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Preface

In this book, we tried to explain digital signal processing topics in detail. We paid
attention to the simplicity of the explanation language. And we provided examples
with increasing difficulty. The reader of this book should have some background
about signals. If it is possible, the reader should learn fundamental concepts on
signals and systems since, in this book, more attention is paid on digital signal
processing concepts rather than continuous time signal processing topics. Hence,
we assume that the reader has fundamental knowledge about all types of signals and
transforms.

All the topics in this book are presented in an orderly manner. We tried to
simplify the language of this book as possible as we can. We also provided original
examples explaining the aim of the subjects studied in this book. Numerical
examples are provided for the comprehension of the subjects. Unnecessary abun-
dance of mathematical details is omitted for the simplicity of the presentation
language. In addition, to indicate both continuous and digital time frequencies, we
preferred to use the same parameter. We thought that using two different parameters
mixes the students’ mind and it is not necessarily needed.

This book includes four different chapters. And in these chapters, sampling of
continuous time signals, multirate signal processing, discrete Fourier transform, and
filter design concepts are covered. In sampling of continuous time signals and
multirate signal processing chapters, we provided some original practical tech-
niques to draw the spectrum of aliased signals. In discrete time Fourier transform
chapter, well-designed numerical examples are provided to illustrate the operation
of the fast Fourier transform algorithm. In filter design chapter, both analog and
digital filter design techniques are explained in detail. For the analog filters, we also
provided analog filter circuit design methods for the designed analog filter transfer
function.

Maltepe/Ankara, Turkey Orhan Gazi
November 2016
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Chapter 1
Sampling of Continuous Time Signals

Signal is a physical phenomenon that carries information. This physical phe-
nomenon is described by mathematical functions, and usually the signal and its
mathematical function are used for one another, i.e., synonymous. For instance,
when we talk about a sinusoidal signal, we use the sinusoidal function, a mathe-
matical function, to characterize the signal, and the name sinusoidal is used for the
signal. Signals are usually depicted in graphs to observe their behavior and analyze
them. Sinusoidal signals are the main signals and all the other signals can be
considered as being made up of sinusoidal signals with different frequencies and
amplitudes. That is to say, any continuous time signal can be written as sum of
sinusoidal signals with different frequencies and amplitudes. Rectangular signal,
square pulse signal, impulse train signal, triangle signal can be given as examples of
continuous time signals.

Digital signals are obtained from continuous time signals via sampling opera-
tion. Digital signals are represented as mathematical sequences, and the elements of
these sequences are nothing but the amplitude values taken from continuous time
signals at every multiple of the sampling period. Since in the last several decades a
huge improvement is achieved at the development of the digital devices, it has
become almost a must especially for electrical engineers to have a good knowledge
of digital signals. Digital signals are almost available in every part of our life.
Computers, TVs, speakers, mobile phones, house equipment, and most of the other
electronic devices process digital signals. In this chapter, we discuss the con-
struction of digital signals via sampling operation, their spectral analyses, the case
of aliasing, and reconstruction of a continuous time signal from its samples.

© Springer Nature Singapore Pte Ltd. 2018 1
0. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_1



2 1 Sampling of Continuous Time Signals

1.1 Sampling Operation for Continuous Time Signals

Let x.(¢) be a continuous time signal. We take samples from the amplitudes of this

signal at every multiple of T, which is called sampling period and form a mathe-

matical sequence. The obtained mathematical sequence is called digital signal.
The sampling operation is described by the formula

x[n) =x.(nT;) neZ, T,€R (1.1)

where n is of integer type and Ty is the sampling period.

The block diagram of the sampling operation is depicted in Fig. 1.1.

Let’s now try to explain the sampling operation on a sinusoidal signal. The graph
of the sinusoidal signal with period T is given in Fig. 1.2.

Let’s now take some samples from the sine signal in Fig. 1.2, and within this
purpose, let’s choose sampling period as Ty = %. Samples from signal amplitude are
taken at every multiple of T§, and this operation is illustrated in Fig. 1.3.

The sampled amplitude values are placed into an array and expressed as a
mathematical sequence. The mathematical sequence obtained from the above
sampling operation can be written as

a b cd e f g hij k'l
=0

x[n] =

which is a digital signal obtained from a continuous time signal. The obtained
mathematical sequence can also be displayed graphically as in Fig. 1.4.

Fig. 1.1 Sampling operation

of a continuous time signal x.()—» CID | —»x[n]=x(nT))
T neZ
T. T, eR

A _______________
/\ 0 o
-T -T2 T/MT

Fig. 1.2 Sine signal with period T
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x[nl=[labcdef g hijkl]
[
n=0

Fig. 1.3 Sampling of the sine signal

J -
_6 -5 -4 -3 —zl —11 g 1 2 3 41 sl 6
e r k /

Fig. 1.4 Digital sine signal

If starting index value, i.e., n = 0, is not indicated in the mathematical sequence,
the index of the first element is accepted as n = 0.

Graphical illustration is usually employed for easy understanding of the sam-
pling operation and to interpret the meaning of the received signal. Let’s consider
the sampling of sine signal again and write a mathematical expression for the digital
sine signal. The continuous time sinus signal with period T is written as

x.(r) = sin (2?” ;). (1.2)

If the continuous time signal in (1.2) is sampled with sampling period Ty = %, we
obtain the digital signal x[n] whose mathematical expression can be calculated as

x[n] = xc(t)],—,z,— x[n] = sin (277;”2) — x[n] = sin (gn) (1.3)

By giving negative and positive values to n we obtain the amplitude values of
digital sine signal which can be shown as
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xln) = ...sin<—%”)sin(—g)sin (%“) sin(23—”>... . (1.4)

——
n=0

Example 1.1 Find the frequency and period of the continuous time signal
x.(t) = cos(2nt). Sample the given continuous time signal with sampling period
T, = 1/8 s and obtain the digital signal x[n].

Solution 1.1 If x.(¢) = cos(2nz) is compared to the general form of cosine signal
cos(2mft), it is seen that the frequency of x.(¢) is f = 1 Hz which can be used to find
the period of the signal using 7 = 1/f leading to T = 1 s. The sampling operation
for x.(t) = cos(2nt) with sampling period T, = 1/8 s is done as

x[n] = x(1)

— x[n] = 005(27U)|z:nn

— x[n] = cos (27111%) (1.5)

m

— x[n] = cos (Z)

|z:nTA

1.1.1 Sampling Frequency

In communication theory; sampling frequency is one of the most important
parameters. Sampling frequency is used more than sampling period. Sampling
frequency shows the number of samples taken from a continuous time signal
per-second. For this reason, it is an indicator of the quality of the
continuous-to-digital converters. As sampling frequency increases more samples
are taken per-second but this leads to an increase in transmission overhead.

As an example, if the sampling frequency is 1000 Hz i.e., 1 kHz, it means that
every second, 1000 samples are taken from continuous time signal.

Verification

Let’s now prove the above claim (the meaning of sampling frequency) for a con-
tinuous time periodic signal. Let x.(7) be a continuous time periodic signal, with
period T and T be the sampling period. In this case, from one period of the signal a
total of % samples are collected. The continuous time period signal repeats itself %
times in 1 s. According to this information, in one second, the total number of
samples taken from the signal equals to  x  — 7 which is nothing but the
sampling frequency.
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Example 1.2 The continuous time signal x.(¢) = cos(2nft) where f = 1 kHz is
sampled with sampling frequency f; = 16 kHz, and the digital signal x[n] = x.(nTy)
is obtained. According to the given information, find

(a) The number of samples taken from one period of the continuous time signal.
(b) The number of samples taken per-second from continuous time signal.

Solution 1.2 The number of samples taken per-second from continuous time signal
equals the sampling frequency, i.e., fy = 16000 samples are taken per-second. Since
the period of the continuous time signal is T = @ — T =1 ms, the number of

samples taken from one period of the signal is 16000 x 1 ms — 16 samples.

1.1.2 Mathematical Characterization of the Sampling
Operation

Impulse Train

Impulse train function is one of the most widely used mathematical expression
appearing in sampling operation. For this reason, we will first inspect the impulse
train function in details. The impulse train function is given as

s(t) = f: 8(t — nT,) (1.6)

n=—00

where T; is the sampling period. The graph of impulse train function is given in
Fig. 1.5.

Continuous time periodic signals have Fourier series representation. Impulse train
signal (function) also has Fourier series representation which can be written as

s(t) =Y S[k]el (1.7)
k=—00
s(1)
A
1
.. A A A A A A A A A A A

\ AN

5T, —4T, —3T, 2T, —T, |0 T. 2T, 3T, 4T, 5T

s 5

Fig. 1.5 Impulse train function
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where S[k] are the Fourier series coefficients which are calculated using

o0

S[K] :Tis S s()e ar, (18)

k=—00

Let’s now calculate the Fourier series coefficients of impulse train. Using (1.8)
the Fourier series coefficients of the impulse train function can be calculated as

S[k] = — 7 S(t)e s — S[k] = Tieo — S[k] =

s

(1.9)

bl

Replacing the calculated coefficients in (1.8) we get the Fourier series repre-
sentation of the impulse train as

1 & jk2t
s(1) T k;@d (1.10)
Using the Fourier series representation of the impulse train function, we can
calculate its Fourier transform. For this purpose, we first need to know the Fourier
transform of the exponential function. The Fourier transform of the exponential
function is given as

eiWU'QTZné(w—wo). (1.11)

When the expression in (1.11) is used while taking the Fourier transform of
(1.10), we obtain the Fourier transform of the impulse train

S(w) :ZT_” > ow—kwy),  wy :ZT_” (1.12)

S k=—00

1.2 Sampling Operation

The first step in sampling operation is to multiply the continuous time signal to be
sampled by an impulse train. This multiplication operation for the sampling of sine
signal is depicted in Fig. 1.6.

When the continuous time signal x.(¢) is multiplied by the impulse train s(z), we
obtain

x,(1) = xe(t) - s(7) (1.13)

in which, if the explicit expression for the impulse train is inserted we get the
mathematical expression
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x () =x.()x5(0)

x,(6)=x.(t)xs(t)

x(t) = x.(t) Y 8(t—nTy) (1.14)

which can be simplified using the impulse function property ;f(¢)o(r — to)dt =
f(to) as

o0

x%(t) = > x(nT,)d(t — nT,) (1.15)

n=—00

where substituting x[n] = x.(nT;), we obtain

o0

x5(8) = Z x[n]o(t — nTy) (1.16)

n=—00

1.2.1 The Fourier Transform of the Product Signal

We obtained the time domain expression for the product signal x,(¢). Let’s now
consider the Fourier transform of the product signal x,(¢). The Fourier transform of
x,(#) is computed using
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Xo(w) = / x(He ™ dt —
- (1.17)
X;(w) = / _Z x[n]6(t — nTy)e ™™ dt

where if the integration and summation expressions are interchanged we get

o]

X,(w) = > x[n] / 3(t — nTy)e ™dr (1.18)

n=—00

on which by using the impulse function properties for the calculation of the inte-
gration, Fourier transform of the product signal is obtained as
o0

X,(w) = Z x[n]e s, (1.19)

n=—00

The right hand side of the (1.19) contains parameters from time domain.

However, there is not only one single expression for the Fourier transform of the
product signal. We can find an alternative expression for the Fourier transform of
product signal. Let’s now find an alternative expression for the Fourier transform of
product signal where both left and right sides only include expressions in frequency
domain. Consider the product signal expression again

x,(1) = xe(1) - s(7) (1.20)

where the right hand side is the product of two expressions, for this reason, the
Fourier transform of x,(#) can be written as

X;(w) :%X(,(w) * S(w). (1.21)

where substituting the expression in (1.12) for S(w), we get

X (w) = TlnXC(W) ) ZTI S 6w — k) (1.22)
S k=—o0

where by using the impulse function property and linearity of the convolution
operation we obtain

Xo(w) = > Xe(w — kwy). (1.23)
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We have obtained a second alternative expression for the Fourier transform of
product signal. Let’s write both Fourier expressions again

Xo(w) = > xfnle ™ X(w) :Tl D Xe(w — kwy). (1.24)
n=-—00 S k=—00

In these expressions the left hand sides are both X;(w). So the right hand sides
should also be equal to each other. Equating the right hand sides of the expressions
in (1.24), we obtain the equation

o0

> xfple ™ = Z Xe(w — kwy). (1.25)

n=—00 S k=—00

The Fourier transform of the digital signal x[n| is calculated using

o0

X,(w) = Z x[n]e "

n=-—0oo

which resembles to the left term in (1.25). We can write the left hand side of (1.25)
in terms of X, (w) as

00 ) 1 o]
xln e_.lwnTx = XC w — kWs 1.26

which yields

Z X (w — kwy) (1.27)

f k=—00

from which X, (w) can be obtained by replacing w with 3+ and we obtain

X, (w) :Ti i X, (%-kw) (1.28)

S k=—00

In the expression (1.28) the left hand side represents the Fourier transform of the
digital signal obtained from an analog signal via sampling operation. In other
words, it represents the Fourier transform of the mathematical sequence obtained
from analog signal via sampling operation. The right hand side consists of shifted
and scaled replicas of X.(w) which is the Fourier transform of analog signal on
which sampling operation is performed. Since X, (w) is the Fourier transform of a
digital signal, it is periodic with period 2x. If the digital signal is also periodic in
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time domain, then its Fourier transform is periodic with period 27 consisting of
impulses spaced by multiples of 2.
Now, let’s summarize the formulas we have derived up to this point.

In Time Domain

Continuous time signal x.(7)

Sampling operation x[n] = x.(nTy)

Sampling period T,

Impulse train s(t)=>02 . 0(t—nTy)
Product signal X (1) = x.(1) - 5(¢)

Product signal x5(8) = D opo oo Xe(nTy)d(t — nTy)
Product signal xs(8) = D _p0 o x[n]o(t — nTy)

In Frequency Domain

Fourier transform of product function  x,(7)X;(w) = ffooc x,(t)e M dt

Fourier transform of product function  x(1)X,(w) = 5-X.(w) = S(w)

Sampling frequency in rad/sec w, =22

Fourier transform of product function  x(¢ )XS w) = T LS Xe(w — kwy)

Fourier transform of x[n] digital signal X, (w) =" _ x[nle "

Fourier transform of x[n] digital signal X, (w) = % S X, <¥ ka)
Exercise: Given the digital signal x[n] = [2 32 —4 5 63 _2}

n=0

draw the graphs of
(@ y(t)=>_2__ x[n]o(t — nTy) where T, = 1/4 s.

n=—0o0

() g(t) = >0 x[2n]6(t — nT,) where T, = 1/8 s.

n—=—

(©) h(t) =3 . x[n/2]6(t — nT,) where T, = 1/4 s.

n=

Exercise: Calculate the Fourier transforms of
x(t) =0(t)+o(t—1)
and
x[n] = d[n] +do[n — 1]

and draw their magnitude and phase responses.
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1.3 How to Draw Fourier Transforms of Product
Signal and Digital Signal

The derived mathematical expression for X,(w) is given as

X0) =5 3 Xl — ko) (1.29)
T

S k=—00

which is a periodic function and one period of this function around the origin,
assuming no overlapping among shifted replicas, can be written as

—Xe(w). (1.30)

s

The period of X;(w) is denoted by w, whose value equals to QT—" Drawing the
graph of X;(w) consists of two steps. In the first step, we draw the gfaph of TLX((W)
around the origin. Then in the next step, the drawn graph around the ofigin is
shifted to the left and right by integer multiples of w; = 277‘?, ie., by kws,k € Z, and
the shifted replicas together with the one around the origin are all summed.

Before studying some problems on the drawing of X (w), let’s inspect some
examples to prepare ourselves for the drawing of X;(w).

Example 1.3 In Fig. 1.7, the graphics of X;(w) and X,(w) are given for the interval
0 <w <4. Draw the graph of X;(w) + X,(w) for the same interval.

Solution 1.3 To draw the graphic of X;(w)+ X,(w), let’s first write the mathe-
matical expressions for each function, then sum these functions to get the mathe-
matical expression for the summed signals. The mathematical expressions for the
signals X;(w) and X,(w) are given as

w w
Xl(w) = —5 +2 XQ(W) :E

If we sum mathematical expressions for the signals X;(w) and X,(w), we get

X] (W) —|—X2(W) =2.

Fig. 1.7 The graphics of A X (w X, (w)
X, (w) and X, (w) /‘
%

| Y
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(w) A X,(w)+ X, (w)

Fig. 1.8 The graphics of X;(w) + X,(w)

Fig. 1.9 The graphics of A
X dX functi
1(w) and X, (w) functions X)X, (w)
b
b
0 4 - W

The obtained result is graphically shown in Fig. 1.8.

Example 1.4 The graphics of X; (w) and X, (w) for the interval 0 < w < 4 are shown
in Fig. 1.9. The slopes of the lines in Fig. 1.9 are —1/2 and 1/2. According to the
given information, draw the graphic of X;(w) + X,(w) for the same interval.

Solution 1.4 To draw the graph of X;(w) 4+ X2(w) we need to find its mathematical
expression. For this purpose, let’s first write the mathematical expressions for X; (w)
and X, (w) using the given information for the interval 0 <w <4 as

X (w) = —g +a X(w) zg +b

When the mathematical expressions for X; (w) and X, (w) are summed, we obtain
Xi(w)+Xo(w)=a+b

which is graphically depicted in Fig. 1.10.

Example 1.5 The graphics of X;(w) and X, (w) functions for the interval 0 <w <4
are shown in Fig. 1.11. The slopes of the lines in Fig. 1.11 are —1/2 and 1/2.
According to the given information, draw the graphic of X;(w) + X5 (w).
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A A X (W+X,(w)

Xi(w) X, (w)

a 7 \ a+h

\
S
\
S

Fig. 1.10 The graphic of X;(w) + X»(w)

Fig. 1.11 The graphic of A
X, (w) and Xz (w)
a
X, (w)
X,(w)
b
0 s

Solution 1.5 We can follow the same steps as in the previous two examples. The
line equations of X;(w) and X,(w) can be written as

X\ (w) =—mw+a Xa(w)=mw+b.
If we sum the line equations of these two functions, we obtain

Xi(w) +Xao(w) =a+b.

The obtained result is depicted in Fig. 1.12. We will use this result to draw the
graphs of the digital signals having the spectral overlapping problem.

Example 1.6 x.(t) is a continuous time signal and its Fourier transform is denoted
by X.(w). The graph of X,.(w) is depicted in Fig. 1.13. As it is seen from the Fourier
transform graph, x.(z) is a low-pass signal with bandwidth wy.

Let x,(¢) = x.(r) x s(¢) where s(¢) is the impulse train signal. Draw the Fourier
transform of x,(¢) assuming that wy > 2wy, i.e., draw X;(w).
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\ X, (w)+ X, (w)

A 4
a+b
a
X, (w)
X, (w)

b

0 Y w 0 1 > W
Fig. 1.12 The graphic of X;(w) + X, (w)
Fig. 1.13 Graph of X,.(w) X, (w)

A
A
> W
- Wy 0 Wy

Solution 1.6 The Fourier transform of the product signal x,(z) is

1 o0
Xo(w) == Xe(w — kwy)
Ts k=—00
which is a periodic function with period wy, = ZT—” When the summation expression
in X;(w) is expanded, we get

1 1 1
X (8) = o o X0+ 2 X)X )

where the graphs of the terms TLYXC(W),TLYXC(erwS), and T%Xc(w —wy) are
depicted in Fig. 1.14.

The other shifted and scaled replicas can be drawn in a similar manner as in
Fig. 1.14. When the shifted and scaled replicas are summed, we obtain the graphic
of X;(w) as depicted in Fig. 1.15.

Example 1.7 x.(t) is a continuous time signal and its Fourier transform X,(w) is
depicted in Fig. 1.16. x.(¢) is sampled by the sampling period T, = ﬁ s. Draw the
graph of X;(w)
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1.3 How to Draw Fourier Transforms of Product Signal .

1

— X (w
T X (w)
T,
- S 5 o - W
1
—X.(w-w)
iﬂ
T;
- > W
0 W, — Wy Wy W + Wy
—X (w+w,
FXOr)
ilk
T
- > W
TWem Wy W — Wiy 0
Fig. 1.14 The graphics of %\XC(W),TL\XC(W +wy) and TL‘XC(W — wy)
X, (w)
iﬂ
T
wSwy oW oty —Wy 0 Wy Wemwy W wetwy

Fig. 1.15 The graphic of X,(w)
Solution 1.7 The sampling frequency in rad/sec is

2

Wy = N wy = 40007 rad/s
The shifted X.(w) signals by multiples of w; are shown in Fig. 1.17.
As it is clear from Fig. 1.17, shifted replicas overlap. Summing the overlapped

amplitudes, we obtain the signal shown in Fig. 1.18.



16 1 Sampling of Continuous Time Signals

X.(w)

-20007 —40007

Fig. 1.16 The graphic of X (w)

A
X, (w+40007) X.(w) X (w—40007)

L

\

- 60007 — 40007 — 20007 20007 40007 60007 80007

A
X, (w+80007) X, (w+40007) | X.(w) X,(w—40007) X,(w—80007)

— 100007 — 80007 — 60007 — 40007 — 20007 20007 40007 60007 8000z 100007 120007

1

Fig. 1.17 Shifted X.(w) signals

\
=

—100007 — 8000z — 6000z — 40007 — 20007 20007 40007 60007 8000z 100007 120007

Fig. 1.18 Summation of the shifted replicas

In the last stage, we divide the amplitudes of the summed signal shown in
Fig. 1.18 by T;. Since T, = ﬁ dividing the amplitudes by T equals to multiplying
the amplitudes by 2000. After multiplying the amplitudes by 2000 we obtain the

graphic of the function X;(w) as depicted in Fig. 1.19.
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X, (w)
'y
4000
— 2000
— 100007 — 80007 — 60007 — 40007 — 20007 20007 40007 60007 8000z 100007 120007 > w
Fig. 1.19 The graphic of X,(w)
Fig. 1.20 The graphic X (w)
of X.(w) A

0
-10007 10007

Example 1.8 The graphic of X.(w) is shown in Fig. 1.20. Draw the graphic of

X,(w) =250 ) X.(w — k500m)

k=—00

Solution 1.8 From the equation

X,(w) =250 > X.(w — k500)
k=—00

it is seen that the sampling frequency in rad/sec is wy; = 5007 rad/s. Let’s
partition the horizontal axis of X.(w) as in Fig. 1.21 considering the sampling
frequency value.

Now let’s draw the shifted X.(w) signals as shown in Fig. 1.22.

The graphs of X.(w), X.(w—wy) and X.(w-+w;) altogether are given in
Fig. 1.23.

More shifted graphs of X.(w) are given in Fig. 1.24.

If the above graph is carefully inspected, it is seen that a portion of the graph
repeats itself along the horizontal axis. The repeated part is indicated by bold lines
in Fig. 1.25.

Now let’s write the mathematical equations for the line segments, a, b, c, d, e, f,
g, h appearing in the repeating pattern in Fig. 1.25 as
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Fig. 1.21 The graphic
of X.(w)

Fig. 1.22 Shifted graphs
of X.(w)

Fig. 1.23 Shifted graphs
of X.(w)

1 Sampling of Continuous Time Signals

Xe(w)

A
1

P P -
~10007 —5007 —2507| 2507 5007 10007
Xo(w)
X (w=5007)
1 \/ /
B \ . w
- 10007 — 5007 — 2507 | 2507 5007 10007
Xo(w)
X.(w+5007)
AN 1 /
>
- 10007 — 5007 — 2507z | 2507 5007 10007
X (w)
X, (w+5007) X, (w—5007)
\ 1 \/ /
| 0

—10007 — 5007 — 2507

2507 5007

10007
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—10007 -5007 —2507 | 2507 5007 ) 10007

Fig. 1.24 Shifted graphs of X.(w)

Fig. 1.25 Shifted graphs of X.(w) and repeating pattern

1
m= — 250 <w <2507
10007
1 1
Yo=mw+1 y,=—-mw+1 yC:—mw—i—E yd:mw—i—i
1 1
ye:mw—i—i yf:—mw—i—i Vg = —mw y, = mw.

If we sum the equations for the line segments, a, ¢, e, g and b, d, f, g we get the
results

YatYetYetye =2 Yp+yat+yr+y, =2
and the graph of X(w) is drawn as in Fig. 1.26.

Fig. 1.26 Summation result A
of shifted X.(w) functions

0
-10007 10007
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Fig. 1.27 The graphic of X, (w)
Xs(w) A
500
W
~10007 0 10007

In the last step to get the graph of

X,(w) =250 > X.(w — k500)

k=—00

it is sufficient to multiply the amplitude values of the signal depicted in Fig. 1.26.
After amplitude multiplication, we obtain the graph of X,(w) as depicted in
Fig. 1.27.

Example 1.9 The graphic of X.(w) is shown in Fig. 1.28. Draw the graphic of

K04 5 x (%)

S k=—00

for Ty = 55 s.

Solution 1.9 We can write the sampling frequency in rad/san unit as

Wy = 2% — w, = 750nrad/s. In the next step, we shift the function X.(w) to the left

and right by kwy, k € Z. Some shifted replicas of X.(w) are displayed in Fig. 1.29.
If the graph in Fig. 1.29 is inspected carefully, it can be seen that a define pattern
repeats itself along the shape. The repeating pattern is indicated in bold lines in
Fig. 1.30.
The repeating pattern in Fig. 1.30 is redrawn alone in Fig. 1.31 in details.

Fig. 1.28 The graphic of X.(w)
X.(w) for Example 1.9 A

| %

—1000 7 —-5007 —2507 (2507 5007 10007
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A

X.(w+7507) 4

X.(w)  X.(w-7507)

—1000 7 =750 7 —500 7 —250 7 250z 5007 750z 10007

- 10007 —5007 —2507| 2507 5007 10007

Fig. 1.29 Shifted X.(w) functions

Fig. 1.30 The repeating pattern

If the graphic in Fig. 1.31 is inspected carefully, it is seen that the line pairs in
the upper left and upper right shadowed rectangles overlap each other and their
slopes are equal in magnitude but opposite in sign. For this reason, the sum of the
line equations for line pairs is a constant number and it equals to 1 + 4 = 5. After
summing the overlapping line equations, we get the graphic in Fig. 1.32.

If the triangle shape and horizontal line in Fig. 1.32 are summed, we get the
graphic in Fig. 1.33.

The graphic shown in Fig. 1.33 corresponds to one period of the function X;(w)
around origin. If one period of X;(w) around origin is shifted to the right and left by
multiples of wy = 7507 and shifted replicas are all summed together with the graph
around origin, we get the graphic of X;(w) as in Fig. 1.34.

Solution 2 In fact, the second solution provided here is more complex than the first
solution. However, we find it useful to illustrate the different perspectives for the
solution of a problem.

The repeating pattern chosen in solution can be interpreted in a different manner.
In fact, the interpretation of the repeating patterns depends on the reader’s
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Fig. 1.31 The repeating A
pattern drawn in details

%

-500r —2507 2507 5007

Fig. 1.32 The graphic A
obtained after summing the
overlapping lines

AN

-5007 -2507 2507 5007
Fig. 1.33 The graphic A
obtained after summing the 6
triangle shape and horizontal
line S

W
- 5007 —2507 2507 5007
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X, (w)
A
6
f o e
- W
- 5007 —2507 2507 5007
Fig. 1.34 The graphic of X,(w).
Fig. 1.35 Repeating part in A
details
1
> . W
- 5007 — 2507 | 3507 500z

perception. The overlapped lines in the repeating pattern are shown inside circles in
Fig. 1.35 in a different approach than the one in solution 1.

In Fig. 1.35 the sum of the overlapped lines inside circles results in constant
numbers, and when the constants are added to the top triangle shape, we obtain one
period of X;(w) around origin. This is illustrated in Fig. 1.36.

When the obtained one period around the origin is shifted to the left and right,
we obtain X;(w) function in Fig. 1.37.

Exercise: The graphic of X.(w) function is depicted in Fig. 1.38. Using the
given figure draw the graph of
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A A
6
P P S
v 5 \
N S 4 N S/
3 .
2 _
)
}
|/
1 — % >
5007 —2507 T 2507 5007 ~ 5007 — 2507 2507 5007

Fig. 1.36 The sum of the overlapped lines inside circles in repeating pattern

X (w)
A
6

- W
- 5007 2507 2507 5007
Fig. 1.37 X,(w) graph
Fig. 1.38 Fourier transform X, (w)
of an input signal A
2
1

- W
-10007 0 5007 10007
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o0
X,(w) =500 > X.(w — k1000r).
k=—00
Exercise: The Fourier transform of a continuous time signal is given as
X.(w) = n(d(w — 5007) + d( + 5007)).

Using the given Fourier transform draw the graph of

X,(w) =200 ) X.(w — k400m).

k=—00

1.3.1 Drawing the Fourier Transform of Digital Signal

Assume that X, (w) is the Fourier transform of x[n] which is obtained from x.(¢) via
sampling operation, i.e., x[n] = x.(7) — x[n] = x.(nT;) and the mathematical
expression for X,,(w) is given as

X, (w) :Ti i XC<;;—kws>. (1.31)

S k=—00

|z:nTA

To draw the graph of X, (w) two different methods can be followed. Below, we
explain these two methods separately.

Method 1: First draw the graph of X;(w), i.e., draw the Fourier transform of the
product signal x,(z) = x.(¢)s(z) as discussed in the previous section. Once you have
the graph of X;(w), to get the graph of X,,(w), multiply the horizontal axis of X;(w)
by sampling period 7.

Method 2: Since X, (w) is the Fourier transform of the digital signal x[n], it is a
periodic signal and its period equals 27. To draw the graph of X,,(w), first draw the

graph of TLXC (%) around origin, then shift the drawn signal to the left and right by

multiples of 27, and sum the shifted replicas. Note that to draw the graph of
TLXXC (%), we multiply the amplitude values of X.(w) by 1/T, and multiply hori-

zontal axis of X.(w) by Tj, i.e., divide the horizontal axis of X.(w) by 1/T.
Let’s now provide some examples to comprehend the subject better.

Example 1.10 The Fourier transform of a continuous time signal x.(¢) is depicted in
Fig. 1.39. Draw X,(w), the Fourier transform of x[n] = x.(nT;) where T; is the
sampling period. Assume that wy > 2wy.
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Xe(w)

N

Fig. 1.39 Fourier transform of a low pass input signal

X5 (w)
n
Ty

A

W TWy o W, —W Wy ~ Wy 0 Wy Wy = Wy

s

Fig. 1.40 Graph of X;(w)

Solution 1.10
Method 1: Let’s first draw the graph of

X,(w) =~ i Xe(w = kwy)

S k=—00

wy + Wy

which is a periodic function with period wy, = ZT—’: The graph of X;(w) is shown in

Fig. 1.40.

In the second step, we multiply the horizontal axis of X;(w) by T to get the

graph of X, (w). The graph of X, (w) is shown in Fig. 1.41.

Xu(w)
i“
Ty

- 5 =W
-Tw,—Twy 27 —Tw +Tw, —Twy 0 Twy Tw,=Twy 27 Tw, +Twy

Fig. 1.41 Graph of X, (w)
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1 w
s “ s
T,
W
—Tiwy 0 Tiwy

Fig. 1.42 The graph of %Xv (‘Ti)

Method 2: In the second method, we first draw the graph of

then we shift the drawn graph to the left and right by multiples of 2 and obtain the
graph of X,(w). To draw the graph of T%Xc (%), we multiply the vertical and
horizontal axes of X.(w) by 7 and T respectively. In Fig. 1.42 the graph of
T%Xc (%) is depicted.

Let’s denote + X, (%) by X,1(w). To get the graph of X,,(w), we shift X,,; (w) to

the left and right by multiples of 27 and sum the shifted replicas. This operation is
illustrated in Fig. 1.43.

Example 1.11 The continuous time signal x.(¢) is given as

X.(t) = cos(40007z).

(a) Draw X.(w), the Fourier transform of x. (7).

(b) Let x,(t) = xc(t)s(r) where s(z) is the impulse train and Ty = g3y . Draw
X;(w), the Fourier transform of x,(7).

(¢) Let x[n] = x,(nTy) where Ty = gio5 8. Draw X, (w), the Fourier transform of
x[n].

Solution 1.11 Before computing the Fourier transform of the given cosine signal,
let’s review some properties of the exponential signal. The Fourier transform of an
exponential signal is given as

eiWNtF—T>2n(3(w —wy) (1.32)
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28
Xy (w) X, (w=27)
y A
T A
< T;
o W 3 > W
—Twy Towy 2x-Tw, 2%  2z+Tw,
X, (w+27)
A
A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T
- 0 w
—2r-Towy =27 —27+T,wy,
\
Sum the shifted graphs
\
X, (w)
ﬁ“
T,
- > W
—27-Tw, —27 —27+Tw, T, wy 0 Twy 2r =T, wy 2z 2r+ T wy

Fig. 1.43 X, (w) graph

and sine and cosine signals can be written in terms of the exponential signals as
. 1 . . 1 . .
sm(th) = 2_ (e#lwzvt _ e*}w;vt) COS(WNI) — 5 (e +jwnt e*]wzvt) (1.33)
And the Fourier transforms of the sinusoidal signals are given as

sin(wyt) > (8w — w) — 3(w +wy))
j (1.34)

cos(wyt) 2 m(3(w — wy) + S(w +wy)).

(a) Since we refreshed some background information we can start to solve our
problem. The Fourier transform of x.(¢) = cos(40007t) can be calculated as
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c0s(40007t) 2 7(8(w — 40007) + 8(w + 40007))

and its graph is depicted as in Fig. 1.44.
(b) Since x,(1) = x(1)s(¢), and s(t) = > 2= 6(t — kT), where T is the sampling
period, Fourier transform of x,(¢) is

1 o0
X,(w) = ﬁk;@ X (w — kwy)
2n

where w; = 2T—“ = 173000 = 160007. Using the Fourier transform expression

X.(w) found in the previous part, X;(w) can be calculated as

X,(w) = 8000 X.(w — k160007) —
k=—o00
X,(w) = 80001 ) (3(w — 40007 — k160007) + 3(w + 40007 — k160007))

k=—00

and the graph of X(w) is displayed in Fig. 1.45.

X.(w)
A
V4
A A
w
— 40007 4000 >
Fig. 1.44 Fourier transform of x.(r) = cos(40007z)
X;(w)
A
80007
A A A A A T
> W
~ 160007 - 40007 400072 160007

Fig. 1.45 Fourier transform of the product signal x;()
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Fig. 1.46 Fourier transform X, (w)
of X,,(w) A
80007
A A A A A A
W
-2 _z z 27
2 2

(c) To get the graph of X,(w), it is sufficient to multiply the horizontal axis of
X;(w) by Ty. Thus, the graph of X,,(w) is obtained as in Fig. 1.46.

1.4 Aliasing (Spectral Overlapping)

Let the Fourier transform of a continuous time signal be as given as in Fig. 1.47.
Using the Fourier transform in Fig. 1.47, let’s draw the graph of

X, (w) :Ti i X.(w — kowy) (1.35)

S k=—o00

as in Fig. 1.48.
It is clear from Fig. 1.48 that the condition for the shifted graphs not to overlap
can be written as

We — W1 > Wy — Wy > W) +wa (1.36)

and if w; <w, then no aliasing condition in (1.36) can also be written as wy > 2wy.
If wy <w; 4wy, then the shifted graphs overlap and this condition is named as
aliasing (overlapping). The case of aliasing is depicted in Fig. 1.49.

Xo(w)
A

1

A
\
=

-w, w,

Fig. 1.47 The Fourier transform of a low pass signal
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) X, (w) 1
— X (w+ ¢
T (w+w,) T

N =
e

Wy =W > W, D W >W + W,

Fig. 1.48 The graph of X,(w)

Xw) 1

1
FXC(W+ w,) y

K]

Wy W - Wt W, Wy

1\ s

Aliasing

Fig. 1.49 Aliasing case

For many signals the Fourier transform is symmetric with respect to the vertical
axis, i.e., w; = wy. And for the symmetric case, let w; = wy = wy and the con-
dition for no aliasing in this case can be stated as

ws > 2wy (1.37)

where the unit of the frequencies is rad/sec. If we write the explicit expressions for
the frequencies in (1.37), we get

2n 2n
) Yt 1.38
T, ~ Ty (1.38)

and the condition for no aliasing can be written as f; > 2fy. This means that for no
aliasing, the sampling frequency in unit of Hertz should be greater than twice of the
highest frequency available in the signal.
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Note: If X.(w) is a complex function, to see the overlapping case graphically we
first draw the graph of |X.(w)|, and then the graph of

X,00) = D Pelw — kv, (1.39)

S k=—o00

is drawn.

Example 1.12 The Fourier transform of continuous time signal is shown in
Fig. 1.50. Draw the Fourier transform of the product signal x,(7) = x.(¢)s(f) and
decide on the aliasing case.

Solution 1.12 The graph of X (w) =+~ _ X.(w—kw,) is depicted in

Fig. 1.51.
It is clear from Fig. 1.51 that for no overlapping, we should have

Wg — Wy > Wy (1.40)
leading to
ws > 2wy (1.41)
X (W)
A
A
» W
- Wy 0 Wy
Fig. 1.50 Graph of X.(w)
X, (w)
Aﬂ
Ti
= Wy =Wy =Wy —witwy —Wy 0 Wy Wy — Wy Wy Wy + Wy

Fig. 1.51 Graph of X;(w)
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and no aliasing condition in (1.41) can also be expressed as

Wy > 2wy — 2nf, > 2 X 2nfy — f, > 2fy. (1.42)

1.4.1 The Meaning of the Aliasing (Overlapping)

Sampling frequency implies the number of samples taken per-second from a con-
tinuous time signal. The collected samples are either transmitted, stored, or pro-
cessed, and the analog signal can be reconstructed from the digital samples.

If sampling frequency is not high enough, the analog signal cannot be recon-
structed due to insufficient number of received samples or it can only be partially
reconstructed. In frequency domain, the effect of insufficient number of samples is
seen as aliasing or spectral overlapping.

Example 1.13 The continuous time signal x.(t) = cos(20nt) + sin(40xnz) is to be
sampled. Choose a sampling frequency such that no aliasing occurs for the gen-
erated digital signal in frequency domain.

Solution 1.13 Let’s first calculate the Fourier transform of the continuous
time signal. For this purpose, the Fourier transforms of sinusoidal signals are
reminded as

COS(Wol) g 7'[(5(W — Wo) + (3(W + WO))

sin(wt) a ;(5(W —wp) — d(w+wo))

where substituting wy = 27fy, w = 27nf, we get the alternative form for the Fourier
transform of the sinusoidal signals as

Fr 1
cos(2nfor) < §<5(f —fo) +o(f + 1))
. Fr 1
sin(2mfor) < 2—j (0(f —fo) — o(f +/o))
While obtaining the alternative forms, we made use of the property
1
o2 (f — fo)) Zﬂé(f—fo)- (1.43)
Using the Fourier transform formulas for the sinusoidal signals, we can calculate

the Fourier transform of the continuous time signal given in the example and plot its
graph as in Fig. 1.52.



34 1 Sampling of Continuous Time Signals

Reel

A Imaginary

Jr

/ P Reel

—407 —-20x 20 407

Fig. 1.52 Fourier transform of the composite signal x.(r)

X (W)
A

T

A
/
S

407 —207 0 207 407

Fig. 1.53 Graph of |X.(w)|

The Fourier transform of the summed sinusoids given in Fig. 1.52 seems to be
complex to judge although not impossible. For easiness of the illustration, let’s take
the absolute value of the Fourier transforms and depict them as in Fig. 1.53.

As it is seen from Fig. 1.53 that the highest frequency available in the contin-
uous time signal x,(¢) is 407 rad/s or 20 Hz and the lowest positive frequency is 0.
The analog signal is a low pass signal. The sampling frequency preventing aliasing
should satisfy

wg > 2 X 401

or in terms of unit of Hz, f; > 40 Hz.
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Method 2: Comparing the given sinusoidal functions to cos(2xfi¢) and sin(27nf3t)
expressions, we find the frequencies of the sinusoidal signals as fi = 10 Hz and
Jf>» =20 Hz, and decide on the sampling frequency as

f,>2x20Hz —f, > 40 Hz

Example 1.14 1f x[n] = x.(nTy) then the Fourier transform of x[n] is written as

X,(0) = > X (% - kW) (1.44)

S k=—00

where X.(w) is the Fourier transform of continuous time signal x.(). The Fourier
transform of the digital signal x[n] can also be calculated using the Fourier trans-
form formula directly, i.e.,

00

Xu(w) = > xlnle ™" (1.45)

n=—0o0

Derive (1.44) starting from the right hand side of (1.45).

Solution 1.14 Before starting to the derivation, let’s remember the Fourier and
inverse Fourier transforms of continuous time signal

If the time parameter ‘¢’ is replaced by ‘nT,’ in inverse Fourier transform
expression, we get

1 r :
xc(nTS):% / X.(w)e" T dw. (1.46)

For the digital signal x[n|, we have the Fourier transform expression

o0

X, (w) = Z x[n]e " (1.47)

n=-—0oo

in which if we substitute x[n] = X.(nTy), we get

o0

Xu(w) = > xe(nT)e ™. (1.48)

n=-—0o

In (1.48) if x.(nTy) is replaced by (1.46), we get
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X1 o , .
Xu(w) =) > X (2)e* T dje (1.49)
which can be re-arranged as
1 & 0 L
Xa(w) = 5- > Xe(d) [ eI (1.50)

and exchanging the places of summation and integration operators, we obtain
_ —j(w—2T)n
X,(w) = o 7/00XC(/1) nzgiooe di (L.51)

on which we can use the property

o0

> e = op Z d(w — ATy — k2m) (1.52)

n=-—00 k=—00

2
S(w — AT, — k2r) = 5<Ts (ﬁ— ) —k—”))
T, T,

—5<—; k2_”>
n.\T. T,

$ edv-inn 27 Z 5<_Y_z k2“> (1.54)

n=—00 Y k=—o00

(1.53)

leading to the expression

)T T,

S k=—o00

2n - w 2n
X, X.( O\ ==—A—k—|dA 1.55
=55 ] XOF Y o(5- =47 (1.55)
where upon exchanging summation and integration operators, we get

I K1 o w 2n
X,(w) = — X (2)o| = — A —k—=)d2 1.56
W=7 3 g ] X(F i) )
in which the integration expression can be simplified using the impulse function
property

[ Xe(2)3(30 — 2)dh = X, (o) (1.57)

—00
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Fig. 1.54 x.(¢) graph for x, (1)
Example 1.15 y
A
1
- i
-T T
as follows
1 w 2n 1 w 27
— [ X (A =—A—k—)dl=—XN\——k— 1.5
n/oo (4) <TS Ts) T o (TS TS> (1.58)

Finally, when (1.58) is used in (1.56), we get the desired final expression as

xn(w):Ti i X(?—k?) (1.59)

S k=—o00
Exercise: The inverse Fourier transform for digital signals is given as

1

5 X, (w)e""dw. (1.60)

2n

x[n] =

Starting from the right hand side of (1.60) and replacing X, (w) in (1.60) by
(1.59) obtain the left hand side of (1.60).

Example 1.15 The time domain signal given in Fig. 1.54 is to be sampled.
Determine the sampling frequency such that the digital signal contains sufficient
information about analog signal and analog signal can be reconstructed from the
digital samples.

Solution 1.15 To determine the sampling frequency, we need to know the largest
and smallest positive frequencies available in the signal spectrum. For this purpose,
we calculate the Fourier transform of the continuous time signal and determine the
largest and smallest positive frequencies available in the signal spectrum. The
Fourier of the continuous time signal is computed as
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Xe(w)
A

Sz 4r 31 27 7« 27 37 4r Sm

r T T T T r r 1T T T

Fig. 1.55 Fourier transform of x.(¢) in Fig. 1.54

X(w) = [ xe(t)e ™ ar

T .
=/ le ™dt
T

e/'w’l' _ e—ij

Jjw
_ 2sin(wT)
B w
The graph of the Fourier transform is depicted in Fig. 1.55. Since

Xc(o) = g

the value of the Fourier transform at origin can be computed using the L’Hdpital’s
rule. If we take the derivatives of numerator and denominator of X, (w) w.r.t w and
evaluate it for w = 0, we obtain

dX.(w)
aw

_ 2Tcos(wT)

w=0 1

. dX.(w)

=2T
w0 dw

w=0

which is nothing but the value of X,.(w) at origin, i.e., X.(0).

As itis seen from Fig. 1.55, the largest positive frequency in the signal spectrum
goes to infinity and the smallest non-negative frequency is 0. We need to choose
infinity as sampling frequency and this is not a feasible value for practical imple-
mentations. However, as it is seen from the Fourier transform graph, the amplitude
of the signal spectrum decreases sharply when frequency is beyond %. So, we can
assume that the spectrum amplitude is negligible beyond a frequency value. We can
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choose the largest frequency as wy = 47”, and according to the chosen frequency, we
can write the lower bound for sampling frequency as

4
ws>2wN—>ws>2—n
T
8n 2= 8w T
We> ——— > — = Ty< —
T T T 4
4
s >
’ T

Let’s assume that the sampling period is chosen as Ty = % This means that we
take 2f = 16 samples from rectangle signal per second. And these 16 samples are
8

sufficient for reconstruction of the rectangle signal.

1.4.2 Drawing the Frequency Response of Digital Signal
in Case of Aliasing (Practical Method)

In sampling operation if the sampling frequency is chosen as
f; <2wy

where wy is the bandwidth of the low pass analog signal, then aliasing occurs in
Fourier transform of the digital signal x[n], i.e., in graph of X, (w). The relations
between digital signal and continuous time signal in time and frequency domains
are as

X, (w) = Ti i X, <¥ - kw)

§ k=—o00
Let the Fourier transform of the continuous time signal to be sampled be as in
Fig. 1.56.
If f; <2wy, then the graph of %XL. (%) happens to be as in Fig. 1.57.
If Fig. 1.57 is inspected carefﬁlly it is seen that when f; <2wy, the function
Tl‘_Xc (%) takes values outside the interval (—7, ) on horizontal axis. In Fig. 1.58,
tﬁe shadowed triangles denoted by ‘A’ and ‘B’ show the intervals outside (—, )

where the function TLXC (%) has nonzero value.
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Fig. 1.56 Fourier transform

X (w)
of a continuous time signal A
A
W
- Wy 0 Wy
Fig. 1.57 Graph of X, (%) Ly
s 5 TS C ]-;
A
A
I
= > W
—Tiwy d 0 d Towy
Fig. 1.58 The graph of 1 X ( K)
X (%) T
7, e \T, A
A
T
A B ™.
-Twy —7% 0 4 Twy -

If the shadowed triangles ‘A’ and ‘B’ in Fig. 1.58 are shifted to the right and left
by 2n, we obtain the graphic in Fig. 1.59.
If the overlapping lines in Fig. 1.59 are summed, we obtain the graphic shown in

bold lines in Fig. 1.60. As it is clear from Fig. 1.60, due to the overlapping regions
the original signal is spectrum is destroyed.
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TN

-Twy, —7 0 T Twy

Fig. 1.59 Shifting of the shadowed triangles

A

A
T

B\.\\‘\\ ,,»"""’(A

-Tw, —7 0 T Tw,

N

Fig. 1.60 Summation of the overlapping lines

The amount of this destruction depends on the widths of the shadowed triangles.
In other words, as the function TLXC (%) extends outside the interval (—m, 7) more,

the amount of distortion on the original signal due to overlapping increases.

The graph obtained after summing the overlapping lines is depicted alone in
Fig. 1.61.

Let’s now, step by step, describe drawing the graph of X,,(w) in case of aliasing
in an easy and practical manner.

Step 1: First we draw the graph of %XC (%) For this purpose, we divide the

horizontal axis of the graph of X.(w) by 1/T; i.e., we multiply the horizontal axis
by Ty, and multiply the amplitude values by 1/Tj.

Step 2: If the sampling frequency is chosen as f; <2wy, then aliasing occurs in the
Fourier transform of x[n], i.e., aliasing occurs in X,,(w). And in this case, the graph

T
extending to the left of —n is denoted by ‘A’, and the potion extending to the right
of 7 is denoted by ‘B’.

of TLXXC (ﬁ) extends beyond the interval (—m, 7). The portion of the graph
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SN

a4

—Tw, —7% 0 T Tw,

s

Fig. 1.61 The resulting graph after summing the overlapping lines

Step 3: The portion of the graph denoted by ‘A’ in Step 2 is shifted to the right by
27, and the portion denoted by ‘B’ is shifted to the left by 2x. The overlapping lines
are summed and one period of X, (w) around origin is obtained. Let’s denote this
one period by X, (w).

Step 4: In the last step, one period of X, (w) around origin denoted by X, (w) is
shifted to the left and right by multiples of 27 and all the shifted replicas are
summed to get X,,(w), this is mathematically stated as

X, (w) = i X (w — k2m).

k=—00

Example 1.16 The Fourier transform of continuous time signal x.(¢) is shown in
Fig. 1.62. This signal is sampled and digital signal x[n] = x.(t)|,_,; — x[n] =
x.(nTy), Ty = 1/64 is obtained. Draw the graph of the Fourier transform digital
signal, i.e., draw the graph of X,(w).

Solution 1.16

Step 1: First we draw the graph of T%Xc (%), for this purpose, we multiply the

horizontal axis of X.(w) in Fig. 1.62 by Ty = 1/64 and multiply the vertical axis of
X.(w) in Fig. 1.62 by 1/T, = 64. The resulting graph is shown in Fig. 1.63.

Fig. 1.62 Fourier transform X (W)
of a low pass input signal A

-967 0 80




1.4 Aliasing (Spectral Overlapping) 43

Fig. 1.63 The graph of 64X, (64w)
X (‘%) A
64
| oY
_ 967 0 80z
64 64
Fig. 1.64 The graph of 64X, (64w)
Ax () A
64
» W
00 z
2 4
Fig. 1.65 The portions of 64X, (64w)
graph outside (—7, 7) interval A
are labelled by ‘A’ and ‘B’
A -
3= _
2

The graph in Fig. 1.63 is drawn more in details as in Fig. 1.64 where we see that

the graph extends to the outside of the (—m, ) interval. And in fact, the parts of the

%XC. (%) extending beyond (—m, ) cause the spectral overlapping problem due to

the 27 periodicity of X,(w).

Step 2: We shadow the portion of the graphs outside the (—7, ) interval and denote

them by the letters ‘A’ and ‘B’, we obtain the graph in Fig. 1.65.

If the shadowed portions labelled by ‘A’ and ‘B’ are shifted to the right and to the

left by 27, we obtain the graph in Fig. 1.66.

In Fig. 1.66, we can write the equations of the overlapping lines for the interval

(—m,—3m/4) as 2w+ 64 and —28w — 122 and when these two equations are
128

summed, we obtain — oW+ % In a similar manner, if we write the equations of

the overlapping lines for the interval (n/2,7) and sum them, we obtain
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Fig. 1.66 Shadowed portions A
are shifted to the right and to 64
the left by 2

“x 3% 0

S

Fig. 1.67 One period of y
X,,(w) around origin 64

Q |
-/

_'7, e 0

Y

_or T
4
Fig. 1.68 Fourier transform X, (w)
of a continuous time signal A
4
2

-487 327 O 32 40x

f%er 13@ After summing the overlapping line equations, we can draw one
period of X, (w) around origin as in Fig. 1.67.

Step 3: In the last step, we shift one period of X,,(w) around origin to the left and
right by multiples of 27 and summing all the non-overlapping shifted replicas, we

obtain the graph of X,,(w).

Exercise: The Fourier transform of a continuous time signal x.(¢) is depicted in
Fig. 1.68.

This signal is sampled with sampling period T; = 1/32 and digital signal x[n] is
obtained. Draw the Fourier transform of x[n].

Exercise: The Fourier transform of a continuous time signal x.(¢) is depicted in
Fig. 1.69.

This signal is sampled with sampling period T; = 1/32 and digital signal x[n] is
obtained. Draw the Fourier transform of x[n].
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Fig. 1.69 Fourier transform X L-(W)
of a continuous time signal A

_A87 0 —24r

1.5 Reconstruction of an Analog Signal from Its Samples

To obtain a digital signal x[n] from an analog signal x.(¢) via sampling operation,
we first multiply the analog signal by an impulse train s(z) and obtain the product
signal x,(#) = x.(¢)s(¢). Then we collect the amplitude values of impulses from x,(z)
and form the digital sequence x]n].

Now we wonder the reverse operation, i.e., assume that we have the digital
sequence x[n], then how can we construct the analog signal x..(¢)? To achieve this,
we will just follow the reverse operations. That is, we will first obtain x,(¢) from
x[n], then from x,(¢) we will extract x.(z).

Let’s study the reconstruction operation in time domain as shown in Fig. 1.70.

As it is depicted in Fig. 1.70, we can write mathematical expression for the
product signal x,(#) in terms of the elements of digital signal x[n] but we have no
way to write an expression for x.(¢) using x;(f). Hence, we cannot solve the
reconstruction problem in time domain. Let’s inspect the reconstruction operation
in frequency domain then. Assume that x.(¢) is a low pass signal and its Fourier
transform is as given in Fig. 1.71.

Considering the Fourier transform in Fig. 1.71, we can draw the Fourier trans-
form of the product signal x,(¢) as in Fig. 1.72. The Fourier transform of x,(¢) is a
periodic signal with period wy and it’s one period around origin equals to T%XC(W) in
case of no aliasing.

It is clear from Fig. 1.72 that for no aliasing, we should have

2
Wy > 2wy — 7” > 2wy (1.61)

s

x[n] — x,(H)= ix[k]é‘(l—kTS) —> x.(9)

k=—0
Mathematical Product How to get
Sequence Signal the Analog

Signal ?

Fig. 1.70 Reconstruction operation in time domain
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X (w)
A
A
W
—wy, 0 Wy
Fig. 1.71 Fourier transform of x.(r)
X (w)
A A
Ty
e W, — Wy - ;vs — W+ wy —wy 0 Wy W, — Wy Wy W, + Wy, >
Fig. 1.72 Fourier transform of x,(¢)
X, (w)
b omw
T,
A
T
- W, =Wy - ws — W, + Wy — Wy 0 Wy W, — Wy WS W, + Wy >
Fig. 1.73 Multiplication of X;(w) by rectangle function H,(w)
2n T
N

N

Now consider the reconstruction operation in frequency domain. We had
problem in converting x;(¢) to x.(¢) in time domain. However, it is clear from
Fig. 1.72 that it is easy to get the Fourier transform of x.(¢), i.e., X.(w) from the
Fourier transform of x,(¢), i.e., X;(w). To get X.(w) from X;(w), it is sufficient to
multiply X;(w) by a rectangle function centered around the origin. This operation is
depicted in Fig. 1.73 where rectangle function is denoted by H,(w) which is
nothing but the transfer function of a low pass analog filter.
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Fig. 1.74 Fourier transform H,.(w)
of the reconstruction filter A

z z
T T

The Fourier transform of the low pass analog filter is depicted in Fig. 1.74 alone.
In fact, the filter under consideration is an ideal lowpass filter, and it is used just to
illustrate the reconstruction operation. In practice, such ideal filters are not avail-
able, and practical non-ideal filters are employed for reconstruction operations.

The time domain expression of the analog filter with the frequency response
depicted in Fig. 1.74 can be calculated using the inverse Fourier transform formula
as follows:

hy (1) = / H,(w)e dw

—00
1 7
2 /.

Ts

_ T gy
2 %
T

:% (e]TLvt — eijTLst)

where using the property sin(0) = 5 (¢’ — ¢”), we obtain

I (1) = smif‘) . (1.63)
Since
sin ¢(x) = Singx) (1.64)

the mathematical expression in (1.63) can be written in terms of sin ¢(-) function as
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hy (1)
A

- STAT3T-2T,-T, | Ty 2T, 3Ty 4T ST

Fig. 1.75 Reconstruction filter impulse response

hy (1) = sinc(T’). (1.65)

s

The graph of the reconstruction filter /4, (r) is depicted in Fig. 1.75 where it is
clear that the reconstruction filter takes O value at every multiple of 7.

As we explained before the Fourier transform of the continuous time signal can
be written as the multiplication of X,(w) and H,(w) i.e.,

XC(W) = X;(W)Hr(W). (166)

Since multiplication in frequency domain equals to convolution in time domain,
(1.66) can be also be expressed as

Xe(t) = x5(1) * h,(2) (1.67)
where substituting
i x[n]d(t — nTy)
for x,(¢), we obtain
x(t) = i x[n]o(t — nTy) * h,(2)
. (1.68)
= Z x[n]h,(t — nTy)

which is nothing but the reconstruction expression of the analog signal x. ().
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Note: f(z) * 6(t — 1) = f(¢ — 19)
Using (1.63) in (1.68) the reconstructed analog signal from its samples can be
written as

: (1=nTy)
00 sin (n +)

xc(t) = Z x[n]w (1.69)

n=—00 Tv

or in terms of sin ¢(-) function, it is written as

=3 sinc(t _T”TS) (1.70)

n=—o0 5

Example 1.17 The continuous time signal x.(z) = sin(27¢) is sampled by sampling
period T = § .

(a) Write the digital sequence x[n] obtained after sampling operation.

(b) Assume that x[n] is transmitted and available at the receiver. Reconstruct the
analog signal at the receiver side from its samples, i.e., using x[n| reconstruct
the analog signal x.(7).

Solution 1.17

(a) The frequency of the sinusoidal signal x.(#) = sin(2n¢) is 1 Hz, and its period

is 1 s. Sampling period is 7 = % s. Every multiple of T, we take a sample from
the sinusoidal signal. The graph of the sinusoidal signal and the samples taken
from its one period are indicated in Fig. 1.76.
Since sampling frequency is f; = 4 Hz, we take 4 samples per-second from the
signal. The samples taken from one period of the sinusoidal signal can be
written as [0 1 0 —1]. Since the sine signal is defined from —oo to cc.
The obtained digital signal is a periodic signal and in this digital signal, the
repeating pattern happens to be [0 1 0 —1]. The digital signal obtained
from the sampling operation can be written as

Fig. 1.76 Sampling of sine x,.(2)
signal A

0 1 2 3 (e
4 n 4
-1
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Repeating pattern

(L.71)
(b) At the receiver, the analog signal can be reconstructed from its samples using

x(t) = Y x[nlhy(t = nTy) (1.72)

n=—00

where T, = }1 and

hy(t) = on () . (1.73)

Using the x[n] in (1.72), the reconstructed signal can be written as
xe(t) =+ +h(t+3T) — h(t +Ts) + he(t — Ts) — he(t = 3T)+ -~ (1.74)

The graph of &,(¢) in (1.73) is depicted in Fig. 1.77 where it is clear that the
amplitude of the main lobe of &, (¢) equals to 1, and the function equals to O when #
is a multiple of 7.

The shifted copies of %,(¢) and their summation is illustrated in Fig. 1.78.

h,(t)
A

1

Fig. 1.77 Reconstruction filter impulse response
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A

h, (t+3T) h,(t=Tg)

—h,.(t-3T)

Fig. 1.78 Summing the shifted sin c(-) functions to reconstruct the analog signal

If we only pay attention to the main lobes in Fig. 1.78, we see that the recon-
struction signal resembles to the sine signal. Overlapping tails improve the accuracy
of the reconstructed signal.

1.5.1 Approximation of the Reconstruction Filter

The reconstruction filter /,(z) = sin c(Ti) is depicted in Fig. 1.79 where it is seen

that the filter has a large main lobe and small side lobes, and as the time values

hy (1)
A

1

_STAT 3T 2T =Ty | Ty 2T 3T, 4T ST,

Fig. 1.79 Reconstruction filter impulse response
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hyr (1)
A
1
Approximation ,"l "‘_
e 'Il ".‘
— 7: :n' 'n“ ];
> ¢ 0 > !

Fig. 1.80 Approximation of the reconstruction filter

increase, the amplitudes of the side lobes decrease. To construct a simplified model
for the reconstruction filter, we can approximate the lobes by isosceles triangles.

In Fig. 1.80 the main lobe of the reconstruction filter is approximated by an
isosceles triangle and the side lobes are all omitted. This type of approximation can
also be called as linear approximation.

For the triangle in Fig. 1.80, we can write line equations for the left and right
edges. For the left edge, the line equation is

t
F—’_lv _Ts§t<07

S

for the right edge, the line equation is

and combining these two line equations into a single expression, we can write the
linearly approximated filter expression as

. :{—;'+1 0< || <T;
ar 0 s .

otherwise

Example 1.18 The continuous time signal x.(z) = sin(2nt) is sampled by sampling
period Ty = %.
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(a) Write the digital sequence x[n] obtained after sampling operation.

(b) Assume that x[n] is transmitted and available at the receiver. Reconstruct the
analog signal at the receiver side from its samples using approximated recon-
struction filter.

Solution 1.18
(a) We solved this problem before and found the digital signal as

n=0
... 01T 0 -1 ~—/~ 010 -1
x[n] = 0 1 0 -1
——
Repeating pattern

(1.75)

(b) At the receiver side, the analog signal can be reconstructed from its samples
using

x(1) = 200: x[n)hg, (t — nTy) (1.76)

where T, = § and h,,(f) is the approximated reconstruction filter. Using the x[n]
found in the previous part, and expanding (1.76), the reconstructed signal can
be written as

ar _Z)

3
har (t+ Z)

R § .J;' —

Aw

1
—har(t+z)

Fig. 1.81 Reconstruction of analog signal using approximated filter
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x.(1)

+ ha (8 +3Ty) — hoy(t + Ty) + hap(t — Ty) — hgp(t — 3T5) + - - -

(1.77)

The shifted copies of A, (¢) in (1.77) and their summation is illustrated in
Fig. 1.81.

As it is seen from Fig. 1.81, the reconstructed signal resembles to the sine signal.
Now we ask the question: How can we obtain a better reconstructed sine
signal?

Answer

Either we can use a better approximated filter or take more samples from one period

of the signal, i.e., increase the sampling frequency which means, decrease the
sampling period. To get a better approximated filter, we can represent the side-lobes
by the small triangles.

A better approximation of the reconstruction filter is illustrated in Fig. 1.82

where it is seen that two side lobes are approximated by triangles. Although
improved linear approximation improves the accuracy of the reconstructed signal,

the sharp discontinuities of the linear approximated filter makes the realization of
the filter difficult.

Reconstruction operation can be illustrated using block diagrams as in Fig. 1.83.

h, (1) h,, ()
A
1
Better '." “.‘
Approximation SN
T ! 5\
-1 VT
> [ < g * o
[0 t
Fig. 1.82 Better approximation of the reconstruction filter
Fig. 1.83 Reconstruction _
operation using block diagram x(n] b/c X = xnl h.(0) x,(1)
T, T

5.0 = 3 xlnlh,(t~nT)

n=—0
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In Fig. 1.83, if h.() :sinc(TL)7 then perfect reconstruction occurs, i.e.,
X (1) = x.(1).

1.6 Discrete Time Processing of Continuous Time Signals

Currently most of the electronic devices are produced using digital technology. For
this reason, analog signals are usually converted to digital signals and processed by
digital electronic systems. These electronic units can be digital filters, equalizers,
amplifiers, etc. In Fig. 1.84, the general system for digital processing of analog
system is depicted.

The system in Fig. 1.84 can be inspected both in time and frequency domains
assuming that discrete time system is linear and time invariant. Let’s first write the
relations among signals in time, and then in frequency domain.

Time Domain Relations:

x[n] = x.(nTy1)y[n] = x[n] = hln]  y.(t) = > ylnlho(t — nTy) (1.78)
If perfect reconstruction filter is to be employed, then

hy() = sin c<T[> . (1.79)

52

Frequency Domain Relations:

1 & w
=—00

where

wa = Talw) = Xa)Ha (). (1.81)

To write the frequency domain relation between y[n] and y,(z), let’s remember
the two-stage reconstruction process illustrated as follows

Fig. 1.84 Digital processing X[ Drearee 1717
of a continuous time signal x(1) _)I C/D Timlesgyesth bic |H Ve ®

Usually a Linear T
T;l Time Invariant 52
System
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Convert mathematical

y[n]—)  sequence to impulse —> ys(t)= iy[n]é‘(t—nTsz) — hr(l) —> y,(0)

train n=—co
T, sl =y, (T,,)
We have
1 & 1 & w
Ys(w) = T_ﬂkZOC Yow —kwg)  Y,(w) = T_ﬂkzoo Y. (T—2 - kwﬁ) (1.82)
Y,(w) =Y, (TK) — Y,(w) = H(W)Y;(w) = Y.(w) = H,(W)Y,,(Tow). (1.83)
52

By combining X,(w) =4 > X (% - kws),Y,,(w) = X,(w)H,(w) and
s e\

Y.(w) = H,(w)Y,(Taw), we get the relation between Y, (w) and X.(w) as

Y, (w) = H,(w)Hy(Toow) Ti Y X G—f w— kwﬂ> (1.84)

lk:—oc

If T,y = Ty = Ty, then (1.84) reduces to

Y,(w) — {TSHn(Tsw)XC(w), —F<w<E (1.85)

0, otherwise

Ts lf - % S w S
0  otherwise

=

Note: H,(w) = {

Example 1.19 Tn Fig. 1.85, the graphs of X.(w) and X, (w) are depicted. In addi-
tion, x[n] = x.(t)_,,- By comparing the graphs of X,(w) and X, (w), write X.(w)
in terms of X,(w).

X () X, ()
14
1 T
W, = - : } + i -
Vy 0 Wy 2Ty, -1 —2m+Taw, A T 0 Tw, x 27-Twy, 27 27+Tw,

Fig. 1.85 Graphs for Example 1.19



1.6 Discrete Time Processing of Continuous Time Signals 57

Fig. 1.86 One period of
X, (w) around origin

wﬂ"—‘

o | [ »
-« 1 > W

- =T,wy 0 Lwy, =&

Solution 1.19 First let’s write the expression for one period of X,,(w) around origin as
X,(w) —n<w<n (1.86)

which is graphically shown as in Fig. 1.86.
If we divide the horizontal axis of X, (w) by T, we get

X, (Tow) —— <w<— (1.87)
T T
which is graphically depicted in Fig. 1.87.
If we multiply the amplitudes by T, we obtain
T T
T, X, (T, —— <w<—. 1.88
(Tow) — <w<p (188)

which is graphically depicted in Fig. 1.88.

Figure 1.88 is nothing but the graph of X.(w). As a result, we can conclude that
if x[n] = x.()|,_,7, then we can express Fourier transform of x.() i.e., X.(w) in
terms of Fourier transform of x[n] i.e., X,(w) as

T T
X (w) =TXy(Tow) ——<w<—. (1.89)
T T
Fig. 1.87 One period of 1 A
X, (Tsw) around origin -
I
<— 0 } » W
T W Wy ~Z
T, T
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Fig. 1.88 One period of A
T,X,(Tsw) around origin
1
<— 0 } » W

r W Wy &

T, T
Fig. 1.89 Continuous to
digital converter Xe ()— Cc/D > x[n]

T

Example 1.20 For the continuous to digital converter given in Fig. 1.89, assume
that the sampling frequency is high enough so that there is no aliasing in frequency
domain. X,,(w) is the Fourier transform of x[n], and X,(w) is the Fourier transform
of x.(¢). Write one period of X,,(w) in terms of X,(w).

Solution 1.20 Since X, (w) is the Fourier transform of a digital signal, X,(w) is
periodic and its period equals 27, the relation between X,,(w) and X,(w) is given as

X, (w) :Ti Zoo: X(?—k?) (1.90)

S k=—00

which is written explicitly as

1 w 27 1 w 1 w  2r
X, w) =4+ X (2 )y Cx (Y) rox () o 1o
) ==+ (TS+TX>+TS (TS>+TS (n n)+ (1.91)
—_— | —— —— —
n=-—1 n=0 n=1

In (1.91), let Y.(w)=7+X, (‘T—“) then it is obvious that Y.(w—2n) =
%XC (% - ZT—“) The explicit expression of X,(w) can be written as
Xo(w) =+ +Y.(w+2n)+ Y (w)+ Ye(w—27) + --- (1.92)

From (1.92), it is obvious that one period of X, (w) is Y.(w), that is to say, one

period of X, (w) is %Xc (%) and this can mathematically be written as
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Xn(w):Tch<¥) —nt<w<n (1.93)
N N

which can also be written as

T.X,(wT) = X.(w) ——=<w<—. (1.94)

Example 1.21 For the digital to continuous converter given in Fig. 1.90, let ¥, (w)
be the Fourier transform of y[n]. Because Y, (w) is the Fourier transform of a digital
signal, it is periodic and its period equals 27. Let Y,,,(w) be the one period of
Y,(w) around origin. That is Y,,,(w) = Y,(w) — n<w<n. Write the Fourier
transform of y,(¢), i.e., Y,(w) in terms of ¥,,,,(w).

Solution 1.21 Digital to continuous conversion operation is reminded in Fig. 1.91.
As a result, we can write the relation between one period of ¥, (w) and Y,(w) as

Y, (W) = TyYoop(Tow) (1.95)

The expression in (1.95) can also be written as

T T
= —— <w< —. .
Y.(w) = T,Y,(T,w) T <w< T (1.96)
yinl—) D/C | 5.0
T,
Fig. 1.90 Digital to continuous converter
H,(w)
T,
s s W
R
y[n] ¥, (0) h, (1) (1)
Y, (W)= Y., (w—k27) Y.(w) =Y, (T.w) Y. (w)=TX, (W)
k
Ynop Ysop(w) :Ynop (T; W) )]r (W) = T;),rmp (T_; W)

Fig. 1.91 Digital to continuous conversion
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Example 1.22 If x[n] = Tyy.(t)|_,7,, write one period of the Fourier transform of
x[n] in terms of Fourier transform of y.(¢). Assume that there is no aliasing.

Solution 1.22 Using the expression below

Xo(w) = &= f: YC(K—kZ—”) (1.97)

y k=—00 TS T\'

the relation in one period can be written as

mwzn@

N

)amm:mmm. (1.98)

Example 1.23 In Fig. 1.92 two signal processing systems are depicted. If both
systems produce the same output y,(¢) for the same input signal x.(z), find the
relation between the impulse responses of continuous time and discrete time
systems.

Solution 1.23 For the first system, the frequency domain relation between system
input and output is

Y.(w) = H.(w)X.(w) (1.99)
Considering only one period (op) of the Fourier transforms of the digital signals

around origin, the relations between input and output of each unit can be written as
C/D:

X op) = X, (K) (1.100)

Disc.Time System:

Ynfop(w) = Hn(W)anop(W) (1101)
Fig. 1.92 Signal processing Cont. Time
systems for Example 1.23 x,(H)—Lm ;Y(S“;m —,(t)
(2
x[n] Disc. Time y[n]
x.(H)— C/D LT}'I[SYTG'" D/C {—y.()
n
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D/C:
Y (w) =T,Yy_op(Tow) (1.102)

If we combine the expressions (1.100-1.102), we get
Y, (w) = Hy_op(Tow)Xc(w). (1.103)

If we equate the right hand sides of the Eqgs. (1.99) and (1.103), we get

Ho(w) = Hy_op(Tyw) — Hy_op(w) = H, (%) (1.104)

from which we can write the time domain relation for h[n] and h.(¢) as

hin] = The(t)] .- (1.105)

1.7 Continuous Time Processing of Digital Signals

Digital signals can be processed by continuous time systems. For this purpose, the
digital signal is first converted to continuous time signal then processed by a
continuous time system whose output is back converted to a digital signal. The
overall procedure is depicted in Fig. 1.93.

For the system in Fig. 1.93, time and frequency domain relations between block
inputs and outputs are as follows:

Time domain relations are

X t —nT,
x (1) = n;mx[n] sinc( T’: ) Ye(t) = xo(t) % he(t) (1.106)
Frequency domains relations are

_ Tan(TsW) lf_TL SWS Tﬂ _
X.(w) = {0 othermise Y.(w) =X.(w)H.(w) (1.108)

Fig. 1.93 Continuous time x,(¢)| Cont.Time |y, (7)
processing of digital signals x[nl— D/IC LTIhS)Est)em : C/D (—>yln]
(¢
T, T
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Fig. 1.94 Signal processing Disc. Time
units for Example 1.24 x[n] —3 LTISystem L (5]
hin]
Fig. 1.95 Signal processing x,(¢)| Cont.Time |5, (1)
units for Example 1.24 x[n]— D/IC B '-T'hS%St)e"” £ C/D >yln]
(t

o3 —

1 & w 2n
Y (w) -7 > YC(TS—kTS>. (1.109)

Example 1.24 The signal processing units given in Figs. 1.94 and 1.95 have the
same outputs for the same given inputs. Find the relation between the impulse
responses of discrete and continuous time systems.

Solution 1.24 For the first system, the relation between input and output is

Y.(w) = H,(w)X,(w). (1.110)
Here Y, (w) is periodic with period 27 and one period of it can be written as
either

Y.(w) =H,(w)X,(w) —n<w<n (L.111)
Yoeop(W) = Hy(W)X—op(W) (1.112)

For the second system, the relations between block inputs and outputs are given as

_ [ TX(Tow) i —F <w< F _
Xelw) = {0 otherwise Ye(w) = Xc(w)He(w)  (1.113)

1 & w 2n
Yv,w)=— S v.(Z L), 1.114
W=7 (5-+7) (1.114)

If we combine the expressions in (1.113), we get

HC(W)Tan(TsW) if — Tl <w< %

Ye(w) = {0 otherwise (1.115)

and substituting (1.115) into (1.114), we obtain
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Yo(w) = i HC.<%—szT>Xn(w—k2n). (1.116)

{%;Mm (1.117)

If we equate the right hand sides of (1.112) and (1.117)

H,(00)X,op(w) = H, (%

)x,,n,xw) . Hy(w) = H, (ﬁ> (1.118)

T
which is can be expressed in time domain as

hn) = Tohe(!)], .- (1.119)

Example 1.25 Sample continuous time signal in Fig. 1.96, and reconstruct the
continuous time signal from its samples. Use triangle approximated reconstruction
filter during reconstruction process.

Solution 1.25 The Fourier transform graph of a rectangle signal of length 27
around origin is repeated in Fig. 1.97.

For our example; T = 2, let’s choose the approximate bandwidth of the rect-
angle pulse as wy = 2n/T — wy = 21/2 — wy = n. We can choose the sampling
frequency according to

We > 2wy — wg > 21 (1.120)
as

2, >2n—f,>1—f, =2 (1.121)

which means that the sampling period is 7, = % The sampling operation of the
rectangle pulse is depicted in Fig. 1.98.
The digital sequence obtained after sampling of the rectangular signal is

Fig. 1.96 Continuous time x,(t)
signal for Example 1.25

1
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X.(w)
A

27,

3

¥ In

T 1 T

st 4

7 27 3w Ar S«

NN

Fig. 1.97 Fourier transform of a rectangle signal

1
, 3 2 10 2 3 2 w
2 2 2 2 2 2
Fig. 1.98 Sampling of the rectangular signal
h, (1) h,, (1)
A A
1
Approximation ,"' "-‘
—> '." “.‘
-T ,:" “.‘ T
> S S > l‘
! 0
Fig. 1.99 Linear approximation of the reconstruction filter
1 1 1 1 1 1 1 1
x[n] = ~—
n=0

(1.122)

The construction of the approximated reconstruction filter is repeated in
Fig. 1.99.
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Fig. 1.100 Linear h, ()
approximation of the A
reconstruction filter for 7Ty = % |
!
1101
2 2

Note that our sampling period is Ty = % then the approximated reconstruction

filter becomes as in Fig. 1.100.
Now we can start the reconstruction operation, the reconstruction expression is
given as

x(1) = i x[n)hg(t — nTy) (1.123)

where T, =1 s, and using our digital signal x[n] and expanding the summation in
(1.123), we obtain

4 3 2 1
x-(t) = hgr (H— > + hy, (H— ) + hy, <t—|— ) + hy, <t—|— >
2 2 2 2
) 5 3 (1.124)
+ har(t) + har (t — 5) + hyy (z — 5) + hyr (t — 5) .

The shifted filters appearing in (1.124) is depicted in Fig. 1.101.

A ho(t— 1 2
h+2) ha+d) AT =)
4 2 2 har (t + 5) hur (t) A A 3
R R KRR A A Y )
h, (1 + 2) 1| ( 2)
5 3 2 1 0 > 1
-=- 2 _Z _Z __Z r 2 3 2
2 2 2 2 2 2 2

Fig. 1.101 Shifted triangle reconstruction filters
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1
3 2 A hy (=) -2
h,(t+2) h,(t+2) I 2 hat=2)
4 2 2 hdl” (t + 7) har (t) /,'\ /:'\ 3
heHR K R OR 2 A S A k(-
ar 7 ““ \ | '\ 1 ','. 2
. — > 1
5 ) 3 2 1 0 1 ) 3
2 2 2 2 2 2 2
Fig. 1.102 Sum of the shifted reconstruction filters
Fig. 1.103 Reconstructed x, (1)
signal for Ty = % i
1
> !
3 0 3 2
2 2

If the shifted graphs given in Fig. 1.101 are summed, we get the resulting graph
shown in bold lines in Fig. 1.102.

In Fig. 1.103 the reconstructed signal is depicted alone.

As it is seen from Fig. 1.103, the reconstructed signal resembles to the rectangle
signal given in the exercise. However, at the left and right sides we have some
problems. To increase the accuracy of the reconstructed signal, we should either
take more samples from the continuous time signal or increase the accuracy of the
reconstruction filter.

Let’s take more samples. For this reason, we can increase the sampling fre-
quency, meaning, decrease the sampling period. Accordingly, we can choose
T, = 1/16, which means that we take (2 — (—2)) x 16 = 64 samples from the
given continuous time signal. The triangular approximated reconstruction filter for
this new sampling period is shown in Fig. 1.104.

As it is seen from Fig. 1.104, the edges of the triangle have larger slopes in
magnitude. It is not difficult to see from Fig. 1.104 that as the sampling frequency
goes to infinity, the reconstruction filter converges to impulse function. Applying
the same steps for the new sampling period, we find the reconstructed signal as in
Fig. 1.105.
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Fig. 1.104 Linear hr (1)
approximation of the A
reconstruction filter for 7y = % 1
RN
16]16
Fig. 1.105 Reconstructed x, (1)
signal for Ty = 1—16 i
1
>
_ E -2 0 2 2
16 16
Fig. 1.106 Signal graph for Amplitude

Example 1.26

1 (il

84 -4 -19] 25

> time

(o))

As it is seen from Fig. 1.105, we have a better reconstructed signal. Left and
right edges of the reconstructed signal have larger slopes.

Note: If unit is not provided for sampling period or for signal axis we accept it as
“second” by default.

Example 1.26 Ts the signal given in Fig. 1.106 a digital signal?

Solution 1.26 Time axis of a digital signal consist of only integers. For the given
signal, real values appear along time axis. Hence, the signal is not a digital signal
but it is discrete amplitude continuous time signal. In fact the signal consists of
shifted impulses 0(¢ — #y) which is a continuous function.
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1.8 Problems

(1) For the sampling periods Ty = 1 s and Ty = 1.5 s, draw the graph of

o0

s(t)y =Y o(t—nTy).

n=—00

(2) The signal depicted in Fig. 1.107 is sampled.

(a) For the sampling period Ty = 1 s, first draw the graph of impulse train
function s(z), then draw the graph of the product signal x,(¢) = x.(¢)s(z).
Find the digital signal x[n] and draw its graph.

(b) For the sampling period T, = 0.5 s repeat part (a)

(3) For the impulse train function

s(t) = i o(t — nTy)

n=—0o0

find

(a) Fourier series coefficients.
(b) Fourier series representation.
(c) Fourier transform.

(4) If x,(t) = x.(r)s(t) where s(¢) is the impulse train and x.(¢) is a continuous
time signal, derive the Fourier transform expression of x,(#) in terms of the
Fourier transform of x.(¢).

(5) If x[n] = x.(nT;), then derive the expression for the Fourier transform of x[n]
in terms of the Fourier transform of x. (7).

(6) Write mathematical equation for the lines depicted in Fig. 1.108, and then find
the sum of these line equations.

(7) x.(t) = cos(8nt) is sampled and x[n] = x.(nT;) digital signal is obtained.
According to this information, answer the following.

(a) If the sampling period is T = % s, write the mathematical sequence
consisting of the samples taken from the interval 0 <7 <1.

(b) Repeat the previous part for the sampling period 7T, = 1—16 S.

(¢) Which sampling period is preferred Ty = § s or Ty = 1¢ s?

Fig. 1.107 Continuous time x,(t)
signal

4

t(sec)
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Fig. 1.108 Two lines for
Question-6

Fig. 1.109 Fourier transform
of a continuous time signal

Fig. 1.110 Fourier transform
of a continuous time signal

69
b
a
t
0
X, (w)
|
—-160007 0 160007
H, )
T
oz o 5 "
T T,

(8) The continuous time signal x.(¢) is sampled with sampling period T, = ﬁ S
and the digital signal x[n] = x.(nTy) is obtained. The Fourier transform of the
continuous time signal is depicted in Fig. 1.109. Draw the Fourier transform

of the digital signal x[n].

© If Ty=Lsand x[s)=[2 =3 5 1 2 3 15 43 25 -25 2],

then draw the graph of

o0

x(1)= > x[n)o(n —T,).

n=—00

(10) The Fourier transform of a continuous time signal is depicted in Fig. 1.110.
Using inverse Fourier transform formula, calculate the time domain expression

of this signal.
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Fig. 1.111 Continuous time X, (t)
signal graph for Question-13

Fig. 1.112 Fourier transform X. (w)
of a continuous time signal

Y

12)

13)

(14)

s)

(16)

a7

| W

—20007 20007

Let x,(#) be the product of x.(¢) and the impulse train function s(¢). Using the
product signal expression, write the mathematical expression for the recon-
structed signal which is evaluated as x,(¢) = x,(¢) * h, (7).

For the sampling period T :% s, draw the linearly approximated recon-
struction filter graph.

The graph of the continuous time signal x.(¢) is displayed in Fig. 1.111.
The signal x.(¢) is sampled with sampling periods Ty, =1s, T, = i s and
T, = é s. Find the digital signal x[n] for each sampling period.

A continuous time signal is sampled with sampling period Ty :é s and the
digital signal x[n]=[1 07 0 —-07 —1 —-0.7 0 0.7] is obtained.
Using the approximated triangle reconstruction filter, rebuild the continuous
time signal.

The Fourier transform of a continuous time signal x.(¢) is depicted in
Fig. 1.112.

The continuous time signal is sampled with sampling period Ty = ﬁ s and
the digital signal x[n] = x.()|,_,. is obtained. Draw the Fourier transform of
x[n].

The continuous time signal x.(¢) = cos(27 x 100 X ¢) 4+ cos(2m x 400 X t) is
sampled with sampling frequency f;. How should f; be chosen such that no
aliasing occurs in the spectrum of digital signal.

A continuous time signal is sampled with sampling frequency f; = 1000 Hz.
How many samples per second are taken from continuous time signal?



Chapter 2
Multirate Signal Processing

Digital signals are obtained from continuous time signals via sampling operation.
Continuous time signals can be considered as digital signals having infinite number
of samples. Sampling is nothing but selecting some of these samples and forming a
mathematical sequence called digital signal. And these digital signals can be in
periodic or non-periodic forms. The number of samples taken from a continuous
time signal per-second is determined by sampling frequency. As the sampling
frequency increases, the number of samples taken from a continuous time signal
per-second increases, as well. As the technology improves, new and better elec-
tronic devices are being produced. This also brings the compatibility problem
between old and new devices. One such problem is the speed issue of the devices.
Consider a communication device transmitting digital samples taken from a con-
tinuous time signal at a high speed. This means high sampling frequency, as well. If
the speed of the receiver device is not as high as the speed of the transmitter device,
then the receiver device cannot accommodate the samples taken from the trans-
mitter. This results in communication error. Hence, we should be able to change the
sampling frequency according to our needs.

We should be able to increase or decrease the sampling frequency without
changing the hardware. We can do this using additional hardware components at
the output of the sampling devices. One way of decreasing the sampling frequency
is the elimination of some of the samples of the digital signal. This is also called
sampling of digital signals, or decimation of digital signals, or compression of
digital signals. On the other hand, after digital transmission, at the receiver side
before digital to analog conversion operation, we can increase the number of
samples. This is called upsampling, or increasing sampling rate, or increasing
sampling frequency. If we have more samples for a continuous time signal, when it
is reconstructed from its samples, we obtain a better continuous time signal. In this
chapter, we will learn how to manipulate digital signals, which means, changing
their sampling rates, reconstruction of a long digital sequence from a short version
of it, de-multiplexing and multiplexing of digital signals via hardware units etc.

© Springer Nature Singapore Pte Ltd. 2018 71
0. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_2
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2.1 Sampling Rate Reduction by an Integer Factor
(Downsampling, Compression)

To represent a continuous time by digital sequences, we take samples from the
continuous time signal according a sampling frequency and form a mathematical
sequence. If the mathematical sequence contains too many samples, we can omit
some of these samples and keep the rest of the samples for transmission, storage,
processing etc.

Let’s give another example from real life. Assume that you want to send 500
students to a university in a foreign country. The selected students represent your
university and from each department 10 students were selected. Later on you think
that the travel cost of 500 students is too much and decide on reducing the number
of selected students.

A continuous time signal can be considered as a digital signal containing infinite
number of samples for any time interval. Sampling of analog signals is nothing but
selecting a finite number of samples from the infinite sample sets of the analog
signals for the given time interval. The downsampling operation can be considered
as the sampling of digital signals. In this case a digital signal containing a number
of samples for a given time interval is considered and for the given interval, some of
the samples of the digital signal are selected and a new digital signal is formed. This
operation is called downsampling. During the downsampling some of the samples
of a digital signal are selected and the remaining samples are omitted.

The downsampling operation is illustrated in Fig. 2.1 where x[n] is the signal to
be downsampled and y[n] is the signal obtained after downsampling x[r], i.e., after
omitting sampled from x[n], and M is the downsampling factor.

Given x[n] to find the compressed signal, i.e., downsampled signal, y[n], we
divide the time axis of x[n] by M and keep only integer division results and omit all
non-integer division results. Let’s illustrate this operation by an example.

Example 2.1 A digital signal expressed as a mathematical sequence is given as

Xn]=[33 —25 12 45 55 —-23 50 62 34 23 —44 32 20
=0

Find the downsampled y[n] = x[3n].

Fig. 2.1 Downsampling
\LM —> y[n] =x[Mn]

operation x[n]—
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Solution 2.1 Let’s write the time index values of the signal, x[n] explicitly follows

xjn) =[33 —25 —12 45 55 —23 50 62 34
N e e~ —— ~—~
n=— n=— n=-— n=-3 n=-2 n=—1 n=-0 n=1 n=2

n:_g n:—_% n:—% n:7% n:—% n:—% n=-2¢ n:% n:% n:%
—44 32 20].
~—— = N~
4

where divisions’ yielding integer results are shown in bold numbers and these
divisions are given alone as follows

(33 45 50 2. .
" o = = =~
n:—% n:—% n:—% n:—% n:%

and when the divisions are done, we obtain the downsampled signal as

ynl=[33 45 50 23 20]

n=-2 n=—1 n=0 n=1 n=1

As it is seen from the previous example, downsampling a digital signal by
M means that from every M samples of the digital signal only one of them is
selected and the rest of them are eliminated. As an example, if y[n] = x[6n], then
from every 6 samples of x[n] only one of them is kept and the other 5 samples are
omitted.

Now we ask the question, if sampling frequency is f; and downsampling factor is
M, after downsampling operation how many samples per-second are available at the
downsampler output? The answer is given in the block diagram in Fig. 2.2.

Where [.] is the upper-floor operation. If f; is a multiple of M, the diagram in
Fig. 2.2 reduces to the one in Fig. 2.3.

Example 2.2 Interpret the block diagram given in Fig. 2.4.

Solution 2.2 At the input of the block, we receive 300 samples per-second which
are obtained from an analog signal via sampling operation. At the output of the
downsampler only 1 of every 3 samples is kept and the other 2 samples are omitted.

Fig. 2.2 Sampling frequency 7.
at the downsampler output fi — \LM —> ﬁv
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f%\LM%%

Fig. 2.3 Sampling frequency at the downsampler output when f; is a multiple of M

Js=300 — \|/3 > fas= %%fds=100

Fig. 2.4 Downsampler for Example 2.2

That means at the output of the downsampler, 100 samples every per-second are
released.

Example 2.3 Find the Fourier series representation of
=Y on—rM). (2.1)

Solution 2.3 The given signal is a periodic signal with period M. Its Fourier series
coefficients are computed as

<
+

N‘

M : 1 2n l
7/Mkn —Jakn
E — Pk = — Slnle i — Pkl = —.  (2.2)

_M-1 n=—M-1
> n=

Using the Fourier series coefficients in (2.2), the Fourier series representation of

(2.1) can be written as
ZP e/Mk" —pln Ze’gk" (2.3)

> . d[n— rM] can also be written as

The mathematical expression p[n] =5 2

(1 if n=0,4M,42M,. ..
plnl = {0 otherwise. (2.4)

And equating the right hand sides of (2.3) and (2.4) to each other, we get the
equality

n=0,+tM,+2M,... 2.5)

21rkn o
Z ew { 0 otherwise.
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For the expression in (2.5), if we change the sign of n appearing on both sides of
the equation, we obtain an alternative expression for (2.5) as

1= 1 n=0,+M,+2M
- —Jrkn _ ) ) yeee
M Z ¢ { 0 otherwise. (2.6)

2.1.1 Fourier Transform of the Downsampled Signal

Let’s find the Fourier transform of the compressed signal y[n] = x[Mn]. The Fourier
transform of y[n] can be calculated using

Y,(w) = Z x[Mn)e " (2.7)

Y.(w) = Z x[r]e (2.8)
r=0,-£M,2M

which can be written after parameter changes as

L= > alale 29)
n=0,+M,£2M

The frontiers of the sum symbol in (2.9) can be changed to —oo and oo if (2.1) is
used in (2.9) as

Y,(w) = i x[n] XOC: S[n — rM)e i

n=—00 F=—0C

where replacin °° §[n — rM] by its Fourier series representation, we get
p €2 - y p g

= 1 Dnp i
Y,(w) = Z x[n]—Ze‘Wk"e_]WV (2.10)
n=—o00 M kM
which can be rearranged as
1 = k2
Y,(w) = MZ Z x[n]eﬂ%” (2.11)
k,M n=—o0

=X, (w Rj{h)
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The expression in (2.11) can be reduced to

Y,(w) = %an (W J;;Z”). (2.12)

M

In (2.10), if (2.5) was used, then we would obtain

Y, (w) = %Zx (W _Mk2”> (2.13)

M

Hence, considering (2.12) and (2.13), we can write the Fourier transform of
y[n] = x[Mn] as

_1 M-l + k2
— X, (W ”) (2.14)
k:()

Example 2.4 If y[n| = x[Mn] the relation between Fourier transforms of x[n] and
y[n] is given as

_ 1 M= lx <w ik2n>
k:O

Using the inverse Fourier transform expression for y[n], i.e.,

2n

y[n]:% / Y, (w)eM" dw (2.13)

w=0
show that y[n] = x[Mn].
Solution 2.4 The inverse Fourier transform is given as

2n

y[n] = 2—/ Y, (w)e"dw

(=)

where inserting
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we get

yln] 2nMZ/ <W+k2n)em"d (2.16)

In (2.16), if we let A = %"2”, then dw = Md 4, and changing the frontiers of the
integral (2.16) reduces to

k+1)2n

E

1 i -
— jM in
=5 0 / X, ()M d ). (2.17)

~
Il

If (2.17) is expanded for all k values, we obtain

2n 4n
M M
_ 1 o\ Min 5 L N MIn
y[n] = Zn/Xn(A)e’ dl+ 2n/Xn(A)e’ di+
0 i (2.18)
1
/ X e/M)ﬂdi
ZnM A
20
where using the property f )+ J, (-) =[5 (-) and changing 4 with w, we get the
expression
| 2n
il = 5 / X, ()™ iy, (2.19)
0
When (2.19) is compared to
| 2n
= — [ Xu(w)e"d
i) = 5 [ Xy
0

it is seen that y[n] = x[Mn].
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2.1.2 How to Draw the Frequency Response
of Downsampled Signal

To draw the graph of

Vo) = Mix (W_kzn)

M k=0

students usually expand the summation as

1 w 1 w—27 1 w—4n
Y, :7Xn(7) Zx, (V) () 2.20
) =3% )t u < M )JFM ( M >+ (220)

and try to draw each shifted graph and sum the shifted graphs. However, this
approach is too time consuming and error-prone. Instead of this approach, we will
suggest a simpler method to draw the graph of ¥, (w) as explained in the following
lines.

Since Y,(w) is the Fourier transform of the digital signal y[n], then Y,(w) is a
periodic signal and its period equals to 27.

To draw the graph of Y, (w), we can follow the following steps.

Step 1: First one period of X,(w) around origin is drawn. For this purpose, the
frequency interval is chosen as —nt<w < 7.

Step 2: Considering one period of X,(w) around origin, we draw one period of
LX,(%). To draw (in one period) the graph of .- X, (&), we multiply the horizontal
axis of X, (w) by M, and multiply the vertical axis of X, (w) by ;.

Step 3: In Step 3, we shift the resulting graph in Step 2 to the left and right by
multiples of 2 and sum the shifted replicas.

Let’s now give an example to illustrate the topic.

Example 2.5 One period of the Fourier transform of x[n] is depicted in Fig. 2.5.
Draw the Fourier transform of y[n] = x[2n], i.e., draw Y, (w).

X, (w) —nT<w<rw

z
3

Fig. 2.5 One period of the Fourier transform of x[n]
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Solution 2.5 First let’s draw the graph of Yi,(w) = 1X,(%). For this purpose, we
multiply the frequency axis of X, (w) by 2 and vertical axis of X,(w) by 1. The
resulting graph is shown in Fig. 2.6.

In the second step, we shift the graph of Yy, (w) to the left and right by multiples
of 2n and sum the shifted graphs. In other words, we draw the graph of
Y,(w) = > 02 Yin(w — k27). The shifted graphs and their summation result are
depicted in Figs. 2.7, 2.8, and 2.9.

Right Shifted Functions:

Left Shifted Functions:

Sum of the Shifted Functions:

Exercise: One period of the Fourier transform of x[n] is depicted in Fig. 2.10.
Draw the Fourier transform of y[n] = x[3n], i.e., draw Y, (w).

1 w
Y, ==X, (=) - <
1 (W) 2 a( 2) 2r<w<2rxw
!
2
-2 -z 2 | 2 & 2z
3 3
Fig. 2.6 The graph of 1X,(%)
A Y ov-2m)= 2 X,
2 2
1
2 v
_2I” 77; 7; 2,,:27” 2 2;r+2—” >
3 3
Fig. 2.7 Right shifted functions
1 w+2r
Y, w+2m)=—X (——— A
ln( ) 2 n( 2 ) 1
e 2
: t t + > W
PSRN S PR P A 7 27

Fig. 2.8 Left shifted functions
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Y,(w)
A
1
2
t t W
22 E _on —2ﬂ+2—” - Ly Zﬁ—z—” 2t 24 Z
3 3 3 3 3 3
Fig. 2.9 Sum of the shifted functions
Fig. 2.10 One period of the X (w) —r<w<rx
Fourier transform of x[n] n (W
1
s | W

2.1.3 Aliasing in Downsampling

A digital signal is nothing but a mathematical sequence obtained via sampling of a
continuous time signal. If we have sufficient number of samples, we can reconstruct
the continuous time signal from its samples.

If we have too many samples, generated during the sampling operation we can
eliminate some of these excessive samples via the downsampling operation.
However, while performing the downsampling operation, we should be careful to
keep sufficient number of samples in the digital signal such that the reconstruction
of the continuous time signal is still possible after downsampling operation.

If we eliminate a number of samples more than a threshold value, the rest of the
samples may not be sufficient to reconstruct the continuous time signal and this
effect is seen as the aliasing in the spectrum graph of the downsampled signal.

Example 2.6 Assume that we have a low pass continuous time signal with band-
width fy = 40 Hz. We choose the sampling frequency according to the criteria
fs > 2fy — f; > 80 as f; = 120. This means that we take 120 samples per-second
from the continuous time signal. However, our chosen sampling frequency is not
very cost efficient.

The lower limit for the sampling frequency is f; > 80 which means that the
minimum sampling frequency can be chosen as f; = 81. However we use f; = 120
which means that every per-second we transmit 120 — 81 = 39 excessive samples
which are not necessary to reconstruct the continuous time signal. We can
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reconstruct the continuous time signal using only 81 samples. We can omit the
excessive 39 samples via downsampling operation.

Let’s now determine the criteria for no aliasing in downsampling operation.

After downsampling operation, we have ﬁ? remaining samples per-second. If this

number of remaining samples is greater than 2fy, then no aliasing occurs. That is if

Js Js
M >2fN—>M<2fN

(2.21)

is satisfied, then aliasing is not seen in the spectrum of the downsampled signal.
Let’s simplify (2.21) more as

< 1
M< S - M< (2.22)
2fn 2Tdn
~—~
fo
where fp is the digital frequency, and manipulating more, we have
1 i m
M<——-M<——>M<—— Mwp<n (2.23)

ZfD 27‘CfD Wp

where wp is the angular digital frequency.

Let’s now graphically illustrate the no aliasing criteria after downsampling
operation. Assume that one period of the Fourier transform of the digital signal x[n]
to be downsampled is given as in Fig. 2.11. Let y[n] = x[Mn] be the downsampled
signal.

Depending on the value of M, we can draw the two possible graphs of }WX,, (ﬁ)
as shown in Figs. 2.12 and 2.13.

When the graph in Fig. 2.12 is shifted to the left and right by multiples of 27, no
overlapping occurs among shifted graphs. However, this case does not hold for the
graph shown in Fig. 2.13. If the graph shown in Fig. 2.13 is shifted to the left and
right by multiples of 27w, overlapping is observed between shifted replicas, and this
situation is depicted in Fig. 2.14.

Example 2.7 The continuous time signal x.(f) = cos (60007¢) is sampled with

sampling period Ty = 80% and the digital sequence x[n] is obtained. Next the digital

Fig. 2.11 One period of the X,(w) —m<w<rzm
Fourier transform of the

digital signal x[n] to be

downsampled 1
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X WIM) -Mrsw<Mn
1

M

_A;[ﬂ . - Mw, Mw,, m M;;

Fig. 2.12 Case-1: Graph of L1 X, (%)

X, w/IM) -Mzrsw<Mr
1

M
t t t — W
-Mr —-Mw, -7 T Mw, Mr
Fig. 2.13 Case-2: Graph of ﬁX,, (%)

¥,(w)

L“

M

-2 -7 —Mw, Mwy, 7 2z =

Fig. 2.14 Aliasing in downsampled signal spectrum graph

signal x[n] is downsampled and y[n] = x[4n] is obtained. Decide whether aliasing
occurs in spectrum of y[n] or not.

Solution 2.7 If the given continuous time signal is compared to cos (27ft), the
frequency of the continuous time signal is found as f = 3000 Hz. And the sampling
frequency is f; = 8000 Hz. After downsampling operation sampling frequency
reduces to f; = B(Lﬂ = 2000 Hz and this value is less than 2f = 6000 Hz. This
means that aliasing is seen in the spectrum of y[n].

Exercise: For the system in Fig. 2.15, x.(z) = cos (5000mt), T, = T%)oo’ and
M = 2. According to given information, draw the Fourier transforms of the signals
x.(t),x[n],y[n], and y,(¢), and also write the time domain expression for y, ().
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yln]=x[Mn]

x[n]
x.(0) c/D ;M DIC >y, 1)

T, T.

s K

Fig. 2.15 Signal processing system for exercise

2.1.4 Interpretation of the Downsampling in Terms
of the Sampling Period

If x[n] =x.(nT;), then for the downsampled signal y[n]| =x[Mn] — y[n] =

xc(n MT, ) new sampling period is T, = MT, which is an integer multiple of 7. The
~
T
digital signal obtained from x.(¢) using sampling period 7 is shown in Fig. 2.16.
The digital signal x[r] in Fig. 2.16 is written as a mathematical sequence as

xpl=[-a b ¢ d e f g hij k1 m-]
~~

n=0

Now consider y[n] = x[2n] — y[n] = x.(n2Ty), in this case the samples are taken
from x.() at every T, = 2T. This operation is illustrated in Fig. 2.17.
The digital signal y[n] in Fig. 2.17 can be written as a mathematical sequence as

ynl=[]a c e g i k m--].
-0

Similarly, if g[n] = x[4n] — g[n] = x.(n4T;), the samples are taken from x.(z) at
every T, = 4T,. This operation is illustrated in Fig. 2.18.

_6TY_5T?_4TY_JTS‘_2TS‘ _.Ty 0 Tx 2Tv 371 4Tv ST‘ 6T\‘ o

Fig. 2.16 Sampling of the continuous time signal with sampling period T
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»
s s s s s
Fig. 2.17 Sampling of the continuous time signal with sampling period 27§
. x,()
: A k
_4TS 0 4.7} >

Fig. 2.18 Sampling of the continuous time signal with sampling period 47§

The digital signal g[n] in Fig. 2.18 can be written as a mathematical sequence as

g k ...].
=0

Example 2.8 For the signal processing system given in Fig. 2.19, x.(f) =
cos(5000mt), T, = ﬁ, and M = 3. Using the given information, calculate and
draw the Fourier transforms of the signals x.(¢), x[n], y[n], and y,(z). Besides, write
the time domain expression for y,(¢).

yln]=x{Mn]

x[n]
x,(1) C/D ¢ M D/C »,.(t)

T. T,

s s

Fig. 2.19 Signal processing system for Example 2.8
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Solution 2.8 Before starting to the solution, let’s provide some background
information as

Cos(0) = = (¢ +e)  FT{e'} =2n5(w — wo) (2.24)

N =

FT{cos(wnt)} = m(o(w — wy) + o(w+wy)). (2.25)
Accordingly, the Fourier transform of x.(¢) is found as
X.(w) = n(é(w — 50007) + 6(w + 50007)).

and graphically it is shown in Fig. 2.20.
For the given example, since f; > 2fy — 8000 > 2 x 2500 criteria is satisfied,
no aliasing is observed in the Fourier transform of x[n], and for this reason, one

period of the Fourier transform of x[n] for the interval —n <w < equals X, (w) =

TLVXC (%) which is depicted in Fig. 2.21.

For the downsampled signal, we have y[n| = x[3n], let’s draw one period of
Y,(w) =1X, (%) using one period of X,(w) around origin as in Fig. 2.22 where
impulses are labeled with letters so that we can distinguish them while forming the
Fourier transform of y[n].

If the graph in Fig. 2.22 is carefully inspected, we see that after downsampling
operation one period of the Fourier transform of the downsampled signal extends
beyond the interval (—m,n) in frequency axis. This means that the number of
samples omitted is greater than the allowed threshold and for this reason perfect
reconstruction of the continuous time signal is not possible anymore. It may be
reconstructed with some distortion or the reconstructed signal may be a totally

Fig. 2.20 Fourier transform X.(w)
of x.(¢) in Example 2.8 A
b
A A
50007 0 50007

Fig. 2.21 One period of the X, (w) -TS<w<rm
Fourier transform of x[n] for A
Example 2.8 80007

4 3

W
-7 S5 0 St b2
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1 w
X (=
3 a 3)
A
80007
A 3 B
A A
sz e 0 J [N
8 8
Fig. 2.22 The graph of %X,l (%) for Example 2.8
r Br
8000” ........................................................
3 A
} } W
—7 | P 2 317

o |y

Fig. 2.23 One period of ¥, (w) shifted to the right by 2x

different one. The amount of distortion in the reconstructed continuous time signal
depends on the rate of the omitted samples, i.e., rate of the compression or rate of
the downsampling. As the number of omitted samples increases, the amount of
distortion in the reconstructed signal increases, as well.

To get the graph of ¥, (w), we shift its one period depicted in Fig. 2.22 to the left
and to the right by multiples of 27 and sum the shifted replicas. The right shifted
graph by 2 is given in Fig. 2.23.

And the left shifted graph by 27 is shown in Fig. 2.24a.

Summing the centered, right shifted, and left shifted graphs, we get the graph of
Y,(w) as shown in Fig. 2.24b.

Now let’s find the expression for the reconstructed signal y,(¢). For this purpose,
we consider the graph of Y,(w) for the interval —n<w<mn and draw
Y, (w) = T,X,(T,w). To achieve this, we divide the frequency axis by 7, and
multiply the amplitudes by 7,. These operations generate the graph depicted in
Fig. 2.25.

If the inverse Fourier transform of Y,(w) depicted in Fig. 2.25 is calculated, we
obtain the time domain expression of the reconstructed signal as

1
ye(t) = 308 (10007¢)



2.1 Sampling Rate Reduction by an Integer Factor ... 87

(a) A
Al Bl 80007
A A :
t - W
31z -2z -7 _ va
s ¢
(b) Y, (w)
A
80007
3
Al A BI Ar B Br
FSRRRRRRRRRREERRS [ARRERREERSS vl S IRIRRIEE A
157 - T V4 T 157 317 >
J3z S 308 s KR

8

Fig. 2.24 a One period of Y, (w) shifted to the left by 2z. b The graph of Y,,(w) for Example 2.8

Fig. 2.25 Fourier transform Y.(w)
of the reconstructed signal for A
Example 2.8 T
B 3 A
A T
LY
—10007 10007

which is quite different from the sampled signal x.(¢) = cos (50007z). The reason
for this is that during the downsampling operation too many samples, beyond the
allowable threshold, are omitted and this resulted in aliasing in frequency domain
and perfect reconstruction of the original signal is not possible anymore.

Question: During the downsampling operation we have to omit more samples
than the number of allowable one. However, we want to decrease the effect of
aliasing at the spectrum of the digital signal. What can we do for this?

Answer: If y[n] = x[Mn] alising occurs in Y, (w), if the largest frequency of
X,(w) in the interval —m <w < is greater than 7. This situation is depicted in
Fig. 2.26.

For the conversion of y[r] to continuous time signal y,(z), the portion of ¥, (w)
for the interval —m <w < in Fig. 2.26 is used. This portion is depicted alone in
Fig. 2.27.

As it is seen from Fig. 2.27, the overlapping shaded parts cause distortion in the
reconstructed signal. Then how can we decrease the distortion amount? If we can
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1
X, (w)—m<w<z YI,(W)’HX (*) Mz <w<Mr

1 t -
T -Mr —Mw, -7

LT W
| N
Y, = Y ¥, (w=k2m)
k=
L“
M
; i _
—2r-Mw, -7 T Mw, 27
Fig. 2.26 Aliasing case in downsampled signal
Fig. 2.27 Y,(w), -t <w<n Y(w) —m<w<rx
0 A
M
-
- V4 —w

eliminate the shaded regions in the spectrum of the downsampled signal, the
reconstructed signal will have less distortion.

However due to the clipping of the parts extending beyond the interval (—=, 7),
some distortion will always be available in the reconstructed signal. This distortion
is due to the information loss owing to the clipping of the spectrum regions in
Fig. 2.26 for the intervals 1 <w <Mw,; and —Mn <w <7n. What we do here is that
we want try to decrease the amount of distortion, not complete elimination of it.

Then if we can get a spectrum graph for ¥,(w), —n<w<n as shown in
Fig. 2.28 the reconstructed signal will have less distortion.

Fig. 2.28 After elimination Y(w) —m<w<z
of the overlapping shaded

parts in Fig. 2.27 A

L
M
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X,(w) —r<w<rx H, WX, (w) —r<w<zm
A A
] )}
H () - -
ps p > 7 . —»
-T -w, —— - w, -7 - — b
M M M M

Fig. 2.29 Elimination of the high frequency parts by a decimator filter

We can omit the overlapping shaded parts if we can filter high frequency por-
tions of X,,(w) before downsampling operation, i.e., the portions of X,,(w) for the
intervals 7 <w < and — <w < — 7% should be filtered out. This can be achieved
using a low pass filter as shown in bold lines Fig. 2.29. The lowpass filter clips the
wigs of the signal that extends beyond the interval (—m, 7). And this clipping
prevents the overlapping problem in downsampled signal spectrum.

The lowpass filter used in Fig. 2.29 is called decimator filter whose frequency
domain expression for its one period around origin is written as

_ U wl<g
Hdn(w)—{o lf %<\w\<n. (226)

The time domain expression of the decimator filter can be computed using the
inverse Fourier transform as

1 . 17 .
hanln] = 5 / Hn(w)e™"dw — haaln] = > / Lx™dw  (227)

J—
w,2m i

yielding the expression

mn

han|n] = M — hgu[n] = %sinc(%). (2.28)

n
The filtering process before downsampling operation is illustrated in Fig. 2.30.
The system in Fig. 2.30 is called decimator system, and the overall operation in
Fig. 2.30 is named as decimation.
For the system in Fig. 2.30, we have Y1,(w) = Hz,(w)X,(w) and y[n| = y; [Mn].
One period of Y, (w) is written as Y, (w) = % Y1,(}), —t <w<m. One period of
Y,(w) is shown in Fig. 2.31.
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Fig. 2.30 Decimator system H,,(w)
1
. ,,E:J, i
MM
yiln]
Al—— hyln] y Ml =y(Mn]
Fig. 2.31 One period of Y (w) —-z<w<nzx
Y, (w) ! A
1
»
- T
One period of Y,(w) can be expressed as
[ Ya(w) —mn<w<nm
Yiop(w) = { 0 otherwise (2.29)
which can be used for the calculation of the Fourier transform of y[n] as
00
Ya(w) = > Yugp(w — k2m). (2.30)

k=—00

Considering Fig. 2.31 the graph of (2.30) can be drawn as in Fig. 2.32.

Exercise: If y[n] = x[3n] and the Fourier transform of x[n] for —z <w<m is as
given in Fig. 2.33, draw the Fourier transform of y[n], i.e., draw Y, (w).

Downsampling can also be used for de-multiplexing operations, i.e., separating
digital data to its components. We below give some examples to illustrate the use of
downsampling for de-multiplexing operations.

Y, (w)

Fig. 2.32 Fourier transform of filtered and dowsampled signal
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Fig. 2.33 One period of the X,(w) —w<w<nx
Fourier transform of a digital A
signal
1
N 2w T
3 30

Note: The simplest de-multiplexer is the serial to parallel converter.

Example 2.9 The delay system is described in Fig. 2.34.
If

Xpj=[1 2 3 456 7 8 9 10 11 12 13 14 15|
=0

find the output of each unit given in Fig. 2.35.

Solution 2.9 To get y[n] = x[n — ny],no > 0, it is sufficient to shift n = 0 pointer to
the left by n units in x[n] sequence. For negative ng, we shift the n = 0 pointer to
the right by ng units. According to this information, x[n — 1] can be calculated as

Xpn—1]=[1 2 3 45 6 7 8 9 10 11 12 13 14 15
=0

If we divide the time axis by 2 and take only the integer division results, we get
the signals

winl=01 3 5 7 90 11 13 15] wp=2 4 6 \8/(_; 10 12 14]

at the outputs of the downsamplers.
As it is seen from the obtained sequences, the system separates the odd and even
indexed samples.

Fig. 2.34 Delay system

x(n] z" > x[n—n,]
Fig. 2.35 Signal processing
system for Example 2.9 x{n] * 2 > wilnl

- v2 —— il
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Fig. 2.36 Delay system
x(n] z > xln-ny]
Fig. 2.37 Signal processing
system for Example 2.10 Anl * 3 nlnl
7! Jy 3 > »lnl
2 v3 ]

Example 2.10 The delay system is shown in Fig. 2.36.
If

xXp=[1 2 3 45 6 7 8 9 10 11 12 13 14 15]
=0

find the output of each unit given in Fig. 2.37.

Solution 2.10 Following similar steps as in the previous example, we find the
digital signals at the outputs of the downsamplers as

will=[3 6 9 12 15] y=[2 5 8 11 14]
yip]=[1 4 7 10 13]

which are nothing but sub-sequences obtained by dividing data signal x[n] into
non-overlapping sequences.

2.1.5 Drawing the Fourier Transform of Downsampled
Signal in Case of Aliasing (Practical Method)

Let y[n] = x[Mn] be the downsampled digital signal. To draw the Fourier transform
of y[n] in case of aliasing, we follow the subsequent steps.

Step 1: First we draw the graph of ﬁXn (%) For this purpose, we divide the
horizontal axis of the graph of X, (w) by %, i.e., we multiply the horizontal axis by
M, and multiply the amplitude values by 1/M.

Step 2: In case of aliasing, the graph of }WX,, (ﬁ) extends beyond the interval
(—m, ). The portion of the graph extending to the left of —7 is denoted by ‘A’, and
the potion extending to the right of 7 is denoted by ‘B’.
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Step 3: The portion of the graph denoted by ‘A’ in Step 2 is shifted to the right by
27, and the portion denoted by ‘B’ is shifted to the left by 2x. The overlapping lines
are summed and one period of ¥,(w) around origin is obtained. Let’s denote this
one period by Yy (w).

Step 4: In the last step, one period of ¥, (w) around origin denoted by Y,;(w) is
shifted to the left and right by multiples of 2n and all the shifted replicas are
summed to get ¥, (w), this is mathematically stated as

Y.(w) = i Y (w — k27n).

k=—00

Now let’s explain these steps using graphics.

Let the Fourier transform of x[n] be as shown in Fig. 2.38.

In case of aliasing, one period of ﬁXn (%) around origin will be as shown in
Fig. 2.39.

If Fig. 2.39 is inspected carefully, it is seen that the function ﬁX,, (%) takes
values outside the interval (—7, ) on horizontal axis. In Fig. 2.40, the shadowed
triangles denoted by ‘A’ and ‘B’ show the portion of iX,, (%) extending outside of
(=m, ).

Fig. 2.38 Fourier transform X, (w)
of x[n] A

A

W
-w, 0 w,

Fig. 2.39 One period of 1y <
ﬁX,l (1{‘7) around origin in case M A" M
of aliasing A

M

-Mw, 7 0 = Mw,
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If the shadowed triangles ‘A’ and ‘B’ in Fig. 2.40 are shifted to the right and left
by 2m, we obtain the graphic in Fig. 2.41. If the overlapping lines in Fig. 2.41 are
summed, we obtain the graphic shown in bold lines in Fig. 2.42. As it is clear from
Fig. 2.41, overlapping regions distorts the original signal. The amount of distortion
depends on the widths of the shadowed triangles. In other words, as the function
ﬁXn (ﬁ) extends outside the interval (—=, ) more, the amount of distortion on the
original signal due to overlapping increases.

The graph obtained after summing the overlapping lines is depicted alone in
Fig. 2.43.

Fig. 2.40 One period of 1 w
L X, (%) around origin in case SYRIATY
M \M M M
of aliasing 4
A
M
A B
W
-Mw, 7 0 4 Mw,
Fig. 2.41 Shaded parts A
shifted A4
M
B . A
= = > W
-Mw, —7 0 T Mw,
Fig. 2.42 Sum of the A
overlapping lines A
M
B A
> W
-Aw, 7 0 T Aw,
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Fig. 2.43 The resulting A
graph after summing the A
overlapping lines M
-Mw, —7% 0 T Mw, "
Fig. 2.44 One period of X, (w)
Xu(w)
1
Tir O| T w
8

Exercise 2.11 The Fourier transform of x[n], i.e., X, (w), is shown in Fig. 2.44.
Draw the Fourier transform of the downsampled signal y[n] = x[Mn|, M = 4.

Solution 2.11
Step 1: First we draw the graph of 1 X, (}) as in Fig. 2.45.

For the graph of Fig. 2.45, the parts that fall outside of the interval (—m, ) are
denoted by the shaded triangles ‘A’ and ‘B’ in Fig. 2.46.

If the shaded parts ‘A’ and ‘B’ in Fig. 2.46 are shifted to the right and to the left
by 27, we obtain the graph in Fig. 2.47.

The equations of the overlapping line on the interval (—n, —n/2) in Fig. 2.47
can be written as ;3-w + + and — 3-w — 5, and when these equations are summed,
we obtain 25—4. In a similar manner, the sum of the equations of the overlapping line
on the interval (n/2,7) can be found as 3. Hence one period of Y,(w) around
origin can be drawn as shown in Fig. 2.48.

In the last step, shifting one period of Y, (w) to the left and right by multiples of
27 and summing the shifted replicas we obtain the graph of ¥, (w).

Fig. 2.45 One period of 1 0% (W)
3% (57) 4744
1/4
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Fig. 2.46 One period of
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Fig. 2.47 Shaded parts A
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left by 27
B A
- » W
-r 0 z V4
2 2
Fig. 2.48 One period of A
Y, (w) around origin 1/4
-7 T 0 z >
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Fig. 2.49 One period of the X, (w)
Fourier transform of x[n] A
4
2
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Exercise: One period of the Fourier transform of x[n] is shown in Fig. 2.49.
Draw the Fourier transform of the downsampled signal y[n| = x[4n].
Exercise: One period of the Fourier transform of x[n] is shown in Fig. 2.50.
Draw the Fourier transform of the downsampled signal y[n] = x[8n].



2.2 Upsampling: Increasing the Sampling Rate by an Integer Factor 97

Fig. 2.50 X, (w) bir periyodu X,(w)
A
1

3z 0 R4
16 24

2.2 Upsampling: Increasing the Sampling Rate
by an Integer Factor

Assume that we want to transmit an analog signal. For this purpose, we first take
some samples from the continuous time signal and form a mathematical sequence,
and this process is called sampling. To decrease the transmission overhead, we omit
some of the digital samples and this process is called downsampling. After
downsampling operation, we transmit the remaining samples. At the receiver side,
for better reconstruction of the analog signal, we try to find a method to increase the
number of digital samples. For this purpose, we try to find the samples omitted
during the downsampling operation. After finding the omitted samples, we can
reconstruct the analog signal in a better manner.

This means that first we reconstruct the original digital signal from downsampled
digital signal then by using the reconstructed digital signal, we reconstruct the
continuous time signal.

Reconstruction of the original digital signal from the downsampled signal
includes a two-step process. The first step is called up sampling also named as
signal-expansion. In this step, the compressed signal, i.e., downsampled signal, is
expanded in time axis, and for the new time instants, O values are assigned for the
new amplitudes. The second step is called interpolation which is the reconstruction
part for the omitted digital samples. In this part, the O values assigned to new time
amplitudes for the expanded signal are replaced by the estimated values.

Now let’s explain the upsampling operation.

2.2.1 Upsampling (Expansion)

The block diagram of the upsampler (expander) is shown in Fig. 2.51.
The mathematical expression of the upsampling operation is

yinl=xn/L]

Fig. 2.51 Upsampling
operation x(n] ? L
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L

] = x[f] n=0,+L,+2L,...
ym = 0 otherwise.

(2.31)

For simplicity of the expression we will assume that for the new time indices in
the expanded signal, the amplitude values are 0, so we will not always explicitly
write the second condition in (2.31), i.e., we will only use y[n] = x[%] to describe
the signal expansion.

To draw the graph of y[n] = x[%], or to obtain the expanded signal, y[n] = x[%]
we divide the time axis of x[n] by 1/L, i.e., we multiply the time axis of x[n] by L.
This operation is illustrated with an example now.

Example 2.12 If x[n)=[1 3 5 7 9 11 13 15 17]find y[n] = x[2].
n=0

Solution 2.12 The indices for amplitude values of x[n] are explicitly written in

A=[1 3, .5 7 .9 11, 13 15 17].
n=-5 n=— n=— n=— n=— n= n= n=— n=

Dividing the indices of x[n] by 1/3, i.e., multiplying the indices by 3, we get the
sequence

[ 1 3 5 7 9 11 13 15 17 ).
SV VR N N R
n=—15 n=-12 n=-9 n=-6 n=-3 n=0 n=3 n=6 n=9
Inserting missing indices and inserting O for amplitudes of the missing indices,
we obtain the signal y[n] as

ynj=[1 00 3005007002900 13

11 0 0
~—~
n=0

00 150 0 17

2.2.2 Mathematical Formulization of Upsampling

The upsampling, expansion, of x[n] by L is defined as

_x[f] n=0,+L,+2L,...
Yl = { 0  otherwise (2.32)
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which can be written in terms of impulse function as

y[n] = Z x[k]d[n — kL]. (2.33)
k=—00
When the summation in (2.33) is expanded, we obtain

yln] = - +x[—=1]d[n + L] +x[0]0[n] +x[1]o[n — L] + - --

Note that to find x[%] , we simply insert L — 1 zeros between two samples of x[n],
that is, if

xpl=[a b ¢ d e],

then to get x[ﬂ simply insert 3 zeros between every two samples of x[n], and this
operation yields

x[ﬂz[aoooz;o00c000d000e].

2.2.3 Frequency Domain Analysis of Upsampling
Let’s try to find the Fourier transform of

(2.34)

] = x[%] n=0,+L,+2L,...
Y 0 otherwise.

For this purpose, let’s start with the definition of the Fourier transform of y[n]

L= 3 srle (233)
where substituting Y ;- x[k]d[n — kL] for y[n], we get
Z Z d[n — kL)e " (2.36)

n=-—00 k=—00

in which changing the order of summation terms, we obtain

io: i x[k]S[n — kL]e ™" (2.37)
—00 N=—00
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which can be rearranged as

Yaw) = > xlk] > dn—kLle " (2.38)
k=—00 n=-—00
WKL
yielding the expression
Ya(w) = ) xfkle . (2.39)
k=—00

If (2.39) is compared to the Fourier transform of x[n]

o0

X, (w) = Z x[n)e " (2.40)
it is seen that
Ya(w) = X, (Lw) (2.41)

Referring to (2.41), it is understood that the graph of ¥,(w) can be obtained by
dividing the frequency axis of X,(w) by L. As it is clear from (2.41) that the
spectrum of the upsampled signal gets compressed in frequency domain. In fact, if a
signal is expanded in time domain, it is compressed in frequency domain, similarly,
if a signal is compressed in time domain, its spectrum expands in frequency
domain.

Example 2.13 One period of the Fourier transform of x[n] around origin is given in

Fig. 2.52. Draw one period of the Fourier transform of y[n] = x[ﬂ

Solution 2.13 Dividing the frequency axis of X, (w) by L, we obtain the Fourier
transform of y[n] which is depicted in Fig. 2.53.

Note: Don’t forget that the Fourier transforms X, (w) and Y,(w) are periodic
functions with common period 27. In fact, the Fourier transform of any digital
signal is a periodic function with period 27 regardless whether the digital signal is
periodic or not in time domain. If the digital signal is periodic in time domain then

Fig. 2.52 One period of the X, (W) —r<w<r
Fourier transform of a digital A
signal

1
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Fig. 2.53 One period of the
Fourier transform of
upsampled signal for Example
2.12

101
Y, (w)
A FewE
L L
1
t + W
T W W oz
L L L L

its Fourier transform is an impulse train with period 27, i.e., its Fourier transform is

a discrete signal.

Example 2.14 One period of the Fourier transform of x[n] around origin is given in
Fig. 2.54. Draw one period of the Fourier transform of y[n] = x[4].

Solution 2.14 Dividing the frequency axis of X,(w) by 2, we get the graph in

Fig. 2.55 for the Fourier transform of y[n].

To get the graph in Fig. 2.55, we divided the horizontal axis of X,(w) by 2.
Since Y,,(w) is a periodic function with period 27, the graph in Fig. 2.55 can also be
drawn for the interval —n <w < as shown in Fig. 2.56.

Example 2.15 For the system given in Fig. 244 M = L =2, and

2 345 6 78 9

Find the signals x;4[n] and y[n] in Fig. 2.57.

Fig. 2.54 One period of the
Fourier transform of a digital
signal

10).

X,(W) —z<w<z
A

|

2 o
3 3
Fig. 2.55 One period of the Y (w)
Fourier transform of A b V3
upsampled signal for Example S sw<
1 2 2
2.13
; —» 1y
.z r r
2 3 32




102 2 Multirate Signal Processing

Fig. 2.56 One period of the Y, (w)
Fourier transform of
upsampled signal for Example -T<w<rxw
2.13 !
t —Ww
T ‘ T
. _r i z

3 3
Fig. 2.57 Signal processing x[n] x,[n] yln]
system for Example 2.14 x,(t) c/D ¢ Y, d f ;B

T

Solution 2.15 To find x4[n|, we divide the time indices of x[n] by 2 and keep only
integer division results. This operation yields

Xnl=1 1, 3 5 7 9]
To find y[n], we divide the time indices of x4[n] by 1, i.e., multiply the time
indices of x4[n] by 2. For new indices, amplitude values are equated to 0. The result

of this operation is the signal

ynl=[1 0 3 0 5 0 7 0 9.

The overall procedure is illustrated in Fig. 2.58.

x[n]:[12345678910]e¢2 sx (n]=[1 3 5 7 9]—

n=0 n

| 4=

fz 5 3[n]=[1 03050709 0]

n=0

Fig. 2.58 Downsampling and upsampling
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] x,[n] ¥in]
x.(0) /D {M : fL DIC |57,

;

Fig. 2.59 Signal processing system

2.2.4 Interpolation

Let’s consider the signal processing system shown in Fig. 2.59. The system
includes one downsampler, one upsampler and one D/C converter. Let’s study the
reconstructed signal y,(¢).

Assume that y[n] is a causal signal. The signal y,(¢) is calculated from the digital
signal y[n] using

o0

w0y = 3" ylnlh (e~ nTy) (2.42)

n=—00

where 7,(¢) can either be ideal reconstuction filter, i.e., h,(¢) = sinc(¢t/T;) or tri-
angular approximated reconstruction filter, or any other approximated filter. When
we expand the summation in (2.42), we see that some of the shifted filters are
multiplied by 0, since some of the samples of y[n] are 0. The expansion of (2.42)
happens to be as

yr(t) = y[0lh, (£) + y[1]A, (t = T) +y[2]h, (t = 2T5) + y[3]h, (t — 3T5) + -+ (2.43)
yielding

y(t) =1 xh(t) +0 X h(t —T,) +3 X he(t —2T,) +0 x h,(t = 3T) + - -
(2.44)

Multiplication of some of the shifted filters by O results in information loss in the
reconstructed signal.
Question: So how can we increase the quality of the reconstructed signal?
Answer: If we can replace 0 values in the expanded signal y[n] by their esti-
mated values, y,(¢) expression in (2.44) will not include 0 multiplication terms and
reconstructed signal becomes better. That is,
x[n]=[123456780910]

n=0

AR
y[1=[1030507090]

n=0

Replace 0's by the estimated values of the omitted samples

Omitted samples are 2, 4, 6, 8, 10
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So how can we find a method to find approximate values for the omitted samples
of original signal x[n]? If we can approximate omitted samples, we can replace 0’s
in the expanded signal by the approximated values, then reconstruct the continuous
time signal. The quality of the reconstructed signal will be better.

We know that the amplitude values of a continuous time signal at time instants #;
and #;; | does not change sharply. Otherwise, it violates the definition of continuous
time signal. For instance, the amplitude values of a continuous time signal for three
time instants are given in Fig. 2.60.

Hence for the omitted samples, we can make a linear estimation. Assume that
L =M =2, in this case, during the downsampling operation; we omit one sample
from every other 2 samples. After upsampling operation, we have 0 in the place of
omitted sample. We can estimate the omitted sample using the neighbor samples of
the omitted sample.

In Fig. 2.60, assume that after sampling operation, we obtain the digital signal
[a b c], and in this case, downsampled signal can be calculated as [a c|. The
expanded signal or upsampled signal becomes as [a 0 c¢] where O can be
replaced by the estimated value 4. In general if there are L — 1 zeros between two
samples of the expanded signal, we can estimate the omitted samples drawing a line
between the amplitudes of these two samples as illustrated in Fig. 2.61.

The missing samples in Fig. 2.61. can be calculated using

—b
y[ni —b+ -

(nk+L_1 7}’11‘), i=k:k+L—1. (245)

Fig. 2.60 Amplitude values of a continuous time signal for three distinct time instants

Estimated Values for
Omitted Samples

n, ., My

Fig. 2.61 Linear estimation of the missing samples
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Let A = %, when (2.45) is expanded for i =k : k+ L — 1, we get the ampli-
tude vector

[b+(L—-1A b+ (L—-2)A---b+2A b+Al (2.46)

Example 2.16 Let xn]=[ 1 2 5 7 9 10 10] find the signals x,[n] =
n=0

x[3n] y[n] = x4[%] and using linear estimation method, estimate the missing samples

in y[n].

Solution 2.16 To calculate the downsampled signal, we divide the time axis of x[n]
by 3 and keep only integer division results, and in a similar manner, to calculate the
upsampled signal, we multiply the time axis of the downsampled signal by 3, and
for the new time instants 0’s are assigned for amplitude values. The downsampled
and upsampled signals can be calculated as

Xqn=1[ 1,6 7 10] ymrl=[1,6 0 0 7 0 0 10].
n=0 n=0
and these signals are graphically shown in Fig. 2.62.
The missing samples in upsampled signal can be calculated using

a—>b

A==, and [b+@L-1DA b+(L-2)A - b+2A b+A]

For the first 2 missing samples

A:13;7—>A:—2

xin] x,[3n] x,[2]
3
10 10 10 10
9
L
7 7 7
5
—_ —_
2
1 | 1
T . . .
0123456 0123456 0123456

Fig. 2.62 Original signal, downsampled signal, upsampled signal
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and the missing samples are
[74+2(-2) 7+1(=2)]—[3 4].
For the next 2 missing samples

7—-10
= —

A A=-1

and the missing samples are
[10 + 2(—1) 104+1(-1)]—[8 9]

The calculation of the missing samples is graphically illustrated in Fig. 2.63.
Hence with the estimated values, the upsampled signal becomes as

vi=[1_ 3 4 7 8 9 10 (2.47)
n=0

The original sequence before downsampling operation was
xnl=[1 2 5 7 9 10 10]. (2.48)
~—

When (2.47) is compared to (2.48), we see that the calculated samples are close
to the original omitted samples.

Fig. 2.63 Calculation of the Estimated omitted samples
missing samples A




2.2 Upsampling: Increasing the Sampling Rate by an Integer Factor 107

2.2.5 Mathematical Analysis of Interpolation

We explained an estimation method for the calculation of missing samples in
expanded signal. However, we did not follow a mathematical analysis. How can we
find the missing samples in upsampled (expanded) signal using a mathematical
approach?

In time domain, it is difficult to find a mathematical approach for the estimation
of missing samples. Let’s approach to the problem in frequency domain. Let’s
consider the system involving downsampling and upsampling operations given in
Fig. 2.64 where we assume that L = M.

Let’s assume that the Fourier transform of x[n] is as in Fig. 2.65. We will inspect
the Fourier transforms of y[n| and x[n] in Fig. 2.64 and find a relation between them.

Considering Fig. 2.65 the Fourier transform of x,[Mn] can be drawn as in
Fig. 2.66.

x[n] x4[n] yin]
x,(1) o) y M bi D/IC |,

I

Fig. 2.64 Signal processing system including upsampling and downsampling operations

X, (w)
A
1
U + -y
2r g F |07 27
M M
Fig. 2.65 Fourier transform of a digital signal
X (W)
A
1
M
e
-2 - 0 T 2

Fig. 2.66 Fourier transform of x,[Mn|
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Dividing the horizontal axis of the graph in Fig. 2.66 by L, we obtain the graph
of ¥, (w) as Fig. 2.67.

If we compare the graph of X,,(w) in Fig. 2.65 to the graph of ¥, (w) in Fig. 2.67,
it is seen that for ¥ <|w|<2m —% X, (w) = 0 but ¥, (w) # 0, and for other fre-
quency intervals, Y, (w) = X, (w). This is illustrated in Fig. 2.68.

How can we make Y, (w) to be equal to X,,(w) for all frequency values? This is
possible if we multiply Y, (w) by a lowpass digital filter with the transfer function as
in Fig. 2.69.

Since L=M and Y;(w) = Hi(w)Y,(w), we can show the multiplication of
H;(w)Y,(w) as in Fig. 2.70.

The result of the above multiplication is depicted in Fig. 2.71.

For L =M, we have Y;(w) = X, (w) which means that y;[n] = x[n], that is
omitted samples are reconstructed perfectly.

Let’s now do the time domain analysis of this reconstruction process. If
Yi(w) = H;(w)Y,(w), then y;[n] = h;[n] * y[n]. The time domain expression h;[n]
can be obtained via inverse Fourier transform

1 .
hiln] :%/H,-(w)e’w"dw (2.49)
2n
Y,(w)
A
1
M
-2z 2z 7 |07 27 27 =
L L L I

Fig. 2.67 Fourier transform of the signal y[n] in Fig. 2.64

S

-2 27 V4 0

N\

These regions are not available in X,(w)

2z 27

Fig. 2.68 Comparison of X,,(w) and ¥,(w)
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109
H,(w)
A
L
W
-2 _r |0 7 27
L L

Fig. 2.69 Lowpass digital filter

Y,(w) = H,(WY, (w)

A L
L
i s s M s
H H H >
-2z 2z 7x (007 27 2z
L L L L
Fig. 2.70 The multiplication of H;(w)Y,(w)
Y, (w)
A
1
- L 1%
_z 0 = 2r
L L
Fig. 2.71 The graph of Y;(w) = H;(w)Y,(w)
where using the frontiers — 7,7, we get
i
1 . sin (“L”)
i) =5 / Le™dw — hfn] = 220 (2.50)

x L
L
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hiln]
A
10
eo®
®o|®
o o
o | e
) °
° °
[ L)
S | s
o ®
[ °
[ d ®
° °
g °
e °
i [
[ °
[ °
- ® . ° o ® °
4L ®® —3Le O & | L9 2.8 °3L ,®%4L ,° "
° 0 ° °
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o o ° ° [ ]
(] °
®o e LY
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Fig. 2.72 The graph of sinc(n/L)

which can be expressed in terms of sin ¢(+) function as
hi[n] = sinc(ﬁ).
L

The graph of sinc(n/L) is depicted in Fig. 2.72.
As it is seen from Fig. 2.72 that ;[n] = sin c(%) equals to O when n is a multiple

of L. The digital filter with impulse response k;[n] = sin c(%) is called interpolating

filter which is used to reconstruct those digital samples omitted during downsam-
pling operation, i.e., used to reconstruct missing samples in the expanded, or

(2.51)

upsampled signal.
Exercise: The continuous time signal x.(f) = cos(2n¢) is sampled with sampling

period T, = 1/8s.
(a) For a mathematical sequence x[n] from the samples taken from continuous time

signal in the interval 0-1 s.
(b) x[n] is downsampled by M = 2, and x4[n] is the downsampled signal, find x4[n].
(c) The downsampled signal x4[n] is upsampled and let y[n] be the upsampled

signal, find y[n].
(d) Calculate the missing samples in y[n] using the ideal interpolation filter.
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2.2.6 Approximation of the Ideal Interpolation Filter

Since digital sin c(+) filter is an ideal filter, it is difficult to implement such filters,
instead we can use an approximation of this digital filter. As it is clear from
Fig. 2.72, the digital sin ¢(+) filter includes a large main lobe centered upon origin,
and many other side lobes. To approximate the digital sinc(-) filter, we can use
triangles for the lobes in Fig. 2.72. The simplest approximation is to use an

isosceles triangle for the main lobe and omit the other side lobes.
The simplest approximated digital can filter can be obtained as shown in

Fig. 2.73.
Referring to Fig. 2.73 the approximated interpolation filter can mathematically

be expressed as
T+1, if —L<n<0

heln) = ¢ —F+1, if 0<n<L (2.52)
0, otherwise
which can be expressed in more compact form as
_ I ir
hal) =4 ¢ L0~ Lsn<l (2.53)
0, otherwise.
hln]
1
2.
<00,
28| hn)
X AR B
NIKE
L0 00
0| 0
RS
e
Y J [ 8
.0 3
Y ] [ B
LY | [ D
. . °0 [ M ° o
. ° '. .' . . . "
) S ) ) A | . 2L 3L S4L
® . . . . '—L 0 L. . « ° " .

Fig. 2.73 Approximation of the ideal interpolation filter
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x[n] x,[n] yin] yin
x(—4 oD hy[n] Y M e hin] D/C [—y,(0)
T Decimator Downsampler Upsampler Interpolation
B Filter Compressor Expander Filter

|

Used to prevent the aliasing ) '
after downsampling operation samples om.med durlr{g
downsampling operation

Used to reconstruct the

Fig. 2.74 Signal processing system with interpolation filter

With the interpolation filter our complete signal processing system becomes as in
Fig. 2.74.

For the reconstruction of the samples omitted during downsampling operation, if
approximated interpolating filter is used, the reconstructed digital signal can be

written as
o0

yiln] = haln] * yln] = yiln] = Y ylkhailn — 4] (2.54)

k=—00

where h,;[n] denotes the approximated reconstruction filter, or interpolation filter.
Now let’s try to write a relation between x,[n| and y;[n] given in Fig. 2.74. We
know that

y[n] = Z Xq[k]d[n — kL. (2.55)
k=—o00
When (2.53) is replaced into
yiln] = hiln] * y[n] (2.56)
we get
yiln] = hiln] * i xq[k]d[n — kL] (2.57)
k=—00

which is simplified as

yiln] = i Xalk)hiln — kL]. (2.58)

k=—00
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When (2.58) is expanded, we get the explicit form of y;[n] as
yiln] = - -+ +xq[—1]hi[n+ L] + x4[0]h;[n] + x4 [1]h;n — L] + - -- (2.59)
Using the ideal interpolation filter, i.e., ideal reconstruction filter,

hiln] = sméf)
L

in (2.58), we can write the reconstructed digital signal as

= sin (n(nZkL))

yiln] = Z Xd[k]@ (2.60)

k=—00 L

or in terms of sin ¢(-) function, we can write (2.60) as

yiln] = i xalk] sinc(n _LkL) (2.61)

k=—00

Note: Digital reconstructed signal expression y;[n] = > "2 xq[k]h;[n — kL] is

quite similar to the analog reconstructed signal expression x,(r) = Y o= _ x[k]
h,(t — kTy).

Example 2.17 For the system given in Fig. 275 L=M=3 and
x[n]=[1 2 3 4]. Find x4[n],y[n], and y;[n]. Use approximated linear digital
filter for A;[n].

Solution 2.17 For L=M =3, if x[n] =[1 2 3 4], then x4[n] =[1 4] and
ypj=[1 0 0 4]
To find y;[n] we can use either

o0

il = > ylklhaln — K (2.62)
yiln] = 2’0: Xalk]hi[n — kL] (2.63)

Let’s use both of them separately. First using (2.53), let’s calculate and draw the
linear approximated digital interpolation filter as in Fig. 2.76.

Fig. 2.75 Signal processing x[n] x,[n] Mn] y.[n
system for Example 2.16 — ‘M f L hn] F——
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Fig. 2.76 Approximated h,[n] Inl
interpolation filter A hylnl= _74_1
1 -3<n<3
2 z
3
! !
3 3
> 1
-3 -2 -1 0 1 2 3
Expanding (2.62), we get
viln] = y[0hailn] + y[1hailn = 1]+ y2lhailn = 2] +yBlhailn = 3] (2.64)

Ifyjlnl=[1 0 0 4]isconsidered, we see that the amplitude values at indices
n =1, and n = 2, are missing. When n = 1 is placed into (2.64), we get

yl[l] = [0] hai[l] + [1] hai[o] + [2] hai[_l] + [3] h’ai[_z] (265)
N~ =~ —~ N~ —— N~ ——
1 2/3 0 1 0 2/3 4 1/3

which yields
2 4
yill] = 3 + 3 yill]=2 (2.66)

and when n = 2 is placed into (2.64), we obtain

yil2] = y[0] hai[2] + y[1] hall] + Y[2] hal0] + y[3] hai[—1] (2.67)
ey S S ey Sy

which yields

1 8
W2 =+ Sy =3 (2.68)
3 3
So missing samples are found as y;[1] = 2 and y;[2] = 3, and when these sam-
ples are replaced by 0’s in y[n], we get

= 2 3 4
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Now let’s use the formula
yiln] = Z Xalk]hi[n — kL]. (2.69)
When (2.69) is expanded, noting that x;[n] = [l 4] and L = 3, we get
yiln] = x4[0)hgi[n] + x4[1]hai[n — 3] (2.70)

When (2.70) is evaluated for n = 1, we obtain

0= 0l + 5l o

1 23 4 1/3

which yields
2 4
vill] =§+ §—>yi[1] =2 (2.71)

and when (2.69) is evaluated for n = 2, we get

¥il2] = x4[0] hui[2] + x4[1] hai|—1] (2.72)
N~ S~ ——
113 4 2/3
which yields
1 8
yil2] = 3 + 37 yil2] =3. (2.73)

Hence, both formulas give the same results. In addition, we had already intro-
duced the linear estimation method using the continuity property of analog signals.
It is now very clear that the linear estimation method is nothing but the use of
triangle approximated digital reconstruction filter.

Example 2.18 Show that the systems given in Fig. 2.77 have the same outputs for
the same inputs.

systems for Example 2.17 x[n] —| ‘

Fig. 2.77 Signal processing x,[n]
Y H,(w) > ]

X, [n]
sl —{ 11 (M) ¢ M




116 2 Multirate Signal Processing

Solution 2.18 For the first system we have

Xan(w) = MZI n(w k2”> (2.74)

and
Hn(w M ! w— k27
Y, =H,(w)X,, Y ( X 2.75
() = B Xaul) — ) =S, (M) 27)
For the second system we have
Xpn(w) = Hy(Mw)X,,(w) (2.76)
and
1= (w—k2n
=— X . 2.
i () .7)
When (2.76) is inserted into (2.77), we obtain
| M=l
k2 — k2
( v ”)Xn (W ”). (2.78)
M= M
Since H,(w) is a periodic function with period 27, (2.78) can be written as
1 w —k2n
Y, =— H,(w)X, 2.7
)= 33 2 0 (M) 2.79)
which is equal to
1 & k2
Ya(w) = Hy X, (W n) — Yu(w) = Hi(w)Xan(w).  (2.80)
M=

When (2.75) is compared to (2.80), we see that both systems have the same
outputs for the same inputs.

Exercise: Show that the systems given below have the same outputs for the same
inputs (Fig. 2.78).

Example 2.19 For the system given in Fig. 2.79, find a relation in time domain
between system input x[n] and system output y|n].
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Fig. 2.78 Signal processing x,[n]
system for exercise x(n] ? L H, (Lw) —> yln]

x,[n]
sl — H (w) f L il

Fig. 2.79 Signal processing x,[n]

system for Example 2.18 x[n] ‘ L ? L —>)n]
Solution 2.19 We have x4[n] = x[Ln] and y[n] = x,[%]. Putting x4[n] expression
into y[n] expression, we get y[n] = x[22] — y[n] = x[n]. However, this is not always
correct. Since we know that for L =2 if x[n] =[1 2 3], thenxy[n] =[1 3]and

y[r] =[1 0 3], it is obvious that x[n] # y[n].

But using x4[n] = x[Ln] and y[n] = x4[#], we found y[n] = x[n]. So, what is
wrong with our approach to the problem?

Because, we did not pay attention to the criteria in upsampling operation. That
is, y[n] = x4[4] if n = kL, k € Z; otherwise, y[n] = 0. Then y[n] = x[n] is valid only
for some values of n and these n values are multiples of L. That is for L =2 if
x[n]=[1 2 3], then x4[n] =[1 3] and yjn]=[1 0 3], and y[n] = x[n] for
n =0,2 only.

However, for some signals, no information loss occurs after compression
operation. This is possible if the omitted samples are also zeros. In this case,
expanded signal equals to the original signal. For example, if

xpl=[a 0 b 0 ¢ 0 d

—~—
n=0

then after downsampling by L = 2, we get
xqnl=1[a b ¢ d
and after expansion by L = 2, we obtain
ypl=[a 0 b 0 ¢ 0 d
Thus, we see that y[n] = x[n| for every n values.

To write a mathematical expression between x[n]| and y[n|, let’s express x,4[n] in
terms of x[n| as
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o0

Xq[n] = Z x[n] i o[n — rM) (2.81)

n=—00 r=—00

and express y[n] in terms of x,[n] as
y[n] = Z xq[k]o[n — kL). (2.82)

Inserting (2.81) into (2.82), we obtain

o0

y[n] = i x[k] i Slk — rM] Y S[n — kL] (2.83)

k=—00 r=—00 n=—00

which is the final expression showing the relation between x[n] and y[n].

Example 2.20 Find a method to check whether information loss occurs or not after
downsampling by M.

Solution 2.20 If x[n] is downsampled by M, we omit M — 1 samples from every M
samples. If we denote the information bit indices by the numbers 0,1,2,...,M.. .,
then the first omitted samples have indices 1,2,...,M — 1 and the second set of
omitted indices have indices M +1,M +2,...,2M — 1, and so on.

Hence, by summing the absolute values of the omitted samples and checking
whether it equals to zero or not, we can conclude whether information loss occurs
or not after downsampling operation. That is, we calculate

oo M-1

Loss= Y > |x[n+kM]] (2.84)
n=1

k=—00

and if Loss # 0, then information loss occurs after downsampling of x[n], otherwise
not.
Example 2.21 If

[ x[n] if niseven
vl = {0 otherwise (2:85)

then write a mathematical expression between x[n| and y[n].

Solution 2.21 Using (2.85), we can express y[n] in terms of x[n] as

_ 1+ (-1)"

5 x[n]. (2.86)

[
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Fig. 2.80 Signal processing x[n] x,[n]
system for Example 2.21 x.(t) C/D ¢ 3 ? 2 > yln]

!

Since cos(nn) = (—1)", then (2.86) can also be written as

yln] = ) g

Example 2.22 For the system given in Fig. 2.80, x.(¢) = cos(20007z), Ty = 35055
sec find x[n], x4[n] and y[n].

Solution 2.22 When continuous time signal is sampled, we get

x[n] = xe(t)],—,7.— x[n] = cos <20007m 401()()) — x[n] = cos (g n) (2.87)

After downsampling operation, we have
3n
X4[n] = x[3n] — x4[n] = cos on (2.88)

After upsampling operation, we have

_ )X [%] niseven
el { 0 otherwise (2.89)
which yields
] = cos(¥n) niseven (2.90)
Y 0 otherwise '

The mathematical expression in (2.90) can be written in a more compact manner
as

y[n] = H_#S(nn)cos(%a). (2.91)

Using the property

(cos(a+Db) +cos(a — b)) (2.92)

ST

cos(a) cos(b) =
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Equation (2.91) can be written as

1 i1 1 Sn 1 3n
y[n] = 5cos (Zn) + Zcos (Zn) + jcos (Zn) (2.93)
where using cos(0) = cos(2n — 0) Eq. (2.93) can be written as
1 1

Note: cos(3n) = cos(2nn —3En) — cos(3En) = cos(3n)

Example 2.23 x.(t) = ™" and x[n] = x.(t)
forms of x.(7) and x[n].

l—nr,» Ts = 1 find the Fourier trans-

Solution 2.23 The Fourier transform of the continuous time exponential signal is
X.(w) =2nd(w — wy) (2.95)

which is depicted in Fig. 2.81.
If x[n] = x.(t)|,_,7,» then one period of the Fourier transform of x[n] is

1 w
X ==X\ = 2.
=g x(3). < (296)

which is shown in Fig. 2.82.

Figure 2.82 can mathematically be expressed as X,(w) = 2md(w —wp),
|w| <27. Since X,,(w) is the Fourier transform of a digital signal, it is a periodic
function and its period equals to 2x and it can be written as

o0
Xy(w) =21 > 6(w—wp — k2m). (2.97)
k=—00
Fig. 2.81 Fourier transform X, (w)
of continuous time
exponential signal 2
T » W
0 | Wy
Fig. 2.82 One period of the X, (w) lwi< 7z

2

T
T W
Wy =w

N

exponential signal

Fourier transform of digital I
0| >
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After sampling of the continuous time exponential signal, we obtain
iwnTsn
S—— .
x[nl=e *»  — x[n] =P
Hence we can write the following transform pair in general

o on Z S(w — wy — k2m). (2.98)

k=—00

Example 2.24 Given x|n] = ¢, find Fourier transform of x[n], i.e., X, (w).

Solution 2.24 X, (w) = 2nd(w — %), [w| <7 and X,,(w) is periodic with period 2,
so in more compact form, we can write it as

X, (w) —2n25w———k2n) (2.99)
k=—o00
Example 2.25 x[n] = cos(won), y[n] = cos(%n), w[n] = cos(¥n), find the Fourier

transforms of x[n], y[n], and w(n].

Solution 2.25 We know that cos(0) =5 (¢!’ +¢ ") and sin(0) = 5; (¢ — ),
and using the Fourier transform of digital exponential function, we obtain the
results

(w =7n(o(w—wo)+o(w+wy)), |wl<zm

(w) ﬂ:(é(w——)+5(w+3)>, w| <
Wn(w):n<5<w—2?)+5< 2;)), w| <.

X (w), Y, (w), and W, (w) are periodic functions with period 27.

Example 2.26 The transfer function of a lowpass digital filter is depicted in
Fig. 2.84. Accordingly, find the output of the block diagram shown in Fig. 2.83 for

the input signal
[ ]*COS(E )Jrcos 2n
x[n] = 3" 3

The Fourier transform of the filter impulse is given as in Fig. 2.84.

Fig. 2.83 Lowpass filtering
of digital signals xn] — H,(w) ——> x,[n]
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Fig. 2.84 Digital lowpass H,(w)
filter transfer function A
1
t t » W
-2 -7 - z 0 5 s 2

Solution 2.26 If digital frequency w is between —J and 7, that is if |w|< %, the
digital frequency is accepted as low frequency. On the other hand, if 7 < |w| <, the

digital frequency is accepted as high frequency.
One period of Fourier transform of x[n] can be calculated as

n) +5(w+ E)) +n<5<w—2§> +5(w+ 23—n>> w|<m

X, (w) zn(é(w—§ 3
(2.100)

which is graphically illustrated in Fig. 2.85.
At the output of the block diagram, we have X, (w) = H,(w)X,(w) and this

multiplication is graphically illustrated in Fig. 2.86.
As it is obvious from Fig. 2.86, the signal X, (w) = H,(w)X,(w) equals to

X (w) :n(é(w—%)—i—é(w—i—g)). (2.101)

X,(w) lwikr

Fig. 2.85 Fourier transform
of the input signal in Example A
2.25
b
. S A S
3 2 3 3 2 3

X,(w) lwikrx

Fig. 2.86 Multiplication of
X, (w) and H,(w) H, (w) A
T
1
I A A
3 2 3 3 2 3
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That is, high frequency part of the signal is filtered by the low pass filter, and at
the output of the filter, only low frequency components exist. In time domain, the
filter output equals to

x¢[n] = cos (g n) (2.102)

Example 2.27 In the system of Fig. 2.87, x.(¢) = cos(20007z) + cos(50007¢), T =

ﬁ and transfer function of the digital filter is depicted in Fig. 2.88.

Find x[n], x¢[n], and x4[n].

Solution 2.27 x[n] = x.(t)|,_,r, leads to

x[n] = cos (%n) + cos (53_71”) (2.103)

Since  cos(3¥n) = cos(2nn —2En) — cos(2En) =cos(3n), then (2.103)
becomes as

x[n] = cos (23—nn> + cos (gn> (2.104)

The digital filter eliminates high frequency component of x[n], hence at the
output of the filter we have

xyfn] = cos(—n). (2.105)

Fig. 2.87 Signal processing x[n] x,[n]
system for Example 2.26 x.(t) C/D H,(w) — ‘ 2 > x,[n]

N —

Fig. 2.88 Digital lowpass H,(w)
filter transfer function A

—2r L

SIS
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n]—  z"™ > x{n—n,]

Fig. 2.89 Delay system

. x,[n] e
x[n] ) ¢ M ? M XP—> x.[n]

(] (]

x,[n] ¢ Iy x,[n] ? Y

Fig. 2.90 Signal processing system for Example 2.27

After downsampling operation, we get
2n
x4[n] = x¢[2n] — x4[n] = cos Sn) (2.106)

Example 2.28 The delay system is shown in Fig. 2.89.

In the system shown in Fig. 290, M =2 and x[n]=[1 2 3 4 5 6].
Find x,[n], xp[n], x.[n], x4[n], x.n], x;[n] and x,[n].
Solution 228 If x[n]=[1 2 3 4 5 6], then x,Jn]=[1 2 3 4

-0
5 6] and since x[n] = x[n + 1] moving n = 0 pointer to the right by one unit, we
get
xpnl=[1 _2 3 4 5 6

n=0 n=0
After upsampling, we have

xe[n]:[\lfd 0 3 0 5] xf[n]:[\%d 0 4 0 6]

n=0 n=0

1

After delay operator z~*, we have
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And at the system output, we have

where

Hence,
xn=[1 2 3 4 5 6]

The signal flow of the system in Fig. 2.90 is shown in Fig. 2.91.
Exercise: For the system given in Fig. 2.92, M = 3 and

Xpj=[1 2 3 456 7 8 9 10 11 12 13 14 15

Find the output of every block and finally find x,[n].

n=0

[1 3 5] [103050]

[123456] ¢2 ) ?2 a2 @ l1 234506
n=0

[020406]

n=0

z 271

[2 4 6]
y2 42
(12345 6] [204060]
n=0 n=0
Fig. 2.91 Signal flow for the system in Fig. 2.90
x,[n] x,[n] x,[n]
xin] N v ———p 1]

x,[n] ¢ » x,[n] ? Y x,[n]

x[n] ¢ w x,[n] f I x,[n]

Fig. 2.92 Signal processing system for exercise
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x[n) S el *M xln] fM

T
e

X, [n] ¢M x,[n] ¢M

Fig. 2.93 Signal processing system for Example 2.28

Example 2.29 For the system shown in Fig. 2.93, x[n] = cos(%n) + cos(3n),
M =2.
Find Hy(w), H(w), Go(w), and G1(w) such that x,[n] = x[n].

Solution 2.29 Hy(w) can be chosen as a low pass digital filter. H,(w) can be
chosen as a high pass digital filter. Go(w) and G;(w) are interpolating sinc(-)
filters.

2.2.7 Anti-aliasing Filter

Consider the continuous to digital conversion system shown in Fig. 2.94.
We know that to obtain one period the Fourier transform of x[n], we multiply the
frequency axis of the Fourier transform of x.(z) by Ty and multiply the amplitude

axis of the Fourier transform of x.(¢) by 1/Tj, i.e., we calculate %XL. (%) If the

s

Fourier transform of x.(r) has a bandwidth greater than 7/Ty, then X, (%) extends

beyond (—, 7) and aliasing observed in the Fourier transform of x[n]. This situation
is described in Fig. 2.95.

Since X,,(w) is periodic with period 27 when %Xc (%) extends beyond (—m, 7),

overlapping will be observed in X, (w) as shown in Fig. 2.96.

The portion of X, (w) in Fig. 2.96 for |w| < is shown in Fig. 2.96.

To decrease the effect of aliasing (overlapping) in the digital signal, we can filter
the spectral components for |w| > n/T; in X.(w) before sampling operation. In this
way, we can eliminate the overlapping shaded parts in Fig. 2.97. We name this
filter as anti-aliasing filter and it is mathematically defined as

Fig. 2.94 Continuous to
digital conversion x.(t)—) C/D ——>x[n]

~N
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1 w
X (w=—X(—) Ilwknr
(W) 7 ‘(T,)

0 otherwise

X.(w) s s
A A
‘ afn]=x,(nT,) 2
—
W -
-wy _ % 0 z Wy ~Tw, -z 0 a Towy
T T
Fig. 2.95 Aliasing case in the Fourier transform of x[n]
Xn (W)
A
S
T
3 Tw, -7 0 T Tw, 2r >
Fig. 2.96 Aliasing in X,,(w)
Fig. 2.97 X,(w) in Fig. 2.96 X (w) Iwl
for w|<n !
A
L
T
1 if |w<+
Haa(w) = { o<1 (2.107)

whose time domain expression can be computed using inverse Fourier transform

oo

= / Ho(w)e™ dw

—00
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X, (w) H, (wX, (w)
A A
] 1
H (W) e > 5
> » W
-wy, -Z Z o wy ! 7 V3
B S

Fig. 2.98 Anti-aliasing filtering

Fig. 2.99 The Fourier transform of a digital signal obtained by sampling of a continuous time
signal filtered by an anti-aliasing filter

as

haa(t) = i (%> . (2.108)

Anti-aliasing filtering is shown in Fig. 2.98.
The digital signal obtained after sampling of the filtered analog signal shown in
Fig. 2.98 has the Fourier transform depicted in Fig. 2.99.

2.3 Practical Implementations of C/D and D/C Converters

Up to now we have studied theoretical C/D and D/C converter systems. However,
the practical implementation of these units in real life shows some differences. The
practical implementation of the C/D converter is shown in the first part of
Fig. 2.100, and in a similar manner, the practical implementation of the D/C
converter is shown in the second part of Fig. 2.100.

C/D and D/C conversion systems include analog-to-digital and digital-to-analog
converter units and the contents of these units are shown in Fig. 2.100. Now we
will inspect every component of the complete system shown in Fig. 2.100.



2.3 Practical Implementations of C/D and D/C ... 129

Anti-Aliasing Analog to Digital Digital to Analog

Filter Conversion i
© Digital Digital  Coversion
Xl Code | Digital Signal | Code X, (£)] Reconstruction
X (O)— H,, (W) 4/D Processing D/4 == oM s x, (1)

: :Digital ! A
¢ [ Sample |x () Quantization : Code : [ Convert Digital Zeto |1 x,(t)

x, ()= and z and -——> ——3 CodestoReal —3 Order +—>
: |_Hold Coding : Digital: Numbers Hold |:

T T

s s

Fig. 2.100 Practical implementations of C/D and D/C converter systems

2.3.1 C/D Conversion

A practical C/D converter includes the units shown in Fig. 2.101.
Where antialiasing filter is used to decrease of amount of distortion in digital
signal in case of aliasing. Antialiasing filter is defined as

_JL wi<f
Haa = { 0 otherwise (2.109)

Inside A/D converter, we have Sample-and-Hold and Quantizer-Coder units
which are shown in Fig. 2.102.

For the coding of quantization levels, two’s complement, one’s complement or
unsigned binary representations can be used.

Once the analog signal is represented by bit sequences, i.e., codes, these bit
sequences are processed depending on the application. For instance, in digital
communication, these bit sequences are encoded by channel codes and obtained bit
sequences are converted to complex symbols, i.e., digitally modulated, and trans-
mitted. In data storage, these bit sequences are again coded using forward error
corrections codes, such as Reed Solomon codes as in compact disc storage, and
stored. Alternatively, these bit sequences can be passed through data compression
algorithms and then stored.

Fig. 2.101 Practical C/D Anti-Aliasing Analog to Digital
converter. Filter Conversion

Digital
x, (1) Code
x,(t)—xH, (w) Al D
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Fig. 2.102 Components of Digital
A/D converter x, (1) D S
€ !
: ‘Digital
: [SampleT] X, (¢)[ Quantization | : Code
x,(t) = and and >
: Hold Coding :
T

2.3.2 Sample and Hold

The aim of the sample and hold circuit is to produce a rectangular signal and the
amplitudes of the rectangles are determined at the sampling time instants. The
simplest sample and hold circuit as shown in Fig. 2.103 which is constructed using
a capacitor.

Since usually sampling frequency f; is a large number, such as 10 kHz etc., it is
logical to use a digital switch for the place of a mechanical switch as shown in
Fig. 2.104.

In the literature, much better sample and hold circuits are available. To give an
idea about design improvement, the circuit in Fig. 2.104 can be improved by
appending a buffer to the output preventing back current flows etc., and this
improved circuit is shown in Fig. 2.105.

The sample and hold operation for the input sine signal is illustrated in
Fig. 2.106.

Fig. 2.103 A simple sample 7
and hold circuit x, () ©

0 x, (1)

Fig. 2.104 Mechanical f. Hz
switch is replaced by an ‘
electronic switch G T >

x.(t) o I o x,(t)
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I
x,(t) o J_ | o x,(1)
Fig. 2.105 Sample and hold circuit with a buffer at its output
4 x, (1) x,(1)
77, 8T, 9T, 10T, >
T, 2T, 3T, 4T, 5T, 4L 11T, 127, 13T,

Fig. 2.106 Calculation of the output of the sample and hold circuit for sine input signal

For sine input signal after sample and hold operation, we obtain the signal x,(z)
which is depicted alone in Fig. 2.107.

Question: Can we write a mathematical expression for the signal x,(¢) shown in
Fig. 2.107.

Yes, we can write. For this purpose, let’s first define Ak, () function as shown in
Fig. 2.108.

If the graph of x,(¢) in Fig. 2.107 is inspected, it is seen that x,(¢) signal is
nothing but sum of the shifted and scaled A, (¢) functions. Using A, (¢) functions, we
can write x,(7) as

o0 o0

X(t) = Z Xe(nTs)ho(t — nTy) — x,(t) = Z x[nlh,(t — nTy). (2.110)

k=—00 k=—00

x, (1)
A

77, 8T, 9T, 10T,
T, 2T, 3T, 4T, 5T, 6L 1T, 127, 13T,

Fig. 2.107 Output of the sample and hold circuit for sine input signal
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Fig. 2.108 Rectangle pulse h,(t)
signal A

1

L
0 T,
Fig. 2.109 Continuous time x,(2)
signal for sample and hold A
circuit 16
8
L
0 8 16 20

Example 2.30 The signal shown in Fig. 2.109 is passed through a sample and hold
circuit. Find the signal at the output of the sample and hold circuit. Take sampling
period as T, = 2.

Solution 2.30 First we determine the amplitude values for the time instants ¢ such
that + = nT; where T, =2 and n is integer. This operation result is shown in
Fig. 2.110. In addition, we also write the line equations for the computation of the
amplitude values for the given time instants.

The amplitude values of the continuous time signal at time instants ¢ = nT are
shown clearly in Fig. 2.111.

In the next step, we draw horizontal lines for the determined amplitudes, and for
the first two samples, the drawn horizontal lines are shown in Fig. 2.112.

And for the first 4 samples, the horizontal drawn lines are shown in Fig. 2.113.

Repeating this procedure for all the other samples, we obtain the graph shown in
Fig. 2.114.

The drawn horizontal lines for all the samples are depicted alone in Fig. 2.115.

Fig. 2.110 The continuous x.(t)
time signal in details (A 2t —t+24

16
14
12
10 —-2t+10

8

4

of 2 4 6 802416182 !
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Fig. 2.111 Amplitudes x.(t)
shown explicitly for the time A
instants t = nT, where Ty = 2 16
14
12
10

8

4

133

Of 2 4 6 8 101214 16 18 20

Fig. 2.112 Horizontal lines x,(¢)
are drawn for the first two A
samples 16

14

12
10

0] 2 4 6 8 1012 14 16 18 20

Fig. 2.113 Horizontal lines x.(t)
are drawn for the first four A
samples 16

0] 2 4 6 8 1012 14 16 18 20

Fig. 2.114 Horizontal lines x, (1)
are drawn for all the samples A
16
14
12
10

8

4

0] 2 4 6 8 1012 14 16 18 20
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Fig. 2.115 Output of the x,(t)
sample and hold system A

16
14
12
10

>/

Of 2 4 6 8 1012 14 16 18 20

2.3.3 Quantization and Coding

During data storage or data transmission, we use bit sequences to represent real
number. Since there are an infinite number of real numbers, it is not possible to
represent this vast amount of real numbers by limited length bit streams. For this
reason, we choose a number of real numbers to represent by bit streams and try to
round other real numbers to the chosen ones when it is necessary to represent them
by bit streams.

Mid-Level Quantizer

A typical quantizer includes the real number intervals used to map real numbers
falling into these intervals to the quantization levels as shown in Fig. 2.116.

The quantizer in Fig. 2.116 is called mid-level quantizer. The quantizer maps the
real numbers in the range [f % ,%) to Qp, maps the real numbers in the range [% , %)
to Q; etc. In this quantizer, A is called the step size of the quantizer. Smaller A
means more sensitive quantizer. The mapping between real numbers and quanti-
zation levels is defined as Q; = Q(x) where Q; may be chosen as the center of
interleaves.

If Fig. 2.116 is inspected, it is seen that if we have equal number of intervals on
the negative and positive regions, it means that the total number of intervals is an
odd number, which is not a desired situation. Since using N bits, it is possible to
represent 2V levels. For this reason, we design these quantizers such that if one side
has even number of intervals, then the other side has odd number of intervals.

O(x)
| see | Q,;, | Q—z | Qfl

|
I A
2

o+

2 2 2

S
W
=
wn
>
<
>
5

Fig. 2.116 A typical mid-level quantizer
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O(x)
|| e|oje|alo|a]|e,|
T T T T T T T T T T T T T T T T T X
A 7A A 3 A0 A A s T7A
2 2 2 2 2 2 2 2 2
Fig. 2.117 Mid-level quantizer for Example 2.31
O(x)
Lol @] e o |a e o] el
A s 3 A 0 A s osA 7Aoo
2 2 2 2 2 2 2 2 2

Fig. 2.118 An alternative mid-level quantizer for Example 2.31

Example 2.31 A 3-bit quantizer includes 2° = 8 quantization intervals. A mid-level
type quantizer consisting of 8 levels can be shown as in Fig. 2.117.

Or alternatively as in Fig. 2.118.

We will use mid-level quantizers as in Fig. 2.117.

As it is clear from the Example 2.30, for an N-bit mid-level quantizer, the
minimum number that can be quantized is —(2" + 1) /2 and the maximum number
that can be quantized is (2V —1)/2.

The quantization levels are represented by binary sequences, such as two’s
complement, one’s complements, unsigned representation, or private bit sequences
can be assigned for quantization levels.

Example 2.32 Design a 3-bit quantizer for the real numbers in the range
[—14---14].

Solution 2.32 For a 3-bit quantizer X,,; = —9A/2 and X,,, = 7A/2. Equating X,,»
to —14, we obtain

%:14—>A:4.

So our quantizer can quantize the real numbers in the range

The bit sequences for our quantizer can be assigned to the intervals as in
Fig. 2.119 and centers of the interleavers can be calculated as in Fig. 2.120.

Mid-Rise Quantizer

The mid-rise quantizer is shown in Fig. 2.121. As it is clear from Fig. 2.121,
there is no interval centered at the origin.



136 2 Multirate Signal Processing

0(x)

000 001 010 011 100 101 110 111
I B I I I S S
—18 -14 -10 -6 -2 0 2 6 10 14

Fig. 2.119 Bit sequences assigned to the quantization intervals
0(x)

000 001 010 011 100 101 110 111
|—16|—12|—8|—4|0|4|6 8|
1 } 1 } 1 } 1 } t } } 1 } 1 } 1 X
-18 -14 -10 -6 -2 0 2 6 10 14

Fig. 2.120 Mid-level quantizer

O(x)
dle | oo 0| 6| o .
—4A 3A —2a 0 -A 0 A 2A  3A  4A

Fig. 2.121 Mid-rise quantizer

Assume that we want to quantize a sequence of digital samples represented by
x[n]. Let X[n] be the sequence obtained after quantization. Since quantization distorts
the original signal, the quantized samples mathematically can be written as

x[n] = Q(x[n]) — x[n] = x[n] + e[n] (2.111)

where e[n] is called quantization noise.

2.3.4 D/C Converter

The practical implementation of D/C converter is shown in Fig. 2.122.

The content of the D/A converter is detailed in Fig. 2.123.

The digital codes are converted to real numbers according to the used coding
scheme. At the output of the code-to-digital converter, we have digital samples
which can be written as

Fig. 2.122 D/C conversion Digital to Analog
. Conversion
Digital
Code X, O] Reconstruction
D/ 4 Filter >, (t)
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Fig. 2.123 D/A conversion igi
£ Dl D/ A x, (1)
T .
.. | Convert Digital Xo(t)| Zer :
[zfggal —>| Codes to Real ald “ Ofdcor —,>xu(t)
ode Numbers Hold :
>8(t-nT,) T,
Fig. 2.124 Impulse response h,(t)
of zero order hold A
1
>
0 T,
x[n] = x[n] + e[n] (2.112)

where e[n] is the quantization error. The zero order hold filter impulse response is
shown Fig. 2.124.
The output of the code-to-digital converter in Fig. 2.123 is

e}

() = Y x[n)3(t—nT). (2.113)

n=—00

When X,(¢) is passed through zero order hold filter, we obtain

Xo (1) = %, (1) * ho(t) — x,(2) = i X[n]ho(t — nTy). (2.114)
Substituting x[n] = x[n] + e[n] in (2.114), we get

o0 o0

X(t) = Y xlnho(t—nT) + Y efnfho(t —nTy). (2.115)

n=—0oo n=-—0oo

Fig. 2.125 Reconstruction

filter block diagram x, () Reconstruction

Filter X ®
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Now let’s consider the last unit of the D/C converter the reconstruction filter as
shown in Fig. 2.125.
The Fourier transform of x,(¢) in (2.115) can be calculated using

o0

X,(w) = Z x[n]Hy (w)e T 4 i e[n]Ey(w)e T (2.116)

n=—00 n=—00

where taking the common term H,(w) outside the parenthesis, we obtain

X,(w) = i x[nje T 4 zoc: e[n]e T H,(w) (2.117)
- Xu(Tsw) - Ey(Tsw)
which can be written as
X,(w) = (X, (Tyw) + E,(Tyw))H, (w). (2.118)

From Fig. 2.125, we can write
X,(w) = H.(w)X,(w) (2.119)

where H,(w) is the frequency response of the reconstruction filter. If we choose
H,.(w) as

T T
H(w) = mem W=7, 2.120
(w) { 0 otherwise ( )

and substituting it into (2.119) and using (2.118) in (2.119), we obtain

X,(w) = T, X, (Tow) + T,E,(Tow)  |w| < % (2.121)

which is the Fourier transform of
x-(2) = x,(¢) + e(2). (2.122)

Since x[n] = x,(nTy), e[n] = e(nT;), the continuous time signals x,(¢) and e(7)
can be obtained from their samples using
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xalt) = ic ] sinc(t _T’:Tf) (2.123)
and
o(t) = ic eln] sinc(t _T:lT-‘) (2.124)

Then x,(¢) in (2.122) using (2.123) and (2.124) can be written as

(1) = i ] sinc(t _T’:TS> + i efn] sinc(t _T”TS>.

n=—00 n=—00 S

2.4 Problems

() xpj=1 2 0 -3 -1 1 4 -1 01 -2 5 1 3] is
given. Find the signals x[2n], x[3n], x[4n], x[n/2], x[n/3], and x[n/4].

(2) One period of the Fourier transform of x[n] around origin is shown in
Fig. 2.126. Draw the Fourier transform of the downsampled signal
y[n] = x[2n].

(3) The delay system is described in Fig. 2.127.

Fig. 2.126 One period of

—T<wW<7mw
X,,(w) around origin X, (w)
1
RPN B
4 4

Fig. 2.127 Delay system

z" —>x[n—ny]
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Fig. 2.128 Signal processin;
system S ¢ x{n] {‘ 2 wiln]
V2 »iln]
If
x[n]:[abcdefgohljklmnopr]
find the output of each unit in Fig. 2.128.
(4) Calculate the inverse Fourier transform of the digital filter
1 owl<
Hy(w) = {0 if oz <|wl<m. (2.125)
(5) Draw the graph of
sin(%2
hanln] = G2) (2.126)

mn

roughly, and find the triangle approximation of (2.126). Calculate the approximated
model for n = —5,...,5.

(6) The graph of X(¢) is shown in Fig. 2.129. Considering Fig. 2.129 draw the
graph of

Y()= > X(t—kI), T=3, (2.127)

Fig. 2.129 The graph of X(¢) X()
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Fig. 2.130 Downsampler

1, =1000Hz —{ | 4 {7, :%—) f =250Hz

Fig. 2.131 System for y[n]=x[Mn]
Question 9

x[n]
0 c/D { M D/C >,

SN
SN —

(7) Repeat Question-6 for T =1, T =4 and T = 5.

(8) Comment on the system shown in Fig. 2.130.

(9) For the system of Fig. 2.131, x.(r) is a lowpass signal with bandwidth
3000 Hz, T, = ﬁ s and M = 2. Is system output y,(¢) equal to system input

x.(1)? If they are equal to each other, justify the reasoning behind it. If they are
not equal to each other, again explain the reasoning behind it.
(10) Ifxn)=[1 2 3 4 5 6 7]and L =4, draw the graph of

(11) For the system of Fig. 2.132, M = L = 2 and

xpj=Ja b ¢ d e f g h I j kIl m n o p r s

n=0
Find x,4([n] and y[n].
(12) Draw the graph of h,ln] = —% +1, -L<n<LforL=3and L =8.
(13) k] =[1 4 7 10 13], huln) = =" +1, -L<n<L, L =3, calculate
and draw
Fig. 2.132 Signal processing x[n] x,[n] y[n]
system x.(?) C/D ‘ M d ¢ L ——
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o0

villl = Y xalklhailn — kL).

k=—00

(14) For the system of Fig. 2.133, x[n] = cos (f n) 0 <n <10, hy(n] is the triangle
approximated reconstruction filter. Find x,[n], y[n] and y;[n] for M = L = 2.
(15) For the system of Fig. 2.134,

1 if|w|<%
0 otherwise

Hao(w) = {

Express the Fourier transform of x[n] in terms of the Fourier transform of x.(z).

(16) For the system of Fig. 2.135, M = 3, X,,(w) is the one period of the Fourier
transform of x[n]. Draw the Fourier transform of x,[n].

(17) For the system of Fig. 2.136, M = L = 2 and X,,(w) is the one period of the
Fourier transform of x[n].

x,[n] yn] y[n]
x[n] ‘M ? L h,[n] />
Downsampler Upsampler Interpolating
Compressor Expander Filter

Fig. 2.133 Signal processing system for Question 14

x,(t) — H,,(wW)|— C/D —>x{n]

Fig. 2.134 Signal processing system for Question 15

X, (w)

x[n] ——) ¢M N

Downsampling

N
o
3

Fig. 2.135 Downsampling of digital signal
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X, (w)
1
< z | - > W
2 3
T M sl Ay A P
Pecmalor pownsampling  Upsampling Interpolation

Fig. 2.136 Signal processing system for Question 17

xn] x.[n] x,[n]
— hln] { M
Decimator Downsampling
Filtre

Fig. 2.137 Decimation system

(a) Draw the Fourier transforms of x.[n], x4[n], and y|[n].

(b) Draw the triangle approximation model of the interpolation filter for L = 2.

(c) Draw the Fourier transform of y;[n] for sinc(-) interpolation filter.

(d) If x/n)=[1.0 1.7 24 3.2 4], calculate x,4[n],y[n|, using triangle
approximated interpolation filter.

(18) For the system of Fig. 2.137, M = 2, and H,(w) is defined as

Lif wl<g

0 otherwise (2.128)

Halw) = {

(a) Calculate the inverse Fourier transform of H,(w), i.e., calculate h4[n]. Next,
find the triangle approximated model of 7i4[n].
(b) Forx[n]=[1 2 3 4] calculate x,[n] and x4[n].

xnl—> z > x[n—ny]

Fig. 2.138 Delay system
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7] x [n] x,[n]
] —— *M fM x[n]

x,[n] ¢ ¥ x,[n] ? Iy x,[n]

x,[n] ¢ M x,[n] ? M x;[n]

Fig. 2.139 Signal processing system for Question 19

(19) The delay system is shown in Fig. 2.138.

For the system of Fig.2.139, M =3, xjnj]=[a b ¢ d e f g
h i j k1l mmnop r s t u v w x Y Findthe signal at the
output of each unit, and find the system output.



Chapter 3
Discrete Fourier Transform

In linear algebra, basis vectors span the entire vector space. And any vector of the
vector space can be written as the linear combination of the basis vectors. For any
vector in vector space, finding the coefficients of basis vectors used for the con-
struction of the vector can be considered as a transformation. Fourier series are used
to represent periodic signals. Fourier series are used to construct any periodic signal
from sinusoidal signals. The sinusoidal signals can be considered as the basis
signals, and linear combination of these signals with complex coefficients produce
any periodic signal. Once we obtain the coefficients of the base signals necessary
for the construction of a periodic signal, then we have full knowledge of the
periodic signal and instead of transmitting the periodic signal, we can transmit the
coefficients of the base signals. Since at the receiver side, the periodic signal can be
reconstructed using the base coefficients.

In this chapter we will study a new transformation technique called discrete
Fourier transform used for aperiodic digital signals. We will show that similar to the
Fourier series representation of periodic digital signals, aperiodic digital signals can
also be written as a linear combination of sinusoidal digital aperiodic signals. In this
case, aperiodic digital sinusoidal signals can be considered as base signals. And
finding the coefficients of base signals such that their linear combination yields the
aperiodic digital signal is called discrete Fourier transformation of the aperiodic
digital signal. Thus, the discrete Fourier transformation is nothing but finding the
set of coefficients of the base signals for an aperiodic digital signal. And once we
have these coefficients, then we have full knowledge on the aperiodic signal in
another digital sequence.

© Springer Nature Singapore Pte Ltd. 2018 145
0. Gazi, Understanding Digital Signal Processing, Springer Topics
in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_3
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3.1 Manipulation of Digital Signals

Before studying discrete Fourier transform, let’s prepare ourselves for the subject,
for this purpose, we will first study the manipulation of digital signals.

Manipulation of Non-periodic Digital Signals

A non-periodic or aperiodic digital signal has finite number of samples. And
these signals are illustrated either by graphics or by number vectors, or by number
sequences. As an example, a digital signal and its vector representation is shown in
Fig. 3.1.

Manipulation of digital signals includes shifting, scaling in time domain and
change in amplitudes.

Shifting of Digital Signals in Time Domain

Given x[n], to obtain x[n — ng|,ny > 0, we shift the amplitudes of x[n] to the
right by ng units. If ny <0, amplitudes are shifted to the left.

Shifting amplitudes to the right by nj equals to the shifting n» = 0 index to the
left by ng units. This operation is illustrated in the following example.

Example 3.1 Given
xpl=la b ¢ d _e f g h i j k|, findxn-—1]
n=0
x[n—3], x[n+1], x[n+2],and x[n —7].

Solution 3.1 To get x[n — 1], we shift amplitudes of x[n] to the right by ‘1 unit.
Shifting amplitudes to the right by ‘1’ unit is the same as shifting n = 0 index to the
left by ‘1’ unit, the result of this operation is

xp—1=la b ¢ d e f g h i j k.
n=0

Following a similar approach for x[n — 3], we obtain

xn—3]=a \lz/ c d e f g h i j k|

> 1 n=0

3 2.5
1.7 2
1.5 1.25
I —>x[n]=[1.7 15 -3 3 -15 2 25 125]
0 2 4

Fig. 3.1 A digital signal and its representation by a number vector
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To get x[n+ 1], we shift amplitudes of x[n] to the left by ‘1’ unit obtaining

xn+1ll=[a b ¢ d e f g h i j k.

Following similar steps, we obtain

xn+2]=fa b ¢ d e f g h i j k|,
—~—

and

xp=7=[0 0 0 a b ¢c d e f g h i j k.
n=0

where it is clear that if the shifting amount goes beyond the signal frontiers, for the
new time instants, O values are assigned for the signal amplitudes.

Scaling of Digital Signals in Time Domain

To find x[Mn], we divide the time axis of x[n] by M, and keep only integer
division results and omit the non-integer division results. The resulting signal is
nothing but x[Mn].
Example 3.2 If xjn|=[a b ¢ d _e f g h i j k|, find x[2n] and

~—
n=0

x[3n].

Solution 3.2 To get x[2n], we divide time axis of x[n| by 2 and keep only integer
division results. First, let’s write all the time indices as shown in

. . k
g N R N U Y N N

where keeping only integer division results, we obtain

x2n)=1 a b c g i k
2 -2 0 1 2 3
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which can be written in its simple form as

xX2n]=la ¢ <© ¢ i K.

Following a similar approach for x[3n], we obtain

x[3n] = [b < h k.

Combined Shifting and Scaling
To obtain x[Mn — no|, we follow a two-step procedure as listed below.

(1) First, the shifted signal, x[n — ng] is obtained, and this signal is denoted by
xi[n], i.e., x1[n] = x[n — ng

(2) Then using x;[n], we obtain the scaled signal x;[Mn] which is nothing but
x[Mn — n)
That is, we first obtain the shifted signal x;[n] = x[n — ng], and then using x; [n]
we get the scaled signal x; [Mn] = x[Mn — ny).
Example 3.3 Ifxjnl=[a b ¢ d _e f g h i j k] findx[3n+3|].
n=0

Solution 3.3 First, we obtain the shifted signal x[n + 3] as

xn+3]=fa b ¢ d e f g _h i j k.
n=0

Let xi[n] =x[n+3], ie, xinj=Ja b ¢ d e f g _h i j k|,
n=0

then the scaled signal x[3n] can be calculated as

xi[3n]=[b e

3
Il {E‘
o

which is nothing but x[3n + 3], that is

x[3n+3]=1[ e _h k.
n=0

Note: If n = 0 index is not indicated in the digital signal vector representation,
then the first element index is accepted as n = 0.
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3.1.1 Manipulation of Periodic Digital Signals

Manipulation of periodic digital signals includes shifting, scaling and combined
shifting, scaling operations. There is no difference in manipulating non-periodic and
periodic digital signals. The same set of operations are applied for the manipulation
of periodic signals as in the manipulation of non-periodic signals.

However, since periodic signals are of infinite lengths, for easy of manipulation,
it is logical to consider just one period of the periodic signal and perform manip-
ulations on it.

Let X[n] be a periodic signal with fundamental period N, i.e., X[n] = X[n + IN]
ILLNeZ

Let’s define one period of X[n] as

] = Xn] 0<n<N-1
=91 0 otherwise.

Using (3.3), we can write ¥[n] in terms of x[n] as

o0

Hn) = ) xln—kN]. (3.4)

k=—00

3.1.2 Shifting of Periodic Digital Signals

First let’s make definitions as follows:
Rotate Right
When the signal x[n] =[1 2 3 4 ... N]is rotated right, we get

RRG[)=[N 1 2 3 4 ... N—1]. (3.5)
RR(x[n],m) is the m unit rotated (right) signal.
Rotate Left
When the signal x[n] =[1 2 3 4 ... N]is rotated left, we get
RL(x[n))=[2 3 4 --- N—1 N 1]. (3.6)

RL(x[n], m) is the m unit rotated (left) signal.
Rotate Inside
When the signal x[n] =[1 2 3 4 ... N]isrotated inside, we get
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RIxn)=[1 N N—1 N—-2 --- 2. (3.7)

Shifting of Periodic Digital Signals

If x[n] is the one period of the periodic signal, ¥[n] such that 0 <n <N — 1, one
period of the shifted signal X[n — ng), no > 0 is obtained by rotating amplitudes of
x[n] to the right (left if no <0) by ng units.

Example 3.4 The signal given in Fig. 3.2 is a periodic signal, i.e., X[n] = X[n + N].
Find the period of this signal, and determine its one period for 0 <n<N — 1.

Solution 3.4 To find the period of the signal, we need to find the repeating pattern
in the signal graph. If the signal shown in Fig. 3.2 is carefully inspected the
repeating pattern can be easily determined. The repeating pattern of Fig. 3.2 is
shown in Fig. 3.3 in bold. The number of samples in the repeating pattern is
nothing but the period of the signal. Hence, for this example, N the period of the
signal is 5, i.e., X[n] = X[n+3].

One period of the signal in Fig. 3.3 for 0 <n <4 is shown in Fig. 3.4.

Using one period of the signal starting at origin, we can write the periodic signal
as

i[n] = [ 3 -15 1.7 1.5 =3 -]
~—~
n=0
Fig. 3.2 A periodic digital )N([n]
signal
3 3
1.7 1.7
N 1.5 N lf
—3—2-1 0 112 3[4 5 16 >
-15 -15
-35 -35
Fig. 3.3 The repeating )Ng[n]
pattern of Fig. 3.2 is shown in
bold 3 3
1.7 1.7
1.5 N lf
0 2 5
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Fig. 3.4 One period of the )N([n]
signal in Fig. 3.3 for

3 3
Osn<d 1.7 1.7
N 115 I 115
2 0 T 2 : 5 >

Fig. 3.5 The periodic signal ;([n]
X[n] for Example 3.5

Example 3.5 The periodic signal X[n] is shown in Fig. 3.5, find X[n — 3], and
X[n+2].

Solution 3.5 The period of the signal is N =5, and signal amplitudes for one
period are

xfn] = | 30 15 17 15 -35). (3.8)
When x[n] is rotated to the right by 3 units, we get
RR(x[n],3) = |

1.7
N~~~
n=0

15 -35 3 —15]. (3.9)

And using (3.9), we can write the shifted periodic signal as

Xn—3]=[- 17 15 -35 3 —15 17 15 -35 3 —-15
n=0
(3.10)

To find X[n + 2], one period of ¥[n] is rotated to the left by 2 units yielding

RL(x[n],2) =[17, 15 -35 3 -L3]. (3.11)

n=0
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Hence, shifted periodic signal X[n + 2] becomes as

Xn+2]=[--15 —35 3 —15 —35 3 —15 17--.

1.7 1.5
~—~
n=0

(3.12)

Time Scaling of Periodic Signals

To perform time scaling on periodic signals, we consider one period of the signal
and perform time scaling on it.

The resulting signal is nothing but the one period of the scaled signal. If the
period of the digital signal X[n] is N, then the period of the scaled signal X[Mn] is
N/M.

Example 3.6 The periodic signal X[n] in its one interval equals to
Xl =3 -15 17 15 -35 22 4] (3.13)
<~
n=0
where it is obvious that the period of the signal is N = 7. Find X[2n] and X[3n].

Solution 3.6 One period of X[2n] equals to x[2n], and one period of ¥[3n] equals to
x[3n]. The time scaled signals x[2n] and x[3n] can be calculated as

2n)=[3, 17 -35 4

=0 (3.14)
x[3n] = [\3/ 1.5 4.

n=0

And using (3.14) the periodic signals X¥[2n] and x[3n] can be written as

X2n)=[--17 =35 4 3 17 -35 4 3 17 -35 4.
n=0
iBa=[--3 15 4 3 15 4 3 15 4.1
n=0

Combined Shifting and Scaling

The periodic digital signal X[n] can be shifted and scaled in time domain yielding
the periodic signal X[Mn — ng]. The shifted and scaled signal X[Mn — ng| can be
obtained from X[n] via a two-step procedure as explained below.

(1) To get X[Mn — ng), first the shifted signal X[n — no| is obtained. Let’s call this
signal X, [n], i.e., X [n] = X[n — ng].

(2) In the next step, X;[n] is scaled in time domain and y[n] = X;[Mn] is obtained,
and y[n| is nothing but X[Mn — ng], i.e., [n] = X[Mn — n).
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Example 3.7 The periodic signal X[n] in its one interval equals to

Xnj=[3 —15 17 15 —35 22 4
n=0

where it is obvious that the period of the signal is N = 7. Find X[2n — 3].
Solution 3.7 To obtain X[2n — 3], let’s first find one period of the shifted signal
X[n — 3]. One period of X[n — 3] is obtained by rotating one period of X[n] to the
right by 3 yielding

RR(x[n),3) =[-3.5 22 4 3 —15 1.7 15 (3.15)
n=0

Let’s denote (3.15) by x;[n], i.e., one period of X[n] = X[n — 3], then we have

xn=[-35 22 4 3 —-15 17 L5 (3.16)
n=0

Next using (3.16), we can evaluate x;[2n] which is nothing but one period of
X[2n — 3] as

xi2n] =1[-35 4 -15 15].
n=0

Hence, our periodic signal ¥[2n — 3] becomes as

xen—3]=[--—15 15 —35 4 —15 15 —35 4 —15--.
=0

Example 3.8 Periodic signal X[n] is shown in Fig. 3.6.
Find X[—n].

Solution 3.8 To find X[—n], we divide the time axis of ¥[n] by —1. This operation is
illustrated in Fig. 3.7.

The division operations in Fig. 3.7 yields the signal in Fig. 3.8.

When amplitudes and time indices are re-ordered together, we obtain the graph
in Fig. 3.9.

Practical way to find X[—n] signal

@

Fig. 3.6 Periodic signal X[n]
for Example 3.8

—_
=
=

\
3

_T
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W T o
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0
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—4
o—+=
OF N
A9
.
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Fig. 3.7 Calculation of X[—n] x[-n]

\
S

-1 -1 -1 -1 -1 -1 -1 -1 -1

Fig. 3.8 After division of the )~([—n]
time axis in Fig. 3.7 wea b ¢ d a b c d a-
—————t+—+—+—+——>n
43 2 1 0-1-2-3-4
Fig. 3.9 Time axis i[-n]
re-ordered ea d ¢ b a d ¢ b a--
—— 1 } » 7
-4 -3-2-1 0 1 2 3 4
Fig. 3.10 Periodic signal X[n] x[n]
r~a b ¢ d a b ¢ d a-
—— 1 } » 7
-4 -3-2-1 01 2 3 4
If one period of X[n] is denoted by x[n]=[1 2 3 4 ... N], then one

period of X[—n] can be obtained rotating x[n] inside by 1 unit. That is, one period of
X[—n] is

RIxn))=[1 N N—1 N-2 - 2] (3.17)

We can apply this practical method to the previous example where the periodic
signal had been given as in Fig. 3.10.
One period of is X[n] in Fig. 3.10 is

xnl=la b ¢ d]. (3.18)
When (3.18) is rotated inside, we obtain
RR(x[n))=[a b ¢ d] (3.19)
which is nothing but one period of X[—n]. Hence X[—n] equals to

X-nj=[d ¢ b a d ¢ b a d c b
=0

Calculation of the periodic signal X[ng — n]
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@

Fig. 3.11 The periodic signal
X[n] for Example 3.9

=

W T o
—T
W

| -
PR
|

|
o=+ O
I
o+
—d
o+
PN

Calculation of the periodic signal ¥[ng — n] can be achieved via the following
steps.

(1) We first find one period of X, [n] = X[—n] using rotate inside operation.
(2) Then one period of X;[n] is rotated to the right if ny > 0 to the left if ng <O by
|no| units and one period of X [ng — n] is obtained.

Example 3.9 The periodic signal X [n] is shown in Fig. 3.11. Find %;[2 — n].
Solution 3.9 From Fig. 3.11 one period of X[n] can be found as
xpl=[a b ¢ d]. (3.20)
When (3.20) is rotated inside, we obtain
RR(x[n])=[a d c¢ D] (3.21)
a d c bl ‘op

which is nothing but one period of X[—n], ie., ¥[-n],, = |

means one period. To find one period of X[2 — n] one period of X[—n] is rotated to
the right by 2 units yielding

RR()?[—n]op,2>:[a b ¢ dl. (3.22)

Using (3.22) the periodic signal X[2 — n] can be written as

2—=n=[¢c b ad ¢ b ad c b a d--]

Example 3.10 The periodic signal X[n] is shown in Fig. 3.11. Find X[-2 —n].
Fig. 3.12

Solution 3.10 One period of x[n] equals to

xpj=la b ¢ d]. (3.23)

Fig. 3.12 The periodic signal [n]
X[n] for Example 3.10 veea b
;

\
=

=T
wT

o=+ 0
INGEEEN
.
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When (3.23) is rotated inside, we obtain
RR(x[n)) =[a d c¢ D]

which is nothing but one period of X[-n], i.e., X[-n],, =[a d ¢ b]. To find

one period of X[—2 — n], one period of X —n| is rotated to the left by 2 units
yielding

RR()?[—n]Dp,2>:[c b oa dl. (3.24)

Using (3.24) the periodic signal X[—2 — n] can be written as

Xl-2—-n]l=[¢c b ad ¢, b ad c b a d-
n=0

Exercise: For the previous exercise find X[—4 — n] and X[4 — n].

3.1.3 Some Well Known Digital Signals

In this subsection, we will review some well-known digital signals.
Unit Step:
The unit step signal is defined as

uln] = {(1) ffn=0 (3.25)

otherwise
whose graph is shown in Fig. 3.13.

Unit Impulse:
The unit impulse signal is defined as

5ln] = {(1) ifn =0 (3.26)

otherwise

whose graph is shown in Fig. 3.14.

Fig. 3.13 Unit step function, u[n]
i.e., signal




3.1 Manipulation of Digital Signals

Fig. 3.14 Unit impulse o[n]
function, i.e., signal

157

The relation between u[n| and d[n] can be written as
o[n] = uln] — ufn — 1]
or as
ulp) = 5[n — k]
=0
which is equal to
uln] = Z dolk].
k=—00

Exponential Digital Signal
The exponential digital signal is defined as

x[n] = &M™"
which can also be written in the form
x[n] = cos(won) +j sin(won).

Example 3.11 Simplify e7%",

Solution 3.11 Using (3.31), we have
e = cos(—k2m) +jsin(—k27) = cos(k2m) +jsin(—k27)

~—— ——
=1 =0

As a special case for k = 1, we have e — 1.

Example 3.12 Verify the following equality

ge*j%km _ N fm=0
o "1 0 otherwise.

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Solution 3.12 Let’s open the summation expression in (3.32) as follows

Nl on on 2 —2L(N—1)m

Zefmkm = <1+emm+em2m+ oo ge ) (3.33)

The right hand side of (3.33) can be simplified using the property

1 —x
Lxta? 4ad 4 a7 = (3.34)
—x
as in
_ —&mN _ ,—j2mm
(1 e gy AN Lz 127 ™ (535
1 — e ] — e m
And for m # 0 using the result in, (3.35), we obtain
1— 7j2nm 1-1
¢ 0. (3.36)
1 —em ] — e Fim
Hence we have
Nolo
eIV =0 m#0. (3.37)
k=0

And for m = 0 using the result in (3.35), we obtain

MZ

~Fakm Z 1—N. (3.38)

k=0

Combining (3.37) and (3.38), we obtain

N-1 o
e — {N ifm=0 (3.39)

otherwise.
k=0

3.2 Review of Signal Types

Basically we can divide signals into two categories as, continuous and digital
signals. And in both classes, we can have periodic and non-periodic (aperiodic)
signals, and Fourier transform and representation methods are defined for these
classes of signals. In Fig. 3.15; the relation between signals and their transform or
representation types are summarized.
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Signals
Continuous Time Digital Signals
Signals /\
Periodic Continuous Aperiodic Continuous Peru;dlc Dllgltal Aperiodic Digital
Time Signals Time Signals 1gnals Signals
Fourier Ser¥es Fourier Transform Discrete Time Fourier Discrete Time Fourier
Represintatlon Series Representation Transform
Fourier Transform \)J,
Discrete Time Fourier Discrete Fourier
Transform Trasform

Fig. 3.15 Signals types, their transformations and representations

Let’s briefly review the signal types, their transformations and representations.
Non-periodic Continuous Time Signals
If x.(¢) is a non-periodic continuous time signal, then its Fourier is defined as

X.(w) = / x.(t)e ™ dt (3.40)
and its inverse Fourier transform is given as
1 o0
%) =5 / X (w)e dw (3.41)

where w = 27f is the angular frequency. The Fourier transform and inverse Fourier
transform pairs show small differences in their coefficients in literature. In general,
Fourier transform and inverse Fourier transform can be defined as

X.(w) = K, / x.(t)e ™M dt (3.42)
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and
() = K / X, (w)e™ dw (3.43)
where
K x Ky = - (3.44)
1 2 = o . .

Thus if K; = 1/+/27, then K, should be 1/v/2x so that K; x Ko = 1/27. As
another example if K; = 1/2n then K, = 1.

Periodic Continuous Time Signals

If x.(¢) is a periodic signal with fundamental period T, then

Xc(t) = X (t +mT). (3.45)

And for the periodic signal X.(#) the Fourier series representation is defined as
1 o0

Se(t) = 7 > ke (3.46)

k=—00
where the Fourier series coefficients X[k] are computed by using
%[k = / (1) M. (3.47)
T

If we define 27/T by wy, i.e., wo = 27/ T, then the above equations can also be
written as

%.(1) :% i . [keftror (3.48)
k=—00
and
T [k] = / X (t)e iy (3.49)

In general, the Fourier series representation of X.(z) and its Fourier series
coefficients are given as
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o0

K1) =K1 Y Ee[k]eM (3.50)
k=—00
and
% k] = K, / X (1)e o dy (3.51)

where the coefficients satisfy K; x K, = 1/T. Hence, if K; = 1/\/T then K, =

1//T and Fourier series representation and Fourier coefficients expressions
becomes as

(1) :\% DAL (3.52)

k=—00

and
T [k] = % T/ T (t)e P dy, (3.53)

Now let’s assume that one period of X.(7) is x.(¢), i.e., x.(f) is an aperiodic
signal. Then the Fourier series coefficients of X.(r) is computed as

% [k] = / T (e Tidr — X [k] = / x.(1)e gy, (3.54)
T o0

And the Fourier transform of x.(¢) is

X.(w) = / x.(t)e M dt (3.55)
—00
When (3.54) and (3.55) are compared to each other as in

X [k] = /xc(t)e’jkwotdtHXc(w) = / x.(t)e ™M dt (3.56)
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we see that
X [k| = XC(W)|W:kw0 (3.57)
where
2
wo = T (3.58)

And the relation between X.(¢) and x.(f) can be written as

00

%) = ) x(t—kT). (3.59)

k=—00

The Fourier transform of the periodic continuous time signal is defined as

i Xc[k]o(w — kwg),  wo =2mn/T. (3.60)

k=—00

2n
Xe(w) = T

Aperiodic Digital Signals

The discrete time Fourier transform for the aperiodic digital signal x[n] is defined
as

Xu(w) = > x[nle ™ (3.61)

n=—0o0

where w = 2xf is the angular frequency, and the inverse Fourier transform is
defined as

1
T 2n

x[n] / X, (w)e"dw. (3.62)

2n

The Fourier transform function of x[n], i.e., X,(w) is a continuous function of w
and it is also a periodic function with period 2, i.e.,

X, (w) = X, (w+ k2m). (3.63)

Periodic Digital Signals

If the digital signal X[n] is a periodic signal, then X[n] = X[n +IN] ,N € Z and N
is called fundamental period of X[n].

For the digital periodic signal X[n|, the Fourier series representation is defined as
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1 ey
#n] = NZ%,, [k] /5 (3.64)

where the Fourier series coefficients are computed using

[k] = > x[n]e . (3.65)

n,N

Note: > (-) means summation is taken over any interval of length N, i.e.,
n,N

summation is taken over one period length.
In general, the Fourier series representation and calculation of Fourier series
coefficient of periodic signals are done via

i) = Kp Y Gy [kl (3.66)
kN
and
K[k =Ky Y X[n]e (3.67)
n,N
such that
Ki x Ky — (3.68)
1 2 = N- .

The Fourier transform of the periodic digital signal X[n] is

700) = 253 5 K500 — ko), wi :%”. (3.69)

k=—00

Example 3.13 1f the Fourier series representation of digital periodic signal X[n] is
1 o
i == X[k (3.70)
N

then verify that the Fourier series coefficients as obtained using

a[k] = X[nje . (3.71)

n,N
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Solution 3.13 If the Fourier series coefficients are obtained using

K k] = X[nje (3.72)

then when (3.72) is substituted into

i) = =

> &[] (3.73)
kN

=z

we should get X[n] on the right hand side of (3.73). That is

#n] = % S5 sfrle 4 o

kN r.N
————
n[k]
| NoIN-d o
=— X[r]e /KN ek
N k=0 r=0
| N=IN-1 .
=0 D Alre
k=0 r=0 (3.74)
e N-1
=—5"x[] o (r—n)
Ni= k=0
————
N ifr=n
0  otherwise
1
= —Nx[n]
N
= X[n|

Convolution of Aperiodic Digital Signals
For aperiodic digital signals x[n], y[n], the convolution operation is defined as

i ey = 3 xlkyin— & (3.75)
x[n] * y[n] = i x[n — k]ylk]. (3.76)
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3.3 Convolution of Periodic Digital Signals

Let %,[n] and X,[n] be digital periodic signals with common period N, i.e., Xi[n] =
X1 [n+N] and 562[71] = )NCQ[I’l-i-N]
The period convolution of X;[n] and X, [n] is defined as

X =) X[mlx[n —m]. (3.77)

The digital sequence X3[n] is also periodic with period N. How to calculate
periodic convolution? This is explained as follows.

(1) Since X3[n] is periodic with the same period N, we can focus on the calculation
of one period of ¥3[n| starting from 0, i.e., consider 0 <n <N — 1.
(2) When the summation in (3.77) is expanded, we get

%3[n) = 5[0 [n] + &1 [l — 1]+ - +% [N — 1 — (N —1)]  (3.78)

where we can use only one period of X, [n], %;[n — 1], and %[N — 1],0<n <N — 1.

Example 3.14 The periodic signals X; [n] and X;[n] with period N = 4 are shown in
Fig. 3.16. Calculate their 4-point periodic convolution.

Solution 3.14 The periodic convolution for the given signals is calculated using

X =) Xi[m)x[n —m]. (3.79)

) T T T T T . > 7
-4 -3 —_2! -1 0 1 _211 3 4

T T T T o ‘: n
—41 -3 -2 —11 01 1 2 31 41

Fig. 3.16 The periodic signals X, [n] and X,[n] for Example 3.14
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When the summation in (3.79) is expanded for N = 4, we get
)~C3[n} = 561 [O];Cz[n] +561[1]562[n - 1} +)~61 [2}562[1’1 - 2] +5C1 [3]5(2[?1 - 3] (380)

One period of X;[n],%2[n — 1],X%2[n — 2], and X[n — 3] for 0<n<3 can be
calculated using rotate right operation yielding

Xpn] =[—-1 1 1 —1]
x20p[n*1]:[—1 -1 1 1]
x2(}p[n_2] =[1 -1 -1 1] (3.81)
xzop[n—?a] =[1 1 -1 —1].

Substituting (3.81) into (3.80), one period of ¥3[n] is calculated as

Xaop[n] = X1 [0]%20p [1] + X1 [1T0p [ — 1] + %1[2]Fa0p [ = 2]
—|—)~Cl [3]%20,, [I’l — 3]

yielding
Xpn] =1x[-1 1 1 —1]+1Ix[-1 -1 1 1]—-1x[l -1 -1 1]

+2x[1 1 =1 —1]

which can be simplified as
Xpln) =[—-1 3 1 =3]. (3.82)
Using (3.82), the periodic convolution result can be written as

B =[--—-1 3 1-3 1-3 -1 3 1 =3 ...

-1 3
~—~
n=0

3.3.1 Alternative Method to Compute the Periodic
Convolution

The periodic convolution expression

Xnl =) Xi[mlxan —m] (3.83)
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can be computed forn =0,1,...,N — 1 as

n=N-1, HN-1= &mu(N-1)—m.

Now let’s consider

%[0l = N o) (3.84)
when expanded for N = 3, we get
%[0 = 51 [0]2[0] + 31 [1)Fa[— 1] + 1 [2]52 [ ~2] + F1 312 [-3] (3.85)
Since 3[n] = &3[n+ 4], we have
Bl =5p], *-2=h2, Bb[3] =5[] (3.86)
Using (3.86) in (3.85), we obtain
%[0] = 71 [0]%2[0] + 31 [ [3] + &1 [2]52[2] + 51 [3]52]1] (3.87)

which can be written as the dot product of the vectors
[x[0] x[1] %[2] % [3] and [%[0] X%[0] %2[2] X[l]]

where it is clear that the vector [%,[0] X2[3] X2[3] *2[1]] can be obtained from
one period of X,[n] via rotate inside operation.
Hence we can write
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Equation (3.89) can be written as

=
w

=
Il

=

1[m]%[1 — m] — %3[1] = X10p[m] * RR (X20p[—m)) (3.90)

B2l =) Hmn[2 —m] — x3[2] = Fi0p[m] * RR (X[l — m]) (3.91)
m=0

B0 = S Rl — m] — B[3] = fplm] * RR(p2 - m])  (3.92)
m=0

N—1
BN -1 = xmnN—1-m —
m=0
%[N — 1] = X10p[m] * RR (X20p[N — 2 — m]) (3.93)

Example 3.15 The periodic signals X;[n] and X,[n] with period = 4 are shown in
Fig. 3.17. Calculate their 4-point periodic convolution using alternative periodic
convolution method.

x[n]

[ e
—eo—
—

Al

\

——e—
e
\/

Fig. 3.17 The periodic signals X, [n] and X,[n] for Example 3.15
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Solution 3.15 When the periodic convolution expression

N—
E X2}’l—

is calculated forn =0,1,...,N — 1, we get
%3[0] = Xiop[m] * Xoop[—m]
%[l] = Xiop [m] * x20p[ — m]
%3[2] = P[m] * RR (Xp[1 — m]) (3.94)
%3[3] = Xiop[m] * RR(%20p[2 — m]).

One period of X;[n] for 0 <n <3 is

Goplm] =[-1 1 1 —1].
Then
Bl =[-1 1 1 1]
A
o3~ ] = RRGGapl2 ) — RRGaplnl) = [-1 1 1 —1
and
Tl =[1 1 -1 2] (3.96)

Using (3.95) and (3.96) in (3.94), we can calculate the periodic convolution
values as

HBOJ=[1 1 -1 2]*x[-1 -1 1 1]—
0] =1(=1) 4+ 1(=)+(-D1+2x 1 —
k3 =-1
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Hence,
5(3,,,,[n]:[—1 31 —3].

Then the periodic convolution result becomes as

3.4 Sampling of Fourier Transform

The Fourier transform X, (w) of a non-periodic digital signal x[n| is a continuous
function of w and it is periodic with period 2=, i.e., X,(w) = X,,(w +27) .

Example 3.16 The Fourier transform of the signal x[n] =16[n+ 1]+ 16[n — 1] is
calculated as

0]

X, (w) = Z x[n]e "

n=—00

— i (%5[714—1]4—%5[”— H)ejw" (3.97)

1:70‘1 —jw
=5 (" +e)
= cos(w).

The aperiodic digital signal x[n] and its Fourier transform is shown in Fig. 3.18.
Let’s generate the periodic signal X[n] with period N from x[n] via

X[n] = i x[n — IN]. (3.98)

I=—00

........... 2.
: T T > W
0 7 on

T T
2 ! 2

-1 -1

Fig. 3.18 The aperiodic digital signal x[n] in Example 3.16 and its Fourier transform
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The Fourier series coefficients of the periodic signal x[n] in (3.98) are obtained
from the Fourier transform of x[n], i.e., X,(w), via sampling operation in frequency
domain as in

X[k] = Xu(w) ‘w:ka (3.99)

where wy = %v—" is the sampling period in radian unit.

Example 3.17 X[n] is a periodic signal with period N =4, and we have x[n] =
$6[n+ 1]+ 4 6[n — 1] for one period of this signal. In addition, the periodic signal
can be obtained from its one period via

X[n] = io: x[n — IN]. (3.100)

Find the Fourier series coefficients of X[n] using X,,(w) the Fourier transform of
x[n].

Solution 3.17 In Example 3.17, we found the Fourier transform of x[n] =
10[n+1]+ $6[n — 1] as

X,(w) = cos(w).

The Fourier series coefficients, i.e., X[k], of X[n] can be obtained via sampling
operation in frequency using

X[k = X0 (W) o, (3.101)
where wy =2 — w; =2 — w, = Z Hence (3.101) yields
- - - km
X[k] = X (w)l,y—pop,~ X[K] = cos(w)],,_ig— X[k] = cos( =~ ). (3.102)

The graphical illustration of the sampling operation in frequency domain is
explained in Fig. 3.19.
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X,(w)

. 1
- X, (w)= Z,x[n]e’j”"”

[38)
[SAES)
0

\ v

Fig. 3.19 Fourier series coefficients are obtained from Fourier transform via sampling operation
3.5 Discrete Fourier Transform

The Fourier series coefficients, i.e., X [k], is a periodic function which can have

complex or real values. The Fourier series coefficients X [k] satisfy X[k] = X[k + N]
where N is the period of the digital signal X[n].

The periodic signal X[n] with period N has the Fourier series coefficients

Xk =S x[nle 7wk (3.103)

n

=

Il
o

and for 0 <n <N, X[n] = x[n] where x[n] is one period of X[n]. Then (3.103) can be
written as

x[n]e 7¥k (3.104)

which is also a periodic signal with the same period as the time domain signal X[n].
Let’s consider one period of X [k]
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(XK ifO<k<N
Xk = {0 otherwise (3.105)

which is called the discrete Fourier transform of x[n]. Thus, N — point discrete
Fourier transform of x[n] is defined as

N-1
X[k =" xfnle ¥ 0<k<N. (3.106)

n=»

Similarly, N — point inverse Fourier transform is defined as
1 = 2
=—Y X[k 0<n<N.
b =3y > X 0

A more general definition for N-point DFT is

X[k =" xlnle ¥k N. (3.107)

n,N

and for the N-point inverse DFT, a more general definition is

1 21
x[n] = NZX[k]e’W"”, n,N. (3.108)
kN

In addition, Fourier series coefficients of a periodic signal can be obtained from
the Fourier transform of its one period using

XK = X0y, 0=y (3.109)
And using the definition
X[k = {g["] Z;}?efvfi;N (3.110)
we can write
X[k] = X (W), » w‘Y:?v—n, 0<k<N (3.111)

which means that the discrete Fourier transform of x[n] is nothing but a mathe-
matical sequence obtained from one period of X,(w) via sampling operation in
frequency domain, and the sampling period is chosen as w; = %
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Example 3.18 Find the discrete Fourier transform of
xpj=[1 1 -1 2].

Solution 3.18 For the given signal if the DFT formula
XK =S xnle 7 0<k<4 (3.112)

is expanded, the coefficients are found as

X[k] = x[0] xe®+ x[1] xe ¥ + x[2] xe 2 4 x[3] xe . (3.113)
1 _

When (3.113) is simplified, we obtain
X[k] = 1+ e — 177 420775 (3.114)
Evaluating (3.114), i.e., X[k], for k =0, 1,2,3, we get
X[0)=3 X[l]=2+j X[2]=-3 X_3]=2-j
which can be written in short as

XK=1[3 2+j -3 2—j].

Example 3.19 Find the aperiodic digital signal whose DFT coefficients are given as
XK =[3 24 -3 2—j]

Solution 3.19 Using X[k] in inverse DFT formula

1 2
xn] == X[k 0<n<4 (3.115)
4 k=0
we obtain
xln) =~ | X[0] ° + X[1] &5 4 X[2] &2 4 X[3] & |. (3.115)
4| <~ ~ ~ -~

3 2+j -3 2—j
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When (3.115) is simplified, we get
x[n] = % (3 + (24j)e — 3™ + (2 — j)ef%"") (3.116)
Evaluating (3.116), i.e., x[n], for n = 0, 1,2, 3, we obtain,

x0]=1 x[1]=1 x2]=-1 x[3]=2

which can be written in short as

Note: Remember that ¢/’ = cos(0) +jsin(0).
Example 3.20 Find the discrete Fourier transform of the signal shown in Fig. 3.20.
Solution 3.20 Using the DFT formula

X[k =" xlnle W kN
n,N

for N = 3, we obtain
1 N
X[k =) e ™" —1<k<1. (3.117)

n=-—1

When (3.117) is expanded, we get

X[K] = x[~1] D 4 Jf1] e —1<k< (3.118)
N —
1/2 1/2

which is simplified as

X[k]:cos(—k>, —1<k<1. (3.119)

Fig. 3.20 Aperiodic signal x[n]
for Example 3.20 4
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From (3.115) DFT coefficients can be calculated as

1
k=—-1—X[-1]=—=
= X[-1) =5
k=0—-X[0]=1
1
k=1—-X[l]=—=
= X[1] =~
That is,
_% 1 _%
Xk] = .
k] = [ 1 ]
k=0

Note: For the previous example, discrete Fourier transform is calculated for
N = 3 which is equal to the length of the aperiodic sequence x[n]. Hence, if it is not
clearly mentioned, the default length of the DFT computation is the same as the
length of the aperiodic sequence x|n].

Example 3.21 DFT coefficients of an aperiodic signal are given as
1
2]. (3.120)

Find x[n] whose DFT coefficients are X[k|.

Solution 3.21 If we use inverse DFT formula
1 2n
an] ==Y X[kl n N
N<F
for the given signal, we get

1
x[n] :ézX[k}E’ZT""”, —1<n<l1. (3.121)

k=—1

When the summation term in (3.121) is expanded, we obtain

1 27 o

xn] == | X[=1] e " + X[0] &° + X[1] &5
3 N—— ~—~ ~—~
—-1/2 1 —-1/2
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which is simplified as

1 1 o 1 o
)C[l’l] :g <—5€_J%n+1 —Ee’%")

177

(3.122)

Let’s evaluate (3.122), i.e., x[n], for n = —1,0, 1. We first calculate for n = —1

as

which is simplified as

x[—1] = % <—cos(23—n) + 1) —x[-1] = %

and for n = 0, we have

1 1
(—Eeo—&-l —Eeo> —x[n] =0

1 o 1 2
(_Eefﬂl) +1— Eelzﬂl))

which is written in more compact form as

=1 L)

Question: For the previous example if we evaluate

1 | 1 2
=—|(—Ze3"+1—=€5"
x[n] 3 < 5¢ + 5" >

(3.123)
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Fig. 3.21 Aperiodic signal x[n]
for Example 3.22 A

1
2

for n =0, 1, and 2, we obtain

(3.124)

=
=,
Il
(8]
=

n=0

When (3.123) and (3.124) are compared to each other, we see that (3.124) can be
obtained from (3.123) by rotate left or rotate right operations.

Example 3.22 Find the 8-point discrete Fourier transform of the signal in Fig. 3.21.

Solution 3.22 Although the length of the aperiodic signal equals to 2, the DFT will
be calculated for 8-points. For this reason, we first pad the signal by zeros so that its
length equals to 8. So the finite length signal becomes as

Xpj=[-1 _0_ 1 0 0 0 0 0]
=0

And the 8-point DFT is computed using
6 A
X[k =) xnle ¥, —1<k<6. (3.125)
n=—1
When the summation in (3.125) is expanded, we get

X[k] = (%) x e K1 10 x o0 4 (%) x e Tk 10 x e /¥R

+0x e 10 x e/ 40 x eI 40 x ¢ IFHO
which is simplified as

21
8

X[k] = (ef‘%" + e—f'—""). (3.126)

N =
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Equation (3.126) can be written in terms of cos(-) function as

2n

X[k] :cos(§k>, —1<k<e. (3.127)

And when the Fourier series coefficients in (3.127) are explicitly calculated, we
obtain

XK = [cos(=%) cos(0) eos(¥) cos() cos(®) cos(¥) cos(%) eos(3)]

which is simplified as
X[k =[0.7071 _1 0.7071 0 -0.7071 -1 -0.7071 0.
~—

k=0

Example 3.23 DFT coefficients are complex numbers. And those complex coeffi-
cients have magnitude and phase values. For the DFT coefficients

Xk =1[3 24 —-3+j 2—j]

find |X[k]|, i.e., magnitudes of the DFT coefficients, and ZX[k], i.e., phase infor-
mation of DFT coefficients.

Solution 3.23 For the complex number x = a+bj the magnitude and phase
information is calculated as

x| = v/(a® +5?), Ztan™! (Z) (3.128)

Using (3.128) the magnitude and phase of each DFT coefficient is calculated as

X[0]] = v32+02 — 3 ZX[0] =tan"'2 — 0
IX[1]] = vV22+ 12 = /5 ZX[1] = tan_l;—>015n
X12]| = /(-3 +12 - V10 2X[2] =tan' —1 — —0.1n
X[3]| = /22 + (1> = V5 ZX[3]=tan"' —1 — —0.15%

Magnitude and phase values are plotted in Fig. 3.22.

Example 3.24 One period of the discrete time Fourier transform of the non-periodic
signal x[n] is given in Fig. 3.23. Using the given Fourier transform graph:

(a) Find the 4-point DFT of x[n]. (b) Find the 8-point DFT of x[n]. (c) Find the
16-point DFT of x[n].
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X[k
0.157
< 0 1 q T Tk
—-0.17r -0.15x

Fig. 3.22 Magnitude and phase plot of DFT coefficients in Example 3.23

X/I (W)
A
3
2
1.25 0
&ﬁ/ ,
0.32 e
- : : > W
Of 7 2z 3z 4z 5z 6z Tz 8%
4 4 4 4 4 4 4 4

Fig. 3.23 One period of the discrete time Fourier transform of a non-periodic signal

Solution 3.24

(a) DFT coefficients are obtained by sampling of X,,(w) in frequency domain. That

is,
2
XMZ&MMWTM:§~ (3.129)

Since N = 4, we take 4 samples from one period of X, (w). The sampling period
is
21 2n
Wy =—— Wy =—.
4

The sampling operation is illustrated in Fig. 3.24.



3.5 Discrete Fourier Transform

X, (w)
A

3 w=kw

2
1.25

0.75 /.

0.32

A

0 2 4

4

k=0 k=1 k=2

Fig. 3.24 Sampling of the Fourier transform for N = 4

k

6x

4

3

Considering Fig. 3.24, the DFT coefficients can be written as

X[k]=[0 3 125 0.75].
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(b) For N = 8, we take 8 samples from one period of X,,(w). The sampling period

1S

27 T
WS:——>WS:—

8 4’

The sampling operation for N = 8 is illustrated in Fig. 3.25.
Thus the DFT coefficients obtained in Fig. 3.25 can be written as a mathematical

sequence as

Xk =[0 2 3 3 125 075 075 0.32].

X/l(w)
A
3 w=kw, w{zz—ﬁ
o8
2
1251 0
0.751 ~_
032 TS
B of = 2z 3z 4z 5z 6z Iz 8z
4 4 4 4 4 4 4 4
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=17

Fig. 3.25 Sampling of the Fourier transform for N = 8
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Exercise: The aperiodic signal is given as x[n] = d[n] + é[n — 1].

(a) Find the Fourier transform of x[n], i.e., X,(w) =7

(b) Find |X,(w)| and £X,(w).

(¢) If X[n] = >°;°_ x[n — 4], draw X[n| and using X, (w), find the Fourier series
coefficients of [n], i.e., X[k] = ?

(d) Find 4-point DFT of x[n]

3.5.1 Aliasing in Time Domain

When we study sampling theorem, we have seen that during sampling operation if
we do not take sufficient number of samples from analog signal, we cannot per-
fectly reconstruct analog signal at the receiver side from its digital samples. And the
effect of this situation is seen as aliasing or overlapping in frequency domain.

We have seen that DFT coefficients of a non-periodic digital signal x[n] are
nothing but the samples taken from one period of its Fourier transform, for instance,
samples taken for 0 <w<2n. We can reconstruct the digital signal x[n] from its
DFT coefficients using

=

1 J2T
xn ==Y X[k, 0<n<N. (3.130)
N k

Il
o

Now we ask the question: Is x,[n] always equal to x[n] ? If not always, then what
is the criteria for x,[n] to be equal to x[n] ?

We know that N-point DFT coeffcients of x[n] equals to the one period of the
DFS coefficients of the periodic signal X[n], and the relation between x[n] and X[n]
can be stated as

o0

n) = ) x[n—kN]. (3.131)

k=—00

Let the length of the digital signal x[n] be M. If M > N, then the shifted suc-
cessor signals x[n — kN] overlap each other. And when the shifted signals are
summed, one period of X[n] is not equal to x[n] anymore. This means that using the
inverse DFT operation, x[n] cannot be obtained exactly. The amount of distortion in
the reconstructed signal depends on the overlapping amount.

Example 3.25 For x[n] =[—-1 1 1] and N = 2, calculate
X[n] = Z x[n — kN].
k=—00

Find one period of X[n] and compare it to x[n].
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\j
3

3
\/
3

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Fig. 3.27 Sum of the shifted signals in Fig. 3.26

Solution 3.25 The shifted signals are shown in Fig. 3.26.

The sum of the shifted signals in Fig. 3.26 yields the signal in Fig. 3.27.

As it is seen from Fig. 3.27, one period of X[n] is [0 1] which is totally different
than x[n] =[—-1 1 1].

Example 3.26 x[n] =[—1 1 1], calculate 2-point DFT of x[n| and using 2-point
DFT coefficients, calculate x[n] using the inverse DFT formula and comment on the
results.

Solution 3.26 2-point DFT coefficients of x[n] =[—1 1 1] can be calculated
using

yielding

N =
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the aperiodic signal is found as

which is truncated version of

3.5.2 Matrix Representation of DFT and Inverse DFT

Before generalizing the concept, let’s consider 3-point DFT of an aperiodic
sequence

2
X[k = xfnle ¥ 0<k<2 (3.132)

n=0

When the summation in (3.132) is expanded for each k value, we obtain the
following equations
X[0] = x[0]¢” + x[1]e® + x[2]¢°
X[1] = x[0]e° + x[1]e 7% + x[2]e 75 (3.133)
X[2] = x[0]e” + x[1]e 7% + x[2]e 7.

X[0] AL e
X[] | = [x[0] x[1] x[2]]x | e¥F
X[2] e e

which can be expressed in short as
X[k] = x[n] x Ey, N =3. (3.134)

From (3.134) X[n] can be written as

x[n] = X[k] x Ey". (3.135)
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In a similar manner, the inverse 3-point DFT formula can be written in matrix

form. Expanding

xn = %;X[k}e’%""’ﬂ 0<n<2
we get
x[0] = % (X[0]e° + X[1]e° + X [2]e")
x[1] = % (X[O}eo +X[1] ‘2?"+x[2]ef§—")
x[2] = % (X101 + X[1]¢%% + X[2)%).

The equation set in (3.137) can be written in matrix form as

x[0] 1 e e
x[1] | = 3 % [X[0] X[1] X[2]] x | &% &F
X[Z] eo e/%ﬂ elsTn

When (3.138) is compared to (3.139)
x[n] = X[k] x E;,l
we obtain

1
-1 *
Ey NN

(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

Note: Ey is the conjugate of Ey. If e = a + jb then conjugate of e is ¢* = a — jb

and if e = ¢ then ¢* = /.

3.5.3 Properties of the Discrete Fourier Transform

Since there is a close relationship between discrete Fourier series coefficients of a
periodic signal and the discrete Fourier transform of its one period, it is logical to
review the properties of the discrete Fourier series coefficients of a periodic signal.

For the three periodic signals

=

[n] — Periodic with period N
1[n] — Periodic with period N
X2[n] — Periodic with period N

=
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let’s denote the Fourier series coefficients by
k] — Periodic with period N

X1 [k| — Periodic with period N
X,[k] — Periodic with period N.

And the correspondence between signals and their DFS coefficients are shown as

il = XIH
X [”]DHFSX 1[k]
oln] = Xa[k]

Properties
Linearity:
[ ] +bX2[ ] — 615(1 [k] +bX2[k]
Duality:
X[n) 2 NE[ k]

Shifting in time:
X — m] 2 e g k]

Shifting in frequency:

3] K[k 1
Convolution in time domain
= - DES & <
Xi[m)xa[n — m] < X, [k] X, [k
m=0

Convolution in frequency domain
1 V=

2

k=0
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Conjugate:

Real part DFS:

Imaginary part DFS:

jIm{E[n]} DHFS% (X[K] - X*[A])
Real part:

%(x[n] +5[—n]) = Re{X[K]}
Imaginary part:

% (%[n] — % [~n]) = jim{X[k]}

For real X[n], we have the following properties
Conjugate:

Real DFT coefficients:

Re{X[K]} = Re{X"[-K]}
Imaginary DFT coefficients:

Im{f([k]} = —Im{X*[—k]}

Absolute value:

Phase value:
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Real part:

~ DFS

(¥[n] +X[—n]) = Re{X[k]}

N =

Imaginary part:

2 5ln] = ) 2 jom X 4]}

Note: If x[n] = a[n] +jb[n], then x*[n] = a[n] — jbln]

3.5.4 Circular Convolution

The discrete Fourier transform of an aperiodic sequence x[n] with length N equals to
the one period of the Fourier series coefficients of the periodic signal X[n] obtained
from x[n] as

o0

X[n] = Z x[n — kN|

k=—00

and the relation between DFT coefficients of x[n] and one period of Fourier series
coefficients of the periodic signal X[n] is given as

X[k] if0<k<N -1
X =
4] { 0 otherwise.

Let’s denote one period of X[n] for 0 <n <N — 1 by x[(n),]. It is clear that if the
length of x[n] is N then x[(n) ]| = x[n]. However, if the length of x[n] is a number
other than N then

x[(n)N] # x[n].

If not indicated otherwise, we will assume that the length of x[n] and period of
X[n] are equal to each other.
Properties

x1[n] — Aperiodic signal with length N,
x2[n] — Aperiodic signal with length N,

N = max{N;,N,}
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] N—p(()i_n}tDFT X[kl

N—pointDFT
—

X2 [Vl} X2 [k]

Linearity:
axi[n] + bxs[n] > aX; [k] + aXo[k]

Circular Shifting:

x[(n—m)y] ]LFTefj%ka[k]

Duality:
x[n] 2= X[K]
DFT
X[n] & Nx[(—k)y]
Symmetry:

] X [(—k) ]

X [(=n)y] = X[
Symmetry property leads to the following properties
Re{x[n]} l3—>FTXe,, [k], ep :evenpart
JjIm{x[n]} IziTXop [k], op :odd part
xepln] % Re(X[k]}
Xopln] = jim{X[K])

Circular Convolution:

9
los]
—~

1
>
=

x1[n]

13
23
=

x2[n]

189
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If

then

or

Y =Y xwfmlx((n —m),]
m=0
And the expression
> xilmol(n - m)y)
m=0

is called the circular convolution of x;[n] and x,[n] and denoted by

x1[n] © x,[n].

Example 3.27 What does x[(—n)s] 0<n<4 mean?
Solution 3.27 x[(—n);] equals to one period of X[—n] in the interval 0 <n <4, i.e.,
x[(—n)s] =X-n] 0<n<4
and
in) = > xfn—S5I.
I=—

Note: We assumed that the length of x[n] and period of X[n] are equal to each
other.

Example 3.28 If x[n) =[—-1 1 —1 0.5 —1], find x[(—n)s] 0<n<4.

Solution 3.28 x[(—n)s] equals to y[n] = X[—n| for 0 <n <4 and X¥[n] is given as



3.5 Discrete Fourier Transform 191

X[n] = i x[n — 5.

I=—00

One period of X[—n] in the interval 0 <n <4 is found by employing rotate inside
operation on one period of X[n], i.e., on x[n]. That is

x[(=n)s] = Ri(x[n])
which can be calculated as

x[(=n)s]=[-1 1 05 -1 1].

Example 3.29 If xln) =[—-1 1 —1 0.5 —1], find x[(1 —n)s].
Solution 3.29 x[(1 — n)s] equals to X[1 — n] for 0 <n <4 and X[n] is calculated as
o8]
X[n] = Z x[n — 51].

[=—00

One period of X[1 — ] is obtained by rotating one period of X[—n] to the right by
‘1’ unit. That is

x[(1 = n)5] = RR(x[(-n)3]).
Using the result of the previous example, i.c.,
x[(=n)s] =[-1 -1 05 -1 1]
we can calculate x[(1 — n)s] via
x[(1 = n)s] = RR(x[(=n)s])
which yields
x[1=n)]=[1 -1 -1 05 -1].

Note: x[(2 — n)s] is obtained by rotating x[(1 — n)s] to the right by ‘1’ unit.
And x[(—1 — n)s] is obtained by rotating x[(—n)s]| to the left by ‘1” unit.
Example 3.30 If x[n) = [—1 —1 1 1], find x[(—n),].

Solution 3.30 x[(—n);] = ¥[—n] for 0<n <3 and X[n] is obtained as
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U 2 R, ool
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Fig. 3.28 Shifted replicas of x[n] and calculation of X[n]

o0

in) = > xfn— 31

I=—

Since the length of x[n] is 4, the shifted successor copies in > ,° _ x[n — 3]
overlap with each other. For this reason, one period of X[n] is not equal to x[n]

anymore. It should be calculated explicitly. This calculation is explained in
Fig. 3.28.

x[(n);] for 0 <n <3 equals to one period of X[n] and from Fig. 3.28, it is found
as
Syl =[0 1 1]
which is denoted by x[(n)3] , that is,

x[(n);] =[0 -1 1].

And x[(—n);] which is equal to one period of X[—n] can be found using the
rotate inside operation as

x[(=n)s] = RI (%o [n])

yielding

Exercise: For the previous example find x[(2 — n);].
Example 3.31 If x[n] = [0.5 0.5 —05 1 —1], find x[(n — 2)s].

Solution 3.31 x[(n — 2),] equals to X[n — 2] for 0 <n <4 and X[n| is obtained as
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X[n] = 200: x[n — IN]

I=—00

where N = 5. Since the length of x[n] equals to the period value of the X[n], then
X[n] in one period interval 0 <n <4 equals to x[n]. And one period of the shifted
periodic signal for 0 <n <4 can be obtained by rotate right operation as

Xop[n — 2] = RR(x[n],2)
which can be calculated in two steps as follows

Xop[n — 1] = RR(x[n], 1)
—[-1 05 05 —05 1]

Xopln — 2] = RR(X,p[n — 1], 1)
=[1 -1 05 05 —0.5].

As a result x[(n — 2),] is found as

x[(n=2)5]=[1 -1 05 05 -05].

Example 3.32 If x;[n)=[-1 —1 1 05] and xn]=[-1 -1 -1 1],
find 4-point circular convolution of x;[r] and x;[n]. That is,

1[n] @ xz[n] =

Solution 3.32 Method 1: N-point circular convolution of x;[r] and x;[n] can be
calculated using

N-1
x[n] ® x;[n x; [m]x,[(n — m) ). (3.141)
m=0
Let y[n] = x;[n @ X,[n], expanding the right hand side of (3.141) for

N =4 we get

yln] = x1 012 [(n),] +x1[1x2 [(n = 1),] +x1[2]x2 [(n — 2),]

+x1[3]x2[(n — 3),] (3.142)

where the signals x2[(n),], x2[(n — 1),], x2[(n — 2),], and x;[(n — 3),] can be
calculated as
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x[(n),] =0 = x[m),) =1 -1 -1 1]
x[(n=1),] =RR(x[n],1) > x[(n—1),] =[1 1 -1 -1]
x[(n=2),] =RR(x[n,2]) > xn[n-2),]=[-1 1 1 -1 (3.143)
x[(n=3),] =RR(x2[n],3) > x[(n—3),] =[-1 -1 1 1]

ypl=(-1)x[1 =1 =1 1]+(=1)x[l 1 -1 -1]
+(1)x[-1 1 1 —1]4(05)x[-1 -1 1 1]
which is simplified as
yn]=[-35 05 35 -05].

Method 2: N-point circular convolution of x; ] and x;[n] can be calculated as

N—1

y[r] = le [m)x2[(n — m)y]. (3.144)

m=0

Evaluating the right hand side of (3.144) for the n values in the range
0<n<N — 1, we get the equation set

N-1

y[0] = 3 xi[mlxa[(0 —m)y]

m=0
N—-1

y[1] = mgoxl [mlxa [(1 —m)y] (3.145)

N—-1

yIN-1]= mZ::Oxl[m]xg [(N —1- m)N}

For N = 4 equation set (3.145) becomes as
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3
V0] =Y xi[mlxa[(0 — m),]

m=0

3
Y11= xifmle[(1—m),]

’"3:0 (3.146)
W21 =) xifmlx[(2 —m),]

m=0

3
YB3 =D xlmn[(3 —m),]

m=0

where the signals x; [(—m),], x[(1 —m),], x[(2 —m),], and x,[(3 — m),] are
calculated as

Now consider the summation term
3
0] = " xi[mlxa [(0—m),]. (3.147)
m=0

Let wim] = x;[(—m),] i.e, wim] =[1 1 —1 —1]; then expanding (3.147),
we obtain

Y[0] = %1 [0]w[O] +x1 [Lw[1] +x1 [2]w[2] + x1 [3]w[3]
which is nothing but dot product of two vectors x; [n] and w[n], that is
YOI = [af0] x[1] «f2] x[B3]]-[wlo] wli] wl2] w[3]]
which can also be written as
Y[0] = xi[m] - wlm]
MO} = x1[m] - xa [(=m),].

Then
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YOI = (=1) x (1) + (=1) x (1) + (1) x (=1) +(0.5) x (=1)
y[0] = =3.5.

In a similar manner,

Y] = xi[m] - %2 [(1 — m),]
V1] = (=1) x (= 1)+ (=1) x (1) + (1) x (1) + (0.5) x (1)
y[1] =05
Y2l = xifm] - %2 [(2 — m),]
y2] = (1) x (=1) + (=1) x (=1) + (1) x (1) +(0.5) x (1)
2] =35
B3] = xi[m] - x2[(3 — m),]
YBl = (=1) x (1) +(=1) x (=1) + (1) x (=1)+(0.5) x (1)
YB3l =-05
As a result;
yr]=[-35 05 35 -05].

Note: If y[n] =x; [n] @ X,[n] and the length of x| [n] or x,[n] is shorter
than N then the shorter sequence is padded by zeros so that its length equals to N. If
both sequences are shorter than N samples then both sequences are padded by zeros
so that their lengths equal to N.

Example 3.33 If xy[n]=[-1 -1 1 0.5] and xn]=[1 -1 -=2], find
6-point circular convolution of x;[n] and x;[n]. That is,

21 [N](©)x,[n] =2

Solution 3.33 The lengths of the sequences x; [n] and x,[n] are 4 and 3 respectively.
Both sequences should be padded by zeros so that their lengths equals to 6. That is,

xpnl=[-1 =1 1 05 0 0] xh=[1 -1 -2 0 0 0]

Then circular convolution operations can be performed as in Example 3.32.
Matrix Representation of Circular Convolution

Example 3.34 1f xi[n] = [x1[0] xi[1] xi[2]] xo[n] = [x[0] x[l] x[2]]
Express 3-point circular convolution of x; [n] and x;[n] as matrix multiplication.
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Solution 3.34 Expanding the expression

for N =3, we get
yln) = x1 [0z [(m) ] + 1 [z [ = 1) ] + 31 22 [ (n = 2) ]
which is calculated as

¥ =x101x2[0] xl] 2] +x(l][x2] x[0] x[l]]
+x1[2][x2[1] x2[2] x[0]].

The expression in (3.48) can be written using matrix multiplication as
¥[0] 0[0] %2 x[l]
Y ) = (a0l x{l] «a2]) x [ (1] w0 x?2] .

2

Example 3.35 Ifx[n]=[-1 0 _1 -1 2 1], find
n=0

xq[n] @ xq[n] =?

Solution 3.35 Since the index n = 0 is not at the first element in x[r], it is easier to
calculate the circular convolution using the first method we introduced. That is
expanding

for m values, we obtain

vl = xi[=2]x [(n +2)g] +xi[= 1w [(n+ 1)g] +21[0)x1 [ ()]
+xi1[1x; [(n = 1)g] +x1[2]x1 [(n = 2)¢] +x1[3]x1 [(n — 3)¢]

and placing the n values in the range —2 <n <3 for y[n|, we can find the 6-point
circular convolution result.
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Exercise: Prove the following property
x[(n—m)y] J3E>Tef-’?7nk’"X[lc].
The Relationship between Circular and Linear Convolution:

x1[n] — Aperiodic signal with length L
x2[n] — Aperiodic signal with length P

Linear convolution of x;[n] and x;[n] is calculated using
Yie[n] = Z x1[m]xz[n — m).

The length of y;.[n] is L+ P — 1. N-point circular convolution of x;[r] and x;[n]
is

YVee [n] = X1 [n] @ X2 [n].

The relationship between y.[n] and y..[n] is given as

Jn—rN] 0<n<N -1
ycc[n] = rgooyl [ ] -
0 otherwise.

If N> L+ P — 1 then the circular convolution and linear convolution results are
the same, i.e., yi.[n] = yec[n]-

3.6 Practical Calculation of the Linear Convolution

Overlap Add and Overlap Save Methods

For practical communication systems, the input signal may not be of finite duration.
It may be of infinite duration or may be a very long sequence, such as TV signal,
video or speech signal.

The input signal x[n] is usually passed through a filter with an impulse response
h[n]. Filtering operation is nothing but the convolution of the input signal with the
impulse response of the filter, the filter output is

yln] = x[n] + h[n].

If the input signal is very long, then convolution operation takes too much time,
or sometimes it may not still be possible to evaluate the convolution result.
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To overcome this issue, two approaches are followed to evaluate the convolution
of a very long input and a short impulse response sequences. These methods are
called overlap-add and overlap-save. Let’s first explain the overlap-add method.

3.6.1 Evaluation of Convolution Using Overlap-Add
Method

Let x[n] be the input signal with length N and h[n] be the filter response with length
P such that N > P. The overlap-add method to evaluate

consists of the following steps:
(1) Divide the input sequence to frames such that each frame has length L.
Let’s denote the frames by xo[n], x1[n],x2[n] -+ 0<n<L-1

(2) Evaluate the convolution of each frame with &[n], i.e., evaluate
yi[n] = x[n] x hln] k=0,1,2,...

(3) Calculate the convolution result as

o0

il = > wiln — L.

k=0

Let’s explain overlap-add method with an example.
Example 3.36 If xjnj=[-1 1 0 1 -1 0 1 1 -1 1 0 —1] and
hln] =[1 —1], find x[n] * k[n] using overlap-add method.
Solution 3.36
(1) In step 1, we divide the input sequence into frames of length L. The length of
the impulse response h[n] is P = 2. The length of the frames depends on our

choice. Let’s choose the length of the frames as L = 3 and divide the sequence
x[n] into frames as shown in (3.148)

xpl=[=1 1.0 1 -1 0 1 1 -1 1 0 1 (3.148)
ol sl <l sl

If the last frame had a length smaller than 3, then we would pad it by zeros until
its length equals to 3. The divided frames are
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wh=[1 1 1] xk=[1 0 -1]. (3.149)

(2) In step 2, we take the convolution of each frame in (3.149) with impulse
response h[n].

Let’s first calculate the convolution of xp[n] and h[n], i.e., calculate yo[n] =
Xo[n] * h[n] which is written as

o0

Yolr) = Y hlk]x[n — k] (3.150)

k=—00

When (3.150) is expanded for n = 0, 1,2, 3, we obtain

yo[n] = xo[n] * Aln] — yo[n] =[—1 1 0]x[1 —1]—yn=[-1 -2 -1 0]

viln] = xi[n] * hln] — yo[n] =[1 -1 0]*[1 —-1]—=yn=[-1 -2 1 0]
wn =xnlxhn] = yn]=[1 1 —1]x[1 —1]—>wmx=[1 2 -1 0]
va[n] = x3[n] xhln] — yo[n] =[1 0 —1]*x[1 —1]—ypn=[1 -1 -1 1].

(3.151)

(3) In this step, using the results of (3.151) in

00

y[n] = Zyk [n — Lk]

k=0

Fig. 3.29 Shifting of y; ]

nin]
1 -2 1 0
- > n
0 1 2 3
nln=3]

A
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for L = 3, we obtain

which is expanded as
y[n] = yo[n] +y1[n — 3] +y2[n — 6] +y3[n — 9. (3.152)

The signal y;[n — 3] in (3.152) is obtained by shifting the amplitudes of y; [n] to
the right by 3 units. When amplitudes are shifted to the right, zero amplitude values
are inserted into the old positions.

This means that y, [n — 3] can be obtained by padding 3 zeros to the beginning of
yi[n]. This operation is illustrated in Fig. 3.29.

Thus, the shifted signals together with yo[n] can be written as

x[n]

A
\
3

0 L-11L 2L

Fig. 3.30 Dividing x[n] into frames

wy[n]
- -7
0 L-1
w[n] .
-< ’ . >
0 L 2L -1
w,[n]
- - 71
0 2L

Fig. 3.31 Divided frames of x[n] are shown separately
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<7 . -7
0 L-1
x,[n]
<7 ’ -1
0 L-1
x,[n]
-t ) - - 71
L-1
Fig. 3.32 Divided frames of x[n] start at n = 0
xo[”f] ..
- , > 1
0 L-1
x[n—L]
-t ) -1
0 L 2L -1
x[n-2L]
- ]
0 2L
Fig. 3.33 Frames starting at n = 0 are shifted by multiples of L
=|-1 2 -1 0
Yoln] = (<L |
n=0
-3/=0 001 =210
nln=31=[0_ }
3.153
Yaln — 6] = (3.153)

n=0
(00000010 -2 1
=0

yir—9]=[0_ 00000000 1 —1 —1I
n=0

When the shifted signals in (3.153) are summed, we obtain the convolution

result as
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yn=[-1 2 -1 1 =2 1 10 -2 2 -1 -1 1]

Now let’s see the mathematical derivation of the overlap-add method.

Assume that the digital sequence x[n] is divided into frames as shown in
Fig. 3.30.

And the frames are separately shown in Fig. 3.31.

Let’s make the starting index of every frame be equal to n = 0. This is shown in
Fig. 3.32.

We can obtain the digital signal x[n] by shifting and summing the frames that
starts at n = 0 as shown in Fig. 3.33.

This operation is mathematically written as

x[n] = ixk[n — LK.

k=0

Then the convolution of x[n] and A[n] can be written as

= hin] * ixk[n — Lk]. (3.154)

k=0
When the summation term in (3.154) is expanded, we get
y[n] = h[n] * (xo[n] +x1[n — L] +x2[n — 2L + - - ). (3.155)
And for linear time invariant systems if
yi[n] = hln] * x1[n]
then
yi[n — L] = hln] * x;[n — L].

Using a similar approach for the other convolutional expressions appearing in
(3.155), we get

y[n] = vo[n] +y1[n — L] +ya[n — 2L) + - - -
where

yoln] = h[n] * xo[n],  yi[n] = hln] xxi[n], ya[n] = hln] *x2[n].
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As a result;

3.6.2 Overlap-Save Method

Assume that the impulse response h[n] has length P. The convolution of x[r] and
h[n] using overlap-save method is achieved via the following steps.

(1) Pad the front of x[n] by P — 1 zeros.

(2) Divide x[n] into frames of length L such that the successor frame overlaps with
the predecessor frame with P — 1 points.

(3) Let xx[n] be a frame, calculate the L point circular convolution of x[n] and An],
i.e., calculate

Yiln] = xi[m](L)h[n].
(4) Discard the first P — 1 points of yi[n].
(5) Concatenate yi[n] and obtain y[n], i.e., y[n] = [yo[n]y1[n] - - -].
Let’s explain overlap-save method with an example.

Example 3.37 Using h[n] and x[n] given below, find the convolution of A[n] and
x[n] using overlap-save method.

Take frame length as L = 4.

Solution 3.37 The length of the impulse response A[n] is 3, i.e., P = 3. And frame
length is L = 4 which is given the question, otherwise we can choose it according
to our will.

Let’s follow the steps of the overlap-save method for the calculation of con-
volution of A[n] and x[n].

(1) Add P—1=3—1— 2 zeros to the beginning of x[n]. This is shown in
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P — 1 zeros
are added
to the
beginning

of x[n]
(2) Divide x[n] into frames such that frames overlap by P — 1 = 2 samples. This
operation is illustrated in

xo}[\”] x,[n] x4[n] xg[n]

n]=[0010-111-110011-10 0]

x[n] x3[n] xs5[n]

where we padded the last divided frame by 2 zeros such that its length equals 4.
The divided frames are separately written as

xn=[0 0 1 0] xn=[1 0 -1 1] xhk=[-1 1 1 -—1]
xnj=[1 —1 1 0] x4n]=[1 0 O 1] xsnpj=[0 1 1 —1]

(3) In step 3 we calculate the L = 4-point circular convolution of each frame with
hln], i.e., we calculate

n] ¥
5

(4)xo[n]  yi[n] = hln](4)x:
(4)x3 hin)(4)xaln] ~ ys|n] =

n]  yaln] =

As a reminder we below provide the 4-points circular convolution of xy[n] and
h[n]. N-point circular convolution of x[n] and k[n] is given as

yoln] = 3 x[KJhl(n — K. (3.156)
k=0
For N = 4 when (3.156) is expanded, we obtain
yoln] = x[0]h[(n),] + x[1]h[(n — 1),] +x[2]h[(n — 2),] +x[3]A[(n — 3),].

Since N =4 we pad h[n] by zeros such that its length equals N =4 and k[n]
becomes as
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Noting that i[(n — ng),] is obtained rotating h[n] to the right by ng units, we get
the following expression for yg[n]

yoln] =0 x h[(n),] +0 x h(n —1),] +1 x h[(n —2),] +0 x h(n —3),]

which leads to

4-point circular convolution of each frame with k[n| is given in (3.157).

yo[r] =[1 0 =1 1] y[n] 2 2 =2] wmh=[1 =3 -1 3]
vi[n] =[0 2 —1 0] wn]=[0 2 1 —1] ysn/=[0 -2 0 3]
vl =[~1 2 0 1]

|
|
—_

(3.157)

(4) In step-4, we discard the first P — 1 = 2 samples from the beginning of each
yi[n], k= 0,1,2,3,4. This operation is illustrated in

1 0 -1 1
yoln] = |~~~ —yoln] =[-1 1]
omit
-1 2 2 =2
il = | —— =y =[2 -2]
omit
1 -3 -1 3
o ) =1 3]
L omit
[0 2 —1 0]
i = | —~—~ — ] =[-1 0]
L omit ]
[0 2 —1 1]
vl = [L2 Syl =11 —1]
L omit ]
[0 —2 0 3]
yshn] = | ~—~— — ysln] = [0 3]
L omit ]
-1 2 0 -1
yeln] = —— —ys[n] =10 —1].
omit

(5) Finally in the last step, we concatenate the truncated sequences to find the
convolution result, i.e.,
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y[n] = [o[nlyi[n]y2[n]ys[n]ya[n]ys(n]]

which leads to

ypj=[-1 1 2 -2 -1 3 -1 01 -1 0 3 0 —1].
Exercise: If x[n]=[-1 1 1 -1 1 1 —-1-111-1-111-1-1] and
hln]=[1 —1 —1], calculate x[n] x h[n]

(a) Using overlap-add method.

(b) Using overlap-save method.

3.7 Computation of the Discrete Fourier Transform

3.7.1 Fast Fourier Transform (FFT) Algorithms

There are two types of Fast Fourier transform algorithm. These are:

(1) Decimation in time FFT algorithm.
(2) Decimation in frequency FFT algorithm.

Let’s first explain decimation in time FFT algorithm then decimation in fre-
quency FFT algorithm.

3.7.2 Decimation in Time FFT Algorithm

Before starting to the derivation of the algorithm, let’s consider some motivating
examples.
The DFT formula is

where k takes values in the range 0, 1,...,N — 1, i.e., if N = 4, then the range of k
is 0,1,2,3.
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Example 3.38 If e’,ﬁ, is defined as e’,ﬁ, = eI k € Z, write eﬁ fork=0,1,2,3 as a
vector.

Solution 3.38 ¢} = [¢0F 1% 2% 3% | which can be simplified as
G=11 — —1 j]
Exercise: Write e’g for k=0,1,...,7 as a vector.

Example 3.39 Given x[n] = [a b] find 2-point DFT of x[n].
Solution 3.39 Using the formula

N-1
X[k =" afnle 5", k=0,1,.. ,N—1
for N =2, we get
1 .
X[k] = x[nle ", k=01 (3.158)
n=0
When (3.158) is expanded for k = 0 and k = 1, we get
X[0] = x[0] +x[1]  X[1] = x[0] +x[1]e™ — X[1] = x[0] — x[1].
Then 2-point DFT of x[n] = [a b] is

X[kl=[a+b a-D].

Example 3.40 1If x[n] = [3 —2], find 2-point DFT of x|n].

Solution 3.40 Using X[k] = [a+b a—b], we find the 2-point DFT of x[n] =
[3 —2]as

Example 3.41 If x[n] = [a b], find X[k] for k = 0,1,2,3.
Solution 3.41 Expanding the formula
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n=0
1 .
X[1] =Y xlnle 5"
n=0
1
X2l =3 xfne 2
n=0
1
XBl =3 xlnle 5.
n=0

209

If we look at the exponential terms in X[0] and X[2], we see that e 03" = ¢=/25"

this means that

That is

And using our previous example results, we can write X[k] as

Xkl=[a+b a—b a+b a-D]

Example 3.42 Calculate X[k] for

xal=[1 3 2 -1]

using the DFT formula but take k range as 0, 1,...,7 instead of 0, 1, ...
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Solution 3.42 Using the DFT formula the DFT coefficients for k = 0,1,...,7 can
be calculated as

[
7
=
=
[N
4
(=
=5

X[0]
n§0
X[1] = 3 x[n]e %"
n?O
X[2] = ;0 x[n)e 72
X[3] = i x[n]e 735N
"0 (3.159)
X[4] = Z:‘Bx[n}e_ﬂ%n”
X[5] = i{)x[n}e‘js%”
X[6] = % x[n]e 0%
X[7) = é x[n]e 775N

If we inspect the exponential terms in X[0] and X[4] in the equation set (3.159),
we see that e /%" = ¢=*¥ this means that

If we calculate X[k] for k =0,1,...,3, we get

And on the other hand if we calculate X[k] for k =0,1,...,7, we get

X0 X[ XP) X0 Xl X3 Xl X[
= S0 Sh 5w

That is
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Using (3.159), X[k] for k = 0,1,2,3 can be calculated as
Xk=[5 —-1—j4 1 —1+j4]
and for k =0,1,...,7, it equals to
XK =[5 —1—j4 1 —1+j4 5 —1—j4 1 —1+j4].

In fact, the results of these examples are nothing but the main motivation for the
derivation of the fast Fourier transform algorithm.

Now let’s start the derivation of the fast Fourier transform algorithm.

Fast Fourier Transform Algorithm Derivation

We consider the DFT formula

X[k] = Nix[n}e*f’f%". (3.160)

n=

Let’s denote the exponential function e ¥ in (3.160) by ey, i.e., ey = e’jZN_", and
the function ey has the following properties.

(1) E%/ = €n/2

This property comes from the definition directly, i.e.,

2 _ -
eN/z—e N

which can be written as

2 s 2
eN/z—e —eN/2—>eN—eN/2.

2) e% = 1 or more in general eﬁN =1lmeZ
Again starting by the definition, we have

21 i 20N :
= mN __  —jm=Z& mN __  —jm2n
ey =e N — et =e 7w =e

— ey N — .

—)eN

3) e](\i]n+N) _ e](\l]n)

Using property-2 we obtain
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(mtN) _ gl [(N) b N) _ ),

Il
-

This means that f(m) = e,<\',") is a periodic function, and its period equals to N,

ie., f(m)=f(m+N).
Let’s now derive the decimation in time FFT algorithm. We first write the DFT
formula in terms of the defined function ey as

N—1
XK =" afnley”, k=0,1,...N—1 (3.161)
n=0

which can be partitioned for even and odd »n values as

Nj2—1 Nj2—1
XK = D x2nled™ + 37 xfan+ 1]ey (3.162)
n=0 n=0

where the first term on the right side using the property e, = ey /2 can be written as

N/2—1 NP7 N/2-1
Z x[2n]e1(\," ) Z x[2n](2)™ — Z x[Zn](eN/z)”k (3.163)
n=0 n=0 n=0

and the similarly the second term on the right side of (3.162) using the property
ey = eyyp can be written as

N/2—-1 N/2—-1
> aan 1y = 3 xfn+1lede)
n=0 n=0 (3 164)
N/2-1 N/2-1
— ek Z x[2n 4 1)ed* — ek, Z x[2n+ l]ef’f/z
n=0 n=0

Then using the results (3.163) and (3.164), the DFT formula in (3.161) can be
written as

N/2-1 Nj2—1
X[k] = Z x[2n]e,’i,k/2 + ek Z x[2n+ l]eff/z k=0,1,...,.N—1
n=0 n=0

Glk] HIK]
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where the terms G[k] and H[k] are periodic with period N /2. Since G[k] and H[k]
are calculated for k =0,1,...N — 1 in X[k] then G[k] and H[k] have repeated
values for k =0,1,...N — 1 as shown in

g 8 & - 80 81 &2
Glk] = Thefirst N /2 The secondN /2
samples samples
ho hi hy -+ hy h h
Hlk] = Thefirst N/2 The second N /2
samples samples

And Glk] k=0,1,...,N/2 — 1 is the N/2 point DFT of the even numbered
samples of x[n|, and H[k] k=0,1,...,N/2 — 1 is the N/2 point DFT of the odd
numbered samples of x[n].

Hence for the computation of G[k] and H[k] the k index range is first taken as
k=0,1,...,N/2 — 1. And Glk] and HIk] are calculated for k = 0,1,...,N/2 — 1.
Let’s denote the calculation results as

Glkl=1[g0 & - gvp-1] Hkl=[ho h - hypoy] k=0,1,..,N/2-1
Then G[k] and H[k] values for k =0,1,...,N — 1 are obtained using

Gkl=[8 & -~ &gp1 & & - &)
Hkl=[ho h - hypoy ho b - hypoy ]

and they are combined in X[k] via
X[k] = Glk] +whHK] k=0,1,....,N—1.

The partition performed for X[k] can be done for G[k] and H[k] also. The
calculation of Glk] can be written as

Glk] = G\[k] +w&Galk] k=0,1,...,N/2—1

where G [k] is the N /4 point DFT of the even numbered samples of x[2n] and G;|k]
is the N /4 point DFT of the odd numbered samples of x[2n].
And the calculation of H[k| can be written as

H[k] = H k] + whHa[k] k=0,1,....N/2—1

where H,[k] is the N /4 point DFT of the even numbered samples of x[2n + 1] and
H,[k] is the N/4 point DFT of the odd numbered samples of x[2n + 1].
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This procedure can be carried out until we calculate 2-point DFT of the

sequences obtained from x[n].

Example 3.43 If x[n] = [a D] find 2-point DFT of x[n].

Solution 3.43 Using the formula

N—1
x[ple " k=0,1,...,N—1 (3.165)
n=0

for N =2, we get
1 .,
X[k = " xnle 7", k=0,1. (3.166)

When (3.166) is expanded for k = 0 and k = 1, we obtain
X[0] = x[0] +x[1]  X[1] = x[0] +x[1]e™ — X[1] = x[0] — x[1]
which can be expressed in a more compact way as

Xkl =[a+b a—b] (3.167)

Example 3.44 1If xjn] = [—1 4], find 2-point DFT of x[n].
Solution 3.44 X[0] = —-1+4 — X[0]=3 X[l]=-1—-4— X[1] = -5.

Example 3.45 If x[n]=[1 1 —1 2], find 4-point DFT of x[n] using deci-
mation in time FFT algorithm.

Solution-3.45: First we determine the even and odd numbered elements of x[n] as
in

1
= ~ =
1 1 —1 2
~— ~—

1 1

x[n] =

where down-arrows indicate even numbered samples and up-arrows show odd
numbered samples. And the even and odd numbered samples can be grouped into
separate vectors as

X =[1 —-1] x[n=[1 2].

The 2-point DFT of x.[n] and x,[n] are calculated using DFT formula as
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215
X0 =1-1=X[0] =0 X[1]=1—(-1) - X,[1] =2
X,0=142—-X,[0]=3 X,[l]=1-2—X[l]=-1

Hence, for X,[k] and X,[k] k = 0, 1; we have

X[kl =[0 2] X,[k]=[3 -—1]. (3.168)

DFT of x[n] can be written in terms of DFT of its even and odd samples as

X[k] = X [k] +whX,[k] k=0,1,...,N—1. (3.169)
For N = 4 Eq. (3.169) is written as
X[k] = X k| + WAX,[k] k=0,1,...,4—1 (3.170)
where

272
wlj = T,

And for N = 4 the vectors X, [k], X, [k] and w¥ for k = 0, 1,2, 3 can be calculated
as
X =[0 2 0 2] X[k=[3 -1 3 —1]
(3.171)
e_jZ%Tﬂ e_jS% ] .

k —j02z —j12z
W4 = [e JO4 e ]14

And simplifying wk, we get

wi=[1 = —1j]
Finally the vector X[k] is obtained using (3.170) as in
Xk =[0 2 0 2]+[-

—j =1 j]=[3 -1 3 -—1]
where the vector product term

[1 — -1 j]*[3 -1 3 —1]
is calculated as

[1x3 (=) x(=1)

(=) x3 jx (=]
Then X[k] becomes as
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XKk =[0+1x3 2+ (=) x(=1) 0+(=1)x3 2+4jx(=1)]
which has the final form

XK =1[3 2+4j -3 2—j.

Example 346 Ifxn)=[1 1 -1 2 1 3 —1 2], find 8-point DFT of x[n]
using decimation in time FFT algorithm.

Solution 3.46 First, we divide the sequence x[n] to its even and odd numbered
elements as in

T T i T
= = ~~
—1 2 1 3 —1 2
~— ~—~ ~— ~—

1 1 1

where down-arrows indicate even indexed samples and up-arrow shows odd
indexed samples. And the even and odd indexed samples can be grouped into
separate vectors as

Xxn=[1 -1 1 —=1] x[n=[1 2 3 2].

Four-point DFT of x,[n] and x,[n] can be calculated as in the previous example
as

XJ[kl=[0 0 4 0] X,k|=[8 -2 0 -2] k=0,1,...,4. (3.172)
Then 8-point DFT of x[n] is calculated through
X[k] = X, [k] + wiX,[k] k=0,1,....7

where wk = e ¥, And the vectors X, [k], X, [k], wk for k =0, 1,...,7 with the help
of (3.172) can be written as

XJK=[0 0 4 0 0 0 4 0]

K=[8 -2 0 —2 8 —2 0 —2]

= [ oIF oTF E eF oTF IR o TTE]

(3.173)

S &

And combining the vectors in (3.173) using

X[k] = X, [k] + wEX,[k] k=0,1,....7
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we obtain the 8-point DFT of x[n] as

Xk =[8 —14+jl4 4 14+j14 -8 14—jl4 4 14-—j14],

xXpj=[1 1 -1 2 13 -1 21 -1 213 0 1 2]

find 16-point DFT using decimation in time FFT algorithm.

Solution 3.47 First, we divide the signal to its even and odd indexed sequences as
in

Xn=[1 -1 1 -1 1 1 2 3 1]
X =[12 3211 0 2]

We can calculate 8-point DFT of x,[n] and x,[n] as in the previous example. Let
the calculation results be denoted by X,[k] and X, [k], k =0, 1,...,7. Then we can
easily obtain X,[k] and X,[k] for k =0,1,...,15 by just repeating the elements
obtained for k =0, 1,...,7 and combine them using

X[k] = X(’[k] +W]I6X()[k] k= 07 1, ceey 15
where the exponential vector w’l‘ﬁ, k=0,1,...,15 is calculated as

02 12 02 22! 12 +52. 2 2. 202! 02
61{6 = [e—JOﬁ e 16 e 26 e 6 e Ve e 6 e e V% e 8% 9%

6*1'10%—2 e*j“% e*jlz% e*jlﬁ_g e*ﬂ‘ﬁ_’s[ eijls%].

3.7.3 Decimation in Frequency FFT Algorithm

Before starting the derivation of decimation in frequency FFT algorithm let’s solve
some examples to become familiar with the terminology used in algorithm.

Example 3.48 Ifxn]=[1 -2 3 -6 4 2] n=0,1,...,5.

(a) Find x[n] forn =0, 1,2.
(b) Find x[n] forn=0,1,...,4.

i

Solution 3.48
(@ x[n)=[1 -2 3] n=0,1,2
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® xn]=[1 -2 3 —6 4] n=0,1,....4

Example 3.49 Ifxn]=[1 -2 3 -6 4 2] n=0,1,...,5.

(a) Find x[n+N/2] forn=0,1,2 and N = 6.

Solution 3.49 x[n+N/2]=[-6 4 2] n=0,1,2and N=6

Note: x[njn=0,1,...,N/2—1 is the first half of the signal x[n] and
x[n+N/2] n=0,1,...,N/2 — 1 is the second half of the signal x[n].

Example 3.50 If x[n]=[1 -2 3 -6 4 2], n=0,1,...,5.

(a) Find x[n] +x[n+N/2] forn=0,1,2 and N = 6.
(b) Find x[n] — x[n+N/2] forn=0,1,2 and N = 6.

Solution 3.50 Using the results in previous example, we obtain

x[p]+xn+N/2)=[-5 2 5] x[n]x{nJr%}U -6 1].

Example 3.51 For x[n] =[-2 1 3 5], N =4, find x[n]e}.

Solution 3.51 Let’s determine first ey, for n =0,1,2,3. Using e}, = e "% the
vector form of e}, for n = 0,1,2,3 can be written as

ey = [T eIF I o
which can be simplified as
ey=I[1 -j -1 —j].
Then the product signal x[n]e}, for n = 0,1,2,3 can be written as
dilely = [(=2) x 1 1x (=) 3x(=1) 5x]]
which yields

x[nley =[-2 — =3 j5].

Example 3.52 X[k]=[0 1 2 3 4 5 6 7] are the DFT coefficients of a
digital signal x[n]. Write even and odd indexed samples of X[k] as sequences.

Solution 3.52 Even indexed samples are
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X[2k=[0 2 4 6] k=0,1,2,3
and odd indexed samples are

X2k+1]=[1 3 5 7] k=0,1,2,3.

Example 3.53 Even and odd indexed samples of the DFT coefficients of a digital
signal are given as

X2k =[-1 j -2 3 1] k=0,1,2,3,4
XPRk+1]=[2 1+j 2—j 0 -3] k=0,1,2,3,4

Find the DFT coefficient vector X[k],k =0, 1,...,9.

Solution 3.53 Taking samples one by one from X[2k] and X[2k + 1] in a sequential
manner, we get the DFT coefficient vector

Xk =[-1 2 j 14+j =2 2—j 3 0 1 =3].

Let’s now derive the decimation in frequency FFT algorithm.

Decimation in Frequency FFT Algorithm

In decimation in frequency FFT algorithm the even and odd indexed DFT
coefficients are calculated separately. This operation is explained as follows.
The DFT coefficients are calculated using

N—1
X[k = xnlel) k=0,1,..,N—1 (3.174)

n=»

from which even indexed coefficients can be obtained via

=

—1
X2k =) x[nled" k=0,1,...,N/2—1

n

i
=

where the summation term can be divided into two parts as

N/2—-1 N—1
X2k =Y xnled+ > xpley”  k=0,1,..,N/2—1.  (3.175)
n=0 n=N/2
| O —
N_
2 lx[n+%]€/2vk(”+%

Il
<

n

By changing the frontiers of the second summation expression in (3.175) we
obtain



220 3 Discrete Fourier Transform

N/2-1 N/2—1

N n
X2k = Y e + x[n+ 2} KDk =0,1,..,N/2— 1 (3.176)
n=0 n=0

2k(n+%)

where the exponential term e can be simplified as

2%k(n+5) 2%n kN 2k(n+5) o
en =eéy ey ey =€y
~—
=1

and making use of the ejzv = ey, the expression for X [2k] in (3.176) can be written
as

N/2—1 N/2—1 N
X2k = Y anler + > x{n—k 2}4;”/2 k=0,1,..,N/2—1
0

which is further simplified as
N/2-1 N
X2k = > (x[n] +x{n+ 2De§"/2 k=0,1,....N/2 - 1. (3.177)
n=0
Equation (3.177) can be written in more compact form as
N/2-1
X2k = Y xnlel, k=0,1,..,N/2—1
n=0
where xi[n] = (x[n] +x[n+%]) n=0,1,... ,N/2—1.
In a similar manner the odd indexed coefficients of X[k] can be obtained via
N-1
X[2k+1] =3 afnley* " k=0,1,..,N/2—1
n=0
and proceeding as in the case of even indexed coefficients we obtain
N/2-1
X2k+11= Y (afn] —xfn+N/2)ey* " k=0,1,.. ,N/2~1

n=0

which can also be written as
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N/j2-1
X[2k+1]= Y (x[n] = x[n+N/2))eyek, k=0,1,..,N/2—1
n=0
which can be written in more compact form as
N/j2—1
XPRk+11= > xnlel, k=0,1,...,N/2—1
n=0
where x;[n] = (x[n] —x[n+N/2))efy, n=0,1,...,N/2 — 1.
To sum it up;
Nj2-1
X2k = Y xlnlel, k=0,1,..,N/2—1
n=0
Nj2-1
X2k+11= > xlel, k=0,1,...,N/2-1
n=0
where xi[n] = (x[n] +x[n+N/2]) x;[n] = (x[n] — x[n+N/2])ef
and n=0,1,...,N/2 -1, &, = e ",
Note: If the signal x[n] is written as x[n] = [A B],n=0,1,...,N — 1 where A

is the first half and B is the second half of x[n], then

x[n]+xn+N/2]=[A+B], n=0,1,..,N/2—1

and
x[n] —x[n+N/2]=[A—-B], n=0,1,...,N/2—-1
and
eyforn=0,1,...,N/2 -1
equals to

n R Vi _ 12z _iNam
eN:[e]()ﬁ ele €]2N]'

Example 3.54 For xjn] =[1 0 2 —1] find DFT coefficients using decimation

in frequency FFT method.

Solution 3.54 For the given sequence and N =4 and let’s first find the signals

x1[n] and x,[n] given as
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xi[n] = (x[n] +x[n+N/2])  xo[n] = (x[n] — x[n+N/2])ey
n=0,1,..,N/2—1.

The signal x; [n] is obtained by summing the first and second half parts of x[n] as
follows

xpl=[1 0 2 -—1]
—_—— ——
First  Second
Half Half
xnl=[1 0]+[2 —1]—xn=[1+2 0-1].

To calculate x[n], we first compute €%, for N =4 and n =0, 1 as in
o [e’jo%e’jlﬂ —eéy=[1 —j
4= 4= Jl

And x[n] — x[n+ N /2] for N = 4 is calculated by subtracting the first and second
half parts of x[n] as follows

x[n] —x[n+2]=[1 0]-[2 —1]—x[n—xRk+2]=[-1 1].
Thus x;[n] is calculated as
x[n] = (x[n] = x[n+2])ej — x[n] = [-1 1]+ [1 ]

which yields

Next, we calculate the DFT coefficients of x;[n] and x;[n] as follows
xin]=1[3 —-1]—=Xk=[3 -1 3 +1]
ol =1 ] =Xk =[-1 - -1 +j]

where X [k] and X;[k] for k = 0,1 corresponds to X[2k + 1] and X[2k] respectively.
Then we get
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As a result X[k] becomes as
Xlkl=[-1-j 2 —1+j 4].

Now let’s generalize this example employing parameters instead of using the
numeric values.

Example 3.55 Forx[n| =[a b ¢ d], find DFT coefficients using decimation in
frequency FFT method.

Solution 3.55 For the given sequence, let’s first find the signals x;[n] and x;[n]
given as

xi[n] = (x[n] +x[n+ N/2])  xo[n] = (x[n] — x[n+N/2])ey
n=0,1,..,N/2— 1.

The signal x;[n] is obtained by summing the first and second half parts of x[n] as
follows

xnl=[a b ¢ d]
—— N
First  Second
Half Half
xin)j=[a bl+[c d]—xn=[a+c b+d].
To calculate x,[n], we first compute ey, for N =4 and n = 0, 1 as follows

A= [ IE]sel=[1 —jl.

And x[n] — x[n+ N /2] for N = 4 is calculated by subtracting the first and second
half parts of x[n| as in

i) —xfn+2]=[a d]—[c d]—xn]—xn+2]=]a—c b-d].
Thus x»[n] can be calculated as
xoln] = (eln] = xln+2)éf — xoln] = [~1 1]%[1 ]
which yields
X =[la-c —jlb-d)]

Next, we calculate the DFT coefficients of x;[n] and x;[n], i.e.,
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xin)=la+c b+d]—Xikl=[a+c+b+d a+c—b—d],
xn=la—c —jlb—d)]—Xkl=[a—c—jb+jd a—c+jb—jd]

where X [k] and X, [k] for k = 0, 1 corresponds to X[2k + 1] and X[2k] respectively.
That is

b+d —-b—d
X[k+1] = {a+c+ +d a+c ]7
X[ X[3]
—c—jb+jd a—c+jb—jd
X[zk]:[a c—jb+j c+j ]}
x[0] X[2]

As a result X[k] becomes as

Xk]=la—c—jb+jd a+c+b+d a—c+jb—jd atc—b—d].

Example 3.56 For x[n]=[2 1 1 -1 3 0 1 -2], find 8-point DFT
coefficients using decimation in frequency FFT method.

Solution 3.56 The first and second half parts of x[n] are shown in

211 -1 3 01 =2

First Half Second Half

x[n] =

The signals

x[n]+x[n+N/2] x[n]+x[n+N/2] ey

forN =8, n=0,1,...,3 can be calculated as
x[n]+xp+4=[2 1 1 —-1]+[3 0 1 —-2]—[4 1 2 -=3]
Xl —xn+4]=1[2 1 1 —1]—-[3 0 1 —2]—=[-1 1 0 1]
= [ ¥ o TE o] el =[1 eh eh dE]. (3.178)
Using the results in (3.178), we can obtain the signals x;[n] and x;[n] as in

xinj=[4 1 2 =3]
a[n] = (x[n] — x[n + 4))eg

xhl=[-1 1 0 1]*[1 e i e h gij%n]—)

Hence we obtained the signals
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The DFT coefficients of x;[n] and x,[n] can be found using the decimation in
frequency FFT algorithm as in the previous example. Let’s denote the DFT coef-
ficients of x[n] and x,[n] as X;[k] and X,[k] which can be found as

X\kl=[4 2—j4 8 2+j4]
Xk =[-1-/28 1-j28 1+j2.82 —1+j2.82].
The Fourier coefficients of x[n], i.e., X[k] are related to X;[k] and X,[k] via
X[2k+1] = Xi[k] X[2k] = X,[K].
Then we have

X2k+1]=1[4 2—j4 8 2+4j4]
X2k =[-1-j28 1—j28 14282 —1+;2.82]

and X[k] becomes as

Xk =[-1-j28 4 1—j28 2—j4 1+/28 8 —1+j282 2+j4].

3.8 Total Computation Amount of the FFT Algorithm

Consider the calculation of the following expression
P+ Xy.

Now we ask the question: How many mathematical operations are needed for the
calculation of x> +xy ?

The answer is as follows.

For the computation of x?, one multiplicative operation is needed.

For the computation of xy, one multiplicative operation is needed.

For the computation of x? + xy, two multiplicative operations and one additive
operation is needed.

Hence, for the computation of 24+ xy, three mathematical operations are needed.

Now consider the equality
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K+ xy =x(x+y).

And we ask the same question: How many mathematical operations are needed
for the calculation of x(x+y) ?

It is obvious that for the calculation of x(x + y), one additive operation and one
multiplicative operation is needed. And the total number of mathematical opera-
tions for the calculation of x(x+ y) equals to two.

As a result; for x>+ xy, three mathematical operations are needed, and for
x(x+y), two mathematical operations are needed. The latter one is preferable since
it involves less computation amount.

Decimation in time and decimation in frequency FFT algorithms are invented to
decrease the computation amount for the calculation of discrete transform coeffi-
cients X[k] of a digital signal x[n].

We can express the total computation saving for the calculation of DFT coef-
ficients X [k] of a digital signal x[n] when FFT algorithms are employed other than
the direct calculation approach. For illustration purposes, in the next section, we
will first calculate the total computation amount for the evaluation of DFT coeffi-
cients X[k] of a digital sequence x|n].

Total Computation Amount of the Direct DFT Calculation:
Let’s start the discussion with an example.

Example 3.57 For N = 3, find the total computation amount of the DFT formula

N—1
x[p)e 5" k=0,1,...,N—1.
n=0

Solution 3.57 For N = 3 the DFT formula takes the form
2 72
= Zx[n}e’/kﬁ”, k=0,1,2

which is expanded as
>
n=0
2 .
X[1] = Zx[n]e_"l%" (3.179)
n=0
>

When the summation terms in (3.179) are expanded, we get
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x[O]e‘jOsz —&-x[l]e‘jl%ﬂo +X[2]€_j227ﬂ0
X[1] = x[0]e 730 4 x[1]e 75! 4 x[2]e 752 (3.180)
X[2] = x[0]e 5 4 x{1]e 75 4 x[2]e .

'
=)
I

As can be seen from (3.180) for the calculation of each coefficient in (3.180),
three multiplicative and two additive operations are required. Then the total number
of multiplicative operations for the calculation of all the coefficients is 3 X 3 =9
and the total number of additive operations for the calculation of all the coefficients
is3x2=6.

In general, for the calculation of N-point DFT X [k] coefficients of a digital signal
x[n], N?> multiplicative operations and N x (N — 1) additive operations are needed.
The total computation amount is

N?>4+N x (N —1) 22N>

Now let’s consider the total computation amount of the decimation in time FFT
algorithm.

Total Computation Amount of the Decimation in Time FFT Algorithm
Let’s solve some examples to get familiar with the expressions appearing in this
section.

Example 3.58 Let N = 2*, we will divide N by 2 and divide the division result by 2
also and repeat this procedure until the result equals 2. How many divisions need to
be performed?

Solution 3.58 24/2 =23 —23/2 =22 - 2%2/2=2

As it is clear from the above result, 3 division operations are needed.

Note: If N =2, then v division operations are needed to get 2 at the end of
successive divisions.

Example 3.59 a < b means that whenever you see the a term replace it by b term
in a mathematical expression. Let’s define

N2~ N+2(%)? ifN>2 (3.181)
N? —N ifN = 2.

Using (3.181), calculate the term that should be replaced for 8.

Solution 3.59 Using the definition we get
82 —8+2(4)° (4 —4+22)7 (272

And for the expression 82 «— 8 42(4)” inserting 4 +2(2)* for (4)%, we get
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82 — 8+2(4+2(2)%)
where replacing (2)* by 2, we obtain
82 — 8+2(4+2x2)
which is simplified as
8% « 24. (3.182)

In (3.182) the obtained result equals to 8 x log, 8.
Note: In general;

N 2

N—————
=Nxlog, N

Now let’s consider the computation amount for the decimation in time FFT
algorithm.

In decimation in time FFT algorithm DFT coefficients X [k] of x[n] are calculated
using

X[k] = Glk] + whH[K] k=0,1,..,N—1 (3.183)

where G[k] and H|[k] are the N/2 point DFT coefficients of even and odd indexed
samples of x[n]. The calculation complexities for the terms appearing on the right
hand side of (3.183) can be states as:

N N\ (N
Gk] — (5) multiplicative and <5> <5 - 1> additive operations.

N\’ N\ (N
H[k] — <5> multiplicative and <5> (E - 1) additive operations.

wh H[k] — N multiplicative operations.

And lastly for the summation of G[k| and wXH|[k] terms in (3.183), we need N
more additive operations.
Thus; the total number of multiplicative operations is

A A N2
— — N=N+ —
(5) +(5) #v=n+3

which is less then N2, i.e.,
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2

N
7+N<N2

and the total number of additive operations is
MY (Y 1 + MY 1 +N~N+ N
2)\2 ~~ 2/ 2 ~~ - 2
ignore gnore

which is less then N2

Hence considering the total number of multiplicative and additive operations the
computational complexity is less in decimation in time FFT algorithm.

Now let’s consider the number of multiplicative operations

N2
N -
+ 2

which can be written as

N+2<§)2 (3.184)

which is replaced for N?> when decimation in time FFT algorithm is applied.
The term (¥) in the (3.184) indicates the FFT computational complexity of G[k]
and H[k]. If decimation in time algorithm is applied for the calculation of G[k] and

H{[k], we can replace (%)2 in (3.184) by

yielding

N N\? N\?

and proceeding in a similar manner and replacing (%)2 by & + 2(%)2, we get

N N\ 2 N\
N+N+4|p+2(g) | =N+N+N+8( )

This procedure is carried out until we reach to 2-point FFT calculation. If
N =2",1e., v=1log, N the successive division process results in
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N+N+ - +N=w
——— —
vterms
where replacing v by log, N, we get
Nlog, N
as the number of multiplicative operations required for the calculation of DFT
coefficients of x[n] using decimation in time FFT algorithm.
A similar procedure can be carried out to find the total number of additive

operations required for the calculation of DFT coefficients of x[n] using decimation
in time FFT algorithm.

3.9 Problems

(1) If

X =[1.0 1.6 2 232 258 284 3 3.16 34 344 358 374 384 3.90],

then find x[n — 2], x[n+ 3], x[—n — 2], x[2n — 2],x[—2n — 2],
x5 2] x[-5-2].

(2) One period of the periodic signal X[ around origin is
xn)=[-1 2 1 —1 2]. Find one period of X[n — 2],x[n+2],X[—n],
X[—n — 2],X[2n], X[—2n],%[2n + 2], X[-2n + 3].

(3) One period of the periodic signal X[n] around origin is

x[n)=[-1 2 1 —1].Find X[n] * x[n].
@ If xp=[-1 2 1 -1 1], find x(nJJ[ )s],x[(1 = n)s],
x[(3 = n)s],x[(n+2)5],x[(—n+2)s], x[(2n)s], x[(—n — } for0<n<4.
G) If xfpj=[-1 2 1 =1 1], find x[(n);],x[(1 —n);],x[(n+2),],

x[(=n+2);],x[(2n);],x[(—n — 3);], for0<n <2.

Fig. 3.34 One period of the X, (w)
Fourier transform of the A
aperiodic signal x|n]

1

NN
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Problems 231

Calculate 4-point DFT of x[n] =[2 -3 3 4].

Calculate 6-point DFT of x =[2 -3 3 4].

Find 5-point circular convolution of x[nj=[1 -1 2 —1] and
sl =[1 0 3]

= | 1 0 L T2 T g

If xpj=[1 2 0 -3 —1]and

draw one period of the following signals.

L

(12)

13)

(14)

(@) in] () F2-n] (¢) Fn—2] (d) F2n—1].

One period of the Fourier transform of the aperiodic signal x[n] is shown in
Fig. 3.34.

(a) Find 8-point DFT of x[n] i.e., X[k] = ?
(b) Using the DFT coefficients calculated in part (a), find x[n| employing
inverse DFT formula.

Find the convolution of x[nr]=[1 0 1 1 -1 0 1 2 3 11-14
1 2 —1] and h[nJ=[1 —1 1]] using overlap-add and overlap-save
methods.

Find the DFT of x[n] =1 0 1 1 —1 0 1 2] using decimation in
time FFT algorithm.

Find the DFT of x[n] =[1 0 1 2 —1 0 1 2] using decimation in
frequency FFT algorithm.



Chapter 4
Analog and Digital Filter Design

In this chapter, we will study analog and digital filter design techniques. A filter is
nothing but a linear time invariant (LTI) system. Any LTI system can be described
using its impulse response. If the impulse response of a LTI system is known, then
for any arbitrary input the system output can be calculated by taking the convo-
lution of the impulse response and arbitrary input. This also means that filtering
operation is nothing but a convolution operation. And filter design is nothing but
finding the impulse response of a linear time invariant system. For this purpose, we
can work either in time domain or frequency domain.

Filter systems are designed to block some input frequencies and pass others. For
this reason, filter design studies are usually done in frequency domain. Fourier
transform of the impulse response of the filter system is called the transfer function
of the filter. To find the transfer function of filters, a number of techniques are
proposed in the literature. In this chapter, we will study the most widely known
techniques in the literature.

Filters are divided into two main categories. These are analog filters and digital
filters. In science world, more studies on analog filter design techniques are
available considering the digital filter design methods. For this reason, so as to
design a digital filter, usually digital filter specifications are transferred to analog
domain, and analog filter design is performed then the designed analog filter is
transferred to digital domain.

4.1 Review of Systems

In this chapter, we will study analog and digital filter design. Before studying filter
design techniques, we will first review some fundamental concepts. We will follow
the following outline in this chapter.

© Springer Nature Singapore Pte Ltd. 2018 233
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in Signal Processing 13, DOI 10.1007/978-981-10-4962-0_4
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Fig. 4.1 A digital system
x[n]—» H —»y[n]

(a) Review of Systems.

(b) Review of Z-Transform.

(c) Review of Laplace Transform.

(d) Transformation between Continuous and Discrete Systems.
(e) Analogue Filter Design.

(f) IR Digital Filter Design.

(g) FIR Digital Filter Design.

Hence, as outlined above before studying analog filter design, we will review
some fundamental concepts, such as linear systems, z-transform, Laplace transform,
and transformation between continuous and discrete systems.

The system given in the Fig. 4.1 has input x[n] and output y[n]. And the relation
between input and output can be indicated as y[n] = H{x[n]}.

Linearity:

The system H is a linear system if for the linear combination of the inputs the
system output equals to the linear combination of the individual output. This is
graphically illustrated in Fig. 4.2.

Mathematically the linearity property for the system H is expressed as

H{ax,[n] + bxz[n]} = aH{x|[n]} + bH{xz[n]}. (4.1)

Time Invariance:
The system H is time invariant if

y[n —no] = H{x[n — no]} (4.2)

Linear and Time Invariant System:

If a system is both linear and time invariant, then the system is called linear time
invariant system, i.e., LTI system.

For alinear time invariant system denoted by H, the impulse response is defined as

h[n] = H{d[n]} (4.3)

x[n]—» H — ,[n] X,[n]—» H — ), (1]

ax,[n] + bx,[n]—» H —» ay,[n] + by,[n]

Fig. 4.2 Linear system
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Fig. 4.3 Impulse response
and output of a linear time Snl—» H —» hn]
invariant system

x[n]—» H |—» y[n]=h[n]*x[n]

Fig. 44 A LTI system n
Y xnl—s H o ylnl= D x[k]
k=—0

and the output of a LTI system for an arbitrary input is defined as
yln] = hin] * x[n] (4.4)

where * denotes the convolution operation and it is evaluated as

hln] * x[n] = io: hlk]x[n — k]. (4.5)

k=—00

This property graphically illustrated as in the following Fig. 4.3

Causality:

The signal x[n] is causal if x[n] = 0 for n<0.

The linear time invariant system denoted by H is causal if 4[n] = 0 for n<O0.

Difference Equations for LTI Systems:

The relationship between the input and the output of a LTI system can be
represented by difference equations as in

> alkyln — k] = blklx[n — ] (4.6)
k=0 k=0

where y[n] is the system output and x[n] is the system input.
Example 4.1 The system H given in Fig. 4.4 is a LTI system.

(a) Write a difference equation between system input and output.
(b) Determine whether the system is causal or not.

Solution 4.1

(a) The relation between system input x[n] and system output y[n| is given as

Vinl =) K], (4.7)
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Using (4.7) then the shifted signal y[n — 1] can be calculated as
n—1
yn—11= > «fAl. (4.8)

k=—00

Taking the difference of y[n] in (4.7) and y[n — 1] in (4.8), we get
yln] = yln — 1] = x[n]. (4.9)
Using (4.7) the impulse response of the system can be calculated as

hln] = Z SIk].

Pl (4.10)

= uln]

where it is seen that i[n] = 0 for n <0, which means that H is a causal system.

4.1.1 Z-Transform

For a digital sequence x[n] the Z-transform is defined as

X(z)= > xnl" (4.11)

n=—00

where the complex numbers z = re are chosen from a circle of radius r in
complex plane. Substituting z = r¢ into (4.11), we obtain

o0

X(re™) = " (xn)r")e " (4.12)

n=-—00
which converges to a finite summation if
oo
Z |x[n]r ™| < o0. (4.13)
n=—00

Since z = re’” then |z| = r and according to (4.13) we see that the Z-transform
converges only for a set of z-values and this set of z-values constitute a region in the
complex plane. And this region is called region of convergence for X(z).
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The Properties of the Region of Convergence:
If X(z) = %, then the roots of P(z) = 0 are called the zeros of X(z) and the
roots of Q(z) = 0 are called the poles of X(z). The region of convergence of X(z)

has the following properties.

(1) The ROC does not contain any poles.

(2) Fourier transform of x[n] exists if the ROC of X(z) covers the unit circle.

(3) For a right sided sequence, the ROC extends outward from the outermost pole
of X(2).

(4) For a left sided sequence, the ROC extends inward from the innermost finite
pole of X(z).

(5) For a finite sequence, the ROC is a ring.

Example 4.2 For x[n] = —a"u[—n — 1], find X(z).

Solution 4.2 Using the definition X(z) = Y~ x[n|z™" for the given signal, we
obtain

X(z) = i —o"u[-n —1]z7"

n=—00

where u[—n — 1] can be replaced by

u[—n—l]:{l if_n_l>0—>u[—n—l]:{l ifn< —1

0 otherwise 0 otherwise

leading to the calculation

X(Z) — Z —oliy

I
—_
I
K

4
o
S

n=0
1 —1
:l_m fa Z|<1—>|Z‘<|Cl|
_ 1
Cl-alz

Example 4.3 For x[n] = o"u[n], find X(z).
Solution 4.3 X(z) = —L ROC is |z| > |q

T l-alz

The LTI system H given in Fig. 4.5.
Can be described as in Fig. 4.6.
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Fig. 4.5 LTI system
x[n]l—» H +—»y[n]

Fig. 4.6 LTI system with
impulse response ] x[n]— h[n] —»y[n]

Fig. 4.7 LTI system with
Z-transforms X(z)—» H(z) —» Y(2)

For the system of Fig. 4.6, y[n] = h[n] x x[n] and we have Y(z) = H(z)X(z).
The LTI system H can also be described as in Fig. 4.7 using the Z-transforms.

Stability of a Discrete LTI System:

For a discrete LTI system to be a stable system, its impulse response should be
absolutely summable, that is:

zoo: |A[n]| < 0. (4.14)

n=—00
For a discrete LTI system, the transfer function is defined as

H(z) = )% (4.15)

And for a discrete LTI system to be a stable system, poles of H(z) should be
inside the unit circle.
Example 4.4 For a discrete LTI system, the transfer function is given as

z—0.5

H(z) = (z—03)(z—0.8—,0.8)

Determine whether the system is stable or not?

Solution 4.4 The poles of H(z) are at z; = 0.3 and z, = 0.8+ 0.8, and since

|z2] = v0.8%2 4 0.82 — |z2| = 1.13 is outside the unit circle, the LTI system with
the given transfer function is not a stable system.
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4.1.2 Laplace Transform

Laplace transform is defined for continuous time signals. The Laplace transform of
h(z) is calculated as

H(s) = / h(t)e~dr (4.16)

where s is the complex frequency defined as s = o +jw. The integral expression
given in (4.16) converges for some set of s values which can be represented by a
region in complex plane called convergence region or region of convergence in
short.

The Properties of the Region of Convergence:

If H(s) = %, then the roots of P(s) = 0 are called the zeros of H(s) and the

roots of Q(s) = 0 are called the poles of H(s). The properties of the region of
convergence (ROC) for H(s) can be summarized as follows.

(1) The ROC does not include any poles.

(2) The ROC consists of vertical half planes or strips.

(3) Right side signals have ROC extending in the right half plane.

(4) Left side signals have ROC extending in the left half plane.

(5) Two sided signals do either have ROC in a central vertical strip or they diverge.

Stability of a Continuous LTI Systems:

The continuous LTI system H shown in Fig. 4.8.

Can also be described using its impulse response as in Fig. 4.9.

For the system of Fig. 4.9, we have y.(t) = h(t) * x.(¢) and Y(s) = H(s)X(s).
Thus, LTI system H can also be described as using Laplace transform of the
functions as in Fig. 4.10.

In Fig. 4.10, H(s) is called the transfer function of the continuous time system.

x,(t)—» H —»y.(?)

Fig. 4.8 A continuous LTI system

x,(t)—» h(t) —» y.(1)

Fig. 4.9 A continuous LTI system with its impulse response

X(s)—» H(s) —» Y(s)

Fig. 4.10 A continuous LTI system using Laplace transforms
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The continuous time system with impulse response 4(z) is stable if its impulse
response is absolutely integrable, that is, continuous LTI system is stable if

o]

/ |h(2)|dt < 0. (4.17)

o0

If the transfer function H(s) of the continuous time system is known, then the
stability check can be performed by inspecting the poles of H(s). If all the poles of
H(s) are in the left half plane, i.e., the complex poles have negative real parts, then
the continuous time system is stable. Otherwise the system is unstable.

Example 4.5 For a continuous LTI system, the transfer function is given as

s+1

H) = 5=0512)6+3-2)

Determine whether the system is stable or not?

Solution 4.5 The poles of H(s) are s; = 0.5 — 2j and s, = —3 4 2j. The system
with transfer function H(s) is not a stable system since the pole s; has positive real
part.

For continuous LTI systems, the relationship between system input and system
output can be described using differential equations as in

Moo dy() L dx(r)
kZ:(:)a[k] - _;b[k] s (4.18)

4.2 Transformation Between Continuous
and Discrete Time Systems

We know that continuous LTI systems can be represented by differential equations.
And when the continuous time system is converted to a digital system, we can
represent digital system by difference equations.

Now we ask the question: How can we convert a differential equation to a
difference equation?

For the answer of this question, let’s first inspect the conversion of

dx(1)
dt
to its discrete equivalent.

The derivative of x.(¢) evaluated at point #y is nothing but the slope of the line
tangent to the graph of x.(¢) at point #. This is illustrated in the Fig. 4.11.
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Fig. 4.11 A tangent line at A
point 7y

x.(0)

\/

Now let’s consider the digital signal obtained from x.(¢) after sampling opera-
tion. The slope of the line tangent to the graph of x.(z) at point 7y can be
approximated using the sample values and sampling instants. The sampling of the
continuous time signal is illustrated in the Fig. 4.12.

The slope of the line at point 7y = nT, can be calculated using the triangles as
shown in the Fig. 4.13.

The slope of the line tangent to the graph at point #) = nT, can be evaluated
using the left triangle in Fig. 4.13 as

dx.(1) _ x.(nTy) — x.((n — 1)Ty) (4.19)
dt t=nT; TS .
or using the right triangle in Fig. 4.13 as
dx.(1) _ x((n+ DTy) — x.(nTy) (4.20)
dt | _r. T, ' '

And we have the following identities
x[n] = x.(nTs) xn—1]=x.((n —1T;) xn+1]=x.((n+1)T;5). (4.21)

Using (4.21) in (4.19) and (4.20), the derivative of the continuous time signal
can be written either as

Fig. 4.12 Sampling of the A

continuous time signal x((n£1T))

x,(nT)) ———— X (f)

x.((n=1T;)

0 (DI, T, (DT,
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Fig. 4.13 Calculation of the A
slope of the tangent line at x((n£DT)
point 7y = nT; x,(nT)) ——————— x.(¢)
x.((n=DT)
>
0 (n-DT.  nl,  (n+DT,
dx.(1) x[n] — x[n — 1] (4.22)
2 P T,
or as
dx.(t) x[n+ 1] — x[n] (423)
dr | _.r. T,
Otherwise indicated, we will use
dx.(t) x[n+ 1] — x[n] (4.24)
dr |, _.r. T,
for the discrete approximation of the derivative operation.
In addition, the expression
dx.(1) _X[n+1] = x[n]
dt | T,
is called backward difference approximation, and
dx.(1) __X[n] = x[n — 1]
dt t=nT; - TS
is called forward difference approximation.
Example 4.6 Obtain the discrete equivalent of the differential equation
dy(t
% +ay(r) = bx(t). (4.25)

Solution 4.6 If the Eq. (4.25) is sampled, we obtain
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dy(1)

dt

+ (Zy(l) |t:nTA: bx(t)|t:nﬂ'

t=nTy

And substituting

dy(r)
dt

1=y
t=nT, TS
y[l’l} = y(t) |t:nTT

x[n] = x(1)] =,

into (4.26), we obtain the difference equation

yin+1] =yl

T + ay[n] = bxln].

If we use the forward difference approximation

dt t=nT; TS
we obtain
A _;[ “ U ayfa] = bl

as the discrete approximation of (4.25).

Example 4.7 Find the discrete equivalent of

d®y(1)
drr -
Solution 4.7 We can write
d*y(1)
dtz t=nT,
as
dy(t) _ad(@)
dzy([) _ a —my )1, U li=ar,
ar |_r. T,

Substituting

243

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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t=nT; s

which can be simplified as

ar | _.. T2 ’ '
If we use forward difference approximation
dy()|  _yln] =yl —1]
dr | _.r, T,
inside the expression
dy(1) _d@)
d*y(1) at \i—ury) U li=(a-1)T,
ar | _.r T,
we obtain
[n]=y[n—1] [r=1]—y[n=2]
ey e ()
dr? t=nT, T
which can be simplified as
(0| ol =2l 1)+ -2 )
dtz t=nT; Ts2 ' '
Example 4.8 Find the discrete equivalent of the differential equation
d’y(t) | dy(1) dx(1)
2—= 1) =x(t)+ ——. 4.33
20 2P ) =2+ (433)

Solution 4.8 If both sides of the (4.33) are sampled, we get
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d?y(1)
dr?

dy(t)
2 N7
+ dt

dx(t)
dt

+YO)izur, = X(0) =, + (4.34)

t=nT;

t=nT; t=nT;

And substituting the approximations and equations

d®y(1) _Y[n+2] = 2y[n+ 1] +y[n]
dtz t=nTy Tvz
dx(t) _X[n+1] = x[n]
drt |y T,
x[n] = x(1)],_,,
y[n] = y(0)]zur,
into (4.34), we obtain
+2] — 2[n+ 1]+ +1] - +1]—
SIS ELVER EORP R E I SSIELL

For T; = 1, the Eq. (4.35) reduces to

yp+2] =x[n+1].
Exercise: Find the discrete equivalent of

d3y(1)
s

4.2.1 Conversion of Transfer Functions of LTI Systems

We know that continuous and discrete LTI systems can be described by differential
or difference equations.

Fig. 4.14 Continuous time
LTI system and its discrete X, (t)—> hc ) ), ®)
equivalent

x[n]— h[n] —» y[n]
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And a differential equation can be converted to a difference equation via sam-
pling operation. The difference equation represents a discrete LTI system. In
Fig. 4.14, a continuous time system and its discrete equivalent obtained via sam-
pling operation is shown using block diagrams.

Both continuous and discrete systems have transfer functions defined as

Ye(s) Yu(z)
H.(s) = and H,(z) =
( ) XC(S) ( ) Xn (Z)
respectively. Now we ask the question, given H,(s) can we obtain H,(z) from H,(s)

directly?

The answer to this question is yes and we will derive two methods for the direct
conversion of H.(s) to H,(z), and these methods will be called forward difference
and bilinear transformation.

Note: For simplicity of notation, we will drop the subscript letters ¢ and n from
the equations H,(s) and H,(z).

4.2.2 Forward Difference Transformation Method

Consider the differential equation

d{T(tt) +ay(t) = x(1) (4.36)

which describes a continuous LTI system. Taking the Laplace transform of both
sides of (4.36), we get

sY(s)+a¥(s) = X(s)
from which the transfer function H(s) = Y(s)/X(s) can be calculated as

_ 1
T s+a’

H(s) (4.37)

If the differential equation
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is sampled, we get

dy(t
GO Ol = 0l
t=nTj

which yields the difference equation

yln] = yln — 1]

T. + ay[n] = x[n]. (4.38)

And by taking the Z-transform of both sides of (4.38), we get

Y(z) —z7'Y(2)
T;

H(z) = ——. (4.39)

1 1
H(s) = H(z) =
(s) Tia (z) ot IO
we see that
H(z) = H(s)| i (4.40)

Example 4.9 Obtain the discrete equivalent of

d’y(r) | dy(1)
— + == 1) = x(t 4.41
2020 () = x() (441)
and find the relation between H (s) and H(z). Use forward difference transformation
method.

Solution 4.9 The discrete equivalent of

2
d d);gt) . % ©ay(t) = (1) (4.42)
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y[n] = 2y[n — 1]+y[n = 2]  yln] —y[n 1]
T2 + T,

s

Laplace transform of the (4.42) is

+ ay[n] = x[n]. (4.43)

s?Y (s) + sY(s) +a¥Y(s) = X(s). (4.44)
Z-transform difference Eq. (4.43) can be calculated as

Y(z) = 227'Y(2) +272Y(2) N Y(z) —z7'Y(z)

+a¥(z) = X(2)

T2 T,
which yields
1—z71\? 1— 7!
( TZ )Y(z) °Y(@) +a¥(z) = X(2). (4.45)

If we compare the Laplace transform in (4.44) and Z-transform in (4.45), we see
that Z-transform can be obtained from Laplace transform replacing s by "T—fl That
is

H(z) = H(s)| (4.46)

=TT

Therefore, if forward difference transformation method is used for any differ-
ential equation, the relation between transfer functions of continuous and discrete
systems happens to be as in (4.46).

4.2.3 Bilinear Transformation

If the bilinear transformation method is used to obtain the difference equation from
differential equation, the relation between transfer functions happens to be as

1-z~!
14271

—2
Xfo

H(z) = H(s)| < ) (4.47)

Now let’s derive the bilinear transformation formula in (4.47).
Consider the differential equation

d{T(t’) +ay(t) = x(1). (4.48)
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Let

then

which can be written as

y(t) = y(t) + /w(r)dt. (4.49)

get

nTy
W) =y - 1)+ [ wieas (4.50)
_—— —-—-
¥l yln—1] (n=1)T;
which can be written as
nTy
yln] = y[n — 1]+ / w(t)dx. (4.51)
(n=1)T;

Now let’s consider the evaluation of the integral expression in (4.51). We can
evaluate the integration in (4.51) using the trapezoidal integration rule. This is
shown in the Fig. 4.15.

Using Fig. 4.15, we can write

nT

w(t)dt =

| 3

(w((n — 1)Ty) + w(nTy)) (4.52)

(n—1)T;
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Fig. 4.15 Trapezoidal w(t)
integration A
w(nT)
w((n—DI))
>/
0 (n-DT, nT,
which can be simplified as
nTy
T
/ w(t)dt = 5 (wln — 1] +w[n]) (4.53)
(n_l)Tx
Substituting (4.53) into (4.51), we obtain
yln] =yn—1]+ ?‘ (wln — 1]+ w[n]). (4.54)
Consider the equation
dy(t
DO | ay(t) = x() (4.55)
dt
w(t)
When (4.55) is sampled, we obtain
w(n] +ayn] = x[n] — win] = —ay[n] + x[n]. (4.56)
If Eq. (4.56) is substituted into (4.54), we obtain
T
Y[ =yln = 1]+ = (=ay[n — 1] +x[n — 1] — ay[n] + x[n]) (4.57)
which can be rearranged as
T T T T
sl + S+ Sl — 1] =yl — 1] = + Sxln— 1)+ Sal). (458)
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And taking the Z-transform of both sides of (4.58), we get

T, T,\ _ T _
<1 + a2 )Y(z) - (1 - %)z 'Y (z) = > (a+z")X(2) (4.59)
from which the transfer function can be calculated as
Y 1
at g 1+Zz*‘>

H(s) = (4.61)
we see that

1-z~!
1471

2

S=7

H(z) = H(s)| ( ) (4.62)

Bilinear transformation is an efficient transformation technique. Stable contin-
uous time LTI systems are converted into stable discrete LTI systems.

That is if the poles of H(s) are in the left half plane, the poles of H(z) are inside
the unit circle. This is illustrated in Fig. 4.16.

Frequency Mapping in Bilinear Transformation:

In bilinear transformation, the relation between continuous and digital frequency

is given as
2 (1-7"!
§=—=|—— 4.63
Ts (1 + Z_l ( )
Digital
Analog PP
x \ __ > ) \
1 X
X i X |
1 T
X ' X x [
\ /
x | -- - """""—""—= > N L
s-plane I e z-plane

Fig. 4.16 Pole mapping in bilinear transformation



252 4 Analog and Digital Filter Design

where s = ¢ +jw, and z = &"¢. Let
w, — Analog signal frequency
and

wg — Digital signal frequency.

e
-7 (i)
e/ L Tt
g w(ww))

Equation (4.63) yields

Hence,

We = = tan (ﬂ) (4.64)

Summary: Transformation of analog systems to discrete ones can be achieved
by using the following methods.

(1) The forwards difference transformation:

(3) The bilinear transformation:
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(4) Impulse invariance transformation:
H(z) = T, x Z—transform of {H(s)}.

(5) Step invariance transformation:

H(z) = (1 — z7") x Z—transform of {@}

N

Example 4.10 Transfer function of a continuous time system is given as

4s + 11

H(s) ="
(5) s2+7s+10

Find the transfer function H(z) of the digital system obtained via the sampling of
continuous time system.

1!
[

Solution 4.10 H(z) = H(s)| ( ), for simplicity of the calculation, we can
choose Ty, = 1 and this yields

19422771 43772
H —
(2) 28 1 1271

4.3 Analogue Filter Design

Consider the continuous LTI system given in Fig. 4.17.
Where the system output equals to

() = x(1) * h(7)
which can be written in frequency domain as
Y(w) = X(w)H(w). (4.65)

If the magnitude of H(w) in (4.65) gets very small values for some specific
values of w, the output function Y (w) does no contain any information about X (w)
and this operation is called filtering.

Fig. 4.17 A continuous LTI
system x(t) —w h(t) —» y(1)
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Any analog filter is characterized by its transfer function H(w) which can be a
complex function with magnitude |H(w)| and phase Z/H(w) characteristics.
If we denote the phase characteristics as

0(w) = ZH(w) — 0(w) = arg(H(w))
then phase and group delays are defined as

_do(w)

(w) = T (4.66)

Group delay function gives information about the amount of delay introduced by
the system transfer function to the system input. For instance, if

(w) =2
then for the transfer function with unit gain the system input
x(t) = sin(wr)
yields the system output

y(t) = sin(w(r — 2)).

4.3.1 Ideal Filters

In this section we will study the transfer functions of the ideal filters. For H(w), i.e.,
the transfer function of the ideal filter, the time domain impulse response can be
calculated using the inverse Fourier transform

[o.¢]

h(t):% / H(w)dw

Ww=—00

which is a function having non-zero values for all ¢ values in the range
—00 <t < 00, for this reason such filters are not physically realizable, and they are
called ideal filters.

Ideal Low-Pass Filter:

The transfer function of the ideal low-pass filter is shown in Fig. 4.18.
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H,,(w)

Fig. 4.18 Transfer function of the ideal low-pass filter

Whose impulse response can be calculated as

We

1 .
(1) = e / 1 x &"dw

e
1.
= — Ct
—sin c(wet)
where w, is called cut-off frequency.
Ideal High-Pass Filter:
The transfer function of the ideal high-pass filter is shown in Fig. 4.19.

Which can be written in terms of the transfer function of the low-pass filter with
the same cut-off frequency as

th(w) =1- Hlp(W). (467)
whose inverse Fourier transform equals to
1.
By (1) =1 — —sin c(wet). (4.68)
T

Ideal Band-Pass Filter:
The transfer function of the ideal band-pass filter is shown in Fig. 4.20.

H,,(w)
A

\/

Fig. 4.19 Transfer function of the ideal high-pass filter
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pr (W)
A
1
>
-0, -0, -0, 0 , @, @,
Fig. 4.20 Transfer function of the ideal band-pass filter
H(w)
A
1
>
- a)‘/ - a)"/ 0 a)‘l w‘/

Fig. 4.21 Transfer function of the ideal band-stop filter

Which can be obtained from low-pass filter transfer function with the same
cut-off frequency as

pr(w) = H[p (W — Wo) -I—H[[,(W + W()). (469)

In Fig. 4.20; w,, and w,, are low and high cut-off frequencies.

Ideal Band-Stop Filter:

The transfer function of the ideal band-stop filter is shown in Fig. 4.21.
Which can be obtained from band-pass filter transfer function (4.69) as

Hbs(w) =1- pr(W). (470)

As can be seen from the filter transfer functions; if we design a low-pass filter,
we can obtain the transfer function of other filters by just manipulating the transfer
function of low-pass filter.

Example 4.11 The transfer function of an analog low-pass filter with cut-off fre-
quency o, = 1 rad/s is given as

1

HWwW) =——F—.
() w2 22w+ 4

Find the transfer function of low-pass filter with cut-off frequency w, = 2 rad/s.
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Fig. 4.22 Transfer function H,,(w)
of the ideal low-pass filter A
with cut-off frequency
w, = 1 rad/s 1
-1 0 '
Fig. 4.23 Transfer function H,,(w)
of the ideal low-pass filter A
with cut-off frequency
w, = 2 rad/s 1
) 0 2 Y

Solution 4.11 The transfer function of the ideal low-pass filter with cut-off fre-
quency o, = 1 rad/s is shown in the Fig. 4.21.

And the transfer function of the ideal low-pass filter with cut-off frequency
o, = 2 rad/s is shown in the Fig. 4.4.

From Figs. 4.22 and 4.23, we see that

Hyi(w) = H,; (g) (4.71)

In a similar manner, using the low-pass filter with cut-off frequency w, = 1 rad/s

in the problem, we can calculate the transfer function of the low-pass filter with
cut-off frequency w, = 2 rad/s employing (4.71) as

4

Hw)=—
2() W2 +4v2w + 16

In general, given the transfer function of low-pass filter H,(w) with cut-off
frequency 1 rad/s, the transfer function of low-pass filter with cut-off frequency w,
can be obtained as

H, (w)=H, (—) (4.72)
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Example 4.12 The transfer function of an analog low-pass filter with cut-off fre-
quency o, = 1 rad/s is given as

1

Hi(s) =——F.
1) $24-2v/2 44

Find the transfer function of high-pass filter with cut-off frequency w, = 2 rad/s.

Solution 4.12 First, we can design the low-pass filter with cut-off frequency w, =
2 rad/s as in the previous example and the transfer function of the low-pass filter
with cut-off frequency w. = 2 rad/s is found as

4

w2 4V2w 16
Then the transfer function of the high-pass filter with cut-off frequency w, =
2 rad/s can be found as

Hy, (w)

Hyp = 1= Hjp(w)
W H4V2w+ 12
w2 +4v2w+ 16

Hence, for the filter design; it is custom to design a low-pass filter with cut-off
frequency o, = 1 rad/s and transfer it to any desired frequency response.

4.3.2 Practical Analog Filter Design

Although ideal filters are simple to understand they cannot be used to construct
filter circuits; since they need an infinite number of circuit elements. For this reason,
practical analog filter design techniques are adapted in the signal processing liter-
ature. The specifications of a practical analog filter are given in Fig. 4.24.

Fig. 4.24 The specifications | H(w) 12
of a practical analog filter A

1

Transition
1+&*)!
Passband
Stopband
52
W
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As can be seen from Fig. 4.24, the squared filter magnitude should satisfy

2\ ! 2
(1+€) <[HWw)| <1 for 0<w<w,
in passband and it should satisfy
0< |H(w)|2 <& for w,<w<oo

in stopband.

Filter Parameters

Cut-off frequency:

At cut-off frequency w,, the amplitude of the transfer function equals to
% ‘H(W)Lmlx’ that iS

HOwe) =[O,

If |[H(W)|,,.,= 1, then w, is determined from

H(w,) =

5l

Pass-band ripple:
Passband ripple in decibels is defined as

R, = 10log(1 +¢€%). (4.73)

Stopband attenuation:
The stopband attenuation is defined as

Ry = —10log(5%). (4.74)

Selectivity parameter:

The ratio of pass-band frequency to stop-band frequency is called selectivity
parameters, i.e.,
Y

k=
Wy

which is equal to 1 for ideal filters, and for practical filters k< 1.
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Discrimination parameter:
The discrimination parameter is used as an indicator of the pass-band and
stop-band attenuation ratios and defined as

€

V-1

which is equal to O for ideal filters and d > 1 for practical filters.
Now let’s see the practical filter design methods.

d=

4.3.3 Practical Filter Design Methods

The most known practical filter design techniques in literature are:

(1) Butterworth filter design.

(2) Chebyshev I and 1I filter design.
(3) Elliptic filter design.

(4) Bessel filter design.

4.3.3.1 Butterworth Filter Design

The squared magnitude response of the Nth order Butterworth filter is defined as

HOw)P= —— (4.75)

where w, is the cut-off frequency.
The transfer function of the Nth order Butterworth filter is

wh
H(s) = 71_[2]:1 (s( o) (4.76)
where the poles p; are given as
P = weer (1 (7). (4.77)

The transfer function H(s) has N poles located on a circle of radius w, on the left
half plane.
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Given low-pass filter specifications w,, wy, R, the low-pass Butterworth filter is
designed via the following steps:

(1) Using the given filter specifications and the expression
1
2N
v ()

decide on the filter order N and cut-off frequency w,.

[H(w)|*=

(2) Determine the poles using
Dk = wce%(w(%)), k=1,..,N.
(3) Find the transfer function using the poles as

w

- HkN:1(S — Dx) '

H(s) =

(4) And finally construct the filter circuit using the transfer function H(s) found in
the previous step.

Filter order N and cut-off frequency determination:

(a) From Fig. 4.24, we see that

1 1
atw =w, |H(w,)|= " 2NH‘H(WP)‘:1_~_€2
()
which leads to the equation
1 1
= ) 4.78
1+<&>2N 1+¢ (4.78)
(b) In a similar manner, from Fig. 4.24, it is also seen that
1
atw =wy  [H(Ws)| = ——5 — |H(w,)| = 6
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which yields the equation

1
W 2N
1+ ()

From (4.78) and (4.79), we obtain the equation set

=% (4.79)

— dividing them

we get

N -2
s o —1
<W> -2 . (4.80)
When (4.80) is solved for N, we get
log <” 52_1)
N> | ——————
tog(32)
which can be written in terms of selectivity and discrimination parameters as

N> Fog (ﬂ (4.82)

log )

(4.81)

where [-] is the round up to the larger integer function.
And the cut-off frequency w. can be determined by solving one of the equations

(4.83)

yielding the roots

We = e_ﬁwp We = (5_2 — l)imws. (4.84)
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Or the cut-off frequency can be selected as any value from the range
1

e_ﬁwp <w.< (572 — 1)7st. (4.85)

Example 4.13 Design the transfer function of low-pass Butterworth filter whose
specifications are given as

wp = 1000 rad/s w, = 3000 rad/s R, =4dB R, =40dB.

Solution 4.13 Let’s first determine the € and ¢ values using R, and R, given in the
question as follows

R, =10log(l+¢*) — 4= 10log(1+¢) — & =151 —e=1.23
R, = —10log(8*) — 40 = —10log(8*) — &* = 107",
And using the calculated €* and 0% values in the Fig. 4.25.

We can roughly sketch the filter squared magnitude response as in Fig. 4.26.
Next, we determine the order N of the filter as follows

k=t =1
d=—F——d=-A2— d~00123
-1 10%-1
log (5) log (gofs) _ _
N2 5 = N2 gy = 4002 >N =4.

And the cut-off frequency can be found using

e_ﬁwp <w.< (5_2 - 1)7ﬁw5

Fig. 4.25 Typical magnitude | H(w) P
squared transfer function of a A
practical low-pass filter
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Fig. 4.26 Magnitude squared | H(w)
transfer function of a practical A
low-pass filter for
Example 4.13 1
Transition
0.4
Passband
Stopband
10
» W
0 1000 3000

as follows

123741000 < w, < (10* — 1) #3000
949.6 < w, < 948.69 — w, = 949 rad/s.

The poles for N = 4 are calculated using

pk:wcejfn(l+(ﬂ;l)) k=1,...,N

)

as follows

1= 949145 1 p) = 9495 — p; = 949 cos

+
~
2
=

7N

P2 = 94965(173) s p) — 9496F s py = 949

| »|3 =g

p3 = 9496%[(1+%) — p3 = 9496%[ — p3 = 9491 cos

/\/O\/—\
o
/_\/f\/_\
N—— — 00
_|_

w
. Z. .
S Qo
|:| °°|:\ °°|:|

— o0

| &
N——— +
_|_
.
2
=
/N o0
—
oo‘»—
N——
N—

ps = 94965(179) s p, — 94965 s p, = 949 <c0s<

which can be simplified as

p1L= —363+876j p, = —876+363]
py = —876 —363j ps = —363 — 876;.
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Using the calculated poles, the transfer function is evaluated as

WN

S e [ ey ey

which leads to the expression

949
((s + 363)2—8762) ((s + 876)2—3632)

H(s) =

whose simplified form is

900,601
(s2 + 7265 — 635,607) (s> + 17525 + 635,607) "

H(s) =

4.3.3.2 Chebyshev Filter Design

Chebyshev Type-I Filter:

Chebyshev Type-I filter squared magnitude response is equiripple in the pass-
band and monotonic in the stopband. The squared magnitude response of a typical
Chebyshev Type-I filter is depicted in the Fig. 4.27.

In Chebyshev Type-I filter transition from passband to stopband is more rapid
when compared to Butterworth filter.

The square magnitude response of Chebyshev Type-I filter is defined as

1
2
Hi(w)P= ———— (4.36)
w
14Ty (i)
Fig. 4.27 Square magnitude | H(w)I?
response of Chebyshev A

Type-I filter

1
NS NS\ Transition

(1+&%)!
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Stopband
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where Ty (w) is the Nth order Chebyshev polynomial given as

Tiv(w) = { COZ"Z(@E?)ZJ—(Y?E)) ||:vv|| S (4.87)
The Chebyshev polynomial can be calculated in an iterative manner as
Tn(w) =2wTy (W) — Tya(w) m>2 (4.88)
with the initial conditions
To(w)=1 and Ti(w)=w. (4.89)

Chebyshev Type-I filter design:
Assume that the low-pass filter specifications wj,,ws, R,, R; are given. The
design of the Chebychev Type-I filter can be achieved via the following steps

(1) First, with the given low-pass filter specifications; the order of the filter is
determined as:

log<d’l +Vd? - 1) Ccoshi(d )

N> _s (4.90)
log(k* +VE2IZ 1) cos h™1(k1)

where k and d are the selectivity and discrimination parameters, and R, is the
passband ripple. The cut-off frequency is found by solving the equation

H(w.) = 1071, (4.91)

(2) Next, we calculate the transfer function

Cc

- HkN:1 (s —px)

where the poles are calculated using

H(s) (4.92)

. . (2k—1 . 2k—1
Pk = —w,sin h(¢) sm( N n) + jw,, cos h(¢) cos( N n) (4.93)
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in which ¢ is defined as

1 (1+(1+e)
=—In[ ———= . 4.94
N -
And the constant term ¢ in (4.92) is calculated via
N
— 11 px if N is odd
c—= k=1 1 (4.95)
(1+e) 2] px if Niseven
k=1

Example 4.14 Design a low-pass filter whose specifications are given as
wp = 1000 rad/s w,; = 4000 rad/s R, =5dB R, =40 dB.

Use the transfer function of Chebyshev Type-I filter for your design.

Solution 4.14 With the given filter specifications, the parameters ¢ and ¢ are cal-
culated as

R, =10log(1+€) — 5=10log(1+€) — ¢ =2.16 — € = 1.47
R, = —10log(8*) — 40 = —10log(0*) — & =10"* - 6 =107~

And selectivity and discrimination parameters are found via

k=" k=
d

p— € .
Vo —d= V10*-1
The filter order is calculated as

—1( -1
N>cosh (d)

>0 ) N>238 5N =3
cos h™ (k1)

The calculation of the poles can be achieved via

1 (1+(1+&y
) :N1H<M> — ¢ =02121

€
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. . (2k . 2k—1
Pk = —wpsin h(¢) sm( N n) + jwpcosh(¢) cos( N n)

— —1000sin h(0.2121) (g) 1000 cos h(0.2121) cos(g)
3n
6
o7
6

p1 = —106.8 + 885.5;j

= —1000sin h(0.2121) ) +;1000 cos h(0.2121) cos

(2"
6

W

p3 = —1000sin h(0.2121) sin

P2 = —213.7
(g) +71000 cos h(0.2121) (

p3 = —106.8 — 885.5;.

Since N is odd, the constant term is calculated using

3
— I px — ¢ = 170,040,000.
k=1

Then the transfer function of the filter is calculated via

c
H(s) = ————
Hﬁcv:1 (s = px)

leading to the expression
170,040,000

H(S) = 2 2
(s+213.7)((s + 106.8)" + 885.52)

which can be simplified as

170,040,000
(s4213.7)(s2 +213.65 +784,110)

H(s) =

And the above transfer function can be implemented using operational amplifiers
and passive circuit elements.

Chebyshev Type-II Filter:

Chebyshev Type-II filter’s magnitude squared response is monotonic in the
passband and equiripple is the stopband. The magnitude squared response of a
typical Chebyshev Type-II filter is depicted in the Fig. 4.28.

The magnitude squared response of Type-II Chebyshev filter can be given in two
different forms as
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Fig. 4.28 The magnitude | H(w)I?
squared response of a typical A
Chebyshev Type-II filter
1
_\ Transition
A+e>)"
Passband
Stopband
52
0 w, w, >
2 _ ey ()
|Hy(w)|" = — 5%~
L+eT5 ()
5 1 (4.96)
A = o )
1 +€ TN (W_p)
The relationship between the two transfer functions in (4.96) is given as
2
|Hy(w)]*= 1 — |H, ! W, = (4.97)
i W 4 W, . .
The transfer function of the Type-II Chebyshev filter is defined as
N
H if N is even
H(s) = < T j:—;’ if N is even (4.98)
o

where z; and p; are the zeros and poles of the transfer function and they are
calculated using

Wy

G s B

pi=— 5 <— sin h(¢) sin <2k2;] ! n) +jcos h(¢) cos (2k2;, ! n)) (4.100)

(4.99)
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where the phase ¢ is computed as

1 1 ee
(bzﬁcosh Y67

1

= In (571 L5 1)%). (4.101)

And finally the constant term c is calculated using

N

[1% if N is even
= K=l "

(1+e) [l px if Nisodd.

k=1

4.3.3.3 Elliptic Filters

The magnitude squared response of the elliptic filters are given as

2 1
[H(w)I"= 1+ eU%(w)
where Uy(w) is the Jacobian elliptic function.

Elliptic filters have equiripple both in the passband and stopband. The amount of
the ripple in each band can be adjusted. When the ripple in stopband approaches to
zero, the filter converged to a Type-I Chebyshev filter. On the other hand, as the
ripple in passband approaches to zero, the filter converged to a Type-II Chebyshev
filter. If the ripples in both bands approaches to zero, then the filter converged to a
Butterworth filter.

Elliptic filters have the steepest roll-off characteristics. The squared magnitude
response of a typical Elliptic filter is depicted in the Fig. 4.29.

Fig. 4.29 The squared | H(w)I?
magnitude response of a A
typical Elliptic filter
1
N N\ »
1+ Transition
Passband | Vo » Has the steepest roll-off
Stopband
52
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The phase response of the Elliptic filters is a non-linear function. The design of
the elliptic filters is relatively complex when compared to Butterworth and
Chebyshev filters.

4.3.3.4 Bessel Filters

For Butterworth, Chebyshev and Elliptic filters; the group delay t(6) is a nonlinear
function of the frequency. This means that the time delay introduced to the system
varies nonlinearly with the frequency.

Bessel filters are linear phase filters and the group delay for these filters is a
constant number independent of the frequency. For this reason, a constant time
delay is introduced into the system independent of the frequency.

However, Bessel filters has the lowest roll-off factor among all the practical
filters we have mentioned up to now. The squared magnitude response of a typical
Bessel filter is depicted in the Fig. 4.30.

Summary:

Butterworth Filters: No ripple in passband and stopband. Group delay is nonlinear
function of the frequency. Roll-off is low.

Chebyshev Type-I Filters: Have ripple in passband, no ripple in stopband. Group
delay is a nonlinear function of the frequency. Roll-off is high.

Chebyshev Type-II Filters: No ripple in passband and have ripple in stopband.
Group delay is nonlinear function of the frequency. Roll-off is high.

Elliptic Filters: Have ripple both in passband and stopband. Group delay is a
nonlinear function of the frequency. Roll-off is the highest.

Bessel Filters: No ripple in passband and stopband. Group delay is constant.
Roll-off is the lowest.

Fig. 4.30 The squared | H(w) P
magnitude response of a A
typical Bessel filter

_\ Transition

Has the lowest
roll-off

(1+&%)™!
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4.3.4 Analog Frequency Transformations

Once you have analogue low-pass prototype filter with cut-off frequency
w. = 1 rad/s, you can design other filters via frequency transformation. The pos-
sible frequency transformations are summarized as follows:

s . .
Lowpass to lowpass s «<— — where w, is the desired cut—off frequency.
We

Lowpass to highpass s « Ye where w, is the desired cut—off frequency.
s

2
ST+ W, W,
Lowpass to bandpass s « —————_
S(WCu - Wcl)
2
S° 4+ W, W
Lowpass to bandpass s « —————*__
s(We, — We,)
s(We, — W.
Lowpass to bandpass s «— M
S+ We,We,

w, is the lower cut-off frequence.

we, 1s the upper cut-off frequency.

Example 4.15 The transfer function of a low-pass analog filter with cut-off fre-
quency w, = 1 rad/s is given as

1
(s+1)(s>+s+1)

Hip(s) =

Using the above transfer function, find the transfer function of an high-pass
analog filter with cut-off frequency w, = 1 rad/s.

Solution 4.15 To get the transfer function of an high-pass filter from a low-pass
filter transfer function, simply replace s in low-pass filter transfer function by “,

We

i.e., s < =<, that is
S

th(S) = Hlp (r) ’r:E

s

which yields the transfer function

1
DG+ 5+

th(s) = (l

s
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whose simplified form can be calculated as

S2 N

H =
w(s) s24+s+1s+1

As it is seen from the above equation, the transfer function of a high pass filter
includes s’ like terms in the numerator.

4.4 Implementation of Analog Filters

4.4.1 Low Pass Filter Circuits

Remember that the transfer function of the low-pass Butterworth filter was in the
form

w

e

Considering (4.102), we can calculate the transfer function of the Butterworth
filter for w. =1 and N = 3 as

N
¢

H(s) (4.102)

1
(s+1)(s>+s+1)

H(s) = (4.103)

As it is also seen in (4.103), we can say that the transfer function of a low-pass
filter has a constant number in its numerator, and at the denominator, we can have
two different types of polynomials which are

(s+a) (s*+bis+b).

If we know how to implement (s +a) and (s> 4 bys + b, ), then we can imple-
ment the transfer function H(s) using circuit elements.

How to implement H(s) = a/(s+a):

The transfer function H(s) = a/(s+ a) can be implemented using the circuit in
Fig. 4.31.

Fig. 4.31 Analog

R
implementation of H(s) = WWY —e
a/(s+a) by circuit elements l _ out
) CI
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The transfer function of the circuit in Fig. 4.31 can be calculated as

s L
H(s) = “//(',-:t((s)) ~H(s) = 2o

How to implement H(s) = b/(s + a):
The transfer function

b
_s+a

H(s) (4.104)

can be implemented using the circuit in Fig. 4.32.
The transfer function of the above circuit is

o = ") )= (142 A

How to implement H(s) = a/s* + bys + by:
The transfer function

a

H(s)=— & 4.105
(5) 2+ bis+b, (4.105)

can be implemented using the circuit in Fig. 4.33.
The transfer function of the circuit in Fig. 4.33 can be calculated as

K
H(s) =)~ H(s) =
s2+( +me 5 )s+—

1 T2 T1T2

where K = 1+ Rp/Ry, 11 = R1Cy, 1, = R,C,. If common values are selected for
the resistors Ry, R, and capacitors C, C,, transfer function expression reduces to

Fig. 4.32 Analog R, R,

implementation of H(s) =
R, >
VWA .,
V%

b/(s+a) by circuit elements
Ci
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Fig. 4.33 Analog

implementation of H(s) =
a/s* +bys+ by by circuit R,
elements v
Vi
Fig. 4.34 Alternative analog C C,
implementation of (4.105) { } { }
R + R, h
- WY Vo
Vi R —
%
H(s) =K :
O =Kot
T T
where 7 = RC.
An alternative implementation of (4.105) can be achieved using the circuit in
Fig. 4.34.

The transfer function of the circuit in Fig. 4.34 can be calculated as

H(s) = (4.106)

where 11 = R Cy, 13 = RyC,. If Ry and R; are chosen as R; = Rj3, then we get

1

His) = o2 4.107
() 24 Ls+ 2 ( )

T17T2

Example 4.16 The transfer function of second order low-pass Butterworth filter
with cut-off frequency w,. = 1000 rad/s is given as

H(s) 10°
s) = .
s2+ 14145+ 2 x 106

Implement the given filter transfer function using circuit elements.
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Fig. 4.35 Second order C C,
low-pass filter — Il
implementation R

Solution 4.16 Let’s use the circuit given in Fig. 4.35.
The transfer function of the circuit in Fig. 4.35 can be calculated as

1

H(s) = ao . (4.108)
e T

When (4.38) is compared to

H(s) 10°
S) =
s+ 14145+ 2 x 106

we see that

1+R /Ry

1
—=10° —=1414 2 x 10°. (4.109)
T1T2 (%) T1T2
In (4.109) let’s first solve
1
— = 1414.
(%)
Since 1, = R, (s, if C; is chosen as 0.47 uF, then
1
Ry — Ry, = 1504 Q.

T 1414 x 0.47 x 106

Next solving
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for 71, we get 7, = 1414/2 x 10° and if C; is chosen as 0.47 uF, then

1414
R =2x—=—R; =6017 Q.
1T 047 T
Finally solving the equation
LER/Rs 5 5 q0e
12
for
—=10°
T1T2
and
R, = 6017 Q

we find R; as
R; = R, = 6017 Q.

With the found values, our second order Butterworth low-pass filter circuit with
cut-off frequency w, = 1000 rad/s becomes as in Fig. 4.36.

The circuit in Fig. 4.36 includes some resistor values which may not be com-
mercially available. In this case, we should use a resistor value closest to the
calculated value in the Figure. This may slightly affect the accuracy of the filter. We
can use the standard resistor and capacitor values shown in Tables 4.1 and 4.2. And
to get the resistor value 6017 Q in our example, we can use 6.2 KQ or 5.6 KQ and
430 Q in series.

Fig. 4.36 Butterworth 0.47uF 0.47uF
low-pass filter circuit with I | | |
cut-off frequency 60170

w. = 1000 rad/s + 1504Q h
— \/\N\/\/ —* Voul
Vin 6017Q2 —

AMW

I
{
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Table 4.1 Common resistor values for electronic circuits

Standard resistor values (£5%)

1.0 10 100 1.0 K 10 K 100 K 1.0 M 10 M
1.1 11 110 1.1 K 11 K 110 K 1.1 M 11 M
1.2 12 120 1.2 K 12 K 120 K 1.2M 12M
1.3 13 130 1.3 K 13 K 130 K 1.3 M 13 M
1.5 15 150 15K 15 K 150 K 1.5M 1I5M
1.6 16 160 1.6 K 16 K 160 K 1.6 M 16 M
1.8 18 180 1.8 K 18 K 180 K 1.8 M 18 M
2.0 20 200 20K 20 K 200 K 20M 20 M
22 22 220 22K 22K 220 K 22M 22M
2.4 24 240 24K 24 K 240 K 24 M
2.7 27 270 277K 27K 270 K 27 M
3.0 30 300 30K 30 K 300 K 3.0M
3.3 33 330 33K 33K 330 K 33 M
3.6 36 360 3.6 K 36 K 360 K 3.6 M
3.9 39 390 39K 39 K 390 K 39M
4.3 43 430 43 K 43 K 430 K 43 M
4.7 47 470 47K 47 K 470 K 47 M
5.1 51 510 51K 51 K 510 K 5.1 M
5.6 56 560 5.6 K 56 K 560 K 5.6 M
6.2 62 620 6.2 K 62 K 620 K 62 M
6.8 68 680 6.8 K 68 K 680 K 6.8 M
7.5 75 750 7.5 K 75 K 750 K 75M
8.2 82 820 82K 82 K 820 K 82 M
9.1 91 910 9.1 K 91 K 910 K 9.1 M

Table 4.2 Common capacitor values for electronic circuits

Standard capacitor values (£10%)
10 pF 100 pF 1000 pF 0.010 mF 0.10 mF 1.0 mF 10 mF
12 pF 120 pF 1200 pF 0.012 mF 0.12 mF 1.2 mF
15 pF 150 pF 1500 pF 0.015 mF 0.15 mF 1.5 mF
18 pF 180 pF 1800 pF 0.018 mF 0.18 mF 1.8 mF
22 pF 220 pF 2200 pF 0.022 mF 0.22 mF 2.2 mF 22 mF
27 pF 270 pF 2700 pF 0.027 mF 0.27 mF 2.7 mF
33 pF 330 pF 3300 pF 0.033 mF 0.33 mF 3.3 mF 33 mF
39 pF 390 pF 3900 pF 0.039 mF 0.39 mF 3.9 mF
47 pF 470 pF 4700 pF 0.047 mF 0.47 mF 4.7 mF 47 pF
56 pF 560 pF 5600 pF 0.056 mF 0.56 mF 5.6 mF
68 pF 680 pF 6800 pF 0.068 mF 0.68 mF 6.8 mF
82 pF 820 pF 8200 pF 0.082 mF 0.82 mF 8.2 mF
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4.4.2 Analog High-Pass Filter Circuit Design

Let’s consider the transfer function of a high pass Butterworth filter given as

N 2 N

- 4.110
s24+s+1s+1 ( )

Hyp(s)

Inspecting (4.110), we can conclude that the transfer function of a high pass filter
contains two different terms

Ks? as

. 4.111
s24+bis+by’ s+b ( )

Then if we know how to implement the terms in (4.111) by circuit elements,
then we can construct a circuit for any high pass filter.

The high pass filter circuit can be obtained from a low pass filter circuit by
replacing the resistors of the low pass filter by capacitors and replacing the
capacitors of the low pass filter by resistors.

How to implement H(s) = as/(s+b):

We can use the circuit in Fig. 4.37 to implement the transfer function

as

The transfer function of the circuit in Fig. 4.37 can be calculated in ‘s’ domain.
The transfer function of the circuit in Fig. 4.37 can be calculated as

R
H(s) =K——— where K=1+_"
S+m R3

If the resistors R, and R; are not used in Fig. 4.37, then the transfer function
reduces to

H(s) = ——. (4.112)
St mec

Fig. 4.37 Analog

||
implementation of H(s) = I
as/(s+ b) by circuit elements G
Va R
1
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Fig. 4.38 Analog

implementation of H(s) =
Ks?/s* +bys + by by circuit |
elements

How to implement H(s) = Ks? /s> + bys + by:
We can use the circuit in Fig. 4.38 to implement the transfer function

Ks?

Hs)=———. 4.113
(s) S2+b1s+b0 ( )

The circuit in Fig. 4.38 is called Sallen-Key topology whose transfer function
can be calculated as

K2
H(s) = — ’ — : (4.114)
S2+(E+m+:—l)s+—

172

where T = Rlcl,‘fz = RzCz,K = 1+R4/R3
If Ri = R, and C; = (5, then (4.114) reduces to

Ks?
H(s)=———5F———. 4.115
R = (4.115)
Example 4.17 Implement the high pass filter transfer function
2.65%
H(s) : (4.116)

T2 +5315+176.83

Solution 4.17 If we compare the given transfer function in (4.116) to

Ks?
H(s)=5—5% 1
P

we see that

2.65? _ Ks?
s2+531s+176.83 24 Kgq 1o
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Fig. 4.39 High pass filter 16KQ
circuit for Example 4.17 VWY
+
el L .y
047uF 047uF _ out
V.
in 16KQ
§ 16KQ
N 10KQ
where we have
Rel = 176.83
And if we choose C = 0.47 pF, then R is found as
1 1012
= 17683 >R =————— — R= 16000 Q.
R2(0.47 x 1079) 0.47° x 176.83

Also we have K = 2.6 since, K = 1 + R4/R3, we get

R R
26=1+—-"2=16
Ry R;
Since f;—j = 1.6, we can choose Ry = 16 KQ, R; = 10 KQ. Then our high pass
filter circuit becomes as in Fig. 4.39.

Example 4.18 Implement high pass filter transfer function

2.6 x 0.55°

H() = 5753151 176.83

(4.117)

using circuit elements.

Solution 4.18 In (4.117); we have 0.5 factor in the numerator, for this reason we
add a voltage divider circuit to the end of the circuit which is shown in shadow in
Fig. 4.40.
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4.4.3 Analog Bandpass Active Filter Circuits

For the implementation of analog bandpass filters, the prototype circuit shown in
Fig. 4.41 can be employed.

4.4.4 Analog Bandstop Active Filter Circuits

Bandstop filters can be implemented using the circuit shown in Fig. 4.42.

16KQ2

+ 1KQ
[ [ 1%
0.47uF 0.47 uF _ i
mn 16KQ§ 1KQ

Fig. 4.40 High pass filter circuit with voltage divider

Fig. 4.41 Bandpass filter
circuit

Fig. 4.42 Bandstop filter R,
circuit

out
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4.5 Infinite Impulse Response (IIR) Digital Filter Design
(Low Pass)

Two methods are followed for the design of infinite impulse response digital filters,
i.e., IIR filters. These methods are:

(1) Design an analog filter and convert it to a digital filter via sampling operation,
i.e., digitize the designed analog filter to get the digital filter.
(2) Design the TIR digital filter directly.

We will use the first approach in this book. The steps for the design of IIR filters
using analog prototypes are outlined in the Table 4.3.

Example 4.19 The magnitude response of a digital filter is depicted in the
Fig. 4.43.

(a) By mapping the digital filter specifications to a continuous time, determine the
continuous time filter specifications.
(b) Determine the squared magnitude response of the continuous time filter.

Solution 4.19 We will use the bilinear transformation method to find the digital

filter specifications. In bilinear transformation, the relationship between analog and
digital frequencies is

2 an (Wd)
Wy = — —
T 2

_ T,
wg = 2tan” ! (waj)

IIR digital filter design using analog prototypes

which can also be written as

Table 4.3 Steps for the
design of an IIR digital filter

(1) Determine the digital filter specifications, such as
Wp7WSaR[)aRs

(2) Map digital filter frequency specifications to continuous
time filter frequency specifications using a transformation
method, for instance “bilinear transformation”

(3) Design the continuous time filter according to continuous
time specifications

(4) Transform continuous time filter to digital filter using a
transformation method, for instance “bilinear
transformation”

(5) Implement your digital filter by either designing a hardware
using digital gates, or writing a software for digital devices
which can be microprocessors, digital signal processing
chips, or field programmable gate arrays (FPGA)
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Fig. 4.43 The magnitude | H,(w)l
response of a digital filter A

0.9 _\

0.2

0 w, =047 w, =0.87 g

Since digital filter specifications are given, we should use

w, —Etan (Wd)
T, 2

1

to find the analog filter specifications. Let Ts = 5555

frequencies are calculated as

s, then the analog pass and stop

0.4

Wqp = 4000 tan (Tn> — W = 2906.2 rad/s — w,, = 925.54n
0.8

Wwas = 4000 tan ) T Was = 12,311 rad/s — w,, = 3918.77.

Then the analog filter magnitude response can be drawn as in Fig. 4.44.

Fig. 4.44 Analog filter [ H,(w)l
magnitude response A

09

0.2

4
=

0 w,, =925.547 w, =3918.7x
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Using Fig. 4.44 the squared magnitude response of the analog filter can be found
as in Fig. 4.45.

Example 4.20 The magnitude response of a lowpass digital filter is depicted in
Fig. 4.46. State the digital filter specifications via mathematical expressions.

Solution 4.20 Since Fourier transform of the digital signals is periodic with period
27, we can express the filter specifications for the interval —n <w < r. In addition,
we know that aliasing in Fourier transform of a digital signal does not occur if
magnitude response has nonzero values only for the interval —n <w <.

For this reason, for the digital filters, we will only consider the frequency interval
—n <w <. In addition, the frequency interval 0 < |w| <7/2 is accepted as the low
frequency region and the frequency range 7/2 <|w|<m is accepted as the high
frequency interval.

Fig. 4.45 Squared |H (w)P
magnitude response of the ¢ A
analog filter

0.81 _\

0.04
» w
0 w,, =925.547  w, =39187%
Fig. 4.46 The magnitude | H,(w)]
response of a lowpass digital A
filter
1
00—\
0.2
> w
0 w, =027 w,=0.57
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Then considering Fig. 4.46, the filter response can be expressed as

09<|H;(w)|<1 0<|w|<0.27,
|H;(w)| <02 057<|w|<m.

Example 4.21 Design the digital filter with the following specifications

09< [Hy(w)| <1 0< || <0.4r,
|[Hy(w)| <02  08n<|w|<m.

Solution 4.21 Using the given specifications we can draw the magnitude response
of the digital filter as in Fig. 4.47.

For the design of our digital filter, we first convert digital filter specifications to
analog filter specification using the bilinear transformation method. Since this
example is a continuation of Example 4.19, we can use the converted parameters of
Example 4.19. Using the results of Example 4.19, we can analog draw the analog
filter squared magnitude response as in Fig. 4.48.

To design the analog filter, we can use one of the available analog prototypes
models. Let’s choose Butterworth filter model for our design. From the given

squared magnitude response in Fig. 4.48, the parameters ¢, € and 6% are found as

1
=0.81 — € =0.2346 — ¢ = 0.4843 &% = 0.04.
V14 e
Fig. 4.47 Digital lowpass | H,(w)]
filter for Example 4.21 A

0.9 _\

0.2

\/
=

0 w, =047 w,=0.87
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Fig. 4.48 Squared | H (W) 2
magnitude response of the A
analog filter obtained from
digital filter specifications 1
after bilinear transformation
operation

0.81

0.04

» W
0 w,, =925.547 w, =3918.7%

The parameters 1/d and 1/k are calculated as follows

1 5721 1 25—-1 1

d 2 a4 Vo2 4 )
1

k

o
LN - = 42340,

log (% .
N> og(}) N> log(10.1144)

N>16—N=2.
log(t) "7 Tlog@234) 0T

The cutoff frequency is calculated via

1

o <we Swy (072 — 1) T 925 547 x (0.4843) F < w, <3918.7m x 244

leading to

13087 <w, < 86197. (4.118)

And considering (4.118), we can choose w,. as

13087 + 86197
=

We 3 we = 49631 — w, = 15,592.



288 4 Analog and Digital Filter Design
In the last step, the poles are calculated using
Pk = wce’%(“’(%)), k=1,...,N.
For N = 2, the poles are found as
3 o
P11 = ch]4 P2 = WC'e]4

yielding the results

P = 15,592<cos <%> +J sin(%)) —p1= 7796(—\/§+j\/§)7

(4.119)
5 5
s = 15,592 (cos ({) +j sin (f)) o py = 7796(—\6 —j\fz).
The transfer function is found using
wh
Hy(s) = < (4.120)

(s=p1)(s—p2) (s —pn)
Substituting the calculated poles in (4.119) into (4.120) for N = 2, we get

15,5922
(s+7796V2 — j7796V/2) (s + 7796V/2 +j7796V/2)

H,(s) =

which is simplified as

15,592
(s+7796v2)" + (7796V2)’

leading to the result

B 243,110,464
 52422,0505 +2.43 x 108"

H,(s)

We are done with the analog filter design. Since our aim was to design the digital
filter, we should digitize our analog filter to find the digital filter. For this purpose,
we will use bilinear transformation method. The conversion procedure is outlined
as:

Hy(z) = Ha(s)| _5 1o (4.121)
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Using T = ﬁ s in (4.121), we get

243,110 464
Hy(z) = > 3,110,46 : (4.122)
(4000 155" 422,050 (4000 £55) +2.43 x 108

When (4.122) is simplified, we obtain

H(2) = 243,110,464 x (1+2z7' +772)
N =107 x (3472 + 12.027 1 + 1.62-2)

which can be rearranged as

243+48.677 ' +24.3772

H,y(7) = .
1) = T 1202 4 1.622

To implement the digital filter with the above transfer function, we need to
express the filter output-input relation in time domain. This is possible using

Y(z) Y(z) 243+48.671+24.3772
— =
X(z) X(z) 3472+12.02z7!'+1.672

from which we get

34.72y[n] 4+ 12.02y[n — 1] + 1.6y[n — 2] = 24.3x[n] + 48.6x[n — 1] +24.3x[n — 2]

which leads to the expression

y[n] = —0.34y[n — 1] — 0.05y[n — 2] +0.7x[n] + 1.4x[n — 1] 4+ 0.7x[n — 2]
(4.123)

where x[n] is the input of the digital filter and y[n] is the filtered signal.

And the Eq. (4.123) can be implemented using a computer program, or the filter
can be implemented in other digital hardware such as microprocessors, DSP chips,
FPGAs, via hardware programming languages such as assembly, VHDL, etc., or an
application specific digital hardware consisting of gates and other digital devices
can be specifically produced for this filter.

4.5.1 Generalized Linear Phase Systems

A LTI system is said to be a generalized linear phase system if its transfer function
is of the form
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H(w) = A (w)e Pt (4.124)

where A,(w) is a real function of w. Considering (4.124), the group delay is cal-
culated as

Tg(w) = ————= — 1,(w) = o (4.125)

A causal LTI system is a linear phase system if its L+ 1 point impulse response
hn] satisfies

hln] = +h[L—n] 0<n<L (4.126)

where L can be an odd or even integer. And for such systems, the Fourier transform
of h[n] happens to be in the form

jwL

H(w) =A,(w)e?. (4.127)

4.6 Finite Impulse Response (FIR) Digital Filter Design

In many practical applications, FIR filters are preferred over their IIR counterparts.
The main advantages of FIR filter over IIR filter can be summarized as follows:

(1) Most IIR filters have nonlinear phase characteristics, which creates problem for
practical applications.

(2) FIR filters having linear phase responses and they can be easily designed.

(3) FIR filters can be implemented efficiently with affordable computational
overhead.

(4) Stable FIR filters can be designed in an easy manner.

(5) In the literature, there exist excellent FIR filter design techniques.

The main disadvantage of the FIR filters over IIR filters is that for the appli-
cations requiring narrow band transitions, i.e. steep roll-off, more arithmetic oper-
ations are required which means that more digital hardware components such as
adders, multiplexers, multipliers, etc., are required.

Designing FIR filter is nothing but determining the impulse response of an LTI
system. The impulse response of the LTI system under concern includes a finite
number of samples. If i[n] denotes the impulse response of a FIR filter, then the
output of the filter is written as:
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where usually L = M is assumed. If [n] = 0 for n <0, then the filter is said to be a
causal filter. Otherwise, we have an anti-causal filter. Causal filters are practically
realizable; on the other hand, anti-causal filters cannot be implemented. For this
reason, anti-causal FIR filters should be transferred to causal FIR filters to enable
their use in practical systems.

4.6.1 FIR Filter Design Techniques

There are basically three methods used for the design of FIR filters. These methods
are

(a) FIR filter design by windowing.
(b) FIR filter design by frequency sampling.
(c) Equiripple FIR filter design.

Now let’s see the first method.

4.6.1.1 FIR Filter Design by Windowing

Design of FIR Filter in Time Domain:

The frequency response of an ideal low pass digital filter is shown in the
Fig. 449 where only one period of the frequency response around origin is
depicted.

And we know that H;;(w) satisfies H;;(w) = H;y(w + m2m). The time domain
expression for the low pass digital filter can be calculated as

1
=—sin(wen) n=0,%+1,42,...
nn

where w, is called cut-off frequency. It is clear that h;[n] includes an infinite
number of samples. And the convolutional operation cannot be realized using an

Fig. 4.49 The frequency H,(w)
response of an ideal low pass A

digital filter
1
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infinite number of samples. To alleviate this obstacle, we truncate the ideal filter and
obtain the FIR filter as

hM:{WM if [l <L

0 otherwise

which can also be written as
h[n] = hig[n] x win]

where w(n] is the rectangular window defined as

w[n]—{l if Inf <L

0 otherwise.

This type of design approach is straightforward. However, such a designed filter
suffers from Gibbs phenomenon. In addition, since the used window is anti-causal
so is the FIR filter. However, we can obtain a causal window via truncation as
follows

(1 ifo<n<L
win] = {0 otherwise. (4.128)

To alleviate the effects of Gibbs phenomenon, windows other than the rectan-
gular one such as, Hamming, Hanning, Bartlett, Triangular, and Blackman are used.

Design of FIR Filter in Frequency Domain:

Assume that H(w) is the frequency response of a FIR filter in a way that it
minimizes the error

1 s
=5 / [H(w) — Hig(w) P

where applying the Parseval’s identity, we get

= 3 hln] — hialnlP—

n=—00

L

e=> |hln] = hialn]P+ Y [k[n] = hialn] . (4.129)

n=0 n=Z-[0L]
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When (4.129) is equated to zero, we obtain

[ hiuln] FO0<n<L
hin] = {0 otherwise.

Properties of Windows:

Let W,(w) be the frequency response of the window. The main-lobe of the
window is defined as the region between the first zero crossings on the left and right
sides of the origin.

The width of the main-lobe of the causal rectangular window is approximated as

4n

Aw = .
YT

(4.130)

It is desirable to have a main lobe as narrow as possible. The width of the
main-lobe controls the amount of attenuation on passband region. Side-lobes are the
regions extending from first zero crossings points on either side of the origin.

Side-lobes are responsible for the ripples occurring in passband and stopband.
For a wide range of frequencies, pass and stop band ripples are equal to each other.

For the causal rectangular window increasing the window length L, decreases the
width of the main-lobe, however the areas under side-lobes stays the same which
means that ripples occurs with the same amplitude but more frequently. To reduce
the amount of area under ripples or to reduce the height of the ripples; we need to
rub the ends of the rectangular window for a smoother transition to zero.

For this purpose, we employ some commonly used windows as outlined below:

Hanning Window:

. 0.5—0.500s(2%) if0<n<L
win] = {0 otherwise (4.131)
Hamming Window:
_ 2nn i
wln] = 0.54 O.46cos( 7 ) if OSn'SL (4.132)
0 otherwise
Blackman Window:
_ 2mn Ann ;
win] = 0.42 — 0.5 cos (&) + 0.08 cos () szSn.SL (4.133)
0 otherwise
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For the Hanning, Hamming, and Blackman windows the general form can be
written as

2mn Ann ;
W[n]:{a+bcos(L)+ccos(L) szSnlgL (4.134)
0 otherwise
where for Hanning window a = 0.5,b = —0.46, ¢ = 0, and for Blackman window

a=042,b=-0.5,¢c=0.08.
Bartlett (Triangular) Window:

7 if0<n<j
wn]=4q2-2 if Lan<L (4.135)
0 otherwise

In Table 4.4 five different windows are compared to each other considering
mainlobe width and peak sidelobe amplitude.

All the windows given up to now can be approximated by the Kaiser window.
Now let’s give some information about Kaiser window.

Kaiser Window:

The Kaiser window is defined as

1
_12\2
oo [ p(1-[x2
win] = ({(Jm”}ﬁogngL (4.136)
0 otherwise

where I(-) is the modified Bessel function of the first kind which is equal to

2n
1

%@:%/WMM (4.137)
0

and o = M /2, [ is the design parameter given by

0.1102(C — 8.7)

C > 50

B =< 0.5842(C — 21)** 4+ 0.07886(C — 21) 21 <C <50

0.0

Table 4.4 Windows and their properties

C<21

(4.138)

Window type Mainlobe width Peak sidelobe amplitude (dB)
Rectangular 4 /2L + 1) -13
Bartlett 8 /L -27
Hanning 8 m/L -32
Hamming 8 /L —43
Blackman 12 n/L —58
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where the parameter C is defined as

C = —20log, p. (4.139)

2p is the maximum ripple available in the passband. Let the transition region
width be defined as Aw = w, — w,,. With the given filter specifications, the order of

the Kaiser window is found as
C-38

L =3 28am

(4.140)

which is also the length of the FIR filter satisfying the given specifications.

Example 4.22 Find the impulse response of a FIR filter whose specifications are
given as

w, =04n w,=0.8nr p=0.01.
Solution 4.22 First we need to calculate the order of the Kaiser window given as

Cc-8

L=52%am

where the parameters are calculated as

Aw =wy —w, — Aw =087 — 047 — Aw = 0.4rn
C = —20log,y p — C = —201og;;,0.01 — C =40

And the length of the window is found as

Cc-8 40 - 8
— = —
2.285Aw 2.285 x 0.47%
Next, we calculate the design parameter f§ as follows

L= L=12

B =0.5842(C — 21)** 4 0.07886(C — 21) —
B = 0.5842(40 — 21)** +0.07886(40 — 21) — f = 3.3953

The function Iy(f) can be approximated as

LA B
L) ~1+0-+2 4 L
B~ I+ 5+ T 2500 T 147,456

or we need to write a computer program for the computation of the integral
expression in (4.137). Using the definition of win]
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i)

o) O<n<L
0 otherwise

wln] =

the window elements for L = 12, § = 3.3953, o = L/2 can be calculated as

win] =10.15 031 05 0.69 0.85 096 1 096 0.85 0.69 0.5 0.31 0.15].
0

And the FIR filter coefficients are evaluated using
h[n] = hiq[n]w(n]

Whel‘e ideal ﬁlter Coefﬁcients are
hi nl=— Sin n
a [ ] (WL )

for which w, can be calculated as

_ Wt

We — w, = 0.67.

Hence, ideal filter coefficients can be calculated as

hqa=1[0.6 030 —-0.09 —-0.06 007 0 -—0.05 0.03 0.02 -0.03
=0
0 0.03 —0.016).

Finally the FIR filter coefficients are found using
h[n] = hiq[n]w(n]
as

h[n) =1[0.09 0.093 —0.045 —0.041 0059 0 —0.05 0.029 0.017
—0.02 0 0.009 —0.0024]

4.6.1.2 FIR Filter Design by Frequency Sampling

Let H(w) be the Fourier transform of the impulse response of the FIR filter to be
designed. If we take L samples from H(w) via sampling operation as in
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HIk| = H(w)| k=0,1,....L—1 (4.141)

—k2n
w=~

we obtain the DFT coefficients H[k]. Using (4.141) in inverse DFT formula
H[k]é*T, n=0,1,---,L—1 (4.142)

we obtain the impulse response of digital FIR filter.

4.7 Problems

(1) Convert the differential equation

2
ddytgt) +4d{T(tt) +3y(0) = — 7 —x(0)

to a difference equation via sampling operation and find the transfer function of
the difference equation.

(2) For a continuous time LTI system, the relation between system input and
system output is given via the differential equation

d*y(r) . dy() d’x(1)
a a — )= ar

+ 2x(1).

Considering this LTI system:

(a) Find the transfer function H(s) of the LTI system. Decide on whether the
system has the stability property or not.

(b) Convert the transfer function to its discrete equivalent, for this purpose take
the sampling period as T, = 1.

(3) The specifications of a low-pass analog filter are given as

wp, = 1000 rad/san  w,; = 8000 rad/san R, = 10dB R, = 40 dB.

(a) Find the transfer function H(s) of this filter. In other words, design your
analog filter with the given specifications in the problem. For your design,
use Butterworth, Chebyshev Type-I, and Chebyshev Type-II filter design
methods separately.

(b) Implement your filters using circuit elements.
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(4) The specifications of a low-pass IIR digital filter are given as

wp, = 0.1nrad/s w, =0.7nrad/s R, =10dB R, =40 dB.

(a) Find the transfer function H(z) of this filter. Use sampling period 7y = 1 in
your design.

(b) Using H(z), write a difference equation between filter input and filter
output.

(5) Design the FIR digital filter whose specifications are given as
w, =04n w,=0.8n p=0.01.

In your design use the windowing approach, and use Kaiser window for your
design.
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