|{z}
¼X½1�

X 6½ �|{z}
¼X½2�

X 7½ �|{z}
¼X½3�

" #
:

That is
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X k½ � ¼ X 0½ � X 1½ � X 2½ � X 3½ � X 0½ � X 1½ � X 2½ � X 3½ �½ �:

Using (3.159), X½k� for k ¼ 0; 1; 2; 3 can be calculated as

X k½ � ¼ 5 �1� j4 1 �1þ j4½ �

and for k ¼ 0; 1; . . .; 7; it equals to

X k½ � ¼ 5 �1� j4 1 �1þ j4 5 �1� j4 1 �1þ j4½ �:

In fact, the results of these examples are nothing but the main motivation for the
derivation of the fast Fourier transform algorithm.

Now let’s start the derivation of the fast Fourier transform algorithm.
Fast Fourier Transform Algorithm Derivation
We consider the DFT formula

X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n: ð3:160Þ

Let’s denote the exponential function e�j
2p
N in (3.160) by eN , i.e., eN ¼ e�j

2p
N , and

the function eN has the following properties.

(1) e2N ¼ eN=2

This property comes from the definition directly, i.e.,

e2N=2 ¼ e�j2
2p
N

which can be written as

e2N=2 ¼ e�j
2p
N=2 ¼ eN=2 ! e2N ¼ eN=2:

(2) eNN ¼ 1 or more in general emNN ¼ 1;m 2 Z

Again starting by the definition, we have

eN ¼ e�j
2p
N ! emNN ¼ e�jm

2pN
N ! emNN ¼ e�jm2p ! emNN ¼ 1:

(3) e mþNð Þ
N ¼ e mð Þ

N

Using property-2 we obtain
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e mþNð Þ
N ¼ e mð Þ

N e Nð Þ
N|{z}
¼1

! e mþNð Þ
N ¼ e mð Þ

N :

This means that f mð Þ ¼ e mð Þ
N is a periodic function, and its period equals to N,

i.e., f mð Þ ¼ f ðmþNÞ.
Let’s now derive the decimation in time FFT algorithm. We first write the DFT

formula in terms of the defined function eN as

X k½ � ¼
XN�1
n¼0

x n½ �e knð Þ
N ; k ¼ 0; 1; . . .;N � 1 ð3:161Þ

which can be partitioned for even and odd n values as

X k½ � ¼
XN=2�1
n¼0

x 2n½ �e 2knð Þ
N þ

XN=2�1
n¼0

x 2nþ 1½ �e 2nþ 1ð Þk
N ð3:162Þ

where the first term on the right side using the property e2N ¼ eN=2 can be written as

XN=2�1
n¼0

x 2n½ �e 2nkð Þ
N !

XN=2�1
n¼0

x 2n½ �ðe2NÞnk !
XN=2�1
n¼0

x 2n½ �ðeN=2Þnk ð3:163Þ

and the similarly the second term on the right side of (3.162) using the property
e2N ¼ eN=2 can be written as

XN=2�1
n¼0

x 2nþ 1½ �e 2nþ 1ð Þk
N !

XN=2�1
n¼0

x 2nþ 1½ �e2nkN ekN

! ekN
XN=2�1
n¼0

x 2nþ 1½ �e2nkN ! ekN
XN=2�1
n¼0

x 2nþ 1½ �enkN=2
ð3:164Þ

Then using the results (3.163) and (3.164), the DFT formula in (3.161) can be
written as

X k½ � ¼
XN=2�1
n¼0

x 2n½ �enkN=2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
G½k�

þ ekN
XN=2�1
n¼0

x 2nþ 1½ �enkN=2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H½k�

k ¼ 0; 1; . . .;N � 1
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where the terms G½k� and H½k� are periodic with period N=2. Since G½k� and H½k�
are calculated for k ¼ 0; 1; . . .N � 1 in X½k� then G½k� and H½k� have repeated
values for k ¼ 0; 1; . . .N � 1 as shown in

G k½ � ¼
g0 g1 g2 � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
The first N=2
samples

g0 g1 g2 � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
The secondN=2

samples

2
64

3
75

H k½ � ¼
h0 h1 h2 � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
The first N=2
samples

h0 h1 h2 � � �|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
The second N=2

samples

2
64

3
75:

And G½k� k ¼ 0; 1; . . .;N=2� 1 is the N=2 point DFT of the even numbered
samples of x½n�, and H½k� k ¼ 0; 1; . . .;N=2� 1 is the N=2 point DFT of the odd
numbered samples of x½n�.

Hence for the computation of G½k� and H½k� the k index range is first taken as
k ¼ 0; 1; . . .;N=2� 1. And G½k� and H½k� are calculated for k ¼ 0; 1; . . .;N=2� 1.
Let’s denote the calculation results as

G k½ � ¼ g0 g1 � � � gN=2�1
� �

H k½ � ¼ h0 h1 � � � hN=2�1
� �

k ¼ 0; 1; . . .;N=2� 1

Then G½k� and H½k� values for k ¼ 0; 1; . . .;N � 1 are obtained using

G k½ � ¼ g0 g1 � � � gN=2�1 g0 g1 � � � gN=2�1
� �

H k½ � ¼ h0 h1 � � � hN=2�1 h0 h1 � � � hN=2�1
� �

and they are combined in X½k� via

X k½ � ¼ G k½ � þwk
NH k½ � k ¼ 0; 1; . . .;N � 1:

The partition performed for X k½ � can be done for G k½ � and H½k� also. The
calculation of G k½ � can be written as

G k½ � ¼ G1 k½ � þwk
NG2 k½ � k ¼ 0; 1; . . .;N=2� 1

where G1 k½ � is the N=4 point DFT of the even numbered samples of x½2n� and G2 k½ �
is the N=4 point DFT of the odd numbered samples of x½2n�.

And the calculation of H½k� can be written as

H k½ � ¼ H1 k½ � þwk
NH2 k½ � k ¼ 0; 1; . . .;N=2� 1

where H1 k½ � is the N=4 point DFT of the even numbered samples of x½2nþ 1� and
H2 k½ � is the N=4 point DFT of the odd numbered samples of x½2nþ 1�.
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This procedure can be carried out until we calculate 2-point DFT of the
sequences obtained from x½n�.
Example 3.43 If x n½ � ¼ ½ a b � find 2-point DFT of x½n�.
Solution 3.43 Using the formula

X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n; k ¼ 0; 1; . . .;N � 1 ð3:165Þ

for N ¼ 2, we get

X k½ � ¼
X1
n¼0

x n½ �e�jk2p2 n; k ¼ 0; 1: ð3:166Þ

When (3.166) is expanded for k ¼ 0 and k ¼ 1, we obtain

X 0½ � ¼ x 0½ � þ x 1½ � X 1½ � ¼ x 0½ � þ x 1½ �ejp ! X 1½ � ¼ x 0½ � � x 1½ �

which can be expressed in a more compact way as

X k½ � ¼ aþ b a� b½ �: ð3:167Þ

Example 3.44 If x n½ � ¼ �1 4½ �, find 2-point DFT of x½n�.
Solution 3.44 X 0½ � ¼ �1þ 4! X 0½ � ¼ 3 X 1½ � ¼ �1� 4! X 1½ � ¼ �5:
Example 3.45 If x n½ � ¼ 1 1 �1 2½ �, find 4-point DFT of x½n� using deci-
mation in time FFT algorithm.

Solution-3.45: First we determine the even and odd numbered elements of x½n� as
in

x n½ � ¼ 1|{z}
#

1
z}|{"

�1|{z}
#

2
z}|{"2

4
3
5

where down-arrows indicate even numbered samples and up-arrows show odd
numbered samples. And the even and odd numbered samples can be grouped into
separate vectors as

xe n½ � ¼ 1 �1½ � xo n½ � ¼ 1 2½ �:

The 2-point DFT of xe½n� and xo½n� are calculated using DFT formula as
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Xe 0½ � ¼ 1� 1! Xe 0½ � ¼ 0 Xe 1½ � ¼ 1� ð�1Þ ! Xe 1½ � ¼ 2
Xo 0½ � ¼ 1þ 2! Xe 0½ � ¼ 3 Xo 1½ � ¼ 1� 2! Xe 1½ � ¼ �1:

Hence, for Xe½k� and Xo½k� k ¼ 0; 1; we have

Xe k½ � ¼ 0 2½ � Xo k½ � ¼ 3 �1½ �: ð3:168Þ

DFT of x½n� can be written in terms of DFT of its even and odd samples as

X k½ � ¼ Xe k½ � þwk
NXo k½ � k ¼ 0; 1; . . .;N � 1: ð3:169Þ

For N ¼ 4 Eq. (3.169) is written as

X k½ � ¼ Xe k½ � þwk
4Xo k½ � k ¼ 0; 1; . . .; 4� 1 ð3:170Þ

where

wk
4 ¼ e�jk

2p
4 :

And for N ¼ 4 the vectors Xe½k�, Xo½k� and wk
4 for k ¼ 0; 1; 2; 3 can be calculated

as

Xe k½ � ¼ 0 2 0 2½ � X0 k½ � ¼ 3 �1 3 �1½ �
wk
4 ¼ e�j0

2p
4 e�j1

2p
4 e�j2

2p
4 e�j3

2p
4

� �
:

ð3:171Þ

And simplifying wk
4, we get

wk
4 ¼ 1 �j �1 j½ �:

Finally the vector X½k� is obtained using (3.170) as in

X k½ � ¼ 0 2 0 2½ � þ � �j �1 j½ � 	 3 �1 3 �1½ �

where the vector product term

1 �j �1 j½ � 	 3 �1 3 �1½ �

is calculated as

1� 3 �jð Þ � �1ð Þ �1ð Þ � 3 j� ð�1Þ½ �:

Then X k½ � becomes as
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X k½ � ¼ 0þ 1� 3 2þ �jð Þ � �1ð Þ 0þ �1ð Þ � 3 2þ j� ð�1Þ½ �

which has the final form

X k½ � ¼ 3 2þ j �3 2� j½ �:

Example 3.46 If x n½ � ¼ 1 1 �1 2 1 3 �1 2½ �, find 8-point DFT of x½n�
using decimation in time FFT algorithm.

Solution 3.46 First, we divide the sequence x½n� to its even and odd numbered
elements as in

x n½ � ¼ 1|{z}
#

1
z}|{"

�1|{z}
#

2
z}|{"

1|{z}
#

3
z}|{"

�1|{z}
#

2
z}|{"2

4
3
5

where down-arrows indicate even indexed samples and up-arrow shows odd
indexed samples. And the even and odd indexed samples can be grouped into
separate vectors as

xe n½ � ¼ 1 �1 1 �1½ � xo n½ � ¼ 1 2 3 2½ �:

Four-point DFT of xe½n� and xo½n� can be calculated as in the previous example
as

Xe k½ � ¼ 0 0 4 0½ � Xo k½ � ¼ 8 �2 0 �2½ � k ¼ 0; 1; . . .; 4: ð3:172Þ

Then 8-point DFT of x½n� is calculated through

X k½ � ¼ Xe k½ � þwk
8Xo k½ � k ¼ 0; 1; . . .; 7

where wk
8 ¼ e�jk

2p
8 . And the vectors Xe k½ �, Xo k½ �, wk

8 for k ¼ 0; 1; . . .; 7 with the help
of (3.172) can be written as

Xe k½ � ¼ 0 0 4 0 0 0 4 0½ �

Xo k½ � ¼ 8 �2 0 �2 8 �2 0 �2½ �
wk
8 ¼ e�j0

2p
8 e�j1

2p
8 e�j2

2p
8 e�j3

2p
8 e�j4

2p
8 e�j5

2p
8 e�j6

2p
8 e�j7

2p
8

� � ð3:173Þ

And combining the vectors in (3.173) using

X k½ � ¼ Xe k½ � þwk
8Xo k½ � k ¼ 0; 1; . . .; 7
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we obtain the 8-point DFT of x½n� as

X k½ � ¼ 8 �1:4þ j1:4 4 1:4þ j1:4 �8 1:4� j1:4 4 1:4� j1:4½ �;
k ¼ 0; 1; . . .; 7:

Example 3.47 For the digital signal

x n½ � ¼ 1 1 �1 2 1 3 �1 2 1 �1 2 1 3 0 1 2½ �

find 16-point DFT using decimation in time FFT algorithm.

Solution 3.47 First, we divide the signal to its even and odd indexed sequences as
in

xe n½ � ¼ 1 �1 1 �1 1 1 2 3 1½ �

xo n½ � ¼ 1 2 3 2 1 1 0 2½ �:

We can calculate 8-point DFT of xe n½ � and xo n½ � as in the previous example. Let
the calculation results be denoted by Xe½k� and Xo½k�, k ¼ 0; 1; . . .; 7. Then we can
easily obtain Xe½k� and Xo½k� for k ¼ 0; 1; . . .; 15 by just repeating the elements
obtained for k ¼ 0; 1; . . .; 7 and combine them using

X k½ � ¼ Xe k½ � þwk
16Xo k½ � k ¼ 0; 1; . . .; 15

where the exponential vector wk
16, k ¼ 0; 1; . . .; 15 is calculated as

ek16 ¼ e�j0
2p
16 e�j1

2p
16 e�j2

2p
16 e�j3

2p
16 e�j4

2p
16 e�j5

2p
16 e�j6

2p
16 e�j7

2p
16 e�j8

2p
16 e�j9

2p
16

�
e�j10

2p
16 e�j11

2p
16 e�j12

2p
16 e�j13

2p
16 e�j14

2p
16 e�j15

2p
16

�
:

3.7.3 Decimation in Frequency FFT Algorithm

Before starting the derivation of decimation in frequency FFT algorithm let’s solve
some examples to become familiar with the terminology used in algorithm.

Example 3.48 If x n½ � ¼ 1 �2 3 �6 4 2½ � n ¼ 0; 1; . . .; 5:

(a) Find x½n� for n ¼ 0; 1; 2:
(b) Find x½n� for n ¼ 0; 1; . . .; 4:

Solution 3.48

(a) x n½ � ¼ 1 �2 3½ � n ¼ 0; 1; 2
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(b) x n½ � ¼ 1 �2 3 �6 4½ � n ¼ 0; 1; . . .; 4:

Example 3.49 If x n½ � ¼ 1 �2 3 �6 4 2½ � n ¼ 0; 1; . . .; 5:

(a) Find x½nþN=2� for n ¼ 0; 1; 2 and N ¼ 6.

Solution 3.49 x nþN=2½ � ¼ �6 4 2½ � n ¼ 0; 1; 2 and N ¼ 6
Note: x n½ �n ¼ 0; 1; . . .;N=2� 1 is the first half of the signal x n½ � and

x nþN=2½ � n ¼ 0; 1; . . .;N=2� 1 is the second half of the signal x½n�.
Example 3.50 If x n½ � ¼ 1 �2 3 �6 4 2½ �; n ¼ 0; 1; . . .; 5:

(a) Find x n½ � þ x½nþN=2� for n ¼ 0; 1; 2 and N ¼ 6.
(b) Find x n½ � � x½nþN=2� for n ¼ 0; 1; 2 and N ¼ 6.

Solution 3.50 Using the results in previous example, we obtain

x n½ � þ x nþN=2½ � ¼ �5 2 5½ � x n½ � � x nþ N
2

� �
¼ 7 �6 1½ �:

Example 3.51 For x n½ � ¼ �2 1 3 5½ �; N ¼ 4, find x½n�enN .
Solution 3.51 Let’s determine first enN for n ¼ 0; 1; 2; 3. Using enN ¼ e�jn

2p
N the

vector form of enN for n ¼ 0; 1; 2; 3 can be written as

enN ¼ e�j0
2p
4 e�j1

2p
4 e�j2

2p
4 e�j3

2p
4

� �
which can be simplified as

enN ¼ 1 �j �1 �j½ �:

Then the product signal x½n�enN for n ¼ 0; 1; 2; 3 can be written as

x n½ �enN ¼ �2ð Þ � 1 1� �jð Þ 3� �1ð Þ 5� j½ �

which yields

x n½ �enN ¼ �2 �j �3 j5½ �:

Example 3.52 X k½ � ¼ 0 1 2 3 4 5 6 7½ � are the DFT coefficients of a
digital signal x½n�. Write even and odd indexed samples of X k½ � as sequences.
Solution 3.52 Even indexed samples are
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X 2k½ � ¼ 0 2 4 6½ � k ¼ 0; 1; 2; 3

and odd indexed samples are

X 2kþ 1½ � ¼ 1 3 5 7½ � k ¼ 0; 1; 2; 3:

Example 3.53 Even and odd indexed samples of the DFT coefficients of a digital
signal are given as

X 2k½ � ¼ �1 j �2 3 1½ � k ¼ 0; 1; 2; 3; 4

X 2kþ 1½ � ¼ 2 1þ j 2� j 0 �3½ � k ¼ 0; 1; 2; 3; 4

Find the DFT coefficient vector X k½ �; k ¼ 0; 1; . . .; 9:

Solution 3.53 Taking samples one by one from X 2k½ � and X½2kþ 1� in a sequential
manner, we get the DFT coefficient vector

X k½ � ¼ �1 2 j 1þ j �2 2� j 3 0 1 �3½ �:

Let’s now derive the decimation in frequency FFT algorithm.
Decimation in Frequency FFT Algorithm
In decimation in frequency FFT algorithm the even and odd indexed DFT

coefficients are calculated separately. This operation is explained as follows.
The DFT coefficients are calculated using

X k½ � ¼
XN�1
n¼0

x n½ �eknN k ¼ 0; 1; . . .;N � 1 ð3:174Þ

from which even indexed coefficients can be obtained via

X 2k½ � ¼
XN�1
n¼0

x n½ �e2knN k ¼ 0; 1; . . .;N=2� 1

where the summation term can be divided into two parts as

X 2k½ � ¼
XN=2�1
n¼0

x n½ �e2knN þ
XN�1
n¼N=2

x n½ �e2knN|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}PN2�1
n¼0

x nþ N
2½ �e2kðnþN

2Þ
N

k ¼ 0; 1; . . .;N=2� 1: ð3:175Þ

By changing the frontiers of the second summation expression in (3.175) we
obtain
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X 2k½ � ¼
XN=2�1
n¼0

x n½ �e2knN þ
XN=2�1
n¼0

x nþ N
2

� �
e
2kðnþ N

2Þ
N k ¼ 0; 1; . . .;N=2� 1 ð3:176Þ

where the exponential term e
2kðnþ N

2Þ
N can be simplified as

e
2kðnþ N

2Þ
N ¼ e2knN ekNN|{z}

¼1

! e
2kðnþ N

2Þ
N ¼ e2knN

and making use of the e2N ¼ eN=2 the expression for X½2k� in (3.176) can be written
as

X 2k½ � ¼
XN=2�1
n¼0

x n½ �e2knN þ
XN=2�1
n¼0

x nþ N
2

� �
eknN=2 k ¼ 0; 1; . . .;N=2� 1

which is further simplified as

X 2k½ � ¼
XN=2�1
n¼0

x n½ � þ x nþ N
2

� �� �
eknN=2 k ¼ 0; 1; . . .;N=2� 1: ð3:177Þ

Equation (3.177) can be written in more compact form as

X 2k½ � ¼
XN=2�1
n¼0

x1½n�eknN=2 k ¼ 0; 1; . . .;N=2� 1

where x1 n½ � ¼ x n½ � þ x nþ N
2

� �	 

n ¼ 0; 1; . . .;N=2� 1:

In a similar manner the odd indexed coefficients of X½k� can be obtained via

X 2kþ 1½ � ¼
XN�1
n¼0

x n½ �eð2kþ 1Þn
N k ¼ 0; 1; . . .;N=2� 1

and proceeding as in the case of even indexed coefficients we obtain

X 2kþ 1½ � ¼
XN=2�1
n¼0
ðx n½ � � x½nþN=2�Þeð2kþ 1Þn

N k ¼ 0; 1; . . .;N=2� 1

which can also be written as
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X 2kþ 1½ � ¼
XN=2�1
n¼0
ðx n½ � � x½nþN=2�ÞenNeknN=2 k ¼ 0; 1; . . .;N=2� 1

which can be written in more compact form as

X 2kþ 1½ � ¼
XN=2�1
n¼0

x2½n�eknN=2 k ¼ 0; 1; . . .;N=2� 1

where x2 n½ � ¼ ðx n½ � � x½nþN=2�ÞenN n ¼ 0; 1; . . .;N=2� 1:
To sum it up;

X 2k½ � ¼
XN=2�1
n¼0

x1½n�eknN=2 k ¼ 0; 1; . . .;N=2� 1

X 2kþ 1½ � ¼
XN=2�1
n¼0

x2½n�eknN=2 k ¼ 0; 1; . . .;N=2� 1

where x1 n½ � ¼ ðx n½ � þ x nþN=2½ �Þ x2 n½ � ¼ ðx n½ � � x½nþN=2�ÞenN
and n ¼ 0; 1; . . .;N=2� 1, enN ¼ e�j

2p
N n.

Note: If the signal x½n� is written as x n½ � ¼ A B½ �; n ¼ 0; 1; . . .;N � 1 where A
is the first half and B is the second half of x½n�, then

x n½ � þ x nþN=2½ � ¼ AþB½ �; n ¼ 0; 1; . . .;N=2� 1

and

x n½ � � x nþN=2½ � ¼ A� B½ �; n ¼ 0; 1; . . .;N=2� 1

and

enN for n ¼ 0; 1; . . .;N=2� 1

equals to

enN ¼ e�j0
2p
N e�j1

2p
N � � � e�j

N
2
2p
N

� �
:

Example 3.54 For x n½ � ¼ 1 0 2 �1½ � find DFT coefficients using decimation
in frequency FFT method.

Solution 3.54 For the given sequence and N ¼ 4 and let’s first find the signals
x1½n� and x2½n� given as
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x1 n½ � ¼ ðx n½ � þ x nþN=2½ �Þ x2 n½ � ¼ ðx n½ � � x½nþN=2�ÞenN
n ¼ 0; 1; . . .;N=2� 1:

The signal x1 n½ � is obtained by summing the first and second half parts of x½n� as
follows

x n½ � ¼ ½ 1 0|fflffl{zfflffl}
First
Half

2 �1|fflfflfflffl{zfflfflfflffl}
Second
Half

�

x1 n½ � ¼ 1 0½ � þ 2 �1½ � ! x1 n½ � ¼ 1þ 2 0� 1½ �:

To calculate x2 n½ �, we first compute enN for N ¼ 4 and n ¼ 0; 1 as in

en4 ¼ e�j0
2p
4 e�j1

2p
4

h i
! en4 ¼ 1 �j½ �:

And x n½ � � x½nþN=2� for N ¼ 4 is calculated by subtracting the first and second
half parts of x n½ � as follows

x n½ � � x nþ 2½ � ¼ 1 0½ � � 2 �1½ � ! x n½ � � x nþ 2½ � ¼ �1 1½ �:

Thus x2½n� is calculated as

x2 n½ � ¼ ðx n½ � � x½nþ 2�Þen4 ! x2 n½ � ¼ �1 1½ � 	 1 �j½ �

which yields

x2 n½ � ¼ �1 �j½ �:

Next, we calculate the DFT coefficients of x1 n½ � and x2 n½ � as follows

x1 n½ � ¼ ½ 3 �1 � ! X1 k½ � ¼ 3 �1 3 þ 1½ �

x2 n½ � ¼ 1 �j½ � ! X2 k½ � ¼ �1 �j �1 þ j½ �

where X1 k½ � and X2 k½ � for k ¼ 0; 1 corresponds to X½2kþ 1� and X½2k� respectively.
Then we get

X 2kþ 1½ � ¼ 2|{z}
X 1½ �

4|{z}
X 3½ �

� �

X½2k� ¼ �1� j|fflfflffl{zfflfflffl}
X½0�

�1þ j|fflfflffl{zfflfflffl}
X½2�

� �
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As a result X½k� becomes as

X k½ � ¼ �1� j 2 �1þ j 4½ �:

Now let’s generalize this example employing parameters instead of using the
numeric values.

Example 3.55 For x n½ � ¼ a b c d½ �, find DFT coefficients using decimation in
frequency FFT method.

Solution 3.55 For the given sequence, let’s first find the signals x1½n� and x2½n�
given as

x1 n½ � ¼ ðx n½ � þ x nþN=2½ �Þ x2 n½ � ¼ ðx n½ � � x½nþN=2�ÞenN
n ¼ 0; 1; . . .;N=2� 1:

The signal x1 n½ � is obtained by summing the first and second half parts of x n½ � as
follows

x n½ � ¼ ½ a b|fflffl{zfflffl}
First
Half

c d|fflffl{zfflffl}
Second
Half

�

x1 n½ � ¼ a b½ � þ c d½ � ! x1 n½ � ¼ aþ c bþ d½ �:

To calculate x2 n½ �, we first compute enN for N ¼ 4 and n ¼ 0; 1 as follows

en4 ¼ e�j0
2p
4 e�j1

2p
4

� �! en4 ¼ 1 �j½ �:

And x n½ � � x½nþN=2� for N ¼ 4 is calculated by subtracting the first and second
half parts of x n½ � as in

x n½ � � x nþ 2½ � ¼ a d½ � � c d½ � ! x n½ � � x nþ 2½ � ¼ a� c b� d½ �:

Thus x2½n� can be calculated as

x2 n½ � ¼ ðx n½ � � x½nþ 2�Þen4 ! x2 n½ � ¼ �1 1½ � 	 1 �j½ �

which yields

x2 n½ � ¼ a� c �jðb� dÞ½ �:

Next, we calculate the DFT coefficients of x1 n½ � and x2 n½ �, i.e.,
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x1 n½ � ¼ aþ c bþ d½ � ! X1 k½ � ¼ aþ cþ bþ d aþ c� b� d½ �;
x2 n½ � ¼ a� c �jðb� dÞ½ � ! X2 k½ � ¼ a� c� jbþ jd a� cþ jb� jd½ �

where X1 k½ � and X2 k½ � for k ¼ 0; 1 corresponds to X½2kþ 1� and X½2k� respectively.
That is

X 2kþ 1½ � ¼ aþ cþ bþ d|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
X 1½ �

aþ c� b� d|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
X 3½ �

� �
;

X 2k½ � ¼ a� c� jbþ jd|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
X 0½ �

a� cþ jb� jd|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
X 2½ �

� �
:

As a result X½k� becomes as

X k½ � ¼ a� c� jbþ jd aþ cþ bþ d a� cþ jb� jd aþ c� b� d½ �:

Example 3.56 For x n½ � ¼ 2 1 1 �1 3 0 1 �2½ �, find 8-point DFT
coefficients using decimation in frequency FFT method.

Solution 3.56 The first and second half parts of x½n� are shown in

x n½ � ¼ 2 1 1 �1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
First Half

3 0 1 �2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Second Half

� �
:

The signals

x n½ � þ x nþN=2½ � x n½ � þ x nþN=2½ � enN

forN ¼ 8; n ¼ 0; 1; . . .; 3 can be calculated as

x n½ � þ x nþ 4½ � ¼ 2 1 1 �1½ � þ 3 0 1 �2½ � ! 4 1 2 �3½ �

x n½ � � x nþ 4½ � ¼ 2 1 1 �1½ � � 3 0 1 �2½ � ! �1 1 0 1½ �

en8 ¼ e�j0
2p
8 e�j1

2p
8 e�j2

2p
8 e�j3

2p
8

� �! en8 ¼ 1 e�j
p
4 e�j

p
2 e�j

3p
4

� �
: ð3:178Þ

Using the results in (3.178), we can obtain the signals x1½n� and x2½n� as in

x1 n½ � ¼ 4 1 2 �3½ �
x2 n½ � ¼ ðx n½ � � x nþ 4½ �Þen8

x2 n½ � ¼ �1 1 0 1½ � 	 1 e�j
p
4 e�j

p
2 e�j

3p
4

� �!
Hence we obtained the signals
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x1 n½ � ¼ 4 1 2 �3½ �

x2 n½ � ¼ �1 e�j
p
4 0 e�j

3p
4

� �
:

The DFT coefficients of x1½n� and x2½n� can be found using the decimation in
frequency FFT algorithm as in the previous example. Let’s denote the DFT coef-
ficients of x1½n� and x2½n� as X1½k� and X2½k� which can be found as

X1 k½ � ¼ 4 2� j4 8 2þ j4½ �

X2 k½ � ¼ �1� j2:8 1� j2:8 1þ j2:82 �1þ j2:82½ �:

The Fourier coefficients of x½n�, i.e., X½k� are related to X1½k� and X2½k� via

X 2kþ 1½ � ¼ X1 k½ � X 2k½ � ¼ X2 k½ �:

Then we have

X 2kþ 1½ � ¼ 4 2� j4 8 2þ j4½ �
X 2k½ � ¼ �1� j2:8 1� j2:8 1þ j2:82 �1þ j2:82½ �

and X½k� becomes as

X k½ � ¼ �1� j2:8 4 1� j2:8 2� j4 1þ j2:8 8 �1þ j2:82 2þ j4½ �:

3.8 Total Computation Amount of the FFT Algorithm

Consider the calculation of the following expression

x2þ xy:

Now we ask the question: How many mathematical operations are needed for the
calculation of x2þ xy ?

The answer is as follows.
For the computation of x2, one multiplicative operation is needed.
For the computation of xy, one multiplicative operation is needed.
For the computation of x2þ xy, two multiplicative operations and one additive

operation is needed.
Hence, for the computation of x2þ xy, three mathematical operations are needed.
Now consider the equality
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x2þ xy ¼ x xþ yð Þ:

And we ask the same question: How many mathematical operations are needed
for the calculation of xðxþ yÞ ?

It is obvious that for the calculation of x xþ yð Þ; one additive operation and one
multiplicative operation is needed. And the total number of mathematical opera-
tions for the calculation of xðxþ yÞ equals to two.

As a result; for x2þ xy, three mathematical operations are needed, and for
xðxþ yÞ, two mathematical operations are needed. The latter one is preferable since
it involves less computation amount.

Decimation in time and decimation in frequency FFT algorithms are invented to
decrease the computation amount for the calculation of discrete transform coeffi-
cients X½k� of a digital signal x n½ �:

We can express the total computation saving for the calculation of DFT coef-
ficients X½k� of a digital signal x n½ � when FFT algorithms are employed other than
the direct calculation approach. For illustration purposes, in the next section, we
will first calculate the total computation amount for the evaluation of DFT coeffi-
cients X½k� of a digital sequence x½n�.

Total Computation Amount of the Direct DFT Calculation:
Let’s start the discussion with an example.

Example 3.57 For N ¼ 3, find the total computation amount of the DFT formula

X k½ � ¼
XN�1
n¼0

x n½ �e�jk2pN n; k ¼ 0; 1; . . .;N � 1:

Solution 3.57 For N ¼ 3 the DFT formula takes the form

X k½ � ¼
X2
n¼0

x n½ �e�jk2pN n; k ¼ 0; 1; 2

which is expanded as

X 0½ � ¼
X2
n¼0

x n½ �e�j02p3 n

X 1½ � ¼
X2
n¼0

x n½ �e�j12p3 n

X 2½ � ¼
X2
n¼0

x n½ �e�j22p3 n:

ð3:179Þ

When the summation terms in (3.179) are expanded, we get
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X 0½ � ¼ x 0½ �e�j02p3 0þ x 1½ �e�j12p3 0þ x 2½ �e�j22p3 0

X 1½ � ¼ x 0½ �e�j2p3 0þ x 1½ �e�j2p3 1þ x 2½ �e�j2p3 2

X 2½ � ¼ x 0½ �e�j22p3 0þ x 1½ �e�j22p3 1þ x 2½ �e�j22p3 2:
ð3:180Þ

As can be seen from (3.180) for the calculation of each coefficient in (3.180),
three multiplicative and two additive operations are required. Then the total number
of multiplicative operations for the calculation of all the coefficients is 3� 3 ¼ 9
and the total number of additive operations for the calculation of all the coefficients
is 3� 2 ¼ 6.

In general, for the calculation of N-point DFT X½k� coefficients of a digital signal
x½n�, N2 multiplicative operations and N � ðN � 1Þ additive operations are needed.
The total computation amount is

N2þN � N � 1ð Þ ffi 2N2:

Now let’s consider the total computation amount of the decimation in time FFT
algorithm.

Total Computation Amount of the Decimation in Time FFT Algorithm
Let’s solve some examples to get familiar with the expressions appearing in this

section.

Example 3.58 Let N ¼ 24; we will divide N by 2 and divide the division result by 2
also and repeat this procedure until the result equals 2. How many divisions need to
be performed?

Solution 3.58 24=2 ¼ 23 ! 23=2 ¼ 22 ! 22=2 ¼ 2
As it is clear from the above result, 3 division operations are needed.
Note: If N ¼ 2v, then v division operations are needed to get 2 at the end of

successive divisions.

Example 3.59 a b means that whenever you see the a term replace it by b term
in a mathematical expression. Let’s define

N2  Nþ 2 N
2

	 
2
if N[ 2

N2  N if N ¼ 2:
ð3:181Þ

Using (3.181), calculate the term that should be replaced for 82.

Solution 3.59 Using the definition we get

82  8þ 2 4ð Þ2 4ð Þ2 4þ 2 2ð Þ2 2ð Þ2 2:

And for the expression 82  8þ 2 4ð Þ2 inserting 4þ 2 2ð Þ2 for 4ð Þ2, we get
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82  8þ 2ð4þ 2 2ð Þ2Þ

where replacing 2ð Þ2 by 2, we obtain

82  8þ 2ð4þ 2� 2Þ

which is simplified as

82  24: ð3:182Þ

In (3.182) the obtained result equals to 8� log2 8:
Note: In general;

N2  Nþ 2
N
2

� �2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼N�log2 N

:

Now let’s consider the computation amount for the decimation in time FFT
algorithm.

In decimation in time FFT algorithm DFT coefficients X½k� of x½n� are calculated
using

X k½ � ¼ G k½ � þwk
NH k½ � k ¼ 0; 1; . . .;N � 1 ð3:183Þ

where G½k� and H½k� are the N=2 point DFT coefficients of even and odd indexed
samples of x½n�. The calculation complexities for the terms appearing on the right
hand side of (3.183) can be states as:

G k½ � ! N
2

� �2

multiplicative and
N
2

� �
N
2
� 1

� �
additive operations:

H k½ � ! N
2

� �2

multiplicative and
N
2

� �
N
2
� 1

� �
additive operations:

wk
NH k½ � ! Nmultiplicative operations:

And lastly for the summation of G k½ � and wk
NH k½ � terms in (3.183), we need N

more additive operations.
Thus; the total number of multiplicative operations is

N
2

� �2

þ N
2

� �2

þN ¼ N þ N2

2

which is less then N2, i.e.,
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N2

2
þN\N2

and the total number of additive operations is

N
2

� �
N
2
� 1|{z}

ignore

0
@

1
Aþ N

2

� �
N
2
� 1|{z}

ignore

0
@

1
AþN � Nþ N2

2

which is less then N2.
Hence considering the total number of multiplicative and additive operations the

computational complexity is less in decimation in time FFT algorithm.
Now let’s consider the number of multiplicative operations

Nþ N2

2

which can be written as

N þ 2
N
2

� �2

ð3:184Þ

which is replaced for N2 when decimation in time FFT algorithm is applied.
The term N

2

	 

in the (3.184) indicates the FFT computational complexity of G½k�

and H½k�. If decimation in time algorithm is applied for the calculation of G½k� and
H½k�, we can replace N

2

	 
2
in (3.184) by

N
2
þ 2

N
4

� �2

yielding

Nþ 2
N
2
þ 2

N
4

� �2
 !

¼ NþN þ 4
N
4

� �2

and proceeding in a similar manner and replacing N
4

	 
2
by N

4 þ 2 N
8

	 
2
, we get

NþN þ 4
N
4
þ 2

N
8

� �2
 !

¼ NþN þNþ 8
N
8

� �2

:

This procedure is carried out until we reach to 2-point FFT calculation. If
N ¼ 2v, i.e., v ¼ log2 N the successive division process results in
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N þNþ � � � þN|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
v terms

¼ vN

where replacing v by log2 N, we get

N log2 N

as the number of multiplicative operations required for the calculation of DFT
coefficients of x½n� using decimation in time FFT algorithm.

A similar procedure can be carried out to find the total number of additive
operations required for the calculation of DFT coefficients of x½n� using decimation
in time FFT algorithm.

3.9 Problems

(1) If

x n½ � ¼ 1:0 1:6 2 2:32 2:58 2:84 3 3:16 3:4 3:44 3:58 3:74 3:84 3:90½ �;

then find x n� 2½ �; x nþ 3½ �; x �n� 2½ �; x 2n� 2½ �; x �2n� 2½ �;
x n

2� 2
� �

; x � n
3� 2

� �
.

(2) One period of the periodic signal ~x n½ � around origin is
x n½ � ¼ �1 2 1 �1 2½ �. Find one period of ~x n� 2½ �;~x nþ 2½ �;~x½�n�;
~x �n� 2½ �;~x 2n½ �; ~x �2n½ �;~x 2nþ 2½ �;~x �2nþ 3½ �:

(3) One period of the periodic signal ~x n½ � around origin is
x n½ � ¼ �1 2 1 �1½ �. Find ~x n½ � 	 ~x n½ �:

(4) If x n½ � ¼ �1 2 1 �1 1½ �; find x nð Þ5
� �

; x �nð Þ5
� �

; x 1� nð Þ5
� �

;

x 3� nð Þ5
� �

; x nþ 2ð Þ5
� �

; x �nþ 2ð Þ5
� �

; x 2nð Þ5
� �

; x �n� 3ð Þ5
� �

; for 0� n� 4:

(5) If x n½ � ¼ �1 2 1 �1 1½ �; find x nð Þ3
� �

; x 1� nð Þ3
� �

; x nþ 2ð Þ3
� �

;

x �nþ 2ð Þ3
� �

; x 2nð Þ3
� �

; x �n� 3ð Þ3
� �

; for 0� n� 2:

)(wXn

w

2
0

1

1

2
3 2

Fig. 3.34 One period of the
Fourier transform of the
aperiodic signal x½n�
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(6) Calculate 4-point DFT of x½n� ¼ 2 �3 3 4½ �.
(7) Calculate 6-point DFT of x ¼ 2 �3 3 4½ �.
(8) Find 5-point circular convolution of x n½ � ¼ 1 �1 2 �1½ � and

y n½ � ¼ 1 0 3½ �:
(9) If x n½ � ¼ �1 0 1|{z}

n¼0
�1 2 1

� �
; find

(10) If x n½ � ¼ 1 2 0 �3 �1½ � and

~x n½ � ¼
X1
k¼�1

x n� 5k½ �;

draw one period of the following signals.

ðaÞ ~x n½ � ðbÞ ~x 2� n½ � ðcÞ ~x n� 2½ � ðdÞ ~x 2n� 1½ � :

(11) One period of the Fourier transform of the aperiodic signal x½n� is shown in
Fig. 3.34.

(a) Find 8-point DFT of x½n� i.e., X k½ � ¼ ?
(b) Using the DFT coefficients calculated in part (a), find x n½ � employing

inverse DFT formula.

(12) Find the convolution of x n½ � ¼ 1 0 1 1 �1 0 1 2 3 1½ 1�1 4
1 2 �1� and h n½ � ¼ 1 �1 1½ �] using overlap-add and overlap-save
methods.

(13) Find the DFT of x n½ � ¼ 1 0 1 1 �1 0 1 2½ � using decimation in
time FFT algorithm.

(14) Find the DFT of x n½ � ¼ 1 0 1 2 �1 0 1 2½ � using decimation in
frequency FFT algorithm.
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Chapter 4
Analog and Digital Filter Design

In this chapter, we will study analog and digital filter design techniques. A filter is
nothing but a linear time invariant (LTI) system. Any LTI system can be described
using its impulse response. If the impulse response of a LTI system is known, then
for any arbitrary input the system output can be calculated by taking the convo-
lution of the impulse response and arbitrary input. This also means that filtering
operation is nothing but a convolution operation. And filter design is nothing but
finding the impulse response of a linear time invariant system. For this purpose, we
can work either in time domain or frequency domain.

Filter systems are designed to block some input frequencies and pass others. For
this reason, filter design studies are usually done in frequency domain. Fourier
transform of the impulse response of the filter system is called the transfer function
of the filter. To find the transfer function of filters, a number of techniques are
proposed in the literature. In this chapter, we will study the most widely known
techniques in the literature.

Filters are divided into two main categories. These are analog filters and digital
filters. In science world, more studies on analog filter design techniques are
available considering the digital filter design methods. For this reason, so as to
design a digital filter, usually digital filter specifications are transferred to analog
domain, and analog filter design is performed then the designed analog filter is
transferred to digital domain.

4.1 Review of Systems

In this chapter, we will study analog and digital filter design. Before studying filter
design techniques, we will first review some fundamental concepts. We will follow
the following outline in this chapter.

© Springer Nature Singapore Pte Ltd. 2018
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(a) Review of Systems.
(b) Review of Z-Transform.
(c) Review of Laplace Transform.
(d) Transformation between Continuous and Discrete Systems.
(e) Analogue Filter Design.
(f) IIR Digital Filter Design.
(g) FIR Digital Filter Design.

Hence, as outlined above before studying analog filter design, we will review
some fundamental concepts, such as linear systems, z-transform, Laplace transform,
and transformation between continuous and discrete systems.

The system given in the Fig. 4.1 has input x½n� and output y½n�. And the relation
between input and output can be indicated as y n½ � ¼ H x½n�f g.

Linearity:
The system H is a linear system if for the linear combination of the inputs the

system output equals to the linear combination of the individual output. This is
graphically illustrated in Fig. 4.2.

Mathematically the linearity property for the system H is expressed as

H ax1 n½ � þ bx2 n½ �f g ¼ aH x1 n½ �f gþ bH x2 n½ �f g: ð4:1Þ

Time Invariance:
The system H is time invariant if

y n� n0½ � ¼ Hfx½n� n0�g ð4:2Þ

Linear and Time Invariant System:
If a system is both linear and time invariant, then the system is called linear time

invariant system, i.e., LTI system.
For a linear time invariant system denoted byH, the impulse response is defined as

h n½ � ¼ Hfd½n�g ð4:3Þ

H][nx ][ny
Fig. 4.1 A digital system

H][1 nx ][1 ny H][2 nx ][2 ny

H][][ 21 nbxnax ][ ] [21 nbynay

Fig. 4.2 Linear system
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and the output of a LTI system for an arbitrary input is defined as

y n½ � ¼ h½n� � x½n� ð4:4Þ

where � denotes the convolution operation and it is evaluated as

h n½ � � x n½ � ¼
X1
k¼�1

h k½ �x n� k½ �: ð4:5Þ

This property graphically illustrated as in the following Fig. 4.3
Causality:
The signal x½n� is causal if x n½ � ¼ 0 for n\0.
The linear time invariant system denoted by H is causal if h n½ � ¼ 0 for n\0.
Difference Equations for LTI Systems:
The relationship between the input and the output of a LTI system can be

represented by difference equations as in

XN
k¼0

a k½ �y n� k½ � ¼
XM
k¼0

b k½ �x½n� k� ð4:6Þ

where y½n� is the system output and x½n� is the system input.

Example 4.1 The system H given in Fig. 4.4 is a LTI system.

(a) Write a difference equation between system input and output.
(b) Determine whether the system is causal or not.

Solution 4.1

(a) The relation between system input x½n� and system output y½n� is given as

y n½ � ¼
Xn
k¼�1

x½k�: ð4:7Þ

H][n ][nh

H][nx ][][][ nxnhny

Fig. 4.3 Impulse response
and output of a linear time
invariant system

][nx
n

k
kxnyH ][][

Fig. 4.4 A LTI system
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Using (4.7) then the shifted signal y½n� 1� can be calculated as

y n� 1½ � ¼
Xn�1
k¼�1

x½k�: ð4:8Þ

Taking the difference of y½n� in (4.7) and y½n� 1� in (4.8), we get

y n½ � � y n� 1½ � ¼ x n½ �: ð4:9Þ

Using (4.7) the impulse response of the system can be calculated as

h n½ � ¼
Xn
k¼�1

d k½ �:

¼ u n½ �
ð4:10Þ

where it is seen that h n½ � ¼ 0 for n\0, which means that H is a causal system.

4.1.1 Z-Transform

For a digital sequence x½n� the Z-transform is defined as

X zð Þ ¼
X1
n¼�1

x n½ �z�n ð4:11Þ

where the complex numbers z ¼ rejw are chosen from a circle of radius r in
complex plane. Substituting z ¼ rejw into (4.11), we obtain

X rejw
� � ¼ X1

n¼�1
x n½ �r�nð Þe�jwn ð4:12Þ

which converges to a finite summation if

X1
n¼�1

x n½ �r�nj j\1: ð4:13Þ

Since z ¼ rejw then zj j ¼ r and according to (4.13) we see that the Z-transform
converges only for a set of z-values and this set of z-values constitute a region in the
complex plane. And this region is called region of convergence for XðzÞ.
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The Properties of the Region of Convergence:

If X zð Þ ¼ P zð Þ
Q zð Þ, then the roots of P zð Þ ¼ 0 are called the zeros of XðzÞ and the

roots of Q zð Þ ¼ 0 are called the poles of XðzÞ. The region of convergence of XðzÞ
has the following properties.

(1) The ROC does not contain any poles.
(2) Fourier transform of x½n� exists if the ROC of XðzÞ covers the unit circle.
(3) For a right sided sequence, the ROC extends outward from the outermost pole

of XðzÞ.
(4) For a left sided sequence, the ROC extends inward from the innermost finite

pole of XðzÞ.
(5) For a finite sequence, the ROC is a ring.

Example 4.2 For x n½ � ¼ �anu½�n� 1�, find XðzÞ.
Solution 4.2 Using the definition X zð Þ ¼P1n¼�1 x n½ �z�n for the given signal, we
obtain

X zð Þ ¼
X1
n¼�1

�anu½�n� 1�z�n

where u½�n� 1� can be replaced by

u �n� 1½ � ¼ 1 if � n� 1[ 0
0 otherwise

�
! u �n� 1½ � ¼ 1 if n\� 1

0 otherwise

�

leading to the calculation

X zð Þ ¼
X�1
n¼�1

�anz�n

¼ �
X1
n¼1

a�nzn

¼ 1�
X1
n¼0

a�nzn

¼ 1� 1
1� a�1z

a�1z
�� ��\1! zj j\ aj j

¼ 1
1� a�1z

:

Example 4.3 For x n½ � ¼ anu½n�, find XðzÞ.
Solution 4.3 XðzÞ ¼ 1

1�a�1z ROC is zj j[ jaj
The LTI system H given in Fig. 4.5.
Can be described as in Fig. 4.6.
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For the system of Fig. 4.6, y n½ � ¼ h½n� � x½n� and we have Y zð Þ ¼ HðzÞXðzÞ.
The LTI system H can also be described as in Fig. 4.7 using the Z-transforms.

Stability of a Discrete LTI System:
For a discrete LTI system to be a stable system, its impulse response should be

absolutely summable, that is:

X1
n¼�1

jh n½ �j\1: ð4:14Þ

For a discrete LTI system, the transfer function is defined as

H zð Þ ¼ Y zð Þ
X zð Þ ð4:15Þ

And for a discrete LTI system to be a stable system, poles of HðzÞ should be
inside the unit circle.

Example 4.4 For a discrete LTI system, the transfer function is given as

H zð Þ ¼ z� 0:5
z� 0:3ð Þ z� 0:8� j0:8ð Þ :

Determine whether the system is stable or not?

Solution 4.4 The poles of HðzÞ are at z1 ¼ 0:3 and z2 ¼ 0:8þ 0:8j, and since
jz2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:82þ 0:82
p ! jz2j ¼ 1:13 is outside the unit circle, the LTI system with

the given transfer function is not a stable system.

H][nx ][ny
Fig. 4.5 LTI system

][nx ][ny][nh
Fig. 4.6 LTI system with
impulse response h½n�

)(zX )(zY)(zH
Fig. 4.7 LTI system with
Z-transforms
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4.1.2 Laplace Transform

Laplace transform is defined for continuous time signals. The Laplace transform of
hðtÞ is calculated as

H sð Þ ¼
Z1
�1

h tð Þe�stdt ð4:16Þ

where s is the complex frequency defined as s ¼ rþ jw. The integral expression
given in (4.16) converges for some set of s values which can be represented by a
region in complex plane called convergence region or region of convergence in
short.

The Properties of the Region of Convergence:

If H sð Þ ¼ P sð Þ
Q sð Þ, then the roots of P sð Þ ¼ 0 are called the zeros of HðsÞ and the

roots of Q sð Þ ¼ 0 are called the poles of HðsÞ. The properties of the region of
convergence (ROC) for HðsÞ can be summarized as follows.

(1) The ROC does not include any poles.
(2) The ROC consists of vertical half planes or strips.
(3) Right side signals have ROC extending in the right half plane.
(4) Left side signals have ROC extending in the left half plane.
(5) Two sided signals do either have ROC in a central vertical strip or they diverge.

Stability of a Continuous LTI Systems:
The continuous LTI system H shown in Fig. 4.8.
Can also be described using its impulse response as in Fig. 4.9.
For the system of Fig. 4.9, we have ycðtÞ ¼ hðtÞ � xcðtÞ and Y sð Þ ¼ HðsÞXðsÞ.

Thus, LTI system H can also be described as using Laplace transform of the
functions as in Fig. 4.10.

In Fig. 4.10, HðsÞ is called the transfer function of the continuous time system.

)(txc )(tyH c

Fig. 4.8 A continuous LTI system

)(thc)(txc )(tyc

Fig. 4.9 A continuous LTI system with its impulse response

)(sX )(sY)(sH

Fig. 4.10 A continuous LTI system using Laplace transforms
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The continuous time system with impulse response hðtÞ is stable if its impulse
response is absolutely integrable, that is, continuous LTI system is stable if

Z1
1
jh tð Þjdt\1: ð4:17Þ

If the transfer function HðsÞ of the continuous time system is known, then the
stability check can be performed by inspecting the poles of HðsÞ. If all the poles of
HðsÞ are in the left half plane, i.e., the complex poles have negative real parts, then
the continuous time system is stable. Otherwise the system is unstable.

Example 4.5 For a continuous LTI system, the transfer function is given as

H sð Þ ¼ sþ 1
s� 0:5þ 2jð Þ sþ 3� 2jð Þ :

Determine whether the system is stable or not?

Solution 4.5 The poles of HðsÞ are s1 ¼ 0:5� 2j and s2 ¼ �3þ 2j. The system
with transfer function HðsÞ is not a stable system since the pole s1 has positive real
part.

For continuous LTI systems, the relationship between system input and system
output can be described using differential equations as in

XN
k¼0

a k½ � d
ky tð Þ
dtk

¼
XM
k¼0

b k½ � d
kx tð Þ
dtk

: ð4:18Þ

4.2 Transformation Between Continuous
and Discrete Time Systems

We know that continuous LTI systems can be represented by differential equations.
And when the continuous time system is converted to a digital system, we can
represent digital system by difference equations.

Now we ask the question: How can we convert a differential equation to a
difference equation?

For the answer of this question, let’s first inspect the conversion of

dxc tð Þ
dt

to its discrete equivalent.
The derivative of xcðtÞ evaluated at point t0 is nothing but the slope of the line

tangent to the graph of xcðtÞ at point t0. This is illustrated in the Fig. 4.11.
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Now let’s consider the digital signal obtained from xcðtÞ after sampling opera-
tion. The slope of the line tangent to the graph of xcðtÞ at point t0 can be
approximated using the sample values and sampling instants. The sampling of the
continuous time signal is illustrated in the Fig. 4.12.

The slope of the line at point t0 ¼ nTs can be calculated using the triangles as
shown in the Fig. 4.13.

The slope of the line tangent to the graph at point t0 ¼ nTs can be evaluated
using the left triangle in Fig. 4.13 as

dxc tð Þ
dt

����
t¼nTs
¼ xc nTsð Þ � xc n� 1ð ÞTsð Þ

Ts
ð4:19Þ

or using the right triangle in Fig. 4.13 as

dxc tð Þ
dt

����
t¼nTs
¼ xc ðnþ 1ÞTsð Þ � xc nTsð Þ

Ts
: ð4:20Þ

And we have the following identities

x n½ � ¼ xc nTsð Þ x n� 1½ � ¼ xc n� 1ð ÞTsð Þ x nþ 1½ � ¼ xc nþ 1ð ÞTsð Þ: ð4:21Þ

Using (4.21) in (4.19) and (4.20), the derivative of the continuous time signal
can be written either as

)(txc

t0
0t

Fig. 4.11 A tangent line at
point t0

)(txc

t0 snTsTn )1( sTn )1(

))1(( sc Tnx

)( sc nTx

))1(( sc TnxFig. 4.12 Sampling of the
continuous time signal
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dxc tð Þ
dt

����
t¼nTs
� x½n� � x½n� 1�

Ts
ð4:22Þ

or as

dxc tð Þ
dt

����
t¼nTs
� x nþ 1½ � � x n½ �

Ts
: ð4:23Þ

Otherwise indicated, we will use

dxc tð Þ
dt

����
t¼nTs
� x½nþ 1� � x½n�

Ts
ð4:24Þ

for the discrete approximation of the derivative operation.
In addition, the expression

dxc tð Þ
dt

����
t¼nTs
� x½nþ 1� � x½n�

Ts

is called backward difference approximation, and

dxc tð Þ
dt

����
t¼nTs
� x½n� � x½n� 1�

Ts

is called forward difference approximation.

Example 4.6 Obtain the discrete equivalent of the differential equation

dy tð Þ
dt
þ ay tð Þ ¼ bx tð Þ: ð4:25Þ

Solution 4.6 If the Eq. (4.25) is sampled, we obtain

)(txc

t
0 snTsTn )1( sTn )1(

))1(( sc Tnx

)( sc nTx

))1(( sc TnxFig. 4.13 Calculation of the
slope of the tangent line at
point t0 ¼ nTs
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dy tð Þ
dt

����
t¼nTs
þ ayðtÞjt¼nTs¼ bxðtÞjt¼nTs : ð4:26Þ

And substituting

dy tð Þ
dt

����
t¼nTs

� y nþ 1½ � � y n½ �
Ts

y n½ � ¼ y tð Þjt¼nTs
x n½ � ¼ xðtÞjt¼nTs

ð4:27Þ

into (4.26), we obtain the difference equation

y nþ 1½ � � y n½ �
Ts

þ ay n½ � ¼ bx n½ �: ð4:28Þ

If we use the forward difference approximation

dy tð Þ
dt

����
t¼nTs
� y n½ � � y n� 1½ �

Ts

we obtain

y n½ � � y n� 1½ �
Ts

þ ay n½ � ¼ bx½n�

as the discrete approximation of (4.25).

Example 4.7 Find the discrete equivalent of

d2y tð Þ
dt2

: ð4:29Þ

Solution 4.7 We can write

d2y tð Þ
dt2

����
t¼nTs

as

d2y tð Þ
dt2

����
t¼nTs
¼

dy tð Þ
dt

���
t¼ðnþ 1ÞTs

�dy tð Þ
dt

���
t¼nTs

Ts
: ð4:30Þ

Substituting
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dy tð Þ
dt

����
t¼nTs
� y nþ 1½ � � y n½ �

Ts

into (4.30), we obtain

d2y tð Þ
dt2

����
t¼nTs
� y nþ 2½ � � y nþ 1½ � � y nþ 1½ � � y n½ �ð Þ

T2
s

which can be simplified as

d2y tð Þ
dt2

����
t¼nTs
� y nþ 2½ � � 2y nþ 1½ � þ y n½ �

T2
s

: ð4:31Þ

If we use forward difference approximation

dy tð Þ
dt

����
t¼nTs
� y n½ � � y n� 1½ �

Ts

inside the expression

d2y tð Þ
dt2

����
t¼nTs
�

dy tð Þ
dt

���
t¼ðnTsÞ

�dy tð Þ
dt

���
t¼ðn�1ÞTs

Ts

we obtain

d2y tð Þ
dt2

����
t¼nTs
�

y n½ ��y n�1½ �
Ts

� y n�1½ ��y n�2½ �
Ts

� �
Ts

which can be simplified as

d2y tð Þ
dt2

����
t¼nTs
� y n½ � � 2y n� 1½ � þ y n� 2½ �

T2
s

: ð4:32Þ

Example 4.8 Find the discrete equivalent of the differential equation

d2y tð Þ
dt2

þ 2
dy tð Þ
dt
þ y tð Þ ¼ x tð Þþ dx tð Þ

dt
: ð4:33Þ

Solution 4.8 If both sides of the (4.33) are sampled, we get
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d2y tð Þ
dt2

����
t¼nTs
þ 2

dy tð Þ
dt

����
t¼nTs
þ y tð Þjt¼nTs¼ x tð Þjt¼nTs þ

dx tð Þ
dt

����
t¼nTs

: ð4:34Þ

And substituting the approximations and equations

d2y tð Þ
dt2

����
t¼nTs

� y nþ 2½ � � 2y nþ 1½ � þ y½n�
T2
s

dx tð Þ
dt

����
t¼nTs

� x nþ 1½ � � x n½ �
Ts

x n½ � ¼ xðtÞjt¼nTs
y n½ � ¼ yðtÞjt¼nTs

into (4.34), we obtain

y nþ 2½ � � 2y nþ 1½ � þ y n½ �
T2
s

þ 2
y nþ 1½ � � y n½ �

Ts
þ y n½ � ¼ x n½ � þ x nþ 1½ � � x n½ �

Ts
:

ð4:35Þ

For Ts ¼ 1, the Eq. (4.35) reduces to

y nþ 2½ � ¼ x nþ 1½ �:
Exercise: Find the discrete equivalent of

d3y tð Þ
dt3

:

4.2.1 Conversion of Transfer Functions of LTI Systems

We know that continuous and discrete LTI systems can be described by differential
or difference equations.

][nx ][ny][nh

)(txc )(tyc)(thc
Fig. 4.14 Continuous time
LTI system and its discrete
equivalent
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And a differential equation can be converted to a difference equation via sam-
pling operation. The difference equation represents a discrete LTI system. In
Fig. 4.14, a continuous time system and its discrete equivalent obtained via sam-
pling operation is shown using block diagrams.

Both continuous and discrete systems have transfer functions defined as

Hc sð Þ ¼ Yc sð Þ
Xc sð Þ and Hn zð Þ ¼ Yn zð Þ

Xn zð Þ

respectively. Now we ask the question, given HcðsÞ can we obtain HnðzÞ from HcðsÞ
directly?

The answer to this question is yes and we will derive two methods for the direct
conversion of HcðsÞ to HnðzÞ, and these methods will be called forward difference
and bilinear transformation.

Note: For simplicity of notation, we will drop the subscript letters c and n from
the equations HcðsÞ and HnðzÞ.

4.2.2 Forward Difference Transformation Method

Consider the differential equation

dy tð Þ
dt
þ ay tð Þ ¼ x tð Þ ð4:36Þ

which describes a continuous LTI system. Taking the Laplace transform of both
sides of (4.36), we get

sY sð Þþ aY sð Þ ¼ XðsÞ

from which the transfer function H sð Þ ¼ YðsÞ=XðsÞ can be calculated as

H sð Þ ¼ 1
sþ a

: ð4:37Þ

If the differential equation

dy tð Þ
dt
þ ay tð Þ ¼ x tð Þ
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is sampled, we get

dy tð Þ
dt

����
t¼nTs
þ ay tð Þjt¼nTs¼ x tð Þjt¼nTs

which yields the difference equation

y n½ � � y n� 1½ �
Ts

þ ay n½ � ¼ x n½ �: ð4:38Þ

And by taking the Z-transform of both sides of (4.38), we get

Y zð Þ � z�1Y zð Þ
Ts

þ aY zð Þ ¼ XðzÞ

from which the transfer function HðzÞ can be calculated as

H zð Þ ¼ 1

aþ 1�z�1
Ts

: ð4:39Þ

When HðsÞ in (4.37) and HðzÞ in (4.39) are compared to each other as below

H sð Þ ¼ 1
sþ a

H zð Þ ¼ 1

aþ 1�z�1
Ts

we see that

H zð Þ ¼ HðsÞj
s¼1�z�1

Ts

ð4:40Þ

Example 4.9 Obtain the discrete equivalent of

d2y tð Þ
dt2

þ dy tð Þ
dt
þ ay tð Þ ¼ x tð Þ ð4:41Þ

and find the relation between HðsÞ and HðzÞ. Use forward difference transformation
method.

Solution 4.9 The discrete equivalent of

d2y tð Þ
dt2

þ dy tð Þ
dt
þ ay tð Þ ¼ x tð Þ ð4:42Þ
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is

y n½ � � 2y n� 1½ � þ y½n� 2�
T2
s

þ y n½ � � y n� 1½ �
Ts

þ ay n½ � ¼ x n½ �: ð4:43Þ
Laplace transform of the (4.42) is

s2Y sð Þþ sY sð Þþ aY sð Þ ¼ X sð Þ: ð4:44Þ

Z-transform difference Eq. (4.43) can be calculated as

Y zð Þ � 2z�1Y zð Þþ z�2Y zð Þ
T2
s

þ Y zð Þ � z�1Y zð Þ
Ts

þ aY zð Þ ¼ XðzÞ

which yields

1� z�1

Ts

	 
2

Y zð Þ � 1� z�1

Ts
Y zð Þþ aY zð Þ ¼ X zð Þ: ð4:45Þ

If we compare the Laplace transform in (4.44) and Z-transform in (4.45), we see
that Z-transform can be obtained from Laplace transform replacing s by 1�z�1

Ts
. That

is

H zð Þ ¼ HðsÞj
s¼1�z�1

Ts

ð4:46Þ

Therefore, if forward difference transformation method is used for any differ-
ential equation, the relation between transfer functions of continuous and discrete
systems happens to be as in (4.46).

4.2.3 Bilinear Transformation

If the bilinear transformation method is used to obtain the difference equation from
differential equation, the relation between transfer functions happens to be as

H zð Þ ¼ HðsÞj
s¼ 2

Ts
1�z�1
1þ z�1

� � ð4:47Þ

Now let’s derive the bilinear transformation formula in (4.47).
Consider the differential equation

dy tð Þ
dt
þ ay tð Þ ¼ x tð Þ: ð4:48Þ
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Let

w tð Þ ¼ dy tð Þ
dt

then

y tð Þ ¼
Z t

�1
wðsÞds

which can be written as

y tð Þ ¼
Zt0
�1

wðsÞds
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

yðt0Þ

þ
Z t

t0

wðsÞds

y tð Þ ¼ y t0ð Þþ
Z t

t0

w sð Þds: ð4:49Þ

When the Eq. (4.49) is sampled at time instants t ¼ nTs and t0 ¼ n� 1ð ÞTs, we
get

y nTsð Þ|fflffl{zfflffl}
y½n�

¼ yð n� 1ð ÞTsÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
y½n�1�

þ
ZnTs

n�1ð ÞTs

wðsÞds ð4:50Þ

which can be written as

y n½ � ¼ y n� 1½ � þ
ZnTs

n�1ð ÞTs

w sð Þds: ð4:51Þ

Now let’s consider the evaluation of the integral expression in (4.51). We can
evaluate the integration in (4.51) using the trapezoidal integration rule. This is
shown in the Fig. 4.15.

Using Fig. 4.15, we can write

ZnTs
n�1ð ÞTs

wðsÞds ¼ Ts
2

w n� 1ð ÞTsð Þþw nTsð Þð Þ ð4:52Þ
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which can be simplified as

ZnTs
n�1ð ÞTs

wðsÞds ¼ Ts
2

w½n� 1� þw½n�ð Þ: ð4:53Þ

Substituting (4.53) into (4.51), we obtain

y n½ � ¼ y n� 1½ � þ Ts
2

w½n� 1� þw½n�ð Þ: ð4:54Þ

Consider the equation

dy tð Þ
dt|ffl{zffl}
wðtÞ

þ ay tð Þ ¼ x tð Þ: ð4:55Þ

When (4.55) is sampled, we obtain

w n½ � þ ay n½ � ¼ x n½ � ! w n½ � ¼ �ay n½ � þ x n½ �: ð4:56Þ

If Eq. (4.56) is substituted into (4.54), we obtain

y n½ � ¼ y n� 1½ � þ Ts
2
�ay n� 1½ � þ x½n� 1� � ay n½ � þ x½n�ð Þ ð4:57Þ

which can be rearranged as

y n½ � þ aTs
2

y n½ � þ aTs
2

y n� 1½ � � y n� 1½ � ¼ þ Ts
2
x n� 1½ � þ Ts

2
x n½ �: ð4:58Þ

)(tw

t
0 snTsTn )1(

))1(( sTnw

)( snTw

Fig. 4.15 Trapezoidal
integration
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And taking the Z-transform of both sides of (4.58), we get

1þ aTs
2

	 

Y zð Þ � 1� aTs

2

	 

z�1Y zð Þ ¼ Ts

2
aþ z�1
� �

X zð Þ ð4:59Þ

from which the transfer function can be calculated as

H zð Þ ¼ Y zð Þ
X zð Þ ! H zð Þ ¼ 1

aþ 2
Ts

1�z�1
1þ z�1

� � : ð4:60Þ

When (4.60) is compared to

H sð Þ ¼ 1
aþ s

ð4:61Þ

we see that

H zð Þ ¼ HðsÞj
s¼ 2

Ts
1�z�1
1þ z�1

� � ð4:62Þ

Bilinear transformation is an efficient transformation technique. Stable contin-
uous time LTI systems are converted into stable discrete LTI systems.

That is if the poles of HðsÞ are in the left half plane, the poles of HðzÞ are inside
the unit circle. This is illustrated in Fig. 4.16.

Frequency Mapping in Bilinear Transformation:
In bilinear transformation, the relation between continuous and digital frequency

is given as

s ¼ 2
Ts

1� z�1

1þ z�1

	 

ð4:63Þ

s-plane z-plane

Analog
Digital

Fig. 4.16 Pole mapping in bilinear transformation

4.2 Transformation Between Continuous and Discrete Time Systems 251



where s ¼ rþ jwa and z ¼ ejwd . Let

wa ! Analog signal frequency

and

wd ! Digital signal frequency:

Equation (4.63) yields

rþ jwa ¼ 2
Ts

1� e�jwd

1þ e�jwd

	 


¼ 2
Ts

e�j
wd
2

e�j
wd
2

ej
wd
2 � e�j

wd
2

ej
wd
2 þ e�j

wd
2

 ! !

¼ j
2
Ts

sin wd
2

� �
cos wd

2

� �
¼ j

2
Ts

tan
wd

2

� �
:

Hence,

wa ¼ 2
Ts

tan
wd

2

� �
: ð4:64Þ

Summary: Transformation of analog systems to discrete ones can be achieved
by using the following methods.

(1) The forwards difference transformation:

s ¼ z� 1
Ts

:

(2) The backward difference transformation:

s ¼ z� 1
Tsz

:

(3) The bilinear transformation:

s ¼ 2
Ts

1� z�1

1þ z�1
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(4) Impulse invariance transformation:

H zð Þ ¼ Ts � Z�transform of H sð Þf g:

(5) Step invariance transformation:

H zð Þ ¼ 1� z�1
� �� Z�transform of

H sð Þ
s

� �
:

Example 4.10 Transfer function of a continuous time system is given as

H sð Þ ¼ 4sþ 11
s2þ 7sþ 10

:

Find the transfer function HðzÞ of the digital system obtained via the sampling of
continuous time system.

Solution 4.10 H zð Þ ¼ HðsÞj
s¼ 2

Ts
1�z�1
1þ z�1

� �, for simplicity of the calculation, we can

choose Ts ¼ 1 and this yields

H zð Þ ¼ 19þ 22z�1þ 3z�2

28þ 12z�1
:

4.3 Analogue Filter Design

Consider the continuous LTI system given in Fig. 4.17.
Where the system output equals to

y tð Þ ¼ xðtÞ � hðtÞ

which can be written in frequency domain as

Y wð Þ ¼ X wð ÞH wð Þ: ð4:65Þ

If the magnitude of HðwÞ in (4.65) gets very small values for some specific
values of w, the output function YðwÞ does no contain any information about XðwÞ
and this operation is called filtering.

)(tx )(ty)(th
Fig. 4.17 A continuous LTI
system
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Any analog filter is characterized by its transfer function HðwÞ which can be a
complex function with magnitude jHðwÞj and phase \HðwÞ characteristics.

If we denote the phase characteristics as

h wð Þ ¼ \HðwÞ ! h wð Þ ¼ arg H wð Þð Þ

then phase and group delays are defined as

q wð Þ ¼ � h wð Þ
dw

s wð Þ ¼ � dh wð Þ
dw

: ð4:66Þ

Group delay function gives information about the amount of delay introduced by
the system transfer function to the system input. For instance, if

s wð Þ ¼ 2

then for the transfer function with unit gain the system input

x tð Þ ¼ sinðwtÞ

yields the system output

y tð Þ ¼ sin w t � 2ð Þð Þ:

4.3.1 Ideal Filters

In this section we will study the transfer functions of the ideal filters. For HðwÞ, i.e.,
the transfer function of the ideal filter, the time domain impulse response can be
calculated using the inverse Fourier transform

h tð Þ ¼ 1
2p

Z1
w¼�1

HðwÞdw

which is a function having non-zero values for all t values in the range
�1\t\1, for this reason such filters are not physically realizable, and they are
called ideal filters.

Ideal Low-Pass Filter:
The transfer function of the ideal low-pass filter is shown in Fig. 4.18.
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Whose impulse response can be calculated as

hlp tð Þ ¼ 1
2p

Zwc

�wc

1� ejwtdw

¼ 1
pt

sin c wctð Þ

where wc is called cut-off frequency.
Ideal High-Pass Filter:
The transfer function of the ideal high-pass filter is shown in Fig. 4.19.
Which can be written in terms of the transfer function of the low-pass filter with

the same cut-off frequency as

Hhp wð Þ ¼ 1� Hlp wð Þ: ð4:67Þ

whose inverse Fourier transform equals to

hhp tð Þ ¼ 1� 1
pt

sin c wctð Þ: ð4:68Þ

Ideal Band-Pass Filter:
The transfer function of the ideal band-pass filter is shown in Fig. 4.20.

)(wHhp

0
w

1

cc

Fig. 4.19 Transfer function of the ideal high-pass filter

)(wHlp

0
w

1

cc

Fig. 4.18 Transfer function of the ideal low-pass filter

4.3 Analogue Filter Design 255



Which can be obtained from low-pass filter transfer function with the same
cut-off frequency as

Hbp wð Þ ¼ Hlp w� w0ð ÞþHlp wþw0ð Þ: ð4:69Þ

In Fig. 4.20; wcl and wch are low and high cut-off frequencies.
Ideal Band-Stop Filter:
The transfer function of the ideal band-stop filter is shown in Fig. 4.21.
Which can be obtained from band-pass filter transfer function (4.69) as

Hbs wð Þ ¼ 1� Hbp wð Þ: ð4:70Þ

As can be seen from the filter transfer functions; if we design a low-pass filter,
we can obtain the transfer function of other filters by just manipulating the transfer
function of low-pass filter.

Example 4.11 The transfer function of an analog low-pass filter with cut-off fre-
quency xc ¼ 1 rad/s is given as

H1 wð Þ ¼ 1

w2þ 2
ffiffiffi
2
p

wþ 4
:

Find the transfer function of low-pass filter with cut-off frequency xc ¼ 2 rad/s.

)(wHbp

0
w

1

lc hclchc 00

Fig. 4.20 Transfer function of the ideal band-pass filter

)(wH

0
w

1

lc hclchc

Fig. 4.21 Transfer function of the ideal band-stop filter
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Solution 4.11 The transfer function of the ideal low-pass filter with cut-off fre-
quency xc ¼ 1 rad/s is shown in the Fig. 4.21.

And the transfer function of the ideal low-pass filter with cut-off frequency
xc ¼ 2 rad/s is shown in the Fig. 4.4.

From Figs. 4.22 and 4.23, we see that

H2i wð Þ ¼ H1i
w
2

� �
ð4:71Þ

In a similar manner, using the low-pass filter with cut-off frequency xc ¼ 1 rad/s
in the problem, we can calculate the transfer function of the low-pass filter with
cut-off frequency xc ¼ 2 rad/s employing (4.71) as

H2 wð Þ ¼ 4

w2þ 4
ffiffiffi
2
p

wþ 16
:

In general, given the transfer function of low-pass filter H1ðwÞ with cut-off
frequency 1 rad/s, the transfer function of low-pass filter with cut-off frequency xc

can be obtained as

Hwc wð Þ ¼ H1
w
wc

	 

ð4:72Þ

)(1 wH i

0
w

1

11

Fig. 4.22 Transfer function
of the ideal low-pass filter
with cut-off frequency
xc ¼ 1 rad/s

)(2 wH i

0
w

1

22

Fig. 4.23 Transfer function
of the ideal low-pass filter
with cut-off frequency
xc ¼ 2 rad/s
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Example 4.12 The transfer function of an analog low-pass filter with cut-off fre-
quency xc ¼ 1 rad/s is given as

H1 sð Þ ¼ 1

s2þ 2
ffiffiffi
2
p þ 4

:

Find the transfer function of high-pass filter with cut-off frequency xc ¼ 2 rad/s.

Solution 4.12 First, we can design the low-pass filter with cut-off frequency xc ¼
2 rad/s as in the previous example and the transfer function of the low-pass filter
with cut-off frequency xc ¼ 2 rad/s is found as

Hlp wð Þ ¼ 4

w2þ 4
ffiffiffi
2
p

wþ 16
:

Then the transfer function of the high-pass filter with cut-off frequency xc ¼
2 rad/s can be found as

Hhp ¼ 1� Hlp wð Þ

¼ w2þ 4
ffiffiffi
2
p

wþ 12

w2þ 4
ffiffiffi
2
p

wþ 16
:

Hence, for the filter design; it is custom to design a low-pass filter with cut-off
frequency xc ¼ 1 rad/s and transfer it to any desired frequency response.

4.3.2 Practical Analog Filter Design

Although ideal filters are simple to understand they cannot be used to construct
filter circuits; since they need an infinite number of circuit elements. For this reason,
practical analog filter design techniques are adapted in the signal processing liter-
ature. The specifications of a practical analog filter are given in Fig. 4.24.

w

2|)(| wH

0 pw sw

1

12 )1(

2

cw

Passband

Transition

Stopband

Fig. 4.24 The specifications
of a practical analog filter
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As can be seen from Fig. 4.24, the squared filter magnitude should satisfy

1þ �2
� ��1� H wð Þj j2� 1 for 0�w�wp

in passband and it should satisfy

0� H wð Þj j2� d2 for ws�w�1

in stopband.
Filter Parameters
Cut-off frequency:
At cut-off frequency wc, the amplitude of the transfer function equals to

1ffiffi
2
p H wð Þj jmax, that is

H wcð Þ ¼ 1ffiffiffi
2
p H wð Þj jmax:

If H wð Þj jmax¼ 1, then wc is determined from

H wcð Þ ¼ 1ffiffiffi
2
p :

Pass-band ripple:
Passband ripple in decibels is defined as

Rp ¼ 10 log 1þ �2
� �

: ð4:73Þ

Stopband attenuation:
The stopband attenuation is defined as

Rs ¼ �10 log d2
� �

: ð4:74Þ

Selectivity parameter:
The ratio of pass-band frequency to stop-band frequency is called selectivity

parameters, i.e.,

k ¼ wp

ws

which is equal to 1 for ideal filters, and for practical filters k\1.
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Discrimination parameter:
The discrimination parameter is used as an indicator of the pass-band and

stop-band attenuation ratios and defined as

d ¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�2 � 1
p

which is equal to 0 for ideal filters and d[ 1 for practical filters.
Now let’s see the practical filter design methods.

4.3.3 Practical Filter Design Methods

The most known practical filter design techniques in literature are:

(1) Butterworth filter design.
(2) Chebyshev I and II filter design.
(3) Elliptic filter design.
(4) Bessel filter design.

4.3.3.1 Butterworth Filter Design

The squared magnitude response of the Nth order Butterworth filter is defined as

H wð Þj j2¼ 1

1þ w
wc

� �2N ð4:75Þ

where wc is the cut-off frequency.
The transfer function of the Nth order Butterworth filter is

H sð Þ ¼ wN
cQN

k¼1 s� pkð Þ ð4:76Þ

where the poles pk are given as

pk ¼ wce
jp
2 1þ 2k�1

Nð Þð Þ: ð4:77Þ

The transfer function HðsÞ has N poles located on a circle of radius wc on the left
half plane.
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Given low-pass filter specifications wp, ws;Rp; the low-pass Butterworth filter is
designed via the following steps:

(1) Using the given filter specifications and the expression

H wð Þj j2¼ 1

1þ w
wc

� �2N
decide on the filter order N and cut-off frequency wc.

(2) Determine the poles using

pk ¼ wce
jp
2 1þ 2k�1

Nð Þð Þ; k ¼ 1; . . .;N:

(3) Find the transfer function using the poles as

H sð Þ ¼ wN
cQN

k¼1 s� pkð Þ :

(4) And finally construct the filter circuit using the transfer function HðsÞ found in
the previous step.

Filter order N and cut-off frequency determination:

(a) From Fig. 4.24, we see that

atw ¼ wp H wp
� ��� �� ¼ 1

1þ wp

wc

� �2N ! H wp
� ��� �� ¼ 1

1þ �2

which leads to the equation

1

1þ wp

wc

� �2N ¼ 1
1þ �2

: ð4:78Þ

(b) In a similar manner, from Fig. 4.24, it is also seen that

atw ¼ ws H wsð Þj j ¼ 1

1þ ws
wc

� �2N ! H wp
� ��� �� ¼ d2
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which yields the equation

1

1þ wp

wc

� �2N ¼ d2: ð4:79Þ

From (4.78) and (4.79), we obtain the equation set

ws
wc

� �2N
¼ d�2 � 1

wp

wc

� �2N
¼ 1þ �2

9>=
>;! dividing them

we get

ws

wp

	 
2N

¼ d�2 � 1
�2

: ð4:80Þ

When (4.80) is solved for N, we get

N�
log

ffiffiffiffiffiffiffiffiffiffi
d�2�1
p

�

	 

log ws

wp

� �
2
66666

3
77777 ð4:81Þ

which can be written in terms of selectivity and discrimination parameters as

N� log 1
d

� �
log 1

k

� �& ’
ð4:82Þ

where 	d e is the round up to the larger integer function.
And the cut-off frequency wc can be determined by solving one of the equations

ws

wc

	 
2N

¼ d�2 � 1

wp

wc

	 
2N

¼ 1þ �2
ð4:83Þ

yielding the roots

wc ¼ ��
1
Nwp wc ¼ d�2 � 1

� �� 1
2Nws: ð4:84Þ
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Or the cut-off frequency can be selected as any value from the range

��
1
Nwp�wc� d�2 � 1

� �� 1
2Nws: ð4:85Þ

Example 4.13 Design the transfer function of low-pass Butterworth filter whose
specifications are given as

wp ¼ 1000 rad/s ws ¼ 3000 rad/s Rp ¼ 4 dB Rs ¼ 40 dB:

Solution 4.13 Let’s first determine the � and d values using Rp and Rs given in the
question as follows

Rp ¼ 10 log 1þ �2
� �! 4 ¼ 10 log 1þ �2

� �! �2 ¼ 1:51! � ¼ 1:23

Rs ¼ �10 log d2
� �! 40 ¼ �10 log d2

� �! d2 ¼ 10�4:

And using the calculated �2 and d2 values in the Fig. 4.25.
We can roughly sketch the filter squared magnitude response as in Fig. 4.26.
Next, we determine the order N of the filter as follows

k ¼ wp

ws
! k ¼ 1

3

d ¼ �ffiffiffiffiffiffiffiffiffiffi
d�2�1
p ! d ¼ 1:23ffiffiffiffiffiffiffiffiffiffi

104�1
p ! d � 0:0123

N � log 1
dð Þ

log 1
kð Þ ! N� log 1

0:0123ð Þ
log 3ð Þ ¼ 4:002! N ¼ 4:

And the cut-off frequency can be found using

��
1
Nwp�wc� d�2 � 1

� �� 1
2Nws

w

2|)(| wH

0 pw sw

1

12)1(

2

Passband

Transition

Stopband

Fig. 4.25 Typical magnitude
squared transfer function of a
practical low-pass filter
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as follows

1:23�
1
41000�wc� 104 � 1

� ��1
83000

949:6�wc� 948:69! wc ¼ 949 rad/s:

The poles for N ¼ 4 are calculated using

pk ¼ wce
jp
2 1þ 2k�1

Nð Þð Þ; k ¼ 1; . . .;N

as follows

p1 ¼ 949e
jp
2 1þ 1

4ð Þ ! p1 ¼ 949e
j5p
8 ! p1 ¼ 949 cos

5p
8

	 

þ j sin

5p
8

	 
	 


p2 ¼ 949e
jp
2 1þ 3

4ð Þ ! p2 ¼ 949e
j7p
8 ! p2 ¼ 949 cos

7p
8

	 

þ j sin

7p
8

	 
	 


p3 ¼ 949e
jp
2 1þ 5

4ð Þ ! p3 ¼ 949e
j9p
8 ! p3 ¼ 949 cos

9p
8

	 

þ j sin

9p
8

	 
	 


p4 ¼ 949e
jp
2 1þ 7

4ð Þ ! p4 ¼ 949e
j11p
8 ! p4 ¼ 949 cos

11p
8

	 

þ j sin

11p
8

	 
	 

:

which can be simplified as

p1 ¼ �363þ 876j p2 ¼ �876þ 363j

p3 ¼ �876� 363j p4 ¼ �363� 876j:

w

2|)(| wH

0 1000 3000

1

0.4

410

Passband

Transition

Stopband

Fig. 4.26 Magnitude squared
transfer function of a practical
low-pass filter for
Example 4.13
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Using the calculated poles, the transfer function is evaluated as

H sð Þ ¼ wN
c

s� p1ð Þ s� p2ð Þ s� p3ð Þ s� p4ð Þ

which leads to the expression

H sð Þ ¼ 9492

sþ 363ð Þ2�8762
� �

sþ 876ð Þ2�3632
� �

whose simplified form is

H sð Þ ¼ 900;601
s2þ 726s� 635;607ð Þ s2þ 1752sþ 635;607ð Þ :

4.3.3.2 Chebyshev Filter Design

Chebyshev Type-I Filter:
Chebyshev Type-I filter squared magnitude response is equiripple in the pass-

band and monotonic in the stopband. The squared magnitude response of a typical
Chebyshev Type-I filter is depicted in the Fig. 4.27.

In Chebyshev Type-I filter transition from passband to stopband is more rapid
when compared to Butterworth filter.

The square magnitude response of Chebyshev Type-I filter is defined as

HI wð Þj j2¼ 1

1þ �2T2
N

w
wp

� � ð4:86Þ

w

2|)(| wH

0
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Transition

Stopband

pw sw

1

12 )1(

2

Fig. 4.27 Square magnitude
response of Chebyshev
Type-I filter
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where TNðwÞ is the Nth order Chebyshev polynomial given as

TN wð Þ ¼ cos N cos�1 wð Þð Þ wj j � 1
cos h N cos h�1 wð Þ� �

wj j[ 1

�
: ð4:87Þ

The Chebyshev polynomial can be calculated in an iterative manner as

Tm wð Þ ¼ 2wTm�1 wð Þ � Tm�2 wð Þ m� 2 ð4:88Þ

with the initial conditions

T0 wð Þ ¼ 1 and T1 wð Þ ¼ w: ð4:89Þ

Chebyshev Type-I filter design:
Assume that the low-pass filter specifications wp;ws;Rp;Rs are given. The

design of the Chebychev Type-I filter can be achieved via the following steps

(1) First, with the given low-pass filter specifications; the order of the filter is
determined as:

N �
log d�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�2 � 1
p� �

log k�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2 � 1
p� � ¼ cos h�1 d�1ð Þ

cos h�1 k�1ð Þ ð4:90Þ

where k and d are the selectivity and discrimination parameters, and Rp is the
passband ripple. The cut-off frequency is found by solving the equation

H wcð Þ ¼ 10�
Rp
10 : ð4:91Þ

(2) Next, we calculate the transfer function

H sð Þ ¼ cQN
k¼1 s� pkð Þ ð4:92Þ

where the poles are calculated using

pk ¼ �wp sin h /ð Þ sin 2k � 1
2N

p

	 

þ jwp cos h /ð Þ cos 2k � 1

2N
p

	 

ð4:93Þ
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in which / is defined as

/ ¼ 1
N
ln

1þ 1þ �2ð Þ12
�

 !
: ð4:94Þ

And the constant term c in (4.92) is calculated via

c ¼
� QN

k¼1
pk if N is odd

1þ �2ð Þ�1
2
QN
k¼1

pk if N is even

8>><
>>: ð4:95Þ

Example 4.14 Design a low-pass filter whose specifications are given as

wp ¼ 1000 rad/s ws ¼ 4000 rad/s Rp ¼ 5 dB Rs ¼ 40 dB:

Use the transfer function of Chebyshev Type-I filter for your design.

Solution 4.14 With the given filter specifications, the parameters � and d are cal-
culated as

Rp ¼ 10 log 1þ �2
� �! 5 ¼ 10 log 1þ �2

� �! �2 ¼ 2:16! � ¼ 1:47

Rs ¼ �10 log d2
� �! 40 ¼ �10 log d2

� �! d2 ¼ 10�4 ! d ¼ 10�2:

And selectivity and discrimination parameters are found via

k ¼ wp

ws
! k ¼ 1

4

d ¼ �ffiffiffiffiffiffiffiffiffiffi
d�2�1
p ! d ¼ 1:47ffiffiffiffiffiffiffiffiffiffi

104�1
p ! d � 0:0147:

The filter order is calculated as

N � cos h�1 d�1ð Þ
cos h�1 k�1ð Þ ! N� 2:38! N ¼ 3:

The calculation of the poles can be achieved via

/ ¼ 1
N
ln

1þ 1þ �2ð Þ12
�

 !
! / ¼ 0:2121
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pk ¼ �wp sin h /ð Þ sin 2k � 1
2N

p

	 

þ jwpcos hð/Þ cos 2k � 1

2N
p

	 

p1 ¼ �1000 sin h 0:2121ð Þ sin p

6

� �
þ j1000 cos h 0:2121ð Þ cos p

6

� �
p1 ¼ �106:8þ 885:5j

p2 ¼ �1000 sin h 0:2121ð Þ sin 3p
6

	 

þ j1000 cos h 0:2121ð Þ cos 3p

6

	 

p2 ¼ �213:7

p3 ¼ �1000 sin h 0:2121ð Þ sin 5p
6

	 

þ j1000 cos h 0:2121ð Þ cos 5p

6

	 

p3 ¼ �106:8� 885:5j:

Since N is odd, the constant term is calculated using

c ¼ �
Y3
k¼1

pk ! c ¼ 170;040;000:

Then the transfer function of the filter is calculated via

H sð Þ ¼ cQN
k¼1 s� pkð Þ

leading to the expression

H sð Þ ¼ 170;040;000

ðsþ 213:7Þð sþ 106:8ð Þ2þ 885:52Þ

which can be simplified as

H sð Þ ¼ 170;040;000
ðsþ 213:7Þðs2þ 213:6sþ 784;110Þ :

And the above transfer function can be implemented using operational amplifiers
and passive circuit elements.

Chebyshev Type-II Filter:
Chebyshev Type-II filter’s magnitude squared response is monotonic in the

passband and equiripple is the stopband. The magnitude squared response of a
typical Chebyshev Type-II filter is depicted in the Fig. 4.28.

The magnitude squared response of Type-II Chebyshev filter can be given in two
different forms as
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HII wð Þj j2 ¼ �2T2
N

ws
w

� �
1þ �2T2

N
ws
w

� �
HI wð Þj j2 ¼ 1

1þ �2T2
N

w
wp

� � : ð4:96Þ

The relationship between the two transfer functions in (4.96) is given as

HII wð Þj j2¼ 1� HI
1
w

	 
����
����2 wp ¼ 1

ws
: ð4:97Þ

The transfer function of the Type-II Chebyshev filter is defined as

H sð Þ ¼

c
QN
k¼1

s�zi
s�pi if N is even

c
s�pN þ 1

2

	 
 QN
k ¼ 1

k 6¼ Nþ 1
2

s�zi
s�pi if N is even

8>>>>>>><
>>>>>>>:

ð4:98Þ

where zi and pi are the zeros and poles of the transfer function and they are
calculated using

zi ¼ j
ws

cos 2k�1
2N

� �
p

ð4:99Þ

pi ¼ ws

a2i þ b2i
� sin h /ð Þ sin 2k � 1

2N
p

	 

þ j cos h /ð Þ cos 2k � 1

2N
p

	 
	 

ð4:100Þ
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Fig. 4.28 The magnitude
squared response of a typical
Chebyshev Type-II filter

4.3 Analogue Filter Design 269



where the phase / is computed as

/ ¼ 1
N
cos h�1 d�1

� �
¼ 1

N
ln d�1þ d�2 � 1

� �1
2

� �
:

ð4:101Þ

And finally the constant term c is calculated using

c ¼
QN
k¼1

pk
zk

if N is even

1þ �2ð Þ�1
2
QN
k¼1

pk if N is odd:

8>><
>>:

4.3.3.3 Elliptic Filters

The magnitude squared response of the elliptic filters are given as

H wð Þj j2¼ 1
1þ �2U2

N wð Þ

where UNðwÞ is the Jacobian elliptic function.
Elliptic filters have equiripple both in the passband and stopband. The amount of

the ripple in each band can be adjusted. When the ripple in stopband approaches to
zero, the filter converged to a Type-I Chebyshev filter. On the other hand, as the
ripple in passband approaches to zero, the filter converged to a Type-II Chebyshev
filter. If the ripples in both bands approaches to zero, then the filter converged to a
Butterworth filter.

Elliptic filters have the steepest roll-off characteristics. The squared magnitude
response of a typical Elliptic filter is depicted in the Fig. 4.29.

w
0 pw sw
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12 )1(
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2|)(| wH

Passband

Transition

Stopband

Has the steepest roll-off

Fig. 4.29 The squared
magnitude response of a
typical Elliptic filter
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The phase response of the Elliptic filters is a non-linear function. The design of
the elliptic filters is relatively complex when compared to Butterworth and
Chebyshev filters.

4.3.3.4 Bessel Filters

For Butterworth, Chebyshev and Elliptic filters; the group delay sðhÞ is a nonlinear
function of the frequency. This means that the time delay introduced to the system
varies nonlinearly with the frequency.

Bessel filters are linear phase filters and the group delay for these filters is a
constant number independent of the frequency. For this reason, a constant time
delay is introduced into the system independent of the frequency.

However, Bessel filters has the lowest roll-off factor among all the practical
filters we have mentioned up to now. The squared magnitude response of a typical
Bessel filter is depicted in the Fig. 4.30.

Summary:

Butterworth Filters: No ripple in passband and stopband. Group delay is nonlinear
function of the frequency. Roll-off is low.
Chebyshev Type-I Filters: Have ripple in passband, no ripple in stopband. Group
delay is a nonlinear function of the frequency. Roll-off is high.
Chebyshev Type-II Filters: No ripple in passband and have ripple in stopband.
Group delay is nonlinear function of the frequency. Roll-off is high.
Elliptic Filters: Have ripple both in passband and stopband. Group delay is a
nonlinear function of the frequency. Roll-off is the highest.
Bessel Filters: No ripple in passband and stopband. Group delay is constant.
Roll-off is the lowest.

w

2|)(| wH
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Has the lowest 
roll-off

Fig. 4.30 The squared
magnitude response of a
typical Bessel filter
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4.3.4 Analog Frequency Transformations

Once you have analogue low-pass prototype filter with cut-off frequency
wc ¼ 1 rad/s, you can design other filters via frequency transformation. The pos-
sible frequency transformations are summarized as follows:

Lowpass to lowpass s s
wc

where wc is the desired cut�off frequency:

Lowpass to highpass s wc

s
where wc is the desired cut�off frequency:

Lowpass to bandpass s s2þwclwcu

s wcu � wclð Þ :

Lowpass to bandpass s s2þwclwcu

s wcu � wclð Þ :

Lowpass to bandpass s s wcu � wclð Þ
s2þwclwcu

:

wcl is the lower cut-off frequence.

wcu is the upper cut-off frequency.

Example 4.15 The transfer function of a low-pass analog filter with cut-off fre-
quency wc ¼ 1 rad/s is given as

Hlp sð Þ ¼ 1
sþ 1ð Þ s2þ sþ 1ð Þ :

Using the above transfer function, find the transfer function of an high-pass
analog filter with cut-off frequency wc ¼ 1 rad/s.

Solution 4.15 To get the transfer function of an high-pass filter from a low-pass
filter transfer function, simply replace s in low-pass filter transfer function by wc

s ,
i.e., s wc

s , that is

Hhp sð Þ ¼ HlpðrÞ
��
r¼wc

s

which yields the transfer function

Hhp sð Þ ¼ 1
1
s þ 1
� �

1
s2 þ 1

s þ 1
� �
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whose simplified form can be calculated as

Hhp sð Þ ¼ s2

s2þ sþ 1
s

sþ 1
:

As it is seen from the above equation, the transfer function of a high pass filter
includes si like terms in the numerator.

4.4 Implementation of Analog Filters

4.4.1 Low Pass Filter Circuits

Remember that the transfer function of the low-pass Butterworth filter was in the
form

H sð Þ ¼ wN
cQN

k¼1 s� pkð Þ : ð4:102Þ

Considering (4.102), we can calculate the transfer function of the Butterworth
filter for wc ¼ 1 and N ¼ 3 as

H sð Þ ¼ 1
sþ 1ð Þ s2þ sþ 1ð Þ : ð4:103Þ

As it is also seen in (4.103), we can say that the transfer function of a low-pass
filter has a constant number in its numerator, and at the denominator, we can have
two different types of polynomials which are

sþ að Þ s2þ b1sþ b2
� �

:

If we know how to implement ðsþ aÞ and ðs2þ b1sþ b2Þ, then we can imple-
ment the transfer function HðsÞ using circuit elements.

How to implement H sð Þ ¼ a=ðsþ aÞ:
The transfer function H sð Þ ¼ a=ðsþ aÞ can be implemented using the circuit in

Fig. 4.31.

R

CinV
outV

Fig. 4.31 Analog
implementation of H sð Þ ¼
a=ðsþ aÞ by circuit elements
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The transfer function of the circuit in Fig. 4.31 can be calculated as

H sð Þ ¼ Vout sð Þ
Vin sð Þ ! H sð Þ ¼

1
RC

sþ 1
RC

:

How to implement H sð Þ ¼ b=ðsþ aÞ:
The transfer function

H sð Þ ¼ b
sþ a

ð4:104Þ

can be implemented using the circuit in Fig. 4.32.
The transfer function of the above circuit is

H sð Þ ¼ Vout sð Þ
Vin sð Þ ! H sð Þ ¼ 1þ R3

R2

	 
 1
R1C

sþ 1
R1C

How to implement H sð Þ ¼ a=s2þ b1sþ b2:
The transfer function

H sð Þ ¼ a
s2þ b1sþ b2

ð4:105Þ

can be implemented using the circuit in Fig. 4.33.
The transfer function of the circuit in Fig. 4.33 can be calculated as

H sð Þ ¼ Vout sð Þ
Vin sð Þ ! H sð Þ ¼

K
s1s2

s2þ 1
s1
þ 1

R2C1
þ 1�K

s2

� �
sþ 1

s1s2

where K ¼ 1þRB=RA; s1 ¼ R1C1; s2 ¼ R2C2. If common values are selected for
the resistors R1;R2 and capacitors C1;C2, transfer function expression reduces to

1R

CinV
outV

2R 3RFig. 4.32 Analog
implementation of H sð Þ ¼
b=ðsþ aÞ by circuit elements
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H sð Þ ¼ K
1
s2

s2þ 3�K
s sþ 1

s2

where s ¼ RC.
An alternative implementation of (4.105) can be achieved using the circuit in

Fig. 4.34.
The transfer function of the circuit in Fig. 4.34 can be calculated as

H sð Þ ¼
1

s1s2

s2þ 1
s2
sþ 1þR1=R3

s1s2

ð4:106Þ

where s1 ¼ R1C1; s2 ¼ R2C2. If R1 and R3 are chosen as R1 ¼ R3, then we get

H sð Þ ¼
1

s1s2

s2þ 1
s2
sþ 2

s1s2

: ð4:107Þ

Example 4.16 The transfer function of second order low-pass Butterworth filter
with cut-off frequency wc ¼ 1000 rad/s is given as

H sð Þ ¼ 106

s2þ 1414sþ 2� 106
:

Implement the given filter transfer function using circuit elements.

1R

inV

2R

2C

outV

1C

AR BR

Fig. 4.33 Analog
implementation of H sð Þ ¼
a=s2þ b1sþ b2 by circuit
elements

1R

inV

2R

outV

1C

3R

2CFig. 4.34 Alternative analog
implementation of (4.105)
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Solution 4.16 Let’s use the circuit given in Fig. 4.35.
The transfer function of the circuit in Fig. 4.35 can be calculated as

H sð Þ ¼
1

s1s2

s2þ 1
s2
sþ 1þR1=R3

s1s2

: ð4:108Þ

When (4.38) is compared to

H sð Þ ¼ 106

s2þ 1414sþ 2� 106

we see that

1
s1s2
¼ 106

1
s2
¼ 1414

1þR1=R3

s1s2
¼ 2� 106: ð4:109Þ

In (4.109) let’s first solve

1
s2
¼ 1414:

Since s2 ¼ R2C2, if C2 is chosen as 0:47 lF, then

R2 ¼ 1
1414� 0:47� 10�6

! R2 ¼ 1504 X:

Next solving

1
s1s2
¼ 2� 106

1
s2
¼ 1414

1R

inV

2R

outV

1C

3R

2CFig. 4.35 Second order
low-pass filter
implementation
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for s1, we get s1 ¼ 1414=2� 106 and if C1 is chosen as 0:47 lF, then

R1 ¼ 2� 1414
0:47

! R1 ¼ 6017 X:

Finally solving the equation

1þR1=R3

s1s2
¼ 2� 106

for

1
s1s2
¼ 106

and

R1 ¼ 6017 X

we find R3 as

R3 ¼ R1 ¼ 6017 X:

With the found values, our second order Butterworth low-pass filter circuit with
cut-off frequency wc ¼ 1000 rad/s becomes as in Fig. 4.36.

The circuit in Fig. 4.36 includes some resistor values which may not be com-
mercially available. In this case, we should use a resistor value closest to the
calculated value in the Figure. This may slightly affect the accuracy of the filter. We
can use the standard resistor and capacitor values shown in Tables 4.1 and 4.2. And
to get the resistor value 6017 X in our example, we can use 6:2 KX or 5:6 KX and
430 X in series.

6017

inV

outV

F0.47

6017

F0.47

1504

Fig. 4.36 Butterworth
low-pass filter circuit with
cut-off frequency
wc ¼ 1000 rad/s
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Table 4.1 Common resistor values for electronic circuits

Standard resistor values (±5%)

1.0 10 100 1.0 K 10 K 100 K 1.0 M 10 M

1.1 11 110 1.1 K 11 K 110 K 1.1 M 11 M

1.2 12 120 1.2 K 12 K 120 K 1.2 M 12 M

1.3 13 130 1.3 K 13 K 130 K 1.3 M 13 M

1.5 15 150 1.5 K 15 K 150 K 1.5 M 15 M

1.6 16 160 1.6 K 16 K 160 K 1.6 M 16 M

1.8 18 180 1.8 K 18 K 180 K 1.8 M 18 M

2.0 20 200 2.0 K 20 K 200 K 2.0 M 20 M

2.2 22 220 2.2 K 22 K 220 K 2.2 M 22 M

2.4 24 240 2.4 K 24 K 240 K 2.4 M

2.7 27 270 2.7 K 27 K 270 K 2.7 M

3.0 30 300 3.0 K 30 K 300 K 3.0 M

3.3 33 330 3.3 K 33 K 330 K 3.3 M

3.6 36 360 3.6 K 36 K 360 K 3.6 M

3.9 39 390 3.9 K 39 K 390 K 3.9 M

4.3 43 430 4.3 K 43 K 430 K 4.3 M

4.7 47 470 4.7 K 47 K 470 K 4.7 M

5.1 51 510 5.1 K 51 K 510 K 5.1 M

5.6 56 560 5.6 K 56 K 560 K 5.6 M

6.2 62 620 6.2 K 62 K 620 K 6.2 M

6.8 68 680 6.8 K 68 K 680 K 6.8 M

7.5 75 750 7.5 K 75 K 750 K 7.5 M

8.2 82 820 8.2 K 82 K 820 K 8.2 M

9.1 91 910 9.1 K 91 K 910 K 9.1 M

Table 4.2 Common capacitor values for electronic circuits

Standard capacitor values (±10%)

10 pF 100 pF 1000 pF 0.010 mF 0.10 mF 1.0 mF 10 mF

12 pF 120 pF 1200 pF 0.012 mF 0.12 mF 1.2 mF

15 pF 150 pF 1500 pF 0.015 mF 0.15 mF 1.5 mF

18 pF 180 pF 1800 pF 0.018 mF 0.18 mF 1.8 mF

22 pF 220 pF 2200 pF 0.022 mF 0.22 mF 2.2 mF 22 mF

27 pF 270 pF 2700 pF 0.027 mF 0.27 mF 2.7 mF

33 pF 330 pF 3300 pF 0.033 mF 0.33 mF 3.3 mF 33 mF

39 pF 390 pF 3900 pF 0.039 mF 0.39 mF 3.9 mF

47 pF 470 pF 4700 pF 0.047 mF 0.47 mF 4.7 mF 47 lF

56 pF 560 pF 5600 pF 0.056 mF 0.56 mF 5.6 mF

68 pF 680 pF 6800 pF 0.068 mF 0.68 mF 6.8 mF

82 pF 820 pF 8200 pF 0.082 mF 0.82 mF 8.2 mF
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4.4.2 Analog High-Pass Filter Circuit Design

Let’s consider the transfer function of a high pass Butterworth filter given as

Hhp sð Þ ¼ s2

s2þ sþ 1
s

sþ 1
: ð4:110Þ

Inspecting (4.110), we can conclude that the transfer function of a high pass filter
contains two different terms

Ks2

s2þ b1sþ b0
;

as
sþ b

: ð4:111Þ

Then if we know how to implement the terms in (4.111) by circuit elements,
then we can construct a circuit for any high pass filter.

The high pass filter circuit can be obtained from a low pass filter circuit by
replacing the resistors of the low pass filter by capacitors and replacing the
capacitors of the low pass filter by resistors.

How to implement H sð Þ ¼ as=ðsþ bÞ:
We can use the circuit in Fig. 4.37 to implement the transfer function

H sð Þ ¼ as
sþ b

:

The transfer function of the circuit in Fig. 4.37 can be calculated in ‘s’ domain.
The transfer function of the circuit in Fig. 4.37 can be calculated as

H sð Þ ¼ K
s

sþ 1
R1C1

where K ¼ 1þ R2

R3

If the resistors R2 and R3 are not used in Fig. 4.37, then the transfer function
reduces to

H sð Þ ¼ s
sþ 1

R1C1

: ð4:112Þ

1R
1C

inV
outV

2R
3R

Fig. 4.37 Analog
implementation of H sð Þ ¼
as=ðsþ bÞ by circuit elements
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How to implement H sð Þ ¼ Ks2=s2þ b1sþ b0:
We can use the circuit in Fig. 4.38 to implement the transfer function

H sð Þ ¼ Ks2

s2þ b1sþ b0
: ð4:113Þ

The circuit in Fig. 4.38 is called Sallen-Key topology whose transfer function
can be calculated as

H sð Þ ¼ Ks2

s2þ 1
s2
þ 1

R2C1
þ 1�K

s1

� �
sþ 1

s1s2

ð4:114Þ

where s1 ¼ R1C1; s2 ¼ R2C2;K ¼ 1þR4=R3:
If R1 ¼ R2 and C1 ¼ C2, then (4.114) reduces to

H sð Þ ¼ Ks2

s2þ 3�K
RC sþ 1

R2C2

: ð4:115Þ

Example 4.17 Implement the high pass filter transfer function

H sð Þ ¼ 2:6s2

s2þ 5:31sþ 176:83
: ð4:116Þ

Solution 4.17 If we compare the given transfer function in (4.116) to

H sð Þ ¼ Ks2

s2þ 3�K
RC sþ 1

R2C2

we see that

2:6s2

s2þ 5:31sþ 176:83
¼ Ks2

s2þ 3�K
RC sþ 1

R2C2

1R

1C
inV

outV

2R

3R

2C

4R

Fig. 4.38 Analog
implementation of H sð Þ ¼
Ks2=s2þ b1sþ b0 by circuit
elements
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where we have

1
R2C2 ¼ 176:83

And if we choose C ¼ 0:47 lF, then R is found as

1

R2 0:47� 10�6ð Þ2 ¼ 176:83! R2 ¼ 1012

0:472 � 176:83
! R ¼ 16000 X:

Also we have K ¼ 2:6 since, K ¼ 1þR4=R3, we get

2:6 ¼ 1þ R4

R3
! R4

R3
¼ 1:6

Since R4
R3
¼ 1:6, we can choose R4 ¼ 16 KX;R3 ¼ 10 KX. Then our high pass

filter circuit becomes as in Fig. 4.39.

Example 4.18 Implement high pass filter transfer function

H sð Þ ¼ 2:6� 0:5s2

s2þ 5:31sþ 176:83
ð4:117Þ

using circuit elements.

Solution 4.18 In (4.117); we have 0.5 factor in the numerator, for this reason we
add a voltage divider circuit to the end of the circuit which is shown in shadow in
Fig. 4.40.

K16

F0.47

inV
outVF0.47

K16
K16

K10

Fig. 4.39 High pass filter
circuit for Example 4.17
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4.4.3 Analog Bandpass Active Filter Circuits

For the implementation of analog bandpass filters, the prototype circuit shown in
Fig. 4.41 can be employed.

4.4.4 Analog Bandstop Active Filter Circuits

Bandstop filters can be implemented using the circuit shown in Fig. 4.42.

1R

1CinV
outV

5R

3R
2C

4R

1R

Fig. 4.41 Bandpass filter
circuit

1R

1C

inV

outV

3R

2C

4R
2R

5R
3C

Fig. 4.42 Bandstop filter
circuit

K16

F47.0

inV
outV

F47.0

K16
K16

K10

K1

K1

Fig. 4.40 High pass filter circuit with voltage divider
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4.5 Infinite Impulse Response (IIR) Digital Filter Design
(Low Pass)

Two methods are followed for the design of infinite impulse response digital filters,
i.e., IIR filters. These methods are:

(1) Design an analog filter and convert it to a digital filter via sampling operation,
i.e., digitize the designed analog filter to get the digital filter.

(2) Design the IIR digital filter directly.

We will use the first approach in this book. The steps for the design of IIR filters
using analog prototypes are outlined in the Table 4.3.

Example 4.19 The magnitude response of a digital filter is depicted in the
Fig. 4.43.

(a) By mapping the digital filter specifications to a continuous time, determine the
continuous time filter specifications.

(b) Determine the squared magnitude response of the continuous time filter.

Solution 4.19 We will use the bilinear transformation method to find the digital
filter specifications. In bilinear transformation, the relationship between analog and
digital frequencies is

wa ¼ 2
Ts

tan
wd

2

� �
which can also be written as

wd ¼ 2 tan�1 wa
Ts
2

	 

:

Table 4.3 Steps for the
design of an IIR digital filter

IIR digital filter design using analog prototypes

(1) Determine the digital filter specifications, such as
wp;ws;Rp;Rs

(2) Map digital filter frequency specifications to continuous
time filter frequency specifications using a transformation
method, for instance “bilinear transformation”

(3) Design the continuous time filter according to continuous
time specifications

(4) Transform continuous time filter to digital filter using a
transformation method, for instance “bilinear
transformation”

(5) Implement your digital filter by either designing a hardware
using digital gates, or writing a software for digital devices
which can be microprocessors, digital signal processing
chips, or field programmable gate arrays (FPGA)
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Since digital filter specifications are given, we should use

wa ¼ 2
Ts

tan
wd

2

� �
to find the analog filter specifications. Let Ts ¼ 1

2000 s, then the analog pass and stop
frequencies are calculated as

wap ¼ 4000 tan
0:4p
2

	 

! wap ¼ 2906:2 rad/s! wap ¼ 925:54p

was ¼ 4000 tan
0:8p
2

	 

! was ¼ 12;311 rad/s! was ¼ 3918:7p:

Then the analog filter magnitude response can be drawn as in Fig. 4.44.

w

|)(| wHd

0 0.4pw 0.8sw

1

0.9

0.2

Fig. 4.43 The magnitude
response of a digital filter

w

|)(| wHa

0 925.54apw 3918.7asw

1

0.9

0.2

Fig. 4.44 Analog filter
magnitude response
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Using Fig. 4.44 the squared magnitude response of the analog filter can be found
as in Fig. 4.45.

Example 4.20 The magnitude response of a lowpass digital filter is depicted in
Fig. 4.46. State the digital filter specifications via mathematical expressions.

Solution 4.20 Since Fourier transform of the digital signals is periodic with period
2p, we can express the filter specifications for the interval �p�w\p. In addition,
we know that aliasing in Fourier transform of a digital signal does not occur if
magnitude response has nonzero values only for the interval �p�w\p.

For this reason, for the digital filters, we will only consider the frequency interval
�p�w\p. In addition, the frequency interval 0� jwj\p=2 is accepted as the low
frequency region and the frequency range p=2� jwj\p is accepted as the high
frequency interval.

w

2|)(| wHa

0 925.54apw 3918.7asw

1

0.81

0.04

Fig. 4.45 Squared
magnitude response of the
analog filter
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Fig. 4.46 The magnitude
response of a lowpass digital
filter
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Then considering Fig. 4.46, the filter response can be expressed as

0:9� Hd wð Þj j � 1 0� wj j � 0:2p;
Hd wð Þj j � 0:2 0:5p� wj j � p:

Example 4.21 Design the digital filter with the following specifications

0:9� Hd wð Þj j � 1 0� wj j � 0:4p;
Hd wð Þj j � 0:2 0:8p� wj j � p:

Solution 4.21 Using the given specifications we can draw the magnitude response
of the digital filter as in Fig. 4.47.

For the design of our digital filter, we first convert digital filter specifications to
analog filter specification using the bilinear transformation method. Since this
example is a continuation of Example 4.19, we can use the converted parameters of
Example 4.19. Using the results of Example 4.19, we can analog draw the analog
filter squared magnitude response as in Fig. 4.48.

To design the analog filter, we can use one of the available analog prototypes
models. Let’s choose Butterworth filter model for our design. From the given
squared magnitude response in Fig. 4.48, the parameters �2, � and d2 are found as

1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2
p ¼ 0:81! �2 ¼ 0:2346! � ¼ 0:4843 d2 ¼ 0:04:

w

|)(| wHd

0 0.4pw 0.8sw

1

0.9

0.2

Fig. 4.47 Digital lowpass
filter for Example 4.21
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The parameters 1=d and 1=k are calculated as follows

1
d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d�2 � 1

�2

s
! 1

d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 1
0:2346

r
! 1

d
¼ 10:1144;

1
k
¼ ws

wp
! 1

k
¼ 4:2340:

And the filter order is calculated as

N � log 1
d

� �
log 1

k

� �! N� log 10:1144ð Þ
log 4:234ð Þ ! N� 1:6! N ¼ 2:

The cutoff frequency is calculated via

wp�
�1

N �wc�ws d�2 � 1
� �� 1

2N! 925:54p� 0:4843ð Þ�1
2�wc� 3918:7p� 24

1
4

leading to

1308p�wc� 8619p: ð4:118Þ

And considering (4.118), we can choose wc as

wc ¼ 1308pþ 8619p
2

! wc ¼ 4963p! wc ¼ 15;592:

w

2|)(| wHa

0 925.54apw 3918.7asw

1

0.81

0.04

Fig. 4.48 Squared
magnitude response of the
analog filter obtained from
digital filter specifications
after bilinear transformation
operation
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In the last step, the poles are calculated using

pk ¼ wce
jp2 1þ 2k�1

Nð Þð Þ; k ¼ 1; . . .;N:

For N ¼ 2, the poles are found as

p1 ¼ wce
j3p4 p2 ¼ wce

j5p4

yielding the results

p1 ¼ 15;592 cos
3p
4

	 

þ j sin

3p
4

	 
	 

! p1 ¼ 7796 �

ffiffiffi
2
p
þ j

ffiffiffi
2
p� �

;

p2 ¼ 15;592 cos
5p
4

	 

þ j sin

5p
4

	 
	 

! p2 ¼ 7796 �

ffiffiffi
2
p
� j

ffiffiffi
2
p� �

:

ð4:119Þ

The transfer function is found using

Ha sð Þ ¼ wN
c

s� p1ð Þ s� p2ð Þ 	 	 	 ðs� pNÞ : ð4:120Þ

Substituting the calculated poles in (4.119) into (4.120) for N ¼ 2, we get

Ha sð Þ ¼ 15;5922

sþ 7796
ffiffiffi
2
p � j7796

ffiffiffi
2
p� �

sþ 7796
ffiffiffi
2
p þ j7796

ffiffiffi
2
p� �

which is simplified as

Ha sð Þ ¼ 15;5922

sþ 7796
ffiffiffi
2
p� �2þ 7796

ffiffiffi
2
p� �2

leading to the result

Ha sð Þ ¼ 243;110;464
s2þ 22;050sþ 2:43� 108

:

We are done with the analog filter design. Since our aim was to design the digital
filter, we should digitize our analog filter to find the digital filter. For this purpose,
we will use bilinear transformation method. The conversion procedure is outlined
as:

Hd zð Þ ¼ HaðsÞjs¼ 2
Ts

1�z�1
1þ z�1

ð4:121Þ
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Using Ts ¼ 1
2000 s in (4.121), we get

Hd zð Þ ¼ 243;110;464

4000 1�z�1
1þ z�1

� �2
þ 22;050 4000 1�z�1

1þ z�1

� �
þ 2:43� 108

: ð4:122Þ

When (4.122) is simplified, we obtain

Hd zð Þ ¼ 243;110;464� 1þ 2z�1þ z�2ð Þ
107 � 34:72þ 12:02z�1þ 1:6z�2ð Þ

which can be rearranged as

Hd zð Þ ¼ 24:3þ 48:6z�1þ 24:3z�2

34:72þ 12:02z�1þ 1:6z�2
:

To implement the digital filter with the above transfer function, we need to
express the filter output-input relation in time domain. This is possible using

Hd zð Þ ¼ Y zð Þ
X zð Þ !

Y zð Þ
X zð Þ ¼

24:3þ 48:6z�1þ 24:3z�2

34:72þ 12:02z�1þ 1:6z�2

from which we get

34:72y n½ � þ 12:02y n� 1½ � þ 1:6y n� 2½ � ¼ 24:3x n½ � þ 48:6x n� 1½ � þ 24:3x½n� 2�

which leads to the expression

y n½ � ¼ �0:34y n� 1½ � � 0:05y n� 2½ � þ 0:7x n½ � þ 1:4x n� 1½ � þ 0:7x n� 2½ �
ð4:123Þ

where x½n� is the input of the digital filter and y½n� is the filtered signal.
And the Eq. (4.123) can be implemented using a computer program, or the filter

can be implemented in other digital hardware such as microprocessors, DSP chips,
FPGAs, via hardware programming languages such as assembly, VHDL, etc., or an
application specific digital hardware consisting of gates and other digital devices
can be specifically produced for this filter.

4.5.1 Generalized Linear Phase Systems

A LTI system is said to be a generalized linear phase system if its transfer function
is of the form
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H wð Þ ¼ Ar wð Þe�j bþ awð Þ ð4:124Þ

where ArðwÞ is a real function of w. Considering (4.124), the group delay is cal-
culated as

sg wð Þ ¼ � dh wð Þ
dw

! sg wð Þ ¼ a: ð4:125Þ

A causal LTI system is a linear phase system if its Lþ 1 point impulse response
h½n� satisfies

h n½ � ¼ 
h L� n½ � 0� n� L ð4:126Þ

where L can be an odd or even integer. And for such systems, the Fourier transform
of h½n� happens to be in the form

H wð Þ ¼ Ar wð Þe�jwL2 : ð4:127Þ

4.6 Finite Impulse Response (FIR) Digital Filter Design

In many practical applications, FIR filters are preferred over their IIR counterparts.
The main advantages of FIR filter over IIR filter can be summarized as follows:

(1) Most IIR filters have nonlinear phase characteristics, which creates problem for
practical applications.

(2) FIR filters having linear phase responses and they can be easily designed.
(3) FIR filters can be implemented efficiently with affordable computational

overhead.
(4) Stable FIR filters can be designed in an easy manner.
(5) In the literature, there exist excellent FIR filter design techniques.

The main disadvantage of the FIR filters over IIR filters is that for the appli-
cations requiring narrow band transitions, i.e. steep roll-off, more arithmetic oper-
ations are required which means that more digital hardware components such as
adders, multiplexers, multipliers, etc., are required.

Designing FIR filter is nothing but determining the impulse response of an LTI
system. The impulse response of the LTI system under concern includes a finite
number of samples. If h½n� denotes the impulse response of a FIR filter, then the
output of the filter is written as:

y n½ � ¼
XM
k¼�L

h k½ �x½n� k�
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where usually L ¼ M is assumed. If h n½ � ¼ 0 for n\0, then the filter is said to be a
causal filter. Otherwise, we have an anti-causal filter. Causal filters are practically
realizable; on the other hand, anti-causal filters cannot be implemented. For this
reason, anti-causal FIR filters should be transferred to causal FIR filters to enable
their use in practical systems.

4.6.1 FIR Filter Design Techniques

There are basically three methods used for the design of FIR filters. These methods
are

(a) FIR filter design by windowing.
(b) FIR filter design by frequency sampling.
(c) Equiripple FIR filter design.

Now let’s see the first method.

4.6.1.1 FIR Filter Design by Windowing

Design of FIR Filter in Time Domain:
The frequency response of an ideal low pass digital filter is shown in the

Fig. 4.49 where only one period of the frequency response around origin is
depicted.

And we know that HidðwÞ satisfies Hid wð Þ ¼ Hidðwþm2pÞ. The time domain
expression for the low pass digital filter can be calculated as

hid n½ � ¼ 1
2p

Zwc

�wc

Hilp wð Þ|fflfflffl{zfflfflffl}
¼1

�ejwndw

¼ 1
pn

sin wcnð Þ n ¼ 0;
1;
2; . . .

where wc is called cut-off frequency. It is clear that hid ½n� includes an infinite
number of samples. And the convolutional operation cannot be realized using an

)(wHid

0
w

1

cc

Fig. 4.49 The frequency
response of an ideal low pass
digital filter
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infinite number of samples. To alleviate this obstacle, we truncate the ideal filter and
obtain the FIR filter as

h n½ � ¼ hid n½ � if nj j � L
0 otherwise

�

which can also be written as

h n½ � ¼ hid n½ � � w½n�

where w½n� is the rectangular window defined as

w n½ � ¼ 1 if nj j � L
0 otherwise:

�

This type of design approach is straightforward. However, such a designed filter
suffers from Gibbs phenomenon. In addition, since the used window is anti-causal
so is the FIR filter. However, we can obtain a causal window via truncation as
follows

w n½ � ¼ 1 if 0� n� L
0 otherwise:

�
ð4:128Þ

To alleviate the effects of Gibbs phenomenon, windows other than the rectan-
gular one such as, Hamming, Hanning, Bartlett, Triangular, and Blackman are used.

Design of FIR Filter in Frequency Domain:
Assume that HðwÞ is the frequency response of a FIR filter in a way that it

minimizes the error

� ¼ 1
2p

Zp
�p

H wð Þ � Hid wð Þj j2dw

where applying the Parseval’s identity, we get

� ¼
X1

n¼�1
h n½ � � hid n½ �j j2!

� ¼
XL
n¼0

h n½ � � hid n½ �j j2þ
X

n¼Z�½0 L�
h n½ � � hid n½ �j j2: ð4:129Þ
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When (4.129) is equated to zero, we obtain

h n½ � ¼ hid n½ � if 0� n� L
0 otherwise:

�

Properties of Windows:
Let WnðwÞ be the frequency response of the window. The main-lobe of the

window is defined as the region between the first zero crossings on the left and right
sides of the origin.

The width of the main-lobe of the causal rectangular window is approximated as

Dw ¼ 4p
Lþ 1

: ð4:130Þ

It is desirable to have a main lobe as narrow as possible. The width of the
main-lobe controls the amount of attenuation on passband region. Side-lobes are the
regions extending from first zero crossings points on either side of the origin.

Side-lobes are responsible for the ripples occurring in passband and stopband.
For a wide range of frequencies, pass and stop band ripples are equal to each other.

For the causal rectangular window increasing the window length L, decreases the
width of the main-lobe, however the areas under side-lobes stays the same which
means that ripples occurs with the same amplitude but more frequently. To reduce
the amount of area under ripples or to reduce the height of the ripples; we need to
rub the ends of the rectangular window for a smoother transition to zero.

For this purpose, we employ some commonly used windows as outlined below:
Hanning Window:

w n½ � ¼ 0:5� 0:5 cos 2pn
L

� �
if 0� n� L

0 otherwise

�
ð4:131Þ

Hamming Window:

w n½ � ¼ 0:54� 0:46 cos 2pn
L

� �
if 0� n� L

0 otherwise

�
ð4:132Þ

Blackman Window:

w n½ � ¼ 0:42� 0:5 cos 2pn
L

� �þ 0:08 cos 4pn
L

� �
if 0� n� L

0 otherwise

�
ð4:133Þ
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For the Hanning, Hamming, and Blackman windows the general form can be
written as

w n½ � ¼ aþ b cos 2pn
L

� �þ c cos 4pn
L

� �
if 0� n� L

0 otherwise

�
ð4:134Þ

where for Hanning window a ¼ 0:5; b ¼ �0:46; c ¼ 0, and for Blackman window
a ¼ 0:42; b ¼ �0:5; c ¼ 0:08.

Bartlett (Triangular) Window:

w n½ � ¼
2n
L if 0� n� L

2
2� 2n

L if L
2\n� L

0 otherwise

8<
: ð4:135Þ

In Table 4.4 five different windows are compared to each other considering
mainlobe width and peak sidelobe amplitude.

All the windows given up to now can be approximated by the Kaiser window.
Now let’s give some information about Kaiser window.

Kaiser Window:
The Kaiser window is defined as

w n½ � ¼
I0 b 1� n�a

a½ �2
� �1

2

h i
I0 bð Þ if 0� n� L

0 otherwise

8<
: ð4:136Þ

where I0ð	Þ is the modified Bessel function of the first kind which is equal to

I0 xð Þ ¼ 1
2p

Z2p
0

ex cos hdh ð4:137Þ

and a ¼ M=2; b is the design parameter given by

b ¼
0:1102 C � 8:7ð Þ C[ 50
0:5842 C � 21ð Þ0:4þ 0:07886 C � 21ð Þ 21�C� 50
0:0 C\21

8<
: ð4:138Þ

Table 4.4 Windows and their properties

Window type Mainlobe width Peak sidelobe amplitude (dB)

Rectangular 4 p/(2L + 1) −13

Bartlett 8 p/L −27

Hanning 8 p/L −32

Hamming 8 p/L −43

Blackman 12 p/L −58
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where the parameter C is defined as

C ¼ �20 log10 q: ð4:139Þ

2q is the maximum ripple available in the passband. Let the transition region
width be defined as Dw ¼ ws � wp. With the given filter specifications, the order of
the Kaiser window is found as

L ¼ C � 8
2:285Dw

ð4:140Þ

which is also the length of the FIR filter satisfying the given specifications.

Example 4.22 Find the impulse response of a FIR filter whose specifications are
given as

wp ¼ 0:4p ws ¼ 0:8p q ¼ 0:01:

Solution 4.22 First we need to calculate the order of the Kaiser window given as

L ¼ C � 8
2:285Dw

where the parameters are calculated as

Dw ¼ ws � wp ! Dw ¼ 0:8p� 0:4p! Dw ¼ 0:4p

C ¼ �20 log10 q! C ¼ �20 log10 0:01! C ¼ 40

And the length of the window is found as

L ¼ C � 8
2:285Dw

! L ¼ 40� 8
2:285� 0:4p

! L ¼ 12

Next, we calculate the design parameter b as follows

b ¼ 0:5842 C � 21ð Þ0:4þ 0:07886 C � 21ð Þ !
b ¼ 0:5842 40� 21ð Þ0:4þ 0:07886 40� 21ð Þ ! b ¼ 3:3953

The function I0ðbÞ can be approximated as

I0 bð Þ � 1þ b2

2
þ b4

64
þ b6

2304
þ b8

147;456

or we need to write a computer program for the computation of the integral
expression in (4.137). Using the definition of w½n�
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w n½ � ¼
I0 b 1� n�a

a½ �2
� �1

2

h i
I0 bð Þ 0� n� L

0 otherwise

8<
:

the window elements for L ¼ 12; b ¼ 3:3953; a ¼ L=2 can be calculated as

w n½ � ¼ ½0:15|{z}
n¼0

0:31 0:5 0:69 0:85 0:96 1 0:96 0:85 0:69 0:5 0:31 0:15�:

And the FIR filter coefficients are evaluated using

h n½ � ¼ hid n½ �w½n�

where ideal filter coefficients are

hid n½ � ¼ 1
pn

sin wcnð Þ

for which wc can be calculated as

wc ¼ wpþws

2
! wc ¼ 0:6p:

Hence, ideal filter coefficients can be calculated as

hid ¼ ½ 0:6|{z}
n¼0

0:30 � 0:09 � 0:06 0:07 0 � 0:05 0:03 0:02 � 0:03

0 0:03 � 0:016�:
Finally the FIR filter coefficients are found using

h n½ � ¼ hid n½ �w½n�

as

h n½ � ¼ ½0:09 0:093 � 0:045 � 0:041 0:059 0 � 0:05 0:029 0:017

�0:02 0 0:009 � 0:0024�

4.6.1.2 FIR Filter Design by Frequency Sampling

Let H wð Þ be the Fourier transform of the impulse response of the FIR filter to be
designed. If we take L samples from H wð Þ via sampling operation as in
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H k½ � ¼ H wð Þjw¼k2p
L

k ¼ 0; 1; . . .; L� 1 ð4:141Þ

we obtain the DFT coefficients H k½ �. Using (4.141) in inverse DFT formula

h n½ � ¼ 1
L

XL�1
k¼0

H k½ �ejk2pL ; n ¼ 0; 1; 	 	 	 ; L� 1 ð4:142Þ

we obtain the impulse response of digital FIR filter.

4.7 Problems

(1) Convert the differential equation

d2y tð Þ
dt2

þ 4
dy tð Þ
dt
þ 3y tð Þ ¼ dx tð Þ

dt
� x tð Þ

to a difference equation via sampling operation and find the transfer function of
the difference equation.

(2) For a continuous time LTI system, the relation between system input and
system output is given via the differential equation

d2y tð Þ
dt2

þ 2
dy tð Þ
dt
� 3y tð Þ ¼ d2x tð Þ

dt2
þ 2x tð Þ:

Considering this LTI system:

(a) Find the transfer function HðsÞ of the LTI system. Decide on whether the
system has the stability property or not.

(b) Convert the transfer function to its discrete equivalent, for this purpose take
the sampling period as Ts ¼ 1.

(3) The specifications of a low-pass analog filter are given as

wp ¼ 1000 rad/san ws ¼ 8000 rad/san Rp ¼ 10 dB Rs ¼ 40 dB:

(a) Find the transfer function HðsÞ of this filter. In other words, design your
analog filter with the given specifications in the problem. For your design,
use Butterworth, Chebyshev Type-I, and Chebyshev Type-II filter design
methods separately.

(b) Implement your filters using circuit elements.
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(4) The specifications of a low-pass IIR digital filter are given as

wp ¼ 0:1p rad/s ws ¼ 0:7p rad/s Rp ¼ 10 dB Rs ¼ 40 dB:

(a) Find the transfer function HðzÞ of this filter. Use sampling period Ts ¼ 1 in
your design.

(b) Using HðzÞ, write a difference equation between filter input and filter
output.

(5) Design the FIR digital filter whose specifications are given as

wp ¼ 0:4p ws ¼ 0:8p q ¼ 0:01:

In your design use the windowing approach, and use Kaiser window for your
design.
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