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PREFACEd

The purpose of this fifth edition is again to provide an introductory approach to the
finite element method that can be understood by both undergraduate and graduate
students without the usual prerequisites (such as structural analysis and upper level
calculus) required by many available texts in this area. The book is written primarily as
a basic learning tool for the undergraduate student in civil and mechanical engineering
whose main interest is in stress analysis and heat transfer, although new material on
electrical networks and electrostatics has been included in this edition that should be of
interest to the electrical engineer as well. The concepts are presented in su‰ciently
simple form with numerous example problems logically placed throughout the book,
so that the book serves as a valuable learning aid for students with other backgrounds,
as well as for practicing engineers. The text is geared toward those who want to apply
the finite element method to solve practical physical problems.

General principles are presented for each topic, followed by traditional applica-
tions of these principles, which are in turn followed by computer applications where
relevant. This approach is taken to illustrate concepts used for computer analysis of
large-scale problems.

The book proceeds from basic to advanced topics and can be suitably used in a
two-course sequence. Topics include basic treatments of (1) simple springs and bars,
leading to two- and three-dimensional truss analysis; (2) beam bending, leading to plane
frame, grid and space frame analysis; (3) elementary plane stress/strain elements, leading
to more advanced plane stress/strain elements and applications to more complex plane
stress/strain analysis; (4) axisymmetric stress analysis; (5) isoparametric formulation of
the finite element method; (6) three-dimensional stress analysis; (7) plate bending analy-
sis; (8) heat transfer and fluid mass transport; (9) basic fluid flow through porous media
and around solid bodies, hydraulic networks, electrical networks, and electrostatics
analysis; (10) thermal stress analysis; and (11) time-dependent stress and heat transfer.

Additional features include how to handle inclined or skewed supports, beam
element with a nodal hinge, the concept of substructure analysis, the patch test, and
practical considerations in modeling and interpreting results.

The direct approach, the principle of minimum potential energy, and Galerkin’s
residual method are introduced at various stages, as required, to develop the equations
needed for analysis.

Appendices provide material on the following topics: (A) basic matrix algebra
used throughout the text; (B) solution methods for simultaneous equations; (C) basic

xi
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theory of elasticity; (D) work-equivalent nodal forces; (E) the principle of virtual
work; and (F) properties of structural steel shapes.

More than 100 solved examples appear throughout the text. Most of these exam-
ples are solved ‘‘longhand’’ to illustrate the concepts. More than 560 end-of-chapter
problems are provided to reinforce concepts. The answers to many problems are in-
cluded in the back of the book to aid those wanting to verify their work. Those end-of-
chapter problems to be solved using a computer program are marked with a computer
symbol.

New features of this edition include updated standard notation used by most
engineering instructors, chapter objectives at the start of each chapter to inform stu-
dents about what is included in each chapter, summary equations for handy use at the
end of each chapter, additional information on modeling, more comparisons of finite
element solutions to analytical solutions, and numerous solid model- type examples
and problems for solution. Also new to this edition is material on hydraulic networks,
electrical networks, and electrostatics. Over 60 new problems for solution have been
included, and additional design-type problems have been added to chapters 3, 5, 7, 11,
and 12. Additional real-world applications from industry have been added. As in the
4th edition, this edition deliberately leaves out consideration of special purpose com-
puter programs and suggests that instructors choose a program they are familiar with
to integrate into their finite element course.

To access additional course materials, please visit www.cengagebrain.com. At
the cengagebrain.com home page, search for the ISBN of your title (from the back
cover of your book) using the search box at the top of the page. This will take you to
the product page where an Instructor’s Solutions Manual and PowerPoint slides can
be found.

Following is an outline of suggested topics for a first course (approximately 44
lectures, 50 minutes each) in which this textbook is used.

Topic Number of Lectures

Appendix A 1
Appendix B 1
Chapter 1 2
Chapter 2 3
Chapter 3, Sections 3.1–3.11, 3.14 and 3.15 5
Exam 1 1
Chapter 4, Sections 4.1–4.6 4
Chapter 5, Sections 5.1–5.3, 5.5 4
Chapter 6 4
Chapter 7 3
Exam 2 1
Chapter 9 2
Chapter 10 4
Chapter 11 3
Chapter 13, Sections 13.1–13.7 5
Chapter 15 3
Exam 3 1
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This outline can be used in a one-semester course for undergraduate and graduate
students in civil and mechanical engineering. (If a total stress analysis emphasis is de-
sired, Chapter 13 can be replaced, for instance, with material from chapters 8, 12, and
16). The rest of the text can be finished in a second semester course with additional
material provided by the instructor.

I express my deepest appreciation to the sta¤ at Cengage Publishing Company,
especially Chris Shortt, Publisher; Hilda Gowans, Senior Developmental Editor;
Randall Adams, Senior Acquisitions Editor; and to Rose Kernan of RPK Editorial
Services, for their assistance in producing this new edition.

I am grateful to Dr. Ted Belytschko for his excellent teaching of the finite ele-
ment method, which aided me in writing this text. I want to thank Dr. Joseph Rencis
for providing analytical solutions to structural dynamics problems for comparison to
finite element solutions in Chapter 16. Also I want to thank the many students at the
University for their suggestions on ways to make the topics easier to understand.
These suggestions have been incorporated into this edition as well.

I thank many students at the University of Wisconsin-Platteville (UWP), whose
names are credited throughout the book, for contributing various two-and-three di-
mensional models from the finite element course. Thank you also to UWP graduate
students, Angela Moe and William Gobeli for Figure 7–19 and Table 11–2, respec-
tively. Also, special thanks to Andrew Heckman, an alum of UWP and Design Engi-
neer at Seagraves Fire Apparatus for permission to use Figure 11–10 and to Mr.
Yousif Omer, Structural Engineer at John Deer Dubuque Works for allowing permis-
sion to use Figure 1–10. I want to thank the people at Autodesk (Algor) for their con-
tribution of Figure 9–2b. Finally, I want to thank Ioan Giosan, Senior Design Engi-
neer at Valmont West Coast Engineering for allowing permission to use Figures 1–11
and 1–12 and for allowing the wind mill model for the front cover.

Thank you also to the reviewers of this fifth edition: Andre Bernard, Michigan
State University, Vincent C. Prantil, Milwaukee School of Engineering, Qinhua Qin,
Australian National University, Robert Rizza, Milwaukee School of Engineering,
Thomas J. Rudolphi, Iowa State University, and J. K. Spelt, University of Toronto,
who made significant suggestions to make the book even more complete.

Special thanks to Joyce Clifton, program assistant at the university, for her in-
valuable assistance in scanning materials for this text.

A final special thanks to my wife Diane for her many sacrifices during the
development of this fifth edition.
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NOTATIONd

English Symbols

ai generalized coordinates (coe‰cients used to express displacement in
general form)

A cross-sectional area

½B� matrix relating strains to nodal displacements or relating temperature
gradient to nodal temperatures

c specific heat of a material

½C 0� matrix relating stresses to nodal displacements

C direction cosine in two dimensions

Cx, Cy, Cz direction cosines in three dimensions

fdg element and structure nodal displacement matrix, both in global
coordinates

fd 0g local-coordinate element nodal displacement matrix

D bending rigidity of a plate

½D� matrix relating stresses to strains

½D0� operator matrix given by Eq. (10.2.16)

e exponential function

E modulus of elasticity

f f g global-coordinate nodal force matrix

f f 0g local-coordinate element nodal force matrix

f fbg body force matrix

f fhg heat transfer force matrix

f fqg heat flux force matrix

f fQg heat source force matrix

f fsg surface force matrix

fFg global-coordinate structure force matrix

fFcg condensed force matrix

fFig global nodal forces

fF0g equivalent force matrix

xv
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fgg temperature gradient matrix or hydraulic gradient matrix

G shear modulus

h heat-transfer (or convection) coe‰cient

i; j;m nodes of a triangular element

I principal moment of inertia

½J� Jacobian matrix

k spring sti¤ness

½k� global-coordinate element sti¤ness or conduction matrix

½kc� condensed sti¤ness matrix, and conduction part of the sti¤ness matrix
in heat-transfer problems

½k0� local-coordinate element sti¤ness matrix

½kn� convective part of the sti¤ness matrix in heat-transfer problems

½K � global-coordinate structure sti¤ness matrix

Kxx;Kyy thermal conductivities (or permeabilities, for fluid mechanics) in the
x and y directions, respectively

L length of a bar or beam element

m maximum di¤erence in node numbers in an element

mðxÞ general moment expression

mx;my;mxy moments in a plate

½m0�; ½m� local element mass matrix

½m0i� local nodal moments

½M� global mass matrix

½M �� matrix used to relate displacements to generalized coordinates for a
linear-strain triangle formulation

½M 0� matrix used to relate strains to generalized coordinates for a linear-
strain triangle formulation

nb bandwidth of a structure

nd number of degrees of freedom per node

½N� shape (interpolation or basis) function matrix

Ni shape functions

p surface pressure (or nodal heads in fluid mechanics)

pr; pz radial and axial (longitudinal) pressures, respectively

P concentrated load

½P 0� concentrated local force matrix

q heat flow (flux) per unit area or distributed loading on a plate

q rate of heat flow

q� heat flow per unit area on a boundary surface

Q heat source generated per unit volume or internal fluid source

Q� line or point heat source

Qx;Qy transverse shear line loads on a plate
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r; y; z radial, circumferential, and axial coordinates, respectively

R residual in Galerkin’s integral

Rb body force in the radial direction

Rix;Riy nodal reactions in x and y directions, respectively

s; t; z 0 natural coordinates attached to isoparametric element

S surface area

t thickness of a plane element or a plate element

ti; tj; tm nodal temperatures of a triangular element

T temperature function

Ty free-stream temperature

½T � displacement, force, and sti¤ness transformation matrix

½Ti� surface traction matrix in the i direction

u; v;w displacement functions in the x, y, and z directions, respectively

ui; vi;wi x, y, and z displacements at node i, respectively

U strain energy

DU change in stored energy

v velocity of fluid flow

V shear force in a beam

w distributed loading on a beam or along an edge of a plane element

W work

xi; yi; zi nodal coordinates in the x, y, and z directions, respectively

x0; y0; z0 local element coordinate axes

x; y; z structure global or reference coordinate axes

½X � body force matrix

Xb;Yb body forces in the x and y directions, respectively

Zb body force in longitudinal direction (axisymmetric case) or in the
z direction (three-dimensional case)

Greek Symbols

a coe‰cient of thermal expansion

ai; bi; gi; di used to express the shape functions defined by Eq. (6.2.10) and
Eqs. (11.2.5) through (11.2.8)

d spring or bar deformation

e normal strain

feTg thermal strain matrix

kx; ky; kxy curvatures in plate bending

n Poisson’s ratio

fi nodal angle of rotation or slope in a beam element

ph functional for heat-transfer problem

Notation d xvii
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pp total potential energy

r mass density of a material

rw weight density of a material

o angular velocity and natural circular frequency

W potential energy of forces

f fluid head or potential, or rotation or slope in a beam

s normal stress

fsTg thermal stress matrix

t shear stress and period of vibration

y angle between the x axis and the local x0 axis for two-dimensional
problems

yp principal angle

yx; yy; yz angles between the global x, y, and z axes and the local x0 axis,
respectively, or rotations about the x and y axes in a plate

½C � general displacement function matrix

Other Symbols

dð Þ
dx

derivative of a variable with respect to x

dt time di¤erential

ð_Þ the dot over a variable denotes that the variable is being di¤erentiated
with respect to time

½ � denotes a rectangular or a square matrix

f g denotes a column matrix

(–) the underline of a variable denotes a matrix

ð 0 Þ the prime next to a variable denotes that the variable is being described
in a local coordinate system

½ ��1 denotes the inverse of a matrix

½ �T denotes the transpose of a matrix

qð Þ
qx

partial derivative with respect to x

qð Þ
qfdg partial derivative with respect to each variable in fdg

1 denotes the end of the solution of an example problem

xviii d Notation
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INTRODUCTIONd

CHAPTER OBJECTIVES

. To present an introduction to the finite element method.

. To provide a brief history of the finite element method.

. To introduce matrix notation.

. To describe the role of the computer in the development of the finite element
method.

. To present the general steps used in the finite element method.

. To illustrate the various types of elements used in the finite element method.

. To show typical applications of the finite element method.

. To summarize some of the advantages of the finite element method.

Prologue

The finite element method is a numerical method for solving problems of engineering
and mathematical physics. Typical problem areas of interest in engineering and math-
ematical physics that are solvable by use of the finite element method include struc-
tural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

For problems involving complicated geometries, loadings, and material proper-
ties, it is generally not possible to obtain analytical mathematical solutions. Analytical
solutions are those given by a mathematical expression that yields the values of the
desired unknown quantities at any location in a body (here total structure or physical
system of interest) and are thus valid for an infinite number of locations in the body.
These analytical solutions generally require the solution of ordinary or partial differ-
ential equations, which, because of the complicated geometries, loadings, and material
properties, are not usually obtainable. Hence we need to rely on numerical methods,
such as the finite element method, for acceptable solutions. The finite element formu-
lation of the problem results in a system of simultaneous algebraic equations for solu-
tion, rather than requiring the solution of differential equations. These numerical
methods yield approximate values of the unknowns at discrete numbers of points in
the continuum. Hence this process of modeling a body by dividing it into an equiva-
lent system of smaller bodies or units (finite elements) interconnected at points com-
mon to two or more elements (nodal points or nodes) and/or boundary lines and/or
surfaces is called discretization. In the finite element method, instead of solving the

1
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problem for the entire body in one operation, we formulate the equations for each
finite element and combine them to obtain the solution of the whole body.

Briefly, the solution for structural problems typically refers to determining the
displacements at each node and the stresses within each element making up the struc-
ture that is subjected to applied loads. In nonstructural problems, the nodal unknowns
may, for instance, be temperatures or fluid pressures due to thermal or fluid fluxes.

This chapter first presents a brief history of the development of the finite element
method. You will see from this historical account that the method has become a prac-
tical one for solving engineering problems only in the past 55 years (paralleling the
developments associated with the modern high-speed electronic digital computer).
This historical account is followed by an introduction to matrix notation; then we
describe the need for matrix methods (as made practical by the development of the
modern digital computer) in formulating the equations for solution. This section dis-
cusses both the role of the digital computer in solving the large systems of simulta-
neous algebraic equations associated with complex problems and the development of
numerous computer programs based on the finite element method. Next, a general
description of the steps involved in obtaining a solution to a problem is provided.
This description includes discussion of the types of elements available for a finite
element method solution. Various representative applications are then presented to
illustrate the capacity of the method to solve problems, such as those involving com-
plicated geometries, several different materials, and irregular loadings. Chapter 1
also lists some of the advantages of the finite element method in solving problems of
engineering and mathematical physics. Finally, we present numerous features of com-
puter programs based on the finite element method.

d 1.1 Brief History d
This section presents a brief history of the finite element method as applied to both
structural and nonstructural areas of engineering and to mathematical physics. Refer-
ences cited here are intended to augment this short introduction to the historical
background.

The modern development of the finite element method began in the 1940s in the
field of structural engineering with the work by Hrennikoff [1] in 1941 and McHenry
[2] in 1943, who used a lattice of line (one-dimensional) elements (bars and beams)
for the solution of stresses in continuous solids. In a paper published in 1943 but not
widely recognized for many years, Courant [3] proposed setting up the solution of
stresses in a variational form. Then he introduced piecewise interpolation (or shape)
functions over triangular subregions making up the whole region as a method to
obtain approximate numerical solutions. In 1947 Levy [4] developed the flexibility or
force method, and in 1953 his work [5] suggested that another method (the stiffness
or displacement method) could be a promising alternative for use in analyzing stati-
cally redundant aircraft structures. However, his equations were cumbersome to
solve by hand, and thus the method became popular only with the advent of the
high-speed digital computer.
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In 1954 Argyris and Kelsey [6, 7] developed matrix structural analysis methods
using energy principles. This development illustrated the important role that energy
principles would play in the finite element method.

The first treatment of two-dimensional elements was by Turner et al. [8] in 1956.
They derived stiffness matrices for truss elements, beam elements, and two-dimensional
triangular and rectangular elements in plane stress and outlined the procedure
commonly known as the direct stiffness method for obtaining the total structure stiff-
ness matrix. Along with the development of the high-speed digital computer in the
early 1950s, the work of Turner et al. [8] prompted further development of finite ele-
ment stiffness equations expressed in matrix notation. The phrase finite element was
introduced by Clough [9] in 1960 when both triangular and rectangular elements
were used for plane stress analysis.

A flat, rectangular-plate bending-element stiffness matrix was developed by
Melosh [10] in 1961. This was followed by development of the curved-shell bending-
element stiffness matrix for axisymmetric shells and pressure vessels by Grafton and
Strome [11] in 1963.

Extension of the finite element method to three-dimensional problems with the
development of a tetrahedral stiffness matrix was done by Martin [12] in 1961, by
Gallagher et al. [13] in 1962, and by Melosh [14] in 1963. Additional three-dimensional
elements were studied by Argyris [15] in 1964. The special case of axisymmetric solids
was considered by Clough and Rashid [16] and Wilson [17] in 1965.

Most of the finite element work up to the early 1960s dealt with small strains
and small displacements, elastic material behavior, and static loadings. However,
large deflection and thermal analysis were considered by Turner et al. [18] in 1960
and material nonlinearities by Gallagher et al. [13] in 1962, whereas buckling prob-
lems were initially treated by Gallagher and Padlog [19] in 1963. Zienkiewicz et al.
[20] extended the method to visco-elasticity problems in 1968.

In 1965 Archer [21] considered dynamic analysis in the development of the
consistent-mass matrix, which is applicable to analysis of distributed-mass systems
such as bars and beams in structural analysis.

With Melosh’s [14] realization in 1963 that the finite element method could be
set up in terms of a variational formulation, it began to be used to solve nonstructural
applications. Field problems, such as determination of the torsion of a shaft,
fluid flow, and heat conduction, were solved by Zienkiewicz and Cheung [22] in
1965, Martin [23] in 1968, and Wilson and Nickel [24] in 1966.

Further extension of the method was made possible by the adaptation of weighted
residual methods, first by Szabo and Lee [25] in 1969 to derive the previously known
elasticity equations used in structural analysis and then by Zienkiewicz and Parekh [26]
in 1970 for transient field problems. It was then recognized that when direct formula-
tions and variational formulations are difficult or not possible to use, the method of
weighted residuals may at times be appropriate. For example, in 1977 Lyness et al. [27]
applied the method of weighted residuals to the determination of magnetic field.

In 1976, Belytschko [28, 29] considered problems associated with large-displace-
ment nonlinear dynamic behavior, and improved numerical techniques for solving
the resulting systems of equations. For more on these topics, consult the texts by
Belytschko, Liu, Moran [58], and Crisfield [61, 62].
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A relatively new field of application of the finite element method is that of bioen-
gineering [30, 31]. This field is still troubled by such difficulties as nonlinear materials,
geometric nonlinearities, and other complexities still being discovered.

From the early 1950s to the present, enormous advances have been made in the
application of the finite element method to solve complicated engineering problems.
Engineers, applied mathematicians, and other scientists will undoubtedly continue to
develop new applications. For an extensive bibliography on the finite element method,
consult the work of Kardestuncer [32], Clough [33], or Noor [57].

d 1.2 Introduction to Matrix Notation d
Matrix methods are a necessary tool used in the finite element method for purposes of
simplifying the formulation of the element stiffness equations, for purposes of long-
hand solutions of various problems, and, most important, for use in programming
the methods for high-speed electronic digital computers. Hence matrix notation repre-
sents a simple and easy-to-use notation for writing and solving sets of simultaneous
algebraic equations.

Appendix A discusses the significant matrix concepts used throughout the text.
We will present here only a brief summary of the notation used in this text.

A matrix is a rectangular array of quantities arranged in rows and columns that is

often used as an aid in expressing and solving a system of algebraic equations. As examples
of matrices that will be described in subsequent chapters, the force components ðF1x;
F1y;F1z;F2x;F2y;F2z; . . . ;Fnx;Fny;FnzÞ acting at the various nodes or points ð1; 2; . . . ; nÞ
on a structure and the corresponding set of nodal displacements ðu1; v1;w1;
u2; v2;w2; . . . ; un; vn;wnÞ can both be expressed as matrices:

fFg ¼

F1x

F1y

F1z

F2x

F2y

F2z

..

.

Fnx

Fny

Fnz

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

fdg ¼

u1

v1

w1

u2

v2

w2

..

.

un

vn

wn

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð1:2:1Þ

The subscripts to the right of F identify the node and the direction of force, respec-
tively. For instance, F1x denotes the force at node 1 applied in the x direction. The x,
y, and z displacements at a node are denoted by u, v, and w, respectively. The subscript
next to u, v, and w denotes the node. For instance, u1, v1, and w1 denote the displace-
ment components in the x, y, and z directions, respectively, at node 1. The matrices in
Eqs. (1.2.1) are called column matrices and have a size of n�1. The brace notation {}
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will be used throughout the text to denote a column matrix. The whole set of force or
displacement values in the column matrix is simply represented by {F} or {d}.

The more general case of a known rectangular matrix will be indicated by use of
the bracket notation ½ �. For instance, the element and global structure stiffness matri-
ces ½k� and ½K �, respectively, developed throughout the text for various element types
(such as those in Figure 1–1 on page 10), are represented by square matrices given as

½k� ¼

k11 k12 . . . k1n

k21 k22 . . . k2n

..

. ..
. ..

.

kn1 kn2 . . . knn

2
66664

3
77775 ð1:2:2Þ

½K� ¼

K11 K12 . . . K1n

K21 K22 . . . K2n

..

. ..
. ..

.

Kn1 Kn2 . . . Knn

2
66664

3
77775 ð1:2:3Þand

where, in structural theory, the elements kij and Kij are often referred to as stiffness

influence coefficients.
You will learn that the global nodal forces {F} and the global nodal displace-

ments {d} are related through use of the global stiffness matrix [K ] by

fFg ¼ ½K �fdg ð1:2:4Þ

Equation (1.2.4) is called the global stiffness equation and represents a set of simulta-
neous equations. It is the basic equation formulated in the stiffness or displacement
method of analysis.

To obtain a clearer understanding of elements Kij in Eq. (1.2.3), we use Eq.
(1.2.1) and write out the expanded form of Eq. (1.2.4) as

F1x

F1y

..

.

Fnz

8>>>><
>>>>:

9>>>>=
>>>>;
¼

K11 K12 . . . K1n

K21 K22 . . . K2n

..

.

Kn1 Kn2 . . . Knn

2
66664

3
77775

u1

v1

..

.

wn

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:2:5Þ

Now assume a structure to be forced into a displaced configuration defined by
u1 ¼ 1; v1 ¼ w1 ¼ � � �wn ¼ 0. Then from Eq. (1.2.5), we have

F1x ¼ K11 F1y ¼ K21; . . . ;Fnz ¼ Kn1 ð1:2:6Þ

Equations (1.2.6) contain all elements in the first column of [K ]. In addition, they
show that these elements, K11;K21; . . . ;Kn1, are the values of the full set of nodal
forces required to maintain the imposed displacement state. In a similar manner, the
second column in [K ] represents the values of forces required to maintain the
displaced state v1 ¼ 1 and all other nodal displacement components equal to zero.

1.2 Introduction to Matrix Notation d 5
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We should now have a better understanding of the meaning of stiffness influence
coefficients.

Subsequent chapters will discuss the element stiffness matrices [k] for various
element types, such as bars, beams, plane stress and three-dimensional stress. They
will also cover the procedure for obtaining the global stiffness matrices [K] for various
structures and for solving Eq. (1.2.4) for the unknown displacements in matrix {d}.

Using matrix concepts and operations will become routine with practice; they
will be valuable tools for solving small problems longhand. And matrix methods are
crucial to the use of the digital computers necessary for solving complicated problems
with their associated large number of simultaneous equations.

d 1.3 Role of the Computer d
As we have said, until the early 1950s, matrix methods and the associated finite ele-
ment method were not readily adaptable for solving complicated problems. Even
though the finite element method was being used to describe complicated structures,
the resulting large number of algebraic equations associated with the finite element
method of structural analysis made the method extremely difficult and impractical to
use. However, with the advent of the computer, the solution of thousands of equations
in a matter of minutes became possible.

The first modern-day commercial computer appears to have been the Univac,
IBM 701 which was developed in the 1950s. This computer was built based on
vacuum-tube technology. Along with the UNIVAC came the punch-card technology
whereby programs and data were created on punch cards. In the 1960s, transistor-
based technology replaced the vacuum-tube technology due to the transistor’s reduced
cost, weight, and power consumption and its higher reliability. From 1969 to the late
1970s, integrated circuit-based technology was being developed, which greatly
enhanced the processing speed of computers, thus making it possible to solve
larger finite element problems with increased degrees of freedom. From the late
1970s into the 1980s, large-scale integration as well as workstations that introduced a
windows-type graphical interface appeared along with the computer mouse. The first
computer mouse received a patent on November 17, 1970. Personal computers had
now become mass-market desktop computers. These developments came during the
age of networked computing, which brought the Internet and the World Wide Web.
In the 1990s the Windows operating system was released, making IBM and IBM-
compatible PCs more user friendly by integrating a graphical user interface into the
software.

The development of the computer resulted in the writing of computational pro-
grams. Numerous special-purpose and general-purpose programs have been written
to handle various complicated structural (and nonstructural) problems. Programs
such as [46–56] illustrate the elegance of the finite element method and reinforce
understanding of it.

In fact, finite element computer programs now can be solved on single-processor
machines, such as a single desktop or laptop personal computer (PC) or on a cluster of
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computer nodes. The powerful memories of the PC and the advances in solver pro-
grams have made it possible to solve problems with over a million unknowns.

To use the computer, the analyst, having defined the finite element model, inputs
the information into the computer. This information may include the position of the
element nodal coordinates, the manner in which elements are connected, the material
properties of the elements, the applied loads, boundary conditions, or constraints,
and the kind of analysis to be performed. The computer then uses this information
to generate and solve the equations necessary to carry out the analysis.

d 1.4 General Steps of the Finite Element Method d
This section presents the general steps included in a finite element method formulation
and solution to an engineering problem. We will use these steps as our guide in develop-
ing solutions for structural and nonstructural problems in subsequent chapters.

For simplicity’s sake, for the presentation of the steps to follow, we will consider
only the structural problem. The nonstructural heat-transfer, fluid mechanics and elec-
trostatics problems and their analogies to the structural problem are considered in
Chapters 13 and 14.

Typically, for the structural stress-analysis problem, the engineer seeks to deter-
mine displacements and stresses throughout the structure, which is in equilibrium
and is subjected to applied loads. For many structures, it is difficult to determine the
distribution of deformation using conventional methods, and thus the finite element
method is necessarily used.

There are two general direct approaches traditionally associated with the finite
element method as applied to structural mechanics problems. One approach, called
the force, or flexibility, method, uses internal forces as the unknowns of the problem.
To obtain the governing equations, first the equilibrium equations are used. Then nec-
essary additional equations are found by introducing compatibility equations. The
result is a set of algebraic equations for determining the redundant or unknown
forces.

The second approach, called the displacement, or stiffness, method, assumes the
displacements of the nodes as the unknowns of the problem. For instance, compatibil-
ity conditions requiring that elements connected at a common node, along a common
edge, or on a common surface before loading remain connected at that node, edge, or
surface after deformation takes place are initially satisfied. Then the governing equa-
tions are expressed in terms of nodal displacements using the equations of equilibrium
and an applicable law relating forces to displacements.

These two direct approaches result in different unknowns (forces or displace-
ments) in the analysis and different matrices associated with their formulations (flexi-
bilities or stiffnesses). It has been shown [34] that, for computational purposes, the dis-
placement (or stiffness) method is more desirable because its formulation is simpler for
most structural analysis problems. Furthermore, a vast majority of general-purpose
finite element programs have incorporated the displacement formulation for solving
structural problems. Consequently, only the displacement method will be used
throughout this text.

1.4 General Steps of the Finite Element Method d 7
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Another general method that can be used to develop the governing equations for
both structural and nonstructural problems is the variational method. The variational
method includes a number of principles. One of these principles, used extensively
throughout this text because it is relatively easy to comprehend and is often introduced
in basic mechanics courses, is the theorem of minimum potential energy that applies to
materials behaving in a linear-elastic manner. This theorem is explained and used in
various sections of the text, such as Section 2.6 for the spring element, Section 3.10
for the bar element, Section 4.7 for the beam element, Section 6.2 for the constant-
strain triangle plane stress and plane strain element, Section 9.1 for the axisymmetric
element, Section 11.2 for the three-dimensional solid tetrahedral element, and Section
12.2 for the plate bending element. A functional analogous to that used in the theorem
of minimum potential energy is then employed to develop the finite element equations
for the nonstructural problem of heat transfer presented in Chapter 13.

Another variational principle often used to derive the governing equations is the
principle of virtual work. This principle applies more generally to materials that behave
in a linear-elastic fashion, as well as those that behave in a nonlinear fashion. The prin-
ciple of virtual work is described in Appendix E for those choosing to use it for devel-
oping the general governing finite element equations that can be applied specifically to
bars, beams, and two- and three-dimensional solids in either static or dynamic systems.

The finite element method involves modeling the structure using small intercon-
nected elements called finite elements. A displacement function is associated with each
finite element. Every interconnected element is linked, directly or indirectly, to every
other element through common (or shared) interfaces, including nodes and/or bound-
ary lines and/or surfaces. By using known stress/strain properties for the material
making up the structure, one can determine the behavior of a given node in terms of
the properties of every other element in the structure. The total set of equations
describing the behavior of each node results in a series of algebraic equations best
expressed in matrix notation.

We now present the steps, along with explanations necessary at this time, used in
the finite element method formulation and solution of a structural problem. The pur-
pose of setting forth these general steps now is to expose you to the procedure gener-
ally followed in a finite element formulation of a problem. You will easily understand
these steps when we illustrate them specifically for springs, bars, trusses, beams, plane
frames, plane stress, axisymmetric stress, three-dimensional stress, plate bending, heat
transfer, fluid flow and electrostatics in subsequent chapters. We suggest that you
review this section periodically as we develop the specific element equations.

Keep in mind that the analyst must make decisions regarding dividing the struc-
ture or continuum into finite elements and selecting the element type or types to be
used in the analysis (step 1), the kinds of loads to be applied, and the types of bound-
ary conditions or supports to be applied. The other steps, 2 through 7, are carried out
automatically by a computer program.

Step 1 Discretize and Select the Element Types

Step 1 involves dividing the body into an equivalent system of finite elements with
associated nodes and choosing the most appropriate element type to model most
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closely the actual physical behavior. The total number of elements used and their var-
iation in size and type within a given body are primarily matters of engineering judg-
ment. The elements must be made small enough to give usable results and yet large
enough to reduce computational effort. Small elements (and possibly higher-order ele-
ments) are generally desirable where the results are changing rapidly, such as where
changes in geometry occur; large elements can be used where results are relatively con-
stant. We will have more to say about discretization guidelines in later chapters, par-
ticularly in Chapter 7, where the concept becomes quite significant. The discretized
body or mesh is often created with mesh-generation programs or preprocessor pro-
grams available to the user.

The choice of elements used in a finite element analysis depends on the physical
makeup of the body under actual loading conditions and on how close to the actual
behavior the analyst wants the results to be. Judgment concerning the appropriateness
of one-, two-, or three-dimensional idealizations is necessary. Moreover, the choice
of the most appropriate element for a particular problem is one of the major tasks
that must be carried out by the designer/analyst. Elements that are commonly
employed in practice—most of which are considered in this text—are shown in
Figure 1–1.

The primary line elements [Figure 1–1(a)] consist of bar (or truss) and beam ele-
ments. They have a cross-sectional area but are usually represented by line segments.
In general, the cross-sectional area within the element can vary, but throughout this
text it will be considered to be constant. These elements are often used to model trusses
and frame structures (see Figure 1–2 on page 16, for instance). The simplest line ele-
ment (called a linear element) has two nodes, one at each end, although higher-order
elements having three nodes [Figure 1–1(a)] or more (called quadratic, cubic, etc., ele-

ments) also exist. Chapter 10 includes discussion of higher-order line elements. The line
elements are the simplest of elements to consider and will be discussed in Chapters 2
through 5 to illustrate many of the basic concepts of the finite element method.

The basic two-dimensional (or plane) elements [Figure 1–1(b)] are loaded by
forces in their own plane (plane stress or plane strain conditions). They are triangular
or quadrilateral elements. The simplest two-dimensional elements have corner nodes
only (linear elements) with straight sides or boundaries (Chapter 6), although there
are also higher-order elements, typically with midside nodes [Figure 1–1(b)] (called
quadratic elements) and curved sides (Chapters 8 and 10). The elements can have
variable thicknesses throughout or be constant. They are often used to model a wide
range of engineering problems (see Figures 1–3 and 1–4 on pages 17 and 18).

The most common three-dimensional elements [Figure 1–1(c)] are tetrahedral
and hexahedral (or brick) elements; they are used when it becomes necessary to per-
form a three-dimensional stress analysis. The basic three-dimensional elements
(Chapter 11) have corner nodes only and straight sides, whereas higher-order elements
with midedge nodes (and possible midface nodes) have curved surfaces for their sides
[Figure 1–1(c)].

The axisymmetric element [Figure 1–1(d)] is developed by rotating a triangle or
quadrilateral about a fixed axis located in the plane of the element through 360�. This
element (described in Chapter 9) can be used when the geometry and loading of the
problem are axisymmetric.
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(a) Simple two-noded line element (typically used to represent a bar or beam element) and the
higher-order line element
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x
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(b) Simple two-dimensional elements with corner nodes (typically used to represent plane stress/
strain) and higher-order two-dimensional elements with intermediate nodes along the sides
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(c) Simple three-dimensional elements (typically used to represent three-dimensional stress state)
and higher-order three-dimensional elements with intermediate nodes along edges
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(d) Simple axisymmetric triangular and quadrilateral elements used for axisymmetric problems

Figure 1–1 Various types of simple lowest-order finite elements with corner
nodes only and higher-order elements with intermediate nodes

10 d 1 Introduction

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Step 2 Select a Displacement Function

Step 2 involves choosing a displacement function within each element. The function is
defined within the element using the nodal values of the element. Linear, quadratic,
and cubic polynomials are frequently used functions because they are simple to work
with in finite element formulation. However, trigonometric series can also be used.
For a two-dimensional element, the displacement function is a function of the coordi-
nates in its plane (say, the x-y plane). The functions are expressed in terms of the
nodal unknowns (in the two-dimensional problem, in terms of an x and a y compo-
nent). The same general displacement function can be used repeatedly for each
element. Hence the finite element method is one in which a continuous quantity,
such as the displacement throughout the body, is approximated by a discrete model
composed of a set of piecewise-continuous functions defined within each finite domain
or finite element.

Step 3 Define the Strain=Displacement and Stress=Strain
Relationships

Strain/displacement and stress/strain relationships are necessary for deriving the equa-
tions for each finite element. In the case of one-dimensional deformation, say, in the
x direction, we have strain ex related to displacement u by

ex ¼
du

dx
ð1:4:1Þ

for small strains. In addition, the stresses must be related to the strains through the
stress/strain law—generally called the constitutive law. The ability to define the mate-
rial behavior accurately is most important in obtaining acceptable results. The simplest
of stress/strain laws, Hooke’s law, which is often used in stress analysis, is given by

sx ¼ Eex ð1:4:2Þ

where sx ¼ stress in the x direction and E ¼ modulus of elasticity.

Step 4 Derive the Element Stiffness Matrix and Equations

Initially, the development of element stiffness matrices and element equations was
based on the concept of stiffness influence coefficients, which presupposes a back-
ground in structural analysis. We now present alternative methods used in this text
that do not require this special background.

Direct Equilibrium or Stiffness Method

According to this method, the stiffness matrix and element equations relating nodal
forces to nodal displacements are obtained using force equilibrium conditions for a
basic element, along with force/deformation relationships. Because this method is
most easily adaptable to line or one-dimensional elements, Chapters 2, 3, and 4 illus-
trate this method for spring, bar, and beam elements, respectively.

1.4 General Steps of the Finite Element Method d 11
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Work or Energy Methods

To develop the stiffness matrix and equations for two- and three-dimensional elements, it
is much easier to apply a work or energy method [35]. The principle of virtual work (using
virtual displacements), the principle of minimum potential energy, and Castigliano’s theo-
rem are methods frequently used for the purpose of derivation of element equations.

The principle of virtual work outlined in Appendix E is applicable for any mate-
rial behavior, whereas the principle of minimum potential energy and Castigliano’s
theorem are applicable only to elastic materials. Furthermore, the principle of virtual
work can be used even when a potential function does not exist. However, all three
principles yield identical element equations for linear-elastic materials; thus which
method to use for this kind of material in structural analysis is largely a matter of con-
venience and personal preference. We will present the principle of minimum potential
energy—probably the best known of the three energy methods mentioned here—in
detail in Chapters 2 and 3, where it will be used to derive the spring and bar element
equations. We will further generalize the principle and apply it to the beam element
in Chapter 4 and to the plane stress/strain element in Chapter 6. Thereafter, the prin-
ciple is routinely referred to as the basis for deriving all other stress-analysis stiffness
matrices and element equations given in Chapters 8, 9, 11, and 12.

For the purpose of extending the finite element method outside the structural stress
analysis field, a functional1 (a function of another function or a function that takes func-
tions as its argument) analogous to the one to be used with the principle of minimum
potential energy is quite useful in deriving the element stiffness matrix and equations
(see Chapters 13 and 14 on heat transfer and fluid flow, respectively). For instance, let-
ting p denote the functional and f ðx; yÞ denote a function f of two variables x and y,
we then have p ¼ pð f ðx; yÞÞ, where p is a function of the function f . A more general
form of a functional depending on two independent variables uðx; yÞ and vðx; yÞ,
where independent variables are x and y in Cartesian coordinates, is given by

p ¼
ð ð

Fðx; y; u; v; u;x; u;y; v;x; v;y; u;xx; . . . v;yyÞdx dy ð1:4:3Þ

where the comma preceding the subscripts x and y denotes differentiation with respect
to x or y, i.e., u;x¼ qu

qx
, etc.

Methods of Weighted Residuals

The methods of weighted residuals are useful for developing the element equations;
particularly popular is Galerkin’s method. These methods yield the same results as
the energy methods wherever the energy methods are applicable. They are especially
useful when a functional such as potential energy is not readily available. The
weighted residual methods allow the finite element method to be applied directly to
any differential equation.

1 Another definition of a functional is as follows: A functional is an integral expression that implicitly con-

tains differential equations that describe the problem. A typical functional is of the form IðuÞ ¼Ð
Fðx; u; u 0Þ dx where uðxÞ; x, and F are real so that IðuÞ is also a real number. Here u 0 ¼ qu=qx.
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Galerkin’s method, along with the collocation, the least squares, and the subdo-
main weighted residual methods are introduced in Chapter 3. To illustrate each
method, they will all be used to solve a one-dimensional bar problem for which a
known exact solution exists for comparison. As the more easily adapted residual
method, Galerkin’s method will also be used to derive the bar element equations in
Chapter 3 and the beam element equations in Chapter 4 and to solve the combined
heat-conduction/convection/mass transport problem in Chapter 13. For more infor-
mation on the use of the methods of weighted residuals, see Reference [36]; for addi-
tional applications to the finite element method, consult References [37] and [38].

Using any of the methods just outlined will produce the equations to describe
the behavior of an element. These equations are written conveniently in matrix
form as

f1

f2

f3

..

.

fn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

k11 k12 k13 . . . k1n

k21 k22 k23 . . . k2n

k31 k32 k33 . . . k3n

..

. ..
.

kn1 . . . knn

2
6666664

3
7777775

d1

d2

d3

..

.

dn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð1:4:4Þ

or in compact matrix form as

f f g ¼ ½k�fdg ð1:4:5Þ

where f f g is the vector of element nodal forces, ½k� is the element stiffness matrix
(normally square and symmetric), and fdg is the vector of unknown element nodal
degrees of freedom or generalized displacements, n. Here generalized displacements
may include such quantities as actual displacements, slopes, or even curvatures. The
matrices in Eq. (1.4.5) will be developed and described in detail in subsequent chapters
for specific element types, such as those in Figure 1–1.

Step 5 Assemble the Element Equations to Obtain the Global
or Total Equations and Introduce Boundary Conditions

In this step the individual element nodal equilibrium equations generated in step 4 are
assembled into the global nodal equilibrium equations. Section 2.3 illustrates this con-
cept for a two-spring assemblage. Another more direct method of superposition
(called the direct stiffness method ), whose basis is nodal force equilibrium, can be
used to obtain the global equations for the whole structure. This direct method is illus-
trated in Section 2.4 for a spring assemblage. Implicit in the direct stiffness method is
the concept of continuity, or compatibility, which requires that the structure remain
together and that no tears occur anywhere within the structure.

The final assembled or global equation written in matrix form is

fFg ¼ ½K�fdg ð1:4:6Þ

1.4 General Steps of the Finite Element Method d 13
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where fFg is the vector of global nodal forces, ½K � is the structure global or total stiff-
ness matrix, (for most problems, the global stiffness matrix is square and symmetric)
and fdg is now the vector of known and unknown structure nodal degrees of freedom
or generalized displacements. It can be shown that at this stage, the global stiffness
matrix ½K � is a singular matrix because its determinant is equal to zero. To remove
this singularity problem, we must invoke certain boundary conditions (or constraints
or supports) so that the structure remains in place instead of moving as a rigid body.
Further details and methods of invoking boundary conditions are given in subse-
quent chapters. At this time it is sufficient to note that invoking boundary or sup-
port conditions results in a modification of the global Eq. (1.4.6). We also empha-
size that the applied known loads have been accounted for in the global force
matrix fFg.

Step 6 Solve for the Unknown Degrees of Freedom
(or Generalized Displacements)

Equation (1.4.6), modified to account for the boundary conditions, is a set of simulta-
neous algebraic equations that can be written in expanded matrix form as

F1

F2

..

.

Fn

8>>>><
>>>>:

9>>>>=
>>>>;
¼

K11 K12 . . . K1n

K21 K22 . . . K2n

..

. ..
.

Kn1 Kn2 . . . Knn

2
66664

3
77775

d1

d2

..

.

dn

8>>>><
>>>>:

9>>>>=
>>>>;

ð1:4:7Þ

where now n is the structure total number of unknown nodal degrees of freedom.
These equations can be solved for the ds by using an elimination method (such as
Gauss’s method) or an iterative method (such as the Gauss–Seidel method). These
two methods are discussed in Appendix B. The ds are called the primary unknowns,
because they are the first quantities determined using the stiffness (or displacement)
finite element method.

Step 7 Solve for the Element Strains and Stresses

For the structural stress-analysis problem, important secondary quantities of strain
and stress (or moment and shear force) can be obtained because they can be directly
expressed in terms of the displacements determined in step 6. Typical relationships
between strain and displacement and between stress and strain—such as Eqs. (1.4.1)
and (1.4.2) for one-dimensional stress given in step 3—can be used.

Step 8 Interpret the Results

The final goal is to interpret and analyze the results for use in the design/analysis pro-
cess. Determination of locations in the structure where large deformations and large
stresses occur is generally important in making design/analysis decisions. Postproces-
sor computer programs help the user to interpret the results by displaying them in
graphical form.
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d 1.5 Applications of the Finite Element Method d
The finite element method can be used to analyze both structural and nonstructural
problems. Typical structural areas include

1. Stress analysis, including truss and frame analysis (such as pedestrian
walk bridges, high rise building frames, and windmill towers), and
stress concentration problems, typically associated with holes, fillets,
or other changes in geometry in a body (such as automotive parts,
pressures vessels, medical devices, aircraft, and sports equipment)

2. Buckling, such as in columns, frames, and vessels
3. Vibration analysis, such as in vibratory equipment
4. Impact problems, including crash analysis of vehicles, projectile

impact, and bodies falling and impacting objects

Nonstructural problems include

1. Heat transfer, such as in electronic devices emitting heat as in a personal
computer microprocessor chip, engines, and cooling fins in radiators

2. Fluid flow, including seepage through porous media (such as water
seeping through earthen dams), cooling ponds, and in air ventilation
systems as used in sports arenas, etc., air flow around racing cars,
yachting boats, and surfboards, etc.

3. Distribution of electric or magnetic potential, such as in antennas and
transistors

Finally, some biomechanical engineering problems (which may include stress
analysis) typically include analyses of human spine, skull, hip joints, jaw/gum tooth
implants, heart, and eye.

We now present some typical applications of the finite element method. These
applications will illustrate the variety, size, and complexity of problems that can be
solved using the method and the typical discretization process and kinds of elements used.

Figure 1–2 illustrates a control tower for a railroad. The tower is a three-
dimensional frame comprising a series of beam-type elements. The 48 elements are
labeled by the circled numbers, whereas the 28 nodes are indicated by the uncircled
numbers. Each node has three rotation and three displacement components associated
with it. The rotations (ys) and displacements (ds) are called the degrees of freedom.
Because of the loading conditions to which the tower structure is subjected, we have
used a three-dimensional model.

The finite element method used for this frame enables the designer/analyst
quickly to obtain displacements and stresses in the tower for typical load cases, as
required by design codes. Before the development of the finite element method and
the computer, even this relatively simple problem took many hours to solve.

The next illustration of the application of the finite element method to prob-
lem solving is the determination of displacements and stresses in an underground
box culvert subjected to ground shock loading from a bomb explosion. Figure 1–3
shows the discretized model, which included a total of 369 nodes, 40 one-
dimensional bar or truss elements used to model the steel reinforcement in the box
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culvert, and 333 plane strain two-dimensional triangular and rectangular elements
used to model the surrounding soil and concrete box culvert. With an assumption
of symmetry, only half of the box culvert need be analyzed. This problem requires
the solution of nearly 700 unknown nodal displacements. It illustrates that different
kinds of elements (here bar and plane strain) can often be used in one finite
element model.

Another problem, that of the hydraulic cylinder rod end shown in Figure 1–4,
was modeled by 120 nodes and 297 plane strain triangular elements. Symmetry was
also applied to the whole rod end so that only half of the rod end had to be analyzed,

v1

u1

w1

Figure 1–2 Discretized railroad control tower (28 nodes, 48 beam elements) with
typical degrees of freedom shown at node 1, for example (By Daryl L. Logan)
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as shown. The purpose of this analysis was to locate areas of high stress concentration
in the rod end.

Figure 1–5 shows a chimney stack section that is four form heights high (or a
total of 32 ft high). In this illustration, 584 beam elements were used to model the ver-
tical and horizontal stiffeners making up the formwork, and 252 flat-plate elements
were used to model the inner wooden form and the concrete shell. Because of the
irregular loading pattern on the structure, a three-dimensional model was necessary.
Displacements and stresses in the concrete were of prime concern in this problem.

Figure 1–6 shows the finite element discretized model of a proposed steel
die used in a plastic film-making process. The irregular geometry and associated

Figure 1–3 Discretized model of an underground box culvert (369 nodes, 40 bar
elements, and 333 plane strain elements) [39]
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Figure 1–4 Two-dimensional analysis of a hydraulic cylinder rod end (120 nodes,
297 plane strain triangular elements)

Figure 1–5 Finite element model of a chimney stack section (end view rotated 45�)
(584 beam and 252 flat-plate elements) (By Daryl L. Logan)
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z

y

(a)

(b)

Figure 1–6 (a) Model of a high-strength steel die (240 axisymmetric elements) used in
the plastic film industry (By Daryl L. Logan) and (b) the three-dimensional visual of the
die as the elements in the plane are rotated through 360� around the z-axis of symmetry
(See the full-color insert for a color version of this figure.)
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potential stress concentrations necessitated use of the finite element method to obtain
a reasonable solution. Here 240 axisymmetric elements were used to model the three-
dimensional die.

Figure 1–7 illustrates the use of a three-dimensional solid element to model a
swing casting for a backhoe frame. The three-dimensional hexahedral elements are
necessary to model the irregularly shaped three-dimensional casting. Two-dimensional
models certainly would not yield accurate engineering solutions to this problem.

Figure 1–8 illustrates a two-dimensional heat-transfer model used to determine
the temperature distribution in earth subjected to a heat source—a buried pipeline
transporting a hot gas.

Figure 1–9 shows a three-dimensional model of human pelvis which can be
used to study stresses in the bone and the cement layer between the bone and the
implant.

More recently, mechanical event simulation (MES), including nonlinear behav-
ior and contact, such as in roll forming processes, has been studied using finite element
analysis [46], as shown in Figure 1–11 and wind mill generator stress analysis under
various loading conditions, including wind, ice, and earthquake while the blades are
rotating has been performed [46], as shown in Figure 1–12.

Figure 1–7 Three-dimensional solid element model of a swing casting for a
backhoe frame
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Figure 1–8 Finite element model for a two-dimensional temperature distribution in
the earth

Figure 1–9 Finite element model of a
human pelvis (Studio MacBeth=Science
Photo Library)
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Finally, the field of computational fluid dynamics (CFD) using finite element analysis
has recently been used to design ventilation systems, such as in large sports arenas,
and to study air flow around race cars and around golf balls when suddenly struck
by a golf club [63].

These illustrations suggest the kinds of problems that can be solved by the finite
element method. Additional guidelines concerning modeling techniques will be pro-
vided in Chapter 7.

d 1.6 Advantages of the Finite Element Method d
As previously indicated, the finite element method has been applied to numerous
problems, both structural and nonstructural. This method has a number of advan-
tages that have made it very popular. They include the ability to

1. Model irregularly shaped bodies quite easily
2. Handle general load conditions without difficulty

Figure 1–11 Finite element model of contour roll forming or cold roll forming process (Courtesy
of Valmont West Coast Engineering) (See the full-color insert for a color version of this figure.)
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3. Model bodies composed of several different materials because the element
equations are evaluated individually

4. Handle unlimited numbers and kinds of boundary conditions
5. Vary the size of the elements to make it possible to use small elements

where necessary
6. Alter the finite element model relatively easily and cheaply
7. Include dynamic effects
8. Handle nonlinear behavior existing with large deformations and nonlinear

materials

Figure 1–12 Finite element model showing the von Mises stress plot of a wind mill
tower at a critical time step using a nonlinear finite element simulation (Courtesy of
Valmont West Coast Engineering)
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The finite element method of structural analysis enables the designer to detect
stress, vibration, and thermal problems during the design process and to evaluate design
changes before the construction of a possible prototype. Thus confidence in the accept-
ability of the prototype is enhanced. Moreover, if used properly, the method can
reduce the number of prototypes that need to be built.

Even though the finite element method was initially used for structural analysis,
it has since been adapted to many other disciplines in engineering and mathematical
physics, such as fluid flow, heat transfer, electromagnetic potentials, soil mechanics,
and acoustics [22–24, 27, 42–44].

d 1.7 Computer Programs for the Finite d
Element Method

There are two general computer methods of approach to the solution of problems by
the finite element method. One is to use large commercial programs, many of which
have been configured to run on personal computers (PCs); these general-purpose pro-
grams are designed to solve many types of problems. The other is to develop many
small, special-purpose programs to solve specific problems. In this section, we will discuss
the advantages and disadvantages of both methods. We will then list some of the
available general-purpose programs and discuss some of their standard capabilities.

Some advantages of general-purpose programs:

1. The input is well organized and is developed with user ease in mind.
Users do not need special knowledge of computer software or
hardware. Preprocessors are readily available to help create the finite
element model.

2. The programs are large systems that often can solve many types of
problems of large or small size with the same input format.

3. Many of the programs can be expanded by adding new modules for
new kinds of problems or new technology. Thus they may be kept
current with a minimum of effort.

4. With the increased storage capacity and computational efficiency of
PCs, many general-purpose programs can now be run on PCs.

5. Many of the commercially available programs have become very
attractive in price and can solve a wide range of problems [45–56].

Some disadvantages of general-purpose programs:

1. The initial cost of developing general-purpose programs is high.
2. General-purpose programs are less efficient than special-purpose

programs because the computer must make many checks for each
problem, some of which would not be necessary if a special-purpose
program were used.

3. Many of the programs are proprietary. Hence the user has little access
to the logic of the program. If a revision must be made, it often has to
be done by the developers.
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Some advantages of special-purpose programs:

1. The programs are usually relatively short, with low development costs.
2. Small computers are able to run the programs.
3. Additions can be made to the program quickly and at a low cost.
4. The programs are efficient in solving the problems they were designed

to solve.

The major disadvantage of special-purpose programs is their inability to solve
different classes of problems. Thus one must have as many programs as there are dif-
ferent classes of problems to be solved. A list of special-purpose, public-domain finite-
element programs is given in the website [60].

There are numerous vendors supporting finite element programs, and the inter-
ested user should carefully consult the vendor before purchasing any software. How-
ever, to give you an idea about the various commercial personal computer programs
now available for solving problems by the finite element method, we present a partial
list of existing programs.

1. Algor [46]
2. Abaqus [47]
3. ANSYS [48]
4. COSMOS/M [49]
5. GT-STRUDL [50]
6. LS-DYNA [59]
7. MARC [51]
8. MSC/NASTRAN [52]
9. NISA [53]

10. Pro/MECHANICA [54]
11. SAP2000 [55]
12. STARDYNE [56]

Standard capabilities of many of the listed programs are provided in
the preceding references and in Reference [45]. These capabilities include
information on

1. Element types available, such as beam, plane stress, and three-
dimensional solid

2. Type of analysis available, such as static and dynamic
3. Material behavior, such as linear-elastic and nonlinear
4. Load types, such as concentrated, distributed, thermal, and displace-

ment (settlement)
5. Data generation, such as automatic generation of nodes, elements, and

restraints (most programs have preprocessors to generate the mesh for
the model)

6. Plotting, such as original and deformed geometry and stress and
temperature contours (most programs have postprocessors to aid in
interpreting results in graphical form)
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7. Displacement behavior, such as small and large displacement and buckling
8. Selective output, such as at selected nodes, elements, and maximum or

minimum values

All programs include at least the bar, beam, plane stress, plate-bending, and three-
dimensional solid elements, and most now include heat-transfer analysis capabilities.

Complete capabilities of the programs and their cost are best obtained through
program reference manuals and websites, such as References [46–56, 59].
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d Problems

1.1 Define the term finite element.

1.2 What does discretization mean in the finite element method?

1.3 In what year did the modern development of the finite element method begin?

1.4 In what year was the direct stiffness method introduced?
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1.5 Define the term matrix.

1.6 What role did the computer play in the use of the finite element method?

1.7 List and briefly describe the general steps of the finite element method.

1.8 What is the displacement method?

1.9 List four common types of finite elements.

1.10 Name three commonly used methods for deriving the element stiffness matrix and
element equations. Briefly describe each method.

1.11 To what does the term degrees of freedom refer?

1.12 List five typical areas of engineering where the finite element method is applied.

1.13 List five advantages of the finite element method.
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INTRODUCTION TO THE STIFFNESS

(DISPLACEMENT) METHODd

CHAPTER OBJECTIVES

. To define the stiffness matrix.

. To derive the stiffness matrix for a spring element.

. To demonstrate how to assemble stiffness matrices into a global stiffness matrix.

. To illustrate the concept of direct stiffness method to obtain the global stiffness
matrix and solve a spring assemblage problem.

. To describe and apply the different kinds of boundary conditions relevant for
spring assemblages.

. To show how the potential energy approach can be used to both derive the stiff-
ness matrix for a spring and solve a spring assemblage problem.

Introduction

This chapter introduces some of the basic concepts on which the direct stiffness
method is founded. The linear spring is introduced first because it provides a simple
yet generally instructive tool to illustrate the basic concepts. We begin with a general
definition of the stiffness matrix and then consider the derivation of the stiffness
matrix for a linear-elastic spring element. We next illustrate how to assemble the
total stiffness matrix for a structure comprising an assemblage of spring elements by
using elementary concepts of equilibrium and compatibility. We then show how the
total stiffness matrix for an assemblage can be obtained by superimposing the stiffness
matrices of the individual elements in a direct manner. The term direct stiffness

method evolved in reference to this technique.
After establishing the total structure stiffness matrix, we illustrate how to impose

boundary conditions—both homogeneous and nonhomogeneous. A complete solu-
tion including the nodal displacements and reactions is thus obtained. (The determina-
tion of internal forces is discussed in Chapter 3 in connection with the bar element.)

We then introduce the principle of minimum potential energy, apply it to
derive the spring element equations, and use it to solve a spring assemblage prob-
lem. We will illustrate this principle for the simplest of elements (those with small

C H A P T E R 2

31

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



numbers of degrees of freedom) so that it will be a more readily understood concept
when applied, of necessity, to elements with large numbers of degrees of freedom in
subsequent chapters.

d 2.1 Definition of the Stiffness Matrix d
Familiarity with the stiffness matrix is essential to understanding the stiffness method.
We define the stiffness matrix as follows: For an element, a stiffness matrix [k] is a
matrix such that

ff g ¼ ½k�fdg ð2:1:1Þ

where [k] relates nodal displacements fdg to nodal forces ff g of a single element, such
as the spring shown in Figure 2–1a.

For a continuous medium or structure comprising a series of elements, such as
shown for the spring assemblage in Figure 2–1b, stiffness matrix ½K � relates global-
coordinate ðx; y; zÞ nodal displacements {d} to global forces {F} of the whole
medium or structure. such that

fFg ¼ ½K �fdg ð2:1:2Þ

where [K ] represents the stiffness matrix of the whole spring assemblage.

d 2.2 Derivation of the Stiffness Matrix d
for a Spring Element

Using the direct equilibrium approach, we will now derive the stiffness matrix for a
one-dimensional linear spring—that is, a spring that obeys Hooke’s law and resists
forces only in the direction of the spring. Consider the linear spring element shown
in Figure 2–2. Reference points 1 and 2 are located at the ends of the element. These
reference points are called the nodes of the spring element. The local nodal forces are
f 1x and f 2x for the spring element associated with the local axis x. The local axis acts
in the direction of the spring so that we can directly measure displacements and forces
along the spring. The local nodal displacements are u1 and u2 for the spring element.

x x

y

z

(b)(a)

Figure 2–1 (a) Single spring element and (b) three-spring assemblage
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These nodal displacements are called the degrees of freedom at each node. Positive
directions for the forces and displacements at each node are taken in the positive x

direction as shown from node 1 to node 2 in the figure. The symbol k is called the
spring constant or stiffness of the spring.

Analogies to actual spring constants arise in numerous engineering problems.
In Chapter 3, we see that a prismatic uniaxial bar has a spring constant k ¼ AE=L,
where A represents the cross-sectional area of the bar, E is the modulus of elasticity,
and L is the bar length. Similarly, in Chapter 5, we show that a prismatic circular-
cross-section bar in torsion has a spring constant k ¼ JG=L, where J is the polar
moment of inertia and G is the shear modulus of the material. For one-dimensional
heat conduction (Chapter 13), k ¼ AKxx=L, where Kxx is the thermal conductivity of
the material, and for one-dimensional fluid flow through a porous medium
(Chapter 14), k ¼ AKxx=L, where Kxx is the permeability coefficient of the material.

We will then observe that the stiffness method can be applied to nonstructural
problems, such as heat transfer, fluid flow, and electrical networks, as well as struc-
tural problems by simply applying the proper constitutive law (such as Hooke’s law
for structural problems, Fourier’s law for heat transfer, Darcy’s law for fluid flow
and Ohm’s law for electrical networks) and a conservation principle such as nodal
equilibrium or conservation of energy.

We now want to develop a relationship between nodal forces and nodal displace-
ments for a spring element. This relationship will be the stiffness matrix. Therefore, we
want to relate the nodal force matrix to the nodal displacement matrix as follows:

f1x

f2x

� �
¼ k11 k12

k21 k22

� �
u1

u2

� �
ð2:2:1Þ

where the element stiffness coefficients kij of the [k] matrix in Eq. (2.2.1) are to be
determined. Recall from Eqs. (1.2.5) and (1.2.6) that kij represent the force Fi in the
ith degree of freedom due to a unit displacement dj in the jth degree of freedom
while all other displacements are zero. That is, when we let dj ¼ 1 and dk ¼ 0 for
k 0 j, force Fi ¼ kij.

We now use the general steps outlined in Section 1.4 to derive the stiffness
matrix for the spring element in this section (while keeping in mind that these same
steps will be applicable later in the derivation of stiffness matrices of more general ele-
ments) and then to illustrate a complete solution of a spring assemblage in Section 2.3.
Because our approach throughout this text is to derive various element stiffness matri-
ces and then to illustrate how to solve engineering problems with the elements, step 1
now involves only selecting the element type.

f1x, u1 f2x, u2

Figure 2–2 Linear spring element with positive nodal displacement and force
conventions
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Step 1 Select the Element Type

Consider the linear spring element (which can be an element in a system of springs)
subjected to resulting nodal tensile forces T (which may result from the action of
adjacent springs) directed along the spring axial direction x as shown in Figure 2–3,
so as to be in equilibrium. The local x axis is directed from node 1 to node 2. We rep-
resent the spring by labeling nodes at each end and by labeling the element number.
The original distance between nodes before deformation is denoted by L. The material
property (spring constant) of the element is k.

Step 2 Select a Displacement Function

We must choose in advance the mathematical function to represent the deformed
shape of the spring element under loading. Because it is difficult, if not impossible at
times, to obtain a closed form or exact solution, we assume a solution shape or distri-
bution of displacement within the element by using an appropriate mathematical func-
tion. The most common functions used are polynomials.

Because the spring element resists axial loading only with the local degrees of
freedom for the element being displacements u1 and u2 along the x direction, we
choose a displacement function u to represent the axial displacement throughout the
element. Here a linear displacement variation along the x axis of the spring is assumed
[Figure 2–4(b)], because a linear function with specified endpoints has a unique path.
Therefore,

u ¼ a1þ a2x ð2:2:2Þ

In general, the total number of coefficients a is equal to the total number of degrees of
freedom associated with the element. Here the total number of degrees of freedom is
two—an axial displacement at each of the two nodes of the element (we present
further discussion regarding the choice of displacement functions in Section 3.2).
In matrix form, Eq. (2.2.2) becomes

u ¼ ½1 x� a1

a2

� �
ð2:2:3Þ

We now want to express u as a function of the nodal displacements u1 and u2, as this
will allow us to apply the physical boundary conditions on nodal displacements
directly as indicated in step 3 and to then relate the nodal displacements to the nodal

u2u1

Figure 2–3 Linear spring subjected to tensile forces
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forces in step 4. We achieve this by evaluating u at each node and solving for a1 and a2

from Eq. (2.2.2) as follows:

uð0Þ ¼ u1 ¼ a1 ð2:2:4Þ

uðLÞ¼ u2 ¼ a2Lþ u1 ð2:2:5Þ

or, solving Eq. (2.2.5) for a2,

a2 ¼
u2 � u1

L
ð2:2:6Þ

Upon substituting Eqs. (2.2.4) and (2.2.6) into Eq. (2.2.2), we have

u ¼ u2 � u1

L

� �
xþ u1 ð2:2:7Þ

In matrix form, we express Eq. (2.2.7) as

u ¼ 1� x

L

x

L

h i
u1

u2

� �
ð2:2:8Þ

u ¼ ½N1 N2�
u1

u2

� �
ð2:2:9Þor

N1¼ 1� x

L
and N2 ¼

x

L
ð2:2:10ÞHere

are called the shape functions because the Ni’s express the shape of the assumed dis-
placement function over the domain (x coordinate) of the element when the ith
element degree of freedom has unit value and all other degrees of freedom are
zero. In this case, N1 and N2 are linear functions that have the properties that

−

u1 u2

x

x

1 2

–

Figure 2–4 (a) Spring element showing plots
of (b) displacement function u and shape
functions, (c) N1 and, (d) N2 over domain of
element
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N1 ¼ 1 at node 1 and N1 ¼ 0 at node 2, whereas N2 ¼ 1 at node 2 and N2 ¼ 0 at
node 1. See Figure 2–4(c) and (d) for plots of these shape functions over the domain
of the spring element. Also, N1 þN2 ¼ 1 for any axial coordinate along the bar.
(Section 3.2 further explores this important relationship.) In addition, the Ni’s are
often called interpolation functions because we are interpolating to find the value
of a function between given nodal values. The interpolation function may be differ-
ent from the actual function except at the endpoints or nodes, where the interpola-
tion function and actual function must be equal to specified nodal values.

Step 3 Define the Strain/Displacement and Stress/Strain
Relationships

The tensile forces T produce a total elongation (deformation) d of the spring. The typ-
ical total elongation of the spring is shown in Figure 2–5. Here u1 is a negative value
because the direction of displacement is opposite the positive x direction, whereas u2 is
a positive value.

The deformation of the spring is then represented by

d ¼ uðLÞ � uð0Þ ¼ u2 � u1 ð2:2:11Þ

From Eq. (2.2.11), we observe that the total deformation is the difference of the nodal
displacements in the x direction.

For a spring element, we can relate the force in the spring directly to the defor-
mation. Therefore, the strain/displacement relationship is not necessary here.

The stress/strain relationship can be expressed in terms of the force/deformation
relationship instead as

T ¼ kd ð2:2:12Þ

Now, using Eq. (2.2.11) in Eq. (2.2.12), we obtain

T ¼ kðu2 � u1Þ ð2:2:13Þ

Step 4 Derive the Element Stiffness Matrix and Equations

We now derive the spring element stiffness matrix. By the sign convention for nodal
forces and equilibrium, (see Figures 2–2 and 2–3) we have

f1x ¼ �T f2x ¼ T ð2:2:14Þ

Using Eqs. (2.2.13) and (2.2.14), we have

T¼ �f1x ¼ kðu2 � u1Þ
ð2:2:15Þ

T¼ f2x ¼ kðu2 � u1Þ

u2

x

u1
Figure 2–5 Deformed spring
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Rewriting Eqs. (2.2.15), we obtain

f1x ¼ kðu1 � u2Þ
ð2:2:16Þ

f2x ¼ kðu2 � u1Þ

Now expressing Eqs. (2.2.16) in a single matrix equation yields

f1x

f2x

� �
¼ k �k

�k k

� �
u1

u2

� �
ð2:2:17Þ

This relationship holds for the spring along the x axis. From our basic definition of a
stiffness matrix and application of Eq. (2.2.1) to Eq. (2.2.17), we obtain

½k� ¼ k �k

�k k

� �
ð2:2:18Þ

as the stiffness matrix for a linear spring element. Here [k] is called the local stiffness

matrix for the element. We observe from Eq. (2.2.18) that [k] is a symmetric (that is,
kij ¼ kjiÞ square matrix (the number of rows equals the number of columns in [k]).
Appendix A gives more description and numerical examples of symmetric and square
matrices.

Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

The global stiffness matrix and global force matrix are assembled using nodal
force equilibrium equations, force/deformation and compatibility equations from Sec-
tion 2.3, and the direct stiffness method described in Section 2.4. This step applies for
structures composed of more than one element such that

½K� ¼
XN

e¼1

½kðeÞ� and fFg ¼
XN

e¼1

f f ðeÞg ð2:2:19Þ

where ½kðeÞ� and ff ðeÞg are now element stiffness and force matrices expressed in a
global reference frame. This concept becomes relevant for instance when considering
truss structures in Chapter 3. (Throughout this text, the

P
sign used in this context

does not imply a simple summation of element matrices but rather denotes that these
element matrices must be assembled properly according to the direct stiffness method
described in Section 2.4.)

Step 6 Solve for the Nodal Displacements

The displacements are then determined by imposing boundary conditions, such as
support conditions, and solving a system of equations simultaneously as

fFg ¼ ½K�fdg ð2:2:20Þ
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Step 7 Solve for the Element Forces

Finally, the element forces are determined by back-substitution, applied to each ele-
ment, into equations similar to Eqs. (2.2.16).

d 2.3 Example of a Spring Assemblage d
Structures such as trusses, building frames, and bridges comprise basic structural com-
ponents connected together to form the overall structures. To analyze these structures,
we must determine the total structure stiffness matrix for an interconnected system of
elements. Before considering the truss and frame, we will determine the total structure
stiffness matrix for a spring assemblage by using the force/displacement matrix relation-
ships derived in Section 2.2 for the spring element, along with fundamental concepts
of nodal equilibrium and compatibility. Step 5 will then have been illustrated.

We will consider the specific example of the two-spring assemblage shown in
Figure 2–6.* This example is general enough to illustrate the direct equilibrium
approach for obtaining the total stiffness matrix of the spring assemblage. Here we
fix node 1 and apply axial forces for F3x at node 3 and F2x at node 2. The stiffnesses
of spring elements 1 and 2 are k1 and k2, respectively. The nodes of the assemblage
have been numbered 1, 3, and 2 for further generalization because sequential number-
ing between elements generally does not occur in large problems.

The x axis is the global axis of the assemblage. The local x axis of each element
coincides with the global axis of the assemblage.

For element 1, using Eq. (2.2.17), we have

f
ð1Þ
1x

f
ð1Þ
3x

( )
¼ k1 �k1

�k1 k1

� �
u
ð1Þ
1

u
ð1Þ
3

( )
ð2:3:1Þ

and for element 2, we have

f
ð2Þ
3x

f
ð2Þ
2x

( )
¼ k2 �k2

�k2 k2

� �
u
ð2Þ
3

u
ð2Þ
2

( )
ð2:3:2Þ

Furthermore, elements 1 and 2 must remain connected at common node 3 throughout
the displacement. This is called the continuity or compatibility requirement. The com-
patibility requirement yields

u
ð1Þ
3 ¼ u

ð2Þ
3 ¼ u3 ð2:3:3Þ

Figure 2–6 Two-spring assemblage

* Throughout this text, element numbers in figures are shown with circles around them.
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where, throughout this text, the superscripts in parentheses above u refers to the ele-
ment number to which they are related. Recall that the subscript to the right identifies
the node of displacement and that u3 is the node 3 displacement of the total or global
spring assemblage.

Free-body diagrams of each element and node (using the established sign con-
ventions for element nodal forces in Figure 2–2) are shown in Figure 2–7.

Based on the free-body diagrams of each node shown in Figure 2–7 and the fact
that external forces must equal internal forces at each node, we can write nodal equi-
librium equations at nodes 3, 2, and 1 as

F3x ¼ f
ð1Þ

3x þ f
ð2Þ

3x ð2:3:4Þ

F2x ¼ f
ð2Þ

2x ð2:3:5Þ

F1x ¼ f
ð1Þ

1x ð2:3:6Þ

where F1x results from the external applied reaction at the fixed support.
Here Newton’s third law, of equal but opposite forces, is applied in moving from

a node to an element associated with the node. Using Eqs. (2.3.1) through (2.3.3) in
Eqs. (2.3.4) through (2.3.6), we obtain

F3x ¼ ð�k1u1 þ k1u3Þ þ ðk2u3 � k2u2Þ

F2x ¼ �k2u3 þ k2u2 ð2:3:7Þ

F1x ¼ k1u1 � k1u3

In matrix form, Eqs. (2.3.7) are expressed by

F3x

F2x

F1x

8><
>:

9>=
>; ¼

k1 þ k2 �k2 �k1

�k2 k2 0

�k1 0 k1

2
64

3
75

u3

u2

u1

8><
>:

9>=
>; ð2:3:8Þ

Rearranging Eq. (2.3.8) in numerically increasing order of the nodal degrees of free-
dom, we have

F1x

F2x

F3x

8><
>:

9>=
>; ¼

k1 0 �k1

0 k2 �k2

�k1 �k2 k1 þ k2

2
64

3
75

u1

u2

u3

8><
>:

9>=
>; ð2:3:9Þ

Equation (2.3.9) is now written as the single matrix equation

fFg ¼ ½K�fdg ð2:3:10Þ

Figure 2–7 Nodal forces consistent with element force sign convention
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where fFg ¼
F1x

F2x

F3x

8><
>:

9>=
>; is called the global nodal force matrix, fdg ¼

u1

u2

u3

8><
>:

9>=
>; is called the

global nodal displacement matrix, and

½K � ¼
k1 0 �k1

0 k2 �k2

�k1 �k2 k1 þ k2

2
64

3
75 ð2:3:11Þ

is called the total or global or system stiffness matrix.
In summary, to establish the stiffness equations and stiffness matrix, Eqs. (2.3.9)

and (2.3.11), for a spring assemblage, we have used force/deformation relation-
ships Eqs. (2.3.1) and (2.3.2), compatibility relationship Eq. (2.3.3), and nodal force
equilibrium Eqs. (2.3.4) through (2.3.6). We will consider the complete solution to
this example problem after considering a more practical method of assembling the
total stiffness matrix in Section 2.4 and discussing the support boundary conditions
in Section 2.5.

d 2.4 Assembling the Total Stiffness Matrix d
by Superposition (Direct Stiffness Method)

We will now consider a more convenient method for constructing the total stiffness
matrix. This method is based on proper superposition of the individual element stiff-
ness matrices making up a structure (also see References [1] and [2]).

Referring to the two-spring assemblage of Section 2.3, the element stiffness
matrices are given in Eqs. (2.3.1) and (2.3.2) as

½kð1Þ� ¼

u1 u3

k1 �k1 u1

�k1 k1 u3

� �
½kð2Þ� ¼

u3 u2

k2 �k2 u3

�k2 k2 u2

� � ð2:4:1Þ

Here the ui’s written above the columns and next to the rows in the ½k�’s indicate the
degrees of freedom associated with each element row and column.

The two element stiffness matrices, Eqs. (2.4.1), are not associated with the same
degrees of freedom; that is, element 1 is associated with axial displacements at nodes 1
and 3, whereas element 2 is associated with axial displacements at nodes 2 and 3.
Therefore, the element stiffness matrices cannot be added together (superimposed) in
their present form. To superimpose the element matrices, we must expand them to
the order (size) of the total structure (spring assemblage) stiffness matrix so that each
element stiffness matrix is associated with all the degrees of freedom of the structure.
To expand each element stiffness matrix to the order of the total stiffness matrix, we
simply add rows and columns of zeros for those displacements not associated with
that particular element.
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For element 1, we rewrite the stiffness matrix in expanded form so that Eq.
(2.3.1) becomes

u1 u2 u3

1 0 �1

k1 0 0 0

�1 0 1

2
4

3
5

u
ð1Þ
1

u
ð1Þ
2

u
ð1Þ
3

8>><
>>:

9>>=
>>;
¼

f
ð1Þ

1x

f
ð1Þ

2x

f
ð1Þ

3x

8>><
>>:

9>>=
>>;

ð2:4:2Þ

where, from Eq. (2.4.2), we see that u
ð1Þ
2 and f

ð1Þ
2x are not associated with ½kð1Þ�. Simi-

larly, for element 2, we have

u1 u2 u3

0 0 0

k2 0 1 �1

0 �1 1

2
4

3
5

u
ð2Þ
1

u
ð2Þ
2

u
ð2Þ
3

8>><
>>:

9>>=
>>;
¼

f
ð2Þ

1x

f
ð2Þ

2x

f
ð2Þ

3x

8>><
>>:

9>>=
>>;

ð2:4:3Þ

Now, considering force equilibrium at each node results in

f
ð1Þ

1x

0

f
ð1Þ

3x

8><
>:

9>=
>;þ

0

f
ð2Þ

2x

f
ð2Þ

3x

8><
>:

9>=
>; ¼

F1x

F2x

F3x

8<
:

9=
; ð2:4:4Þ

where Eq. (2.4.4) is really Eqs. (2.3.4) through (2.3.6) expressed in matrix form. Using
Eqs. (2.4.2) and (2.4.3) in Eq. (2.4.4), we obtain

k1

1 0 �1

0 0 0

�1 0 1

2
4

3
5

u
ð1Þ
1

u
ð1Þ
2

u
ð1Þ
3

8>><
>>:

9>>=
>>;
þ k2

0 0 0

0 1 �1

0 �1 1

2
4

3
5

u
ð2Þ
1

u
ð2Þ
2

u
ð2Þ
3

8>><
>>:

9>>=
>>;
¼

F1x

F2x

F3x

8<
:

9=
; ð2:4:5Þ

where, again, the superscripts on the u ’s indicate the element numbers. Simplifying
Eq. (2.4.5) results in

k1 0 �k1

0 k2 �k2

�k1 �k2 k1þ k2

2
4

3
5

u1

u2

u3

8<
:

9=
; ¼

F1x

F2x

F3x

8<
:

9=
; ð2:4:6Þ

Here the superscripts indicating the element numbers associated with the nodal dis-
placements have been dropped because u

ð1Þ
1 is really u1, u

ð2Þ
2 is really u2, and, by Eq.

(2.3.3), u
ð1Þ
3 ¼ u

ð2Þ
3 ¼ u3, the node 3 displacement of the total assemblage. Equation

(2.4.6), obtained through superposition, is identical to Eq. (2.3.9).
The expanded element stiffness matrices in Eqs. (2.4.2) and (2.4.3) could have been

added directly to obtain the total stiffness matrix of the structure, given in Eq. (2.4.6).
This reliable method of directly assembling individual element stiffness matrices to
form the total structure stiffness matrix and the total set of stiffness equations is called
the direct stiffness method. It is the most important step in the finite element method.

For this simple example, it is easy to expand the element stiffness matrices and
then superimpose them to arrive at the total stiffness matrix. However, for problems
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involving a large number of degrees of freedom, it will become tedious to expand each
element stiffness matrix to the order of the total stiffness matrix. To avoid this expan-
sion of each element stiffness matrix, we suggest a direct, or short-cut, form of the
direct stiffness method to obtain the total stiffness matrix. For the spring assemblage
example, the rows and columns of each element stiffness matrix are labeled according
to the degrees of freedom associated with them as follows:

½kð1Þ� ¼

u1 u3

k1 �k1 u1

�k1 k1 u3

� �
½kð2Þ� ¼

u3 u2

k2 �k2 u3

�k2 k2 u2

� � ð2:4:7Þ

½K � is then constructed simply by directly adding terms associated with degrees of free-
dom in [kð1Þ] and [kð2Þ] into their corresponding identical degree-of-freedom locations
in ½K � as follows. The u1 row, u1 column term of ½K� is contributed only by element 1,
as only element 1 has degree of freedom u1 [Eq. (2.4.7)], that is, k11 ¼ k1. The u3

row, u3 column of ½K � has contributions from both elements 1 and 2, as the u3 degree
of freedom is associated with both elements. Therefore, k33 ¼ k1 þ k2. Similar reason-
ing results in ½K � as

u1 u2 u3

k1 0 �k1 u1

½K�¼ 0 k2 �k2 u2

�k1 �k2 k1þ k2 u3

2
4

3
5 ð2:4:8Þ

Here elements in ½K � are located on the basis that degrees of freedom are ordered in
increasing node numerical order for the total structure. Section 2.5 addresses the com-
plete solution to the two-spring assemblage in conjunction with discussion of the sup-
port boundary conditions.

d 2.5 Boundary Conditions d
We must specify boundary (or support) conditions for structure models such as the
spring assemblage of Figure 2–6, or ½K� will be singular; that is, the determinant of
½K � will be zero, and its inverse will not exist. This means the structural system is
unstable. Without our specifying adequate kinematic constraints or support condi-
tions, the structure will be free to move as a rigid body and not resist any applied
loads. In general, the number of boundary conditions necessary to make ½K � non-
singular is equal to the number of possible rigid body modes.

Boundary conditions relevant for spring assemblages are associated with
nodal displacements. These conditions are of two types. Homogeneous boundary
conditions—the more common—occur at locations that are completely prevented
from movement; nonhomogeneous boundary conditions occur where finite nonzero
values of displacement are specified, such as the settlement of a support.

In the mathematical sense in regard to solving boundary value problems, we
encounter two general classifications of boundary conditions when imposed on an
ordinary or partial differential equation or derived upon taking the first variation of
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a functional as shown in References [4, 5, 8], but these are avoided in this more basic
textbook.

The first type—primary, essential, or Dirichlet—boundary condition (named
after Johann Dirichlet (1805–1859)), specifies the values a solution, such as the dis-
placement, must satisfy on the boundary of the domain.

The second type—natural or Neumann—boundary condition (named after Carl
Neumann (1832–1925)), specifies the values that the derivatives of a solution must sat-
isfy on the boundary of the domain.

To illustrate the two general displacement types of boundary conditions, let us
consider Eq. (2.4.6), derived for the spring assemblage of Figure 2–6. which has a sin-
gle rigid body mode in the direction of motion along the spring assemblage.

Homogeneous Boundary Conditions

We first consider the case of homogeneous boundary conditions. Hence all boundary
conditions are such that the displacements are zero at certain nodes. Here we have
u1 ¼ 0 because node 1 is fixed. Therefore, Eq. (2.4.6) can be written as

k1 0 �k1

0 k2 �k2

�k1 �k2 k1þ k2

2
64

3
75

0

u2

u3

8><
>:

9>=
>; ¼

F1x

F2x

F3x

8><
>:

9>=
>; ð2:5:1Þ

Equation (2.5.1), written in expanded form, becomes

k1ð0Þ þ ð0Þu2 � k1u3 ¼ F1x

0ð0Þ þ k2u2 � k2u3 ¼ F2x ð2:5:2Þ

�k1ð0Þ � k2u2 þ ðk1 þ k2Þu3 ¼ F3x

where F1x is the unknown reaction and F2x and F3x are known applied loads.
Writing the second and third of Eqs. (2.5.2) in matrix form, we have

k2 �k2

�k2 k1 þ k2

� �
u2

u3

� �
¼ F2x

F3x

� �
ð2:5:3Þ

We have now effectively partitioned off the first column and row of ½K � and the first
row of {d} and {F} to arrive at Eq. (2.5.3).

For homogeneous boundary conditions, Eq. (2.5.3) could have been obtained
directly by deleting the row and column of Eq. (2.5.1) corresponding to the zero-
displacement degrees of freedom. Here row 1 and column 1 are deleted because one
is really multiplying column 1 of ½K � by u1 ¼ 0. However, F1x is not necessarily zero
and can be determined once u2 and u3 are solved for.

After solving Eq. (2.5.3) for u2 and u3, we have

u2

u3

� �
¼ k2 �k2

�k2 k1 þ k2

� ��1
F2x

F3x

� �
¼

1

k2
þ 1

k1

1

k1

1

k1

1

k1

2
6664

3
7775

F2x

F3x

� �
ð2:5:4Þ
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Now that u2 and u3 are known from Eq. (2.5.4), we substitute them in the first of Eqs.
(2.5.2) to obtain the reaction F1x as

F1x ¼ �k1u3 ð2:5:5Þ

We can express the unknown nodal force at node 1 (also called the reaction) in terms
of the applied nodal forces F2x and F3x by using Eq. (2.5.4) for u3 substituted into
Eq. (2.5.5). The result is

F1x ¼ �F2x � F3x ð2:5:6Þ

Therefore, for all homogeneous boundary conditions, we can delete the rows and col-
umns corresponding to the zero-displacement degrees of freedom from the original set
of equations and then solve for the unknown displacements. This procedure is useful
for hand calculations. (However, Appendix B.4 presents a more practical, computer-
assisted scheme for solving the system of simultaneous equations.)

Nonhomogeneous Boundary Conditions

We now consider the case of nonhomogeneous boundary conditions. Hence one or
more of the specified displacements are nonzero. For simplicity’s sake, let u1 ¼ d,
where d is a known displacement (Figure 2–8), in Eq. (2.4.6). We now have

k1 0 �k1

0 k2 �k2

�k1 �k2 k1 þ k2

2
64

3
75

d

u2

u3

8><
>:

9>=
>; ¼

F1x

F2x

F3x

8><
>:

9>=
>; ð2:5:7Þ

Equation (2.5.7) written in expanded form becomes

k1dþ 0u2 � k1u3 ¼ F1x

0dþ k2u2 � k2u3 ¼ F2x ð2:5:8Þ

�k1d� k2u2 þ ðk1 þ k2Þu3 ¼ F3x

where F1x is now a reaction from the support that has moved an amount d. Consider-
ing the second and third of Eqs. (2.5.8) because they have known right-side nodal
forces F2x and F3x, we obtain

0dþ k2u2 � k2u3 ¼ F2x
ð2:5:9Þ

�k1d� k2u2 þ ðk1 þ k2Þu3 ¼ F3x

Figure 2–8 Two-spring assemblage with known displacement d at node 1
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Transforming the known d terms to the right side of Eqs. (2.5.9) yields

k2u2 � k2u3 ¼ F2x
ð2:5:10Þ

�k2u2 þ ðk1 þ k2Þu3 ¼ þk1dþ F3x

Rewriting Eqs. (2.5.10) in matrix form, we have

k2 �k2

�k2 k1 þ k2

� �
u2

u3

� �
¼ F2x

k1dþ F3x

� �
ð2:5:11Þ

Therefore, when dealing with nonhomogeneous boundary conditions, we cannot initially
delete row 1 and column 1 of Eq. (2.5.7), corresponding to the nonhomogeneous boun-
dary condition, as indicated by the resulting Eq. (2.5.11) because we are multiplying
each element by a nonzero number. Had we done so, the k1d term in Eq. (2.5.11)
would have been neglected, resulting in an error in the solution for the displacements.
For nonhomogeneous boundary conditions, we must, in general, transform the terms
associated with the known displacements to the right-side force matrix before solving
for the unknown nodal displacements. This was illustrated by transforming the k1d

term of the second of Eqs. (2.5.9) to the right side of the second of Eqs. (2.5.10).
We could now solve for the displacements in Eq. (2.5.11) in a manner similar to

that used to solve Eq. (2.5.3). However, we will not further pursue the solution of
Eq. (2.5.11) because no new information is to be gained.

However, on substituting the displacement back into Eq. (2.5.7), the reaction
now becomes

F1x ¼ k1d� k1u3
ð2:5:12Þ

which is different than Eq. (2.5.5) for F1x.
Notice that if the displacement is known at a node (say u1 ¼ d), then the force

F1x at the node in the same direction as the displacement is not initially known and
is determined using the global equation of Eq. (2.5.7) after solving for the unknown
nodal displacements.

At this point, we summarize some properties of the stiffness matrix in Eq. (2.5.7)
that are also applicable to the generalization of the finite element method.

1. ½K � is square, as it relates the same number of forces and displacements.
2. ½K � is symmetric, as is each of the element stiffness matrices. If you are

familiar with structural mechanics, you will not find this symmetry
property surprising. It can be proved by using the reciprocal laws
described in such References as [3] and [4].

3. ½K � is singular (its determinant is equal to zero), and thus, no inverse
exists until sufficient boundary conditions are imposed to remove the
singularity and prevent rigid body motion.

4. The main diagonal terms of ½K � are always positive. Otherwise, a
positive nodal force Fi could produce a negative displacement di —
a behavior contrary to the physical behavior of any actual structure.

5. ½K � is positive semidefinite (that is fxgT ½K �fxg > 0 for all non-zero
vector fxg with real numbers). (For more about positive semidefinite
matrices, see Appendix A.)
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In general, specified support conditions are treated mathematically by partition-
ing the global equilibrium equations as follows:

½K11� ½K12�
½K �21 ½K22�

� � fd1g
fd2g

� �
¼ fF 1g
fF 2g

� �
ð2:5:13Þ

j
j
j
j

where we let {d1} be the unconstrained or free displacements and {d2} be the specified
displacements. From Eq. (2.5.13), we have

½K11�fd1g ¼ fF 1g � ½K �12fd2g ð2:5:14Þ

fF 2g ¼ ½K21�fd1g þ ½K22�fd2g ð2:5:15Þand

where {F 1} are the known nodal forces and {F 2} are the unknown nodal forces at the
specified displacement nodes. {F 2} is found from Eq. (2.5.15) after {d1} is determined
from Eq. (2.5.14). In Eq. (2.5.14), we assume that ½K11� is no longer singular, thus
allowing for the determination of {d1}.

To illustrate the stiffness method for the solution of spring assemblages we now
present the following examples.

Example 2.1

For the spring assemblage with arbitrarily numbered nodes shown in Figure 2–9,
obtain (a) the global stiffness matrix, (b) the displacements of nodes 3 and 4, (c) the
reaction forces at nodes 1 and 2, and (d) the forces in each spring. A force of 5000 lb
is applied at node 4 in the x direction. The spring constants are given in the figure.
Nodes 1 and 2 are fixed.

SOLUTION:
(a) We begin by making use of Eq. (2.2.18) to express each element stiffness matrix as
follows:

½kð1Þ� ¼

1 3

1000 �1000 1

�1000 1000 3

� �
½kð2Þ� ¼

3 4

2000 �2000 3

�2000 2000 4

� �

ð2:5:16Þ

½kð3Þ� ¼

4 2

3000 �3000 4

�3000 3000 2

� �

where the numbers above the columns and next to each row indicate the nodal degrees
of freedom associated with each element. For instance, element 1 is associated with

Figure 2–9 Spring assemblage for solution
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degrees of freedom u1 and u3. Also, the local element x axis coincides with the global
x axis for each element.

Using the concept of superposition (the direct stiffness method), we obtain the
global stiffness matrix as

½K � ¼ ½kð1Þ� þ ½kð2Þ� þ ½kð3Þ�

½K � ¼

u1 u2 u3 u4

1000 0 �1000 0 u1

0 3000 0 �3000 u2

�1000 0 1000þ 2000 �2000 u3

0 �3000 �2000 2000þ 3000 u4

2
6664

3
7775

ð2:5:17Þor

(b) The global stiffness matrix, Eq. (2.5.17), relates global forces to global dis-
placements as follows:

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;
¼

1000 0 �1000 0

0 3000 0 �3000

�1000 0 3000 �2000

0 �3000 �2000 5000

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;

ð2:5:18Þ

Applying the homogeneous boundary conditions u1 ¼ 0 and u2 ¼ 0 to
Eq. (2.5.18), substituting applied nodal forces, and partitioning the first two equations
of Eq. (2.5.18) (or deleting the first two rows of fFg and fdg and the first two rows
and columns of ½K � corresponding to the zero-displacement boundary conditions),
we obtain

0

5000

� �
¼ 3000 �2000

�2000 5000

� �
u3

u4

� �
ð2:5:19Þ

Solving Eq. (2.5.19), we obtain the global nodal displacements

u3 ¼
10

11
in: u4 ¼

15

11
in: ð2:5:20Þ

(c) To obtain the global nodal forces (which include the reactions at nodes 1
and 2), we back-substitute Eqs. (2.5.20) and the boundary conditions u1 ¼ 0 and
u2 ¼ 0 into Eq. (2.5.18). This substitution yields

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;
¼

1000 0 �1000 0

0 3000 0 �3000

�1000 0 3000 �2000

0 �3000 �2000 5000

2
6664

3
7775

0

0
10
11
15
11

8>>><
>>>:

9>>>=
>>>;

ð2:5:21Þ
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Multiplying matrices in Eq. (2.5.21) and simplifying, we obtain the forces at each
node

F1x ¼
�10;000

11
lb F2x ¼

�45;000

11
lb F3x ¼ 0

ð2:5:22Þ

F4x ¼
55;000

11
lb

From these results, we observe that the sum of the reactions F1x and F2x is equal in
magnitude but opposite in direction to the applied force F4x. This result verifies equili-
brium of the whole spring assemblage.

(d) Next we use local element Eq. (2.2.17) to obtain the forces in each element.

Element 1

f
ð1Þ

1x

f
ð1Þ
3x

( )
¼ 1000 �1000

�1000 1000

� �
0
10
11

( )
ð2:5:23Þ

Simplifying Eq. (2.5.23), we obtain

f
ð1Þ

1x ¼
�10;000

11
lb f

ð1Þ
3x ¼

10;000

11
lb ð2:5:24Þ

A free-body diagram of spring element 1 is shown in Figure 2–10(a). The spring is
subjected to tensile forces given by Eqs. (2.5.24). Also, f

ð1Þ
1x is equal to the reaction

force F1x given in Eq. (2.5.22). A free-body diagram of node 1 [Figure 2–10(b)]
shows this result.

Element 2

f
ð2Þ
3x

f
ð2Þ
4x

( )
¼ 2000 �2000

�2000 2000

� �
10
11
15
11

( )
ð2:5:25Þ

Simplifying Eq. (2.5.25), we obtain

f
ð2Þ
3x ¼

�10;000

11
lb f 2

4x ¼
10;000

11
lb ð2:5:26Þ

A free-body diagram of spring element 2 is shown in Figure 2–11. The spring is sub-
jected to tensile forces given by Eqs. (2.5.26).

(1)

Figure 2–10 (a) Free-body diagram of element 1 and (b) free-body diagram
of node 1
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Element 3

f
ð3Þ
4x

f
ð3Þ

2x

( )
¼ 3000 �3000

�3000 3000

� �
15
11

0

( )
ð2:5:27Þ

Simplifying Eq. (2.5.27) yields

f
ð3Þ
4x ¼

45;000

11
lb f

ð3Þ
2x ¼

�45;000

11
lb ð2:5:28Þ

A free-body diagram of spring element 3 is shown in Figure 2–12(a). The spring is
subjected to compressive forces given by Eqs. (2.5.28). Also, f2x is equal to the reac-
tion force F2x given in Eq. (2.5.22). A free-body diagram of node 2 (Figure 2–12b)
shows this result. 9

Example 2.2

For the spring assemblage shown in Figure 2–13, obtain (a) the global stiffness
matrix, (b) the displacements of nodes 2–4, (c) the global nodal forces, and (d) the
local element forces. Node 1 is fixed while node 5 is given a fixed, known displacement
d ¼ 20:0 mm. The spring constants are all equal to k ¼ 200 kN/m.

Figure 2–13 Spring assemblage for solution

(3)

Figure 2–12 (a) Free-body diagram of element 3 and (b) free-body diagram
of node 2

Figure 2–11 Free-body diagram of element 2
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SOLUTION:
(a) We use Eq. (2.2.18) to express each element stiffness matrix as

½kð1Þ� ¼ ½kð2Þ� ¼ ½kð3Þ� ¼ ½kð4Þ� ¼ 200 �200

�200 200

� �
ð2:5:29Þ

Again using superposition, we obtain the global stiffness matrix as

½K � ¼

200 �200 0 0 0

�200 400 �200 0 0

0 �200 400 �200 0

0 0 �200 400 �200

0 0 0 �200 200

2
666664

3
777775

kN

m
ð2:5:30Þ

(b) The global stiffness matrix, Eq. (2.5.30), relates the global forces to the
global displacements as follows:

F1x

F2x

F3x

F4x

F5x

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

200 �200 0 0 0

�200 400 �200 0 0

0 �200 400 �200 0

0 0 �200 400 �200

0 0 0 �200 200

2
666664

3
777775

u1

u2

u3

u4

u5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2:5:31Þ

Applying the boundary conditions u1 ¼ 0 and u5 ¼ 20 mm (¼ 0:02 m), substi-
tuting known global forces F2x ¼ 0, F3x ¼ 0, and F4x ¼ 0, and partitioning the first
and fifth equations of Eq. (2.5.31) corresponding to these boundary conditions, we
obtain

0

0

0

8<
:

9=
; ¼

�200 400 �200 0 0

0 �200 400 �200 0

0 0 �200 400 �200

2
4

3
5

0

u2

u3

u4

0:02 m

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð2:5:32Þ

We now rewrite Eq. (2.5.32), transposing the product of the appropriate stiffness
coefficient ð�200Þ multiplied by the known displacement ð0:02 mÞ to the left side.

0

0

4 kN

8<
:

9=
; ¼

400 �200 0

�200 400 �200

0 �200 400

2
4

3
5

u2

u3

u4

8<
:

9=
; ð2:5:33Þ

Solving Eq. (2.5.33), we obtain

u2 ¼ 0:005 m u3 ¼ 0:01 m u4 ¼ 0:015 m ð2:5:34Þ
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(c) The global nodal forces are obtained by back-substituting the boundary con-
dition displacements and Eqs. (2.5.34) into Eq. (2.5.31). This substitution yields

F1x ¼ ð�200Þð0:005Þ ¼ �1:0 kN

F2x ¼ ð400Þð0:005Þ � ð200Þð0:01Þ ¼ 0

F3x ¼ ð�200Þð0:005Þ þ ð400Þð0:01Þ � ð200Þð0:015Þ ¼ 0 ð2:5:35Þ

F4x ¼ ð�200Þð0:01Þ þ ð400Þð0:015Þ � ð200Þð0:02Þ ¼ 0

F5x ¼ ð�200Þð0:015Þ þ ð200Þð0:02Þ ¼ 1:0 kN

The results of Eqs. (2.5.35) yield the reaction F1x opposite that of the nodal force F5x

required to displace node 5 by d ¼ 20:0 mm. This result verifies equilibrium of the
whole spring assemblage.

Remember if the displacement is known at a node in a given direction (in this
example, u5 ¼ 20 mm) then the force F5x at that same node and in that same direction
is not initially known. The force is determined after solving for the unknown nodal
displacements.

(d) Next, we make use of local element Eq. (2.2.17) to obtain the forces in each
element.

Element 1

f
ð1Þ

1x

f
ð1Þ

2x

( )
¼ 200 �200

�200 200

� �
0

0:005

� �
ð2:5:36Þ

Simplifying Eq. (2.5.36) yields

f
ð1Þ

1x ¼ �1:0 kN f
ð1Þ

2x ¼ 1:0 kN ð2:5:37Þ

Element 2

f
ð2Þ

2x

f
ð2Þ
3x

( )
¼ 200 �200

�200 200

� �
0:005
0:01

� �
ð2:5:38Þ

Simplifying Eq. (2.5.38) yields

f
ð2Þ

2x ¼ �1 kN f
ð2Þ
3x ¼ 1 kN ð2:5:39Þ

Element 3

f
ð3Þ
3x

f
ð3Þ
4x

( )
¼ 200 �200

�200 200

� �
0:01
0:015

� �
ð2:5:40Þ

Simplifying Eq. (2.5.40), we have

f
ð3Þ
3x ¼ �1 kN f

ð3Þ
4x ¼ 1 kN ð2:5:41Þ
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Element 4

f
ð4Þ
4x

f
ð4Þ
5x

( )
¼ 200 �200

�200 200

� �
0:015
0:02

� �
ð2:5:42Þ

Simplifying Eq. (2.5.42), we obtain

f
ð4Þ
4x ¼ �1 kN f

ð4Þ
5x ¼ 1 kN ð2:5:43Þ

You should draw free-body diagrams of each node and element and use the results of
Eqs. (2.5.35) through (2.5.43) to verify both node and element equilibria. 9

Finally, to review the major concepts presented in this chapter, we solve the fol-
lowing example problem.

Example 2.3

(a) Using the ideas presented in Section 2.3 for the system of linear elastic springs
shown in Figure 2–14, express the boundary conditions, the compatibility or continu-
ity condition similar to Eq. (2.3.3), and the nodal equilibrium conditions similar to
Eqs. (2.3.4) through (2.3.6). Then formulate the global stiffness matrix and equations
for solution of the unknown global displacement and forces. The spring constants
for the elements are k1; k2, and k3; P is an applied force at node 2.

(b) Using the direct stiffness method, formulate the same global stiffness matrix
and equation as in part (a).

SOLUTION:
(a) The boundary conditions are

u1 ¼ 0 u3 ¼ 0 u4 ¼ 0 ð2:5:44Þ

The compatibility condition at node 2 is

u
ð1Þ
2 ¼ u

ð2Þ
2 ¼ u

ð3Þ
2 ¼ u2 ð2:5:45Þ

Figure 2–14 Spring assemblage for solution
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The nodal equilibrium conditions are

F1x ¼ f
ð1Þ

1x

P ¼ f
ð1Þ

2x þ f
ð2Þ

2x þ f
ð3Þ

2x ð2:5:46Þ
F3x ¼ f

ð2Þ
3x

F4x ¼ f
ð3Þ

4x

where the sign convention for positive element nodal forces given by Figure 2–2 was
used in writing Eqs. (2.5.46). Figure 2–15 shows the element and nodal force free-
body diagrams.

Using the local stiffness matrix Eq. (2.2.17) applied to each element and com-
patibility condition Eq. (2.5.45), we obtain the total or global equilibrium equations as

F1x ¼ k1u1 � k1u2

P ¼ �k1u1 þ k1u2 þ k2u2 � k2u3 þ k3u3 � k3u4
ð2:5:47Þ

F3x ¼ �k2u2 þ k2u3

F4x ¼ �k3u2 þ k3u4

In matrix form, we express Eqs. (2.5.47) as

F1x

P

F3x

F4x

8>>><
>>>:

9>>>=
>>>;
¼

k1 �k1 0 0

�k1 k1 þ k2 þ k3 �k2 �k3

0 �k2 k2 0

0 �k3 0 k3

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;

ð2:5:48Þ

Therefore, the global stiffness matrix is the square, symmetric matrix on the right side
of Eq. (2.5.48). Making use of the boundary conditions, Eqs. (2.5.44), and then con-
sidering the second equation of Eqs. (2.5.47) or (2.5.48), we solve for u2 as

u2 ¼
P

k1 þ k2 þ k3
ð2:5:49Þ

We could have obtained this same result by deleting rows 1, 3, and 4 in the {F} and
{d} matrices and rows and columns 1, 3, and 4 in ½K �, corresponding to zero displace-
ment, as previously described in Section 2.4, and then solving for u2.

Figure 2–15 Free-body diagrams of elements and nodes of spring assemblage
of Figure 2–14
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Using Eqs. (2.5.47), we now solve for the global forces as

F1x ¼ �k1u2 F3x ¼ �k2u2 F4x ¼ �k3u2 ð2:5:50Þ

The forces given by Eqs. (2.5.50) can be interpreted as the global reactions in this
example. The negative signs in front of these forces indicate that they are directed to
the left (opposite the x axis).

(b) Using the direct stiffness method, we formulate the global stiffness matrix.
First, using Eq. (2.2.18), we express each element stiffness matrix as

½kð1Þ� ¼

u1 u2

k1 �k1

�k1 k1

� �
½kð2Þ� ¼

u2 u3

k2 �k2

�k2 k2

� �
½kð3Þ� ¼

u2 u4

k3 �k3

�k3 k3

� �
ð2:5:51Þ

where the particular degrees of freedom associated with each element are listed in
the columns above each matrix. Using the direct stiffness method as outlined in
Section 2.4, we add terms from each element stiffness matrix into the appropriate
corresponding row and column in the global stiffness matrix to obtain

u1 u2 u3 u4

½K� ¼

k1 �k1 0 0

�k1 k1 þk2 þ k3 �k2 �k3

0 �k2 k2 0

0 �k3 0 k3

2
6664

3
7775 ð2:5:52Þ

We observe that each element stiffness matrix [k] has been added into the location in
the global ½K � corresponding to the identical degree of freedom associated with the
element ½k�. For instance, element 3 is associated with degrees of freedom u2 and u4;
hence its contributions to ½K � are in the 2–2, 2–4, 4–2, and 4–4 locations of ½K �, as
indicated in Eq. (2.5.52) by the k3 terms.

Having assembled the global ½K � by the direct stiffness method, we then for-
mulate the global equations in the usual manner by making use of the general
Eq. (2.3.10), fFg ¼ ½K �fdg. These equations have been previously obtained by
Eq. (2.5.48) and therefore are not repeated. 9

Another method for handling imposed boundary conditions that allows for either
homogeneous (zero) or nonhomogeneous (nonzero) prescribed degrees of freedom is
called the penalty method. This method is easy to implement in a computer program.

Consider the simple spring assemblage in Figure 2–16 subjected to applied
forces F1x and F2x as shown. Assume the horizontal displacement at node 1 to be
forced to be u1 ¼ d.

We add another spring (often called a boundary element) with a large stiffness
kb to the assemblage in the direction of the nodal displacement u1 ¼ d as shown in
Figure 2–17. This spring stiffness should have a magnitude about 106 times that of
the largest kii term.
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Now we add the force kbd in the direction of u1 and solve the problem in the usual
manner as follows.

The element stiffness matrices are

½kð1Þ� ¼ k1 �k1

�k1 k1

� �
½kð2Þ� ¼ k2 �k2

�k2 k2

� �
ð2:5:53Þ

Assembling the element stiffness matrices using the direct stiffness method, we obtain
the global stiffness matrix as

½K � ¼
k1 þ kb �k1 0

�k1 k1 þ k2 �k2

0 �k2 k2

2
4

3
5 ð2:5:54Þ

Assembling the global fFg ¼ ½K �fdg equations and invoking the boundary condition
u3 ¼ 0, we obtain

F1x þ kbd

F2x

F3x

8<
:

9=
; ¼

k1 þ kb �k1 0

�k1 k1 þ k2 �k2

0 �k2 k2

2
4

3
5 u1

u2

u3 ¼ 0

8<
:

9=
; ð2:5:55Þ

Solving the first and second of Eqs. (2.5.55), we obtain

u1 ¼
F2x � ðk1 þ k2Þu2

�k1
ð2:5:56Þ

and

u2 ¼
ðk1 þ kbÞF2x þ F1xk1 þ kbdk1

kbk1 þ kbk2 þ k1k2
ð2:5:57Þ

Now as kb approaches infinity, Eq. (2.5.57) simplifies to

u2 ¼
F2x þ dk1

k1 þ k2
ð2:5:58Þ

Figure 2–17 Spring assemblage with a boundary spring element added at node 1

Figure 2–16 Spring assemblage used to illustrate the penalty method
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and Eq. (2.5.56) simplifies to

u1 ¼ d ð2:5:59Þ

These results match those obtained by setting u1 ¼ d initially.
In using the penalty method, a very large element stiffness should be parallel to a

degree of freedom as is the case in the preceding example. If kb were inclined, or were
placed within a structure, it would contribute to both diagonal and off-diagonal coef-
ficients in the global stiffness matrix ½K �. This condition can lead to numerical difficul-
ties in solving the equations fFg ¼ ½K �fdg. To avoid this condition, we transform the
displacements at the inclined support to local ones as described in Section 3.9.

d 2.6 Potential Energy Approach d
to Derive Spring Element Equations

One of the alternative methods often used to derive the element equations and the
stiffness matrix for an element is based on the principle of minimum potential energy.
(The use of this principle in structural mechanics is fully described in Reference [4].)
This method has the advantage of being more general than the method given in
Section 2.2, which involves nodal and element equilibrium equations along with the
stress/strain law for the element. Thus the principle of minimum potential energy is
more adaptable to the determination of element equations for complicated elements
(those with large numbers of degrees of freedom) such as the plane stress/strain element,
the axisymmetric stress element, the plate bending element, and the three-dimensional
solid stress element.

Again, we state that the principle of virtual work (Appendix E) is applicable for
any material behavior, whereas the principle of minimum potential energy is
applicable only for elastic materials. However, both principles yield the same element
equations for linear-elastic materials, which are the only kind considered in this text.
Moreover, the principle of minimum potential energy, being included in the general
category of variational methods (as is the principle of virtual work), leads to other var-
iational functions (or functionals) similar to potential energy that can be formulated for
other classes of problems, primarily of the nonstructural type. These other problems
are generally classified as field problems and include, among others, torsion of a bar,
heat transfer (Chapter 13), fluid flow (Chapter 14), and electric potential (Chapter 14).

Still other classes of problems, for which a variational formulation is not clearly
definable, can be formulated by weighted residual methods. We will describe Galerkin’s
method in Section 3.12, along with collocation, least squares, and the subdomain
weighted residual methods in Section 3.13. In Section 3.13, we will also demonstrate
these methods by solving a one-dimensional bar problem using each of the four re-
sidual methods and comparing each result to an exact solution. (For more informa-
tion on weighted residual methods, also consult References [5–7].)

Here we present the principle of minimum potential energy as used to derive the
spring element equations. We will illustrate this concept by applying it to the simplest
of elements in hopes that the reader will then be more comfortable when applying it to
handle more complicated element types in subsequent chapters.
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The total potential energy pp of a structure is expressed in terms of displacements.
In the finite element formulation, these will generally be nodal displacements such that
pp ¼ ppðd1; d2; . . . ; dnÞ. When pp is minimized with respect to these displacements,
equilibrium equations result. For the spring element, we will show that the same
nodal equilibrium equations ½k�fdg ¼ f f g result as previously derived in Section 2.2.

We first state the principle of minimum potential energy as follows:

Of all the geometrically possible shapes that a body can assume, the true
one, corresponding to the satisfaction of stable equilibrium of the body, is
identified by a minimum value of the total potential energy.

To explain this principle, we must first explain the concepts of potential energy
and of a stationary value of a function. We will now discuss these two concepts.

Total potential energy is defined as the sum of the internal strain energy U and the

potential energy of the external forces W; that is,

pp ¼ U þW ð2:6:1Þ

Strain energy is the capacity of internal forces (or stresses) to do work through defor-
mations (strains) in the structure; W is the capacity of forces such as body forces, sur-
face traction forces, and applied nodal forces to do work through deformation of the
structure.

To understand the concept of internal strain energy, we first describe the con-
cept of external work. In this section, we consider only the external work due to an
applied nodal force. In Chapter 3, Section 10, we consider work due to body forces
(typically self weight) and surface tractions (distributed forces). External work is
done on a linear-elastic behaving member (here we consider an elastic spring
shown in Figure 2–18(a)) by applying a gradually increasing magnitude force F to
the end of the spring up to some maximum value Fmax less than that which would
cause permanent deformation in the spring. The maximum deformation Xmax occurs
when the maximum force occurs as shown in Figure 2–18(b). The external work is
given by the area under the force-deformation curve shown in Figure 2–18(b),
where the slope of the straight line is equal to the spring constant k. The external
work We is then given from basic mechanics principles as the integral of the dot

Fmax

Xmax

(a) (b)

x

x

Figure 2–18 (a) Spring subjected to gradually increasing force F
(b) Force/deformation curve for linear spring
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product of vector force F with the differential displacement dx. This expression is
represented by Eq. (2.6.2) as

We ¼
Z

F . dx ¼
Z xmax

0

Fmax
x

xmax

� 	
dx ¼ Fmaxxmax=2 ð2:6:2Þ

where F in Eq. (2.6.2) is given by

F ¼ Fmaxðx=xmaxÞ ð2:6:3Þ

In Eq. (2.6.2), we note that F and dx are in the same direction when expressing the sec-
ond integral on the right side of Eq. (2.6.2).

By the conservation of mechanical energy principle, the external work due to the
applied force F is transformed into the internal strain energy U of the spring. This
strain energy is then given by

We ¼ U ¼ Fmaxxmax=2 ð2:6:4Þ

Upon gradual reduction of the force to zero, the spring returns to its original unde-
formed state. This returned energy that is stored in the deformed elastic spring is
called internal strain energy or just strain energy. Also

Fmax ¼ kxmax ð2:6:5Þ

By substituting Eq. (2.6.5) into Eq. (2.6.4), we can express the strain energy as

U ¼ kx2
max=2 ð2:6:6Þ

The potential energy of the external force, being opposite in sign from the exter-
nal work expression because the potential energy of the external force is lost when the
work is done by the external force, is given by

� ¼ �Fmaxxmax ð2:6:7Þ

Therefore, substituting Eqs. (2.6.6) and (2.6.7) into (2.6.1), yields the total potential
energy as

pp ¼
1

2
kx2

max � Fmaxxmax ð2:6:8Þ

In general for any deformation x of the spring corresponding to force F, we
replace xmax with x and Fmax with F and express U and � as

UðxÞ ¼ kx2=2 ð2:6:8aÞ

�ðxÞ ¼ �Fx ð2:6:8bÞ

Substituting Eq. (2.6.8a) and (2.6.8b) into Eq. (2.6.1), we express the total potential
energy as

ppðxÞ ¼
1

2
kx2 � Fx ð2:6:9Þ
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The concept of a stationary value of a function G (used in the definition of the
principle of minimum potential energy) is shown in Figure 2–19. Here G is expressed
as a function of the variable x. The stationary value can be a maximum, a minimum,
or a neutral point of GðxÞ. To find a value of x yielding a stationary value of GðxÞ,
we use differential calculus to differentiate G with respect to x and set the expression
equal to zero, as follows:

dG

dx
¼ 0 ð2:6:10Þ

An analogous process will subsequently be used to replace G with pp and x with
discrete values (nodal displacements) di. With an understanding of variational calculus
(see Reference [8]), we could use the first variation of pp (denoted by dpp, where d

denotes arbitrary change or variation) to minimize pp. However, we will avoid the
details of variational calculus and show that we can really use the familiar differential
calculus to perform the minimization of pp. To apply the principle of minimum poten-
tial energy—that is, to minimize pp—we take the variation of pp, which is a function
of nodal displacements di defined in general as

dpp ¼
qpp

qd1
dd1 þ

qpp

qd2
dd2 þ � � � þ

qpp

qdn

ddn ð2:6:11Þ

The principle states that equilibrium exists when the di define a structure state such
that dpp ¼ 0 (change in potential energy ¼ 0) for arbitrary admissible variations in
displacement ddi from the equilibrium state. An admissible variation is one in which
the displacement field still satisfies the boundary conditions and interelement continu-
ity. Figure 2–20(a) shows the hypothetical actual axial displacement and an admissible
one for a spring with specified boundary displacements u1 and u2. Figure 2–20(b)
shows inadmissible functions due to slope discontinuity between endpoints 1 and 2
and due to failure to satisfy the right end boundary condition of uðLÞ ¼ u2. Here du

represents the variation in u. In the general finite element formulation, du would be
replaced by ddi. This implies that any of the ddi might be nonzero. Hence, to satisfy
dpp ¼ 0, all coefficients associated with the ddi must be zero independently. Thus,

qpp

qdi

¼ 0 ði ¼ 1; 2; 3; . . . ; nÞ or
qpp

qfdg ¼ 0 ð2:6:12Þ

Figure 2–19 Stationary values of a function
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where n equations must be solved for the n values of di that define the static equili-
brium state of the structure. Equation (2.6.12) shows that for our purposes throughout
this text, we can interpret the variation of pp as a compact notation equivalent to dif-
ferentiation of pp with respect to the unknown nodal displacements for which pp is
expressed. For linear-elastic materials in equilibrium, the fact that pp is a minimum
is shown, for instance, in Reference [4].

Before discussing the formulation of the spring element equations, we now
illustrate the concept of the principle of minimum potential energy by analyzing a
single-degree-of-freedom spring subjected to an applied force, as given in Example 2.4.
In this example, we will show that the equilibrium position of the spring corresponds
to the minimum potential energy.

Example 2.4

For the linear-elastic spring subjected to a force of 1000 lb shown in Figure 2–21,
evaluate the potential energy for various displacement values and show that the
minimum potential energy also corresponds to the equilibrium position of the
spring.

Figure 2–20 (a) Actual and admissible displacement functions and (b) inadmissible
displacement functions
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SOLUTION:
We evaluate the total potential energy as

pp ¼ U þW

U ¼ 1
2 ðkxÞx and W ¼ �Fxwhere

We now illustrate the minimization of pp through standard mathematics. Taking
the variation of pp with respect to x, or, equivalently, taking the derivative of pp with
respect to x (as pp is a function of only one displacement x), as in Eqs. (2.6.11) and
(2.6.12), we have

dpp ¼
qpp

qx
dx ¼ 0

or, because dx is arbitrary and might not be zero,

qpp

qx
¼ 0

Using our previous expression for pp, we obtain

qpp

qx
¼ 500x� 1000 ¼ 0

x ¼ 2:00 in:or

This value for x is then back-substituted into pp to yield

pp ¼ 250ð2Þ2 � 1000ð2Þ ¼ �1000 lb-in:

which corresponds to the minimum potential energy obtained in Table 2–1 by the fol-
lowing searching technique. Here U ¼ 1

2 ðkxÞx is the strain energy or the area under
the load/displacement curve shown in Figure 2–21, and W ¼ �Fx is the potential
energy of load F. For the given values of F and k, we then have

pp ¼
1

2
ð500Þx2 � 1000x ¼ 250x2 � 1000x

We now search for the minimum value of pp for various values of spring defor-
mation x. The results are shown in Table 2–1. A plot of pp versus x is shown in

Figure 2–21 Spring subjected to force; load/displacement curve
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Figure 2–22, where we observe that pp has a minimum value at x ¼ 2:00 in. This
deformed position also corresponds to the equilibrium position because
ðqpp=qxÞ ¼ 500ð2Þ � 1000 ¼ 0. 9

We now derive the spring element equations and stiffness matrix using the prin-
ciple of minimum potential energy. Consider the linear spring subjected to nodal
forces shown in Figure 2–23. Using Eq. (2.6.9) reveals that the total potential energy is

pp ¼
1

2
kðu2 � u1Þ2 � f1xu1 � f2xu2 ð2:6:13Þ

Table 2–1 Total potential energy for
various spring deformations

Deformation
x, in.

Total Potential Energy
pp, lb-in.

�4.00 8000
�3.00 5250
�2.00 3000
�1.00 1250

0.00 0
1.00 �750
2.00 �1000
3.00 �750
4.00 0
5.00 1250

Figure 2–22 Variation of potential energy with spring deformation
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where u2 � u1 is the deformation of the spring in Eq. (2.6.9). The first term on the right
in Eq. (2.6.13) is the strain energy in the spring. Simplifying Eq. (2.6.13), we obtain

pp ¼
1

2
kðu2

2 � 2u2u1 þ u2
1Þ � f1xu1 � f2xu2 ð2:6:14Þ

The minimization of pp with respect to each nodal displacement requires taking
partial derivatives of pp with respect to each nodal displacement such that

qpp

qu1
¼ 1

2
kð�2u2 þ 2u1Þ � f1x ¼ 0

ð2:6:15Þ
qpp

qu2
¼ 1

2
kð2u2 � 2u1Þ � f2x ¼ 0

Simplifying Eqs. (2.6.15), we have

kð�u2 þ u1Þ ¼ f1x
ð2:6:16Þ

kðu2 � u1Þ ¼ f2x

In matrix form, we express Eq. (2.6.16) as

k �k

�k k

� �
u1

u2

� �
¼ f1x

f2x

� �
ð2:6:17Þ

Because f f g ¼ ½k�fdg, we have the stiffness matrix for the spring element obtained
from Eq. (2.6.17):

½k� ¼ k �k

�k k

� �
ð2:6:18Þ

As expected, Eq. (2.6.18) is identical to the stiffness matrix obtained in Section 2.2,
Eq. (2.2.18).

We considered the equilibrium of a single spring element by minimizing the total
potential energy with respect to the nodal displacements (see Example 2.4). We also
developed the finite element spring element equations by minimizing the total potential
energy with respect to the nodal displacements. We now show that the total potential
energy of an entire structure (here an assemblage of spring elements) can be minimized
with respect to each nodal degree of freedom and that this minimization results in the
same finite element equations used for the solution as those obtained by the direct
stiffness method.

Example 2.5

Obtain the total potential energy of the spring assemblage (Figure 2–24) for Example
2.1 and find its minimum value. The procedure of assembling element equations can
then be seen to be obtained from the minimization of the total potential energy.

Figure 2–23 Linear spring subjected to nodal forces
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SOLUTION:
Using Eq. (2.6.8a), the strain energy stored in spring 1 is given by

U ð1Þ ¼ k1ðu3 � u1Þ2=2 ð2:6:19Þ

where the difference in nodal displacements u3 � u1 is the deformation x in spring 1.
Eq. (2.6.19) can be written in matrix form as

U ð1Þ ¼ 1

2
½u3 u1�

k1 �k1

�k1 k1

� �
u3

u1

� �
¼ 1

2
fdgT½K �fdg ð2:6:20Þ

We observe from Eq. (2.6.20) that the strain energy U is a quadratic function of the
nodal displacements.

Similar strain energy expressions for springs 2 and 3 are given by

U ð2Þ ¼ k2ðu4 � u3Þ2=2 and U ð3Þ ¼ k3ðu2 � u4Þ2=2 ð2:6:21Þ

with similar matrix expressions as given by Eq. (2.6.20) for spring 1.
Since the strain energy is a scalar quantity, we can add the energy in each spring

to obtain the total strain energy in the system as

U ¼
P3

i¼1 U ðeÞ ð2:6:22Þ

The potential energy of the external nodal forces given in the order of the node num-
bering for the spring assemblage is

� ¼ �ðF1xu1 þ F3xu3 þ F4xu4 þ F2xu2Þ ð2:6:23Þ

Equation (2.6.23) can be expressed in matrix form as

� ¼ �½u1 u2 u3 u4�

F1x

F2x

F3x

F4x

8>><
>>:

9>>=
>>;

ð2:6:24Þ

The total potential of the assemblage is the sum of the strain energy and the potential
energy of the external forces given by adding Eqs. (2.6.19), (2.6.21) and (2.6.23)
together as

�p ¼ U þ � ¼ 1

2
k1ðu3 � u1Þ2 þ

1

2
k2ðu4 � u3Þ2 þ

1

2
k3ðu2 � u4Þ2

� F1xu1 � F2xu2 � F3xu3 � F4xu4 ð2:6:25Þ

Figure 2–24 Spring assemblage
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Upon minimizing pp with respect to each nodal displacement, we obtain

qpp

qu1
¼ �k1u3 þ k1u1 � F1x ¼ 0

qpp

qu2
¼ k3u2 � k3u4 � F2x ¼ 0

ð2:6:26Þ
qpp

qu3
¼ k1u3 � k1u1 � k2u4 þ k2u3 � F3x ¼ 0

qpp

qu4
¼ k2u4 � k2u3 � k3u2 þ k3u4 � F4x ¼ 0

In matrix form, Eqs. (2.6.26) become

k1 0 �k1 0

0 k3 0 �k3

�k1 0 k1 þ k2 �k2

0 �k3 �k2 k2 þ k3

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;
¼

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;

ð2:6:27Þ

Substituting numerical values for k1; k2, and k3 into Eq. (2.6.27), we obtain

1000 0 �1000 0

0 3000 0 �3000

�1000 0 3000 �2000

0 �3000 �2000 5000

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;
¼

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;

ð2:6:28Þ

Equation (2.6.28) is identical to Eq. (2.5.18), which was obtained through the direct
stiffness method as described in Section 2.4. Hence the assembled equations using
the principle of minimum potential energy result in the same equations obtained by
the direct stiffness assembly method. 9

d Summary Equations

Definition of an element stiffness matrix:

f f g ¼ ½k�fdg ð2:1:1Þ

Definition of global or total stiffness matrix for a structure:

fFg ¼ ½K�fdg ð2:1:2Þ

Displacement function assumed for linear spring element:

u ¼ a1 þ a2x ð2:2:2Þ
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Shape functions for linear spring element:

N1 ¼ 1� x=L N2 ¼ x=L ð2:2:10Þ

Basic matrix equation relating nodal forces to nodal displacement for spring element:

f1x

f2x

� �
¼ k �k

�k k

� �
u1

u2

� �
ð2:2:17Þ

Stiffness matrix for linear spring element:

½k� ¼ k � k

�k k

� �
ð2:2:18Þ

Global equations for a spring assemblage:

½F � ¼ ½K �fdg ð2:2:20Þ

Total potential energy:

pp ¼ U þ � ð2:6:1Þ

For a system of springs:

U ¼ 1

2
fdgT ½K�fdg ð2:6:20Þ
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d Problems

2.1 a. Obtain the global stiffness matrix ½K � of the assemblage shown in Figure P2–1 by
superimposing the stiffness matrices of the individual springs. Here k1; k2, and k3

are the stiffnesses of the springs as shown.
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b. If nodes 1 and 2 are fixed and a force P acts on node 4 in the positive x direction,
find an expression for the displacements of nodes 3 and 4.

c. Determine the reaction forces at nodes 1 and 2.
(Hint: Do this problem by writing the nodal equilibrium equations and then making
use of the force/displacement relationships for each element as done in the first part of
Section 2.4. Then solve the problem by the direct stiffness method.)

2.2 For the spring assemblage shown in Figure P2–2, determine the displacement at node
2 and the forces in each spring element. Also determine the force F3. Given: Node 3
displaces an amount d ¼ 1 in. in the positive x direction because of the force F3 and
k1 ¼ k2 ¼ 500 lb/in.

2.3 a. For the spring assemblage shown in Figure P2–3, obtain the global stiffness matrix
by direct superposition.

b. If nodes 1 and 5 are fixed and a force P is applied at node 3, determine the nodal
displacements.

c. Determine the reactions at the fixed nodes 1 and 5.

2.4 Solve Problem 2.3 with P ¼ 0 (no force applied at node 3) and with node 5 given a
fixed, known displacement of d as shown in Figure P2–4.

Figure P2–1

Figure P2–2

Figure P2–3

Figure P2–4
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2.5 For the spring assemblage shown in Figure P2–5, obtain the global stiffness matrix
by the direct stiffness method. Let kð1Þ ¼ 1 kip=in:; kð2Þ ¼ 2 kip=in:; kð3Þ ¼ 3 kip=in:;
kð4Þ ¼ 4 kip/in., and kð5Þ ¼ 5 kip/in.

2.6 For the spring assemblage in Figure P2–5, apply a concentrated force of 2 kips at
node 2 in the positive x direction and determine the displacements at nodes 2 and 4.

2.7 Instead of assuming a tension element as in Figure P2–3, now assume a compression
element. That is, apply compressive forces to the spring element and derive the stiff-
ness matrix.

2.8–2.16 For the spring assemblages shown in Figures P2–8 through P2–16, determine the
nodal displacements, the forces in each element, and the reactions. Use the direct
stiffness method for all problems.

x
1

2
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Figure P 2–5

Figure P 2–8

Figure P2–9

Figure P2–10
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2.17 For the five-spring assemblage shown in Figure P2–17, determine the displacements at
nodes 2 and 3 and the reactions at nodes 1 and 4. Assume the rigid vertical bars at
nodes 2 and 3 connecting the springs remain horizontal at all times but are free to
slide or displace left or right. There is an applied force at node 3 of 1000 N to the
right.

Figure P2–11

Figure P2–12

Figure P2–13

Figure P2–14

Figure P2–15

k = 100 lb� in. k = 100 lb� in. k = 100 lb� in.

100 lb 100 lb
1 2 3 4

Figure P2–16
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Let kð1Þ ¼ 500 N/mm, kð2Þ ¼ kð3Þ ¼ 300 N/mm, and kð4Þ ¼ kð5Þ ¼ 400 N/mm.

2.18 Use the principle of minimum potential energy developed in Section 2.6 to solve the
spring problems shown in Figure P2–18. That is, plot the total potential energy for
variations in the displacement of the free end of the spring to determine the minimum
potential energy. Observe that the displacement that yields the minimum potential
energy also yields the stable equilibrium position.

2.19 Reverse the direction of the load in Example 2.4 and recalculate the total potential
energy. Then use this value to obtain the equilibrium value of displacement.

1000 N

5

3
32

2

1

1

4

4

Figure P2–17

Figure P2–18
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2.20 The nonlinear spring in Figure P2–20 has the force/deformation relationship f ¼ kd2.
Express the total potential energy of the spring, and use this potential energy to obtain
the equilibrium value of displacement.

2.21–2.22 Solve Problems 2.10 and 2.15 by the potential energy approach (see Example 2.5).

2.23 Resistor type elements are often used in electrical circuits. Consider the typical resistor
element shown in Figure P2–23 with nodes 1 and 2. One form of Ohm’s law says that
the potential voltage difference across two points is equal to the current I through the
conductor times the resistance R between the two points. In equation form, V ¼ IR

where I denotes the current in units of amperes (amps) and V is the potential or
voltage drop in units of volts (V) across the conductor of resistance R in units of
ohms (�). Use the method in Section 2.2 to derive the ‘‘stiffness’’ matrix relating
potential drop to current at the nodes shown as

V1

V2

� �
¼ R

1 �1
�1 1

� �
I1

I2

� �
or fVg ¼ ½K �fIg

Figure P2–20

Figure P2–23
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DEVELOPMENT OF

TRUSS EQUATIONSd

CHAPTER OBJECTIVES

. To derive the stiffness matrix for a bar element.

. To illustrate how to solve a bar assemblage by the direct stiffness method.

. To introduce guidelines for selecting displacement functions.

. To describe the concept of transformation of vectors in two different coordinate
systems in the plane.

. To derive the stiffness matrix for a bar arbitrarily oriented in the plane.

. To demonstrate how to compute stress for a bar in the plane.

. To show how to solve a plane truss problem.

. To develop the transformation matrix in three-dimensional space and show how
to use it to derive the stiffness matrix for a bar arbitrarily oriented in space.

. To demonstrate the solution of space trusses.

. To define symmetry and describe the use of symmetry to solve a problem.

. To introduce and solve problems with inclined supports.

. To derive the bar equations using the theorem of minimum potential energy.

. To compare the finite element solution to an exact solution for a bar.

. To introduce Galerkin’s residual method to derive the bar element stiffness matrix
and equations.

. To introduce other residual methods and their application to the one-dimen-
sional bar.

. To create a flow chart of a finite element computer program for truss analysis and
describe a step-by-step solution from a commercial program.

Introduction

Having set forth the foundation on which the direct stiffness method is based, we will
now derive the stiffness matrix for a linear-elastic bar (or truss) element using the gen-
eral steps outlined in Chapter 1. We will include the introduction of both a local coor-
dinate system, chosen with the element in mind, and a global or reference coordinate
system, chosen to be convenient (for numerical purposes) with respect to the overall
structure. We will also discuss the transformation of a vector from the local
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coordinate system to the global coordinate system, using the concept of transforma-
tion matrices to express the stiffness matrix of an arbitrarily oriented bar element
in terms of the global system. We will solve three example plane truss problems (see
Figure 3–1 for a typical railroad trestle plane truss and a lift bridge truss over the Illi-
nois River) to illustrate the procedure of establishing the total stiffness matrix and
equations for solution of a structure.

Next we extend the stiffness method to include space trusses. We will develop
the transformation matrix in three-dimensional space and analyze two space trusses.
Then we describe the concept of symmetry and its use to reduce the size of a problem
and facilitate its solution. We will use an example truss problem to illustrate the con-
cept and then describe how to handle inclined, or skewed, supports.

We will then use the principle of minimum potential energy and apply it to
rederive the bar element equations. We then compare a finite element solution to
an exact solution for a bar subjected to a linear varying distributed load. We
will introduce Galerkin’s residual method and then apply it to derive the bar
element equations. Finally, we will introduce other common residual methods—
collocation, subdomain, and least squares—to merely expose you to them. We
illustrate these methods by solving a problem of a bar subjected to a linear varying
load.

d 3.1 Derivation of the Stiffness Matrix d
for a Bar Element in Local Coordinates

We will now consider the derivation of the stiffness matrix for the linear-elastic, con-
stant cross-sectional area (prismatic) bar element shown in Figure 3–2. The deriva-
tion here will be directly applicable to the solution of pin-connected trusses. The bar
is subjected to tensile forces T directed along the local axis of the bar and applied at
nodes 1 and 2.

The bar element is assumed to have constant cross-sectional area A, modulus of
elasticity E, and initial length L. The nodal degrees of freedom are local axial displace-
ments (longitudinal displacements directed along the length of the bar) represented by
u1 and u2 at the ends of the element as shown in Figure 3–2.

From Hooke’s law [Eq. (a)] and the strain/displacement relationship [Eq. (b) or
Eq. (1.4.1)], we write

sx ¼ Eex ðaÞ

ex ¼
du

dx
ðbÞ

From force equilibrium, we have

Asx ¼ T ¼ constant ðcÞ

for a bar with loads applied only at the ends. (We will consider distributed loading in
Section 3.10.) Using Eq. (b) in Eq. (a) and then Eq. (a) in Eq. (c) and differentiating
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Figure 3–1 (a) A typical railroad trestle plane truss (By Daryl L. Logan); (b) lift bridge
truss over the Illinois River (By Daryl L. Logan)
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with respect to x, we obtain the differential equation governing the linear-elastic bar
behavior as

d

dx
AE

du

dx

� �
¼ 0 ðdÞ

where u is the axial displacement function along the element in the x direction and
A and E are written as though they were functions of x in the general form of the dif-
ferential equation, even though A and E will be assumed constant over the whole
length of the bar in our derivations to follow.

The following assumptions are used in deriving the bar element stiffness matrix:

1. The bar cannot sustain shear force or bending moment, that is,
f1y ¼ 0, f2y ¼ 0, m1 ¼ 0 and m2 ¼ 0.

2. Any effect of transverse displacement is ignored.
3. Hooke’s law applies; that is, axial stress sx is related to axial strain ex

by sx ¼ Eex.
4. No intermediate applied loads.

The steps previously outlined in Chapter 1 are now used to derive the stiffness matrix
for the bar element and then to illustrate a complete solution for a bar assemblage.

Step 1 Select the Element Type

Represent the bar by labeling nodes at each end and in general by labeling the element
number (Figure 3–2).

Step 2 Select a Displacement Function

Assume a linear displacement variation along the x axis of the bar because a linear
function with specified endpoints has a unique path. These specified endpoints are
the nodal values u1 and u2. (Further discussion regarding the choice of displacement
functions is provided in Section 3.2 and References [1–3].) Then

u ¼ a1 þ a2x ð3:1:1Þ

with the total number of coefficients ai always equal to the total number of degrees of
freedom associated with the element. Here the total number of degrees of freedom is
two—axial displacements at each of the two nodes of the element. Using the same
procedure as in Section 2.2 for the spring element, we express Eq. (3.1.1) as

u ¼ u2 � u1

L

� �
xþ u1 ð3:1:2Þ

u1, f1x

x, u

u2, f2x

TT
L 21

Figure 3–2 Bar subjected to tensile forces T ; positive nodal displacements and forces
are all in the local x direction
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The reason we convert the displacement function from the form of Eq. (3.1.1) to Eq.
(3.1.2) is that it allows us to express the strain in terms of the nodal displacements
using the strain/displacement relationship given by Eq. (3.1.5) and to then relate the
nodal forces to the nodal displacements in step 4.

In matrix form, Eq. (3.1.2) becomes

u ¼ ½N1 N2�
u1

u2

� �
ð3:1:3Þ

with shape functions given by

N1 ¼ 1� x

L
N2 ¼

x

L
ð3:1:4Þ

These shape functions are identical to those obtained for the spring element in Section
2.2. The behavior of and some properties of these shape functions were described in
Section 2.2. The linear displacement function u (Eq. (3.1.2)), plotted over the length
of the bar element, is shown in Figure 3–3.

Step 3 Define the Strain=Displacement and Stress=Strain
Relationships

The strain/displacement relationship is

ex ¼
du

dx
¼ u2 � u1

L
ð3:1:5Þ

where Eqs. (3.1.3) and (3.1.4) have been used to obtain Eq. (3.1.5), and the stress/

strain relationship is

sx ¼ Eex ð3:1:6Þ

Step 4 Derive the Element Stiffness Matrix and Equations

The element stiffness matrix is derived as follows. From elementary mechanics, we
have

T ¼ Asx ð3:1:7Þ

Now, using Eqs. (3.1.5) and (3.1.6) in Eq. (3.1.7), we obtain

T ¼ AE
u2 � u1

L

� �
ð3:1:8Þ

u2u

u1

L

χ
21

Figure 3–3 Displacement u plotted over the length of the element
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Also, by the nodal force sign convention of Figure 3–2,

f 1x ¼ �T ð3:1:9Þ

When we substitute Eq. (3.1.8), Eq. (3.1.9) becomes

f 1x ¼
AE

L
ðu2 � u1Þ ð3:1:10Þ

f 2x ¼ T ð3:1:11ÞSimilarly,

or, by Eq. (3.1.8), Eq. (3.1.11) becomes

f 2x ¼
AE

L
ðu2 � u1Þ ð3:1:12Þ

Expressing Eqs. (3.1.10) and (3.1.12) together in matrix form, we have

f 1x

f 2x

� �
¼ AE

L

1 �1

�1 1

� 	
u1

u2

� �
ð3:1:13Þ

Now, because f f g ¼ ½k�fdg, we have, from Eq. (3.1.13),

½k� ¼ AE

L

1 �1

�1 1

� 	
ð3:1:14Þ

Equation (3.1.14) represents the stiffness matrix for a bar element in local coordinates.
In Eq. (3.1.14), AE=L for a bar element is analogous to the spring constant k for a
spring element.

Step 5 Assemble Element Equations to Obtain
Global or Total Equations

Assemble the global stiffness and force matrices and global equations using the direct
stiffness method described in Chapter 2 (see Section 3.6 for an example truss). This
step applies for structures composed of more than one element such that (again)

½K� ¼
XN

e¼1

½kðeÞ� and fFg ¼
XN

e¼1

f f ðeÞg ð3:1:15Þ

where now all local element stiffness matrices ½kðeÞ� must be transformed to global ele-
ment stiffness matrices [k] (unless the local axes coincide with the global axes) before
the direct stiffness method is applied as indicated by Eq. (3.1.15). (This concept of co-
ordinate and stiffness matrix transformations is described in Sections 3.3 and 3.4.)

Step 6 Solve for the Nodal Displacements

Determine the displacements by imposing boundary conditions and simultaneously
solving a system of equations, fFg ¼ ½K �fdg.
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Step 7 Solve for the Element Forces

Finally, determine the strains and stresses in each element by back-substitution of the
displacements into equations similar to Eqs. (3.1.5) and (3.1.6).

We will now illustrate a solution for a one-dimensional bar problem.

Example 3.1

For the three-bar assemblage shown in Figure 3–4, determine (a) the global stiffness
matrix, (b) the displacements of nodes 2 and 3, and (c) the reactions at nodes 1 and 4.
A force of 3000 lb is applied in the x direction at node 2. The length of each element
is 30 in. Let E ¼ 30� 106 psi and A ¼ 1 in2 for elements 1 and 2, and let
E ¼ 15� 106 psi and A ¼ 2 in2 for element 3. Nodes 1 and 4 are fixed.

SOLUTION:
(a) Using Eq. (3.1.14), we find that the element stiffness matrices are

½kð1Þ� ¼ ½kð2Þ� ¼ ð1Þð30� 106Þ
30

1 �1

�1 1

� 	
¼ 106

1 2ð1Þ

2 3ð2Þ

1 �1

�1 1

� 	
lb

in: ð3:1:16Þ

½kð3Þ� ¼ ð2Þð15� 106Þ
30

1 �1

�1 1

� 	
¼ 106

3 4

1 �1

�1 1

� 	
lb

in:

where, again, the numbers above the matrices in Eqs. (3.1.16) indicate the displace-
ments associated with each matrix. Assembling the element stiffness matrices by the
direct stiffness method, we obtain the global stiffness matrix as

½K � ¼ 106

u1 u2 u3 u4

1 �1 0 0

�1 1þ 1 �1 0

0 �1 1þ 1 �1

0 0 �1 1

2
6664

3
7775

lb

in:
ð3:1:17Þ

Figure 3–4 Three-bar assemblage
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(b) Equation (3.1.17) relates global nodal forces to global nodal displacements as
follows:

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;
¼ 106

1 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;

ð3:1:18Þ

Invoking the boundary conditions, we have

u1 ¼ 0 u4 ¼ 0 ð3:1:19Þ

Using the boundary conditions, substituting known applied global forces into Eq.
(3.1.18), and partitioning equations 1 and 4 of Eq. (3.1.18), we solve equations 2 and
3 of Eq. (3.1.18) to obtain

3000

0

� �
¼ 106 2 �1

�1 2

� 	
u2

u3

� �
ð3:1:20Þ

Solving Eq. (3.1.20) simultaneously for the displacements yields

u2 ¼ 0:002 in: u3 ¼ 0:001 in: ð3:1:21Þ

(c) Back-substituting Eqs. (3.1.19) and (3.1.21) into Eq. (3.1.18), we obtain the global
nodal forces, which include the reactions at nodes 1 and 4, as follows:

F1x ¼ 106ðu1 � u2Þ ¼ 106ð0� 0:002Þ ¼ �2000 lb

F2x ¼ 106ð�u1 þ 2u2 � u3Þ ¼ 106½0þ 2ð0:002Þ � 0:001� ¼ 3000 lb
ð3:1:22Þ

F3x ¼ 106ð�u2 þ 2u3 � u4Þ ¼ 106½�0:002þ 2ð0:001Þ � 0� ¼ 0

F4x ¼ 106ð�u3 þ u4Þ ¼ 106ð�0:001þ 0Þ ¼ �1000 lb

The results of Eqs. (3.1.22) show that the sum of the reactions F1x and F4x is equal in
magnitude but opposite in direction to the applied nodal force of 3000 lb at node 2.
Equilibrium of the bar assemblage is thus verified. Furthermore, Eqs. (3.1.22) show
that F2x ¼ 3000 lb and F3x ¼ 0 are merely the applied nodal forces at nodes 2 and 3,
respectively, which further enhances the validity of our solution. 9

d 3.2 Selecting Approximation Functions
for Displacements

d

Consider the following guidelines, as they relate to the one-dimensional bar element,
when selecting a displacement function. (Further discussion regarding selection of
displacement functions and other kinds of approximation functions (such as
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temperature functions) will be provided in Chapter 4 for the beam element, in Chapter 6
for the constant-strain triangular element, in Chapter 8 for the linear-strain trian-
gular element, in Chapter 9 for the axisymmetric element, in Chapter 10 for the
three-noded bar element and the rectangular plane element, in Chapter 11 for
the three-dimensional stress element, in Chapter 12 for the plate bending element,
and in Chapter 13 for the heat transfer problem. More information is also provided
in References [1–3].

1. Common approximation functions are usually polynomials such as the
simplest one that gives the linear variation of displacement given by
Eq. (3.1.1) or equivalently by Eq. (3.1.3), where the function is
expressed in terms of the shape functions.

2. The approximation function should be continuous within the bar element.
The simple linear function for u of Eq. (3.1.1) certainly is continuous
within the element. Therefore, the linear function yields continuous values
of u within the element and prevents openings, overlaps, and jumps
because of the continuous and smooth variation in u (Figure 3–5).

3. The approximating function should provide interelement continuity
for all degrees of freedom at each node for discrete line elements and
along common boundary lines and surfaces for two- and three-
dimensional elements. For the bar element, we must ensure that nodes
common to two or more elements remain common to these elements
upon deformation and thus prevent overlaps or voids between
elements. For example, consider the two-bar structure shown in
Figure 3–5. For the two-bar structure, the linear function for u [Eq.
(3.1.2)] within each element will ensure that elements 1 and 2 remain
connected; the displacement at node 2 for element 1 will equal
the displacement at the same node 2 for element 2; that is, u

ð1Þ
2 ¼ u

ð2Þ
2 .

This rule was also illustrated by Eq. (2.3.3). The linear function is then
called a conforming, or compatible, function for the bar element
because it ensures the satisfaction both of continuity between adjacent
elements and of continuity within the element.

In general, the symbol Cm is used to describe the continuity of a
piecewise field (such as axial displacement), where the superscript m

indicates the degree of derivative that is interelement continuous.
A field is then C 0 continuous if the function itself is interelement
continuous. For instance, for the field variable being the axial

u2 – u1
x + u1L

L 2

2

1

1

3L

u(1)

1u(1) 2u(1)
2u(2) 3u(2)

=

u3 – u2
x + u2

x

L
u(2) =

Figure 3–5 Interelement continuity of a two-bar structure
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displacement illustrated in Figure 3–5, the displacement is continuous
across the common node 2. Hence the displacement field is said to be
C 0 continuous. Bar elements, plane elements (see Chapter 7), and
solid elements (Chapter 11) are C 0 elements in that they enforce
displacement continuity across the common boundaries.

If the function has both its field variable and its first derivative
continuous across the common boundary, then the field variable is said
to be C1 continuous. We will later see that the beam (see Chapter 4) and
plate (see Chapter 12) elements are C1 continuous. That is, they enforce
both displacement and slope continuity across common boundaries.

4. The approximation function should allow for rigid-body displacement
and for a state of constant strain within the element. The one-
dimensional displacement function [Eq. (3.1.1)] satisfies these criteria
because the a1 term allows for rigid-body motion (constant motion of
the body without straining) and the a2x term allows for constant
strain because ex ¼ du=dx ¼ a2 is a constant. (This state of constant
strain in the element can, in fact, occur if elements are chosen small
enough.) The simple polynomial Eq. (3.1.1) satisfying this fourth
guideline is then said to be complete for the bar element.

This idea of completeness also means in general that the lower-
order term cannot be omitted in favor of the higher-order term. For
the simple linear function, this means a1 cannot be omitted while
keeping a2x. Completeness of a function is a necessary condition for
convergence to the exact answer, for instance, for displacements and
stresses (Figure 3–6) (see Reference [3]). Figure 3–6 illustrates
monotonic convergence toward an exact solution for displacement as
the number of elements in a finite element solution is increased.
Monotonic convergence is then the process in which successive
approximation solutions (finite element solutions) approach the exact
solution consistently without changing sign or direction.

The idea that the interpolation (approximation) function must allow for a rigid-
body displacement means that the function must be capable of yielding a constant value
(say, a1), because such a value can, in fact, occur. Therefore, we must consider the case

u ¼ a1 ð3:2:1Þ

Figure 3–6 Convergence to the exact solution for displacement as the number
of elements of a finite element solution is increased
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For u ¼ a1 requires nodal displacements u1 ¼ u2 to obtain a rigid-body displacement.
Therefore

a1 ¼ u1 ¼ u2 ð3:2:2Þ

Using Eq. (3.2.2) in Eq. (3.1.3), we have

u ¼ N1u1 þN2u2 ¼ ðN1 þN2Þa1 ð3:2:3Þ

From Eqs. (3.2.1) and (3.2.3), we then have

u ¼ a1 ¼ ðN1 þN2Þa1 ð3:2:4Þ

Therefore, by Eq. (3.2.4), we obtain

N1 þN2 ¼ 1 ð3:2:5Þ

Thus Eq. (3.2.5) shows that the displacement interpolation functions must add to
unity at every point within the element so that u will yield a constant value when a
rigid-body displacement occurs.

d 3.3 Transformation of Vectors
in Two Dimensions

d

In many problems it is convenient to introduce both local (x0 � y0) and global (or ref-
erence) (x� y) coordinates. Local coordinates are always chosen to represent the indi-
vidual element conveniently. Global coordinates are chosen to be convenient for the
whole structure.

Given the nodal displacement of an element, represented by the vector d in
Figure 3–7, we want to relate the components of this vector in one coordinate system
to components in another. For general purposes, we will assume in this section that d

is not coincident with either the local or the global axis. In this case, we want to re-
late global displacement components to local ones. In so doing, we will develop a
transformation matrix that will subsequently be used to develop the global stiffness
matrix for a bar element. We define the angle y to be positive when measured coun-
terclockwise from x to x0. We can express vector displacement d in both global and

j′

y′

i′

x′

Figure 3–7 General displacement vector d
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local coordinates by

d ¼ u1iþ v1j ¼ u01i0 þ v01j0 ð3:3:1Þ

where i and j are unit vectors in the x and y global directions and i0 and j0 are unit vec-
tors in the x0 and y0 local directions. We will now relate i and j to i0 and j0 through use
of Figure 3–8.

Using Figure 3–8 and vector addition, we obtain

aþ b ¼ i ð3:3:2Þ

Also, from the law of cosines,

jaj ¼ jij cos y ð3:3:3Þ

and because i is, by definition, a unit vector, its magnitude is given by

jij ¼ 1 ð3:3:4Þ

jaj ¼ 1 cos y ð3:3:5ÞTherefore, we obtain

jbj ¼ 1 sin y ð3:3:6ÞSimilarly,

Now a is in the i0 direction and b is in the �j0 direction. Therefore,

a ¼ jaji0 ¼ ðcos yÞi0 ð3:3:7Þ

b ¼ jbjð�j0Þ ¼ ðsin yÞð�j0Þ ð3:3:8Þand

Using Eqs. (3.3.7) and (3.3.8) in Eq. (3.3.2) yields

i ¼ cos y i
0 � sin y j0 ð3:3:9Þ

Similarly, from Figure 3–8, we obtain the vector equation

a 0 þ b 0 ¼ j ð3:3:10Þ
where a 0 ¼ cos y j0 ð3:3:11Þ

b 0 ¼ sin y i0 ð3:3:12Þ

i′

j′

y′

x′

Figure 3–8 Relationship between local and global unit vectors
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Using Eqs. (3.3.11) and (3.3.12) in Eq. (3.3.10), we have

j ¼ sin y i0 þ cos y j0 ð3:3:13Þ

Now, using Eqs. (3.3.9) and (3.3.13) in Eq. (3.3.1), we have

uðcos y i0 � sin y j0Þ þ vðsin y i0 þ cos y j0Þ ¼ u0i0 þ v0j0 ð3:3:14Þ

Combining like coefficients of i0 and j0 in Eq. (3.3.14), we obtain

u cos yþ v sin y ¼ u0

�u sin yþ v cos y ¼ v0
ð3:3:15Þ

and

In matrix form, Eqs. (3.3.15) are written as

u0

v0

� �
¼ C S

�S C

� 	
u

v

� �
ð3:3:16Þ

where C ¼ cos y and S ¼ sin y.
Equation (3.3.16) relates the global displacement matrix fdg to the local dis-

placement fd 0g as

fd 0g ¼ ½T �fdg ð3:3:17Þ

where

fdg ¼ u

v

� �
; fd 0g ¼ u0

v0

� �
; ½T � ¼ C S

�S C

� 	
ð3:3:18Þ

The matrix [T ] is called the transformation (or rotation) matrix. For an additional de-
scription of this matrix, see Appendix A. It will be used in Section 3.4 to develop the
global stiffness matrix for an arbitrarily oriented bar element and to transform global
nodal displacements and forces to local ones.

Now, for the case of v0 ¼ 0, we have, from Eq. (3.3.1),

uiþ vj ¼ u0i0 ð3:3:19Þ

Figure 3–9 shows u0 expressed in terms of global x and y components. Using trigo-
nometry and Figure 3–9, we then obtain the magnitude of u0 as

u0 ¼ Cuþ Sv ð3:3:20Þ

Equation (3.3.20) is equivalent to equation 1 of Eq. (3.3.16).

y′

x′

u

u′
v

Figure 3–9 Relationship between local and global displacements
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Example 3.2

The global nodal displacements at node 2 have been determined to be u2 ¼ 0:1 in. and
v2 ¼ 0:2 in. for the bar element shown in Figure 3–10. Determine the local x displace-
ment at node 2.

SOLUTION:
Using Eq. (3.3.20), we obtain

u02 ¼ ðcos 60�Þð0:1Þ þ ðsin 60�Þð0:2Þ ¼ 0:223 in: 9

d 3.4 Global Stiffness Matrix for Bar d
Arbitrarily Oriented in the Plane

We now consider a bar inclined at an angle y from the global x axis identified by the
local axis x0 directed from node 1 to node 2 along the direction of the bar, as shown
in Figure 3–11. Here positive angle y is taken counterclockwise from x to x0.

We now use Eq. (3.1.13) where a prime notation is used to denote the local el-
ement stiffness matrix {k0} which relates the local coordinate nodal forces { f 0} to local
nodal displacements {d 0} as shown by Eq. (3.4.1).

60°

2

1 x

y x′

Figure 3–10 Bar element with local axis x0

acting along the element

θ

2

1

L

y, v

y′
x′, u′

x, uu′1, f ′1x

u′2, f ′2x

Figure 3–11 Bar element arbitrarily oriented in the global x–y plane
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f 01x

f 02x

� �
¼ AE

L

1 �1

�1 1

� 	
u01
u02

� �
ð3:4:1Þ

f f 0g ¼ ½k0�fd 0g ð3:4:2Þor

We now want to relate the global element nodal forcesff g to the global nodal dis-
placements fdg for a bar element arbitrarily oriented with respect to the global axes
as shown in Figure 3–11. This relationship will yield the global stiffness matrix ½k� of
the element. That is, we want to find a matrix ½k� such that

f1x

f1y

f2x

f2y

8>>><
>>>:

9>>>=
>>>;
¼ ½k�

u1

v1

u2

v2

8>>><
>>>:

9>>>=
>>>;

ð3:4:3Þ

or, in simplified matrix form, Eq. (3.4.3) becomes

ff g ¼ ½k�fdg ð3:4:4Þ

We observe from Eq. (3.4.3) that a total of four components of force and four of dis-
placement arise when global coordinates are used. However, a total of two compo-
nents of force and two of displacement appear for the local-coordinate representation
of a spring or a bar, as shown by Eq. (3.4.1). By using relationships between local
and global force components and between local and global displacement components,
we will be able to obtain the global stiffness matrix. We know from transformation re-
lationship Eq. (3.3.15) that

u01 ¼ u1 cos yþ v1 sin y
ð3:4:5Þ

u02 ¼ u2 cos yþ v2 sin y

In matrix form, Eqs. (3.4.5) can be written as

u01
u02

� �
¼ C S 0 0

0 0 C S

� 	 u1

v1

u2

v2

8>>><
>>>:

9>>>=
>>>;

ð3:4:6Þ

fd 0g ¼ ½T ��fdg ð3:4:7Þor as

½T �� ¼ C S 0 0

0 0 C S

� 	
ð3:4:8Þwhere

Similarly, because forces transform in the same manner as displacements, we replace
local and global displacements in Eq. (3.4.6) with local and global forces and obtain

f 01x

f 02x

� �
¼ C S 0 0

0 0 C S

� 	 f1x

f1y

f2x

f2y

8>>><
>>>:

9>>>=
>>>;

ð3:4:9Þ
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Similar to Eq. (3.4.7), we can write Eq. (3.4.9) as

f f 0g ¼ ½T ��f f g ð3:4:10Þ

Now, substituting Eq. (3.4.7) into Eq. (3.4.2), we obtain

f f 0g ¼ ½k0�½T ��fdg ð3:4:11Þ

and using Eq. (3.4.10) in Eq. (3.4.11) yields

½T ��f f g ¼ ½k0�½T ��fdg ð3:4:12Þ

However, to write the final expression relating global nodal forces to global nodal dis-
placements for an element, we must invert ½T �� in Eq. (3.4.12). This is not imme-
diately possible because ½T �� is not a square matrix. Therefore, we must expand
fd 0g,f f 0g, and ½k0� to the order that is consistent with the use of global coordinates
even though f 01y and v02y are zero. Using Eq. (3.3.16) for each nodal displacement, we
thus obtain

u01
v01
u02
v02

8>>><
>>>:

9>>>=
>>>;
¼

C S 0 0

�S C 0 0

0 0 C S

0 0 �S C

2
6664

3
7775

u1

v1

u2

v2

8>>><
>>>:

9>>>=
>>>;

ð3:4:13Þ

fd 0g ¼ ½T �fdg ð3:4:14Þ
or

½T � ¼

C S 0 0

�S C 0 0

0 0 C S

0 0 �S C

2
6664

3
7775 ð3:4:15Þwhere

Similarly, we can write

f f 0g ¼ ½T �f f g ð3:4:16Þ

because forces are like displacements—both are vectors. Also, ½k0� must be expanded
to a 4� 4 matrix. Therefore, Eq. (3.4.1) in expanded form becomes

f 01x

f 01y

f 02x

f 02y

8>>><
>>>:

9>>>=
>>>;
¼ AE

L

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
6664

3
7775

u01
v01
u02
v02

8>>><
>>>:

9>>>=
>>>;

ð3:4:17Þ

In Eq. (3.4.17), because f 01y and f 02y are zero, rows of zeros corresponding to the row
numbers f 01y and f 02y appear in ½k0�. Now, using Eqs. (3.4.14) and (3.4.16) in
Eq. (3.4.2), we obtain

½T �f f g ¼ ½k0�½T �fdg ð3:4:18Þ
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Equation (3.4.18) is Eq. (3.4.12) expanded. Premultiplying both sides of Eq. (3.4.18)
by ½T ��1, we have

f f g ¼ ½T ��1½k0�½T �fdg ð3:4:19Þ

where ½T ��1 is the inverse of ½T �. However, it can be shown (see Problem 3.28) that

½T ��1 ¼ ½T �T ð3:4:20Þ

where ½T �T is the transpose of ½T �. The property of square matrices such as ½T � given
by Eq. (3.4.20) defines ½T � to be an orthogonal matrix. For more about orthogonal
matrices, see Appendix A. The transformation matrix ½T � between rectangular coordi-
nate frames is orthogonal. This property of ½T � is used throughout this text. Substitut-
ing Eq. (3.4.20) into Eq. (3.4.19), we obtain

ff g ¼ ½T �T ½k0�½T �fdg ð3:4:21Þ

Equating Eqs. (3.4.4) and (3.4.21), we obtain the global stiffness matrix for an element as

½k� ¼ ½T �T ½k0�½T � ð3:4:22Þ

Substituting Eq. (3.4.15) for ½T � and the expanded form of ½k0� given in Eq. (3.4.17)
into Eq. (3.4.22), we obtain ½k� given in explicit form by

½k� ¼ AE

L

C2 CS �C 2 �CS

S2 �CS �S2

C 2 CS

S2

2
6664

3
7775 ð3:4:23Þ

Symmetry

Equation (3.4.23) is the explicit stiffness matrix for a bar arbitrarily oriented in the x–y

plane.
Now, because the trial displacement function Eq. (3.1.1) was assumed piece-

wise-continuous element by element, the stiffness matrix for each element can be
summed by using the direct stiffness method to obtain

XN

e¼1

½kðeÞ� ¼ ½K � ð3:4:24Þ

where ½K � is the total stiffness matrix and N is the total number of elements. Similarly,
each element global nodal force matrix can be summed such that

XN

e¼1

ff ðeÞg ¼ fFg ð3:4:25Þ

½K � now relates the global nodal forces fFg to the global nodal displacements fdg for
the whole structure by

fFg ¼ ½K�fdg ð3:4:26Þ
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Example 3.3

For the bar element shown in Figure 3–12, evaluate the global stiffness matrix with
respect to the x-y coordinate system. Let the bar’s cross-sectional area equal 2 in.2,
length equal 60 in., and modulus of elasticity equal 30� 106 psi. The angle the bar
makes with the x axis is 30�.

SOLUTION:
To evaluate the global stiffness matrix ½k� for a bar, we use Eq. (3.4.23) with angle y

defined to be positive when measured counterclockwise from x to x0. Therefore,

y ¼ 30� C ¼ cos 30� ¼
ffiffiffi
3
p

2
S ¼ sin 30� ¼ 1

2

½k� ¼ ð2Þð30� 106Þ
60

3

4

ffiffiffi
3
p

4

�3

4

�
ffiffiffi
3
p

4

1

4

�
ffiffiffi
3
p

4

�1

4

3

4

ffiffiffi
3
p

4

1

4

2
666666666666664

3
777777777777775

lb

in:
ð3:4:27Þ

Symmetry

Simplifying Eq. (3.4.27), we have

½k� ¼ 106

0:75 0:433 �0:75 �0:433

0:25 �0:433 �0:25

0:75 0:433

0:25

2
6664

3
7775

lb

in:
ð3:4:28Þ

Symmetry 9

30°
x

y

x′

Figure 3–12 Bar element for stiffness matrix
evaluation
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d 3.5 Computation of Stress for a Bar
in the x-y Plane

d

We will now consider the determination of the stress in a bar element. For a bar, the
local forces are related to the local displacements by Eq. (3.4.1) or Eq. (3.4.17). This
equation is repeated here for convenience.

f 01x

f 02x

� �
¼ AE

L

1 �1

�1 1

� 	
u01
u20

� �
ð3:5:1Þ

The usual definition of axial tensile stress is axial force divided by cross-sectional area.
Therefore, axial stress is

s ¼ f 02x

A
ð3:5:2Þ

where f 02x is used because it is the axial force that pulls on the bar as shown in
Figure 3–13. By Eq. (3.5.1),

f 02x ¼
AE

L
½�1 1� u01

u02

� �
ð3:5:3Þ

Therefore, combining Eqs. (3.5.2) and (3.5.3) yields

fsg ¼ E

L
½�1 1�fd 0g ð3:5:4Þ

Now, using Eq. (3.4.7), we obtain

fsg ¼ E

L
½�1 1�½T ��fdg ð3:5:5Þ

Equation (3.5.5) can be expressed in simpler form as

fsg ¼ ½C 0�fdg ð3:5:6Þ

where, when we use Eq. (3.4.8) for [T�],

½C 0� ¼ E

L
½�1 1� C S 0 0

0 0 C S

� 	
ð3:5:7Þ

f ′1x

f ′2x

x′

Figure 3–13 Basic bar element with positive nodal forces
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After multiplying the matrices in Eq. (3.5.7), we have

½C 0� ¼ E

L
½�C �S C S � ð3:5:8Þ

Example 3.4

For the bar shown in Figure 3–14, determine the axial stress. Let A ¼ 4� 10�4 m2,
E ¼ 210 GPa, and L ¼ 2 m, and let the angle between x and x0 be 60�. Assume the
global displacements have been previously determined to be u1 ¼ 0:25 mm, v1 ¼ 0:0,
u2 ¼ 0:50 mm, and v2 ¼ 0:75 mm.

SOLUTION:
We can use Eq. (3.5.6) to evaluate the axial stress. Therefore, we first calculate ½C 0�
from Eq. (3.5.8) as

½C 0� ¼ 210� 106 kN=m2

2 m

�1

2

�
ffiffiffi
3
p

2

1

2

ffiffiffi
3
p

2

" #
ð3:5:9Þ

where we have used C ¼ cos 60� ¼ 1
2 and S ¼ sin 60� ¼

ffiffiffi
3
p

=2 in Eq. (3.5.9). Now fdg
is given by

fdg ¼

u1

v1

u2

v2

8>>><
>>>:

9>>>=
>>>;
¼

0:25� 10�3 m

0:0

0:50� 10�3 m

0:75� 10�3 m

8>>><
>>>:

9>>>=
>>>;

ð3:5:10Þ

Using Eqs. (3.5.9) and (3.5.10) in Eq. (3.5.6), we obtain the bar axial stress as

x′

Figure 3–14 Bar element for stress evaluation

sx ¼
210� 106

2

�1

2

�
ffiffiffi
3
p

2

1

2

ffiffiffi
3
p

2

" # 0:25

0:0

0:50

0:75

8>>><
>>>:

9>>>=
>>>;
� 10�3

¼ 81:32� 103 kN=m2 ¼ 81:32 MPa 9
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d 3.6 Solution of a Plane Truss d
We will now illustrate the use of equations developed in Sections 3.4 and 3.5, along
with the direct stiffness method of assembling the total stiffness matrix and equations,
to solve the following plane truss example problems. A plane truss is a structure com-

posed of bar elements that all lie in a common plane and are connected by frictionless

pins. The plane truss also must have loads acting only in the common plane and all
loads must be applied at the nodes or joints.

Example 3.5

For the plane truss composed of the three elements shown in Figure 3–15 subjected to
a downward force of 10,000 lb applied at node 1, determine the x and y displacements
at node 1 and the stresses in each element. Let E ¼ 30� 106 psi and A ¼ 2 in.2 for all
elements. The lengths of the elements are shown in the figure.

SOLUTION:
First, we determine the global stiffness matrices for each element by using Eq. (3.4.23).
This requires determination of the angle y between the global x axis and the local
x0 axis for each element. In this example, the direction of the x0 axis for each element
is taken in the direction from node 1 to the other node as shown in Figure 3–15. The
node numbering is arbitrary for each element. However, once the direction is chosen,
the angle y is then established as positive when measured counterclockwise from posi-
tive x to x0. For element 1, the local x01 axis is directed from node 1 to node 2; there-
fore, yð1Þ ¼ 90�. For element 2, the local x02 axis is directed from node 1 to node 3
and yð2Þ ¼ 45�. For element 3, the local x03 axis is directed from node 1 to node 4 and
yð3Þ ¼ 0�. It is convenient to construct Table 3–1 to aid in determining each element
stiffness matrix.

x′1

x′2

x′3

1

2

3

Figure 3–15 Plane truss
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There are a total of eight nodal components of displacement, or degrees of free-
dom, for the truss before boundary constraints are imposed. Thus the order of the
total stiffness matrix must be 8� 8. We could then expand the ½k� matrix for each el-
ement to the order 8� 8 by adding rows and columns of zeros as explained in the first
part of Section 2.4. Alternatively, we could label the rows and columns of each element
stiffness matrix according to the displacement components associated with it as
explained in the latter part of Section 2.4. Using this latter approach, we construct
the total stiffness matrix ½K� simply by adding terms from the individual element stiff-
ness matrices into their corresponding locations in ½K �. This approach will be used here
and throughout this text.

For element 1, using Eq. (3.4.23), along with Table 3–1 for the direction cosines,
we obtain

½kð1Þ� ¼ ð30� 106Þð2Þ
120

u1 v1 u2 v2

0 0 0 0

0 1 0 �1

0 0 0 0

0 �1 0 1

2
6664

3
7775 ð3:6:1Þ

Similarly, for element 2, we have

½kð2Þ� ¼ ð30� 106Þð2Þ
120�

ffiffiffi
2
p

u1 v1 u3 v3

0:5 0:5 �0:5 �0:5

0:5 0:5 �0:5 �0:5

�0:5 �0:5 0:5 0:5

�0:5 �0:5 0:5 0:5

2
6664

3
7775 ð3:6:2Þ

and for element 3, we have

½kð3Þ� ¼ ð30� 106Þð2Þ
120

u1 v1 u4 v4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
6664

3
7775 ð3:6:3Þ

The common factor of 30� 106 � 2=120 ð¼ 500;000Þ can be taken from each of Eqs.
(3.6.1) through (3.6.3), where each term in the square bracket of Eq. (3.6.2) is now

Table 3–1 Data for the truss of Figure 3–15

Element y� C S C 2 S2 CS

1 90� 0 1 0 1 0

2 45�
ffiffiffi
2
p

=2
ffiffiffi
2
p

=2 1
2

1
2

1
2

3 0� 1 0 1 0 0

3.6 Solution of a Plane Truss d 93

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



multiplied by 1=
ffiffiffi
2
p

. After adding terms from the individual element stiffness matrices
into their corresponding locations in ½K �, we obtain the total stiffness matrix as

½K � ¼ ð500;000Þ

u1 v1 u2 v2 u3 v3 u4 v4

1:354 0:354 0 0 �0:354 �0:354 �1 0

0:354 1:354 0 �1 �0:354 �0:354 0 0

0 0 0 0 0 0 0 0

0 �1 0 1 0 0 0 0

�0:354 �0:354 0 0 0:354 0:354 0 0

�0:354 �0:354 0 0 0:354 0:354 0 0

�1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775

ð3:6:4Þ

The global ½K � matrix, Eq. (3.6.4), relates the global forces to the global displace-
ments. We thus write the total structure stiffness equations, accounting for the applied
force at node 1 and the boundary constraints at nodes 2–4 as follows:

0

�10;000

F2x

F2y

F3x

F3y

F4x

F4y

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ ð500;000Þ

1:354 0:354 0 0 �0:354 �0:354 �1 0

0:354 1:354 0 �1 �0:354 �0:354 0 0

0 0 0 0 0 0 0 0

0 �1 0 1 0 0 0 0

�0:354 �0:354 0 0 0:354 0:354 0 0

�0:354 �0:354 0 0 0:354 0:354 0 0

�1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775

�

u1

v1

u2 ¼ 0

v2 ¼ 0

u3 ¼ 0

v3 ¼ 0

u4 ¼ 0

v4 ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð3:6:5Þ

We could now use the partitioning scheme described in the first part of Section 2.5
to obtain the equations used to determine unknown displacements u1 and v1—that
is, partition the first two equations from the third through the eighth in Eq. (3.6.5).
Alternatively, we could eliminate rows and columns in the total stiffness matrix

94 d 3 Development of Truss Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



corresponding to zero displacements as previously described in the latter part of Sec-
tion 2.5. Here we will use the latter approach; that is, we eliminate rows and column
3–8 in Eq. (3.6.5) because those rows and columns correspond to zero displacements.
(Remember, this direct approach must be modified for nonhomogeneous boundary
conditions as was indicated in Section 2.5.) We then obtain

0

�10;000

� �
¼ ð500;000Þ 1:354 0:354

0:354 1:354

� 	
u1

v1

� �
ð3:6:6Þ

Equation (3.6.6) can now be solved for the displacements by multiplying both sides of
the matrix equation by the inverse of the 2� 2 stiffness matrix or by solving the two
equations simultaneously. Using either procedure for solution yields the displacements

u1 ¼ 0:414� 10�2 in: v1 ¼ �1:59� 10�2 in:

The minus sign in the v1 result indicates that the displacement component in the
y direction at node 1 is in the direction opposite that of the positive y direction based on
the assumed global coordinates, that is, a downward displacement occurs at node 1.

Using Eq. (3.5.6) and Table 3–1, we determine the stresses in each element as
follows:

sð1Þ ¼ 30� 106

120
½0 �1 0 1�

u1 ¼ 0:414� 10�2

v1 ¼ �1:59� 10�2

u2 ¼ 0

v2 ¼ 0

8>>><
>>>:

9>>>=
>>>;
¼ 3965 psi

sð2Þ ¼ 30� 106

120
ffiffiffi
2
p �

ffiffiffi
2
p

2

�
ffiffiffi
2
p

2

ffiffiffi
2
p

2

ffiffiffi
2
p

2

" # u1 ¼ 0:414� 10�2

v1 ¼ �1:59� 10�2

u3 ¼ 0

v3 ¼ 0

8>>><
>>>:

9>>>=
>>>;

¼ 1471 psi

sð3Þ ¼ 30� 106

120
½�1 0 1 0�

u1 ¼ 0:414� 10�2

v1 ¼ �1:59� 10�2

u4 ¼ 0

v4 ¼ 0

8>>><
>>>:

9>>>=
>>>;
¼ �1035 psi

We now verify our results by examining force equilibrium at node 1; that is, summing
forces in the global x and y directions, we obtain

X
Fx ¼ 0 ð1471 psiÞð2 in2Þ

ffiffiffi
2
p

2
� ð1035 psiÞð2 in2Þ ¼ 0

X
Fy ¼ 0 ð3965 psiÞð2 in2Þ þ ð1471 psiÞð2 in2Þ

ffiffiffi
2
p

2
� 10;000 ¼ 0 9
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Example 3.6

For the two-bar truss shown in Figure 3–16, determine the displacement in the y

direction of node 1 and the axial force in each element. A force of P ¼ 1000 kN is ap-
plied at node 1 in the positive y direction while node 1 settles an amount d ¼ 50 mm
in the negative x direction. Let E ¼ 210 GPa and A ¼ 6:00� 10�4 m2 for each ele-
ment. The lengths of the elements are shown in the figure.

SOLUTION:

We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

cos yð1Þ ¼ 3

5
¼ 0:60 sin yð1Þ ¼ 4

5
¼ 0:80

½kð1Þ� ¼ ð6:0� 10�4 m2Þð210� 106 kN=m2Þ
5 m

0:36 0:48 �0:36 �0:48

0:64 �0:48 �0:64

0:36 0:48

0:64

2
6664

3
7775 ð3:6:7Þ

Symmetry

Simplifying Eq. (3.6.7), we obtain

½kð1Þ� ¼ ð25;200Þ

u1 v1 u2 v2

0:36 0:48 �0:36 �0:48

0:64 �0:48 �0:64

0:36 0:48

0:64

2
6664

3
7775 ð3:6:8Þ

Symmetry

x′1

x′2

Figure 3–16 Two-bar truss
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Element 2

cos yð2Þ ¼ 0:0 sin yð2Þ ¼ 1:0

½kð2Þ� ¼ ð6:0� 10�4Þð210� 106Þ
4

0 0 0 0

1 0 �1

0 0

1

2
6664

3
7775 ð3:6:9Þ

Symmetry

½kð2Þ� ¼ ð25;200Þ

u1 v1 u3 v3

0 0 0 0

1:25 0 �1:25

0 0

1:25

2
6664

3
7775 ð3:6:10Þ

Symmetry

where, for computational simplicity, Eq. (3.6.10) is written with the same factor
(25,200) in front of the matrix as Eq. (3.6.8). Superimposing the element stiffness ma-
trices, Eqs. (3.6.8) and (3.6.10), we obtain the global ½K � matrix and relate the global
forces to global displacements by

F1x

F1y

F2x

F2y

F3x

F3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ ð25;200Þ

0:36 0:48 �0:36 �0:48 0 0

1:89 �0:48 �0:64 0 �1:25

0:36 0:48 0 0

0:64 0 0

0 0

1:25

2
666666664

3
777777775

u1

v1

u2

v2

u3

v3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
ð3:6:11Þ

Symmetry

We can again partition equations with known displacements and then simultaneously
solve those associated with unknown displacements. To do this partitioning, we con-
sider the boundary conditions given by

u1 ¼ d u2 ¼ 0 v2 ¼ 0 u3 ¼ 0 v3 ¼ 0 ð3:6:12Þ

Therefore, using Eqs. (3.6.12), we partition equation 2 from equations 1, 3, 4, 5, and 6
of Eq. (3.6.11) and are left with

P ¼ 25;200ð0:48dþ 1:89v1Þ ð3:6:13Þ

where F1y ¼ P and u1 ¼ d were substituted into Eq. (3.6.13). Expressing Eq. (3.6.13)
in terms of P and d allows these two influences on v1 to be clearly separated. Solving
Eq. (3.6.13) for v1, we have

v1 ¼ 0:000021P� 0:254d ð3:6:14Þ

Now, substituting the numerical values P ¼ 1000 kN and d ¼ �0:05 m into Eq.
(3.6.14), we obtain

v1 ¼ 0:0337 m ð3:6:15Þ

where the positive value indicates horizontal displacement to the left.
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The local element forces are obtained by using Eq. (3.4.11). We then have the
following.

Element 1

f 01x

f 02x

� �
¼ ð25;200Þ 1 �1

�1 1

� 	
0:60

0

0:80

0

0

0:60

0

0:80

� 	 u1 ¼ �0:05
v1 ¼ 0:0337
u2 ¼ 0
v2 ¼ 0

8>><
>>:

9>>=
>>;
ð3:6:16Þ

Performing the matrix triple product in Eq. (3.6.16) yields

f 01x ¼ �76:6 kN f 02x ¼ 76:6 kN ð3:6:17Þ

Element 2

f 01x

f 03x

� �
¼ ð31;500Þ 1 �1

�1 1

� 	
0 1 0 0

0 0 0 1

� 	 u1 ¼ �0:05
v1 ¼ 0:0337
u3 ¼ 0
v3 ¼ 0

8>><
>>:

9>>=
>>;

ð3:6:18Þ

Performing the matrix triple product in Eq. (3.6.18), we obtain

f 01x ¼ 1061 kN f 03x ¼ �1061 kN ð3:6:19Þ

Verification of the computations by checking that equilibrium is satisfied at node 1 is
left to your discretion. 9

Example 3.7

To illustrate how we can combine spring and bar elements in one structure, we now
solve the two-bar truss supported by a spring shown in Figure 3–17. Both bars have
E ¼ 210 GPa and A ¼ 5:0� 10�4 m2. Bar one has a length of 5 m and bar two a
length of 10 m. The spring stiffness is k ¼ 2000 kN/m.

3

2

1

1

2

3

4

5 m

10 m

25 kN

k = 2000 kN/m

45°
x′1

x′2 x′3

y

x

Figure 3–17 Two-bar truss with spring support
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SOLUTION:
We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

yð1Þ ¼ 135�; cos yð1Þ ¼ �
ffiffiffi
2
p

=2; sin yð1Þ ¼
ffiffiffi
2
p

=2

½kð1Þ� ¼ ð5:0� 10�4 m2Þð210� 106 kN=m2Þ
5 m

0:5 �0:5 �0:5 0:5

�0:5 0:5 0:5 �0:5

�0:5 0:5 0:5 �0:5

0:5 �0:5 �0:5 0:5

2
6664

3
7775 ð3:6:20Þ

Simplifying Eq. (3.6.20), we obtain

½kð1Þ� ¼ 105� 102

u1 v1 u2 v2

1 �1 �1 1

�1 1 1 �1

�1 1 1 �1

1 �1 �1 1

2
6664

3
7775

ð3:6:21Þ

Element 2

yð2Þ ¼ 180�; cos yð2Þ ¼ �1:0; sin yð2Þ ¼ 0

½kð2Þ� ¼ ð5� 10�4 m2Þð210� 106 kN=m2Þ
10 m

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
6664

3
7775 ð3:6:22Þ

Simplifying Eq. (3.6.22), we obtain

½kð2Þ� ¼ 105� 102

u1 v1 u3 v3

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
6664

3
7775

ð3:6:23Þ

Element 3

yð3Þ ¼ 270�; cos yð3Þ ¼ 0; sin yð3Þ ¼ �1:0

Using Eq. (3.4.23) but replacing AE/L with the spring constant k, we obtain the stiff-
ness matrix of the spring as

½kð3Þ� ¼ 20� 102

u1 v1 u2 v2

0 0 0 0

0 1 0 �1

0 0 0 0

0 �1 0 1

2
6664

3
7775

ð3:6:24Þ
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Applying the boundary conditions, we have

u2 ¼ v2 ¼ u3 ¼ v3 ¼ u4 ¼ v4 ¼ 0 ð3:6:25Þ

Using the boundary conditions in Eq. (3.6.25), the reduced assembled global equa-
tions are given by:

F1x ¼ 0
F1y ¼ �25 kN

� �
¼ 102 210 �105

�105 125

� 	
u1

v1

� �
ð3:6:26Þ

Solving Eq. (3.6.26) for the global displacements, we obtain

u1 ¼ �1:724� 10�3 m v1 ¼ �3:448� 10�3 m ð3:6:27Þ

We can obtain the stresses in the bar elements by using Eq. (3.5.6) as

sð1Þ ¼ 210� 103 MN=m2

5 m
0:707 �0:707 �0:707 0:707½ �

�1:724� 10�3

�3:448� 10�3

0
0

8>><
>>:

9>>=
>>;

Simplifying, we obtain

sð1Þ ¼ 51:2 MPa ðTÞ

Similarly, we obtain the stress in element two as

sð2Þ ¼ 210� 103 MN=m2

10 m
1:0 0 �1:0 0½ �

�1:724� 10�3

�3:448� 10�3

0
0

8>><
>>:

9>>=
>>;

Simplifying, we obtain

sð2Þ ¼ �36:2 MPa ðCÞ 9

d 3.7 Transformation Matrix and Stiffness Matrix d
for a Bar in Three-Dimensional Space

We will now derive the transformation matrix necessary to obtain the general stiffness
matrix of a bar element arbitrarily oriented in three-dimensional space as shown in
Figure 3–18. Let the coordinates of node 1 be taken as x1; y1, and z1, and let those
of node 2 be taken as x2; y2, and z2. Also, let yx; yy, and yz be the angles measured
from the global x; y, and z axes, respectively, to the local x0 axis. Here x0 is directed
along the element from node 1 to node 2. We must now determine ½T �� such that
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fd 0g ¼ ½T ��fdg. We begin the derivation of ½T �� by considering the vector d̂ ¼ d

expressed in three dimensions as

u0i0 þ v0j0 þ w0k0 ¼ uiþ vjþ wk ð3:7:1Þ

where i0, j0, and k0 are unit vectors associated with the local x0; y0, and z0 axes, respec-
tively, and i, j, and k are unit vectors associated with the global x; y, and z axes. Also
w and w0 now denote the displacements in the z and z0 directions, respectively. Taking
the dot product of Eq. (3.7.1) with i0, we have

u0 þ 0þ 0 ¼ uði0 . iÞ þ vði0 . jÞ þ wði0 . kÞ ð3:7:2Þ

and, by definition of the dot product,

i0 . i ¼ x2 � x1

L
¼ Cx

i0 . j ¼ y2 � y1

L
¼ Cy ð3:7:3Þ

i0 . k ¼ z2 � z1

L
¼ Cz

L ¼ ½ðx2 � x1Þ2 þ ðy2 � y1Þ
2 þ ðz2 � z1Þ2�1=2where

Cx ¼ cos yx Cy ¼ cos yy Cz ¼ cos yz ð3:7:4Þand

Here Cx;Cy, and Cz are the projections of i0 on i; j, and k, respectively. Therefore,
using Eqs. (3.7.3) in Eq. (3.7.2), we have

u0 ¼ Cxuþ Cyvþ Czw ð3:7:5Þ

d

y, v

y′, v′

z′, w′

x′, u′

f ′1x

f ′2x

z, w

v′1

v′2

w′1

w′2

u′1

u′2

x, u

2

1

Figure 3–18 Bar in three-dimensional space along with local nodal displacements
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For a vector in space directed along the x0 axis, Eq. (3.7.5) gives the components of
that vector in the global x; y, and z directions. Now, using Eq. (3.7.5), we can write
the local axial displacement at node 1 and 2 in explicit form as

u01
u02

� �
¼

Cx Cy Cz 0 0 0

0 0 0 Cx Cy Cz

� 	
u1

v1

w1

u2

v2

w2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:7:6Þ

Now fd 0g ¼
u01
u02

� �
; fdg ¼

u1

v1

w1

u2

v2

w2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; and define ½T�� ¼ Cx Cy Cz 0 0 0

0 0 0 Cx Cy Cz

� 	
:

ð3:7:7Þ

Using Eq. (3.7.7), we write Eq. (3.7.6) in matrix form as

fd 0g ¼ ½T��fdg ðaÞ

Here [T�] is the transformation matrix, which enables the local displacement matrix
{d 0} to be expressed in terms of the displacement matrix {d} components in the global
coordinate system.

Based on Eq. (a), it will be convenient to express the global force matrix in terms
of the local force matrix using [T�] as

ff g ¼ ½T��T ½f 0g ðbÞ

Now in local coordinates, the local forces are related to the local displacements by

ff 0g ¼ ½k0�fd 0g ðcÞ

Upon substituting for {d 0} from Eq. (a) into Eq. (c) and premultiplying both sides by
{T�}T , we have

½T��Tff 0g ¼ ½T��T ½k0�½T��fdg ðdÞ

Now using Eq. (b) in the left side of Eq. (c), we obtain

ff g ¼ ½T��T ½k0�½T��fdg ðeÞ

The global forces are related to the global displacements by

ff g ¼ ½k�fdg ðfÞ
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Comparing the right sides of Eqs. (e) and (f), we then observe that the global stiffness
matrix for a bar arbitrarily oriented in space is

½k� ¼ ½T��T ½k0�½T�� ðgÞ

Using Eq. (3.7.7) for [T�] and Eq. (3.4.2) in Eq. (3.4.1) for [k
0
] we obtain [k] as follows:

½k� ¼

Cx 0

Cy 0

Cz 0

0 Cx

0 Cy

0 Cz

2
666666664

3
777777775

AE

L

1 �1

�1 1

� 	
Cx Cy Cz 0 0 0

0 0 0 Cx Cy Cz

� 	
ð3:7:8Þ

Simplifying Eq. (3.7.8), we obtain the explicit form of ½k� as

½k� ¼ AE

L

C2
x CxCy CxCz �C2

x �CxCy �CxCz

C 2
y CyCz �CxCy �C 2

y �CyCz

C2
z �CxCz �CyCz �C2

z

C2
x CxCy CxCz

C2
y CyCz

C2
z

2
666666664

3
777777775

ð3:7:9Þ

Symmetry

Equation (3.7.9) is the basic form of the stiffness matrix for a bar element arbi-
trarily oriented in three-dimensional space. We will now analyze a simple space truss
to illustrate the concepts developed in this section. We will show that the direct stiff-
ness method provides a simple procedure for solving space truss problems.

Example 3.8

Analyze the space truss shown in Figure 3–19. The truss is composed of four nodes,
whose coordinates (in inches) are shown in the figure, and three elements, whose cross-
sectional areas are given in the figure. The modulus of elasticity E ¼ 1:2� 106 psi for
all elements. A load of 1000 lb is applied at node 1 in the negative z direction. Nodes
2–4 are supported by ball-and-socket joints and thus constrained from movement in
the x; y, and z directions. Node 1 is constrained from movement in the y direction by
the roller shown in Figure 3–19.

SOLUTION:
Using Eq. (3.7.9), we will now determine the stiffness matrices of the three elements in
Figure 3–19. To simplify the numerical calculations, we first express ½k� for each ele-
ment, given by Eq. (3.7.9), in the form

½k� ¼ AE

L

½l� �½l�
�½l� ½l�

� 	
ð3:7:10Þ
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where ½l� is a 3� 3 submatrix defined by

½l� ¼
C2

x CxCy CxCz

CyCx C2
y CyCz

CzCx CzCy C2
z

2
64

3
75 ð3:7:11Þ

Therefore, determining ½l� will sufficiently describe ½k�.

Element 3

The direction cosines of element 3 are given, in general, by

Cx ¼
x4 � x1

Lð3Þ
Cy ¼

y4 � y1

Lð3Þ
Cz ¼

z4 � z1

Lð3Þ
ð3:7:12Þ

where the notation xi; yi, and zi is used to denote the coordinates of each node, and LðeÞ

denotes the element length. From the coordinate information given in Figure 3–19, we
obtain the length and the direction cosines as

Lð3Þ ¼ ½ð�72:0Þ2 þ ð�48:0Þ2�1=2 ¼ 86:5 in:

Cx ¼
�72:0

86:5
¼ �0:833 Cy ¼ 0 Cz ¼

�48:0

86:5
¼ �0:550 ð3:7:13Þ

x′2
x′1

x′3

Figure 3–19 Space truss
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Using the results of Eqs. (3.7.13) in Eq. (3.7.11) yields

½l� ¼
0:69 0 0:46

0 0 0

0:46 0 0:30

2
64

3
75 ð3:7:14Þ

and, from Eq. (3.7.10),

½kð3Þ� ¼ ð0:187Þð1:2� 106Þ
86:5

u1v1w1 u4v4w4

½l� �½l�
�½l� ½l�

� 	 ð3:7:15Þ

Element 1

Similarly, for element 1, we obtain

Lð1Þ ¼ 80:5 in:

Cx ¼ �0:89 Cy ¼ 0:45 Cz ¼ 0

½l� ¼
0:79 �0:40 0

�0:40 0:20 0

0 0 0

2
64

3
75

½kð1Þ� ¼ ð0:302Þð1:2� 106Þ
80:5

u1v1w1 u2v2w2

½l� �½l�
�½l� ½l�

� 	 ð3:7:16Þ
and

Element 2

Finally, for element 2, we obtain

Lð2Þ ¼ 108 in:

Cx ¼ �0:667 Cy ¼ 0:33 Cz ¼ 0:667

½l� ¼
0:45 �0:22 �0:45

�0:22 0:11 0:22

�0:45 0:22 0:45

2
64

3
75

½kð2Þ� ¼ ð0:729Þð1:2� 106Þ
108

u1v1w1 u3v3w3

½l� �½l�
�½l� ½l�

� 	 ð3:7:17Þ
and

Using the zero-displacement boundary conditions v1 ¼ 0; u2 ¼ v2 ¼ w2 ¼ 0; u3 ¼
v3 ¼ w3 ¼ 0, and u4 ¼ v4 ¼ w4 ¼ 0, we can cancel the corresponding rows and col-
umns of each element stiffness matrix. After canceling appropriate rows and columns
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in Eqs. (3.7.15) through (3.7.17) and then superimposing the resulting element stiffness
matrices, we have the total stiffness matrix for the truss as

½K� ¼

u1 w1

9000 �2450

�2450 4450

� 	
ð3:7:18Þ

The global stiffness equations are then expressed by

0

�1000

� �
¼ 9000 �2450

�2450 4450

� 	
u1

w1

� �
ð3:7:19Þ

Solving Eq. (3.7.19) for the displacements, we obtain

u1 ¼ �0:072 in:

w1 ¼ �0:264 in:
ð3:7:20Þ

where the minus signs in the displacements indicate these displacements to be in the
negative x and z directions.

We will now determine the stress in each element. The stresses are determined by
using Eq. (3.5.6) expanded to three dimensions. Thus, for an element with first node i

and second node j, Eq. (3.5.6) expanded to three dimensions becomes

fsg ¼ E

L
½�Cx �Cy �Cz Cx Cy Cz�

ui

vi

wi

uj

vj

wj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:7:21Þ

Derive Eq. (3.7.21) in a manner similar to that used to derive Eq. (3.5.6) (see Problem
3.44, for instance). For element 3, using Eqs. (3.7.13) for the direction cosines, along
with the proper length and modulus of elasticity, we obtain the stress as

fsð3Þg ¼ 1:2� 106

86:5
½0:83 0 0:55 �0:83 0 �0:55�

�0:072

0

�0:264

0

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:7:22Þ

Simplifying Eq. (3.7.22), we find that the result is

sð3Þ ¼ �2850 psi

where the negative sign in the answer indicates a compressive stress. The stresses in
the other elements can be determined in a manner similar to that used for element 3.
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For brevity’s sake, we will not show the calculations but will merely list these
stresses:

sð1Þ ¼ �945 psi sð2Þ ¼ 1440 psi 9

Example 3.9

Analyze the space truss shown in Figure 3–20. The truss is composed of four nodes,
whose coordinates (in meters) are shown in the figure, and three elements, whose
cross-sectional areas are all 10� 10�4 m2. The modulus of elasticity E ¼ 210 GPa
for all the elements. A load of 20 kN is applied at node 1 in the global x-direction.
Nodes 2–4 are pin supported and thus constrained from movement in the x, y, and
z directions.

SOLUTION:
First calculate the element lengths using the distance formula and coordinates given in
Figure 3–20 as

Lð1Þ ¼ ½ð0� 12Þ2 þ ð0� ð�3ÞÞ2 þ ð0� ð�4ÞÞ2�1=2 ¼ 13 m

Lð2Þ ¼ ½ð12� 12Þ2 þ ð�3þ 3Þ2 þ ð�7þ 4Þ2�1=2 ¼ 3 m

Lð3Þ ¼ ½ð14� 12Þ2 þ ð6þ 3Þ2 þ ð0þ 4Þ2�1=2 ¼ 10:05 m

For convenience, set up a table of direction cosines, where the local x0 axis is taken
from node 1 to 2, from 1 to 3 and from 1 to 4 for elements 1, 2, and 3, respectively.

(0, 0, 0)

(12, −3, −4)

(12, −3, −7)

2

z

y

x

1
3

2

3

20 kN

(14, 6, 0)

1

4

Figure 3–20 Space truss
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Element Number Cx ¼ xj�xi

Lð1Þ
Cy ¼ yj�yi

Lð2Þ
Cz ¼ zj�zi

Lð3Þ

1 �12=13 3/13 4/13
2 0 0 �1
3 2=10:05 9=10:05 4=10:05

Now set up a table of products of direction cosines as indicated by the definition of ½l�
defined by Eq. (3.7.11) as

Element Number C2
x CxCy CxCz C2

y CyCz C2
z

1 0.852 �0:213 �0:284 0.053 �0:071 0:095
2 0 0 0 0 0 1
3 0.040 0.178 0.079 0.802 0.356 0.158

Using Eq. (3.7.11), we express ½l� for each element as

½lð1Þ� ¼
0:852 �0:213 �0:284

�0:213 0:053 0:071

�0:284 0:071 0:095

2
4

3
5 ½lð2Þ� ¼

0 0 0

0 0 0

0 0 1

2
4

3
5 ½lð3Þ� ¼

0:040 0:178 0:079

0:128 0:802 0:356

0:079 0:356 0:158

2
4

3
5

ð3:7:23Þ
The boundary conditions are given by

u2 ¼ v2 ¼ w2 ¼ 0; u3 ¼ v3 ¼ w3 ¼ 0; u4 ¼ v4 ¼ w4 ¼ 0 ð3:7:24Þ

Using the stiffness matrix expressed in terms of ½l� in the form of Eq. (3.7.10), we ob-
tain each stiffness matrix as

½kð1Þ� ¼ AE

13

½lð1Þ� �½lð1Þ�

�½lð1Þ� ½lð1Þ�

" #
½kð2Þ� ¼ AE

3

½lð2Þ� �½lð2Þ�

�½lð2Þ� ½lð2Þ�

" #
½kð3Þ� ¼ AE

10:05

½lð3Þ� �½lð3Þ�

�½lð3Þ� ½lð3Þ�

" #

ð3:7:25Þ
Applying the boundary conditions and canceling appropriate rows and columns asso-
ciated with each zero displacement boundary condition in Eqs. (3.7.25) and then
superimposing the resulting element stiffness matrices, we have the total stiffness ma-
trix for the truss as

½K � ¼ 210

69:519 1:327 �13:985

1:327 83:879 40:885

�13:985 40:885 356:363

2
4

3
5kN=m ð3:7:26Þ

The global stiffness equations are then expressed by

20 kN
0
0

8<
:

9=
; ¼ 210

69:519 1:327 �13:985

1:327 83:879 40:885

�13:985 40:885 356:363

2
4

3
5 u1

v1

w1

8<
:

9=
; ð3:7:27Þ
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Solving for the displacements, we obtain

u1 ¼ 1:383� 10�3 m

v1 ¼ �5:119� 10�5 m ð3:7:28Þ

w1 ¼ 6:015� 10�5 m

We now determine the element stresses using Eq. (3.7.21) as

sð1Þ ¼ 210� 106

13
½ 12=13 �3=13 �4=13 �12=13 3=13 4=13 �

1:383� 10�3

�5:119� 10�5

6:015� 10�5

0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð3:7:29Þ

Simplifying Eq. (3.7.29), we obtain upon converting to MPa units

sð1Þ ¼ 20:51 MPa ð3:7:30Þ

The stress in the other elements can be found in a similar manner as

sð2Þ ¼ 4:21 MPa sð3Þ ¼ �5:29 MPa ð3:7:31Þ

The negative sign in Eq. (3.7.31) indicates a compressive stress in element 3. 9

d 3.8 Use of Symmetry in Structures d
Different types of symmetry may exist in a structure. These include reflective or mir-
ror, skew, axial, and cyclic. Here we introduce the most common type of symmetry,
reflective symmetry. Axial symmetry occurs when a solid of revolution is generated
by rotating a plane shape about an axis in the plane. These axisymmetric bodies are
common, and hence their analysis is considered in Chapter 9.

In many instances, we can use reflective symmetry to facilitate the solution
of a problem. Reflective symmetry means correspondence in size, shape, and position

of loads; material properties; and boundary conditions that are on opposite sides of a divid-

ing line or plane. The use of symmetry allows us to consider a reduced problem instead
of the actual problem. Thus, the order of the total stiffness matrix and total set of stiff-
ness equations can be reduced. Longhand solution time is then reduced, and computer
solution time for large-scale problems is substantially decreased. Example 3.10 will
be used to illustrate reflective symmetry. Additional examples of the use of symme-
try are presented in Chapter 4 for beams and in Chapter 7 for plane problems.
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Example 3.10

Solve the plane truss problem shown in Figure 3–21. The truss is composed of eight
elements and five nodes as shown. A vertical load of 2P is applied at node 4. Nodes
1 and 5 are pin supports. Bar elements 1, 2, 7, and 8 have axial stiffnesses of

ffiffiffi
2
p

AE,
and bars 3–6 have axial stiffness of AE. Here again, A and E represent the cross-
sectional area and modulus of elasticity of a bar.

In this problem, we will use a plane of symmetry. The vertical plane perpendic-
ular to the plane truss passing through nodes 2, 4, and 3 is the plane of reflective sym-
metry because identical geometry, material, loading, and boundary conditions occur at
the corresponding locations on opposite sides of this plane. For loads such as 2P,
occurring in the plane of symmetry, half of the total load must be applied to the
reduced structure. For elements occurring in the plane of symmetry, half of the
cross-sectional area must be used in the reduced structure. Furthermore, for nodes
in the plane of symmetry, the displacement components normal to the plane of sym-
metry must be set to zero in the reduced structure; that is, we set u2 ¼ 0; u3 ¼ 0, and
u4 ¼ 0. Figure 3–22 shows the reduced structure to be used to analyze the plane truss
of Figure 3–21.

SOLUTION:
We begin the solution of the problem by determining the angles y for each bar ele-
ment. For instance, for element 1, assuming x0 to be directed from node 1 to node 2,
we obtain yð1Þ ¼ 45� as measured from the global x to the local x0 axis. Table 3–2
is used in determining each element stiffness matrix based on the x0 axes shown in
Figure 3–22 for each element.

There are a total of eight nodal components of displacement for the truss before
boundary constraints are imposed. Therefore, ½K �must be of order 8� 8. For element 1,

x′3

x′5

x′4x′1

x′2

Figure 3–22 Truss of Figure 3–21
reduced by symmetry

Figure 3–21 Plane truss
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using Eq. (3.4.23) along with Table 3–2 for the direction cosines, we obtain

½kð1Þ� ¼
ffiffiffi
2
p

AEffiffiffi
2
p

L

u1 v1 u2 v2
1
2

1
2 � 1

2 � 1
2

1
2

1
2 � 1

2 � 1
2

� 1
2 � 1

2
1
2

1
2

� 1
2 � 1

2
1
2

1
2

2
6664

3
7775 ð3:8:1Þ

Similarly, for elements 2–5, we obtain

½kð2Þ� ¼
ffiffiffi
2
p

AEffiffiffi
2
p

L

u1 v1 u3 v3
1
2 � 1

2 � 1
2

1
2

� 1
2

1
2

1
2 � 1

2

� 1
2

1
2

1
2 � 1

2
1
2 � 1

2 � 1
2

1
2

2
6664

3
7775 ð3:8:2Þ

½kð3Þ� ¼ AE

L

u1 v1 u4 v4

1 0 �1 0

0 0 0 0

�1 0 1 0

0 0 0 0

2
6664

3
7775 ð3:8:3Þ

½kð4Þ� ¼ AE

L

u4 v4 u2 v2

0 0 0 0

0 1
2 0 � 1

2

0 0 0 0

0 � 1
2 0 1

2

2
6664

3
7775 ð3:8:4Þ

½kð5Þ� ¼ AE

L

u3 v3 u4 v4

0 0 0 0

0 1
2 0 � 1

2

0 0 0 0

0 � 1
2 0 1

2

2
6664

3
7775 ð3:8:5Þ

Table 3–2 Data for the truss of Figure 3–22

Element y� C S C2 S2 CS

1 45�
ffiffiffi
2
p

=2
ffiffiffi
2
p

=2 1=2 1=2 1=2
2 315�

ffiffiffi
2
p

=2 �
ffiffiffi
2
p

=2 1=2 1=2 �1=2
3 0� 1 0 1 0 0
4 90� 0 1 0 1 0
5 90� 0 1 0 1 0
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where, in Eqs. (3.8.1) through (3.8.5), the column labels indicate the degrees of freedom
associated with each element. Also, because elements 4 and 5 lie in the plane of sym-
metry, half of their original areas have been used in Eqs. (3.8.4) and (3.8.5).

We will limit the solution to determining the displacement components. There-
fore, considering the boundary constraints that result in zero-displacement compo-
nents, we can immediately obtain the reduced set of equations by eliminating rows
and columns in each element stiffness matrix corresponding to a zero-displacement
component. That is, because u1 ¼ 0 and v1 ¼ 0 (owing to the pin support at node 1
in Figure 3–22) and u2 ¼ 0; u3 ¼ 0, and u4 ¼ 0 (owing to the symmetry condition),
we can cancel rows and columns corresponding to these displacement components
in each element stiffness matrix before assembling the total stiffness matrix. The result-
ing set of stiffness equations is

AE

L

1 0 � 1
2

0 1 � 1
2

� 1
2 � 1

2 1

2
64

3
75

v2

v3

v4

8<
:

9=
; ¼

0

0

�P

8<
:

9=
; ð3:8:6Þ

On solving Eq. (3.8.6) for the displacements, we obtain

v2 ¼
�PL

AE
v3 ¼

�PL

AE
v4 ¼

�2PL

AE
ð3:8:7Þ

9

The ideas presented regarding the use of symmetry should be used sparingly and
cautiously in problems of vibration and buckling. For instance, a structure such as a
simply supported beam has symmetry about its center but has antisymmetric vibration
modes as well as symmetric vibration modes. This will be shown in Chapter 16. If only
half the beam were modeled using reflective symmetry conditions, the support condi-
tions would permit only the symmetric vibration modes.

d 3.9 Inclined, or Skewed, Supports d
In the preceding sections, the supports were oriented such that the resulting boundary
conditions on the displacements were in the global directions, x and y.

x′, u′
y′, v′

Figure 3–23 Plane truss with inclined
boundary conditions at node 3
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However, if a support is inclined, or skewed, at an angle a from the global x axis, as
shown at node 3 in the plane truss of Figure 3–23, the resulting boundary conditions
on the displacements are not in the global x-y directions but are in the local x 0-y 0

directions. We will now describe two methods used to handle inclined supports.
In the first method, to account for inclined boundary conditions, we must per-

form a transformation of the global displacements at node 3 only into the local
nodal coordinate system x 0-y 0, while keeping all other displacements in the x-y global
system. We can then enforce the zero-displacement boundary condition v 03 in the force/

displacement equations and, finally, solve the equations in the usual manner.
The transformation used is analogous to that for transforming a vector from

local to global coordinates. For the plane truss, we use Eq. (3.3.16) applied to node
3 as follows:

u 03
v 03

� �
¼ cos a sin a

�sin a cos a

� 	
u3

v3

� �
ð3:9:1Þ

Rewriting Eq. (3.9.1), we have

fd 03g ¼ ½t3�fd3g ð3:9:2Þ

where

½t3� ¼
cos a sin a

�sin a cos a

� 	
ð3:9:3Þ

We now write the transformation for the entire nodal displacement vector as

fd 0g ¼ ½T1�fdg ð3:9:4Þ

fdg ¼ ½T1�Tfd 0g ð3:9:5Þor

where the transformation matrix for the entire truss is the 6� 6 matrix

½T1� ¼
½I � ½0� ½0�
½0� ½I � ½0�
½0� ½0� ½t3�

2
64

3
75 ð3:9:6Þ

Each submatrix in Eq. (3.9.6) (the identity matrix [I ], the null matrix [0], and matrix
[t3] has the same 2� 2 order, that order in general being equal to the number of
degrees of freedom at each node.

To obtain the desired displacement vector with global displacement components
at nodes 1 and 2 and local displacement components at node 3, we use Eq. (3.9.5) to
obtain

u1

v1

u2

v2

u3

v3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼
½I � ½0� ½0�
½0� ½I � ½0�
½0� ½0� ½t3�T

2
64

3
75

u 01
v 01
u 02
v 02
u 03
v 03

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð3:9:7Þ
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In Eq. (3.9.7), we observe that only the node 3 global components are transformed, as
indicated by the placement of the ½t3�T matrix. We denote the square matrix in
Eq. (3.9.7) by ½T1�T . In general, we place a 2� 2 ½t� matrix in ½T1� wherever the trans-
formation from global to local displacements is needed (where skewed supports exist).

Upon considering Eqs. (3.9.5) and (3.9.6), we observe that only node 3 compo-
nents of fdg are really transformed to local (skewed) axes components. This transfor-
mation is indeed necessary whenever the local axes x 0-y 0 fixity directions are known.

Furthermore, the global force vector can also be transformed by using the same
transformation as for fd 0g:

f f 0g ¼ ½T1�f f g ð3:9:8Þ

In global coordinates, we then have

f f g ¼ ½K �fdg ð3:9:9Þ

Premultiplying Eq. (3.9.9) by ½T1�, we have

½T1�f f g ¼ ½T1�½K �fdg ð3:9:10Þ

For the truss in Figure 3–23, the left side of Eq. (3.9.10) is

½I � ½0� ½0�
½0� ½I � ½0�
½0� ½0� ½t3�

2
64

3
75

f1x

f1y

f2x

f2y

f3x

f3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

f1x

f1y

f2x

f2y

f 03x

f 03y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð3:9:11Þ

where the fact that local forces transform similarly to Eq. (3.9.2) as

f f 03 g ¼ ½t3�f f3g ð3:9:12Þ

has been used in Eq. (3.9.11). From Eq. (3.9.11), we see that only the node 3 compo-
nents of f f g have been transformed to the local axes components, as desired.

Using Eq. (3.9.5) in Eq. (3.9.10), we have

½T1�f f g ¼ ½T1�½K �½T1�Tfd 0g ð3:9:13Þ

Using Eq. (3.9.11), we find that the form of Eq. (3.9.13) becomes

F1x

F1y

F2x

F2y

F 03x

F 03y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ ½T1�½K �½T1�T

u1

v1

u2

v2

u 03
v 03

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð3:9:14Þ

as u1 ¼ u 01; v1 ¼ v 01; u2 ¼ u 02, and v2 ¼ v 02 from Eq. (3.9.7). Equation (3.9.14) is the
desired form that allows all known global and inclined boundary conditions to be
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enforced. The global forces now result in the left side of Eq. (3.9.14). To solve
Eq. (3.9.14), first perform the matrix triple product ½T1�½K �½T1�T . Then invoke the fol-
lowing boundary conditions (for the truss in Figure 3–23):

u1 ¼ 0 v1 ¼ 0 v 03 ¼ 0 ð3:9:15Þ

Then substitute the known value of the applied force F2x along with F2y ¼ 0 and
F 03x ¼ 0 into Eq. (3.9.14). Finally, partition the equations with known displacements—
here equations 1, 2, and 6 of Eq. (3.9.14)—and then simultaneously solve those asso-
ciated with the unknown displacements u2; v2, and u 03.

After solving for the displacements, return to Eq. (3.9.14) to obtain the global
reactions F1x and F1y and the inclined roller reaction F 03y.

Example 3.11

For the plane truss shown in Figure 3–24, determine the displacements and reactions.
Let E ¼ 210 GPa, A ¼ 6:00� 10�4 m2 for elements 1 and 2, and A ¼ 6

ffiffiffi
2
p
� 10�4 m2

for element 3.

SOLUTION:
We begin by using Eq. (3.4.23) to determine each element stiffness matrix.

Element 1

yð1Þ ¼ 90�; cos y ¼ 0 sin y ¼ 1

½kð1Þ� ¼ ð6:0� 10�4 m2Þð210� 109 N=m2Þ
1 m

u1 v1 u2 v2

0 0 0 0

1 0 �1

0 0

1

2
6664

3
7775 ð3:9:16Þ

Symmetry

x′1

x′2

x′3

Figure 3–24 Plane truss with inclined support
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Element 2

yð2Þ ¼ 0�; cos y ¼ 1 sin y ¼ 0

½kð2Þ� ¼ ð6:0� 10�4 m2Þð210� 109 N=m2Þ
1 m

u2 v2 u3 v3

1 0 �1 0

0 0 0

1 0

0

2
6664

3
7775 ð3:9:17Þ

Symmetry

Element 3

yð3Þ ¼ 45�; cos y ¼
ffiffiffi
2
p

2
sin y ¼

ffiffiffi
2
p

2

½kð3Þ� ¼ ð6
ffiffiffi
2
p
� 10�4 m2Þð210� 109 N=m2Þffiffiffi

2
p

m

u1 v1 u3 v3

0:5 0:5 �0:5 �0:5

0:5 �0:5 �0:5

0:5 0:5

0:5

2
6664

3
7775 ð3:9:18Þ

Symmetry

Using the direct stiffness method on Eqs. (3.9.16) through (3.9.18), we obtain the
global ½K � matrix as

½K � ¼ 1260� 105 N=m

0:5 0:5 0 0 �0:5 �0:5

1:5 0 �1 �0:5 �0:5

1 0 �1 0

1 0 0

1:5 0:5

0:5

2
666666664

3
777777775

ð3:9:19Þ

Symmetry

Next we obtain the transformation matrix ½T1� using Eq. (3.9.6) to transform the
global displacements at node 3 into local nodal coordinates x 0-y 0. In using
Eq. (3.9.6), the angle a is 45�.

½T1� ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0
ffiffiffi
2
p

=2
ffiffiffi
2
p

=2

0 0 0 0 �
ffiffiffi
2
p

=2
ffiffiffi
2
p

=2

2
666666664

3
777777775

ð3:9:20Þ
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Next we use Eq. (3.9.14) (in general, we would use Eq. (3.9.13)) to express the
assembled equations. First define ½K�� ¼ ½T1�½K �½T1�

T and evaluate in steps as follows:

½T1�½K � ¼ 1260� 105

0:5 0:5 0 0 �0:5 �0:5

0:5 1:5 0 �1 �0:5 �0:5

0 0 1 0 �1 0

0 �1 0 1 0 0

�0:707 �0:707 �0:707 0 1:414 0:707

0 0 0:707 0 �0:707 0

2
66666664

3
77777775
ð3:9:21Þ

and

½T1�½K �½T1�
T ¼ 1260� 105 N=m

u1 v1 u2 v2 u 03 v 03

0:5 0:5 0 0 �0:707 0

0:5 1:5 0 �1 �0:707 0

0 0 1 0 �0:707 0:707

0 �1 0 1 0 0

�0:707 �0:707 �0:707 0 1:500 �0:500

0 0 0:707 0 �0:500 0:500

2
66666664

3
77777775

ð3:9:22Þ

Notice in comparing [K�] in Eq. (3.9.22) to [K ] from Eq. (3.9.19) that only the stiffness
terms associated with skewed node 3 degrees of freedom have changed as expected.

Applying the boundary conditions, u1 ¼ v1 ¼ v2 ¼ v 03 ¼ 0, to Eq. (3.9.22), we
obtain

F2x ¼ 1000 kN
F 03x ¼ 0

� �
¼ ð126� 103 kN=mÞ 1 �0:707

�0:707 1:50

� 	
u2

u 03

� �
ð3:9:23Þ

Solving Eq. (3.9.23) for the displacements yields

u2 ¼ 11:91� 10�3 m ð3:9:24Þ

u 03 ¼ 5:613� 10�3 m

Postmultiplying the known displacement vector times Eq. (3.9.22) (see Eq. (3.9.14), we
obtain the reactions as

F1x ¼ �500 kN

F1y ¼ �500 kN
ð3:9:25Þ

F2y ¼ 0

F 03y ¼ 707 kN

The free-body diagram of the truss with the reactions is shown in Figure 3–25. You
can easily verify that the truss is in equilibrium. 9
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In the second method used to handle skewed boundary conditions, we use a
boundary element of large stiffness to constrain the desired displacement. This is the
method used in some computer programs [9].

Boundary elements are used to specify nonzero displacements and rotations to
nodes. They are also used to evaluate reactions at rigid and flexible supports. Bound-
ary elements are two-node elements. The line defined by the two nodes specifies the
direction along which the force reaction is evaluated or the displacement is specified.
In the case of moment reaction, the line specifies the axis about which the moment is
evaluated and the rotation is specified.

We consider boundary elements that are used to obtain reaction forces (rigid
boundary elements) or specify translational displacements (displacement boundary
elements) as truss elements with only one nonzero translational stiffness. Boundary
elements used to either evaluate reaction moments or specify rotations behave like
beam elements with only one nonzero stiffness corresponding to the rotational
stiffness about the specified axis.

The elastic boundary elements are used to model flexible supports and to calcu-
late reactions at skewed or inclined boundaries. Consult Reference [9] for more details
about using boundary elements.

d 3.10 Potential Energy Approach to Derive d
Bar Element Equations

We now present the principle of minimum potential energy to derive the bar element
equations. Recall from Section 2.6 that the total potential energy pp was defined as the
sum of the internal strain energy U and the potential energy of the external forces W:

pp ¼ U þW ð3:10:1Þ

To evaluate the strain energy for a bar, we consider only the work done by the internal
forces during deformation. Because we are dealing with a one-dimensional bar, the internal
force doing work on a differential element of sides Dx; Dy; Dz; is given in Figure 3–26
as sxðDyÞðDzÞ, due only to normal stress sx. The displacement of the x face of the ele-
ment is DxðexÞ; the displacement of the xþ Dx face is Dxðex þ dexÞ. The change in

Figure 3–25 Free-body diagram of the truss of Figure 3–24
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displacement is then Dx dex, where dex is the differential change in strain occurring over
length Dx. The differential internal work (or strain energy) dU is the internal force multi-
plied by the displacement through which the force moves, given by

dU ¼ sxðDyÞðDzÞðDxÞ dex ð3:10:2Þ

Rearranging and letting the volume of the element approach zero, we obtain, from
Eq. (3.10.2),

dU ¼ sx dex dV ð3:10:3Þ

For the whole bar, we then have

U ¼
ðð

V

ð ð ex

0

sx dex

� �
dV ð3:10:4Þ

Now, for a linear-elastic (Hooke’s law) material as shown in Figure 3–27, we see that
sx ¼ Eex. Hence substituting this relationship into Eq. (3.10.4), integrating with re-
spect to ex, and then resubstituting sx for Eex, we have

U ¼ 1

2

ðð

V

ð
sxex dV ð3:10:5aÞ

as the expression for the strain energy for one-dimensional stress.
For a uniform cross-sectional area A of a bar with stress and strain dependent

only on the x coordinate, Eq. (3.10.5a) can be simplified to

U ¼ A

2

Z
x

sxexdx ð3:10:5bÞ

Figure 3–27 Stress-strain curve for
Linear-elastic (Hooke’s law) material

F

L

A

Figure 3–26 Internal force in a one-dimensional bar due to applied external force F
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We observe from the integral in Eq. (3.10.5b) that the strain energy is described as the
area under the stress/strain curve.

The potential energy of the external forces, being opposite in sign from the ex-
ternal work expression because the potential energy of external forces is lost when the
work is done by the external forces, is given by

W ¼ �
ðð

V

ð
X bu dV �

ðð

S1

Txus dS �
XM
i¼1

f ixui ð3:10:6Þ

where the first, second, and third terms on the right side of Eq. (3.10.6) represent the po-
tential energy of (1) body forces X b, typically from the self-weight of the bar (in units of
force per unit volume) moving through displacement function u, (2) surface loading or
traction Tx, typically from distributed loading acting along the surface of the element
(in units of force per unit surface area) moving through displacements us, where us are
the displacements occurring over surface S1, and (3) nodal concentrated forces f ix mov-
ing through nodal displacements ui. The forces X b;Tx, and f ix are considered to act in
the local x direction of the bar as shown in Figure 3–28. In Eqs. (3.10.5) and (3.10.6),
V is the volume of the body and S1 is the part of the surface S on which surface loading
acts. For a bar element with two nodes and one degree of freedom per node, M ¼ 2.

We are now ready to describe the finite element formulation of the bar element
equations by using the principle of minimum potential energy.

The finite element process seeks a minimum in the potential energy within the
constraint of an assumed displacement pattern within each element. The greater the
number of degrees of freedom associated with the element (usually meaning increasing
the number of nodes), the more closely will the solution approximate the true one
and ensure complete equilibrium (provided the true displacement can, in the limit,
be approximated). An approximate finite element solution found by using the stiffness
method will always provide an approximate value of potential energy greater than or
equal to the correct one. This method also results in a structure behavior that is pre-
dicted to be physically stiffer than, or at best to have the same stiffness as, the actual
one. This is explained by the fact that the structure model is allowed to displace only
into shapes defined by the terms of the assumed displacement field within each ele-
ment of the structure. The correct shape is usually only approximated by the
assumed field, although the correct shape can be the same as the assumed field.
The assumed field effectively constrains the structure from deforming in its natural
manner. This constraint effect stiffens the predicted behavior of the structure.

Apply the following steps when using the principle of minimum potential energy
to derive the finite element equations.

1. Formulate an expression for the total potential energy.
2. Assume the displacement pattern to vary with a finite set of

undetermined parameters (here these are the nodal displacements ui),
which are substituted into the expression for total potential energy.

3. Obtain a set of simultaneous equations minimizing the total potential
energy with respect to these nodal parameters. These resulting
equations represent the element equations.
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The resulting equations are the approximate (or possibly exact) equilibrium
equations whose solution for the nodal parameters seeks to minimize the potential en-
ergy when back-substituted into the potential energy expression. The preceding three
steps will now be followed to derive the bar element equations and stiffness matrix.

Consider the bar element of length L, with constant cross-sectional area A,
shown in Figure 3–28. Using Eqs. (3.10.5) and (3.10.6), we find that the total potential
energy, Eq. (3.10.1), becomes

pp ¼
A

2

ðL

0

sxex dx� f 1xu1 � f 2xu2 �
ðð

S1

usTx dS �
ðð

V

ð
uX b dV ð3:10:7Þ

because A is a constant and variables sx and ex at most vary with x.
From Eqs. (3.1.3) and (3.1.4), we have the axial displacement function expressed

in terms of the shape functions and nodal displacements by

u ¼ ½N�fdg us ¼ ½NS�fdg ð3:10:8Þ

½N� ¼ 1� x

L

x

L

h i
ð3:10:9Þwhere

½NS� is the shape function matrix evaluated over the surface that the distributed sur-
face traction acts and

fdg ¼ u1

u2

� �
ð3:10:10Þ

Then, using the strain/displacement relationship ex ¼ du=dx, we can write the axial
strain in matrix form as

fexg ¼ � 1

L

1

L

� 	
fdg ð3:10:11Þ

1

2

Figure 3–28 General forces acting on
a one-dimensional bar
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fexg ¼ ½B�fdg ð3:10:12Þ
or

where we define ½B� as the gradient matrix

½B� ¼ � 1

L

1

L

� 	
ð3:10:13Þ

The axial stress-strain relationship in matrix form is given by

fsxg ¼ ½D�fexg ð3:10:14Þ

½D� ¼ ½E� ð3:10:15Þwhere

for the one-dimensional stress-strain relationship matrix and E is the modulus of elas-
ticity. Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as

fsxg ¼ ½D�½B�fdg ð3:10:16Þ

Using Eq. (3.10.7) expressed in matrix notation form, we have the total potential
energy given by

pp ¼
A

2

ðL

0

fsxgTfexg dx�fdgTfPg�
ðð

S1

fusgTfTxg dS�
ðð

V

ð
fugTfX bg dV ð3:10:17Þ

where fPg now represents the concentrated nodal loads and where in general both
fsxg and fexg are column matrices. For proper matrix multiplication, we must place
the transpose on fsxg. Similarly, fug and fTxg in general are column matrices, so
for proper matrix multiplication, fug is transposed in Eq. (3.10.17).

Using Eqs. (3.10.8), (3.10.12), and (3.10.16) in Eq. (3.10.17), we obtain

pp ¼
A

2

ðL

0

fdgT ½B�T ½D�T ½B�fdg dx� fdgTfPg

�
ðð

S1

fdgT ½NS�TfTxg dS �
ðð

V

ð
fdgT ½N�TfX bg dV

ð3:10:18Þ

In Eq. (3.10.18), pp is seen to be a function of fdg; that is, pp ¼ ppðu1; u2Þ. However, ½B�
and ½D�, Eqs. (3.10.13) and (3.10.15), and the nodal degrees of freedom u1 and u2 are not
functions of x. Therefore, integrating the first integral in Eq. (3.10.18) with respect to x yields

pp ¼
AL

2
fdgT ½B�T ½D�T ½B�fdg � fdgTf f g ð3:10:19Þ

f f g ¼ fPg þ
ðð

S1

½NS�TfTxg dS þ
ðð

V

ð
½N�TfX bg dV ð3:10:20Þwhere

From Eq. (3.10.20), we observe three separate types of load contributions from
concentrated nodal forces, surface tractions, and body forces, respectively. We define
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these surface tractions and body-force matrices as

f f sg ¼
ðð

S1

½NS�TfTxg dS ð3:10:20aÞ

f f bg ¼
ðð

V

ð
½N�TfX bg dV ð3:10:20bÞ

The expression for f f g given by Eq. (3.10.20) then describes how certain loads
can be considered to best advantage.

Loads calculated by Eqs. (3.10.20a) and (3.10.20b) are called consistent because
they are based on the same shape functions ½N� used to calculate the element stiffness
matrix. The loads calculated by Eq. (3.10.20a) and (3.10.20b) are also statically equiv-
alent to the original loading; that is, both f f sg and f f bg and the original loads yield
the same resultant force and same moment about an arbitrarily chosen point.

The minimization of pp with respect to each nodal displacement requires that

qpp

qu1
¼ 0 and

qpp

qu2
¼ 0 ð3:10:21Þ

Now we explicitly evaluate pp given by Eq. (3.10.19) to apply Eq. (3.10.21). We define
the following for convenience:

fU �g ¼ fdgT ½B�T ½D�T ½B�fdg ð3:10:22Þ

Using Eqs. (3.10.10), (3.10.13), and (3.10.15) in Eq. (3.10.22) yields

fU �g ¼ ½u1 u2�
� 1

L

1
L

( )
½E� � 1

L

1

L

� 	
u1

u2

� �
ð3:10:23Þ

Simplifying Eq. (3.10.23), we obtain

U � ¼ E

L2
ðu2

1 � 2u1u2 þ u2
2Þ ð3:10:24Þ

Also, the explicit expression for fdgTf f g is

fdgTf f g ¼ u1 f 1x þ u2 f 2x ð3:10:25Þ

Therefore, using Eqs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying
Eqs. (3.10.21), we obtain

qpp

qu1
¼ AL

2

E

L2
ð2u1 � 2u2Þ

� 	
� f 1x ¼ 0 ð3:10:26Þ
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qpp

qu2
¼ AL

2

E

L2
ð�2u1 þ 2u2Þ

� 	
� f 2x ¼ 0and

In matrix form, we express Eqs. (3.10.26) as

qpp

qfdg ¼
AE

L

1 �1

�1 1

� 	
u1

u2

� �
� f 1x

f 2x

� �
¼ 0

0

� �
ð3:10:27Þ

or, because f f g ¼ ½k�fdg, we have the stiffness matrix for the bar element obtained
from Eq. (3.10.27) as

½k� ¼ AE

L

1 �1

�1 1

� 	
ð3:10:28aÞ

As expected, Eq. (3.10.28a) is identical to the stiffness matrix Eq. (3.1.14) obtained in
Section 3.1.

Now that we have derived the bar stiffness matrix by using the theorem of min-
imum potential energy, we can observe that the strain energy U (the first term on the
right side of Eq. (3.10.18)) can also be expressed in the quadratic form
U ¼ 1=2fdgT ½k�fdg as follows:

U ¼ 1

2
fdgT ½k�fdg ¼ 1

2
½u1u2�

AE

L

1 �1
�1 1

� 	
u1

u2

� �
¼ AE

2L
½u2

1 � 2u1u2 þ u2
2� ð3:10:28bÞ

Finally, instead of the cumbersome process of explicitly evaluating pp, we can
use the matrix differentiation as given by Eq. (2.6.12) and apply it directly to
Eq. (3.10.19) to obtain

qpp

qfdg ¼ AL½B�T ½D�½B�fdg � f f g ¼ 0 ð3:10:29Þ

where ½D�T ¼ ½D� has been used in writing Eq. (3.10.29). The result of the evaluation

of AL½B�T ½D�½B� is then equal to ½k� given by Eq. (3.10.28a). Throughout this text, we
will use this matrix differentiation concept (also see Appendix A), which greatly sim-
plifies the task of evaluating ½k�.

To illustrate the use of Eq. (3.10.20a) to evaluate the equivalent nodal loads for a
bar subjected to axial loading traction Tx, we now solve Example 3.12.

Example 3.12

A bar of length L is subjected to a linearly distributed axial line loading that varies
from zero at node 1 to a maximum of CL at node 2 (Figure 3–29). Determine the en-
ergy equivalent nodal loads.
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SOLUTION:
Using Eq. (3.10.20a) and shape functions from Eq. (3.10.9), we solve for the energy
equivalent nodal forces of the distributed loading as follows:

f f 0g ¼
f 1x

f 2x

( )
¼
ðð

S1

½N�TfTxg dS ¼
ðL

0

1� x

L

x

L

8>><
>>:

9>>=
>>;
fCxg dx ð3:10:30Þ

¼

Cx2

2
� Cx3

3L

Cx3

3L

8>>><
>>>:

9>>>=
>>>;

L

0

¼

CL2

6

CL2

3

8>>><
>>>:

9>>>=
>>>;

ð3:10:31Þ

where the integration was carried out over the length of the bar, because Tx is in units
of force/length.

Note that the total load is the area under the load distribution given by

F ¼ 1

2
ðLÞðCLÞ ¼ CL2

2
ð3:10:32Þ

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal
loads for a linearly varying load are

f 1x ¼
1

3
F ¼ one-third of the total load

ð3:10:33Þ
f 2x ¼

2

3
F ¼ two-thirds of the total load

In summary, for the simple two-noded bar element subjected to a linearly varying
load (triangular loading), place one-third of the total load at the node where the dis-
tributed loading begins (zero end of the load) and two-thirds of the total load at the
node where the peak value of the distributed load ends. 9

We now illustrate (Example 3.13) a complete solution for a bar subjected to a
surface traction loading.

Figure 3–29 Element subjected to linearly varying axial line load
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Example 3.13

For the rod loaded axially as shown in Figure 3–30, determine the axial displacement
and axial stress. Let E ¼ 30� 106 psi, A ¼ 2 in.2, and L ¼ 60 in. Use (a) one and (b)
two elements in the finite element solutions. (In Section 3.11 one-, two-, four-, and
eight-element solutions will be presented from the computer program Algor [9].

(a) One-element solution (Figure 3–31).

SOLUTION:

From Eq. (3.10.20a), the distributed load matrix is evaluated as follows:

fF0g ¼
ðL

0

½N�TfTxg dx ð3:10:34Þ

where Tx is a line load in units of pounds per inch andff0g ¼ fF 0g. Therefore, using
Eq. (3.1.4) for ½N� in Eq. (3.10.34), we obtain

fF0g ¼
ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;
f�10xg dx ð3:10:35Þ

F1x

F2x

� �
¼

�10L2

2
þ 10L2

3

�10L2

3

8>>><
>>>:

9>>>=
>>>;
¼

�10L2

6

�10L2

3

8>>><
>>>:

9>>>=
>>>;
¼

�10ð60Þ2

6

�10ð60Þ2

3

8>>><
>>>:

9>>>=
>>>;

or

Figure 3–31 One-element model

Figure 3–30 Rod subjected to triangular
load distribution
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F1x ¼ �6000 lb F2x ¼ �12;000 lb ð3:10:36Þor

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2—that
is, one-third of the total load is at node 1 and two-thirds of the total load is at node 2.

Using Eq. (3.10.28), we find that the stiffness matrix is given by

½kð1Þ� ¼ 106 1 �1

�1 1

� 	

The element equations are then

106 1 �1

�1 1

� 	
u1

0

� �
¼ �6000

R2x � 12;000

� �
ð3:10:37Þ

Solving Eq. 1 of Eq. (3.10.37), we obtain

u1 ¼ �0:006 in: ð3:10:38Þ

The stress is obtained from Eq. (3.10.14) as

fsxg ¼ ½D�fexg

¼ E½B�fdg

¼ E � 1

L

1

L

� 	
u1

u2

( )

¼ E
u2 � u1

L

� �

¼ 30� 106 0þ 0:006

60

� �

¼ 3000 psi ðTÞ ð3:10:39Þ

(b) Two-element solution (Figure 3–32).

We first obtain the element forces. For element 2, we divide the load into a uni-
form part and a triangular part as shown in Figure 3–32. For the uniform part, half
the total uniform load is placed at each node associated with the element. Therefore,
the total uniform part is

ð30 in:Þð�300 lb=in:Þ ¼ �9000 lb

Figure 3–32 Two-element model
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and using Eq. (3.10.33) for the triangular part of the load, we have, for element 2,

f
ð2Þ

2x

f
ð2Þ

3x

( )
¼

�½12 ð9000Þ þ 1
3 ð4500Þ�

�½12 ð9000Þ þ 2
3 ð4500Þ�

( )
¼ �6000 lb

�7500 lb

� �
ð3:10:40Þ

For element 1, the total force is from the triangle-shaped distributed load only and is
given by

1

2
ð30 in:Þð�300 lb=in:Þ ¼ �4500 lb

On the basis of Eq. (3.10.33), this load is separated into nodal forces as shown:

f
ð1Þ

1x

f
ð1Þ

2x

( )
¼

1
3 ð�4500Þ
2
3 ð�4500Þ

( )
¼ �1500 lb

�3000 lb

� �
ð3:10:41Þ

The final nodal force matrix is then

F1x

F2x

F3x

8<
:

9=
; ¼

�1500

�6000� 3000

R3x � 7500

8<
:

9=
; ð3:10:42Þ

The element stiffness matrices are now

½kð1Þ� ¼ ½kð2Þ� ¼ AE

L=2

1 2

2 3

1 �1

�1 1

� 	
¼ ð2� 106Þ

1 2

2 3

1 �1

�1 1

� 	 ð3:10:43Þ

The assembled global stiffness matrix is

½K � ¼ ð2� 106Þ
1 �1 0

�1 2 �1

0 �1 1

2
4

3
5 lb

in:
ð3:10:44Þ

The assembled global equations are then

ð2� 106Þ
1 �1 0

�1 2 �1

0 �1 1

2
4

3
5 u1

u2

u3 ¼ 0

8<
:

9=
; ¼

�1500

�9000

R3x � 7500

8<
:

9=
; ð3:10:45Þ

where the boundary condition u3 ¼ 0 has been substituted into Eq. (3.10.45). Now,
solving equations 1 and 2 of Eq. (3.10.45), we obtain

u1 ¼ �0:006 in:
ð3:10:46Þ

u2 ¼ �0:00525 in:
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The element stresses are as follows:

Element 1

sx ¼ E � 1

30

1

30

� 	
u1 ¼ �0:006

u2 ¼ �0:00525

� �

¼ 750 psi ðTÞ ð3:10:47Þ

Element 2

sx ¼ E � 1

30

1

30

� 	
u2 ¼ �0:00525

u3 ¼ 0

( )

¼ 5250 psi ðTÞ ð3:10:48Þ
9

d 3.11 Comparison of Finite Element Solution d
to Exact Solution for Bar

We will now compare the finite element solutions for Example 3.13 using one, two,
four, and eight elements to model the bar element and the exact solution. The exact
solution for displacement is obtained by solving the equation

u ¼ 1

AE

ð x

0

PðxÞ dx ð3:11:1Þ

where, using the following free-body diagram,

PðxÞ ¼ 1
2 xð10xÞ ¼ 5x2 lb ð3:11:2Þwe have

Therefore, substituting Eq. (3.11.2) into Eq. (3.11.1), we have

u ¼ 1

AE

ð x

0

5x2 dx

¼ 5x3

3AE
þ C1 ð3:11:3Þ
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Now, applying the boundary condition at x ¼ L, we obtain

uðLÞ ¼ 0 ¼ 5L3

3AE
þ C1

C1 ¼ �
5L3

3AE
ð3:11:4Þor

Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the final expression for displacement

u ¼ 5

3AE
ðx3 � L3Þ ð3:11:5Þ

Substituting A ¼ 2 in.2, E ¼ 30� 106 psi, and L ¼ 60 in. into Eq. (3.11.5), we obtain

u ¼ 2:778� 10�8x3 � 0:006 ð3:11:6Þ
The exact solution for axial stress is obtained by solving the equation

sðxÞ ¼ PðxÞ
A
¼ 5x2

2 in2
¼ 2:5x2 psi ð3:11:7Þ

Figure 3–33 shows a plot of Eq. (3.11.6) along with the finite element solutions
(part of which were obtained in Example 3.13). Some conclusions from these results
follow.

1. The finite element solutions match the exact solution at the node
points. The reason why these nodal values are correct is that the

Figure 3–33 Comparison of exact and finite element solutions for axial displacement
(along length of bar)
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element nodal forces were calculated on the basis of being energy-
equivalent to the distributed load based on the assumed linear
displacement field within each element. (For uniform cross-sectional
bars and beams, the nodal degrees of freedom are exact. In general,
computed nodal degrees of freedom are not exact.)

2. Although the node values for displacement match the exact solution,
the values at locations between the nodes are poor using few elements
(see one- and two-element solutions) because we used a linear
displacement function within each element, whereas the exact solution,
Eq. (3.11.6), is a cubic function. However, because we use increasing
numbers of elements, the finite element solution converges to the exact
solution (see the four- and eight-element solutions in Figure 3–33).

3. The stress is derived from the slope of the displacement curve as
s ¼ Ee ¼ Eðdu=dxÞ. Therefore, by the finite element solution, because
u is a linear function in each element, axial stress is constant in each
element. It then takes even more elements to model the first derivative
of the displacement function or, equivalently, the axial stress. This is
shown in Figure 3–34, where the best results occur for the eight-
element solution.

4. The best approximation of the stress occurs at the midpoint of the
element, not at the nodes (Figure 3–34). This is because the derivative
of displacement is better predicted between the nodes than at the
nodes.

5. The stress is not continuous across element boundaries. Therefore,
equilibrium is not satisfied across element boundaries. Also, equilibrium

Figure 3–34 Comparison of exact and finite element solutions for axial stress (along
length of bar)
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within each element is, in general, not satisfied. This is shown in
Figure 3–35 for element 1 in the two-element solution and element 1 in
the eight-element solution [in the eight-element solution the forces are
obtained from the Algor computer code [9]]. As the number of
elements used increases, the discontinuity in the stress decreases across
element boundaries, and the approximation of equilibrium improves.

Finally, in Figure 3–36, we show the convergence of axial stress at the fixed end
ðx ¼ LÞ as the number of elements increases.

However, if we formulate the problem in a customary general way, as
described in detail in Chapter 4 for beams subjected to distributed loading, we
can obtain the exact stress distribution with any of the models used. That is, let-
tingf f g ¼ ½k�fdg�f f0g, whereff0g is the initial nodal replacement force system of
the distributed load on each element, we subtract the initial replacement force
system from the ½k�fdg result. This yields the nodal forces in each element. For
example, considering element 1 of the two-element model, we have [see also

Figure 3–35 Free-body diagram of element 1 in both two- and eight-element
models, showing that equilibrium is not satisfied
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Eqs. (3.10.33) and (3.10.41)]

ff0g ¼
�1500 lb

�3000 lb

� �

Using ff g ¼ ½k�fdg �ff0g, we obtain

ff g ¼ 2ð30� 106Þ
ð30 in:Þ

1 �1

�1 1

" #
�0:006 in:

�0:00525 in:

( )
�
�1500 lb

�3000 lb

( )

¼
�1500þ 1500

1500þ 3000

( )
¼

0

4500

( )

as the actual nodal forces. Drawing a free-body diagram of element 1, we have

X
Fx ¼ 0: � 1

2
ð300 lb=in:Þð30 in:Þ þ 4500 lb ¼ 0

For other kinds of elements (other than beams), this adjustment is ignored in practice.
The adjustment is less important for plane and solid elements than for beams. Also,
these adjustments are more difficult to formulate for an element of general shape.

d 3.12 Galerkin’s Residual Method and Its Use to d
Derive the One-Dimensional Bar Element Equations

General Formulation

We developed the bar finite element equations by the direct method in Section 3.1 and
by the potential energy method (one of a number of variational methods) in Sec-
tion 3.10. In fields other than structural/solid mechanics, it is quite probable that a var-
iational principle, analogous to the principle of minimum potential energy, for instance,
may not be known or even exist. In some flow problems in fluid mechanics and in mass

Figure 3–36 Axial stress at fixed end as number of elements increases
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transport problems (Chapter 13), we often have only the differential equation and
boundary conditions available. However, the finite element method can still be applied.

The methods of weighted residuals applied directly to the differential equa-
tion can be used to develop the finite element equations. In this section, we describe
Galerkin’s residual method in general and then apply it to the bar element. This devel-
opment provides the basis for later applications of Galerkin’s method to the beam
element in Chapter 4 and to the nonstructural heat-transfer element (specifically, the
one-dimensional combined conduction, convection, and mass transport element
described in Chapter 13). Because of the mass transport phenomena, the variational
formulation is not known (or certainly is difficult to obtain), so Galerkin’s method
is necessarily applied to develop the finite element equations.

There are a number of other residual methods. Among them are collocation,
least squares, and subdomain as described in Section 3.13. (For more on these meth-
ods, see Reference [5].)

In weighted residual methods, a trial or approximate function is chosen to ap-
proximate the independent variable, such as a displacement or a temperature, in a
problem defined by a differential equation. This trial function will not, in general, sat-
isfy the governing differential equation. Thus substituting the trial function into the dif-
ferential equation results in a residual over the whole region of the problem as follows:ðð

V

ð
R dV ¼ minimum ð3:12:1Þ

In the residual method, we require that a weighted value of the residual be a min-
imum over the whole region. The weighting functions allow the weighted integral of
residuals to go to zero. If we denote the weighting function by W , the general form
of the weighted residual integral isðð

V

ð
RW dV ¼ 0 ð3:12:2Þ

Using Galerkin’s method, we choose the interpolation function, such as
Eq. (3.1.3), in terms of Ni shape functions for the independent variable in the differen-
tial equation. In general, this substitution yields the residual R0 0. By the Galerkin cri-
terion, the shape functions Ni are chosen to play the role of the weighting functions W .
Thus for each i, we haveðð

V

ð
RNi dV ¼ 0 ði ¼ 1; 2; . . . ; nÞ ð3:12:3Þ

Equation (3.12.3) results in a total of n equations. Equation (3.12.3) applies to points
within the region of a body without reference to boundary conditions such as specified
applied loads or displacements. To obtain boundary conditions, we apply integration
by parts to Eq. (3.12.3), which yields integrals applicable for the region and its boundary.

Bar Element Formulation

We now illustrate Galerkin’s method to formulate the bar element stiffness equations.
We begin with the basic differential equation, without distributed load, derived in
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Section 3.1 as

d

dx
AE

du

dx

� �
¼ 0 ð3:12:4Þ

where constants A and E are now assumed. The residual R is now defined to be
Eq. (3.12.4). Applying Galerkin’s criterion [Eq. (3.12.3)] to Eq. (3.12.4), we have

ðL

0

d

dx
AE

du

dx

� �
Ni dx ¼ 0 ði ¼ 1; 2Þ ð3:12:5Þ

We now apply integration by parts to Eq. (3.12.5). Integration by parts is given in
general by ð

u dv ¼ uv�
ð

v du ð3:12:6Þ

where u and v are simply variables in the general equation. Letting

u ¼ Ni du ¼ dNi

dx
dx

ð3:12:7Þ
dv ¼ d

dx
AE

du

dx

� �
dx v ¼ AE

du

dx

in Eq. (3.12.5) and integrating by parts according to Eq. (3.12.6), we find that
Eq. (3.12.5) becomes

NiAE
du

dx

� �����
L

0

�
ðL

0

AE
du

dx

dNi

dx
dx ¼ 0 ð3:12:8Þ

where the integration by parts introduces the boundary conditions.
Recall that, because u ¼ ½N�fdg, we have

du

dx
¼ dN1

dx
u1 þ

dN2

dx
u2 ð3:12:9Þ

or, when Eqs. (3.1.4) are used for N1 ¼ 1� x=L and N2 ¼ x=L,

du

dx
¼ � 1

L

1

L

� 	
u1

u2

� �
ð3:12:10Þ

Using Eq. (3.12.10) in Eq. (3.12.8), we then express Eq. (3.12.8) as

AE

ðL

0

dNi

dx
� 1

L

1

L

� 	
dx

u1

u2

� �
¼ NiAE

du

dx

� �����
L

0

ði ¼ 1; 2Þ ð3:12:11Þ

Equation (3.12.11) is really two equations (one for Ni ¼ N1 and one for Ni ¼ N2).
First, using the weighting function Ni ¼ N1, we have

AE

ðL

0

dN1

dx
� 1

L

1

L

� 	
dx

u1

u2

� �
¼ N1AE

du

dx

� �����
L

0

ð3:12:12Þ
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Substituting for dN1=dx, we obtain

AE

ðL

0

� 1

L

� 	
� 1

L

1

L

� 	
dx

u1

u2

� �
¼ f 1x ð3:12:13Þ

where f 1x ¼ AEðdu=dxÞ because N1 ¼ 1 at x ¼ 0 and N1 ¼ 0 at x ¼ L. Evaluating
Eq. (3.12.13) yields

AE

L
ðu1 � u2Þ ¼ f 1x ð3:12:14Þ

Similarly, using Ni ¼ N2, we obtain

AE

ðL

0

1

L

� 	
� 1

L

1

L

� 	
dx

u1

u2

� �
¼ N2AE

du

dx

� �����
L

0

ð3:12:15Þ

Simplifying Eq. (3.12.15) yields

AE

L
ðu2 � u1Þ ¼ f 2x ð3:12:16Þ

where f 2x ¼ AEðdu=dxÞ because N2 ¼ 1 at x ¼ L and N2 ¼ 0 at x ¼ 0. Equations
(3.12.14) and (3.12.16) are then seen to be the same as Eqs. (3.1.13) and (3.10.27)
derived, respectively, by the direct and the variational method.

d 3.13 Other Residual Methods and Their d
Application to a One-Dimensional Bar
Problem

As indicated in Section 3.12 when describing Galerkin’s residual method, weighted re-
sidual methods are based on assuming an approximate solution to the governing dif-
ferential equation for the given problem. The assumed or trial solution is typically a
displacement or a temperature function that must be made to satisfy the initial and
boundary conditions of the problem. This trial solution will not, in general, satisfy
the governing differential equation. Thus, substituting the trial function into the differ-
ential equation will result in some residuals or errors. Each residual method requires
the error to vanish over some chosen intervals or at some chosen points. To demon-
strate this concept, we will solve the problem of a rod subjected to a triangular load
distribution as shown in Figure 3–30 (see Section 3.10) for which we also have an
exact solution for the axial displacement given by Eq. (3.11.5) in Section 3.11. We
will illustrate four common weighted residual methods: collocation, subdomain, least

squares, and Galerkin’s method.

It is important to note that the primary intent in this section is to introduce you
to the general concepts of these other weighted residual methods through a simple
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example. You should note that we will assume a displacement solution that will in gen-
eral yield an approximate solution (in our example the assumed displacement function
yields an exact solution) over the whole domain of the problem (the rod previously
solved in Section 13.10). As you have seen already for the spring and bar elements,
we have assumed a linear function over each spring or bar element, and then combined
the element solutions as was illustrated in Section 3.10 for the same rod solved in this
section. It is common practice to use the simple linear function in each element of
a finite element model, with an increasing number of elements used to model the
rod yielding a closer and closer approximation to the actual displacement as seen in
Figure 3–33.

For clarity’s sake, Figure 3–37(a) shows the problem we are solving, along with
a free-body diagram of a section of the rod with the internal axial force PðxÞ shown in
Figure 3–37(b).

The governing differential equation for the axial displacement, u, is given by

AE
du

dx

� �
� PðxÞ ¼ 0 ð3:13:1Þ

where the internal axial force is PðxÞ ¼ 5x2. The boundary condition is uðx ¼ LÞ ¼ 0.
The method of weighted residuals requires us to assume an approximation func-

tion for the displacement. This approximate solution must satisfy the boundary con-
dition of the problem. Here we assume the following function:

uðxÞ ¼ c1ðx� LÞ þ c2ðx� LÞ2 þ c3ðx� LÞ3 ð3:13:2Þ

where c1, c2 and c3 are unknown coefficients. Equation (3.13.2) also satisfies the
boundary condition given by uðx ¼ LÞ ¼ 0.

Substituting Eq. (3.13.2) for u into the governing differential equation,
Eq. (3.13.1), results in the following error function, R:

AE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2 ¼ R ð3:13:3Þ

We now illustrate how to solve the governing differential equation by the four
weighted residual methods.

60 in.

10x lb/in.

(a)

x

10x lb /in.

x

P(x)

(b)

Figure 3–37 (a) Rod subjected to triangular load distribution and (b) free-body
diagram of section of rod
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Collocation Method

The collocation method requires that the error or residual function, R, be forced to
zero at as many points as there are unknown coefficients. Equation (3.13.2) has three
unknown coefficients. Therefore, we will make the error function equal zero at three
points along the rod. We choose the error function to go to zero at x ¼ 0, x ¼ L=3,
and x ¼ 2L=3 as follows:

Rðc; x ¼ 0Þ ¼ 0 ¼ AE½c1 þ 2c2ð�LÞ þ 3c3ð�LÞ2� ¼ 0

Rðc; x ¼ L=3Þ ¼ 0 ¼ AE½c1 þ 2c2ð�2L=3Þ þ 3c3ð�2L=3Þ2� � 5ðL=3Þ2 ¼ 0 ð3:13:4Þ
Rðc; x ¼ 2L=3Þ ¼ 0 ¼ AE½c1 þ 2c2ð�L=3Þ þ 3c3ð�L=3Þ2� � 5ð2L=3Þ2 ¼ 0

The three linear equations, Eq. (3.13.4), can now be solved for the unknown
coefficients, c1, c2 and c3. The result is

c1 ¼ 5L2=ðAEÞ c2 ¼ 5L=ðAEÞ c3 ¼ 5=ð3AEÞ ð3:13:5Þ
Substituting the numerical values, A ¼ 2, E ¼ 30� 106, and L ¼ 60 into Eq.

(3.13.5), we obtain the c’s as:

c1 ¼ 3� 10�4; c2 ¼ 5� 10�6; c3 ¼ 2:778� 10�8 ð3:13:6Þ
Substituting the numerical values for the coefficients given in Eq. (3.13.6) into

Eq. (3.13.2), we obtain the final expression for the axial displacement as

uðxÞ ¼ 3� 10�4ðx� LÞ þ 5� 10�6ðx� LÞ2 þ 2:778� 10�8ðx� LÞ3 ð3:13:7Þ
Because we have chosen a cubic displacement function, Eq. (3.13.2), and the exact

solution, Eq. (3.11.6), is also cubic, the collocation method yields the identical solution
as the exact solution. The plot of the solution is shown in Figure 3–33 on page 130.

Subdomain Method

The subdomain method requires that the integral of the error or residual function over
some selected subintervals be set to zero. The number of subintervals selected must
equal the number of unknown coefficients. Because we have three unknown coefficients
in the rod example, we must make the number of subintervals equal to three. We choose
the subintervals from 0 to L=3, from L=3 to 2L=3, and from 2L=3 to L as follows:

ðL=3

0

R dx ¼ 0 ¼
ðL=3

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gdx

ð2L=3

L=3

R dx ¼ 0 ¼
ð2L=3

L=3

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gdx

ðL

2L=3

R dx ¼ 0 ¼
ðL

2L=3

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gdx

ð3:13:8Þ

where we have used Eq. (3.13.3) for R in Eqs. (3.13.8).

138 d 3 Development of Truss Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Integration of Eqs. (3.13.8) results in three simultaneous linear equations that
can be solved for the coefficients c1, c2 and c3. Using the numerical values for A, E,
and L as previously done, the three coefficients are numerically identical to those
given by Eq. (3.13.6). The resulting axial displacement is then identical to Eq. (3.13.7).

Least Squares Method

The least squares method requires the integral over the length of the rod of the error
function squared to be minimized with respect to each of the unknown coefficients in
the assumed solution, based on the following:

q

qci

ðL

0

R2 dx

0
@

1
A ¼ 0 i ¼ 1; 2; . . . ;N (for N unknown coefficients) ð3:13:9Þ

or equivalently to

ðL

0

R
qR

qci

dx ¼ 0 ð3:13:10Þ

Because we have three unknown coefficients in the approximate solution, we will
perform the integration three times according to Eq. (3.13.10) with three resulting
equations as follows:

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gAE dx ¼ 0

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gAE2ðx� LÞ dx ¼ 0

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gAE3ðx� LÞ2 dx ¼ 0

ð3:13:11Þ

In the first, second, and third of Eqs. (3.13.11), respectively, we have used the
following partial derivatives:

qR

qc1
¼ AE;

qR

qc2
¼ AE2ðx� LÞ; qR

qc3
¼ AE3ðx� LÞ2 ð3:13:12Þ

where R is again the error function defined by Eq. (3.13.3).
Integration of Eqs. (3.13.11) yields three linear equations that are solved for the

three coefficients. The numerical values of the coefficients again are identical to those
of Eq. (3.13.6). Hence, the solution is identical to the exact solution.
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Galerkin’s Method

Galerkin’s method requires the error to be orthogonal1 to some weighting functions
Wi as given previously by Eq. (3.12.2). For the rod example, this integral becomes

ðL

0

RWi dx ¼ 0 I ¼ 1; 2; . . . ;N ð3:13:13Þ

The weighting functions are chosen to be a part of the approximate solution. Be-
cause we have three unknown constants in the approximate solution, we need to gen-
erate three equations. Recall that the assumed solution is the cubic given by
Eq. (3.13.2); therefore, we select the weighting functions to be

W1 ¼ x� L W2 ¼ ðx� LÞ2 W3 ¼ ðx� LÞ3 ð3:13:14Þ

Using the weighting functions from Eq. (3.13.14) successively in Eq. (3.13.13),
along with Eq. (3.13.3) for R, we generate the following three equations:

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gðx� LÞ dx ¼ 0

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gðx� LÞ2 dx ¼ 0

ðL

0

fAE½c1 þ 2c2ðx� LÞ þ 3c3ðx� LÞ2� � 5x2gðx� LÞ3 dx ¼ 0

ð3:13:15Þ

Integration of Eqs. (3.13.15) results in three linear equations that can be solved
for the unknown coefficients. The numerical values are the same as those given by
Eq. (3.13.6). Hence, the solution is identical to the exact solution.

In conclusion, because we assumed the approximate solution in the form of a
cubic in x and the exact solution is also a cubic in x, all residual methods have yielded
the exact solution. The purpose of this section has still been met to illustrate the four
common residual methods to obtain an approximate (or exact in this example) solu-
tion to a known differential equation. The exact solution is shown by Eq. (3.11.6)
and in Figure 3–33 in Section 3.11.

1 The use of the word orthogonal in this context is a generalization of its use with respect to vectors. Here

the ordinary scalar product is replaced by an integral in Eq. (3.13.13). In Eq. (3.13.13), the functions

uðxÞ ¼ R and vðxÞ ¼Wi are said to be orthogonal on the interval 0 � x � L if
Ð L

0 uðxÞvðxÞ dx equals 0.
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d 3.14 Flowchart for Solution of
Three-Dimensional Truss Problems

d

In Figure 3-38, we present a flowchart of a typical finite-element process used for the
analysis of three-dimensional truss problems on the basis of the theory presented in
Chapter 3.

d 3.15 Computer Program Assisted
Step-by-Step Solution for Truss Problem

d

In this section, we present a computer-assisted step-by-step solution of a three-dimensional
truss (space truss) problem solved using a computer program; see Reference [9].

START

Draw the geometry and apply forces
and boundary conditions

Define the element type and properties
(here the truss element is used)

DO JE = 1,NELE

Solve [K]{d} = {F} for {d}

Compute the element stiffness matrix [k]

Compute the bar element forces and stresses

View/Write output results

END

Use the direct stiffness procedure to add
[k] to the proper locations in assemblage

stiffness matrix [K]

Figure 3–38 Flowchart of a truss finite-element program (NELE represents the
number of elements)
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The computer-assisted step-by-step problem uses the truss in Example 3.8 and is
shown in Figure 3–39.

The following steps have been used to determine the x, y, and z displacement
components at node 1 and the stresses in each truss element.

1. The first step is to draw the three truss elements using the standard
drawing program in the finite-element program, Algor [9], ANSYS
[10], etc. This drawing also could be done using other drawing
programs, such as KeyCreator [11] or AutoCAD [12] and then
imported into the finite-element program. This drawing requires
defining a convenient x, y, z coordinate system and then inputting
the x, y, and z coordinates of the two nodes making up each truss
element. When we input the nodal coordinates, we are actually
defining the description of the overall dimensions of the model truss
and the individual elements making up the truss model. When the
individual elements, with their associated nodes, are created, we will
have defined the topology or connectivity (which nodes are connected
to which elements). The element numbering and node numbering are
done internally within the computer program. This drawing process is
normally the most time-consuming part of finite-element analysis. We
often use automatic mesh-generating capabilities for two-and three-
dimensional bodies to reduce the time and error involved with
modeling.

Figure 3–39 Space truss modeled in computer program Algor [9]
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2. The second step is to select the element type for the kind of analysis to
be performed. Here the truss element is selected.

3. The third step is to input the geometric properties for the element.
Here the cross-sectional area, A, is input.

4. The fourth step is to choose the material properties (modulus of

elasticity, E, for a truss element). Here ASTM A 36 steel is selected,
which then means the modulus of elasticity has been input.

5. The fifth step is to apply the boundary conditions to the proper nodes
using the proper boundary condition command. Here pinned boundary

condition is appropriate and applied to the nodes labeled 2, 3, and 4 and
roller condition preventing y displacement to node 1 in Figure 3–39.

6. The sixth step is to apply the nodal load. Here the load of 1000 lb is
applied in the negative-z direction.

7. The seventh step is an optional check of the model. If you choose to
perform this step, you will see the boundary conditions represented by
a triangle at nodes 2, 3, and 4, a circle at node 1, and the load
represented by an arrow pointing in the negative-z direction at node 1.

8. In step eight, we perform the analysis. This means the solution of
simultaneous equations of the form fFg ¼ ½K�fdg for displacement
components x, y, and z at node 1 are determined. The stresses in each
truss element are also determined.

9. In step nine, we select the results relevant for the specific analysis.
Here the displacement plot and axial stress plot are the relevant

0.2755731
0.2480157
0.2204584
0.1929011
0.1653438
0.1377865
0.1102292
0.08267192
0.05511461
0.02755731

Z
Y

X

0

1445.368

Axial stress
lbf/(in2)

Displacement
magnitude

in

(a) (b)

1013.977
582.5861
151.1949
–280.1962
–711.5874
–1142.979
–1574.37
–2005.761
–2437.152
–2868.543

Figure 3–40 (a) Displacement magnitude plot and (b) axial stress plot for truss of Figure 3–39
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quantities for design. Figures 3–40(a) and (b) show the maximum
displacement plot and axial stress plot for the truss. The largest stress
of �2850 psi (negative sign indicates compressive stress) is in the
lower element (element three). The stresses in elements one and two
are �945 psi and 1440 psi, respectively.

d Summary Equations

Displacement function assumed for two-noded bar element:

u ¼ a1 þ a2x ð3:1:1Þ
Shape functions for bar:

N1 ¼ 1� x

L
N2 ¼

x

L
ð3:1:4Þ

Stiffness matrix for bar:

½k� ¼ AE

L

1 �1
�1 1

� 	
ð3:1:14Þ

Transformation matrix relating vectors in the plane in two different coordinate
systems:

½T � ¼ C S

�S C

� 	
ð3:3:18Þ

Global stiffness matrix for bar arbitrarily oriented in the plane:

½k� ¼ AE

L

C2 CS �C2 �CS

S2 �CS �S2

C2 CS

Symmetry S2

2
664

3
775 ð3:4:23Þ

Axial stress in a bar:

fsg ¼ ½C0�fdg ð3:5:6Þ

where

½C0� ¼ E

L
½ �C �S C S� ð3:5:8Þ

Transformation matrix relating vectors in three-dimensional space:

½T�� ¼ Cx Cy Cz 0 0 0
0 0 0 Cx Cy Cz

� 	
ð3:7:7Þ
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Stiffness matrix for bar element in space:

½k� ¼ AE

L

C2
x CxCy CxCz �C2

x �CxCy �CxCz

C2
y CyCz �CxCy �C2

y �CyCz

C2
z �CxCz �CyCz �C2

z

C2
x CxCy CxCz

C2
y CyCz

Symmetry C2
z

2
6666664

3
7777775

ð3:7:9Þ

Total potential energy for bar:

pp ¼
AL

2
fdgTfBgT ½D�T ½B�fdg � fdgTff g ð3:10:19Þ

where

ff g ¼ fPg þ
Z Z

S1

½NS�TfTxgdsþ
ZZZ

V

½N�TfXbgdV

Quadratic form of bar strain energy:

U ¼ 1

2
fdgT ½k�fdg ¼ 1

2
½u1 u2�

AE

L

1 �1
�1 1

� 	
u1

u2

� �
¼ AE

2L
½u2

1 � 2u1u2 þ u2
2�

ð3:10:28bÞ
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d Problems

3.1 a. Compute the total stiffness matrix ½K � of the assemblage shown in Figure P3–1
by superimposing the stiffness matrices of the individual bars. Note that ½K �
should be in terms of A1;A2;A3;E1;E2;E3;L1;L2, and L3. Here A;E, and L are
generic symbols used for cross-sectional area, modulus of elasticity, and length,
respectively.

Figure P3–1

b. Now let A1 ¼ A2 ¼ A3 ¼ A;E1 ¼ E2 ¼ E3 ¼ E, and L1 ¼ L2 ¼ L3 ¼ L. If nodes
1 and 4 are fixed and a force P acts at node 3 in the positive x direction, find ex-
pressions for the displacement of nodes 2 and 3 in terms of A;E;L, and P.

c. Now let A ¼ 1 in2, E ¼ 10� 106 psi, L ¼ 10 in., and P ¼ 1000 lb.
i. Determine the numerical values of the displacements of nodes 2 and 3.

ii. Determine the numerical values of the reactions at nodes 1 and 4.
iii. Determine the stresses in elements 1–3.

3.2–3.11 For the bar assemblages shown in Figures P3–2 through P3–11, determine the nodal
displacements, the forces in each element, and the reactions. Use the direct stiffness
method for these problems.

1 m

1 2 3

1 m

5 kN E = 210 GPa
A = 4 × 10–4 m2

Figure P3–2

Figure P3–3

Figure P3–4
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Figure P3–5

Figure P3–6

Figure P3–7

Figure P3–8

Figure P3–9

Figure P3–10
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Figure P3–11

3.12 Solve for the axial displacement and stress in the tapered bar shown in Figure P3–12
using one and then two constant-area elements. Evaluate the area at the center of
each element length. Use that area for each element. Let A0 ¼ 2 in2, L ¼ 20 in.,
E ¼ 10� 106 psi, and P ¼ 1000 lb. Compare your finite element solutions with the
exact solution.

Figure P3–12

3.13 Determine the stiffness matrix for the bar element with end nodes and midlength node
shown in Figure P3–13. Let axial displacement u ¼ a1 þ a2xþ a3x2. (This is a higher-
order element in that strain now varies linearly through the element.)

Figure P3–13

3.14 Consider the following displacement function for the two-noded bar element:

u ¼ aþ bx2

Is this a valid displacement function? Discuss why or why not.
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3.15 For each of the bar elements shown in Figure P3–15, evaluate the global x-y stiffness
matrix.

Figure P3–15

3.16 For the bar elements shown in Figure P3–16, the global displacements have been de-
termined to be u1 ¼ 0:5 in., v1 ¼ 0:0, u2 ¼ 0:25 in., and v2 ¼ 0:75 in. Determine the
local x displacements at each end of the bars. Let E ¼ 12� 106 psi, A ¼ 0:5 in2, and
L ¼ 60 in. for each element.

′

′

Figure P3–16
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3.17 For the bar elements shown in Figure P3–17, the global displacements have been de-
termined to be u1 ¼ 0:0; v1 ¼ 2:5 mm, u2 ¼ 5:0 mm, and v2 ¼ 3:0 mm. Determine the
local x0 displacements at the ends of each bar. Let E ¼ 210 GPa, A ¼ 10� 10�4 m2,
and L ¼ 3 m for each element.

x′

x′

Figure P3–17

3.18 Using the method of Section 3.5, determine the axial stress in each of the bar elements
shown in Figure P3–18.

u1
u2

v1
v2

u1
u2

v1
v2

Figure P3–18
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3.19 a. Assemble the stiffness matrix for the assemblage shown in Figure P3–19 by super-
imposing the stiffness matrices of the springs. Here k is the stiffness of each spring.

b. Find the x and y components of deflection of node 1.

Figure P3–19

3.20 For the plane truss structure shown in Figure P3–20, determine the displacement of
node 2 using the stiffness method. Also determine the stress in element 1. Let A ¼ 5
in2, E ¼ 1� 106 psi, and L ¼ 100 in.

Figure P3–20 Figure P3–21

3.21 Find the horizontal and vertical displacements of node 1 for the truss shown in
Figure P3–21. Assume AE is the same for each element.
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3.22 For the truss shown in Figure P3–22 solve for the horizontal and vertical components of
displacement at node 1 and determine the stress in each element. Also verify force equi-
librium at node 1. All elements have A1 ¼ 1 in.2 and E ¼ 10� 106 psi. Let L ¼ 100 in.

Figure P3–22

3.23 For the truss shown in Figure P3–23, solve for the horizontal and vertical components
of displacement at node 1. Also determine the stress in element 1. Let A ¼ 1 in2,
E ¼ 10:0� 106 psi, and L ¼ 100 in.

Figure P3–23 Figure P3–24

3.24 Determine the nodal displacements and the element forces for the truss shown in
Figure P3–24. Assume all elements have the same AE.

3.25 Now remove the element connecting nodes 2 and 4 in Figure P3–24. Then determine
the nodal displacements and element forces.
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3.26 Now remove both cross elements in Figure P3–24. Can you determine the nodal dis-
placements? If not, why?

3.27 Determine the displacement components at node 3 and the element forces for the
plane truss shown in Figure P3–27. Let A ¼ 3 in2 and E ¼ 30� 106 psi for all ele-
ments. Verify force equilibrium at node 3.

Figure P3–27

3.28 Show that for the transformation matrix ½T � of Eq. (3.4.15), ½T �T ¼ ½T ��1 and hence
Eq. (3.4.21) is indeed correct, thus also illustrating that ½k� ¼ ½T �T ½k0�½T � is the ex-
pression for the global stiffness matrix for an element.

3.29–3.30 For the plane trusses shown in Figures P3–29 and P3–30, determine the horizontal
and vertical displacements of node 1 and the stresses in each element. All elements
have E ¼ 210 GPa and A ¼ 4:0� 10�4 m2.

Figure P3–29 Figure P3–30

3.31 Remove element 1 from Figure P3–30 and solve the problem. Compare the displace-
ments and stresses to the results for Problem 3.30.
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3.32 For the plane truss shown in Figure P3–32, determine the nodal displacements, the
element forces and stresses, and the support reactions. All elements have E ¼ 70 GPa
and A ¼ 3:0� 10�4 m2. Verify force equilibrium at nodes 2 and 4. Use symmetry in
your model.

Figure P3–32

3.33 For the plane trusses supported by the spring at node 1 in Figure P3–33 (a) and (b),
determine the nodal displacements and the stresses in each element. Let E ¼ 210 GPa
and A ¼ 5:0� 10�4 m2 for both truss elements.

1 2

3

4

k = 4000 N/m

2 3
100 kN

1

60° 60°

5 m 5 m

Figure P3–33(a) Figure P3–33(b)

3.34 For the plane truss shown in Figure P3–34, node 2 settles an amount d ¼ 0:05 in.
Determine the forces and stresses in each element due to this settlement. Let E ¼
30� 106 psi and A ¼ 2 in2 for each element.

3.35 For the symmetric plane truss shown in Figure P3–35, determine (a) the deflection of
node 1 and (b) the stress in element 1. AE=L for element 3 is twice AE=L for the other
elements. Let AE=L ¼ 106 lb/in. Then let A ¼ 1 in2, L ¼ 10 in., and E ¼ 10� 106 psi
to obtain numerical results.
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Figure P3–34

Figure P3–35

3.36–3.37 For the space truss elements shown in Figures P3–36 and P3–37, the global displace-
ments at node 1 have been determined to be u1 ¼ 0:1 in., v1 ¼ 0:2 in., and w1 ¼
0:15 in. Determine the displacement along the local x0 axis at node 1 of the elements.
The coordinates, in inches, are shown in the figures.

x′

x′

Figure P3–36 Figure P3–37
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3.38–3.39 For the space truss elements shown in Figures P3–38 and P3–39, the global dis-
placements at node 2 have been determined to be u2 ¼ 5 mm, v2 ¼ 10 mm, and
w2 ¼ 15 mm. Determine the displacement along the local x0 axis at node 2 of the
elements. The coordinates, in meters, are shown in the figures.

x′

x′

Figure P3–38 Figure P3–39

3.40–3.41 For the space trusses shown in Figures P3–40 and P3–41, determine the nodal dis-
placements and the stresses in each element. Let E ¼ 210 GPa and A ¼ 10� 10�4 m2

for all elements. Verify force equilibrium at node 1. The coordinates of each node, in
meters, are shown in the figure. All supports are ball-and-socket joints.

Figure P3–40
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Figure P3–41

3.42 For the space truss subjected to a 1000-lb load in the x direction, as shown in Figure
P3–42, determine the displacement of node 5. Also determine the stresses in each ele-
ment. Let A ¼ 25 � 10�4 m2 and E ¼ 2� 1011 N=m2 for all elements. The coor-
dinates of each node, in inches, are shown in the figure. Nodes 1–4 are supported by
ball-and-socket joints (fixed supports).

Figure P3–42
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3.43 For the space truss subjected to the 4000-lb load acting as shown in Figure P3–43, de-
termine the displacement of node 4. Also determine the stresses in each element. Let A ¼
6 in2 and E ¼ 30� 106 psi for all elements. The coordinates of each node, in inches, are
shown in the figure. Nodes 1–3 are supported by ball-and-socket joints (fixed supports).

Figure P3–43

3.44 Derive Eq. (3.7.21) for stress in space truss elements by a process similar to that used
to derive Eq. (3.5.6) for stress in a plane truss element.

3.45 For the truss shown in Figure P3–45, use symmetry to determine the displacements
of the nodes and the stresses in each element. All elements have E ¼ 200 GPa. Ele-
ments 1, 2, 4, and 5 have A ¼ 10 � 10�4 m2 and element 3 has A ¼ 20 � 10�4 m2. Let
dimension a ¼ 2 m and P ¼ 40 kN. The supports at nodes 1 and 4 are defined.

3
4

a

1
4

a

P
1

a a

1

3

2

4
4

3
52

Figure P3–45

3.46 For the truss shown in Figure P3–46, use symmetry to determine the displacements
of the nodes and the stresses in each element. All elements have E ¼ 30� 106 psi.
Elements 1, 2, 4, and 5 have A ¼ 10 in2 and element 3 has A ¼ 20 in2.
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Figure P3–46

3.47 All elements of the structure in Figure P3–47 have the same AE except element 1,
which has an axial stiffness of 2AE. Find the displacements of the nodes and the
stresses in elements 2, 3, and 4 by using symmetry. Check equilibrium at node 4. You
might want to use the results obtained from the stiffness matrix of Problem 3.24.

Figure P3–47

3.48 For the roof truss shown in Figure P3–48, use symmetry to determine the displace-
ments of the nodes and the stresses in each element. All elements have E ¼ 210 GPa
and A ¼ 10� 10�4 m2.

Figure P3–48
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3.49–3.51 For the plane trusses with inclined supports shown in Figures P3–49 through P3–51,
solve for the nodal displacements and element stresses in the bars. Let A ¼ 2 in2,
E ¼ 30� 106 psi, and L ¼ 30 in. for each truss.

Figure P3–49

Figure P3–50 Figure P3–51

3.52 Use the principle of minimum potential energy developed in Section 3.10 to solve
the bar problems shown in Figure P3–52. That is, plot the total potential energy for
variations in the displacement of the free end of the bar to determine the minimum
potential energy. Observe that the displacement that yields the minimum potential
energy also yields the stable equilibrium position. Use displacement increments of
0.002 in., beginning with x ¼ �0:004. Let E ¼ 30� 106 psi and A ¼ 2 in2 for the
bars.

Figure P3–52

3.53 Derive the stiffness matrix for the nonprismatic bar shown in Figure P3–53 using the
principle of minimum potential energy. Let E be constant.
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Figure P3–53

3.54 For the bar subjected to the linear varying axial load shown in Figure P3–54, deter-
mine the nodal displacements and axial stress distribution using (a) two equal-length
elements and (b) four equal-length elements. Let A ¼ 2 in.2 and E ¼ 30� 106 psi.
Compare the finite element solution with an exact solution.

Figure P3–54

3.55 For the bar subjected to the uniform line load in the axial direction shown in Figure
P3–55, determine the nodal displacements and axial stress distribution using (a) two
equal-length elements and (b) four equal-length elements. Compare the finite element
results with an exact solution. Let A ¼ 2 in2 and E ¼ 30� 106 psi.

3.56 For the bar fixed at both ends and subjected to the uniformly distributed loading
shown in Figure P3–56, determine the displacement at the middle of the bar and the
stress in the bar. Let A ¼ 2 in2 and E ¼ 30� 106 psi.

Figure P3–55 Figure P3–56

3.57 For the bar hanging under its own weight shown in Figure P3–57, determine the
nodal displacements using (a) two equal-length elements and (b) four equal-length
elements. Let A ¼ 2 in2, E ¼ 30� 106 psi, and weight density rw ¼ 0:283 lb/in3.
(Hint: The internal force is a function of x. Use the potential energy approach.)
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Figure P3–57

3.58 Determine the energy equivalent nodal forces for the axial distributed loading shown
acting on the bar elements in Figure P3–58.

Figure P3–58

3.59 Solve Problem 3.55 for the axial displacement in the bar using collocation, sub-
domain, least squares, and Galerkin’s methods. Choose a quadratic polynomial
uðxÞ ¼ c1xþ c2x2 in each method. Compare these weighted residual method solutions
to the exact solution.

3.60 For the tapered bar shown in Figure P3–60 with cross sectional areas A1 ¼ 2 in.2 and
A2 ¼ 1 in.2 at each end, use the collocation, subdomain, least squares, and Galerkin’s
methods to obtain the displacement in the bar. Compare these weighted residual sol-
utions to the exact solution. Choose a cubic polynomial uðxÞ ¼ c1xþ c2x2 þ c3x3.

L = 20 in.

x
A2

A1
P = 1000 lb 

E = 10 × 106 psi

Figure P3–60

3.61 For the bar shown in Figure P3–61 subjected to the linear varying axial load, deter-
mine the displacements and stresses using (a) one and then two finite element models
and (b) the collocation, subdomain, least squares, and Galerkin’s methods assuming a
cubic polynomial of the form uðxÞ ¼ c1xþ c2x2 þ c3x3.
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AE = 2 × 104 kN

T(x) = 10x kN/m

3.0 m

x

Figure P3–61

3.62–3.70 Use a computer program to solve the truss design problems shown in Figures P3–62
through P3–70. Determine the single most critical cross-sectional area based on
maximum allowable yield strength or buckling strength (based on either Euler’s or
Johnson’s formula as relevant) using a factor of safety (FS) listed next to each truss.
Recommend a common structural shape and size for each truss. List the largest
three nodal displacements and their locations. Also include a plot of the deflected
shape of the truss and a principal stress plot.

25'

10'

10' 25'

F = 20 kip

18'

15'

3'

4000 lb 16,000 lb

Figure P3–62 Derrick truss (FS ¼ 4:0Þ Figure P3–63 Truss bridge (FS ¼ 3:0Þ
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Figure P3–64 Tower (FS ¼ 2:5Þ Figure P3–65 Boxcar lift (FS ¼ 3:0Þ
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Figure P3–66 Howe scissors roof truss (FS ¼ 2:0Þ Figure P3–67 Stadium roof truss
(FS ¼ 3:0)
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Figure P3–68 Space truss with ball-and-
socket joints at C, D, E, and G (FS ¼ 3:0)

Figure P3–69 Space truss with ball-
and-socket joints at A, B, and D
(FS ¼ 2:0Þ
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DEVELOPMENT OF

BEAM EQUATIONSd

CHAPTER OBJECTIVES

. To review basic concepts of beam bending.

. To derive the stiffness matrix for a beam element.

. To demonstrate beam analysis using the direct stiffness method.

. To illustrate the effects of shear deformation in shorter beams.

. To introduce the work-equivalence method for replacing distributed loading by a
set of discrete loads.

. To introduce the general formulation for solving beam problems with distributed
loading acting on them.

. To analyze beams with distributed loading acting on them.

. To compare the finite element solution to an exact solution for a beam.

. To derive the stiffness matrix for the beam element with nodal hinge.

. To show how the potential energy method can be used to derive the beam ele-
ment equations.

. To apply Galerkin’s residual method for deriving the beam element equations.

Introduction

We begin this chapter by developing the stiffness matrix for the bending of a beam
element, the most common of all structural elements as evidenced by its prominence
in buildings, bridges, towers, and many other structures. The beam element is con-
sidered to be straight and to have constant cross-sectional area. We will first derive
the beam element stiffness matrix by using the principles developed for simple
beam theory.

We will then present simple examples to illustrate the assemblage of beam
element stiffness matrices and the solution of beam problems by the direct stiffness
method presented in Chapter 2. The solution of a beam problem illustrates that the
degrees of freedom associated with a node are a transverse displacement and a rota-
tion. We will include the nodal shear forces and bending moments and the resulting
shear force and bending moment diagrams as part of the total solution.

C H A P T E R 4
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Next, we will discuss procedures for handling distributed loading, because
beams and frames are often subjected to distributed loading as well as concentrated
nodal loading. We will follow the discussion with solutions of beams subjected to dis-
tributed loading and compare a finite element solution to an exact solution for a beam
subjected to a distributed loading.

We will then develop the beam element stiffness matrix for a beam element with
a nodal hinge and illustrate the solution of a beam with an internal hinge.

To further acquaint you with the potential energy approach for developing
stiffness matrices and equations, we will again develop the beam bending element
equations using this approach. We hope to increase your confidence in this approach.
It will be used throughout much of this text to develop stiffness matrices and equations
for more complex elements, such as two-dimensional (plane) stress, axisymmetric
stress, and three-dimensional stress.

Finally, the Galerkin residual method is applied to derive the beam element
equations.

The concepts presented in this chapter are prerequisite to understanding the
concepts for frame analysis presented in Chapter 5.

d 4.1 Beam Stiffness d
In this section, we will derive the stiffness matrix for a simple beam element. A beam is

a long, slender structural member generally subjected to transverse loading that produces

significant bending effects as opposed to twisting or axial effects. This bending deforma-
tion is measured as a transverse displacement and a rotation. Hence, the degrees of
freedom considered per node are a transverse displacement and a rotation (as opposed
to only an axial displacement for the bar element of Chapter 3).

Consider the beam element shown in Figure 4–1. The beam is of length L with
axial local coordinate x and transverse local coordinate y. The local transverse nodal
displacements are given by vi’s and the rotations by fi’s. The local nodal forces are
given by fiy’s and the bending moments by mi’s as shown. We initially neglect all
axial effects.

v2v1

Figure 4–1 Beam element with positive nodal displacements, rotations, forces, and
moments
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At all nodes, the following sign conventions are used:

1. Moments are positive in the counterclockwise direction.
2. Rotations are positive in the counterclockwise direction.
3. Forces are positive in the positive y direction.
4. Displacements are positive in the positive y direction.

Figure 4–2 indicates the sign conventions used in simple beam theory for positive
shear forces V and bending moments m.

Beam Stiffness Matrix Based on Euler-Bernoulli Beam Theory
(Considering Bending Deformations Only)

The differential equation governing elementary linear-elastic beam behavior [1] (called
the Euler-Bernoulli beam as derived by Euler and Bernoulli) is based on plane cross
sections perpendicular to the longitudinal centroidal axis of the beam before bending
occurs remaining plane and perpendicular to the longitudinal axis after bend-
ing occurs. This is illustrated in Figure 4–3, where a plane through vertical line a�c

(Figure 4–3(a)) is perpendicular to the longitudinal x axis before bending, and this
same plane through a0�c0 (rotating through angle f in Figure 4–3(b)) remains perpen-
dicular to the bent x axis after bending. This occurs in practice only when a pure

(c) Differential beam element

y, 

x
a

c

b

d
c ′ d ′

a′ b′

φ

(a) Undeformed beam under load w(x) (b) Deformed beam due to applied loading

w(x)

Figure 4–3 Beam under distributed load

Figure 4–2 Beam theory sign conventions for shear forces and bending moments
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couple or constant moment exists in the beam. However it is a reasonable assumption
that yields equations that quite accurately predict beam behavior for most practical
beams.

The differential equation is derived as follows. Consider the beam shown in
Figure 4–3 subjected to a distributed loading wðxÞ (force/length). From the force and
moment equilibrium of a differential element of the beam, shown in Figure 4–3(c),
we have

SFy ¼ 0: V � ðV þ dVÞ � wðxÞ dx ¼ 0 (4.1.1a)

Or, simplifying Eq. (4.1.1a), we obtain

�w dx� dV ¼ 0 or w ¼ � dV

dx
(4.1.1b)

SM2 ¼ 0: �Vdxþ dM þ wðxÞ dx
dx

2

� �
¼ 0 or V ¼ dM

dx
(4.1.1c)

The final form of Eq. (4.1.1c), relating the shear force to the bending moment, is
obtained by dividing the left equation by dx and then taking the limit of the equation
as dx approaches 0. The wðxÞ term then disappears.

Also, the curvature k of the beam is related to the moment by

k ¼ 1

r
¼ M

EI
(4.1.1d)

where r is the radius of the deflected curve shown in Figure 4–4b, v is the transverse
displacement function in the y direction (see Figure 4–4a), E is the modulus of elastic-
ity, and I is the principal moment of inertia about the z axis (where the z axis is per-
pendicular to the x and y axes). (I ¼ bh3=12 for a rectangular cross section of base b

and height h shown in Figure 4–4c.)
The curvature for small slopes f ¼ dv=dx is given by

k ¼ d 2v

dx2
(4.1.1e)

Using Eq. (4.1.1e) in (4.1.1d), we obtain

d 2v

dx2
¼ M

EI
(4.1.1f )

Solving Eq. (4.1.1f ) for M and substituting this result into (4.1.1c) and (4.1.1b),
we obtain

d 2

dx2
EI

d 2v

dx2

� �
¼ �wðxÞ (4.1.1g)

For constant EI and only nodal forces and moments, Eq. (4.1.1g) becomes

EI
d 4v

dx4
¼ 0 (4.1.1h)
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We will now follow the steps outlined in Chapter 1 to develop the stiffness
matrix and equations for a beam element and then to illustrate complete solutions
for beams.

Step 1 Select the Element Type

Represent the beam by labeling nodes at each end and in general by labeling the ele-
ment number (Figure 4–1).

Step 2 Select a Displacement Function

Assume the transverse displacement variation through the element length to be

vðxÞ ¼ a1x3 þ a2x2 þ a3xþ a4 ð4:1:2Þ

The complete cubic displacement function Eq. (4.1.2) is appropriate because there are

four total degrees of freedom (a transverse displacement vi and a small rotation fi

at each node). The cubic function also satisfies the basic beam differential equation—
further justifying its selection. In addition, the cubic function also satisfies the condi-
tions of displacement and slope continuity at nodes shared by two elements.

Figure 4–4 Deflected curve of beam
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Using the same procedure as described in Section 2.2, we express v as a function
of the nodal degrees of freedom v1, v2, f1, and f2 as follows:

vð0Þ ¼ v1 ¼ a4

dvð0Þ
dx
¼ f1 ¼ a3

ð4:1:3Þ
vðLÞ ¼ v2 ¼ a1L

3 þ a2L
2 þ a3Lþ a4

dvðLÞ
dx

¼ f2 ¼ 3a1L
2 þ 2a2Lþ a3

where f ¼ dv=dx for the assumed small rotation f. Solving Eqs. (4.1.3) for a1 through
a4 in terms of the nodal degrees of freedom and substituting into Eq. (4.1.2),
we have

v ¼ 2

L3
ðv1 � v2Þ þ

1

L2
ðf1 þ f2Þ

� �
x3

þ � 3

L2
ðv1 � v2Þ �

1

L
ð2f1 þ f2Þ

� �
x2 þ f1xþ v1 ð4:1:4Þ

In matrix form, we express Eq. (4.1.4) as

v ¼ ½N�fdg ð4:1:5Þ

fdg ¼

v1

f1

v2

f2

8>>><
>>>:

9>>>=
>>>;

(4.1.6a)where

½N� ¼ ½N1 N2 N3 N4� (4.1.6b)and where

N1 ¼
1

L3
ð2x3 � 3x2Lþ L3Þ N2 ¼

1

L3
ðx3L� 2x2L2 þ xL3Þ

ð4:1:7Þ
N3 ¼

1

L3
ð�2x3 þ 3x2LÞ N4 ¼

1

L3
ðx3L� x2L2Þ

and

N1, N2, N3, and N4 are called the shape functions for a beam element. These cubic
shape (or interpolation) functions are known as Hermite cubic interpolation (or cubic

spline) functions. For the beam element, N1 ¼ 1 when evaluated at node 1 and
N1 ¼ 0 when evaluated at node 2. Because N2 is associated with f1, we have, from
the second of Eqs. (4.1.7), ðdN2=dxÞ ¼ 1 when evaluated at node 1. Shape functions
N3 and N4 have analogous results for node 2.

Step 3 Define the Strain=Displacement
and Stress=Strain Relationships

Assume the following axial strain/displacement relationship to be valid:

exðx; yÞ ¼
du

dx
ð4:1:8Þ
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where u is the axial displacement function. From the deformed configuration of the beam
shown in Figure 4–5, we relate the axial displacement to the transverse displacement by

u ¼ �y
dv

dx
ð4:1:9Þ

where we should recall from elementary beam theory [1] the basic assumption
that cross sections of the beam (such as cross section ABCD) that are planar before
bending deformation remain planar after deformation and, in general, rotate through
a small angle ðdv=dxÞ. Using Eq. (4.1.9) in Eq. (4.1.8), we obtain

exðx; yÞ ¼ �y
d 2v

dx2
ð4:1:10aÞ

Also using Hooke’s law (sx ¼ E ex) and substituting Eq. (4.1.1f) for d2v=dx2 into
Eq. (4.1.10a), we obtain the beam flexure or bending stress formula as

sx ¼
�My

I
ð4:1:10bÞ

From elementary beam theory, the bending moment and shear force are related to the
transverse displacement function. Because we will use these relationships in the deriva-
tion of the beam element stiffness matrix, we now present them as

mðxÞ ¼ EI
d 2v

dx2
V ¼ EI

d 3v

dx3
ð4:1:11Þ

Step 4 Derive the Element Stiffness Matrix and Equations

First, derive the element stiffness matrix and equations using a direct equilibrium
approach. We now relate the nodal and beam theory sign conventions for shear forces

Figure 4–5 Beam segment (a) before deformation and (b) after deformation;
(c) Angle of rotation of cross section ABCD
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and bending moments (Figures 4–1 and 4–2), along with Eqs. (4.1.4) and (4.1.11),
to obtain

f1y ¼ V ¼ EI
d 3vð0Þ

dx3
¼ EI

L3
ð12v1 þ 6Lf1 � 12v2 þ 6Lf2Þ

m1 ¼ �m ¼ �EI
d 2vð0Þ

dx2
¼ EI

L3
ð6Lv1 þ 4L2f1 � 6Lv2 þ 2L2f2Þ

ð4:1:12Þ
f2y ¼ �V ¼ �EI

d 3vðLÞ
dx3

¼ EI

L3
ð�12v1 � 6Lf1 þ 12v2 � 6Lf2Þ

m2 ¼ m ¼ EI
d 2vðLÞ

dx2
¼ EI

L3
ð6Lv1 þ 2L2f1 � 6Lv2 þ 4L2f2Þ

where the minus signs in the second and third of Eqs. (4.1.12) are the result of oppo-
site nodal and beam theory positive bending moment conventions at node 1 and
opposite nodal and beam theory positive shear force conventions at node 2 as seen
by comparing Figures 4–1 and 4–2. Equations (4.1.12) relate the nodal forces to the
nodal displacements. In matrix form, Eqs. (4.1.12) become8>>>><

>>>>:

f 1y

m1

f 2y

m2

9>>>>=
>>>>;
¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775

v1

f1

v2

f2

8>>><
>>>:

9>>>=
>>>;

ð4:1:13Þ

where the stiffness matrix is then

½k� ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775 ð4:1:14Þ

Equation (4.1.13) indicates that ½k� relates transverse forces and bending moments to
transverse displacements and rotations, whereas axial effects have been neglected.

In the beam element stiffness matrix (Eq. (4.1.14)) derived in this section, it is
assumed that the beam is long and slender; that is, the length, L, to depth, h, dimension
ratio of the beam is large. In this case, the deflection due to bending that is predicted by
using the stiffness matrix from Eq. (4.1.14) is quite adequate. However, for short, deep
beams the transverse shear deformation can be significant and can have the same order
of magnitude contribution to the total deformation of the beam. This is seen by the
expressions for the bending and shear contributions to the deflection of a beam,
where the bending contribution is of order ðL=hÞ3, whereas the shear contribution is
only of order ðL=hÞ. A general rule for rectangular cross-section beams, is that for a
length at least eight times the depth, the transverse shear deflection is less than five per-
cent of the bending deflection [4]. Castigliano’s method for finding beam and frame
deflections is a convenient way to include the effects of the transverse shear term as
shown in Reference [4]. The derivation of the stiffness matrix for a beam including
the transverse shear deformation contribution is given in a number of references [5–8].
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The inclusion of the shear deformation in beam theory with application to vibration
problems was developed by Timoshenko and is known as the Timoshenko beam [9–10].

Beam Stiffness Matrix Based on Timoshenko Beam Theory
(Including Transverse Shear Deformation)

The shear deformation beam theory is derived as follows. Instead of plane sections
remaining plane after bending occurs as shown previously in Figure 4–5, the
shear deformation (deformation due to the shear force V ) is now included. Referring
to Figure 4–6, we observe a section of a beam of differential length dx with the cross
section assumed to remain plane but no longer perpendicular to the neutral axis
(x axis) due to the inclusion of the shear force resulting in a rotation term indicated
by b. The total deflection of the beam at a point x now consists of two parts, one
caused by bending and one by shear force, so that the slope of the deflected curve at
point x is now given by

dv

dx
¼ fðxÞ þ bðxÞ ð4:1:15aÞ

where rotation due to bending moment and due to transverse shear force are given, re-
spectively, by fðxÞ and bðxÞ.

V

dx
β(x)

φ(x)

M + M
∂M 
∂xV + ∂V 

∂x (x)

x

(a)

φ2
(1)

φ2
(2)

Element 1

Element 2

φ2
(1) = φ2

(2)
 

≠

(b)

d  2
(1)

dx

d  2
(2)

dx

d  2
(1)

dx

d  2
(2)

dx

Figure 4–6 (a) Element of Timoshenko beam showing shear deformation. Cross
sections are no longer perpendicular to the neutral axis line. (b) Two beam elements
meeting at node 2
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We assume as usual that the linear deflection and angular deflection (slope)
are small.

The relation between bending moment and bending deformation (curvature)
is now

MðxÞ ¼ EI
df ðxÞ

dx
ð4:1:15bÞ

and the relation between the shear force and shear deformation (rotation due to shear)
(shear strain) is given by

VðxÞ ¼ ksAGbðxÞ ð4:1:15cÞ
The difference in dv=dx and f represents the shear strain gyzð¼ bÞ of the beam as

gyz ¼
dv

dx
� f ð4:1:15dÞ

Now consider the differential element in Figure 4–3(c) and Eqs. (4.1.1b) and (4.1.1c)
obtained from summing transverse forces and then summing bending moments.
We now substitute Eq. (4.1.15c) for V and Eq. (4.1.15b) for M into Eqs. (4.1.1b)
and (4.1.1c) along with b from Eq. (4.1.15a) to obtain the two governing differential
equations as

d

dx
ksAG

dv

dx
� f

� �� �
¼ �w ð4:1:15eÞ

d

dx
EI

df

dx

� �
þ ksAG

dv

dx
� f

� �
¼ 0 ð4:1:15fÞ

To derive the stiffness matrix for the beam element including transverse shear
deformation, we assume the transverse displacement to be given by the cubic function
in Eq. (4.1.2). In a manner similar to [8], we choose transverse shear strain g consistent
with the cubic polynomial for vðxÞ, such that g is a constant given by

g ¼ c ð4:1:15gÞ
Using the cubic displacement function for v, the slope relation given by Eq. (4.1.15a),
and the shear strain Eq. (4.1.15g), along with the bending moment-curvature relation,
Eq. (4.1.15b) and the shear force-shear strain relation Eq. (4.1.15c), in the bending
moment–shear force relation Eq. (4.1.1c), we obtain

c ¼ 6a1g ð4:1:15hÞ
where g ¼ EI=ksAG and ksA is the shear area. Shear areas, As, vary with cross-
section shapes. For instance, for a rectangular shape As is taken as 0.83 times the
cross section A, for a solid circular cross section it is taken as 0.9 times the cross
section, for a wide-flange cross section it is taken as the thickness of the web times
the full depth of the wide-flange, and for thin-walled cross sections it is taken as two
times the product of the thickness of the wall times the depth of the cross section.

Using Eqs. (4.1.2), (4.1.15a), (4.1.15g), and (4.1.15h) allow f to be expressed as
a polynomial in x as follows:

f ¼ a3 þ 2a2xþ ð3x2 þ 6gÞa1 ð4:1:15iÞ

4.1 Beam Stiffness d 175

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using Eqs. (4.1.2) and (4.1.15i), we can now express the coefficients a1 through
a4 in terms of the nodal displacements v1 and v2 and rotations f1 and f2 of the beam
at the ends x ¼ 0 and x ¼ L as previously done to obtain Eq. (4.1.4) when shear defor-
mation was neglected. The expressions for a1 through a4 are then given as follows:

a1 ¼
2v1 þ Lf1 � 2v2 þ Lf2

LðL2 þ 12gÞ

a2 ¼
�3Lv1 � ð2L2 þ 6gÞf1 þ 3Lv2 þ ð�L2 þ 6gÞf2

LðL2 þ 12gÞ

a3 ¼
�12gv1 þ ðL3 þ 6gLÞf1 þ 12gv2 � 6gLf2

LðL2 þ 12gÞ
a4 ¼ v1

ð4:1:15jÞ

Substituting these a’s into Eq. (4.1.2), we obtain

v ¼ 2v1 þ Lf1 � 2v2 þ Lf2

LðL2 þ 12gÞ x3

�3Lv1 � ð2L2 þ 6gÞf1 þ 3Lv2 þ ð�L2 þ 6gÞf2

LðL2 þ 12gÞ x2

�12gv1 þ ðL3 þ 6gLÞf1 þ 12gv2 � 6gLf2

LðL2 þ 12gÞ xþ v1 ð4:1:15kÞ

In a manner similar to step 4 used to derive the stiffness matrix for the beam element
without shear deformation included, we have

f1y ¼ Vð0Þ ¼ 6EIa1 ¼
EIð12v1 þ 6Lf1 � 12v2 þ 6Lf2Þ

LðL2 þ 12gÞ

m1 ¼ �mð0Þ ¼ �2EIa2 ¼
EI ½6Lv1 þ ð4L2 þ 12gÞf1 � 6Lv2 þ ð2L2 � 12gÞf2�

LðL2 þ 12gÞ

f2y ¼ �VðLÞ ¼ EIð�12v1 � 6Lf1 þ 12v2 � 6Lf2Þ
LðL2 þ 12gÞ

m2 ¼ mðLÞ ¼ EI ½6Lv1 þ ð2L2 � 12gÞf1 � 6Lv2 þ ð4L2 þ 12gÞf2�
LðL2 þ 12gÞ

ð4:1:15 lÞ

where again the minus signs in the second and third of Eqs. ð4:1:15 lÞ are the result of
opposite nodal and beam theory positive moment conventions at node l and opposite
nodal and beam theory positive shear force conventions at node 2, as seen by compar-
ing Figures 4–1 and 4–2. In matrix form Eqs. ð4:1:15 lÞ become

8>>>><
>>>>:

f1y

m1

f2y

m2

9>>>>=
>>>>;
¼ EI

LðL2 þ 12gÞ

12 6L �12 6L

6L ð4L2 þ 12gÞ �6L ð2L2 � 12gÞ
�12 �6L 12 �6L

6L ð2L2 � 12gÞ �6L ð4L2 þ 12gÞ

2
6664

3
7775

v1

f1

v2

f2

8>>><
>>>:

9>>>=
>>>;
ð4:1:15mÞ
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where the stiffness matrix, including both bending and shear deformation, is then
given by

½k� ¼ EI

LðL2 þ 12gÞ

12 6L �12 6L

6L ð4L2 þ 12gÞ �6L ð2L2 � 12gÞ
12 �6L 12 �6L

6L ð2L2 � 12gÞ �6L ð4L2 þ 12gÞ

2
6664

3
7775 ð4:1:15nÞ

In Eq. (4.1.15n) remember that g represents the transverse shear term, and if we set
g ¼ 0, we obtain Eq. (4.1.14) for the beam stiffness matrix, neglecting transverse
shear deformation. To more easily see the effect of the shear correction factor, we de-
fine the nondimensional shear correction term as j ¼ 12EI=ðksAGL2Þ ¼ 12g=L2 and
rewrite the stiffness matrix as

½k� ¼ EI

L3ð1þ jÞ

12 6L �12 6L

6L ð4þ jÞL2 �6L ð2� jÞL2

�12 �6L 12 �6L

6L ð2� jÞL2 �6L ð4þ jÞL2

2
6664

3
7775 ð4:1:15oÞ

Most commercial computer programs, such as [11], will include the shear defor-
mation by having you input the shear area, As ¼ ksA.

d 4.2 Example of Assemblage
of Beam Stiffness Matrices

d

Step 5 Assemble the Element Equations to Obtain the Global
Equations and Introduce Boundary Conditions

Consider the beam in Figure 4–7 as an example to illustrate the procedure for assem-
blage of beam element stiffness matrices. Assume EI to be constant throughout the
beam. A force of 1000 lb and a moment of 1000 lb-ft are applied to the beam at mid-
length. The left end is a fixed support and the right end is a pin support.

First, we discretize the beam into two elements with nodes 1–3 as shown. We in-
clude a node at midlength because applied force and moment exist at midlength and,

Figure 4–7 Fixed hinged beam subjected to a force and a moment
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at this time, loads are assumed to be applied only at nodes. (Another procedure for
handling loads applied on elements will be discussed in Section 4.4.)

Using Eq. (4.1.14), we find that the global stiffness matrices for the two elements
are now given by

½kð1Þ� ¼EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775

ð4:2:1Þ

v1 f1 v2 f2

½kð2Þ� ¼EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775

ð4:2:2Þ

v2 f2 v3 f3

and

where the degrees of freedom associated with each beam element are indicated by the
usual labels above the columns in each element stiffness matrix.

The total stiffness matrix can now be assembled for the beam by using the direct
stiffness method. When the total (global) stiffness matrix has been assembled, the
external global nodal forces are related to the global nodal displacements. Through di-
rect superposition and Eqs. (4.2.1) and (4.2.2), the governing equations for the beam
are thus given by

F1y

M1

F2y

M2

F3y

M3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ EI

L3

12 6L �12 6L 0 0

6L 4L2 �6L 2L2 0 0

�12 �6L 12þ 12 �6Lþ 6L �12 6L

6L 2L2 �6Lþ 6L 4L2 þ 4L2 �6L 2L2

0 0 �12 �6L 12 �6L

0 0 6L 2L2 �6L 4L2

2
666666664

3
777777775

v1

f1

v2

f2

v3

f3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð4:2:3Þ

Now considering the boundary conditions, or constraints, of the fixed support at node
1 and the hinge (pinned) support at node 3, we have

f1 ¼ 0 v1 ¼ 0 v3 ¼ 0 ð4:2:4Þ

On considering the third, fourth, and sixth equations of Eqs. (4.2.3) corresponding to
the rows with unknown degrees of freedom and using Eqs. (4.2.4), we obtain

8><
>:
�1000

1000

0

9>=
>; ¼

EI

L3

2
64

24 0 6L

0 8L2 2L2

6L 2L2 4L2

3
75
8><
>:

v2

f2

f3

9>=
>; ð4:2:5Þ
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where F2y ¼ �1000 lb, M2 ¼ 1000 lb-ft, and M3 ¼ 0 have been substituted into the
reduced set of equations. We could now solve Eq. (4.2.5) simultaneously for the un-
known nodal displacement v2 and the unknown nodal rotations f2 and f3. We leave
the final solution for you to obtain. Section 4.3 provides complete solutions to beam
problems.

d 4.3 Examples of Beam Analysis
Using the Direct Stiffness Method

d

We will now perform complete solutions for beams with various boundary supports
and loads to illustrate further the use of the equations developed in Section 4.1.

Example 4.1

Using the direct stiffness method, solve the problem of the propped cantilever
beam subjected to end load P in Figure 4–8. The beam is assumed to have constant
EI and length 2L. It is supported by a roller at midlength and is built in at the
right end.

SOLUTION:
We have discretized the beam and established global coordinate axes as shown in
Figure 4–8. We will determine the nodal displacements and rotations, the reactions,
and the complete shear force and bending moment diagrams.

Using Eq. (4.1.14) for each element, along with superposition, we obtain the
structure total stiffness matrix by the same method as described in Section 4.2 for
obtaining the stiffness matrix in Eq. (4.2.3). The ½K � is

½K � ¼ EI

L3

2
666666664

12 6L �12 6L 0 0

4L2 �6L 2L2 0 0

12þ 12 �6Lþ 6L �12 6L

4L2 þ 4L2 �6L 2L2

12 �6L

4L2

3
777777775

ð4:3:1Þ

v1 f1 v2 f2 v3 f3

Symmetry

Figure 4–8 Propped cantilever beam
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The governing equations for the beam are then given by8>>>>>>>><
>>>>>>>>:

F1y

M1

F2y

M2

F3y

M3

9>>>>>>>>=
>>>>>>>>;

¼EI

L3

2
666666664

12 6L �12 6L 0 0

6L 4L2 �6L 2L2 0 0

�12 �6L 24 0 �12 6L

6L 2L2 0 8L2 �6L 2L2

0 0 �12 �6L 12 �6L

0 0 6L 2L2 �6L 4L2

3
777777775

8>>>>>>>><
>>>>>>>>:

v1

f1

v2

f2

v3

f3

9>>>>>>>>=
>>>>>>>>;

ð4:3:2Þ

On applying the boundary conditions

v2 ¼ 0 v3 ¼ 0 f3 ¼ 0 ð4:3:3Þ

and partitioning the equations associated with unknown displacements [the first,
second, and fourth equations of Eqs. (4.3.2)] from those equations associated with
known displacements in the usual manner, we obtain the final set of equations for a
longhand solution as8><

>:
�P

0

0

9>=
>; ¼

EI

L3

2
64

12 6L 6L

6L 4L2 2L2

6L 2L2 8L2

3
75
8><
>:

v1

f1

f2

9>=
>; ð4:3:4Þ

where F1y ¼ �P, M1 ¼ 0, and M2 ¼ 0 have been used in Eq. (4.3.4). We will now
solve Eq. (4.3.4) for the nodal displacement and nodal slopes. We obtain the trans-
verse displacement at node 1 as

v1 ¼ �
7PL3

12EI
ð4:3:5Þ

where the minus sign indicates that the displacement of node 1 is downward.
The slopes are

f1 ¼
3PL2

4EI
f2 ¼

PL2

4EI
ð4:3:6Þ

where the positive signs indicate counterclockwise rotations at nodes 1 and 2.
We will now determine the global nodal forces. To do this, we substitute

the known global nodal displacements and rotations, Eqs. (4.3.5) and (4.3.6), into
Eq. (4.3.2). The resulting equations are

8>>>>>>>><
>>>>>>>>:

F1y

M1

F2y

M2

F3y

M3

9>>>>>>>>=
>>>>>>>>;

¼ EI

L3

2
666666664

12 6L �12 6L 0 0

6L 4L2 �6L 2L2 0 0

�12 �6L 24 0 �12 6L

6L 2L2 0 8L2 �6L 2L2

0 0 �12 �6L 12 �6L

0 0 6L 2L2 �6L 4L2

3
777777775

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

�7PL3

12EI

3PL2

4EI

0

PL2

4EI

0

0

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð4:3:7Þ
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Multiplying the matrices on the right-hand side of Eq. (4.3.7), we obtain the global
nodal forces and moments as

F1y ¼ �P M1 ¼ 0 F2y ¼
5

2
P

ð4:3:8Þ
M2 ¼ 0 F3y ¼ �

3

2
P M3 ¼

1

2
PL

The results of Eqs. (4.3.8) can be interpreted as follows: The value of F1y ¼ �P is the
applied force at node 1, as it must be. The values of F2y;F3y, and M3 are the reactions
from the supports as felt by the beam. The moments M1 and M2 are zero because no
applied or reactive moments are present on the beam at node 1 or node 2.

It is generally necessary to determine the local nodal forces associated with
each element of a large structure to perform a stress analysis of the entire structure.
We will thus consider the forces in element 1 of this example to illustrate this concept
(element 2 can be treated similarly). Using Eqs. (4.3.5) and (4.3.6) in the ff g ¼ ½k�fdg
equation for element 1 [also see Eq. (4.1.13)], we have

8>>>><
>>>>:

f
ð1Þ
1y

m
ð1Þ
1

f
ð1Þ
2y

m
ð1Þ
2

9>>>>=
>>>>;
¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775

8>>>>>>>>>>><
>>>>>>>>>>>:

� 7PL3

12EI

3PL2

4EI

0

PL2

4EI

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð4:3:9Þ

Equation (4.3.9) yields

f1y ¼ �P m1 ¼ 0 f2y ¼ P m2 ¼ �PL ð4:3:10Þ

A free-body diagram of element 1, shown in Figure 4–9(a), should help you to
understand the results of Eqs. (4.3.10). The figure shows a nodal transverse
force of negative P at node 1 and of positive P and negative moment PL at node 2.
These values are consistent with the results given by Eqs. (4.3.10). For complete-
ness, the free-body diagram of element 2 is shown in Figure 4–9(b). We can easily
verify the element nodal forces by writing an equation similar to Eq. (4.3.9).
From the results of Eqs. (4.3.8), the nodal forces and moments for the whole beam

Figure 4–9 Free-body diagrams showing forces and moments on (a) element 1 and
(b) element 2
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are shown on the beam in Figure 4–10. Using the beam sign conventions established
in Section 4.1, we obtain the shear force V and bending moment M diagrams shown
in Figures 4–11 and 4–12. 9

In general, for complex beam structures, we will use the element local forces to
determine the shear force and bending moment diagrams for each element. We can
then use these values for design purposes. Chapter 5 will further discuss this concept
as used in computer codes.

Example 4.2

Determine the nodal displacements and rotations, global nodal forces, and element
forces for the beam shown in Figure 4–13. We have discretized the beam as indicated
by the node numbering. The beam is fixed at nodes 1 and 5 and has a roller support
at node 3. Vertical loads of 10,000 lb each are applied at nodes 2 and 4. Let E ¼
30� 106 psi and I ¼ 500 in4 throughout the beam.

Figure 4–11 Shear force diagram for the beam of Figure 4–10

Figure 4–12 Bending moment diagram for the beam of Figure 4–10

Figure 4–10 Nodal forces and moment on the beam

182 d 4 Development of Beam Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SOLUTION:
We must have consistent units; therefore, the 10-ft lengths in Figure 4–13 will be
converted to 120 in. during the solution. Using Eq. (4.1.10), along with superposi-
tion of the four beam element stiffness matrices, we obtain the global stiffness
matrix and the global equations as given in Eq. (4.3.11). Here the lengths of
each element are the same. Thus, we can factor an L out of the superimposed
stiffness matrix.

For a longhand solution, we reduce Eq. (4.3.11) in the usual manner by applica-
tion of the boundary conditions

v1 ¼ f1 ¼ v3 ¼ v5 ¼ f5 ¼ 0

The resulting equation is

8>>>>>><
>>>>>>:

�10;000

0

0

�10;000

0

9>>>>>>=
>>>>>>;
¼ EI

L3

2
6666664

24 0 6L 0 0

0 8L2 2L2 0 0

6L 2L2 8L2 �6L 2L2

0 0 �6L2 24 0

0 0 2L2 0 8L2

3
7777775

8>>>>>><
>>>>>>:

v2

f2

f3

v4

f4

9>>>>>>=
>>>>>>;

ð4:3:12Þ

Figure 4–13 Beam example
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The rotations (slopes) at nodes 2–4 are equal to zero because of symmetry in loading,
geometry, and material properties about a plane perpendicular to the beam length
and passing through node 3. Therefore, f2 ¼ f3 ¼ f4 ¼ 0, and we can further reduce
Eq. (4.3.12) to

�10;000

�10;000

� �
¼ EI

L3

24 0

0 24

� �
v2

v4

� �
ð4:3:13Þ

Solving for the displacements using L ¼ 120 in., E ¼ 30� 106 psi, and I ¼ 500 in.4 in
Eq. (4.3.13), we obtain

v2 ¼ v4 ¼ �0:048 in: ð4:3:14Þ

as expected because of symmetry.
As observed from the solution of this problem, the greater the static redundancy

(degrees of static indeterminacy or number of unknown forces and moments that
cannot be determined by equations of statics), the smaller the kinematic redundancy
(unknown nodal degrees of freedom, such as displacements or slopes)—hence, the
fewer the number of unknown degrees of freedom to be solved for. Moreover,
the use of symmetry, when applicable, reduces the number of unknown degrees of
freedom even further. We can now back-substitute the results from Eq. (4.3.14),
along with the numerical values for E; I , and L, into Eq. (4.3.12) to determine the
global nodal forces as

F1y ¼ 5000 lb M1 ¼ 25;000 lb-ft

F2y ¼ 10;000 lb M2 ¼ 0

F3y ¼ 10;000 lb M3 ¼ 0 ð4:3:15Þ

F4y ¼ 10;000 lb M4 ¼ 0

F5y ¼ 5000 lb M5 ¼ �25;000 lb-ft

Once again, the global nodal forces (and moments) at the support nodes (nodes 1, 3,
and 5) can be interpreted as the reaction forces, and the global nodal forces at nodes
2 and 4 are the applied nodal forces.

However, for large structures we must obtain the local element shear force and
bending moment at each node end of the element because these values are used in
the design/analysis process. We will again illustrate this concept for the element con-
necting nodes 1 and 2 in Figure 4–13. Using the local equations for this element, for
which all nodal displacements have now been determined, we obtain

8>>>><
>>>>:

f
ð1Þ
1y

m
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Simplifying Eq. (4.3.16), we have

8>>>><
>>>>:

f
ð1Þ
1y

m
ð1Þ
1

f ð1Þ2y

m
ð1Þ
2

9>>>>=
>>>>;
¼

5000 lb

25;000 lb-ft

�5000 lb

25;000 lb-ft

8>>><
>>>:

9>>>=
>>>;

ð4:3:17Þ

If you wish, you can draw a free-body diagram to confirm the equilibrium of the
element. 9

Finally, you should note that because of reflective symmetry about a vertical
plane passing through node 3, we could have initially considered one-half of this
beam and used the following model. The fixed support at node 3 is due to the
slope being zero at node 3 because of the symmetry in the loading and support
conditions.

Example 4.3

Determine the nodal displacements and rotations and the global and element forces
for the beam shown in Figure 4–14. We have discretized the beam as shown by the
node numbering. The beam is fixed at node 1, has a roller support at node 2, and
has an elastic spring support at node 3. A downward vertical force of P ¼ 50 kN is
applied at node 3. Let E ¼ 210 GPa and I ¼ 2� 10�4 m4 throughout the beam, and
let k ¼ 200 kN/m.

Figure 4–14 Beam example
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SOLUTION:
Using Eq. (4.1.14) for each beam element and Eq. (2.2.18) for the spring element as
well as the direct stiffness method, we obtain the structure stiffness matrix as

where the spring stiffness matrix ½ks� given below by Eq. (4.3.18b) has been directly
added into the global stiffness matrix corresponding to its degrees of freedom at
nodes 3 and 4.

½ks� ¼

v3 v4

k �k

�k k

� �
ð4:3:18bÞ

It is easier to solve the problem using the general variables, later making numerical
substitutions into the final displacement expressions. The governing equations for the
beam are then given by
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F3y

M3

F4y
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Symmetry

where k 0 ¼ kL3=ðEIÞ is used to simplify the notation. We now apply the boundary
conditions

v1 ¼ 0 f1 ¼ 0 v2 ¼ 0 v4 ¼ 0 ð4:3:20Þ

½K � ¼ EI

L3

2
6666666666666664

12 6L �12 6L 0 0 0

4L2 �6L 2L2 0 0 0

24 0 �12 6L 0

8L2 �6L 2L2 0

12þ kL3

EI
�6L � kL3

EI

4L2 0

kL3

EI

3
7777777777777775

ð4:3:18aÞ
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We delete the first three equations and the seventh equation (corresponding to
the boundary conditions given by Eq. (4.3.20)) of Eqs. (4.3.19). The remaining three
equations are 8><

>:
0

�P

0

9>=
>; ¼

EI

L3

8L2 �6L 2L2

�6L 12þ k 0 �6L

2L2 �6L 4L2

2
4

3
5
8><
>:

f2

v3

f3

9>=
>; ð4:3:21Þ

Solving Eqs. (4.3.21) simultaneously for the displacement at node 3 and the rotations
at nodes 2 and 3, we obtain

v3 ¼ �
7PL3

EI

1

12þ 7k 0

� �
f2 ¼ �

3PL2

EI

1

12þ 7k 0

� �

ð4:3:22Þ
f3 ¼ �

9PL2

EI

1

12þ 7k 0

� �

The influence of the spring stiffness on the displacements is easily seen in Eq. (4.3.22).
Solving for the numerical displacements using P ¼ 50 kN, L ¼ 3 m, E ¼ 210 GPa
(¼ 210� 106 kN/m2), I ¼ 2� 10�4 m4, and k 0 ¼ 0:129 in Eq. (4.3.22), we obtain

v3 ¼
�7ð50 kNÞð3 mÞ3

ð210� 106 kN=m
2Þð2� 10�4 m4Þ

1

12þ 7ð0:129Þ

� �
¼ �0:0174 m ð4:3:23Þ

Similar substitutions into Eq. (4.3.26) yield

f2 ¼ �0:00249 rad f3 ¼ �0:00747 rad ð4:3:24Þ

We now back-substitute the results from Eqs. (4.3.23) and (4.3.24), along with numer-
ical values for P;E; I ;L, and k 0, into Eq. (4.3.19) to obtain the global nodal forces as

F1y¼�69:9 kN M1¼�69:7 kN �m

F2y¼ 116:4 kN M2¼ 0:0 kN �m ð4:3:25Þ

F3y¼�50:0 kN M3¼ 0:0 kN �m
For the beam-spring structure, an additional global force F4y is determined at the base
of the spring as follows:

F4y ¼ �v3k ¼ ð0:0174Þ200 ¼ 3:5 kN ð4:3:26Þ
This force provides the additional global y force for equilibrium of the structure.

A free-body diagram, including the forces and moments from Eqs. (4.3.25) and
(4.3.26) acting on the beam, is shown in Figure 4–15.

9

Figure 4–15 Free-body diagram of
beam of Figure 4–14
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Example 4.4

Determine the displacement and rotation under the force and moment located at the
center of the beam shown in Figure 4–16. The beam has been discretized into the
two elements shown in Figure 4–16. The beam is fixed at each end. A downward
force of 10 kN and an applied moment of 20 kN-m act at the center of the beam.
Let E ¼ 210 GPa and I ¼ 4� 10�4 m4 throughout the beam length.

SOLUTION:
Using Eq. (4.1.14) for each beam element with L ¼ 3 m, we obtain the element stiff-
ness matrices as follows:

The boundary conditions are given by

v1 ¼ f1 ¼ v3 ¼ f3 ¼ 0 ð4:3:28Þ

The global forces are F2y ¼ �10;000 N and M2 ¼ 20;000 N-m.
Applying the global forces and boundary conditions, Eq. (4.3.28), and assem-

bling the global stiffness matrix using the direct stiffness method and Eqs. (4.3.27),
we obtain the global equations as:

�10; 000
20; 000

� �
¼ ð210� 109Þð4� 10�4Þ

33

24 0
0 8ð32Þ

� �
v2

f2

� �
ð4:3:29Þ

Solving Eq. (4.3.29) for the displacement and rotation, we obtain

v2 ¼ �1:339� 10�4 m and f2 ¼ 8:928� 10�5 rad ð4:3:30Þ

3 m 3 m

1 2
20 kN-m1 3

2

10 kN

Figure 4–16 Fixed-fixed beam subjected to applied force and moment

v1 f1 v2 f2 v2 f2 v3 f3
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Using the local equations for each element, we obtain the local nodal forces and
moments for element one as follows:
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2
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>>>;

ð4:3:31Þ
Simplifying Eq. (4.3.31), we have

f
ð1Þ

1y ¼ 10;000 N; m
ð1Þ
1 ¼ 12;500 N-m; f

ð1Þ
2y ¼ �10;000 N; m

ð1Þ
2 ¼ 17;500 N-m

ð4:3:32Þ
Similarly, for element two the local nodal forces and moments are

f
ð2Þ

2y ¼ 0; m
ð2Þ
2 ¼ 2500 N-m; f

ð2Þ
3y ¼ 0; m

ð2Þ
3 ¼ �2500 N-m ð4:3:33Þ

Using the results from Eqs. (4.3.32) and (4.3.33), we show the local forces and
moments acting on each element in Figure 4–16 as follows.

Using the results from Eqs. (4.3.32) and (4.3.33), or Figure 4–17, we obtain the shear
force and bending moment diagrams for each element as shown in Figure 4–18.

9

10,000 N 10,000 N

17,500 N-m12,500 N-m

0 0

2500 N-m2500 N-m

Figure 4–17 Nodal forces and moments acting on each element of Figure 4–16
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Figure 4–18 Shear force (a) and bending moment (b) diagrams for each element
of Figure 4–16
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Example 4.5

To illustrate the effects of shear deformation along with the usual bending defor-
mation, we now solve the simple beam shown in Figure 4–19. We will use the beam
stiffness matrix given by Eq. (4.1.15o) that includes both the bending and shear defor-
mation contributions for deformation in the x�y plane. The beam is simply supported
with a concentrated load of 10,000 N applied at mid-span. We let material properties
be E ¼ 207 GPa and G ¼ 80 GPa. The beam width and height are b ¼ 25 mm and
h ¼ 50 mm, respectively.

SOLUTION:
We will use symmetry to simplify the solution. Therefore, only one half of the beam
will be considered with the slope at the center forced to be zero. Also, one-half of
the concentrated load is then used. The model with symmetry enforced is shown in
Figure 4–20.

The finite element model will consist of only one beam element. Using
Eq. (4.1.15o) for the Timoshenko beam element stiffness matrix, we obtain the global
equations as

EI

L3ð1þ jÞ

12 6L �12 6L

6L ð4þ jÞL2 �6L ð2� jÞL2

�12 �6L 12 �6L

6L ð2� jÞL2 �6L ð4þ jÞL2

2
6664

3
7775
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f2 ¼ 0
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>>>:
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>>>;
¼
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0

�P=2

0

8>>><
>>>:

9>>>=
>>>;
ð4:3:34Þ

2

200 mm
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P
2

Figure 4–20 Beam with symmetry enforced

P = 10,000 N

200 mm

400 mm

h

b

Figure 4–19 Simple beam subjected to concentrated load at center of span
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Note that the boundary conditions given by v1 ¼ 0 and f2 ¼ 0 have been included in
Eq. (4.3.34).

Using the second and third equations of Eq. (4.3.34) whose rows are associated
with the two unknowns, f1 and v2, we obtain

v2 ¼
�PL3ð4þ jÞ

24EI
and f1 ¼

�PL2

4EI
ð4:3:35Þ

As the beam is rectangular in cross section, the moment of inertia is

I ¼ bh3=12

Substituting the numerical values for b and h, we obtain I as

I ¼ 0:26� 10�6 m4

The shear correction factor is given by

j ¼ 12EI

ksAGL2

and ks for a rectangular cross section is given by ks ¼ 5=6.
Substituting numerical values for E; I ;G;L; and ks, we obtain

j ¼ 12� 207� 109 � 0:26� 10�6

5=6� 0:025� 0:05� 80� 109 � 0:22
¼ 0:1938

Substituting for P ¼ 10;000 N, L ¼ 0:2 m, and j ¼ 0:1938 into Eq. (4.3.35), we
obtain the displacement at the mid-span as

v2 ¼ �2:597� 10�4 m ð4:3:36Þ
If we let l ¼ the whole length of the beam, then l ¼ 2L and we can substitute L ¼ l=2
into Eq. (4.3.35) to obtain the displacement in terms of the whole length of the beam as

v2 ¼
�Pl3ð4þ jÞ

192EI
ð4:3:37Þ

For long slender beams with l about 10 or more times the beam depth, h, the transverse
shear correction term j is small and can be neglected. Therefore, Eq. (4.3.37) becomes

v2 ¼
�Pl3

48EI
ð4:3:38Þ

Equation (4.3.38) is the classical beam deflection formula for a simply supported beam
subjected to a concentrated load at mid-span.

Using Eq. (4.3.38), the deflection is obtained as

v2 ¼ �2:474� 10�4 m ð4:3:39Þ
Comparing the deflections obtained using the shear-correction factor with the deflec-
tion predicted using the beam-bending contribution only, we obtain

% change ¼ 2:597� 2:474

2:474
� 100 ¼ 4:97% difference

9
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d 4.4 Distributed Loading d
Beam members can support distributed loading as well as concentrated nodal
loading. Therefore, we must be able to account for distributed loading. Consider the
fixed-fixed beam subjected to a uniformly distributed loading w shown in Figure 4–21.
The reactions, determined from structural analysis theory [2], are shown in Figure 4–22.
These reactions are called fixed-end reactions. In general, fixed-end reactions are
those reactions at the ends of an element if the ends of the element are assumed to
be fixed—that is, if displacements and rotations are prevented. (Those of you who
are unfamiliar with the analysis of indeterminate structures should assume these
reactions as given and proceed with the rest of the discussion; we will develop these
results in a subsequent presentation of the work-equivalence method.) Therefore,
guided by the results from structural analysis for the case of a uniformly distributed
load, we replace the load by concentrated nodal forces and moments tending to
have the same effect on the beam as the actual distributed load. Figure 4–23 illus-
trates this idea for a beam. We have replaced the uniformly distributed load by a
statically equivalent force system consisting of a concentrated nodal force and mo-
ment at each end of the member carrying the distributed load. That is, both the stat-
ically equivalent concentrated nodal forces and moments and the original distributed
load have the same resultant force and same moment about an arbitrarily chosen
point. These statically equivalent forces are always of opposite sign from the fixed-
end reactions. If we want to analyze the behavior of loaded member 2–3 in better de-
tail, we can place a node at midspan and use the same procedure just described for
each of the two elements representing the horizontal member. That is, to determine
the maximum deflection and maximum moment in the beam span, a node 5 is needed
at midspan of beam segment 2–3, and work-equivalent forces and moments are ap-
plied to each element (from node 2 to node 5 and from node 5 to node 3) shown in
Figure 4–23(c).

Figure 4–21 Fixed-fixed beam subjected to a uniformly distributed load

Figure 4–22 Fixed-end reactions for the beam of Figure 4–21
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Work-Equivalence Method

We can use the work-equivalence method to replace a distributed load by a set of
discrete loads. This method is based on the concept that the work of the distributed
load wðxÞ in going through the displacement field vðxÞ is equal to the work done by
nodal loads fiy and mi in going through nodal displacements vi and fi for arbitrary
nodal displacements. To illustrate the method, we consider the example shown in
Figure 4–24. The work due to the distributed load is given by

Wdistributed ¼
ð L

0

wðxÞvðxÞ dx ð4:4:1Þ

where vðxÞ is the transverse displacement given by Eq. (4.1.4). The work due to the
discrete nodal forces is given by

Wdiscrete ¼ m1f1 þm2f2 þ f1yv1 þ f2yv2 ð4:4:2Þ

Figure 4–23 (a) Beam with a distributed load, (b) the equivalent nodal force system,
and (c) the enlarged beam (for clarity’s sake) with equivalent nodal force system when
node 5 is added to the midspan

v1 v2

Figure 4–24 (a) Beam element subjected to a general load and (b) the statically
equivalent nodal force system
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We can then determine the nodal moments and forces m1;m2; f1y, and f2y used to
replace the distributed load by using the concept of work equivalence—that is, by set-
ting Wdistributed ¼Wdiscrete for arbitrary displacements f1; f2; v1, and v2.

Example of Load Replacement

To illustrate more clearly the concept of work equivalence, we will now consider a
beam subjected to a specified distributed load. Consider the uniformly loaded beam
shown in Figure 4–25(a). The support conditions are not shown because they are not
relevant to the replacement scheme. By letting Wdiscrete ¼Wdistributed and by assuming

arbitrary f1; f2; v1, and v2, we will find equivalent nodal forces m1;m2; f1y, and f2y.
Figure 4–25(b) shows the nodal forces and moments directions as positive based on
Figure 4–1.

Using Eqs. (4.4.1) and (4.4.2) for Wdistributed ¼Wdiscrete, we haveð L

0

wðxÞvðxÞ dx ¼ m1f1 þm2f2 þ f1yv1 þ f2yv2 ð4:4:3Þ

where m1f1 and m2f2 are the work due to concentrated nodal moments moving
through their respective nodal rotations and f1yv1 and f2yv2 are the work due to the
nodal forces moving through nodal displacements. Evaluating the left-hand side of
Eq. (4.4.3) by substituting wðxÞ ¼ �w and vðxÞ from Eq. (4.1.4), we obtain the work
due to the distributed load asð L

0

wðxÞvðxÞ dx ¼ �Lw

2
ðv1 � v2Þ �

L2w

4
ðf1 þ f2Þ � Lwðv2 � v1Þ

þ L2w

3
ð2f1 þ f2Þ � f1

L2w

2

� �
� v1ðwLÞ ð4:4:4Þ

Now using Eqs. (4.4.3) and (4.4.4) for arbitrary nodal displacements, we let f1 ¼ 1;
f2 ¼ 0; v1 ¼ 0, and v2 ¼ 0 and then obtain

m1ð1Þ ¼ �
L2w

4
� 2

3
L2wþ L2

2
w

� �
¼ �wL2

12
ð4:4:5Þ

Similarly, letting f1 ¼ 0; f2 ¼ 1; v1 ¼ 0, and v2 ¼ 0 yields

m2ð1Þ ¼ �
L2w

4
� L2w

3

� �
¼ wL2

12
ð4:4:6Þ

v1 v2

Figure 4–25 (a) Beam subjected to a uniformly distributed loading and (b) the
equivalent nodal forces to be determined
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Finally, letting all nodal displacements equal zero except first v1 and then v2, we obtain

f1yð1Þ ¼ �
Lw

2
þ Lw� Lw ¼ �Lw

2 ð4:4:7Þ
f2yð1Þ ¼

Lw

2
� Lw ¼ �Lw

2

We can conclude that, in general, for any given load function wðxÞ, we can mul-
tiply by vðxÞ and then integrate according to Eq. (4.4.3) to obtain the concentrated
nodal forces (and/or moments) used to replace the distributed load. Moreover,
we can obtain the load replacement by using the concept of fixed-end reactions
from structural analysis theory. Tables of fixed-end reactions have been generated
for numerous load cases and can be found in texts on structural analysis such as Ref-
erence [2]. A table of equivalent nodal forces has been generated in Appendix D of
this text, guided by the fact that fixed-end reaction forces are of opposite sign from
those obtained by the work equivalence method.

Hence, if a concentrated load is applied other than at the natural intersection of
two elements, we can use the concept of equivalent nodal forces to replace the concen-
trated load by nodal concentrated values acting at the beam ends, instead of creating
a node on the beam at the location where the load is applied. We provide examples
of this procedure for handling concentrated loads on elements in beam Example 4.7
and in plane frame Example 5.3.

General Formulation

In general, we can account for distributed loads or concentrated loads acting on beam
elements by starting with the following formulation application for a general structure:

fFg ¼ ½K �fdg � fF0g ð4:4:8Þ

where fFg are the concentrated nodal forces and fF0g are called the equivalent nodal

forces, now expressed in terms of global-coordinate components, which are of such
magnitude that they yield the same displacements at the nodes as would the distrib-
uted load. Using the table in Appendix D of equivalent nodal forces f f0g expressed in
terms of local-coordinate components, we can express fF0g in terms of global-coordinate
components.

Recall from Section 3.10 the derivation of the element equations by the principle
of minimum potential energy. Starting with Eqs. (3.10.19) and (3.10.20), the minimiza-
tion of the total potential energy resulted in the same form of equation as Eq. (4.4.8)
where fF0g now represents the same work-equivalent force replacement system as
given by Eq. (3.10.20a) for surface traction replacement. Also, fFg ¼ fPg; fPg [from
Eq. (3.10.20)] represents the global nodal concentrated forces. Because we now assume
that concentrated nodal forces are not present ðfFg ¼ 0Þ, as we are solving beam prob-
lems with distributed loading only in this section, we can write Eq. (4.4.8) as

fF0g ¼ ½K �fdg ð4:4:9Þ

On solving for fdg in Eq. (4.4.9) and then substituting the global displacements fdg
and equivalent nodal forces fF0g into Eq. (4.4.8), we obtain the actual global nodal
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forces fFg. For example, using the definition of f f0g and Eqs. (4.4.5) through (4.4.7)
(or using load case 4 in Appendix D) for a uniformly distributed load w acting over a
one-element beam, we have

fF0g ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�wL

2

�wL2

12
�wL

2

wL2

12

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð4:4:10Þ

This concept can be applied on a local basis to obtain the local nodal forces f f g
in individual elements of structures by applying Eq. (4.4.8) locally as

f f g ¼ ½k�fdg � f f0g ð4:4:11Þ

where f f0g are the equivalent local nodal forces.
Examples 4.6 through 4.8 illustrate the method of equivalent nodal forces for

solving beams subjected to distributed and concentrated loadings. We will use
global-coordinate notation in Examples 4.6 through 4.8—treating the beam as a gen-
eral structure rather than as an element.

Example 4.6

For the cantilever beam subjected to the uniform load w in Figure 4–26, solve for the
right-end vertical displacement and rotation and then for the nodal forces. Assume the
beam to have constant EI throughout its length.

SOLUTION:
We begin by discretizing the beam. Here only one element will be used to represent
the whole beam. Next, the distributed load is replaced by its work-equivalent

Figure 4–26 (a) Cantilever beam subjected to a uniformly distributed load and
(b) the work equivalent nodal force system
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nodal forces as shown in Figure 4–26(b). The work-equivalent nodal forces are
those that result from the uniformly distributed load acting over the whole beam
given by Eq. (4.4.10). (Or see appropriate load case 4 in Appendix D.) Using
Eq. (4.4.9) and the beam element stiffness matrix, we obtain

EI

L3

12 6L �12 6L

4L2 �6L2 2L2

12 �6L

4L2

2
664

3
775

v1

f1

v2

f2

8>><
>>:

9>>=
>>;
¼

F1y �
wL

2

M1 �
wL2

12

�wL

2

wL2

12

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð4:4:12Þ

where we have applied the work equivalent nodal forces and moments from Figure
4–26(b).

Applying the boundary conditions v1 ¼ 0 and f1 ¼ 0 to Eqs (4.4.12) and then
partitioning off the third and fourth equations of Eq. (4.4.12), we obtain

EI

L3

12 �6L

�6L2 4L2

� �
v2

f2

� �
¼

�wL

2

wL2

12

8>><
>>:

9>>=
>>;

ð4:4:13Þ

Solving Eq. (4.4.13) for the displacements, we obtain

v2

f2

� �
¼ L

6EI

�
2L2 3L

3L 6

� �wL

2

wL2

12

8>><
>>:

9>>=
>>;

ð4:4:14aÞ

Simplifying Eq. (4.4.14a), we obtain the displacement and rotation as

v2

f2

� �
¼

8>>><
>>>:

�wL4

8EI

�wL3

6EI

9>>>=
>>>;

ð4:4:14bÞ

The negative signs in the answers indicate that v2 is downward and f2 is clockwise.
In this case, the method of replacing the distributed load by discrete concentrated
loads gives exact solutions for the displacement and rotation as could be obtained
by classical methods, such as double integration [1]. This is expected, as the
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work-equivalence method ensures that the nodal displacement and rotation from
the finite element method match those from an exact solution.

We will now illustrate the procedure for obtaining the global nodal forces.
For convenience, we first define the product ½K �fdg to be fF ðeÞg, where fF ðeÞg are
called the effective global nodal forces. On using Eq. (4.4.14) for fdg, we then have

8>>>>>><
>>>>>>:

F
ðeÞ
1y

M
ðeÞ
1

F
ðeÞ
2y

M
ðeÞ
2

9>>>>>>=
>>>>>>;
¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775

8>>>>>>>><
>>>>>>>>:

0

0

�wL4

8EI

�wL3

6EI

9>>>>>>>>=
>>>>>>>>;

ð4:4:15Þ

Simplifying Eq. (4.4.15), we obtain

F
ðeÞ
1y

M
ðeÞ
1

F
ðeÞ
2y

M
ðeÞ
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

wL

2

5wL2

12

�wL

2

wL2

12

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð4:4:16Þ

We then use Eqs. (4.4.10) and (4.4.16) in Eq. (4.4.8) fFg ¼ ½K �fdg � fF0g to obtain
the correct global nodal forces as

F1y

M1

F2y

M2

8>>><
>>>:

9>>>=
>>>;
¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

wL

2

5wL2

12

�wL

2

wL2

12

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�wL

2

�wL2

12

�wL

2

wL2

12

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

8>>>>>><
>>>>>>:

wL

wL2

2

0

0

9>>>>>>=
>>>>>>;

ð4:4:17Þ

In Eq. (4.4.17), F1y is the vertical force reaction and M1 is the moment reaction
as applied by the clamped support at node 1. The results for displacement given by
Eq. (4.4.14b) and the global nodal forces given by Eq. (4.4.17) are sufficient to com-
plete the solution of the cantilever beam problem.
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A free-body diagram of the beam using the reactions from Eq. (4.4.17) verifies
both force and moment equilibrium as shown in Figure 4–26(c). 9

The nodal force and moment reactions obtained by Eq. (4.4.17) illustrate the
importance of using Eq. (4.4.8) to obtain the correct global nodal forces and
moments. By subtracting the work-equivalent force matrix, fF0g, from the product
of ½K � times fdg, we obtain the correct reactions at node 1 as can be verified by sim-
ple static equilibrium equations. This verification validates the general method as
follows:

1. Replace the distributed load by its work-equivalent as shown in Figure
4–26(b) to identify the nodal force and moment used in the solution.

2. Assemble the global force and stiffness matrices and global equations
illustrated by Eq. (4.4.12).

3. Apply the boundary conditions to reduce the set of equations as done
in previous problems and illustrated by Eq. (4.4.13) where the original
four equations have been reduced to two equations to be solved for
the unknown displacement and rotation.

4. Solve for the unknown displacement and rotation given by
Eq. (4.4.14a) and Eq. (4.4.14b).

5. Use Eq. (4.4.8) as illustrated by Eq. (4.4.17) to obtain the final
correct global nodal forces and moments. Those forces and moments
at supports, such as the left end of the cantilever in Figure 4–26(a),
will be the reactions.

We will solve the following example to illustrate the procedure for handling con-
centrated loads acting on beam elements at locations other than nodes.

Example 4.7

For the cantilever beam subjected to the concentrated load P in Figure 4–27, solve
for the right-end vertical displacement and rotation and the nodal forces, including
reactions, by replacing the concentrated load with equivalent nodal forces acting at
each end of the beam. Assume EI constant throughout the beam.

Figure 4–26 (c) Free-body diagram and equations of equilibrium for beam
of Figure 4–26(a).
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SOLUTION:
We begin by discretizing the beam. Here only one element is used with nodes at each
end of the beam. We then replace the concentrated load as shown in Figure 4–27(b)
by using appropriate loading case 1 in Appendix D. Using Eq. (4.4.9) and the beam
element stiffness matrix Eq. (4.1.14), we obtain

EI

L3

"
12 �6L

�6L 4L2

#
v2

f2

� �
¼

�P

2

PL

8

8>><
>>:

9>>=
>>;

ð4:4:18Þ

where we have applied the nodal forces from Figure 4–27(b) and the bound-
ary conditions v1 ¼ 0 and f1 ¼ 0 to reduce the number of matrix equations
for the usual longhand solution. Solving Eq. (4.4.18) for the displacements, we
obtain

v2

f2

� �
¼ L

6EI

2L2 3L

3L 6

� � �P

2

PL

8

8>><
>>:

9>>=
>>;

ð4:4:19Þ

Simplifying Eq. (4.4.19), we obtain the displacement and rotation as

v2

f2

� �
¼

8>>><
>>>:

�5PL3

48EI

?y
�PL2

8EI
h

9>>>=
>>>;

ð4:4:20Þ

To obtain the unknown nodal forces, we begin by evaluating the effective nodal forces
fF ðeÞg ¼ ½K �fdg as

F
ðeÞ
1y

M
ðeÞ
1
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ðeÞ
2y
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ðeÞ
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>>>>>>:

9>>>>>>=
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ð4:4:21Þ

Figure 4–27 (a) Cantilever beam subjected to a concentrated load and (b) the
equivalent nodal force replacement system
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Simplifying Eq. (4.4.21), we obtain
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>>>>>>>>>>>>;

ð4:4:22Þ

Then using Eq. (4.4.22) and the equivalent nodal forces from Figure 4–27(b) in
Eq. (4.4.8), we obtain the correct nodal forces as
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ð4:4:23Þ

We can see from Eq. (4.4.23) that F1y is equivalent to the vertical reaction force and
M1 is the reaction moment as applied by the clamped support at node 1.

Again, the reactions obtained by Eq. (4.4.23) can be verified to be correct by
using static equilibrium equations to validate once more the correctness of the general
formulation and procedures summarized in the steps given after Example 4.6. 9

To illustrate the procedure for handling concentrated nodal forces and distributed
loads acting simultaneously on beam elements, we will solve the following example.

Example 4.8

For the cantilever beam subjected to the concentrated free-end load P and the
uniformly distributed load w acting over the whole beam as shown in Figure 4–28,
determine the free-end displacements and the nodal forces.

Figure 4–28 (a) Cantilever beam subjected to a concentrated load and a distributed
load and (b) the equivalent nodal force replacement system
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SOLUTION:
Once again, the beam is modeled using one element with nodes 1 and 2, and the dis-
tributed load is replaced as shown in Figure 4–28(b) using appropriate loading case 4
in Appendix D. Using the beam element stiffness Eq. (4.1.14), we obtain

EI
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�6L 4L2

� �
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>>:

9>>=
>>;

ð4:4:24Þ

where we have applied the nodal forces from Figure 4–28(b) and the boundary condi-
tions v1 ¼ 0 and f1 ¼ 0 to reduce the number of matrix equations for the usual long-
hand solution. Solving Eq. (4.4.24) for the displacements, we obtain
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Next, we obtain the effective nodal forces using fF ðeÞg ¼ ½K �fdg as
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Simplifying Eq. (4.4.26), we obtain
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Finally, subtracting the equivalent nodal force matrix [see Figure 4–27(b)] from the
effective force matrix of Eq. (4.4.27), we obtain the correct nodal forces as
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ð4:4:28Þ
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From Eq. (4.4.28), we see that F1y is equivalent to the vertical reaction force, M1 is
the reaction moment at node 1, and F2y is equal to the applied downward force
P at node 2. [Remember that only the equivalent nodal force matrix is subtracted,
not the original concentrated load matrix. This is based on the general formulation,
Eq. (4.4.8).] 9

To generalize the work-equivalent method, we apply it to a beam with more
than one element as shown in the following Example 4.9.

Example 4.9

For the fixed–fixed beam subjected to the linear varying distributed loading acting
over the whole beam shown in Figure 4–29(a) determine the displacement and rota-
tion at the center and the reactions.

SOLUTION:
The beam is now modeled using two elements with nodes 1, 2, and 3 and the distrib-
uted load is replaced as shown in Figure 4–29(b) using the appropriate load cases 4
and 5 in Appendix D. Note that load case 5 is used for element one as it has only
the linear varying distributed load acting on it with a high end value of w/2 as
shown in Figure 4–29(a), while both load cases 4 and 5 are used for element two as
the distributed load is divided into a uniform part with magnitude w/2 and a linear
varying part with magnitude at the high end of the load equal to w/2 also.

Using the beam element stiffness Eq. (4.1.14) for each element, we obtain
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Figure 4–29 (a) Fixed–fixed beam subjected to linear varying line load and (b) the
equivalent nodal force replacement system
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The boundary conditions are v1 ¼ 0, f1 ¼ 0, v3 ¼ 0, and f3 ¼ 0. Using the di-
rect stiffness method and Eqs. (4.4.28) to assemble the global stiffness matrix, and
applying the boundary conditions, we obtain
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Solving Eq. (4.4.29) for the displacement and slope, we obtain
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Next, we obtain the effective nodal forces using fF ðeÞg ¼ ½K �fdg as
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0 0 6L 2L2 �6L 4L2

2
66666664

3
77777775

0

0

�wL4

48EI

�wL3

240EI

0

0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
ð4:4:31Þ

Solving for the effective forces in Eq. (4.4.31), we obtain

F
ðeÞ
1y ¼

9wL

40
M
ðeÞ
1 ¼

7wL2

60

F
ðeÞ
2y ¼

�wL

2
M
ðeÞ
2 ¼

�wL2

30

F
ðeÞ
3y ¼

11wL

40
M
ðeÞ
3 ¼

�2wL2

15

ð4:4:32Þ

Finally, using Eq. (4.4.8) we subtract the equivalent nodal force matrix based on the
equivalent load replacement shown in Figure 4–29(b) from the effective force matrix
given by the results in Eq. (4.4.32), to obtain the correct nodal forces and moments as

F1y

M1

F2y

M2

F3y

M3

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

9wL

40

7wL2

60
�wL

2

�wL2

30
11wL

40

�2wL2

15

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

�

�3wL

40

�wL2

60
�wL

2

�wL2

30
�17wL

40

wL2

15

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

¼

12wL

40

8wL2

60

0

0

28wL

40

�3wL2

15

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð4:4:33Þ
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We used symbol L to represent one-half the length of the beam. If we replace L with
the actual length l ¼ 2L, we obtain the reactions for case 5 in Appendix D, thus veri-
fying the correctness of our result.

In summary, for any structure in which an equivalent nodal force replacement is
made, the actual nodal forces acting on the structure are determined by first evaluat-
ing the effective nodal forces fF ðeÞg for the structure and then subtracting the equiva-
lent nodal forces fF0g for the structure, as indicated in Eq. (4.4.8). Similarly, for any
element of a structure in which equivalent nodal force replacement is made, the actual
local nodal forces acting on the element are determined by first evaluating the effective
local nodal forces f f ðeÞg for the element and then subtracting the equivalent local
nodal forces f f0g associated only with the element, as indicated in Eq. (4.4.11). We
provide other examples of this procedure in plane frame Examples 5.2 and 5.3. 9

d 4.5 Comparison of the Finite Element Solution
to the Exact Solution for a Beam

d

We will now compare the finite element solution to the exact classical beam theory so-
lution for the cantilever beam shown in Figure 4–30 subjected to a uniformly distrib-
uted load. Both one- and two-element finite element solutions will be presented and
compared to the exact solution obtained by the direct double-integration method.
Let E ¼ 30� 106 psi, I ¼ 100 in4, L ¼ 100 in., and uniform load w ¼ 20 lb/in.

SOLUTION:
To obtain the solution from classical beam theory, we use the double-integration
method [1]. Therefore, we begin with the moment-curvature equation

y 00 ¼MðxÞ
EI

ð4:5:1Þ

where the double prime superscript indicates differentiation twice with respect to x

and M is expressed as a function of x by using a section of the beam as shown:

Figure 4–30 Cantilever beam subjected to uniformly distributed load
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SFy ¼ 0: VðxÞ ¼ wL� wx

SM2 ¼ 0: MðxÞ ¼ �wL2

2
þ wLx� ðwxÞ x

2

� � ð4:5:2Þ

Using Eq. (4.5.2) in Eq. (4.5.1), we have

y 00 ¼ 1

EI

�wL2

2
þ wLx� wx2

2

� �
ð4:5:3Þ

On integrating Eq. (4.5.3) with respect to x, we obtain an expression for the slope of
the beam as

y 0 ¼ 1

EI

�wL2x

2
þ wLx2

2
� wx3

6

� �
þ C1 ð4:5:4Þ

Integrating Eq. (4.5.4) with respect to x, we obtain the deflection expression for the
beam as

y ¼ 1

EI

�wL2x2

4
þ wLx3

6
� wx4

24

� �
þ C1xþ C2 ð4:5:5Þ

Applying the boundary conditions y ¼ 0 and y 0 ¼ 0 at x ¼ 0, we obtain

y 0ð0Þ ¼ 0 ¼ C1 yð0Þ ¼ 0 ¼ C2 ð4:5:6Þ

Using Eq. (4.5.6) in Eqs. (4.5.4) and (4.5.5), the final beam theory solution expressions
for y 0 and y are then

y 0 ¼ 1

EI

�wx3

6
þ wLx2

2
� wL2x

2

� �
ð4:5:7Þ

and y ¼ 1

EI

�wx4

24
þ wLx3

6
� wL2x2

4

� �
ð4:5:8Þ

The one-element finite element solution for slope and displacement is given in variable
form by Eqs. (4.4.14b). Using the numerical values of this problem in Eqs. (4.4.14b),
we obtain the slope and displacement at the free end (node 2) as

f2 ¼
�wL3

6EI
¼ �ð20 lb=in:Þð100 in:Þ3

6ð30� 106 psiÞð100 in:4Þ
¼ �0:00111 rad

v2 ¼
�wL4

8EI
¼ �ð20 lb=in:Þð100 in:Þ4

8ð30� 106 psiÞð100 in:4Þ
¼ �0:0833 in:

ð4:5:9Þ

The slope and displacement given by Eq. (4.5.9) identically match the beam theory val-
ues, as Eqs. (4.5.7) and (4.5.8) evaluated at x ¼ L are identical to the variable form of
the finite element solution given by Eqs. (4.4.14b). The reason why these nodal values
from the finite element solution are correct is that the element nodal forces were calcu-
lated on the basis of being energy or work equivalent to the distributed load based on
the assumed cubic displacement field within each beam element.
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Values of displacement and slope at other locations along the beam for the finite
element solution are obtained by using the assumed cubic displacement function
[Eq. (4.1.4)] as

vðxÞ ¼ 1

L3
ð�2x3 þ 3x2LÞv2 þ

1

L3
ðx3L� x2L2Þf2 ð4:5:10Þ

where the boundary conditions v1 ¼ f1 ¼ 0 have been used in Eq. (4.5.10). Using the
numerical values in Eq. (4.5.10), we obtain the displacement at the midlength of the
beam as

vðx ¼ 50 in:Þ ¼ 1

ð100 in:Þ3
h
� 2ð50 in:Þ3 þ 3ð50 in:Þ2ð100 in:Þ

i
ð�0:0833 in:Þ

þ 1

ð100 in:Þ3
h
ð50 in:Þ3ð100 in:Þ � ð50 in:Þ2ð100 in:Þ2

i

� ð�0:00111 radÞ ¼ �0:0278 in: ð4:5:11Þ

Using the beam theory [Eq. (4.5.8)], the deflection is

yðx ¼ 50 in:Þ ¼ 20 lb=in:

30� 106 psið100 in:4Þ

�
"
�ð50 in:Þ4

24
þ ð100 in:Þð50 in:Þ3

6
� ð100 in:Þ2ð50 in:Þ2

4

#

¼ �0:0295 in: ð4:5:12Þ

We conclude that the beam theory solution for midlength displacement,
y ¼ �0:0295 in., is greater than the finite element solution for displacement,
v ¼ �0:0278 in: In general, the displacements evaluated using the cubic function for
v are lower as predicted by the finite element method than by the beam theory except
at the nodes. This is always true for beams subjected to some form of distributed
load that are modeled using the cubic displacement function. The exception to this result
is at the nodes, where the beam theory and finite element results are identical because of
the work-equivalence concept used to replace the distributed load by work-equivalent
discrete loads at the nodes.

The beam theory solution predicts a quartic (fourth-order) polynomial expres-
sion for y [Eq. (4.5.5)] for a beam subjected to uniformly distributed loading, while
the finite element solution vðxÞ assumes a cubic displacement behavior in each beam
element under all load conditions. The finite element solution predicts a stiffer struc-
ture than the actual one. This is expected, as the finite element model forces the
beam into specific modes of displacement and effectively yields a stiffer model than
the actual structure. However, as more and more elements are used in the model, the
finite element solution converges to the beam theory solution.

For the special case of a beam subjected to only nodal concentrated loads, the
beam theory predicts a cubic displacement behavior, as the moment is a linear func-
tion and is integrated twice to obtain the resulting cubic displacement function. A sim-
ple verification of this cubic displacement behavior would be to solve the cantilevered
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beam subjected to an end load. In this special case, the finite element solution for dis-
placement matches the beam theory solution for all locations along the beam length,
as both functions yðxÞ and vðxÞ are then cubic functions.

Monotonic convergence of the solution of a particular problem is discussed in
Reference [3], and proof that compatible and complete displacement functions (as
described in Section 3.2) used in the displacement formulation of the finite element
method yield an upper bound on the true stiffness, hence a lower bound on the dis-
placement of the problem, is discussed in Reference [3].

Under uniformly distributed loading, the beam theory solution predicts a qua-
dratic moment and a linear shear force in the beam. However, the finite element
solution using the cubic displacement function predicts a linear bending moment and
a constant shear force within each beam element used in the model.

We will now determine the bending moment and shear force in the present prob-
lem based on the finite element method. The bending moment is given by

M ¼ EIv 00 ¼ EI
d 2ð½N�fdgÞ

dx2
¼ EI

ðd 2½N�Þ
dx2

fdg ð4:5:13Þ

as fdg is not a function of x. Or in terms of the gradient matrix ½B� we have

M ¼ EI ½B�fdg ð4:5:14Þ

where

½B� ¼ d 2½N�
dx2

¼
�
� 6

L2
þ 12x

L3

� �
� 4

L
þ 6x

L2

� �
6

L2
� 12x

L3

� �
� 2

L
þ 6x

L2

� ��
ð4:5:15Þ

The shape functions given by Eq. (4.1.7) are used to obtain Eq. (4.5.15) for the ½B�
matrix. For the single-element solution, the bending moment is then evaluated by sub-
stituting Eq. (4.5.15) for ½B � into Eq. (4.5.14) and multiplying ½B � by fdg to obtain

M ¼ EI

�
� 6

L2
þ 12x

L3

� �
v1 þ � 4

L
þ 6x

L2

� �
f1 þ

6

L2
� 12x

L3

� �
v2 þ � 2

L
þ 6x

L2

� �
f2

�

ð4:5:16Þ
Evaluating the moment at the wall, x ¼ 0, with v1 ¼ f1 ¼ 0, and v2 and f2 given by
Eq. (4.4.14) in Eq. (4.5.16), we have

Mðx ¼ 0Þ ¼ � 10wL2

24
¼ �83;333 lb-in: ð4:5:17Þ

Using Eq. (4.5.16) to evaluate the moment at x ¼ 50 in., we have

Mðx ¼ 50 in:Þ ¼ �33;333 lb-in: ð4:5:18Þ

Evaluating the moment at x ¼ 100 in. by using Eq. (4.5.16) again, we obtain

Mðx ¼ 100 in:Þ ¼ 16;667 lb-in: ð4:5:19Þ

The beam theory solution using Eq. (4.5.2) predicts

Mðx ¼ 0Þ ¼ �wL2

2
¼ �100;000 lb-in: ð4:5:20Þ

Mðx ¼ 50 in:Þ ¼ �25;000 lb-in:

and Mðx ¼ 100 in:Þ ¼ 0
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Figures 4–31(a) through (c) show the plots of the displacement variation, bending
moment variation, and shear force variation through the beam length for the beam
theory and the one-element finite element solutions. Again, the finite element solution
for displacement matches the beam theory solution at the nodes but predicts smaller
displacements (less deflection) at other locations along the beam length.

The bending moment is derived by taking two derivatives on the displacement
function. It then takes more elements to model the second derivative of the

Figure 4–31 Comparison of beam theory and finite element results for a cantilever
beam subjected to a uniformly distributed load: (a) displacement diagrams,
(b) bending moment diagrams, and (c) shear force diagrams
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displacement function. Therefore, the finite element solution does not predict the
bending moment as well as it does the displacement. For the uniformly loaded
beam, the finite element model predicts a linear bending moment variation as shown
in Figure 4–31(b). The best approximation for bending moment appears at the mid-
point of the element.

The shear force is derived by taking three derivatives on the displacement function.
For the uniformly loaded beam, the resulting shear force shown in Figure 4–31(c) is a
constant throughout the single-element model. Again, the best approximation for shear
force is at the midpoint of the element.

It should be noted that if we use Eq. (4.4.11), that is, f f g ¼ ½k�fdg � f f0g, and
subtract off the f f0g matrix, we also obtain the correct nodal forces and moments in
each element. For instance, from the one-element finite element solution we have for
the bending moment at node 1

m
ð1Þ
1 ¼

EI

L3
�6L

�wL4

8EI

� �
þ 2L2 �wL3

6EI

� �� �
� �wL2

12

� �
¼ wL2

2

m
ð1Þ
2 ¼ 0and at node 2

To improve the finite element solution we need to use more elements in the model
(refine the mesh) or use a higher-order element, such as a fifth-order approximation
for the displacement function, that is, vðxÞ ¼ a1 þ a2xþ a3x2 þ a4x3 þ a5x4 þ a6x5,
with three nodes (with an extra node at the middle of the element).

We now present the two-element finite element solution for the cantilever beam
subjected to a uniformly distributed load. Figure 4–32 shows the beam discretized
into two elements of equal length and the work-equivalent load replacement for each
element. Using the beam element stiffness matrix [Eq. (4.1.13)], we obtain the element
stiffness matrices as follows:

½kð1Þ� ¼ ½kð2Þ� ¼ EI

l 3

1 2

2 3

12 6l �12 6l

6l 4l 2 �6l 2l 2

�12 �6l 12 �6l

6l 2l 2 �6l 4l 2

2
6664

3
7775

ð4:5:21Þ

where l ¼ 50 in. is the length of each element and the numbers above the columns in-
dicate the degrees of freedom associated with each element.

Figure 4–32 Beam discretized into two
elements and work-equivalent load
replacement for each element
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Applying the boundary conditions v1 ¼ 0 and f1 ¼ 0 to reduce the number of
equations for a normal longhand solution, we obtain the global equations for solution as

EI

l 3

24 0 �12 6l

0 8l 2 �6l 2l 2

�12 �6l 12 �6l

6l 2l 2 �6l 4l 2

2
6664

3
7775

v2

f2

v3

f3

8>>><
>>>:

9>>>=
>>>;
¼

�wl

0

�wl=2

wl 2=12

8>>><
>>>:

9>>>=
>>>;

ð4:5:22Þ

Solving Eq. (4.5.22) for the displacements and slopes, we obtain

v2 ¼
�17wl 4

24EI
v3 ¼

�2wl 4

EI
f2 ¼

�7wl 3

6EI
f3 ¼

�4wl 3

3EI
ð4:5:23Þ

Substituting the numerical values w ¼ 20 lb/in., l ¼ 50 in., E ¼ 30� 106 psi, and
I ¼ 100 in.4 into Eq. (4.5.23), we obtain

v2 ¼ �0:02951 in: v3 ¼ �0:0833 in: f2 ¼ �9:722� 10�4 rad

f3 ¼ �11:11� 10�4 rad

The two-element solution yields nodal displacements that match the beam theory
results exactly [see Eqs. (4.5.9) and (4.5.12)]. A plot of the two-element displacement
throughout the length of the beam would be a cubic displacement within each element.
Within element 1, the plot would start at a displacement of 0 at node 1 and finish at a
displacement of �0:0295 at node 2. A cubic function would connect these values. Sim-
ilarly, within element 2, the plot would start at a displacement of �0:0295 and finish
at a displacement of �0:0833 in. at node 2 [see Figure 4–31(a)]. A cubic function
would again connect these values.

d 4.6 Beam Element with Nodal Hinge d
In some beams an internal hinge may be present. In general, this internal hinge causes
a discontinuity in the slope or rotation of the deflection curve at the hinge. Consider
the beam shown with two elements and a nodal hinge at node 2 separating the two ele-
ments as shown in Figure 4–33(a). In general, f

ð1Þ
2 for element 1 is not equal to f

ð2Þ
2 for

element 2, as shown in Figures 4–33(b) and (c). At hinge nodes, rotations are said to be
double valued. To model the hinge, we consider the hinge to be placed on either the
right end of element 1 or on the left end of element 2 but not on both elements at
node 2. Examples 4.10 and 4.11 will illustrate how to solve beam problems with
nodal hinges.

Also, the bending moment is zero at the hinge. We could construct other types
of connections that release other generalized end forces; that is, connections can be
designed to make the shear force or axial force zero at the connection. These special
conditions can be treated by starting with the generalized unreleased beam stiffness
matrix [Eq. (4.1.14)] and eliminating the known zero force or moment. This yields a
modified stiffness matrix with the desired force or moment equal to zero and the cor-
responding displacement or slope eliminated.
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We now consider the most common cases of a beam element with a nodal hinge
at the right end or left end, as shown in Figure 4–33. For the beam element with a
hinge at its right end, the moment m2 is zero and we partition the ½k� matrix
[Eq. (4.1.14)] to eliminate the degree of freedom f2 (which is not zero, in general) asso-
ciated with m2 ¼ 0 as follows:

½k� ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
6664

3
7775 ð4:6:1Þ

We condense out the degree of freedom f2 associated with m2 ¼ 0. Partitioning
allows us to condense out the degree of freedom f2 associated with m2 ¼ 0. That is,
Eq. (4.6.1) is partitioned as shown below:

½k� ¼

½K11� ½K12�
3� 3 3� 1

½K21� ½K22�
1� 3 1� 1

2
6664

3
7775 ð4:6:2Þ

The condensed stiffness matrix is then found by using the equation ff g ¼ ½k�fdg par-
titioned as follows:

f f1g
3� 1

f f2g
1� 1

8>>><
>>>:

9>>>=
>>>;
¼

½K11� ½K12�
3� 3 3� 1

½K21� ½K22�
1� 3 1� 1

2
6664

3
7775
fd1g
3� 1

fd2g
1� 1

8>>><
>>>:

9>>>=
>>>;

ð4:6:3Þ

v1 v2 v3
v2

1 2

(a)

2

3

3

Hinge

L

1

L 2

x

1

(b) (c)

Figure 4–33 (a) Beam with 2 elements and nodal hinge, (b) hinge considered to be at
right end of element 1, and (c) hinge considered to be at left end of element 2
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fd1g ¼

8>><
>>:

v1

f1

v2

9>>=
>>;

fd2g ¼ ff2g ð4:6:4Þwhere

Equations (4.6.3) in expanded form are

f f1g ¼ ½K11�fd1g þ ½K12�fd2g ð4:6:5Þ

f f2g ¼ ½K21�fd1g þ ½K22�fd2g

Solving for fd2g in the second of Eqs. (4.6.5), we obtain

fd2g ¼ ½K22��1ðff2g � ½K21�fd1gÞ ð4:6:6Þ

Substituting Eq. (4.6.6) into the first of Eqs. (4.6.5), we obtain

f f1g ¼ ð½K11� � ½K12�½K22��1½K21�Þfd1g þ ½K12�½K22��1f f2g ð4:6:7Þ

Combining the second term on the right side of Eq. (4.6.7) with f f1g, we obtain

f fcg ¼ ½Kc�fd1g ð4:6:8Þ

where the condensed stiffness matrix is

½Kc� ¼ ½K11� � ½K12�½K22��1½K21� ð4:6:9Þ

and the condensed force matrix is

f fcg ¼ f f1g � ½K12�½K22��1f f2g ð4:6:10Þ

Substituting the partitioned parts of ½k� from Eq. (4.6.1) into Eq. (4.6.9),
we obtain the condensed stiffness matrix as

½Kc� ¼ ½K11� � ½K12�½K22��1½K21�

¼ EI

L3

2
64

12 6L �12

6L 4L2 �6L

�12 �6L 12

3
75� EI

L3

8><
>:

6L

2L2

�6L

9>=
>;

1

4L2

�
6L 2L2 �6L

	

¼ 3EI

L3

2
64

1 L �1

L L2 �L

�1 �L 1

3
75

v1

f1

v2

ð4:6:11Þ

and the element equations (force/displacement equations) with the hinge at node 2 are

f1y

m1

f2y

8><
>:

9>=
>; ¼

3EI

L3

2
64

1 L �1

L L2 �L

�1 �L 1

3
75
8>><
>>:

v1

f1

v2

9>>=
>>;

ð4:6:12Þ

The generalized rotation f2 has been eliminated from the equation and will not be
calculated using this scheme. However, f2 is not zero in general. We can expand
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Eq. (4.6.12) to include f2 by adding zeros in the fourth row and column of the ½k�
matrix to maintain m2 ¼ 0, as follows:8>>>><

>>>>:

f1y

m1

f2y

m2

9>>>>=
>>>>;
¼ 3EI

L3

1 L �1 0

L L2 �L 0

�1 �L 1 0

0 0 0 0

2
6664

3
7775

v1

f1

v2

f2

8>>><
>>>:

9>>>=
>>>;

ð4:6:13Þ

For the beam element with left node 1 and right node 2 with a hinge at its left
end, the moment m1 is zero, and we partition the ½k� matrix [Eq. (4.1.14)] to eliminate
the zero moment m1 and its corresponding rotation f1 to obtain8>><

>>:
f1y

f2y

m2

9>>=
>>;
¼ 3EI

L3

2
64

1 �1 L

�1 1 �L

L �L L2

3
75
8>><
>>:

v1

v2

f2

9>>=
>>;

ð4:6:14Þ

The expanded form of Eq. (4.6.14) including f1 is8>>>><
>>>>:

f1y

m1

f2y

m2

9>>>>=
>>>>;
¼ 3EI

L3

1 0 �1 L

0 0 0 0

�1 0 1 �L

L 0 �L L2

2
6664

3
7775

v1

f1

v2

f2

8>>><
>>>:

9>>>=
>>>;

ð4:6:15Þ

Example 4.10

Determine the displacement and rotation at node 2 and the element forces for the uni-
form beam with an internal hinge at node 2 shown in Figure 4–34. Let EI be a constant.

SOLUTION:
We can consider the hinge as part of element 1. Therefore, with the hinge located
at the right end of element 1, Eq. (4.6.13) contains the correct stiffness matrix for
element 1. The stiffness matrix of element 1 with L ¼ a is then

½kð1Þ� ¼ 3EI

a3

1 a �1 0

a a2 �a 0

�1 �a 1 0

0 0 0 0

2
6664

3
7775

ð4:6:16Þ

v1 f1 v2 f2

Figure 4–34 Beam with internal hinge
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As the hinge is considered to be part of element 1, we do not consider it again as part
of element 2. So we use the standard beam element stiffness matrix obtained from
Eq. (4.1.14) for element 2 as

½kð2Þ� ¼ EI

b3

12 6b �12 6b

6b 4b2 �6b 2b2

�12 �6b 12 �6b

6b 2b2 �6b 4b2

2
6664

3
7775

ð4:6:17Þ

v2 f2 v3 f3

Superimposing Eqs. (4.6.16) and (4.6.17) and applying the boundary conditions

v1 ¼ 0; f1 ¼ 0; v3 ¼ 0; f3 ¼ 0

we obtain the total stiffness matrix and total set of equations as

EI

2
6664

3

a3
þ 12

b3

6

b2

6

b2

4

b

3
7775

v2

f2

� �
¼ �P

0

� �
ð4:6:18Þ

Solving Eq. (4.6.18), we obtain

v2 ¼
�a3b3P

3ðb3 þ a3ÞEI
ð4:6:19Þ

f2 ¼
a3b2P

2ðb3 þ a3ÞEI

The value f2 is actually that associated with element 2—that is, f2 in Eq. (4.6.19)

is actually f
ð2Þ
2 . The value of f2 at the right end of element 1 ðfð1Þ2 Þ is, in general, not

equal to f
ð2Þ
2 . If we had chosen to assume the hinge to be part of element 2, then we

would have used Eq. (4.1.14) for the stiffness matrix of element 1 and Eq. (4.6.15) for

the stiffness matrix of element 2. This would have enabled us to obtain f
ð1Þ
2 , which is

different from f
ð2Þ
2 , that is, the slope at node 2 is double valued.

Using Eq. (4.6.12) for element 1, we obtain the element forces as

f1y

m1

f2y

8><
>:

9>=
>; ¼

3EI

a3

2
64

1 a �1

a a2 �a

�1 �a 1

3
75

0

0

�a3b3P

3ðb3 þ a3ÞEI

8>>>><
>>>>:

9>>>>=
>>>>;

ð4:6:20Þ

Simplifying Eq. (4.6.20), we obtain the forces as

f1y ¼
b3P

b3 þ a3

m1 ¼
ab3P

b3 þ a3
ð4:6:21Þ

f2y ¼ �
b3P

b3 þ a3
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Using Eq. (4.6.17) and the results from Eq. (4.6.19), we obtain the element 2 forces as

8>>>><
>>>>:

f2y

m2

f3y

m3

9>>>>=
>>>>;
¼ EI

b3

12 6b �12 6b

6b 4b2 �6b 2b2

�12 �6b 12 �6b

6b 2b2 �6b 4b2

2
6664

3
7775

� a3b3P

3ðb3 þ a3ÞEI

a3b2P

2ðb3 þ a3ÞEI

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð4:6:22Þ

Simplifying Eq. (4.6.22), we obtain the element forces as

f2y ¼ �
a3P

b3 þ a3

m2 ¼ 0
ð4:6:23Þ

f3y ¼
a3P

b3 þ a3

m3 ¼ �
ba3P

b3 þ a3 9

It should be noted that another way to solve the nodal hinge of Example 4.10
would be to assume a nodal hinge at the right end of element 1 and at the left end of
element 2. Hence, we would use the three-equation stiffness matrix of Eq. (4.6.12)
for the left element and the three-equation stiffness matrix of Eq. (4.6.14) for the
right element. This results in the hinge rotation being condensed out of the global
equations. You can verify that we get the same result for the displacement as given
by Eq. (4.6.19). However, we must then go back to Eq. (4.6.6) using it separately for
each element to obtain the rotation at node 2 for each element. We leave this verifica-
tion to your discretion.

Example 4.11

Determine the slope at node 2 and the deflection and slope at node 3 for the beam with
internal hinge located at node 3, as shown in Figure 4–35. Nodes 1 and 4 are fixed, and
there is a knife edge support at node 2. Let E ¼ 210 GPa and I ¼ 2� 10�4 m4.

2 m 1 m 1 m

3

22 3

10 kN/m

411

Figure 4–35 Beam with internal hinge and uniformly distributed loading
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SOLUTION:
Discretize the beam into three elements, as shown in Figure 4–35. Use Eq. (4.1.14) to
determine element one stiffness matrix as

½kð1Þ� ¼ EI

8

12 12 �12 12

12 16 �12 8

�12 �12 12 �12

12 8 �12 16

2
6664

3
7775 ¼ EI

3=2
3=2

�3=2
3=2

3=2 2 �3=2 1
�3=2

�3=2 3=2 �3=2

3=2 1 �3=2 2

2
664

3
775 ð4:6:24Þ

v1 f1 v2 f2

Assume the hinge as part of element 2 and use Eq. (4.6.13) to obtain the element 2
stiffness matrix as

½kð2Þ� ¼ 3EI

13

1 1 �1 0

1 1 �1 0

�1 �1 1 0

0 0 0 0

2
6664

3
7775

ð4:6:25Þ

v2 f2 v3 f3

As the hinge is considered to be at the right end of element 2, we do not consider it to
be part of element 3. So we use Eq. (4.1.14) to obtain the stiffness matrix as

½kð3Þ� ¼ EI

13

12 6 �12 6

6 4 �6 2

�12 �6 12 �6

6 2 � 6 4

2
6664

3
7775

ð4:6:26Þ

v3 f3 v4 f4

Using the direct stiffness method and the element stiffness matrices in Eqs. (4.6.24
through 4.6.26), we assemble the global stiffness matrix as

v1 f1 v2 f2 v3 f3 v4 f4

½k� ¼ EI

3=2
3=2

�3=2
3=2 0 0 0 0

3=2 2 �3=2 1 0 0 0 0

�3=2
�3=2

9=2
3=2 �3 0 0 0

3=2 1 3=2 5 �3 0 0 0

0 0 �3 �3 15 6 �12 6

0 0 0 0 6 4 �6 2

0 0 0 0 �12 �6 12 �6

0 0 0 0 6 2 �6 4

2
66666666666664

3
77777777777775

ð4:6:27Þ
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Applying the boundary conditions v1 ¼ f1 ¼ v2 ¼ v4 ¼ f4 ¼ 0, we obtain the reduced
stiffness matrix and equations for solution as

EI

5 �3 0
�3 15 6

0 6 4

2
4

3
5 f2

v3

f3

8<
:

9=
;¼

0
�5 kN

�0:833 kN . m

8<
:

9=
; ð4:6:28Þ

where by work equivalence F3y ¼
�wL

2
¼ �10ð1Þ

2
¼ �5 kN and M3 ¼

�wL2

12
¼

�5ð1Þ2

12
¼ �0:833 kN . m:

Substituting numerical values for E and I into Eq. (4.6.28), and solving simultaneous,
we obtain

v3 ¼�2:126� 10�5 m; f2 ¼�1:276� 10�5 rad; f3 ¼ 2:693� 10�5 rad ð4:6:29Þ
Notice that f3 is actually that associated with element three, that is, f3 in Eq. (4.6.29) is
actually f

ð3Þ
3 as the hinge was assumed to be part of element two and f

ð2Þ
3 was condensed

out of the stiffness matrix for element two. 9

d 4.7 Potential Energy Approach
to Derive Beam Element Equations

d

We will now derive the beam element equations using the principle of minimum
potential energy. The procedure is similar to that used in Section 3.10 in deriving the
bar element equations. Again, our primary purpose in applying the principle of mini-
mum potential energy is to enhance your understanding of the principle. It will be
used routinely in subsequent chapters to develop element stiffness equations. We use
the same notation here as in Section 3.10.

The total potential energy for a beam is

pp ¼ U þW ð4:7:1Þ

where the general one-dimensional expression for the strain energy U for a beam is
given by

U ¼
ðð

V

ð
1

2
sxex dV ð4:7:2Þ

and for a single beam element subjected to both distributed and concentrated nodal
loads, the potential energy of forces is given by

W ¼ �
ðð
S1

Tyv dS �
X2

i¼1

Piyvi �
X2

i¼1

mifi ð4:7:3Þ

where body forces are now neglected. The terms on the right-hand side of Eq. (4.7.3)
represent the potential energy of (1) transverse surface loading Ty (in units of force
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per unit surface area, acting over surface S1 and moving through displacements over
which Ty act); (2) nodal concentrated force Piy moving through displacements vi;
and (3) moments mi moving through rotations fi. Again, v is the transverse displace-
ment function for the beam element of length L shown in Figure 4–36.

Consider the beam element to have constant cross-sectional area A. The differ-
ential volume for the beam element can then be expressed as

dV ¼ dA dx ð4:7:4Þ
and the differential area over which the surface loading acts is

dS ¼ b dx ð4:7:5Þ
where b is the constant width. Using Eqs. (4.7.4) and (4.7.5) in Eqs. (4.7.1) through
(4.7.3), the total potential energy becomes

pp ¼
ð
x

ðð
A

1

2
sxex dA dx�

ð L

0

bTyv dx�
X2

i¼1

ðPiyvi þmifiÞ ð4:7:6Þ

Substituting Eq. (4.1.4) for v into the strain/displacement relationship Eq. (4.1.10),
repeated here for convenience as

ex ¼ �y
d 2v

dx2
ð4:7:7Þ

we express the strain in terms of nodal displacements and rotations as

fexg ¼ �y
12x� 6L

L3

6xL� 4L2

L3

�12xþ 6L

L3

6xL� 2L2

L3

� �
fdg ð4:7:8Þ

or
fexg ¼ �y½B�fdg ð4:7:9Þ

where we define

½B� ¼ 12x� 6L

L3

6xL� 4L2

L3

�12xþ 6L

L3

6xL� 2L2

L3

� �
ð4:7:10Þ

The stress/strain relationship is given by

fsxg ¼ ½D�fexg ð4:7:11Þ

½D� ¼ ½E� ð4:7:12Þwhere

Figure 4–36 Beam element subjected to surface loading and concentrated nodal forces
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and E is the modulus of elasticity. Using Eq. (4.7.9) in Eq. (4.7.11), we obtain

fsxg ¼ �y½D�½B�fdg ð4:7:13Þ

Next, the total potential energy Eq. (4.7.6) is expressed in matrix notation as

pp ¼
ð
x

ðð
A

1

2
fsxgTfexg dA dx�

ð L

0

bTy½v�T dx� fdgTfPg ð4:7:14Þ

Using Eqs. (4.1.5), (4.7.9), (4.7.12), and (4.7.13), and defining w ¼ bTy as the line
load (load per unit length) in the y direction, we express the total potential energy,
Eq. (4.7.14), in matrix form as

pp ¼
ð L

0

EI

2
fdgT ½B�T ½B�fdg dx�

ð L

0

wfdgT ½N�T dx� fdgTfPg ð4:7:15Þ

where we have used the definition of the moment of inertia

I ¼
ðð

A

y2 dA ð4:7:16Þ

to obtain the first term on the right-hand side of Eq. (4.7.15). In Eq. (4.7.15), pp is now
expressed as a function of fdg.

Differentiating pp in Eq. (4.7.15) with respect to v1; f1; v2, and f2 and equating
each term to zero to minimize pp, we obtain four element equations, which are written
in matrix form as

EI

ð L

0

½B�T ½B� dxfdg �
ð L

0

½N�T w dx� fPg ¼ 0 ð4:7:17Þ

The derivation of the four element equations is left as an exercise (see Problem 4.45).
Representing the nodal force matrix as the sum of those nodal forces resulting from
distributed loading and concentrated loading, we have

f f g ¼
ð L

0

½N�T w dxþ fPg ð4:7:18Þ

Using Eq. (4.7.18), the four element equations given by explicitly evaluating
Eq. (4.7.17) are then identical to Eq. (4.1.13). The integral term on the right side
of Eq. (4.7.18) also represents the work-equivalent replacement of a distributed
load by nodal concentrated loads. For instance, letting wðxÞ ¼ �w (constant), sub-
stituting shape functions from Eq. (4.1.7) into the integral, and then performing
the integration result in the same nodal equivalent loads as given by Eqs. (4.4.5)
through (4.4.7).

Because f f g ¼ ½k�fdg, we have, from Eq. (4.7.17),

½k� ¼ EI

ð L

0

½B�T ½B� dx ð4:7:19Þ
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Using Eq. (4.7.10) in Eq. (4.7.19) and integrating, ½k� is evaluated in explicit form as

½k� ¼ EI

L3

12 6L �12 6L

4L2 �6L 2L2

12 �6L

4L2

2
6664

3
7775 ð4:7:20Þ

Symmetry

Equation (4.7.20) represents the local stiffness matrix for a beam element. As
expected, Eq. (4.7.20) is identical to Eq. (4.1.14) developed previously.

It is worth noting that the strain energy U is the first term on the right side of
Eq. (4.7.15) and fdg is not a function of x. If we also consider E and I to be constant
over each element length L, we can express U as

U ¼ fdgT EI

2

Z L

0

½B�T ½B�dxfdg ð4:7:21Þ

By using Eq. (4.7.19), we realize the stiffness matrix, fkg, is EI times the integral in
Eq. (4.7.21).

Therefore, we show U to be expressed again in quadratic form as
U ¼ 1=2fdgT ½k�fdg:

d 4.8 Galerkin’s Method for Deriving
Beam Element Equations

d

We will now illustrate Galerkin’s method to formulate the beam element stiffness
equations. We begin with the basic differential Eq. (4.1.1h) with transverse loading w

now included; that is,

EI
d 4v

dx4
þ w ¼ 0 ð4:8:1Þ

We now define the residual R to be Eq. (4.8.1). Applying Galerkin’s criterion [Eq.
(3.12.3)] to Eq. (4.8.1), we have

ð L

0

EI
d 4v

dx4
þ w

� �
Ni dx ¼ 0 ði ¼ 1; 2; 3; 4Þ ð4:8:2Þ

where the shape functions Ni are defined by Eqs. (4.1.7).
We now apply integration by parts twice to the first term in Eq. (4.8.2) to yield

ð L

0

EIðv;xxxxÞNi dx ¼
ð L

0

EIðv;xxÞðNi;xxÞ dxþ EI ½Niðv;xxxÞ � ðNi;xÞðv;xxÞ�
L

0 ð4:8:3Þ

where the notation of the comma followed by the subscript x indicates differentiation
with respect to x. Again, integration by parts introduces the boundary conditions.

Because v ¼ ½N�fdg as given by Eq. (4.1.5), we have

v;xx ¼
12x� 6L

L3

6xL� 4L2

L3

�12xþ 6L

L3

6xL� 2L2

L3

� �
fdg ð4:8:4Þ
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or, using Eq. (4.7.10),

v;xx ¼ ½B�fdg ð4:8:5Þ

Substituting Eq. (4.8.5) into Eq. (4.8.3), and then Eq. (4.8.3) into Eq. (4.8.2), we obtain

ð L

0

ðNi;xxÞEI ½B� dxfdg þ
ð L

0

Niw dxþ ½NiV � ðNi;xÞm�j
L

0 ¼ 0 ði ¼ 1; 2; 3; 4Þ

ð4:8:6Þ

where Eqs. (4.1.11) have been used in the boundary terms. Equation (4.8.6) is really
four equations (one each for Ni ¼ N1;N2;N3, and N4). Instead of directly evaluating
Eq. (4.8.6) for each Ni, as was done in Section 3.12, we can express the four equations
of Eq. (4.8.6) in matrix form as

ð L

0

½B�T EI ½B� dxfdg ¼
ð L

0

�½N�T w dxþ ð½N�T ;x m� ½N�T VÞjL0 ð4:8:7Þ

where we have used the relationship ½N�;xx ¼ ½B� in Eq. (4.8.7).
Observe that the integral term on the left side of Eq. (4.8.7) is identical to

the stiffness matrix previously given by Eq. (4.7.19) and that the first term on the
right side of Eq. (4.8.7) represents the equivalent nodal forces due to distributed
loading [also given in Eq. (4.7.18)]. The two terms in parentheses on the right
side of Eq. (4.8.7) are the same as the concentrated force matrix fPg of Eq. (4.7.18).
We explain this by evaluating ½N�;x and ½N�, where ½N� is defined by Eq. (4.1.6), at
the ends of the element as follows:

½N�;
x
j0 ¼ ½0 1 0 0� ½N�;

x
jL ¼ ½0 0 0 1�

½N�j0 ¼ ½1 0 0 0� ½N�jL ¼ ½0 0 1 0�
ð4:8:8Þ

Therefore, when we use Eqs. (4.8.8) in Eq. (4.8.7), the following terms result:

0

0

0

1

8>>><
>>>:

9>>>=
>>>;

mðLÞ�

0

1

0

0

8>>><
>>>:

9>>>=
>>>;

mð0Þ�

0

0

1

0

8>>><
>>>:

9>>>=
>>>;

VðLÞþ

1

0

0

0

8>>><
>>>:

9>>>=
>>>;

Vð0Þ ð4:8:9Þ

These nodal shear forces and moments are illustrated in Figure 4–37.

Figure 4–37 Beam element with shear forces, moments, and a distributed load
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Note that when element matrices are assembled, two shear forces and two
moments from adjacent elements contribute to the concentrated force and concen-
trated moment at the node common to the adjacent elements as shown in Figure 4–38.
These concentrated shear forces Vð0Þ � VðLÞ and moments mðLÞ �mð0Þ are often
zero; that is, Vð0Þ ¼ VðLÞ and mðLÞ ¼ mð0Þ occur except when a concentrated
nodal force or moment exists at the node. In the actual computations, we handle
the expressions given by Eq. (4.8.9) by including them as concentrated nodal values
making up the matrix fPg.

d Summary Equations

Displacement function assumed for beam transverse displacement:

vðxÞ ¼ a1x
3 þ a2x2 þ a3xþ a4 ð4:1:2Þ

Shape functions for beam element:

N1 ¼
1

L3
ð2x3 � 3x2Lþ L3Þ N2 ¼

1

L3
ðx3L� 2x2L2 þ xL3Þ

N3 ¼
1

L3
ð�2x3 þ 3x2LÞ N4 ¼

1

L3
ðx3L� x2L2Þ

ð4:1:7Þ

Beam bending stress or flexure formula:

sx ¼
�My

I
ð4:1:10bÞ

Stiffness matrix for beam element:

½k� ¼ EI

L3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

2
664

3
775 ð4:1:14Þ

Stiffness matrix including transverse shear deformation (Timoshenko beam theory):

½k� ¼ EI

L3ð1þ jÞ

12 6L �12 6L

6L ð4þ jÞL2 �6L ð2� jÞL2

�12 �6L 12 �6L

6L ð2� jÞL2 �6L ð4þ jÞL2

2
664

3
775 ð4:1:15oÞ

Figure 4–38 Shear forces and moments acting on adjacent elements meeting
at a node
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Work due to distributed loading:

Wdistributed ¼
ðL

0

wðxÞvðxÞ dx ð4:4:1Þ

Work due to discrete nodal forces:

Wdiscrete ¼ m1f1 þm2f2 þ f1yv1 þ f2yv2 ð4:4:2Þ
General formulation for beam with distributed loading:

fFg ¼ ½K �fdg � fF0g ð4:4:8Þ
Work-equivalent replacement matrix for beam with uniform load:

fF0g ¼

�wL

2
�wL2

12
�wL

2
wL2

12

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð4:4:10Þ

Beam stiffness matrix with right end nodal hinge:

½k� ¼ 3EI

L3

1 L �1 0
L L2 �L 0
�1 �L 1 0

0 0 0 0

2
664

3
775 ð4:6:13Þ

Total potential energy for beam element:

pp ¼
ðL

0

EI

2
fdgT ½B�T ½B�fdgdx�

ðL

0

wfdgT ½N�T dx� fdgTfPg ð4:7:15Þ

Strain energy expression for beam element:

U ¼ fdgT EI

2

ðL

0

½B�T ½B�dxfdg ð4:7:21Þ
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d Problems

4.1 Use Eqs. (4.1.7) to plot the shape functions N1 and N3 and the derivatives ðdN2=dxÞ
and ðdN4=dxÞ, which represent the shapes (variations) of the slopes f1 and f2 over the
length of the beam element.

4.2 Derive the element stiffness matrix for the beam element in Figure 4–1 if the rota-
tional degrees of freedom are assumed positive clockwise instead of counterclockwise.
Compare the two different nodal sign conventions and discuss. Compare the resulting
stiffness matrix to Eq. (4.1.14).

Solve all problems using the finite element stiffness method.

4.3 For the beam shown in Figure P4–3, determine the rotation at pin support A and the
rotation and displacement under the load P. Determine the reactions. Draw the shear
force and bending moment diagrams. Let EI be constant throughout the beam.

4.4 For the cantilever beam subjected to the free-end load P shown in Figure P4–4,
determine the maximum deflection and the reactions. Let EI be constant throughout
the beam.

4.5–4.11 For the beams shown in Figures P4–5 through P4–11, determine the displacements
and the slopes at the nodes, the forces in each element, and the reactions. Also, draw
the shear force and bending moment diagrams.

Figure P4–3 Figure P4–4

Figure P4–5
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Figure P4–6

Figure P4–7

Figure P4–8

Figure P4–9

Figure P4–10
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4.12 For the fixed-fixed beam subjected to the uniform load w shown in Figure P4–12,
determine the midspan deflection and the reactions. Draw the shear force and bending
moment diagrams. The middle section of the beam has a bending stiffness of 2EI ; the
other sections have bending stiffnesses of EI .

4.13 Determine the midspan deflection and the reactions and draw the shear force and
bending moment diagrams for the fixed-fixed beam subjected to uniformly distributed
load w shown in Figure P4–13. Assume EI constant throughout the beam. Compare
your answers with the classical solution (that is, with the appropriate equivalent joint
forces given in Appendix D).

4.14 Determine the midspan deflection and the reactions and draw the shear force and
bending moment diagrams for the simply supported beam subjected to the uni-
formly distributed load w shown in Figure P4–14. Assume EI constant throughout
the beam.

4.15 For the beam loaded as shown in Figure P4–15, determine the free-end deflection and
the reactions and draw the shear force and bending moment diagrams. Assume EI

constant throughout the beam.

Figure P4–11

Figure P4–12

Figure P4–13 Figure P4–14
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4.16 Using the concept of work equivalence, determine the nodal forces and moments
(called equivalent nodal forces) used to replace the linearly varying distributed load
shown in Figure P4–16.

4.17 For the beam shown in Figure 4–17, determine the displacement and slope at the
center and the reactions. The load is symmetrical with respect to the center of the
beam. Assume EI constant throughout the beam.

4.18 For the beam subjected to the linearly varying line load w shown in Figure P4–18,
determine the right-end rotation and the reactions. Assume EI constant throughout
the beam.

4.19–4.24 For the beams shown in Figures P4–19 through P4–24, determine the nodal dis-
placements and slopes, the forces in each element, and the reactions.

Figure P4–16Figure P4–15

Figure P4–17

Figure P4–18

Figure P4–19
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Figure P4–20

Figure P4–21

Figure P4–22

Figure P4–23

Figure P4–24
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4.25–4.30 For the beams shown in Figures P4–25 through P4–30, determine the maximum de-
flection and maximum bending stress. Let E ¼ 200 GPa or 30� 106 psi for all beams as
appropriate for the rest of the units in the problem. Let c be the half-depth of each beam.

For the beam design problems shown in Figures P4–31 through P4–36, determine the
size of beam to support the loads shown, based on requirements listed next to each beam.

4.31 Design a beam of ASTM A36 steel with allowable bending stress of 160 MPa to
support the load shown in Figure P4–31. Assume a standard wide flange beam from
Appendix F, or some other source can be used.

4 m 4 m

A B C

w = 10 kN�m

c = 0.25 m, I = 100 × 10−6 m4

Figure P4–25

10 m 20 m

A B C

30 kN�m

c = 0.25 m, I = 500(10−6) m4

I 2I

Figure P4–26

A B C

75 k

c = 10 in., I = 500 in.4
3I I

D

2 kip�ft

15 ft 15 ft 30 ft

Figure P4–27

10 m 5 m

B C

25 kN�m

c = 0.30 m, I = 700 × 10−6  m4

A

Figure P4–28

10 ft 10 ft

A
B

C

1.5 kip�ft

c = 10 in., I = 400 in.4

Figure P4–29

12 m 6 m

A
B

C

100 kN
10 kN�m

c = 0.30 m, I = 700 × 10−6 m4

I 2I

Figure P4–30

4 m 4 m

w = 30 kN/m

Figure P4–31
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4.32 Select a standard steel pipe from Appendix F to support the load shown. The allow-
able bending stress must not exceed 24 ksi, and the allowable deflection must not
exceed L/360 of any span.

4.33 Select a rectangular structural tube from Appendix F to support the loads shown for
the beam in Figure P4–33. The allowable bending stress should not exceed 24 ksi.

4.34 Select a standard W section from Appendix F or some other source to support the
loads shown for the beam in Figure P4–34. The bending stress must not exceed
160 MPa.

4.35 For the beam shown in Figure P4–35, determine a suitable sized W section from
Appendix F or from another suitable source such that the bending stress does not
exceed 150 MPa and the maximum deflection does not exceed L/360 of any span.

6 ft

500 lb500 lb500 lb

6 ft 6 ft

Figure P4–32

6 ft

1 kip

6 ft

Figure P4–33

6.0 m

20 kN/m

6.0 m6.0 m

Figure P4–34

10 m10 m

70 kN
17 kN

70 kN

2.5 m 2.5 m

5 m

Figure P4–35
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4.36 For the stepped shaft shown in Figure P4–36, determine a solid circular cross section
for each section shown such that the bending stress does not exceed 160 MPa and the
maximum deflection does not exceed L/360 of the span.

4.37 For the beam shown in Figure P4–37 subjected to the concentrated load P and dis-
tributed load w, determine the midspan displacement and the reactions. Let EI be
constant throughout the beam.

4.38 For the beam shown in Figure P4–38 subjected to the two concentrated loads P,
determine the deflection at the midspan. Use the equivalent load replacement method.
Let EI be constant throughout the beam.

4.39 For the beam shown in Figure P4–39 subjected to the concentrated load P and the
linearly varying line load w, determine the free-end deflection and rotation and the
reactions. Use the equivalent load replacement method. Let EI be constant through-
out the beam.

4.40–4.42 For the beams shown in Figures P4–40 through P4–42, with internal hinge, determine
the deflection at the hinge. Let E ¼ 210 GPa and I ¼ 2� 10�4 m4.

3 m

A
C

B D

E

200 kN

3 m 3 m 3 m
Figure P4–36

Figure P4–37 Figure P4–38

Figure P4–39 Figure P4–40
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4.43 Derive the stiffness matrix for a beam element with a nodal linkage—that is, the shear
is 0 at node i, but the usual shear and moment resistance are present at node j (see
Figure P4–43).

4.44 Develop the stiffness matrix for a fictitious pure shear panel element (Figure P4–44) in
terms of the shear modulus, G, the shear web area, AW , and the length, L. Notice that
Y and v are the shear force and transverse displacement at each node, respectively.

Given 1Þ t ¼ Gg; 2Þ Y ¼ tAw; 3Þ Y1 þ Y2 ¼ 0; 4Þ g ¼ v2 � v1

L

4.45 Explicitly evaluate pp of Eq. (4.7.15); then differentiate pp with respect to v1; f1; v2,
and f2 and set each of these equations to zero (that is, minimize pp) to obtain the four
element equations for the beam element. Then express these equations in matrix form.

4.46 Determine the free-end deflection for the tapered beam shown in Figure P4–46. Here
IðxÞ ¼ I0ð1þ nx=LÞ where I0 is the moment of inertia at x ¼ 0. Compare the exact

beam theory solution with a two-element finite element solution for n ¼ 7½12�.

where v1 ¼
1

17:55

PL3

EI0

; y1 ¼ �
1

9:95

PL2

EI0

Figure P4–41 Figure P4–42

Figure P4–43

L

1 2

Y1,  1

L

Positive node force
sign convention

Element in equilibrium
(neglect moments)

YY

Y2,   2 Figure P4–44
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4.47 Derive the equations for the beam element on an elastic foundation (Figure P4–47)
using the principle of minimum potential energy. Here kf is the subgrade spring
constant per unit length. The potential energy of the beam is

pp ¼
ð L

0

1

2
EIðv 00Þ2

dxþ
ð L

0

kf v2

2
dx�

ð L

0

wv dx

4.48 Derive the equations for the beam element on an elastic foundation (see Figure
P4–47) using Galerkin’s method. The basic differential equation for the beam on
an elastic foundation is

ðEIv 00Þ 00 ¼ �wþ kf v

4.49–4.76 Solve Problems 4.5 through 4.11, 4.19 through 4.30, and 4.40 through 4.42 using a
suitable computer program.

4.77 For the beam shown in Figure P4–77, use a computer program to determine the de-
flection at the mid-span using four beam elements, making the shear area zero and
then making the shear area equal 5/6 times the cross-sectional area (b times h). Then
make the beam have decreasing spans of 200 mm, 100 mm, and 50 mm with zero
shear area and then 5/6 times the cross-sectional area. Compare the answers. Based on
your program answers, can you conclude whether your program includes the effects of
transverse shear deformation?

4.78 For the beam shown in Figure P4–77, use a longhand solution to solve the problem.
Compare answers using the beam stiffness matrix, Eq. (4.1.14), without transverse shear
deformation effects and then Eq. (4.1.15o), which includes the transverse shear effects.

Figure P4–77

I

Figure P4–46 Figure P4–47
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FRAME AND GRID EQUATIONSd

CHAPTER OBJECTIVES

. To derive the two-dimensional arbitrarily oriented beam element stiffness matrix.

. To demonstrate solutions of rigid plane frames by the direct stiffness method.

. To describe how to handle inclined or skewed supports.

. To derive the stiffness matrix and equations for grid analysis.

. To provide equations to determine torsional constants for various cross sections.

. To illustrate the solution of grid structures.

. To develop the stiffness matrix for a beam element arbitrarily oriented in space.

. To present the solution of a space frame.

. To introduce the concept of substructuring.

Introduction

Many structures, such as buildings (Figure 5–1) and bridges, are composed of frames
and/or grids. This chapter develops the equations and methods for solution of plane
and space frames and grids.

First, we will develop the stiffness matrix for a beam element arbitrarily oriented
in a plane. We will then include the axial nodal displacement degree of freedom in the
local beam element stiffness matrix. Then we will combine these results to develop the
stiffness matrix, including axial deformation effects, for an arbitrarily oriented beam
element, thus making it possible to analyze plane frames. Specific examples of plane
frame analysis follow. We will then consider frames with inclined or skewed supports.

Next, we will develop the grid element stiffness matrix. We will present the
solution of a grid deck system to illustrate the application of the grid equations. We
will then develop the stiffness matrix for a beam element arbitrarily oriented in
space. We will also consider the concept of substructure analysis.

d 5.1 Two-Dimensional Arbitrarily Oriented Beam Element d
We can derive the stiffness matrix for an arbitrarily oriented beam element, as shown
in Figure 5–2, in a manner similar to that used for the bar element in Chapter 3. The
local axes x0 and y0 are located along the beam element and transverse to the beam
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y′

v′1

x′

φ ′1

φ ′2

v′2

Figure 5–2 Arbitrarily oriented beam
element

element, respectively, and the global axes x and y are located to be convenient for the
total structure.

Recall that we can relate local displacements to global displacements by using
Eq. (3.3.16), repeated here for convenience as

u0

v0

� �
¼ C S

�S C

� �
u

v

� �
ð5:1:1Þ

Using the second equation of Eqs. (5.1.1) for the beam element, we relate local nodal
degrees of freedom to global degrees of freedom by

v01
f01
v02
f02

8>>><
>>>:

9>>>=
>>>;
¼

�S C 0 0 0 0

0 0 1 0 0 0

0 0 0 �S C 0

0 0 0 0 0 1

2
6664

3
7775

8>>>>>>>><
>>>>>>>>:

u1

v1

f1

u2

v2

f2

9>>>>>>>>=
>>>>>>>>;

ð5:1:2Þ

where, for a beam element, we define

(a) (b)

Figure 5–1 (a) The Arizona Cardinals’ football stadium under construction—a rigid
building frame (Courtesy Ed Yack) and (b) Mini Baja space frame constructed of
tubular steel members welded together (By Daryl L. Logan)

½T � ¼

2
6664
�S C 0 0 0 0

0 0 1 0 0 0

0 0 0 �S C 0

0 0 0 0 0 1

3
7775 ð5:1:3Þ
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as the transformation matrix. The axial effects are not yet included. Equation (5.1.2)
indicates that rotation is invariant with respect to either coordinate system. For
example, f01 ¼ f1, and moment m01 ¼ m1 can be considered to be a vector pointing
normal to the x0-y0 plane or to the x-y plane by the usual right-hand rule. From either
viewpoint, the moment is in the z0 ¼ z direction. Therefore, moment is unaffected as
the element changes orientation in the x-y plane.

Substituting Eq. (5.1.3) for ½T � and Eq. (4.1.14) for local ½k0� into Eq. (3.4.22),
½k� ¼ ½T �T ½k0�½T �, we obtain the global element stiffness matrix as

½k� ¼ EI

L3

u1 v1 f1 u2 v2 f22
666666664

12S2 �12SC �6LS �12S2 12SC �6LS

12C2 6LC 12SC �12C2 6LC

4L2 6LS �6LC 2L2

12S2 �12SC 6LS

12C2 �6LC

4L2

3
777777775

ð5:1:4Þ

Symmetry

where, again, C ¼ cos y and S ¼ sin y. It is not necessary here to expand ½T � given by
Eq. (5.1.3) to make it a square matrix to be able to use Eq. (3.4.22). Because
Eq. (3.4.22) is a generally applicable equation, the matrices used must merely be of
the correct order for matrix multiplication (see Appendix A for more on matrix multi-
plication). The stiffness matrix Eq. (5.1.4) is the global element stiffness matrix for a
beam element that includes shear and bending resistance. Local axial effects are not
yet included. The transformation from local to global stiffness by multiplying matrices
½T �T ½k0�½T �, as done in Eq. (5.1.4), is usually done on the computer.

We will now include the axial effects in the element, as shown in Figure 5–3.
The element now has three degrees of freedom per node ðu0i; v0i; f

0
iÞ. For axial effects,

we recall from Eq. (3.1.13),

f 01x

f 02x

� �
¼ AE

L

1 �1

�1 1

� �
u01
u02

� �
ð5:1:5Þ

f ′1x , u′1

f ′1y , v′1

f ′2y , v′2

f ′2x , u′2
y′

y

x

m′1 , φ′1

x′
φ′2 , m′2

Figure 5–3 Local forces and displacements acting on a beam element
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Combining the axial effects of Eq. (5.1.5) with the shear and principal bending
moment effects of Eq. (4.1.13), we have, in local coordinates,

8>>>>>>>>><
>>>>>>>>>:

f 01x

f 01y

m01
f 02x

f 02y

m02

9>>>>>>>>>=
>>>>>>>>>;

¼

2
666666664

C1 0 0 �C1 0 0

0 12C2 6C2L 0 �12C2 6C2L

0 6C2L 4C2L2 0 �6C2L 2C2L2

�C1 0 0 C1 0 0

0 �12C2 �6C2L 0 12C2 �6C2L

0 6C2L 2C2L2 0 �6C2L 4C2L2

3
777777775

8>>>>>>>>><
>>>>>>>>>:

u01
v01
f01
u02
v02
f02

9>>>>>>>>>=
>>>>>>>>>;

ð5:1:6Þ

C1 ¼
AE

L
and C2 ¼

EI

L3
ð5:1:7Þwhere

and, therefore,

½k 0� ¼

2
666666664

C1 0 0 �C1 0 0

0 12C2 6C2L 0 �12C2 6C2L

0 6C2L 4C2L2 0 �6C2L 2C2L2

�C1 0 0 C1 0 0

0 �12C2 �6C2L 0 12C2 �6C2L

0 6C2L 2C2L2 0 �6C2L 4C2L2

3
777777775

ð5:1:8Þ

The ½k0� matrix in Eq. (5.1.8) now has three degrees of freedom per node and now
includes axial effects (in the x0 direction), as well as shear force effects (in the y0 direc-
tion) and principal bending moment effects (about the z0 ¼ z axis). Using Eqs. (5.1.1)
and (5.1.2), we now relate the local to the global displacements by

8>>>>>>>>><
>>>>>>>>>:

u01
v01
f01
u02
v02
f02

9>>>>>>>>>=
>>>>>>>>>;

¼

2
666666664

C S 0 0 0 0

�S C 0 0 0 0

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 �S C 0

0 0 0 0 0 1

3
777777775

8>>>>>>>><
>>>>>>>>:

u1

v1

f1

u2

v2

f2

9>>>>>>>>=
>>>>>>>>;

ð5:1:9Þ

where ½T � has now been expanded to include local axial deformation effects as

½T � ¼

2
666666664

C S 0 0 0 0

�S C 0 0 0 0

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 �S C 0

0 0 0 0 0 1

3
777777775

ð5:1:10Þ
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Substituting ½T � from Eq. (5.1.10) and ½k0� from Eq. (5.1.8) into Eq. (3.4.22), ð½k� ¼
½T �T ½k0�½T �Þ we obtain the general transformed global stiffness matrix for a beam ele-
ment that includes axial force, shear force, and bending moment effects as follows:

½k� ¼ E

L
�

AC2þ12I

L2
S2 A�12I

L2

� �
CS � 6I

L
S � AC2þ12I

L2
S2

� �
� A�12I

L2

� �
CS � 6I

L
S

AS2þ12I

L2
C2 6I

L
C � A�12I

L2

� �
CS � AS2þ12I

L2
C 2

� �
6I

L
C

4I
6I

L
S � 6I

L
C 2I

AC2þ12I

L2
S2 A�12I

L2

� �
CS

6I

L
S

AS2þ12I

L2
C 2 � 6I

L
C

4I

2
666666666666666666666664

3
777777777777777777777775

Symmetry

(5.1.11)

The analysis of a rigid plane frame can be undertaken by applying stiffness matrix
Eq. (5.1.11). A rigid plane frame is defined here as a series of beam elements rigidly con-

nected to each other; that is, the original angles made between elements at their joints
remain unchanged after the deformation due to applied loads or applied displacements.

Furthermore, moments are transmitted from one element to another at the
joints. Hence, moment continuity exists at the rigid joints. In addition, the element
centroids, as well as the applied loads, lie in a common plane (x-y plane). From
Eq. (5.1.11), we observe that the element stiffnesses of a frame are functions of E, A,
L, I, and the angle of orientation y of the element with respect to the global-coordinate
axes. It should be noted that computer programs often refer to the frame element as a
beam element, with the understanding that the program is using the stiffness matrix in
Eq. (5.1.11) for plane frame analysis.

d 5.2 Rigid Plane Frame Examples d
To illustrate the use of the equations developed in Section 5.1, we will now perform
complete solutions for the following rigid plane frames.

Example 5.1

As the first example of rigid plane frame analysis, solve the simple ‘‘bent’’ shown in
Figure 5–4.

SOLUTION:
The frame is fixed at nodes 1 and 4 and subjected to a positive horizontal force
of 10,000 lb applied at node 2 and to a positive moment of 5000 lb-in. applied
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x′

x′

x′

Figure 5–4 Plane frame for analysis, also showing local x0 axis for each element

at node 3. The global-coordinate axes and the element lengths are shown in
Figure 5–4.

Let E ¼ 30� 106 psi and A ¼ 10 in.2 for all elements, and let I ¼ 200 in.4 for
elements 1 and 3, and I ¼ 100 in.4 for element 2.

Using Eq. (5.1.11), we obtain the global stiffness matrices for each element.

Element 1

For element 1, the angle between the global x and the local x0 axes is 90� (counter-
clockwise) because x0 is assumed to be directed from node 1 to node 2. Therefore,

C ¼ cos 90� ¼ x2 � x1

Lð1Þ
¼ �60� ð�60Þ

120
¼ 0

S ¼ sin 90� ¼ y2 � y1

Lð1Þ
¼ 120� 0

120
¼ 1

12I

L2
¼ 12ð200Þ
ð10� 12Þ2

¼ 0:167 in:2 ð5:2:1Þ

6I

L
¼ 6ð200Þ

10� 12
¼ 10:0 in:3

E

L
¼ 30� 106

10� 12
¼ 250,000 lb=in:3

Also,

Then, using Eqs. (5.2.1) to help in evaluating Eq. (5.1.11) for element 1, we obtain the
element global stiffness matrix as

½kð1Þ� ¼ 250;000

u1 v1 f1 u2 v2 f22
666666664

0:167 0 �10 �0:167 0 �10

0 10 0 0 �10 0

�10 0 800 10 0 400

�0:167 0 10 0:167 0 10

0 �10 0 0 10 0

�10 0 400 10 0 800

3
777777775

lb

in:
ð5:2:2Þ

where all diagonal terms are positive.
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Element 2

For element 2, the angle between x and x0 is zero because x0 is directed from node 2 to
node 3. Therefore,

C ¼ 1 S ¼ 0

12I

L2
¼ 12ð100Þ

1202
¼ 0:0835 in:2

6I

L
¼ 6ð100Þ

120
¼ 5:0 in:3 ð5:2:3Þ

E

L
¼ 250,000 lb=in:3

Also,

Using the quantities obtained in Eqs. (5.2.3) in evaluating Eq. (5.1.11) for element 2,
we obtain

½kð2Þ� ¼ 250,000

u2 v2 f2 u3 v3 f32
666666664

10 0 0 �10 0 0

0 0:0835 5 0 �0:0835 5

0 5 400 0 �5 200

�10 0 0 10 0 0

0 �0:0835 �5 0 0:0835 �5

0 5 200 0 �5 400

3
777777775

lb

in:
ð5:2:4Þ

Element 3

For element 3, the angle between x and x0 is 270� (or �90�) because x0 is directed from
node 3 to node 4. Therefore,

C ¼ 0 S ¼ �1

Therefore, evaluating Eq. (5.1.11) for element 3, we obtain

½kð3Þ� ¼ 250,000

u3 v3 f3 u4 v4 f42
666666664

0:167 0 10 �0:167 0 10

0 10 0 0 �10 0

10 0 800 �10 0 400

�0:167 0 �10 0:167 0 �10

0 �10 0 0 10 0

10 0 400 �10 0 800

3
777777775

lb

in:
ð5:2:5Þ

Superposition of Eqs. (5.2.2), (5.2.4), and (5.2.5) and application of the boundary con-
ditions u1 ¼ v1 ¼ f1 ¼ 0 and u4 ¼ v4 ¼ f4 ¼ 0 at nodes 1 and 4 yield the reduced set
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of equations for a longhand solution as

8>>>>>>>><
>>>>>>>>:

10,000

0

0

0

0

5000

9>>>>>>>>=
>>>>>>>>;

¼ 250,000

2
666666664

10:167 0 10 �10 0 0

0 10:0835 5 0 �0:0835 5

10 5 1200 0 �5 200

�10 0 0 10:167 0 10

0 �0:0835 �5 0 10:0835 �5

0 5 200 10 �5 1200

3
777777775

8>>>>>>>><
>>>>>>>>:

u2

v2

f2

u3

v3

f3

9>>>>>>>>=
>>>>>>>>;

ð5:2:6Þ

Solving Eq. (5.2.6) for the displacements and rotations, we have

8>>>>>>>><
>>>>>>>>:

u2

v2

f2

u3

v3

f3

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

0:211 in:

0:00148 in:

�0:00153 rad

0:209 in:

�0:00148 in:

�0:00149 rad

9>>>>>>>>=
>>>>>>>>;

ð5:2:7Þ

The results indicate that the top of the frame moves to the right with negligible vertical
displacement and small rotations of elements at nodes 2 and 3.

The element forces can now be obtained using f f 0g ¼ ½k0�½T �fdg for each ele-
ment, as was previously done in solving truss and beam problems. We will illustrate
this procedure only for element 1. For element 1, on using Eq. (5.1.10) for ½T � and
Eq. (5.2.7) for the displacements at node 2, we have

½T �fdg ¼

2
666666664

0 1 0 0 0 0

�1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 �1 0 0

0 0 0 0 0 1

3
777777775

u1 ¼ 0

v1 ¼ 0

f1 ¼ 0

u2 ¼ 0:211

v2 ¼ 0:00148

f2 ¼ �0:00153

9>>>>>>>>=
>>>>>>>>;

8>>>>>>>><
>>>>>>>>:

ð5:2:8Þ

On multiplying the matrices in Eq. (5.2.8), we obtain

½T �fdg ¼

8>>>>>>>><
>>>>>>>>:

0

0

0

0:00148

�0:211

�0:00153

9>>>>>>>>=
>>>>>>>>;

ð5:2:9Þ
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Then using ½k 0� from Eq. (5.1.8), we obtain element 1 local forces as

f f
0g ¼ ½k0 �½T �fdg ¼ 250,000

10 0 0 �10 0 0

0 0:167 10 0 �0:167 10

0 10 800 0 �10 400

�10 0 0 10 0 0

0 �0:167 �10 0 0:167 �10

0 10 400 0 �10 800

2
66666664

3
77777775

0

0

0

0:00148

�0:211

�0:00153

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð5:2:10Þ

Simplifying Eq. (5.2.10), we obtain the local forces acting on element 1 as

8>>>>>>>>><
>>>>>>>>>:

f 01x

f 01y

m01
f 02x

f 02y

m02

9>>>>>>>>>=
>>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

�3700 lb

4990 lb

376,000 lb-in:

3700 lb

�4990 lb

223,000 lb-in:

9>>>>>>>>=
>>>>>>>>;

ð5:2:11Þ

A free-body diagram of each element is shown in Figure 5–5 along with equilibrium
verification. In Figure 5–5, the x0 axis is directed from node 1 to node 2—consistent
with the order of the nodal degrees of freedom used in developing the stiffness matrix
for the element. Since the x-y plane was initially established as shown in Figure 5–4,
the z axis is directed outward—consequently, so is the z0 axis (recall z0 ¼ z). The y0

axis is then established such that x0 cross y0 yields the direction of z0. The signs on
the resulting element forces in Eq. (5.2.11) are thus consistently shown in Figure 5–5.
The forces in elements 2 and 3 can be obtained in a manner similar to that used to
obtain Eq. (5.2.11) for the nodal forces in element 1. Here we report only the final
results for the forces in elements 2 and 3 and leave it to your discretion to perform
the detailed calculations. The element forces (shown in Figures 5–5(b) and (c)) are as
follows:

Element 2

f 02x ¼ 5010 lb f 02y ¼ �3700 lb m02 ¼ �223,000 lb-in:
ð5:2:12aÞ

f 03x ¼ �5010 lb f 03y ¼ 3700 lb m03 ¼ �221,000 lb-in:

Element 3

f 03x ¼ 3700 lb f 03y ¼ 5010 lb m03 ¼ 226,000 lb-in:
ð5:2:12bÞ

f 04x ¼ �3700 lb f 04y ¼ �5010 lb m04 ¼ 375,000 lb-in:
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x′

y′

z′

z′

z′

x′

x′

y′

y′

Figure 5–5 Free-body diagrams of (a) element 1, (b) element 2, and (c) element 3

Considering the free body of element 1, the equilibrium equations are

X
Fx0 : �4990þ 4990 ¼ 0

X
Fy0 : �3700þ 3700 ¼ 0

X
M2: 376,000þ 223,000� 4990ð120 in:ÞG 0

Considering moment equilibrium at node 2, we see from Eqs. (5.2.12a) and (5.2.12b)
that on element 1, m02 ¼ 223,000 lb-in., and the opposite value, �223,000 lb-in.,
occurs on element 2. Similarly, moment equilibrium is satisfied at node 3, as m03
from elements 2 and 3 add to the 5000 lb-in. applied moment. That is, from
Eqs. (5.2.12a) and (5.2.12b) we have

�221,000þ 226,000 ¼ 5000 lb-in: 9
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Example 5.2

To illustrate the procedure for solving frames subjected to distributed loads, solve the
rigid plane frame shown in Figure 5–6. The frame is fixed at nodes 1 and 3 and sub-
jected to a uniformly distributed load of 1000 lb/ft applied downward over element 2.
The global-coordinate axes have been established at node 1. The element lengths are
shown in the figure. Let E ¼ 30� 106 psi, A ¼ 100 in.2, and I ¼ 1000 in.4 for both
elements of the frame.

SOLUTION:
We begin by replacing the distributed load acting on element 2 by nodal forces and
moments acting at nodes 2 and 3. Using Eqs. (4.4.5)–(4.4.7) (or Appendix D), the
equivalent nodal forces and moments are calculated as

f2y ¼ �
wL

2
¼ �ð1000Þ40

2
¼ �20,000 lb ¼ �20 kip

ð5:2:13Þ
m2 ¼ �

wL2

12
¼ �ð1000Þ402

12
¼ �133,333 lb-ft ¼ �1600 k-in:

x′1

x′2

Figure 5–6 (a) Plane frame for analysis and (b) equivalent nodal forces on frame
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f3y ¼ �
wL

2
¼ �ð1000Þ40

2
¼ �20,000 lb ¼ �20 kip

m3 ¼
wL2

12
¼ ð1000Þ402

12
¼ 133,333 lb-ft ¼ 1600 k-in:

We then use Eq. (5.1.11) to determine each element stiffness matrix:

Element 1

yð1Þ ¼ 45� C ¼ 0:707 S ¼ 0:707 Lð1Þ ¼ 42:4 ft ¼ 509:0 in:

E

L
¼ 30� 103

509
¼ 58:93

½kð1Þ� ¼ 58:93

2
64

50:02 49:98 8:33

49:98 50:02 �8:33

8:33 �8:33 4000

3
75 kip

in:
ð5:2:14Þ

Simplifying Eq. (5.2.14), we obtain

½kð1Þ� ¼

u2 v2 f22
64

2948 2945 491

2945 2948 �491

491 �491 235,700

3
75kip

in:
ð5:2:15Þ

where only the parts of the stiffness matrix associated with degrees of freedom at node
2 are included because node 1 is fixed.

Element 2

yð2Þ ¼ 0� C ¼ 1 S ¼ 0 Lð2Þ ¼ 40 ft ¼ 480 in:

E

L
¼ 30� 103

480
¼ 62:50

½kð2Þ� ¼ 62:50

2
64

100 0 0

0 0:052 12:5

0 12:5 4000

3
75 kip

in:
ð5:2:16Þ

Simplifying Eq. (5.2.16), we obtain

½kð2Þ� ¼

u2 v2 f22
64

6250 0 0

0 3:25 781:25

0 781:25 250,000

3
75 kip

in:
ð5:2:17Þ

where, again, only the parts of the stiffness matrix associated with degrees of freedom
at node 2 are included because node 3 is fixed. On superimposing the stiffness matrices
of the elements, using Eqs. (5.2.15) and (5.2.17), and using Eq. (5.2.13) for the nodal
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forces and moments only at node 2 (because the structure is fixed at node 3), we have
8><
>:

F2x ¼ 0

F2y ¼ �20

M2 ¼ �1600

9>=
>; ¼

2
64

9198 2945 491

2945 2951 290

491 290 485,700

3
75
8><
>:

u2

v2

f2

9>=
>; ð5:2:18Þ

Solving Eq. (5.2.18) for the displacements and the rotation at node 2, we obtain

8><
>:

u2

v2

f2

9>=
>; ¼

8><
>:

0:0033 in:

�0:0097 in:

�0:0033 rad

9>=
>; ð5:2:19Þ

The results indicate that node 2 moves to the right (u2 ¼ 0:0033 in.) and down
(v2 ¼ �0:0097 in.) and the rotation of the joint is clockwise (f2 ¼ �0:0033 rad).

The local forces in each element can now be determined. The procedure for
elements that are subjected to a distributed load must be applied to element 2. Recall
that the local forces are given by f f 0g ¼ ½k0�½T �fdg. For element 1, we then have

½T �fdg ¼

2
666666664

0:707 0:707 0 0 0 0

�0:707 0:707 0 0 0 0

0 0 1 0 0 0
0 0 0 0:707 0:707 0

0 0 0 �0:707 0:707 0

0 0 0 0 0 1

3
777777775

8>>>>>>>><
>>>>>>>>:

0

0

0

0:0033

�0:0097

�0:0033

9>>>>>>>>=
>>>>>>>>;

ð5:2:20Þ

Simplifying Eq. (5.2.20) yields

½T �fdg ¼

8>>>>>>>><
>>>>>>>>:

0

0

0

�0:00452

�0:0092

�0:0033

9>>>>>>>>=
>>>>>>>>;

ð5:2:21Þ

Using Eq. (5.2.21) and Eq. (5.1.8) for ½k0�, we obtain

8>>>>>>>>>>><
>>>>>>>>>>>:

f 01x

f 01y

m01

f 02x

f 02y

m02

9>>>>>>>>>>>=
>>>>>>>>>>>;

¼

2
66666666664

5893 0 0 �5893 0 0

2:730 694:8 0 �2:730 694:8

117,900 0 �694:8 117,900

5893 0 0

2:730 �694:8

235,800

3
77777777775

8>>>>>>>>>>><
>>>>>>>>>>>:

0

0

0

�0:00452

�0:0092

�0:0033

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð5:2:22Þ

Symmetry
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Simplifying Eq. (5.2.22) yields the local forces in element 1 as

f 01x ¼ 26:64 kip f 01y ¼ �2:268 kip m01x ¼ �389:1 k-in:
ð5:2:23Þ

f 02x ¼ �26:64 kip f 02y ¼ 2:268 kip m02x ¼ �778:2 k-in:

For element 2, the local forces are given by Eq. (4.4.11) because a distributed load is
acting on the element. From Eqs. (5.1.10) and (5.2.19), we then have

½T �fdg ¼

2
666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777777775

8>>>>>>>><
>>>>>>>>:

0:0033

�0:0097

�0:0033

0

0

0

9>>>>>>>>=
>>>>>>>>;

ð5:2:24Þ

Simplifying Eq. (5.2.24), we obtain

½T �fdg ¼

8>>>>>>>><
>>>>>>>>:

0:0033

�0:0097

�0:0033

0

0

0

9>>>>>>>>=
>>>>>>>>;

ð5:2:25Þ

Using Eq. (5.2.25) and Eq. (5.1.8) for ½k0�, we have

½k0�fd 0g ¼ ½k0�½T �fdg ¼

2
666666664

6250 0 0 �6250 0 0

3:25 781:1 0 �3:25 781:1

250,000 0 �781:1 125,000

6250 0 0

3:25 �781:1

250,000

3
777777775

8>>>>>>>><
>>>>>>>>:

0:0033

�0:0097

�0:0033

0

0

0

9>>>>>>>>=
>>>>>>>>;

ð5:2:26Þ

Symmetry

Simplifying Eq. (5.2.26) yields

½k0�fd 0g ¼

8>>>>>>>><
>>>>>>>>:

20:63

�2:58

�832:57

�20:63

2:58

�412:50

9>>>>>>>>=
>>>>>>>>;

ð5:2:27Þ
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Figure 5–7 Free-body diagrams of elements 1 and 2

To obtain the actual element local nodal forces, we apply Eq. (4.4.11); that is, we must
subtract the equivalent nodal forces [Eqs. (5.2.13)] from Eq. (5.2.27) to yield8>>>>>>>>><

>>>>>>>>>:

f 02x

f 02y

m02
f 03x

f 03y

m03

9>>>>>>>>>=
>>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

20:63

�2:58

�832:57

�20:63

2:58

�412:50

9>>>>>>>>=
>>>>>>>>;

�

8>>>>>>>><
>>>>>>>>:

0

�20

�1600

0

�20

1600

9>>>>>>>>=
>>>>>>>>;

ð5:2:28Þ

Simplifying Eq. (5.2.28), we obtain

f 02x ¼ 20:63 kip f 02y ¼ 17:42 kip m02 ¼ 767:4 k-in:
ð5:2:29Þ

f 03x ¼ �20:63 kip f 03y ¼ 22:58 kip m03 ¼ �2013 k-in:

Using Eqs. (5.2.23) and (5.2.29) for the local forces in each element, we can con-
struct the free-body diagram for each element, as shown in Figure 5–7. From the free-
body diagrams, one can confirm the equilibrium of each element, the total frame, and
joint 2 as desired. 9

In Example 5.3, we will illustrate the equivalent joint force replacement method
for a frame subjected to a load acting on an element instead of at one of the joints of
the structure. Since no distributed loads are present, the point of application of the
concentrated load could be treated as an extra joint in the analysis, and we could
solve the problem in the same manner as Example 5.1.

This approach has the disadvantage of increasing the total number of joints, as
well as the size of the total structure stiffness matrix ½K �. For small structures solved
by computer, this does not pose a problem. However, for very large structures, this
might reduce the maximum size of the structure that could be analyzed. Certainly,
this additional node greatly increases the longhand solution time for the structure.
Hence, we will illustrate a standard procedure based on the concept of equivalent
joint forces applied to the case of concentrated loads. We will again use Appendix D.
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Example 5.3

Solve the frame shown in Figure 5–8(a). The frame consists of the three elements
shown and is subjected to a 15-kip horizontal load applied at midlength of element 1.
Nodes 1, 2, and 3 are fixed, and the dimensions are shown in the figure. Let
E ¼ 30� 106 psi, I ¼ 800 in.4, and A ¼ 8 in.2 for all elements.

SOLUTION:
1. We first express the applied load in the element 1 local coordinate

system (here x0 is directed from node 1 to node 4). This is shown in
Figure 5–8(b).

y′
x′

Figure 5–8 Rigid frame with a load applied on an element
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2. Next, we determine the equivalent joint forces f f0g at each end of
element 1, using the table in Appendix D. (These forces are of
opposite sign from what are traditionally known as fixed-end forces

in classical structural analysis theory [1].) These equivalent forces
(and moments) are shown in Figure 5–8(c).

3. We then transform the equivalent joint forces from the present local-
coordinate-system forces into the global-coordinate-system forces, using
the equationf f g ¼ ½T �Tf f

0g, where ½T � is defined by Eq. (5.1.10).
These global joint forces are shown in Figure 5–8(d).

4. Then we analyze the structure in Figure 5–8(d), using the equivalent
joint forces (plus actual joint forces, if any) in the usual manner.

5. We obtain the final internal forces developed at the ends of each
element that has an applied load (here element 1 only) by subtracting
step 2 joint forces from step 4 joint forces; that is, Eq. (4.4.11)
ðf f g ¼ f f ðeÞg � f f0gÞ is applied locally to all elements that originally
had loads acting on them.

The solution of the structure as shown in Figure 5–8(d) now follows. Using
Eq. (5.1.11), we obtain the global stiffness matrix for each element.

Element 1

For element 1, the angle between the global x and the local x0 axes is 63:43� because x0

is assumed to be directed from node 1 to node 4. Therefore,

C ¼ cos 63:43� ¼ x4 � x1

Lð1Þ
¼ 20� 0

44:7
¼ 0:447

S ¼ sin 63:43� ¼ y4 � y1

Lð1Þ
¼ 40� 0

44:7
¼ 0:895

12I

L2
¼ 12ð800Þ
ð44:7� 12Þ2

¼ 0:0334
6I

L
¼ 6ð800Þ

44:7� 12
¼ 8:95

E

L
¼ 30� 103

44:7� 12
¼ 55:9

Using the preceding results in Eq. (5.1.11) for ½k�, we obtain

½kð1Þ� ¼

u4 v4 f42
64

90:9 178 448

178 359 �224

448 �224 179,000

3
75 ð5:2:30Þ

where only the parts of the stiffness matrix associated with degrees of freedom at node
4 are included because node 1 is fixed and, hence, not needed in the solution for the
nodal displacements.
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Element 3

For element 3, the angle between x and x0 is zero because x0 is directed from node 4 to
node 3. Therefore,

C ¼ 1 S ¼ 0
12I

L2
¼ 12ð800Þ
ð50� 12Þ2

¼ 0:0267

6I

L
¼ 6ð800Þ

50� 12
¼ 8:00

E

L
¼ 30� 103

50� 12
¼ 50

Substituting these results into ½k�, we obtain

½kð3Þ� ¼

u4 v4 f42
64

400 0 0

0 1:334 400

0 400 160,000

3
75 ð5:2:31Þ

since node 3 is fixed.

Element 2

For element 2, the angle between x and x0 is 116:57� because x0 is directed from node 2
to node 4. Therefore,

C ¼ 20� 40

44:7
¼ �0:447 S ¼ 40� 0

44:7
¼ 0:895

12I

L2
¼ 0:0334

6I

L
¼ 8:95

E

L
¼ 55:9

since element 2 has the same properties as element 1. Substituting these results into ½k�,
we obtain

½kð2Þ� ¼

u4 v4 f42
64

90:9 �178 448

�178 359 224

448 224 179,000

3
75 ð5:2:32Þ

since node 2 is fixed. On superimposing the stiffness matrices given by Eqs. (5.2.30),
(5.2.31), and (5.2.32), and using the nodal forces given in Figure 5–8(d) at node 4
only, we have 8><

>:
�7:50 kip

0

�900 k-in:

9>=
>; ¼

2
64

582 0 896

0 719 400

896 400 518,000

3
75
8><
>:

u4

v4

f4

9>=
>; ð5:2:33Þ

Simultaneously solving the three equations in Eq. (5.2.33), we obtain

u4 ¼ �0:0103 in:

v4 ¼ 0:000956 in: ð5:2:34Þ
f4 ¼ �0:00172 rad
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Next, we determine the element forces by again using f f 0g ¼ ½k 0�½T �fdg. In general,
we have

½T �fdg¼

2
666666664

C S 0 0 0 0

�S C 0 0 0 0

0 0 1 0 0 0

0 0 0 C S 0

0 0 0 �S C 0

0 0 0 0 0 1

3
777777775

ui

vi

fi

uj

vj

fj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

Thus, the preceding matrix multiplication yields

½T �fdg ¼

Cui þ Svi

�Sui þ Cvi

fi

Cuj þ Svj

�Suj þ Cvj

fj

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:2:35Þ

Element 1

½T �fdg ¼

8>>>>>>>><
>>>>>>>>:

0

0

0

ð0:447Þð�0:0103Þ þ ð0:895Þð0:000956Þ
ð�0:895Þð�0:0103Þ þ ð0:447Þð0:000956Þ

�0:00172

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

0

0

0

�0:00374

0:00963

�0:00172

9>>>>>>>>=
>>>>>>>>;

ð5:2:36Þ

Using Eq. (5.1.8) for ½k0� and Eq. (5.2.36), we obtain

½k0�½T �fdg ¼

2
666666664

447 0 0 �447 0 0

0 1:868 500:5 0 �1:868 500:5

0 500:5 179,000 0 �500:5 89,490

�447 0 0 447 0 0

0 �1:868 �500:5 0 1:868 �500:5

0 500:5 89,490 0 �500:5 179,000

3
777777775
�

8>>>>>>>><
>>>>>>>>:

0

0

0

�0:00374

0:00963

�0:00172

9>>>>>>>>=
>>>>>>>>;

ð5:2:37Þ

These values are now called effective nodal forces f f ðeÞg. Multiplying the matrices of
Eq. (5.2.37) and using Eq. (4.4.11) to subtract the equivalent nodal forces in local
coordinates for the element shown in Figure 5–8(c), we obtain the final nodal forces in
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Figure 5–9 Free-body diagrams of all elements of the frame in Figure 5–8(a)

element 1 as

f f 0
ð1Þg ¼

8>>>>>>>><
>>>>>>>>:

1:67

�0:88

�158

�1:67

0:88

�311

9>>>>>>>>=
>>>>>>>>;

�

8>>>>>>>><
>>>>>>>>:

�3:36

6:71

900

�3:36

6:71

�900

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

5:03 kip

�7:59 kip

�1058 k-in:

1:68 kip

�5:83 kip

589 k-in:

9>>>>>>>>=
>>>>>>>>;

ð5:2:38Þ

Similarly, we can use Eqs. (5.2.35) and (5.1.8) for elements 3 and 2 to obtain the local
nodal forces in these elements. Since these elements do not have any applied loads on
them, the final nodal forces in local coordinates associated with each element are
given byf f 0g ¼ ½k0�½T �fdg. These forces have been determined as follows:

Element 3

f 04x ¼ �4:12 kip f 04y ¼ �0:687 kip m04 ¼ �275 k-in:
ð5:2:39Þ

f 03x ¼ 4:12 kip f 03y ¼ 0:687 kip m03 ¼ �137 k-in:

Element 2

f 02x ¼ �2:44 kip f 02y ¼ �0:877 kip m02 ¼ �158 k-in:
ð5:2:40Þ

f 04x ¼ 2:44 kip f 04y ¼ 0:877 kip m04 ¼ �312 k-in:

Free-body diagrams of all elements are shown in Figure 5–9. Each element has been
determined to be in equilibrium, as often occurs even if errors are made in the long-
hand calculations. However, equilibrium at node 4 and equilibrium of the whole
frame are also satisfied. For instance, using the results of Eqs. (5.2.38) through
(5.2.40) to check equilibrium at node 4, which is implicit in the formulation of the
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global equations, we haveX
M4 ¼ 589� 275� 312 ¼ 2 k-in: ðclose to zeroÞX
Fx ¼ 1:68ð0:447Þ þ 5:83ð0:895Þ � 2:44ð0:447Þ

� 0:877ð0:895Þ � 4:12 ¼ �0:027 kip ðclose to zeroÞX
Fy ¼ 1:68ð0:895Þ � 5:83ð0:447Þ þ 2:44ð0:895Þ

� 0:877ð0:447Þ � 0:687 ¼ 0:004 kip ðclose to zeroÞ
Thus, the solution has been verified to be correct within the accuracy associated with a
longhand solution. 9

To illustrate the solution of a problem involving both bar and frame elements,
we will solve the following example.

Example 5.4

The bar element 2 is used to stiffen the cantilever beam element 1, as shown in
Figure 5–10. Determine the displacements at node 1 and the element forces. For the
bar, let A ¼ 1:0� 10�3 m2. For the beam, let A ¼ 2� 10�3 m2, I ¼ 5� 10�5 m4, and
L ¼ 3 m. For both the bar and the beam elements, let E ¼ 210 GPa. Let the angle
between the beam and the bar be 45�. A downward force of 500 kN is applied at node 1.

SOLUTION:
For brevity’s sake, since nodes 2 and 3 are fixed, we keep only the parts of ½k� for each
element that are needed to obtain the global ½K � matrix necessary for solution of the
nodal degrees of freedom. Using Eq. (3.4.23), we obtain ½k� for the bar as

½kð2Þ� ¼ ð1� 10�3Þð210� 106Þ
ð3=cos 45�Þ

0:5 0:5

0:5 0:5

� �

or, simplifying this equation, we obtain

½kð2Þ� ¼ 70� 103

u1 v1

0:354 0:354

0:354 0:354

� �
kN

m
ð5:2:41Þ

x

y

Figure 5–10 Cantilever beam with a bar element
support
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Using Eq. (5.1.11), we obtain ½k� for the beam (including axial effects) as

½kð1Þ� ¼ 70� 103

u1 v1 f12
64

2 0 0

0 0:067 0:10

0 0:10 0:20

3
75 kN

m
ð5:2:42Þ

where ðE=LÞ � 10�3 has been factored out in evaluating Eq. (5.2.42).
We assemble Eqs. (5.2.41) and (5.2.42) in the usual manner to obtain the global

stiffness matrix as

½K � ¼ 70� 103

2
64

2:354 0:354 0

0:354 0:421 0:10

0 0:10 0:20

3
75 kN

m
ð5:2:43Þ

The global equations are then written for node 1 as

8><
>:

F1x

F1y

M1

9>=
>; ¼

8><
>:

0

�500

0

9>=
>; ¼ 70� 103

2
64

2:354 0:354 0

0:354 0:421 0:10

0 0:10 0:20

3
75
8><
>:

u1

v1

f1

9>=
>; ð5:2:44Þ

Solving Eq. (5.2.44), we obtain

u1 ¼ 0:00338 m v1 ¼ �0:0225 m f1 ¼ 0:0113 rad ð5:2:45Þ

In general, the local element forces are obtained using f f 0g ¼ ½k0�½T �fdg. For
the bar element, we then have

f 01x

f 03x

� �
¼ AE

L

1 �1

�1 1

� �
C S 0 0

0 0 C S

� � u1

v1

u3

v3

8>>><
>>>:

9>>>=
>>>;

ð5:2:46Þ

The matrix triple product of Eq. (5.2.46) yields (as one equation)

f 01x ¼
AE

L
ðCu1 þ Sv1Þ ð5:2:47Þ

Substituting the numerical values into Eq. (5.2.47), we obtain

f 01x ¼
ð1� 10�3 m2Þð210� 106 kN=m2Þ

4:24 m

ffiffiffi
2
p

2
ð0:00338� 0:0225Þ

" #
ð5:2:48Þ

Simplifying Eq. (5.2.48), we obtain the axial force in the bar (element 2) as

f 01x ¼ �670 kN ð5:2:49Þ

where the negative sign means f 01x is in the direction opposite x0 for element 2. Simi-
larly, we obtain

f 03x ¼ 670 kN ð5:2:50Þ
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which means the bar is in tension as shown in Figure 5–11. Since the local and global
axes are coincident for the beam element, we have ff 0g ¼ ff g and fd 0g ¼ fdg. There-
fore, from Eq. (5.1.6), we have at node 1

f 01x

f 01y

m01

8><
>:

9>=
>; ¼

2
64

C1 0 0

0 12C2 6C2L

0 6C2L 4C2L2

3
75
8><
>:

u1

v1

f1

9>=
>; ð5:2:51Þ

where only the upper left 3� 3 part of the stiffness matrix is needed because the
displacements at node 2 are equal to zero. Substituting numerical values into
Eq. (5.2.51), we obtain

f 01x

f 01y

m01

8><
>:

9>=
>; ¼ 70� 103

2
64

2 0 0

0 0:067 0:10

0 0:10 0:20

3
75
8><
>:

0:00338

�0:0225

0:0113

9>=
>;

The matrix product then yields

f 01x ¼ 473 kN f 01y ¼ �26:5 kN m01 ¼ 0:0 kN . m ð5:2:52Þ

Similarly, using the lower left 3� 3 part of Eq. (5.1.6), we have at node 2,

f 02x

f 02y

m02

8><
>:

9>=
>; ¼ 70� 103

2
64
�2 0 0

0 �0:067 �0:10

0 0:10 0:10

3
75
8><
>:

0:00338

�0:0225

0:0113

9>=
>;

The matrix product then yields

f 02x ¼ �473 kN f 02y ¼ 26:5 kN m02 ¼ �78:3 kN . m ð5:2:53Þ
To help interpret the results of Eqs. (5.2.49), (5.2.50), (5.2.52), and (5.2.53), free-

body diagrams of the bar and beam elements are shown in Figure 5–11. To further
verify the results, we can show a check on equilibrium of node 1 to be satisfied. You
should also verify that moment equilibrium is satisfied in the beam.

x′

x′
y′

Figure 5–11 Free-body diagrams of the bar (element 2) and beam (element 1)
elements of Figure 5–10 9
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d 5.3 Inclined or Skewed Supports—
Frame Element

d

For the frame element with inclined support at node 3 in Figure 5–12, the transforma-
tion matrix ½T � used to transform global to local nodal displacements is given by
Eq. (5.1.10).

In the example shown in Figure 5–12, we use ½T � applied to node 3 as follows:

u 03
v 03
f 03

8><
>:

9>=
>; ¼

2
64

cos a sin a 0

�sin a cos a 0

0 0 1

3
75
8><
>:

u3

v3

f3

9>=
>; ð5:3:1Þ

The same steps as given in Section 3.9 then follow for the plane frame. The
resulting equations for the plane frame in Figure 5–12 are (see also Eq. (3.9.13))

½Ti�f f g ¼ ½Ti�½K �½Ti�Tfdg ð5:3:2Þ

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

F1x

F1y

M1

F2x

F2y

M2

F 03x

F 03y

M3

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

¼ ½Ti�½K �½Ti�T

u1 ¼ 0

v1 ¼ 0

f1 ¼ 0

u2

v2

f2

u 03
v 03 ¼ 0

f 03 ¼ f3

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

or ð5:3:3Þ

½Ti� ¼

2
64
½I � ½0� ½0�
½0� ½I � ½0�
½0� ½0� ½t3�

3
75where ð5:3:4Þ

½t3� ¼

2
64

cos a sin a 0

�sin a cos a 0

0 0 1

3
75and ð5:3:5Þ

Figure 5–12 Frame with inclined support
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d 5.4 Grid Equations d
A grid is a structure on which loads are applied perpendicular to the plane of the struc-

ture, as opposed to a plane frame, where loads are applied in the plane of the structure.
We will now develop the grid element stiffness matrix. The elements of a grid are
assumed to be rigidly connected, so that the original angles between elements con-
nected together at a node remain unchanged. Both torsional and bending moment
continuity then exist at the node point of a grid. Examples of grids include floor and
bridge deck systems. A typical grid structure subjected to loads F1;F2;F3, and F4 is
shown in Figure 5–13.

We will now consider the development of the grid element stiffness matrix and
element equations. A representative grid element with the nodal degrees of freedom
and nodal forces is shown in Figure 5–14. The degrees of freedom at each node for a
grid are a vertical deflection v0i (normal to the grid), a torsional rotation f0ix about the
x0 axis, and a bending rotation f0iz about the z0 axis. Any effect of axial displacement
is ignored; that is, u0i ¼ 0. The nodal forces consist of a transverse force f 0iy, a torsional
moment m0ix about the x0 axis, and a bending moment m0iz about the z0 axis. Grid ele-
ments do not resist axial loading; that is f 0ix ¼ 0.

To develop the local stiffness matrix for a grid element, we need to include the
torsional effects in the basic beam element stiffness matrix Eq. (4.1.14). Recall that
Eq. (4.1.14) already accounts for the bending and shear effects.

We can derive the torsional bar element stiffness matrix in a manner analogous
to that used for the axial bar element stiffness matrix in Chapter 3. In the derivation,
we simply replace f 0ix with m0ix; u

0
i with f0ix, E with G (the shear modulus), A with J (the

torsional constant, or stiffness factor), s with t (shear stress), and e with g (shear strain).

Figure 5–13 Typical grid structure

m′1x, φ′1x m′2x, φ′2x

m′2z, φ′2z
m′1z, φ′1z

f ′1y, v′1 f ′2y, v′2

x′

z′

y′

L

21

Figure 5–14 Grid element with nodal degrees of freedom and nodal forces
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′ ′ ′ ′ ′ ′

′′

′ ′

Figure 5–15 Nodal and element torque sign conventions

The actual derivation is briefly presented as follows. We assume a circular cross
section with radius R for simplicity but without loss of generalization.

Step 1

Figure 5–15 shows the sign conventions for nodal torque and angle of twist and for
element torque.

Step 2

We assume a linear angle-of-twist variation along the x0 axis of the bar such that

f0 ¼ a1 þ a2x0 ð5:4:1Þ

Using the usual procedure of expressing a1 and a2 in terms of unknown nodal angles
of twist f01x and f02x, we obtain

f0 ¼ f02x � f01x

L

� �
x0 þ f01x ð5:4:2Þ

or, in matrix form, Eq. (5.4.2) becomes

f0 ¼ ½N1 N2�
f01x

f02x

� �
ð5:4:3Þ

with the shape functions given by

N1 ¼ 1� x0

L
N2 ¼

x0

L
ð5:4:4Þ

Step 3

We obtain the shear strain g/angle of twist f0 relationship by considering the torsional
deformation of the bar segment shown in Figure 5–16. Assuming that all radial lines,
such as OA, remain straight during twisting or torsional deformation, we observe that
the arc length

_
AB is given by

_
AB ¼ gmax dx0 ¼ R df0

Solving for the maximum shear strain gmax, we obtain

gmax ¼
R df0

dx0
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′

′

′

′

′

Figure 5–16 Torsional deformation of a bar segment

Similarly, at any radial position r, we then have, from similar triangles OAB and
OCD,

g ¼ r
df0

dx0
¼ r

L
ðf02x � f01xÞ ð5:4:5Þ

where we have used Eq. (5.4.2) to derive the final expression in Eq. (5.4.5).
The shear stress t/shear strain g relationship for linear-elastic isotropic materials

is given by

t ¼ Gg ð5:4:6Þ

where G is the shear modulus of the material.

Step 4

We derive the element stiffness matrix in the following manner. From elementary
mechanics, we have the shear stress related to the applied torque by

m0x ¼
tJ

R
ð5:4:7Þ

where J is called the polar moment of inertia for the circular cross section or, generally,
the torsional constant for noncircular cross sections. Using Eqs. (5.4.5) and (5.4.6) in
Eq. (5.4.7), we obtain

m0x ¼
GJ

L
ðf02x � f01xÞ ð5:4:8Þ

By the nodal torque sign convention of Figure 5–15,

m01x ¼ �m0x ð5:4:9Þ

or, by using Eq. (5.4.8) in Eq. (5.4.9), we obtain

m01x ¼
GJ

L
ðf01x � f02xÞ ð5:4:10Þ

m02x ¼ m0x ð5:4:11ÞSimilarly,

m02x ¼
GJ

L
ðf02x � f01xÞ ð5:4:12Þor
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Expressing Eqs. (5.4.10) and (5.4.12) together in matrix form, we have the resulting
torsion bar stiffness matrix equation:

m01x

m02x

� �
¼ GJ

L

1 �1

�1 1

� �
f01x

f02x

� �
ð5:4:13Þ

Hence, the stiffness matrix for the torsion bar is

½k0� ¼ GJ

L

1 �1

�1 1

� �
ð5:4:14Þ

The cross sections of various structures, such as bridge decks, are often not
circular. However, Eqs. (5.4.13) and (5.4.14) are still general; to apply them to other
cross sections, we simply evaluate the torsional constant J for the particular cross sec-
tion. For instance, for cross sections made up of thin rectangular shapes such as chan-
nels, angles, or I shapes, we approximate J by

J ¼
X 1

3
bit

3
i ð5:4:15Þ

where bi is the length of any element of the cross section and ti is the thickness of any
element of the cross section. In Table 5–1, we list values of J for various common
cross sections. The first four cross sections are called open sections. Equation (5.4.15)
applies only to these open cross sections. (For more information on the J concept,
consult References [2] and [3], and for an extensive table of torsional constants for var-
ious cross-sectional shapes, consult Reference [4].) We assume the loading to go
through the shear center of these open cross sections in order to prevent twisting of
the cross section. For more on the shear center consult References [2] and [5].

On combining the torsional effects of Eq. (5.4.13) with the shear and bend-
ing effects of Eq. (4.1.13), we obtain the local stiffness matrix equation for a grid
element as

f 01y

m01x

m01z

f 02y

m02x

m02z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

2
6666666666666666666664

12EI

L3
0

6EI

L2

�12EI

L3
0

6EI

L2

GJ

L
0 0

�GJ

L
0

4EI

L

�6EI

L2
0

2EI

L

12EI

L3
0

�6EI

L2

GJ

L
0

4EI

L

3
7777777777777777777775

8>>>>>>>>>><
>>>>>>>>>>:

v01
f01x

f01z

v02
f02x

f02z

9>>>>>>>>>>=
>>>>>>>>>>;

ð5:4:16Þ

Symmetry
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Table 5–1 Torsional constants J and shear centers SC for various cross sections

Cross Section Torsional Constant

1. Channel

J ¼ t3

3
ðhþ 2bÞ

e ¼ h2b2t

4I

2. Angle

J ¼ 1
3 ðb1t3

1 þ b2t3
2Þ

3. Z section

J ¼ t3

3
ð2bþ hÞ

4. Wide-flanged beam with
unequal flanges

J ¼ 1
3 ðb1t3

1 þ b2t3
2 þ ht3

wÞ

5. Solid circular

J ¼ p

2
r4

6. Closed hollow rectangular

J ¼ 2tt1ða� tÞ2ðb� t1Þ2

atþ bt1 � t2 � t2
1
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where, from Eq. (5.4.16), the local stiffness matrix for a grid element is

½k0G� ¼

v01 f01x f01z v02 f02x f02z2
6666666666666666666664

12EI

L3
0

6EI

L2

�12EI

L3
0

6EI

L2

0
GJ

L
0 0

�GJ

L
0

6EI

L2
0

4EI

L

�6EI

L2
0

2EI

L

�12EI

L3
0

�6EI

L2

12EI

L3
0

�6EI

L2

0
�GJ

L
0 0

GJ

L
0

6EI

L2
0

2EI

L

�6EI

L2
0

4EI

L

3
7777777777777777777775

ð5:4:17Þ

and the degrees of freedom are in the order (1) vertical deflection, (2) torsional rota-
tion, and (3) bending rotation, as indicated by the notation used above the columns
of Eq. (5.4.17).

The transformation matrix relating local to global degrees of freedom for a grid
is given by

½TG� ¼

2
666666664

1 0 0 0 0 0

0 C S 0 0 0

0 �S C 0 0 0

0 0 0 1 0 0

0 0 0 0 C S

0 0 0 0 �S C

3
777777775

ð5:4:18Þ

where y is now positive, taken counterclockwise from x to x0 in the x-z plane
(Figure 5–17) and

C ¼ cos y ¼ xj � xi

L
S ¼ sin y ¼ zj � zi

L

′

′

′

Figure 5–17 Grid element arbitrarily oriented
in the x-z plane
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where L is the length of the element from node i to node j. As indicated by Eq. (5.4.18)
for a grid, the vertical deflection v0 is invariant with respect to a coordinate transfor-
mation (that is, y ¼ y0) (Figure 5–17).

The global stiffness matrix for a grid element arbitrarily oriented in the x-z plane
is then given by using Eqs. (5.4.17) and (5.4.18) in

½kG� ¼ ½TG�
T ½k0G�½TG� ð5:4:19Þ

Now that we have formulated the global stiffness matrix for the grid element,
the procedure for solution then follows in the same manner as that for the plane
frame.

To illustrate the use of the equations developed in Section 5.4, we will now solve
the following grid structures.

Example 5.5

Analyze the grid shown in Figure 5–18. The grid consists of three elements, is fixed at
nodes 2, 3, and 4, and is subjected to a downward vertical force (perpendicular to the
x-z plane passing through the grid elements) of 100 kip. The global-coordinate axes
have been established at node 3, and the element lengths are shown in the figure. Let
E ¼ 30� 103 ksi, G ¼ 12� 103 ksi, I ¼ 400 in.4, and J ¼ 110 in.4 for all elements
of the grid.

′

′′

Figure 5–18 Grid for analysis showing local x0 axis for each element

SOLUTION:
Substituting Eq. (5.4.17) for the local stiffness matrix and Eq. (5.4.18) for the transfor-
mation matrix into Eq. (5.4.19), we can obtain each element global stiffness matrix.
To expedite the longhand solution, the boundary conditions at nodes 2, 3, and 4

v2 ¼ f2x ¼ f2z ¼ 0 v3 ¼ f3x ¼ f3z ¼ 0 v4 ¼ f4x ¼ f4z ¼ 0 ð5:4:20Þ

5.4 Grid Equations d 265

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



make it possible to use only the upper left-hand 3� 3 partitioned part of the local
stiffness and transformation matrices associated with the degrees of freedom at
node 1. Therefore, the global stiffness matrices for each element are as follows:

Element 1

For element 1, we assume the local x0 axis to be directed from node 1 to node 2 for the
formulation of the element stiffness matrix. We need the following expressions to eval-
uate the element stiffness matrix:

C ¼ cos y ¼ x2 � x1

Lð1Þ
¼ �20� 0

22:36
¼ �0:894

S ¼ sin y ¼ z2 � z1

Lð1Þ
¼ 10� 0

22:36
¼ 0:447

12EI

L3
¼ 12ð30� 103Þð400Þ

ð22:36� 12Þ3
¼ 7:45

ð5:4:21Þ
6EI

L2
¼ 6ð30� 103Þð400Þ
ð22:36� 12Þ2

¼ 1000

GJ

L
¼ ð12� 103Þð110Þ
ð22:36� 12Þ ¼ 4920

4EI

L
¼ 4ð30� 103Þð400Þ

ð22:36� 12Þ ¼ 179,000

Considering the boundary condition Eqs. (5.4.20), using the results of Eqs. (5.4.21) in
Eq. (5.4.17) for ½k0G� and Eq. (5.4.18) for ½TG�, and then applying Eq. (5.4.19),
we obtain the upper left-hand 3� 3 partitioned part of the global stiffness matrix for
element 1 as

½kð1ÞG � ¼

2
64

1 0 0

0 �0:894 �0:447

0 0:447 �0:894

3
75
2
64

7:45 0 1000

0 4920 0

1000 0 179,000

3
75
2
64

1 0 0

0 �0:894 0:447

0 �0:447 �0:894

3
75

Performing the matrix multiplications, we obtain the global element grid stiffness
matrix

½kð1ÞG � ¼

v1 f1 f22
64

7:45 �447 �894

�447 39,700 69,600

�894 69,600 144,000

3
75 kip

in:
ð5:4:22Þ

where the labels next to the columns indicate the degrees of freedom.
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Element 2

For element 2, we assume the local x0 axis to be directed from node 1 to node 3 for the
formulation of the element stiffness matrix. We need the following expressions to eval-
uate the element stiffness matrix:

C ¼ x3 � x1

Lð2Þ
¼ �20� 0

22:36
¼ �0:894

ð5:4:23Þ
S ¼ z3 � z1

Lð2Þ
¼ �10� 0

22:36
¼ �0:447

Other expressions used in Eq. (5.4.17) are identical to those in Eqs. (5.4.21) for ele-
ment 1 because E;G; I ; J, and L are identical. Evaluating Eq. (5.4.19) for the global
stiffness matrix for element 2, we obtain

½kð2ÞG � ¼

2
64

1 0 0

0 �0:894 0:447

0 �0:447 �0:894

3
75
2
64

7:45 0 1000

0 4920 0

1000 0 179,000

3
75
2
64

1 0 0

0 �0:894 �0:447

0 0:447 �0:894

3
75

Simplifying, we obtain

½kð2ÞG � ¼

v1 f1x f1z2
64

7:45 447 �894

447 39,700 �69,600

�894 �69,600 144,000

3
75 kip

in:
ð5:4:24Þ

Element 3

For element 3, we assume the local x0 axis to be directed from node 1 to node 4. We
need the following expressions to evaluate the element stiffness matrix:

C ¼ x4 � x1

Lð3Þ
¼ 20� 20

10
¼ 0

S ¼ z4 � z1

Lð3Þ
¼ 0� 10

10
¼ �1

ð5:4:25Þ
12EI

L3
¼ 12ð30� 103Þð400Þ

ð10� 12Þ3
¼ 83:3

6EI

L2
¼ 6ð30� 103Þð400Þ

ð10� 12Þ2
¼ 5000
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GJ

L
¼ ð12� 103Þð110Þ

ð10� 12Þ ¼ 11,000

4EI

L
¼ 4ð30� 103Þð400Þ

ð10� 12Þ ¼ 400,000

Using Eqs. (5.4.25), we can obtain the upper part of the global stiffness matrix for ele-
ment 3 as

½kð3ÞG � ¼

v1 f1x f1z2
64

83:3 5000 0

5000 400,000 0

0 0 11,000

3
75 kip

in:
ð5:4:26Þ

Superimposing the global stiffness matrices from Eqs. (5.4.22), (5.4.24), and
(5.4.26), we obtain the total stiffness matrix of the grid (with boundary conditions
applied) as

½KG� ¼

v1 f1x f1z2
64

98:2 5000 �1790

5000 479,000 0

�1790 0 299,000

3
75 kip

in:
ð5:4:27Þ

The grid matrix equation then becomes

8><
>:

F1y ¼ �100

M1x ¼ 0

M1z ¼ 0

9>=
>; ¼

2
64

98:2 5000 �1790

5000 479,000 0

�1790 0 299,000

3
75
8><
>:

v1

f1x

f1z

9>=
>; ð5:4:28Þ

The force F1y is negative because the load is applied in the negative y direction.
Solving for the displacement and the rotations in Eq. (5.4.28), we obtain

v1 ¼ �2:83 in:

f1x ¼ 0:0295 rad ð5:4:29Þ

f1z ¼ �0:0169 rad

The results indicate that the y displacement at node 1 is downward as indicated by the
minus sign, the rotation about the x axis is positive, and the rotation about the z axis
is negative. Based on the downward loading location with respect to the supports,
these results are expected.

Having solved for the unknown displacement and the rotations, we can obtain
the local element forces on formulating the element equations in a manner similar
to that for the beam and the plane frame. The local forces (which are needed in the
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design/analysis stage) are found by applying the equation f f 0g ¼ ½k0G�½TG�fdg for each
element as follows:

Element 1

Using Eqs. (5.4.17) and (5.4.18) for ½k0G� and ½TG� and Eq. (5.4.29), we obtain

½TG�fdg ¼

2
666666664

1 0 0 0 0 0

0 �0:894 0:447 0 0 0

0 �0:447 �0:894 0 0 0

0 0 0 1 0 0

0 0 0 0 �0:894 0:447

0 0 0 0 �0:447 �0:894

3
777777775

8>>>>>>>><
>>>>>>>>:

�2:83

0:0295

�0:0169

0

0

0

9>>>>>>>>=
>>>>>>>>;

Multiplying the matrices, we obtain

½TG�fdg ¼

8>>>>>>>><
>>>>>>>>:

�2:83

�0:0339

0:00192

0

0

0

9>>>>>>>>=
>>>>>>>>;

ð5:4:30Þ

Then f f 0g ¼ ½k0G�½TG�fdg becomes

f 01y

m01x

m01z

f 02y

m02x

m02z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

2
666666664

7:45 0 1000 �7:45 0 1000

0 4920 0 0 �4920 0

1000 0 179,000 �1000 0 89,500

�7:45 0 �1000 7:45 0 �1000

0 �4920 0 0 4920 0

1000 0 89,500 �1000 0 179,000

3
777777775

8>>>>>>>><
>>>>>>>>:

�2:83

�0:0339

0:00192

0

0

0

9>>>>>>>>=
>>>>>>>>;

ð5:4:31Þ

Multiplying the matrices in Eq. (5.4.31), we obtain the local element forces as

f 01y

m01x

m01z

f 02y

m02x

m02z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

�19:2 kip

�167 k-in:

�2480 k-in:

19:2 kip

167 k-in:

�2660 k-in:

9>>>>>>>>=
>>>>>>>>;

ð5:4:32Þ

The directions of the forces acting on element 1 are shown in the free-body diagram of
element 1 in Figure 5–19.
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′ ′

′

′

′
′

′

′

′

Figure 5–19 Free-body diagrams of the elements of Figure 5–18 showing
local-coordinate systems for each

Element 2

Similarly, using f f 0g ¼ ½k0G�½TG�fdg for element 2, with the direction cosines in Eqs.
(5.4.23), we obtain

f 01y

m01x

m01z

f 03y

m03x

m03z

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

7:45 0 1000 �7:45 0 1000

0 4920 0 0 �4920 0

1000 0 179,000 �1000 0 89,500

�7:45 0 �1000 7:45 0 �1000

0 �4920 0 0 4920 0

1000 0 89,500 �1000 0 179,000

2
6666666664

3
7777777775

�

1 0 0 0 0 0

0 �0:894 �0:447 0 0 0

0 0:447 �0:894 0 0 0

0 0 0 1 0 0

0 0 0 0 �0:894 �0:447

0 0 0 0 0:447 �0:894

2
6666666664

3
7777777775

�2:83

0:0295

�0:0169

0

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
ð5:4:33Þ
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Multiplying the matrices in Eq. (5.4.33), we obtain the local element forces as

f 01y ¼ 7:23 kip

m01x ¼ �92:5 k-in:

m01z ¼ 2240 k-in:
ð5:4:34Þ

f 03y ¼ �7:23 kip

m03x ¼ 92:5 k-in:

m03z ¼ �295 k-in:

Element 3

Finally, using the direction cosines in Eqs. (5.4.25), we obtain the local element
forces as

f 01y

m01x

m01z

f 03y

m03x

m03z

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼

83:3 0 5000 �83:3 0 5000

0 11,000 0 0 �11,000 0

5000 0 400,000 �5000 0 200,000

�83:3 0 �5000 83:33 0 �5000

0 �11,000 0 0 11,000 0

5000 0 200,000 �5000 0 400,000

2
66666666664

3
77777777775

�

1 0 0 0 0 0

0 0 �1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 �1

0 0 0 0 1 0

2
66666666664

3
77777777775

�2:83

0:0295

�0:0169

0

0

0

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð5:4:35Þ

Multiplying the matrices in Eq. (5.4.35), we obtain the local element forces as

f 01y ¼ �88:1 kip

m01x ¼ 186 k-in:

m01z ¼ �2340 k-in:
ð5:4:36Þ

f 04y ¼ 88:1 kip

m04x ¼ �186 k-in:

m04z ¼ �8240 k-in:

Free-body diagrams for all elements are shown in Figure 5–19. Each element is in
equilibrium. For each element, the x0 axis is shown directed from the first node to the
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x

y

z

Figure 5–20 Free-body diagram of node 1 of Figure 5–18

second node, the y0 axis coincides with the global y axis, and the z0 axis is perpendicu-
lar to the x0-y0 plane with its direction given by the right-hand rule.

To verify equilibrium of node 1, we draw a free-body diagram of the node show-
ing all forces and moments transferred from node 1 of each element, as in Figure 5–20.
In Figure 5–20, the local forces and moments from each element have been trans-
formed to global components, and any applied nodal forces have been included. To
perform this transformation, recall that, in general, f f 0g ¼ ½T �ff g, and therefore f f g ¼
½T �Tff 0g because ½T �T ¼ ½T ��1. Since we are transforming forces at node 1 of each
element, only the upper 3� 3 part of Eq. (5.4.18) for ½TG� need be applied. Therefore,
by premultiplying the local element forces and moments at node 1 by the transpose of
the transformation matrix for each element, we obtain the global nodal forces and
moments as follows:

Element 1 8><
>:

f1y

m1x

m1z

9>=
>; ¼

2
64

1 0 0

0 �0:894 �0:447

0 0:447 �0:894

3
75
8><
>:

�19:2

�167

�2480

9>=
>;

Simplifying, we obtain the global-coordinate force and moments as

f1y ¼ �19:2 kip m1x ¼ 1260 k-in: m1z ¼ 2150 k-in: ð5:4:37Þ

where f1y ¼ f 01y because y ¼ y0.

Element 2 8><
>:

f1y

m1x

m1z

9>=
>; ¼

2
64

1 0 0

0 �0:894 0:447

0 �0:447 �0:894

3
75
8><
>:

7:23

�92:5

2240

9>=
>;
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Simplifying, we obtain the global-coordinate force and moments as

f1y ¼ 7:23 kip m1x ¼ 1080 k-in: m1z ¼ �1960 k-in: ð5:4:38Þ

Element 3 8><
>:

f1y

m1x

m1z

9>=
>; ¼

2
64

1 0 0

0 0 1

0 �1 0

3
75
8><
>:

�88:1

186

�2340

9>=
>;

Simplifying, we obtain the global-coordinate force and moments as

f1y ¼ �88:1 kip m1x ¼ �2340 k-in: m1z ¼ �186 k-in: ð5:4:39Þ

Then forces and moments from each element that are equal in magnitude but opposite
in sign will be applied to node 1. Hence, the free-body diagram of node 1 is shown in
Figure 5–20. Force and moment equilibrium are verified as follows:X

F1y ¼ �100� 7:23þ 19:2þ 88:1 ¼ 0:07 kip ðclose to zeroÞ
X

M1x ¼ �1260� 1080þ 2340 ¼ 0:0 k-in:
X

M1z ¼ �2150þ 1960þ 186 ¼ �4:00 k-in: ðclose to zeroÞ

Thus, we have verified the solution to be correct within the accuracy associated with a
longhand solution. 9

Example 5.6

Analyze the grid shown in Figure 5–21. The grid consists of two elements, is fixed at
nodes 1 and 3, and is subjected to a downward vertical load of 22 kN. The global-
coordinate axes and element lengths are shown in the figure. Let E ¼ 210 GPa, G ¼
84 GPa, I ¼ 16:6� 10�5 m4, and J ¼ 4:6� 10�5 m4.

SOLUTION:
As in Example 5.5, we use the boundary conditions and express only the part of the
stiffness matrix associated with the degrees of freedom at node 2. The boundary con-
ditions at nodes 1 and 3 are

v1 ¼ f1x ¼ f1z ¼ 0 v3 ¼ f3x ¼ f3z ¼ 0 ð5:4:40Þ

Figure 5–21 Grid example
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The global stiffness matrices for each element are obtained as follows:

Element 1

For element 1, we have the local x0 axis coincident with the global x axis. Therefore,
we obtain

C ¼ x2 � x1

Lð1Þ
¼ 3

3
¼ 1 S ¼ z2 � z1

Lð1Þ
¼ 3� 3

3
¼ 0

Other expressions needed to evaluate the stiffness matrix are

12EI

L3
¼ 12ð210� 106 kN=m2Þð16:6� 10�5 m4Þ

ð3 mÞ3
¼ 1:55� 104

6EI

L2
¼ 6ð210� 106Þð16:6� 10�5Þ

ð3Þ2
¼ 2:32� 104

ð5:4:41Þ
GJ

L
¼ ð84� 106Þð4:6� 10�5Þ

3
¼ 1:28� 103

4EI

L
¼ 4ð210� 106Þð16:6� 10�5Þ

3
¼ 4:65� 104

Considering the boundary condition Eqs. (5.4.40), using the results of Eqs.
(5.4.41) in Eq. (5.4.17) for ½k0G� and Eq. (5.4.18) for ½TG�, and then applying Eq.
(5.4.19), we obtain the reduced part of the global stiffness matrix associated only
with the degrees of freedom at node 2 as

½kð1ÞG � ¼

2
64

1 0 0

0 1 0

0 0 1

3
75
2
64

1:55 0 �2:32

0 0:128 0

�2:32 0 4:65

3
75ð104Þ

2
64

1 0 0

0 1 0

0 0 1

3
75

Since the local axes associated with element 1 are parallel to the global axes, we
observe that ½TG� is merely the identity matrix; therefore, ½kG� ¼ ½k0G�. Performing the
matrix multiplications, we obtain

½kð1ÞG � ¼

2
64

1:55 0 �2:32

0 0:128 0

�2:32 0 4:65

3
75ð104Þ kN

m
ð5:4:42Þ

Element 2

For element 2, we assume the local x0 axis to be directed from node 2 to node 3 for the
formulation of ½kG�. Therefore,

C ¼ x3 � x2

Lð2Þ
¼ 0� 0

3
¼ 0 S ¼ z3 � z2

Lð2Þ
¼ 0� 3

3
¼ �1 ð5:4:43Þ
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Other expressions used in Eq. (5.4.17) are identical to those obtained in Eqs. (5.4.41)
for element 1. Evaluating Eq. (5.4.19) for the global stiffness matrix, we obtain

½kð2ÞG � ¼

2
64

1 0 0

0 0 1

0 �1 0

3
75
2
64

1:55 0 2:32

0 0:128 0

2:32 0 4:65

3
75ð104Þ

2
64

1 0 0

0 0 �1

0 1 0

3
75

where the reduced part of ½kG� is now associated with node 2 for element 2. Again per-
forming the matrix multiplications, we have

½kð2ÞG � ¼

2
64

1:55 2:32 0

2:32 4:65 0

0 0 0:128

3
75ð104Þ kN

m
ð5:4:44Þ

Superimposing the global stiffness matrices from Eqs. (5.4.42) and (5.4.44), we obtain
the total global stiffness matrix (with boundary conditions applied) as

½KG� ¼

2
64

3:10 2:32 �2:32

2:32 4:78 0

�2:32 0 4:78

3
75ð104Þ kN

m
ð5:4:45Þ

The grid matrix equation becomes8><
>:

F2y ¼ �22

M2x ¼ 0

M2z ¼ 0

9>=
>; ¼

2
64

3:10 2:32 �2:32

2:32 4:78 0

�2:32 0 4:78

3
75
8><
>:

v2

f2x

f2z

9>=
>;ð104Þ ð5:4:46Þ

Solving for the displacement and the rotations in Eq. (5.4.46), we obtain

v2 ¼ �0:259� 10�2 m

f2x ¼ 0:126� 10�2 rad ð5:4:47Þ

f2z ¼ �0:126� 10�2 rad

We determine the local element forces by applying the local equation f f 0g ¼
½k0G�½TG�fdg for each element as follows:

Element 1

Using Eq. (5.4.17) for ½k0G�, Eq. (5.4.18) for ½TG�, and Eqs. (5.4.47), we obtain

½TG�fdg ¼

2
666666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3
777777775

8>>>>>>>><
>>>>>>>>:

0

0

0

�0:259� 10�2

0:126� 10�2

�0:126� 10�2

9>>>>>>>>=
>>>>>>>>;
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′

′

′

′ ′

′

Figure 5–22 Free-body diagram of each element of Figure 5–21

Multiplying the matrices, we have

½TG�fdg ¼

8>>>>>>>><
>>>>>>>>:

0

0

0

�0:259� 10�2

0:126� 10�2

�0:126� 10�2

9>>>>>>>>=
>>>>>>>>;

ð5:4:48Þ

Using Eqs. (5.4.17), (5.4.41), and (5.4.48), we obtain the local element forces as

f 01y

m01x

m01z

f 02y

m02x

m02z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ ð104Þ

1:55 0 2:32 �1:55 0 2:32

0:128 0 0 �0:128 0

4:65 �2:32 0 2:33

1:55 0 �2:32

0:128 0

4:65

2
666666664

3
777777775

0

0

0

�0:259� 10�2

0:126� 10�2

�0:126� 10�2

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð5:4:49Þ
Symmetry

Multiplying the matrices in Eq. (5.4.49), we obtain

f 01y ¼ 11:0 kN m01x ¼ �1:50 kN . m m01z ¼ 31:0 kN . m
ð5:4:50Þ

f 02y ¼ �11:0 kN m02x ¼ 1:50 kN . m m02z ¼ 1:50 kN . m

Element 2

We can obtain the local element forces for element 2 in a similar manner. Because the
procedure is the same as that used to obtain the element 1 local forces, we will not
show the details but will only list the final results:

f 02y ¼ �11:0 kN m02x ¼ 1:50 kN . m m02z ¼ �1:50 kN . m
ð5:4:51Þ

f 03y ¼ 11:0 kN m03x ¼ �1:50 kN . m m03z ¼ �31:0 kN . m

Free-body diagrams showing the local element forces are shown in Figure 5–22. 9
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d 5.5 Beam Element Arbitrarily Oriented
in Space

d

In this section, we develop the stiffness matrix for the beam element arbitrarily ori-
ented in space, or three dimensions. This element can then be used to analyze frames
in three-dimensional space.

First we consider bending about two axes, as shown in Figure 5–23.
We establish the following sign convention for the axes. Now we choose positive

x0 from node 1 to 2. Then y0 is the principal axis for which the moment of inertia is
minimum, Iy. By the right-hand rule we establish z0, and the maximum moment of
inertia is Iz.

Bending in x0-z0 Plane

First consider bending in the x0-z0 plane due to m0y. Then clockwise rotation f0y is in
the same sense as before for single bending. The stiffness matrix due to bending in
the x0-z0 plane is then

½k0y� ¼
EIy

L4

12L �6L2 �12L �6L2

4L3 6L2 2L3

12L 6L2

4L3

2
6664

3
7775 ð5:5:1Þ

Symmetry

where Iy is the moment of inertia of the cross section about the principal axis y0, the
weak axis; that is, Iy < Iz.

Bending in the x0-y0 Plane

Now we consider bending in the x0-y0 plane due to m0z. Now positive rotation f0z is
counterclockwise instead of clockwise. Therefore, some signs change in the stiffness

′ ′
′ ′ ′ ′

′′ ′

′
′

′

′ ′

′ ′

′w

′w

′v1

′v2

Figure 5–23 Bending about two axes y0 and z0
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matrix for bending in the x0-z0 plane. The resulting stiffness matrix is

½k0z� ¼
EIz

L4

12L 6L2 �12L 6L2

4L3 �6L2 2L3

12L �6L2

4L3

2
6664

3
7775 ð5:5:2Þ

Symmetry

Direct superposition of Eqs. (5.5.1) and (5.5.2) with the axial stiffness matrix Eq.
(3.1.14) and the torsional stiffness matrix Eq. (5.4.14) yields the element stiffness
matrix for the beam or frame element in three-dimensional space as

½k0� ¼

u01 v01 w01 f01x f01y f01z u02 v02 w02 f02x f02y f02z2
666666666666666666666666666666666666666666666666666664

AE

L
0 0 0 0 0 � AE

L
0 0 0 0 0

0
12EIz

L3
0 0 0

6EIz

L2
0 � 12EIz

L3
0 0 0

6EIz

L2

0 0
12EIy

L3
0 � 6EIy

L2
0 0 0 � 12EIy

L3
0 � 6EIy

L2
0

0 0 0
GJ

L
0 0 0 0 0 � GJ

L
0 0

0 0 � 6EIy

L2
0

4EIy

L
0 0 0

6EIy

L2
0

2EIy

L
0

0
6EIz

L2
0 0 0

4EIz

L
0 � 6EIz

L2
0 0 0

2EIz

L

�AE

L
0 0 0 0 0

AE

L
0 0 0 0 0

0 � 12EIz

L3
0 0 0 � 6EIz

L2
0

12EIz

L3
0 0 0 � 6EIz

L2

0 0 � 12EIy

L3
0

6EIy

L2
0 0 0

12EIy

L3
0

6EIy

L2
0

0 0 0 � GJ

L
0 0 0 0 0

GJ

L
0 0

0 0 � 6EIy

L2
0

2EIy

L
0 0 0

6EIy

L2
0

4EIy

L
0

0
6EIz

L2
0 0 0

2EIz

L
0 � 6EIz

L2
0 0 0

4EIz

L

3
777777777777777777777777777777777777777777777777777775

(5.5.3)

j
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j
j
j
j
j
j
j
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j
j
j
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j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

The transformation from local to global axis system is accomplished as follows:

½k� ¼ ½T �T ½k0�½T � ð5:5:4Þ

where ½k0� is given by Eq. (5.5.3) and ½T � is given by

½T � ¼

½l�3�3

½l�3�3

½l�3�3

½l�3�3

2
6664

3
7775 ð5:5:5Þ
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′

′

′

′

′

′y′

′ ′

′′

Figure 5–24 Direction cosines
associated with the x axis

Figure 5–25 Illustration showing how
local y0 axis is determined

where ½l� ¼

2
64

Cxx0 Cyx0 Czx0

Cxy0 Cyy0 Czy0

Cxz0 Cyz0 Czz0

3
75 ð5:5:6Þ

Here Cyx0 and Cxy0 are not necessarily equal. The direction cosines are shown in part
in Figure 5–24.

Remember that direction cosines of the x0 axis member are

x0 ¼ cos yxx0 iþ cos yyx0 jþ cos yzx0k ð5:5:7Þ

cos yxx0 ¼
x2 � x1

L
¼ l

cos yyx0 ¼
y2 � y1

L
¼ m ð5:5:8Þ

cos yzx0 ¼
z2 � z1

L
¼ n

where

The y0 axis is selected to be perpendicular to the x0 and z axes in such a way that the
cross product of global z with x0 results in the y0 axis, as shown in Figure 5–25.
Therefore,

z� x0 ¼ y0 ¼ 1

D

i j k

0 0 1

l m n

						

						 ð5:5:9Þ

y0 ¼ �m

D
iþ l

D
j ð5:5:10Þ

D ¼ ðl2 þm2Þ1=2and

The z0 axis will be determined by the orthogonality condition z0 ¼ x0 � y0 as follows:

z0 ¼ x0 � y0 ¼ 1

D

i j k

l m n

�m l 0

						

						 ð5:5:11Þ
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z0 ¼ � ln

D
i�mn

D
jþDk ð5:5:12Þor

Combining Eqs. (5.5.7), (5.5.10), and (5.5.12), the 3� 3 transformation matrix
becomes

½l�3�3 ¼

2
666664

l m n

�m

D

l

D
0

� ln

D
�mn

D
D

3
777775

ð5:5:13Þ

This vector ½l� rotates a vector from the local coordinate system into the global one.
This is the ½l� used in the ½T � matrix. In summary, we have

cos yxy0 ¼ �
m

D

cos yyy0 ¼
l

D

cos yzy0 ¼ 0
ð5:5:14Þ

cos yxz0 ¼ �
ln

D

cos yyz0 ¼ �
mn

D

cos yzz0 ¼ D

Two exceptions arise when local and global axes have special orientations with
respect to each other. If the local x0 axis coincides with the global z axis, then the
member is parallel to the global z axis and the y0 axis becomes uncertain, as shown
in Figure 5–26(a). In this case the local y0 axis is selected as the global y axis. Then, for

′

′

′

′

′′

x′ x′

Figure 5–26 Special cases of transformation matrices
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the positive x0 axis in the same direction as the global z; ½l� becomes

½l� ¼

2
64

0 0 1

0 1 0

�1 0 0

3
75 ð5:5:15Þ

For the positive x0 axis opposite the global z [Figure 5–26(b)], ½l� becomes

½l� ¼

2
64

0 0 �1

0 1 0

1 0 0

3
75 ð5:5:16Þ

Example 5.7

Determine the direction cosines and the rotation matrix of the local x0; y0; z0 axes in
reference to the global x; y; z axes for the beam element oriented in space with end
nodal coordinates of 1 (0, 0, 0) and 2 (3, 4, 12), as shown in Figure 5–27.

1 (0, 0, 0)

2 (3, 4, 12)

4

3
12

y

x

z

y′

x′z′

Figure 5–27 Beam element oriented in space

SOLUTION:
First we determine the length of the element as

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 42 þ 122

p
¼ 13
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Now using Eq. (5.5.8), we obtain the direction cosines of the x0 axis as follows:

lx ¼
x2 � x1

L
¼ 3� 0

13
¼ 3

13

mx ¼
y2 � y1

L
¼ 4� 0

13
¼ 4

13
ð5:5:17Þ

nx ¼
z2 � z1

L
¼ 12� 0

13
¼ 12

13

By Eq. (5.5.10) or (5.5.14), we obtain the direction cosines of the y0 axis as follows:

D ¼ ðl2 þm2Þ1=2 ¼ 3

13

� �2

þ 4

13

� �2
" #1=2

¼ 5

13
ð5:5:18Þ

Define the direction cosines of the y0 axis as ly;my, and ny, where

ly ¼ �
m

D
¼ � 4

5

my ¼
l

D
¼ 3

5
ð5:5:19Þ

ny ¼ 0

For the z0 axis, define the direction cosines as lz;mz; nz and again use Eq. (5.5.12) or
(5.5.14) as follows:

lz ¼ �
ln

D
¼
� 3

13


 �
12
13


 �
5
13

¼ � 36

65

mz ¼ �
mn

D
¼
� 4

13


 �
12
13


 �
5
13

¼ � 48

65
ð5:5:20Þ

nz ¼ D ¼ 5

13

Now check that l2 þm2 þ n2 ¼ 1.

For x0 :
32 þ 42 þ 122

132
¼ 1

For y0 :
ð�4Þ2 þ 32

52
¼ 1 ð5:5:21Þ

For z0 : � 36

65

� �2

þ � 48

65

� �2

þ 25

65

� �2

¼ 1

By Eq. (5.5.13), the rotation matrix is

½l�3�3 ¼

2
664

3
13

4
13

12
13

� 4
5

3
5 0

� 36
65 � 48

65
5

13

3
775 ð5:5:22Þ

Based on the resulting direction cosines from Eqs. (5.5.17), (5.5.19), and (5.5.20), the
local axes are also shown in Figure 5–27. 9
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Example 5.8

Determine the displacements and rotations at the free node (node 1) and the element
local forces and moments for the space frame shown in Figure 5–28. Also verify equi-
librium at node 1. Let E ¼ 30;000 ksi, G ¼ 10;000 ksi, J ¼ 50 in.4, Iy ¼ 100 in.4,
Iz ¼ 100 in.4, A¼ 10 in.2, and L ¼ 100 in. for all three beam elements.

Joint 1 
Plan

4

3

2

x′

x′

x′
I

x

y

z

L = 100 in.

Mx = −1000 k-in.

Fy = −50 k

L =
 10

0 i
n.

L = 100 in. 1

3

2

Figure 5–28 Space frame for analysis

SOLUTION:
Use Eq. (5.5.4) to obtain the global stiffness matrix for each element. This requires us
to first use Eq. (5.5.3) to obtain each local stiffness matrix, Eq. (5.5.5) to obtain the
transformation matrix for each element, and Eqs. (5.5.6) and (5.5.14) to obtain the
direction cosine matrix for each element.

Element 1

We establish the local x0 axis to go from node 2 to node 1 as shown in Figure 5–28.
Therefore, using Eq. (5.5.8), we obtain the direction cosines of the x 0 axis as follows:

l ¼ 1 m ¼ 0 n ¼ 0 ð5:5:23Þ

Also, D ¼ ðl2 þm2Þ1=2 ¼ 1

Using Eqs. (5.5.10) and (5.5.14), we obtain the direction cosines of the y0 axis as
follows:

ly ¼ �
m

D
¼ 0 my ¼

l

D
¼ 1 ny ¼ 0 ð5:5:24Þ
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Using Eqs. (5.5.12) and (5.5.14), we obtain the direction cosines of the z0 axis as
follows:

lz ¼ �
ln

D
¼ 0 mz ¼ �

mn

D
¼ 0 nz ¼ D ¼ 1 ð5:5:25Þ

Using Eqs. (5.5.23) through (5.5.25) in Eq. (5.5.13), we have

½l� ¼

2
64

1 0 0

0 1 0

0 0 1

3
75 ð5:5:26Þ

Using Eq. (5.5.3), we obtain the local stiffness matrix for element 1 as

½k0ð1Þ �¼

u02 v02 w02 f02x f02y f02z u01 v01 w01 f01x f01y f01z2
666666666666666666666664

3 . 103 0 0 0 0 0 �3 . 103 0 0 0 0 0

0 36 0 0 0 1:8 . 103 0 �36 0 0 0 1:8 . 103

0 0 36 0 �1:8 . 103 0 0 0 �36 0 �1:8 . 103 0

0 0 0 5 . 103 0 0 0 0 0 �5 . 103 0 0

0 0 �1:8 . 103 0 1:2 . 105 0 0 0 1:8 . 103 0 6 . 104 0

0 1:8 . 103 0 0 0 1:2 . 105 0 �1:8 . 103 0 0 0 6 . 104

�3 . 103 0 0 0 0 0 3 . 103 0 0 0 0 0

0 �36 0 0 0 �1:8 . 103 0 36 0 0 0 �1:8 . 103

0 0 �36 0 1:8 . 103 0 0 0 36 0 1:8 . 103 0

0 0 0 �5 . 103 0 0 0 0 0 5 . 103 0 0

0 0 �1:8 . 103 0 6 . 104 0 0 0 1:8 . 103 0 1:2 . 105 0

0 1:8 . 103 0 0 0 6 . 104 0 �1:8 . 103 0 0 0 1:2 . 105

3
777777777777777777777775

ð5:5:27Þ

Using Eq. (5.5.26) in Eq. (5.5.5), we obtain the transformation matrix from local to
global axis system as

½T � ¼

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

2
66666666666666666666664

3
77777777777777777777775

ð5:5:28Þ

284 d 5 Frame and Grid Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Finally, using Eq. (5.5.4), we obtain the global stiffness matrix for element 1 as

½kð1Þ� ¼ ½T �T ½k0 ð1Þ�½T � ¼

u2 v2 w
2

f2x f2y f2z u1 v1 w1 f1x f1y f1z2
666666666666666666666664

3 . 103 0 0 0 0 0 �3 . 103 0 0 0 0 0

0 36 0 0 0 1:8 . 103 0 � 36 0 0 0 1:8 . 103

0 0 36 0 �1:8 . 103 0 0 0 �36 0 �1:8 . 103 0

0 0 0 5 . 103 0 0 0 0 0 �5 . 103 0 0

0 0 �1:8 . 103 0 1:2 . 105 0 0 0 1:8 . 103 0 6 . 104 0

0 1:8 . 103 0 0 0 1:2 . 105 0 �1:8 . 103 0 0 0 6 . 104

�3 . 103 0 0 0 0 0 3 . 103 0 0 0 0 0

0 �36 0 0 0 �1:8 . 103 0 36 0 0 0 �1:8 . 103

0 0 �36 0 1:8 . 103 0 0 0 36 0 1:8 . 103 0

0 0 0 �5 . 103 0 0 0 0 0 5 . 103 0 0

0 0 �1:8 . 103 0 6 . 104 0 0 0 1:8 . 103 0 1:2 . 105 0

0 1:8 . 103 0 0 0 6 . 104 0 �1:8 . 103 0 0 0 1:2 . 105

3
777777777777777777777775

ð5:5:29Þ

Element 2

We establish the local x0 axis from node 3 to node 1 as shown in Figure 5–28. We note
that the local x0 axis coincides with the global z axis. Therefore, by Eq. (5.5.15), we obtain

½l� ¼

2
64

0 0 1

0 1 0

�1 0 0

3
75 ð5:5:30Þ

The local stiffness matrix is the same as the one in Eq. (5.5.27) as all properties are the
same as for element 1. However, we must remember that the degrees of freedom are
for node 3 and then node 1.

Using Eq. (5.5.30) in Eq. (5.5.5), we obtain the transformation matrix as follows:

½T � ¼

0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 �1 0 0

2
66666666666666666666664

3
77777777777777777777775

ð5:5:31Þ
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Finally, using Eq. (5.5.31) in Eq. (5.5.4), we obtain the global stiffness matrix for ele-
ment 2 as

½kð2Þ � ¼

u3 v3 w3 f3x f3y f3z u1 v1 w1 f1x f1y f1z2
666666666666666666666666666666666664

36 0 0 0 1:8 . 103 0 �36 0 0 0 1:8 . 103 0

0 36 0 �1:8 . 103 0 0 0 �36 0 �1:8 . 103 0 0

0 0 3 . 103 0 0 0 0 0 �3 . 103 0 0 0

0 �1:8 . 103 0 1:2 . 105 0 0 0 1:8 . 103 0 6 . 104 0 0

1:8 . 103 0 0 0 1:2 . 105 0 �1:8 . 103 0 0 0 6 . 104 0

0 0 0 0 0 5 . 103 0 0 0 0 0 � 5 . 103

�36 0 0 0 �1:8 . 103 0 36 0 0 0 �1:8 . 103 0

0 �36 0 1:8 . 103 0 0 0 36 0 1:8 . 103 0 0

0 0 �3 . 103 0 0 0 0 0 3 . 103 0 0 0

0 �1:8 .103 0 6 . 104 0 0 0 1:8 . 103 0 1:2 . 105 0 0

1:8 . 103 0 0 0 6 . 104 0 �1:8 . 103 0 0 0 1:2 . 105 0

0 0 0 0 0 �5 . 103 0 0 0 0 0 5 .103

3
777777777777777777777777777777777775

ð5:5:32Þ

Element 3

We establish the local x0 axis from node 4 to node 1 for element 3 as shown in Figure
5–28. The direction cosines are now

l ¼ 0� 0

100
¼ 0 m ¼ 0� ð�100Þ

100
¼ 1 n ¼ 0� 0

100
¼ 0 ð5:5:33Þ

Also, D ¼ 1.
Using Eq. (5.5.14), we obtain the rest of the direction cosines as

ly ¼ �
m

D
¼ �1 my ¼

L

D
¼ 0 ny ¼ 0 ð5:5:34Þ

and

lz ¼ �
ln

D
¼ 0 mz ¼ �

mn

D
¼ 0 nz ¼ D ¼ 1 ð5:5:35Þ

Using Eqs. (5.5.33) through (5.5.35), we obtain

½l� ¼

2
64

0 1 0

�1 0 0

0 0 1

3
75 ð5:5:36Þ
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The transformation matrix for element 3 is then obtained by using Eq. (5.5.5) as:

½T � ¼

0 1 0 0 0 0 0 0 0 0 0 0

�1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 �1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 0 1

2
66666666666666666666666664

3
77777777777777777777777775

ð5:5:37Þ

The element 3 properties are identical to the element 1 properties; therefore, the
local stiffness matrix is identical to the one in Eq. (5.5.27). We must remember that
the degrees of freedom are now in the order node 4 and then node 1.

Using Eq. (5.5.37) in Eq. (5.5.4), we obtain the global stiffness matrix for ele-
ment 3 as

½kð3Þ� ¼

u4 v4 w4 f4x f4y f4z u1 v1 w1 f1x f1y f1z2
666666666666666666666666666666666664

36 0 0 0 0 �1:8 . 103 �36 0 0 0 0 �1:8 . 103

0 3 . 103 0 0 0 0 0 �3 . 103 0 0 0 0

0 0 36 1:8 . 103 0 0 0 0 �36 1:8 . 103 0 0

0 0 1:8 . 103 1:2 . 105 0 0 0 0 �1:8 . 103 6 . 104 0 0

0 0 0 0 5 . 103 0 0 0 0 0 � 5 . 103 0

�1:8 . 103 0 0 0 0 1:2 . 105 1:8 . 103 0 0 0 0 6 . 104

�36 0 0 0 0 1:8 . 103 36 0 0 0 0 1:8 . 103

0 �3 . 103 0 0 0 0 0 3 . 103 0 0 0 0

0 0 �36 � 1:8 . 103 0 0 0 0 36 � 1:8 . 103 0 0

0 0 1:8 . 103 6 .104 0 0 0 0 �1:8 .103 1:2 . 105 0 0

0 0 0 0 �5 . 103 0 0 0 0 0 5 . 103 0

�1:8 . 103 0 0 0 0 6 . 104 1:8 . 103 0 0 0 0 1:2 .105

3
777777777777777777777777777777777775

ð5:5:38Þ

Applying the boundary conditions that displacements in the x; y; and z directions are all
zero at nodes 2, 3, and 4, and rotations about the x; y; and z axes are all zero at nodes
2, 3, and 4, we obtain the reduced global stiffness matrix. Also, the applied global force
is directed in the negative y direction at node 1 and so expressed as F1y ¼ �50 kips,
and the global moment about the x axis at node 1 is M1x ¼ �1000 k-in.

5.5 Beam Element Arbitrarily Oriented in Space d 287

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



With these considerations, the final global equations are

0

�50

0

�1000
0
0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

3:072� 103 0 0 0 �1:8� 103 1:8� 103

0 3:072� 103 0 1:8� 103 0 �1:8� 103

0 0 3:072� 103 �1:8� 103 1:8� 103 0

0 1:8� 103 �1:8� 103 2:45� 105 0 0

�1:8� 103 0 1:8� 103 0 2:45� 105 0

1:8� 103 �1:8� 103 0 0 0 2:45� 105

2
6666666664

3
7777777775

u1

v1

w1

f1x

f1y

f1z

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð5:5:39Þ

Finally, solving simultaneously for the displacements and rotations at node 1, we
obtain

fdg ¼

7:098� 10�5 in:

�0:014 in:

�2:352� 10�3 in:

�3:996� 10�3 rad

1:78� 10�5 rad

�1:033� 10�4 rad

2
666666664

3
777777775

ð5:5:40Þ

We now determine the element local forces and moments using the equation
f f 0g ¼ ½k0�½T �fdg for each element as previously done for plane frames and trusses.
As we are dealing with space frame elements, these element local forces and moments
are now the normal force, two shear forces, torsional moment, and two bending
moments at each end of each element.

Element 1

Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transformation
matrix, ½T �, and Eq. (5.5.40) for the displacements, we obtain the local element forces
and moments as

f f 0
ð1Þg ¼

�0:213 kip

0:318 kip

0:053 kip

19:98 kip . in:

�3:165 kip . in:

18:991 kip . in:

0:213 kip

�0:318 kip

�0:053 kip

�19:98 kip . in:

�2:097 kip . in:

12:79 kip . in:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð5:5:41Þ

Element 2

Using Eq. (5.5.27) for the local stiffness matrix, Eq. (5.5.28) for the transforma-
tion matrix, and Eq. (5.5.40) for the displacements, we obtain the local forces and
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moments as

f f
0ð2Þg ¼

7:056 kip

7:697 kip

� 0:029 kip

0:517 kip . in:

0:94 kip . in:

264:957 kip . in:

� 7:056 kip

� 7:697 kip

0:029 kip

� 0:517 kip . in:

2:008 kip . in:

504:722 kip . in:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð5:5:42Þ

Element 3

Similarly, using Eqs. (5.5.27), (5.5.37), and (5.5.40), we obtain the local forces and
moments as

f f
0ð3Þg ¼

41:985 kip

� 0:183 kip

� 7:108 kip

� 0:089 kip . in:

235:532 kip . in:

� 6:073 kip . in:

� 41:985 kip

0:183 kip

7:108 kip

0:089 kip . in:

475:297 kip . in:

� 12:273 kip . in:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð5:5:43Þ

We can verify equilibrium of node 1 by considering the node 1 forces and moments
from each element that transfer to the node. We use the results from Eqs. (5.5.41),
(5.5.42), and (5.5.43) to establish the proper forces and moments transferred to
node 1. (Note that based on Newton’s third law, the opposite forces and moments
from each element are sent to node 1.) For instance, we observe from summing forces
in the global y direction (shown in the diagram that follows)

0:318 kipþ 7:697 kipþ 41:985 kip� 50 kip ¼ 0 ð5:5:44Þ

In Eq. (5.5.44), 0.318 kip is from the element 1 local y0 force that is coincident
with the global y direction; 7.697 kip is from the element 2 local y0 force that is co-
incident with the global y direction, while 41.985 kip is from the element 3 local x0

direction that is coincident with the global y direction. We observe these axes from
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Figure 5–28. Verification of the other equilibrium equations is left to your
discretion.

Global y force equilibrium

0.318 kip 7.697 kip

1

41.985 kip

50 kip

9

An example using the frame element in three-dimensional space is shown in
Figure 5–29. Figure 5–29 shows a bus frame subjected to a static roof-crush analysis.
In this model, 599 frame elements and 357 nodes were used. A total downward load of
100 kN was uniformly spread over the 56 nodes of the roof portion of the frame.
Figure 5–30 shows the rear of the frame and the displaced view of the rear frame.
Other frame models with additional loads simulating rollover and front-end collisions
were studied in Reference [6].

Figure 5–29 Finite element model of bus frame subjected to roof load [6]

d 5.6 Concept of Substructure Analysis d
The problem of exceeding memory capacity on today’s personal computers has
decreased significantly for most applications. However, for those structures that
are too large to be analyzed as a single system or treated as a whole; that is, the final
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Figure 5–30 Displaced view of the frame of Figure 5–29 made of square section
members

Figure 5–31 Airplane frame showing substructuring. (a) Boeing 747 aircraft
(shaded area indicates portion of the airframe analyzed by finite element method).
(b) Substructures for finite element analysis of shaded region

stiffness matrix and equations for solution exceed the memory capacity of the com-
puter, the concept of substructure analysis can be used. The procedure to overcome
this problem is to separate the whole structure into smaller units called substructures.
For example, the space frame of an airplane, as shown in Figure 5–31(a), may require
thousands of nodes and elements to model and describe completely the response of the
whole structure. If we separate the aircraft into substructures, such as parts of the
fuselage or body, wing sections, and so on, as shown in Figure 5–31(b), then we can
solve the problem more readily and on computers with limited memory.

5.6 Concept of Substructure Analysis d 291

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure 5–32 (a) Rigid frame for substructure analysis and (b) substructure B

The analysis of the airplane frame is performed by treating each substructure
separately while ensuring force and displacement compatibility at the intersections
where partitioning occurs.

To describe the procedure of substructuring, consider the rigid frame shown in
Figure 5–32 (even though this frame could be analyzed as a whole). First we define
individual separate substructures. Normally, we make these substructures of similar
size, and to reduce computations, we make as few cuts as possible. We then separate
the frame into three parts, A;B, and C.

We now analyze a typical substructure B shown in Figure 5–32(b). This sub-
structure includes the beams at the top (a-a), but the beams at the bottom (b-b) are
included in substructure A, although the beams at top could be included in substruc-
ture C and the beams at the bottom could be included in substructure B.

The force/displacement equations for substructure B are partitioned with the
interface displacements and forces separated from the interior ones as follows:

F B
i

� 
F B

e

� 
( )

¼
K B

ii

� �
K B

ie

� �
K B

ei

� �
K B

ee

� �
" #

d B
i

� 
d B

e

� 
( )

ð5:6:1Þ
j
j
j
j
j
j

where the superscript B denotes the substructure B, subscript i denotes the interface
nodal forces and displacements, and subscript e denotes the interior nodal forces and
displacements to be eliminated by static condensation. Using static condensation,
Eq. (5.6.1) becomes

F B
i

� 
¼ K B

ii

� �
d B

i

� 
þ K B

ie

� �
d B

e

� 
ð5:6:2Þ

F B
e

� 
¼ K B

ei

� �
d B

i

� 
þ K B

ee

� �
d B

e

� 
ð5:6:3Þ

We eliminate the interior displacements fdeg by solving Eq. (5.6.3) for fd B
e g, as follows:

d B
e

� 
¼ K B

ee

� ��1
F B

e g � K B
ei

� �
d B

i

� � ��
ð5:6:4Þ

Then we substitute Eq. (5.6.4) for fd B
e g into Eq. (5.6.2) to obtain

F B
i

� 
� K B

ie

� �
K B

ee

� ��1
F B

e

� 
¼ K B

ii

� �
� K B

ie

� �
K B

ee

� ��1
K B

ei

� �� �
d B

i

� 
ð5:6:5Þ

292 d 5 Frame and Grid Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



We define

F
B

i

n o
¼ K B

ie

� �
K B

ee

� ��1
F B

e

� 
and K

B

ii

h i
¼ K B

ii

� �
� K B

ie

� �
K B

ee

� ��1
K B

ei

� �
ð5:6:6Þ

Substituting Eq. (5.6.6) into (5.6.5), we obtain

F B
i

� 
� F

B

i

n o
¼ K

B

ii

h i
d B

i

� 
ð5:6:7Þ

Similarly, we can write force/displacement equations for substructures A and C. These
equations can be partitioned in a manner similar to Eq. (5.6.1) to obtain

F A
i

� 

F A
e

� 
8<
:

9=
; ¼

K A
ii

� 
K A

ie

� 

K A
ei

� 
K A

ee

� 
2
4

3
5 d A

i

� 

fd A
e g

8<
:

9=
; ð5:6:8Þ

Eliminating fd A
e g, we obtain

F A
i

� 
� F

A

i

n o
¼ K

A

ii

h i
d A

i

� 
ð5:6:9Þ

Similarly, for substructure C, we have

F C
i

� 
� F

C

i

n o
¼ K

C

ii

h i
d C

i

� 
ð5:6:10Þ

The whole frame is now considered to be made of superelements A;B, and C

connected at interface nodal points (each superelement being made up of a collection
of individual smaller elements). Using compatibility, we have

d A
i top

n o
¼ d B

i bottom

� 
and d B

i top

n o
¼ d C

i bottom

� 
ð5:6:11Þ

That is, the interface displacements at the common locations where cuts were made
must be the same.

The response of the whole structure can now be obtained by direct superposition of
Eqs. (5.6.7), (5.6.9), and (5.6.10), where now the final equations are expressed in terms of
the interface displacements at the eight interface nodes only [Figure 5–32(b)] as

fFig � fFig ¼ ½Kii�fdig ð5:6:12Þ

The solution of Eq. (5.6.12) gives the displacements at the interface nodes. To
obtain the displacements within each substructure, we use the force-displacement
Eqs. (5.6.4) for fd B

e g with similar equations for substructures A and C. Example 5.9
illustrates the concept of substructure analysis. In order to solve by hand, a relatively
simple structure is used.

Example 5.9

Solve for the displacement and rotation at node 3 for the beam in Figure 5–33 by
using substructuring. Let E ¼ 29� 103 ksi and I ¼ 1000 in.4

SOLUTION:
To illustrate the substructuring concept, we divide the beam into two substructures,
labeled 1 and 2 in Figure 5–34. The 10-kip force has been assigned to node 3 of sub-
structure 2, although it could have been assigned to either substructure or a fraction
of it assigned to each substructure.
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Figure 5–33 Beam analyzed by substructuring

Figure 5–34 Beam of Figure 5–33 separated into substructures

The stiffness matrix for each beam element is given by Eq. (4.1.14) as

1 2

2 3

3 4

4 5

½kð1Þ� ¼ ½kð2Þ� ¼ ½kð3Þ� ¼ ½kð4Þ� ¼ 29� 106

ð120Þ3

12 6ð120Þ �12 6ð120Þ
6ð120Þ 4ð120Þ2 �6ð120Þ 2ð120Þ2

�12 �6ð120Þ 12 �6ð120Þ
6ð120Þ 2ð120Þ2 �6ð120Þ 4ð120Þ2

2
6664

3
7775

¼ 16:78

12 720 �12 720

720 57,600 �720 28,800

�12 �720 12 �720

720 28,800 �720 57,600

2
6664

3
7775 ð5:6:14Þ

(5.6.13)

For substructure 1, we add the stiffness matrices of elements 1 and 2 together. The
equations are

16:78

12þ 12 �720þ 720 �12 720

�720þ 720 57,600þ 57,600 �720 28,800

�12 �720 12 �720

720 28,800 �720 57,600

2
6664

3
7775

v2

f2

v3

f3

8>>><
>>>:

9>>>=
>>>;
¼

�20

0

0

0

8>>><
>>>:

9>>>=
>>>;
ð5:6:15Þ

where the boundary conditions v1 ¼ f1 ¼ 0 were used to reduce the equations.
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Rewriting Eq. (5.6.15) with the interface displacements first allows us to use
Eq. (5.6.6) to condense out, or eliminate, the interior degrees of freedom, v2 and f2.
These reordered equations are

16:78ð12v3 � 720f3 � 12v2 � 720f2Þ ¼ 0

16:78ð�720v3 þ 57,600f3 þ 720v2 þ 28,800f2Þ ¼ 0
ð5:6:16Þ

16:78ð�12v3 þ 720f3 þ 24v2 þ f2Þ ¼ �20

16:78ð�720v3 þ 28,800f3 þ 0v2 þ 115,200f2Þ ¼ 0

Using Eq. (5.6.6), we obtain equations for the interface degrees of freedom as

16:78

�
12 �720

�720 57,600

� �
� �12 �720

720 28,800

� �
24 0

0 115,200

� ��1 �12 720

�720 28,800

� ��
v3

f3

� �

¼ 0

0

� �
� �12 �720

720 28,800

� �
24 0

0 115,200

� ��1 �20

0

� �
ð5:6:17Þ

Simplifying Eq. (5.6.17), we obtain

25:17 �3020

�3020 483,264

� �
v3

f3

� �
¼ �10

600

� �
ð5:6:18Þ

For substructure 2, we add the stiffness matrices of elements 3 and 4 together.
The equations are

16:78

12 720 �12 720

720 57,600 �720 28,800

�12 �720 12þ 12 �720þ 720

720 28,800 �720þ 720 57,600þ 57,600

2
6664

3
7775

v3

f3

v4

f4

8>>><
>>>:

9>>>=
>>>;
¼

�10

0

0

1200

8>>><
>>>:

9>>>=
>>>;
ð5:6:19Þ

where boundary conditions v5 ¼ f5 ¼ 0 were used to reduce the equations.
Using static condensation, Eq. (5.6.6), we obtain equations with only the inter-

face displacements v3 and f3. These equations are

16:78

�
12 720

720 57,600

� �
� �12 720

�720 28,800

� �
24 0

0 115,200

� ��1 �12 �720

720 28,800

� ��
v3

f3

� �

¼ �10

0

� �
� �12 720

�720 28,800

� �
24 0

0 115,200

� ��1 0

1200

� �
ð5:6:20Þ

Simplifying Eq. (5.6.20), we obtain

25:17 3020

3020 483,264

� �
v3

f3

� �
¼ �17:5

�300

� �
ð5:6:21Þ
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Adding Eqs. (5.6.18) and (5.6.21), we obtain the final nodal equilibrium equations at
the interface degrees of freedom as

50:34 0

0 966,528

� �
v3

f3

� �
¼ �27:5

300

� �
ð5:6:22Þ

Solving Eq. (5.6.22) for the displacement and rotation at node 3, we obtain

v3 ¼ �0:5463 in:
ð5:6:23Þ

f3 ¼ 0:0003104 rad

We could now return to Eq. (5.6.15) or Eq. (5.6.16) to obtain v2 and f2 and to
Eq. (5.6.19) to obtain v4 and f4. 9

We emphasize that this example is used as a simple illustration of substructur-
ing and is not typical of the size of problems where substructuring is normally performed.
Generally, substructuring is used when the number of degrees of freedom is very large, as
might occur, for instance, for very large structures such as the airframe in Figure 5–31.

d Summary Equations

Stiffness matrix for rigid plane frame beam element:

½k� ¼ E

L
�

AC2 þ 12I

L2
S2 A� 12I

L2

� �
CS � 6I

L
S � AC2 þ 12I

L2
S2

� �
� A� 12I

L2

� �
CS � 6I

L
S

AS2 þ 12I

L2
C 2 6I

L
C � A� 12I

L2

� �
CS � AS2 þ 12I

L2
C2

� �
6I

L
C

4I
6I

L
S � 6I

L
C 2I

AC2 þ 12I

L2
S2 A� 12I

L2

� �
CS

6I

L
S

AS2 þ 12I

L2
C2 � 6I

L
C

4I

2
666666666666666666666664

3
777777777777777777777775

Symmetry

(5.1.11)
Equations for plane frame with inclined support:

F1x

F1y

M1

F2x

F2y

M2

F 03x

F 03y

M3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼ ½Ti�½K �½Ti�T

u1 ¼ 0
v1 ¼ 0
f1 ¼ 0

u2

v2

f2

u03
v03 ¼ 0

f03 ¼ f3

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð5:3:3Þ
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where

½Ti� ¼
½I � ½0� ½0�
½0� ½I � ½0�
½0� ½0� ½t3�

2
4

3
5 ð5:3:4Þ

and

½t3� ¼
cos a sina 0
� sina cos a 0

0 0 1

2
4

3
5 ð5:3:5Þ

Stiffness matrix for torsion bar element:

½k0� ¼ GJ

L

1 �1
�1 1

� �
ð5:4:14Þ

See Table 5–1 for torsional constants for various cross-sectional shapes:

J ¼
X 1

3
bit

3
i ð5:4:15Þ

Stiffness matrix for grid element:

½kG� ¼

v01 f01x f01z v02 f02x f02z2
6666666666666666666664
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L3
0

6EI

L2

�12EI
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6EI
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L
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L
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0
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L
0 0
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L
0

6EI

L2
0

2EI

L
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0

4EI

L

3
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ð5:4:17Þ

Transformation matrix for grid element:

½TG� ¼

1 0 0 0 0 0
0 C S 0 0 0
0 �S C 0 0 0
0 0 0 1 0 0
0 0 0 0 C S

0 0 0 0 �S C

2
6666664

3
7777775

ð5:4:18Þ

Global stiffness matrix for grid element:

½kG� ¼ ½TG�T ½k0G�½TG� ð5:4:19Þ
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Stiffness matrix for beam or frame element in three-dimensional space:

½k0� ¼

u01 v01 w01 f01x f01y f01z u02 v02 w02 f02x f02y f02z2
666666666666666666666666666666666666666666666666666664
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(5.5.3)
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Global stiffness matrix for the beam or frame element in three-dimensional space:

½k� ¼ ½T �T ½k0�½T � ð5:5:4Þ
where

½T � ¼

½l�3�3

½l�3�3

½l�3�3

½l�3�3

2
664

3
775 ð5:5:5Þ

and

½l� ¼
Cxx0 Cyx0 Czx0

Cxy0 Cyy0 Czy0

Cxz0 Cyz0 Czx0

2
4

3
5 ð5:5:6Þ
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d Problems

Solve all problems using the finite element stiffness method.

5.1 For the rigid frame shown in Figure P5–1, determine (1) the displacement compo-
nents and the rotation at node 2, (2) the support reactions, and (3) the forces in each
element. Then check equilibrium at node 2. Let E ¼ 30� 106 psi, A ¼ 10 in2, and
I ¼ 500 in4 for both elements.

Figure P5–1 Figure P5–2

5.2 For the rigid frame shown in Figure P5–2, determine (1) the nodal displacement
components and rotations, (2) the support reactions, and (3) the forces in each ele-
ment. Let E ¼ 30� 106 psi, A ¼ 10 in2, and I ¼ 200 in4 for all elements.

5.3 For the rigid stairway frame shown in Figure P5–3, determine (1) the displacements at
node 2, (2) the support reactions, and (3) the local nodal forces acting on each ele-
ment. Draw the bending moment diagram for the whole frame. Remember that the
angle between elements 1 and 2 is preserved as deformation takes place; similarly for
the angle between elements 2 and 3. Furthermore, owing to symmetry, u2 ¼ �u3,
v2 ¼ v3, and f2 ¼ �f3. What size A36 steel channel section would be needed to keep
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the allowable bending stress less than two-thirds of the yield stress? (For A36 steel, the
yield stress is 36,000 psi.)

Figure P5–3

5.4 For the rigid frame shown in Figure P5–4, determine (1) the nodal displacements
and rotation at node 4, (2) the reactions, and (3) the forces in each element. Then
check equilibrium at node 4. Finally, draw the shear force and bending moment di-
agrams for each element. Let E ¼ 30� 103 ksi, A ¼ 8 in.2, and I ¼ 800 in.4 for all
elements.

Figure P5–4

5.5–5.15 For the rigid frames shown in Figures P5–5 through P5–15, determine the displace-
ments and rotations of the nodes, the element forces, and the reactions. The values of
E;A, and I to be used are listed next to each figure.
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Figure P5–5

E = 30 × 106 psi
A = 10 in.2 
I = 200 in.4

Figure P5–6

Figure P5–7
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Figure P5–8

Figure P5–9

Figure P5–10

Figure P5–11

302 d 5 Frame and Grid Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Figure P5–12

Figure P5–13

Figure P5–14
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Figure P5–15

5.16–5.18 Solve the structures in Figures P5–16 through P5–18 by using substructuring.

Figure P5–16 (Substructure the truss at nodes 3 and 4)

Figure P5–17 (Substructure the beam at node 3)

Figure P5–18 (Substructure the beam at node 2)
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Solve Problems 5.19 through 5.39 by using a computer program.

5.19 For the rigid frame shown in Figure P5–19, determine (1) the nodal displace-
ment components and (2) the support reactions. (3) Draw the shear force and bending
moment diagrams. For all elements, let E ¼ 30� 106 psi, I ¼ 200 in.4, and A ¼ 10 in.2

Figure P5–19 Figure P5–20

5.20 For the rigid frame shown in Figure P5–20, determine (1) the nodal displacement
components and (2) the support reactions. (3) Draw the shear force and bending mo-
ment diagrams. Let E ¼ 30� 106 psi, I ¼ 200 in.4, and A ¼ 10 in.2 for all elements,
except as noted in the figure.

5.21 For the slant-legged rigid frame shown in Figure P5–21, size the structure for mini-
mum weight based on a maximum bending stress of 20 ksi in the horizontal beam
elements and a maximum compressive stress (due to bending and direct axial load) of
15 ksi in the slant-legged elements. Use the same element size for the two slant-legged
elements and the same element size for the two 10-foot sections of the horizontal ele-
ment. Assume A36 steel is used.

Figure P5–21

5.22 For the rigid building frame shown in Figure P5–22, determine the forces in each
element and calculate the bending stresses. Assume all the vertical elements have
A ¼ 10 in.2 and I ¼ 100 in.4 and all horizontal elements have A ¼ 15 in.2 and I ¼
150 in.4 Let E ¼ 29� 106 psi for all elements. Let c ¼ 5 in. for the vertical elements
and c ¼ 6 in. for the horizontal elements, where c denotes the distance from the
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neutral axis to the top or bottom of the beam cross section, as used in the bending
stress formula s ¼ ðMc=IÞ.

Figure P5–22

5.23–5.38 For the rigid frames or beams shown in Figures P5–23 through P5–38, determine the
displacements and rotations at the nodes, the element forces, and the reactions.

in.2

in.4 in.2
in.4

in.2

in.4

in.2
in.4

in.2
in.4

Figure P5–23

in.2
in.4

Figure P5–24
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in.2

in.2

in.2

in.4

in.4

in.4

Figure P5–25 Two bicycle frame models (coordinates shown in inches)

in.2

in.2

in.4

in.4

Figure P5–26
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Figure P5–27

Figure P5–28

in.2
in.4

Figure P5–29
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in.2
in.4

Figure P5–30

in.2
in.4

Figure P5–31

Figure P5–32
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Figure P5–33

Figure P5–34

Figure P5–35
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Figure P5–36

Figure P5–37

Figure P5–38

5.39 Consider the plane structure shown in Figure P5–39. First assume the structure
to be a plane frame with rigid joints, and analyze using a frame element. Then as-
sume the structure to be pin-jointed and analyze as a plane truss, using a truss ele-
ment. If the structure is actually a truss, is it appropriate to model it as a rigid frame?
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Figure P5–39

How can you model the truss using the frame (or beam) element? In other words,
what idealization could you make in your model to use the beam element to approxi-
mate a truss?

5.40 For the two-story, two-bay rigid frame shown in Figure P5–40, determine (1) the
nodal displacement components and (2) the shear force and bending moments in each
member. Let E ¼ 200 GPa; I ¼ 2� 10�4 m4 for each horizontal member and
I ¼ 1:5 � 10�4 m4 for each vertical member.

10 m

G

D

A

H

E

B

I

F

C

10 m

12 kN�m

12 kN�m
5 m

5 m

Figure P5–40

5.41 For the two-story, three-bay rigid frame shown in Figure P5–41, determine (1) the no-
dal displacements and (2) the member end shear forces and bending moments. (3) Draw
the shear force and bending moment diagrams for each member. Let E ¼ 200 GPa;
I ¼ 1:29� 10�4 m4 for the beams and I ¼ 0:462 � 10�4 m4 for the columns.
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The properties for I correspond to a W 610� 155 and a W 410� 114 wide-flange
section, respectively, in metric units.

8 m6 m

6 m

4 m

8 m

50 kN

25 kN
I

E

A B C D

F G H

J K L

Figure P5–41

5.42 For the rigid frame shown in Figure P5–42, determine (1) the nodal displacements and
rotations and (2) the member shear forces and bending moments. Let E ¼ 200 GPa,
I ¼ 0:795� 10�4 m4 for the horizontal members, and I ¼ 0:316 � 10�4 m4 for the
vertical members. These I values correspond to a W 460� 158 and a W 410� 85
wide-flange section, respectively.

5 m

G

D

A

H

E

B

I

F

C

5 m

3 m

3 m

20 kN

40 kN

Figure P5–42

5.43 For the rigid frame shown in Figure P5–43, determine (1) the nodal displacements
and rotations and (2) the shear force and bending moments in each member. Let
E ¼ 29 � 106 psi, I ¼ 3100 in:4 for the horizontal members and I ¼ 1110 in:4 for the
vertical members. The I values correspond to a W 24� 104 and a W 16� 77:

15 ft

15 ft

15 ft

30 ft 20 ft 30 ft

15 kip

15 kip
I

E

A B C D

F G H

J

M N

K

L

7.5 kip

Figure P5–43
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5.44 A structure is fabricated by welding together three lengths of I-shaped members as
shown in Figure P5–44. The yield strength of the members is 36 ksi, E ¼ 29� 106 psi,
and Poisson’s ratio is 0.3. The members all have cross-section properties corresponding
to a W18 � 76. That is, A ¼ 22:3 in2, depth of section is d ¼ 18:21 in., Ix ¼ 1330 in:4

Sx ¼ 146 in:3 Iy ¼ 152 in:4 and Sy ¼ 27:6 in:3 Determine whether a load of Q ¼
10;000 lb downward is safe against general yielding of the material. The factor of
safety against general yielding is to be 2.0. Also, determine the maximum vertical and
horizontal deflections of the structure.

90''

Q

A

A
y

y

x x

90''

90''

Section A-A

+

Figure P5–44

5.45 For the tapered beam shown in Figure P5–45, determine the maximum deflection
using one, two, four, and eight elements. Calculate the moment of inertia at the mid-
length station for each element. Let E ¼ 30� 106 psi, I0 ¼ 100 in4, and L ¼ 100 in.
Run cases where n ¼ 1; 3, and 7. Use a beam element. The analytical solution for
deflection and slope at the free end for n ¼ 7 is given by Reference [7] as shown below:

v1 ¼
PL3

49EI0
ð1=7 ln 8þ 2:5Þ ¼ 1

17:55

PL3

EI0

y1 ¼
PL2

49EI0
ðln 8� 7Þ ¼ � 1

9:95

PL2

EI0

IðxÞ ¼ I0 1þ n
x

L

� �

where n ¼ arbitrary numerical factor and I0 ¼ moment of inertia of section at x ¼ 0.

Figure P5–45 Tapered cantilever beam

314 d 5 Frame and Grid Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.46 Derive the stiffness matrix for the nonprismatic torsion bar shown in Figure P5–46.
The radius of the shaft is given by

r ¼ r0 þ ðx=LÞr0; where r0 is the radius at x ¼ 0:

Figure P5–46

5.47 Derive the total potential energy for the prismatic circular cross-section torsion bar
shown in Figure P5–47. Also determine the equivalent nodal torques for the bar sub-
jected to uniform torque per unit length (lb-in./in.). Let G be the shear modulus and J

be the polar moment of inertia of the bar.

Figure P5–47

5.48 For the grid shown in Figure P5–48, determine the nodal displacements and the local
element forces. Let E ¼ 30� 106 psi, G ¼ 12� 106 psi, I ¼ 200 in.4, and J ¼ 100 in.4

for both elements.

Figure P5–48

5.49 Resolve Problem 5–48 with an additional nodal moment of 1000 k-in. applied about
the x axis at node 2.

5.50–5.51 For the grids shown in Figures P5–50 and P5–51, determine the nodal displacements
and the local element forces. Let E ¼ 210 GPa, G ¼ 84 GPa, I ¼ 2� 10�4 m4,
J ¼ 1� 10�4 m4, and A ¼ 1� 10�2 m2.
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Figure P5–50

Figure P5–51

5.52–5.57 Solve the grid structures shown in Figures P5–52 through P5–57 using a computer pro-
gram. For grids P5–52—P5–54, let E ¼ 30� 106 psi, G ¼ 12� 106 psi, I ¼ 200 in.4,
and J ¼ 100 in.4, except as noted in the figures. In Figure P5–54, let the cross elements

Figure P5–52
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have I ¼ 50 in.4 and J ¼ 20 in.4, with dimensions and loads as in Figure P5–53. For
grids P5–55 through P5–57, let E ¼ 210 GPa, G ¼ 84 GPa, I ¼ 2� 10�4 m4,
J ¼ 1� 10�4 m4, and A ¼ 1� 10�2 m2.

Figure P5–53

Figure P5–54

Figure P5–55
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Figure P5–56

Figure P5–57

5.58–5.59 Determine the displacements and reactions for the space frames shown in
Figures P5–58 and P5–59. Let Ix ¼ 100 in.4, Iy ¼ 200 in.4, Iz ¼ 1000 in.4,
E ¼ 30,000 ksi, G ¼ 10,000 ksi, and A ¼ 100 in.2 for both frames.

Figure P5–58
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Figure P5–59

Use a computer program to assist in the design problems in Problems 5.60 through 5.72.

5.60 Design a jib crane as shown in Figure P5–60 that will support a downward load of
6000 lb. Choose a common structural steel shape for all members. Use allowable
stresses of 0:66Sy (Sy is the yield strength of the material) in bending, and 0:60Sy in

Figure P5–60
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tension on gross areas. The maximum deflection should not exceed 1=360 of the
length of the horizontal beam. Buckling should be checked using Euler’s or Johnson’s
method as applicable.

5.61 Design the support members AB and CD for the platform lift shown in Figure P5–61.
Select a mild steel and choose suitable cross-sectional shapes with no more than a 4 : 1
ratio of moments of inertia between the two principal directions of the cross section.
You may choose two different cross sections to make up each arm to reduce weight.
The actual structure has four support arms, but the loads shown are for one side of the
platform with the two arms shown. The loads shown are under operating conditions.
Use a factor of safety of 2 for human safety. In developing the finite element model,
remove the platform and replace it with statically equivalent loads at the joints at B

and D. Use truss elements or beam elements with low bending stiffness to model the
arms from B to D, the intermediate connection E to F, and the hydraulic actuator. The
allowable stresses are 0:66Sy in bending and 0:60Sy in tension. Check buckling using
either Euler’s method or Johnson’s method as appropriate. Also check maximum de-
flections. Any deflection greater than 1=360 of the length of member AB is considered
too large.

Figure P5–61

5.62 A two-story building frame is to be designed as shown in Figure P5–62. The members
are all to be I-beams with rigid connections. We would like the floor joists beams to
have a 15-in. depth and the columns to have a 10 in. width. The material is to be A36
structural steel. Two horizontal loads and vertical loads are shown. Select members
such that the allowable bending in the beams is 24,000 psi. Check buckling in the
columns using Euler’s or Johnson’s method as appropriate. The allowable deflection
in the beams should not exceed 1=360 of each beam span. The overall sway of the
frame should not exceed 0.5 in.
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Figure P5–62

5.63 A pulpwood loader as shown in Figure P5–63 is to be designed to lift 2.5 kip. Select a
steel and determine a suitable tubular cross section for the main upright member BF

that has attachments for the hydraulic cylinder actuators AE and DG. Select a steel
and determine a suitable box section for the horizontal load arm AC. The horizontal
load arm may have two different cross sections AB and BC to reduce weight. The
finite element model should use beam elements for all members except the hydraulic
cylinders, which should be truss elements. The pinned joint at B between the upright
and the horizontal beam is best modeled with end release of the end node of the top
element on the upright member. The allowable bending stress is 0:66Sy in members
AB and BC. Member BF should be checked for buckling. The allowable deflection at
C should be less than 1=360 of the length of BC. As a bonus, the client would like you
to select the size of the hydraulic cylinders AE and DG.

Figure P5–63
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5.64 A piston ring (with a split as shown in Figure P5–64) is to be expanded by a tool to
facilitate its installation. The ring is sufficiently thin (0.2 in. depth) to justify using
conventional straight-beam bending formulas. The ring requires a displacement of
0.1 in. at its separation for installation. Determine the force required to produce this
separation. In addition, determine the largest stress in the ring. Let E ¼ 18� 106 psi,
G ¼ 7� 106 psi, cross-sectional area A ¼ 0:06 in.2, and principal moment of inertia
I ¼ 4:5� 10�4 in.4. The inner radius is 1.85 in., and the outer radius is 2.15 in. Use
models with 4, 6, 8, 10, and 20 elements in a symmetric model until convergence to the
same results occurs. Plot the displacement versus the number of elements for a con-
stant force F predicted by the conventional beam theory equation of Reference [8].

d ¼ 3pFR3

EI
þ pFR

EA
þ 6pFR

5GA
where R ¼ 2:0 in: and d ¼ 0:1 in:

Figure P5–64

5.65 A small hydraulic floor crane as shown in Figure P5–65 carries a 5000-lb load.
Determine the size of the beam and column needed. Select either a standard box sec-
tion or a wide-flange section. Assume a rigid connection between the beam and col-
umn. The column is rigidly connected to the floor. The allowable bending stress in the
beam is 0:60Sy. The allowable deflection is 1=360 of the beam length. Check the col-
umn for buckling.

Figure P5–65
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5.66 Determine the size of a solid round shaft such that the maximum angle of twist be-
tween C and B is 0.26 degrees per meter of length and the deflection of the beam is less
than 0.005 inches under the pulley C for the loads, as shown in Figure P5–66. Assume
simple supports at bearings A and B. Assume the shaft is made from cold-rolled
AISI 1020 steel. (Recommended angles of twist in driven shafts can be found in
Machinery’s Handbook, Oberg, E., et. al., 26th ed., Industrial Press, N.Y., 2000.)

0.4 m 0.5 m

0.15 m

z

A B

T
D

C

y

x

5 kN

2 kN

Figure P5–66

5.67 The shaft in Figure P5–67 supports a winch load of 780 lb and a torsional moment
of 7800 lb-in. at F (26 inches from the center of the bearing at A). In addition, a
radial load of 500 lb and an axial load of 400 lb act at point E from a worm gearset.
Assume the maximum stress in the shaft cannot be larger than that obtained from
the maximum distortional energy theory with a factor of safety of 2.5. Also make
sure the angle of twist is less than 1.5 deg between A and D. In your model, assume
the bearing at A to be frozen when calculating the angle of twist. Bearings at B; C,
and D can be assumed as simple supports. Determine the required shaft diameter.

DCBA

E
F

Shaft

Winch 
drum

10'' 10'' 12''

Figure P5–67
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5.68 Design the gabled frame subjected to the external wind load shown in Figure P5–68
(comparable to an 80 mph wind speed) for an industrial building. Assume this is one
of a typical frame spaced every 20 feet. Select a wide flange section based on allowable
bending stress of 20 ksi and an allowable compressive stress of 10 ksi in any member.
Neglect the possibility of buckling in any members. Use ASTM A36 steel.

Wind

h

L = 40 ft

16 ft

11 ft

(a) (b)

7.50 psf3.0
0 p

sf

Figure P5–68

5.69 Design the gabled frame shown for a balanced snow load shown in Figure P5–69
(typical of the Midwest) for an apartment building. Select a wide flange section for the
frame. Assume the allowable bending stress not to exceed 140 MPa. Use ASTM A36
steel.

6 m

4 m

3 m

1500 Pa

(4 m spacing of frames)

Figure P5–69

5.70 Design a gantry crane that must be able to lift 10 tons as it must lift compressors,
motors, heat exchangers, and controls. This load should be placed at the center of
one of the main 12-foot-long beams as shown in Figure P5–70, by the hoisting de-
vice location. Note that this beam is on one side of the crane. Assume you are using
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8 ft

15 ft

3 ft

2 ft

12 ft

10 ton

Figure P5–70

ASTM A36 structural steel. The crane must be 12 feet long, 8 feet wide, and 15 feet
high. The beams should all be the same size, the columns all the same size, and the
bracing all the same size. The corner bracing can be wide flange sections or some
other common shape. You must verify that the structure is safe by checking the
beam’s bending strength and allowable deflection, the column’s buckling strength,
and the bracing’s buckling strength. Use a factor of safety against material yielding
of the beams of 5. Verify that the beam deflection is less than L/360, where L is the
span of the beam. Check Euler buckling of the long columns and the bracing. Use a
factor of safety against buckling of 5. Assume the column-to-beam joints to be rigid
while the bracing (a total of eight braces) is pinned to the column and beam at each
of the four corners. Also assume the gantry crane is on rollers with one roller locked
down to behave as a pin support as shown.

5.71 Design the rigid highway bridge frame structure shown in Figure P5–71 for a moving
truck load (shown below) simulating a truck moving across the bridge. Use the load
shown and place it along the top girder at various locations. Use the allowable stresses
in bending and compression and allowable deflection given in the Standard Specifica-

tions for Highway Bridges, American Association of State Highway and Transportation
Officials (AASHTO), Washington, D.C. or use some other reasonable values.
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A

B

10 ft

F

C

D

15 ft

E

25 ft 50 ft 25 ft

14 ft

0.2 W 0.8 W

8 k 32 k

H truck loading

H20 – 44

W = total weight of truck and load

Figure P5–71

5.72 For the tripod space frame shown in Figure P5–72, determine standard steel pipe sec-
tions such that the maximum bending stress must not exceed 20 ksi, the compressive
stress to prevent buckling must not exceed that given by the Euler buckling formula
with a factor of safety of 2, and the maximum deflection will not exceed L/360 in any
span, L. Assume the three bottom supports to be fixed. All coordinates shown in units
of inches.

1000 lb

1000 lb

1000 lb

(20, 30, 60)

(30, 40, 0)
(0, 0, 0)

(0, 10, 60)

(−20, 30, 60)

(−30, 40, 0)

z

y

x

Figure P5–72

326 d 5 Frame and Grid Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.73 The curved semi-circular frame shown in Figure P5–73 is supported by a pin on the
left end and a roller on the right end and is subjected to a load P ¼ 1000 lb at its apex.
The frame has a radius to centerline cross section of R ¼ 120 in. Select a structural
steel W shape from Appendix F such that the maximum stress does not exceed 20 ksi.
Perform a finite element analysis using 4, 8, and then 16 elements in your finite ele-
ment model. Also, determine the maximum deflection for each model. It is suggested
that the finite element answers for deflection be compared to the solution obtained by
classical methods, such as using Castigliano’s theorem. The expression for deflection
under the load is given by using Castigliano’s theorem as

dy ¼
0:178PR3

El
þ 0:393PR

AE
þ 0:393PR

AvG

where A is the cross sectional area of the W shape, Av is the shear area of the W shape
(use depth of web times thickness of web for the shear area); E ¼ 30� 106 psi; and
G ¼ 11:5� 106 psi:

Now change the radius of the frame to 20 in. and repeat the problem. Run the
finite element model with the shear area included in your computer program input
and then without. Comment on the difference in results and compare to the predicted
analytical deflection by using the equation above for dy:

P

R

Figure P5–73
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DEVELOPMENT OF THE PLANE

STRESS AND PLANE STRAIN

STIFFNESS EQUATIONSd

CHAPTER OBJECTIVES

. To review basic concepts of plane stress and plane strain.

. To derive the constant-strain triangular (CST) element stiffness matrix and equations.

. To demonstrate how to determine the stiffness matrix and stresses for a constant
strain element.

. To describe how to treat body and surface forces for two-dimensional elements.

. To evaluate the explicit stiffness matrix for the constant-strain triangle element.

. To perform a detailed finite element solution of a plane stress problem.

. To derive the bilinear four-noded rectangular (Q4) element stiffness matrix.

. To compare the CST and Q4 model results for a beam bending problem and de-
scribe some of the CST and Q4 element defects.

Introduction

In Chapters 2 through 5, we considered only line elements. Two or more line elements
are connected only at common nodes, forming framed or articulated structures such
as trusses, frames, and grids. Line elements have geometric properties such as cross-
sectional area and moment of inertia associated with their cross sections. However,
only one local coordinate x along the length of the element is required to describe a
position along the element (hence, they are called line elements or one-dimensional ele-
ments). Nodal compatibility is then enforced during the formulation of the nodal
equilibrium equations for a line element.

This chapter considers the two-dimensional finite element. Two-dimensional
(planar) elements are defined by three or more nodes in a two-dimensional plane
(that is, x-y). The elements are connected at common nodes and/or along common
edges to form continuous structures such as those shown in Figures 1–3, 1–4, 1–6,
6–2a, and 6–6(b). Nodal displacement compatibility is then enforced during the formu-
lation of the nodal equilibrium equations for two-dimensional elements. If proper dis-
placement functions are chosen, compatibility along common edges is also obtained.
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The two-dimensional element is extremely important for (1) plane stress analysis, which
includes problems such as plates with holes, fillets, or other changes in geometry that
are loaded in their plane resulting in local stress concentrations, as illustrated
in Figure 6–1; and (2) plane strain analysis, which includes problems such as a long un-
derground box culvert subjected to a uniform load acting constantly over its length, as
illustrated in Figure 1–3, a long, cylindrical control rod subjected to a load that remains
constant over the rod length (or depth), as illustrated in Figure 1–4, and dams and pipes
subjected to loads that remain constant over their lengths, as shown in Figure 6–2.

We begin this chapter with the development of the stiffness matrix for a basic
two-dimensional or plane finite element, called the constant-strain triangular element.
We consider the constant-strain triangle (CST) stiffness matrix because its derivation
is the simplest among the available two-dimensional elements. The element is called
a CST because it has a constant strain throughout it.

We will derive the CST stiffness matrix by using the principle of minimum
potential energy because the energy formulation is the most feasible for the develop-
ment of the equations for both two- and three-dimensional finite elements.

We will then present a simple, thin-plate plane stress example problem to illus-
trate the assemblage of the plane element stiffness matrices using the direct stiffness
method as presented in Chapter 2. We will present the total solution, including the
stresses within the plate.

Finally, we will develop the stiffness matrix for the simple four-noded rectangu-
lar (Q4) element and compare the finite element solution to a beam bending problem
modeled using the CST and Q4 elements.

d 6.1 Basic Concepts of Plane Stress and Plane Strain d
In this section, we will describe the concepts of plane stress and plane strain. These
concepts are important because the developments in this chapter are directly appli-
cable only to systems assumed to behave in a plane stress or plane strain manner.
Therefore, we will now describe these concepts in detail.

Plane Stress

Plane stress is defined to be a state of stress in which the normal stress and the shear

stresses directed perpendicular to the plane are assumed to be zero. For instance, in
Figures 6–1(a) and 6–1(b), the plates in the x-y plane shown subjected to surface tractions
T (pressure acting on the surface edge or face of a member in units of force/area) in
the plane are under a state of plane stress; that is, the normal stress sz and the shear
stresses txz and tyz are assumed to be zero. Generally, members that are thin (those
with a small z dimension compared to the in-plane x and y dimensions) and whose
loads act only in the x-y plane can be considered to be under plane stress.

Plane Strain

Plane strain is defined to be a state of strain in which the strain normal to the x-y plane

ez and the shear strains gxz and gyz are assumed to be zero. The assumptions of plane
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strain are realistic for long bodies (say, in the z direction) with constant cross-sectional
area subjected to loads that act only in the x and/or y directions and do not vary in the
z direction. Some plane strain examples are shown in Figure 6–2 [and in Figures 1–3
(a long underground box culvert) and 1–4 (a hydraulic cylinder rod end)]. In these
examples, only a unit thickness (1 in. or 1 ft) of the structure is considered
because each unit thickness behaves identically (except near the ends). The finite ele-
ment models of the structures in Figure 6–2 consist of appropriately discretized cross
sections in the x-y plane with the loads acting over unit thicknesses in the x and/or y

directions only.

Two-Dimensional State of Stress and Strain

The concept of a two-dimensional state of stress and strain and the stress–strain rela-
tionships for plane stress and plane strain are necessary to understand fully the develop-
ment and applicability of the stiffness matrix for the plane stress/plane strain triangular
element. Therefore, we briefly outline the essential concepts of two-dimensional stress
and strain (see References [1] and [2] and Appendix C for more details on this subject).

First, we illustrate the two-dimensional state of stress using Figure 6–3. The
infinitesimal element with sides dx and dy has normal stresses sx and sy acting in the

(b)(a)

Figure 6–2 Plane strain problems: (a) dam subjected to horizontal loading (See the
full-color insert for a color version of this figure.); (b) pipe subjected to a vertical load

Figure 6–1 Plane stress problems: (a) plate with hole; (b) plate with fillet
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x and y directions (here on the vertical and horizontal faces), respectively. The shear
stress txy acts on the x edge (vertical face) in the y direction. The shear stress tyx acts
on the y edge (horizontal face) in the x direction. Moment equilibrium of the element
results in txy being equal in magnitude to tyx. See Appendix C.1 for proof of this
equality. Hence, three independent stresses exist and are represented by the vector
column matrix

fsg ¼

8><
>:

sx

sy

txy

9>=
>; ð6:1:1Þ

The element equilibrium equations are derived in Appendix C.1.
The stresses given by Eq. (6.1.1) will be expressed in terms of the nodal displace-

ment degrees of freedom. Hence, once the nodal displacements are determined, these
stresses can be evaluated directly.

Recall from strength of materials [2] that the principal stresses, which are the
maximum and minimum normal stresses in the two-dimensional plane, can be
obtained from the following expressions:

s1 ¼
sx þ sy

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2

þ t2
xy

s
¼ smax

ð6:1:2Þ

s2 ¼
sx þ sy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� �2

þ t2
xy

s
¼ smin

Also, the principal angle yp, which defines the normal whose direction is perpen-
dicular to the plane on which the maximum or minimum principal stress acts, is
defined by

tan 2yp ¼
2txy

sx � sy

ð6:1:3Þ

Figure 6–3 Two-dimensional state of stress
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Figure 6–4 shows the principal stresses s1 and s2 and the angle yp. Recall (as
Figure 6–4 indicates) that the shear stress is zero on the planes having principal (max-
imum and minimum) normal stresses.

In Figure 6–5, we show an infinitesimal element used to represent the gen-
eral two-dimensional state of strain at some point in a structure. The element is
shown to be displaced by amounts u and v in the x and y directions at point A, and
to displace or extend an additional (incremental) amount ðqu=qxÞ dx along line AB,
and ðqv=qyÞ dy along line AC in the x and y directions, respectively. Furthermore,
observing lines AB and AC, we see that point B moves upward an amount
ðqv=qxÞ dx with respect to A, and point C moves to the right an amount ðqu=qyÞ dy

with respect to A.
From the general definitions of normal and shear strains and the use of Figure 6–5,

we obtain

ex ¼
qu

qx
ey ¼

qv

qy
gxy ¼

qu

qy
þ qv

qx
ð6:1:4Þ

Appendix C.2 shows a detailed derivation of Eqs. (6.1.4). Hence, recall that the strains
ex and ey are the changes in length per unit length of material fibers originally parallel

Figure 6–4 Principal stresses and their directions

v

∂  
∂y

∂  
∂x ∂  

∂x

x, u

Figure 6–5 Displacements and rotations of lines of an element in the x-y plane
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to the x and y axes, respectively, when the element undergoes deformation. These
strains are then called normal (or extensional or longitudinal ) strains. The strain gxy

is the change in the original right angle made between dx and dy when the element
undergoes deformation. The strain gxy is then called a shear strain.

The strains given by Eqs. (6.1.4) are generally represented by the vector column
matrix

feg ¼
ex

ey

gxy

8><
>:

9>=
>; ð6:1:5Þ

The relationships between strains and displacements referred to the x and y

directions given by Eqs. (6.1.4) are sufficient for your understanding of subsequent
material in this chapter.

We now present the stress–strain relationships for isotropic materials for both
plane stress and plane strain. For plane stress, we assume the following stresses to be
zero:

sz ¼ txz ¼ tyz ¼ 0 ð6:1:6Þ

Applying Eq. (6.1.6) to the three-dimensional stress–strain relationship [see Appendix
C, Eq. (C.3.10)], the shear strains gxz ¼ gyz ¼ 0, but ez 0 0. For plane stress conditions,
we then have

fsg ¼ ½D�feg ð6:1:7Þ

½D� ¼ E

1� n2

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ð6:1:8Þwhere

is called the stress–strain matrix (or constitutive matrix), E is the modulus of elasticity,
and n is Poisson’s ratio. In Eq. (6.1.7), fsg and feg are defined by Eqs. (6.1.1) and
(6.1.5), respectively.

For plane strain, we assume the following strains to be zero:

ez ¼ gxz ¼ gyz ¼ 0 ð6:1:9Þ

Applying Eq. (6.1.9) to the three-dimensional stress–strain relationship [Eq. (C.3.10)],
the shear stresses txz ¼ tyz ¼ 0, but sz 0 0. The stress–strain matrix then becomes

½D� ¼ E

ð1þ nÞð1� 2nÞ

2
66664

1� n n 0

n 1� n 0

0 0
1� 2n

2

3
77775 ð6:1:10Þ
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The fsg and feg matrices remain the same as for the plane stress case. The basic par-
tial differential equations for plane stress, as derived in Reference [1], are

q2u

qx2
þ q2u

qy2
¼ 1þ n

2

q2u

qy2
� q2v

qxqy

 !

ð6:1:11Þ
q2v

qx2
þ q2v

qy2
¼ 1þ n

2

q2v

qx2
� q2u

qxqy

 !

d 6.2 Derivation of the Constant-Strain
Triangular Element Stiffness Matrix
and Equations

d

To illustrate the steps and introduce the basic equations necessary for the plane trian-
gular element, consider the thin plate subjected to tensile surface traction loads TS in
Figure 6–6(a).

Step 1 Select Element Type

To analyze the plate, we consider the basic triangular element in Figure 6–7 taken
from the discretized plate, as shown in Figure 6–6(b). The discretized plate has been

Figure 6–6(a) Thin plate in tension Figure 6–6(b) Discretized plate of
Figure 6–6(a) using triangular elements

Figure 6–7 Basic triangular element showing
degrees of freedom
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divided into triangular elements, each with nodes such as i; j, and m. We use triangu-
lar elements because boundaries of irregularly shaped bodies can be closely approxi-
mated in this way, and because the expressions related to the triangular element are
comparatively simple. This discretization is called a coarse-mesh generation if a few
large elements are used. Each node has two degrees of freedom—an x and a y dis-
placement. We will let ui and vi represent the node i displacement components in the
x and y directions, respectively.

Here all formulations are based on this counterclockwise system of labeling of
nodes, although a formulation based on a clockwise system of labeling could be
used. Remember that a consistent labeling procedure for the whole body is necessary
to avoid problems in the calculations such as negative element areas. Here ðxi; yiÞ,
ðxj; yjÞ, and ðxm; ymÞ are the known nodal coordinates of nodes i; j, and m, respectively.

The nodal displacement matrix is given by

fdg ¼

8><
>:
fdig
fdjg
fdmg

9>=
>; ¼

8>>>>>>>><
>>>>>>>>:

ui

vi

uj

vj

um

vm

9>>>>>>>>=
>>>>>>>>;

ð6:2:1Þ

Step 2 Select Displacement Functions

We select a linear displacement function for each element as

uðx; yÞ ¼ a1 þ a2xþ a3y
ð6:2:2Þ

vðx; yÞ ¼ a4 þ a5xþ a6y

where uðx; yÞ and vðx; yÞ describe displacements at any interior point ðxi; yiÞ of the
element.

The linear function ensures that compatibility will be satisfied. A linear function
with specified endpoints has only one path through which to pass—that is, through
the two points. Hence, the linear function ensures that the displacements along the
edge and at the nodes shared by adjacent elements, such as edge i-j of the two ele-
ments shown in Figure 6–6(b), are equal. Using Eqs. (6.2.2), the general displacement
function fcg, which stores the functions u and v, can be expressed as

fcg ¼ a1 þ a2xþ a3y

a4 þ a5xþ a6y

� �
¼ 1 x y 0 0 0

0 0 0 1 x y

� �

8>>>>>>>><
>>>>>>>>:

a1

a2

a3

a4

a5

a6

9>>>>>>>>=
>>>>>>>>;

ð6:2:3Þ
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To obtain the a’s in Eqs. (6.2.2), we begin by substituting the coordinates of the
nodal points into Eqs. (6.2.2) to yield

ui ¼ uðxi; yiÞ ¼ a1 þ a2xi þ a3yi

uj ¼ uðxj ; yjÞ ¼ a1 þ a2xj þ a3yj

um ¼ uðxm; ymÞ ¼ a1 þ a2xm þ a3ym
ð6:2:4Þ

vi ¼ vðxi; yiÞ ¼ a4 þ a5xi þ a6yi

vj ¼ vðxj ; yjÞ ¼ a4 þ a5xj þ a6yj

vm ¼ vðxm; ymÞ ¼ a4 þ a5xm þ a6ym

We can solve for the a’s beginning with the first three of Eqs. (6.2.4) expressed in ma-
trix form as

ui

uj

um

8<
:

9=
; ¼

2
64

1 xi yi

1 xj yj

1 xm ym

3
75

a1

a2

a3

8<
:

9=
; ð6:2:5Þ

or, solving for the a’s, we have

fag ¼ ½x��1fug ð6:2:6Þ

where ½x� is the 3� 3 matrix on the right side of Eq. (6.2.5). The method of cofactors
(Appendix A) is one possible method for finding the inverse of ½x�. Thus,

½x��1 ¼ 1

2A

ai aj am

bi bj bm

gi gj gm

2
64

3
75 ð6:2:7Þ

2A ¼

							
1 xi yi

1 xj yj

1 xm ym

							
ð6:2:8Þwhere

is the determinant of ½x�, which on evaluation is

2A ¼ xiðyj � ymÞ þ xjðym � yiÞ þ xmðyi � yjÞ ð6:2:9Þ

Here A is the area of the triangle, and

ai ¼ xjym � yjxm aj ¼ yixm � xiym am ¼ xiyj � yixj

bi ¼ yj � ym bj ¼ ym � yi bm ¼ yi � yj ð6:2:10Þ

gi ¼ xm � xj gj ¼ xi � xm gm ¼ xj � xi
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Having determined ½x��1, we can now express Eq. (6.2.6) in expanded matrix form as

a1

a2

a3

8<
:

9=
; ¼

1

2A

ai aj am

bi bj bm

gi gj gm

2
64

3
75

ui

uj

um

8<
:

9=
; ð6:2:11Þ

Similarly, using the last three of Eqs. (6.2.4), we can obtain

a4

a5

a6

8<
:

9=
; ¼

1

2A

ai aj am

bi bj bm

gi gj gm

2
64

3
75

vi

vj

vm

8<
:

9=
; ð6:2:12Þ

We will derive the general x displacement function uðx; yÞ of fcg (v will follow
analogously) in terms of the coordinate variables x and y, known coordinate variables
ai; aj; . . . ; gm, and unknown nodal displacements ui; uj , and um. Beginning with Eqs.
(6.2.2) expressed in matrix form, we have

fug ¼ ½1 x y�
a1

a2

a3

8<
:

9=
; ð6:2:13Þ

Substituting Eq. (6.2.11) into Eq. (6.2.13), we obtain

fug ¼ 1

2A
½1 x y�

ai aj am

bi bj bm

gi gj gm

2
64

3
75

ui

uj

um

8<
:

9=
; ð6:2:14Þ

Expanding Eq. (6.2.14), we have

fug ¼ 1

2A
½1 x y�

aiui þ ajuj þ amum

biui þ bjuj þ bmum

giui þ gjuj þ gmum

8><
>:

9>=
>; ð6:2:15Þ

Multiplying the two matrices in Eq. (6.2.15) and rearranging, we obtain

uðx; yÞ ¼ 1

2A
fðai þ bixþ giyÞui þ ðaj þ bjxþ gjyÞuj þ ðam þ bmxþ gmyÞumg

ð6:2:16Þ

Similarly, replacing ui by vi; uj by vj, and um by vm in Eq. (6.2.16), we have the y dis-
placement given by

vðx; yÞ ¼ 1

2A
fðai þ bixþ giyÞvi þ ðaj þ bjxþ gjyÞvj þ ðam þ bmxþ gmyÞvmg

ð6:2:17Þ
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To express Eqs. (6.2.16) and (6.2.17) for u and v in simpler form, we define

Ni ¼
1

2A
ðai þ bixþ giyÞ

Nj ¼
1

2A
ðaj þ bjxþ gjyÞ ð6:2:18Þ

Nm ¼
1

2A
ðam þ bmxþ gmyÞ

Thus, using Eqs. (6.2.18), we can rewrite Eqs. (6.2.16) and (6.2.17) as

uðx; yÞ ¼ Niui þNjuj þNmum

ð6:2:19Þ
vðx; yÞ ¼ Nivi þNjvj þNmvm

Expressing Eqs. (6.2.19) in matrix form, we obtain

fcg ¼ uðx; yÞ
vðx; yÞ

� �
¼

Niui þNjuj þNmum

Nivi þNjvj þNmvm

� �

fcg ¼
Ni 0 Nj 0 Nm 0

0 Ni 0 Nj 0 Nm

� �

8>>>>>>>><
>>>>>>>>:

ui

vi

uj

vj

um

vm

9>>>>>>>>=
>>>>>>>>;

ð6:2:20Þor

Finally, expressing Eq. (6.2.20) in abbreviated matrix form, we have

fcg ¼ ½N�fdg ð6:2:21Þ

where ½N� is given by

½N� ¼
Ni 0 Nj 0 Nm 0

0 Ni 0 Nj 0 Nm

� �
ð6:2:22Þ

We have now expressed the general displacements as functions of fdg, in terms
of the shape functions Ni;Nj, and Nm. The shape functions represent the shape of
fcg when plotted over the surface of a typical element. For instance, Ni represents
the shape of the variable u when plotted over the surface of the element for ui ¼ 1
and all other degrees of freedom equal to zero; that is, uj ¼ um ¼ vi ¼ vj ¼ vm ¼ 0.
In addition, uðxi; yiÞ must be equal to ui. Therefore, we must have Ni ¼ 1, Nj ¼ 0,
and Nm ¼ 0 at ðxi; yiÞ. Similarly, uðxj ; yjÞ ¼ uj. Therefore, Ni ¼ 0, Nj ¼ 1, and
Nm ¼ 0 at ðxj ; yjÞ. Figure 6–8 shows the shape variation of Ni plotted over the surface
of a typical element. Note that Ni does not equal zero except along a line connecting
and including nodes j and m.
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Finally, Ni þNj þNm ¼ 1 for all x and y locations on the surface of the element
so that u and v will yield a constant value when rigid-body displacement occurs. The
proof of this relationship follows that given for the bar element in Section 3.2 and is
left as an exercise (Problem 6.1). The shape functions are also used to determine the
body and surface forces at element nodes, as described in Section 6.3.

The requirement of completeness for the constant-strain triangle element used
in a two-dimensional plane stress element is illustrated in Figure 6–9. The element

Rigid-body translation
and rotation occurs for
elements to right of load

(a) Rigid-body modes of a plane stress element (from left to right, pure
      translation in x and y directions and pure rotation)

(b) Cantilever beam modeled using constant-strain triangle elements;
      elements to the right of the loading are stress-free

Figure 6–9 Unstressed elements in a cantilever beam modeled with CST

Figure 6–8 Variation of Ni over the x-y surface
of a typical element
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must be able to translate uniformly in either the x or y direction in the plane and
to rotate without straining as shown in Figure 6–9(a). The reason that the ele-
ment must be able to translate as a rigid body and to rotate stress-free is illustrated
in the example of a cantilever beam modeled with plane stress elements as shown
in Figure 6–9(b). By simple statics, the beam elements beyond the loading are stress
free. Hence these elements must be free to translate and rotate without stretching or
changing shape.

Step 3 Define the Strain=Displacement and Stress=Strain
Relationships

We express the element strains and stresses in terms of the unknown nodal
displacements.

Element Strains

The strains associated with the two-dimensional element are given by

feg ¼
ex

ey

gxy

8<
:

9=
; ¼

qu

qx

qv

qy

qu

qy
þ qv

qx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð6:2:23aÞ

Substituting displacement functions for u and v from Eqs. (6.2.2) into Eq. (6.2.23a),
we have

ex ¼ a2 ey ¼ a6 gxy ¼ a3 þ a5 ð6:2:23bÞ

We observe from Eq. (6.2.23b) that the strains in the element are constant. The element
is then called a constant-strain triangle (CST). It should be also noted that based on the
assumption of choosing displacement functions that are linear in x and y, all lines in
the triangle element remain straight as the element deforms.

Using Eqs. (6.2.19) for the displacements, we have

qu

qx
¼ u; x ¼

q

qx
ðNiui þNjuj þNmumÞ ð6:2:24Þ

u; x ¼ Ni;xui þNj;xuj þNm; xum ð6:2:25Þor

where the comma followed by a variable indicates differentiation with respect to that
variable. We have used ui;x ¼ 0 because ui ¼ uðxi; yiÞ is a constant value; similarly,
uj;x ¼ 0 and um;x ¼ 0.

Using Eqs. (6.2.18), we can evaluate the expressions for the derivatives of the
shape functions in Eq. (6.2.25) as follows:

Ni;x ¼
1

2A

q

qx
ðai þ bixþ giyÞ ¼

bi

2A
ð6:2:26Þ
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Nj;x ¼
bj

2A
and Nm;x ¼

bm

2A
ð6:2:27ÞSimilarly,

Therefore, using Eqs. (6.2.26) and (6.2.27) in Eq. (6.2.25), we have

qu

qx
¼ 1

2A
ðbiui þ bjuj þ bmumÞ ð6:2:28Þ

Similarly, we can obtain

qv

qy
¼ 1

2A
ðgivi þ gjvj þ gmvmÞ

ð6:2:29Þ
qu

qy
þ qv

qx
¼ 1

2A
ðgiui þ bivi þ gjuj þ bjvj þ gmum þ bmvmÞ

Using Eqs. (6.2.28) and (6.2.29) in Eq. (6.2.23a), we obtain

feg ¼ 1

2A

bi 0 bj 0 bm 0

0 gi 0 gj 0 gm

gi bi gj bj gm bm

2
64

3
75

8>>>>>>>><
>>>>>>>>:

ui

vi

uj

vj

um

vm

9>>>>>>>>=
>>>>>>>>;

ð6:2:30Þ

feg ¼ ½Bi� ½Bj� ½Bm�

 �

8><
>:
fdig
fdjg
fdmg

9>=
>; ð6:2:31Þor

where

½Bi� ¼
1

2A

2
664

bi 0

0 gi

gi bi

3
775 ½Bj� ¼

1

2A

2
664

bj 0

0 gj

gj bj

3
775 ½Bm� ¼

1

2A

2
664

bm 0

0 gm

gm bm

3
775 ð6:2:32Þ

Finally, in simplified matrix form, Eq. (6.2.31) can be written as

feg ¼ ½B�fdg ð6:2:33Þ

½B� ¼ ½Bi� ½Bj� ½Bm�

 �

ð6:2:34Þwhere

The ½B � matrix (sometimes called a gradient matrix) is independent of the x and y

coordinates. It depends solely on the element nodal coordinates, as seen from Eqs.
(6.2.32) and (6.2.10). The strains in Eq. (6.2.33) will be constant (consistent with the
simple expressions previously given by Eq. (6.2.23b).
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Stress–Strain Relationship

In general, the in-plane stress–strain relationship is given by

8><
>:

sx

sy

txy

9>=
>; ¼ ½D�

ex

ey

gxy

8><
>:

9>=
>; ð6:2:35Þ

where ½D� is given by Eq. (6.1.8) for plane stress problems and by Eq. (6.1.10) for
plane strain problems. Using Eq. (6.2.33) in Eq. (6.2.35), we obtain the in-plane
stresses in terms of the unknown nodal degrees of freedom as

fsg ¼ ½D�½B�fdg ð6:2:36Þ

where the stresses fsg are also constant everywhere within the element.

Step 4 Derive the Element Stiffness Matrix and Equations

Using the principle of minimum potential energy, we can generate the equations for a
typical constant-strain triangular element. Keep in mind that for the basic plane stress
element, the total potential energy is now a function of the nodal displacements
ui; vi; uj; . . . ; vm (that is, fdg) such that

pp ¼ ppðui; vi; uj; . . . ; vmÞ ð6:2:37Þ

Here the total potential energy is given by

pp ¼ U þWb þWp þWs ð6:2:38Þ

where the strain energy is given by

U ¼ 1

2

ððð

V

fegTfsg dV ð6:2:39Þ

or, using Eq. (6.2.35), we have

U ¼ 1

2

ððð

V

fegT ½D�feg dV ð6:2:40Þ

where we have used ½D�T ¼ ½D� in Eq. (6.2.40).
The potential energy of the body forces is given by

Wb ¼ �
ððð

V

fcgTfXg dV ð6:2:41Þ

where fcg is again the general displacement function, and fXg is the body weight/
unit volume or weight density matrix (typically, in units of pounds per cubic inch or
kilonewtons per cubic meter).
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The potential energy of concentrated loads is given by

Wp ¼ �fdgTfPg ð6:2:42Þ

where fdg represents the usual nodal displacements, and fPg now represents the con-
centrated external loads.

The potential energy of distributed loads (or surface tractions) moving through
respective surface displacements is given by

Ws ¼ �
ðð

S

fcSg
TfTSg dS ð6:2:43Þ

where fTSg represents the surface tractions (typically in units of pounds per square
inch or kilonewtons per square meter), fcSg represents the field of surface displace-
ments through which the surface tractions act, and S represents the surfaces over
which the tractions fTSg act. Similar to Eq. (6.2.21), we express fcSg as fcSg ¼
½NS�fdg, where ½NS� represents the shape function matrix evaluated along the surface
where the surface traction acts.

Using Eq. (6.2.21) for fcg and Eq. (6.2.33) for the strains in Eqs. (6.2.40)
through (6.2.43), we have

pp ¼
1

2

ððð

V

fdgT ½B�T ½D�½B�fdg dV �
ððð

V

fdgT ½N�TfXg dV

� fdgTfPg �
ðð

S

fdgT ½NS�TfTSg dS ð6:2:44Þ

The nodal displacements fdg are independent of the general x-y coordinates, so fdg
can be taken out of the integrals of Eq. (6.2.44). Therefore,

pp ¼
1

2
fdgT

ððð

V

½B�T ½D�½B� dVfdg � fdgT

ððð

V

½N�TfXg dV

� fdgTfPg � fdgT

ðð

S

½NS�TfTSg dS ð6:2:45Þ

From Eqs. (6.2.41) through (6.2.43), we can see that the last three terms of Eq.
(6.2.45) represent the total load system f f g on an element; that is,

f f g ¼
ððð

V

½N�TfXg dV þ fPg þ
ðð

S

½NS�TfTSg dS ð6:2:46Þ

where the first, second, and third terms on the right side of Eq. (6.2.46) represent the
body forces, the concentrated nodal forces, and the surface tractions, respectively.
Using Eq. (6.2.46) in Eq. (6.2.45), we obtain

pp ¼
1

2
fdgT

ððð

V

½B�T ½D�½B� dVfdg � fdgTf f g ð6:2:47Þ
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Taking the first variation, or equivalently, as shown in Chapters 2 and 3, the partial
derivative of pp with respect to the nodal displacements since pp ¼ ppðfdgÞ (as was
previously done for the bar and beam elements in Chapters 3 and 4, respectively), we
obtain

qpp

qfdg ¼
ððð

V

½B�T ½D�½B� dV

2
4

3
5fdg � f f g ¼ 0 ð6:2:48Þ

Rewriting Eq. (6.2.48), we have

ððð

V

½B�T ½D�½B� dVfdg ¼ f f g ð6:2:49Þ

where the partial derivative with respect to matrix fdg was previously defined by Eq.
(2.6.12). From Eq. (6.2.49) we can see that

½k� ¼
ððð

V

½B�T ½D�½B� dV ð6:2:50Þ

For an element with constant thickness, t, Eq. (6.2.50) becomes

½k� ¼ t

ðð

A

½B�T ½D�½B� dx dy ð6:2:51Þ

where the integrand is not a function of x or y for the constant-strain triangular
element and thus can be taken out of the integral to yield

½k� ¼ tA½B�T ½D�½B� ð6:2:52Þ

where A is given by Eq. (6.2.9), ½B� is given by Eq. (6.2.34), and ½D� is given by Eq.
(6.1.8) or Eq. (6.1.10). We will assume elements of constant thickness. (This assump-
tion is convergent to the actual situation as the element size is decreased.)

From Eq. (6.2.52) we see that ½k� is a function of the nodal coordinates (because
½B� and A are defined in terms of them) and of the mechanical properties E and n (of
which ½D� is a function). The expansion of Eq. (6.2.52) for an element is

½k� ¼

2
64
½kii� ½kij� ½kim�
½kji� ½kjj� ½kjm�
½kmi� ½kmj� ½kmm�

3
75 ð6:2:53Þ

where the 2� 2 submatrices are given by

½kii� ¼ ½Bi�T ½D�½Bi�tA

½kij� ¼ ½Bi�T ½D�½Bj �tA ð6:2:54Þ

½kim� ¼ ½Bi�T ½D�½Bm�tA
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and so forth. In Eqs. (6.2.54), ½Bi�; ½Bj�, and ½Bm� are defined by Eqs. (6.2.32). The ½k�
matrix is seen to be a 6� 6 matrix (equal in order to the number of degrees of free-
dom per node, two, times the total number of nodes per element, three).

In general, Eq. (6.2.46) must be used to evaluate the surface and body forces.
When Eq. (6.2.46) is used to evaluate the surface and body forces, these forces are
called consistent loads because they are derived from the consistent (energy) approach.
For higher-order elements, typically with quadratic or cubic displacement functions,
Eq. (6.2.46) should be used. However, for the CST element, the body and surface
forces can be lumped at the nodes with equivalent results (this is illustrated in Section
6.3) and added to any concentrated nodal forces to obtain the element force matrix.
The element equations are then given by

f1x

f1y

f2x

f2y

f3x

f3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

k11 k12 . . . k16

k21 k22 . . . k26

..

. ..
. ..

.

k61 k62 . . . k66

2
66664

3
77775

8>>>>>>>><
>>>>>>>>:

u1

v1

u2

v2

u3

v3

9>>>>>>>>=
>>>>>>>>;

ð6:2:55Þ

Finally, realizing that the strain energy U is the first term on the right side of
Eq. (6.2.47) and using the expression for the stiffness matrix given by Eq. (6.2.50),
we can again express the strain energy in the quadratic form U ¼ 1=2 fdgT ½k�fdg.

Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

We obtain the global structure stiffness matrix and equations by using the direct
stiffness method as

½K � ¼
XN

e¼1

½kðeÞ� ð6:2:56Þ

fFg ¼ ½K �fdg ð6:2:57Þand

where, in Eq. (6.2.56), all element stiffness matrices are defined in terms of the global
x-y coordinate system, fdg is now the total structure displacement matrix, and

fFg ¼
XN

e¼1

f f ðeÞg ð6:2:58Þ

is the column of equivalent global nodal loads obtained by lumping body forces and
distributed loads at the proper nodes (as well as including concentrated nodal loads)
or by consistently using Eq. (6.2.46). (Further details regarding the treatment of
body forces and surface tractions will be given in Section 6.3.)
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In the formulation of the element stiffness matrix Eq. (6.2.52), the matrix has
been derived for a general orientation in global coordinates. Equation (6.2.52) then
applies for all elements. All element matrices are expressed in the global-coordinate
orientation. Therefore, no transformation from local to global equations is necessary.
However, for completeness, we will now describe the method to use if the local axes
for the constant-strain triangular element are not parallel to the global axes for the
whole structure.

If the local axes for the constant-strain triangular element are not parallel to the
global axes for the whole structure, we must apply rotation-of-axes transformations
similar to those introduced in Chapter 3 by Eq. (3.3.16) to the element stiffness ma-
trix, as well as to the element nodal force and displacement matrices. We illustrate
the transformation of axes for the triangular element shown in Figure 6–10, consider-
ing the element to have local axes x0-y0 not parallel to global axes x-y. Local nodal
forces are shown in the figure. The transformation from local to global equations fol-
lows the procedure outlined in Section 3.4. We have the same general expressions,
Eqs. (3.4.14), (3.4.16), and (3.4.22), to relate local to global displacements, forces,
and stiffness matrices, respectively; that is,

fd 0g ¼ ½T �fdg f f 0g ¼ ½T�f f g ½k� ¼ ½T �T ½k0�½T � ð6:2:59Þ

where Eq. (3.4.15) for the transformation matrix ½T � used in Eqs. (6.2.59) must be
expanded because two additional degrees of freedom are present in the constant-strain
triangular element. Thus, Eq. (3.4.15) is expanded to

½T � ¼

2
666666664

C S 0 0 0 0

�S C 0 0 0 0

0 0 C S 0 0

0 0 �S C 0 0

0 0 0 0 C S

0 0 0 0 �S C

3
777777775

ui

vi

uj

vj

um

vm

ð6:2:60Þ

where C ¼ cos y, S ¼ sin y, and y is shown in Figure 6–10.

′
′

′
′

′

′

′

′j
Figure 6–10 Triangular element with
local axes not parallel to global axes
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Step 6 Solve for the Nodal Displacements

We determine the unknown global structure nodal displacements by solving the
system of algebraic equations given by Eq. (6.2.57).

Step 7 Solve for the Element Forces (Stresses)

Having solved for the nodal displacements, we obtain the strains and stresses in the
global x and y directions in the elements by using Eqs. (6.2.33) and (6.2.36). Finally,
we determine the maximum and minimum in-plane principal stresses s1 and s2 by
using the transformation Eqs. (6.1.2), where these stresses are usually assumed to act
at the centroid of the element. The angle that one of the principal stresses makes
with the x axis is given by Eq. (6.1.3).

Example 6.1

Evaluate the stiffness matrix for the element shown in Figure 6–11. The coordinates
are shown in units of inches. Assume plane stress conditions. Let E ¼ 30� 106 psi,
n ¼ 0:25, and thickness t ¼ 1 in. Assume the element nodal displacements have been
determined to be u1 ¼ 0:0, v1 ¼ 0:0025 in., u2 ¼ 0:0012 in., v2 ¼ 0:0, u3 ¼ 0:0, and
v3 ¼ 0:0025 in. Determine the element stresses.

SOLUTION:
We use Eq. (6.2.52) to obtain the element stiffness matrix. To evaluate ½k �, we first use
Eqs. (6.2.10) to obtain the b’s and g’s as follows:

bi ¼ yj � ym ¼ 0� 1 ¼ �1 gi ¼ xm � xj ¼ 0� 2 ¼ �2

bj ¼ ym � yi ¼ 1� ð�1Þ ¼ 2 gj ¼ xi � xm ¼ 0� 0 ¼ 0 ð6:2:61Þ

bm ¼ yi � yj ¼ �1� 0 ¼ �1 gm ¼ xj � xi ¼ 2� 0 ¼ 2

Figure 6–11 Plane stress element for stiffness
matrix evaluation
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Using Eqs. (6.2.32) and (6.2.34), we obtain matrix ½B� as

½B� ¼ 1

2ð2Þ

2
64
�1 0 2 0 �1 0

0 �2 0 0 0 2

�2 �1 0 2 2 �1

3
75 ð6:2:62Þ

where we have used A ¼ 2 in.2 in Eq. (6.2.62).
Using Eq. (6.1.8) for plane stress conditions,

½D� ¼ 30� 106

1� ð0:25Þ2

2
66664

1 0:25 0

0:25 1 0

0 0
1� 0:25

2

3
77775psi ð6:2:63Þ

Substituting Eqs. (6.2.62) and (6.2.63) into Eq. (6.2.52), we obtain

½k � ¼ ð2Þ30� 106

4ð0:9375Þ

�1 0 �2

0 �2 �1

2 0 0

0 0 2

�1 0 2

0 2 �1

2
666666664

3
777777775

�

2
664

1 0:25 0

0:25 1 0

0 0 0:375

3
775 1

2ð2Þ

2
664
�1 0 2 0 �1 0

0 �2 0 0 0 2

�2 �1 0 2 2 �1

3
775

Performing the matrix triple product, we have

½k � ¼ 4:0� 106

2:5 1:25 �2 �1:5 �0:5 0:25

1:25 4:375 �1 �0:75 �0:25 �3:625

�2 �1 4 0 �2 1

�1:5 �0:75 0 1:5 1:5 �0:75

�0:5 �0:25 �2 1:5 2:5 �1:25

0:25 �3:625 1 �0:75 �1:25 4:375

2
666666664

3
777777775

lb

in:
ð6:2:64Þ
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To evaluate the stresses, we use Eq. (6.2.36). Substituting Eqs. (6.2.62) and
(6.2.63), along with the given nodal displacements, into Eq. (6.2.36), we obtain

sx

sy

txy

8><
>:

9>=
>; ¼

30� 106

1� ð0:25Þ2

2
664

1 0:25 0

0:25 1 0

0 0 0:375

3
775

� 1

2ð2Þ

2
664
�1 0 2 0 �1 0

0 �2 0 0 0 2

�2 �1 0 2 2 �1

3
775

0:0

0:0025

0:0012

0:0

0:0

0:0025

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð6:2:65Þ

Performing the matrix triple product in Eq. (6.2.65), we have

sx ¼ 19,200 psi sy ¼ 4800 psi txy ¼ �15,000 psi ð6:2:66Þ

Finally, the principal stresses and principal angle are obtained by substituting
the results from Eqs. (6.2.66) into Eqs. (6.1.2) and (6.1.3) as follows:

s1 ¼
19,200þ 4800

2
þ 19,200� 4800

2

� �2

þ ð�15,000Þ2
" #1=2

¼ 28,639 psi

s2 ¼
19,200þ 4800

2
� 19,200� 4800

2

� �2

þ ð�15,000Þ2
" #1=2

ð6:2:67Þ

¼ �4639 psi

yp ¼
1

2
tan�1 2ð�15,000Þ

19,200� 4800

� �
¼ �32:2� 9

d 6.3 Treatment of Body and Surface Forces d

Body Forces

Using the first term on the right side of Eq. (6.2.46), we can evaluate the body forces
at the nodes as

f fbg ¼
ððð

V

½N�TfXg dV ð6:3:1Þ
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fXg ¼ Xb

Yb

� �
ð6:3:2Þwhere

and Xb and Yb are the weight densities in the x and y directions in units of force/unit
volume, respectively. These forces may arise, for instance, because of actual body
weight (gravitational forces), angular velocity (called centrifugal body forces, as
described in Chapter 9), or inertial forces in dynamics.

In Eq. (6.3.1), ½N� is a linear function of x and y; therefore, the integration must
be carried out. Without lack of generality, the integration is simplified if the origin of
the coordinates is chosen at the centroid of the element. For example, consider the el-
ement with coordinates shown in Figure 6–12. With the origin of the coordinate
placed at the centroid of the element, we have, from the definition of the centroid,Ð Ð

x dA ¼
Ð Ð

y dA ¼ 0 and therefore,

ðð
bix dA ¼

ðð
giy dA ¼ 0 ð6:3:3Þ

ai ¼ aj ¼ am ¼
2A

3
ð6:3:4Þand

Using Eqs. (6.3.2) through (6.3.4) in Eq. (6.3.1), the body force at node i is then
represented by

f fbig ¼
Xb

Yb

� �
tA

3
ð6:3:5Þ

Similarly, considering the j and m node body forces, we obtain the same results as in
Eq. (6.3.5). In matrix form, the element body forces are

f fbg ¼

fbix

fbiy

fbjx

fbjy

fbmx

fbmy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

Xb

Yb

Xb

Yb

Xb

Yb

9>>>>>>>>=
>>>>>>>>;

At

3
ð6:3:6Þ

Figure 6–12 Element with centroidal
coordinate axes
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From the results of Eq. (6.3.6), we can conclude that the body forces are distributed to
the nodes in three equal parts. The signs depend on the directions of Xb and Yb with
respect to the positive x and y global coordinates. For the case of body weight only,
because of the gravitational force associated with the y direction, we have only
Yb ðXb ¼ 0Þ.

Surface Forces

Using the third term on the right side of Eq. (6.2.46), we can evaluate the surface
forces at the nodes as

f fsg ¼
ðð

S

½NS�TfTSg dS ð6:3:7Þ

We emphasize that the subscript S in [NS] in Eq. (6.3.7) means the shape functions
evaluated along the surface where the surface traction is applied.

We will now illustrate the use of Eq. (6.3.7) by considering the example of a uni-
form stress p (say, in pounds per square inch) acting between nodes 1 and 3 on the
edge of element 1 in Figure 6–13(b). In Eq. (6.3.7), the surface traction now becomes

fTSg ¼
px

py

� �
¼ p

0

� �
ð6:3:8Þ

½NS�T ¼

2
666666664

N1 0

0 N1

N2 0

0 N2

N3 0

0 N3

3
777777775

evaluated at x ¼ a; y ¼ y

ð6:3:9Þand

As the surface traction p acts along the edge at x ¼ a and y ¼ y from y ¼ 0 to y ¼ L,
we evaluate the shape functions at x ¼ a and y ¼ y and integrate over the surface from
0 to L in the y direction and from 0 to t in the z direction, as shown by Eq. (6.3.10).

(a)

1

3a
x

y

L p (lb�in.2)

(b)

1

2

p (lb�in.2)

Figure 6–13 (a) Elements with uniform surface traction acting on one edge and
(b) element 1 with uniform surface traction along edge 1–3
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Using Eqs. (6.3.8) and (6.3.9), we express Eq. (6.3.7) as

f fsg ¼
ð t

0

ðL

0

2
666666664

N1 0

0 N1

N2 0

0 N2

N3 0

0 N3

3
777777775

p

0

� �
dz dy

evaluated at x ¼ a; y ¼ y

ð6:3:10Þ

Simplifying Eq. (6.3.10), we obtain

f fsg ¼ t

ðL

0

2
666666664

N1p

0

N2p

0

N3p

0

3
777777775

dy

evaluated at x ¼ a; y ¼ y

ð6:3:11Þ

Now, by Eqs. (6.2.18) (with i ¼ 1), we have

N1 ¼
1

2A
ða1 þ b1xþ g1yÞ ð6:3:12Þ

For convenience, we choose the coordinate system for the element as shown in
Figure 6–14. Using the definition Eqs. (6.2.10), we obtain

ai ¼ xjym � yjxm

or, with i ¼ 1, j ¼ 2, and m ¼ 3,

a1 ¼ x2y3 � y2x3 ð6:3:13Þ

Substituting the coordinates into Eq. (6.3.13), we obtain

a1 ¼ 0 ð6:3:14Þ
Similarly, again using Eqs. (6.2.10), we obtain

b1 ¼ 0 g1 ¼ a ð6:3:15Þ
Therefore, substituting Eqs. (6.3.14) and (6.3.15) into Eq. (6.3.12), we obtain

N1 ¼
ay

2A
ð6:3:16Þ

Figure 6–14 Representative element
subjected to edge surface traction p
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Similarly, using Eqs. (6.2.18), we can show that

N2 ¼
Lða� xÞ

2A
and N3 ¼

Lx� ay

2A
ð6:3:17Þ

On substituting Eqs. (6.3.16) and (6.3.17) for N1;N2, and N3 into Eq. (6.3.11), eval-
uating N1;N2, and N3 at x ¼ a and y ¼ y (the coordinates corresponding to the
location of the surface load p), and then integrating with respect to y, we obtain

f fsg ¼
t

2ðaL=2Þ

a
L2

2

� �
p

0

0

0

L2 � L2

2

� �
ap

0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

ð6:3:18Þ

where the shape function N2 ¼ 0 between nodes 1 and 3, as should be the case according
to the definitions of the shape functions. Simplifying Eq. (6.3.18), we finally obtain

f fsg ¼

fs1x

fs1y

fs2x

fs2y

fs3x

fs3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

pLt=2

0

0

0

pLt=2

0

9>>>>>>>>=
>>>>>>>>;

ð6:3:19Þ

Figure 6–15 illustrates the results for the surface load equivalent nodal forces for both
elements 1 and 2.

We can conclude that for a constant-strain triangle, a distributed load on an
element edge can be treated as concentrated loads acting at the nodes associated
with the loaded edge by making the two kinds of load statically equivalent [which is
equivalent to applying Eq. (6.3.7)]. However, for higher-order elements such as the

Figure 6–15 Surface traction
equivalent nodal forces
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linear-strain triangle (discussed in Chapter 8), the load replacement should be made by
using Eq. (6.3.7), which was derived by the principle of minimum potential energy.
For higher-order elements, this load replacement by use of Eq. (6.3.7) is generally
not equal to the apparent statically equivalent one; however, it is consistent in that
this replacement results directly from the energy approach.

We now recognize the force matrix f fsg defined by Eq. (6.3.7), and based on the
principle of minimum potential energy, to be equivalent to that based on work equiv-
alence, which we previously used in Chapter 4 when discussing distributed loads act-
ing on beams.

d 6.4 Explicit Expression for the Constant-Strain
Triangle Stiffness Matrix

d

Although the stiffness matrix is generally formulated internally in most computer
programs by performing the matrix triple product indicated by Eq. (6.4.1), it is still a
valuable learning experience to evaluate the stiffness matrix explicitly for the constant-
strain triangular element. Hence, we will consider the plane strain case specifically in
this development.

First, recall that the stiffness matrix is given by

½k� ¼ tA½B�T ½D�½B� ð6:4:1Þ

where, for the plane strain case, ½D� is given by Eq. (6.1.10) and ½B� is given by Eq.
(6.2.34). On substituting the matrices ½D� and ½B� into Eq. (6.4.1), we obtain

½k� ¼ tE

4Að1þ nÞð1� 2nÞ

bi 0 gi

0 gi bi

bj 0 gj

0 gj bj

bm 0 gm

0 gm bm

2
66666666664

3
77777777775

�

2
666664

1� n n 0

n 1� n 0

0 0
1� 2n

2

3
777775

bi 0 bj 0 bm 0

0 gi 0 gj 0 gm

gi bi gj bj gm bm

2
664

3
775 ð6:4:2Þ

On multiplying the matrices in Eq. (6.4.2), we obtain Eq. (6.4.3), the explicit
constant-strain triangle stiffness matrix for the plane strain case. Note that ½k� is a
function of the difference in the x and y nodal coordinates, as indicated by the g’s
and b’s, of the material properties E and n, and of the thickness t and surface area A

of the element.
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½k� ¼ tE

4Að1þ nÞð1� 2nÞ

�

2
666666666666666666666666664

b2
i ð1�nÞ þ g2

i

1�2n

2

� �
biginþ bigi

1�2n

2

� �
bibjð1�nÞ þ gigj

1�2n

2

� �

g2
i ð1�nÞ þ b2

i

1�2n

2

� �
bjginþ bigj

1�2n

2

� �

b2
j ð1�nÞ þ g2

j

1�2n

2

� �

Symmetry

bigjnþ bjgi

1�2n

2

� �
bibmð1�nÞ þ gigm

1�2n

2

� �
bigmnþ bmgi

1�2n

2

� �

gigjð1�nÞ þ bibj

1�2n

2

� �
bmginþ bigm

1�2n

2

� �
gigmð1�nÞ þ bibm

1�2n

2

� �

bjgjnþ bjgj

1�2n

2

� �
bjbmð1�nÞ þ gjgm

1�2n

2

� �
bjgmnþ gjbm

1�2n

2

� �

g2
j ð1�nÞ þ b2

j

1�2n

2

� �
bmgjnþ bjgm

1�2n

2

� �
gjgmð1�nÞ þ bjbm

1�2n

2

� �

b2
mð1�nÞ þ g2

m

1�2n

2

� �
gmbmnþ bmgm

1�2n

2

� �

g2
mð1�nÞ þ b2

m

1�2n

2

� �

3
777777777777777777777777775

(6.4.3)

For the plane stress case, we need only replace 1� n by 1, ð1� 2nÞ=2 by
ð1� nÞ=2, and ð1þ nÞð1� 2nÞ outside the brackets by 1� n2 in Eq. (6.4.3).

Finally, it should be noted that for Poisson’s ratio n approaching 0.5, as in rubber-
like materials and plastic solids, for instance, a material becomes incompressible [2]. For
plane strain, as n approaches 0.5, the denominator becomes zero in the material prop-
erty matrix [see Eq. (6.1.10)] and hence in the stiffness matrix, Eq. (6.4.3). A value of n
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near 0.5 can cause ill-conditioned structural equations. A special formulation (called a
penalty formulation [3]) has been used in this case.

d 6.5 Finite Element Solution of a Plane Stress
Problem

d

To illustrate the finite element method for a plane stress problem, we now present a
detailed solution.

Example 6.2

For a thin plate subjected to the surface traction shown in Figure 6–16, determine
the nodal displacements and the element stresses. The plate thickness t ¼ 1 in.,
E ¼ 30�106 psi, and n ¼ 0:30.

SOLUTION:

Discretization

To illustrate the finite element method solution for the plate, we first discretize the
plate into two elements, as shown in Figure 6–17. It should be understood that the
coarseness of the mesh will not yield as true a predicted behavior of the plate as
would a finer mesh, particularly near the fixed edge. However, since we are perform-
ing a longhand solution, we will use a coarse discretization for simplicity (but without
loss of generality of the method).

In Figure 6–17, the original tensile surface traction in Figure 6–16 has been con-
verted to nodal forces as follows:

F ¼ 1

2
TA

F ¼ 1

2
ð1000 psiÞð1 in:� 10 in:Þ

F ¼ 5000 lb

Figure 6–16 Thin plate subjected to tensile stress

356 d 6 Development of the Plane Stress and Plane Strain Stiffness Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In general, for higher-order elements, Eq. (6.3.7) should be used to convert distributed
surface tractions to nodal forces. However, for the CST element, we have shown in
Section 6.3 that a statically equivalent force replacement can be used directly, as has
been done here.

The governing global matrix equation is

fFg ¼ ½K�fdg ð6:5:1Þ

Expanding matrices in Eq. (6.5.1), we obtain

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

F1x

F1y

F2x

F2y

F3x

F3y

F4x

F4y

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

R1x

R1y

R2x

R2y

5000

0

5000

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ ½K �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

u1

v1

u2

v2

u3

v3

u4

v4

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ ½K�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0

0

0

0

u3

v3

u4

v4

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð6:5:2Þ

where ½K� is an 8� 8 matrix (two degrees of freedom per node with four nodes) before
deleting rows and columns to account for the fixed boundary support conditions at
nodes 1 and 2.

Assemblage of the Stiffness Matrix

We assemble the global stiffness matrix by superposition of the individual element
stiffness matrices. By Eq. (6.2.52), the stiffness matrix for an element is

½k� ¼ tA½B�T ½D�½B� ð6:5:3Þ

In Figure 6–18 for element 1, we have coordinates xi ¼ 0, yi ¼ 0, xj ¼ 20, yj ¼ 10,
xm ¼ 0, and ym ¼ 10, since the global coordinate axes are set up at node 1, and

A ¼ 1

2
bh

A ¼ 1

2

� �
ð20Þð10Þ ¼ 100 in:2

Figure 6–17 Discretized plate
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or, in general, A can be obtained equivalently by the nodal coordinate formula of
Eq. (6.2.9).

We will now evaluate ½B�, where ½B� is given by Eq. (6.2.34), expanded here as

½B� ¼ 1

2A

bi 0 bj 0 bm 0

0 gi 0 gj 0 gm

gi bi gj bj gm bm

2
64

3
75 ð6:5:4Þ

and, from Eqs. (6.2.10),

bi ¼ yj � ym ¼ 10� 10 ¼ 0

bj ¼ ym � yi ¼ 10� 0 ¼ 10

bm ¼ yi � yj ¼ 0� 10 ¼ �10
ð6:5:5Þ

gi ¼ xm � xj ¼ 0� 20 ¼ �20

gj ¼ xi � xm ¼ 0� 0 ¼ 0

gm ¼ xj � xi ¼ 20� 0 ¼ 20

Therefore, substituting Eqs. (6.5.5) into Eq. (6.5.4), we obtain

½B� ¼ 1

200

2
64

0 0 10 0 �10 0

0 �20 0 0 0 20

�20 0 0 10 20 �10

3
75 1

in:
ð6:5:6Þ

For plane stress, the ½D� matrix is conveniently expressed here as

½D� ¼ E

ð1� n2Þ

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ð6:5:7Þ

With n ¼ 0:3 and E ¼ 30� 106 psi, we obtain

½D� ¼ 30ð106Þ
0:91

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75psi ð6:5:8Þ

Figure 6–18 Element 1 of the
discretized plate
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½B�T ½D� ¼ 30ð106Þ
200ð0:91Þ

2
666666664

0 0 �20

0 �20 0

10 0 0

0 0 10

�10 0 20

0 20 �10

3
777777775

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75 ð6:5:9ÞThen

Simplifying Eq. (6.5.9) yields

½B�T ½D� ¼ ð0:15Þð106Þ
0:91

0 0 �7

�6 �20 0

10 3 0

0 0 3:5

�10 �3 7

6 20 �3:5

2
666666664

3
777777775

ð6:5:10Þ

Using Eqs. (6.5.10) and (6.5.6) in Eq. (6.5.3), we have the stiffness matrix for element
1 as

½kð1Þ� ¼ ð1Þð100Þ ð0:15Þð106Þ
0:91

0 0 �7

�6 �20 0

10 3 0

0 0 3:5

�10 �3 7

6 20 �3:5

2
6666666664

3
7777777775

� 1

2ð100Þ

2
64

0 0 10 0 �10 0

0 �20 0 0 0 20

�20 0 0 10 20 �10

3
75 ð6:5:11Þ

Finally, simplifying Eq. (6.5.11) yields

½kð1Þ� ¼ 75,000

0:91

u1 v1 u3 v3 u2 v22
666666664

140 0 0 �70 �140 70

0 400 �60 0 60 �400

0 �60 100 0 �100 60

�70 0 0 35 70 �35

�140 60 �100 70 240 �130

70 �400 60 �35 �130 435

3
777777775

lb

in:
ð6:5:12Þ

where the labels above the columns indicate the counterclockwise nodal order of the
degrees of freedom in the element 1 stiffness matrix.
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In Figure 6–19 for element 2, we have xi ¼ 0, yi ¼ 0, xj ¼ 20, yj ¼ 0, xm ¼ 20,
and ym ¼ 10. Then, from Eqs. (6.2.10), we have

bi ¼ yj � ym ¼ 0� 10 ¼ �10

bj ¼ ym � yi ¼ 10� 0 ¼ 10

bm ¼ yi � yj ¼ 0� 0 ¼ 0
ð6:5:13Þ

gi ¼ xm � xj ¼ 20� 20 ¼ 0

gj ¼ xi � xm ¼ 0� 20 ¼ �20

gm ¼ xj � xi ¼ 20� 0 ¼ 20

Therefore, using Eqs. (6.5.13) in Eq. (6.5.4) yields

½B� ¼ 1

200

2
64
�10 0 10 0 0 0

0 0 0 �20 0 20

0 �10 �20 10 20 0

3
75 1

in:
ð6:5:14Þ

The ½D� matrix is again given by

½D� ¼ 30ð106Þ
0:91

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75psi ð6:5:15Þ

Then, using Eqs. (6.5.14) and (6.5.15), we obtain

½B�T ½D� ¼ 30ð106Þ
200ð0:91Þ

2
666666664

�10 0 0

0 0 �10

10 0 �20

0 �20 10

0 0 20

0 20 0

3
777777775

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75 ð6:5:16Þ

Figure 6–19 Element 2 of the
discretized plate
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Simplifying Eq. (6.5.16) yields

½B�T ½D� ¼ ð0:15Þð106Þ
0:91

2
6666666664

�10 �3 0

0 0 �3:5

10 3 �7

�6 �20 3:5

0 0 7

6 20 0

3
7777777775

ð6:5:17Þ

Finally, substituting Eqs. (6.5.17) and (6.5.14) into Eq. (6.5.3), we obtain the stiffness
matrix for element 2 as

½kð2Þ� ¼ ð1Þð100Þ ð0:15Þð106Þ
0:91

�10 �3 0

0 0 �3:5

10 3 �7

�6 �20 3:5

0 0 7

6 20 0

2
66666666664

3
77777777775

� 1

2ð100Þ

2
664
�10 0 10 0 0 0

0 0 0 �20 0 20

0 �10 �20 10 20 0

3
775 ð6:5:18Þ

Equation (6.5.18) simplifies to

½kð2Þ� ¼ 75,000

0:91

u1 v1 u4 v4 u3 v32
666666664

100 0 �100 60 0 �60

0 35 70 �35 �70 0

�100 70 240 �130 �140 60

60 �35 �130 435 70 �400

0 �70 �140 70 140 0

�60 0 60 �400 0 400

3
777777775

lb

in:
ð6:5:19Þ

where the degrees of freedom in the element 2 stiffness matrix are shown above the
columns in Eq. (6.5.19). Rewriting the element stiffness matrices, Eqs. (6.5.12) and
(6.5.19), expanded to the order of, and rearranged according to, increasing nodal
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degrees of freedom of the total ½K � matrix (where we have factored out a constant 5),
we obtain

Element 1

u1 v1 u2 v2 u3 v3 u4 v4

28 0 �28 14 0 �14 0 0

0 80 12 �80 �12 0 0 0

�28 12 48 �26 �20 14 0 0

14 �80 �26 87 12 �7 0 0

0 �12 �20 12 20 0 0 0

�14 0 14 �7 0 7 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

½kð1Þ� ¼ 375,000

0:91

2
6666666666664

3
7777777777775

lb

in:
ð6:5:20Þ

Element 2

u1 v1 u2 v2 u3 v3 u4 v4

20 0 0 0 0 �12 �20 12

0 7 0 0 �14 0 14 �7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 �14 0 0 28 0 �28 14

�12 0 0 0 0 80 12 �80

�20 14 0 0 �28 12 48 �26

12 �7 0 0 14 �80 �26 87

½kð2Þ� ¼ 375,000

0:91

2
6666666666664

3
7777777777775

lb

in:
ð6:5:21Þ

Using superposition of the element stiffness matrices, Eqs. (6.5.20) and (6.5.21), now
that the orders of the degrees of freedom are the same, we obtain the total global stiff-
ness matrix as

u1 v1 u2 v2 u3 v3 u4 v4

48 0 �28 14 0 �26 �20 12

0 87 12 �80 �26 0 14 �7

�28 12 48 �26 �20 14 0 0

14 �80 �26 87 12 �7 0 0

0 �26 �20 12 48 0 �28 14

�26 0 14 �7 0 87 12 �80

�20 14 0 0 �28 12 48 �26

12 �7 0 0 14 �80 �26 87

½K � ¼ 375,000

0:91

2
6666666666664

3
7777777777775

lb

in:
ð6:5:22Þ

[Alternatively, we could have applied the direct stiffness method to Eqs. (6.5.12) and
(6.5.19) to obtain Eq. (6.5.22).] Substituting ½K � into fFg ¼ ½K�fdg of Eq. (6.5.2),
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we have8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

R1x

R1y

R2x

R2y

5000

0

5000

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼ 375,000

0:91

2
66666666666664

48 0 �28 14 0 �26 �20 12

0 87 12 �80 �26 0 14 �7

�28 12 48 �26 �20 14 0 0

14 �80 �26 87 12 �7 0 0

0 �26 �20 12 48 0 �28 14

�26 0 14 �7 0 87 12 �80

�20 14 0 0 �28 12 48 �26

12 �7 0 0 14 �80 �26 87

3
77777777777775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0

0

0

0

u3

v3

u4

v4

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð6:5:23Þ
Applying the support or boundary conditions by eliminating rows and columns corre-
sponding to displacement matrix rows and columns equal to zero [namely, rows and
columns 1–4 in Eq. (6.5.23)], we obtain

5000

0

5000

0

8>>><
>>>:

9>>>=
>>>;
¼ 375,000

0:91

48 0 �28 14

0 87 12 �80

�28 12 48 �26

14 �80 �26 87

2
6664

3
7775

u3

v3

u4

v4

8>>><
>>>:

9>>>=
>>>;

ð6:5:24Þ

Premultiplying both sides of Eq. (6.5.24) by ½K ��1, we have

u3

v3

u4

v4

8>>><
>>>:

9>>>=
>>>;
¼ 0:91

375,000

48 0 �28 14

0 87 12 �80

�28 12 48 �26

14 �80 �26 87

2
6664

3
7775

�1
5000

0

5000

0

8>>><
>>>:

9>>>=
>>>;

ð6:5:25Þ

Solving for the displacements in Eq. (6.5.25), we obtain

u3

v3

u4

v4

8>>><
>>>:

9>>>=
>>>;
¼ 0:91

75

0:05024

0:00034

0:05470

0:00878

8>>><
>>>:

9>>>=
>>>;

ð6:5:26Þ

Simplifying Eq. (6.5.26), the final displacements are given by

u3

v3

u4

v4

8>>><
>>>:

9>>>=
>>>;
¼

609:6

4:2

663:7

104:1

8>>><
>>>:

9>>>=
>>>;
� 10�6 in: ð6:5:27Þ

Comparing the finite element solution to an analytical solution, as a first
approximation, we have the axial displacement given by

d ¼ PL

AE
¼ ð10,000Þ20

10ð30� 106Þ ¼ 670� 10�6 in:
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for a one-dimensional bar subjected to tensile force. Hence, the nodal x displacement
components of Eq. (6.5.27) for the two-dimensional plate appear to be reasonably cor-
rect, considering the coarseness of the mesh and the directional stiffness bias of the
model. (For more on this subject see Section 7.5.) The y displacement would be
expected to be downward at the top (node 3) and upward at the bottom (node 4) as
a result of the Poisson effect. However, the directional stiffness bias due to the coarse
mesh accounts for this unexpected poor result.

We now determine the stresses in each element by using Eq. (6.2.36):

fsg ¼ ½D�½B�fdg ð6:5:28Þ

In general, for element 1, we then have

fsg ¼ E

ð1� n2Þ

2
666664

1 n 0

n 1 0

0 0
1� n

2

3
777775
� 1

2A

� �264
b1 0 b3 0 b2 0

0 g1 0 g3 0 g2

g1 b1 g3 b3 g2 b2

3
75

8>>>>>>>>><
>>>>>>>>>:

u1

v1

u3

v3

u2

v2

9>>>>>>>>>=
>>>>>>>>>;
ð6:5:29Þ

Substituting numerical values for ½B�, given by Eq. (6.5.6); for ½D�, given by Eq.
(6.5.8); and the appropriate part of fdg, given by Eq. (6.5.27), we obtain

fsg ¼ 30ð106Þð10�6Þ
0:91ð200Þ

1 0:3 0

0:3 1 0

0 0 0:35

2
64

3
75

�
0 0 10 0 �10 0

0 �20 0 0 0 20

�20 0 0 10 20 �10

2
64

3
75

0

0

609:6

4:2

0

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð6:5:30Þ

Simplifying Eq. (6.5.30), we obtain

sx

sy

txy

8<
:

9=
; ¼

1005

301

2:4

8<
:

9=
;psi ð6:5:31Þ

364 d 6 Development of the Plane Stress and Plane Strain Stiffness Equations

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In general, for element 2, we have

fsg ¼ E

ð1� n2Þ
1

2A

� �
2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775�

2
64

b1 0 b4 0 b3 0

0 g1 0 g4 0 g3

g1 b1 g4 b4 g3 b3

3
75

8>>>>>>>>><
>>>>>>>>>:

u1

v1

u4

v4

u3

v3

9>>>>>>>>>=
>>>>>>>>>;
ð6:5:32Þ

Substituting numerical values into Eq. (6.5.32), we obtain

fsg ¼ 30ð106Þð10�6Þ
0:91ð200Þ

1 0:3 0

0:3 1 0

0 0 0:35

2
64

3
75

�
�10 0 10 0 0 0

0 0 0 �20 0 20

0 �10 �20 10 20 0

2
64

3
75

0

0

663:7

104:1

609:6

4:2

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð6:5:33Þ

Simplifying Eq. (6.5.33), we obtain

sx

sy

txy

8<
:

9=
; ¼

995

�1:2

�2:4

8<
:

9=
;psi ð6:5:34Þ

The principal stresses can now be determined from Eq. (6.1.2), and the principal angle
made by one of the principal stresses can be determined from Eq. (6.1.3). (The other
principal stress will be directed 90� from the first.) We determine these principal
stresses for element 2 (those for element 1 will be similar) as

s1 ¼
sx þ sy

2
þ sx � sy

2

� �2

þ t2
xy

" #1=2

s1 ¼
995þ ð�1:2Þ

2
þ 995� ð�1:2Þ

2

� �2

þð�2:4Þ2
" #1=2

ð6:5:35Þ

s1 ¼ 497þ 498 ¼ 995 psi

s2 ¼
995þ ð�1:2Þ

2
� 498 ¼ �1:1 psi
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The principal angle is then

yp ¼
1

2
tan�1 2txy

sx � sy

� �

yp ¼
1

2
tan�1 2ð�2:4Þ

995� ð�1:2Þ

� �
¼ 0�

ð6:5:36Þ
or

Owing to the uniform stress of 1000 psi acting only in the x direction on the edge
of the plate, we would expect the stress sxð¼ s1Þ to be near 1000 psi in each element.
Thus, the results from Eqs. (6.5.31) and (6.5.34) for sx are quite good. We would expect
the stress sy to be very small (at least near the free edge). The restraint of element 1 at
nodes 1 and 2 causes a relatively large element stress sy, whereas the restraint of element
2 at only one node causes a very small stress sy. The shear stresses txy remain close to
zero, as expected. Had the number of elements been increased, with smaller ones used
near the support edge, even more realistic results would have been obtained. However,
a finer discretization would result in a cumbersome longhand solution and thus was
not used here. Use of a computer program is recommended for a detailed solution to
this plate problem and certainly for solving more complex stress–strain problems. 9

The maximum distortion energy theory [4] (also called the von Mises or von

Mises-Hencky theory) for ductile materials subjected to static loading predicts that a
material will fail if the von Mises stress (also called equivalent or effective stress)
reaches the yield strength, Sy, of the material. The von Mises stress as derived in [4],
for instance, is given in terms of the three principal stresses by

svm ¼
1ffiffiffi
2
p
h
ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2

i1=2

ð6:5:37aÞ

or equivalently in terms of the x-y-z components as

svm ¼
1ffiffiffi
2
p
h
ðsx � syÞ2 þ ðsy � szÞ2 þ ðsz � sxÞ2 þ 6ðt2

xy þ t2
yz þ t2

zxÞ
i1=2

ð6:5:37bÞ

Thus for yielding to occur, the von Mises stress must become equal to or greater than
the yield strength of the material as given by

svm � Sy ð6:5:38Þ

We can see from Eqs. (6.5.37a or 6.5.37b) that the von Mises stress is a scalar that
measures the intensity of the entire stress state as it includes the three principal stresses
or the three normal stresses in the x, y, and z directions, along with the shear stresses
on the x, y, and z planes. Other stresses, such as the maximum principal one, do not
provide the most accurate way of predicting failure.
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Most computer programs incorporate this failure theory and, as an optional
result, the user can request a plot of the von Mises stress throughout the material
model being analyzed. If the von Mises stress value is equal to or greater than
the yield strength of the material being considered, then another material with
greater yield strength can be selected or other design changes can be made.

For brittle materials, such as glass and cast iron, with different tension and com-
pression properties, it is recommended to use the Coulomb-Mohr theory to predict
failure. For more on this theory consult [4].

d 6.6 Rectangular Plane Element (Bilinear Rectangle, Q4) d
We will now develop the four-noded rectangular plane element stiffness matrix. We will
later refer to this element in the isoparametric formulation of a general quadrilateral ele-
ment in Section 10.2. This element is also called the bilinear rectangle because of the lin-
ear terms in x and y for the x and y displacement functions shown in Eq. (6.6.2). The
‘‘Q4’’ symbol represents the element as a quadrilateral with four corner nodes.

Two advantages of the rectangular element over the triangular element are ease
of data input and simpler interpretation of output stresses. A disadvantage of the rect-
angular element is that the simple linear-displacement rectangle with its associated
straight sides poorly approximates the real boundary condition edges.

The usual steps outlined in Chapter 1 will be followed to obtain the element
stiffness matrix and related equations.

Step 1 Select Element Type

Consider the rectangular element shown in Figure 6–20 (all interior angles are 90�)
with corner nodes 1–4 (again labeled counterclockwise) and base and height dimen-
sions 2b and 2h, respectively.

Figure 6–20 Basic four-node rectangular element with nodal degrees
of freedom
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The unknown nodal displacements are now given by

fdg ¼

u1

v1

u2

v2

u3

v3

u4

v4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð6:6:1Þ

Step 2 Select Displacement Functions

For a compatible displacement field, the element displacement functions u and v must
be linear along each edge because only two points (the corner nodes) exist along each
edge. We then select the linear displacement functions as

uðx; yÞ ¼ a1 þ a2xþ a3yþ a4xy
ð6:6:2Þ

vðx; yÞ ¼ a5 þ a6xþ a7yþ a8xy

There are a total of eight generalized degrees of freedom (a’s) in Eq. (6.6.2) and a total
of eight specific degrees of freedom (u1; v1 at node 1 through u4; v4 at node 4) for the
element.

We can proceed in the usual manner to eliminate the ai’s from Eqs. (6.6.2)
to obtain

uðx; yÞ ¼ 1

4bh
½ðb� xÞðh� yÞu1 þ ðbþ xÞðh� yÞu2

þ ðbþ xÞðhþ yÞu3 þ ðb� xÞðhþ yÞu4�
ð6:6:3Þ

vðx; yÞ ¼ 1

4bh
½ðb� xÞðh� yÞv1 þ ðbþ xÞðh� yÞv2

þ ðbþ xÞðhþ yÞv3 þ ðb� xÞðhþ yÞv4�

These displacement expressions, Eqs. (6.6.3), can be expressed equivalently in
terms of the shape functions and unknown nodal displacements as

fcg ¼ ½N�fdg ð6:6:4Þ

where the shape functions are given by

N1 ¼
ðb� xÞðh� yÞ

4bh
N2 ¼

ðbþ xÞðh� yÞ
4bh

ð6:6:5Þ
N3 ¼

ðbþ xÞðhþ yÞ
4bh

N4 ¼
ðb� xÞðhþ yÞ

4bh
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and the Ni’s are again such that N1 ¼ 1 at node 1 and N1 ¼ 0 at all the other
nodes, with similar requirements for the other shape functions. In expanded form,
Eq. (6.6.4) becomes

u

v

� �
¼ N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

� �

u1

v1

u2

v2

u3

v3

u4

v4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð6:6:6Þ

Step 3 Define the Strain–Displacement and Stress–Strain
Relationships

Again the element strains for the two-dimensional stress state are given by

8><
>:

ex

ey

gxy

9>=
>; ¼

8>>>>>>>>><
>>>>>>>>>:

qu

qx

qv

qy

qu

qy
þ qv

qx

9>>>>>>>>>=
>>>>>>>>>;

ð6:6:7aÞ

Using Eq. (6.6.2) in Eq. (6.6.7a), we express the strains in terms of the a’s as

ex ¼ a2 þ a4y

ey ¼ a7 þ a8x

gxy ¼ ða3 þ a6Þ þ a4xþ a8y

ð6:6:7bÞ

Using Eq. (6.6.6) in Eq. (6.6.7a) and taking the derivatives of u and v as indi-
cated, we can express the strains in terms of the unknown nodal displacements as

feg ¼ ½B�fdg ð6:6:8Þ

½B� ¼ 1

4bh

2
64
�ðh� yÞ 0 ðh� yÞ 0

0 �ðb� xÞ 0 �ðbþ xÞ
�ðb� xÞ �ðh� yÞ �ðbþ xÞ ðh� yÞ

ðhþ yÞ 0 �ðhþ yÞ 0

0 ðbþ xÞ 0 ðb� xÞ
ðbþ xÞ ðhþ yÞ ðb� xÞ �ðhþ yÞ

3
75 ð6:6:9Þ

where
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From Eqs. (6.6.7b), (6.6.8), and (6.6.9), we observe that ex is a function of y, ey is
a function of x, and gxy is a function of both x and y. The stresses are again given by
the formulas in Eq. (6.2.36), where ½B� is now that of Eq. (6.6.9) and fdg is that of
Eq. (6.6.1).

Step 4 Derive the Element Stiffness Matrix and Equations

The stiffness matrix is determined by

½k� ¼
ð h

�h

ð b

�b

½B�T ½D�½B�t dx dy ð6:6:10Þ

with ½D� again given by the usual plane stress or plane strain conditions, Eq. (6.1.8) or
(6.1.10). Because the ½B� matrix is a function of x and y, integration of Eq. (6.6.10)
must be performed. The ½k� matrix for the rectangular element is now of order 8� 8.
A numerical evaluation of Eq. (6.6.10) for ½k� is shown in Eq. (6.6.11) using b ¼ 4 in.,
h ¼ 2 in., t ¼ 1 in., E ¼ 30� 106 psi, and v ¼ 0:3. This double integral was solved
using Mathcad [5].

½k� ¼

1:35e10 5:486e9 �1:688e9 �4:22e8 �6:752e9 �5:486e9 �5:064e9 4:22e8
5:486e9 2:447e10 4:22e8 9:284e9 �5:486e9 �1:224e10 �4:22e8 �2:152e10
�1:688e9 4:22e8 1:35e10 �5:486e9 �5:064e9 �4:22e8 �6:752e9 5:486e9
�4:22e8 9:284e9 �5:486e9 2:447e10 4:22e8 �2:152e10 5:486e9 �1:224e10
�6:752e9 �5:486e9 �5:064e9 4:22e8 1:35e10 5:486e9 �1:688e9 �4:22e8
�5:486e9 �1:224e10 �4:22e8 �2:152e10 5:486e9 2:447e10 4:22e8 9:284e9
�5:064e9 �4:22e8 �6:752e9 5:486e9 �1:688e9 4:22e8 1:35e10 �5:486e9

4:22e8 �2:152e10 5:486e9 �1:224e10 �4:22e8 9:284e9 �5:486e9 2:447e10

2
66666666664

3
77777777775

(6.6.11)

The element force matrix is determined by Eq. (6.2.46) as

f f g ¼
ððð

V

½N�TfXg dV þ fPg þ
ðð

S

½Ns�TfTg dS ð6:6:12Þ

where ½N� is the rectangular matrix in Eq. (6.6.6), and N1 through N4 are given by
Eqs. (6.6.5). The element equations are then given by

f f g ¼ ½k�fdg ð6:6:13Þ

Steps 5 through 7

Steps 5 through 7, which involve assembling the global stiffness matrix and equations,
determining the unknown nodal displacements, and calculating the stress, are identical
to those in Section 6.2 for the CST. However, the stresses within each element now
vary in both the x and y directions.

Numerical Comparison of CST to Q4 Element Models
and Element Defects

Table 6–1 compares the free end deflection and maximum principal stress for a canti-
levered beam modeled with 2, 4, and 8 rows of either all triangular CST elements or
all rectangular Q4 elements.
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Displacement Results We observe from the displacement results that the CST element
models produce stiffer models than the actual beam behavior, as the deflections are pre-
dicted to be smaller than classical beam theory predicts. We also observe that the CST
model converges very slowly to the classical beam theory solution. This is partly due to
the element predicting only constant stress within each element when for a bending prob-
lem; the stress actually varies linearly through the depth of the beam. This problem is
rectified by using the linear-strain triangle (LST) element as described in Chapter 8.

The results indicate that the Q4 element model predicts more accurate deflection
behavior than the CST element model. The two-row model of Q4 elements yields deflec-
tions very close to that predicted by the classical beam deflection equation, whereas the
two-row model of CST elements is quite inaccurate in predicting the deflection. As the
number of rows is increased to four and then eight, the deflections are predicted increas-
ingly more accurately for the CST and Q4 element models. The two-noded beam ele-
ment model gives the identical deflection as the classical equation ðd ¼ PL3=3EIÞ as
expected (see discussion in Section 4.5) and is the most appropriate model for this prob-
lem when you are not concerned, for instance, with stress concentrations.

Table 6–1 Table comparing free-end deflections and largest principal stresses for
CST and Q4 element models (end force ¼ 4000 N, length = 1 m, I ¼ 1� 10�5 m4,
thickness ¼ 0.12 m, E ¼ 200 GPa)

Plane Element
Used/Rows

Number
of Nodes

Number of
Degrees of
Freedom

Free End
Displ., m

Principal Stress,
MPa

Q4/2 60 120 6:708� 10�4 19.35
Q4/4 200 400 6:729� 10�4 20.30
Q4/8 720 1440 6:729� 10�4 21.72
CST/2 60 120 3:630� 10�4 7.80
CST/4 200 400 5:537� 10�4 13.76
CST/8 720 1440 6:385� 10�4 17.61

Classical beam theory 6:667� 10�4 20:00

Typical Q4 and CST models:
4000 N

4000 N

1 m

Q4—8 row

CST—2 row

Numbers in Table by Wes Campbell.
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As further shown in [3] for a beam subjected to pure bending, the CST has a
spurious or false shear stress and hence a spurious shear strain in parts of the model
that should not have any shear stress or shear strain. This spurious shear strain
absorbs energy; therefore, some of the energy that should go into bending is lost.
The CST is then too stiff in bending, and the resulting deformation is smaller than it
actually should be. This phenomenon of excessive stiffness developing in one or
more modes of deformation is sometimes described as shear locking or parasitic shear.

Furthermore, in problems where plane strain conditions exist (recall this means
when ez ¼ 0) and the Poisson’s ratio approaches 0.5, a mesh can actually lock, which
means the mesh then cannot deform at all.

It should be noted that using a single row of Q4 elements with their linear edge
displacement is not recommended to accurately predict the stress gradient through the
depth of the beam. This is illustrated in Figure 6–21, where for the pure bending state
(approximated by this example), the exact displacement is shown in Figure 6–21(b),
while the Q4 element displacement is shown in Figure 6–21(c), which is not capable
of pure bending deformation.

Stress Results As mentioned previously, the CST element has constant strain and
stress within it, while the Q4 element normal strain, ex, and hence the normal stress,
sx, is linear in the y direction. (Also see Eq. (6.6.7b). Therefore, the CST is not able to
simulate the bending behavior nearly as well as the Q4 element. The classical beam
theory/bending stress equation predicts a linear stress variation through the depth of
the beam given by sx ¼ �My=I —shown in Section 4.1 as well. As shown when com-
paring the principal stresses for each model, as more rows are used, the stresses approach
the classical bending stress of 20 MPa with the Q4 approaching the classical solution
much faster as indicated by comparing the two-row solutions for Q4 and CST models.

Finally, the eight-noded quadratic edge displacement element (Q8) predicts
bending behavior better than both the CST and Q4 elements. Thus, fewer Q8 elements
can be used and faster convergence to the proper solution are obtained using this ele-
ment. In fact, using even a single row of Q8 elements yields reasonable results in bend-
ing, as shown in [3]. Again, Section 10.5 describes the Q8 element.

L

y, v

x, u

(a) Pure bending state (b) Exact displacements

(c) Element displacements–linear

Figure 6–21 (a) Pure bending state, (b) exact bending displacement, and (c) Q4
element displacements—linear edge displacements
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This brief description of some of the limitations in using the CST and Q4 ele-
ments does not prevent us from using them to model plane stress and plane strain
problems. It just requires us to use a fine mesh as opposed to a coarse one, particularly
where bending occurs and where in general large stress gradients will results. Also, we
must make sure our computer program can handle Poisson’s ratios that approach 0.5
(if that is desired, such as in rubber-like materials). For common materials, such as
metals, Poisson’s ratio is around 0.3, so locking should not be of concern.

d Summary Equations

Stress vector for two-dimensional stress state:

fsg ¼
sx

sy

txy

8<
:

9=
; ð6:1:1Þ

Principal stresses for two-dimensional stress state:

s1 ¼
sx þ sy

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� 2

þ t2
xy

r
¼ smax

s2 ¼
sx þ sy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx � sy

2

� 2

þ t2
xy

r
¼ smin

ð6:1:2Þ

Principal angle:

tan 2yp ¼
2txy

sx � sy

ð6:1:3Þ

Strain-displacement equations for two-dimensional stress state:

ex ¼
qu

qx
ey ¼

qv

qy
gxy ¼

qu

qy
þ qv

qx
ð6:1:4Þ

Strain vector for two-dimensional stress state:

feg ¼
ex

ey

gxy

8<
:

9=
; ð6:1:5Þ

Stress–strain relationship for two-dimensional stress state:

fsg ¼ ½D�feg ð6:1:7Þ

Stress–strain or constitutive matrix for plane stress condition:

½D� ¼ E

1� n2

1 n 0
n 1 0

0 0
1� n

2

2
64

3
75 ð6:1:8Þ
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Stress–strain matrix for plane strain condition:

½D� ¼ E

ð1þ nÞð1� 2nÞ

1� n n 0
n 1� n 0

0 0
1� 2n

2

2
64

3
75 ð6:1:10Þ

Displacement functions for three-noded triangular element:

uðx; yÞ ¼ a1 þ a2xþ a3y

vðx; yÞ ¼ a4 þ a5xþ a6y
ð6:2:2Þ

Shape functions for three-noded triangular element:

Ni ¼
1

2A
ðai þ bixþ giyÞ

Nj ¼
1

2A
ðaj þ bjxþ gjyÞ

Nm ¼
1

2A
ðam þ bmxþ gmyÞ

ð6:2:18Þ

where

ai ¼ xjym � yjxm aj ¼ yixm � xiym am ¼ xiyj � yixj

bi ¼ yj � ym bj ¼ ym � yi bm ¼ yi � yj

gi ¼ xm � xj gj ¼ xi � xm gm ¼ xj � xi

ð6:2:10Þ

Shape function matrix for three-noded triangular element:

½N� ¼ Ni 0 Nj 0 Nm 0
0 Ni 0 Nj 0 Nm

� �
ð6:2:22Þ

Strain-displacement equations in matrix form:

feg ¼ ½Bi� ½Bj� ½Bm�

 � fdig

fdjg
fdmg

8<
:

9=
; ð6:2:31Þ

where the gradient matrix is

½Bi� ¼
1

2A

bi 0
0 gi

gi bi

2
4

3
5 ½Bj� ¼

1

2A

bj 0
0 gj

gj bj

2
4

3
5 ½Bm� ¼

1

2A

bm 0
0 gm

gm bm

2
4

3
5 ð6:2:32Þ

½B� ¼ ½Bi� ½Bj� ½Bm�

 � ð6:2:34Þ

Stress–strain relationship as function of displacement matrix:

fsg ¼ ½D�½B�fdg ð6:2:36Þ

Total potential energy for two-dimensional stress state:

pp ¼ U þ �b þ �p þ �s ð6:2:38Þ
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where
Strain energy is

U ¼ 1

2

ððð

V

fegTfsgdV ð6:2:39Þ

Potential energy of body forces is

�b ¼ �
ððð

V

fcgTfXgdV ð6:2:41Þ

Potential energy of concentrated loads is

�p ¼ �fdgTfPg ð6:2:42Þ
Potential energy of surface tractions is

Ws ¼ �
ðð

S

fcSg
TfTSg dS ð6:2:43Þ

Stiffness matrix for CST element:

½k� ¼ tA½B�T ½D�½B� ð6:2:52Þ
Explicit body forces:

f fbg ¼

fbix

fbiy

fbjx

fbjy

fbmx

fbmy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Xb

Yb

Xb

Yb

Xb

Yb

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

At

3
ð6:3:6Þ

Explicit surface forces for uniform surface traction in x-direction along side 1–3:

f fsg ¼

fs1x

fs1y

fs2x

fs2y

fs3x

fs3y

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

pLt=2
0
0
0

pLt=2
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð6:3:19Þ

Explicit expression for constant-strain triangle (CST) stiffness matrix (See Eq. (6.4.3)):
von Mises stress:

svm ¼
1ffiffiffi
2
p
h
ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2

i1=2

ð6:5:37aÞ

Failure based on maximum distortion energy theory:

svm � Sy ð6:5:38Þ
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Displacement functions for bilinear four-noded rectangle element:

uðx; yÞ ¼ a1 þ a2xþ a3yþ a4xy

vðx; yÞ ¼ a5 þ a6xþ a7yþ a8xy ð6:6:2Þ
Shape functions for four-noded rectangle element:

N1 ¼
ðb� xÞðh� yÞ

4bh
N2 ¼

ðbþ xÞðh� yÞ
4bh

N3 ¼
ðbþ xÞðhþ yÞ

4bh
N4 ¼

ðb� xÞðhþ yÞ
4bh

ð6:6:5Þ

Strain-displacement equations for four-noded rectangle element in terms of a’s:

ex ¼ a2 þ a4y

ey ¼ a7 þ a8x

gxy ¼ ða3 þ a6Þ þ a4xþ a8y

ð6:6:7bÞ

Strain-displacement equations in matrix form:

feg ¼ ½B�fdg ð6:6:8Þ
where the gradient matrix is

½B� ¼ 1

4bh

2
64
�ðh� yÞ 0 ðh� yÞ 0

0 �ðb� xÞ 0 �ðbþ xÞ
�ðb� xÞ �ðh� yÞ �ðbþ xÞ ðh� yÞ

ðhþ yÞ 0 �ðhþ yÞ 0

0 ðbþ xÞ 0 ðb� xÞ
ðbþ xÞ ðhþ yÞ ðb� xÞ �ðhþ yÞ

3
75

ð6:6:9Þ

Stiffness matrix for four-noded rectangular element:

½k� ¼
ð h

�h

ð b

�b

½B�T ½D�½B�t dx dy ð6:6:10Þ

Element force matrix for four-noded rectangular element:

f f g ¼
ððð

V

½N�TfXg dV þ fPg þ
ðð

S

½Ns�TfTg dS ð6:6:12Þ
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d Problems

6.1 Sketch the variations of the shape functions Nj and Nm, given by Eqs. (6.2.18), over
the surface of the triangular element with nodes i; j, and m. Check that Ni þNj þ
Nm ¼ 1 anywhere on the element.

6.2 For a simple three-noded triangular element, show explicitly that differentiation of
Eq. (6.2.47) indeed results in Eq. (6.2.48); that is, substitute the expression for ½B� and
the plane stress condition for ½D� into Eq. (6.2.47), and then differentiate pp with re-
spect to each nodal degree of freedom in Eq. (6.2.47) to obtain Eq. (6.2.48).

6.3 Evaluate the stiffness matrix for the elements shown in Figure P6–3. The coordinates
are in units of inches. Assume plane stress conditions. Let E ¼ 30� 106 psi, n ¼ 0:25,
and thickness t ¼ 1 in.

6.4 For the elements given in Problem 6.3, the nodal displacements are given as

u1 ¼ 0:0 in: v1 ¼ 0:0025 in: u2 ¼ 0:0012 in:

v2 ¼ 0:0 in: u3 ¼ 0:0 in: v3 ¼ 0:0025 in:

Determine the element stresses sx; sy; txy; s1, and s2 and the principal angle yp. Use
the values of E; n, and t given in Problem 6.3.

6.5 Determine the von Mises stress for Problem 6.4.

6.6 Evaluate the stiffness matrix for the elements shown in Figure P6–6. The coordinates
are given in units of millimeters. Assume plane stress conditions. Let E ¼ 210 GPa,
n ¼ 0:25, and t ¼ 10 mm.

6.7 For the elements given in Problem 6.6, the nodal displacements are given as

u1 ¼ 2:0 mm v1 ¼ 1:0 mm u2 ¼ 0:5 mm

v2 ¼ 0:0 mm u3 ¼ 3:0 mm v3 ¼ 1:0 mm

Figure P6–3
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Determine the element stresses sx; sy; txy; s1, and s2 and the principal angle yp. Use
the values of E; n, and t given in Problem 6.6.

6.8 Determine the von Mises stress for Problem 6.7.

6.9 For the plane strain elements shown in Figure P6–9, the nodal displacements are
given as

u1 ¼ 0:001 in: v1 ¼ 0:005 in: u2 ¼ 0:001 in:

v2 ¼ 0:0025 in: u3 ¼ 0:0 in: v3 ¼ 0:0 in:

Determine the element stresses sx; sy; txy; s1, and s2 and the principal angle yp. Let
E ¼ 30� 106 psi and n ¼ 0:25, and use unit thickness for plane strain. All coordinates
are in inches.

3

1 2

(10, 0)

(c)

(0, 0)

(5, 10)

y

x

Figure P6–6
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6.10 For the plane strain elements shown in Figure P6–10, the nodal displacements are
given as

u1 ¼ 0:005 mm v1 ¼ 0:002 mm u2 ¼ 0:0 mm

v2 ¼ 0:0 mm u3 ¼ 0:005 mm v3 ¼ 0:0 mm

Determine the element stresses sx; sy; txy; s1, and s2 and the principal angle yp. Let
E ¼ 70 GPa and n ¼ 0:3, and use unit thickness for plane strain. All coordinates are
in millimeters.

6.11 Determine the nodal forces for (1) a linearly varying pressure px on the edge of the
triangular element shown in Figure P6–11(a); and (2) the quadratic varying pressure
shown in Figure P6–11(b) by evaluating the surface integral given by Eq. (6.3.7).
Assume the element thickness is equal to t.

6.12 Determine the nodal forces for (1) the quadratic varying pressure loading shown in Fig-
ure P6–12(a) and (2) the sinusoidal varying pressure loading shown in Figure P6–12(b)

(d) (e)

(0, 2)

(2, 0)

(0, 0)
(c)

x

y

(1, 2)

(2, 0)

(0, 0) (f)
x

y

Figure P6–9
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Figure P6–10

Figure P6–11
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Figure P6–12
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by the work equivalence method (use the surface integral expression given by
Eq. (6.3.7)). Assume the element thickness to be t.

6.13 Determine the nodal displacements and the element stresses, including principal
stresses, for the thin plate of Section 6.5 with a uniform shear load (instead of a tensile
load) acting on the right edge, as shown in Figure P6–13. Use E ¼ 30� 106 psi,
n ¼ 0:30, and t ¼ 1 in. (Hint: The ½K � matrix derived in Section 6.5 and given by
Eq. (6.5.22) can be used to solve the problem.)

6.14 Determine the nodal displacements and the element stresses, including principal
stresses, due to the loads shown for the thin plates in Figure P6–14 on the next page.
Use E ¼ 210 GPa, n ¼ 0:30, and t ¼ 5 mm. Assume plane stress conditions apply.
The recommended discretized plates are shown in the figures.

6.15 Evaluate the body force matrix for the plates shown in Figures P6–14(a) and (c).
Assume the weight density to be 77.1 kN/m3.

6.16 Why is the triangular stiffness matrix derived in Section 6.2 called a constant-strain triangle?

6.17 How do the stresses vary within the constant-strain triangle element?

6.18 Can you use the plane stress or plane strain element to model the following:
a. a flat slab floor of a building with vertical loading perpendicular to the slab
b. a wall subjected to wind loading (the wall acts as a shear wall with loads in the

plane of the wall)
c. a tensile plate with a hole drilled transversely through it
d. an eyebar with loads in the plane of the eyebar
e. a soil mass subjected to a strip footing loading
f. a wrench subjected to a force in the plane of the wrench
g. a wrench subjected to twisting forces (the twisting forces act out of the plane of the

wrench)
h. a triangular plate connection with loads in the plane of the triangle
i. a triangular plate connection with out-of-plane loads

6.19 The plane stress element only allows for in-plane displacements, while the frame or
beam element resists displacements and rotations. How can we combine the plane
stress and beam elements and still ensure compatibility?

Figure P6–13
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6.20 For the plane structures modeled by triangular elements shown in Figure P6–20, show
that numbering in the direction that has fewer nodes, as in Figure P6–20(a) (as op-
posed to numbering in the direction that has more nodes), results in a reduced band-
width. Illustrate this fact by filling in, with X ’s, the occupied elements in ½K � for each
mesh, as was done in Appendix B.4. Compare the bandwidths for each case.

4 3

2

5

1

100 mm

(b)

100 mm

20 kN

20 kN

4 3

2

5

1

400 mm

(d)

400 mm

px = 10 MPa

Figure P6–14

Figure P6–20
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6.21 Go through the detailed steps to evaluate Eq. (6.3.6).

6.22 How would you treat a linearly varying thickness for a three-noded triangle?

6.23 Compute the stiffness matrix of element 1 of the two-triangle element model of the
rectangular plate in plane stress shown in Figure P6–23. Then use it to compute the
stiffness matrix of element 2.

6.24 Show that the sum N1 þN2 þN3 þN4 is equal to 1 anywhere on a rectangular ele-
ment, where N1 through N4 are defined by Eqs. (6.6.5).

6.25 For the rectangular element of Figure 6–20 on page 367 the nodal displacements are
given by

u1 ¼ 0 in: v1 ¼ 0 in: u2 ¼ 0:005 in:

v2 ¼ 0:0025 in: u3 ¼ 0:0025 in: v3 ¼ �0:0025 in:

u4 ¼ 0 in: v4 ¼ 0 in:

For b ¼ 2 in., h ¼ 1 in., E ¼ 30� 106 psi, and n ¼ 0:3, determine the element strains
and stresses at the centroid of the element and at the corner nodes.

Figure P6–23
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PRACTICAL CONSIDERATIONS

IN MODELING; INTERPRETING

RESULTS; AND EXAMPLES OF

PLANE STRESS--STRAIN ANALYSISd

CHAPTER OBJECTIVES

. To present concepts that should be considered when modeling for a solution
by the finite element method, such as aspect ratio, symmetry, natural subdivi-
sions, sizing of elements and the h, p, and r methods of refinement, concen-
trated loads and infinite stress, infinite medium, and connecting different
kinds of elements.

. To describe some of the approximations inherent in finite element solutions.

. To illustrate convergence of solution and introduce the patch test for conver-
gence of solution.

. To discuss the interpretation of stresses in an element, including a common
method of averaging the nodal values (also called smoothing).

. To consider the concept of static condensation as a method used in some com-
puter programs to develop the stiffness matrix of a quadrilateral element.

. To present a flowchart of a typical finite element process used for the analysis of
plane stress and plane strain.

. To demonstrate various real-world applications where plane stress--strain ele-
ment models are applicable. Such examples include a bicycle wrench, a connect-
ing rod with notch and hole stress concentrations, an irregularly shaped overload
protection device, an irregularly shaped dam, and a beam welded to a column
with surface contact elements to allow the separation of surface between beam
and column during the beam flexing.

Introduction

In this chapter, we will describe some modeling guidelines, including generally recom-
mended mesh size, natural subdivisions modeling around concentrated loads, and
more on use of symmetry and associated boundary conditions. This is followed by
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discussion of equilibrium, compatibility, and convergence of solution. We will then
consider interpretation of stress results.

Next, we introduce the concept of static condensation, which enables us to apply
the concept of the basic constant-strain triangle stiffness matrix to a quadrilateral ele-
ment. Thus, both three-sided and four-sided two-dimensional elements can be used in
the finite element models of actual bodies.

We then show some computer program results. A computer program facilitates
the solution of complex, large-number-of-degrees-of-freedom plane stress/plane strain
problems that generally cannot be solved longhand because of the larger number of
equations involved. Also, problems for which longhand solutions do not exist (such
as those involving complex geometries and complex loads or where unrealistic, often
gross, assumptions were previously made to simplify the problem to allow it to be
described via a classical differential equation approach) can now be solved with a
higher degree of confidence in the results by using the finite element approach (with
its resulting system of algebraic equations).

d 7.1 Finite Element Modeling d
We will now discuss various concepts that should be considered when modeling any
problem for solution by the finite element method.

General Considerations

Finite element modeling is partly an art guided by visualizing physical interactions
taking place within the body. One appears to acquire good modeling techniques
through experience and by working with experienced people. General-purpose
programs provide some guidelines for specific types of problems [12, 15]. In subse-
quent parts of this section, some significant concepts that should be considered are
described.

In modeling, the user is first confronted with the sometimes difficult task of
understanding the physical behavior taking place and understanding the physical be-
havior of the various elements available for use. Choosing the proper type of element
or elements to match as closely as possible the physical behavior of the problem is
one of the numerous decisions that must be made by the user. Understanding the
boundary conditions imposed on the problem can, at times, be a difficult task. Also,
it is often difficult to determine the kinds of loads that must be applied to a body
and their magnitudes and locations. Again, working with more experienced users
and searching the literature can help overcome these difficulties.

Aspect Ratio and Element Shapes

The aspect ratio is defined as the ratio of the longest dimension to the shortest dimension

of a quadrilateral element. In many cases, as the aspect ratio increases, the inaccuracy
of the solution increases. To illustrate this point, Figure 7–1(a) shows five different fi-
nite element models used to analyze a beam subjected to bending. The element used
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here is the rectangular one described in Section 6.6. Figure 7–1(b) is a plot of the
resulting error in the displacement at point A of the beam versus the aspect ratio.
Table 7–1 reports a comparison of results for the displacements at points A and B

for the five models, and the exact solution [2].
There are exceptions for which aspect ratios approaching 50 still produce satis-

factory results; for example, if the stress gradient is close to zero at some location of the
actual problem, then large aspect ratios at that location still produce reasonable
results.

In general, an element yields best results if its shape is compact and regular.
Although different elements have different sensitivities to shape distortions, try to
maintain (1) aspect ratios low as in Figure 7–1, cases 1 and 2, and (2) corner angles

(a)

(b)

Figure 7–1 (a) Beam with loading (b) effects of the aspect ratio (AR) illustrated by
five cases with different aspect ratios
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of quadrilaterals near 90�. Figure 7–2 on the next page shows elements with poor
shapes that tend to promote poor results. If few of these poor element shapes
exist in a model, then usually only results near these elements are poor. In the
Algor program [12], when aX 170� in Figure 7–2(c), the program automatically
divides the quadrilateral into two triangles.

(c)

Figure 7–1 (c) Inaccuracy of solution as a function of the aspect ratio (numbers in
parentheses correspond to the cases listed in Table 7–1)

Table 7–1 Comparison of results for various aspect ratios

Vertical
Displacement,

v (in.)
Case

Aspect
Ratio

Number of
Nodes

Number of
Elements Point A Point B

Percent
Error in

Displacement
at A

1 1.1 84 60 �1.093 �0.346 5.2
2 1.5 85 64 �1.078 �0.339 6.4
3 3.6 77 60 �1.014 �0.328 11.9
4 6.0 81 64 �0.886 �0.280 23.0
5 24.0 85 64 �0.500 �0.158 56.0

Exact solution [2] �1.152 �0.360
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Use of Symmetry

The appropriate use of symmetry� will often expedite the modeling of a problem. Use
of symmetry allows us to consider a reduced problem instead of the actual problem.
Thus, we can use a finer subdivision of elements with less labor and computer costs.
For another discussion on the use of symmetry, see Reference [3].

Figures 7–3 through 7–5 illustrate the use of symmetry in modeling a soil mass
subjected to foundation loading, a uniaxially loaded member with a fillet, and a plate
with a hole subjected to internal pressure, respectively. Note that at the plane of sym-
metry the displacement in the direction perpendicular to the plane must be equal to
zero. This is modeled by the rollers at nodes 2–6 in Figure 7–3, where the plane of
symmetry is the vertical plane passing through nodes 1–6, perpendicular to the plane of
the model. In Figures 7–4(a) and 7–5(a), there are two planes of symmetry. Thus, we
need model only one-fourth of the actual members, as shown in Figures 7–4(b) and
7–5(b). Therefore, rollers are used at nodes along both the vertical and horizontal
planes of symmetry.

As previously indicated in Chapter 3, in vibration and buckling problems, sym-
metry must be used with caution since symmetry in geometry does not imply symme-
try in all vibration or buckling modes.

Natural Subdivisions at Discontinuities

Figure 7–6 illustrates various natural subdivisions for finite element discretization.
For instance, nodes are required at locations of concentrated loads or discontinuity
in loads, as shown in Figure 7–6(a) and (b). Nodal lines are defined by abrupt changes
of plate thickness, as in Figure 7–6(c), and by abrupt changes of material properties,

� Again, reflective symmetry means correspondence in size, shape, and position of loads; material properties;

and boundary conditions that are on opposite sides of a dividing line or plane.

Figure 7–2 Elements with poor shapes
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Figure 7–3 Use of symmetry applied to a soil mass subjected to foundation loading
(number of nodes ¼ 66, number of elements ¼ 50) (2.54 cm ¼ 1 in., 4.445 N ¼ 1 lb)

Figure 7–4 Use of symmetry applied to a uniaxially loaded member with a fillet
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as in Figure 7–6(d) and (e). Other natural subdivisions occur at re-entrant corners, as
in Figure 7–6(f ), and along holes in members, as in Figure 7–5.

Sizing of Elements and the h, p, and r Methods
of Refinement

For structural problems, to obtain displacements, rotations, stresses, and strains, many
computer programs include two basic solution methods and some a third. (These same
methods apply to nonstructural problems as well.) These are called the h method; the
p method; and the r method. These methods are then used to revise or refine a finite

Figure 7–5 Problem reduction using axes of symmetry applied to a plate with a hole
subjected to tensile force
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Figure 7–6 Natural subdivisions at discontinuities
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element mesh to improve the results in the next refined analysis. The goal of the analyst
is to refine the mesh to obtain the necessary accuracy by using only as many degrees of
freedom as necessary. The final objective of this so called adaptive refinement is to ob-
tain equal distribution of an error indicator over all elements.

The discretization depends on the geometry of the structure, the loading pattern,
and the boundary conditions. For instance, regions of stress concentration or high
stress gradient due to fillets, holes, or re-entrant corners require a finer mesh near
those regions, as indicated in Figures 7–4, 7–5, and 7–6(f ).

We will briefly describe the h, p, and r methods of refinement and provide refer-
ences for those interested in more in-depth understanding of these methods.

h Method of Refinement In the h method of refinement, we use the particular ele-
ment based on the shape functions for that element (for example, linear functions for
the bar, quadratic for the beam, bilinear for the CST). We then start with a baseline
mesh to provide a baseline solution for error estimation and to provide guidance for
mesh revision. We then add elements of the same kind to refine or make smaller elements
in the model. Sometimes a uniform refinement is done where the original element size
(Figure 7–7(a)) is perhaps divided in two in both directions as shown in Figure 7–7(b).
More often, the refinement is a nonuniform h refinement as shown in Figure 7–7(c)
(perhaps even a local refinement used to capture some physical phenomenon, such as
a shock wave or a thin boundary layer in fluids) [19]. The mesh refinement is contin-
ued until the results from one mesh compare closely to those of the previously refined
mesh. It is also possible that part of the mesh can be enlarged instead of refined.
For instance, in regions where the stresses do not change or change slowly, larger ele-
ments may be quite acceptable. The h-type mesh refinement strategy had its begin-
nings in [20–23]. Many commercial computer codes, such as [12], are based on the h

refinement.

p Method of Refinement In the p method of refinement [24–28], the polynomial p is
increased from perhaps quadratic to a higher-order polynomial based on the degree
of accuracy specified by the user. In the p method of refinement, the p method adjusts
the order of the polynomial or the p level in the element field quantity, such as displace-
ment, to better fit the conditions of the problem, such as the boundary conditions, the
loading, and the geometry changes. A problem is solved at a given p level, and then
the order of the polynomial is normally increased while the element geometry remains
the same and the problem is solved again. The results of the iterations are compared
to some set of convergence criteria specified by the user. Higher-order polynomials nor-
mally yield better solutions. This iteration process is done automatically within the
computer program. Therefore, the user does not need to manually change the size of
elements by creating a finer mesh, as must be done in the h method. (The h refinement
can be automated using a remeshing algorithm within the finite element software.)
Depending on the problem, a coarse mesh will often yield acceptable results. An exten-
sive discussion of error indicators and estimates is given in the literature [19].

The p refinement may consist of adding degrees of freedom to existing nodes,
adding nodes on existing boundaries between elements, and/or adding internal
degrees of freedom. A uniform p refinement (same refinement performed on all
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P

P

(a) Original mesh

P

P

(b) A uniformly refined h mesh

P

P

(c) A possible nonuniform h refinement

P

P

(d) A possible uniform p refinement

P

P

(e) A possible r refinement

Figure 7–7 Examples of h; p, and r refinement
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elements) is shown in Figure 7–7(d). One of the more common commercial com-
puter programs, Pro/MECHANICA [29], uses the p method exclusively. A typical
discretized finite element model of a pulley using Pro/MECHANICA is shown in
Figure 7–7f.

r Method of Refinement In the r method of refinement, the nodes are rearranged or
relocated without changing the number of elements or the polynomial degree of their
field quantities, i.e., displacements. Figure 7–7(e) illustrates a possible r refinement of
the original coarse mesh shown in Figure 7–7(a). Notice in this r refinement that we
have refined the mesh closer to the loads with resulting coarseness in the mesh away
from the end loads.

Transition Triangles

Figure 7–4 illustrates the use of triangular elements for transitions from smaller quad-
rilaterals to larger quadrilaterals. This transition is necessary because for simple CST
elements, intermediate nodes along element edges are inconsistent with the energy
formulation of the CST equations. If intermediate nodes were used, no assurance of

Displacement Mag
Deformed Original Model
Max Disp +7.4182E-04
Scale 1.6176E+03
Load: LoadSet 1

"window3" - Design_2_MPA - Design_2_MPA

(f) Pro/MECHANICA model of pulley.

Figure 7–7 ðContinuedÞ
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compatibility would be possible, and resulting holes could occur in the deformed
model. Using higher-order elements, such as the linear-strain triangle described in
Chapter 8, allows us to use intermediate nodes along element edges and maintain
compatibility.

Concentrated or Point Loads and Infinite Stress

Concentrated or point loads can be applied to nodes of an element provided the el-
ement supports the degree of freedom associated with the load. For instance, truss
elements and two- and three-dimensional elements support only translational
degrees of freedom, and therefore concentrated nodal moments cannot be applied
to these elements; only concentrated forces can be applied. However, we should re-
alize that physically concentrated forces are usually an idealization and mathemat-
ical convenience that represent a distributed load of high intensity acting over a
small area.

According to classical linear theories of elasticity for beams, plates, and solid
bodies [2, 16, 17], at a point loaded by a concentrated normal force there is finite dis-
placement and stress in a beam, finite displacement but infinite stress in a plate, and
both infinite displacement and stress in a two- or three-dimensional solid body.
These results are the consequences of the differing assumptions about the stress fields
in standard linear theories of beams, plates, and solid elastic bodies. A truly concen-
trated force would cause material under the load to yield, and linear elastic theories
do not predict yielding.

In a finite element analysis, when a concentrated force is applied to a node of a
finite element model, infinite displacement and stress are never computed. A concen-
trated force on a plane stress or strain model has a number of equivalent distributed
loadings, which would not be expected to produce infinite displacements or infinite
stresses. Infinite displacements and stresses can be approached only as the mesh
around the load is highly refined. The best we can hope for is that we can highly refine
the mesh in the vicinity of the concentrated load as shown in Figure 7–6(a), with the
understanding that the deformations and stresses will be approximate around the
load, or that these stresses near the concentrated force are not the object of study,
while stresses near another point away from the force, such as B in Figure 7–6(f ),
are of concern. The preceding remarks about concentrated forces apply to concen-
trated reactions as well.

Finally, another way to model with a concentrated force is to use additional ele-
ments and a single concentrated load as shown in Figure 7–6(h). The shape of the dis-
tribution used to simulate a distributed load can be controlled by the relative stiffness
of the elements above the loading plane to the actual structure by changing the modu-
lus of elasticity of these elements. This method spreads the concentrated load over a
number of elements of the actual structure.

Infinite stress based on elasticity solutions may also exist for special geometries
and loadings, such as the re-entrant corner shown in Figure 7–6(f). The stress is pre-
dicted to be infinite at the re-entrant corner. Hence, the finite element method based
on linear elastic material models will never yield convergence (no matter how many
times you refine the mesh) to a correct stress level at the re-entrant corner [18].
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We must either change the sharp re-entrant corner to one with a radius or use a theory
that accounts for plastic or yielding behavior in the material.

Infinite Medium

Figure 7–3 shows a typical model used to represent an infinite medium (a soil mass
subjected to a foundation load). The guideline for the finite element model is that
enough material must be included such that the displacements at nodes and stresses
within the elements become negligibly small at locations far from the foundation
load. Just how much of the medium should be modeled can be determined by a trial-
and-error procedure in which the horizontal and vertical distances from the load are
varied and the resulting effects on the displacements and stresses are observed. Alter-
natively, the experiences of other investigators working on similar problems may
prove helpful. For a homogeneous soil mass, experience has shown that the influence
of the footing becomes insignificant if the horizontal distance of the model is taken
as approximately four to six times the width of the footing and the vertical distance
is taken as approximately four to ten times the width of the footing [4–6]. Also, the
use of infinite elements is described in Reference [13].

After choosing the horizontal and vertical dimensions of the model, we must ide-
alize the boundary conditions. Usually, the horizontal displacement becomes negligible
far from the load, and we restrain the horizontal movement of all the nodal points on
that boundary (the right-side boundary in Figure 7–3). Hence, rollers are used to re-
strain the horizontal motion along the right side. The bottom boundary can be com-
pletely fixed, as is modeled in Figure 7–3 by using pin supports at each nodal point
along the bottom edge. Alternatively, the bottom can be constrained only against ver-
tical movement. The choice depends on the soil conditions at the bottom of the
model. Usually, complete fixity is assumed if the lower boundary is taken as bedrock.

In Figure 7–3, the left-side vertical boundary is taken to be directly under the
center of the load because symmetry has been assumed. As we said before when dis-
cussing symmetry, all nodal points along the line of symmetry are restrained against
horizontal displacement.

Finally, Reference [11] is recommended for additional discussion regarding guide-
lines in modeling with different element types, such as beams, plane stress/plane strain,
and three-dimensional solids.

Connecting (Mixing) Different Kinds of Elements

Sometimes it becomes necessary in a model to mix different kinds of elements, such as
beams and plane elements, such as CSTs. The problem with mixing these elements is
that they have different degrees of freedom at each node. The beam allows for trans-
verse displacement and rotation at each node, while the plane element only has in-
plane displacements at each node. The beam can resist a concentrated moment at a
node, whereas a plane element (CST) cannot. Therefore, if a beam element is con-
nected to a plane element at a single node as shown in Figure 7–8(a), the result will
be a hinge connection at A. This means only a force can be transmitted through the
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node between the two kinds of elements. This also creates a mechanism, as shown by
the stiffness matrix being singular. This problem can be corrected by extending the
beam into the plane element by adding one or more beam elements, shown as AB,
for one beam element in Figure 7–8(b). Moment can now be transferred through the
beam to the plane element. This extension assures that translational degrees of free-
dom of beam and plane element are connected at nodes A and B. Nodal rotations
are associated with only the beam element, AB. The calculated stresses in the plane el-
ement will not normally be accurate near node A.

For more examples of connecting different kinds of elements see Figures 1–5,
11–10, 12–10 and 16–31. These figures show examples of beam and plate elements
connected together (Figures 1–5, 12–10, and 16–31) and solid (brick) elements con-
nected to plates (Figure 11–10).

Checking the Model

The discretized finite element model should be checked carefully before results are
computed. Ideally, a model should be checked by an analyst not involved in the prep-
aration of the model, who is then more likely to be objective.

Preprocessors with their detailed graphical display capabilities (Figure 7–9) now
make it comparatively easy to find errors, particularly the more obvious ones involved
with a misplaced node or missing element or a misplaced load or boundary support.
Preprocessors include such niceties as color, shrink plots, rotated views, sectioning,
exploded views, and removal of hidden lines to aid in error detection.

Most commercial codes also include warnings regarding overly distorted ele-
ment shapes and checking for sufficient supports. However, the user must still select
the proper element types, place supports and forces in proper locations, use consistent
units, etc., to obtain a successful analysis.

Checking the Results and Typical Postprocessor Results

The results should be checked for consistency by making sure that intended support
nodes have zero displacement, as required. If symmetry exists, then stresses and dis-
placements should exhibit this symmetry. Computed results from the finite element
program should be compared with results from other available techniques, even if

B A

P

Plane elements

Beams

(a)

B A

P

Plane elements

Beams

(b)

Figure 7–8 Connecting beam element to plane elements: (a) no moment is
transferred, (b) moment is transferred
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these techniques may be cruder than the finite element results. For instance, approxi-
mate mechanics of material formulas, experimental data, and numerical analysis of
simpler but similar problems may be used for comparison, particularly if you have
no real idea of the magnitude of the answers. Remember to use all results with some
degree of caution, as errors can crop up in such sources as textbook or handbook
comparison solutions and experimental results.

In the end, the analyst should probably spend as much time processing, check-
ing, and analyzing results as is spent in data preparation.

Finally, we present some typical postprocessor results for the plane stress prob-
lem of Figure 7–9 (Figures 7–10 and 7–11, on page 400). Other examples with results
are shown in Section 7.7.

d 7.2 Equilibrium and Compatibility of Finite
Element Results

d

An approximate solution for a stress analysis problem using the finite element method
based on assumed displacement fields does not generally satisfy all the requirements
for equilibrium and compatibility that an exact theory-of-elasticity solution satisfies.
However, remember that relatively few exact solutions exist. Hence, the finite element
method is a very practical one for obtaining reasonable, but approximate, numerical
solutions. Recall the advantages of the finite element method as described in Chapter 1
and as illustrated numerous times throughout this text.

Figure 7–9 Plate of ASTM-A36 steel (2.5 m long, 2.5 m wide, 0.1 m thick, and with
a hole radius 0.05 m) discretized using a preprocessor program [15] with automatic
mesh generation
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We now describe some of the approximations generally inherent in finite ele-
ment solutions.

1. Equilibrium of nodal forces and moments is satisfied. This is true
because the global equation fFg ¼ ½K �fdg is a nodal equilibrium
equation whose solution for fdg is such that the sums of all forces and
moments applied to each node are zero. Equilibrium of the whole
structure is also satisfied because the structure reactions are included
in the global forces and hence in the nodal equilibrium equations.
Numerous example problems, particularly involving truss and frame
analysis in Chapter 3 and 5, respectively, have illustrated the
equilibrium of nodes and of total structures.

2. Equilibrium within an element is not always satisfied. However, for
the constant-strain bar of Chapter 3 and the constant-strain triangle of
Chapter 6, element equilibrium is satisfied. Also the cubic displace-
ment function is shown to satisfy the basic beam equilibrium differen-
tial equation in Chapter 4 and hence to satisfy element force and

10 MPa

2.5 m

2.5 m

Figure 7–10 Plate with a hole showing the deformed shape of a plate superimposed
over an undeformed shape. Plate is fixed on the left edge and subjected to 10 MPa
tensile stress along the right edge. Maximum horizontal displacement is 2:41 mm at
the center of the right edge. (Plate is steel with 0.1 m thickness)
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moment equilibrium. However, elements such as the linear-strain
triangle of Chapter 8, the axisymmetric element of Chapter 9, and the
rectangular element of Chapter 10 usually only approximately satisfy
the element equilibrium equations.

3. Equilibrium is not usually satisfied between elements. A differential
element including parts of two adjacent finite elements is usually not
in equilibrium (Figure 7–12). For line elements, such as used for truss
and frame analysis, interelement equilibrium is satisfied, as shown in
example problems in Chapters 3 through 5. However, for two- and
three-dimensional elements, interelement equilibrium is not usually
satisfied. For instance, the results of Example 6.2 indicate that the
normal stress along the diagonal edge between the two elements is
different in the two elements. Also, the coarseness of the mesh causes
this lack of interelement equilibrium to be even more pronounced. The
normal and shear stresses at a free edge usually are not zero even
though theory predicts them to be. Again, Example 6.2 illustrates this,
with free-edge stresses sy and txy not equal to zero. However, as more

Figure 7–11 Maximum principal stress contour (shrink fit plot) for a plate with
hole. Largest principal stresses of 29.48 MPa occur at the top and bottom of the
hole, which indicates a stress concentration of 2.948. Stresses were obtained by
using an average of the nodal values (called smoothing). (Same plate properties as
in Figure 7–10.) (See the full-color insert for a color version of this figure.)
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elements are used (refined mesh) the sy and txy stresses on the stress-
free edges will approach zero.

4. Compatibility is satisfied within an element as long as the element
displacement field is continuous. Hence, individual elements do not
tear apart.

5. In the formulation of the element equations, compatibility is invoked
at the nodes. Hence, elements remain connected at their common
nodes. Similarly, the structure remains connected to its support nodes
because boundary conditions are invoked at these nodes.

6. Compatibility may or may not be satisfied along interelement
boundaries. For line elements such as bars and beams, interelement
boundaries are merely nodes. Therefore, the preceding statement 5
applies for these line elements. The constant-strain triangle and the
rectangular element of Chapter 6 remain straight-sided when
deformed. Therefore, interelement compatibility exists for these
elements; that is, these plane elements deform along common lines
without openings, overlaps, or discontinuities. Incompatible elements,

20 in.

2
1

10 in.

5000 lb

5000 lb

σy = 301 psi

σn = 440 psi
σn = 196 psi

σx = 995 psi

σy = –1.2 psi

τxy = –2.4 psi

τxy = –2.4 psi

τnt = 280 psi

τnt = 397 psi

τxy = –2.4 psi

τxy = –2.4 psi

σx = 1005 psi

σx = 1005 psi σx = 995 psi

σy = 301 psi

σy = –1.2 psi

Example 6.2

2

1

Stresses on a differential
element common to both finite
elements, illustrating violation
of equilibirium

Stress along the diagonal between elements,
showing normal and shear stresses,
σn and τnt. Note: σn and τnt are not
equal in magnitude but are opposite in
sign for the two elements, and so
interelement equilibirium is not satisfied

Figure 7–12 Example 6.2, illustrating violation of equilibrium of a differential
element and along the diagonal edge between two elements (the coarseness of the
mesh amplifies the violation of equilibrium)
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those that allow gaps or overlaps between elements, can be acceptable
and even desirable. Incompatible element formulations, in some cases,
have been shown to converge more rapidly to the exact solution [1].
(For more on this special topic, consult References [7] and [8].)

d 7.3 Convergence of Solution d
In Section 3.2, we presented guidelines for the selection of so-called compatible and
complete displacement functions as they related to the bar element. Those four guide-
lines are generally applicable, and satisfaction of them hasbeen shown to ensure monotonic
convergence of the solution of a particular problem [9]. Furthermore, it has been shown
[10] that these compatible and complete displacement functions used in the displacement
formulation of the finite element method yield an upper bound on the true stiffness, and
hence a lower bound on the displacement of the problem, as shown in Figure 7–13.

Hence, as the mesh size is reduced—that is, as the number of elements is
increased—we are ensured of monotonic convergence of the solution when compatible
and complete displacement functions are used. Examples of this convergence are
given in References [1] and [11], and in Table 7–2 for the beam with loading shown
in Figure 7–1(a). All elements in the table are rectangular. The results in Table 7–2
indicate the influence of the number of elements (or the number of degrees of freedom
as measured by the number of nodes) on the convergence toward a common solution,

Figure 7–13 Convergence of a finite element solution based on the compatible
displacement formulation

Table 7–2 Comparison of results for different numbers of elements

Case
Number of

Nodes
Number of
Elements

Aspect
Ratio

Vertical
Displacement, v (in.)

Point A

1 21 12 2 �0.740
2 39 24 1 �0.980
3 45 32 3 �0.875
4 85 64 1.5 �1.078
5 105 80 1.2 �1.100

Exact solution [2] �1.152
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in this case the exact one. We again observe the influence of the aspect ratio. The
higher the aspect ratio, even with a larger number of degrees of freedom, the worse
the answer, as indicated by comparing cases 2 and 3.

Patch Test

To guarantee the convergence of a solution, the element being used in your model must
pass a test called the patch test. This test was originally developed by Irons [30, 31] and
is further discussed by Taylor, et al. [32], MacNeal and Harder [33], and Cook, et al.
[7] (among others). The patch test is based in part on the same requirements described
in Section 3.2; that the element must be able to accommodate both rigid-body motion
and constant states of strain as both are possible within a structure. The patch test
then can be used to determine if an element satisfies convergence requirements. It also
can be applied to determine if sufficient Gauss points have been used in the numerical
integration process to evaluate the stiffness matrix when the concept of isoparametric
formulation of stiffness matrices is used as described in Chapter 10.

The patch test is performed by considering a simple finite element model com-
posed of four irregular shaped elements of the same material with at least one node in-
side of the patch (called the patch node), as shown in Figure 7–14. The elements
should be irregular, as some regular elements (such as rectangular) may pass the test
whereas irregular ones will not. The elements may be all triangles or quadrilaterals
or a mix of both. The boundary can be a rectangle though.

The ‘‘displacement’’ patch test can be used to check if the elements can represent
rigid-body motion and a constant state of strain. To verify if the elements can repre-
sent rigid-body motion, we do the following:

Step 1 Set the x-displacements of all nodes on the boundary to a value (say 1).
That is, let u1 ¼ u2 ¼ u3 ¼ u4 ¼ u6 ¼ u7 ¼ u8 ¼ u9 ¼ 1 (x-translational
rigid-body motion check). Set the y-displacement of these nodes to zero.

Step 2 Set the applied forces to zero at all nodes, including the interior node 5.

Step 3 Using the displacement values of 1 from step 1, set up the finite element
equations using the stiffness method.

(0.5, 1)
(1, 1)

(1, 0.5)

(1, 0)(0, 0)

(0.3, 0.4)

3

5
4

21

7 8 9
(0, 1)

(0, 0.4)

(0.5, 0)

y

x

Figure 7–14 A patch of quadrilateral elements used for displacement patch test
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Step 4 Solve for the unknown displacements at node 5.

Step 5 To pass the rigid-body motion test, the computed x- and y-displacements at
node 5 should be equal to u5 ¼ 1 and v5 ¼ 0:

Step 6 Repeat the steps by now setting all v’i s to 1 except at node 5 (y-translational
rigid-body motion check). The displacement at node 5 should now become
u5 ¼ 0 and v5 ¼ 1.

Step 7 Repeat the steps with all u’i s¼ 1 and all v’i s¼ 1 except at node 5 (x-y
diagonal rigid-body motion check). The displacements at node 5 should be
u5 ¼ 1 and v5 ¼ 1.

Step 8 The strains should be calculated within each element and should be zero.

To verify that the elements can represent a state of constant strain, the following steps
are taken:

Step 1 As strains are derivatives of displacements, constant strain conditions
can be obtained by assuming linear displacement functions. So set uðx)¼ x

and vðx)¼ 0. This yields ex ¼ qu=qx ¼ 1. The other in-plane strains,
ey ¼ qv=qy ¼ 0 and gxy ¼ qu=qyþ qv=qx ¼ 0. The displacement at each
node must then be equal to its x-coordinate. In order to pass the patch test,
the calculated x-displacement at node 5 must equal its x-coordinate; that is,
u5 ¼ 0:3 and v5 ¼ 0:0.

Step 2 Repeat step 1 with uðyÞ ¼ 0 and vðyÞ ¼ y. This yields, ex ¼ 0; ey ¼ 1, and
gxy ¼ 0: The displacement at each node must then be equal to its
y-coordinate. In order to pass the patch test, the calculated y-displacement
at node 5 must equal its y-coordinate; that is, u5 ¼ 0:0 and v5 ¼ 0:4.

Step 3 Repeat the steps again with the shear strain becoming gxy ¼ 1 and the
normal strains equal to zero.

The ‘‘force’’ patch test validates that errors associated with the applied loads do not
occur. The steps are as follows:

Step 1 Assume a uniform stress state of sx ¼ 1 or some convenient constant value
is applied along the right side of the patch. Replace this stress with its
work-equivalent nodal load.

Step 2 Internal node 5 is not loaded.

Step 3 The patch has just enough supports to prevent rigid-body motion. In Figure
7–15, the left edge has one pin support and two rollers. (One roller would
be sufficient to prevent rigid-body motion.) The roller supports allow for
strain ey due to the Poisson effect. This strain will occur for Poisson’s ratio
not equal to zero and therefore should be accounted for.

Step 4 The finite element direct stiffness method is again used to obtain the
displacements and element stresses. The uniform stress sx ¼ 1 should be
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obtained within each element. The other in-plane stresses, sy and txy,
should be zero.

Step 5 Repeat the steps assuming first that sy ¼ 1 and the other stresses are zero.
Then assume that txy ¼ 1 and the two normal stresses equal zero.

The patch test also can be applied to other element types. For instance, a patch
of solid elements described for a three-dimensional stress state in Chapter 11 should
be able to properly yield all six constant states of stress. The patch test for the plate
bending analysis described in Chapter 12 should yield constant bending moments
Mx and My and constant twisting moment Mxy.

An element that passes the patch test is capable of meeting the following
requirements:

(a) Predicting rigid-body motion without strain when this state exists.
(b) Predicting states of constant strain if they occur.
(c) Compatibility with adjacent elements when a state of constant strain exists in

adjacent elements.

When these requirements are met, it is sufficient to guarantee that a mesh of
these elements will yield convergence to the solution as the mesh is continually refined.

The patch test is then a standard test for developers of new elements to test
whether the element has the necessary convergence properties. But the test does not
indicate how well an element works in other applications. An element passing the
patch test may still yield poor accuracy in a coarse mesh or show slow convergence
as the mesh is refined.

d 7.4 Interpretation of Stresses d
In the stiffness or displacement formulation of the finite element method used
throughout this text, the primary quantities determined are the interelement nodal dis-
placements of the assemblage. The secondary quantities, such as strain and stress in an
element, are then obtained through use of feg ¼ ½B�fdg and fsg ¼ ½D�½B�fdg. For ele-
ments using linear-displacement models, such as the bar and the constant-strain trian-
gle, ½B� is constant, and since we assume ½D� to be constant, the stresses are constant
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Figure 7–15 A patch of quadrilateral elements for the force patch test
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over the element. In this case, it is common practice to assign the stress to the centroid
of the element with acceptable results.

However, as illustrated in Section 3.11 for the axial member, stresses are not
predicted as accurately as the displacements (see Figures 3–32 and 3–33). For exam-
ple, remember the constant-strain or constant-stress element has been used in model-
ing the beam in Figure 7–1. Therefore, the stress in each element is assumed constant.
Figure 7–16 compares the exact beam theory solution for bending stress through the
beam depth at the centroidal location of the elements next to the wall with the finite
element solution of case 4 in Table 7–2. This finite element model consists of four
elements through the beam depth. Therefore, only four stress values are obtained
through the depth. Again, the best approximation of the stress appears to occur at
the midpoint of each element, since the derivative of displacement is better predicted
between the nodes than at the nodes.

For higher-order elements, such as the linear-strain triangle of Chapter 8, ½B�,
and hence the stresses, are functions of the coordinates. The common practice is then
to directly evaluate the stresses at the centroid of the element.

An alternative procedure sometimes is to use an average (possibly weighted)
value of the stresses evaluated at each node of the element. This averaging method is
often based on evaluating the stresses at the Gauss points located within the element
(described in Chapter 10) and then interpolating to the element nodes using the
shape functions of the specific element. Then these stresses in all elements at a common
node are averaged to represent the stress at the node. This averaging process is called
smoothing. Figure 7–11 shows a maximum principal stress ‘‘fringe carpet’’ (dithered)
contour plot obtained by smoothing.

Smoothing results in a pleasing, continuous plot which may not indicate some
serious problems with the model and the results. You should always view the un-
smoothed contour plots as well. Highly discontinuous contours between elements in
a region of an unsmoothed plot indicate modeling problems and typically require ad-
ditional refinement of the element mesh in the suspect region.

Figure 7–16 Comparison of the finite element solution and the exact solution
of bending stress through a beam cross section
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If the discontinuities in an unsmoothed contour plot are small or are in regions of
little consequence, a smoothed contour plot can normally be used with a high degree of
confidence in the results. There are, however, exceptions when smoothing leads to erro-
neous results. For instance, if the thickness or material stiffness changes significantly
between adjacent elements, the stresses will normally be different from one element to
the next. Smoothing will likely hide the actual results. Also, for shrink-fit problems
involving one cylinder being expanded enough by heating to slip over the smaller one,
the circumferential stress between the mating cylinders is normally quite different [16].

The computer program examples in Section 7.7 show additional results, such as
displaced models, along with smoothed stress plots. The stresses to be plotted can be
von Mises (used in the maximum distortion energy theory to predict failure of ductile
materials subjected to static loading as described in Section 6.5); Tresca (used in the
Tresca or maximum shear stress theory also to predict failure of ductile materials sub-
jected to static loading) [14, 16], and maximum and minimum principal stresses.

d 7.5 Static Condensation d
We will now consider the concept of static condensation because this concept is used in
developing the stiffness matrix of a quadrilateral element in many computer programs.

Consider the basic quadrilateral element with external nodes 1–4 shown in
Figure 7–17. An imaginary node 5 is temporarily introduced at the intersection of
the diagonals of the quadrilateral to create four triangles. We then superimpose the
stiffness matrices of the four triangles to create the stiffness matrix of the quadrilateral
element, where the internal imaginary node 5 degrees of freedom are said to be con-

densed out so as never to enter the final equations. Hence, only the degrees of freedom
associated with the four actual external corner nodes enter the equations.

We begin the static condensation procedure by partitioning the equilibrium
equations as

½k11� ½k12�
½k21� ½k22�

� � fdag
fdig

� �
¼ fFag
fFig

� �
ð7:5:1Þ

where fdig is the vector of internal displacements corresponding to the imaginary in-
ternal node (node 5 in Figure 7–17), fFig is the vector of loads at the internal node,
and fdag and fF ag are the actual nodal degrees of freedom and loads, respectively,
at the actual nodes. Rewriting Eq. (7.5.1), we have

½k11�fdag þ ½k12�fdig ¼ fFag ð7:5:2Þ

½k21�fdag þ ½k22�fdig ¼ fFig ð7:5:3Þ

Figure 7–17 Quadrilateral with
an internal node
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Solving for fdig in Eq. (7.5.3), we obtain

fdig ¼ �½k22��1½k21�fdag þ ½k22��1fFig ð7:5:4Þ

Substituting Eq. (7.5.4) into Eq. (7.5.2), we obtain the condensed equilibrium equation

½kc�fdag ¼ fFcg ð7:5:5Þ

where ½kc� ¼ ½k11� � ½k12�½k22��1½k21� ð7:5:6Þ

fFcg ¼ fFag � ½k12�½k22��1fFig ð7:5:7Þ

and ½kc� and fFcg are called the condensed stiffness matrix and the condensed load vec-

tor, respectively. Equation (7.5.5) can now be solved for the actual corner node dis-
placements in the usual manner of solving simultaneous linear equations.

Both constant-strain triangular (CST) and constant-strain quadrilateral elements
are used to analyze plane stress/plane strain problems. The quadrilateral element has the
stiffness of four CST elements. An advantage of the four-CST quadrilateral is that
the solution becomes less dependent on the skew of the subdivision mesh, as
shown in Figure 7–18. Here skew means the directional stiffness bias that can be
built into a model through certain discretization patterns, since the stiffness matrix of
an element is a function of its nodal coordinates, as indicted by Eq. (6.2.52).
The four-CST mesh of Figure 7–18(c) represents a reduction in the skew effect
over the meshes of Figures 7–18(a) and (b). Figure 7–18(b) is generally worse than
Figure 7–18(a) because the use of long, narrow triangles results in an element stiffness
matrix that is stiffer along the narrow direction of the triangle.

The resulting stiffness matrix of the quadrilateral element will be an 8� 8 matrix
consisting of the stiffnesses of four triangles, as was shown in Figure 7–17. The stiff-
ness matrix is first assembled according to the usual direct stiffness method. Then we
apply static condensation as outlined in Eqs. (7.5.1) through (7.5.7) to remove the
internal node 5 degrees of freedom.

The stiffness matrix of a typical triangular element (labeled element 1 in
Figure 7–17) with nodes 1, 2, and 5 is given in general form by

½kð1Þ� ¼
½kð1Þ11 � ½k

ð1Þ
12 � ½k

ð1Þ
15 �

½kð1Þ21 � ½k
ð1Þ
22 � ½k

ð1Þ
25 �

½kð1Þ51 � ½k
ð1Þ
52 � ½k

ð1Þ
55 �

2
664

3
775 ð7:5:8Þ

Figure 7–18 Skew effects in finite element modeling
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where the superscript in parentheses again refers to the element number, and each sub-
matrix ½kð1Þij � is of order 2� 2. The stiffness matrix of the quadrilateral, assembled
using Eq. (7.5.8) along with similar stiffness matrices for elements 2–4 of Figure 7–17, is
given by the following (before static condensation is used):

½k� ¼

2
666666666666666666666666666666666664

ðu1; v1Þ ðu2; v2Þ ðu3; v3Þ ðu4; v4Þ ðu5; v5Þ
½kð1Þ11 �
þ ½kð1Þ12 � ½0� ½kð4Þ14 � ½kð1Þ15 � þ ½k

ð4Þ
15 �

½kð4Þ11 �
½kð1Þ22 �

½kð1Þ21 � þ ½kð2Þ23 � ½0� ½kð1Þ25 � þ ½k
ð2Þ
25 �

½kð2Þ22 �
½kð2Þ33 �

½0� ½kð2Þ32 � þ ½kð3Þ34 � ½kð2Þ35 � þ ½k
ð3Þ
35 �

½kð3Þ33 �
½kð3Þ44 �

½kð4Þ41 � ½0� ½kð3Þ43 � þ ½kð3Þ45 � þ ½k
ð4Þ
45 �

½kð4Þ44 �

½kð1Þ51 � ½kð1Þ52 � ½kð2Þ53 � ½kð3Þ54 � ð½kð1Þ55 � þ ½k
ð2Þ
55 �Þ

þ þ þ þ þ
½kð4Þ51 � ½kð2Þ52 � ½kð3Þ53 � ½kð4Þ54 � ð½kð3Þ55 � þ ½k

ð4Þ
55 �Þ

3
777777777777777777777777777777777775

ð7:5:9Þ

where the orders of the degrees of freedom are shown above the columns of the stiffness
matrix and the partitioning scheme used in static condensation is indicated by the dot-
ted lines. Before static condensation is applied, the stiffness matrix is of order 10 � 10.

Example 7.1

Consider the quadrilateral with internal node 5 and dimensions as shown in Figure 7–19
to illustrate the application of static condensation.

Recall that the original stiffness matrix of the quadrilateral is 10� 10, but static
condensation will result in an 8� 8 stiffness matrix after removal of the degrees of
freedom ðu5; v5Þ at node 5.

Figure 7–19 Quadrilateral with an internal
node
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Using the CST stiffness matrix of Eq. (6.4.3) for plane strain, we have

3 4 5

1 2 5

½kð1Þ� ¼ ½kð3Þ� ¼ E

4:16

2
666666664

1:5 1:0 0:1 0:2 �1:6 �1:2

3:0 �0:2 2:6 �0:8 �5:6

1:5 �1:0 �1:6 1:2

3:0 0:8 �5:6

3:2 0:0

Symmetry 11:2

3
777777775

ð7:5:10Þ

Similarly, from Figure 7–19, we can show that

2 3 5
4 1 5

½kð2Þ� ¼ ½kð4Þ� ¼ E

4:16

2
666666664

1:5 �1:0 �0:1 0:2 �1:4 0:8

3:0 �0:2 �2:6 1:2 �0:4

1:5 1:0 �1:4 �0:8

3:0 �1:2 �0:4

2:8 0:0

Symmetry 0:8

3
777777775

ð7:5:11Þ

where the numbers above the columns in Eqs. (7.5.10) and (7.5.11) indicate the
orders of the degrees of freedom associated with each stiffness matrix. Here the
quantity in the denominator of Eq. (6.4.3), 4Að1þ nÞð1� 2nÞ, is equal to 4.16 in
Eqs. (7.5.10) and (7.5.11) because A ¼ 2 in.2 and n is taken to be 0.3. Also, the
thickness t of the element has been taken as 1 in. Now we can superimpose the stiff-
ness terms as indicated by Eq. (7.5.9) to obtain the general expression for a four-
CST element. The resulting assembled total stiffness matrix before static condensa-
tion is applied is given by

½k� ¼ E

4:16

3:0 2:0 0:1 0:2 0:0 0:0 �0:1 �0:2 �3:0 �2:0

6:0 �0:2 2:6 0:0 0:0 0:2 �2:6 �2:0 �6:0

3:0 �2:0 �0:1 0:2 0:0 0:0 �3:0 2:0

6:0 �0:2 �2:6 0:0 0:0 2:0 �6:0

3:0 2:0 0:1 0:2 �3:0 �2:0

6:0 �0:2 2:6 �2:0 �6:0

3:0 �2:0 �3:0 2:0

6:0 2:0 �6:0

12:0 0:0

Symmetry 24:0

2
666666666666666664

3
777777777777777775

ð7:5:12Þ
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After we partition Eq. (7.5.12) and use Eq. (7.5.6), the condensed stiffness matrix is
given by

u1 v1 u2 v2 u3 v3 u4 v4

½kc� ¼
E

4:16

2
66666666666664

2:08 1:00 �0:48 0:20 �0:92 �1:00 �0:68 �0:20

4:17 �0:20 1:43 �1:00 �1:83 0:20 �3:77

2:08 �1:00 �0:68 0:20 �0:92 1:00

4:17 �0:20 �3:77 1:00 �1:83

2:08 1:00 �0:48 0:20

4:17 �0:20 1:43

2:08 �1:00

Symmetry 4:17

3
77777777777775

ð7:5:13Þ
9

d 7.6 Flowchart for the Solution
of Plane Stress–Strain Problems

d

In Figure 7–20 on the next page, we present a flowchart of a typical finite element pro-
cess used for the analysis of plane stress and plane strain problems on the basis of the
theory presented in Chapter 6.

d 7.7 Computer Program–Assisted Step-by-Step
Solution, Other Models, and Results for Plane
Stress–Strain Problems

d

In this section, we present a computer-assisted step-by-step solution of a plane stress
problem, along with results of some plane stress–strain problems solved using a com-
puter program [12]. These results illustrate the various kinds of difficult problems that
can be solved using a general-purpose computer program.

The computer-assisted step-by-step problem is the bicycle wrench shown in
Figure 7–21(a) on page 413. The following steps have been used to solve for the stresses
in the wrench. (Some of these steps may be interchanged.)

Step 1 The first step is to draw the outline of the wrench using a standard drawing
program as shown in Figure 7–21(a). The exact dimensions of the wrench are
obtained from Figure P7–38, where the overall depth of the wrench is 2.0 cm,
the length is 14 cm, and the sides of the hexagons are 9 mm long for the
middle one and 7 mm long for the side ones. The radius of the enclosed ends is
1.50 cm.
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Step 2 The second step is to use a two-dimensional mesh generator to create the
model mesh as shown in Figure 7–21(b).

Step 3 The third step is to apply the boundary conditions to the proper
nodes using the proper boundary condition command. This is shown in
Figure 7–21(c) as indicated by the small @ signs at the nodes on the
inside of the left hexagonal shaped hole. The @ sign indicates complete
fixity for a node. (Algor more recently has changed to the triangle symbol
to denote complete fixity for a node.) This means these nodes are
constrained from translating in the y and z directions in the plane of the
wrench.

START

END

Draw the geometry and apply forces
and boundary conditions

Define the element type and mechanical
properties (here the 2-D element is used)

Compute the element stiffness matrix[k]
and the load vector {f} in global coordinates

Perform static condensation if the element has internal degrees of
freedom (that is, if quadrilaterals are used) or use

isoparametric formulation, as described in Chapter 10

Use the direct stiffness procedure to add [k] and distributed loads {f}
to the proper locations in assemblage stiffness [K] and loads {F}

DO JE = 1, NELE

Solve [K]{d} = {F} for {d}

Compute the element stresses

Output results

Figure 7–20 Flowchart of plane stress=strain finite element process
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(a)

(b)

(c)

(d)

(e)

Figure 7–21 Bicycle wrench (a) Outline drawing of wrench, (b) meshed model of
wrench, (c) boundary conditions and selecting surface where surface traction will be
applied, (d) checked model showing the boundary conditions and surface traction,
and (e) von Mises stress plot (Compliments of Angela Moe) (See the full-color insert
for a color version of this figure.)
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Step 4 The fourth step requires us to select the surface where the distributed
loading is to be applied and then the magnitude of the surface traction.
This is the upper surface between the middle and right hexagonal holes where
the surface traction of 100 N/cm2 is applied as shown in Figure 7–21(d). In

the computer program this surface changes to the color red as selected by the

user (Figure 7–21(c)).

Step 5 In step 5 we choose the material properties. Here ASTM A-514 steel has
been selected, as this is quenched and tempered steel with high yield
strength and will allow for the thickness to be minimized.

Step 6 In step six we select the element type for the kind of analysis to be
performed. Here we select the plane stress element, as this is a good
approximation to the kind of behavior that is produced in a plane stress
analysis. For the plane stress element a thickness is required. An initial
guess of 1 cm is made. This thickness appears to be compatible with the
other dimensions of the wrench.

Step 7 The seventh step is an optional check of the model. If you choose to
perform this step you will see the boundary conditions now appear as
triangles at the left nodes corresponding to the @ signs for full fixity and
the surface traction arrows, indicating the location and direction of the
surface traction shown also in Figure 7–21(d).

Step 8 In step 8 we perform the stress analysis of the model.

Step 9 In step 9 we select the results, such as the displacement plot, the principal
stress plot, and the von Mises stress plot. The von Mises stress plot is used
to determine the failure of the wrench based on the maximum distortion
energy theory as described in Section 6.5. The von Mises stress plot is
shown in Figure 7–21(e). The maximum von Mises stress indicated in
Figure 7–21(e) is 502 MPa, and the yield strength of the ASTM A-514 steel
is 690 MPa. Therefore, the wrench is safe from yielding. Additional trials
can be made if the factor of safety is satisfied and if the maximum
deflection appears to be satisfactory.

Figure 7–22(a) shows a finite element model of a steel connecting rod that is
fixed on its left edge and loading around the right inner edge of the hole with a total
force of 3000 lb. For more details, including the geometry of this rod, see
Figure P7–15 at the end of this chapter. Figure 7–22(b) shows the resulting maximum
principal stress. The largest principal stress of 12,051 psi occurs at the top and bottom
inside edges of the hole.

Figure 7–23 shows a finite element model along with the von Mises stress plot
of an overload protection device (see Problem 7.33 for details of this problem).
The upper member of the device was modeled. Node S at the shear pin location was
constrained from vertical motion, five nodes along the left side of pin hole B were con-
strained in both the horizontal and vertical directions, and all nodes at the pin hole
at A were constrained in the vertical direction. A load of 700 N was spread over the
three lowest nodes at the inner side of the right section hanging down near point E
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B

S A

E

Figure 7–23 von Mises stress plot of overload protection device (See the full-color
insert for a color version of this figure.)

Figure 7–22 (a) Connecting rod subjected to tensile loading and (b) resulting
principal stress throughout the rod
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to simulate the load to fail the pin at S in shear at a stress of 40 MPa. The largest von
Mises stress of 201 MPa occurs at the inner edge of the cutout section for a device
with thickness of 12 mm.

Figure 7–24 shows the shrink plot of a finite element analysis of a tapered plate
with a hole in it, subjected to tensile loading along the right edge. The left edge was
fixed. For details of this problem see Problem 7.26. The shrink plot separates the ele-
ments for a clear look at the model. The largest principal stress of 6.29 MPa occurs
at the edge of the hole, whereas the second largest principal stress of 5.67 MPa
occurs at the elbow between the smallest cross section and where the taper begins.

Figure 7–25 shows the plot of the minimum principal stresses in a dam subjected
to hydrostatic and self weight loading. The minimum principal stress of 1.86 MPa
occurs at the inside edge. For more details of this problem see Problem 7.27.

Finally, Figure 7–26(a) shows a finite element model and the von Mises stress
plot for a beam welded to a column by top and bottom fillet welds. A surface contact
between the beam and column was used that allowed the beam and column to sepa-
rate wherever tension existed along the surfaces in contact. The beam is 70 mm thick
by 120 mm deep by 200 mm long with a load of 10 kN applied vertically 160 mm
from the left end of the beam and at 60 mm down from the top edge of the beam.

Figure 7–24 Shrink fit plot of principal stresses in a tapered plate with hole
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The material is steel with E ¼ 205 GPa and n ¼ 0:25 for all material. The weld leg size
is 6 mm.

After mesh refinement around the top weld to double the number of elements in
the weld, the maximum von Mises stress was determined to be 87.3 MPa at the toe of
the top weld as seen best in the zoomed-in Figure 7–26(b). This value compares rea-
sonably well with that obtained by the classical method shown on pages 458–460 of
Reference [30] where a value of 94 MPa was obtained.
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Figure 7–26 (a) von Mises stress plot of beam welded to column (largest von Mises
stress of 87.3 MPa is located at toe of top fillet weld as shown by (b) zoomed-in view
of top fillet weld (notice also that a surface contact was used between the beam and
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(See the full-color insert for a color version of this figure.)
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d Problems

7.1 For the finite element mesh shown in Figure P7–1, comment on the appropriateness
of the mesh. Indicate the mistakes in the model. Explain and show how to correct
them.

7.2 Comment on the mesh sizing in Figure P7–2. Is it reasonable? If not, explain why not.

7.3 What happens if the material property n ¼ 0:5 in the plane strain case? Is this possi-
ble? Explain.

7.4 Under what conditions is the structure in Figure P7–4 a plane strain problem? Under
what conditions is the structure a plane stress problem?

7.5 When do problems occur using the smoothing (averaging of stress at the nodes from
elements connected to the node) method for obtaining stress results?

Figure P7–1

Figure P7–2
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7.6 What thickness do you think is used in computer programs for plane strain problems?

7.7 Which one of the CST models shown in Figure P7–7 is expected to give the best re-
sults for a cantilever beam subjected to an end shear load? Why?

7.8 Show that Eq. (7.5.13) is obtained by static condensation of Eq. (7.5.12).

7.9 In considering the patch test, answer the following questions:
a. Can elements of different mechanical properties be used? Why?
b. Can the patch be arbitrary in shape? Why?
c. Can we mix triangular and quadrilateral elements in the patch test?
d. Can we mix bar elements with triangular or quadrilateral elements? Why?
e. When should the patch test be applied?

7.10 Consider the bar with two elements shown in Figure P7.10. Perform a patch test using
these two elements. Let E ¼ 200 GPa, and A ¼ 1� 10�4 m2. Use the standard bar
element stiffness matrix (Eq. (3.1.14)) derived using the shape functions N1ðxÞ ¼ x=L

and N2ðxÞ ¼ 1� x=L.

a. For the rigid body motion test, set u1 ¼ 1 m and u3 ¼ 1 m and verify that u2 ¼ 1 m
by using the direct stiffness method.

Figure P7–4

6 @ 2'' = 12''

4 @ 1'' = 4 in.

(a) (b)

12 @ 1'' = 12''

4 in.

6''

6 @ 2'' = 4 in.3

6''

(c)

6'' 6''

2 in.

2 in.

(d)

Figure P7–7
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b. For the constant strain test, assume linear displacement function uðxÞ ¼ x for
the nodes at the boundaries, such that u1 ¼ 0 and u3 ¼ 2 m, and verify that
u2 ¼ 0:6 m.

Solve the following problems using a computer program. In some of these problems, we

suggest that students be assigned separate parts (or models) to facilitate parametric

studies.

7.11 Consider the rectangular plate shown (Figure P7–11) in plane stress. Using a com-
puter program, verify that the plane stress element of the code satisfied the patch test.
That is, apply constant displacement of u ¼ 0:005 m to the right-side nodes, 3, 6, and
9, and determine the displacement at interior node 5. Use E ¼ 200 GPa, v ¼ 0:3, and
plate thickness of 0.1 m. Explain your results.

7.12 Determine the free-end displacements and the element stresses for the plate discretized
into four triangular elements and subjected to the tensile forces shown in Figure P7–12.
Compare your results to the solution given in Section 6.5. Why are these results dif-
ferent? Let E ¼ 30� 106 psi, n ¼ 0:30, and t ¼ 1 in.

1 1 22 3

1.4 m0.6 m
Figure P7–10

(0.5, 0) (1, 0)

987

1 2 3

4
5

6
(1, 0.5)

x

y

u = 0.005 m

(0.5, 1) (1, 1)(0, 1)

(0.3, 0.3)

(0, 0.5)

Figure P7–11

Figure P7–12
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7.13 Determine the stresses in the plate with the hole subjected to the tensile stress shown in
Figure P7–13. Graph the stress variation sx versus the distance y from the hole. Let
E ¼ 200 GPa, n ¼ 0:25, and t ¼ 25 mm. (Use approximately 25, 50, 75, 100, and then
120 nodes in your finite element model.) Use symmetry as appropriate.

7.14 Solve the following problem of a steel tensile plate with a concentrated load applied at
the top, as shown in Figure P7–14. Determine at what depth the effect of the load dies
out. Plot stress sy versus distance from the load. At distances of 1 in., 2 in., 4 in., 6 in.,
10 in., 15 in., 20 in., and 30 in. from the load, list sy versus these distances. Let the

Figure P7–13

Figure P7–14
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width of the plate be b ¼ 4 in., thickness of the plate be t ¼ 0:25 in., and length be
L ¼ 40 in. Look up the concept of St. Venant’s principle to see how it explains the
stress behavior in this problem.

7.15 For the connecting rod shown in Figure P7–15, determine the maximum principal
stresses and their location. Let E ¼ 30� 106 psi, n ¼ 0:25, t ¼ 1 in., and P ¼ 1000 lb.

7.16 Determine the maximum principal stresses and their locations for the member with
fillet subjected to tensile forces shown in Figure P7–16. Let E ¼ 200 GPa and
n ¼ 0:25. Then let E ¼ 73 GPa and n ¼ 0:30. Let t ¼ 25 mm for both cases. Compare
your answers for the two cases.

7.17 Determine the stresses in the member with a re-entrant corner as shown in Figure P7–17.
At what location are the principal stresses largest? Let E ¼ 30� 106 psi and n ¼ 0:25.
Use plane strain conditions.

7.18 Determine the stresses in the soil mass subjected to the strip footing load shown
in Figure P7–18. Use a width of 2D and depth of D, where D is 3, 4, 6, 8, and 10 ft.

Figure P7–15

Figure P7–16
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Plot the maximum stress contours on your finite element model for each case. Com-
pare your results. Comment regarding your observations on modeling infinite media.
Let E ¼ 30;000 psi and n ¼ 0:30. Use plane strain conditions.

7.19 For the tooth implant subjected to loads shown in Figure P7–19, determine the max-
imum principal stresses. Let E ¼ 1:6� 106 psi and n ¼ 0:3 for the dental restorative
implant material (cross-hatched), and let E ¼ 1� 106 psi and n ¼ 0:35 for the bony
material. Let X ¼ 0:05 in., 0.1 in., 0.2 in., 0.3 in., and 0.5 in., where X represents the
various depths of the implant beneath the bony surface. Rectangular elements are
used in the finite element model shown in Figure P7–19. Assume the thickness of each
element to be t ¼ 0:25 in.

Figure P7–17 Figure P7–18

Figure P7–19
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7.20 Determine the middepth deflection at the free end and the maximum principal
stresses and their location for the beam subjected to the shear load variation shown
in Figure P7–20. Do this using 64 rectangular elements all of size 12 in. � 1

2 in.; then
all of size 6 in. � 1 in.; then all of size 3 in. � 2 in. Then use 60 rectangular elements
all of size 2.4 in.� 22

3 in.; then all of size 4.8 in. � 11
3 in. Compare the free-end de-

flections and the maximum principal stresses in each case to the exact solution. Let
E ¼ 30� 106 psi, n ¼ 0:3, and t ¼ 1 in. Comment on the accuracy of both displace-
ments and stresses.

7.21 Determine the stresses in the shear wall shown in Figure P7–21. At what location are
the principal stresses largest? Let E ¼ 21 GPa, n ¼ 0:25, twall ¼ 0:10 m, and tbeam ¼
0:20 m. Use 0.1 m radii at the re-entrant corners.

7.22 Determine the stresses in the plates with the round and square holes subjected to the
tensile stresses shown in Figure P7–22. Compare the largest principal stresses for each
plate. Let E ¼ 210 GPa, n ¼ 0:25, and t ¼ 5 mm.

Figure P7–20

Figure P7–21
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7.23 For the concrete overpass structure shown in Figure P7–23, determine the maximum
principal stresses and their locations. Assume plane strain conditions. Let E ¼ 3:0�
106 psi and n ¼ 0:30.

7.24 For the steel culvert shown in Figure P7–24 on the next page, determine the maxi-
mum principal stresses and their locations and the largest displacement and its loca-
tion. Let Esteel ¼ 210 GPa and let n ¼ 0:30.

7.25 For the tensile member shown in Figure P7–25 on the next page with two holes, de-
termine the maximum principal stresses and their locations. Let E ¼ 210 GPa,
n ¼ 0:25, and t ¼ 10 mm. Then let E ¼ 70 GPa and n ¼ 0:30. Compare your results.
Use 20 kN spread uniformly over the right side.

7.26 For the plate shown in Figure P7–26 on the next page, determine the maximum
principal stresses and their locations. Let E ¼ 210 GPa and n ¼ 0:25.

1 mm rad. 
each corner

Figure P7–22

Figure P7–23
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7 kN/m

0.25 m

3 m

3 m

Figure P7–24

l m

0.3 m 0.3 m0.4 m 0.75 m

20 kN

t = 10 mm75-mm radius

Figure P7–25

Figure P7–26
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7.27 For the concrete dam shown subjected to water pressure in Figure P7–27, determine
the principal stresses. Let E ¼ 3:5� 106 psi and n ¼ 0:15. Assume plane strain con-
ditions. Perform the analysis for self-weight and then for hydrostatic (water) pressure
against the dam vertical face as shown.

7.28 Determine the stresses in the wrench shown in Figure P7–28 on the next page. Let
E ¼ 200 GPa and n ¼ 0:25, and assume uniform thickness t ¼ 10 mm.

7.29 Determine the principal stresses in the blade implant and the bony material shown in
Figure P7–29 on page 431. Let Eblade ¼ 20 GPa, nblade ¼ 0:30, Ebone ¼ 12 GPa, and
nbone ¼ 0:35. Assume plane stress conditions with t ¼ 5 mm.

7.30 Determine the stresses in the plate shown in Figure P7–30 on page 431. Let E ¼ 210
GPa and n ¼ 0:25. The element thickness is 10 mm.

7.31 For the 0.5 in. thick canopy hook shown in Figure P7–31 on page 432, used to hold
down an aircraft canopy, determine the maximum von Mises stress and maximum
deflection. The hook is subjected to a concentrated upward load of 22,400 lb as
shown. Assume boundary conditions of fixed supports over the lower half of the inside
hole diameter. The hook is made from AISI 4130 steel, quenched and tempered at
400�F. (This problem is compliments of Mr. Steven Miller.)

Figure P7–27
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7.32 For the 1
4 in. thick L-shaped steel bracket shown in Figure P7–32 on page 432, show

that the stress at the 90� re-entrant corner never converges. Try models with increasing
numbers of elements to show this while plotting the maximum principal stress in the
bracket. That is, start with one model, then refine the mesh around the re-entrant
corner and see what happens, say, after two refinements. Why? Then add a fillet, say,
of radius 1

2 in. and see what happens as you refine the mesh. Again plot the maximum
principal stress for each refinement.

Use a computer program to help solve the design-type problems, 7.33 through 7.39.

7.33 The machine shown in Figure P7–33 on page 433 is an overload protection device
that releases the load when the shear pin S fails. Determine the maximum von Mises
stress in the upper part ABE if the pin shears when its shear stress is 40 MPa. Assume
the upper part to have a uniform thickness of 6 mm. Assume plane stress conditions

Figure P7–28
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for the upper part. The part is made of 6061 aluminum alloy. Is the thickness sufficient
to prevent failure based on the maximum distortion energy theory? If not, suggest a
better thickness. (Scale all dimensions as needed.)

7.34 The steel triangular plate 1
4 in. thick shown in Figure P7–34 on page 433 is bolted to

a steel column with 3
4-in.-diameter bolts in the pattern shown. Assuming the column

and bolts are very rigid relative to the plate and neglecting friction forces between
the column and plate, determine the highest load exerted on any bolt. The bolts
should not be included in the model, just fix the nodes around the bolt circles and
consider the reactions at these nodes as the bolt loads. If 3

4-in.-diameter bolts are not
sufficient, recommend another standard diameter. Assume a standard material for
the bolts. Compare the reactions from the finite element results to those found by
classical methods.

0.1 mm rad.
(typ.)

Figure P7–29

Figure P7–30
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Z

YX

3.25''

0.75"

R0.50''

R0.10''

22,400 lb

2.00"

0.63''

0.63''

Figure P7–31

P = 500 lb

2 in.

2 in.

12 in.

12 in.

Figure P7–32
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7.35 A 1
4 in. thick machine part supports an end load of 1000 lb as shown in Figure P7–35.

Determine the stress concentration factors for the two changes in geometry located at
the radii shown on the lower side of the part. Compare the stresses you get to classical
beam theory results with and without the change in geometry, that is, with a uniform
depth of 1 in. instead of the additional material depth of 1.5 in. Assume standard
mild steel is used for the part. Recommend any changes you might make in the
geometry.

Figure P7–34

Figure P7–33

Figure P7–35
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7.36 A plate with an off-center hole is shown in Figure P7–36. Determine how close to the
top edge the hole can be placed before yielding of the A36 steel occurs (based on the
maximum distortion energy theory). The applied tensile stress is 10,000 psi, and
the plate thickness is 1

4 in. Now if the plate is made of 6061-T6 aluminum alloy with a
yield strength of 37 ksi, does this change your answer? If the plate thickness is changed
to 1

2 in., how does this change the results? Use same total load as when the plate is 1
4 in.

thick.

7.37 One arm of a crimper tool shown in Figure P7–37 is to be designed of 1080 as-rolled
steel. The loads and boundary conditions are shown in the figure. Select a thickness

Figure P7–36

R0.6000

R0.1409(a) Crimper arm with dimensions (inches)

R0.1409

8.0000

0.6000

3.6541

E = 60 lb

B = 541 lb

A = 312.5 lb

D = 279 lb

C = 161 lb

5.8 in.

Y

X

(b) Crimper arm loads and boundary conditions

Figure P7–37
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for the arm based on the material not yielding with a factor of safety of 1.5. Recom-
mend any other changes in the design. (Scale any other dimensions that you need.)
Remember stresses at concentrated loads are false.

7.38 Design the bicycle wrench with the approximate dimensions shown in Figure P7–38.
If you need to change dimensions explain why. The wrench should be made of steel or
aluminum alloy. Determine the thickness needed based on the maximum distortion
energy theory. Plot the deformed shape of the wrench and the principal stress and von
Mises stress. The boundary conditions are shown in the figure, and the loading is
shown as a distributed load acting over the right part of the wrench. Use a factor of
safety of 1.5 against yielding. Round each corner with a 0.1 cm radius.

7.39 For the various parts shown in Figure P7–39 on the next page determine the best one
to relieve stress. Make the original part have a small radius of 0.1 in. at the inside re-
entrant corners. Place a uniform pressure load of 1000 psi on the right end of each part
and fix the left end. All units shown are taken in inches. Let the material be A36 steel.

4 cm

1 cm

Fixed all the way around this hexagon.

1 cm

R = 1.50 cm

2.0 cm

The sides of the middle 
hexagon are 9 mm long.

The sides of the corner 
hexagons are 7 mm long.

0.1 cm rad. (typ.)

0.1 cm rad. (typ.)

100 N/cm

Figure P7–38
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3.0
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1.0

1.0

(b) Taper

3.0

3.0 3.0

1.0

1.0
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3.0

3.0 3.0

1.0
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8

1.0 3.0

1.0
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3.0 3.0
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3/8
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R = 0.1

in. rad.1
16 

in. rad.1
16 

in. rad.1
8
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Figure P7–39
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DEVELOPMENT OF

THE LINEAR-STRAIN

TRIANGLE EQUATIONSd

CHAPTER OBJECTIVES

. To develop the linear-strain triangular (LST) element stiffness matrix.

. To describe how the LST stiffness matrix can be determined.

. To compare the difference in results using the CST and LST elements.

Introduction

In this chapter, we consider the development of the stiffness matrix and equations for
a higher-order triangular element, called the linear-strain triangle (LST). This element
is available in many commercial computer programs and has some advantages over
the constant-strain triangle described in Chapter 6.

The LST element has six nodes and twelve unknown displacement degrees of
freedom. The displacement functions for the element are quadratic instead of linear
(as in the CST).

The procedures for development of the equations for the LST element follow the
same steps as those used in Chapter 6 for the CST element. However, the number of equa-
tions now becomes twelve instead of six, making a longhand solution extremely cumber-
some. Hence, we will use a computer to perform many of the mathematical operations.

After deriving the element equations, we will compare results from problems
solved using the LST element with those solved using the CST element. The introduc-
tion of the higher-order LST element will illustrate the possible advantages of higher-
order elements and should enhance your general understanding of the concepts
involved with finite element procedures.

d 8.1 Derivation of the Linear-Strain Triangular
Element Stiffness Matrix and Equations

d

We will now derive the LST stiffness matrix and element equations. The steps used here
are identical to those used for the CST element, and much of the notation is the same.
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Step 1 Select Element Type

Consider the triangular element shown in Figure 8–1 with the usual end nodes and
three additional nodes conveniently located at the midpoints of the sides. Thus, a
computer program can automatically compute the midpoint coordinates once the
coordinates of the corner nodes are given as input.

The unknown nodal displacements are now given by

fdg ¼

fd1g
fd2g
fd3g
fd4g
fd5g
fd6g

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð8:1:1Þ

Step 2 Select a Displacement Function

We now select a quadratic displacement function in each element as

uðx; yÞ ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2

vðx; yÞ ¼ a7 þ a8xþ a9yþ a10x2 þ a11xyþ a12y2
ð8:1:2Þ

Again, the number of coefficients aið12Þ equals the total number of degrees of freedom
for the element. The displacement compatibility among adjoining elements is satisfied
because three nodes are located along each side and a parabola is defined by three
points on its path. Since adjacent elements are connected at common nodes, their dis-
placement compatibility across the boundaries will be maintained.

In general, when considering triangular elements, we can use a complete polyno-
mial in Cartesian coordinates to describe the displacement field within an element.

x, u

Figure 8–1 Basic six-node triangular element showing degrees of freedom
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Using internal nodes as necessary for the higher-order cubic and quartic elements, we
use all terms of a truncated Pascal triangle in the displacement field or, equivalently,
the shape functions, as shown by Figure 8–2; that is, a complete linear function is
used for the CST element considered previously in Chapter 6. The complete quadratic
function is used for the LST of this chapter. The complete cubic function is used for
the quadratic-strain triangle (QST), with an internal node necessary as the tenth node.

The general displacement functions, Eqs. (8.1.2), expressed in matrix form
are now

fcg¼ u

v

� �
¼ 1 x y x2 xy y2 0 0 0 0 0 0

0 0 0 0 0 0 1 x y x2 xy y2

� � a1

a2

..

.

a12

8>>><
>>>:

9>>>=
>>>;

ð8:1:3Þ

Alternatively, we can express Eq. (8.1.3) as

fcg ¼ ½M ��fag ð8:1:4Þ

where ½M �� is defined to be the first matrix on the right side of Eq. (8.1.3). The coefficients
a1 through a12 can be obtained by substituting the coordinates into u and v as follows:
8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

u1

u2

..

.

u6

v1

..

.

v5

v6

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼

2
666666666666664

1 x1 y1 x2
1 x1y1 y2

1 0 0 0 0 0 0

1 x2 y2 x2
2 x2y2 y2

2 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 x6 y6 x2
6 x6y6 y2

6 0 0 0 0 0 0

0 0 0 0 0 0 1 x1 y1 x2
1 x1y1 y2

1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 0 0 1 x5 y5 x2
5 x5y5 y2

5

0 0 0 0 0 0 1 x6 y6 x2
6 x6y6 y2

6

3
777777777777775

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

a1

a2

..

.

a6

a7

..

.

a11

a12

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð8:1:5Þ

1

3

6

10

Figure 8–2 Relation between type of plane triangular element and polynomial
coefficients based on a Pascal triangle
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Solving for the ai’s, we have

a1

..

.

a6

a7

..

.

a12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1 x1 y1 x2
1 x1y1 y2

1 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 x6 y6 x2
6 x6y6 y2

6 0 0 0 0 0 0

0 0 0 0 0 0 1 x1 y1 x2
1 x1y1 y2

1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 0 0 1 x6 y6 x2
6 x6y6 y2

6

2
66666666664

3
77777777775

�1

u1

..

.

u6

v1

..

.

v6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
ð8:1:6Þ

or, alternatively, we can express Eq. (8.1.6) as

fag ¼ ½X ��1fdg ð8:1:7Þ

where ½X � is the 12� 12 matrix on the right side of Eq. (8.1.6). It is best to invert the ½X �
matrix by using a digital computer. Then the ai’s, in terms of nodal displacements, are
substituted into Eq. (8.1.4). Note that only the 6� 6 part of ½X � in Eq. (8.1.6) really
must be inverted. Finally, using Eq. (8.1.7) in Eq. (8.1.4), we can obtain the general dis-
placement expressions in terms of the shape functions and the nodal degrees of freedom as

fcg ¼ ½N�fdg ð8:1:8Þ

½N� ¼ ½M ��½X ��1 ð8:1:9Þwhere

Step 3 Define the Strain–Displacement and Stress–Strain
Relationships

The element strains are again given by

feg ¼
ex

ey

gxy

8><
>:

9>=
>; ¼

qu

qx

qv

qy

qv

qx
þ qu

qy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð8:1:10Þ

or, using Eq. (8.1.3) for u and v in Eq. (8.1.10), we obtain the strain-generalized dis-
placement equations as

feg ¼
0 1 0 2x y 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 x 2y

0 0 1 0 x 2y 0 1 0 2x y 0

2
4

3
5

a1

a2

..

.

a12

8>>><
>>>:

9>>>=
>>>;

ð8:1:11Þ

We observe that Eq. (8.1.11) yields a linear strain variation in the element. Therefore,
the element is called a linear-strain triangle (LST). Rewriting Eq. (8.1.11), we have

feg ¼ ½M 0�fag ð8:1:12Þ
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where ½M 0� is the first matrix on the right side of Eq. (8.1.11). Substituting Eq. (8.1.6)
for the ai’s into Eq. (8.1.12), we have feg in terms of the nodal displacements as

feg ¼ ½B�fdg ð8:1:13Þ

where ½B� is a function of the variables x and y and the coordinates ðx1; y1Þ through
ðx6; y6Þ given by

½B� ¼ ½M 0�½X ��1 ð8:1:14Þ

where Eq. (8.1.7) has been used in expressing Eq. (8.1.14). Note that ½B� is now a
matrix of order 3� 12.

The stresses are again given by

sx

sy

txy

( )
¼ ½D�

ex

ey

gxy

( )
¼ ½D�½B�fdg ð8:1:15Þ

where ½D� is given by Eq. (6.1.8) for plane stress or by Eq. (6.1.10) for plane strain.
These stresses are now linear functions of x and y coordinates.

Step 4 Derive the Element Stiffness Matrix and Equations

We determine the stiffness matrix in a manner similar to that used in Section 6.2 by
using Eq. (6.2.50) repeated here as

½k� ¼
ððð

V

½B�T ½D�½B� dV ð8:1:16Þ

However, the ½B� matrix is now a function of x and y as given by Eq. (8.1.14). There-
fore, we must perform the integration in Eq. (8.1.16). Finally, the ½B� matrix is of the
form

½B� ¼ 1

2A

2
64

b1 0 b2 0 b3 0 b4 0 b5 0 b6 0

0 g1 0 g2 0 g3 0 g4 0 g5 0 g6

g1 b1 g2 b2 g3 b3 g4 b4 g5 b5 g6 b6

3
75 ð8:1:17Þ

where the b’s and g’s are now functions of x and y as well as of the nodal coordinates,
as is illustrated for a specific linear-strain triangle in Section 8.2 by Eq. (8.2.8).
The stiffness matrix is then seen to be a 12� 12 matrix on multiplying the matrices
in Eq. (8.1.16). The stiffness matrix, Eq. (8.1.16), is very cumbersome to obtain in
explicit form, so it will not be given here. However, if the origin of the coordinates is con-
sidered to be at the centroid of the element, the integrations become amenable [9].
Alternatively, area coordinates [3, 8, 9] can be used to obtain an explicit form of the
stiffness matrix. However, even the use of area coordinates usually involves
tedious calculations. Therefore, the integration is best carried out numerically.
(Numerical integration is described in Section 10.3.)
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The element body forces and surface forces should not be automatically lumped
at the nodes, but for a consistent formulation (one that is formulated from the same
shape functions used to formulate the stiffness matrix), Eqs. (6.3.1) and (6.3.7), respec-
tively, should be used. (Problems 8.3 and 8.4 illustrate this concept.) These forces can
be added to any concentrated nodal forces to obtain the element force matrix. Here
the element force matrix is of order 12� 1 because, in general, there could be an x

and a y component of force at each of the six nodes associated with the element. The
element equations are then given by

f1x

f1y

..

.

f6y

8>>>><
>>>>:

9>>>>=
>>>>;

ð12� 1Þ

¼

2
66664

k11 . . . k1;12

k21 k2;12

..

. ..
.

k12;1 . . . k12;12

3
77775

ð12� 12Þ

u1

v1

..

.

v6

8>>><
>>>:

9>>>=
>>>;

ð12� 1Þ

ð8:1:18Þ

Steps 5 through 7

Steps 5 through 7, which involve assembling the global stiffness matrix and equations,
determining the unknown global nodal displacements, and calculating the stresses, are
identical to those in Section 6.2 for the CST. However, instead of constant stresses in
each element, we now have a linear variation of the stresses in each element. Common
practice was to use the centroidal element stresses. Current practice is to use the
average of the nodal element stresses.

d 8.2 Example LST Stiffness Determination d
To illustrate some of the procedures outlined in Section 8.1 for deriving an LST
stiffness matrix, consider the following example. Figure 8–3 shows a specific LST
and its coordinates. The triangle is of base dimension b and height h, with midside
nodes.

(b, 0)

Figure 8–3 LST triangle for evaluation of
a stiffness matrix
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Using the first six equations of Eq. (8.1.5), we calculate the coefficients a1

through a6 by evaluating the displacement u at each of the six known coordinates of
each node as follows:

u1 ¼ uð0; 0Þ ¼ a1

u2 ¼ uðb; 0Þ ¼ a1 þ a2bþ a4b2

u3 ¼ uð0; hÞ ¼ a1 þ a3hþ a6h2

u4 ¼ u
b

2
;

h

2

� �
¼ a1 þ a2

b

2
þ a3

h

2
þ a4

b

2

� �2

þ a5
bh

4
þ a6

h

2

� �2

ð8:2:1Þ

u5 ¼ u 0;
h

2

� �
¼ a1 þ a3

h

2
þ a6

h

2

� �2

u6 ¼ u
b

2
; 0

� �
¼ a1 þ a2

b

2
þ a4

b

2

� �2

Solving Eqs. (8.2.1) simultaneously for the ai’s, we obtain

a1 ¼ u1 a2 ¼
4u6 � 3u1 � u2

b
a3 ¼

4u5 � 3u1 � u3

h

a4 ¼
2ðu2 � 2u6 þ u1Þ

b2
a5 ¼

4ðu1 þ u4 � u5 � u6Þ
bh

ð8:2:2Þ

a6 ¼
2ðu3 � 2u5 þ u1Þ

h2

Substituting Eqs. (8.2.2) into the displacement expression for u from Eqs. (8.1.2), we
have

u ¼ u1 þ
4u6 � 3u1 � u2

b

� �
xþ 4u5 � 3u1 � u3

h

� �
yþ 2ðu2 � 2u6 þ u1Þ

b2

� �
x2

þ 4ðu1 þ u4 � u5 � u6Þ
bh

� �
xyþ 2ðu3 � 2u5 þ u1Þ

h2

� �
y2 ð8:2:3Þ

Similarly, solving for a7 through a12 by evaluating the displacement v at each of the
six nodes and then substituting the results into the expression for v from Eqs. (8.1.2),
we obtain

v ¼ v1 þ
4v6 � 3v1 � v2

b

� �
xþ 4v5 � 3v1 � v3

h

� �
yþ 2ðv2 � 2v6 þ v1Þ

b2

� �
x2

þ 4ðv1 þ v4 � v5 � v6Þ
bh

� �
xyþ 2ðv3 � 2v5 þ v1Þ

h2

� �
y2 ð8:2:4Þ
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Using Eqs. (8.2.3) and (8.2.4), we can express the general displacement expressions in
terms of the shape functions as

u

v

� �
¼ N1 0 N2 0 N3 0 N4 0 N5 0 N6 0

0 N1 0 N2 0 N3 0 N4 0 N5 0 N6

� � u1

v1

..

.

v6

8>>><
>>>:

9>>>=
>>>;
ð8:2:5Þ

where the shape functions are obtained by collecting coefficients that multiply each ui

term in Eq. (8.2.3). For instance, collecting all terms that multiply by u1 in Eq. (8.2.3),
we obtain N1. These shape functions are then given by

N1 ¼ 1� 3x

b
� 3y

h
þ 2x2

b2
þ 4xy

bh
þ 2y2

h2
N2 ¼

�x

b
þ 2x2

b2

N3 ¼
�y

h
þ 2y2

h2
N4 ¼

4xy

bh
N5 ¼

4y

h
� 4xy

bh
� 4y2

h2
ð8:2:6Þ

N6 ¼
4x

b
� 4x2

b2
� 4xy

bh

Using Eq. (8.2.5) in Eq. (8.1.10), and performing the differentiations indicated on u

and v, we obtain
feg ¼ ½B�fdg ð8:2:7Þ

where ½B� is of the form of Eq. (8.1.17), with the resulting b’s and g’s in Eq. (8.1.17)
given by

b1 ¼ �3hþ 4hx

b
þ 4y b2 ¼ �hþ 4hx

b
b3 ¼ 0

b4 ¼ 4y b5 ¼ �4y b6 ¼ 4h� 8hx

b
� 4y

g1 ¼ �3bþ 4xþ 4by

h
g2 ¼ 0 g3 ¼ �bþ 4by

h

g4 ¼ 4x g5 ¼ 4b� 4x� 8by

h
g6 ¼ �4x

ð8:2:8Þ

These b’s and g’s are specific to the element in Figure 8–3. Specifically, using Eqs.
(8.1.1) and (8.1.17) in Eq. (8.2.7), we obtain

ex ¼
1

2A
½b1u1 þ b2u2 þ b3u3 þ b4u4 þ b5u5 þ b6u6�

ey ¼
1

2A
½g1v1 þ g2v2 þ g3v3 þ g4v4 þ g5v5 þ g6v6�

gxy ¼
1

2A
½g1u1 þ b1v1 þ � � � þ b6v6�

ð8:2:9Þ

The stiffness matrix for a constant-thickness element can now be obtained on
substituting Eqs. (8.2.8) into Eq. (8.1.17) to obtain ½B�, then substituting ½B� into
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Eq. (8.1.16) and using calculus to set up the appropriate integration. The explicit ex-
pression for the 12� 12 stiffness matrix, being extremely cumbersome to obtain, is
not given here. Stiffness matrix expressions for higher-order elements are found in
References [1] and [2].

d 8.3 Comparison of Elements d
For a given number of nodes, a better representation of true stress and displacement is
generally obtained using the LST element than is obtained with the same number of
nodes using a much finer subdivision into simple CST elements. For example, using
one LST yields better results than using four CST elements with the same number of
nodes (Figure 8–4) and hence the same number of degrees of freedom (except for the
case when constant stress exists).

We now present results to compare the CST of Chapter 6 with the LST of this
chapter. Consider the cantilever beam subjected to a parabolic load variation acting
as shown in Figure 8–5. Let E ¼ 30� 106 psi, n ¼ 0:25, and t ¼ 1:0 in.

Table 8–1 lists the series of tests run to compare results using the CST and LST
elements. Table 8–2 shows comparisons of free-end (tip) deflection and stress sx

for each element type used to model the cantilever beam. From Table 8–2, we can ob-
serve that the larger the number of degrees of freedom for a given type of triangular
element, the closer the solution converges to the exact one (compare run A-1 to run
A-2, and B-1 to B-2). For a given number of nodes, the LST analysis yields somewhat
better results for displacement than the CST analysis (compare run A-1 to run B-1).

Figure 8–4 Basic triangular element: (a) four-CST and (b) one-LST

Figure 8–5 Cantilever beam used to compare the CST and LST elements
with a 4� 16 mesh
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However, one of the reasons that the bending stress sx predicted by the LST
model B-1 compared to CST model A-1 is not as accurate is as follows. Recall that
the stress is calculated at the centroid of the element. We observe from the table that
the location of the bending stress is closer to the wall and closer to the top for the
CST model A-1 compared to the LST model B-1. As the classical bending stress is a
linear function with increasing positive linear stress from the neutral axis for the
downward applied load in this example, we expect the largest stress to be at the very
top of the beam. So the model A-1 with more and smaller elements (with eight ele-
ments through the beam depth) has its centroid closer to the top (at 0.75 in. from the
top) than model B-1 with few elements (two elements through the beam depth) with
centroidal stress located at 1.5 in. from the top. Similarly, comparing A-2 to B-2 we
observe the same trend in the results—displacement at the top end being more accu-
rately predicted by the LST model, but stresses being calculated at the centroid mak-
ing the A-2 model appear more accurate than the LST model due to the location
where the stress is reported.

Although the CST element is rather poor in modeling bending, we observe from
Table 8–2 that the element can be used to model a beam in bending if a sufficient
number of elements are used through the depth of the beam. In general, both LST
and CST analyses yield results good enough for most plane stress/strain problems,
provided a sufficient number of elements are used. In fact, most commercial programs
incorporate the use of CST and/or LST elements for plane stress/strain problems,

Table 8–1 Models used to compare CST and LST results for the cantilever beam
of Figure 8–5 using ANSYS computer program [10]

Series of Tests Run
Number
of Nodes

Number of Degrees
of Freedom, nd

Number of
Triangular Elements

A-1 4� 16 mesh 85 160 128 CST
A-2 8� 32 297 576 512 CST
B-1 2� 8 85 160 32 LST
B-2 4� 16 297 576 128 LST

Table 8–2 Comparison of CST and LST results for the cantilever beam of Figure 8–5

Run nd

Bandwidth1

nb

Tip Deflection
(in.) sx (ksi)

Location (in.),
x; y

A-1 160 14 �0.29555 67.236 2.250, 11.250
A-2 576 22 �0.33850 81.302 1.125, 11.630
B-1 160 18 �0.33470 58.885 4.500, 10.500
B-2 576 22 �0.35159 69.956 2.250, 11.250

Exact solution �0.36133 80.000 0, 12

1 Bandwidth is described in Appendix B.4.
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although these elements are used primarily as transition elements (usually during mesh
generation). The four-sided isoparametric plane stress/strain element is most fre-
quently used in commercial programs and is described in Chapter 10.

Also, recall that finite element displacements will always be less than (or equal
to) the exact ones, because finite element models are normally predicted to be stiffer
than the actual structures when the displacement formulation of the finite element
method is used. (The reason for the stiffer model was discussed in Sections 3.10 and
7.3. Proof of this assertion can be found in References [4–7].

Finally, Figure 8–6 (from Reference [8]) illustrates a comparison of CST and
LST models of a plate subjected to parabolically distributed edge loads. Figure 8–6
shows that the LST model converges to the exact solution for horizontal displacement
at point A faster than does the CST model. However, the CST model is quite accept-
able even for modest numbers of degrees of freedom. For example, a CST model
with 100 nodes (200 degrees of freedom) often yields nearly as accurate a solution as
does an LST model with the same number of degrees of freedom.

In conclusion, the results of Table 8–2 and Figure 8–6 indicate that the LST model
might be preferred over the CST model for plane stress applications when relatively
small numbers of nodes are used. However, the use of triangular elements of higher
order, such as the LST, is not visibly advantageous when large numbers of nodes are
used, particularly when the cost of formation of the element stiffnesses, equation band-
width, and overall complexities involved in the computer modeling are considered.

Figure 8–6 Plates subjected to parabolically distributed edge loads; comparison
of results for triangular elements. (Gallagher, Richard H., Finite Element Analysis:
Fundamentals, 1st, �c 1975. Printed and Electronically reproduced by permission of
Pearson Education, Inc., Upper Saddle River, New Jersey.)
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d Summary Equations

Displacement functions for linear-strain triangle (LST) element:

u ðx; yÞ ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2

v ðx; yÞ ¼ a1 þ a8xþ a9yþ a10x2 þ a11xyþ a12y2
ð8:1:2Þ

Shape function matrix:

½N� ¼ ½M��½X ��1 ð8:1:9Þ

where

½M�� ¼ 1 x y x2 xy y2 0 0 0 0 0 0
0 0 0 0 0 0 1 x y x2 xy y2

� �

and

½X ��1 ¼

1 x1 y1 x2
1 x1y1 y2

1 0 0 0 0 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

1 x6 y6 x2
6 x6y6 y2

6 0 0 0 0 0 0
0 0 0 0 0 0 1 x1 y1 x2

1 x1y1 y2
1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 0 0 1 x6 y6 x2
6 x6y6 y2

6

2
666666664

3
777777775

�1

Strain-generalized displacement equations:

feg ¼
0 1 0 2x y 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 x 2y

0 0 1 0 x 2y 0 1 0 2x y 0

2
4

3
5

a1

a2

..

.

a12

8>><
>>:

9>>=
>>; ð8:1:11Þ
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d Problems

8.1 Evaluate the shape functions given by Eq. (8.2.6). Sketch the variation of each func-
tion over the surface of the triangular element shown in Figure 8–3.

8.2 Express the strains ex; ey, and gxy for the element of Figure 8–3 by using the results
given in Section 8.2. Evaluate these strains at the centroid of the element; then evaluate
the stresses at the centroid in terms of E and n. Assume plane stress conditions apply.

8.3 For the element of Figure 8–3 (shown again as Figure P8–3) subjected to the uniform
pressure shown acting over the vertical side, determine the nodal force replacement
system using Eq. (6.3.7). Assume an element thickness of t.

8.4 For the element of Figure 8–3 (shown as Figure P8–4) subjected to the linearly vary-
ing line load shown acting over the vertical side, determine the nodal force replace-
ment system using Eq. (6.3.7). Compare this result to that of Problem 6.11. Are these
results expected? Explain.

Figure P8–4

Figure P8–3
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8.5 For the linear-strain elements shown in Figure P8–5, determine the strains ex; ey, and
gxy. Evaluate the stresses sx; sy, and txy at the centroids. The coordinates of the nodes
are shown in units of inches. Let E ¼ 30� 106 psi, n ¼ 0:25, and t ¼ 0:25 in. for both
elements. Assume plane stress conditions apply. The nodal displacements are given as

u1 ¼ 0:0 in: v1 ¼ 0:0 in:

u2 ¼ 0:001 in: v2 ¼ 0:002 in:

u3 ¼ 0:0005 in: v3 ¼ 0:0002 in:

u4 ¼ 0:0002 in: v4 ¼ 0:0001 in:

u5 ¼ 0:0 in: v5 ¼ 0:0001 in:

u6 ¼ 0:0005 in: v6 ¼ 0:001 in:

(Hint: Use the results of Section 8.2.)

8.6 For the linear-strain element shown in Figure P8–6, determine the strains ex; ey, and
gxy. Evaluate these strains at the centroid of the element; then evaluate the stresses
sx; sy, and txy at the centroid. The coordinates of the nodes are shown in units of
millimeters. Let E ¼ 210 GPa, n ¼ 0:25, and t ¼ 10 mm. Assume plane stress con-
ditions apply. Use the nodal displacements given in Problem 8.5 (converted to

Figure P8–5

Figure P8–6
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millimeters). Note that the b’s and g’s from the example in Section 8.2 cannot be used
here as the element in Figure P8–6 is oriented differently than the one in Figure 8–3.

8.7 Evaluate the shape functions for the linear-strain triangle shown in Figure P8–7. Then
evaluate the ½B� matrix. Units are millimeters.

8.8 Use the LST element to solve Example 6.2. Compare the results.

8.9 Write a computer program to solve plane stress problems using the LST element.

Figure P8–7
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AXISYMMETRIC ELEMENTSd

CHAPTER OBJECTIVES

. To review the basic concepts and theory of elasticity equations for axisymmetric
behavior.

. To drive the axisymmetric element stiffness matrix, body force, and surface traction
equations.

. To demonstrate the solution of an axisymmetric pressure vessel using the stiff-
ness method.

. To compare the finite element solution to an exact solution for a cylindrical pres-
sure vessel.

. To illustrate some practical applications of axisymmetric elements.

Introduction

In previous chapters, we have been concerned with line or one-dimensional elements
(Chapters 2 through 5) and two-dimensional elements (Chapters 6 through 8). In this
chapter, we consider a special two-dimensional element called the axisymmetric ele-

ment. This element is quite useful when symmetry with respect to geometry and load-
ing exists about an axis of the body being analyzed. Problems that involve soil masses
subjected to circular footing loads or thick-walled pressure vessels can often be ana-
lyzed using the element developed in this chapter.

We begin with the development of the stiffness matrix for the simplest axisym-
metric element, the triangular torus, whose vertical cross section is a plane triangle.

We then present the longhand solution of a thick-walled pressure vessel to illustrate
the use of the axisymmetric element equations. This is followed by a description of some
typical large-scale problems that have been modeled using the axisymmetric element.

d 9.1 Derivation of the Stiffness Matrix d
In this section, we will derive the stiffness matrix and the body and surface force ma-
trices for the axisymmetric element. However, before the development, we will first
present some fundamental concepts prerequisite to the understanding of the deriva-
tion. Axisymmetric elements are triangular tori such that each element is symmetric
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with respect to geometry and loading about an axis such as the z axis in Figure 9–1.
Hence, the z axis is called the axis of symmetry or the axis of revolution. Each vertical
cross section of the element is a plane triangle. The nodal points of an axisymmetric
triangular element describe circumferential lines, as indicated in Figure 9–1.

In plane stress problems, stresses exist only in the x-y plane. In axisymmetric
problems, the radial displacements develop circumferential strains that induce stresses
sr, sy, sz, and trz, where r, y, and z indicate the radial, circumferential, and longitudinal
directions, respectively. Triangular torus elements are often used to idealize the axisym-
metric system because they can be used to simulate complex surfaces and are simple to
work with. For instance, the axisymmetric problem of a semi-infinite half-space loaded
by a circular area (circular footing) shown in Figure 9–2(a), the domed pressure vessel
shown in Figure 9–2(b), and the engine valve stem shown in Figure 9–2(c) can be solved
using the axisymmetric element developed in this chapter.

Because of symmetry about the z axis, the stresses are independent of the y

coordinate. Therefore, all derivatives with respect to y vanish, and the displacement
component v (tangent to the y direction), the shear strains gry and gyz, and the shear
stresses try and tyz are all zero.

Figure 9–3 shows an axisymmetric ring element and its cross section to represent
the general state of strain for an axisymmetric problem. It is most convenient
to express the displacements of an element ABCD in the plane of a cross section
in cylindrical coordinates. We then let u and w denote the displacements in the radial
and longitudinal directions, respectively. The side AB of the element is displaced an
amount u, and side CD is then displaced an amount uþ ðqu=qrÞ dr in the radial direc-
tion. The normal strain in the radial direction is then given by

er ¼
qu

qr
ð9:1:1aÞ

In general, the strain in the tangential direction depends on the tangential displace-
ment v and on the radial displacement u. However, for axisymmetric deformation be-
havior, recall that the tangential displacement v is equal to zero. Hence, the tangential
strain is due only to the radial displacement. Having only radial displacement u, the
new length of the arc AB

_
is ðrþ uÞ dy, and the tangential strain is then given by

ey ¼
ðrþ uÞ dy� r dy

r dy
¼ u

r
ð9:1:1bÞ

Figure 9–1 Typical axisymmetric element ijm
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Figure 9–3 (a) Plane cross section of (b) axisymmetric element

(a) soil mass

(b) enclosed pressure vessel (c) engine valve stem

Figure 9–2 Examples of axisymmetric problems: (a) semi-infinite half-space (soil mass)
modeled by axisymmetric elements, (b) enclosed pressure vessel (Courtesy of Algor, Inc.)
(See the full-color insert for a color version of this figure.), and (c) an engine valve stem
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Next, we consider the longitudinal element BDEF to obtain the longitudinal strain
and the shear strain. In Figure 9–4, the element is shown to displace by amounts u

and w in the radial and longitudinal directions at point E, and to displace additional
amounts ðqw=qzÞ dz along line BE and ðqu=qrÞ dr along line EF. Furthermore, observ-
ing lines EF and BE, we see that point F moves upward an amount ðqw=qrÞ dr with re-
spect to point E and point B moves to the right an amount ðqu=qzÞ dz with respect to
point E. Again, from the basic definitions of normal and shear strain, we have the lon-
gitudinal normal strain given by

ez ¼
qw

qz
ð9:1:1cÞ

and the shear strain in the r-z plane given by

grz ¼
qu

qz
þ qw

qr
ð9:1:1dÞ

Summarizing the strain–displacement relationships of Eqs. (9.1.1a–d) in one equation
for easier reference, we have

er ¼
qu

qr
ey ¼

u

r
ez ¼

qw

qz
grz ¼

qu

qz
þ qw

qr
ð9:1:1eÞ

The isotropic stress–strain relationship, obtained by simplifying the general
stress–strain relationships given in Appendix C, is

sr

sz

sy

trz

8>>><
>>>:

9>>>=
>>>;
¼ E

ð1þ nÞð1� 2nÞ

1� n n n 0

n 1� n n 0

n n 1� n 0

0 0 0
1� 2n

2

2
66666664

3
77777775

er

ez

ey

grz

8>><
>>:

9>>=
>>;

ð9:1:2Þ

The theoretical development follows that of the plane stress–strain problem
given in Chapter 6.

Figure 9–4 Displacement and
rotations of lines of element in the r-z
plane
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Step 1 Select Element Type

An axisymmetric solid is shown discretized in Figure 9–5(a), along with a typical tri-
angular element. The element has three nodes with two degrees of freedom per node
(that is, ui, wi at node i ). The stresses in the axisymmetric problem are shown in
Figure 9–5(b).

Step 2 Select Displacement Functions

The element displacement functions are taken to be

uðr; zÞ ¼ a1 þ a2rþ a3z
ð9:1:3Þ

wðr; zÞ ¼ a4 þ a5rþ a6z

so that we have the same linear displacement functions as used in the plane stress,
constant-strain triangle. Again, the total number of ai’s (six) introduced in the dis-
placement functions is the same as the total number of degrees of freedom for the
element. The nodal displacements are

fdg ¼

8><
>:
fdig
fdjg
fdmg

9>=
>; ¼

ui

wi

uj

wj

um

wm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9:1:4Þ

and u evaluated at node i is

uðri; ziÞ ¼ ui ¼ a1 þ a2ri þ a3zi
ð9:1:5Þ

Figure 9–5 Discretized axisymmetric solid
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Using Eq. (9.1.3), the general displacement function is then expressed in matrix form as

fcg ¼ u

w

� �
¼ a1 þ a2rþ a3z

a4 þ a5rþ a6z

� �
¼ 1 r z 0 0 0

0 0 0 1 r z

� �
a1

a2

a3

a4

a5

a6

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9:1:6Þ

Substituting the coordinates of the nodal points shown in Figure 9–5(a) into
Eq. (9.1.6), we can solve for the ai’s in a manner similar to that in Section 6.2. The
resulting expressions are

a1

a2

a3

8<
:

9=
; ¼

2
64

1 ri zi

1 rj zj

1 rm zm

3
75
�1

ui

uj

um

8<
:

9=
; ð9:1:7Þ

a4

a5

a6

8<
:

9=
; ¼

2
64

1 ri zi

1 rj zj

1 rm zm

3
75
�1

wi

wj

wm

8<
:

9=
; ð9:1:8Þand

Performing the inversion operations in Eqs. (9.1.7) and (9.1.8), we have

a1

a2

a3

8<
:

9=
; ¼

1

2A

ai aj am

bi bj bm

gi gj gm

2
64

3
75

ui

uj

um

8<
:

9=
; ð9:1:9Þ

a4

a5

a6

8<
:

9=
; ¼

1

2A

ai aj am

bi bj bm

gi gj gm

2
64

3
75

wi

wj

wm

8<
:

9=
; ð9:1:10Þand

where

ai ¼ rjzm � zjrm aj ¼ rmzi � zmri am ¼ rizj � zirj

bi ¼ zj � zm bj ¼ zm � zi bm ¼ zi � zj ð9:1:11Þ

gi ¼ rm � rj gj ¼ ri � rm gm ¼ rj � ri

We define the shape functions, similar to Eqs. (6.2.18), as

Ni ¼
1

2A
ðai þ birþ gizÞ

Nj ¼
1

2A
ðaj þ bjrþ gjzÞ ð9:1:12Þ

Nm ¼
1

2A
ðam þ bmrþ gmzÞ
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Substituting Eqs. (9.1.7) and (9.1.8) into Eq. (9.1.6), along with the shape func-
tion Eqs. (9.1.12), we find that the general displacement function is

fcg ¼ uðr; zÞ
wðr; zÞ

� �
¼

Ni 0 Nj 0 Nm 0

0 Ni 0 Nj 0 Nm

� �
ui

wi

uj

wj

um

wm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9:1:13Þ

fcg ¼ ½N�fdg ð9:1:14Þor

Step 3 Define the Strain=Displacement and Stress=Strain
Relationships

When we use Eqs. (9.1.3) in (9.1.1e), the strains become

feg ¼

a2

a6

a1

r
þ a2 þ

a3z

r
a3 þ a5

8>>>><
>>>>:

9>>>>=
>>>>;

ð9:1:15Þ

Rewriting Eq. (9.1.15) with the ai’s as a separate column matrix, we have

er

ez

ey

grz

8>>><
>>>:

9>>>=
>>>;
¼

2
666666664

0 1 0 0 0 0

0 0 0 0 0 1

1

r
1

z

r
0 0 0

0 0 1 0 1 0

3
777777775

a1

a2

a3

a4

a5

a6

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9:1:16Þ

Substituting Eqs. (9.1.9) and (9.1.10) into Eq. (9.1.16) and simplifying, we obtain

feg ¼ 1

2A

2
6666664

bi 0 bj 0 bm 0

0 gi 0 gj 0 gm

ai

r
þ bi þ

giz

r
0

aj

r
þ bj þ

gjz

r
0

am

r
þ bm þ

gmz

r
0

gi bi gj bj gm bm

3
7777775

ui

wi

uj

wj

um

wm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð9:1:17Þ
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or, rewriting Eq. (9.1.17) in simplified matrix form,

feg ¼ ½½Bi� ½Bj� ½Bm��

ui

wi

uj

wj

um

wm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð9:1:18Þ

½Bi� ¼
1

2A

2
6666664

bi 0

0 gi

ai

r
þ bi þ

giz

r
0

gi bi

3
7777775

ð9:1:19Þwhere

Similarly, we obtain submatrices ½Bj� and ½Bm� by replacing the subscript i with j and
then with m in Eq. (9.1.19). Rewriting Eq. (9.1.18) in compact matrix form, we have

feg ¼ ½B�fdg ð9:1:20Þ

½B� ¼ ½½Bi� ½Bj� ½Bm�� ð9:1:21Þwhere

is called the gradient matrix.
Note that ½B� is a function of the r and z coordinates. Therefore, in general, the

strain ey will not be constant.
The stresses are given by

fsg ¼ ½D�½B�fdg ð9:1:22Þ

where ½D� is given by the first matrix on the right side of Eq. (9.1.2). (As mentioned in
Chapter 6, for n ¼ 0:5, a special formula must be used; see Reference [9].)

Step 4 Derive the Element Stiffness Matrix and Equations

The stiffness matrix is

½k� ¼
ððð

V

½B�T ½D�½B� dV ð9:1:23Þ

½k� ¼ 2p

ðð

A

½B�T ½D�½B�r dr dz ð9:1:24Þor

after integrating along the circumferential boundary. The ½B� matrix, Eq. (9.1.21), is a
function of r and z. Therefore, ½k� is a function of r and z and is of order 6� 6.
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We can evaluate Eq. (9.1.24) for ½k� by one of three methods:

1. Numerical integration (Gaussian quadrature) as discussed in
Chapter 10.

2. Explicit multiplication and term-by-term integration [1].
3. Evaluate ½B� for a centroidal point ðr; zÞ of the element

r ¼ r ¼ ri þ rj þ rm

3
z ¼ z ¼ zi þ zj þ zm

3
ð9:1:25Þ

and define ½Bðr; zÞ� ¼ ½B�. Therefore, as a first approximation,

½k� ¼ 2prA½B�T ½D�½B� ð9:1:26Þ

If the triangular subdivisions are consistent with the final stress distribution (that
is, small elements in regions of high stress gradients), then acceptable results can be
obtained by method 3.

Distributed Body Forces

Loads such as gravity (in the direction of the z axis) or centrifugal forces in rotating
machine parts (in the direction of the r axis) are considered to be body forces (as
shown in Figure 9–6). The body forces can be found by

f fbg ¼ 2p

ðð

A

½N�T Rb

Zb

� �
r dr dz ð9:1:27Þ

where Rb ¼ o2rr for a machine part moving with a constant angular velocity o about
the z axis, with material mass density r and radial coordinate r, and where Zb is the
body force per unit volume due to the force of gravity.

Considering the body force at node i, we have

f fbig ¼ 2p

ðð

A

½Ni�T
Rb

Zb

� �
r dr dz ð9:1:28Þ

½Ni�T ¼
Ni 0

0 Ni

� �
ð9:1:29Þwhere

Figure 9–6 Axisymmetric element with body
forces per unit volume
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Multiplying and integrating in Eq. (9.1.28), we obtain

f fbig ¼
2p

3

Rb

Zb

� �
Ar ð9:1:30Þ

where the origin of the coordinates has been taken as the centroid of the element, and
Rb is the radially directed body force per unit volume evaluated at the centroid of the
element. The body forces at nodes j and m are identical to those given by Eq. (9.1.30)
for node i. Hence, for an element, we have

f fbg ¼
2prA

3

8>>>>>>>><
>>>>>>>>:

Rb

Zb

Rb

Zb

Rb

Zb

9>>>>>>>>=
>>>>>>>>;

ð9:1:31Þ

Rb ¼ o2rr ð9:1:32Þwhere

Equation (9.1.31) is a first approximation to the radially directed body force
distribution.

Surface Forces

Surface forces can be found by

f fsg ¼
ðð

S

½Ns�TfTg dS ð9:1:33Þ

where again ½Ns� denotes the shape function matrix evaluated along the surface where
the surface traction acts.

For radial and axial pressures pr and pz, respectively, we have

f fsg ¼
ðð

S

½Ns�T
pr

pz

� �
dS ð9:1:34Þ

For example, along the vertical face jm of an element, let uniform loads pr and pz

be applied, as shown in Figure 9–7 along surface r ¼ rj. We can use Eq. (9.1.34)

Figure 9–7 Axisymmetric element with surface forces
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written for each node separately. For instance, for node j, substituting Nj from Eqs.
(9.1.12) into Eq. (9.1.34), we have

f fsjg ¼
ð zm

zj

1

2A

aj þ bjrþ gjz 0

0 aj þ bjrþ gjz

" #�����
pr

pz

( )
2prj dz ð9:1:35Þ

evaluated at r ¼ rj; z ¼ z

Performing the integration of Eq. (9.1.35) explicitly, along with similar evaluations for
fsi and fsm, we obtain the total distribution of surface force to nodes i, j, and m as

f fsg ¼
2prjðzm � zjÞ

2

8>>>>>>>><
>>>>>>>>:

0

0

pr

pz

pr

pz

9>>>>>>>>=
>>>>>>>>;

ð9:1:36Þ

Steps 5 through 7

Steps 5 through 7, which involve assembling the total stiffness matrix, total force ma-
trix, and total set of equations; solving for the nodal degrees of freedom; and calculat-
ing the element stresses, are analogous to those of Chapter 6 for the CST element, ex-
cept the stresses are not constant in each element. They are usually determined by one
of two methods that we use to determine the LST element stresses. Either we deter-
mine the centroidal element stresses, or we determine the nodal stresses for the ele-
ment and then average them. The latter method has been shown to be more accurate
in some cases [2].

Example 9.1

For the element of an axisymmetric body rotating with a constant angular velocity
o ¼ 100 rev/min as shown in Figure 9–8, evaluate the approximate body force
matrix. Include the weight of the material, where the weight density rw is 0.283 lb/in3.
The coordinates of the element (in inches) are shown in the figure.

We need to evaluate Eq. (9.1.31) to obtain the approximate body force matrix.
Therefore, the body forces per unit volume evaluated at the centroid of the element are

Zb ¼ 0:283 lb=in3

Figure 9–8 Axisymmetric element subjected to
angular velocity
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and by Eq. (9.1.32), we have

Rb ¼ o2rr ¼ 100
rev

min

� �
2p

rad

rev

	 

1 min

60 s

	 
� �2 ð0:283 lb=in3Þ
ð32:2� 12Þ in:=s2

ð2:333 in:Þ

Rb ¼ 0:187 lb=in3

2prA

3
¼ 2pð2:333Þð0:5Þ

3
¼ 2:44 in3

fb1r ¼ ð2:44Þð0:187Þ ¼ 0:457 lb

fb1z ¼ �ð2:44Þð0:283Þ ¼ �0:691 lb ðdownwardÞ

Because we are using the first approximation Eq. (9.1.31), all r-directed nodal
body forces are equal, and all z-directed body forces are equal. Therefore,

fb2r ¼ 0:457 lb fb2z ¼ �0:691 lb

fb3r ¼ 0:457 lb fb3z ¼ �0:691 lb 9

d 9.2 Solution of an Axisymmetric Pressure Vessel d
To illustrate the use of the equations developed in Section 9.1, we will now solve an
axisymmetric stress problem.

Example 9.2

For the long, thick-walled cylinder under internal pressure p equal to 1 psi shown in
Figure 9–9, determine the displacements and stresses.

Discretization

To illustrate the finite element solution for the cylinder, we first discretize the cylinder
into four triangular elements, as shown in Figure 9–10. A horizontal slice of the cylin-
der represents the total cylinder behavior. Because we are performing a longhand

Figure 9–9 Thick-walled cylinder subjected to internal
pressure
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solution, a coarse mesh of elements is used for simplicity’s sake (but without loss of
generality of the method). The governing global matrix equation is

F1r

F1z

F2r

F2z

F3r

F3z

F4r

F4z

F5r

F5z

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

¼ ½K �

u1

w1

u2

w2

u3

w3

u4

w4

u5

w5

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð9:2:1Þ

where the ½K � matrix is of order 10� 10.

Assemblage of the Stiffness Matrix

We assemble the ½K � matrix in the usual manner by superposition of the individual
element stiffness matrices. For simplicity’s sake, we will use the first approximation
method given by Eq. (9.1.26) to evaluate the element matrices. Therefore,

½k� ¼ 2prA½B�T ½D�½B� ð9:2:2Þ

For element 1 (Figure 9–11), the coordinates are ri ¼ 0:5, zi ¼ 0, rj ¼ 1:0, zj ¼ 0,
rm ¼ 0:75, and zm ¼ 0:25 (i ¼ 1; j ¼ 2, and m ¼ 5 for element 1) for the global-
coordinate axes as set up in Figure 9–10.

Figure 9–11 Element 1 of the discretized cylinder

Figure 9–10 Discretized cylinder slice

464 d 9 Axisymmetric Elements

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



We now evaluate ½B�, where ½B� is given by Eq. (9.1.19) evaluated at the centroid
of the element r ¼ r, z ¼ z, and expanded here as

½B� ¼ 1

2A

bi 0 bj 0 bm 0

0 gi 0 gj 0 gm

ai

r
þ bi þ

giz

r
0

aj

r
þ bj þ

gjz

r
0

am

r
þ bm þ

gmz

r
0

gi bi gj bj gm bm

2
6666664

3
7777775
ð9:2:3Þ

where, using element coordinates in Eqs. (9.1.11), we have

ai ¼ rjzm � zjrm ¼ ð1:0Þð0:25Þ � ð0:0Þð0:75Þ ¼ 0:25 in2

aj ¼ rmzi � zmri ¼ ð0:75Þð0Þ � ð0:25Þð0:5Þ ¼ �0:125 in2

am ¼ rizj � zirj ¼ ð0:5Þð0:0Þ � ð0Þð1:0Þ ¼ 0:0 in2

bi ¼ zj � zm ¼ 0:0� 0:25 ¼ �0:25 in:

bj ¼ zm � zi ¼ 0:25� 0 ¼ 0:25 in: ð9:2:4Þ

bm ¼ zi � zj ¼ 0:0� 0:0 ¼ 0:0 in:

gi ¼ rm � rj ¼ 0:75� 1:0 ¼ �0:25 in:

gj ¼ ri � rm ¼ 0:5� 0:75 ¼ �0:25 in:

gm ¼ rj � ri ¼ 1:0� 0:5 ¼ 0:5 in:

r ¼ 0:5þ 1

2
ð0:5Þ ¼ 0:75 in: z ¼ 1

3
ð0:25Þ ¼ 0:0833 in:

A ¼ 1

2
ð0:5Þð0:25Þ ¼ 0:0625 in2

and

Substituting the results from Eqs. (9.2.4) into Eq. (9.2.3), we obtain

½B� ¼ 1

0:125

�0:25 0 0:25 0 0 0

0 �0:25 0 �0:25 0 0:5

0:0556 0 0:0556 0 0:0556 0

�0:25 �0:25 �0:25 0:25 0:5 0

2
6664

3
7775

1

in:
ð9:2:5Þ

For the axisymmetric stress case, the matrix ½D� is given in Eq. (9.1.2) as

½D� ¼ E

ð1þ nÞð1� 2nÞ

1� n n n 0

n 1� n n 0

n n 1� n 0

0 0 0
1� 2n

2

2
666664

3
777775

ð9:2:6Þ
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With n ¼ 0:3 and E ¼ 30� 106 psi, we obtain

½D� ¼ 30ð106Þ
ð1þ 0:3Þ½1� 2ð0:3Þ�

1� 0:3 0:3 0:3 0

0:3 1� 0:3 0:3 0

0:3 0:3 1� 0:3 0

0 0 0
1� 2ð0:3Þ

2

2
666664

3
777775

ð9:2:7Þ

or, simplifying Eq. (9.2.7),

½D� ¼ 57:7ð106Þ

0:7 0:3 0:3 0

0:3 0:7 0:3 0

0:3 0:3 0:7 0

0 0 0 0:2

2
6664

3
7775psi ð9:2:8Þ

Using Eqs. (9.2.5) and (9.2.8), we obtain

½B�T ½D� ¼ 57:7ð106Þ
0:125

� 0:158 �0:0583 �0:0361 �0:05

�0:075 �0:175 �0:075 �0:05

0:192 0:0917 0:114 �0:05

�0:075 �0:175 �0:075 0:05

0:0167 0:0166 0:0388 0:1

0:15 0:35 0:15 0

2
666666664

3
777777775

ð9:2:9Þ

Substituting Eqs. (9.2.5) and (9.2.9) into Eq. (9.2.2), we obtain the stiffness matrix for
element 1 as

½kð1Þ� ¼ ð106Þ

i ¼ 1 j ¼ 2 m ¼ 5

54:46 29:45 �31:63 2:26 �29:37 �31:71

29:45 61:17 �11:33 33:98 �31:72 �95:15

�31:63 �11:33 72:59 �38:52 �20:31 49:84

2:26 33:98 �38:52 61:17 22:66 �95:15

�29:37 �31:72 �20:31 22:66 56:72 9:06

�31:71 �95:15 49:84 �95:15 9:06 190:31

2
666666664

3
777777775

lb

in:

ð9:2:10Þ

where the numbers above the columns indicate the nodal orders of degrees of freedom
in the element 1 stiffness matrix.
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For element 2 (Figure 9–12), the coordinates are ri ¼ 1:0, zi ¼ 0:0, rj ¼ 1:0,
zj ¼ 0:5, rm ¼ 0:75, and zm ¼ 0:25 (i ¼ 2, j ¼ 3, and m ¼ 5 for element 2). Therefore,

ai ¼ ð1:0Þð0:25Þ � ð0:5Þð0:75Þ ¼ �0:125 in2

aj ¼ ð0:75Þð0:0Þ � ð0:25Þð1:0Þ ¼ �0:25 in2 ð9:2:11Þ

am ¼ ð1:0Þð0:5Þ � ð0:0Þð1:0Þ ¼ 0:5 in2

bi ¼ 0:5� 0:25 ¼ 0:25 in: bj ¼ 0:25� 0:0 ¼ 0:25 in:

bm ¼ 0:0� 0:5 ¼ �0:5 in: gi ¼ 0:75� 1:0 ¼ �0:25 in:

gj ¼ 1:0� 0:75 ¼ 0:25 in: gm ¼ 1:0� 1:0 ¼ 0:0 in:

r ¼ 0:9167 in: z ¼ 0:25 in: A ¼ 0:0625 in2and

Using Eqs. (9.2.11) in Eq. (9.2.2) and proceeding as for element 1, we obtain the stiff-
ness matrix for element 2 as

½kð2Þ� ¼ ð106Þ

i ¼ 2 j ¼ 3 m ¼ 5

85:75 �46:07 52:52 12:84 �118:92 33:23

�46:07 74:77 �12:84 �41:54 45:32 �33:23

52:52 �12:84 85:74 46:07 �118:92 �33:23

12:84 �41:54 46:07 74:77 �45:32 �33:23

�118:92 45:32 �118:92 �45:32 216:41 0

33:23 �33:23 �33:23 �33:23 0 66:46

2
666666664

3
777777775

lb

in:

ð9:2:12Þ
We obtain the stiffness matrices for elements 3 and 4 in a manner similar to that

used to obtain the stiffness matrices for elements 1 and 2. Thus,

½kð3Þ� ¼ ð106Þ

i ¼ 3 j ¼ 4 m ¼ 5

72:58 38:52 �31:63 11:33 �20:31 �49:84

38:52 61:17 �2:26 33:98 �22:66 �95:15

�31:63 �2:26 54:46 �29:45 �29:37 31:72

11:33 33:98 �29:45 61:17 31:72 �95:15

�20:31 �22:66 �29:37 31:72 56:72 �9:06

�49:84 �95:15 31:72 �95:15 �9:06 190:31

2
666666664

3
777777775

lb

in:

ð9:2:13Þ

Figure 9–12 Element 2 of the discretized cylinder
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and

½kð4Þ� ¼ ð106Þ

i ¼ 4 j ¼ 1 m ¼ 5

41:53 �21:90 20:39 0:75 �66:45 21:14

�21:90 47:57 �0:75 �26:43 36:24 �21:14

20:39 �0:75 41:53 21:90 �66:45 �21:14

0:75 �26:43 21:90 47:57 �36:24 �21:14

�66:45 36:24 �66:45 �36:24 169:14 0

21:14 �21:14 �21:14 �21:14 0 42:28

2
666666664

3
777777775

lb

in:

ð9:2:14Þ

Using superposition of the element stiffness matrices [Eqs. (9.2.10) and (9.2.12)
through (9.2.14)], where we rearrange the elements of each stiffness matrix in order
of increasing nodal degrees of freedom, we obtain the global stiffness matrix as

½K� ¼ ð106Þ

95:99 51:35 �31:63 2:26 0 0 20:39 �0:75 �95:82 �52:86

51:35 108:74 �11:33 33:98 0 0 0:75 �26:43 �67:96 �116:3

�31:63 �11:33 158:34 �84:59 52:52 12:84 0 0 �139:2 83:07

2:26 33:98 �84:59 135:94 �12:84 �41:54 0 0 67:98 �128:4

0 0 52:52 �12:84 158:33 84:59 �31:63 11:33 �139:2 �83:07

0 0 12:84 �41:54 84:59 135:94 �2:26 33:98 �67:98 �128:4

20:39 0:75 0 0 �31:63 �2:26 95:99 �51:35 �95:82 52:86

�0:75 �26:43 0 0 11:33 33:98 �51:35 108:74 67:96 �116:3

�95:82 �67:96 �139:2 67:98 �139:2 �67:98 �95:82 67:96 498:99 0

�52:86 �116:3 83:07 �128:4 �83:07 �128:4 52:86 �116:3 0 489:36

2
666666666666666664

3
777777777777777775

lb

in:

ð9:2:15Þ
The applied nodal forces are given by Eq. (9.1.36) as

F1r ¼ F4r ¼
2pð0:5Þð0:5Þ

2
ð1Þ ¼ 0:785 lb ð9:2:16Þ

All other nodal forces are zero. Using Eq. (9.2.15) for ½K � and Eq. (9.2.16) for
the nodal forces in Eq. (9.2.1), and solving for the nodal displacements, we obtain

u1 ¼ 0:0322� 10�6 in: w1 ¼ 0:00115� 10�6 in:

u2 ¼ 0:0219� 10�6 in: w2 ¼ 0:00206� 10�6 in:

u3 ¼ 0:0219� 10�6 in: w3 ¼ �0:00206� 10�6 in: ð9:2:17Þ

u4 ¼ 0:0322� 10�6 in: w4 ¼ �0:00115� 10�6 in:

u5 ¼ 0:0244� 10�6 in: w5 ¼ 0

The results for nodal displacements are as expected because radial displacements
at the inner edge are equal ðu1 ¼ u4Þ and those at the outer edge are equal ðu2 ¼ u3Þ.
In addition, the axial displacements at the outer nodes and inner nodes are equal
but opposite in sign (w1 ¼ �w4 and w2 ¼ �w3) as a result of the Poisson effect and
symmetry. Finally, the axial displacement at the center node is zero ðw5 ¼ 0Þ, as it
should be because of symmetry.
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By using Eq. (9.1.22), we now determine the stresses in each element as

fsg ¼ ½D�½B�fdg ð9:2:18Þ
For element 1, we use Eq. (9.2.5) for ½B�, Eq. (9.2.8) for ½D�, and Eq. (9.2.17) for fdg
in Eq. (9.2.18) to obtain

sr ¼ �0:338 psi sz ¼ �0:0126 psi

sy ¼ 0:942 psi trz ¼ �0:1037 psi

Similarly, for element 2, we obtain

sr ¼ �0:105 psi sz ¼ �0:0747 psi

sy ¼ 0:690 psi trz ¼ 0:000 psi

For element 3, the stresses are

sr ¼ �0:337 psi sz ¼ �0:0125 psi

sy ¼ 0:942 psi trz ¼ 0:1037 psi

For element 4, the stresses are

sr ¼ �0:470 psi sz ¼ 0:1493 psi

sy ¼ 1:426 psi trz ¼ 0:000 psi

Figure 9–13 shows the exact solution [10] along with the results determined here
and the results from Reference [5]. Observe that agreement with the exact solution
is quite good except for the limited results due to the very coarse mesh used in
the longhand example, and in case 1 of Reference [5]. In Reference [5], stresses have
been plotted at the center of the quadrilaterals and were obtained by averaging the
stresses in the four connecting triangles. 9

d 9.3 Applications of Axisymmetric Elements d
Numerous structural (and nonstructural) systems can be classified as axisymmetric.
Some typical structural systems whose behavior is modeled accurately using the
axisymmetric element developed in this chapter are represented in Figures 9–14,
9–15, and 9–17.

Figure 9–14 illustrates the finite element model of a steel-reinforced concrete
pressure vessel. The vessel is a thick-walled cylinder with flat heads. An axis of sym-
metry (the z axis) exists such that only one-half of the r-z plane passing through
the middle of the structure need be modeled. The concrete was modeled by using the
axisymmetric triangular element developed in this chapter. The steel elements were
laid out along the boundaries of the concrete elements so as to maintain continuity
(or perfect bond assumption) between the concrete and the steel. The vessel was then
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subjected to an internal pressure as shown in the figure. Note that the nodes along the
axis of symmetry should be supported by rollers preventing motion perpendicular to
the axis of symmetry.

Figure 9–15 shows a finite element model of a high-strength steel die used in a
thin-plastic-film-making process [7]. The die is an irregularly shaped disk. An axis of
symmetry with respect to geometry and loading exists as shown. The die was modeled
by using simple quadrilateral axisymmetric elements. The locations of high stress were
of primary concern. Figure 9–16 shows a plot of the von Mises stress contours for the

(p
si

)

(in.)

Figure 9–13 Finite element analysis of a thick-walled cylinder under internal
pressure
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die of Figure 9–15. The von Mises (or equivalent, or effective) stress [8] is often used
as a failure criterion in design. Notice the artificially high stresses at the location of
load F as explained in Section 7.1.

(Recall that the failure criterion based on the maximum distortion energy theory for
ductile materials subjected to static loading predicts that a material will fail if the von
Mises stress reaches the yield strength of the material.) Also recall from Eqs. (6.5.37)
and (6.5.38), the von Mises stress svm is related to the principal stresses by the expression

svm ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs1 � s2Þ2 þ ðs2 � s3Þ2 þ ðs3 � s1Þ2

q
ð9:3:1Þ

where the principal stresses are given by s1, s2, and s3. These results were obtained
from the commercial computer code ANSYS [12].

Figure 9–14 Model of steel-reinforced concrete pressure vessel (Reprinted from
Nuclear Engineering and Design Volume 3, Issue 1, Rashid, Yosef R., Analysis of
Axisymmetric Composite Structures by the Finite Element Method, Pages No. 163–182,
Copyright 1966, with permission from Elsevier.)
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Figure 9–15 Model of a high-strength steel die (924 nodes and 830 elements)

Figure 9–16 von Mises stress contour plot of axisymmetric model of Figure 9–15
(also producing a radial inward deflection of about 0.015 in.)
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Other dies with modifications in geometry were also studied to evaluate the most
suitable die before the construction of an expensive prototype. Confidence in the ac-
ceptability of the prototype was enhanced by doing these comparison studies. Finally,
Figure 9–17 shows a stepped 4130 steel shaft with a fillet radius subjected to an axial
pressure of 1000 psi in tension. Fatigue analysis for reversed axial loading required
an accurate stress concentration factor to be applied to the average axial stress of
1000 psi. The stress concentration factor for the geometry shown was to be deter-
mined. Therefore, locations of highest stress were necessary. Figure 9–18 shows the
resulting maximum principal stress plot using a computer program [11]. The largest
principal stress was 1507.4 N/cm2 at the fillet. Other examples of the use of the axi-
symmetric element can be found in References [2–6].

In this chapter, we have shown the finite element analysis of axisymmetric sys-
tems using a simple three-noded triangular element to be analogous to that of the
two-dimensional plane stress problem using three-noded triangular elements as devel-
oped in Chapter 6. Therefore, the two-dimensional element in commercial computer
programs with the axisymmetric element selected will allow for the analysis of axisym-
metric structures.

(a) (b)

5

700 N/cm2

(1.875, 5)

5.0 dia. 3.75 dia.

0.375 rad

700 N/cm2

(1.875, 2.875)
R = 0.375

(2.5, 2.5)

(2.5, 1.875)

2.5 cm

Figure 9–17 (a) Stepped shaft subjected to axial load and (b) the discretized model

9.3 Applications of Axisymmetric Elements d 473

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Finally, note that other axisymmetric elements, such as a simple quadrilateral
(one with four corner nodes and two degrees of freedom per node, as used in the steel
die analysis of Figure 9–15) or higher-order triangular elements, such as in Reference
[6], in which a cubic polynomial involving ten terms (ten a’s) for both u and w, could
be used for axisymmetric analysis. The three-noded triangular element was described
here because of its simplicity and ability to describe geometric boundaries rather easily.

d Summary Equations

(All pertain to axisymmetric element).

Strain-displacement relationships for axisymmetric behavior:

er ¼
qu

qr
ey ¼

u

r
ez ¼

qw

qz
grz ¼

qu

qz
þ qw

qr
ð9:1:1eÞ

Stress–strain relationships for isotropic material:

sr

sz

sy

trz

8>>><
>>>:

9>>>=
>>>;
¼ E

ð1þ nÞð1� 2nÞ

1� n n n 0

n 1� n n 0

n n 1� n 0

0 0 0
1� 2n

2

2
66666664

3
77777775

er

ez

ey

grz

8>><
>>:

9>>=
>>;

ð9:1:2Þ

Figure 9–18 Three-dimensional visual of shaft of Figure 9–17 showing principal
stress plot (See the full-color insert for a color version of this figure.)
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Displacement functions for axisymmetric triangle element:

uðr; zÞ ¼ a1 þ a2rþ a3z

wðr; zÞ ¼ a4 þ a5rþ a6z ð9:1:3Þ

Shape functions for axisymmetric triangle element:

Ni ¼
1

2A
ðai þ birþ gizÞ

Nj ¼
1

2A
ðaj þ bjrþ gjzÞ ð9:1:12Þ

Nm ¼
1

2A
ðam þ bmrþ gmzÞ

Gradient matrix:

½Bi� ¼
1

2A

2
6666664

bi 0

0 gi

ai

r
þ bi þ

giz

r
0

gi bi

3
7777775

ð9:1:19Þ

and

½B� ¼ ½½Bi� ½Bj� ½Bm�� ð9:1:21Þ

Strain–displacement equations in matrix form:

feg ¼ ½B�fdg ð9:1:20Þ

Stress–displacement equations in matrix form:

fsg ¼ ½D�½B�fdg ð9:1:22Þ

Element stiffness matrix:

½k� ¼ 2p

ðð

A

½B�T ½D�½B�r dr dz ð9:1:24Þ

First approximation stiffness matrix:

½k� ¼ 2prA½B�T ½D�½B� ð9:1:26Þ
Body force matrix (first approximation):

f fbg ¼
2prA

3

8>>>>>>>><
>>>>>>>>:

Rb

Zb

Rb

Zb

Rb

Zb

9>>>>>>>>=
>>>>>>>>;

ð9:1:31Þ

�Rb ¼ o2r�r ð9:1:32Þ
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Surface force matrix on side j–m of element subjected to uniform radial and axial
pressure:

f fsg ¼
2prjðzm � zjÞ

2

8>>>>>>>><
>>>>>>>>:

0

0

pr

pz

pr

pz

9>>>>>>>>=
>>>>>>>>;

ð9:1:36Þ
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d Problems

9.1 For the elements shown in Figure P9–1, evaluate the stiffness matrices using Eq.
(9.2.2). The coordinates are shown in the figures. Let E ¼ 30� 106 psi and n ¼ 0:25
for each element.

9.2 Evaluate the nodal forces used to replace the linearly varying surface traction shown
in Figure P9–2. Hint: Use Eq. (9.1.34).
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9.3 For an element of an axisymmetric body rotating with a constant angular velocity
o ¼ 20 rpm as shown in Figure P9–3, evaluate the body-force matrix. The coordi-
nates of the element are shown in the figure. Let the weight density rw be 0.283 lb/in3.

9.4 For the axisymmetric elements shown in Figure P9–4, determine the element stresses.
Let E ¼ 30� 106 psi and n ¼ 0:25. The coordinates (in inches) are shown in the figures,
and the nodal displacements for each element are u1 ¼ 0:0001 in., w1 ¼ 0:0002 in.,
u2 ¼ 0:0005 in., w2 ¼ 0:0006 in., u3 ¼ 0, and w3 ¼ 0.

9.5 Explicitly show that the integration of Eq. (9.1.35) yields the j surface forces given by
Eq. (9.1.36).

9.6 For the elements shown in Figure P9–6, evaluate the stiffness matrices using Eq.
(9.2.2). The coordinates (in millimeters) are shown in the figures. Let E ¼ 210 GPa
and n ¼ 0:25 for each element.

Figure P9–2

(1, 2)

(2, 0)(0, 0)
1 2

3

1 2

3

1 2

3

(c)(b)(a)

Figure P9–1

Figure P9–3
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9.7 For the axisymmetric elements shown in Figure P9–7, determine the element stresses.
Let E ¼ 210 GPa and n ¼ 0:25. The coordinates (in millimeters) are shown in the
figures, and the nodal displacements for each element are

u1 ¼ 0:05 mm w1 ¼ 0:03 mm

u2 ¼ 0:02 mm w2 ¼ 0:02 mm

u3 ¼ 0:0 mm w3 ¼ 0:0 mm

(c)

(0, 2)3

2
(2, 0)(0, 0)

1

Figure P9–4

Figure P9–6

Figure P9–7
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9.8 Can we connect plane stress elements with axisymmetric ones? Explain.

9.9 Is the three-noded triangular element considered in Section 9.1 a constant strain ele-
ment? Why or why not?

9.10 How should one model the boundary conditions of nodes acting on the axis of symmetry?

9.11 How would you evaluate the circumferential strain, ey, at r ¼ 0? What is this strain in
terms of the a’s given in Eq. (9.1.15). Hint: Elasticity theory tells us that the radial
strain must equal the circumferential strain at r ¼ 0.

9.12 What will be the stresses sr and sy at r ¼ 0? Hint: Look at Eq. (9.1.2) after consider-
ing Problem 9.11.

Solve the following axisymmetric problems using a computer program.

9.13 The soil mass in Figure P9–13 is loaded by a force transmitted through a circular
footing as shown. Determine the stresses in the soil. Compare the values of sr using an
axisymmetric model with the sy values using a plane stress model. Let E ¼ 3000 psi
and n ¼ 0:45 for the soil mass.

9.14 Perform a stress analysis of the pressure vessel shown in Figure P9–14. Let
E ¼ 5� 106 psi and n ¼ 0:15 for the concrete, and let E ¼ 29� 106 psi and n ¼ 0:25
for the steel liner. The steel liner is 2 in. thick. Let the pressure p equal 500 psi. Use a
0.5 in. radius in the re-entrant corners.

9.15 Perform a stress analysis of the concrete pressure vessel with the steel liner shown in
Figure P9–15. Let E ¼ 30 GPa and n ¼ 0:15 for the concrete, and let E ¼ 205 GPa
and n ¼ 0:25 for the steel liner. The steel liner is 50 mm thick. Let the pressure p equal
700 kPa. Use a 10 mm radius in the re-entrant corners.

9.16 Perform a stress analysis of the disk shown in Figure P9–16 if it rotates with constant
angular velocity of o ¼ 50 rpm. Let E ¼ 30� 106 psi, n ¼ 0:25, and the weight den-
sity rw ¼ 0:283 lb/in3 (mass density, r ¼ rw=ðg ¼ 386 in./s2Þ. (Use 8 and then 16
elements symmetrically modeled similar to Example 9.4. Compare the finite element
solution to the theoretical circumferential and radial stresses given by

sy ¼
3þ n

8
ro2a2 1� 1þ 3nr2

3þ na2

� �
; sr ¼

3þ n

8
ro2a2 1� r2

a2

� �

Figure P9–13
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Figure P9–14

1250 mm

ConcreteSteel liner

400 mm

325 mm

750 mm

p
Figure P9–15

Figure P9–16

480 d 9 Axisymmetric Elements

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.17 For the die casting shown in Figure P9–17, determine the maximum stresses and
their locations. Let E ¼ 30� 106 psi and n ¼ 0:25. The dimensions are shown in the
figure.

9.18 For the axisymmetric connecting rod shown in Figure P9–18, determine the stresses
sz; sr; sy, and trz. Plot stress contours (lines of constant stress) for each of the normal
stresses. Let E ¼ 30� 106 psi and n ¼ 0:25. The applied loading and boundary con-
ditions are shown in the figure. A typical discretized rod is shown in the figure for
illustrative purposes only.

7.05 in.

Figure P9–17

Figure P9–18
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9.19 For the thick-walled open-ended cylindrical pipe subjected to internal pressure shown
in Figure P9–19, use five layers of elements to obtain the circumferential stress, sy,
and the principal stresses and maximum radial displacement. Compare these results to
the exact circumferential stress and radial displacement equations given by

sy ¼
Pia

2 þ P0b2

b2 � a2

	 

þ a2b2

r2ðb2 � a2Þ

	 

ðPi � P0Þ

�r ¼ r

Eðb2 � a2Þ ð1� nÞðPia
2 � P0b2Þ þ ð1þ nÞa2b2

r2
ðPi � P0Þ

� �

where
Pi ¼ inner pressure, P0 ¼ outer pressure (set to zero in this problem)
a ¼ inner radius of vessel, b ¼ outer radius of vessel, r ¼ any radial location

Let E ¼ 205 GPa and n ¼ 0.3.

9.20 A steel cylindrical pressure vessel with flat plate end caps is shown in Figure P9–20
with vertical axis of symmetry. Addition of thickened sections helps to reduce stress
concentrations in the corners. Analyze the design and identify the most critically
stressed regions. Note that inside sharp re-entrant corners produce infinite stress con-
centration zones, so refining the mesh in these regions will not help you get a better
answer unless you use an inelastic theory or place small fillet radii there. Recommend
any design changes in your report. Let the pressure inside be 1000 kPa.

Figure P9–19
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9.21 For the cylindrical vessel with hemispherical ends (heads) under uniform internal
pressure of intensity p ¼ 500 psi shown in Figure P9–21, determine the maximum von
Mises stress and where it is located. The material is ASTM—A242 quenched and
tempered alloy steel. Use a factor of safety of 3 against yielding. The inner radius is
a ¼ 100 inches and the thickness t ¼ 2 in.

9.22 For the cylindrical vessel with ellipsoidal heads shown in Figure P9–22a under loading
p ¼ 500 psi, determine if the vessel is safe against yielding. Use the same material and
factor of safety as in Problem 9.21. Now let a ¼ 100 in. and b ¼ 50 in. Which vessel
has the lowest hoop stress? Recommend the preferred head shape of the two based on
your answers.

310 dia.

200 dia.

250 dia.

25

30°

60°

25 18.75

225300 Dimensions in millimetersp

Figure P9–20

p

a

Figure P9–21

a

b

p p h b r2 r1

dφ

φ

a
x

y

(a) (b)

Figure P9–22
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For modeling purposes, the equation of an ellipse is given by b2x2 þ a2y2 ¼ a2b2,
where a is the major axis and b is the minor axis of the ellipse shown in Figure
P9–22(b).

9.23 The syringe with plunger is shown in Figure P9–23. The material of the syringe is
glass with E ¼ 69 GPa, n ¼ 0:15, and tensile strength of 5 MPa. The bottom hole is
assumed to be closed under test conditions. Determine the deformation and stresses in
the glass. Compare the maximum principal stress in the glass to the ultimate tensile
strength. Do you think the syringe is safe? Why?

9.24 For the tapered solid circular shaft shown in Figure P9–24, a semicircular groove has
been machined into the side. The shaft is made of a hot rolled 1040 steel alloy with
yield strength of 71,000 psi. The shaft is subjected to a uniform axial pressure of 4000
psi. Determine the maximum principal stresses and von Mises stresses at the fillet and
at the semicircular groove. Is the shaft safe from failure based on the maximum dis-
tortion energy theory?

90 mm

Plunger

Liquid

Glass syringe

20 mm

25 mm

15 mm

45 N

8 mm
8 mm

4 mm

4 mm

12 mm

45°

Figure P9–23

484 d 9 Axisymmetric Elements

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9.25 A steel hole punch is shown in Figure P9–25a. Investigate the proper material for a
hole punch. Tell me what material you used and why? Model the punch without the
side groove (Figure P9–25b) and with the side groove (Figure P9–25c). Determine the
von Mises stress distribution throughout the punch for both cases. Are the punches
safe under the loading shown?

Figure P9–24

(a) (b)

3000 psi

2 in.
4 in.

1    in.
1
4

1/4 in. 
rad

6 in.

4 in.

3/4 in.

1.25 in. 
rad

1.25 in. 
rad

Figure P9–25
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ISOPARAMETRIC FORMULATIONd

CHAPTER OBJECTIVES

. To formulate the isoparametric formulation of the bar element stiffness matrix.

. To present the isoparametric formulation of the plane four-noded quadrilateral
(Q4) element stiffness matrix.

. To describe two methods for numerical integration—Newton-Cotes and Gaussian
Quadrature—used for numerical evaluation of definite integrals and to demon-
strate their application to specific examples.

. To present a flowchart describing how to evaluate the stiffness matrix for the
plane quadrilateral element by a four-point Gaussian quadrature rule.

. To solve an explicit example showing the evaluation of the stiffness matrix for
the plane quadrilateral element by the four-point Gaussian quadrature rule.

. To illustrate by example how to evaluate the stresses at a given point in a plane
quadrilateral element using Gaussian quadrature.

. To describe some higher-order shape functions for the three-noded linear strain
bar, the eight-noded quadratic quadrilateral (Q8) element, and the twelve-noded
cubic quadrilateral (Q12) element.

. To evaluate the stiffness matrix of the three-noded bar using Gaussian quadrature
and compare the result to that found by explicit evaluation of the stiffness
matrix for the bar.

Introduction

In this chapter, we introduce the isoparametric formulation of the element sti¤ness
matrices. After considering the linear-strain triangular element in Chapter 8, we
can see that the development of element matrices and equations expressed in
terms of a global coordinate system becomes an enormously di‰cult task (if even
possible) except for the simplest of elements such as the constant-strain triangle of
Chapter 6. Hence, the isoparametric formulation was developed [1]. The isopara-
metric method may appear somewhat tedious (and confusing initially), but it will
lead to a simple computer program formulation, and it is generally applicable for
two- and three-dimensional stress analysis and for nonstructural problems. The iso-
parametric formulation allows elements to be created that are nonrectangular and
have curved sides. Furthermore, numerous commercial computer programs
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(as described in Chapter 1) have adapted this formulation for their various libraries
of elements.

We first illustrate the isoparametric formulation to develop the simple bar ele-
ment sti¤ness matrix. Use of the bar element makes it relatively easy to understand
the method because simple expressions result.

We then consider the development of the isoparametric formulation of the sim-
ple quadrilateral element sti¤ness matrix.

Next, we will introduce numerical integration methods for evaluating the quadri-
lateral element sti¤ness matrix and illustrate the adaptability of the isoparametric for-
mulation to common numerical integration methods.

Finally, we will consider some higher-order elements and their associated shape
functions.

d 10.1 Isoparametric Formulation
of the Bar Element Stiffness Matrix

d

The term isoparametric is derived from the use of the same shape functions (or inter-
polation functions) ½N� to define the element’s geometric shape as are used to define
the displacements within the element. Thus, when the shape function is u ¼ a1 þ a2s

for the displacement, we use x ¼ a1 þ a2s for the description of the nodal coordinate
of a point on the bar element and, hence, the physical shape of the element.

Isoparametric element equations are formulated using a natural (or intrinsic) coor-

dinate system s that is defined by element geometry and not by the element orientation
in the global-coordinate system. In other words, axial coordinate s is attached to the
bar and remains directed along the axial length of the bar, regardless of how the bar is
oriented in space. There is a relationship (called a transformation mapping) between the
natural coordinate system s and the global coordinate system x for each element of a spe-
cific structure, and this relationship must be used in the element equation formulations.

We will now develop the isoparametric formulation of the sti¤ness matrix of a
simple linear bar element [with two nodes as shown in Figure 10–1(a)].

Step 1 Select Element Type

First, the natural coordinate s is attached to the element, with the origin located at the
center of the element, as shown in Figure 10–1(b). The s axis need not be parallel to
the x axis—this is only for convenience.

Figure 10–1 Linear bar element in (a) a global coordinate system x and (b) a natural
coordinate system s

10.1 Isoparametric Formulation of the Bar Element Stiffness Matrix d 487

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



We consider the bar element to have two degrees of freedom—axial displace-
ments u1 and u2 at each node associated with the global x axis.

For the special case when the s and x axes are parallel to each other, the s and x

coordinates can be related by

x ¼ xc þ
L

2
s ð10:1:1aÞ

where xc is the global coordinate of the element centroid.
Using the global coordinates x1 and x2 in Eq. (10.1.1a) with xc ¼ ðx1 þ x2Þ=2,

we can express the natural coordinate s in terms of the global coordinates as

s ¼ ½x� ðx1 þ x2Þ=2�½2=ðx2 � x1Þ� ð10:1:1bÞ

The shape functions used to define a position within the bar are found in a manner
similar to that used in Chapter 3 to define displacement within a bar (Section 3.1). We
begin by relating the natural coordinate to the global coordinate by

x ¼ a1 þ a2s ð10:1:2Þ

where we note that s is such that �1W sW 1. Solving for the ai’s in terms of x1 and
x2, we obtain

x ¼ 1

2
½ð1� sÞx1 þ ð1þ sÞx2� ð10:1:3Þ

or, in matrix form, we can express Eq. (10.1.3) as

fxg ¼ ½N1 N2�
x1

x2

� �
ð10:1:4Þ

where the shape functions in Eq. (10.1.4) are

N1 ¼
1� s

2
N2 ¼

1þ s

2
ð10:1:5Þ

The linear shape functions in Eqs. (10.1.5) map the s coordinate of any point in the
element to the x coordinate when used in Eq. (10.1.3). For instance, when we sub-
stitute s ¼ �1 into Eq. (10.1.3), we obtain x ¼ x1. These shape functions are
shown in Figure 10–2, where we can see that they have the same properties as
defined for the interpolation functions of Section 3.1. Hence, N1 represents the physical
shape of the coordinate x when plotted over the length of the element for x1 ¼ 1 and
x2 ¼ 0, and N2 represents the coordinate x when plotted over the length of the ele-
ment for x2 ¼ 1 and x1 ¼ 0. Again, we must have N1 þN2 ¼ 1.

These shape functions must also be continuous throughout the element domain
and have finite first derivatives within the element.

Step 2 Select a Displacement Function

The displacement function within the bar is now defined by the same shape functions,
Eqs. (10.1.5), as are used to define the element shape; that is,

fug ¼ ½N1 N2�
u1

u2

� �
ð10:1:6Þ
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When a particular coordinate s of the point of interest is substituted into ½N�,
Eq. (10.1.6) yields the displacement of a point on the bar in terms of the nodal degrees
of freedom u1 and u2 as shown in Figure 10–2(c). Since u and x are defined by the
same shape functions at the same nodes, comparing Eqs. (10.1.4) and (10.1.6), the
element is called isoparametric.

Step 3 Define the Strain–Displacement and Stress–Strain
Relationships

We now want to formulate element matrix ½B� to evaluate ½k�. We use the isoparamet-
ric formulation to illustrate its manipulations. For a simple bar element, no real ad-
vantage may appear evident. However, for higher-order elements, the advantage will
become clear because relatively simple computer program formulations will result.

To construct the element sti¤ness matrix, we must determine the strain, which is
defined in terms of the derivative of the displacement with respect to x. The displace-
ment u, however, is now a function of s as given by Eq. (10.1.6). Therefore, we must
apply the chain rule of di¤erentiation to the function u as follows:

du

ds
¼ du

dx

dx

ds
ð10:1:7Þ

We can evaluate ðdu=dsÞ and ðdx=dsÞ using Eqs. (10.1.6) and (10.1.3). We seek
ðdu=dxÞ ¼ ex. Therefore, we solve Eq. (10.1.7) for ðdu=dxÞ as

du

dx
¼

du

ds

� �

dx

ds

� � ð10:1:8Þ

Figure 10–2 Shape function variations with natural coordinates: (a) shape function
N1, (b) shape function N2, and (c) linear displacement field u plotted over element length
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Using Eq. (10.1.6) for u, we obtain

du

ds
¼ u2 � u1

2
ð10:1:9aÞ

and using Eq. (10.1.3) for x, we have

dx

ds
¼ x2 � x1

2
¼ L

2
ð10:1:9bÞ

because x2 � x1 ¼ L.
Using Eqs. (10.1.9a) and (10.1.9b) in Eq. (10.1.8), we obtain

fexg ¼ � 1

L

1

L

� �
u1

u2

� �
ð10:1:10Þ

Since feg ¼ ½B�fdg, the strain–displacement matrix ½B� is then given in Eq. (10.1.10) as

½B� ¼ � 1

L

1

L

� �
ð10:1:11Þ

We recall that use of linear shape functions results in a constant ½B � matrix, and hence,
in a constant strain within the element. For higher-order elements, such as the quadratic
bar with three nodes, ½B� becomes a function of natural coordinate s (see Eq. (10.5.16).

The stress matrix is again given by Hooke’s law as

fsg ¼ Efeg ¼ E½B�fdg

Step 4 Derive the Element Stiffness Matrix and Equations

The sti¤ness matrix is

½k� ¼
ðL

0

½B�T ½D�½B�A dx ð10:1:12Þ

However, in general, we must transform the coordinate x to s because ½B� is, in general,
a function of s. This general type of transformation is given by References [4] and [5]

ðL

0

f ðxÞ dx ¼
ð1

�1

f ðsÞj½J�j ds ð10:1:13Þ

where ½J � is called the Jacobian matrix. In the one-dimensional case, we have
j½J �j ¼ J . For the simple bar element, from Eq. (10.1.9b), we have

j½J �j ¼ dx

ds
¼ L

2
ð10:1:14Þ

Observe that in Eq. (10.1.14), the Jacobian determinant relates an element length (dx)
in the global-coordinate system to an element length (ds) in the natural-coordinate sys-
tem. In general, j½J �j is a function of s and depends on the numerical values of the
nodal coordinates. This can be seen by looking at Eq. (10.2.22) for the quadrilateral
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element. (Section 10.2 further discusses the Jacobian.) Using Eqs. (10.1.13) and
(10.1.14) in Eq. (10.1.12), we obtain the sti¤ness matrix in natural coordinates as

½k� ¼ L

2

ð1

�1

½B�T E½B�A ds ð10:1:15Þ

where, for the one-dimensional case, we have used the modulus of elasticity E ¼ ½D�
in Eq. (10.1.15). Substituting Eq. (10.1.11) in Eq. (10.1.15) and performing the simple
integration, we obtain

½k� ¼ AE

L

1 �1

�1 1

� �
ð10:1:16Þ

which is the same as Eq. (3.1.14). For higher-order one-dimensional elements, the
integration in closed form becomes di‰cult if not impossible (see Example 10.7).
Even the simple rectangular element sti¤ness matrix is di‰cult to evaluate in closed form
(Section 10.2). However, the use of numerical integration, as described in Section 10.3,
illustrates the distinct advantage of the isoparametric formulation of the equations.

Body Forces

We will now determine the body-force matrix using the natural coordinate system s.
Using Eq. (3.10.20b), the body-force matrix is

f fbg ¼
ððð

V

½N�TfXbg dV ð10:1:17Þ

Letting dV ¼ A dx, we have

f fbg ¼ A

ðL

0

½N�TfXbg dx ð10:1:18Þ

Substituting Eqs. (10.1.5) for N1 and N2 into ½N� and noting that by Eq. (10.1.9b),
dx ¼ ðL=2Þ ds, we obtain

f fbg ¼ A

ð1

�1

1� s

2

1þ s

2

8>>><
>>>:

9>>>=
>>>;
fXbg

L

2
ds ð10:1:19Þ

On integrating Eq. (10.1.19), we obtain

f fbg ¼
ALXb

2

1

1

� �
ð10:1:20Þ

The physical interpretation of the results for f fbg is that since AL represents the
volume of the element and X b the body force per unit volume, then ALX b is the
total body force acting on the element. The factor 1

2 indicates that this body force is
equally distributed to the two nodes of the element.
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Surface Forces

Surface forces can be found using Eq. (3.10.20a) as

f fsg ¼
ðð

S

½Ns�TfTxg dS ð10:1:21Þ

Assuming the cross section is constant and the traction is uniform over the perimeter
and along the length of the element, we obtain

f fsg ¼
ðL

0

½Ns�TfTxg dx ð10:1:22Þ

where we now assume Tx is in units of force per unit length. Using the shape functions
N1 and N2 from Eq. (10.1.5) in Eq. (10.1.22), we obtain

f fsg ¼
ð1

�1

1� s

2

1þ s

2

8>>><
>>>:

9>>>=
>>>;
fTxg

L

2
ds ð10:1:23Þ

On integrating Eq. (10.1.23), we obtain

f fsg ¼ fTxg
L

2

1

1

� �
ð10:1:24Þ

The physical interpretation of Eq. (10.1.24) is that since fTxg is in force-per-unit-length

units, fTxgL is now the total force. The 1
2 indicates that the uniform surface traction is

equally distributed to the two nodes of the element. Note that if fTxg were a function
of x (or s), then the amounts of force allocated to each node would generally not be
equal and would be found through integration as in Example 3.12.

d 10.2 Isoparametric Formulation of the Plane
Quadrilateral Element Stiffness Matrix

d

Recall that the term isoparametric is derived from the use of the same shape functions
to define the element shape as are used to define the displacements within the element.
Thus, when the shape function is u ¼ a1 þ a2sþ a3tþ a4st for the displacement, we
use x ¼ a1 þ a2sþ a3tþ a4st for the description of a coordinate point in the plane
element.

The natural-coordinate system s-t is defined by element geometry and not by the
element orientation in the global-coordinate system x-y. Much as in the bar element
example, there is a transformation mapping between the two coordinate systems for
each element of a specific structure, and this relationship must be used in the element
formulation.

We will now formulate the isoparametric formulation of the simple linear plane
quadrilateral element sti¤ness matrix. This formulation is general enough to be
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applied to more complicated (higher-order) elements such as a quadratic plane ele-
ment with three nodes along an edge, which can have straight or quadratic curved
sides. Higher-order elements have additional nodes and use di¤erent shape functions
as compared to the linear element, but the steps in the development of the sti¤ness
matrices are the same. We will briefly discuss these elements after examining the linear
plane element formulation.

Step 1 Select Element Type

First, the natural s-t coordinates are attached to the element, with the origin at the
center of the element, as shown in Figure 10–3(a). The s and t axes need not be
orthogonal, and neither has to be parallel to the x or y axis. The orientation of s-t

coordinates is such that the four corner nodes and the edges of the quadrilateral are
bounded by þ1 or �1. This orientation will later allow us to take advantage more
fully of common numerical integration schemes.

We consider the quadrilateral to have eight degrees of freedom, u1; v1; . . . ; u4,
and v4 associated with the global x and y directions. The element then has straight
sides but is otherwise of arbitrary shape, as shown in Figure 10–3(b).

For the special case when the distorted element becomes a rectangular element
with sides parallel to the global x-y coordinates, the s-t coordinates can be related to
the global element coordinates x and y by

x ¼ xc þ bs y ¼ yc þ ht ð10:2:1Þ

where xc and yc are the global coordinates of the element centroid.
We begin by assuming global coordinates x and y are related to the natural co-

ordinates s and t as follows:

x ¼ a1 þ a2sþ a3tþ a4st
ð10:2:2Þ

y ¼ a5 þ a6sþ a7tþ a8st

Figure 10–3 (a) Linear square element in s-t coordinates and (b) square element
mapped into quadrilateral in x-y coordinates whose size and shape are determined by
the eight nodal coordinates x1; y1; . . . ; y4
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and solving for the ai’s in terms of x1; x2; x3; x4; y1; y2; y3, and y4, we obtain

x ¼ 1

4
½ð1� sÞð1� tÞx1 þ ð1þ sÞð1� tÞx2

þ ð1þ sÞð1þ tÞx3 þ ð1� sÞð1þ tÞx4�
ð10:2:3Þ

y ¼ 1

4
½ð1� sÞð1� tÞy1 þ ð1þ sÞð1� tÞy2

þ ð1þ sÞð1þ tÞy3 þ ð1� sÞð1þ tÞy4�

Or, in matrix form, we can express Eqs. (10.2.3) as

x

y

� �
¼ N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x1

y1

x2

y2

x3

y3

x4

y4

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð10:2:4Þ

where the shape functions of Eq. (10.2.4) are now

N1 ¼
ð1� sÞð1� tÞ

4
N2 ¼

ð1þ sÞð1� tÞ
4

ð10:2:5Þ
N3 ¼

ð1þ sÞð1þ tÞ
4

N4 ¼
ð1� sÞð1þ tÞ

4

The shape functions of Eqs. (10.2.5) are linear. These shape functions are seen to map
the s and t coordinates of any point in the square element of Figure 10–3(a) to those
x and y coordinates in the quadrilateral element of Figure 10–3(b). For instance, con-
sider square element node 1 coordinates, where s ¼ �1 and t ¼ �1. Using Eqs.
(10.2.4) and (10.2.5), the left side of Eq. (10.2.4) becomes

x ¼ x1 y ¼ y1 ð10:2:6Þ
Similarly, we can map the other local nodal coordinates at nodes 2, 3, and 4 such that
the square element in s-t isoparametric coordinates is mapped into a quadrilateral
element in global coordinates x1; y1 through x4; y4. Also observe the property that
N1 þN2 þN3þ N4 ¼ 1 for all values of s and t.

We further observe that the shape functions in Eq. (10.2.5) are again such that
N1 through N4 have the properties that Ni ði ¼ 1; 2; 3; 4Þ is equal to one at node i and
equal to zero at all other nodes. The physical shapes of Ni as they vary over the ele-
ment with natural coordinates are shown in Figure 10–4. For instance, N1 represents
the geometric shape for x1 ¼ 1, y1 ¼ 1, and x2; y2; x3; y3; x4, and y4 all equal to zero.

Until this point in the discussion, we have always developed the element shape
functions either by assuming some relationship between the natural and global coordi-
nates in terms of the generalized coordinates (ai’s) as in Eqs. (10.2.2) or, similarly, by
assuming a displacement function in terms of the ai’s. However, physical intuition
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can often guide us in directly expressing shape functions based on the following two
criteria set forth in Section 3.2 and used on numerous occasions:

Xn

i¼1

Ni ¼ 1 ði ¼ 1; 2; . . . ; nÞ

where n ¼ the number of shape functions corresponding to displacement shape func-
tions Ni, and Ni ¼ 1 at node i and Ni ¼ 0 at all nodes other than i. In addition, a
third criterion is based on Lagrangian interpolation when displacement continuity is to
be satisfied, or on Hermitian interpolation when additional slope continuity needs to be
satisfied, as in the beam element of Chapter 4. (For a description of the use of Lagrangian
and Hermitian interpolation to develop shape functions, consult References [4] and [6].)

Step 2 Select Displacement Functions

The displacement functions within an element are now similarly defined by the same
shape functions as are used to define the element geometric shape; that is,

u

v

� �
¼ N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4

� �

u1

v1

u2

v2

u3

v3

u4

v4

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð10:2:7Þ

Figure 10–4 Variations of the shape functions over a linear square element
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where u and v are displacements parallel to the global x and y coordinates, and the shape
functions are given by Eqs. (10.2.5). The displacement of an interior point P located at
ðx; yÞ in the element of Figure 10–3(b) is described by u and v in Eq. (10.2.7).

Comparing Eqs. (6.6.6) and (10.2.7), we see similarities between the rectangular
element with sides of lengths 2b and 2h (Figure 6–20) and the square element with
sides of length 2. If we let b ¼ 1 and h ¼ 1, the two sets of shape functions, Eqs.
(6.6.5) and (10.2.5), are identical.

Step 3 Define the Strain–Displacement and Stress–Strain Relationships

We now want to formulate element matrix ½B � to evaluate ½k �. However, because it
becomes tedious and di‰cult (if not impossible) to write the shape functions in terms of
the x and y coordinates, as seen in Chapter 8, we will carry out the formulation in terms
of the isoparametric coordinates s and t. This may appear tedious, but it is easier to use
the s- and t-coordinate expressions than to attempt to use the x- and y-coordinate expres-
sions. This approach also leads to a simple computer program formulation.

To construct an element sti¤ness matrix, we must determine the strains, which
are defined in terms of the derivatives of the displacements with respect to the x and
y coordinates. The displacements, however, are now functions of the s and t coordi-
nates, as given by Eq. (10.2.7), with the shape functions given by Eqs. (10.2.5).
Before, we could determine ðqf =qxÞ and ðqf =qyÞ, where, in general, f is a function
representing the displacement functions u or v. However, u and v are now expressed
in terms of s and t. Therefore, we need to apply the chain rule of di¤erentiation be-
cause it will not be possible to express s and t as functions of x and y directly. For f

as a function of x and y, the chain rule yields

qf

qs
¼ qf

qx

qx

qs
þ qf

qy

qy

qs
ð10:2:8Þ

qf

qt
¼ qf

qx

qx

qt
þ qf

qy

qy

qt

In Eq. (10.2.8), ðqf =qsÞ, ðqf =qtÞ, ðqx=qsÞ, ðqy=qsÞ, ðqx=qtÞ, and ðqy=qtÞ are all known
using Eqs. (10.2.7) and (10.2.4). We still seek ðqf =qxÞ and ðqf =qyÞ. The strains can
then be found; for example, ex ¼ ðqu=qxÞ. Therefore, we solve Eqs. (10.2.8) for
ðqf =qxÞ and ðqf =qyÞ using Cramer’s rule, which involves evaluation of determinants
(Appendix B), as

qf

qx
¼

qf

qs

qy

qs

qf

qt

qy

qt

���������

���������
qx

qs

qy

qs

qx

qt

qy

qt

���������

���������

qf

qy
¼

qx

qs

qf

qs

qx

qt

qf

qt

���������

���������
qx

qs

qy

qs

qx

qt

qy

qt

���������

���������

ð10:2:9Þ
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where the determinant in the denominator is the determinant of the Jacobian matrix
½J �. Hence, the Jacobian matrix is given by

½J� ¼

qx

qs

qy

qs

qx

qt

qy

qt

2
6664

3
7775 ð10:2:10Þ

We now want to express the element strains as

feg ¼ ½B�fdg ð10:2:11Þ

where ½B� must now be expressed as a function of s and t. We start with the usual
relationship between strains and displacements given in matrix form as

ex

ey

gxy

8><
>:

9>=
>; ¼

2
6666666664

qð Þ
qx

0

0
qð Þ
qy

qð Þ
qy

qð Þ
qx

3
7777777775

u

v

� �
ð10:2:12Þ

where the rectangular matrix on the right side of Eq. (10.2.12) is an operator matrix;
that is, qð Þ=qx and qð Þ=qy represent the partial derivatives of any variable we put in-
side the parentheses.

Using Eqs. (10.2.9) and evaluating the determinant in the numerators, we have

qð Þ
qx
¼ 1

j½J �j
qy

qt

qð Þ
qs
� qy

qs

qð Þ
qt

� �

ð10:2:13Þ
qð Þ
qy
¼ 1

j½J �j
qx

qs

qð Þ
qt
� qx

qt

qð Þ
qs

� �

where j½J �j is the determinant of ½J � given by Eq. (10.2.10). Using Eq. (10.2.13) in Eq.
(10.2.12) we obtain the strains expressed in terms of the natural coordinates (s-t) as

ex

ey

gxy

8><
>:

9>=
>; ¼

1

j½J �j

2
6666666664

qy

qt

qð Þ
qs
� qy

qs

qð Þ
qt

0

0
qx

qs

qð Þ
qt
� qx

qt

qð Þ
qs

qx

qs

qð Þ
qt
� qx

qt

qð Þ
qs

qy

qt

qð Þ
qs
� qy

qs

qð Þ
qt

3
7777777775

u

v

� �
ð10:2:14Þ

Using Eq. (10.2.7), we can express Eq. (10.2.14) in terms of the shape functions
and global coordinates in compact matrix form as

feg ¼ ½D 0�½N�fdg ð10:2:15Þ
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where ½D 0� is an operator matrix given by

½D 0� ¼ 1

j½J �j

2
6666666664

qy

qt

qð Þ
qs
� qy

qs

qð Þ
qt

0

0
qx

qs

qð Þ
qt
� qx

qt

qð Þ
qs

qx

qs

qð Þ
qt
� qx

qt

qð Þ
qs

qy

qt

qð Þ
qs
� qy

qs

qð Þ
qt

3
7777777775

ð10:2:16Þ

and ½N � is the 2� 8 shape function matrix given as the first matrix on the right side of
Eq. (10.2.7) and fdg is the column matrix on the right side of Eq. (10.2.7).

Defining ½B� as

½B � ¼ ½D 0� ½N �
ð3� 8Þ ð3� 2Þ ð2� 8Þ

ð10:2:17Þ

we have ½B� expressed as a function of s and t and thus have the strains in terms of s

and t. Here ½B� is of order 3� 8, as indicated in Eq. (10.2.17).
The explicit form of ½B� can be obtained by substituting Eq. (10.2.16) for ½D 0�

and Eqs. (10.2.5) for the shape functions into Eq. (10.2.17). The matrix multiplica-
tions yield

½Bðs; tÞ� ¼ 1

j½J �j ½½B1� ½B2� ½B3� ½B4�� ð10:2:18Þ

where the submatrices of ½B� are given by

½Bi� ¼

2
64

aðNi; sÞ � bðNi; tÞ 0

0 cðNi; tÞ � dðNi; sÞ
cðNi; tÞ � dðNi; sÞ aðNi; sÞ � bðNi; tÞ

3
75 ð10:2:19Þ

Here i is a dummy variable equal to 1, 2, 3, and 4, and

a ¼ 1

4
½y1ðs� 1Þ þ y2ð�1� sÞ þ y3ð1þ sÞ þ y4ð1� sÞ�

b ¼ 1

4
½y1ðt� 1Þ þ y2ð1� tÞ þ y3ð1þ tÞ þ y4ð�1� tÞ�

ð10:2:20Þ
c ¼ 1

4
½x1ðt� 1Þ þ x2ð1� tÞ þ x3ð1þ tÞ þ x4ð�1� tÞ�

d ¼ 1

4
½x1ðs� 1Þ þ x2ð�1� sÞ þ x3ð1þ sÞ þ x4ð1� sÞ�

Using the shape functions defined by Eqs. (10.2.5), we have

N1; s ¼
1

4
ðt� 1Þ N1; t ¼

1

4
ðs� 1Þ ðand so onÞ ð10:2:21Þ

where the comma followed by the variable s or t indicates di¤erentiation with respect
to that variable; that is, N1; s 1 qN1=qs, and so on. The determinant j½J �j is a polynomial
in s and t and is tedious to evaluate even for the simplest case of the linear plane
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quadrilateral element. However, using Eq. (10.2.10) for ½J� and Eqs. (10.2.3) for x and y,
we can evaluate j½J �j as

j½J �j ¼ 1

8
fXcgT

0 1� t t� s s� 1

t� 1 0 sþ 1 �s� t

s� t �s� 1 0 tþ 1

1� s sþ t �t� 1 0

2
6664

3
7775fYcg ð10:2:22Þ

fXcgT ¼ ½x1 x2 x3 x4� ð10:2:23Þwhere

fYcg ¼

y1

y2

y3

y4

8>>><
>>>:

9>>>=
>>>;

ð10:2:24Þand

We observe that j½J �j is a function of s and t and the known global coordinates
x1; x2; . . . ; y4. Hence, ½B� is a function of s and t in both the numerator and the de-
nominator [because of j½J�j given by Eq. (10.2.22)] and of the known global coordi-
nates x1 through y4.

The stress–strain relationship is again fsg ¼ ½D�½B�fdg, where because the ½B�
matrix is a function of s and t, so also is the stress matrix fsg.

Step 4 Derive the Element Stiffness Matrix and Equations

We now want to express the sti¤ness matrix in terms of s-t coordinates. For an ele-
ment with a constant thickness h, we have

½k� ¼
ðð

A

½B�T ½D�½B�h dx dy ð10:2:25Þ

However, ½B� is now a function of s and t, as seen by Eqs. (10.2.18) through (10.2.20),
and so we must integrate with respect to s and t. Once again, to transform the varia-
bles and the region from x and y to s and t, we must have a standard procedure that
involves the determinant of ½J �. This general type of transformation [4, 5] is given by

ðð

A

f ðx; yÞ dx dy ¼
ðð

A

f ðs; tÞj½J �j ds dt ð10:2:26Þ

where the inclusion of j½J �j in the integrand on the right side of Eq. (10.2.26) results from
a theorem of integral calculus (see Reference [5] for the complete proof of this theorem).
We also observe that the Jacobian (the determinant of the Jacobian matrix) relates an el-
ement area (dx dy) in the global coordinate system to an elemental area (ds dt) in the
natural coordinate system. For rectangles and parallelograms, J is the constant value
J ¼ A=4, where A represents the physical surface area of the element. Using Eq.
(10.2.26) in Eq. (10.2.25), we obtain

½k� ¼
ð1

�1

ð1

�1

½B�T ½D�½B�hj½J �j ds dt ð10:2:27Þ
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The j½J �j and ½B� are such as to result in complicated expressions within the inte-
gral of Eq. (10.2.27), and so the integration to determine the element sti¤ness matrix is
usually done numerically. A method for numerically integrating Eq. (10.2.27) is given
in Section 10.3. The sti¤ness matrix in Eq. (10.2.27) is of the order 8� 8.

Body Forces

The element body-force matrix will now be determined from

f fbg
ð8� 1Þ

¼
ð 1

�1

ð1

�1

½N�T

ð8� 2Þ
fXg
ð2� 1Þ

hj½J�j ds dt ð10:2:28Þ

Like the sti¤ness matrix, the body-force matrix in Eq. (10.2.28) has to be evaluated by
numerical integration.

Surface Forces

The surface-force matrix, say, along edge t ¼ 1 (Figure 10–5) with overall length L, is

f fsg
ð4� 1Þ

¼
ð1

�1

½Ns�T

ð4� 2Þ
fTg
ð2� 1Þ

h
L

2
ds ð10:2:29Þ

fs3s

fs3t

fs4s

fs4t

8>>><
>>>:

9>>>=
>>>;
¼
ð1

�1

N3 0 N4 0

0 N3 0 N4

� �T

evaluated
along t¼1

ps

pt

� �
h

L

2
ds

���������
ð10:2:30Þor

because N1 ¼ 0 and N2 ¼ 0 along edge t ¼ 1, and hence, no nodal forces exist at
nodes 1 and 2. For the case of uniform (constant) ps and pt along edge t ¼ 1, the
total surface-force matrix is

f fsg ¼ h
L

2
½0 0 0 0 ps pt ps pt�T ð10:2:31Þ

Surface forces along other edges can be obtained similar to Eq. (10.2.30) by merely using
the proper shape functions associated with the edge where the tractions are applied.

Figure 10–5 Surface traction: ps and pt acting at edge t ¼ 1
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Example 10.1

For the four-noded linear plane quadrilateral element shown in Figure 10–6 with a
uniform surface traction along side 2–3, evaluate the force matrix by using the energy
equivalent nodal forces obtained from the integral similar to Eq. (10.2.29). Let the
thickness of the element be h ¼ 0:1 in.

SOLUTION:
Using Eq. (10.2.29), we have

f fsg ¼
ð1

�1

½Ns�TfTgh
L

2
dt ð10:2:32Þ

With length of side 2–3 given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5� 8Þ2 þ ð4� 0Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 16
p

¼ 5 ð10:2:33Þ

Shape functions N2 and N3 must be used, as we are evaluating the surface traction
along side 2–3 (at s ¼ 1). Therefore, Eq. (10.2.33) becomes

f fsg ¼
ð1

�1

½Ns�TfTgh
L

2
dt ¼

ð1

�1

N2 0 N3 0

0 N2 0 N3

" #T
ps

pt

� �
h

L

2
dt ð10:2:34Þ

evaluated along s ¼ 1

The shape functions for the four-noded linear plane element are taken from
Eq. (10.2.5) as

N2¼
ð1þsÞð1�tÞ

4
¼s�t�stþ1

4
N3¼

ð1þsÞð1þtÞ
4

¼sþtþstþ1

4
ð10:2:35Þ

The surface traction matrix is given by

fTg ¼ ps

pt

� �
¼ 2000

0

� �
ð10:2:36Þ

(0, 4)

y

4

(5, 4)

(8, 0)1

3

2 x

Tx = 2000 psi uniform

Figure 10–6 Element subjected to uniform surface traction
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Substituting Eq. (10.2.33) for L and Eq. (10.2.36) for the surface traction matrix and
the thickness h ¼ 0:1 inch into Eq. (10.2.32), we obtain

f fsg ¼
ð1

�1

½Ns�TfTgh
L

2
dt ¼

ð1

�1

N2 0
0 N2

N3 0
0 N3

2
664

3
775 2000

0

� �
0:1

5

2
dt ð10:2:37Þ

evaluated along s ¼ 1
Simplifying Eq. (10.2.37), we obtain

f fsg ¼ 0:25

ð1

�1

2000N2

0
2000N3

0

2
664

3
775dt ¼ 500

ð1

�1

N2

0
N3

0

2
664

3
775dt ð10:2:38Þ

evaluated along s ¼ 1

Substituting the shape functions from Eq. (10.2.35) into Eq. (10.2.38), we have

f fsg ¼ 500

ð1

�1

s� t� stþ 1

4
0

sþ tþ stþ 1

4

0

2
6666664

3
7777775

dt ð10:2:39Þ

evaluated along s ¼ 1

Upon substituting s ¼ 1 into the integrand in Eq. (10.2.39) and performing the explicit
integration in Eq. (10.2.40), we obtain

f fsg ¼ 500

ð1

�1

2� 2t

4

0
2tþ 2

4

0

2
6666664

3
7777775

dt ¼ 500

0:50t� t2

4
0

0:50tþ t2

4
0

2
666664

3
777775

1

�1

ð10:2:40Þ

Evaluating the resulting integration expression for each limit, we obtain the final ex-
pression for the surface traction matrix as

f fsg ¼ 500

0:50� 0:25

0

0:50þ 0:25
0

2
6664

3
7775� 500

�0:50� 0:25

0

�0:50þ 0:25
0

2
6664

3
7775 ¼ 500

1
0
1
0

2
664

3
775lb ð10:2:41Þ

Or in explicit form the surface tractions at nodes 2 and 3 are

fs2s

fs2t

fs3s

fs3t

8>><
>>:

9>>=
>>;
¼

500
0

500
0

2
664

3
775lb ð10:2:42Þ

9
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d 10.3 Newton-Cotes and Gaussian Quadrature d
In this section, we will describe two methods for numerical evaluation of definite inte-
grals, because it has proven most useful for finite element work.

We begin with the simpler more common integration method of Newton-Cotes.
The Newton-Cotes methods for one and two intervals of integration are the well-
known trapezoid and Simpson’s one-third rule, respectively. We will then describe
Gauss’ method for numerical evaluation of definite integrals. After describing both
methods, we will then understand why the Gaussian quadrature method is used in fi-
nite element work.

Newton-Cotes Numerical Integration

We first describe the common numerical integration method called the Newton-Cotes
method for evaluation of definite integrals. However, the method does not yield as
accurate of results as the Gaussian quadrature method and so is not normally used
in finite element method evaluations, such as to evaluate the sti¤ness matrix.

To evaluate the integral

I ¼
ð1

�1

y dx

we assume the sampling points of yðxÞ are spaced at equal intervals. Since the limits of
integration are from �1 to 1 using the isoparametric formulation, the Newton-Cotes
formula is given by

I ¼
ð1

�1

y dx ¼ h
Xn

i¼ 0

Ciyi ¼ h½C0y0 þ C1y1 þ C2y2 þ C3y3 þ . . .þ Cnyn� ð10:3:1Þ

where the Ci are the Newton-Cotes constants for numerical integration with i intervals
(the number of intervals will be one less than the number of sampling points, n) and h

is the interval between the limits of integration (for limits of integration between �1
and 1 this makes h ¼ 2). The Newton-Cotes constants have been published and are
summarized in Table 10–1 for i ¼ 1 to 6. The case i ¼ 1 corresponds to the well-
known trapezoid rule illustrated by Figure 10–7. The case i ¼ 2 corresponds to the

Table 10–1 Table for Newton-Cotes intervals and points for integration,ð1

�1

yðxÞdx ¼ h
Xn

i¼ 0

Ciyi

Intervals, No. of

i Points, n C0 C1 C2 C3 C4 C5 C6

1 2 1=2 1=2 (trapezoid rule)
2 3 1/6 4/6 1/6 (Simpson’s 1/3 rule)
3 4 1/8 3/8 3/8 1/8 (Simpson’s 3/8 rule)
4 5 7/90 32/90 12/90 32/90 7/90
5 6 19/288 75/288 50/288 50/288 75/288 19/288
6 7 41/840 216/840 27/840 272/840 27/840 216/840 41/840
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well-known Simpson one-third rule. It is shown [9] that the formulas for i ¼ 3 and
i ¼ 5 have the same accuracy as the formulas for i ¼ 2 and i ¼ 4, respectively. There-
fore, it is recommended that the even formulas with i ¼ 2 and i ¼ 4 be used in prac-
tice. To obtain greater accuracy one can then use a smaller interval (include more
evaluations of the function to be integrated). This can be accomplished by using a
higher-order Newton-Cotes formula, thus increasing the number of intervals i.

It is shown [9] that we need to use n equally spaced sampling points to integrate
exactly a polynomial of order at most n� 1. On the other hand, using Gaussian quadrature
we will show that we use unequally spaced sampling points n and integrate exactly a
polynomial of order at most 2n� 1. For instance, using the Newton-Cotes formula
with n ¼ 2 sampling points, the highest order polynomial we can integrate exactly is
a linear one. However, using Gaussian quadrature, we can integrate a cubic polyno-
mial exactly. Gaussian quadrature is then more accurate with fewer sampling points
than Newton-Cotes quadrature. This is because Gaussian quadrature is based on opti-
mizing the position of the sampling points (not making them equally spaced as in the
Newton-Cotes method) and also optimizing the weights Wi given in Table 10–2.

y

x

y0

y1

−1 0 1

Figure 10–7 Approximation of numerical integration (approximate area under curve)
using i ¼ 1 interval, n ¼ 2 sampling points (trapezoid rule), for

I ¼
ð1

�1

yðxÞdx ¼ h
X2

i¼ 0

Ciyi

Table 10–2 Table for Gauss points for integration from minus one to one,ð1

�1

yðxÞdx ¼
Xn

i¼1

Wiyi

Number
of Points Locations, xi

Associated
Weights, Wi

1 x1 ¼ 0:000 . . . 2.000
2 x1; x2 ¼G0:57735026918962 1.000
3 x1; x3 ¼G0:77459666924148 5

9 ¼ 0:555 . . .

x2 ¼ 0:000 . . . 8
9 ¼ 0:888 . . .

4 x1; x4 ¼G0:8611363116 0.3478548451
x2; x3 ¼G0:3399810436 0.6521451549
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After the function is evaluated at the sampling points, the corresponding weights are
multiplied by these evaluated functions as is illustrated in Example 10.3.

Example 10.2 is used to illustrate the Newton-Cotes method and compare its
accuracy to that of the Gaussian quadrature method subsequently described.

Example 10.2

Using the Newton-Cotes method with i ¼ 2 intervals (n ¼ 3 sampling points), evalu-
ate the integrals (a) I ¼

Ð 1

�1½x2 þ cosðx=2Þ�dx and (b) I ¼
Ð 1

�1ð3x � xÞdx.

SOLUTION:
Using Table 10–1 with three sampling points means we evaluate the function inside
the integrand at x ¼ �1, x ¼ 0, and x ¼ 1, and multiply each evaluated function by
the respective Newton-Cotes numbers, 1/6, 4/6, and 1/6. We then add these three
products together and finally multiply this sum by the interval of integration (h ¼ 2)
as follows:

I ¼ 2
1

6
y0 þ

4

6
y1 þ

1

6
y2

� �
ð10:3:2Þ

(a): Using the integrand in part (a), we obtain

y0 ¼ x2 þ cosðx=2Þ evaluated at x ¼ �1; etc. as follows:

y0 ¼ ð�1Þ2 þ cosð�1=2 radÞ ¼ 1:8775826

y1 ¼ ð0Þ2 þ cosð0=2Þ ¼ 1 ð10:3:3Þ

y2 ¼ ð1Þ2 þ cosð1=2 radÞ ¼ 1:8775826

Substituting y0 � y2 from Eq. (10.3.3) into Eq. (10.3.2), we obtain the evaluation of
the integral as

I ¼ 2
1

6
ð1:8775826Þ þ 4

6
ð1Þ þ 1

6
ð1:8775826Þ

� �
¼ 2:585

This solution compares exactly to the evaluation performed using Gaussian quadra-
ture subsequently shown in Example 10.3 and to the exact solution. However, for
higher-order functions the Gaussian quadrature method yields more accurate results
than the Newton-Cotes method as illustrated by part (b) as follows:

(b): Using the integrand in part (b), we obtain

y0 ¼ 3ð�1Þ � ð�1Þ ¼ 4

3

y1 ¼ 30 � 0 ¼ 1

y2 ¼ 31 � ð1Þ ¼ 2
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Substituting y0 � y2 into Eq. (10.3.2) we obtain I as

I ¼ 2
1

6

4

3

� �
þ 4

6
ð1Þ þ 1

6
ð2Þ

� �
¼ 2:444

The error is 2:444� 2:427 ¼ 0:017. This error is larger than that found using Gaussian
quadrature (see Example 10.3 (b)). 9

Gaussian Quadrature

To evaluate the integral

I ¼
ð1

�1

y dx ð10:3:4Þ

where y ¼ yðxÞ, we might choose (sample or evaluate) y at the midpoint yð0Þ ¼ y1

and multiply by the length of the interval, as shown in Figure 10–8, to arrive at
I ¼ 2y1, a result that is exact if the curve happens to be a straight line. This is an
example of what is called one-point Gaussian quadrature because only one sampling
point was used. Therefore,

I ¼
ð1

�1

yðxÞ dxG 2yð0Þ ð10:3:5Þ

which is the familiar midpoint rule. Generalization of the formula [Eq. (10.3.5]
leads to

I ¼
ð1

�1

y dx ¼
Xn

i¼1

Wiyi ð10:3:6Þ

That is, to approximate the integral, we evaluate the function at several sampling
points n, multiply each value yi by the appropriate weight Wi, and add the terms.
Gauss’s method chooses the sampling points so that for a given number of points,
the best possible accuracy is obtained. Sampling points are located symmetrically
with respect to the center of the interval. Symmetrically paired points are given the
same weight Wi. Table 10–2 gives appropriate sampling points and weighting

Figure 10–8 Gaussian quadrature using one sampling point
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coe‰cients for the first three orders—that is, one, two, or three sampling points (see
Reference [2] for more complete tables). For example, using two points (Figure 10–9),
we simply have I ¼ y1 þ y2 because W1 ¼W2 ¼ 1:000. This is the exact result if
y ¼ f ðxÞ is a polynomial containing terms up to and including x3. In general, Gaussian
quadrature using n points (Gauss points) is exact if the integrand is a polynomial of
degree 2n� 1 or less. In using n points, we e¤ectively replace the given function
y ¼ f ðxÞ by a polynomial of degree 2n� 1. The accuracy of the numerical integration
depends on how well the polynomial fits the given curve.

If the function f ðxÞ is not a polynomial, Gaussian quadrature is inexact, but it
becomes more accurate as more Gauss points are used. Also, it is important to under-
stand that the ratio of two polynomials is, in general, not a polynomial; therefore,
Gaussian quadrature will not yield exact integration of the ratio.

Two-Point Formula

To illustrate the derivation of a two-point ðn ¼ 2Þ Gauss formula based on Eq. (10.3.6),
we have

I ¼
ð1

�1

y dx ¼W1 y1 þW2 y2 ¼W1 yðx1Þ þW2 yðx2Þ ð10:3:7Þ

There are four unknown parameters to determine: W1;W2; x1, and x2. Therefore, we
assume a cubic function for y as follows:

y ¼ C0 þ C1xþ C2x2 þ C3x3 ð10:3:8Þ

In general, with four parameters in the two-point formula, we would expect the Gauss
formula to exactly predict the area under the curve. That is,

A ¼
ð1

�1

ðC0 þ C1xþ C2x2 þ C3x3Þ dx ¼ 2C0 þ
2C2

3
ð10:3:9Þ

However, we will assume, based on Gauss’s method, that W1 ¼W2 and x1 ¼ x2 as
we use two symmetrically located Gauss points at x ¼Ga with equal weights. The
area predicted by Gauss’s formula is

AG ¼Wyð�aÞ þWyðaÞ ¼ 2WðC0 þ C2a2Þ ð10:3:10Þ

Figure 10–9 Gaussian quadrature using two sampling points
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where yð�aÞ and yðaÞ are evaluated using Eq. (10.3.8). If the error, e ¼ A� AG, is to
vanish for any C0 and C2, we must have, using Eqs. (10.3.9) and (10.3.10) in the error
expression,

qe

qC0
¼ 0 ¼ 2� 2W or W ¼ 1 ð10:3:11Þ

qe

qC2
¼ 0 ¼ 2

3
� 2a2W or a ¼

ffiffiffi
1

3

r
¼ 0:5773 . . . ð10:3:12Þand

Now W ¼ 1 and a ¼ 0:5773 . . . are the Wi’s and ai’s (xi’s) for the two-point Gaussian
quadrature given in Table 10–2.

Example 10.3

Evaluate the integrals ðaÞ I ¼
Ð 1

�1½x2 þ cosðx=2Þ� dx and (b) I ¼
Ð 1

�1ð3x � xÞdx using
three-point Gaussian quadrature.

SOLUTION:
(a) Using Table 10–2 for the three Gauss points and weights, we have x1 ¼ x3 ¼
G0:77459 . . . ; x2 ¼ 0:000 . . . ; W1 ¼W3 ¼ 5

9, and W2 ¼ 8
9. The integral then becomes

I ¼ ð�0:77459Þ2 þ cos � 0:77459

2
rad

� �� �
5

9
þ 02 þ cos

0

2

� �
8

9

þ ð0:77459Þ2 þ cos
0:77459

2
rad

� �� �
5

9

¼ 1:918þ 0:667 ¼ 2:585

Compared to the exact solution, we have Iexact ¼ 2:585.
In this example, three-point Gaussian quadrature yields the exact answer to four

significant figures.
(b) Using Table 10–2 for the three Gauss points and weights as in part (a), the

integral then becomes

I ¼ ½3ð�0:77459Þ � ð�0:77459Þ� 5
9
þ ½30 � 0� 8

9
þ ½3ð0:77459Þ � ð0:77459Þ� 5

9

¼ 0:66755þ 0:88889þ 0:86065 ¼ 2:4229ð2:423 to four significant figuresÞ

Compared to the exact solution, we have Iexact ¼ 2:427. The error is 2:427� 2:423 ¼
0:004. 9
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In two dimensions, we obtain the quadrature formula by integrating first with
respect to one coordinate and then with respect to the other as

I ¼
ð1

�1

ð1

�1

f ðs; tÞ ds dt ¼
ð1

�1

X
i

Wi f ðsi; tÞ
" #

dt

¼
X

j

Wj

X
i

Wi f ðsi; tjÞ
" #

¼
X

i

X
j

WiWj f ðsi; tjÞ ð10:3:13Þ

In Eq. (10.3.13), we need not use the same number of Gauss points in each direction
(that is, i does not have to equal j), but this is usually done. Thus, for example, a
four-point Gauss rule (often described as a 2� 2 rule) is shown in Figure 10–10.
Equation (10.3.13) with i ¼ 1; 2 and j ¼ 1; 2 yields

I ¼W1W1 f ðs1; t1Þ þW1W2 f ðs1; t2Þ þW2W1 f ðs2; t1Þ þW2W2 f ðs2; t2Þ ð10:3:14Þ

where the four sampling points are at si, ti ¼G0:5773 . . . ¼G1=
ffiffiffi
3
p

, and the weights
are all 1.000. Hence, the double summation in Eq. (10.3.13) can really be interpreted
as a single summation over the four points for the rectangle.

In general, in three dimensions, we have

I ¼
ð1

�1

ð1

�1

ð1

�1

f ðs; t; zÞ ds dt dz ¼
X

i

X
j

X
k

WiWjWk f ðsi; tj; zkÞ ð10:3:15Þ

d 10.4 Evaluation of the Stiffness Matrix and
Stress Matrix by Gaussian Quadrature

d

Evaluation of the Stiffness Matrix

For the two-dimensional element, we have shown in previous chapters that

½k� ¼
ðð

A

½Bðx; yÞ�T ½D�½Bðx; yÞ�h dx dy ð10:4:1Þ

where, in general, the integrand is a function of x and y and nodal coordinate values.

Figure 10–10 Four-point Gaussian quadrature in two dimensions
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We have shown in Section 10.2 that ½k� for a quadrilateral element can be eval-
uated in terms of a local set of coordinates s-t, with limits from minus one to one with-
in the element, and in terms of global nodal coordinates as given by Eq. (10.2.27). We
repeat Eq. (10.2.27) here for convenience as

½k� ¼
ð1

�1

ð1

�1

½Bðs; tÞ�T ½D�½Bðs; tÞ�j½J �jh ds dt ð10:4:2Þ

where j½J �j is defined by Eq. (10.2.22) and ½B� is defined by Eq. (10.2.18). In Eq.
(10.4.2), each coe‰cient of the integrand ½B�T ½D�½B�j½J �j must be evaluated by numer-
ical integration in the same manner as f ðs; tÞ was integrated in Eq. (10.3.13).

A flowchart to evaluate ½k� of Eq. (10.4.2) for an element using four-point Gaus-
sian quadrature is given in Figure 10–11. The four-point Gaussian quadrature rule is
relatively easy to use. Also, it has been shown to yield good results [7]. In Figure 10–11,
in explicit form for four-point Gaussian quadrature (now using the single summation
notation with i ¼ 1; 2; 3; 4), we have

½k� ¼ ½Bðs1; t1Þ�T ½D�½Bðs1; t1Þ�j½Jðs1; t1Þ�jhW1W1

þ ½Bðs2; t2Þ�T ½D�½Bðs2; t2Þ�j½Jðs2; t2Þ�jhW2W2

þ ½Bðs3; t3Þ�T ½D�½Bðs3; t3Þ�j½Jðs3; t3Þ�jhW3W3

þ ½Bðs4; t4Þ�T ½D�½Bðs4; t4Þ�j½Jðs4; t4Þ�jhW4W4 ð10:4:3Þ

Read in four Gauss points and weight functions
si, ti = ±0.5773 . . . ; Wi, Wj = i = 1., 1.

Zero [k(e)]

DO i = 1, 4

Let s = si, t = ti

Compute |[J (s, t)]|, [B(s, t)], [D]

Compute [k] = [B]T[D][B]|[J]|h

[k(e)] = [k(e)] + [k]WiWj

Figure 10–11 Flowchart to evaluate ½kðeÞ� by four-point Gaussian quadrature

where s1 ¼ t1 ¼ �0:5773, s2 ¼ �0:5773, t2 ¼ 0:5773, s3 ¼ 0:5773, t3 ¼ �0:5773, and
s4 ¼ t4 ¼ 0:5773 as shown in Figure 10–10, and W1 ¼W2 ¼W3 ¼W4 ¼ 1:000.
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Example 10.4

Evaluate the sti¤ness matrix for the quadrilateral element shown in Figure 10–12
using the four-point Gaussian quadrature rule. Let E ¼ 30� 106 psi and n ¼ 0:25.
The global coordinates are shown in inches. Assume h ¼ 1 in.

SOLUTION:
Using Eq. (10.4.3), we evaluate the ½k� matrix. Using the four-point rule, the four
points are (also see Figure 10–10).

ðs1; t1Þ ¼ ð�0:5773;�0:5773Þ
ðs2; t2Þ ¼ ð�0:5773; 0:5773Þ ð10:4:4aÞðs3; t3Þ ¼ ð0:5773;�0:5773Þ
ðs4; t4Þ ¼ ð0:5773; 0:5773Þ

with weights W1 ¼W2 ¼W3 ¼W4 ¼ 1:000.
Therefore, by Eq. (10.4.3), we have

½k� ¼ ½Bð�0:5773;�0:5773Þ�T ½D�½Bð�0:5773;�0:5773Þ�
� j½Jð�0:5773;�0:5773Þ�jð1Þð1:000Þð1:000Þ
þ ½Bð�0:5773; 0:5773Þ�T ½D�½Bð�0:5773; 0:5773Þ�
� j½Jð�0:5773; 0:5773Þ�jð1Þð1:000Þð1:000Þ
þ ½Bð0:5773;�0:5773Þ�T ½D�½Bð0:5773;�0:5773Þ�
� j½Jð0:5773;�0:5773Þ�jð1Þð1:000Þð1:000Þ
þ ½Bð0:5773; 0:5773Þ�T ½D�½Bð0:5773; 0:5773Þ�
� j½Jð0:5773; 0:5773Þ�jð1Þð1:000Þð1:000Þ ð10:4:4bÞ

To evaluate ½k�, we first evaluate j½J �j at each Gauss point by using Eq. (10.2.22). For
instance, one part of j½J �j is given by

t

s
Figure 10–12 Quadrilateral element for
stiffness evaluation

j½Jð�0:5773;�0:5773Þ�j ¼ 1

8
½3 5 5 3�

�

0 1�ð�0:5773Þ �0:5773�ð�0:5773Þ �0:5773�1

�0:5773�1 0 �0:5773þ1 �0:5773�ð�0:5773Þ
�0:5773�ð�0:5773Þ �ð�0:5773Þ�1 0 �0:5773þ1

1�ð�0:5773Þ �0:5773þð�0:5773Þ �0:5773�1 0

2
6664

3
7775

�

2

2

4

4

8>>><
>>>:

9>>>=
>>>;
¼ 1:000 (10.4.4c)
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Similarly,
j½Jð�0:5773; 0:5773Þ�j ¼ 1:000

j½Jð0:5773;�0:5773Þ�j ¼ 1:000 ð10:4:4dÞ

j½Jð0:5773; 0:5773Þ�j ¼ 1:000

Even though j½J �j ¼ 1 in this example, in general, j½J �j0 1 and varies in space.
Then, using Eqs. (10.2.18) and (10.2.19), we evaluate ½B�. For instance, one part

of ½B � is

½Bð�0:5773;�0:5773Þ� ¼ 1

j½Jð�0:5773;�0:5773Þ�j ½½B1� ½B2� ½B3� ½B4��

where, by Eq. (10.2.19),

½B1� ¼

2
64

aN1; s � bN1; t 0

0 cN1; t � dN1; s

cN1; t � dN1; s aN1; s � bN1; t

3
75 ð10:4:4eÞ

and by Eqs. (10.2.20) and (10.2.21), a; b; c; d;N1; s, and N1; t are evaluated. For
instance,

a ¼ 1

4
½y1ðs� 1Þ þ y2ð�1� sÞ þ y3ð1þ sÞ þ y4ð1� sÞ�

¼ 1

4
f2ð�0:5773� 1Þ þ 2½�1� ð�0:5773Þ�g þ 4½1þ ð�0:5773Þ� þ 4½1� ð�0:5773Þ�

¼ 1:00 ð10:4:4 fÞ
with similar computations used to obtain b, c, and d. Also,

N1; s ¼
1

4
ðt� 1Þ ¼ 1

4
ð�0:5773� 1Þ ¼ �0:3943

ð10:4:4gÞ
N1; t ¼

1

4
ðs� 1Þ ¼ 1

4
ð�0:5773� 1Þ ¼ �0:3943

Similarly, ½B2�, ½B3�, and ½B4� must be evaluated like ½B1�, at ð�0:5773;�0:5773Þ. We
then repeat the calculations to evaluate ½B� at the other Gauss points [Eq. (10.4.4a)].

Using a computer program written specifically to evaluate ½B� at each Gauss
point and then ½k�, we obtain the final form of ½Bð�0:5773;�0:5773Þ� as

½Bð�0:5773;�0:5773Þ� ¼
2
64
�0:1057 0 0:1057 0 0 �0:1057 0 �0:3943

�0:1057 �0:1057 �0:3943 0:1057 0:3943 0 �0:3943 0

0 0:3943 0 0:1057 0:3943 0:3943 0:1057 �0:3943

3
75

with similar expressions for ½Bð�0:5773; 0:5773Þ�, and so on.
(10.4.4h)
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From Eq. (6.1.8), the matrix ½D� is

½D� ¼ E

1� n2

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ¼

2
64

32 8 0

8 32 0

0 0 12

3
75� 106 psi ð10:4:4iÞ

Finally, using Eq. (10.4.4b), the matrix ½k� becomes

½k� ¼ 104

2
6666666666664

1466 500 �866 �99 �733 �500 133 99

500 1466 99 133 �500 �733 �99 �866

�866 99 1466 �500 133 �99 �733 500

�99 133 �500 1466 99 �866 500 �733

�733 �500 133 99 1466 500 �866 �99

�500 �733 �99 �866 500 1466 99 133

133 �99 �733 500 �866 99 1466 �500

99 �866 500 �733 �99 133 �500 1466

3
7777777777775

ð10:4:4jÞ 9

Evaluation of Element Stresses

The stresses fsg ¼ ½D�½B�fdg are not constant within the quadrilateral element. Be-
cause ½B� is a function of s and t coordinates, fsg is also a function of s and t. In prac-
tice, the stresses are evaluated at the same Gauss points used to evaluate the sti¤ness
matrix ½k�. For a quadrilateral using 2� 2 integration, we get four sets of stress data.
To reduce the data, it is often practical to evaluate fsg at s ¼ 0, t ¼ 0 instead. An-
other method mentioned in Section 7.4 is to evaluate the stresses in all elements at a
shared (common) node and then use an average of these element nodal stresses to rep-
resent the stress at the node. Most computer programs use this method. Stress plots
obtained in these programs are based on this average nodal stress method. Example
10.5 illustrates the use of Gaussian quadrature to evaluate the stress matrix at the
s ¼ 0, t ¼ 0 location of the element.

Example 10.5

For the rectangular element shown in Figure 10–12 of Example 10.4, assume plane
stress conditions with E ¼ 30� 106 psi, n ¼ 0:3, and displacements u1 ¼ 0, v1 ¼ 0,
u2 ¼ 0:001 in., v2 ¼ 0:0015 in., u3 ¼ 0:003 in., v3 ¼ 0:0016 in., u4 ¼ 0, and v4 ¼ 0.
Evaluate the stresses, sx; sy, and txy at s ¼ 0, t ¼ 0.
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SOLUTION:
Using Eqs. (10.2.18) through (10.2.20), we evaluate ½B� at s ¼ 0, t ¼ 0.

½B� ¼ 1

j½J �j ½½B1� ½B2� ½B3� ½B4�� ð10:2:18Þ

½Bð0; 0Þ� ¼ 1

j½Jð0; 0Þ�j ½B1ð0; 0Þ� ½B2ð0; 0Þ� ½B3ð0; 0Þ� ½B4ð0; 0Þ�
(repeated)

By Eq. (10.2.22), j½J �j is

j½Jð0; 0Þ�j ¼ 1

8
½3 5 5 3�

0 1 0 �1

�1 0 1 0

0 �1 0 1

1 0 �1 0

2
6664

3
7775

2

2

4

4

8>>><
>>>:

9>>>=
>>>;

¼ 1

8
½�2 �2 2 2�

2

2

4

4

8>>><
>>>:

9>>>=
>>>;

j½Jð0; 0Þ�j ¼ 1 ð10:4:5aÞ

Notice that again j½J�j ¼ 1 is equal to A=4 where A ¼ 2� 2 ¼ 4 in2 is the physical
surface area for the rectangle in Figure 10–12.

By Eq. (10.2.19), we have

½Bi� ¼

2
64

aNi; s � bNi; t 0

0 cNi; t � dNi; s

cNi; t � dNi; s aNi; s � bNi; t

3
75 ð10:4:5bÞ

By Eq. (10.2.20), we obtain

a ¼ 1 b ¼ 0 c ¼ 1 d ¼ 0

Di¤erentiating the shape functions in Eq. (10.2.5) with respect to s and t and then
evaluating at s ¼ 0, t ¼ 0, we obtain

N1; s ¼ � 1
4 N1; t ¼ � 1

4 N2; s ¼ 1
4 N2; t ¼ � 1

4 ð10:4:5cÞ
N3; s ¼ 1

4 N3; t ¼ 1
4 N4; s ¼ � 1

4 N4; t ¼ 1
4

Therefore, substituting Eqs. (10.4.5c) into Eq. (10.4.5b), we obtain

½B1� ¼
� 1

4 0

0 � 1
4

� 1
4 � 1

4

2
64

3
75 ½B2� ¼

1
4 0

0 � 1
4

� 1
4

1
4

2
64

3
75 ½B3� ¼

1
4 0

0 1
4

1
4

1
4

2
64

3
75 ½B4� ¼

� 1
4 0

0 1
4

1
4 � 1

4

2
64

3
75

ð10:4:5dÞ
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The element stress matrix fsg is then obtained by substituting Eqs. (10.4.5a) for
j½J �j ¼ 1 and (10.4.5d) into Eq. (10.2.18) for ½B� and the plane stress ½D� matrix from
Eq. (6.1.8) into the definition for fsg as

fsg ¼ ½D�½B�fdg ¼ ð30Þ

106

2
64

1 0:3 0
0:3 1 0
0 0 0:35

3
75

1� 0:09

�

2
64
�0:25 0 0:25 0 0:25 0 �0:25 0

0 �0:25 0 �0:25 0 0:25 0 0:25

�0:25 �0:25 �0:25 0:25 0:25 0:25 0:25 �0:25

3
75

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

0

0

0:001

0:0015

0:003

0:0016

0

0

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

fsg ¼
3:321 � 104

1:071 � 104

1:471 � 104

8><
>:

9>=
>; psi 9

d 10.5 Higher-Order Shape Functions d
In general, higher-order element shape functions can be developed by adding additional
nodes to the sides of the linear element. These elements result in higher-order strain
variations within each element, and convergence to the exact solution thus occurs at
a faster rate using fewer elements. (However, a trade-o¤ exists because a more compli-
cated element takes up so much computation time that even with few elements in the
model, the computation time can become larger than for the simple linear element
model.) Another advantage of the use of higher-order elements is that curved bounda-
ries of irregularly shaped bodies can be approximated more closely than by the use of
simple straight-sided linear elements.

Linear Strain Bar

To illustrate the concept of higher-order elements, we will begin with the three-noded lin-
ear strain quadratic displacement (and quadratic shape functions) shown in Figure 10–13.
Figure 10–13 shows a quadratic isoparametric bar element (also called a linear strain bar)
with three coordinates of nodes, x1, x2, and x3, in the global coordinates.
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Example 10.6

For the three-noded linear strain bar isoparametric element shown in Figure 10–13,
determine (a) the shape functions, N1, N2, and N3, and (b) the strain–displacement
matrix [B]. Assume the general axial displacement function to be a quadratic taken
as u ¼ a1 þ a2sþ a3s2.

SOLUTION:
(a) As we are formulating shape functions for an isoparametric element, we assume the
following axial coordinate function for x as

x ¼ a1 þ a2sþ a3s2 ð10:5:1Þ
Evaluating the ai’s in terms of the nodal coordinates, we obtain

xð�1Þ ¼ a1 � a2 þ a3 ¼ x1 or x1 ¼ a1 � a2 þ a3

xð0Þ ¼ a1 ¼ x3 or x3 ¼ a1

xð1Þ ¼ a1 þ a2 þ a3 ¼ x2 or x2 ¼ a1 � a2 þ a3 ð10:5:2Þ

Substituting a1 ¼ x3 from the second of Eqs. (10.5.2), into the first and third of
Eqs. (10.5.2), we obtain a2 and a3 as follows:

x1 ¼ x3 � a2 þ a3 ð10:5:3Þ
x2 ¼ x3 þ a2 þ a3

Adding Eqs. (10.5.3) together and solving for a3 gives the following:

a3 ¼ ðx1 þ x2 � 2x3Þ=2 ð10:5:4Þ
x1 ¼ x3 � a2 þ ððx1 þ x2 � 2x3Þ=2Þ
a2 ¼ x3 � x1 þ ððx1 þ x2 � 2x3Þ=2Þ ¼ ðx2 � x1Þ=2 ð10:5:5Þ

Substituting the values for a1, a2, and a3 from Eqs. (10.5.2), (10.5.4), and (10.5.5) into
the general equation for x given by Eq. (10.5.1), we obtain

x ¼ a1 þ a2sþ a3s2 ¼ x3 þ
x2 � x1

2
sþ x1 þ x2 � 2x3

2
s2 ð10:5:6Þ

Combining like terms in x1, x2, and x3, from Eq. (10.5.6), we obtain the final form of
x as:

x ¼ sðs� 1Þ
2

� �
x1 þ

sðsþ 1Þ
2

x2 þ ð1� s2Þx3 ð10:5:7Þ

1 3 2

x1 x3 x2

L
2

L
2

s

Figure 10–13 Three-noded linear
strain bar element
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Recall that the function x can be expressed in terms of the shape function matrix and
the axial coordinates, we have from Eq. (10.5.7)

fxg ¼ ½N1 N2 N3�
x1

x2

x3

8<
:

9=
; ¼

sðs� 1Þ
2

� �
sðsþ 1Þ

2
ð1� s2Þ

� � x1

x2

x3

8<
:

9=
; ð10:5:8Þ

Therefore the shape functions are

N1 ¼
sðs� 1Þ

2
N2 ¼

sðsþ 1Þ
2

N3 ¼ ð1� s2Þ ð10:5:9Þ

(b) We now determine the strain–displacement matrix [B] as follows:
From our basic definition of axial strain we have

fexg ¼
du

dx
¼ du

ds

ds

dx
¼ ½B�

u1

u2

u3

8<
:

9=
; ð10:5:10Þ

Using an isoparametric formulation means the displacement function is of the same
form as the axial coordinate function. Therefore, using Eq. (10.5.6), we have

u ¼ u3 þ
u2

2
s� u1

2
sþ u1

2
s2 þ u2

2
s2 � 2u3

2
s2 ð10:5:11Þ

Di¤erentiating u with respect to s, we obtain

du

ds
¼ u2

2
� u1

2
þ u1sþ u2s� 2u3s ¼ s� 1

2

� �
u1 þ sþ 1

2

� �
u2 þ ð�2sÞu3 ð10:5:12Þ

We have previously proven that dx=ds ¼ L=2 ¼ j½J�j (see Eq. (10.1.9b). This relation-
ship holds for the higher-order one-dimensional elements as well as for the two-noded
constant strain bar element as long as node 3 is at the geometry center of the bar.
Using this relationship and Eq. (10.5.12) in Eq. (10.5.10), we obtain

du

dx
¼ du

ds

ds

dx
¼ 2

L

� �
s� 1

2

� �
u1 þ sþ 1

2

� �
u2 þ ð�2sÞu3

� �

¼ 2s� 1

L

� �
u1 þ

2sþ 1

L

� �
u2 þ

�4s

L

� �
u3

ð10:5:13Þ

In matrix form, Eq. (10.5.13) becomes

du

dx
¼ 2s� 1

L

2sþ 1

L

�4s

L

� � u1

u2

u3

8<
:

9=
; ð10:5:14Þ
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As Eq. (10.5.14) represents the axial strain, we have

fexg ¼
du

dx
¼ 2s� 1

L

2sþ 1

L

�4s

L

� � u1

u2

u3

8<
:

9=
; ¼ ½B�

u1

u2

u3

8<
:

9=
; ð10:5:15Þ

Therefore the gradient matrix [B] is given by

½B� ¼ 2s� 1

L

2sþ 1

L

�4s

L

� �
ð10:5:16Þ

9

Example 10.7

For the three-noded bar element shown previously in Figure 10–13, evaluate the sti¤-
ness matrix analytically. Use the [B] from Example 10.6.

SOLUTION:
From Example 10.6, Eq. (10.5.16), we have

½B� ¼ 2s� 1

L

2sþ 1

L

�4s

L

� �
; ½J� ¼ L

2
(see Eq. (10.1.9b)) ð10:5:17Þ

Substituting the expression for [B] into Eq. (10.1.15) for the sti¤ness matrix, we obtain

½k� ¼ L

2

ð1

�1

½B�T E½B�Ads ¼ AEL

2

ð1

�1

ð2s� 1Þ2

L2

ð2s� 1Þð2sþ 1Þ
L2

ð2s� 1Þð�4sÞ
L2

ð2sþ 1Þð2s� 1Þ
L2

ð2sþ 1Þ2

L2

ð2sþ 1Þð�4sÞ
L2

ð�4sÞð2s� 1Þ
L2

ð�4sÞð2sþ 1Þ
L2

ð�4sÞ2

L2

2
66666664

3
77777775

ds

ð10:5:18Þ
Simplifying the terms in Eq. (10.5.18) for easier integration, we have

½k� ¼ AE

2L

ð1

�1

4s2 � 4sþ 1 4s2 � 1 �8s2 þ 4s

4s2 � 1 4s2 þ 4sþ 1 �8s2 � 4s

�8s2 þ 4s �8s2 � 4s 16s2

2
64

3
75ds ð10:5:19Þ

Upon explicit integration of Eq. (10.5.19), we obtain

½k� ¼ AE

2L

4

3
s3 � 2s2 þ s

4

3
s3 � s � 8

3
s3 þ 2s2

4

3
s3 � s

4

3
s3 þ 2s2 þ s � 8

3
s3 � 2s2

� 8

3
s3 þ 2s2 � 8

3
s3 � 2s2 16

3
s3

2
6666664

3
7777775

������������

1

�1

ð10:5:20Þ
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Evaluating Eq. (10.5.20) at the limits 1 and �1, we have

½k� ¼ AE

2L

4

3
� 2þ 1

4

3
� 1 � 8

3
þ 2

4

3
� 1

4

3
þ 2þ 1 � 8

3
� 2

� 8

3
þ 2 � 8

3
� 2

16

3

2
6666664

3
7777775
�

� 4

3
� 2� 1 � 4

3
þ 1

8

3
þ 2

� 4

3
þ 1 � 4

3
þ 2� 1

8

3
� 2

8

3
þ 2

8

3
� 2 � 16

3

2
6666664

3
7777775

ð10:5:21Þ
Simplifying Eq. (10.5.21), we obtain the final sti¤ness matrix as

½k� ¼ AE

2L

4:67 0:667 �5:33

0:667 4:67 �5:33

�5:33 �5:33 10:67

2
64

3
75 ð10:5:22Þ

9

Example 10.8

We now illustrate how to evaluate the sti¤ness matrix for the three-noded bar element
shown in Figure 10–14 by using two-point Gaussian quadrature. We can then com-
pare this result to that obtained by the explicit integration performed in Example 10.7.

SOLUTION:
Starting with Eq. (10.5.18), we have for the sti¤ness matrix

½k� ¼ L

2

ð1

�1

½B�T E½B�Ads ¼ AEL

2

ð1

�1

ð2s� 1Þ2

L2

ð2s� 1Þð2sþ 1Þ
L2

ð2s� 1Þð�4sÞ
L2

ð2sþ 1Þð2s� 1Þ
L2

ð2sþ 1Þ2

L2

ð2sþ 1Þð�4sÞ
L2

ð�4sÞð2s� 1Þ
L2

ð�4sÞð2sþ 1Þ
L2

ð�4sÞ2

L2

2
66666664

3
77777775

ds

ð10:5:23Þ

Using two-point Gaussian quadrature, we evaluate the sti¤ness matrix at the two
points shown in Figure 10–14 (also based on Table 10–2):

s1 ¼ �0:57735; s2 ¼ 0:57735 ð10:5:24Þ

1 3 2

x1 x3s1 s2 x2

L
2

L
2

s0

Figure 10–14 Three–noded bar with
two Gauss points
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with weights given by

W1 ¼ 1; W2 ¼ 1 ð10:5:25Þ

We then evaluate each term in the integrand of Eq. (10.5.23) at each Gauss point and
multiply each term by its weight (here each weight is 1). We then add those Gauss
point evaluations together to obtain the final term for each element of the sti¤ness ma-
trix. For two-point evaluation, there will be two terms added together to obtain each
element of the sti¤ness matrix. We proceed to evaluate the sti¤ness matrix term by
term as follows:

The one–one element:

X2

i¼1

Wið2si � 1Þ2 ¼ ð1Þ½2ð�0:57735Þ � 1�2 þ ð1Þ½2ð0:57735Þ � 1�2 ¼ 4:6667

The one–two element:

X2

i¼1

Wið2si � 1Þð2si þ 1Þ ¼ð1Þ½ð2Þð�0:57735Þ � 1�½ð2Þð�0:57735Þ þ 1�

þ ð1Þ½ð2Þð0:57735Þ � 1�½ð2Þð0:57735Þ þ 1� ¼ 0:6667

The one–three element:

X2

i¼1

Wið�4sið2si � 1ÞÞ ¼ð1Þð�4Þð�0:57735Þ½ð2Þð�0:57735Þ � 1�

þ ð1Þð�4Þð0:57735Þ½ð2Þð0:57735Þ � 1� ¼ �5:3333

The two–two element:

X2

i¼1

Wið2si þ 1Þ2 ¼ ð1Þ½ð2Þð�0:57735Þ þ 1�2 þ ð1Þ½ð2Þð0:57735Þ þ 1�2 ¼ 4:6667

The two–three element:

X2

i¼1

Wi½�4sið2si þ 1Þ� ¼ð1Þð�4Þð�0:57735Þ½ð2Þð�0:57735Þ þ 1�

þ ð1Þð�4Þð0:57735Þ½ð2Þð0:57735Þ þ 1� ¼ �5:3333

The three–three element:

X2

i¼1

Wið16si
2Þ ¼ ð1Þð16Þð�0:57735Þ2 þ ð1Þð16Þð0:57735Þ2 ¼ 10:6667
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By symmetry, the two–one element equals the one–two element, etc. Therefore, from
the evaluations of the terms above, the final sti¤ness matrix is

½k� ¼ AE

2L

4:67 0:667 �5:33

0:667 4:67 �5:33

�5:33 �5:33 10:67

2
64

3
75 ð10:5:26Þ

Equation (10.5.26) is identical to Eq. (10.5.22) obtained analytically by direct explicit
integration of each term in the sti¤ness matrix. 9

To further illustrate the concept of higher-order elements, we will consider the qua-
dratic and cubic element shape functions as described in Reference [3].

Quadratic Rectangle (Q8 and Q9)

Figure 10–15 shows a quadratic isoparametric element with four corner nodes and
four additional midside nodes. This eight-noded element is often called a ‘‘Q8’’
element.

The shape functions of the quadratic element are based on the incomplete cubic
polynomial such that coordinates x and y are

x ¼ a1 þ a2sþ a3tþ a4stþ a5s2 þ a6t2 þ a7s2tþ a8st2

ð10:5:27Þ
y ¼ a9 þ a10sþ a11tþ a12stþ a13s2 þ a14t2 þ a15s2tþ a16st2

These functions have been chosen so that the number of generalized degrees of free-
dom (2 per node times 8 nodes equals 16) are identical to the total number of ai’s.
The literature also refers to this eight-noded element as a ‘‘serendipity’’ element as

Figure 10–15 Quadratic (Q8) isoparametric element
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it is based on an incomplete cubic, but it yields good results in such cases as beam
bending. We are also reminded that because we are considering an isoparametric formu-
lation, displacements u and v are of identical form as x and y, respectively, in
Eq. (10.5.27).

To describe the shape functions, two forms are required—one for corner nodes
and one for midside nodes, as given in Reference [3]. For the corner nodes
ði ¼ 1; 2; 3; 4Þ,

N1 ¼
1

4
ð1� sÞð1� tÞð�s� t� 1Þ

N2 ¼
1

4
ð1þ sÞð1� tÞðs� t� 1Þ

ð10:5:28Þ
N3 ¼

1

4
ð1þ sÞð1þ tÞðsþ t� 1Þ

N4 ¼
1

4
ð1� sÞð1þ tÞð�sþ t� 1Þ

or, in compact index notation, we express Eqs. (10.5.28) as

Ni ¼
1

4
ð1þ ssiÞð1þ ttiÞðssi þ tti � 1Þ ð10:5:29Þ

where i is the number of the shape function and

si ¼ �1; 1; 1;�1 ði ¼ 1; 2; 3; 4Þ
ð10:5:30Þ

ti ¼ �1;�1; 1; 1 ði ¼ 1; 2; 3; 4Þ

For the midside nodes ði ¼ 5; 6; 7; 8Þ,

N5 ¼
1

2
ð1� tÞð1þ sÞð1� sÞ

N6 ¼
1

2
ð1þ sÞð1þ tÞð1� tÞ

ð10:5:31Þ
N7 ¼

1

2
ð1þ tÞð1þ sÞð1� sÞ

N8 ¼
1

2
ð1� sÞð1þ tÞð1� tÞ

or, in index notation,

Ni ¼
1

2
ð1� s2Þð1þ ttiÞ ti ¼ �1; 1 ði ¼ 5; 7Þ

ð10:5:32Þ
Ni ¼

1

2
ð1þ ssiÞð1� t2Þ si ¼ 1;�1 ði ¼ 6; 8Þ

We can observe from Eqs. (10.5.28) and (10.5.31) that an edge (and displacement) can
vary with s2 (along t constant) or with t2 (along s constant). Furthermore, Ni ¼ 1 at
node i and Ni ¼ 0 at the other nodes, as it must be according to our usual definition
of shape functions.

522 d 10 Isoparametric Formulation

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The displacement functions are given by

u

v

� �
¼ N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8 0

0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 N7 0 N8

� �

�

u1

v1

u2

v2

..

.

v8

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð10:5:33Þ

and the strain matrix is now

feg ¼ ½D 0�½N�fd g

½B� ¼ ½D 0�½N�with

We can develop the matrix ½B� using Eq. (10.2.17) with ½D 0� from Eq. (10.2.16) and
with ½N� now the 2� 16 matrix given in Eq. (10.5.33), where the N ’s are defined in ex-
plicit form by Eq. (10.5.28) and (10.5.31).

To evaluate the matrix ½B� and the matrix ½k� for the eight-noded quadratic
isoparametric element, we now use the nine-point Gauss rule (often described as
a 3� 3 rule). Results using 2� 2 and 3� 3 rules have shown significant di¤eren-
ces, and the 3� 3 rule is recommended by Bathe and Wilson [7]. Table 10–2 indi-
cates the locations of points and the associated weights. The 3� 3 rule is shown
in Figure 10–16.

By adding a ninth node at s ¼ 0, t ¼ 0 in Figure 10–15, we can create an ele-
ment called a ‘‘Q9.’’ This is an internal node that is not connected to any other
nodes. We then add the a17s2t2 and a18s2t2 terms to x and y, respectively in
Eq. (10.5.27) and to u and v. The element is then called a Lagrange element as the
shape functions can be derived using Lagrange interpolation formulas. For more on
this subject consult [8].

Figure 10–16 3� 3 rule in two dimensions
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Cubic Rectangle (Q12)

The cubic (Q12) element in Figure 10–17 has four corner nodes and additional nodes
taken to be at one-third and two-thirds of the length along each side. The shape func-
tions of the cubic element (as derived in Reference [3]) are based on the incomplete
quartic polynomial such that

x ¼ a1 þ a2sþ a3tþ a4s2 þ a5stþ a6t2 þ a7s2tþ a8st2

þ a9s3 þ a10t3 þ a11s3tþ a12st3 ð10:5:34Þ
with a similar polynomial for y. For the corner nodes ði ¼ 1; 2; 3; 4Þ,

Ni ¼
1

32
ð1þ ssiÞð1þ ttiÞ½9ðs2 þ t2Þ � 10� ð10:5:35Þ

with si and ti given by Eqs. (10.5.30). For the nodes on sides s ¼G1 ði ¼ 7; 8; 11; 12Þ,

Ni ¼
9

32
ð1þ ssiÞð1þ 9ttiÞð1� t2Þ ð10:5:36Þ

with si ¼G1 and ti ¼G1
3. For the nodes on sides t ¼G1 ði ¼ 5; 6; 9; 10Þ,

Ni ¼
9

32
ð1þ ttiÞð1þ 9ssiÞð1� s2Þ ð10:5:37Þ

with ti ¼G1 and si ¼G 1
3.

Having the shape functions for the quadratic element given by Eqs. (10.5.28)
and (10.5.31) or for the cubic element given by Eqs. (10.5.35) through (10.5.37), we
can again use Eq. (10.2.17) to obtain ½B� and then Eq. (10.2.27) to set up ½k� for nu-
merical integration for the plane element. The cubic element requires a 3� 3 rule
(nine points) to evaluate the matrix ½k� exactly. We then conclude that what is really
desired is a library of shape functions that can be used in the general equations devel-
oped for sti¤ness matrices, distributed load, and body force and can be applied not
only to stress analysis but to nonstructural problems as well.

Since in this discussion the element shape functions Ni relating x and y to nodal
coordinates xi and yi are of the same form as the shape functions relating u and v

to nodal displacements ui and vi, this is said to be an isoparametric formulation. For
instance, for the linear element x ¼

P4
i¼1 Nixi and the displacement function u ¼P4

i¼1 Niui, use the same shape functions Ni given by Eq. (10.2.5). If instead the

Figure 10–17 Cubic isoparametric element
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shape functions for the coordinates are of lower order (say, linear for x) than the
shape functions used for displacements (say, quadratic for u), this is called a subpara-

metric formulation.
Finally, referring to Figure 10–17, note that an element can have a linear shape

along, say, one edge (1–2), a quadratic along, say, two edges (2–3 and 1–4), and a
cubic along the other edge (3–4). Hence, the simple linear element can be mixed with
di¤erent higher-order elements in regions of a model where rapid stress variation is
expected. The advantage of the use of higher-order elements is further illustrated in
Reference [3].

d Summary Equations

Natural coordinates related to global for a two-noded bar element:

x ¼ a1 þ a2s ð10:1:2Þ
Shape functions in natural coordinate s for two-noded bar:

N1 ¼
1� s

2
N2 ¼

1þ s

2
ð10:1:5Þ

Displacement function for two-noded bar:

fug ¼ ½N1 N2�
u1

u2

� �
ð10:1:6Þ

Gradient matrix for two-noded bar:

½B� ¼ � 1

L

1

L

� �
ð10:1:11Þ

Determinant of Jacobian matrix:

j½J�j ¼ dx

ds
¼ L

2
ð10:1:14Þ

Sti¤ness matrix for two-noded bar:

½k� ¼ L

2

ð1

�1

½B�T E½B�A ds ð10:1:15Þ

½k� ¼ AE

L

1 �1

�1 1

� �
ð10:1:16Þ

Body force matrix for two-noded bar:

f fbg ¼
ALXb

2

1
1

� �
ð10:1:20Þ

Surface force matrix for two-noded bar:

ffsg ¼ fTxg
L

2

1
1

� �
ð10:1:24Þ
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Relation between global and natural coordinates for quadrilateral element:

x ¼ a1 þ a2sþ a3tþ a4st

y ¼ a5 þ a6sþ a7tþ a8st
ð10:2:2Þ

and

x ¼ 1

4
½ð1� sÞð1� tÞx1 þ ð1þ sÞð1� tÞx2

þ ð1þ sÞð1þ tÞx3 þ ð1� sÞð1þ tÞx4�
ð10:2:3Þ

y ¼ 1

4
½ð1� sÞð1� tÞy1 þ ð1þ sÞð1� tÞy2

þ ð1þ sÞð1þ tÞy3 þ ð1� sÞð1þ tÞy4�

Shape functions for four-noded quadrilateral element expressed in natural coordinates:

N1 ¼
ð1� sÞð1� tÞ

4
N2 ¼

ð1þ sÞð1� tÞ
4

ð10:2:5Þ
N3 ¼

ð1þ sÞð1þ tÞ
4

N4 ¼
ð1� sÞð1þ tÞ

4

Strain–displacement equations in natural coordinates:

feg ¼ ½D 0�½N�fdg ð10:2:15Þ

Determinant of Jacobian matrix for four-noded quadrilateral element:

j½J �j ¼ 1

8
fXcgT

0 1� t t� s s� 1

t� 1 0 sþ 1 �s� t

s� t �s� 1 0 tþ 1

1� s sþ t �t� 1 0

2
6664

3
7775fYcg ð10:2:22Þ

fXcgT ¼ ½x1 x2 x3 x4�
where

fYcg ¼

y1

y2

y3

y4

8>><
>>:

9>>=
>>;

ð10:2:24Þ

Sti¤ness matrix for four-noded quadrilateral expressed in natural coordinates:

½k� ¼
ð1

�1

ð1

�1

½B�T ½D�½B�hj½J �j ds dt ð10:2:27Þ

Body force matrix for four-noded quadrilateral expressed in natural coordinates:

f fbg
ð8� 1Þ

¼
ð 1

�1

ð1

�1

½N�T

ð8� 2Þ
fXg
ð2� 1Þ

hj½J�j ds dt ð10:2:28Þ
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Surface force matrix along an edge t ¼ 1:

f fsg
ð4� 1Þ

¼
ð1

�1

½Ns�T

ð4� 2Þ
fTg
ð2� 1Þ

h
L

2
ds ð10:2:29Þ

For the case of uniform (constant) ps and pt along edge t ¼ 1, the total surface-force
matrix is

f fsg ¼ h
L

2
½0 0 0 0 ps pt ps pt�T ð10:2:31Þ

Newton-Cotes formula for numerical integration:

I ¼
ð1

�1

y dx ¼ h
Xn

i¼ 0

Ciyi ¼ h½C0y0 þ C1y1 þ C2y2 þ C3y3 þ . . .þ Cnyn� ð10:3:1Þ

See Table 10–1 for Newton-Cotes intervals and points for integration.

Gaussian Quadrature formula for numerical integration:

I ¼
ð1

�1

y dx ¼
Xn

i¼1

Wiyi ð10:3:6Þ

See Table 10–2 for Gauss points for integration from minus 1 to 1.

Four-point Gaussian quadrature formula to evaluate sti¤ness matrix of four-noded
quadrilateral element:

½k� ¼ ½Bðs1; t1Þ�T ½D�½Bðs1; t1Þ�j½Jðs1; t1Þ�jhW1W1

þ ½Bðs2; t2Þ�T ½D�½Bðs2; t2Þ�j½Jðs2; t2Þ�jhW2W2

þ ½Bðs3; t3Þ�T ½D�½Bðs3; t3Þ�j½Jðs3; t3Þ�jhW3W3

þ ½Bðs4; t4Þ�T ½D�½Bðs4; t4Þ�j½Jðs4; t4Þ�jhW4W4 ð10:4:3Þ

Axial coordinate function for three-noded bar element:

x ¼ a1 þ a2sþ a3s2 ð10:5:1Þ
Shape functions for three-noded bar:

N1 ¼
sðs� 1Þ

2
N2 ¼

sðsþ 1Þ
2

N3 ¼ ð1� s2Þ ð10:5:9Þ

Gradient matrix for three-noded bar:

½B� ¼ 2s� 1

L

2sþ 1

L

�4s

L

� �
ð10:5:16Þ

x and y coordinate functions for eight-noded (Q8) quadrilateral element:

x ¼ a1 þ a2sþ a3tþ a4stþ a5s2 þ a6t2 þ a7s2tþ a8st2

ð10:5:27Þ
y ¼ a9 þ a10sþ a11tþ a12stþ a13s2 þ a14t2 þ a15s2tþ a16st2
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Equations (10.5.28) and (10.5.31) give the shape functions for the eight-noded (Q8)
quadrilateral element.

x coordinate function for the 12-noded (Q12) quadrilateral element:

x ¼ a1 þ a2sþ a3tþ a4s2 þ a5stþ a6t2 þ a7s2tþ a8st2

þ a9s3 þ a10t3 þ a11s3tþ a12st3 ð10:5:34Þ

Equations (10.5.35), (10.5.36), and (10.5.37) give the shape functions for the 12-noded
(Q12) quadrilateral element.
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d Problems

10.1 For the three-noded linear strain bar with three coordinates of nodes x1; x2, and x3,
shown in Figure P10–1 in the global-coordinate system show that the Jacobian de-
terminate is j½J �j ¼ L=2.

10.2 For the two-noded one-dimensional isoparametric element shown in Figure P10–2 (a)
and (b), with shape functions given by Eq. (10.1.5), determine (a) intrinsic coordinate s

1 3 2

x1 x3 x2

L
2

L
2

Figure P10–1
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at point A and (b) shape functions N1 and N2 at point A. If the displacements at nodes
one and two are respectively, u1 ¼ 0:006 in. and u2 ¼ �0:006 in., determine (c) the
value of the displacement at point A and (d) the strain in the element.

10.3 Answer the same questions as posed in problem 10.2 with the data listed under the
Figure P10–3.

10.4 For the four-noded bar element in Figure P10–4, show that the Jacobian determinate
is j½J �j ¼ L=2. Also determine the shape functions N1 �N4 and the strain/displace-
ment matrix ½B�. Assume u ¼ a1 þ a2sþ a3s2 þ a4s3.

10.5 Using the three-noded bar element shown in Figure P10–5 (a) and (b), with shape
functions given by Eq. (10.5.9), determine (a) the intrinsic coordinate s at point A and
(b) the shape functions, N1, N2, and N3 at A. For the displacements of the nodes
shown in Figure P10–5, determine (c) the displacement at A and (d) the axial strain
expression in the element.

A

x1 = 10 in.  x2 = 20 in.  xA = 14 in.  

(a)

x1 = 5 in.  x2 = 10 in.  xA = 7 in.  

(b)

A

Figure P10–2

x1 = 20 mm
u1 = 0.1 mm

x2 = 60 mm
u2 = 0.2 mm

xA = 40 mm 

(a)

A

x1 = 10 mm
u1 = 0.05 mm

x2 = 30 mm
u2 = 0.1 mm

xA = 20 mm 

(b)

A

Figure P10–3

Figure P10–4

A (xA = 13 in.)

x1 = 10 in.
u1 = 0.006 in.

x3 = 15 in.
u3 = 0

x2 = 20 in.
u2 = −0.006 in.

(a)

A (xA = 7 in.)

x1 = 0
u1 = 0

x3 = 5 in.
u3 = 0.001 in.

x2 = 10 in.
u2 = 0.003 in.

(b)

Figure P10–5

Problems d 529

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10.6 Using the three-noded bar element shown in Figure P10–5 (a) and (b), with shape
functions given by Eq. (10.5.9), determine (a) the intrinsic coordinate s at point A and
(b) the shape functions, N1, N2, and N3 at point A. For the displacements of the nodes
shown in Figure P10–6, determine (c) the displacement at A and (d) the axial strain
expression in the element.

10.7 For the bar subjected to the linearly varying axial line load shown in Figure P10–7,
use the linear strain (three-noded element) with two elements in the model, to deter-
mine the nodal displacements and nodal stresses. Compare your answer with that in
Figure 3–31 and Eqs. (3.11.6) and (3.11.7). Let A ¼ 2 in.2 and E ¼ 30� 106 psi. Hint:
Use Eq. (10.5.22) for the element sti¤ness matrix.

10.8 Use the three-noded bar element and find the axial displacement at the end of the rod
shown in Figure P10–8. Determine the stress at x ¼ 0, x ¼ L=2 and x ¼ L. Let
A ¼ 2� 10�4 m2, E ¼ 205 GPa, and L ¼ 4 m. Hint: Use Eq. (10.5.22) for the element
sti¤ness matrix.

A (xA = 1.5 mm)

x1 = 0
u1 = 0

x3 = 1 mm
u3 = 0.001 mm

x2 = 2 mm
u2 = 0.002 mm

(a)

A (xA = 2.5 mm)

x1 = 2 mm
u1 = −0.001 mm

x3 = 3 mm
u3 = 0

x2 = 4 mm
u2 = 0.001 mm

(b)

Figure P10–6

x
60 in.

10 × lb�in.

Figure P10–7

L = 4 m

2 kN�m (uniform)

Figure P10–8
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10.9 Derive j½J �j given by Eq. (10.2.22) for a four-noded isoparametric quadrilateral
element.

10.10 Show that for the quadrilateral element described in Section 10.2, ½J� can be expressed as

½J� ¼ N1; s N2; s N3; s N4; s

N1; t N2; t N3; t N4; t

� � x1 y1

x2 y2

x3 y3

x4 y4

2
6664

3
7775

10.11 Determine the Jacobian matrix ½J� and its determinant for the elements shown in
Figure P10–11. Show that the determinant of ½J� for rectangular and parallelogram
shaped elements is equal to A=4, where A is the physical area of the element and 4
actually represents the area of the rectangle of sides 2� 2 when b ¼ 1 and h ¼ 1 in
Figure 6–20.

10.12 Derive Eq. (10.2.18) with ½Bi� given by Eq. (10.2.19) by substituting Eq. (10.2.16) for
½D 0� and Eqs. (10.2.5) for the shape functions into Eq. (10.2.17).

10.13 Use Eq. (10.2.30) with ps ¼ 0 and pt ¼ p (a constant) alongside 3–4 of the element
shown in Figure 10–5 on page 500 to obtain the nodal forces.

10.14 For the element shown in Figure P10–14, replace the distributed load with the energy
equivalent nodal forces by evaluating a force matrix similar to Eq. (10.2.29). Let
h ¼ 0:1 in thick. The global coordinates (in inches) are shown in Figure P10–14.

10.15 Use Gaussian quadature with two and three Gauss points and Table 10–2 to evaluate
the following integrals:

ðaÞ
ð1

�1

cos
s

2
ds ðbÞ

ð1

�1

s2 ds ðcÞ
ð1

�1

s4 ds

ðdÞ
ð1

�1

cos s

1� s2
ds ðeÞ

ð1

�1

s3 ds ðfÞ
ð1

�1

s cos s ds ðgÞ
ð1

�1

ð4s � 2sÞds

Then use the Newton-Cotes quadrature with two and three sampling points and
Table 10–1 to evaluate the same integrals. Compare your results.

(–2, 1)

(–2, –1)

(2, 1)

(2, –1)
1 2

4 3

(a)

x

y

(–2, 1)

(–2, –1)

(2, 1)

(2, –1)
4 1

3 2

(b)

x

y (2, 3) (4, 3)

(2, 0)(0, 0)

1 2

4 3

(c)

x

y

Figure P10–11
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10.16 For the quadrilateral elements shown in Figure P10–16, write a computer program to
evaluate the sti¤ness matrices using four-point Gaussian quadrature as outlined in
Section 10.4. Let E ¼ 30� 106 psi and n ¼ 0:25. The global coordinates (in inches)
are shown in the figures.

10.17 For the quadrilateral elements shown in Figure P10–17, evaluate the sti¤ness matrices
using four-point Gaussian quadrature as outlined in Section 10.4. Let E ¼ 210 GPa
and n ¼ 0:25. The global coordinates (in millimeters) are shown in the figures.

10.18 Evaluate the matrix ½B� for the quadratic quadrilateral element shown in Figure 10–15
on page 521 (Section 10.5).

y

4 3

(5, 4)
(0, 4)

(8, 0)

(8, 4)

2

1
x

Ty = 2000 psi uniform

Ty = 500 psi

(a)

y
4 3

(3, 4)

(8, 0)

2

1
x

(b)

Linear

Figure P10–14

Figure P10–16
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10.19 Evaluate the sti¤ness matrix for the four-noded bar of Problem 10.4 using three-point
Gaussian quadrature.

10.20 For the rectangular element of Figure 10–20 with the nodal displacements given by

u1 ¼ 0

v2 ¼ 0:0025 in:

u4 ¼ 0

v1 ¼ 0

u3 ¼ 0:0025 in:

v4 ¼ 0

u2 ¼ 0:005 in:

v3 ¼ �0:0025 in:

determine the fsg matrix at s ¼ 0, t ¼ 0 using the isoparametric formulation de-
scribed in Section 10.4. (Also see Example 10.5.) Let E ¼ 30� 106 psi and n ¼ 0:3.

10.21 For the three-noded bar (Figure P10–1), what Gaussian quadrature rule (how many
Gauss points) would you recommend to evaluate the sti¤ness matrix? Why?

Figure P10–17

Figure P10–20
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THREE-DIMENSIONAL

STRESS ANALYSISd

CHAPTER OBJECTIVES

. To introduce concepts of three-dimensional stress and strain.

. To develop the tetrahedral solid-element stiffness matrix.

. To describe how body and surface tractions are treated.

. To illustrate a numerical example of the tetrahedral element stiffness matrix.

. To describe the isoparametric formulation of the stiffness matrix for three-
dimensional hexahedral (brick) elements, including the linear (eight-noded)
brick, and the quadratic (20 noded) brick.

. To present some commercial computer program examples of three-dimensional
solid models and results for real-world applications.

. To present a comparison of the four-noded tetrahedral, the ten-noded tetrahe-
dral, the eight-noded brick, and the twenty-noded brick.

Introduction

In this chapter, we consider the three-dimensional, or solid, element. This element is
useful for the stress analysis of general three-dimensional bodies that require more pre-
cise analysis than is possible through two-dimensional and/or axisymmetric analysis.
Examples of three-dimensional problems are arch dams, thick-walled pressure vessels,
and solid forging parts as used, for instance, in the heavy equipment and automotive
industries. Figure 11–1 shows finite element models of some typical automobile parts
and a subsoiter used in agricultural equipment. Also see Figure 1–7 for a model of a
swing casting for a backhoe frame, Figure 1–9 for a model of a pelvis bone with an im-
plant, and Figures 11–7 through 11–10 of a forging part, a foot pedal, a trailer hitch,
and an alternator bracket, respectively.

The tetrahedron is the basic three-dimensional element, and it is used in the
development of the shape functions, stiffness matrix, and force matrices in terms of
a global coordinate system. We follow this development with the isoparametric formu-
lation of the stiffness matrix for the hexahedron, or brick element. Finally, we will pro-
vide some typical three-dimensional applications.
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In the last section of this chapter, we show some three-dimensional problems
solved using a computer program.

d 11.1 Three-Dimensional Stress and Strain d
We begin by considering the three-dimensional infinitesimal element in Cartesian
coordinates with dimensions dx; dy, and dz and normal and shear stresses as shown
in Figure 11–2. This element conveniently represents the state of stress on three mutu-
ally perpendicular planes of a body in a state of three-dimensional stress. As usual,
normal stresses are perpendicular to the faces of the element and are represented by
sx; sy, and sz. Shear stresses act in the faces (planes) of the element and are repre-
sented by txy; tyz; tzx, and so on.

From moment equilibrium of the element, we show in Appendix C that
txy ¼ tyx tyz ¼ tzy tzx ¼ txz

(c)

Figure 11–1 (a) wheel rim (Courtesy of Mark Blair); (b) engine block (Courtesy of Mark Guard); and
(c) Subsoiler—12-row subsoiler used in agricultural equipment (Courtesy of Algor, Inc.) (See the full-color
insert for a color version of this figure.)
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Hence, there are only three independent shear stresses, along with the three normal
stresses.

The element strain–displacement relationships are obtained in Appendix C.
They are repeated here, for convenience, as

ex ¼
qu

qx
ey ¼

qv

qy
ez ¼

qw

qz
ð11:1:1Þ

where u; v, and w are the displacements associated with the x; y, and z directions. The
shear strains g are now given by

gxy ¼
qu

qy
þ qv

qx
¼ gyx

gyz ¼
qv

qz
þ qw

qy
¼ gzy ð11:1:2Þ

gzx ¼
qw

qx
þ qu

qz
¼ gxz

where, as for shear stresses, only three independent shear strains exist.
We again represent the stresses and strains by column matrices as

fsg ¼

sx

sy

sz

txy

tyz

tzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

feg ¼

ex

ey

ez

gxy

gyz

gzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð11:1:3Þ

The stress–strain relationships for an isotropic material are again given by

fsg ¼ ½D�feg ð11:1:4Þ

Figure 11–2 Three-dimensional stresses on an element
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where fsg and feg are defined by Eqs. (11.1.3), and the constitutive matrix ½D� (see
also Appendix C) is now given by

½D� ¼ E

ð1þ nÞð1� 2nÞ

2
6666666666666664

1� n n n 0 0 0

1� n n 0 0 0

1� n 0 0 0

1� 2n

2
0 0

1� 2n

2
0

1� 2n

2

3
7777777777777775

ð11:1:5Þ

Symmetry

d 11.2 Tetrahedral Element d
We now develop the tetrahedral stress element stiffness matrix by again using the steps
outlined in Chapter 1. The development is seen to be an extension of the plane ele-
ment previously described in Chapter 6. This extension was suggested in References
[1] and [2].

Step 1 Select Element Type

Consider the tetrahedral element shown in Figure 11–3 with corner nodes 1–4. This
element is a four-noded solid. The nodes of the element must be numbered such that
when viewed from the last node (say, node 4), the first three nodes are numbered in
a counterclockwise manner, such as 1, 2, 3, 4 or 2, 3, 1, 4. This ordering of nodes
avoids the calculation of negative volumes and is consistent with the counterclockwise
node numbering associated with the CST element in Chapter 6. (Using an isoparamet-
ric formulation to evaluate the ½k� matrix for the tetrahedral element enables us to use
the element node numbering in any order. The isoparametric formulation of ½k� is left

Figure 11–3 Tetrahedral solid element
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to Section 11.3.) The unknown nodal displacements are now given by

fdg ¼

u1

v1

w1

..

.

u4

v4

w4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð11:2:1Þ

Hence, there are 3 degrees of freedom per node, or 12 total degrees of freedom per
element.

Step 2 Select Displacement Functions

For a compatible displacement field, the element displacement functions u; v, and w

must be linear along each edge because only two points (the corner nodes) exist
along each edge, and the functions must be linear in each plane side of the tetrahe-
dron. We then select the linear displacement functions as

uðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4z

vðx; y; zÞ ¼ a5 þ a6xþ a7yþ a8z ð11:2:2Þ

wðx; y; zÞ ¼ a9 þ a10xþ a11yþ a12z

In the same manner as in Chapter 6, we can express the ai’s in terms of the
known nodal coordinates ðx1; y1; z1; . . . ; z4Þ and the unknown nodal displacements
ðu1; v1;w1; . . . ;w4Þ of the element. Skipping the straightforward but tedious details,
we obtain

uðx; y; zÞ ¼ 1

6V
fða1 þ b1xþ g1yþ d1zÞu1

þ ða2 þ b2xþ g2yþ d2zÞu2

þ ða3 þ b3xþ g3yþ d3zÞu3

þ ða4 þ b4xþ g4yþ d4zÞu4g ð11:2:3Þ

where 6V is obtained by evaluating the determinant

6V ¼

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

���������

���������
ð11:2:4Þ
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and V represents the volume of the tetrahedron. The coefficients ai; bi; gi, and
di ði ¼ 1; 2; 3; 4Þ in Eq. (11.2.3) are given by

a1 ¼
x2 y2 z2

x3 y3 z3

x4 y4 z4

�������

�������
b1 ¼ �

1 y2 z2

1 y3 z3

1 y4 z4

�������

�������
ð11:2:5Þ

g1 ¼
1 x2 z2

1 x3 z3

1 x4 z4

�������

�������
d1 ¼ �

1 x2 y2

1 x3 y3

1 x4 y4

�������

�������

a2 ¼ �
x1 y1 z1

x3 y3 z3

x4 y4 z4

�������

�������
b2 ¼

1 y1 z1

1 y3 z3

1 y4 z4

�������

�������
and ð11:2:6Þ

g2 ¼ �
1 x1 z1

1 x3 z3

1 x4 z4

�������

�������
d2 ¼

1 x1 y1

1 x3 y3

1 x4 y4

�������

�������

a3 ¼
x1 y1 z1

x2 y2 z2

x4 y4 z4

�������

�������
b3 ¼ �

1 y1 z1

1 y2 z2

1 y4 z4

�������

�������
and ð11:2:7Þ

g3 ¼
1 x1 z1

1 x2 z2

1 x4 z4

�������

�������
d3 ¼ �

1 x1 y1

1 x2 y2

1 x4 y4

�������

�������

a4 ¼ �
x1 y1 z1

x2 y2 z2

x3 y3 z3

�������

�������
b4 ¼

1 y1 z1

1 y2 z2

1 y3 z3

�������

�������
and ð11:2:8Þ

g4 ¼ �
1 x1 z1

1 x2 z2

1 x3 z3

�������

�������
d4 ¼

1 x1 y1

1 x2 y2

1 x3 y3

�������

�������
Expressions for v and w are obtained by simply substituting vi’s for all ui’s and then
wi’s for all ui’s in Eq. (11.2.3).

The displacement expression for u given by Eq. (11.2.3), with similar expressions
for v and w, can be written equivalently in expanded form in terms of the shape
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functions and unknown nodal displacements as

u

v

w

8<
:

9=
; ¼

N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

2
64

3
75

u1

v1

w1

..

.

u4

v4

w4

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð11:2:9Þ

where the shape functions are given by

N1 ¼
ða1 þ b1xþ g1yþ d1zÞ

6V
N2 ¼

ða2 þ b2xþ g2 yþ d2zÞ
6V ð11:2:10Þ

N3 ¼
ða3 þ b3xþ g3yþ d3zÞ

6V
N4 ¼

ða4 þ b4xþ g4yþ d4zÞ
6V

and the rectangular matrix on the right side of Eq. (11.2.9) is the shape function
matrix ½N�.

Step 3 Define the Strain–Displacement and Stress–Strain
Relationships

The element strains for the three-dimensional stress state are given by

feg ¼

ex

ey

ez

gxy

gyz

gzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

qu

qx

qv

qy

qw

qz

qu

qy
þ qv

qx

qv

qz
þ qw

qy

qw

qx
þ qu

qz

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð11:2:11Þ

Using Eq. (11.2.9) in Eq. (11.2.11), we obtain

feg ¼ ½B�fdg ð11:2:12Þ

½B� ¼ ½½B1� ½B2� ½B3� ½B4�� ð11:2:13Þwhere
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The submatrix ½B1� in Eq. (11.2.13) is defined by

½B1� ¼

N1;x 0 0

0 N1;y 0

0 0 N1; z

N1;y N1;x 0

0 N1; z N1;y

N1; z 0 N1;x

2
666666664

3
777777775

ð11:2:14Þ

where, again, the comma after the subscript indicates differentation with respect to
the variable that follows. Submatrices ½B2�; ½B3�, and ½B4� are defined by simply index-
ing the subscript in Eq. (11.2.14) from 1 to 2, 3, and then 4, respectively. Substitut-
ing the shape functions from Eqs. (11.2.10) into Eq. (11.2.14), ½B1� is expressed as

½B1� ¼
1

6V

b1 0 0

0 g1 0

0 0 d1

g1 b1 0

0 d1 g1

d1 0 b1

2
666666664

3
777777775

ð11:2:15Þ

with similar expressions for ½B2�; ½B3�, and ½B4�.
The element stresses are related to the element strains by

fsg ¼ ½D�feg ð11:2:16Þ

where the constitutive matrix for an elastic material is now given by Eq. (11.1.5).

Step 4 Derive the Element Stiffness Matrix and Equations

The element stiffness matrix is given by

½k� ¼
ððð

V

½B�T ½D�½B� dV ð11:2:17Þ

Because both matrices ½B� and ½D� are constant for the simple tetrahedral element,
Eq. (11.2.17) can be simplified to

½k� ¼ ½B�T ½D�½B�V ð11:2:18Þ

where, again, V is the volume of the element. The element stiffness matrix is now of
order 12� 12.

Body Forces

The element body force matrix is given by

f fbg ¼
ððð

V

½N�TfXg dV ð11:2:19Þ
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where ½N� is given by the 3� 12 matrix in Eq. (11.2.9), and

fXg ¼
Xb

Yb

Zb

8<
:

9=
; ð11:2:20aÞ

For constant body forces, the nodal components of the total resultant body forces can
be shown to be distributed to the nodes in four equal parts. That is,

f fbg ¼
1

4
½Xb Yb Zb Xb Yb Zb Xb Yb Zb Xb Yb Zb�T ð11:2:20bÞ

The element body force is then a 12� 1 matrix.

Surface Forces

Again, the surface forces are given by

f fsg ¼
ðð

S

½Ns�TfTg dS ð11:2:21Þ

where ½Ns� is the shape function matrix evaluated on the surface where the surface
traction occurs.

For example, consider the case of uniform pressure p acting on the face with
nodes 1–3 of the element shown in Figure 11–3 or 11–4. The resulting nodal forces
become

f fsg ¼
ðð

S

½N�T j evaluated on
surface 1;2;3

px

py

pz

8<
:

9=
; dS ð11:2:22Þ

where px; py, and pz are the x; y, and z components, respectively, of p. Simplifying and
integrating Eq. (11.2.22), we can show that

f fsg ¼
S123

3

px

py

pz

px

py

pz

px

py

pz

0

0

0

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð11:2:23Þ

where S123 is the area of the surface associated with nodes 1–3. The use of volume
coordinates, as explained in Reference [8], facilitates the integration of Eq. (11.2.22).
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Example 11.1

Evaluate the matrices necessary to determine the stiffness matrix for the tetrahedral el-
ement shown in Figure 11–4. Let E ¼ 30� 106 psi and n ¼ 0:30. The coordinates are
shown in the figure in units of inches.

SOLUTION:
To evaluate the element stiffness matrix, we first determine the element volume V and
all a’s, b’s, g’s, and d’s from Eqs. (11.2.4) through (11.2.8). From Eq. (11.2.4), we have

6V ¼

1 1 1 2

1 0 0 0

1 0 2 0

1 2 1 0

���������

���������
¼ 8 in3 ð11:2:24Þ

From Eqs. (11.2.5), we obtain

a1 ¼
0 0 0

0 2 0

2 1 0

������

������ ¼ 0 b1 ¼ �
1 0 0

1 2 0

1 1 0

������

������ ¼ 0 ð11:2:25Þ

and similarly,

g1 ¼ 0 d1 ¼ 4

From Eqs. (11.2.6) through (11.2.8), we obtain

a2 ¼ 8 b2 ¼ �2 g2 ¼ �4 d2 ¼ �1

a3 ¼ 0 b3 ¼ �2 g3 ¼ 4 d3 ¼ �1 ð11:2:26Þ

a4 ¼ 0 b4 ¼ 4 g4 ¼ 0 d4 ¼ �2

Figure 11–4 Tetrahedral element
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Note that a’s typically have units of cubic inches or cubic meters, where b’s, g’s, and
d’s have units of square inches or square meters.

Next, the shape functions are determined using Eqs. (11.2.10) and the results
from Eqs. (11.2.25) and (11.2.26) as

N1 ¼
4z

8
N2 ¼

8� 2x� 4y� z

8 ð11:2:27Þ

N3 ¼
�2xþ 4y� z

8
N4 ¼

4x� 2z

8

Note that N1 þN2 þN3 þN4 ¼ 1 is again satisfied.
The 6� 3 submatrices of the matrix ½B�, Eq. (11.2.13), are now evaluated using

Eqs. (11.2.14) and (11.2.27) as

½B1� ¼

0 0 0

0 0 0

0 0 1
2

0 0 0

0 1
2 0

1
2 0 0

2
666666664

3
777777775

½B2� ¼

� 1
4 0 0

0 �1
2 0

0 0 �1
8

�1
2 �1

4 0

0 �1
8 �1

2

�1
8 0 �1

4

2
666666664

3
777777775

ð11:2:28Þ

½B3� ¼

� 1
4 0 0

0 1
2 0

0 0 �1
8

1
2 �1

4 0

0 �1
8

1
2

�1
8 0 �1

4

2
666666664

3
777777775

½B4� ¼

1
2 0 0

0 0 0

0 0 �1
4

0 1
2 0

0 �1
4 0

�1
4 0 1

2

2
666666664

3
777777775

Next, the matrix ½D� is evaluated using Eq. (11.1.5) as

½D� ¼ 30� 106

ð1þ 0:3Þð1� 0:6Þ

2
666666664

0:7 0:3 0:3 0 0 0

0:7 0:3 0 0 0

0:7 0 0 0

0:2 0 0

0:2 0

0:2

3
777777775

ð11:2:29Þ

Symmetry
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Finally, substituting the results from Eqs. (11.2.24) for V , (11.2.28) for ½B�, and
(11.2.29) for ½D� into Eq. (11.2.18), we obtain the element stiffness matrix. The result-
ing 12� 12 matrix is shown as

½k� ¼ ½B �T ½D�½B �V

106 �

3:846 0 0 �0:962 0 �1:923 �0:962 0 �1:923 �1:923 0 3:846
0 3:846 0 0 �0:962 �3:846 0 �0:962 3:846 0 �1:923 0
0 0 13:462 �2:885 �5:769 �3:365 �2:885 5:769 �3:365 5:769 0 �6:731
�0:962 0 �2:885 7:452 4:808 1:202 �0:24 �0:962 1:202 �6:25 �3:846 0:481

0 �0:962 �5:769 4:808 14:663 2:404 0:962 �12:26 0:481 �5:769 �1:442 2:885
�1:923 �3:846 �3:365 1:202 2:404 5:649 1:202 �0:481 �2:043 �0:481 1:923 �0:24
�0:962 0 �2:885 �0:24 0:962 1:202 7:452 �4:808 1:202 �6:25 3:846 0:481

0 �0:962 5:769 �0:962 �12:26 �0:481 �4:808 14:663 �2:404 5:769 �1:442 �2:885
�1:923 3:846 �3:365 1:202 0:481 �2:043 1:202 �2:404 5:649 �0:481 �1:923 �0:24
�1:923 0 5:769 �6:25 �5:769 �0:481 �6:25 5:769 �0:481 14:423 0 �4:808

0 �1:923 0 �3:846 �1:442 1:923 3:846 �1:442 �1:923 0 4:808 0
3:846 0 �6:731 0:481 2:885 �0:24 0:481 �2:885 �0:24 �4:808 0 7:212

2
6666666666666666664

3
7777777777777777775

9

d 11.3 Isoparametric Formulation d
We now describe the isoparametric formulation of the stiffness matrix for some three-
dimensional hexahedral (brick) elements.

Linear Hexahedral Element

The basic (linear) hexahedral element [Figure 11–5(a)] now has eight corner nodes with
isoparametric natural coordinates given by s; t, and z 0 as shown in Figure 11–5(b). The
element faces are now defined by s; t; z 0 ¼G1. (We use s; t, and z 0 for the coordinate
axes because they are probably simpler to use than Greek letters x; h, and z).

The formulation of the stiffness matrix follows steps analogous to the isopara-
metric formulation of the stiffness matrix for the plane element in Chapter 10.

The function used to describe the element geometry for x in terms of the gener-
alized degrees of freedom ai’s is

x ¼ a1 þ a2sþ a3tþ a4 z0 þ a5stþ a6tz0 þ a7z0sþ a8stz0 ð11:3:1Þ

The same form as Eq. (11.3.1) is used for y and z as well. Just start with a9 through a16

for y and a17 through a24 for z.
First, we expand Eq. (10.2.4) to include the z coordinate as follows:

x

y

z

8<
:

9=
; ¼

X8

i¼1

Ni 0 0

0 Ni 0

0 0 Ni

2
64

3
75

xi

yi

zi

8<
:

9=
;

0
B@

1
CA ð11:3:2Þ
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where the shape functions are now given by

Ni ¼
ð1þ ssiÞð1þ ttiÞð1þ z 0z 0i Þ

8
ð11:3:3Þ

with si; ti; z
0
i ¼G1 and i ¼ 1; 2; . . . ; 8. For instance,

N1 ¼
ð1þ ss1Þð1þ tt1Þð1þ z 0z 01Þ

8
ð11:3:4Þ

and when, from Figure 11–5, s1 ¼ �1, t1 ¼ �1, and z 01 ¼ þ1 are used in Eq. (11.3.4),
we obtain

N1 ¼
ð1� sÞð1� tÞð1þ z 0Þ

8
ð11:3:5aÞ

Explicit forms of the other shape functions follow similarly. The shape functions in
Eq. (11.3.3) map the natural coordinates ðs; t; z 0Þ of any point in the element to any
point in the global coordinates ðx; y; zÞ when used in Eq. (11.3.2). For instance,
when we let i ¼ 8 and substitute s8 ¼ 1, t8 ¼ 1, z 08 ¼ 1 into Eq. (11.3.3) for N8, we
obtain

N8 ¼
ð1þ sÞð1þ tÞð1þ z 0Þ

8
ð11:3:5bÞ

Similar expressions are obtained for the other shape functions. Then evaluating all
shape functions at node 8, we obtain N8 ¼ 1, and all other shape functions equal
zero at node 8. [From Eq. (11.3.5a), we see that N1 ¼ 0 when s ¼ 1 or when t ¼ 1.]
Therefore, using Eq. (11.3.2), we obtain

x ¼ x8 y ¼ y8 z ¼ z8

We see that indeed Eq. (11.3.2) maps any point in the natural-coordinate system to
one in the global-coordinate system.

Figure 11–5 Linear hexahedral element (a) in a global-coordinate system and
(b) element mapped into a cube of two unit sides placed symmetrically with natural
or intrinsic coordinates s, t, and z 0
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The displacement functions in terms of the generalized degrees of freedom are of
the same form as used to describe the element geometry given by Eq. (11.3.1).

That is,

u ¼ a1 þ a2sþ a3tþ a4z0 þ a5stþ a6tz0 þ a7z0sþ a8stz0 ð11:3:6aÞ

with similar expressions used for displacements v and w. There are now a total of
24 degrees of freedom in the linear hexahedral element. Therefore, we use the same
shape functions as used to describe the geometry (Eq. 11.3.3)). The displacement func-
tions now include w such that

u

v

w

8<
:

9=
; ¼

X8

i¼1

Ni 0 0

0 Ni 0

0 0 Ni

2
64

3
75

ui

vi

wi

8<
:

9=
;

0
B@

1
CA ð11:3:6bÞ

with the same shape functions as defined by Eq. (11.3.3) and the size of the shape
function matrix now 3� 24.

The Jacobian matrix [Eq. (10.2.10)] is now expanded to

½J� ¼

qx

qs

qy

qs

qz

qs

qx

qt

qy

qt

qz

qt

qx

qz 0
qy

qz 0
qz

qz 0

2
66666664

3
77777775

ð11:3:7Þ

Because the strain–displacement relationships, given by Eq. (11.2.11) in terms of
global coordinates, include differentiation with respect to z, we expand Eq. (10.2.9)
as follows:

qf

qx
¼

qf

qs

qy

qs

qz

qs

qf

qt

qy

qt

qz

qt

qf

qz 0
qy

qz 0
qz

qz 0

��������������

��������������
j½J�j

qf

qy
¼

qx

qs

qf

qs

qz

qs

qx

qt

qf

qt

qz

qt

qx

qz 0
qf

qz 0
qz

qz 0

��������������

��������������
j½J�j

ð11:3:8Þ

qf

qz
¼

qx

qs

qy

qs

qf

qs

qx

qt

qy

qt

qf

qt

qx

qz 0
qy

qz 0
qf

qz 0

��������������

��������������
j½J�j
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Using Eqs. (11.3.8) by substituting u; v, and then w for f and using the definitions of
the strains, we can express the strains in terms of natural coordinates ðs; t; z 0Þ to obtain
an equation similar to Eq. (10.2.14). In compact form, we can again express
the strains in terms of the shape functions and global nodal coordinates similar to
Eq. (10.2.15). The matrix ½B �, given by a form similar to Eq. (10.2.17), is now a func-
tion of s; t, and z 0 and is of order 6� 24.

The 24� 24 stiffness matrix is now given by

½k� ¼
ð1

�1

ð1

�1

ð1

�1

½B �T ½D�½B�j½J �j ds dt dz 0 ð11:3:9aÞ

Again, it is best to evaluate ½k� by numerical integration (also see Section 10.3); that is,
we evaluate (integrate) the eight-node hexahedral element stiffness matrix using a
2� 2� 2 rule (or two-point rule). Actually, eight points defined in Table 11–1 are
used to evaluate ½k� as

½k� ¼
X8

i¼1

½Bðsi; ti; z
0
i Þ�

T ½D�½Bðsi; ti; z
0
i Þ�j½Jðsi; ti; z

0
i Þ�jWiWjWk ð11:3:9bÞ

where Wi ¼Wj ¼Wk for the two-point rule.

As is true with the bilinear quadrilateral element described in Section 10.2, the eight-
noded linear hexahedral element cannot model beam-bending action well because
the element sides remain straight during the element deformation. During the bending
process, the elements will be stretched and can shear lock. This concept of shear lock-
ing is described in more detail in [12] along with ways to remedy it. However, the qua-
dratic hexahedral element described subsequently remedies the shear locking problem.

Quadratic Hexahedral Element

For the quadratic hexahedral element shown in Figure 11–6, we have a total of
20 nodes with the inclusion of a total of 12 midside nodes.

Table 11–1 Table of Gauss points for linear hexahedral element with associated
weightsa

Points, i si ti z 0i Weight, Wi

1 �1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1
2 1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1
3 1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1
4 �1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

1
5 �1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1
6 1=

ffiffiffi
3
p

�1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1
7 1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1
8 �1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

�1=
ffiffiffi
3
p

1

a 1=
ffiffiffi
3
p
¼ 0:57735.
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The function describing the element geometry for x in terms of the 20 ai’s is

x ¼ a1 þ a2sþ a3tþ a4z0 þ a5stþ a6tz0 þ a7z0sþ a8s2 þ a9t2

þ a10z02 þ a11s2tþ a12st2 þ a13t2z0 þ a14tz02 þ a15z02s

þ a16z0s2 þ a17stz0 þ a18s2tz0 þ a19st2z0 þ a20stz02 ð11:3:10Þ

Similar expressions describe the y and z coordinates.
The x-displacement function u is described by the same polynomial used for the

x element geometry in Eq. (11.3.10). Similar expressions are used for displacement
functions v and w. In order to satisfy interelement compatibility, the three cubic
terms s3, t3, and z03 are not included. Instead the three quartic terms s2tz0, st2z0, and
stz02 are used.

The development of the stiffness matrix follows the same steps we outlined be-
fore for the linear hexahedral element, where the shape functions now take on new
forms. Again, letting si; ti; z

0
i ¼G1, we have for the corner nodes ði ¼ 1; 2; . . . ; 8Þ,

Ni ¼
ð1þ ssiÞð1þ ttiÞð1þ z 0z 0i Þ

8
ðssi þ tti þ z 0z 0i � 2Þ ð11:3:11Þ

For the midside nodes at si ¼ 0, ti ¼G1, z 0i ¼G1 ði ¼ 17; 18; 19; 20Þ, we have

Ni ¼
ð1� s2Þð1þ ttiÞð1þ z 0z 0i Þ

4
ð11:3:12Þ

For the midside nodes at si ¼G1, ti ¼ 0, z 0i ¼G1 ði ¼ 10; 12; 14; 16Þ, we have

Ni ¼
ð1þ ssiÞð1� t2Þð1þ z 0z 0i Þ

4
ð11:3:13Þ

Finally, for the midside nodes at si ¼G1, ti ¼G1, z 0i ¼ 0 ði ¼ 9; 11; 13; 15Þ, we have

Ni ¼
ð1þ ssiÞð1þ ttiÞð1� z 02Þ

4
ð11:3:14Þ

The ½B � matrix is now a 60� 60 matrix. Therefore, using Eq. (11.3.9a), the stiff-
ness matrix of the quadratic hexahedral element is of order 60� 60. This is consistent
with the fact that the element has 20 nodes and 3 degrees of freedom (ui; vi; and wi) per
node.

Figure 11–6 Quadratic hexahedral isoparametric element
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The stiffness matrix for this 20-node quadratic solid element can be evaluated using a
3� 3� 3 rule (27 points). However, a special 14-point rule may be a better choice [9, 10].

As with the eight-noded plane element of Section 10.5 (Figure 10–15), the
20-node solid element is also called a serendipity element.

Figures 1–7 and 11–7 show applications of the use of linear and quadratic
(curved sides) solid elements to model three-dimensional solids.

Finally, commercial computer programs, such as [11] (also see references [46–56]
of Chapter 1), are available to solve three-dimensional problems. Figures 11–8, 11–9,

Figure 11–7 Finite element model of a forging using linear and quadratic solid elements

Figure 11–8 Meshed model of steel foot pedal (fixed along left back face and total
downward acting surface force of 100 N applied uniformly over front pedal surface)
(Courtesy of Justin Hronek)
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and 11–10 show a steel foot pedal, a trailer hitch, and an alternator bracket solved using
a computer program [11]. We emphasize that these problems have been solved using
the three-dimensional element as opposed to using a two-dimensional element, such
as described in Chapters 6 and 8, as these problems have a three-dimensional stress
state occurring in them. That is, the three normal and three shear stresses are of similar
order of magnitude in some parts of the foot pedal, the trailer hitch, and the alternator
bracket. The most accurate results will then occur when modeling these problems
using the three-dimensional brick or tetrahedral elements (or a combination of both).

For the foot pedal, modeled with brick elements, the largest von Mises stress was
71.1 MPa located at the interior corner of the elbow. The maximum displacement was

Figure 11–9 Meshed model of a trailer hitch (Courtesy of David Anderson) (See the
full-color insert for a color version of this figure.)
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0.439 mm down at the front free end corner. (See Problem 11.14 for detailed dimen-
sions and material properties used.)

For the steel trailer hitch shown in Figure 11–9, subjected to both a lateral and
downward load of 2830 lb each on the ball, the largest von Mises stress away from the
unrealistic high stress located at the point load that was applied at the base of the ball
is 59 ksi located at the inside re-entrant curve of the hitch. The largest displacement
magnitude was 0.06 in. located at the top of the ball. This displacement magnitude
also matches the value obtained through experimental testing of the hitch under the
same load conditions used in the finite element analysis.

For the alternator bracket made of ASTM-A36 hot-rolled steel, the model con-
sisted of 13,298 solid brick elements and 10,425 nodes. A total load of 1000 lb was ap-
plied downward to the flat front face piece. The bracket back side was constrained
against displacement. The largest von Mises stress was 11,538 psi located at the top
surface near the center (narrowest) section of the bracket. The largest vertical deflec-
tion was 0.01623 in. at the front tip of the outer edge of the alternator bracket.

It has been shown [3] that use of the simple eight-noded hexahedral element yields
better results than use of the constant-strain tetrahedral discussed in Section 11.1.
Table 11.2 also illustrates the comparison between the corner-noded (constant-strain)
tetrahedral, the linear-strain tetrahedral (mid-edge nodes added), the 8-noded brick,
and the 20-noded brick models for a three-dimensional cantilever beam of length
100 in., base 6 in., and height 12 in. The beam has an end load of 10,000 lb acting up-
ward and is made of steel (E ¼ 30� 106 psi). A typical 8-noded brick model with the
principal stress plot is shown in Figure 11–11. The classical beam theory solution for
the vertical displacement and bending stress is also included for comparison. We can
observe that the constant-strain tetrahedral gives very poor results, whereas the linear

Table 11–2 Table comparing results for cantilever beam modeled using 4-noded-tetrahedral,
10-noded tetrahedral, 8-noded brick, and 20-noded brick element

Solid Number Number of Degrees Number Free End Principal
Element Used of Nodes of Freedom of Elements Displ., in. Stress, psi

4-noded tet 30 90 61 0.0053 562
4-noded tet 415 1245 1549 0.0282 2357
4-noded tet 896 2688 3729 0.0420 3284
4-noded tet 1658 4974 7268 0.0548 4056
10-noded tet 144 432 61 0.1172 6601
10-noded tet 2584 7752 1549 0.1277 7970
8-noded brick 64 192 27 0.1190 5893
8-noded brick 343 1029 216 0.1253 6507
8-noded brick 1331 3993 1000 0.1277 6836
20-noded brick 208 624 27 0.1250 7899
20-noded brick 1225 3675 216 0.1285 8350
20-noded brick 4961 14,883 1000 0.1297 8323
Classical solution 0.1286 6940

(Mr. William Gobeli for creating the results for Table 11–2)
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tetrahedral gives much better results. This is because the linear-strain model predicts
the beam-bending behavior much better. The 8-noded and 20-noded brick models
yield similar but accurate results compared to the classical beam theory results.

In summary, the use of the three-dimensional elements results in a large number
of equations to be solved simultaneously. For instance, a model using a simple cube
with, say, 20 by 20 by 20 nodes (¼ 8000 total nodes) for a region requires 8000
times 3 degrees of freedom per node (¼ 24; 000) simultaneous equations.

References [4–7] report on early three-dimensional programs and analysis proce-
dures using solid elements such as a family of subparametric curvilinear elements, lin-
ear tetrahedral elements, and 8-noded linear and 20-noded quadratic isoparametric
elements.

d Summary Equations

Strain–displacement equations:

ex ¼
qu

qx
ey ¼

qv

qy
ez ¼

qw

qz
ð11:1:1Þ

gxy ¼
qu

qy
þ qv

qx
¼ gyx gyx ¼

qv

qz
þ qw

qy
¼ gzy gzx ¼

qw

qx
þ qu

qz
¼ gxz ð11:1:2Þ

Stress and strain matrices:

fsg ¼

sx

sy

sz

txy

tyz

tzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

feg ¼

ex

ey

ez

gxy

gyz

gzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð11:1:3Þ

Figure 11–11 Eight-noded brick model (27 Bricks) showing principal stress plot
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Constitutive matrix:

½D� ¼ E

ð1þ nÞð1� 2nÞ

2
6666666666666664

1� n n n 0 0 0

1� n n 0 0 0

1� n 0 0 0

1� 2n

2
0 0

1� 2n

2
0

1� 2n

2

3
7777777777777775

ð11:1:5Þ

Symmetry

Displacement functions:

uðx; y; zÞ ¼ a1 þ a2xþ a3yþ a4z

vðx; y; zÞ ¼ a5 þ a6xþ a7yþ a8z ð11:2:2Þ

wðx; y; zÞ ¼ a9 þ a10xþ a11yþ a12z

Shape functions for tetrahedral element:

N1 ¼
ða1 þ b1xþ g1yþ d1zÞ

6V
N2 ¼

ða2 þ b2xþ g2 yþ d2zÞ
6V ð11:2:10Þ

N3 ¼
ða3 þ b3xþ g3yþ d3zÞ

6V
N4 ¼

ða4 þ b4xþ g4yþ d4zÞ
6V

and

6V ¼

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

���������

���������
ð11:2:4Þ

Gradient matrix:

½B1� ¼
1

6V

b1 0 0

0 g1 0

0 0 d1

g1 b1 0

0 d1 g1

d1 0 b1

2
666666664

3
777777775

ð11:2:15Þ

Stiffness matrix for tetrahedral element:

½k� ¼ ½B�T ½D�½B�V ð11:2:18Þ
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Body-force matrix for tetrahedral element:

f fbg ¼
1

4
½Xb Yb Zb Xb Yb Zb Xb Yb Zb Xb Yb Zb�T ð11:2:20bÞ

Surface-force matrix along face with nodes 1 through 3 for tetrahedral element:

f fsg ¼
S123

3

px

py

pz

px

py

pz

px

py

pz

0

0

0

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

ð11:2:23Þ

Function to define the geometry for eight-noded linear hexahedral element:

x ¼ a1 þ a2sþ a3tþ a4z0 þ a5stþ a6tz0 þ a7z0sþ a8stz0 ð11:3:1Þ

Shape functions for isoparametric 8-noded brick element:

Ni ¼
ð1þ ssiÞð1þ ttiÞð1þ z 0z 0i Þ

8
ð11:3:3Þ

x direction displacement function for eight-noded brick element:

u ¼ a1 þ a2sþ a3tþ a4z0 þ a5stþ a6tz0 þ a7z0sþ a8stz0 ð11:3:6aÞ

Stiffness matrix for eight-noded brick element:

½k� ¼
ð1

�1

ð1

�1

ð1

�1

½B �T ½D�½B�j½J �j ds dt dz 0 ð11:3:9aÞ

2� 2� 2 rule (8 point rule) for evaluating stiffness matrix of eight-noded brick element:

½k� ¼
X8

i¼1

½Bðsi; ti; z
0
i Þ�

T ½D�½Bðsi; ti; z
0
i Þ�j½Jðsi; ti; z

0
i Þ�jWiWjWk ð11:3:9bÞ

Table 11–1 lists the Gauss points for a linear brick element.

Function describing the element geometry for 20-noded quadratic brick element:

x ¼ a1 þ a2sþ a3tþ a4z0 þ a5stþ a6tz0 þ a7z0sþ a8s2 þ a9t2

þ a10z02 þ a11s2tþ a12st2 þ a13t2z0 þ a14tz02 þ a15z02s

þ a16z0s2 þ a17stz0 þ a18s2tz0 þ a19st2z0 þ a20stz02 ð11:3:10Þ

Similar expressions describe the y and z coordinates.
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Shape functions for 20-noded brick element:

Ni ¼
ð1þ ssiÞð1þ ttiÞð1þ z 0z 0i Þ

8
ðssi þ tti þ z 0z 0i � 2Þ ði ¼ 1; 2;:::; 8Þ ð11:3:11Þ

Ni ¼
ð1� s2Þð1þ ttiÞð1þ z 0z 0i Þ

4
ði ¼ 17; 18; 19; 20Þ ð11:3:12Þ

Ni ¼
ð1þ ssiÞð1� t2Þð1þ z 0z 0i Þ

4
ði ¼ 10; 12; 14; 16Þ ð11:3:13Þ

Ni ¼
ð1þ ssiÞð1þ ttiÞð1� z 02Þ

4
ði ¼ 9; 11; 13; 15Þ ð11:3:14Þ
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d Problems

11.1 Evaluate the matrix ½B� for the tetrahedral solid element shown in Figure P11–1.

11.2 Evaluate the stiffness matrix for the elements shown in Figure P11–1. Let E ¼ 30�
106 psi and n ¼ 0:3:
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11.3 For the elements shown in Figure P11–1, assume the nodal displacements have been
determined to be

u1 ¼ 0:005 in: v1 ¼ 0:0 w1 ¼ 0:0

u2 ¼ 0:001 in: v2 ¼ 0:0 w2 ¼ 0:001 in:

u3 ¼ 0:005 in: v3 ¼ 0:0 w3 ¼ 0:0

u4 ¼ �0:001 in: v4 ¼ 0:0 w4 ¼ 0:005 in:

Determine the strains and then the stresses in the elements. Let E ¼ 30� 106 psi and
n ¼ 0:3.

11.4 What is special about the strains and stresses in the tetrahedral element?

11.5 Show that for constant body force Zb acting on an element (Xb ¼ 0 and Yb ¼ 0),

f fbig ¼
V

4

0

0

Zb

8<
:

9=
;

where f fbig represents the body forces at node i of the element with volume V.

11.6 Evaluate the ½B� matrix for the tetrahedral solid element shown in Figure P11–6. The
coordinates are in units of millimeters.

11.7 For the elements shown in Figure P11–6, assume the nodal displacements have been
determined to be

u1 ¼ 0:0 v1 ¼ 0:0 w1 ¼ 0:0

u2 ¼ 0:01 mm v2 ¼ 0:02 mm w2 ¼ 0:01 mm

u3 ¼ 0:02 mm v3 ¼ 0:01 mm w3 ¼ 0:005 mm

u4 ¼ 0:0 v4 ¼ 0:01 mm w4 ¼ 0:01 mm

(0, 0, 2)
2

3

4

1

(b)(a)

(1, 0, 0) (3, 0, 0)
x

(0, 2, 0)

y

z

Figure P11–1
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Determine the strains and then the stresses in the elements. Let E ¼ 210 GPa and
n ¼ 0:3.

11.8 For the linear strain tetrahedral element shown in Figure P11–8, (a) express the dis-
placement fields u, v, and w in the x, y and z directions, respectively. Hint: There are
10 nodes each with three translational degrees of freedom, ui, vi, and wi. Also look at
the linear strain triangle given by Eq. (8.1.2) or the expansion of Eqs. (11.2.2).

11.9 Figure P11–9 shows how solid and plane elements may be connected. What restric-
tion must be placed on the externally applied loads for this connection to be
acceptable?

11.10 Express the explicit shape functions N2 through N8, similar to N1 given by
Eq. (11.3.4), for the linear hexahedral element shown in Figure 11–5 on page 546.

11.11 Express the explicit shape functions for the corner nodes of the quadratic hexahedral
element shown in Figure 11–6 on page 549.

11.12 Write a computer program to evaluate ½k� of Eq. (11.3.9a) using a 2� 2� 2 Gaussian
quadrature rule.

Figure P11–8

y

z

(4, 2, 0)

(b)(a)

(12, 2, 0)

(10, 2, 5)

1

3

4

2

x

(10, 7, 0)

Figure P11–6

558 d 11 Three-Dimensional Stress Analysis

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solve the following problems using a computer program.

11.13 Determine the deflections at the four corners of the free end of the structural steel
cantilever beam shown in Figure P11–13. Also determine the maximum principal
stress. Compare your answer for deflections to the classical beam theory equation
(d ¼ PL3=ð3EIÞ.

11.14 A portion of a structural steel brake pedal in a vehicle is modeled as shown in Figure
P11–14. Determine the maximum deflection at the pedal under a uniform pressure
acting over the pedal totaling 100 N.

11.15 For the compressor flap valve shown in Figure P11–15, determine the maximum
operating pressure such that the material yield stress is not exceeded with a factor of
safety of two. The valve is made of hardened 1020 steel with a modulus of elasticity of
30 million psi and a yield strength of 62,000 psi. The valve thickness is a uniform
0.018 in. The valve clip ears support the valve at opposite diameters. The pressure
load is applied uniformly around the annular region.

60 mm

200 GPa

500 mm
200 mm

3.6 kN

Figure P11–13

z

x Solid elements

Plane elements
y

Figure P11–9
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11.16 An S-shaped block used in force measurement as shown in Figure P11–16 is to be
designed for a pressure of 1000 psi applied uniformly to the top surface. Determine the
uniform thickness of the block needed such that the sensor is compressed no more
than 0.05 in. Also make sure that the maximum stress from the maximum distortion
energy failure theory is less than the yield strength of the material. Use a factor of
safety of 1.5 on the stress only. The overall size of the block must fit in a 1.5-in.-high,
1-in.-wide, 1-in.-deep volume. The block should be made of steel.

11.17 A device is to be hydraulically loaded to resist an upward force P ¼ 6000 lb as shown
in Figure P11–17. Determine the thickness of the device such that the maximum
deflection is 0.1 in. vertically and the maximum stress is less than the yield strength

Figure P11–14

Figure P11–15
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using a factor of safety of 2 (only on the stress). The device must fit in a space 7 in.
high, 3 in. wide, and 2.3 in. deep. The top flange is bent vertically as shown, and the
device is clamped to the floor. Use steel for the material.

11.18 An ‘‘Allen’’ wrench is used to loosen a bolt that has a hex-head cross section. As shown
in Figure P11–18. This wrench is a 5 mm size and is made of quenched and tempered
carbon steel with modulus of elasticity of 200 GPa, Poisson’s ratio of 0.29, and yield
strength of 615 MPa. The wrench is used to loosen a rusty bolt. To simulate the fixity a

Figure P11–17 Hydraulically loaded device

Figure P11–16 S-shaped block
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surface 2.5 mm in depth from the bottom is held fixed. A total force of 125 N is applied
uniformly over 25 mm at the end of the horizontal section of the wrench. Determine the
maximum von Mises stress in the wrench. Also determine the maximum displacement.
Comment on the safety of the wrench based on whether it will yield or not. (This
problem is compliments of Justin Hronek.)

11.19 A blacksmith desires to forge a work piece using the anvil shown in Figure P11–19.
The anvil is bolted to a workbench with 4-1

2 in. diameter bolts. The anvil is made of
gray cast iron with E ¼ 15� 103 ksi. The tensile and compressive strengths are 31 ksi
and 109 ksi, respectively. A surface pressure of 1 ksi is applied to the horn of the anvil
during the forging process. Determine the maximum principal stress and its location
on the anvil. (This problem is compliments of Dan Baxter.)

11.20 A fork from a forklift is constrained by two bars (not shown) that fit into each L-shaped
appendage on the vertical part of the fork as shown in Figure P11–20. The fork is
made of AISI 4130 steel with E ¼ 206:84 GPa, v ¼ 0:30, and a yield strength of
360 MPa. The fork is loaded with 46,189 N=m2 of surface traction on the top surface.

30

R1075

Fixed endForced applied

Original model with forces Dimensions, mm

φ5

Figure P11–18 Allen wrench showing dimensions, loads, and typical finite element
model (Compliments of Justin Hronek)
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Figure P11–19 Anvil used for forging operation (showing dimensions in inch units)
and typical finite element model (Compliments of Dan Baxter) (See the full-color insert
for a color version of this figure.)
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How much will the fork deflect, and what is the maximum von Mises stress? What is
the factor of safety against yielding of the material? (This problem is compliments of
Jay Emmerich.)

Side view

Top view

50
40

25
R20 R10

25
75 50

59
0

63
0

10

50 550 381.31

1090

R
7275

30

R50Mirrored copy of
top excluding hole

R5

15

φ20

100

20
50+

Figure P11–20 Fork from forklift showing dimensions (all dimensions in mm) and
typical finite element model (Compliments of Jay Emmerich)
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11.21 A radio-control car front steering unit is shown in Figure P11–21. The arm is made of
molded ABS plastic with a modulus of elasticity of 362,000 psi and a tensile strength of
6000 psi. The base of the steering unit is attached to the frame of the car by bolts, so the
three holes that the bolts pass through are assumed fixed around their cylindrical surface
(as shown in the finite element mode). A force of 3 lbs is applied circumferentially around
the upper finger (as shown in the finite element model). This force represents the typical
weight of a remote-control car. Determine the maximum von Mises stress and largest
displacement of the control arm. (This problem is compliments of Phillip Grommes.)

R0.01

0.65

0.61

0.54 0.
23

0.
59

0.
13

0.43
0.33

0.07
0.07

φ0.13

φ0.20

1.
32

0.
20

0.38

0.64

R
0.10

0.75

0.12

1.79

0.
46

0.
40

0.
10

0.
84

Figure P11–21 Radio-control front steering unit (all dimensions in inches) and finite
element model (Compliments of Phillip Grommes) (See the full-color insert for a color
version of this figure.)

Problems d 565

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



11.22 The hitch shown in Figure P11–22 is used on an International 496 disk. The hitch is
made of cold drawn 1018 steel with E ¼ 29� 106 psi. The yield strength of the ma-
terial is 53,700 psi. The disk requires 200 hp to pull at 6 mph. The total force of 12,500
lbf in the hitch is then determined from force equal to power divided by velocity.
Determine the maximum von Mises stress and the deflection of the hitch under the
load. In the model, use two 6250 lbf applied to each side of the hitch and fix the nodes
at the ends of the attachment to the disk frame (as shown in the finite element model).
(This problem is compliments of Byron Manternach.)

+

+

+
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0.500
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00
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00
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4.
00
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74
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00

8.
00

0

0.500

7.000

90º

3.000

φ1.500

φ1.125

Figure P11–22 Hitch from a 24-foot-wide International 496 disk (dimensions in
inches) and typical finite element model (Compliments of Byron Manternach)
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11.23 A swivel C bracket shown in Figure P11–23 is mounted to a ceiling of a building and
has a speaker (not shown) of 20 lbf hanging from each mounting hole. The mounting
bracket is made of A 36 steel with a modulus of elasticity of 29� 106 psi, Poisson’s
ratio of 0.29, and yield strength of 36,000 psi. Determine the maximum von Mises
stress and deflection in the bracket. (This problem is compliments of Tyler Austin and
Kyle Jones.)

R.20 TYP. R.10

.25 TYP.

2.50

1.00

.50

φ.50

10.00

2.00

φ1.00

φ1.50

2.00

Figure P11–23 Swivel C bracket (dimension in inches) and typical finite element
model (Compliments of Tyler Austin and Kyle Jones)
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11.24 The lower arms of a front-end loader are shown in Figure P11–24. The loader mate-
rial is AISI 1010 cold drawn steel with a modulus of elasticity of 29:7� 106 psi and
Poisson’s ratio of 0.29. The yield strength of the material is 44,200 psi. In the finite el-
ement model, the back faces of the top horizontal members are fixed. Determine the
maximum force that can be applied to the bottom of the left arm to cause yielding of the
arm. You may want to try loads that are vertical (y-directed) and lateral (z-directed).
(This problem is compliments of Quentin Moller.)

0.250
3.000

32.000

The depth of the 32-in. cross member 5 in. into the paper
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.9
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4.5
82
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34.333

31.261 2.500

17.500

44
.4

43
11

.0
00

49
.3

14

φ1.000

φ1.000

Figure P11–24 Lower arms of front end loader (dimensions in inches) and a typical
finite element model (Compliments of Quentin Moller)
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11.25 A bicycle stem is shown in Figure P11–25. The stem attaches the handlebars to the
steerer tube of the fork. The stem is made of 7075-T6 aluminum alloy with yield strength
of 504 MPa. The load of 1200 N is spread over the mounting surface to the handlebar in
the x-y plane and acts at a 45o angle from the axis of the stem. The inner surface of the
stem that attaches to the steerer tube is fixed in translation in the y-direction and in
rotation about the y-axis. Determine the largest von Mises stress and its location on the
stem. (This problem is courtesy of Stephen Wilson.)

11.26 The piston head shown in Figure P11–26 is made of aluminum alloy A356.0-T6, sand
cast. The modulus of elasticity is 10:5� 106 psi. The Poisson’s ratio is 0.33. The yield
strength is 15,200 psi. The pressure on the head is 185 psi. Determine if the piston

Figure P11–25 Bicycle stem (dimensions in mm) and typical finite element model
(Compliments of Stephen Wilson)
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head is safe based on a factor of safety of 2.5 against yielding. The wrist pin hole is
fixed on the top half to represent resistance on the piston head by the connecting rod.
(This problem is compliments of Robert Jablonsky.)
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Figure P11–26 Piston head subjected to pressure load (dimensions in inches) and
typical finite element model (Compliments of Robert Jablonsky)
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11.27 A solid part shown in Figure P11–27 is made to locate parts into proper position. The
material is AISI 1005 steel with E ¼ 200 GPa and v ¼ 0.29. The front faces are fixed,
and a pressure P of 100 MPa is applied to the semi-circular face of the inside slot, as
shown in the figure. Determine the largest von Mises stress and its location on the
locator device.

20 rad.

30 mm

15 mm

30 dia.

40 mm

75 mm
50 mm

Fixed

Fixed
P

Figure P11–27 Locator part (dimensions in mm) with typical finite element model
(See the full-color insert for a color version of this figure.)
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PLATE BENDING ELEMENTd

CHAPTER OBJECTIVES

. To introduce basic concepts of plate bending.

. To derive a common plate bending element stiffness matrix.

. To present some plate element numerical comparisons.

. To demonstrate some computer solutions for plate bending problems.

Introduction

In this chapter, we will begin by describing elementary concepts of plate bending be-
havior and theory. The plate element is one of the more important structural elements
and is used to model and analyze such structures as pressure vessels, chimney stacks
(Figure 1–5), and automobile parts. Figure 12–1 shows finite element models of a
computer case and a water tank modeled using the plate bending element described
in this chapter. This description of plate bending is followed by a discussion of some
commonly used plate finite elements. A large number of plate bending element formu-
lations exist that would require a lengthy chapter to cover. Our purpose in this chapter
is to present the derivation of the sti¤ness matrix for one of the most common plate
bending finite elements and then to compare solutions to some classical problems
from a variety of bending elements in the literature.

We finish the chapter with a solution to a plate bending problem using a com-
puter program.

d 12.1 Basic Concepts of Plate Bending d
A plate can be considered the two-dimensional extension of a beam in simple bending.
Both beams and plates support loads transverse or perpendicular to their plane and
through bending action. A plate is flat (if it were curved, it would become a shell). A
beam has a single bending moment resistance, while a plate resists bending about
two axes and has a twisting moment.

We will consider the classical thin-plate theory or Kirchho¤ plate theory [1].
Many of the assumptions of this theory are analogous to the classical beam theory
or Euler–Bernoulli beam theory described in Chapter 4 and in Reference [2].
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Basic Behavior of Geometry and Deformation

We begin the derivation of the basic thin-plate equations by considering the thin plate
in the x-y plane and of thickness t measured in the z direction shown in Figure 12–2.
The plate surfaces are at z ¼Gt=2, and its midsurface is at z ¼ 0. The assumed
basic geometry of the plate is as follows: (1) The plate thickness is much smaller than
its in-plane dimensions b and c (that is, tf b or c). (If t is more than about one-tenth
the span of the plate, then transverse shear deformation must be accounted for and the
plate is then said to be thick.) (2) The deflection w is much less than the thickness t

(that is, w=tf 1).

Kirchhoff Assumptions

Consider a di¤erential slice cut from the plate by planes perpendicular to the x axis as
shown in Figure 12–3(a). Loading q causes the plate to deform laterally or upward in

(b)

(a)

Figure 12–1 (a) Computer case and (b) water tank (See the full-color insert for a
color version of this figure.)
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the z direction, and the deflection w of point P is assumed to be a function of x and y

only; that is, w ¼ wðx; yÞ and the plate does not stretch in the z direction. A line a-b
drawn perpendicular to the plate surfaces before loading remains perpendicular to
the surfaces after loading [Figure 12–3(b)]. This is consistent with the Kirchho¤
assumptions as follows:

1. Normals remain normal. This implies that transverse shear strains
gyz ¼ 0 and similarly gxz ¼ 0. However, gxy does not equal 0; right
angles in the plane of the plate may not remain right angles after
loading. The plate may twist in the plane.

2. Thickness changes can be neglected and normals undergo no
extension. This means normal strain, ez ¼ 0.

3. Normal stress sz has no e¤ect on in-plane strains ex and ey in the
stress–strain equations and is considered negligible.

Figure 12–2 Basic thin plate showing transverse loading and dimensions

Figure 12–3 Differential slice of plate of thickness t (a) before loading and
(b) displacements of point P after loading, based on Kirchhoff theory. Transverse shear
deformation is neglected, and so right angles in the cross section remain right angles.
Displacements in the y-z plane are similar

574 d 12 Plate Bending Element

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4. Membrane or in-plane forces are neglected here, and the plane stress
resistance can be superimposed later (that is, the constant-strain
triangle behavior of Chapter 6 can be superimposed with the basic
plate bending element resistance). That is, the in-plane deformations
in the x and y directions at the midsurface are assumed to be zero;
uðx; y; 0Þ ¼ 0 and vðx; y; 0Þ ¼ 0.

Based on the Kirchho¤ assumptions, any point P in Figure 12–3 has displacement in
the x direction due to a small rotation a of

u ¼ �za ¼ �z
qw

qx

� �
ð12:1:1Þ

and similarly the same point has displacement in the y direction of

v ¼ �z
qw

qy

� �
ð12:1:2Þ

The curvatures of the plate are then given as the rate of change of the angular dis-
placements of the normals and are defined as

kx ¼ �
q2w

qx2
ky ¼ �

q2w

qy2
kxy ¼ �

2q2w

qxqy
ð12:1:3Þ

The first of Eqs. (12.1.3) is used in beam theory [Eq. (4.1.1e)].
Using the definitions for the in-plane strains from Eq. (6.1.4), along with Eq.

(12.1.3), the in-plane strain–displacement equations become

ex ¼ �z
q2w

qx2
ey ¼ �z

q2w

qy2
gxy ¼ �2z

q2w

qxqy
ð12:1:4aÞ

or using Eq. (12.1.3) in Eq.(12.1.4a), we have

ex ¼ �zkx ey ¼ �zky gxy ¼ �zkxy ð12:1:4bÞ

The first of Eqs. (12.1.4a) is used in beam theory [see Eq. (4.1.10)]. The others are new
to plate theory.

Stress–Strain Relations

Based on the third assumption above, the plane stress equations can be used to relate
the in-plane stresses to the in-plane strains for an isotropic material as

sx ¼
E

1� n2
ðex þ neyÞ

sy ¼
E

1� n2
ðey þ nexÞ ð12:1:5Þ

txy ¼ Ggxy
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The in-plane normal stresses and shear stress are shown acting on the edges of the
plate in Figure 12–4(a). Similar to the stress variation in a beam, these stresses vary
linearly in the z direction from the midsurface of the plate. The transverse shear
stresses tyz and txz are also present, even though transverse shear deformation is
neglected. As in beam theory, these transverse stresses vary quadratically through the
plate thickness. The stresses of Eq. (12.1.5) can be related to the bending moments
Mx and My and to the twisting moment Mxy acting along the edges of the plate as
shown in Figure 12–4(b).

The moments are actually functions of x and y and are computed per unit length
in the plane of the plate so have units of lb–in./in. Therefore, the moments are

Mx ¼
ð t=2

�t=2

zsx dz My ¼
ð t=2

�t=2

zsy dz Mxy ¼
ð t=2

�t=2

ztxy dz ð12:1:6Þ

The moments can be related to the curvatures by substituting Eqs. (12.1.4b) into Eqs.
(12.1.5) and then using those stresses in Eq. (12.1.6) to obtain

Mx ¼ Dðkx þ nkyÞ My ¼ Dðky þ nkxÞ Mxy ¼
Dð1� nÞ

2
kxy ð12:1:7Þ

where D ¼ Et3=½12ð1� n2Þ� is called the bending rigidity of the plate (in units of
lb–in.).

The maximum magnitudes of the normal stresses on each edge of the plate are
located at the top or bottom at z ¼ t=2. For instance, it can be shown that

sx ¼
6Mx

t2
ð12:1:8Þ

This formula is similar to the flexure formula sx ¼Mxc=I when applied to a unit
width of plate and when c ¼ t=2.

The governing equilibrium di¤erential equation of plate bending is important in
selecting the element displacement fields. The basis for this relationship is the equilib-
rium di¤erential equations derived by the equilibrium of forces with respect to the

(a) (b)

Figure 12–4 Differential element of a plate with (a) stresses shown on the edges of
the plate and (b) differential moments and forces
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z direction and by the equilibrium of moments about the x and y axes, respectively.
These equilibrium equations result in the following di¤erential equations:

qQx

qx
þ qQy

qy
þ q ¼ 0

qMx

qx
þ qMxy

qy
�Qx ¼ 0 ð12:1:9Þ

qMy

qy
þ qMxy

qx
�Qy ¼ 0

where q is the transverse distributed loading (in units of psi) and Qx and Qy are the
transverse shear line loads (in units of lb/in.) shown in Figure 12–4(b).

Now substituting the moment/curvature relations from Eq. (12.1.7) into the sec-
ond and third of Eqs. (12.1.9), then solving those equations for Qx and Qy, and finally
substituting the resulting expressions into the first of Eqs. (12.1.9), we obtain the gov-
erning partial di¤erential equation for an isotropic, thin-plate bending behavior as

D
q4w

qx4
þ 2q4w

qx2qy2
þ q4w

qy4

 !
¼ q ð12:1:10Þ

From Eq. (12.1.10), we observe that the solution of thin-plate bending using a displace-
ment point of view depends on selection of the single-displacement component w, the
transverse displacement.

If we neglect the di¤erentiation with respect to the y coordinate, Eq. (12.1.10)
simplifies to Eq. (4.1.1g) for a beam (where the flexural rigidity D of the plate reduces to
EI of the beam when the Poisson e¤ect is set to zero and the plate width becomes unity).

Potential Energy of a Plate

The total potential energy of a plate is given by

U ¼ 1

2

ð
ðsxex þ syey þ txygxyÞ dV ð12:1:11Þ

The potential energy can be expressed in terms of the moments and curvatures by sub-
stituting Eqs. (12.1.4b) and (12.1.6) in Eq. (12.1.11) as

U ¼ 1

2

ð
ðMxkx þMyky þMxykxyÞ dA ð12:1:12Þ

d 12.2 Derivation of a Plate Bending Element
Stiffness Matrix and Equations

d

Numerous finite elements for plate bending have been developed over the years, and
Reference [3] cites 88 di¤erent elements. In this section we will introduce only one
element formulation, the basic 12-degrees-of-freedom rectangular element shown in
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Figure 12–5. For more details of this formulation and of various other formulations
including triangular elements, see References [4–18].

The formulation will be developed consistently with the sti¤ness matrix and
equations for the bar, beam, plane stress–strain, axisymmetric, and solid elements of
previous chapters.

Step 1 Select Element Type

We will consider the 12-degrees-of-freedom flat-plate bending element shown in
Figure 12–5. Each node has 3 degrees of freedom—a transverse displacement w in
the z direction, a rotation yx about the x axis, and a rotation yy about the y axis.

The nodal displacement matrix at node i is given by

fdig ¼
wi

yxi

yyi

8<
:

9=
; ð12:2:1Þ

where the rotations are related to the transverse displacement by

yx ¼ þ
qw

qy
yy ¼ �

qw

qx
ð12:2:2Þ

The negative sign on yy is due to the fact that a negative displacement w is required to
produce a positive rotation about the y axis.

The total element displacement matrix is now given by

fdg ¼ f½di� ½dj � ½dm� ½dn�gT ð12:2:3Þ

Step 2 Select the Displacement Function

Because there are 12 total degrees of freedom for the element, we select a 12-term
polynomial in x and y as follows:

w ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2 þ a7x3 þ a8x2y

þ a9xy2 þ a10y3 þ a11x3yþ a12xy3 ð12:2:4Þ

Equation (12.2.4) is an incomplete quartic in the context of the Pascal triangle (Figure 8–2).
The function is complete up to the third order (ten terms), and a choice of two more
terms from the remaining five terms of a complete quartic must be made. The best

Figure 12–5 Basic rectangular plate
element with nodal degrees of
freedom
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choice is the x3y and xy3 terms as they ensure that we will have continuity in displace-
ment among the interelement boundaries. (The x4 and y4 terms would yield disconti-
nuities of displacement along interelement boundaries and so must be rejected. The
x2y2 term is alone and cannot be paired with any other terms and so is also rejected.)
The function [Eq. (12.2.4)] also satisfies the basic di¤erential equation [Eq. (12.1.10)]
over the unloaded part of the plate, although not a requirement in a minimum poten-
tial energy approximation.

Furthermore, the function allows for rigid-body motion and constant strain, as
terms are present to account for these phenomena in a structure. However, inter-
element slope discontinuities along common boundaries of elements are not ensured.

To observe this discontinuity in slope, we evaluate the polynomial and its slopes
along a side or edge (say, along side i-j, the x axis of Figure 12–5). We then obtain

w ¼ a1 þ a2xþ a4x2 þ a7x3

qw

qx
¼ a2 þ 2a4xþ 3a7x2 ð12:2:5Þ

qw

qy
¼ a3 þ a5xþ a8x2 þ a12x3

The displacement w is a cubic as used for the beam element, while the slope qw=qx is the
same as in beam bending. Based on the beam element, we recall that the four constants
a1; a2; a4, and a7 can be defined by invoking the endpoint conditions of ðwi;wj; yyi; yyjÞ.
Therefore, w and qw=qx are completely defined along this edge. The normal slope
qw=qy is a cubic in x. However, only two degrees of freedom remain for definition of
this slope, while four constants (a3; a5; a8, and a12) exist. This slope is then not uniquely
defined, and a slope discontinuity occurs. Thus, the function for w is said to be noncon-
forming. The solution obtained from the finite element analysis using this element will
not be a minimum potential energy solution. However, this element has proven to give
acceptable results, and proofs of its convergence have been shown [8].

The constants a1 through a12 can be determined by expressing the 12 simulta-
neous equations linking the values of w and its slopes at the nodes when the coordinates
take up their appropriate values. First, we write

w

þ qw

qy

� qw

qx

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

0 0 þ1 0 þx þ2y 0 þx2 þ2xy þ3y2 þx3 þ3xy2

0 �1 0 �2x �y 0 �3x2 �2xy �y2 0 �3x2y �y3

2
664

3
775

�

a1

a2

a3

..

.

a12

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð12:2:6Þ
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or in simple matrix form the degrees of freedom matrix is

fcg ¼ ½P�fag ð12:2:7Þ

where ½P� is the 3� 12 first matrix on the right side of Eq. (12.2.6).
Next, we evaluate Eq. (12.2.6) at each node point as follows

fdg ¼

wi

yxi

yyi

wj

..

.

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1 xi yi x2
i xiyi y2

i x3
i x2

i yi xiy
3
i y3

i x3
i yi xiy

3
i

0 0 þ1 0 þxi þ2yi 0 þx2
i þ2xiyi þ3y2

i þx3
i þ3xiy

2
i

..

.

..

.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2
6666666664

3
7777777775

�

a1

a2

..

.

a12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð12:2:8Þ

In compact matrix form, we express Eq. (12.2.8) as

fdg ¼ ½C�fag ð12:2:9Þ

where ½C� is the 12� 12 matrix on the right side of Eq. (12.2.8).
Therefore, the constants (a’s) can be solved for by

fag ¼ ½C��1fdg ð12:2:10Þ

Equation (12.2.7) can now be expressed as

fcg ¼ ½P�½C��1fdg ð12:2:11Þ

fcg ¼ ½N�fdg ð12:2:12Þor

where ½N � ¼ ½P�½C��1 is the 3� 12 shape function matrix. A specific form of the shape
functions Ni;Nj ;Nm, and Nn is given in Reference [9].

Step 3 Define the Strain (Curvature)-Displacement
and Stress (Moment)-Curvature Relationships

The curvature matrix, based on the curvatures of Eq.(12.1.3), is

fkg ¼
kx

ky

kxy

8<
:

9=
; ¼

8><
>:

�2a4 � 6a7x� 2a8 y� 6a11xy

�2a6 � 2a9x� 6a10y� 6a12xy

�2a5 � 4a8x� 4a9y� 6a11x2 � 6a12 y2

9>=
>; ð12:2:13Þ
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or expressing Eq. (12.2.13) in matrix form, we have

fkg ¼ ½Q�fag ð12:2:14Þ

where ½Q� is the 3� 12 coe‰cient matrix multiplied by the a’s in Eq. (12.2.13). Using
Eq. (12.2.10) for fag, we express the curvature matrix as

fkg ¼ ½B�fdg ð12:2:15Þ

½B� ¼ ½Q�½C��1 ð12:2:16Þwhere

is the 3� 12 gradient matrix.
The moment-curvature matrix for a plate is given by

fMg ¼

8><
>:

Mx

My

Mxy

9>=
>; ¼ ½D�

kx

ky

kxy

8<
:

9=
; ¼ ½D�½B�fdg ð12:2:17Þ

where the ½D� matrix is the constitutive matrix given for isotropic materials by

½D� ¼ Et3

12ð1� n2Þ

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ð12:2:18Þ

and Eq. (12.2.15) has been used in the final expression for Eq. (12.2.17).

Step 4 Derive the Element Stiffness Matrix and Equations

The sti¤ness matrix is given by the usual form of the sti¤ness matrix as

½k� ¼
ðð
½B�T ½D�½B� dx dy ð12:2:19Þ

where ½B� is defined by Eq. (12.2.16) and ½D� is defined by Eq. (12.2.18). The sti¤ness
matrix for the four-noded rectangular element is of order 12� 12. A specific expres-
sion for ½k� is given in References [4] and [5].

The surface force matrix due to distributed loading q acting per unit area in the
z direction is obtained using the standard equation

fFsg ¼
ðð
½Ns�T q dx dy ð12:2:20Þ
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For a uniform load q acting over the surface of an element of dimensions 2b� 2c,
Eq. (12.2.20) yields the forces and moments at node i as

fwi

fyxi

fyyi

8><
>:

9>=
>; ¼ 4qcb

8><
>:

1=4

�c=12

b=12

9>=
>; ð12:2:21Þ

with similar expressions at nodes j;m, and n. We should note that a uniform load
yields applied couples at the nodes as part of the work-equivalent load replacement,
just as was the case for the beam element (Section 4.4).

The element equations are given by

fwi

fyxi

fyyi

..

.

fyyn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

k11 k12 . . . k1;12

k21 k22 . . . k2;12

k31 k32 . . . k3;12

� � � � � � ��� � � � � � �
k12;1 . . . k12;12

2
6666666664

3
7777777775

wi

yxi

yyi

..

.

yyn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð12:2:22Þ

The rest of the steps, including assembling the global equations, applying
boundary conditions (now boundary conditions on w; yx; yy), and solving the equa-
tions for the nodal displacements and slopes (note three degrees of freedom per
node), follow the standard procedures introduced in previous chapters.

d 12.3 Some Plate Element
Numerical Comparisons

d

We now present some numerical comparisons of quadrilateral plate element formula-
tions. Remember there are numerous plate element formulations in the literature.
Figure 12–6 shows a number of plate element formulation results for a square plate
simply supported all around and subjected to a concentrated vertical load applied at
the center of the plate. The results are shown to illustrate the upper and lower bound
solution behavior and demonstrate the convergence of solution for various plate ele-
ment formulations. Included in these results is the 12-term polynomial described in
Section 12.2. We note that the 12-term polynomial converges to the exact solution
from above. It yields an upper bound solution. Because the interelement continuity
of slopes is not ensured by the 12-term polynomial, the lower bound classical charac-
teristic of a minimum potential energy formulation is not obtained. However, as
more elements are used, the solution converges to the exact solution [1].
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Figure 12–7 shows comparisons of triangular plate formulations for the same
centrally loaded simply supported plate used to compare quadrilateral element formu-
lations in Figure 12–6. We can observe from Figures 12–6 and 12–7 a number of dif-
ferent formulations with results that converge from above and below. Some of these
elements produce better results than others.

The Algor program [19] uses, among others, the Veubeke (after Baudoin
Fraeijs de Veubeke) 16-degrees-of-freedom ‘‘subdomain’’ formulation [7], which
converges from below, as it is based on a compatible displacement formulation.
For more information on some of these formulations, consult the references at the
end of the chapter.

Finally, Figure 12–8 shows results for some selected Mindlin plate theory ele-
ments. Mindlin plate elements account for bending deformation and for transverse
shear deformation. For more on Mindlin plate theory, see Reference [6]. The ‘‘heterosis’’
element [10] is the best performing element in Figure 12–8.

Figure 12–6 Numerical comparisons: quadrilateral plate element formulations
(Gallagher, Richard H., Finite Element Analysis: Fundamentals, 1st, �c 1975. Printed and
Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle
River, New Jersey.)
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d 12.4 Computer Solutions
for Plate Bending Problems

d

A computer program solution for plant bending problems [19] is now illustrated in
Example 12.2. The plate element is a three- or four-noded element formulated in
three-dimensional space. The element degrees of freedom allowed are all three transla-
tions (u; v, and w) and in-plane rotations (yx and yy). The rotational degrees of free-
dom normal to the plate are undefined and must be constrained. The element formu-
lated in the computer program is the 16-term polynomial described in References [5]
and [7]. This element is known as the Veubeke plate in the program. The 16-node for-
mulation converges from below for the displacement analysis, as it is based on a com-
patible displacement formulation. This is also shown in Figure 12–6 for the clamped
plate subjected to a concentrated center load.

Mesh size (Fig. 12–6)

Figure 12–7 Numerical comparisons for a simply supported square plate subjected
to center load triangular element formulations (Gallagher, Richard H., Finite Element
Analysis: Fundamentals, 1st, �c 1975. Printed and Electronically reproduced by
permission of Pearson Education, Inc., Upper Saddle River, New Jersey.)
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Example 12.1

The problem of a square steel plate fixed along all four edges and subjected to a con-
centrated load at its center is shown in Figure 12–9. Determine the maximum vertical
deflection of the plate.

Figure 12–8 Center deflection of a uniformly loaded clamped square plate of side
length LT and thickness t. An 8� 8 mesh is used in all cases. Thin plates correspond
to large LT /t. Transverse shear deformation becomes significant for small LT /t.
Integration rules are reduced (R), selective (S), and full (F) [18], based on Mindlin plate
element formulations (Cook, R., Malkus, D., and Plesha, M. Concepts and Applications
of Finite Element Analysis, 3rd ed., 1989, p. 326. Reprinted by permission of John Wiley
& Sons, Inc., New York)

Figure 12–9 A 2� 2 mesh model of the clamped plate of Example 12.1
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SOLUTION:
A 2� 2 mesh was created to model the plate. The resulting vertical displacement plot
is shown in Figure 12–10. The maximum displacement located at the center of the
plate is �0:07583 in.

The classical plate bending solution for the maximum displacement (which
occurs under the concentrated center load) is given in Reference [1] as

w ¼ 0:0056PL2=D ¼ 0:0056ð�100 lbÞð20 in:Þ2=ð2:747� 103 lb-in:Þ ¼ �0:0815 in:

where

D ¼ Et3=ð12ð1� v2Þ ¼ ð30� 106 psiÞð0:1 in:Þ3=½12ð1� 0:32Þ� ¼ 2:747� 103 lb-in:

A mesh refinement to a 4� 4 mesh would show convergence toward the classical
solution. 9

Figure 12–10 Displacement plot of the clamped plate of Example 12.1 (See the
full-color insert for a color version of this figure.)

Example 12.2

The clamped plate of Example 12.1 is now reinforced with 2-in. wide � 12-in. deep
rectangular cross-section beams spanning the centers in both directions as indicated
by the lines dividing the plate into four parts in Figure 12–11(a). (Figure 1–5 also
illustrates how a chimney stack was modeled using both beam and plate elements.)
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SOLUTION:
The resulting displacement plot is shown in Figure 12–11(b). The maximum displace-
ment is now decreased to �1:324� 10�6 in. 9

Example 12.3

A finite element model of a computer case is shown in Figure 12–12(a). The model
consists of plate bending elements.

(a)

100 lb

(b)

Figure 12–11 (a) Model of beam and plate elements combined at centerline of
elements and (b) vertical deflection plot for model in part (a)

SOLUTION:
Figure 12–12(b) shows the 0.1-psi uniform pressure applied to the top surface, the
fixed boundary conditions applied to the bottom of the case, and the resulting von
Mises stress plot. For more details of the dimensions used, see Problem 12.13. 9
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(a)

(b)

Figure 12–12 (a) Finite element model of a computer case composed of plate bending
elements and (See the full-color insert for a color version of this figure.) (b) the pressure
load, boundary conditions, and resulting von Mises stress (by Nicholas Dachniwskyj)

d Summary Equations

Plate curvatures expressions:

kx ¼ �
q2w

qx2
ky ¼ �

q2w

qy2
kxy ¼ �

2q2w

qxqy
ð12:1:3Þ

588 d 12 Plate Bending Element

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Strain–displacement equations:

ex ¼ �z
q2w

qx2
ey ¼ �z

q2w

qy2
gxy ¼ �2z

q2w

qxqy
ð12:1:4aÞ

Stress–strain relations:

sx ¼
E

1� n2
ðex þ neyÞ

sy ¼
E

1� n2
ðey þ nexÞ ð12:1:5Þ

txy ¼ Ggxy

Moment-curvature relations:

Mx ¼ Dðkx þ nkyÞ My ¼ Dðky þ nkxÞ Mxy ¼
Dð1� nÞ

2
kxy ð12:1:7Þ

where D ¼ Et3=½12ð1� n2Þ�.

Normal stress on plate due to bending:

sx ¼
6Mx

t2
ð12:1:8Þ

Potential energy in plate:

U ¼ 1

2

ð
ðMxkx þMyky þMxykxyÞ dA ð12:1:12Þ

Transverse displacement function for four-noded rectangular plate:

w ¼ a1 þ a2xþ a3yþ a4x2 þ a5xyþ a6y2 þ a7x3 þ a8x2y

þ a9xy2 þ a10y3 þ a11x3yþ a12xy3 ð12:2:4Þ
Gradient matrix:

½B � ¼ ½Q�½C ��1 ð12:2:16Þ
Moment-curvature matrix for four-noded rectangular plate:

fMg ¼

8><
>:

Mx

My

Mxy

9>=
>; ¼ ½D�

kx

ky

kxy

8<
:

9=
; ¼ ½D�½B�fdg ð12:2:17Þ

Constitutive matrix for plate bending:

½D� ¼ Et3

12ð1� n2Þ

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ð12:2:18Þ

Sti¤ness matrix:

½k� ¼
ðð
½B�T ½D�½B� dx dy ð12:2:19Þ

Surface-force matrix at node i for plate under uniform pressure:

fwi

fyxi

fyyi

8><
>:

9>=
>; ¼ 4qcb

8><
>:

1=4

�c=12

b=12

9>=
>; ð12:2:21Þ
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d Problems

Solve these problems using the plate element from a computer program.

12.1 A square steel plate (Figure P12–1) of dimensions 20 in. � 20 in. with thickness of
0.1 is clamped all around. The plate is subjected to a uniformly distributed loading
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of 1 lb/in2. Using a 2 � 2 mesh and then a 4 � 4 mesh, determine the maximum
deflection and maximum stress in the plate. Compare the finite element solution to the
classical one in [1].

12.2 An L-shaped plate (Figure P12–2) with thickness 0.1 in. is made of ASTM A-36
steel. Determine the deflection under the load and the maximum principal stress and its
location using the plate element. Then model the plate as a grid with two beam elements
with each beam having the sti¤ness of each L-portion of the plate and compare your
answer.

12.3 A square (Figure P12–3) simply supported 20 in. � 20 in. steel plate with thickness
0.15 in. has a round hole of 4 in. diameter drilled through its center. The plate is uniformly
loaded with a load of 2 lb/in2. Determine the maximum principal stress in the plate.

12.4 A C-channel section (Figure P12–4) structural steel beam of 2-in. wide flanges, 3 in. depth
and thickness of both flanges and web of 0.25 in. is loaded as shown with 100 lb acting in
the y direction on the free end. Determine the free end deflection and angle of twist.
Now move the load in the z direction until the rotation (angle of twist) becomes zero.

Figure P12–1

Figure P12–2

Figure P12–3
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This distance is called the shear center (the location where the force can be placed so that
the cross section will bend but not twist). You will need to add a beam or plate element
to the center of the web extended into the negative z direction and place the load at the end
of this proper length beam. (See Table 5–1 for the equation for the shear center location.)

12.5 For the simply supported structural steel W 14� 61 wide flange beam shown in
Figure P12–5, compare the plate element model results with the classical beam bending
results for deflection and bending stress. The beam is subjected to a central vertical
load of 22 kip. The cross-sectional area is 17.9 in.2, depth is 13.89 in., flange width is
9.995 in., flange thickness is 0.645 in., web thickness is 0.375 in., and moment of inertia
about the strong axis is 640 in.4

12.6 For the structural steel plate structure shown in Figure P12–6, determine the maximum
principal stress and its location. If the stresses are unacceptably high, recommend any

12 in. 3 in.

Figure P12–4

Figure P12–5

8 in.

8 in.

10 in.

10 in.

6 in.

Figure P12–6
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design changes. The initial thickness of each plate is 0.25 in. The left and right edges
are simply supported. The load is a uniformly applied pressure of 10 lb/in.2 over the
top plate.

12.7 Design a steel box structure (Figure P12–7) 4 ft wide � 8 ft long made of plates to be
used to protect construction workers while working in a trench. That is, determine a
recommended thickness of each plate. The depth of the structure must be 8 ft. Assume
the loading is from a side load acting along the long sides due to a wet soil (density of
62.4 lb/ft3) and varies linearly with the depth. The allowable deflection of the plate type
structure is 1 in. and the allowable stress is 20 ksi.

12.8 Determine the maximum deflection and maximum principal stress of the circular
plate shown in Figure P12–8. The plate is subjected to a uniform pressure p ¼ 700 kPa
and fixed along its outer edge. Let E ¼ 200 GPa, n ¼ 0:3, radius r ¼ 500 mm, and
thickness t ¼ 12 mm.

12.9 Determine the maximum deflection and maximum principal stress for the plate shown
in Figure P12–9. The plate is fixed along all three sides. A uniform pressure of 70 MPa
is applied to the surface. The plate is made of steel with E ¼ 200 GPa, n ¼ 0:3, and
thickness t ¼ 6 mm, a ¼ 0:75 m and b ¼ 1 m.

Figure P12–7

x

y

o
r

p

z

x

Figure P12–8
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12.10 An aircraft cabin window of circular cross section and simple supports all around as
shown in Figure P12–10 is made of polycarbonate with E ¼ 0:345� 106 psi, n ¼ 0:36,
radius ¼ 20 in., and thickness t ¼ 0:75 in. The safety of the material is tested at a uni-
form pressure of 10 psi. Determine the maximum deflection and maximum principal
stress in the material. The yield strength of the material is 9 ksi. Comment on the po-
tential use of this material in regard to strength and deflection.

12.11 A square steel plate 2 m � 2 m and 10 mm thick at the bottom of a tank must support
salt water at a height of 3 m, as shown in Figure P12–11. Assume the plate to be built
in (fixed all around). The plate allowable stress is 100 MPa. Let E ¼ 200 GPa, n ¼ 0:3
for the steel properties. The weight density of salt water is 10.054 kN/m3. Determine
the maximum principal stress in the plate and compare to the yield strength.

a

x
B

b

a�2

A

y

Figure P12–9

3 m

2 m

2 m

Figure P12–11

p

z

r

rr

Figure P12–10
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12.12 A stockroom floor carries a uniform load of p ¼ 80 lb/ft2 over half the floor as shown
in Figure P12–12. The floor has opposite edges clamped and remaining edges and mid-
span simply supported. The dimensions are 10 ft by 20 ft. The floor thickness is 6 in.
The floor is made of reinforced concrete with E ¼ 3� 106 psi and n ¼ 0:25. Determine
the maximum deflection and maximum principal stress in the floor.

12.13 A computer case shown in Figure P12–13 is made of AISI 4130 steel. The top surface
is subjected to a uniform pressure load of 0.1 psi. The thickness of the case is uniformly
0.125 in. The bottom surface is fully constrained. Model the case using plate bending
elements. Determine the maximum von Mises stress and largest deflection of the top
face of the case.

12.14 The hopper shown in Figure P12–14 is to be made of plate steel with 0.25-in. thick
walls. Apply a surface traction or pressure load to the walls to simulate a grain
loading. Use plate bending elements to model the hopper. Determine through re-
search typical values to be used for the loading. Determine the von Mises stress
throughout the vessel.

12.15 A manure spreader tank is shown in Figure P12–15. The tank is 90 in. long. The bot-
tom axle is 12 in. long measured along the tank axis direction and located in the mid-
dle. The single front end coupling is 6 in. in length measured along the axis of the tank.
The pressure is a variable surface pressure extending from the top edge to bottom and
given by the function shown with a maximum pressure of 11.6 psi at the center of the
tank. (The density of manure is taken as 8.3 lbf/gallon or 0.0359 lbf/in.3). Other di-
mensions are shown in the figures. Assume the tank is made of plate steel with modulus
of elasticity of 29� 106 psi and Poisson’s ratio of 0.29. Determine the von Mises stress

p

z

y

x

x

10 ft10 ft

10 ft

Figure P12–12
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60 in.

120 in.

120 in. R

30 in. R

96 in.

Figure P12–14 Hopper

Note: Center four vents 5 in. × 1 in. w. 3/4 in. space between

Constrained

2 in. all around 
backside

8 in.

2 in.

2 in.

2 in.

1 in.

3 in.

4 in.

10 in.

2 in.

4 in.

0.1 psi

12 in.

1 in.

30 in.

1    in.1 
2

1    in.1 
2

Center
top hole
4 in. × 6 in.

6 in.

Figure P12–13 Computer case
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throughout the tank and the maximum displacement. (This problem compliments of
Justin Hronek.)

12.16 A tractor bucket with dimensions is shown in Figure P12–16. The load on the bucket is
600 lb spread uniformly over the inside surface. Three split surfaces are fully con-
strained. The bucket material is A36 structural steel. Determine the von Mises stress
throughout the bucket. (This problem was done in Cosmos Works and created by John
Mirth and Brian Niggemann.)

Draw the typical bucket using your own dimensions or use the scaled drawing
with dimensions shown in Figure P12–16.

(in.)

Variable surface traction

20

45°

φ 36.000

1.
00

0
Cylinder

–18.0 –10.8
0.0

2.3

Pr
es

su
re

 p
si

4.7

7.0

9.3

11.6

–3.6 3.6 10.8 18.0

Axle

FPO

12,000 in.

Coupling

Original model in Algor with boundary conditions

Figure P12–15 Manure spreader tank showing dimensions (in.) and pressure load
variation (Compliments of Justin Hronek)
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3.50 in
5.00 in

7.00 in

7.00 in

14.00 in

3.00 in

16.00 in

Split surfaces on the bucket

Fully constrain 3 split 
surfaces

600 lb load on 
this surface

Figure P12–16 Tractor bucket with dimensions shown in inches (Done in Cosmos
Works and created by John Mirth and Brian Niggeman)
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HEAT TRANSFER AND

MASS TRANSPORTd

CHAPTER OBJECTIVES

. To derive the basic differential equation for one-dimensional heat conduction.

. To include heat transfer by convection in the one-dimensional heat transfer
model.

. To introduce typical units used for heat transfer.

. To list typical thermal conductivities of materials and heat transfer coefficients
based on common modes of free air convection through condensation of water
vapor.

. To derive the one-dimensional finite element formulation for heat transfer by
conduction and convection.

. To introduce the steps for solving a heat transfer problem by the finite element
method.

. To illustrate by examples how to solve one-dimensional heat transfer problems.

. To develop the two-dimensional heat transfer finite element formulation and
illustrate an example of a two-dimensional solution.

. To describe how to deal with point or line sources of heat generation.

. To demonstrate when three-dimensional finite element models must be used.

. To introduce the one-dimensional heat transfer with mass transport of the fluid.

. To derive the finite element formulation of heat transfer with mass transport by
using Galerkin’s method.

. To present a flowchart of two- and three-dimensional heat transfer process.

. To show examples of two- and three-dimensional problems that have been solved
using a computer program.

Introduction

In this chapter, we present the first use in this text of the finite element method for
solution of nonstructural problems. We first consider the heat-transfer problem,
although many similar problems, such as seepage through porous media, torsion of
shafts, and magnetostatics [3], can also be treated by the same form of equations
(but with different physical characteristics) as that for heat transfer.

C H A P T E R 13
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Familiarity with the heat-transfer problem makes possible determination of the
temperature distribution within a body. We can then determine the amount of heat
moving into or out of the body and the thermal stresses. Figure 13–1 is an illustration
of a three-dimensional model of a cylinder head with the temperature distribution
shown throughout the head. The cylinder head is made of stainless steel AISI 410
and is part of a diesel engine that would provide reduced heat rejection and increased
power density. The resulting temperature distribution reveals the high temperature of
1500 �F in red color at the interface between the two exhaust ports. These tempera-
tures were then fed into the linear stress analyzer to obtain the thermal stresses rang-
ing from 85 ksi to 200 ksi. The linear stress analysis confirmed the behavior that the
engineers saw in the initial prototype tests. The highest thermal stresses coincided
with the part of the cylinder head that had been leaking in the preliminary prototypes.

We begin with a derivation of the basic differential equation for heat conduction
in one dimension and then extend this derivation to the two-dimensional case. We will
then review the units used for the physical quantities involved in heat transfer.

In preceding chapters dealing with stress analysis, we used the principle of mini-
mum potential energy to derive the element equations, where an assumed displace-
ment function within each element was used as a starting point in the derivation. We
will now use a similar procedure for the nonstructural heat-transfer problem. We de-
fine an assumed temperature function within each element. Instead of minimizing a
potential energy functional, we minimize a similar functional to obtain the element
equations. Matrices analogous to the stiffness and force matrices of the structural
problem result.

We will consider one-, two-, and three-dimensional finite element formulations
of the heat-transfer problem and provide illustrative examples of the determination

Figure 13–1 Finite element results of cylinder head showing temperature
distribution (brick elements were used in the model) (Courtesy of Algor, Inc.)
(See the full-color insert for a color version of this figure.)
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of the temperature distribution along the length of a rod and within a two-
dimensional body and show some three-dimensional heat transfer examples as well.

Next, we will consider the contribution of fluid mass transport. The one-
dimensional mass-transport phenomenon is included in the basic heat-transfer differ-
ential equation. Because it is not readily apparent that a variational formulation is
possible for this problem, we will apply Galerkin’s residual method directly to the dif-
ferential equation to obtain the finite element equations. (You should note that the
mass transport stiffness matrix is asymmetric.) We will compare an analytical solution
to the finite element solution for a heat exchanger design/analysis problem to show the
excellent agreement.

Finally, we will present some computer program results for both two- and three-
dimensional heat transfer.

d 13.1 Derivation of the Basic Differential
Equation

d

One-Dimensional Heat Conduction (without Convection)

We now consider the derivation of the basic differential equation for the one-
dimensional problem of heat conduction without convection. The purpose of this
derivation is to present a physical insight into the heat-transfer phenomena, which
must be understood so that the finite element formulation of the problem can be
fully understood. (For additional information on heat transfer, consult texts such
as References [1] and [2].) We begin with the control volume shown in Figure 13–2.
By conservation of energy, we have

Ein þ Egenerated ¼ DU þ Eout ð13:1:1Þ

or qxA dtþQA dx dt ¼ DU þ qxþdxA dt ð13:1:2Þ
where

Ein is the energy entering the control volume, in units of joules (J) or
kW � h or Btu.

DU is the change in stored energy, in units of kW � h (kWh) or Btu.

qx is the heat conducted (heat flux) into the control volume at surface
edge x, in units of kW/m2 or Btu/(h-ft2).

Figure 13–2 Control volume for
one-dimensional heat conduction
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qxþ dx is the heat conducted out of the control volume at the surface edge
xþ dx.

t is time, in h or s (in U.S. customary units) or s (in SI units).

Q is the internal heat source (heat generated per unit time per unit volume
is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the
volume, is negative).

A is the cross-sectional area perpendicular to heat flow q, in m2 or ft2.

By Fourier’s law of heat conduction,

qx ¼ �Kxx

dT

dx
ð13:1:3Þ

where

Kxx is the thermal conductivity in the x direction, in kW/(m � �C) or
Btu/(h-ft-�F).

T is the temperature, in �C or �F.

dT=dx is the temperature gradient, in �C/m or �F/ft.

Equation (13.1.3) states that the heat flux in the x direction is proportional to the
gradient of temperature in the x direction. The minus sign in Eq. (13.1.3) implies
that, by convention, heat flow is positive in the direction opposite the direction of tem-
perature increase. Equation (13.1.3) is analogous to the one-dimensional stress–strain
law for the stress analysis problem—that is, to sx ¼ Eðdu=dxÞ. Similarly,

qxþdx ¼ �Kxx

dT

dx

����
xþdx

ð13:1:4Þ

where the gradient in Eq. (13.1.4) is evaluated at xþ dx. By Taylor series expansion,
for any general function f ðxÞ, we have

fxþ dx ¼ fx þ
df

dx
dxþ d 2f

dx2

dx2

2
þ � � �

Therefore, using a two-term Taylor series, Eq. (13.1.4) becomes

qxþ dx ¼ � Kxx

dT

dx
þ d

dx
Kxx

dT

dx

� �
dx

� �
ð13:1:5Þ

The change in stored energy can be expressed by

DU ¼ specific heat�mass� change in temperature

¼ cðrA dxÞ dT ð13:1:6Þ

where c is the specific heat in kW � h/(kg � �C) or Btu/(slug-�F), and r is the mass
density in kg/m3 or slug/ft3. On substituting Eqs. (13.1.3), (13.1.5), and (13.1.6) into
Eq. (13.1.2), dividing Eq. (13.1.2) by A dx dt, and simplifying, we have the one-
dimensional heat conduction equation as

q

qx
Kxx

qT

qx

� �
þQ ¼ rc

qT

qt
ð13:1:7Þ
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For steady state, any differentiation with respect to time is equal to zero, so
Eq. (13.1.7) becomes

d

dx
Kxx

dT

dx

� �
þQ ¼ 0 ð13:1:8Þ

For constant thermal conductivity and steady state, Eq. (13.1.7) becomes

Kxx
d 2T

dx2
þQ ¼ 0 ð13:1:9Þ

The boundary conditions are of the form

T ¼ TB on S1 ð13:1:10Þ

where TB represents a known boundary temperature and S1 is a surface where the
temperature is known, and

q�x ¼ �Kxx

dT

dx
¼ constant on S2 ð13:1:11Þ

where S2 is a surface where the prescribed heat flux q�x or temperature gradient is
known. On an insulated boundary, q�x ¼ 0. These different boundary conditions are
shown in Figure 13–3, where by sign convention, positive q�x occurs when heat is flow-
ing into the body, and negative q�x when heat is flowing out of the body.

Two-Dimensional Heat Conduction (Without Convection)

Consider the two-dimensional heat conduction problem in Figure 13–4. In a manner
similar to the one-dimensional case, for steady-state conditions, we can show that for
material properties coinciding with the global x and y directions,

q

qx
Kxx

qT

qx

� �
þ q

qy
Kyy

qT

qy

� �
þQ ¼ 0 ð13:1:12Þ

Figure 13–3 Examples of boundary conditions in one-dimensional heat conduction

Figure 13–4 Control volume for two-dimensional
heat conduction
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with boundary conditions

T ¼ TB on S1 ð13:1:13Þ

qn ¼ q�n ¼ Kxx

qT

qx
Cx þ Kyy

qT

qy
Cy ¼ constant on S2 ð13:1:14Þ

where Cx and Cy are the direction cosines of the unit vector n normal to the surface S2

shown in Figure 13–5. Again, q�n is by sign convention, positive if heat is flowing into
the edge of the body.

d 13.2 Heat Transfer with Convection d
For a conducting solid in contact with a fluid, there will be a heat transfer taking place
between the fluid and solid surface when a temperature difference occurs.

The fluid will be in motion either through external pumping action (forced con-

vection) or through the buoyancy forces created within the fluid by the temperature
differences within it (natural or free convection).

We will now consider the derivation of the basic differential equation for one-
dimensional heat conduction with convection. Again we assume the temperature
change is much greater in the x direction than in the y and z directions. Figure 13–6
shows the control volume used in the derivation. Again, by Eq. (13.1.1) for conserva-
tion of energy, we have

qxA dtþQA dx dt ¼ cðrA dxÞ dT þ qxþdxA dtþ qhP dx dt ð13:2:1Þ

In Eq. (13.2.1), all terms have the same meaning as in Section 13.1, except the heat
flow by convective heat transfer is given by Newton’s law of cooling

qh ¼ hðT � TyÞ ð13:2:2Þ

Figure 13–5 Unit vector normal to surface S2

Figure 13–6 Control volume for one-dimensional
heat conduction with convection
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where

h is the heat-transfer or convection coefficient, in kW/(m2 � �C) or
Btu/(h-ft2-�F).

T is the temperature of the solid surface at the solid/fluid interface.

Ty is the temperature of the fluid (here the free-stream fluid temperature).

P in Eq. (13.2.1) denotes the perimeter around the constant cross-sectional
area A.

Again, using Eqs. (13.1.3) through (13.1.6) and (13.2.2) in Eq. (13.2.1), dividing by
A dx dt, and simplifying, we obtain the differential equation for one-dimensional heat
conduction with convection as

q

qx
Kxx

qT

qx

� �
þQ ¼ rc

qT

qt
þ hP

A
ðT � TyÞ ð13:2:3Þ

with possible boundary conditions on (1) temperature, given by Eq. (13.1.10), and/or
(2) temperature gradient, given by Eq. (13.1.11), and/or (3) loss of heat by convection
from the ends of the one-dimensional body, as shown in Figure 13–7. Equating the heat
flow in the solid wall to the heat flow in the fluid at the solid/fluid interface, we have

�Kxx

dT

dx
¼ hðT � TyÞ on S3 ð13:2:4Þ

as a boundary condition for the problem of heat conduction with convection.

d 13.3 Typical Units; Thermal Conductivities, K;
and Heat-Transfer Coefficients, h

d

Table 13–1 lists some typical units used for the heat-transfer problem.
Table 13–2 lists some typical thermal conductivities of various solids and

liquids. The thermal conductivity K, in Btu/(h-ft-�F) or W/(m � �C), measures the
amount of heat energy (Btu or W � h) that will flow through a unit length (ft or m) of
a given substance in a unit time (h) to raise the temperature one degree (�F or �C).

Table 13–3 lists approximate ranges of values of convection coefficients for
various conditions of convection. The heat transfer coefficient h, in Btu/(h-ft2-�F) or

Figure 13–7 Model illustrating convective heat transfer (arrows on surface S3

indicate heat transfer by convection)
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Table 13–1 Typical units for heat transfer

Variable SI U.S. Customary

Thermal conductivity, K kW/(m � �C) Btu/(h-ft-�F)
Temperature, T �C or K �F or �R
Internal heat source, Q kW/m3 Btu/(h-ft3)
Heat flux, q kW/m2 Btu/(h-ft2)
Heat flow, �q kW Btu/h
Convection coefficient, h kW/(m2 � �C) Btu/(h-ft2-�F)
Energy, E kW � h Btu
Specific heat, c (kW � h)/(kg � �C) Btu/(slug-�F)
Mass density, r kg/m3 slug/ft3

Table 13–2 Typical thermal conductivities of some solids and fluids

Material K [Btu/(h-ft-�F)] K [W/(m � �C)]

Solids
Aluminum, 0 �C ð32 �FÞ 117 202
Steel (1% carbon), 0 �C 20 35
Fiberglass, 20 �C ð68 �FÞ 0.020 0.035
Concrete, 0 �C 0.468–0.81 0.81–1.40
Earth, coarse gravelly, 20 �C 0.300 0.520
Wood, oak, radial direction, 20 �C 0.098 0.17

Fluids
Engine oil, 20 �C 0.084 0.145
Dry air, atmospheric pressure, 20 �C 0.014 0.0243

Table 13–3 Approximate values of convection heat-transfer coefficients
(from Reference [1])

Mode h [Btu/(h-ft2-�F)] h [W/(m2 � �C)]

Free convection, air 1–5 5–25
Forced convection, air 2–100 10–500
Forced convection, water 20–3,000 100–15,000
Boiling water 500–5,000 2,500–25,000
Condensation of water vapor 1,000–20,000 5,000–100,000

Heat transfer by Holman. Copyright 2002 by McGraw-Hill Companies, Inc.—Books.
Reproduced with permission of McGraw-Hill Companies, Inc.—Books in the format
Textbook via Copyright Clearance Center.

W/(m2 � �C), measures the amount of heat energy (Btu or W � h) that will flow across a
unit area (ft2 or m2) of a given substance in a unit time (h) to raise the temperature
one degree (�F or �C).

Natural or free convection occurs when, for instance, a heated plate is exposed to
ambient room air without an external source of motion. This movement of the air,
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experienced as a result of the density gradients near the plate, is called natural or free

convection. Forced convection is experienced, for instance, in the case of a fan blowing
air over a plate.

d 13.4 One-Dimensional Finite Element
Formulation Using a Variational Method

d

The temperature distribution influences the amount of heat moving into or out of a
body and also influences the stresses in a body. Thermal stresses occur in all bodies
that experience a temperature gradient from some equilibrium state but are not free
to expand in all directions. To evaluate thermal stresses, we need to know the tem-
perature distribution in the body. The finite element method is a realistic method for
predicting quantities such as temperature distribution and thermal stresses in a body.
In this section, we formulate the one-dimensional heat-transfer equations using a varia-
tional method. Examples are included to illustrate the solution of this type of problem.

Step 1 Select Element Type

The basic element with nodes 1 and 2 is shown in Figure 13–8(a).

Step 2 Choose a Temperature Function

We choose the temperature function T [Figure 13–8(b)] within each element similar to
the displacement function of Chapter 3, as

TðxÞ ¼ N1t1 þN2t2 ð13:4:1Þ

where t1 and t2 are the nodal temperatures to be determined, and

N1 ¼ 1� x

L
N2 ¼

x

L
ð13:4:2Þ

are again the same shape functions as used for the bar element. The ½N� matrix is then
given by

Figure 13–8 (a) Basic one-dimensional temperature element and (b) temperature
variation along length of element

½N� ¼ 1� x

L

x

L

h i
ð13:4:3Þ
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and the nodal temperature matrix is

ftg ¼ t1

t2

� �
ð13:4:4Þ

In matrix form, we express Eq. (13.4.1) as

fTg ¼ ½N�ftg ð13:4:5Þ

Step 3 Define the Temperature Gradient=Temperature
and Heat Flux=Temperature Gradient Relationships

The temperature gradient matrix fgg, analogous to the strain matrix feg, is given by

fgg ¼ dT

dx

� �
¼ ½B�ftg ð13:4:6Þ

where ½B� is obtained by substituting Eq. (13.4.1) for TðxÞ into Eq. (13.4.6) and differ-
entiating with respect to x, that is,

½B� ¼ dN1

dx

dN2

dx

� �

Using Eqs. (13.4.2) in the definition for ½B�, we have

½B� ¼ � 1

L

1

L

� �
ð13:4:7Þ

The heat flux/temperature gradient relationship is given by

qx ¼ �½D�fgg ð13:4:8Þ

where the material property matrix is now given by

½D� ¼ ½Kxx� ð13:4:9Þ

Step 4 Derive the Element Conduction Matrix and Equations

Equations (13.1.9) through (13.1.11) and (13.2.3) can be shown to be derivable (as
shown, for instance, in References [4–6]) by the minimization of the following func-
tional (analogous to the potential energy functional pp):

ph ¼ U þWQ þWq þWh ð13:4:10Þ

U ¼ 1

2

ððð

V

Kxx

dT

dx

� �2
" #

dVwhere

WQ ¼ �
ððð

V

QT dV Wq ¼ �
ðð

S2

q�T dS Wh ¼
1

2

ðð

S3

hðT � TyÞ2 dS ð13:4:11Þ
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and where S2 and S3 are separate surface areas over which heat flow (flux) q� (q� is
positive into the surface) and convection loss hðT � TyÞ are specified. We cannot
specify q� and h on the same surface because they cannot occur simultaneously on
the same surface, as indicated by Eqs. (13.4.11).

Using Eqs. (13.4.5), (13.4.6), and (13.4.9) in Eq. (13.4.11) and then using
Eq. (13.4.10), we can write ph in matrix form as

ph ¼
1

2

ððð

V

½fggT ½D�fgg� dV �
ððð

V

ftgT ½N�T Q dV

�
ðð

S2

ftgT ½N�T q� dS þ 1

2

ðð

S3

h½ðftgT ½N�T � TyÞ2� dS ð13:4:12Þ

On substituting Eq. (13.4.6) into Eq. (13.4.12) and using the fact that the nodal tem-
peratures ftg are independent of the general coordinates x and y and can therefore
be taken outside the integrals, we have

ph ¼
1

2
ftgT

ððð

V

½B�T ½D�½B� dVftg � ftgT

ððð

V

½N�T Q dV

� ftgT

ðð

S2

½N�T q� dS þ 1

2

ðð

S3

h½ftgT ½N�T ½N�ftg

� ðftgT ½N�T þ ½N�ftgÞTy þ T 2
y� dS ð13:4:13Þ

In Eq. (13.4.13), the minimization is most easily accomplished by explicitly writing the
surface integral S3 with ftg left inside the integral as shown. On minimizing Eq.
(13.4.13) with respect to ftg, we obtain

qph

qftg ¼
ððð

V

½B�T ½D�½B� dVftg �
ððð

V

½N�T Q dV

�
ðð

S2

½N�T q� dS þ
ðð

S3

h½N�T ½N� dSftg

�
ðð

S3

½N�T hTy dS ¼ 0 ð13:4:14Þ

where the last term hT 2
y in Eq. (13.4.13) is a constant that drops out while minimizing

ph. Simplifying Eq. (13.4.14), we obtain

ððð

V

½B�T ½D�½B� dV þ
ðð

S3

h½N�T ½N� ds

2
64

3
75ftg ¼ f fQg þ f fqg þ f fhg ð13:4:15Þ
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where the force matrices have been defined by

f fQg ¼
ððð

V

½N�T Q dV f fqg ¼
ðð

S2

½N�T q� dS

ð13:4:16Þ

f fhg ¼
ðð

S3

½N�T hTy dS

In Eq. (13.4.16), the first term f fQg (heat source positive, sink negative) is of the same
form as the body-force term, and the second term f fqg (heat flux, positive into the sur-
face) and third term f fhg (heat transfer or convection) are similar to surface tractions
(distributed loading) in the stress analysis problem. You can observe this fact by com-
paring Eq. (13.4.16) with Eq. (6.2.46). Because we are formulating element equations
of the form f f g ¼ ½k�ftg, we have the element conduction matrix1 for the heat-
transfer problem given in Eq. (13.4.15) by

½k� ¼
ððð

V

½B�T ½D�½B� dV þ
ðð

S3

h½N�T ½N� dS ð13:4:17Þ

where the first and second integrals in Eq. (13.4.17) are the contributions of conduc-
tion and convection, respectively. Using Eq. (13.4.17) in Eq. (13.4.15), for each ele-
ment, we have

f f g ¼ ½k�ftg ð13:4:18Þ

Using the first term of Eq. (13.4.17), along with Eqs. (13.4.7) and (13.4.9), the conduc-
tion part of the ½k� matrix for the one-dimensional element becomes

½kc� ¼
ððð

V

½B�T ½D�½B� dV ¼
ðL

0

� 1

L
1

L

8>><
>>:

9>>=
>>;
½Kxx� �

1

L

1

L

� �
A dx

¼ AKxx

L2

ðL

0

1 �1

�1 1

� �
dx ð13:4:19Þ

or, finally,

½kc� ¼
AKxx

L

1 �1

�1 1

� �
ð13:4:20Þ

1 The element conduction matrix is often called the stiffness matrix because stiffness matrix is becoming

a generally accepted term used to describe the matrix of known coefficients multiplied by the unknown

degrees of freedom, such as temperatures, displacements, and so on.
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The convection part of the ½k� matrix becomes

½kh� ¼
ðð

S3

h½N�T ½N� dS ¼ hP

ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;

1� x

L

x

L

h i
dx

or, on integrating,

½kh� ¼
hPL

6

2 1

1 2

� �
ð13:4:21Þ

dS ¼ P dxwhere

and P is the perimeter of the element (assumed to be constant). Therefore, adding
Eqs. (13.4.20) and (13.4.21), we find that the ½k� matrix is

½k� ¼ AKxx

L

1 �1

�1 1

� �
þ hPL

6

2 1

1 2

� �
ð13:4:22Þ

When h is zero on the boundary of an element, the second term on the right side of
Eq. (13.4.22) (convection portion of ½k�) is zero. This corresponds, for instance, to an
insulated boundary.

The force matrix terms, on simplifying Eq. (13.4.16) and assuming Q, q�, and
product hTy to be constant are

f fQg ¼
ððð

V

½N�T Q dV ¼ QA

ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;

dx ¼ QAL

2

1

1

� �
ð13:4:23Þ

f fqg ¼
ðð

S2

q�½N�T dS ¼ q�P

ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;

dx ¼ q�PL

2

1

1

� �
ð13:4:24Þand

f fhg ¼
ðð

S3

hTy½N�T dS ¼ hTyPL

2

1

1

� �
ð13:4:25Þand

Therefore, adding Eqs. (13.4.23) through (13.4.25), we obtain

f f g ¼ QALþ q�PLþ hTyPL

2

1

1

� �
ð13:4:26Þ

Equation (13.4.26) indicates that one-half of the assumed uniform heat source Q goes
to each node, one-half of the prescribed uniform heat flux q� (positive q� enters the
body) goes to each node, and one-half of the convection from the perimeter surface
hTy goes to each node of an element.

Finally, we must consider the convection from the free end of an element. For
simplicity’s sake, we will assume convection occurs only from the right end of the
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element, as shown in Figure 13–9. The additional convection term contribution to the
stiffness matrix is given by

½kh�end ¼
ðð

Send

h½N�T ½N� dS ð13:4:27Þ

Now N1 ¼ 0 and N2 ¼ 1 at the right end of the element. Substituting the N ’s into
Eq. (13.4.27), we obtain

½kh�end ¼
ðð

Send

h
0

1

� �
½0 1� dS ¼ hA

0 0

0 1

� �
ð13:4:28Þ

The convection force from the free end of the element is obtained from the application
of Eq. (13.4.25) with the shape functions now evaluated at the right end (where con-
vection occurs) and with S3 (the surface over which convection occurs) now equal to
the cross-sectional area A of the rod. Hence,

f fhgend ¼ hTyA
N1ðx ¼ LÞ
N2ðx ¼ LÞ

� �
¼ hTyA

0

1

� �
ð13:4:29Þ

represents the convective force from the right end of an element where N1ðx ¼ LÞ rep-
resents N1 evaluated at x ¼ L, and so on.

Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

We obtain the global or total structure conduction matrix using the same pro-
cedure as for the structural problem (called the direct stiffness method as described
in Section 2.4); that is,

½K � ¼
XN

e¼1

½kðeÞ� ð13:4:30Þ

typically in units of kW/�C or Btu/(h-�F). The global force matrix is the sum of all ele-
ment heat sources and is given by

fFg ¼
XN

e¼1

f f ðeÞg ð13:4:31Þ

typically in units of kW or Btu/h. The global equations are then

fFg ¼ ½K �ftg ð13:4:32Þ

Figure 13–9 Convection force from the end of an element
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with the prescribed nodal temperature boundary conditions given by Eq. (13.1.13).
Note that the boundary conditions on heat flux, Eq. (13.1.11), and convection,
Eq. (13.2.4), are actually accounted for in the same manner as distributed loading
was accounted for in the stress analysis problem; that is, they are included in the col-
umn of force matrices through a consistent approach (using the same shape functions
used to derive ½k�), as given by Eqs. (13.4.2).

The heat-transfer problem is now amenable to solution by the finite element
method. The procedure used for solution is similar to that for the stress analysis
problem. In Section 13.5, we will derive the specific equations used to solve the two-
dimensional heat-transfer problem.

Step 6 Solve for the Nodal Temperatures

We now solve for the global nodal temperature, ftg, where the appropriate nodal tem-
perature boundary conditions, Eq. (13.1.13), are specified.

Step 7 Solve for the Element Temperature Gradients
and Heat Fluxes

Finally, we calculate the element temperature gradients from Eq. (13.4.6), and the
heat fluxes, typically from Eq. (13.4.8).

To illustrate the use of the equations developed in this section, we will now solve
some one-dimensional heat-transfer problems.

Example 13.1

Determine the temperature distribution along the length of the rod shown in
Figure 13–10 with an insulated perimeter. The temperature at the left end is a con-
stant 100 �F and the free-stream temperature is 10 �F. Let h ¼ 10 Btu/(h-ft2-�F) and
Kxx ¼ 20 Btu/(h-ft-�F). The value of h is typical for forced air convection and the
value of Kxx is a typical conductivity for carbon steel (Tables 13–2 and 13–3).

SOLUTION:
The finite element discretization is shown in Figure 13–11. For simplicity’s sake,
we will use four elements, each 10 in. long. There will be convective heat loss
only over the right end of the rod because we consider the left end to have a known

Figure 13–10 One-dimensional rod subjected to temperature variation
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temperature and the perimeter to be insulated. We calculate the stiffness matrices for
each element as follows:

AKxx

L
¼ pð1 in:Þ2½20 Btu=ðh-ft-�FÞ�ð1 ft2Þ

10 in:

12 in:=ft

� �
ð144 in2Þ

¼ 0:5236 Btu=ðh-�FÞ

hPL

6
¼ ½10 Btu=ðh-ft2-�FÞ�ð2pÞ

6

1 in:

12 in:=ft

� �
10 in:

12 in:=ft

� �
ð13:4:33Þ

¼ 0:7272 Btu=ðh-�FÞ

hTyPL ¼ ½10 Btu=ðh-ft2-�FÞ�ð10 �FÞð2pÞ 1 in:

12 in:=ft

� �
10 in:

12 in:=ft

� �

¼ 43:63 Btu=h

In general, from Eqs. (13.4.22) and (13.4.27), we have

½k� ¼ AKxx

L

1 �1

�1 1

� �
þ hPL

6

2 1

1 2

� �
þ
ðð

Send

h½N�T ½N� dS ð13:4:34Þ

Substituting Eqs. (13.4.33) into Eq. (13.4.34) for element 1, we have

½kð1Þ� ¼ 0:5236
1 �1

�1 1

� �
Btu=ðh-�FÞ ð13:4:35Þ

where the second and third terms on the right side of Eq. (13.4.34) are zero because
there are no convection terms associated with element 1. Similarly, for elements 2
and 3, we have

½kð2Þ� ¼ ½kð3Þ� ¼ ½kð1Þ� ð13:4:36Þ

However, element 4 has an additional (convection) term owing to heat loss from the
flat surface at its right end. Hence, using Eq. (13.4.28), we have

Figure 13–11 Finite element discretized rod

½kð4Þ� ¼ ½kð1Þ� þ hA
0 0

0 1

� �

¼ 0:5236
1 �1

�1 1

� �
þ ½10 Btu=ðh-ft2-�FÞ�p 1 in:

12 in:=ft

� �2 0 0

0 1

� �

¼ 0:5236 �0:5236

�0:5236 0:7418

� �
Btu=ðh-�FÞ ð13:4:37Þ

614 d 13 Heat Transfer and Mass Transport

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In general, we would use Eqs. (13.4.23) through (13.4.25), and (13.4.29) to ob-
tain the element force matrices. However, in this example, Q ¼ 0 (no heat source),
q� ¼ 0 (no heat flux), and there is no convection except from the right end. Therefore,

f f ð1Þg ¼ f f ð2Þg ¼ f f ð3Þg ¼ 0 ð13:4:38Þ

f f ð4Þg ¼ hTyA
0

1

� �

¼ ½10 Btu=ðh-ft2-�FÞ�ð10 �FÞp 1 in:

12 in:=ft

� �2 0

1

� �

¼ 2:182
0

1

� �
Btu=h ð13:4:39Þ

and

The assembly of the element stiffness matrices [Eqs. (13.4.35) through (13.4.37)]
and the element force matrices [Eqs. (13.4.38) and (13.4.39)], using the direct stiffness
method, produces the following system of equations:

0:5236 �0:5236 0 0 0

�0:5236 1:0472 �0:5236 0 0

0 �0:5236 1:0472 �0:5236 0

0 0 �0:5236 1:0472 �0:5236

0 0 0 �0:5236 0:7418

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

F1

0

0

0

2:182

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð13:4:40Þ

where F1 corresponds to an unknown rate of heat flow at node 1 (analogous to an un-
known support force in the stress analysis problem). We have a known nodal temper-
ature boundary condition of t1 ¼ 100 �F. This nonhomogeneous boundary condition
must be treated in the same manner as was described for the stress analysis problem
(see Section 2.5 and Appendix B.4). We modify the stiffness (conduction) matrix and
force matrix as follows:

1 0 0 0 0

0 1:0472 �0:5236 0 0

0 �0:5236 1:0472 �0:5236 0

0 0 �0:5236 1:0472 �0:5236

0 0 0 �0:5236 0:7418

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

100

52:36

0

0

2:182

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð13:4:41Þ

where the terms in the first row and column of the stiffness matrix corresponding to
the known temperature condition, t1 ¼ 100 �F, have been set equal to 0 except for
the main diagonal, which has been set equal to 1, and the first row of the force matrix
has been set equal to the known nodal temperature at node 1. Also, the term
ð�0:5236Þ � ð100 �FÞ ¼ �52:36 on the left side of the second equation of Eq. (13.4.40)
has been transposed to the right side in the second row (as þ52:36) of Eq. (13.4.41).
The second through fifth equations of Eq. (13.4.41) corresponding to the rows of
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unknown nodal temperatures can now be solved (typically by Gaussian elimination).
The resulting solution is given by

t2 ¼ 85:93 �F t3 ¼ 71:87 �F t4 ¼ 57:81 �F t5 ¼ 43:75 �F ð13:4:42Þ

For this elementary problem, the closed-form solution of the differential equa-
tion for conduction, Eq. (13.1.9), with the left-end boundary condition given
by Eq. (13.1.10) and the right-end boundary condition given by Eq. (13.2.4) yields
a linear temperature distribution through the length of the rod. The evaluation of
this linear temperature function at 10-in. intervals (corresponding to the nodal points
used in the finite element model) yields the same temperatures as obtained in this
example by the finite element method. Because the temperature function was assumed
to be linear in each finite element, this comparison is as expected. Note that F1 could
be determined by the first of Eqs. (13.4.40). 9

Example 13.2

To illustrate more fully the use of the equations developed in Section 13.4, we will
now solve the heat-transfer problem shown in Figure 13–12. For the one-dimensional
rod, determine the temperatures at 3-in. increments along the length of the rod and the
rate of heat flow through element 1. Let Kxx ¼ 3 Btu/(h-in.-�F), h ¼ 1:0 Btu/(h-in2-�F),
and Ty ¼ 20 �F. The temperature at the left end of the rod is constant at 200 �F.

SOLUTION:
The finite element discretization is shown in Figure 13–13. Three elements are suffi-
cient to enable us to determine temperatures at the four points along the rod,
although more elements would yield answers more closely approximating the analyti-
cal solution obtained by solving the differential equation such as Eq. (13.2.3) with the
partial derivative with respect to time equal to zero. There will be convective heat loss
over the perimeter and the right end of the rod. The left end will not have convective

Figure 13–12 One-dimensional rod subjected to temperature variation

Figure 13–13 Finite element discretized rod of Figure 13–12

616 d 13 Heat Transfer and Mass Transport

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



heat loss. Using Eqs. (13.4.22) and (13.4.28), we calculate the stiffness matrices for the
elements as follows:

AKxx

L
¼ ð4pÞð3Þ

3
¼ 4p Btu=ðh-�FÞ

hPL

6
¼ ð1Þð4pÞð3Þ

6
¼ 2p Btu=ðh-�FÞ ð13:4:43Þ

hA ¼ ð1Þð4pÞ ¼ 4p Btu=ðh-�FÞ

Substituting the results of Eqs. (13.4.43) into Eq. (13.4.22), we obtain the stiffness ma-
trix for element 1 as

½kð1Þ� ¼ 4p
1 �1

�1 1

� �
þ 2p

2 1

1 2

� �

¼ 4p
2 � 1

2

� 1
2 2

" #
Btu=ðh-�FÞ ð13:4:44Þ

Because there is no convection across the ends of element 1 (its left end has a known
temperature and its right end is inside the whole rod and thus not exposed to fluid mo-
tion), the contribution to the stiffness matrix owing to convection from an end of the
element, such as given by Eq. (13.4.28), is zero. Similarly,

½kð2Þ� ¼ ½kð1Þ� ¼ 4p
2 � 1

2

� 1
2 2

" #
Btu=ðh-�FÞ ð13:4:45Þ

However, element 3 has an additional (convection) term owing to heat loss from the
exposed surface at its right end. Therefore, Eq. (13.4.28) yields a contribution to the
element 3 stiffness matrix, which is then given by

½kð3Þ� ¼ ½kð1Þ� þ hA
0 0

0 1

� �
¼ 4p

2 � 1
2

� 1
2 2

" #
þ 4p

0 0

0 1

� �

¼ 4p
2 � 1

2

� 1
2 3

" #
Btu=ðh-�FÞ ð13:4:46Þ

In general, we calculate the force matrices by using Eqs. (13.4.26) and (13.4.29).
Because Q ¼ 0 and q� ¼ 0, we only have force terms from hT1 as given by Eq.
(13.4.25). Therefore,

f f ð1Þg ¼ f f ð2Þg ¼ hT1PL

2

1

1

� �
¼ ð1 Btu=ðh-in2-�FÞ ð20 �FÞ ð4pÞ ð3 in:Þ

2

1

1

� �

¼ 4p
30

30

� �
ð13:4:47aÞ

13.4 One-Dimensional Finite Element Formulation Using a Variational Method d 617

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Element 3 has convection from both the perimeter and the right end. Therefore,

f f ð3Þg ¼ f f ð1Þg þ hT1A
0

1

� �
¼ 4p

30

30

� �
þ ð1 Btu=h-in2-�FÞ ð20 �FÞpð2 in:Þ2

0

1

� �

¼ 4p
30

50

� �
ð13:4:47bÞ

The assembly of the element stiffness matrices, Eqs. (13.4.44) through (13.4.46),
and the force matrices, Eqs. (13.4.47a) and (13.4.47b), using the direct stiffness
method, produces the following system of equations (where the 4p term has been div-
ided out of both sides of Eq. (13.4.48)):

2 � 1
2 0 0

� 1
2 4 � 1

2 0

0 � 1
2 4 � 1

2

0 0 � 1
2 3

2
6664

3
7775

t1 ¼ 200

t2

t3

t4

8>>><
>>>:

9>>>=
>>>;
¼

F 01 þ 30

30þ 30

30þ 30

50

8>>><
>>>:

9>>>=
>>>;

ð13:4:48Þ

Where F 01 ¼ F1=4p.

Expressing the second through fourth of Eqs. (13.4.48) in explicit form, we have

4t2 � 0:5t3 þ 0t4 ¼ 100þ 60

�0:5t2 þ 4t3 � 0:5t4 ¼ 60

0t2 � 0:5t3 þ 3t4 ¼ 50

ð13:4:49Þ

Solving for the nodal temperatures t2 � t4 we obtain

t2 ¼ 42:87 �F t3 ¼ 22:92 �F t4 ¼ 20:49 �F ð13:4:50Þ

Next, we determine the heat flux for element 1 by using Eqs. (13.4.6) and (13.4.9)
in Eq. (13.4.8) as

qð1Þ ¼ �Kxx½B�ftg ð13:4:51Þ
Using Eq. (13.4.7) in Eq. (13.4.51), we have

qð1Þ ¼ �Kxx �
1

L

1

L

� �
t1

t2

� �
ð13:4:52Þ

Substituting the numerical values for t1 and t2 into Eq. (13.4.52), we obtain

qð1Þ ¼ �3 � 1

3

1

3

� �
200

42:87

� �

qð1Þ ¼ 157:1 Btu=ðh-in2Þ ð13:4:53Þor

We then determine the rate of heat flow q by multiplying Eq. (13.4.53) by the cross-
sectional area over which q acts. Therefore,

qð1Þ ¼ 157:1ð4pÞ ¼ 1975 Btu=h

Here positive heat flow indicates heat flow from node 1 to node 2 (to the right). 9
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Example 13.3

The plane wall shown in Figure 13–14 is 1 m thick. The left surface of the wall
ðx ¼ 0Þ is maintained at a constant temperature of 200 �C, and the right surface
(x ¼ L ¼ 1 m) is insulated. The thermal conductivity is Kxx ¼ 25 W/(m � �C) and
there is a uniform generation of heat inside the wall of Q ¼ 400 W/m3. Determine
the temperature distribution through the wall thickness.

SOLUTION:
This problem is assumed to be approximated as a one-dimensional heat-transfer prob-
lem. The discretized model of the wall is shown in Figure 13–15. For simplicity, we
use four equal-length elements all with unit cross-sectional area (A ¼ 1 m2). The unit
area represents a typical cross section of the wall. The perimeter of the wall model is
then insulated to obtain the correct conditions.

Using Eqs. (13.4.22) and (13.4.28), we calculate the element stiffness matrices as
follows:

AKxx

L
¼ ð1 m2Þ½25 W=ðm � �CÞ�

0:25 m
¼ 100 W=�C

For each identical element, we have

½k� ¼ 100
1 �1

�1 1

� �
W=�C ð13:4:54Þ

Because no convection occurs, h is equal to zero; therefore, there is no convection con-
tribution to ½k�.

The element force matrices are given by Eq. (13.4.26). With Q ¼ 400 W/m3,
q ¼ 0, and h ¼ 0, Eq. (13.4.26) becomes

f f g ¼ QAL

2

1

1

� �
ð13:4:55Þ

Evaluating Eq. (13.4.55) for a typical element, such as element 1, we obtain

f1x

f2x

� �
¼ ð400 W=m3Þð1 m2Þð0:25 mÞ

2

1

1

� �
¼ 50

50

� �
W ð13:4:56Þ

Figure 13–14 Conduction in a plane
wall subjected to uniform heat
generation

Figure 13–15 Discretized model
of Figure 13–14
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The force matrices for all other elements are equal to Eq. (13.4.56).
The assemblage of the element matrices, Eqs. (13.4.54) and (13.4.56) and the

other force matrices similar to Eq. (13.4.56), yields

100

1 �1 0 0 0

�1 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 �1 1

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

F1 þ 50

100

100

100

50

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð13:4:57Þ

Substituting the known temperature t1 ¼ 200 �C into Eq. (13.4.57), dividing
both sides of Eq. (13.4.57) by 100, and transposing known terms to the right side,
we have

1 0 0 0 0

0 2 �1 0 0

0 �1 2 �1 0

0 0 �1 2 �1

0 0 0 �1 1

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

200 �C

201

1

1

0:5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð13:4:58Þ

The second through fifth equations of Eq. (13.4.58) can now be solved simultaneously
to yield

t2 ¼ 203:5 �C t3 ¼ 206 �C t4 ¼ 207:5 �C t5 ¼ 208 �C ð13:4:59Þ

Using the first of Eqs. (13.4.57) yields the rate of heat flow out the left end:

F1 ¼ 100ðt1 � t2Þ � 50

F1 ¼ 100ð200� 203:5Þ � 50

F1 ¼ �400 W

The closed-form solution of the differential equation for conduction, Eq. (13.1.9),
with the left-end boundary condition given by Eq. (13.1.10) and the right-end boundary
condition given by Eq. (13.1.11), and with q�x ¼ 0, is shown in Reference [2] to yield a
parabolic temperature distribution through the wall. Evaluating the expression for
the temperature function given in Reference [2] for values of x corresponding to the
node points of the finite element model, we obtain

t2 ¼ 203:5 �C t3 ¼ 206 �C t4 ¼ 207:5 �C t5 ¼ 208 �C ð13:4:60Þ

Figure 13–16 is a plot of the closed-form solution and the finite element solution
for the temperature variation through the wall. The finite element nodal values and
the closed-form values are equal, because the consistent equivalent force matrix
has been used. (This was also discussed in Sections 3.10 and 3.11 for the axial bar sub-
jected to distributed loading, and in Section 4.5 for the beam subjected to distributed
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loading.) However, recall that the finite element model predicts a linear temperature
distribution within each element as indicated by the straight lines connecting the
nodal temperature values in Figure 13–16. 9

Example 13.4

The fin shown in Figure 13–17 is insulated on the perimeter. The left end has a con-
stant temperature of 100 �C. A positive heat flux of q ¼ 5000 W/m2 acts on the right
end. Let Kxx ¼ 6 W/ðm-�CÞ and cross-sectional area A ¼ 0:1 m2: Determine the tem-
peratures at L/4, L/2, 3L/4, and L; where L ¼ 0:4 m.

SOLUTION:
Using Eq. (13.4.22) with the second term set to zero as there is no heat transfer by
convection from any surfaces due to the insulated perimeter and constant temperature
on the left end and constant heat flux on the right end, we obtain

½kð1Þ� ¼ ½kð2Þ� ¼ ½kð3Þ� ¼ AKxx

L

1 �1

�1 1

� �

¼ ð0:1 m2Þð6 W=ðm- �CÞ
0:1 m

1 �1

�1 1

� �
¼

6 �6

�6 6

� �
W=�C ð13:4:61Þ

Figure 13–16 Comparison of the finite element and closed-form solutions for
Example 13.3

T = 100° C

A = 0.1 m2

Figure 13–17 Insulated fin subjected to end heat flux
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½kð4Þ� ¼ ½kð1Þ� also

ff ð1Þg ¼ ff ð2Þg ¼ f f ð3Þg ¼
0

0

� �
as Q ¼ 0 ðno internal heat sourceÞ and q� ¼ 0

ðno surface heat fluxÞ

ff ð4Þg ¼ qA
0
1

� �
¼ ð5000 W=m2Þð0:1 m2Þ 0

1

� �
¼ 0

500

� �
W ð13:4:62Þ

Assembling the global stiffness matrix from Eq. (13.4.61), and the global force matrix
from Eq. (13.4.62), we obtain the global equations as

6 �6 0 0 0
12 �6 0 0

12 �6 0
12 �6

6

2
66664

3
77775

t1

t2

t3

t4

t5

8>>>><
>>>>:

9>>>>=
>>>>;
¼

F1x

0
0
0

500

8>>>><
>>>>:

9>>>>=
>>>>;

ð13:4:63Þ

Symmetry

Now applying the boundary condition on temperature, we have

t1 ¼ 100 �C ð13:4:64Þ
Substituting Eq. (13.4.64) for t1 into Eq. (13.4.63), we then solve the second through
fourth equations (associated with the unknown temperatures t2 � t5) simultaneously
to obtain

t2 ¼ 183:33 �C; t3 ¼ 266:67 �C; t4 ¼ 350 �C; t5 ¼ 433:33 �C ð13:4:65Þ
Substituting the nodal temperatures from Eq. (13.4.65) into the first of Eqs. (13.4.63),
we obtain the nodal heat source at node 1 as

F1x ¼ 6ð100 �C� 183:33 �CÞ ¼ �500 W ð13:4:66Þ
The nodal heat source given by Eq. (13.4.66) has a negative value, which means the
heat is leaving the left end. This source is the same as the source coming into the fin
at the right end given by qA ¼ ð5000Þð0:1Þ ¼ 500 W. 9

To further demonstrate explicit concepts of Fourier’s law of heat conduction
and Newton’s law of cooling, along with heat balance, we solve the following
problem.

Example 13.5

A composite furnace wall shown in Figure 13–18 is composed of two homogeneous
slabs in contact. Let thermal conductivities be k1 ¼ 1 W/(m-�C) for firebrick slab
1 and k2 ¼ 0:3 W/(m-�C) for insulating slab 2. The left side is exposed to an ambient
temperature of T1L ¼ 1000 �C inside the furnace with a heat transfer coefficient of
hL ¼ 10 W/(m2-�C). The right-side ambient temperature is 25 �C outside of the furnace
with a heat transfer coefficient of hR ¼ 3 W/(m2-�C). The thermal resistance of the

622 d 13 Heat Transfer and Mass Transport

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



interface between the firebrick and insulating brick can be neglected. The thicknesses of
the slabs are L1 ¼ 0:20 m and L2 ¼ 0:10 m. Determine the temperatures at the left
edge, middle, and right edge of the composite wall and the heat transferred through
the wall.

SOLUTION:
We assume the furnace wall is tall enough, such that the heat flux along the vertical
direction can be neglected, and therefore, that the heat flow is one-dimensional in
the direction of the furnace wall thickness. We can then assume the cross-sectional
area to be a unit slice (A ¼ 1 m2) in the finite element model. The model will be
made of two one-dimensional finite elements as shown in Figure 13–19.

We will develop the equations in two ways. First, using the heat flow balance at
each of the three nodes of the model shown in Figure 13–19 and then by using the di-
rect stiffness method.

Method 1: Heat Balance Equations at Nodes

By Newton’s law of cooling, Eq. (13.2.2), we have the heat flow entering node 1 by
convection as

�q1 ¼ AhLðT1L � t1Þ ð13:4:67Þ

By Fourier’s law of heat conduction, Eq. (13.1.30), we have heat flow through elements 1
and 2 as

�q2 ¼
Ak1

L1
ðt1 � t2Þ ð13:4:68Þ

1

Insulated (no heat flow)

2 3≈ 1000°C

hL

≈ 25°C

hR

x

Figure 13–19 Finite element model of the furnace wall

0.20 m

Fire brick

Insulating
brick

≈ 1000°C ≈ 25°C

x
hL hR

0.1 m

21

Figure 13–18 Composite furnace wall
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and

�q3 ¼
Ak2

L2
ðt2 � t3Þ ð13:4:69Þ

By Newton’s Law of cooling, we have the heat flow exiting node 3 as

�q4 ¼ AhRðt3 � T1RÞ ð13:4:70Þ

Now realizing the heat flow through the wall is constant (�q1 ¼ �q2 ¼ �q3 ¼ �q4) and
applying the heat balance equations at nodes 1, 2, and 3, we obtain

�q1 ¼ �q2

or AhLðT1L � t1Þ ¼
Ak1

L1
ðt1 � t2Þ at node 1 ð13:4:71Þ

�q2 ¼ �q3

or
Ak1

L1
ðt1 � t2Þ ¼

Ak2

L2
ðt2 � t3Þ at node 2 ð13:4:72Þ

�q3 ¼ �q4

or
Ak2

L2
ðt2 � t3Þ ¼ AhRðt3 � T1RÞ at node 3 ð13:4:73Þ

In matrix form with rearrangement so that the equations are in the form
½K �ftg ¼ fFg, we have

Ak1

L1
þ AhL

�Ak1

L1
0

�Ak1

L1

Ak1

L1
þ Ak2

L2

�Ak2

L2

0
�Ak2

L2

Ak2

L2
þ AhR

2
666664

3
777775

t1

t2

t3

8<
:

9=
; ¼

AhLT1L

0
AhRT1R

8<
:

9=
; ð13:4:74Þ

Method 2: Direct Stiffness Method

By the direct stiffness method, the typical element stiffness matrix given by Eq.
(13.4.2) is

½k� ¼ Ak

L

1 �1
�1 1

� �
ð13:4:75Þ

and from the right end due to convection by Eq. (13.4.28), we have

½kh�rt end ¼ hA
0 0
0 1

� �
ð13:4:76Þ

Similarly, from the left end due to convection, we have

½kh�lt end ¼ hA
1 0
0 0

� �
ð13:4:77Þ
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The right end force terms are given by Eq. (13.4.29) as

ffhgrt end ¼ hRT1RA
0
1

� �
ð13:4:78Þ

Similarly, at the left end, we have

ffhglt end ¼ hLT1LA
1
0

� �
ð13:4:79Þ

By the direct stiffness method of assembly, we obtain the identical equations, Eq.
(13.4.74), as obtained using heat balance at each node.

Substituting the numerical values into Eq. (13.4.74), we obtain

15 �5 0
�5 8 �3

0 �3 6

2
4

3
5 t1

t2

t3

8<
:

9=
; ¼

1� 104

0
75

8<
:

9=
; ð13:4:80Þ

Solving Eq. (13.4.80) simultaneously, we obtain the resulting nodal temperatures as

t1 ¼ 899:14 �C; t2 ¼ 697:41�C; t3 ¼ 361:21�C ð13:4:81Þ

The heat flow through the wall is determined by using the heat flow equation from
Fourier’s law as

�q ¼ �k1A

L1
ðt2 � t1Þ ¼

ð�1 W=m- �CÞ ð1 m2Þ ð697:41� 899:14Þ�C
0:20 m

¼ 1009 W

ð13:4:82Þ

The heat loss through the wall is obtained from the convection boundary equation as

�q4 ¼ AhR ðt3 � T1RÞ ¼ ðþ1 m2Þ ð3 W=m2- �CÞ ð361:21� 25Þ�C ¼ 1009 W

ð13:4:83Þ

The exact solution to this problem is obtained by solving the basic differential equa-
tion, Eq. (13.1.8), with Q ¼ 0 (as there is no internal heat source). The solution
requires integrating the differential equation once to obtain the expression for heat
flux and a second time to obtain the expression for temperature function, TðxÞ. You
must also realize that we have two expressions for TðxÞ, one for the 0 � x � L1

(label it T1ðxÞÞ; and one for L1 � x � L2 (label it T2ðxÞÞ. There will be four constants
of integration from the two temperature functions. The boundary conditions involve
setting the convection heat transfer to the conduction heat transfer at nodes 1 and 3.
Setting T1ð0Þ ¼ t1 and T2ðLÞ ¼ t3. Finally, you must introduce temperature and heat
flow conditions at the interface between the two wall surfaces (at x ¼ L1Þ. These con-
ditions are T1ðx ¼ L1Þ ¼ T2ðx ¼ L1Þ and q1 ¼ k1dT1=dx ¼ k2dT2=dx at x ¼ L1. The
resulting system of equations has six total equations for six unknowns, constants

13.4 One-Dimensional Finite Element Formulation Using a Variational Method d 625

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



c1 � c4, and nodal temperatures t1 and t3. After solving for the constants and t1 and
t3, the resulting temperature functions are

T1ðxÞ ¼ �1008:62xþ 899:138 0 � x � L1 ¼ 0:20 m

and

T2ðxÞ ¼ �3362:07xþ 1369:83 L1 ¼ 0:2 m � x � L ¼ 0:30 m

The finite element solution is identical to the analytical solution upon evaluating
the temperature functions ðT1ðxÞ at x ¼ 0 and x ¼ 0:2 m; and T2ðxÞ at x ¼ 0:2 m
and x ¼ 0:3 mÞ. 9

Finally, remember that the most important advantage of the finite element method
is that it enables us to approximate, with high confidence, more complicated problems,
such as those with more then one thermal conductivity, for which closed-form solutions
are difficult (if not impossible) to obtain. The automation of the finite element method
through general computer programs makes the method extremely powerful.

d 13.5 Two-Dimensional Finite Element
Formulation

d

Because many bodies can be modeled as two-dimensional heat-transfer problems, we
now develop the equations for an element appropriate for these problems. Examples
using this element then follow.

Step 1 Select Element Type

The three-noded triangular element with nodal temperatures shown in Figure 13–20 is
the basic element for solution of the two-dimensional heat-transfer problem.

Step 2 Select a Temperature Function

The temperature function is given by

fTg ¼ ½Ni Nj Nm�
ti

tj

tm

8<
:

9=
; ð13:5:1Þ

Figure 13–20 Basic triangular element with nodal
temperatures
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where ti; tj , and tm are the nodal temperatures, and the shape functions are again given
by Eqs. (6.2.18); that is,

Ni ¼
1

2A
ðai þ bixþ gi yÞ ð13:5:2Þ

with similar expressions for Nj and Nm. Here the a’s, b’s, and g’s are defined by Eqs.
(6.2.10).

Unlike the CST element of Chapter 6 where there are 2 degrees of freedom per
node (an x and a y displacement), in the heat transfer three-noded triangular element
only a single scalar value (nodal temperature) is the primary unknown at each node,
as shown by Eq. (13.5.1). This holds true for the three-dimensional elements as well,
as shown in Section 13.7. Hence, the heat-transfer problem is sometimes known as a
scalar-valued boundary value problem.

Step 3 Define the Temperature Gradient=Temperature
and Heat Flux=Temperature Gradient Relationships

We define the gradient matrix analogous to the strain matrix used in the stress analysis
problem as

fgg ¼

8>>><
>>>:

qT

qx

qT

qy

9>>>=
>>>;

ð13:5:3Þ

Using Eq. (13.5.1) in Eq. (13.5.3), we have

fgg ¼

2
6664

qNi

qx

qNj

qx

qNm

qx

qNi

qy

qNj

qy

qNm

qy

3
7775

ti

tj

tm

8<
:

9=
; ð13:5:4Þ

The gradient matrix fgg, written in compact matrix form analogously to the strain
matrix feg of the stress analysis problem, is given by

fgg ¼ ½B�ftg ð13:5:5Þ

where the ½B� matrix is obtained by substituting the three equations suggested by
Eq. (13.5.2) in the rectangular matrix on the right side of Eq. (13.5.4) as

½B� ¼ 1

2A

"
bi bj bm

gi gj gm

#
ð13:5:6Þ

The heat flux/temperature gradient relationship is now

qx

qy

� �
¼ �½D�fgg ð13:5:7Þ

where the material property matrix is

½D� ¼
Kxx 0

0 Kyy

� �
ð13:5:8Þ

13.5 Two-Dimensional Finite Element Formulation d 627

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Step 4 Derive the Element Conduction Matrix and Equations

The element stiffness matrix from Eq. (13.4.17) is

½k� ¼
ððð

V

½B�T ½D�½B� dV þ
ðð

S3

h½N�T ½N� dS ð13:5:9Þ

½kc� ¼
ððð

V

½B�T ½D�½B� dV

¼
ððð

V

1

4A2

2
64

bi gi

bj gj

bm gm

3
75 Kxx 0

0 Kyy

� �"
bi bj bm

gi gj gm

#
dV ð13:5:10Þ

where

Assuming constant thickness in the element and noting that all terms of the
integrand of Eq. (13.5.10) are constant, we have

½kc� ¼
ððð

V

½B�T ½D�½B� dV ¼ tA½B�T ½D�½B� ð13:5:11Þ

Equation (13.5.11) is the true conduction portion of the total stiffness matrix
Eq. (13.5.9). The second integral of Eq. (13.5.9) (the convection portion of the total
stiffness matrix) is defined by

½kh� ¼
ðð

S3

h½N�T ½N� dS ð13:5:12Þ

We can explicitly multiply the matrices in Eq. (13.5.12) to obtain

½kh� ¼ h

ðð

S3

2
64

NiNi NiNj NiNm

NjNi NjNj NjNm

NmNi NmNj NmNm

3
75 dS ð13:5:13Þ

To illustrate the use of Eq. (13.5.13), consider the side between nodes i and j of the
triangular element to be subjected to convection (Figure 13–21). Then Nm ¼ 0 along
side i-j, and we obtain

½kh� ¼
hLi-j t

6

2
64

2 1 0

1 2 0

0 0 0

3
75 ð13:5:14Þ

where Li-j is the length of side i-j.

Figure 13–21 Heat loss by convection from side i-j
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The evaluation of the force matrix integrals in Eq. (13.4.16) is as follows:

f fQg ¼
ððð

V

Q½N�T dV ¼ Q

ððð

V

½N�T dV ð13:5:15Þ

for constant heat source Q. Thus it can be shown (left to your discretion) that this in-
tegral is equal to

f fQg ¼
QV

3

8><
>:

1

1

1

9>=
>; ð13:5:16Þ

where V ¼ At is the volume of the element. Equation (13.5.16) indicates that heat is
generated by the body in three equal parts to the nodes (like body forces in the elastic-
ity problem). The second force matrix in Eq. (13.4.16) is

f fqg ¼
ðð

S2

q�½N�T dS ¼
ðð

S2

q�

8><
>:

Ni

Nj

Nm

9>=
>; dS ð13:5:17Þ

This reduces to

q�Li-j t

2

8><
>:

1

1

0

9>=
>; on side i-j ð13:5:18Þ

q�Lj-mt

2

8><
>:

0

1

1

9>=
>; on side j-m ð13:5:19Þ

q�Lm-it

2

8><
>:

1

0

1

9>=
>; on side m-i ð13:5:20Þ

where Li-j ;Lj-m, and Lm-i are the lengths of the sides of the element, and the heat flux
q� is assumed constant over each edge. The integral

Ð Ð
S3

hTy½N�T dS can be found in
a manner similar to Eq. (13.5.17) by simply replacing q� with hTy in Eqs. (13.5.18)
through (13.5.20).

Steps 5 through 7

Steps 5 through 7 are identical to those described in Section 13.4.
To illustrate the use of the equations presented in Section 13.5, we will now solve

some two-dimensional heat-transfer problems.

Example 13.6

For the two-dimensional body shown in Figure 13–22, determine the temperature dis-
tribution. The temperature at the left side of the body is maintained at 100 �F.
The edges on the top and bottom of the body are insulated. There is heat convection
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from the right side with convection coefficient h ¼ 20 Btu/(h-ft2-�F). The free-
stream temperature is Ty ¼ 50 �F. The coefficients of thermal conductivity are
Kxx ¼ Kyy ¼ 25 Btu/(h-ft-�F). The dimensions are shown in the figure. Assume the
thickness to be 1 ft.

SOLUTION:
The finite element discretization is shown in Figure 13–23. We will use four triangular
elements of equal size for simplicity of the longhand solution. There will be convective
heat loss only over the right side of the body because the other faces are insulated.
We now calculate the element stiffness matrices using Eq. (13.5.11) applied for all ele-
ments and using Eq. (13.5.14) applied for element 4 only, because convection is occur-
ring only across one edge of element 4.

Element 1

The coordinates of the element 1 nodes are x1 ¼ 0, y1 ¼ 0, x2 ¼ 2, y2 ¼ 0, x5 ¼ 1,
and y5 ¼ 1. Using these coordinates and Eqs. (6.2.10), we obtain

b1 ¼ 0� 1 ¼ �1 b2 ¼ 1� 0 ¼ 1 b5 ¼ 0� 0 ¼ 0
ð13:5:21Þ

g1 ¼ 1� 2 ¼ �1 g2 ¼ 0� 1 ¼ �1 g5 ¼ 2� 0 ¼ 2

Using Eqs. (13.5.21) in Eq. (13.5.11) with t ¼ 1 ft and A ¼ 1
2 (2 ft )(1 ft)¼ 1 ft2, we have

½kð1Þc � ¼ tA½B�T ½D�½B� ¼ 1ð1Þ
2ð2Þ

2
64
�1 �1

1 �1

0 2

3
75 25 0

0 25

� � �1 1 0

�1 �1 2

� �
ð13:5:22Þ

Where [B] is given by Eq. (13.5.6) and [D] is given by Eq. (13.5.8).

Simplifying Eq. (13.5.22), we obtain

½kð1Þc � ¼

2
64

12:5 0 �12:5

0 12:5 �12:5

�12:5 �12:5 25

3
75 Btu=ðh-�FÞ ð13:5:23Þ

1 2 5

Figure 13–22 Two-dimensional body
subjected to temperature variation and
convection

Figure 13–23 Discretized
two-dimensional body of
Figure 13–22
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where the numbers above the columns indicate the node numbers associated with the
matrix.

Element 2

The coordinates of the element 2 nodes are x1 ¼ 0, y1 ¼ 0, x5 ¼ 1, y5 ¼ 1, x4 ¼ 0,
and y4 ¼ 2. Using these coordinates, we obtain

b1 ¼ 1� 2 ¼ �1 b5 ¼ 2� 0 ¼ 2 b4 ¼ 0� 1 ¼ �1
ð13:5:24Þ

g1 ¼ 0� 1 ¼ �1 g5 ¼ 0� 0 ¼ 0 g4 ¼ 1� 0 ¼ 1

Using Eqs. (13.5.24) in Eq. (13.5.11), we have

½kð2Þc � ¼
1

4

2
4
�1 �1

2 0

�1 1

3
5 25 0

0 25

� � �1 2 �1

�1 0 1

� �
ð13:5:25Þ

Simplifying Eq. (13.5.25), we obtain

½kð2Þc � ¼

2
64

12:5 �12:5 0

�12:5 25 �12:5

0 �12:5 12:5

3
75 Btu=ðh-�FÞ ð13:5:26Þ

1 5 4

Element 3

The coordinates of the element 3 nodes are x4 ¼ 0, y4 ¼ 2, x5 ¼ 1, y5 ¼ 1, x3 ¼ 2,
and y3 ¼ 2. Using these coordinates, we obtain

b4 ¼ 1� 2 ¼ �1 b5 ¼ 2� 2 ¼ 0 b3 ¼ 2� 1 ¼ 1
ð13:5:27Þ

g4 ¼ 2� 1 ¼ 1 g5 ¼ 0� 2 ¼ �2 g3 ¼ 1� 0 ¼ 1

Using Eqs. (13.5.27) in Eq. (13.5.11), we obtain

½kð3Þc � ¼

2
64

12:5 �12:5 0

�12:5 25 �12:5

0 �12:5 12:5

3
75 Btu=ðh-�FÞ ð13:5:28Þ

4 5 3

Element 4

The coordinates of the element 4 nodes are x2 ¼ 2, y2 ¼ 0, x3 ¼ 2, y3 ¼ 2, x5 ¼ 1,
and y5 ¼ 1. Using these coordinates, we obtain

b2 ¼ 2� 1 ¼ 1 b3 ¼ 1� 0 ¼ 1 b5 ¼ 0� 2 ¼ �2
ð13:5:29Þ

g2 ¼ 1� 2 ¼ �1 g3 ¼ 2� 1 ¼ 1 g5 ¼ 2� 2 ¼ 0

Using Eqs. (13.5.29) in Eq. (13.5.11), we obtain

½kð4Þc � ¼

2
64

12:5 0 �12:5

0 12:5 �12:5

�12:5 �12:5 25

3
75 Btu=ðh-�FÞ ð13:5:30Þ

2 3 5
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For element 4, we have a convection contribution to the total stiffness matrix
because side 2–3 is exposed to the free-stream temperature. Using Eq. (13.5.14) with
i ¼ 2 and j ¼ 3, we obtain

½kð4Þh � ¼
ð20Þð2Þð1Þ

6

2
64

2 1 0

1 2 0

0 0 0

3
75 ð13:5:31Þ

Simplifying Eq. (13.5.31) yields

½kð4Þh � ¼

2
64

13:3 6:67 0

6:67 13:3 0

0 0 0

3
75 Btu=ðh-�FÞ ð13:5:32Þ

2 3 5

Adding Eqs. (13.5.30) and (13.5.32), we obtain the element 4 total stiffness
matrix as

½kð4Þ� ¼

2
64

25:83 6:67 �12:5

6:67 25:83 �12:5

�12:5 �12:5 25

3
75 Btu=ðh-�FÞ ð13:5:33Þ

2 3 5

Superimposing the stiffness matrices given by Eqs. (13.5.23), (13.5.26), (13.5.28), and
(13.5.33), we obtain the total stiffness matrix for the body as

½K � ¼

25 0 0 0 �25

0 38:33 6:67 0 �25

0 6:67 38:33 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
666664

3
777775

Btu=ðh-�FÞ ð13:5:34Þ

Next, we determine the element force matrices by using Eqs. (13.5.18) through
(13.5.20) with q� replaced by hTy. Because Q ¼ 0, q� ¼ 0, and we have convective
heat transfer only from side 2–3, element 4 is the only one that contributes nodal
forces. Hence,

f f ð4Þg ¼

8><
>:

f2

f3

f5

9>=
>; ¼

hTyL2 3t

2

8><
>:

1

1

0

9>=
>; ð13:5:35Þ–

Substituting the appropriate numerical values into Eq. (13.5.35) yields

f f ð4Þg ¼ ð20Þð50Þð2Þð1Þ
2

8><
>:

1

1

0

9>=
>; ¼

8><
>:

1000

1000

0

9>=
>;

Btu

h
ð13:5:36Þ
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Using Eqs. (13.5.34) and (13.5.36), we find that the total assembled system of
equations is

25 0 0 0 �25

0 38:33 6:67 0 �25

0 6:67 38:33 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
66664

3
77775

t1

t2

t3

t4

t5

8>>>><
>>>>:

9>>>>=
>>>>;
¼

F1

1000

1000

F4

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð13:5:37Þ

We have known nodal temperature boundary conditions of t1 ¼ 100 �F and t4 ¼
100 �F . We again modify the stiffness and force matrices as follows:

1 0 0 0 0

0 38:33 6:67 0 �25

0 6:67 38:33 0 �25

0 0 0 1 0

0 �25 �25 0 100

2
66664

3
77775

t1

t2

t3

t4

t5

8>>>><
>>>>:

9>>>>=
>>>>;
¼

100

1000

1000

100

5000

8>>>><
>>>>:

9>>>>=
>>>>;

ð13:5:38Þ

The terms in the first and fourth rows and columns corresponding to the known tem-
perature conditions t1 ¼ 100 �F and t4 ¼ 100 �F have been set equal to zero except
for the main diagonal, which has been set equal to one, and the first and fourth rows
of the force matrix have been set equal to the known nodal temperatures. Also, the
term ð�25Þð100 �FÞ þ ð�25Þ � ð100 �FÞ ¼ �5000 on the left side of the fifth equation
of Eq. (13.5.37) has been transposed to the right side in the fifth row (as þ5000) of
Eq. (13.5.38). The second, third and fifth equations of Eq. (13.5.38), corresponding
to the rows of unknown nodal temperatures, can now be solved in the usual manner.
The resulting solution is given by

t2 ¼ 69:33 �F t3 ¼ 69:33 �F t5 ¼ 84:62 �F ð13:5:39Þ

9

Example 13.7

For the two-dimensional body shown in Figure 13–24, determine the temperature dis-
tribution. The temperature of the top side of the body is maintained at 100 �C.
The body is insulated on the other edges. A uniform heat source of Q ¼ 1000 W/m3

acts over the whole plate, as shown in the figure. Assume a constant thickness of
1 m. Let Kxx ¼ Kyy ¼ 25 W/(m � �C).

Figure 13–24 Two-dimensional body subjected
to a heat source
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SOLUTION:
We need consider only the left half of the body, because we have a vertical plane of
symmetry passing through the body 2 m from both the left and right edges. This ver-
tical plane can be considered to be an insulated boundary. The finite element model
is shown in Figure 13–25.

We will now calculate the element stiffness matrices. Because the magnitudes of
the coordinates and conductivities are the same as in Example 13.6, the element stiff-
ness matrices are the same as Eqs. (13.5.23), (13.5.26), (13.5.28), and (13.5.30). Re-
member that there is no convection from any side of an element, so the convection
contribution ½kh� to the stiffness matrix is zero. Superimposing the element stiffness
matrices, we obtain the total stiffness matrix as

½K � ¼

25 0 0 0 �25

0 25 0 0 �25

0 0 25 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
666664

3
777775

W=�C ð13:5:40Þ

Because the heat source Q is acting uniformly over each element, we use Eq. (13.5.16)
to evaluate the nodal forces for each element as

f f ðeÞg ¼ QV

3

8><
>:

1

1

1

9>=
>; ¼

1000ð1 m3Þ
3

8><
>:

1

1

1

9>=
>; ¼

8><
>:

333

333

333

9>=
>; W ð13:5:41Þ

We then use Eqs. (13.5.40) along with (13.5.41) is applied to each element, to assemble
the total system of equations as

25 0 0 0 �25

0 25 0 0 �25

0 0 25 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>><
>>>>:

9>>>>=
>>>>;
¼

666

666

666þ F3

666þ F4

1333

8>>>><
>>>>:

9>>>>=
>>>>;

ð13:5:42Þ

Figure 13–25 Discretized body
of Figure 13–24
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We have known nodal temperature boundary conditions of t3 ¼ 100 �C and t4 ¼
100 �C . In the usual manner, as was shown in Example 13.4, we modify the stiffness
and force matrices of Eq. (13.5.42) to obtain

25 0 0 0 �25

0 25 0 0 �25

0 0 1 0 0

0 0 0 1 0

�25 �25 0 0 100

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

666

666

100

100

6333

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð13:5:43Þ

Equation (13.5.43) satisfies the boundary temperature conditions and is equivalent to
Eq. (13.5.42); that is, the first, second, and fifth equations of Eq. (13.5.43) are the
same as the first, second, and fifth equations of Eq. (13.5.42), and the third and fourth
equations of Eq. (13.5.43) identically satisfy the boundary temperature conditions
at nodes 3 and 4. The first, second, and fifth equations of Eq. (13.5.43) corresponding
to the rows of unknown nodal temperatures, can now be solved simultaneously. The
resulting solution is given by

t1 ¼ 180 �C t2 ¼ 180 �C t5 ¼ 153 �C ð13:5:44Þ

We then use the results from Eq. (13.5.44) in Eq. (13.5.42) to obtain the rates of
heat flow at nodes 3 and 4 (that is, F3 and F4) as follows:

By Eq. (13.5.42),

25t3 � 25t5 ¼ 666þ F3

Substituting the numerical values for t3 and t5, we obtain

25ð100Þ � 25ð153Þ ¼ 666þ F3

or

F3 ¼ �1991 W

Similarly,

F4 ¼ �1991 W

The negative signs on F3 and F4 indicate heat flow out of the body at nodes 3 and 4.

9

d 13.6 Line or Point Sources d
A common practical heat-transfer problem is that of a source of heat generation pres-
ent within a very small volume or area of some larger medium. When such heat sources
exist within small volumes or areas, they may be idealized as line or point sources.
Practical examples that can be modeled as line sources include hot-water pipes
embedded within a medium such as concrete or earth, and conducting electrical
wires embedded within a material.
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A line or point source can be considered by simply including a node at the loca-
tion of the source when the discretized finite element model is created. The value of
the line source can then be added to the row of the global force matrix corresponding
to the global degree of freedom assigned to the node. However, another procedure can
be used to treat the line source when it is more convenient to leave the source within
an element.

We now consider the line source of magnitude Q�, with typical units of Btu/(h-ft),
located at ðxo; yoÞ within the two-dimensional element shown in Figure 13–26.
The heat source Q is no longer constant over the element volume.

Using Eq. (13.4.16), we can express the heat source matrix as

f fQg ¼
ððð

V

8><
>:

Ni

Nj

Nm

9>=
>;

�������
x¼xo;y¼yo

Q�

A�
dV ð13:6:1Þ

where A� is the cross-sectional area over which Q� acts, and the N ’s are evaluated at
x ¼ xo and y ¼ yo. Equation (13.6.1) can be rewritten as

Because the N ’s are evaluated at x ¼ xo and y ¼ yo, they are no longer functions of x

and y. Thus, we can simplify Eq. (13.6.2) to

f fQg ¼

8><
>:

Ni

Nj

Nm

9>=
>;

�������
x¼xo;y¼yo

Q�t Btu=h ð13:6:3Þ

From Eq. (13.6.3), we can see that the portion of the line source Q� distributed to
each node is based on the values of Ni;Nj, and Nm, which are evaluated using the
coordinates ðxo; yoÞ of the line source. Recalling that the sum of the N ’s at any point
within an element is equal to one [that is, Niðxo; yoÞ þNjðxo; yoÞ þNmðxo; yoÞ ¼ 1],
we see that no more than the total amount of Q� is distributed and that

Q�i þQ�j þQ�m ¼ Q� ð13:6:4Þ

Figure 13–26 Line source located
within a typical triangular element

f fQg ¼
ðð

A �

ð t

0

8><
>:

Ni

Nj

Nm

9>=
>;

�������
x¼xo;y¼yo

Q�

A�
dA dz ð13:6:2Þ
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Example 13.8

A line source Q� ¼ 65 Btu/(h-in.) is located at coordinates ð5; 2Þ in the element shown
in Figure 13–27. Determine the amount of Q� allocated to each node. All nodal
coordinates are in units of inches. Assume an element thickness of t ¼ 1 in.

SOLUTION:
We first evaluate the a’s, b’s, and g’s, defined by Eqs. (6.2.10), associated with each
shape function as follows:

ai ¼ xjym � xmyj ¼ 7ð4Þ � 6ð0Þ ¼ 28

aj ¼ xmyi � xiym ¼ 6ð3Þ � 3ð4Þ ¼ 6

am ¼ xiyj � xjyi ¼ 3ð0Þ � 7ð3Þ ¼ �21

bi ¼ yj � ym ¼ 0� 4 ¼ �4

bj ¼ ym � yi ¼ 4� 3 ¼ 1 ð13:6:5Þ

bm ¼ yi � yj ¼ 3� 0 ¼ 3

gi ¼ xm � xj ¼ 6� 7 ¼ �1

gj ¼ xi � xm ¼ 3� 6 ¼ �3

gm ¼ xj � xi ¼ 7� 3 ¼ 4

2A ¼

�������
1 xi yi

1 xj yj

1 xm ym

�������
¼

�������
1 3 3

1 7 0

1 6 4

�������
¼ 13 ð13:6:6ÞAlso,

Substituting the results of Eqs. (13.6.5) and (13.6.6) into Eq. (13.5.2) yields

Ni ¼
1

13
½28� 4x� 1y�

Nj ¼
1

13
½6þ x� 3y� ð13:6:7Þ

Nm ¼
1

13
½�21þ 3xþ 4y�

Figure 13–27 Line source located
within a triangular element
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Equations (13.6.7) for Ni;Nj, and Nm evaluated at x ¼ 5 and y ¼ 2 are

Ni ¼
1

13
½28� 4ð5Þ � 1ð2Þ� ¼ 6

13

Nj ¼
1

13
½6þ 5� 3ð2Þ� ¼ 5

13
ð13:6:8Þ

Nm ¼
1

13
½�21þ 3ð5Þ þ 4ð2Þ� ¼ 2

13

Therefore, using Eq. (13.6.3), we obtain

fQi

fQj

fQm

8><
>:

9>=
>; ¼ Q�t

8><
>:

Ni

Nj

Nm

9>=
>;

x¼xO¼5
y¼yO¼2

¼ 65ð1Þ
13

8><
>:

6

5

2

9>=
>; ¼

8><
>:

30

25

10

9>=
>; Btu=h ð13:6:9Þ

d 13.7 Three-Dimensional Heat Transfer
by the Finite Element Method

d

When the heat transfer is in all three directions (indicated by qx; qy and qz in
Figure 13–28), then we must model the system using three-dimensional elements
to account for the heat transfer. The basic partial differential equation for three-
dimensional heat transfer by conduction, including the volumetric heat source, Q, is
given by Eq. (13.7.1). It is an extension of the one-dimensional heat flow
Eq. (13.1.7). It is interpreted as follows: At any point in a body the net heat by con-
duction into a unit volume plus the volumetric heat source generated must equal the
change of thermal energy stored within the volume.

q

qx
Kxx

qT

qx

� �
þ q

qy
Kyy

qT

qy

� �
þ q

qz
Kzz

qT

qz

� �
þQ ¼ rc

qT

qt
ð13:7:1Þ

Examples of heat transfer that often is three-dimensional are shown in Figure 13–29.
Here we see in Figure 13–29(a) and (b) an electronic component soldered to a printed
wiring board [11]. The model includes a silicon chip, silver-eutectic die, alumina carrier,
solder joints, copper pads, and the printed wiring board. The model actually consisted
of 965 8-noded brick elements with 1395 nodes and 216 thermal elements and was
modeled in Algor [10]. One-quarter of the actual device was modeled. Figure 13–29(c)

qx+dx

qy+dy

qy

qz+dz

qx

dx
dz

dy

qz

y

x
z

Q

Figure 13–28 Three-dimensional heat transfer
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(a) Electronic component soldered to printed circuit board

(b1) Carrier of the FEA model (b2) Silicon chip (left side portion) and Au-Eutectic of
FEA model

(b3) Solder joints and copper pads of FEA model (b4) Close-up of solder and copper pad

(b) Finite element model (quarter thermal model) showing the separate components

Figure 13–29 Examples of three-dimensional heat transfer
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shows a heat sink used to cool a personal computer microprocessor chip (a two-
dimensional model might possibly be used with good results as well). Finally, Fig-
ure 13–29(d) shows an engine block, which is an irregularly shaped three-dimensional
body requiring a three-dimensional heat transfer analysis.

The elements often included in commercial computer programs to analyze three-
dimensional heat transfer are the same as those used in Chapter 11 for three-
dimensional stress analysis. These include the four-noded tetrahedral (Figure 11–3),
the eight-noded hexahedral (brick) (Figure 11–5), and the twenty-noded hexahedral
(Figure 11–6), the difference being that we now have only one degree of freedom at
each node, namely a temperature. The temperature functions in the x; y; and z direc-
tions can now be expressed by expanding Eq. (13.5.2) to the third dimension or
by using shape functions given by Eq. (11.2.10) for a four-noded tetrahedral element
or by Eqs. (11.3.3) for the eight-noded brick or the Eqs. (11.3.11) through (11.3.14)
for the twenty-noded brick. The typical eight-noded brick element is shown in
Figure 13–30 with the nodal temperatures included. 9

X
Y

(c) Heat sink possibly used to cool a computer microchip (d) Engine block

Figure 13–29 (continued)

y

z

x

(x3, y3, z3)

(x1, y1, z1)

(x4, y4, z4)

(x2, y2, z2)

(x8, y8, z8)

(x5, y5, z5)

(x6, y6, z6)

(x7, y7, z7)
3 7

4

1 5

6

t7

t6

t1

t3

t2
t8

t5

t4
2

8

Figure 13–30 Eight-noded brick element showing nodal temperatures
for the heat transfer
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d 13.8 One-Dimensional Heat Transfer
with Mass Transport

d

We now consider the derivation of the basic differential equation for one-dimensional
heat flow where the flow is due to conduction, convection, and mass transport (or
transfer) of the fluid. The purpose of this derivation including mass transport is to
show how Galerkin’s residual method can be directly applied to a problem for which
the variational method is not applicable. That is, the differential equation will have
an odd-numbered derivative and hence does not have an associated functional of the
form of Eq. (1.4.3).

The control volume used in the derivation is shown in Figure 13–31. Again,
from Eq. (13.1.1) for conservation of energy, we obtain

qxA dtþQA dx dt ¼ crA dx dT þ qxþdxA dtþ qhP dx dtþ qm dt ð13:8:1Þ

All of the terms in Eq. (13.8.1) have the same meaning as in Sections 13.1 and 13.2,
except the additional mass-transport term is given by [1]

qm ¼ _mcT ð13:8:2Þ

where the additional variable _m is the mass flow rate in typical units of kg/h or slug/h.

Again, using Eqs. (13.1.3) through (13.1.6), (13.2.2), and (13.8.2) in Eq. (13.8.1)
and differentiating with respect to x and t, we obtain

q

qx
Kxx

qT

qx

� �
þQ ¼ _mc

A

qT

qx
þ hP

A
ðT � TyÞ þ rc

qT

qt
ð13:8:3Þ

Equation (13.8.3) is the basic one-dimensional differential equation for heat transfer
with mass transport.

d 13.9 Finite Element Formulation
of Heat Transfer with Mass Transport
by Galerkin’s Method

d

Having obtained the differential equation for heat transfer with mass transport,
Eq. (13.8.3), we now derive the finite element equations by applying Galerkin’s re-
sidual method, as outlined in Section 3.12, directly to the differential equation.

Figure 13–31 Control volume for
one-dimensional heat conduction with
convection and mass transport
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We assume here that Q ¼ 0 and that we have steady-state conditions so that differen-
tiation with respect to time is zero.

The residual R is now given by

RðTÞ ¼ � d

dx
Kxx

dT

dx

� �
þ _mc

A

dT

dx
þ hP

A
ðT � TyÞ ð13:9:1Þ

Applying Galerkin’s criterion, Eq. (3.12.3), to Eq. (13.9.1), we have

ðL

0

� d

dx
Kxx

dT

dx

� �
þ _mc

A

dT

dx
þ hP

A
ðT � TyÞ

� �
Ni dx ¼ 0 ði ¼ 1; 2Þ ð13:9:2Þ

where the shape functions are given by Eqs. (13.4.2). Applying integration by parts to
the first term of Eq. (13.9.2), we obtain

u ¼ Ni du ¼ dNi

dx
dx

ð13:9:3Þ
dv ¼ � d

dx
Kxx

dT

dx

� �
dx v ¼ �Kxx

dT

dx

Using Eqs. (13.9.3) in the general formula for integration by parts [see Eq. (3.12.6)],
we obtainðL

0

� d

dx
Kxx

dT

dx

� �� �
Ni dx ¼ �Kxx

dT

dx
Ni

����
L

0

þ
ðL

0

Kxx

dT

dx

dNi

dx
dx ð13:9:4Þ

Substituting Eq. (13.9.4) into Eq. (13.9.2), we obtain

ðL

0

Kxx

dT

dx

dNi

dx

� �
dxþ

ðL

0

_mc

A

dT

dx
þ hP

A
ðT � TyÞ

� �
Ni dx ¼ Kxx

dT

dx
Ni

����
L

0

ð13:9:5Þ

Using Eq. (13.4.2) in (13.4.1) for T, we obtain

dT

dx
¼ � t1

L
þ t2

L
ð13:9:6Þ

From Eq. (13.4.2), we obtain

dN1

dx
¼ � 1

L

dN2

dx
¼ 1

L
ð13:9:7Þ

By letting Ni ¼ N1 ¼ 1� ðx=LÞ and substituting Eqs. (13.9.6) and (13.9.7) into
Eq. (13.9.5), along with Eq. (13.4.1) for T, we obtain the first finite element equation

ðL

0

Kxx �
t1

L
þ t2

L

� �
� 1

L

� �
dxþ

ðL

0

_mc

A
� t1

L
þ t2

L

� �
1� x

L

� �
dx

þ
ðL

0

hP

A
1� x

L

� �
t1 þ

x

L

� �
t2 � Ty

� �
1� x

L

� �
dx ¼ q�x1 ð13:9:8Þ

where the definition for qx given by Eq. (13.1.3) has been used in Eq. (13.9.8). Equa-
tion (13.9.8) has a boundary condition q�x1 at x ¼ 0 only because N1 ¼ 1 at x ¼ 0 and

642 d 13 Heat Transfer and Mass Transport

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



N1 ¼ 0 at x ¼ L. Integrating Eq. (13.9.8), we obtain

KxxA

L
� _mc

2
þ hPL

3

� �
t1 þ �KxxA

L
þ _mc

2
þ hPL

6

� �
t2 ¼ q�x1 þ

hPL

2
Ty ð13:9:9Þ

where q�x1 is defined to be qx evaluated at node 1.
To obtain the second finite element equation, we let Ni ¼ N2 ¼ x=L in

Eq. (13.9.5) and again use Eqs. (13.9.6), (13.9.7), and (13.4.1) in Eq. (13.9.5) to obtain

�KxxA

L
� _mc

2
þ hPL

6

� �
t1 þ

KxxA

L
þ _mc

2
þ hPL

3

� �
t2 ¼ q�x2 þ

hPL

2
Ty ð13:9:10Þ

where q�x2 is defined to be qx evaluated at node 2. Rewriting Eqs. (13.9.9) and (13.9.10)
in matrix form yields

KxxA

L

1 �1

�1 1

� �
þ _mc

2

�1 1

�1 1

� �
þ hPL

6

2 1

1 2

� �� �
t1

t2

� �

¼ hPLTy

2

1

1

� �
þ q�x1

q�x2

� �
ð13:9:11Þ

Applying the element equation f f g ¼ ½k�ftg to Eq. (13.9.11), we see that the element
stiffness (conduction) matrix is now composed of three parts:

½k� ¼ ½kc� þ ½kh� þ ½km� ð13:9:12Þ

where

½kc� ¼
KxxA

L

1 �1

�1 1

� �
½kh� ¼

hPL

6

2 1

1 2

� �
½km� ¼

_mc

2

�1 1

�1 1

� �
ð13:9:13Þ

and the element nodal force and unknown nodal temperature matrices are

f f g ¼ hPLTy

2

1

1

� �
þ

q�x1

q�x2

� �
ftg ¼ t1

t2

� �
ð13:9:14Þ

We observe from Eq. (13.9.13) that the mass transport stiffness matrix ½km� is asym-
metric and, hence, ½k� is asymmetric. Also, if heat flux exists, it usually occurs across
the free ends of a system. Therefore, qx1 and qx2 usually occur only at the free ends
of a system modeled by this element. When the elements are assembled, the heat fluxes
qx1 and qx2 are usually equal but opposite at the node common to two elements, un-
less there is an internal concentrated heat flux in the system. Furthermore, for insu-
lated ends, the q�x ’s also go to zero.

To illustrate the use of the finite element equations developed in this section for
heat transfer with mass transport, we will now solve the following problem.

Example 13.9

Air is flowing at a rate of 4.72 lb/h inside a round tube with a diameter of 1 in. and
length of 5 in., as shown in Figure 13–32. The initial temperature of the air entering
the tube is 100 �F. The wall of the tube has a uniform constant temperature of
200 �F. The specific heat of the air is 0.24 Btu/(lb-�F), the convection coefficient
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between the air and the inner wall of the tube is 2.7 Btu/(h-ft2-�F), and the thermal
conductivity is 0.017 Btu/(h-ft-�F). Determine the temperature of the air along the
length of the tube and the heat flow at the inlet and outlet of the tube. Here the flow
rate and specific heat are given in force units (pounds) instead of mass units (slugs).
This is not a problem because the units cancel in the _mc product in the formulation
of the equations.

We first determine the element stiffness and force matrices using Eqs. (13.9.13)
and (13.9.14). To do this, we evaluate the following factors:

KxxA

L
¼
ð0:017Þ pð1Þ2

4ð144Þ

" #

1:25=12
¼ 0:891� 10�3 Btu=ðh-�FÞ

_mc ¼ ð4:72Þð0:24Þ ¼ 1:133 Btu=ðh-�FÞ
ð13:9:15Þ

hPL

6
¼ ð2:7Þð0:262Þð0:104Þ

6
¼ 0:0123 Btu=ðh-�FÞ

hPLTy ¼ ð2:7Þð0:262Þð0:104Þð200Þ ¼ 14:71 Btu=h

We can see from Eqs. (13.9.15) that the conduction portion of the stiffness matrix is
negligible. Therefore, we neglect this contribution to the total stiffness matrix and
obtain

½kð1Þ� ¼ 1:133

2

�1 1

�1 1

� �
þ 0:0123

2 1

1 2

� �
¼ �0:542 0:579

�0:554 0:591

� �
ð13:9:16Þ

Similarly, because all elements have the same properties,

½kð2Þ� ¼ ½kð3Þ� ¼ ½kð4Þ� ¼ ½kð1Þ� ð13:9:17Þ

Using Eqs. (13.9.14) and (13.9.15), we obtain the element force matrices as

f f ð1Þg ¼ f f ð2Þg ¼ f f ð3Þg ¼ f f ð4Þg ¼ 7:35

7:35

� �
ð13:9:18Þ

Figure 13–32 Air flowing through a tube, and
the finite element model
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Assembling the global stiffness matrix using Eqs. (13.9.16) and (13.9.17) and the
global force matrix using Eq. (13.9.18), we obtain the global equations as

�0:542 0:579 0 0 0

�0:554 0:591� 0:542 0:579 0 0

0 �0:554 0:591� 0:542 0:579 0

0 0 �0:554 0:591� 0:542 0:579

0 0 0 �0:554 0:591

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

F1 þ 7:35

14:7

14:7

14:7

7:35

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð13:9:19Þ

Applying the boundary condition t1 ¼ 100 �F, we rewrite Eq. (13.9.19) as

1 0 0 0 0

0 0:049 0:579 0 0

0 �0:554 0:049 0:579 0

0 0 �0:554 0:049 0:579

0 0 0 �0:554 0:591

2
666664

3
777775

t1

t2

t3

t4

t5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

100

14:7þ 55:4

14:7

14:7

7:35

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð13:9:20Þ

Solving the second through fifth equations of Eq. (13.9.20) for the unknown tempera-
tures, we obtain

t2 ¼ 106:1 �F t3 ¼ 112:1 �F t4 ¼ 117:6 �F t5 ¼ 122:6 �F ð13:9:21Þ

Using Eq. (13.8.2), we obtain the heat flow into and out of the tube as

qin ¼ _mct1 ¼ ð4:72Þð0:24Þð100Þ ¼ 113:28 Btu=h
ð13:9:22Þ

qout ¼ _mct5 ¼ ð4:72Þð0:24Þð122:6Þ ¼ 138:9 Btu=h

where, again, the conduction contribution to q is negligible; that is, �kADT is negligi-
ble. The analytical solution in Reference [7] yields

t5 ¼ 123:0 �F qout ¼ 139:33 Btu=h ð13:9:23Þ

The finite element solution is then seen to compare quite favorably with the analytical
solution. 9

The element with the stiffness matrix given by Eq. (13.9.13) has been used in
Reference [8] to analyze heat exchangers. Both double-pipe and shell-and-tube heat
exchangers were modeled to predict the length of tube needed to perform the task of
proper heat exchange between two counterflowing fluids. Excellent agreement was
found between the finite element solution and the analytical solutions described in
Reference [9].
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Finally, remember that when the variational formulation of a problem is diffi-
cult to obtain but the differential equation describing the problem is available, a resid-
ual method such as Galerkin’s method can be used to solve the problem.

d 13.10 Flowchart and Examples of a Heat-Transfer Program d
Figure 13–33 is a flowchart of the finite element process used for the analysis of two-
and three-dimensional heat-transfer problems.

Figures 13–34 and 13–35 show examples of two-dimensional temperature distri-
bution using the two-dimensional heat-transfer element of this chapter (results
obtained from Algor [10]).

START

Draw the geometry and apply any heat
sources, fluxes, and boundary temperatures

Define the element type and properties
(here the heat-transfer element is used)

DO JE = 1,NE

Solve [K]{t} = {F} for {t}

Compute the element stiffness matrix [k] and nodal load
matrix {f} in global coordinates (both conduction and/or

convection portions of [k] and {f})

Use the direct stiffness procedure to add [k] and {f} to the proper
locations in the assemblage stiffness matrix [K] and load matrix{F}

Compute the element temperature gradients
and heat fluxes

Output results

Account for known temperature boundary conditions and modify
the global stiffness matrix and force matrix accordingly

END

Figure 13–33 Flowchart of two- and three-dimensional heat-transfer process
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Figure 13–34(a) shows a square plate subjected to boundary temperatures.
Figure 13–34(b) shows the finite element model, along with the temperature distribu-
tion throughout the plate.

Figure 13–35(a) shows a square duct that carries hot gases such that its surface
temperature is 380�C. The duct is wrapped by a layer of circular fiberglass. The finite
element model, along with the temperature distribution throughout the fiberglass is
shown in Figure 13–35(b).

40°C

1 m

1 m40°C 40°C

250°C

(b)

Figure 13–34 (a) Square plate subjected to temperature distribution and (b) finite
element model with resulting temperature variation throughout the plate (Courtesy of
David Walgrave) (See the full-color insert for a color version of this figure.)

Figures 13–36 and 13–37 illustrate the use of the three-dimensional solid ele-
ment described in Section 13.7 for determining temperature distribution and heat
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Insulation
(K = 0.035 W/m-°C)

0.6 m

1.2 m

45°C
25W/m2-°C

380° C

(b)

Figure 13–35 (a) Square duct wrapped by insulation and (b) the finite element
model with resulting temperature variation through the insulation (See the full-color
insert for a color version of this figure.)
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Figure 13–36 Temperature distribution in an anvil (Dan Baxter) (See the
full-color insert for a color version of this figure.)

Figure 13–37 Temperature distribution in a forging hammer (by Wilson Arifin)
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flux in solid bodies subjected to temperature change. Figure 13–36 is an anvil with the
nose heated to 482 �F. The temperature distribution throughout the anvil is shown.
Figure 13–37 is a solid model of a steel forging hammer with the flat end of the ham-
mer subjected to a 210 �C surface temperature. Notice that the temperature plot indi-
cates the end of the handle temperature is 84.2 �C.

d Summary Equations

Conservation of energy principle (conduction heat transfer):

Ein þ Egenerated ¼ DU þ Eout ð13:1:1Þ

qxA dtþQA dx dt ¼ DU þ qxþdxA dt ð13:1:2Þ

Fourier’s law for heat conduction:

qx ¼ �Kxx

dT

dx
ð13:1:3Þ

Basic differential equation for one-dimensional steady-state heat transfer by
conduction:

d

dx
Kxx

dT

dx

� �
þQ ¼ 0 ð13:1:8Þ

Basic differential equation for two-dimensional heat conduction:

q

qx
Kxx

qT

qx

� �
þ q

qy
Kyy

qT

qy

� �
þQ ¼ 0 ð13:1:12Þ

Conservation of energy principle (with convection):

qxA dtþQA dx dt ¼ cðrA dxÞ dT þ qxþdxA dtþ qhP dx dt ð13:2:1Þ

Newton’s law of cooling:

qh ¼ hðT � TyÞ ð13:2:2Þ

Basic differential equation for one-dimensional heat conduction with convection:

q

qx
Kxx

qT

qx

� �
þQ ¼ rc

qT

qt
þ hP

A
ðT � TyÞ ð13:2:3Þ

Temperature function for basic one-dimensional (two-noded) temperature element:

TðxÞ ¼ N1t1 þN2t2 ð13:4:1Þ

Shape functions for one-dimensional temperature element:

N1 ¼ 1� x

L
N2 ¼

x

L
ð13:4:2Þ
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Temperature gradient matrix:

fgg ¼ dT

dx

� �
¼ ½B�ftg ð13:4:6Þ

Gradient matrix:

½B� ¼ dN1

dx

dN2

dx

� �
ð13:4:7Þ

Heat flux/temperature gradient relationship:

qx ¼ �½D�fgg ð13:4:8Þ

Material properties matrix:

½D� ¼ ½Kxx� ð13:4:9Þ

Functional for heat transfer:

ph ¼ U þWQ þWq þWh ð13:4:10Þ

Stiffness matrix for heat transfer due to conduction and convection:

½k� ¼
ððð

V

½B�T ½D�½B� dV þ
ðð

S3

h½N�T ½N� dS ð13:4:17Þ

Conduction part of stiffness matrix for one-dimensional element:

½kc� ¼
AKxx

L

1 �1

�1 1

� �
ð13:4:20Þ

Convection part of stiffness matrix for one-dimensional elements:

½kh� ¼
hPL

6

2 1

1 2

� �
ð13:4:21Þ

Force matrix terms:
Due to uniform heat source:

f fQg ¼
ððð

V

½N�T Q dV ¼ QA

ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;

dx ¼ QAL

2

1

1

� �
ð13:4:23Þ

Due to uniform heat flux over perimeter surface of element:

ffqg ¼
q�PL

2

1
1

� �
ð13:4:24Þ

Due to uniform convection around perimeter surface of element:

f fhg ¼
ðð

S3

hTy½N�T dS ¼ hTyPL

2

1

1

� �
ð13:4:25Þ
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Stiffness matrix contribution for convection from right end of element:

½kh�end ¼
ðð

Send

h
0

1

� �
½0 1� dS ¼ hA

0 0

0 1

� �
ð13:4:28Þ

Force term due to convection from right end of element:

f fhgend ¼ hTyA
N1ðx ¼ LÞ
N2ðx ¼ LÞ

� �
¼ hTyA

0

1

� �
ð13:4:29Þ

Global equations:

fFg ¼ ½K �ftg ð13:4:32Þ

Temperature function for two-dimensional triangle element:

fTg ¼ ½Ni Nj Nm�
ti

tj

tm

8<
:

9=
; ð13:5:1Þ

Shape function for two-dimensional triangle element:

Ni ¼
1

2A
ðai þ bixþ gi yÞ ð13:5:2Þ

Temperature gradient for two-dimensional triangle element:

fgg ¼

8>>><
>>>:

qT

qx

qT

qy

9>>>=
>>>;

ð13:5:3Þ

fgg ¼ ½B�ftg ð13:5:5Þ

Gradient matrix for two-dimensional triangle element:

½B� ¼ 1

2A

"
bi bj bm

gi gj gm

#
ð13:5:6Þ

Heat flux/temperature gradient relationship for two-dimensional triangle element:

qx

qy

� �
¼ �½D�fgg ð13:5:7Þ

Material property matrix for two-dimensional triangle element:

½D� ¼
Kxx 0

0 Kyy

� �
ð13:5:8Þ

Stiffness matrix due to conduction for two-dimensional triangle element:

½kc� ¼
ððð

V

½B�T ½D�½B� dV ¼ tA½B�T ½D�½B� ð13:5:11Þ
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Stiffness matrix due to convection from side i-j of two-dimensional triangle element:

½kh� ¼
hLi-j t

6

2
64

2 1 0

1 2 0

0 0 0

3
75 ð13:5:14Þ

Force terms for two-dimensional triangle element:
Due to uniform heat source:

f fQg ¼
QV

3

8><
>:

1

1

1

9>=
>; ð13:5:16Þ

Due to uniform heat flux over side i-j:

f fqg ¼
q�Li-j t

2

8><
>:

1

1

0

9>=
>; on side i-j ð13:5:18Þ

Force matrix for line or point source:

f fQg ¼

8><
>:

Ni

Nj

Nm

9>=
>;

�������
x¼xo;y¼yo

Q�t Btu=h ð13:6:3Þ

Basic differential equation for three-dimensional heat transfer by conduction:

q

qx
Kxx

qT

qx

� �
þ q

qy
Kyy

qT

qy

� �
þ q

qz
Kzz

qT

qz

� �
þQ ¼ rc

qT

qt
ð13:7:1Þ

Mass transport term:

qm ¼ _mcT ð13:8:2Þ
Flow chart for heat transfer program (See Figure 13–33.)
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d Problems

13.1 For the one-dimensional composite bar shown in Figure P13–1, determine the inter-
face temperatures. For element 1, let Kxx ¼ 200 W/(m � �C); for element 2, let
Kxx ¼ 100 W/(m � �C); and for element 3, let Kxx ¼ 50 W/(m � �C). Let A ¼ 0:1 m2.
The left end has a constant temperature of 100 �C, and the right end has a constant
temperature of 300 �C.

13.2 For the one-dimensional rod shown in Figure P13–2 (insulated except at the ends),
determine the temperatures at L/3, 2L/3, and L. Let Kxx ¼ 3 Btu/(h.-in.-�F), h ¼ 1:0
Btu/(h-in2-�F), and Ty ¼ 0 �F. The temperature at the left end is 200 �F.

13.3 A rod with uniform cross-sectional area of 2 in2 and thermal conductivity of 3 Btu/

(h-in.-�F) has heat flow in the x direction only (Figure P13–3). The right end is insulated.
The left end is maintained at 50 �F, and the system has the linearly distributed heat
flux shown.

Figure P13–1

Figure P13–2
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Use a two-element model and estimate the temperature at the node points and the
heat flow at the left boundary.

13.4 The rod of 1-in. radius shown in Figure P13–4 generates heat internally at the rate of
uniform Q ¼ 10;000 Btu/(h-ft3) throughout the rod. The left edge and perimeter of the
rod are insulated, and the right edge is exposed to an environment of Ty ¼ 100 �F.
The convection heat-transfer coefficient between the wall and the environment is
h ¼ 100 Btu/(h-ft2-�F). The thermal conductivity of the rod is Kxx ¼ 12 Btu/(h-ft-�F).
The length of the rod is 3 in. Calculate the temperature distribution in the rod. Use at
least three elements in your finite element model.

13.5 The fin shown in Figure P13–5 is insulated on the perimeter. The left end has a con-
stant temperature of 100 �C. A positive heat flux of q� ¼ 1000 W/m2 acts on the right
end. Let Kxx ¼ 6 W/(m � �C) and cross-sectional area A ¼ 0:1 m2. Determine the
temperatures at L/4, L/2, 3L/4, and L, where L ¼ 0:4 m.

Figure P13–4

Figure P13–3

Figure P13–5
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13.6 For the composite wall shown in Figure P13–6, determine the interface temperatures.
What is the heat flux through the 8-cm portion? Use the finite element method. Use
three elements with the nodes shown. 1 cm ¼ 0:01 m.

13.7 For the composite wall idealized by the one-dimensional model shown in Figure P13–7,
determine the interface temperatures. For element 1, let Kxx ¼ 5 W/(m � �C); for ele-
ment 2, Kxx ¼ 10 W/(m � �C); and for element 3, Kxx ¼ 15 W/(m � �C). The left end
has a constant temperature of 200 �C and the right end has a constant temperature of
600 �C.

13.8 A composite wall is shown in Figure P13–8. For element 1, let Kxx ¼ 5 W/(m-�C), for
element 2 let Kxx ¼ 10 W/(m-�C), for element 3 let Kxx ¼ 15 W/(m-�C). The left end
has a heat source of 600 W applied to it. The right end is held at 10�C. Determine the
left end temperature and the interface temperatures and the heat flux through element 3.

13.9 A double-pane glass window shown in Figure P13–9, consists of two 4-mm thick
layers of glass with k ¼ 0:80 W/m-�C separated by a 10 mm thick stagnant air space
with k ¼ 0:025 W/m-�C. Determine (a) the temperature at both surfaces of the inside

Figure P13–7

10°C600 W
2 3 4

Figure P13–8

Figure P13–6
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layer of glass and the temperature at the outside surfaces of glass, and (b) the steady
rate of heat transfer in Watts through the double pane. Assume the inside room tem-
perature Ti1 ¼ 20 �C with hi ¼ 10 W/m2-�C and the outside temperature T01 ¼ 0 �C
with h0 ¼ 30 W/m2-�C. Assume one-dimensional heat flow through the glass.

13.10 For the composite wall of a house, shown in Figure P13–10, determine the temper-
atures at the inner and outer surfaces and at the interfaces. The wall is composed
of 2.5 cm thick plaster wall ðk ¼ 0:20 W/ m-�CÞ on the inside, a 9 cm thick layer
of fiberglass insulation ðk ¼ 0:038 W/ m-�C), and a 1.25 cm plywood layer
ðk ¼ 0:12 W/ m-�CÞ on the outside. Assume the inside room air is 20 �C with convec-
tion coefficient of 10 W/ m2-�C and the outside air at �10 �C with convection coeffi-
cient of 20 W/ m2-�C. Also, determine the rate of heat transfer through the wall in
Watts. Assume one-dimensional heat flow through the wall thickness.

13.11 Condensing steam is used to maintain a room at 20 �C. The steam flows through pipes
that keep the pipe surface at 100 �C. To increase heat transfer from the pipes, stainless
steel fins ðk ¼ 15 W/ m-�CÞ, 20 cm long and 0.5 cm in diameter, are welded to the pipe
surface as shown in Figure P13–11. A fan forces the room air over the pipe and fins,

Plaster wall
Fiberglass
insulation

Plywood

Inside Outside

9 cm2.5 cm 1.25 cm

Figure P13–10
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Fin diameter = df

h = 80 W�m2-°C
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resulting in a heat transfer coefficient of 50 W/ m2-�C at the base surface of the fin
where it is welded to the pipe. However, the air flow distribution increases the heat
transfer coefficient to 80 W/ m2-�C at the fin tip. Assume the variation in heat transfer
coefficient to then vary linearly from left end to right end of the fin surface. Determine
the temperature distribution at L/4 locations along the fin. Also determine the rate of
heat loss from each fin.

13.12 A tapered aluminum fin ðk ¼ 200 W/ m-�CÞ, shown in Figure P13–12, has a circular
cross section with base diameter of 1 cm and tip diameter of 0.5 cm. The base is
maintained at 200 �C and looses heat by convection to the surroundings at T1 ¼
10 �C, h ¼ 150 W/ m2-�C. The tip of the fin is insulated. Assume one-dimensional heat
flow and determine the temperatures at the quarter points along the fin. What is the
rate of heat loss in Watts through each element? Use four elements with an average
cross-sectional area for each element.

13.13 A wall is constructed of an outer layer of 0.5 inch thick plywood (k ¼ 0:80 Btu/h-ft-�F),
an inner core of 5 inch thick fiberglass insulation (k ¼ 0:020 Btu/h-ft-�F), and an inner
layer of 0.5 inch thick sheetrock (k ¼ 0:10 Btu/h-ft-�F) (Figure P13–13). The inside
temperature is 65 �F with h ¼ 1:5 Btu/h-ft2-�F, while the outside temperature is 0 �F with
h ¼ 4 Btu/h-ft2-�F. Determine the temperature at the interfaces of the materials and the
rate of heat flow in Btu/h through the wall.

13.14 A large plate of stainless steel with thickness of 5 cm and thermal conductivity of
k ¼ 15 W/ m-�C is subjected to an internal uniform heat generation throughout the

Sheetrock
Fiberglass
insulation

Plywood

Inside Outside

5 in.0.5 in. 0.5 in.

Figure P13–13

1 2 3 4
T0 = 200°C

Insulated

Figure P13–12
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plate at constant rate of Q ¼ 10� 106 W/ m3. One side of the plate is maintained at
0 �C by ice water, and the other side is subjected to convection to an environment at
T1 ¼ 35 �C, with heat transfer coefficient h ¼ 40 W/ m2-�C, as shown in Figure P13–14.
Use two elements in a finite element model to estimate the temperatures at each sur-
face and in the middle of the plate’s thickness. Assume a one-dimensional heat transfer
through the plate.

13.15 The base plate of an iron is 0.6 cm thick. The plate is subjected to 100 W of power
(provided by resistance heaters inside the iron, as shown in Figure P13–15), over a
base plate cross-sectional area of 250 cm2, resulting in a uniform flux generated on the
inside surface. The thermal conductivity of the metal base plate is k ¼ 20 W/ m-�C.
The outside ambient air temperature is 20 �C with a heat transfer coefficient of
20 W/ m2-�C at steady-state conditions. Assume one-dimensional heat transfer
through the plate thickness. Using three elements, model the plate to determine the
temperatures at the inner surface and interior one-third points.

Stainless steel

Q = 10 × 106 
W 
m3

0°C

5 cm

h

T∞

L x0
0 1 2

Figure P13–14

Insulation
Resistance heater 100 W

Base plate

0 1 2 3
x

0.6 cm
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T∞

Figure P13–15
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13.16 A hot surface is cooled by attaching fins (called pin fins) to it, as shown in
Figure P13–16. The surface of the plate (left end of the pin) is 90 �C. The fins are
6 cm long and have a cross-sectional area of 5� 10�6 m2 with a perimeter of 0.006 m.
The fins are made of copper ðk ¼ 400 W/ m-�C). The temperature of the surrounding
air is T1 ¼ 20 �C with heat transfer coefficient on the surface (including the end sur-
face) of h ¼ 10 W/ m2-�C. A model of the typical fin is also shown in Figure P13–16.
Use three elements in your finite element model to determine the temperatures along
the fin length.

13.17 Use the direct method to derive the element equations for the one-dimensional
steady-state conduction heat-transfer problem shown in Figure P13–17. The bar is
insulated all around and has cross-sectional area A, length L, and thermal conduc-
tivity Kxx. Determine the relationship between nodal temperatures t1 and t2 ð�FÞ
and the thermal inputs F1 and F2 (in Btu). Use Fourier’s law of heat conduction for
this case.

0.25 cm

0.8 cm

6 cm

x

90°C

 ≈ T∞, h  ≈

6 cm

Figure P13–16

Figure P13–17
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13.18 Express the stiffness matrix and the force matrix for convection from the left end of a
bar, as shown in Figure P13–18. Let the cross-sectional area of the bar be A, the
convection coefficient be h, and the free stream temperature be T1.

13.19 For the element shown in Figure P13–19, determine the [k] and { f } matrices. The
conductivities are Kxx ¼ Kyy ¼ 15 Btu/(h-ft-�F) and the convection coefficient is
h ¼ 20 Btu/(h-ft2-�F). Convection occurs across the i-j surface. The free-stream
temperature is Ty ¼ 70 �F. The coordinates are expressed in units of feet. Let the
line source be Q� ¼ 150 Btu/(h-ft) as located in the figure. Take the thickness of the
element to be 1 ft.

13.20 Calculate the [k] and { f } matrices for the element shown in Figure P13–20. The
conductivities are Kxx ¼ Kyy ¼ 15 W/(m � �C) and the convection coefficient is h ¼
20 W/(m2 � �C). Convection occurs across the i-m surface. The free-stream tempera-
ture is Ty ¼ 15 �C. The coordinates are shown expressed in units of meters. Let the
line source be Q� ¼ 100 W/m as located in the figure. Take the thickness of the ele-
ment to be 1 m.

13.21 For the square two-dimensional body shown in Figure P13–21, determine the tem-
perature distribution. Let Kxx ¼ Kyy ¼ 25 Btu/(h-ft-�F) and h ¼ 10 Btu/(h-ft2-�F).
Convection occurs across side 4–5. The free-stream temperature is Ty ¼ 50 �F. The
temperatures at nodes 1 and 2 are 100 �F. The dimensions of the body are shown in
the figure. Take the thickness of the body to be 1 ft.

h, T∞ Figure P13–18

Figure P13–19

Figure P13–20
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13.22 For the square plate shown in Figure P13–22, determine the temperature distribu-
tion. Let Kxx ¼ Kyy ¼ 10 W/(m � �C) and h ¼ 20 W/(m2 � �C). The temperature along
the left side is maintained at 100 �C and that along the top side is maintained at
200 �C.

Use a computer program to calculate the temperature distribution in the following two-

dimensional bodies.

13.23 For the body shown in Figure P13–23, determine the temperature distribution. Sur-
face temperatures are shown in the figure. The body is insulated along the top and
bottom edges, and Kxx ¼ Kyy ¼ 1:0 Btu/(h-in.-�F). No internal heat generation is
present.

13.24 For the square two-dimensional body shown in Figure P13–24, determine the tem-
perature distribution. Let Kxx ¼ Kyy ¼ 10 Btu/(h-ft-�F). The top surface is maintained
at 500 �F and the other three sides are maintained at 100 �F. Also, plot the tempera-
ture contours on the body.

13.25 For the square two-dimensional body shown in Figure P13–25, determine the tem-
perature distribution. Let Kxx ¼ Kyy ¼ 10 Btu/(h-ft-�F) and h ¼ 10 Btu/(h-ft2-�F).
The top face is maintained at 500 �F, the left face is maintained at 100 �F, and the

Figure P13–23 Figure P13–24

Figure P13–21

Figure P13–22
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other two faces are exposed to an environmental (free-stream) temperature of 100 �F.
Also, plot the temperature contours on the body.

13.26 Hot water pipes are located on 2.0-ft centers in a concrete slab with Kxx ¼ Kyy ¼ 0:80
Btu/(h-ft-�F), as shown in Figure P13–26. If the outside surfaces of the concrete are at
85 �F and the water has an average temperature of 200 �F, determine the temperature
distribution in the concrete slab. Plot the temperature contours through the concrete.
Use symmetry in your finite element model.

13.27 The cross section of a tall chimney shown in Figure P13–27 has an inside surface
temperature of 330 �F and an exterior temperature of 130 �F. The thermal conductiv-
ity is K ¼ 0:5 Btu/(h-ft-�F). Determine the temperature distribution within the chim-
ney per unit length.

13.28 The square duct shown in Figure P13–28 carries hot gases such that its surface tem-
perature is 570 �F. The duct is insulated by a layer of circular fiberglass that has
a thermal conductivity of K ¼ 0:020 Btu/(h-ft-�F). The outside surface temperature of

Figure P13–25

Figure P13–26

Figure P13–27 Figure P13–28
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the fiberglass is maintained at 110 �F. Determine the temperature distribution within
the fiberglass.

13.29 The buried pipeline in Figure P13–29 transports oil with an average temperature of
60 �F. The pipe is located 15 ft below the surface of the earth. The thermal conduc-
tivity of the earth is 0.6 Btu/(h-ft-�F). The surface of the earth is 50 �F. Determine the
temperature distribution in the earth.

13.30 A 10-in.-thick concrete bridge deck is embedded with heating cables, as shown in
Figure P13–30. If the lower surface is at 0 �F, the rate of heat generation (assumed to
be the same in each cable) is 100 Btu/(h-in.) and the top surface of the concrete is at
35 �F. The thermal conductivity of the concrete is 0.500 Btu/(h-ft-�F). What is the
temperature distribution in the slab? Use symmetry in your model.

13.31 For the circular body with holes shown in Figure P13–31, determine the temperature
distribution. The inside surfaces of the holes have temperatures of 150 �C. The outside
of the circular body has a temperature of 30 �C. Let Kxx ¼ Kyy ¼ 10 W/(m � �C).

13.32 For the square two-dimensional body shown in Figure P13–32, determine the tem-
perature distribution. Let Kxx ¼ Kyy ¼ 10 W/(m � �C) and h ¼ 10 W/(m2 � �C). The
top face is maintained at 100 �C, the left face is maintained at 0 �C, and the other two
faces are exposed to a free-stream temperature of 0 �C. Also, plot the temperature
contours on the body.

Figure P13–29

Figure P13–30
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13.33 A 200-mm-thick concrete bridge deck is embedded with heating cables as shown in Fig-
ure P13–33. If the ambient temperature under the deck is �10 �C with h ¼ 10 W/(m2-�C)
and the ambient air temperature above the deck is 10 �C with h ¼ 10 W/(m2-�C), what is
the temperature distribution in the slab? The heating cables are line sources generating
heat of Q� ¼ 50 W/m. The thermal conductivity of the concrete is 1:2 W/m-�C. Use
symmetry in your model.

13.34 For the two-dimensional body shown in Figure P13–34, determine the temperature
distribution. Let the left and right ends have constant temperatures of 200 �C and
100 �C, respectively. Let Kxx ¼ Kyy ¼ 5 W/(m � �C). The body is insulated along the
top and bottom.

Figure P13–31 Figure P13–32

≈ 10°C

≈ –10°C

Figure P13–33

Figure P13–34
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13.35 For the two-dimensional body shown in Figure P13–35, determine the temperature
distribution. The top and bottom sides are insulated. The right side is subjected to heat
transfer by convection. Let Kxx ¼ Kyy ¼ 10 W/(m � �C).

13.36 For the two-dimensional body shown in Figure P13–36, determine the temperature
distribution. The left and right sides are insulated. The top surface is subjected to heat
transfer by convection. The bottom and internal portion surfaces are maintained at
300 �C.

13.37 Determine the temperature distribution and rate of heat flow through the plain carbon
steel ingot shown in Figure P13–37. Let k ¼ 60 W/ m-KÞ for the steel. The top surface
is held at 40�C, while the underside surface is held at 0 �C. Assume that no heat is lost
from the sides.

13.38 Determine the temperature distribution and rate of heat flow per foot length from a
5 cm outer diameter pipe at 180 �C placed eccentrically within a larger cylinder of in-
sulation ðk ¼ 0:058 W/ m-�C) as shown in Figure P13–38. The diameter of the outside
cylinder is 15 cm, and the surface temperature is 20 �C.

Figure P13–35

Figure P13–36
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13.39 Determine the temperature distribution and rate of heat flow in the molded foam in-
sulation (k ¼ 0:17 Btu/h-ft-�F) shown in Figure P13–39.
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13.40 For the basement wall shown in Figure P13–40, determine the temperature distribu-
tion and the heat transfer through the wall and soil. The wall is constructed of con-
crete (k ¼ 1:0 Btu/h-ft-�F). The soil has an average thermal conductivity of k ¼ 0:85
Btu/h-ft-�F. The inside air is maintained at 70 �F with a convection coefficient h ¼ 2:0
Btu/h-ft2-�F. The outside air temperature is 10 �F with a heat transfer coefficient of
h ¼ 6 Btu/h-ft2-�F. Assume a reasonable distance from the wall of five feet that the
horizontal component of heat transfer becomes negligible. Make sure this assumption
is correct.

13.41 Now add a 6 in. thick concrete floor to the model of Figure P13–40 (as shown in
Figure P13–41). Determine the temperature distribution and the heat transfer through
the concrete and soil. Use the same properties as shown in Problem 13–40.

13.42 Aluminum fins ðk ¼ 170 W/ m-KÞ with triangular profiles shown in Figure P13–42 are
used to remove heat from a surface with a temperature of 160 �C. The temperature of
the surrounding air is 25 �C. The natural convection coefficient is h ¼ 25 W/ m2-K.
Determine the temperature distribution throughout and the heat loss from a typical fin.

13.43 The forging hammer shown in Figure P13–43 is subjected to a surface temperature of
210 �C acting on the lower flat surface of the steel hammer head. The hammer’s ther-
mal conductivity is 20 W/m-K and the room temperature is assumed to be 40 �C with
a convection coefficient of 3:216� 10�6 J/(s -�C-mm2).

Determine the temperature distribution throughout the hammer.
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2 ft

6 ft

5 ft

T∞ = 10°F 
h = 6 Btu�h-ft-°F 

T∞ = 70°F, h = 2.0 Btu�h-ft-°F

Soil

Figure P13–40
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13.44 The Allen wrench shown in Figure P13–44 is unloaded but now exposed to a tem-
perature of 300 K, at its lower end, while the other end has a heat flux of 10 W/m2

acting over the end surface. Determine the temperature distribution throughout the
wrench. The thermal conductivity of the material is 43.6 W/m-K. Assume the wrench
is insulated around the perimeter. The dimensions of the wrench are those of Figure
P11–18.

25 mm

≈ h, T∞ ≈ 

160°C

160°C

100 mm

Figure P13–42

4 ft
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13.45 The forklift from Figure P13–45 (detailed dimensions shown in Figure P11–20) has its
load removed. The fork is made of AISI 4130 steel. The thermal conductivity of
the steel is 35 W/m�C. The top surface of the fork is at 50 �C. The other surfaces of the
L-shaped appendages located at the upper and lower left sides of the forklift are at
room temperature (assume 25 �C). Determine the temperature distribution throughout
the fork.

13.46 The radio control car front steering unit in Figure P13–46 (detailed dimensions shown
in Figure P11–21) is now relieved of stress, but its base has an applied temperature of
100�F. The lower surface of the lower right-side flange has an applied temperature
of 50�F. Other surfaces are exposed to Ty ¼ 70�F and h ¼ 1 Btu/h-ft2-�F. The unit is
made of ABS (acrylonitrile butadine stryrene) with k ¼ 0.104 Btu/ft-hr- �F. Determine
the temperature throughout the steering unit.

13.47 The hitch shown in Figure P13–47 (detailed dimensions shown in Figure P11–22) is
unloaded but has an applied temperature of 200 �F to the front end and an applied
temperature of 10 �F to the rear surface. Determine the temperature distribution
throughout the hitch. The rest of the surfaces are exposed to ambient temperature of
70�F with h ¼ 2 Btu/h-ft2-�F.
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13.48 Air is flowing at a rate of 10lb/h inside a round tube with a diameter of 1.5 in. and
length of 10 in., similar to Figure 13–32 on page 644. The initial temperature
of the air entering the tube is 50�F. The wall of the tube has a uniform constant
temperature of 200�F. The specific heat of the air is 0.24 Btu/(lb-�F), the convec-
tion coefficient between the air and the inner wall of the tube is 3.0 Btu/h-ft2-�F),
and the thermal conductivity is 0.017 Btu/h-ft2-�F). Determine the temperature of
the air along the length of the tube and the heat flow at the inlet and outlet of the
tube.
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FLUID FLOW IN POROUS MEDIA AND THROUGH

HYDRAULIC NETWORKS; AND ELECTRICAL

NETWORKS AND ELECTROSTATICSd

CHAPTER OBJECTIVES

. To derive the basic differential equations for steady-state fluid flow through
porous media, including Darcy’s law.

. To describe the equations used for steady-state, incompressible, and inviscid
fluid flow through and around pipes.

. To formulate the one-dimensional finite element fluid flow through porous media
and through pipe’s stiffness matrix and equations.

. To demonstrate longhand solutions to one-dimensional fluid flow.

. To develop the two-dimensional finite element for fluid flow through porous
media and around solid objects or through pipes.

. To derive the stiffness matrix for elements used in hydraulic networks.

. To demonstrate longhand solution to the hydraulic network using the finite-
element direct stiffness method.

. To show a flowchart of the fluid flow process.

. To describe electrical network principles, including Ohm’s and Kirchhoff’s laws,
and to introduce the stiffness matrix used to solve electrical network problems.

. To demonstrate the solution of an electrical network by the finite-element direct
stiffness method.

. To introduce some basic concepts in electrostatics, including Coulomb’s and
Gauss’s laws and Poisson’s equation.

. To present the two-dimensional finite element formulation of the electrostatics
problem.

. To perform a longhand finite element solution to an electrostatics problem.

. To show examples of computer program solutions of electrostatics problems.

Introduction

In this chapter, we consider the flow of fluid through porous media, such as the flow
of water through an earthen dam, and through pipes or around solid bodies.
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We will observe that the form of the equations is the same as that for heat transfer
described in Chapter 13.

We begin with a derivation of the basic di¤erential equation in one dimension
for an ideal fluid in a steady state, not rotating (that is, the fluid particles are translat-
ing only), incompressible (constant mass density), and inviscid (having no viscosity).
We then extend this derivation to the two-dimensional case. We also consider the
units used for the physical quantities involved in fluid flow. For more advanced topics,
such as viscous flow, compressible flow, and three-dimensional problems, consult
Reference [1].

We will use the same procedure to develop the element equations as in the heat-
transfer problem; that is, we define an assumed fluid head for the flow through porous
media (seepage) problem or velocity potential for flow of fluid through pipes and
around solid bodies within each element. Then, to obtain the element equations, we
use both a direct approach similar to that used in Chapters 2, 3, and 4 to develop
the element equations and the minimization of a functional as used in Chapter 13.
These equations result in matrices analogous to the sti¤ness and force matrices of the
stress analysis problem or the conduction and associated force matrices of the heat-
transfer problem.

Next, we consider both one- and two-dimensional finite element formulations of
the fluid-flow problem and provide examples of one-dimensional fluid flow through
porous media and through pipes and of flow within a two-dimensional region. We
present the results for a two-dimensional fluid-flow problem.

We then consider flow through hydraulic networks and electric networks and
show the analogies between these networks and the spring assemblage.

Finally, we describe concepts for electrostatic analysis and develop the two-
dimensional finite element formulation for electrostatic analysis, along with computer
program examples.

d 14.1 Derivation of the Basic Differential Equations d
Fluid Flow through a Porous Medium

Let us first consider the derivation of the basic di¤erential equation for the one-
dimensional problem of steady-state fluid flow through a porous medium. The pur-
pose of this derivation is to present a physical insight into the fluid-flow phenomena,
which must be understood so that the finite element formulation of the problem can be
fully comprehended. (For additional information on fluid flow, consult References [2]
and [3]). We begin by considering the control volume shown in Figure 14–1. By conserva-
tion of mass, we have

Min þMgenerated ¼Mout ð14:1:1Þ

rvxA dtþ rQ dt ¼ rvxþdxA dt ð14:1:2Þor
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where

Min is the mass entering the control volume, in units of kilograms or slugs.

Mgenerated is the mass generated within the body.

Mout is the mass leaving the control volume.

vx is the velocity of the fluid flow at surface edge x, in units of m/s or in./s.

vxþdx is the velocity of the fluid leaving the control volume at surface
edge xþ dx.

t is time, in s.

Q is an internal fluid source (an internal volumetric flow rate), in m3/s or
in3/s.

r is the mass density of the fluid, in kg/m3 or slugs/in3.

A is the cross-sectional area perpendicular to the fluid flow, in m2 or in2.

By Darcy’s law, we relate the velocity of fluid flow to the hydraulic gradient (the
change in fluid head with respect to x) as

vx ¼ �Kxx

df

dx
¼ �Kxxgx ð14:1:3Þ

where

Kxx is the permeability coe‰cient of the porous medium in the x

direction, in m/s or in./s.

f is the fluid head, in m or in.

df=dx ¼ gx is the fluid head gradient or hydraulic gradient, which is a
unitless quantity in the seepage problem.

Equation (14.1.3) states that the velocity in the x direction is proportional to the gra-
dient of the fluid head in the x direction. The minus sign in Eq. (14.1.3) implies that
fluid flow is positive in the direction opposite the direction of fluid head increase, or
that the fluid flows in the direction of lower fluid head. Equation (14.1.3) is analogous
to Fourier’s law of heat conduction, Eq. (13.1.3).

Similarly,

vxþdx ¼ �Kxx
df

dx

����
xþdx

ð14:1:4Þ

Figure 14–1 Control volume for one-
dimensional fluid flow

676 d 14 Fluid Flow in Porous Media and Through Hydraulic Networks

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



where the gradient is now evaluated at xþ dx. By Taylor series expansion, similar to
that used in obtaining Eq. (13.1.5), we have

vxþdx ¼ � Kxx

df

dx
þ d

dx
Kxx

df

dx

� �
dx

� �
ð14:1:5Þ

where a two-term Taylor series has been used in Eq. (14.1.5). On substituting Eqs.
(14.1.3) and (14.1.5) into Eq. (14.1.2), dividing Eq. (14.1.2) by rA dx dt, and simplify-
ing, we have the equation for one-dimensional fluid flow through a porous medium as

d

dx
Kxx

df

dx

� �
þQ ¼ 0 ð14:1:6Þ

where Q ¼ Q=A dx is the volume flow rate per unit volume in units 1/s. For a constant
permeability coe‰cient, Eq. (14.1.6) becomes

Kxx

d 2f

dx2
þQ ¼ 0 ð14:1:7Þ

The boundary conditions are of the form

f ¼ fB on S1 ð14:1:8Þ

where fB represents a known boundary fluid head and S1 is a surface where this head
is known and

v�x ¼ �Kxx

df

dx
¼ constant on S2 ð14:1:9Þ

where S2 is a surface where the prescribed velocity v�x or gradient is known. On an im-
permeable boundary, v�x ¼ 0.

Comparing this derivation to that for the one-dimensional heat conduction
problem in Section 13.1, we observe numerous analogies among the variables; that
is, f is analogous to the temperature function T ; vx is analogous to heat flux, and
Kxx is analogous to thermal conductivity.

Now consider the two-dimensional fluid flow through a porous medium, as
shown in Figure 14–2. As in the one-dimensional case, we can show that for material
properties coinciding with the global x and y directions,

q

qx
Kxx

qf

qx

� �
þ q

qy
Kyy

qf

qy

� �
þQ ¼ 0 ð14:1:10Þ

Figure 14–2 Control volume for two-
dimensional fluid flow
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with boundary conditions

f ¼ fB on S1 ð14:1:11Þ

Kxx

qf

qx
Cx þ Kyy

qf

qy
Cy ¼ constant on S2 ð14:1:12Þand

where Cx and Cy are direction cosines of the unit vector normal to the surface S2, as
previously shown in Figure 13–5.

Fluid Flow in Pipes and Around Solid Bodies

We now consider the steady-state irrotational flow of an incompressible and inviscid
fluid. For the ideal fluid, the fluid particles do not rotate; they only translate, and the
friction between the fluid and the surfaces is ignored. Also, the fluid does not penetrate
into the surrounding body or separate from the surface of the body, which could
create voids.

The equations for this fluid motion can be expressed in terms of the stream
function or the velocity potential function. We will use the velocity potential ana-
logous to the fluid head that was used for the derivation of the di¤erential equation
for flow through a porous medium in the preceding subsection.

The velocity v of the fluid is related to the velocity potential function f by

vx ¼ �
qf

qx
vy ¼ �

qf

qy
ð14:1:13Þ

where vx and vy are the velocities in the x and y directions, respectively. In the absence
of sources or sinks Q, conservation of mass in two dimensions yields the two-
dimensional di¤erential equation as

q2f

qx2
þ q2f

qy2
¼ 0 ð14:1:14Þ

Equation (14.1.14) is analogous to Eq. (14.1.10) when we set Kxx ¼ Kyy ¼ 1 and
Q ¼ 0. Hence, Eq. (14.1.14) is just a special form of Eq. (14.1.10). The boundary
conditions are

f ¼ fB on S1 ð14:1:15Þ

qf

qx
Cx þ

qf

qy
Cy ¼ constant on S2 ð14:1:16Þand

where Cx and Cy are again direction cosines of unit vector n normal to surface S2.
Also see Figure 14–3. That is, Eq. (14.1.15) states that the velocity potential fB is
known on a boundary surface S1, whereas Eq. (14.1.16) states that the potential gradi-
ent or velocity is known normal to a surface S2, as indicated for flow out of the pipe
shown in Figure 14–3.

To clarify the sign convention on the S2 boundary condition, consider the case
of fluid flowing through a pipe in the positive x direction, as shown in Figure 14–4.
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Assume we know the velocities at the left edge (1) and the right edge (2). By Eq.
(14.1.13) the velocity of the fluid is related to the velocity potential by

vx ¼ �
qf

qx

At the left edge (1) assume we know vx ¼ vx1. Then

vx1 ¼ �
qf

qx

But the normal is always positive away, or outward, from the surface. Therefore, pos-
itive n1 is directed to the left, whereas positive x is to the right, resulting in

qf

qn1
¼ � qf

qx
¼ vx1 ¼ vn1

At the right edge (2) assume we know vx ¼ vx2. Now the normal n2 is in the same
direction as x. Therefore,

qf

qn2
¼ qf

qx
¼ �vx2 ¼ �vn2

We conclude that the boundary flow velocity is positive if directed into the surface (re-
gion), as at the left edge, and is negative if directed away from the surface, as at the
right edge.

At an impermeable boundary, the flow velocity and thus the derivative of the ve-
locity potential normal to the boundary must be zero. At a boundary of uniform or
constant velocity, any convenient magnitude of velocity potential f may be specified
as the gradient of the potential function; see, for instance, Eq. (14.1.13). This idea is
also illustrated by Example 14.3.

Figure 14–3 Boundary conditions for
fluid flow

Figure 14–4 Known velocities at left and right edges of a pipe
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d 14.2 One-Dimensional Finite Element
Formulation

d

We can proceed directly to the one-dimensional finite element formulation of the
fluid-flow problem by now realizing that the fluid-flow problem is analogous to the
heat-conduction problem of Chapter 13. We merely substitute the fluid velocity poten-
tial function f for the temperature function T, the vector of nodal potentials denoted
by fpg for the nodal temperature vector ftg, fluid velocity v for heat flux q, and per-
meability coe‰cient K for flow through a porous medium instead of the conduction
coe‰cient K. If fluid flow through a pipe or around a solid body is considered, then
K is taken as unity. The steps are as follows.

Step 1 Select Element Type

The basic two-node element is again used, as shown in Figure 14–5, with nodal fluid
heads, or potentials, denoted by p1 and p2.

Step 2 Choose a Potential Function

We choose the potential function f similarly to the way we chose the temperature
function of Section 13.4, as

f ¼ N1p1 þN2 p2 ð14:2:1Þ

where p1 and p2 are the nodal potentials (or fluid heads in the case of the seepage
problem) to be determined, and

N1 ¼ 1� x

L
N2 ¼

x

L
ð14:2:2Þ

are again the same shape functions used for the temperature element. The matrix ½N�
is then

½N� ¼ 1� x

L

x

L

h i
ð14:2:3Þ

Step 3 Define the Gradient=Potential
and Velocity=Gradient Relationships

The hydraulic gradient matrix fgg is given by

fgg ¼ df

dx

� �
¼ ½B�fpg ð14:2:4Þ

where ½B� is identical to Eq. (13.4.7), given by

½B� ¼ � 1

L

1

L

� �
ð14:2:5Þ

Figure 14–5 Basic one-dimensional
fluid-flow element
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fpg ¼ p1

p2

� �
ð14:2:6Þand

The velocity/gradient relationship based on Darcy’s law is given by

vx ¼ �½D�fgg ð14:2:7Þ

where the material property matrix is now given by

½D� ¼ ½Kxx� ð14:2:8Þ

with Kxx the permeability of the porous medium in the x direction. Typical perme-
abilities of some granular materials are listed in Table 14–1. High permeabilities
occur when K > 10�1 cm/s, and when K < 10�7 the material is considered to
be nearly impermeable. For ideal flow through a pipe or over a solid body, we
arbitrarily—but conveniently—let K ¼ 1.

Step 4 Derive the Element Stiffness Matrix and Equations

The fluid-flow problem has a sti¤ness matrix that can be found using the first term on
the right side of Eq. (13.4.17). That is, the fluid-flow sti¤ness matrix is analogous to the
conduction part of the sti¤ness matrix in the heat-transfer problem. There is no com-
parable convection matrix to be added to the sti¤ness matrix. However, we will
choose to use a direct approach similar to that used initially to develop the sti¤ness
matrix for the bar element in Chapter 3.

Consider the fluid element shown in Figure 14–6 with length L and uniform
cross-sectional area A. Recall that the sti¤ness matrix is defined in the structure prob-
lem to relate nodal forces to nodal displacements or in the temperature problem to re-
late nodal rates of heat flow to nodal temperatures. In the fluid-flow problem, we define

Table 14–1 Permeabilities
of granular materials

Material K (cm/s)

Clay 1� 10�8

Sandy clay 1� 10�3

Ottawa sand 2–3� 10�2

Coarse gravel 1

Figure 14–6 Fluid element subjected to nodal velocities
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the sti¤ness matrix to relate nodal volumetric fluid-flow rates to nodal potentials or
fluid heads as f f g ¼ ½k �fpg. Therefore,

f ¼ v�A ð14:2:9Þ

defines the volumetric flow rate f in units of cubic meters or cubic inches per second.
Now, using Eqs. (14.2.7) and (14.2.8) in Eq. (14.2.9), we obtain

f ¼ �KxxAg m3=s or in3=s ð14:2:10Þ

in scalar form; based on Eqs. (14.2.4) and (14.2.5), g is given in explicit form by

g ¼ p2 � p1

L
ð14:2:11Þ

Applying Eqs. (14.2.10) and (14.2.11) at nodes 1 and 2, we obtain

f1 ¼ �KxxA
p2 � p1

L
ð14:2:12Þ

f2 ¼ KxxA
p2 � p1

L
ð14:2:13Þand

where f1 is directed into the element, indicating fluid flowing into the element ( p1

must be greater than p2 to push the fluid through the element, actually resulting in
positive f1), whereas f2 is directed away from the element, indicating fluid flowing
out of the element; hence the negative sign changes to a positive one in Eq. (14.2.13).
Expressing Eqs. (14.2.12) and (14.2.13) together in matrix form, we have

f1

f2

� �
¼ AKxx

L

1 �1

�1 1

� �
p1

p2

� �
ð14:2:14Þ

The sti¤ness matrix is then

½k � ¼ AKxx

L

1 �1

�1 1

� �
m2=s or in2=s ð14:2:15Þ

for flow through a porous medium.
Equation (14.2.15) is analogous to Eq. (13.4.20) for the heat-conduction element

or to Eq. (3.1.14) for the one-dimensional (axial stress) bar element. The permeability
or sti¤ness matrix will have units of square meters or square inches per second.

In general, the basic element may be subjected to internal sources or sinks, such
as from a pump, or to surface-edge flow rates, such as from a river or stream. To in-
clude these or similar e¤ects, consider the element of Figure 14–6 now to include a
uniform internal source Q acting over the whole element and a uniform surface flow-
rate source q� acting over the surface, as shown in Figure 14–7. The force matrix
terms are

f fQg ¼
ððð

V

½N�T Q dV ¼ QAL

2

1

1

� �
m3=s or in3=s ð14:2:16Þ
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where Q will have units of m3/(m3 � s), or 1/s, and

f fqg ¼
ðð

S2

q�½N�T dS ¼ q�Lt

2

1

1

� �
m3=s or in3=s ð14:2:17Þ

where q� will have units of m/s or in./s. Equations (14.2.16) and (14.2.17) indicate that
one-half of the uniform volumetric flow rate per unit volume Q (a source being posi-
tive and a sink being negative) is allocated to each node and one-half the surface
flow rate (again a source is positive) is allocated to each node.

Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

We assemble the total sti¤ness matrix ½K �, total force matrix fFg, and total set of
equations as

½K� ¼
X
½kðeÞ� fFg ¼

X
f f ðeÞg ð14:2:18Þ

fFg ¼ ½K�fpg ð14:2:19Þand

The assemblage procedure is similar to the direct sti¤ness approach, but it is now
based on the requirement that the potentials at a common node between two elements
be equal. The boundary conditions on nodal potentials are given by Eq. (14.1.15).

Step 6 Solve for the Nodal Potentials

We now solve for the global nodal potentials, fpg, where the appropriate nodal
potential boundary conditions, Eq. (14.1.15), are specified.

Step 7 Solve for the Element Velocities and Volumetric
Flow Rates

Finally, we calculate the element velocities from Eq. (14.2.7) and the volumetric flow
rate Qf as

Qf ¼ ðvÞðAÞ m3=s or in3=s ð14:2:20Þ

Example 14.1

Determine (a) the fluid head distribution along the length of the coarse gravelly medium
shown in Figure 14–8, (b) the velocity in the upper part, and (c) the volumetric flow
rate in the upper part. The fluid head at the top is 10 in. and that at the bottom is

Figure 14–7 Additional sources of volumetric fluid-flow rates
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1 in. Let the permeability coe‰cient be Kxx ¼ 0:5 in./s. Assume a cross-sectional area
of A ¼ 1 in2.

SOLUTION:
The finite element discretization is shown in Figure 14–9. For simplicity, we will use
three elements, each 10 in. long.

We calculate the sti¤ness matrices for each element as follows:

AKxx

L
¼ ð1 in2Þð0:5 in:=sÞ

10 in:
¼ 0:05 in2=s

Using Eq. (14.2.15) for elements 1, 2, and 3, we have

½kð1Þ� ¼ ½kð2Þ� ¼ ½kð3Þ� ¼ 0:05
1 �1

�1 1

� �
in2=s ð14:2:21Þ

In general, we would use Eqs. (14.2.16) and (14.2.17) to obtain element forces. How-
ever, in this example Q ¼ 0 (no sources or sinks) and q� ¼ 0 (no applied surface flow
rates). Therefore,

f f ð1Þg ¼ f f ð2Þg ¼ f f ð3Þg ¼ 0 ð14:2:22Þ

The assembly of the element sti¤ness matrices from Eq. (14.2.21), via the direct
sti¤ness method, produces the following system of equations:

0:05

1 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 1

2
6664

3
7775

p1

p2

p3

p4

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

ð14:2:23Þ

Figure 14–8 One-dimensional fluid
flow in porous medium

Figure 14–9 Finite element discretized
porous medium
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Known nodal fluid head boundary conditions are p1 ¼ 10 in. and p4 ¼ 1 in. These
nonhomogeneous boundary conditions are treated as described for the stress analysis
and heat-transfer problems. We modify the sti¤ness (permeability) matrix and force
matrix as follows:

1 0 0 0

0 0:1 �0:05 0

0 �0:05 0:1 0

0 0 0 1

2
6664

3
7775

p1

p2

p3

p4

8>>><
>>>:

9>>>=
>>>;
¼

10

0:5

0:05

1

8>>><
>>>:

9>>>=
>>>;

ð14:2:24Þ

where the terms in the first and fourth rows and columns of the sti¤ness matrix corre-
sponding to the known fluid heads p1 ¼ 10 in. and p4 ¼ 1 in. have been set equal to 0
except for the main diagonal, which has been set equal to 1, and the first and fourth
rows of the force matrix have been set equal to the known nodal fluid heads at nodes
1 and 4. Also the terms ð�0:05Þ � ð10 in:Þ ¼ �0:5 in. on the left side of the second
equation of Eq. (14.2.24) and ð�0:05Þ � ð1 in:Þ ¼ �0:05 in. on the left side of the
third equation of Eq. (14.2.24) have been transposed to the right side in the second
and third rows (as þ0:5 and þ0:05). The second and third equations of Eq. (14.2.24)
can now be solved. The resulting solution is given by

p2 ¼ 7 in: p3 ¼ 4 in: ð14:2:25Þ

Next we use Eq. (14.2.7) to determine the fluid velocity in element 1 as

vð1Þx ¼ �Kxx½B�fpð1Þg ð14:2:26Þ

¼ �Kxx �
1

L

1

L

� �
p1

p2

( )
ð14:2:27Þ

vð1Þx ¼ 0:15 in:=s ð14:2:28Þor

You can verify that the velocities in the other elements are also 0.15 in./s because the
cross section is constant and the material properties are uniform. We then determine
the volumetric flow rate Qf in element 1 using Eq. (14.2.20) as

Qf ¼ vA ¼ ð0:15 in:=sÞð1 in2Þ ¼ 0:15 in3=s ð14:2:29Þ

This volumetric flow rate is constant throughout the length of the medium. 9

Example 14.2

For the smooth pipe of variable cross section shown in Figure 14–10, determine the
potential at the junctions, the velocities in each section of pipe and the volumetric flow rate.
The potential at the left end is p1 ¼ 10 m2/s and that at the right end is p4 ¼ 1 m2/s.
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SOLUTION:
For the fluid flow through a smooth pipe, Kxx ¼ 1. The pipe has been discretized into
three elements and four nodes, as shown in Figure 14–11. Using Eq. (14.2.15), we find
that the element sti¤ness matrices are

½kð1Þ� ¼ 3

1

1 �1

�1 1

� �
m ½kð2Þ� ¼ 2

1

1 �1

�1 1

� �
m ½kð3Þ� ¼ 1

1

1 �1

�1 1

� �
m

ð14:2:30Þ

where the units on ½k� are now meters for fluid flow through a pipe.
There are no applied fluid sources. Therefore, f f ð1Þg ¼ f f ð2Þg ¼ f f ð3Þg ¼ 0.

The assembly of the element sti¤ness matrices produces the following system of
equations:

3 �3 0 0

�3 5 �2 0

0 �2 3 �1

0 0 �1 1

2
6664

3
7775

10

p2

p3

1

8>>><
>>>:

9>>>=
>>>;
¼

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

m3

s
ð14:2:31Þ

Solving the second and third of Eqs. (14.2.31) for p2 and p3 in the usual manner, we
obtain

p2 ¼ 8:365 m2=s p3 ¼ 5:91 m2=s ð14:2:32Þ

Using Eqs. (14.2.7) and (14.2.20), the velocities and volumetric flow rates in each ele-
ment are

vð1Þx ¼ �½B�fpð1Þg

¼ � � 1

L

1

L

� �
10

8:365

( )

¼ 1:635 m=s

Figure 14–10 Variable-cross-section pipe subjected to fluid flow

Figure 14–11 Discretized pipe
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Q
ð1Þ
f ¼ Avð1Þx ¼ 3ð1:635Þ ¼ 4:91 m3=s

vð2Þx ¼ �ð�8:365þ 5:91Þ ¼ 2:455 m=s

Q
ð2Þ
f ¼ 2:455ð2Þ ¼ 4:91 m3=s

vð3Þx ¼ �ð�5:91þ 1Þ ¼ 4:91 m=s

Q
ð3Þ
f ¼ 4:91ð1Þ ¼ 4:91 m3=s

The potential, being higher at the left and decreasing to the right, indicates that the
velocities are to the right. The volumetric flow rate is constant throughout the pipe,
as conservation of mass would indicate. 9

We now illustrate how you can solve a fluid-flow problem where the boundary
condition is a known fluid velocity, but none of the p’s are initially known.

Example 14.3

For the smooth pipe shown discretized in Figure 14–12 with uniform cross section of
1 in2, determine the flow velocities at the center and right end, knowing the velocity
at the left end is vx ¼ 2 in./s.

SOLUTION:
Using Eq. (14.2.15), the element sti¤ness matrices are

½kð1Þ� ¼ 1

10

1 �1

�1 1

� �
in: ½kð2Þ� ¼ 1

10

1 �1

�1 1

� �
in: ð14:2:33Þ

where now the units on ½k� are inches for fluid flow through a pipe.
Assembling the element sti¤ness matrices produces the following equations:

1

10

1 �1 0

�1 2 �1

0 �1 1

2
4

3
5 p1

p2

p3

8<
:

9=
; ¼

f1

f2

f3

8><
>:

9>=
>; ð14:2:34Þ

The specified boundary condition is vx ¼ 2 in./s, so that by Eq. (14.2.9), we have

f1 ¼ v1A ¼ ð2 in:=sÞð1 in2Þ ¼ 2 in3=s ð14:2:35Þ

Because p1; p2, and p3 in Eq. (14.2.34) are not known, we cannot determine these
potentials directly. The problem is similar to that occurring if we try to solve the

Figure 14–12 Discretized pipe for fluid-flow problem
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structural problem without prescribing displacements su‰cient to prevent rigid body
motion of the structure. This was discussed in Chapter 2. Because the p’s correspond
to displacements in the structural problem, it appears that we must specify at least
one value of p in order to obtain a solution. We then proceed as follows. Select a con-
venient value for p3 (for instance set p3 ¼ 0). (The velocities are functions of the deriv-
atives or di¤erences in p’s, so a value of p3 ¼ 0 is acceptable.) Then p1 and p2 are the
unknowns. The solution will yield p1 and p2 relative to p3 ¼ 0. Therefore, from the
first two of Eqs. (14.2.34), we have

1

10

1 �1

�1 2

� �
p1

p2

� �
¼ 2

0

� �
ð14:2:36Þ

where f1 ¼ 2 in3/s from Eq. (14.2.35) and f2 ¼ 0, because there is no applied fluid
force at node 2.

Solving Eq. (14.2.36), we obtain

p1 ¼ 40 p2 ¼ 20 ð14:2:37Þ

These are not absolute values for p1 and p2; rather, they are relative to p3. The fluid
velocities in each element are absolute values, because velocities depend on the di¤er-
ences in p’s. These di¤erences are the same no matter what value for p3 was chosen.
You can verify this by choosing p3 ¼ 10, for instance, and re-solving for the velocities.
[You would find p1 ¼ 50 and p2 ¼ 30 and the same v’s as in Eq. (14.2.38).]

vð1Þx ¼ � �
1

L

1

L

� �
40

20

( )
¼ 2 in:=s

ð14:2:38Þ

vð2Þx ¼ � �
1

L

1

L

� �
20

0

( )
¼ 2 in:=s 9and

Fluid Flow through Hydraulic Networks

Hydraulic or piping networks typically found in buildings, industrial plants, farm irri-
gation pipe networks, municipal water systems, and power plants also can be analyzed
using the finite element method. Pressure flow in these networks can be described by a
system of linear equations. In these networks, such as the one shown in Figure 14–13,
the fluid flow source (volumetric flow rate) Q (in units of in3/s or m3/s) forces fluid
through the pipe network. As the fluid flows through each branch, there is resistance
in each branch which is typically a function of the fluid viscosity m (in units of lb-s/in2

or ft2 or N-s/m2) (a typical value of m is 1.002 � 10�6 N-s/m2 for water at 20 �C), the
length of the pipe branch, the diameter of the pipe, the average velocity of the fluid
flow in the branch, and the friction factor. These factors cause a pressure drop through
the pipe branch. We assume the fluid to be laminar, incompressible, and in a steady
state and the pressure drop �p (in units of lb/in2 or N/m2) in a branch of the network
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to be proportional to the volumetric flow rate q (in units of in3/s or m3/s) through that
branch, such that by Poiseuille’s law

�p ¼ Rq ð14:2:39Þ

where R is the branch resistance coe‰cient in units of lb-s/in5 or N-s/m5. A typical
equation to predict R is given by R ¼ 128 �L=ðpd4Þ for flow through long circular
pipes, where L is the length of the branch and d the diameter of the pipe both in
units consistent with those used for p and q.

Here we consider the basic element as a branch of the network analogous to a
spring element, as shown in Figure 14–14.

Using Eq. (14.2.39), we relate the volumetric flow rates to the pressures at each
node by the matrix equation as follows:

1

R

1 �1
�1 1

� �
p1

p2

� �
¼ q1

q2

� �
ð14:2:40Þ

Equation (14.2.40) is considered the element equilibrium relations between the nodal
pressures and volumetric flow rates. The sti¤ness matrix for the pipe resistance is
now defined as the matrix relating the nodal volumetric flow rates to the nodal cur-
rents. From Eq. (14.2.40), the element sti¤ness matrix is

½k� ¼ 1

R

1 �1
�1 1

� �
ð14:2:41Þ

We can draw analogies between the pipe resistor element and the spring element from
Chapter 2 as follows: The nodal pressures are analogous to nodal displacements, the
nodal volumetric flow rates are analogous to nodal forces, and the resistance R is
analogous to the inverse of the spring constant k.

R1

P1

P2
P3

P4

QQ

q1

q2

q3

q4

q5

R2

1 4

2
3

R3

R4

R5

Figure 14–13 Typical pipe network (composed of five branches, 1–4, 1–2, 2–3U, 2–3L,
and 3–4 (where U and L stand for upper and lower branches between nodes 2 and 3)

p
2
, q

2

R

p
1
, q

1

Figure 14–14 Basic branch resistor element showing nodal pressures and flow rates
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We will now use Eq. (14.2.39) for each branch of Figure 14–13 along with the
continuity of flow that states that the mass of fluid passing all sections in a stream of
fluid per unit time must be the same. For networks of a single fluid property with con-
stant density, this is equivalent to Q1 ¼ Q2 at two di¤erent cross sections of a pipe. In
this network, we assume pressures at nodes 1, 2, and 3 to be unknown and use a base-
line pressure of zero for the pressure at node 4.

We first use Eq. (14.2.39) to express the flow rates in each branch (element) as
follows:

Branch 1–4: q1 ¼
p1 � 0

R1
Branch 1–2: q2 ¼

p1 � p2

R2

Branch 2–3U: q3 ¼
p2 � p3

R3
Branch 2–3L: q4 ¼

p2 � p3

R4

Branch 3–4: q5 ¼
p3 � 0

R5
ð14:2:42Þ

We now apply the continuity of flow equations as follows:

At node 1: Q ¼ q1 þ q2

At node 2: q2 ¼ q3 þ q4

At node 3: q3 þ q4 ¼ q5

ð14:2:43Þ

You should note that by continuity of flow, q2 ¼ q5.
We now use Eq. (14.2.42) in Eq. (14.2.43), to obtain the following set of

equations:

At node 1: Q ¼ p1 � 0

R1
þ p1 � p2

R2

At node 2:
p1 � p2

R2
¼ p2 � p3

R3
þ p2 � p3

R4

At node 3:
p3

R5
¼ p2 � p3

R3
þ p2 � p3

R4

ð14:2:44Þ

In matrix form, we express Eqs. (14.2.44) as

1

R1
þ 1

R2
� 1

R2
0

� 1

R2

1

R3
þ 1

R4
þ 1

R2
� 1

R3
� 1

R4

0 � 1

R3
� 1

R4

1

R3
þ 1

R4
þ 1

R5

2
666664

3
777775

p1

p2

p3

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

Q

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð14:2:45Þ
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We will now demonstrate how to use the direct sti¤ness method to obtain the
same system of linear equations as in Eq. (14.2.45). Using Eq. (14.2.41) for the sti¤-
ness matrix for each element branch, we have

½kð1Þ� ¼ 1

R1

1 4
1 �1

�1 1

� �
½kð2Þ� ¼ 1

R2

1 2
1 �1

�1 1

� �
½kð3Þ� ¼ 1

R3

2 3
1 �1

�1 1

� �

½kð4Þ� ¼ 1

R4

2 3
1 �1

�1 1

� �
½kð5Þ� ¼ 1

R5

3 4
1 �1

�1 1

� �
ð14:2:46Þ

where the superscript numbers in Eq. (14.2.46) indicate the element branch. That is, el-
ement 1 is from node 1 to node 4, element 2 is from node 1 to node 2, element 3 is
from node 2 to 3 in the upper section of pipe from 2 to 3, element 4 is from node 2
to node 3 along the lower section of pipe between nodes 2 and 3, and element 5 is
from node 3 to 4, as indicated by the numbers above the matrices in Eq. (14.2.46).
Using the sti¤ness matrices in Eq. (14.2.46) along with the direct sti¤ness method, we
assemble the global sti¤ness matrix and the global equations in the usual manner as

1

R1
þ 1

R2
� 1

R2
0

� 1

R2

1

R2
þ 1

R3
þ 1

R4
� 1

R3
� 1

R4

0 � 1

R3
� 1

R4

1

R3
þ 1

R4
þ 1

R5

2
6666664

3
7777775

p1

p2

p3

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

Q

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð14:2:47Þ

where Q is analogous to an applied global force at node 1.
Comparing Eq. (14.2.47) to Eq. (14.2.45), we observe them to be identical.

Example 14.4

For the piping network shown in Figure 14–13, let R1 ¼ 10;R2 ¼ 5;R3 ¼ 2;R4 ¼ 3;
and R5 ¼ 5 all in units of N-s/m5. Set the pressure at node 4 to zero. Let
Q ¼ 0:5 m3/s. Determine the pressures at nodes 1, 2, and 3. Use the direct sti¤ness
method to solve this problem.

SOLUTION:
From Eq. (14.2.46), the element sti¤ness matrices are

½kð1Þ� ¼ 1

10

1 4
1 �1

�1 1

� �
½kð2Þ� ¼ 1

5

1 2
1 �1

�1 1

� �
½kð3Þ� ¼ 1

2

2 3
1 �1

�1 1

� �

½kð4Þ� ¼ 1

3

2 3
1 �1

�1 1

� �
½kð5Þ� ¼ 1

5

3 4
1 �1

�1 1

� �
ð14:2:48Þ
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Using the direct sti¤ness method, we assemble the global sti¤ness matrix and global
equations as

1

10
þ 1

5

�1

5
0

�1

5

1

2
þ 1

3
þ 1

5

�1

2
� 1

3

0
�1

2
� 1

3

1

2
þ 1

3
þ 1

5

2
66666664

3
77777775

p1

p2

p3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

0:5

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð14:2:49Þ

where the global nodal volumetric flow rate at node 1 is Q1 ¼ 0:5 m3/s. There are no
volumetric flow rates at nodes 2 and 3. Therefore, Q2 ¼ Q3 ¼ 0.

Solving Eq. (14.2.49) simultaneously, the nodal pressures are

p1 ¼ 2:642 N/m2 p2 ¼ 1:462 N/m2 p3 ¼ 1:179 N/m2 ð14:2:50Þ
9

Finally, we should understand that the assumptions presented in this section do
not always apply to real pipe network systems. It should be noted that complex pipe
networks often are composed of piping with network fittings such as elbows, tees, con-
tractors, expansions, valves, and pumps. Also, the flow may not always be laminar
and steady state. Numerous programs (such as described in References [6, 7, 8]) have
been developed to deal with these additional design problems.

d 14.3 Two-Dimensional Finite Element
Formulation

d

Because many fluid-flow problems can be modeled as two-dimensional problems, we
now develop the equations for an element appropriate for these problems. Examples
using this element then follow.

Step 1

The three-node triangular element in Figure 14–15 is the basic element for the solu-
tion of the two-dimensional fluid-flow problem.

Step 2

The potential function is

½f� ¼ ½Ni Nj Nm�
pi

pj

pm

8<
:

9=
; ð14:3:1Þ

Figure 14–15 Basic triangular element
with nodal potentials

692 d 14 Fluid Flow in Porous Media and Through Hydraulic Networks

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



where pi; pj, and pm are the nodal potentials (for groundwater flow, f is the piezome-
tric fluid head function, and the p’s are the nodal heads), and the shape functions are
again given by Eq. (6.2.18) or (13.5.2) as

Ni ¼
1

2A
ðai þ bixþ gi yÞ ð14:3:2Þ

with similar expressions for Nj and Nm. The a’s, b’s, and g’s are defined by Eqs.
(6.2.10).

Step 3

The gradient matrix fgg is given by

fgg ¼ ½B�fpg ð14:3:3Þ

where the matrix ½B� is again given by

½B� ¼ 1

2A

bi bj bm

gi gj gm

" #
ð14:3:4Þ

fgg ¼
gx

gy

� �
ð14:3:5Þand

gx ¼
qf

qx
gy ¼

qf

qy
ð14:3:6Þwith

The velocity/gradient matrix relationship is now

vx

vy

� �
¼ �½D�fgg ð14:3:7Þ

where the material property matrix is

½D� ¼
Kxx 0

0 Kyy

� �
ð14:3:8Þ

and the K ’s are permeabilities (for the seepage problem) of the porous medium in the
x and y directions. For fluid flow around a solid object or through a smooth pipe,
Kxx ¼ Kyy ¼ 1.

Step 4

The element sti¤ness matrix is given by

½k� ¼
ððð

V

½B�T ½D�½B� dV ð14:3:9Þ
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Assuming constant-thickness (t) triangular elements and noting that the integrand
terms are constant, we have

½k� ¼ tA½B�T ½D�½B� m2=s or in2=s ð14:3:10Þ
which can be simplified to

½k� ¼ tKxx

4A

b2
i bibj bibm

bibj b2
j bjbm

bibm bjbm b2
m

2
664

3
775 þ tKyy

4A

g2
i gigj gigm

gigj g2
j gjgm

gigm gjgm g2
m

2
664

3
775 ð14:3:11Þ

The force matrices are

f fQg ¼
ððð

V

Q½N�T dV ¼ Q

ððð

V

½N�T dV ð14:3:12Þ

for constant volumetric flow rate per unit volume over the whole element. On evaluat-
ing Eq. (14.3.12), we obtain

f fQg ¼
QV

3

1

1

1

8><
>:

9>=
>;

m3

s
or

in3

s
ð14:3:13Þ

We find that the second force matrix is

f fqg ¼
ðð

S2

q�½N�T dS ¼
ðð

S2

q�
Ni

Nj

Nm

8><
>:

9>=
>; dS ð14:3:14Þ

This reduces to

f fqg ¼
q�Li-j t

2

1

1

0

8><
>:

9>=
>;

m3

s
or

in3

s
on side i-j ð14:3:15Þ

with similar terms on sides j-m and m-i [see Eqs. (13.5.19) and (13.5.20)]. Here Li-j is
the length of side i-j of the element and q� is the assumed constant surface flow rate.
Both Q and q� are positive quantities if fluid is being added to the element. The
units on Q and q� are m3/(m3 � s) and m/s. The total force matrix is then the sum of
f fQg and f fqg.

Example 14.5

For the two-dimensional sandy soil region shown in Figure 14–16, determine the
potential distribution. The potential (fluid head) on the left side is a constant 10.0 m
and that on the right side is 0.0. The upper and lower edges are impermeable. The per-
meabilities are Kxx ¼ Kyy ¼ 25� 10�5 m/s. Assume unit thickness.

The finite element model is shown in Figure 14–16. We use only the four triangular
elements of equal size for simplicity of the longhand solution. For increased accuracy
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in results, we would need to refine the mesh. This body has the same magnitude
of coordinates as Figure 13–25. Therefore, the total sti¤ness matrix is given by
Eq. (13.5.40) as

½K � ¼

25 0 0 0 �25

0 25 0 0 �25

0 0 25 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
666664

3
777775
� 10�5 m2

s
ð14:3:16Þ

The force matrices are zero, because Q ¼ 0 and q� ¼ 0. Applying the boundary
conditions, we have

p1 ¼ p4 ¼ 10:0 m p2 ¼ p3 ¼ 0

The assembled total system of equations is then

10�5

25 0 0 0 �25

0 25 0 0 �25

0 0 25 0 �25

0 0 0 25 �25

�25 �25 �25 �25 100

2
666664

3
777775

10

0

0

10

p5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

0

0

0

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð14:3:17Þ

Solving the fifth of Eqs. (14.3.17) for p5, we obtain

p5 ¼ 5 m

Using Eqs. (14.3.7) and (14.3.3) we obtain the velocity in element 2 as

v
ð2Þ
x

v
ð2Þ
y

( )
¼ � 25 0

0 þ25

� �
� 10�5 1

2A

�1 2 �1

�1 0 1

� � p1

p5

p4

8<
:

9=
; ð14:3:18Þ

Figure 14–16 Two-dimensional porous
medium
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where b1 ¼ �1, b5 ¼ 2, b4 ¼ �1, g1 ¼ �1, g5 ¼ 0, and g4 ¼ 1 were obtained from
Eq. (13.5.24). Simplifying Eq. (14.3.18), we obtain

vð2Þx ¼ 125� 10�5 m=s vð2Þy ¼ 0 9

A line or point fluid source from a pump, for instance, can be handled in the
same manner as described in Section 13.6 for heat sources. If the source is at a node
when the discretized finite element model is created, then the source can be added to
the row of the global force matrix corresponding to the global degree of freedom
assigned to the node. If the source is within an element, we can use Section 13.6 to al-
locate the source to the proper nodes, as illustrated by the following example.

Example 14.6

A pump, pumping fluid at Q� ¼ 6500 m2/h, is located at coordinates (5, 2) in
the element shown in Figure 14–17. Determine the amount of Q� allocated to
each node. All nodal coordinates are in units of meters. Assume unit thickness of
t ¼ 1 mm.

The magnitudes of the numbers are the same as in Example 13.8. Therefore, the
shape functions are identical to Eq. (13.6.7); when evaluated at the source x ¼ 5 m,
y ¼ 2 m, they are equal to Eq. (13.6.8). Using Eq. (13.6.3), we obtain the amount of
Q� allocated to each node or equivalently the force matrix as

fQi

fQj

fQm

8>><
>>:

9>>=
>>;
¼ Q�t

Ni

Nj

Nm

8>><
>>:

9>>=
>>;
����x ¼ x0 ¼ 5 m
y ¼ y0 ¼ 2 m

¼ ð6500 m2=hÞð1 mmÞ

ð13Þ 1000 mm

1 m

� �
6

5

2

8><
>:

9>=
>; ¼

3:0

2:5

1:0

8><
>:

9>=
>;

m3

h
9

ð14:3:19Þ

Figure 14–17 Triangular element with
pump located within element
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d 14.4 Flowchart and Example of a Fluid-Flow Program d
Figure 14–18 is a flowchart of a finite element process used for the analysis of two-
dimensional steady-state fluid flow through a porous medium or through a pipe. Recall
that flow through a porous medium is analogous to heat transfer by conduction. For
more complicated fluid flows, see Reference [6].

We now present computer program results for a two-dimensional steady-state, in-
compressible fluid flow. The program is based on the flowchart of Figure 14–18.

For flow through a porous medium, we recall the analogies between conductive
heat transfer and flow through a porous medium and use the heat transfer processor
from Reference [4] to solve the problem shown in Figure 14–19. The fluid flow

START

END

Draw the geometry and apply
any boundary potentials

Define the element type and properties
(here the 2-D element is used)

Compute the element stiffness matrix [k] and nodal load 
matrix {f} in global coordinates

Use the direct stiffness procedure to add [k] and {f} to the proper
locations in assemblage stiffness matrix [K] and load matrix {F}

Account for known potential boundary conditions and modify
the global stiffness matrix and force matrix accordingly

Compute the element velocities
and volumetric flow rates

DO JE = 1, NE

Solve [K]{p} = {F} for {p}

Output results

Figure 14–18 Flowchart of two-dimensional fluid-flow process
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problem shown discretized in Figure 14–19 has the top and bottom sides impervious,
whereas the right side has a constant head of 3 cm and the left side has a constant
head of 4 cm.

Results for the nodal potentials obtained using [6] are shown in Table 14–2.
They compare exactly with solutions obtained using another computer program (see
Reference [5]).

d 14.5 Electrical Networks d
Current flow in electrical networks or circuits can be described by a system of linear
equations developed using the direct sti¤ness method. In an electrical network such
as the one shown in Figure 14–20, a voltage source (such as from a battery) forces a
current of electrons to flow through the network. When the current passes through a
resistor (such as a lightbulb or motor), some of the voltage is absorbed by the resistor.
By Ohm’s law, the voltage drop �V across the resistor is given by

�V ¼ RI ð14:5:1Þ

Figure 14–19 Two-dimensional fluid-flow problem

Table 14–2 Nodal potentials

Node Number Potential

1 4.0000Dþ00
2 3.5000Dþ00
3 3.0000Dþ00
4 4.0000Dþ00
5 3.0000Dþ00
6 4.0000Dþ00
7 3.5000Dþ00
8 3.0000Dþ00
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where the voltage V is measured in units of volts, the resistance R is measured in ohms
(the Greek omega symbol � or R are used to designate ohms), and the current flow I

is measured in units of amperes or amps.
Here we consider the basic element as the resistor element analogous to a spring

element shown in Figure 14–21.
Using Ohm’s law, Eq. (14.5.1), we relate the voltage di¤erence across the

resistor to the current flow through each end of the resistor by the matrix
equation as

V1

V2

� �
¼ R

1 �1
�1 1

� �
I1

I2

� �
ð14:5:2Þ

Equation (14.5.2) represents the element equilibrium relations between the nodal cur-
rents and nodal voltages.

The sti¤ness matrix for the resistor is now defined as the matrix relating the
nodal voltages to the nodal currents. From Eq. (14.5.2), the sti¤ness matrix
is then

½k� ¼ R
1 �1
�1 1

� �
ð14:5:3Þ

We can draw analogies between the resistor element and the spring element from
Chapter 2 as follows: The nodal currents are analogous to nodal displacements, the
nodal voltages are analogous to nodal forces, and the resistance R is analogous to
the spring constant k.

We now describe some sign conventions associated with the solution of the net-
work in Figure 14–20. The network contains three closed loops. We designate these
loops one (left loop), two (center loop), and three (right loop) and by standard circuit
analysis indicate the currents flowing in each loop with current I1; I2; and I3, respec-
tively, shown by the curved arrows inside each loop. The designated directions of the

V3V1

V2

I1

R3

R1

I2

R6

R4

R2

A B

D C

I3

R8

R7

R5

Figure 14–20 Typical electrical network
(this one composed of three loops)

I
2
, V

2

R

I
1
, V

1
Figure 14–21 Basic resistor element showing nodal
currents and voltages
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loop currents are arbitrary, but we will use counterclockwise notation as positive in
this description. Upon solving the equations for the currents, if a current is negative,
then the actual direction of current flow is opposite to that chosen or clockwise. We
must be careful regarding the positive direction of the voltages provided by the bat-
tery. If the current-direction curved arrowhead shown points from the negative side
(shorter side) within the battery to the positive (longer side), the voltage is taken as
positive; otherwise the voltage is negative. For example, V1 is positive as I1 goes
around in a counterclockwise manner into the short side of battery V1.

Current flow in a loop is described by Kirchho¤ ’s law as follows: The algebraic
sum of the product of resistance times current (RI ) voltage drops in one direction
around a loop equals the algebraic sum of the voltage sources (from batteries for in-
stance) in the same direction around the loop.

We will now use both Ohm’s and Kirchho¤ ’s laws, along with afore described
sign conventions to set up the three loop equations used to solve for the currents in
each loop in Figure 14–20. That is, from Figure 14–20 for the three loops, we have

VR1 þ VR2 þ VR3 ¼ V1 ð14:5:4ÞLoop 1:

where the voltage drops through the resistors associated with loop 1 are

VR1 ¼ R1I1; VR2 ¼ R2ðI1 � I2Þ; VR3 ¼ R3I1 ð14:5:5Þ

Note that current I2 from loop 2 also flows through branch AD of loop 1 with associ-
ated RI drop of R2I2 ð�R2I2) due to I2 flowing down the branch into R2 from D to-
wards A, whereas current I1 flows up the branch into R2 from A to D. Also, battery
voltage V1 is taken as positive in Eq. (14.5.4) as I1 goes from the negative (short)
side to the positive (long) side of this battery.

Similarly,

�R2I1 þ ðR2 þ R4 þ R5 þ R6ÞI2 � R5I3 ¼ V2 ð14:5:6ÞLoop 2:

where �R2I1 is due to the flow I1 through branch AD with a negative drop as I1 is
flowing through R2 in the opposite direction from I2 flowing into R2 for loop 2.

�R5I2 þ ðR5 þ R7 þ R8ÞI3 ¼ �V2 � V3 ð14:5:7ÞLoop 3:

Note that the battery voltages V2 and V3 are now negative in loop 3 as I3 passes
through the positive (long) side to the negative (short) side of both V2 and V3.

Equations (14.5.5) through (14.5.7) could now be expressed in matrix form as
½K �fIg ¼ fVg. We will leave this exercise to your discretion and instead illustrate
how to use the direct sti¤ness method to solve this electrical network with numerical
values in Example 14.7.

Example 14.7

For the three-loop electrical network shown in Figure 14–22, determine the currents
in each loop. The resistances from each resistor and the voltages provided by each bat-
tery are shown in the figure. Use the sti¤ness matrix for the resistors and the direct
sti¤ness method.
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SOLUTION:
The resistor-element sti¤ness matrices are given by Eq. (14.5.3) as follows:

½kð1Þ� ¼

I1 0

1 �1

�1 1

� �
½kð2Þ� ¼

I1 I2

2 �2

�2 2

� �
½kð3Þ� ¼

I1 0

3 �3

�3 3

� �
½kð4Þ� ¼

I2 0

4 �4

�4 4

� �

½kð5Þ� ¼

I2 I3

5 �5

�5 5

� �
½kð6Þ� ¼

I2 0

6 �6

�6 6

� �
½kð7Þ� ¼

I3 0

7 �7

�7 7

� �
½kð8Þ� ¼

I3 0

8 �8

�8 8

� �

ð14:5:8Þ

where the labels above the matrices indicate the currents from each loop going
through that resistor. A zero means only one current going through that resistor.

Assembling the global equations using the direct sti¤ness method yields:

1þ 2þ 3 �2 0
�2 2þ 4þ 5þ 6 �5
0 �5 5þ 7þ 8

2
4

3
5 I1

I2

I3

8<
:

9=
; ¼

V1 ¼ 15
V2 ¼ 5
V3 ¼ �10� 5 ¼ �15

8<
:

9=
; ð14:5:9Þ

We should note that in assembling the equations, the sti¤ness matrices account
for the currents going through each resistor. For instance, by Kirchho¤ ’s law, element
1 only has current I1 from loop 1 current passing through it, while element 2 has pos-
itive current I1 going through it from the counterclockwise direction around loop 1
(upward current), and negative current I2 going through it from the counterclockwise
flow around loop 2 heading down through element 2, as shown in Figure 14–22.
Also, the voltage in loop 1 is þ15 V by convention, as the current through loop 1
passes down through the negative (short) side of the battery to the positive (long)
side, as shown in Figure 14–22. Similarly, the voltage in loop 2 is considered positive
in Eq. (14.5.9), as the current I2 passes through the negative side of the battery to the
positive side. Finally, the voltage in loop 3 is from both the 10 V and 5 V batteries.
As the current in loop 3 goes from the positive side of the 10 V battery to the negative
side, the voltage is considered �10 V through this battery. Similarly, the current I3

10 V15 V

5 V

I1

3 Ω 6 Ω

2 Ω

5 Ω
8 Ω

1 Ω 4 Ω 7 Ω

I2

3

A B

D C

I3

6 8

2

5

41 7

Figure 14–22 Three-loop electrical network
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goes through the 5 V battery through the positive side to the negative side, so
this voltage is also considered �5 V. The total voltage for V3 is then V3 ¼
�10� 5 ¼ �15 V.

Notice also that by convention we have chosen all loop currents to be positive in
the counterclockwise direction resulting in all o¤-diagonal terms of the sti¤ness matrix
to be negative.

Solving Eq. (14.5.9) simultaneously for the currents, we obtain

I1 ¼ 2:638 amps I2 ¼ 0:414 amps I3 ¼ �0:646 amps ð14:5:10Þ

The negative sign on I3 indicates that I3 is really in a clockwise direction in
Figure 14–22.

The branch current also can be obtained after determining the currents in
each loop. If only one loop current passes through a branch, such as from A to B in
Figure 14–22, the branch current I2 equals the loop current. If more than one loop cur-
rent passes through a branch, such as A to D or B to C, the branch current is the alge-
braic sum of the loop currents in the branch (based on Kircho¤ ’s law). For example, the
current in branch AD is I1 � I2 ¼ 2:638� 0:414 ¼ 2:224 amps in the direction of I1.
Similarly, the current in branch BC is I2 � I3 ¼ 0:414� ð�0:646Þ ¼ 1:060 amps. 9

d 14.6 Electrostatics d
Electrostatics describes the forces between charged bodies at known positions. We
will first present some basic laws associated with the concept of electrostatics. We
will then describe the finite element method for solving electrostatics problems where
electric potentials and electric fields are of concern. For more details on electrostatics
consult [9–12].

Coulomb’s Law

The charge on a body is denoted by symbol q. The units of q are Coulombs ðC ¼
Amp–sÞ. The charge of an electron is�1:60219� 10�19 Coulombs. For two small station-

ary particles with charges q1 and q2, separated by distance r, as shown in Figure 14–23,

q1

q2

n21

–F1

F1

r

Figure 14–23 Illustration of Coulomb’s law for two
charged particles
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the electric force vector F1 with magnitude F1 on charged particle 1 from charged
particle 2 is given by Coulomb’s law as

F1 ¼
q1q2n21

4pe0r2
ðNÞ ð14:6:1Þ

where n21 is the unit vector pointing from particle 2 to particle 1 and e0 is the permittivity
of free space (electric constant) given by value 8:854� 10�12 farads/m (or Amp–s/V–m)
for force in Newtons, charge in Coulombs, and distance r in meters.

For an electrostatic field created by multiple charges, we extend Coulomb’s law
and use superposition that states the total force on a test or base charge q0 located at
(x0; y0; z0) from several charges N (called a charge distribution) is the vector sum of
individual forces. This force can be expressed as follows:

Fðx0; y0; z0Þ ¼ q0

XN

i¼1

qi

4pe0r2
i

ni ð14:6:2Þ

where ri denotes the distance from q0 to each individual charge qi.
We now define the total electric field at position (x0; y0; z0) due to a quantity of

point charges N as force Fðx0; y0; z0) per charge q0 by dividing both sides of Eq.
(14.6.2) by q0 as follows:

Eðx0; y0; z0Þ ¼
X

I

qi

4pe0r2
i

ni ðV=mÞ ð14:6:3Þ

The electric field is expressed in units of volts per meter. Given the electric field for a
charge distribution, the force on a test charge q at any location ðx; y; zÞ; can be
expressed by

Fðx; y; zÞ ¼ qEðx; y; zÞ ð14:6:4Þ

Electric fields are often illustrated by plots of field lines as shown in Figure 14–24.
These will also be shown by the computer program model results given by
Example 14.9 and 10.

Figure 14–24 Electric field lines
surrounding a positive and a negative
charge
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We will subsequently derive the finite element equations for two-dimensional
electrostatic problems. The basis for the finite element equations is the Poisson equa-
tion which is derived from Gauss’s Law. Therefore, we now derive Gauss’s law in dif-
ferential form.

Gauss’s Law

Gauss’s law relates the relationship between the distribution of electric charge in
space, called the charge density r (in Coulomb’s per cubic meter units (C/m3)) and
the resulting electric field. If the electric field from a point charge is spherically sym-
metric, Coulomb’s law can be derived from Gauss’s law.

Consider the three-dimensional di¤erential elemental volume shown in
Figure 14–25 with a charge density r acting over it where we define charge density
as the sum of charge in a di¤erential element divided by the element volume
given by

rðx; y; zÞ ffi

P
i

qi

�x�y�z
ðC=m3Þ ð14:6:5Þ

By Gauss’s law, the total flux of electric field lines out of the surface in free space
is equal to the total charge enclosed within the di¤erential volume divided by e0. If
there is no enclosed charge ðr ¼ 0Þ, every field line that enters the volume must exit it.

First consider the two faces normal to the x axis, as shown in Figure 14–25,
with areas �y times �z. The contribution of the flux out of the control volume
surface is

�Ex�y�zþ Exþ�x�y�z ð14:6:6Þ

For small variations in E in the y and z directions and keeping the first two terms of
the Taylor series expansion of the second term in Eq. (14.6.6), we have

Exþ �x ¼ Ex þ
@Ex

@x
�x ð14:6:7Þ

Ex

y

x

∆y
Ex(x + ∆x)

∆x

q
Figure 14–25 Differential control volume
showing typical electric field lines entering
and exiting the volume along sides x and
x þ�x and charge density within element
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Substituting Eq. (14.6.7) into Eq. (14.6.6), yields

qEx

qx
�x�y�z ð14:6:8Þ

Contributions to the other faces normal to the y and z axes have similar forms to Eq.
(14.6.8). Setting the contributions from the surface fluxes equal to the total charge
within the control volume divided by e0, we obtain

qEx

qx
þ qEy

qy
þ qEz

qz
¼ r

e0
ðV=m2Þ ð14:6:9Þ

The left side of Equation (14.6.9) is called the divergence of the electric field vector.

Therefore, the di¤erential form of Gauss’s law is

r � E ¼ r

e0
ð14:6:10Þ

where r is the del operator (nabla symbol) defined by

r ¼ q

qx
iþ q

qy
jþ q

qz
k ð14:6:11Þ

and the dot represents the dot product.

Poisson’s Equation

We can express the electric field as a vector E as

E ¼�rf ðV=mÞ ð14:6:12Þ
where f is the scalar electrostatic potential in units of volts (the negative sign is due to
the fact that the E field is directed from positive to negative charges, while the poten-
tial increases in the opposite direction).

Substituting Eq. (14.6.12) into Eq. (14.6.10), we obtain

r � ðrfÞ ¼ � r

e0
ð14:6:13Þ

or in explicit form, we write Eq. (14.6.13) as

q2f

qx2
þ q2f

qy2
þ q2f

qz2
¼ �r

e0
ð14:6:14Þ

Equation (14.6.14) is called the Poisson equation in cartesian coordinates.

Dielectric constants

For linear isotropic dielectric charges present, (isotropic dielectric constant meaning
the dielectric constant is the same in all directions), the total electric field vector points
in the same direction as the applied electric field, such that

E ¼ E0=er

where er is called the relative dielectric constant. Relative dielectric constant is
also defined as the absolute electric constant of the material e divided by the electric
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constant e0. Relative dielectric constants (also called relative permittivity or in electro-
statics relative static permittivity) are used in solving electrostatics problems and are
listed in textbooks on electrostatics [9–10]. Typical values for some materials are:

Air at standard temperature and pressure ¼ 1.00058986,
Polyethylene ¼ 2.25, paper ¼ 3.5,
Silicon dioxide ¼ 3.9, rubber ¼ 7,
Graphite ¼ 10–15, Water ¼ 80 at 20�C.

Dielectric materials are used in transmission lines. In a coaxial cable, polyethyl-
ene is often used between the center conductor and outside shield. The relative static
permittivity of a solvent is a relative measure of its polarity. For example, water
which is a very polar material has a dielectric constant of 80 at 20�C as listed above
and hexane used as a spot remover has dielectric constant of 2.

The generalized Poisson’s equation, Eq. (14.6.13), with both free space charge
and dielectric charge present in any medium is now given by (see [10–12])

r � ðerrfÞ ¼ � r

e0
ð14:6:15Þ

Finite Element Formulation of a Two-Dimensional
Triangle Element

We will now present the finite element formulation of the electrostatics problem.
The basic di¤erential equation (Poisson’s equation) governing the two-dimensional

electrostatics problem in any isotropic medium based on Eq. (14.6.15) is given by

q

qx
e

qV

qx

� �
þ q

qy
e

qV

qy

� �
¼ �r ð14:6:16Þ

where absolute permittivity e ¼ ere0 and V ¼ f have been used in Eq. (14.6.16).
The steps defined in Chapter 6 will be followed to derive the sti¤ness matrix and

equations for solving the electrostatics problem.

Step 1 Select Element Type

In the finite element method of solution, the basic triangle as described in Section 6.2
for stress analysis or Section 13.5 for heat transfer is the basis for two-dimensional fi-
nite element solutions, although the rectangular element (Section 6.6) and general
quadrilateral element (Section 10.2) also can be used. For simplicity sake, we consider
the so-called first order triangle with corner nodes only as shown in Figure 14–26. The
potentials vi; vj, and vm at nodes i; j; and m are analogous to the nodal temperatures of
the heat transfer problem described in Chapter 13.

Step 2 Select a Potential Function

The potential function is described by the bilinear equation

Vðx; yÞ ¼ a1 þ a2xþ a3y ð14:6:17Þ
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Or in a manner as specifically shown in Section 6.2,

fVg ¼ ½Ni Nj Nm�
vi

vj

vm

8<
:

9=
; ¼ ½N�fvg ð14:6:18Þ

where vi; vj, and vm are the nodal voltages or potentials, and the shape functions are
again given by Eqs. (6.2.18), that is,

Ni ¼
1

2A
ðai þ bixþ giyÞ ð14:6:19Þ

With similar expressions for Nj and Nm. Here the a’s, b’s, and g’s are defined by Eqs.
(6.2.10).

As in the heat transfer problem, only a single scalar value (nodal potential) is
the primary unknown at each node, as shown by Eq. (14.6.18). Again, we then have
a scalar-valued boundary value problem.

Step 3 Define the Potential Gradient/Potential and Electric Field/
Potential Gradient Relationships

We define the voltage or potential gradient matrix analogous to the temperature gra-
dient material as

fgg ¼

qV

qx

qV

qy

8>>><
>>>:

9>>>=
>>>;

ð14:6:20Þ

Using Eq. (14.6.18) in Eq. (14.6.20), we have

fgg ¼

qNi

qx

qNj

qx

qNm

qx

qNi

qy

qNj

qy

qNm

qy

2
664

3
775

vi

vj

vm

8>><
>>:

9>>=
>>;

ð14:6:21Þ

In compact matrix form, we express {g} as

fgg ¼ ½B�fvg ð14:6:22Þ

(xi, yi)

vi

vm

vj

(xj, yj)

(xm, ym)

Figure 14–26 Basic triangular element with nodal potentials
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where gradient matrix ½B� is again

½B� ¼ 1

2A

bi bj bm

gi gj gm

� �
ð14:6:23Þ

The electric field vector is given by

E ¼ �grad V ¼ �rV ¼ �i
qV

qx
� j

qV

qy
ð14:6:24Þ

Using Eq. (14.6.18) with Eq. (14.6.19) in Eq. (14.6.24), the electric field vector can be
expressed as

E ¼ �i
1

2A
ðbivi þ bjvj þ bmvmÞ � j

1

2A
ðgivi þ gjvj þ gmvmÞ ð14:6:25Þ

Using Eq. (14.6.20) and Eq. (14.6.22), we can express E in matrix form as

Ex

Ey

� �
¼ �fgg ¼ �½B�fvg ð14:6:26Þ

The electric displacement field vector for linear and isotropic media D in C/m2 is re-
lated to the electric field vector E for linear and isotropic media by

D ¼ e E ðC=m2 or A�s=m2Þ ð14:6:27Þ

Using Eq. (14.6.26) in Eq. (14.6.27), we express the electric field displacement/voltage
gradient relationship analogous to the heat flux/temperature gradient relationship in
Eq. (13.5.7) as

Dex

Dey

� �
¼ � e 0

0 e

� �
Ex

Ey

� �
¼ �½D�fgg ð14:6:28Þ

Step 4 Derive the Element Stiffness Matrix and Equations

The element sti¤ness matrix is based on using the minimization of a functional similar
to Eq. (13.4.10) with the functional called the electrostatic energy functional given by

pe ¼ U þ � ð14:6:29Þ

where the potential from internal energy stored in the electric field (field energy) over
the volume V 0 of the element is given by

U ¼
ððð

V 0

1

2
eE2dV 0 ð14:6:30Þ

and the potential energy of the charge density r (analogous to weight density as in
Eq. (6.2.41) or an internal heat source as in Eq. (13.4.11) is given by

�r ¼ �
ððð

V 0

rVdV 0 ð14:6:31Þ
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Noting that E2 ¼ E �E and using Eq. (14.6.24) for E in Eq. (14.6.30), we express U as

U ¼
ððð

V 0

1

2
e

qV

qx

� �2

þ qV

qy

� �2
" #

dV 0 ð14:6:32Þ

We want to express pe as a function of the nodal voltages so that we can mini-
mize pe with respect to these voltages to obtain the sti¤ness matrix and equations for
the basic element. It is then most convenient to express the total energy in matrix
form as a function of the nodal voltages, by using Eqs. (14.6.18), (14.6.19), (14.6.20),
and (14.6.28) in Eqs. (14.6.31) and (14.6.32) as follows:

pe ¼
1

2

ððð

V 0

fggT ½D�fggdV 0 �
ððð

V 0

frgfvgT ½N�T dV 0 ð14:6:33Þ

In general, for proper multiplication of column matrices {V} and {r} in Eq. {14.6.33),
(similar to Eq. (6.2.41) for body forces), the voltage function {V} must have a trans-
pose on it. Hence, by the property of matrix transpose multiplication as illustrated in
Eq. (A.2.10), fVgT ¼ fvgT ½N�T has been used in Eq. (14.6.33).

Now substituting Eq. (14.6.22) for {g} into Eq. (14.6.33), we obtain

pe ¼
1

2
fvgT

ððð

V 0

fBgT ½D�½B�dV 0fvg � fvgT

ððð

V 0

½N�TfrgdV 0 ð14:6:34Þ

where the nodal voltages are independent of the general x-y coordinates, so {v} has
been taken out of the integrals.

Now minimizing the total energy with respect to the nodal voltage matrix, we
obtain

qpe

qfvg ¼
ððð

V 0

½B�T ½D�½B�dV 0

2
4

3
5fvg �

ððð

V 0

½N�TfrgdV 0 ð14:6:35Þ

The first integral multiplied by the nodal voltage matrix in Eq. (14.6.35) represents the
sti¤ness matrix, while the second integral represents the source or force matrix due to
the charge density.

The integrand in Eq. (14.6.35) is constant. Therefore, the sti¤ness matrix in sim-
plified form becomes

½k� ¼ tA½B�T ½D�½B� ðC=VÞ ð14:6:36Þ

where t is the constant thickness of the element, A is the surface area of the element as
determined by Eq. (6.2.9), [B] is given by Eq. (14.6.23), and [D] is given by Eq.
(14.6.28). The specific form of Eq. (14.6.36) for the sti¤ness matrix of the three-
noded triangle can be shown to be

½k� ¼ e

4A

bibi þ gigi bibj þ gigj bibm þ gigm

bjbj þ gjgj bjbm þ gjgm

bmbm þ gmgm

2
4

3
5t ðC=VÞ ð14:6:37Þ
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where we must go counterclockwise around the element from the initial arbitrarily
chosen node i to node j and then to node m.

For constant charge density acting uniformly over the element, the second inte-
gral in Eq. (14.6.35) is evaluated as described in Section 6.3 and given by Eq. (6.3.6)
for body forces due to uniform weight density or for constant heat source by
Eq. (13.5.16). This integral becomes

f frg ¼
fr1

fr2

fr3

8<
:

9=
; ¼

tAr

3

1
1
1

8<
:

9=
; ðCÞ ð14:6:38Þ

Therefore, one-third of the assumed uniform charge density within the element is ap-
plied to each node.

Step 5 Assemble the Element Equations to obtain the Global
Equations and Introduce Boundary Conditions

We obtain the global sti¤ness matrix, source matrix, and equations by using the direct
sti¤ness method as

½K � ¼
X
½kðeÞ� fFg ¼

X
ff ðeÞg ð14:6:39Þ

and

fFg ¼ ½K �fvg ð14:6:40Þ

where fvg is the total system nodal voltage matrix.

The boundary conditions are of two types.

1. Dirichlet or imposed potentials on surface S1. These are enforced by
applying a known voltage at one or more nodes (analogous to
applying a known displacement in the stress analysis problem), such
as imposing a potential or voltage at node 1 (say v1 ¼ 1 V) as shown
in Figure 14–27.

2. Neumann or derivative of voltage or potential is known on surface S2.
In this case, the electric field intensity, E ¼ �grad V must be
tangential to the surface S2 as shown in Figure 14–28. (These
boundary conditions do not need to be specified in the finite element
applications.)

εr
V1 = 1

1

Figure 14–27 Dirichlet or imposed boundary potential or voltage at node 1
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Step 6 Solve for the Nodal Potentials or Voltages

We determine the unknown global potentials or voltages by solving the system
of algebraic equations given by Eq. (14.6.40) with the boundary conditions
invoked.

Step 7 Solve for the Electric Fields and Electric
Displacement Fields

We determine the electric fields and electric displacement fields at each node or at ele-
ment centroids using Eq. (14.6.26) and (14.6.28), respectively.

We now present a simple hand solution of an electrostatics problem.

Example 14.8

For the two-element model shown in Figure 14–29, determine the nodal voltages at
the right end. Node 1 has an applied voltage set to 10 V and node 2 is set to 0 V.
The plate is one unit thick (t ¼ 1 m) and the permittivity is e ¼ 5. There is no charge
density.

Line of symmetry
AB or S2

B Plate

A

Ex =

S2

�V

n

tε∇V
�x

= 0

Figure 14–28 Neumann-type derivative boundary conditions on electric field
intensity (Line AB is a geometric and potential symmetry line)

2 3 3 3

4 4

1 m

2 m
i = 1

2

1 1

11

22

Figure 14–29 Plate subjected to nodal voltages and elements separated
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SOLUTION:
Using Eq. (13.5.6) with b’s and g’s defined by Eq. (6.2.10), we obtain the following.

For element 1;

bi ¼ b1 ¼ y3 � y2 ¼ 1� 1 ¼ 0;

bj ¼ b3 ¼ y2 � y1 ¼ 1� 0 ¼ 1;

bm ¼ b2 ¼ y1 � y3 ¼ 0� 1 ¼ �1

gi ¼ g1 ¼ x2 � x3 ¼ 0� 2 ¼ �2;

gj ¼ g3 ¼ x1 � x2 ¼ 0� 0 ¼ 0;

gm ¼ g2 ¼ x3 � x1 ¼ 2� 0 ¼ 2

ð14:6:41Þ

Similarly for element 2;

b1 ¼ y4 � y3 ¼ 0� 1 ¼ �1; b4 ¼ y3 � y1 ¼ 1� 0 ¼ 1; b3 ¼ y1 � y4 ¼ 0� 0 ¼ 0

g1 ¼ x3 � x4 ¼ 2� 2 ¼ 0; g4 ¼ x1 � x3 ¼ 0� 2 ¼ �2; g3 ¼ x4 � x1 ¼ 2� 0 ¼ 2

ð14:6:42Þ

Using Eqs. (14.6.41) and (14.6.42) in Eq. (14.6.23) for ½B�, Eq. (14.6.28) for ½D� and
A ¼ 1 m2 in Eq. (14.6.36), we obtain the sti¤ness matrices of the two elements as

½kð1Þ� ¼ tA½B�T ½D�½B� ¼ 1ð1Þ
0 0:5 �0:5

�1 0 1

� �T 5 0

0 5

� �
0 0:5 �0:5

�1 0 1

� �

¼
5 0 �5

0 1:25 �1:25

�5 �1:25 6:25

2
64

3
75ðC=VÞ ð14:6:43Þ

Similarly,

½kð2Þ� ¼
1:25 �1:25 0
�1:25 6:25 �5

0 �5 5

2
4

3
5ðC=VÞ ð14:6:44Þ

Assembling the total sti¤ness matrix by the direct sti¤ness method, we obtain the
global equations fFg ¼ ½K �fvg as

0
0
0
0

8>><
>>:

9>>=
>>;
¼

6:25 �5 0 �1:25
�5 6:25 �1:25 0

0 �1:25 6:25 �5
�1:25 0 �5 6:25

2
664

3
775

v1 ¼ 10
v2 ¼ 0

v3

v4

8>><
>>:

9>>=
>>;

ð14:6:45Þ

Applying the boundary conditions of nodal voltages of v1 ¼ 10; v2 ¼ 0 V, we solve
equations 3 and 4 of Eq. (14.6.45) for the nodal voltages v3 and v4 as

v3 ¼ 4:444 V; v4 ¼ 5:556 V ð14:6:46Þ

712 d 14 Fluid Flow in Porous Media and Through Hydraulic Networks

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The electric field through elements 1 and 2 are determined using Eq. (14.6.26) as

fEð1Þg ¼ �½Bð1Þ�fvð1Þg ¼ � 0 0:5 �0:5
�1 0 1

� � 10
4:444

0

0
@

1
A ¼ �2:222

10

� �
V=m

ð14:6:47Þ
and

fEð2Þg ¼ �½Bð2Þ�fvð2Þg ¼ � �0:5 0:5 0
0 �1 1

� � 10
5:556
4:444

0
@

1
A ¼ 2:222

1:112

� �
V=m ð14:6:48Þ

9

We now present two computer model solutions of electrostatics problems.

Example 14.9

An infinitely long enclosed rectangular channel 1 m by 0.4 m is filled with air. The top
is insulated from the sides and connected to a potential of 50 V. The sides and bottom
are grounded (0 V). Assume the dielectric constant of air to be 1. Determine the volt-
age variation and the electric field through the channel.

Figure 14–30 Voltage variation throughout channel (See the full-color insert for a
color version of this figure.)
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SOLUTION:
The finite element model of the channel is shown in Figure 14–30 with the voltage
variation throughout the channel. Figure 14–31 shows the electric field variation in
the y direction. 9

Example 14.10

A busbar is a rectangular conductor used in the distribution of electric power in a dis-
tribution box at 110 V. The sides of the busbar give o¤ 110 V. In the system shown in
Figure 14–32, the bottom side is assumed ground at 0 V. Assume the medium around
the busbar is air (e ¼ 1). Also assume symmetry in geometry and potential with respect
to a vertical line along the left side of the model. Therefore, the model is really one-half
of the whole system. Determine the voltage distribution and maximum electric field in-
tensity. Use a two-dimensional finite element model. Let the thickness be 0.1 m.

SOLUTION:
The results in Figures 14–32 and 14–33 show the voltage distribution through the air
around the busbar and the electric field intensity magnitude distribution. As the

Figure 14–31 Electric field variation throughout channel
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0.15 m

0.20 m

0.01 m

0.01 m
0.02 m

Figure 14–32 Busbar surrounded by air along with the finite element model and the
resulting voltage distribution (See the full-color insert for a color version of this figure.)

Figure 14–33 Electric field intensity magnitude
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voltage has not died out to near zero along the right side of the model, more air should
be used in the model. The maximum electric field intensity magnitude is 2689 V/m
near the right edge of the busbar. 9

d Summary Equations

Basic Equations for Fluid Flow through Porous Medium
and through Pipes

Conservation of mass equation:

Min þMgenerated ¼Mout ð14:1:1Þ

or

rvxAdtþ rQdt ¼ rvxþdxAdt ð14:1:2Þ
Darcy’s law:

vx ¼ �Kxx

df

dx
¼ �Kxxgx ð14:1:3Þ

Basic di¤erential equation for one-dimensional fluid flow through porous medium:

d

dx
Kxx

df

dx

� �
þQ ¼ 0 ð14:1:6Þ

Basic di¤erential equation for two-dimensional fluid flow through porous medium:

q

qx
Kxx

qf

qx

� �
þ q

qy
Kyy

qf

qy

� �
þQ ¼ 0 ð14:1:10Þ

Velocity/velocity potential relations for flow through pipe and around solid bodies:

vx ¼ �
qf

qx
vy ¼ �

qf

qy
ð14:1:13Þ

Basic di¤erential equation for fluid flow in pipes and around solid bodies:

q2f

qx2
þ q2f

qy2
¼ 0 ð14:1:14Þ

One-Dimensional Fluid Flow Finite Element Equations

Potential function for finite element formulation of one-dimensional fluid flow:

f ¼ N1p1 þN2p2 ð14:2:1Þ
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Velocity/gradient relationship based on Darcy’s law:

vx ¼ �½D�fgg ð14:2:7Þ

Sti¤ness matrix for one-dimensional fluid flow through porous medium:

½k � ¼ AKxx

L

1 �1

�1 1

� �
m2=s or in2=s ð14:2:15Þ

Force matrix terms for one-dimensional fluid flow through porous medium:

Due to volumetric flow from internal source:

f fQg ¼
ððð

V

½N�T Q dV ¼ QAL

2

1

1

� �
m3=s or in3=s ð14:2:16Þ

Due to surface flow rate:

f fqg ¼
ðð

S1

q�½N�T dS ¼ q�Lt

2

1

1

� �
m3=s or in3=s ð14:2:17Þ

Hydraulic Network Equations

Poiseuille’s law for flow through hydraulic pipe network:

�p ¼ Rq ð14:2:39Þ

Sti¤ness matrix for flow through pipe with resistance:

½k� ¼ 1

R

1 �1
�1 1

� �
ð14:2:41Þ

Two-dimensional Equations for Finite Element Formulation
of Fluid Flow

Potential function:

½f� ¼ ½Ni Nj Nm�
pi

pj

pm

8<
:

9=
; ð14:3:1Þ

Velocity/gradient matrix relationship:

vx

vy

� �
¼ �½D�fgg ð14:3:7Þ

Material property matrix:

½D� ¼
Kxx 0

0 Kyy

� �
ð14:3:8Þ
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Sti¤ness matrix:

½k� ¼ tKxx

4A

b2
i bibj bibm

bibj b2
j bjbm

bibm bjbm b2
m

2
664

3
775 þ tKyy

4A

g2
i gigj gigm

gigj g2
j gjgm

gigm gjgm g2
m

2
64

3
75 ð14:3:11Þ

Force matrix for uniform volumetric flow rate over element:

f fQg ¼
QV

3

1

1

1

8<
:

9=
;

m3

s
or

in3

s
ð14:3:13Þ

Force matrix for uniform surface flow over side of element:

f fqg ¼
q�Li-j t

2

1

1

0

8<
:

9=
;

m3

s
or

in3

s
on side i-j ð14:3:15Þ

Force matrix for line or point fluid source:

fQi

fQ j

fQm

8<
:

9=
; ¼ Q�t

Ni

Nj

Nm

8<
:

9=
;
������x¼x0¼5 m
y¼y0¼2 m

ð14:3:19Þ

See Figure 14–18 for flow chart for fluid flow computer program.

Electrical Networks

Ohm’s law:

�V ¼ RI ð14:5:1Þ
Voltage di¤erence/current flow matrix equation:

V1

V2

� �
¼ R

1 �1
�1 1

� �
I1

I2

� �
ð14:5:2Þ

Sti¤ness matrix for resistor element:

½k� ¼ R
1 �1
�1 1

� �
ð14:5:3Þ

Electrostatics

Basic equations:

Coulomb’s law:

F1 ¼
q1q2n21

4pe0r2
ð14:6:1Þ
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Gauss’s law:

r �E ¼ r

e0
ð14:6:10Þ

Poisson’s equation:

q2f

qx2
þ q2f

qy2
þ q2f

qz2
¼ �r

e0
ð14:6:14Þ

Dielectric constants, e, (See page 706).

Finite element equations for two-dimensional electrostatic analysis:
Basic di¤erential equation:

q

qx
e

qV

qx

� �
þ q

qy
e

qV

qy

� �
¼ �r ð14:6:16Þ

Potential function:

Vðx; yÞ ¼ a1 þ a2xþ a3y ð14:6:17Þ
Gradient matrix:

fgg ¼

qV

qx

qV

qy

8>><
>>:

9>>=
>>;

ð14:6:20Þ

Gradient/nodal voltage matrix equation:

fgg ¼ ½B�fvg ð14:6:22Þ
where

½B� ¼ 1

2A

bi bj bm

gi gj gm

� �
ð14:6:23Þ

Electric field vector:

E ¼ �grad V ¼ �rV ¼ �i
qV

qx
� j

qV

qy
ð14:6:24Þ

Electric field/nodal voltage matrix equation:

Ex

Ey

� �
¼ �fgg ¼ �½B�fvg ð14:6:26Þ

Electric displacement field/voltage gradient matrix equation:

Dex

Dey

� �
¼ � e 0

0 e

� �
Ex

Ey

� �
¼ �½D�fgg ð14:6:28Þ

Electrostatic energy functional:

pe ¼ U þ � ð14:6:29Þ
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Electrostatic functional expressed as function of nodal voltages:

pe ¼
1

2
fvgT

ððð

V 0

½B�T ½D�½B�dV 0fvg � fvgT

ððð

V 0

½N�TfrgdV 0 ð14:6:34Þ

Sti¤ness matrix:

½k� ¼ e

4A

bibi þ gigi bibj þ gigj bibm þ gigm

bjbj þ gjgj bjbm þ gjgm

bmbm þ gmgm

2
4

3
5t ðC=VÞ ð14:6:37Þ

Force matrix for uniform charge density within element:

f frg ¼
fr1

fr2

fr3

8<
:

9=
; ¼

tAr

3

1
1
1

8<
:

9=
; ðCÞ ð14:6:38Þ

Global equations:

fFg ¼ ½K �fvg ð14:6:40Þ

d References

[1] Chung, T. J., Finite Element Analysis in Fluid Dynamics, McGraw-Hill, New York, 1978.
[2] John, J. E. A., and Haberman, W. L., Introduction to Fluid Mechanics, Prentice-Hall,

Englewood Cli¤s, NJ, 1988.
[3] Harr, M. E., Ground Water and Seepage, McGraw-Hill, New York, 1962.
[4] Heat Transfer Reference Division, Algor, Inc., Pittsburgh, PA, 1999.
[5] Logan, D. L., A First Course in the Finite Element Method, 2nd ed., PWS-Kent Publishers,

Boston, MA, 1992.
[6] Fluid Flow Reference Division, Algor, Inc., Pittsburgh, PA, 1999.
[7] Mohtar, R. H., Bralts, V. F., and Shayya, W. H., ‘‘A Finite Element Model for the Analysis

and Optimization of Pipe Networks,’’ Vol. 34(2), 1991, Transactions of ASAE, pp. 393–401.
[8] ANSYS Engineering Analysis Systems User’s Manual, Swanson Analysis Systems. Inc.,

Johnson Rd., P.O. Box 65, Houston, PA, 15342.
[9] Jackson, J. D., Classical Electrodynamics, 3rd, ed., Wiley, NY, 1998.

[10] Ida, Nathan, Engineering Electromagnetics, 2nd ed., Springer-Verlag, NY, 2004.
[11] Bastos, J. P. A. and Sadowski, N., Electromagnetic Modeling by Finite Element Methods,

Marcel Dekker, NY, 2003.
[12] Humphries, S. Jr., Field Solutions on Computers, CRC Press, NY, 1997.

d Problems

14.1 For the one-dimensional flow through the porous media shown in Figure P14–1,
determine the potentials at one-third and two-thirds of the length. Also determine the
velocities in each element. Let A ¼ 0:2 m2.
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14.2 For the one-dimensional flow through the porous medium shown in Figure P14–2
with fluid flux at the right end, determine the potentials at the third points. Also
determine the velocities in each element. Let A ¼ 2 m2.

14.3 For the one-dimensional fluid flow through the stepped porous medium shown in
Figure P14–3, determine the potentials at the junction of each area. Also determine
the velocities in each element. Let Kxx ¼ 1 in./s.

14.4 For the one-dimensional fluid-flow problem (Figure P14–4) with velocity known at
the right end, determine the velocities and the volumetric flow rates at nodes 1 and 2.
Let Kxx ¼ 2 cm/s.

14.5 Derive the sti¤ness matrix, Eq. (14.2.15), using the first term on the right side of Eq.
(13.4.17).

Figure P14–2

in.in.2 in.in.2 in.in.2

Figure P14–3

Figure P14–4

Figure P14–1
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14.6 For the one-dimensional fluid-flow problem in Figure P14–6, determine the velocities
and volumetric flow rates at nodes 2 and 3. Let Kxx ¼ 10�1 in./s.

14.7 For the simple pipe networks shown in Figure P14–7, determine the pressures at
nodes 1, 2, and 3 and the volumetric flow rates through the branches. Assume the
pressure at node 4 is zero. In network (a), let Q ¼ 1 m3/s. Let the resistances be,
R1 ¼ 1; R2 ¼ 2; R3 ¼ 3; R4 ¼ 4 and R5 ¼ 5 all in units of N-s/m5. In network (b),
let Q ¼ 1000 in3/s and the resistances be R1 ¼ 10; R2 ¼ 20; R3 ¼ 30; R4 ¼ 40, and
R5 ¼ 50 all in units of lb-s/in.5

14.8 For the triangular element subjected to a fluid source shown in Figure P14–8, deter-
mine the amount of Q� allocated to each node.

in.in.2 in.in.2

Figure P14–6

R2

P1

P2 P3

P4

QQ

(a)

(b)

q1

q2

q3

q4

q5

R1

R3

R4

R5

R2

P1

P2

P3Q

Q

q1

q2

q3

q4

P4

q5

R1

R3

R4
R5

Figure P14–7
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14.9 For the triangular element subjected to the surface fluid source shown in Figure P14–9,
determine the amount of fluid force at each node.

14.10 For the two-dimensional fluid flow shown in Figure P14–10, determine the potentials
at the center and right edge.

14.11– Using a computer program, determine the potential distribution in the two-dimensional
bodies shown in Figures P14–11–P14–16.14.16

Figure P14–9

Figure P14–8

Figure P14–10
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Figure P14–11

Figure P14–12

Figure P14–13
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14.17– For the direct current (dc) electrical networks shown in Figures P14–17 and P14–18,
determine the currents through each loop and in branches AD and BC in Figure P14–17
or branches AB and BC in Figure P14–18.

14.18

14.19– For the direct current (dc) networks consisting of batteries, resistors (shown by the rect-
angular shapes), and light emitting diodes (LED’s) (shown by the triangular shapes) in
Figures P14–19 and P14–20, determine the currents through each loop, in branches AD

and BC in Figure P14–19, and in branch AD in Figure P14–20. What are the currents in
each diode in these figures? If the desired current through the LED’s is to be not greater
than 0.015 amp, are the standard resistors acceptable?

14.20

Figure P14–14

Figure P14–15

Figure P14–16

Problems d 725

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A

B

D

C

5 Ω
5 V

10 V

I3

5Ω

10 Ω

20 V

5 Ω

40 Ω80 Ω

10 Ω10 Ω I2

I1

A C
B

10 Ω

5 Ω 20 Ω

60 Ω

12 V

I1 I2

I3

5 V

Figure P14–17

Figure P14–18

Vs = 9 V

R1 = 301 Ω R2 = 392 Ω

Green diode

Red diode

D

A

I1

I2

C

B

Figure P14–19

Vs = 12 V
R1 = 221 Ω R2 = 383 Ω

A

D

CB

I1 I2

Figure P14–20

726 d 14 Fluid Flow in Porous Media and Through Hydraulic Networks

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14.21 For the thin plate shown in Figure P14–21, determine the voltages at the right end
nodes. The voltages at nodes 1 and 2 are, respectively 20 and 0 V. Let the dielectric
constant of the material be that of silicon dioxide (e ¼ 3:9). Use a model of two ele-
ments as in Example 14.8. Assume a thickness of 0.01 m.

For the following problems, use a computer program that solves electrostatics
problems.

14.22 For the infinitely long air-enclosed channel shown in Figure P14–22, determine the
voltage variation through the air (e ¼ 1) and the largest electric field magnitude and
where it is located.

14.23 A busbar is a rectangular conductor used in distribution of electric power in a distribu-
tion box. The ground and busbar are considered perfect insulators. Assume the potential
of the busbar is 240 V. For the system shown in Figure P14–23, determine the voltage
distribution in the air (e ¼ 1) around the busbar and the maximum electric field intensity.

1

2

4

1 m

2 m

3

Figure P14–21

3 m

V = 0

V = 0

V = 100 V around
semi-circular arc

air

ε = 1 2 m

Figure P14–22

0.01 m

0.005 m

0.01 m

Air

Figure P14–23
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THERMAL STRESSd

CHAPTER OBJECTIVES

. To formulate the thermal stress problem.

. To derive the thermal force matrix for a one-dimensional bar.

. To derive the thermal force matrix for the three-noded triangle for both plane
stress and plane strain.

. To solve examples of bars, trusses, and plane stress problems for thermal stresses
due to temperature change.

. To show a finite element computer result for the thermal stress solution of a plate
subject to temperature change.

. To demonstrate a finite element computer result for the thermal stress solution of
a three-dimensional object subjected to temperature change.

Introduction

In this chapter, we consider the problem of thermal stresses within a body. First, we
will discuss the strain energy due to thermal stresses (stresses resulting from the con-
strained motion of a body or part of a body during a temperature change in the body).

The minimization of the thermal strain energy equation is shown to result in the
thermal force matrix. We will then develop this thermal force matrix for the one-
dimensional bar element and the two-dimensional plane stress and plane strain
elements.

We will outline the procedures for solving both one- and two-dimensional prob-
lems and then provide solutions of specific problems, including illustration of a com-
puter program used to solve thermal stress problems for two- and three-dimensional
stress problems.

d 15.1 Formulation of the Thermal Stress
Problem and Examples

d

In addition to the strains associated with the displacement functions due to mechanical
loading, there may be other strains within a body due to temperature variations, swelling
(moisture differential), or other causes. We will concern ourselves only with the strains
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due to temperature variation, eT , and will consider both one- and two-dimensional
problems.

Temperature changes in a structure can result in large stresses if not considered
properly in design. In bridges, improper constraint of beams and slabs can result in
large compressive stresses and resulting buckling failures due to temperature changes.
In statically indeterminate trusses, members subjected to large temperature changes
can result in stresses induced in members of the truss. Similarly, machine parts con-
strained from expanding or contracting may have large stresses induced in them due
to temperature changes. Composite members made of two or more different materials
may experience large stresses due to temperature change if they are not thermally com-
patible; that is, if the materials have large differences in their coefficients of thermal
expansion, stresses may be induced even under free expansion (Figure 15–1).

When a member undergoes a temperature change the member attempts to
change dimensions. For an unconstrained member AB (Figure 15–2) undergoing uni-
form change in temperature T , the change in the length L is given by

dT ¼ aTL ð15:1:1Þ

where a is called the coefficient of thermal expansion and T is the change in tempera-
ture. The coefficient a is a mechanical property of the material having units of 1/�F
(where �F is degrees Fahrenheit) in the USCS of units or 1/�C (where �C is degrees
Celsius) in the SI system. In Eq. (15.1.1), dT is considered to be positive when expan-
sion occurs and negative when contraction occurs. Typical values of a are: for struc-
tural steel a ¼ 6:5� 10�6/ �F ð12� 10�6Þ/ �C and for aluminum alloys a ¼ 13�
10�6/ �F ð23� 10�6Þ/ �C.

Based on the definition of normal strain, we can determine the strain due to a uni-
form temperature change. For the bar subjected to a uniform temperature change T

α1

α2

Figure 15–1 Composite member composed of two
materials with different coefficients of thermal
expansion

L
A B

L
A B

(a)

δT

(b)

Figure 15–2 (a) Unconstrained
member and (b) same member
subjected to uniform temperature
increase
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(Figure 15–2), the strain is the change in a dimension due to a temperature change div-
ided by the original dimension. Considering the axial direction, we then have

eT ¼ aT ð15:1:2Þ

Since the bar in Figure 15–2 is free to expand, that is, it is not constrained by other
members or supports, the bar will not have any stress in it. In general, for statically
determinate structures, a uniform temperature change in one or more members does
not result in stress in any of the members. That is, the structure will be stress free.
For statically indeterminate structures, a uniform temperature change in one or
more members of the structure usually results in stress sT in one or more members.
We can have strain due to temperature change eT without stress due to temperature
change, and we can have sT without any actual change in member lengths or without
strains.

We will now consider the one-dimensional thermal stress problem. The linear
stress-strain diagram with initial (thermal) strain ðe0 ¼ eT Þ is shown in Figure 15–3.

For the one-dimensional problem, we have, from Figure 15–3,

ex ¼
sx

E
þ eT ð15:1:3Þ

If, in general, we let 1/E ¼ ½D��1, then in general matrix form Eq. (15.1.3) can be writ-
ten as

feg ¼ ½D��1fsg þ feTg ð15:1:4Þ

From Eq. (15.1.4), we solve for fsg as

fsg ¼ Dðfeg � feTgÞ ð15:1:5Þ

The strain energy per unit volume (called strain energy density) is the area under
the s–e diagram in Figure 15–3 and is given by

u0 ¼
1

2
fsgðfeg � feTgÞ ð15:1:6Þ

Using Eq. (15.1.5) in Eq. (15.1.6), we have

u0 ¼
1

2
ðfeg � feTgÞT ½D�ðfeg � feTgÞ ð15:1:7Þ

where, in general, the transpose is needed on the strain matrix to multiply the matrices
properly.

Figure 15–3 Linear stress-strain law with initial
thermal strain

730 d 15 Thermal Stress

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The total strain energy is then

U ¼
ð

V

u0 dV ð15:1:8Þ

Substituting Eq. (15.1.7) into Eq. (15.1.8), we obtain

U ¼
ð

V

1

2
ðfeg � feTgÞT ½D�ðfeg � feTgÞ dV ð15:1:9Þ

Now, using feg ¼ ½B�fdg in Eq. (15.1.9), we obtain

U ¼ 1

2

ð
V

ð½B �fdg � feTgÞT ½D�ð½B�fdg � feTgÞ dV ð15:1:10Þ

Simplifying Eq. (15.1.10) yields

U ¼ 1

2

ð
V

ðfdgT ½B �T ½D�½B�fdg � fdgT ½B�T ½D�feTg

� feTg
T ½D�½B�fdg þ feTg

T ½D�feT gÞ dV

ð15:1:11Þ

The first term in Eq. (15.1.11) is the usual strain energy due to stress produced from
mechanical loading—that is,

UL ¼
1

2

ð
V

fdgT ½B �T ½D�½B �fdg dV ð15:1:12Þ

Terms 2 and 3 in Eq. (15.1.11) are identical and can be written together as

UT ¼
ð

V

fdgT ½B�T ½D�feTg dV ð15:1:13Þ

The last (fourth) term in Eq. (15.1.11) is a constant and drops out when we apply the
principle of minimum potential energy by setting

qU

qfdg ¼ 0 ð15:1:14Þ

Therefore, letting U ¼ UL þUT and substituting Eqs. (15.1.12) and (15.1.13) into
Eq. (15.1.14), we obtain two contributions as

qUL

qfdg ¼
ð

V

½B�T ½D�½B� dVfdg ð15:1:15Þ

qUT

qfdg ¼
ð

V

½B�T ½D�feTg dV ¼ f fTg ð15:1:16Þand

We recognize the integral term in Eq. (15.1.15) that multiplies by the displacement
matrix fdg as the general form of the element stiffness matrix ½k�, whereas
Eq. (15.1.16) is the load or force vector due to temperature change in the element.
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One-Dimensional Bar

We will now consider the one-dimensional thermal stress problem. We define the thermal

strain matrix for the one-dimensional bar made of isotropic material with coefficient of
thermal expansion a, and subjected to a uniform temperature rise T, as

feTg ¼ fexTg ¼ faTg ð15:1:17Þ

where the units on a are typically (in./in.)/ �F or (mm/mm)/ �C.
For the simple one-dimensional bar (with a node at each end), we substitute

Eq. (15.1.17) into Eq. (15.1.16) to obtain the thermal force matrix as

f fTg ¼ A

ðL

0

½B�T ½D�faTg dx ð15:1:18Þ

Recall that for the one-dimensional case, from Eqs. (3.10.15) and (3.10.13), we have

½D� ¼ ½E� ½B� ¼ � 1

L

1

L

� �
ð15:1:19Þ

Substituting Eqs. (15.1.19) into Eq. (15.1.18) and simplifying, we obtain the thermal
force matrix as

f fTg ¼
fT1

fT2

� �
¼ �EaTA

EaTA

� �
ð15:1:20Þ

Two-Dimensional Plane Stress and Plane Strain

For the two-dimensional thermal stress problem, there will be two normal strains, exT

and eyT along with a shear strain gxyT due to the change in temperature because of the
different mechanical properties (such as Ex 6¼ Ey) in the x and y directions for the
anisotropic material (see Figure 15–4). The thermal strain matrix for an anisotropic
material is then

feTg ¼
exT

eyT

gxyT

8><
>:

9>=
>; ð15:1:21Þ

x

y

dy
dx

(a)

dx + εxT dx

dy + εyT dy

(b)

π 
2

γxyT−

Figure 15–4 Differential two-dimensional element (a) before and (b) after being
subjected to uniform temperature change for an anisotropic material
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For the case of plane stress in an isotropic material (Ex ¼ Ey) with coefficient of ther-
mal expansion a subjected to a temperature rise T, the thermal strain matrix is

feTg ¼

8><
>:

aT

aT

0

9>=
>; ð15:1:22Þ

No shear strains are caused by a change in temperature of isotropic materials, only ex-
pansion or contraction.

For the case of plane strain in an isotropic material, the thermal strain matrix is

feTg ¼ ð1þ nÞ

8><
>:

aT

aT

0

9>=
>; ð15:1:23Þ

For a constant-thickness ðtÞ, constant-strain triangular element, Eq. (15.1.14) can
be simplified to

f fTg ¼ ½B�
T ½D�feTgtA ð15:1:24Þ

The forces in Eq. (15.1.24) are contributed to the nodes of an element in an unequal
manner and require precise evaluation. It can be shown that substituting Eq. (6.1.8)
for ½D�, Eq. (6.2.34) for ½B�, and Eq. (15.1.22) for feTg for a plane stress condition
into Eq. (15.1.24) reveals the constant-strain triangular element thermal force matrix
to be

f fTg ¼

8>>>>><
>>>>>:

fTix

fTiy

..

.

fTmy

9>>>>>=
>>>>>;
¼ aEtT

2ð1� nÞ

8>>>>>>>><
>>>>>>>>:

bi

gi

bj

gj

bm

gm

9>>>>>>>>=
>>>>>>>>;

ð15:1:25Þ

where the b’s and g’s are defined by Eqs. (6.2.10).

Axisymmetric Element

For the case of an axisymmetric triangular element of isotropic material subjected to
uniform temperature change, the thermal strain matrix is

feTg ¼

erT

ezT

eyT

grzT

8>>><
>>>:

9>>>=
>>>;
¼

aT

aT

aT

0

8>>><
>>>:

9>>>=
>>>;

ð15:1:26Þ

The thermal force matrix for the three-noded triangular element is obtained by substi-
tuting the ½B� from Eq. (9.1.19) and Eq. (9.1.21) into the following:

f fTg ¼ 2p

ð

A

fegT ½D�feTgrdA ð15:1:27Þ
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For the element stiffness matrix evaluated at the centroid (�r, �z), Eq. (15.1.27) becomes

f f
T
g ¼ 2prA½B�T ½D�feTg ð15:1:28Þ

where ½B� is given by Eq. (9.2.3), A is the surface area of the element which can be
found in general from Eq. (6.2.8) when the coordinates of the element are known
and ½D� is given by Eq. (9.2.6).

We will now describe the solution procedure for both one- and two-dimensional
thermal stress problems.

Step 1

Evaluate the thermal force matrix, such as Eq. (15.1.20) or Eq. (15.1.25). Then treat
this force matrix as an equivalent (or initial) force matrix fF 0g analogous to that
obtained when we replace a distributed load acting on an element by equivalent
nodal forces (Chapters 4 and 5 and Appendix D).

Step 2

Apply fFg ¼ ½K �fdg � fF 0g, where if only thermal loading is considered, we solve
fF 0g ¼ ½K �fdg for the nodal displacements. Recall that when we formulate the set
of simultaneous equations, fFg represents the applied nodal forces, which here are
assumed to be zero.

Step 3

Back-substitute the now known fdg into step 2 to obtain the actual nodal forces,
fFgð¼ ½K �fdg � fF 0gÞ.

Hence, the thermal stress problem is solved in a manner similar to the distributed
load problem discussed for beams and frames in Chapters 4 and 5. We will now solve
the following examples to illustrate the general procedure.

Example 15.1

For the one-dimensional bar fixed at both ends and subjected to a uniform tempera-
ture rise T ¼ 50 �F as shown in Figure 15–5, determine the reactions at the fixed
ends and the axial stress in the bar. Let E ¼ 30� 106 psi, A ¼ 4 in2, L ¼ 4 ft, and
a ¼ 7:0� 10�6 (in./in.)/ �F.

Figure 15–5 Bar subjected to a uniform temperature rise
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SOLUTION:
Two elements will be sufficient to represent the bar because internal nodal displace-
ments are not of importance here. To solve fF 0g ¼ ½K �fdg, we must determine the
global stiffness matrix for the bar. Hence, for each element, we have

½kð1Þ� ¼ AE

L=2

1 2

1 �1

�1 1

� �
lb

in:
½kð2Þ� ¼ AE

L=2

2 3

1 �1

�1 1

� �
lb

in:
ð15:1:29Þ

where the numbers above the columns in the ½k�’s indicate the nodal displacements
associated with each element.

Step 1

Using Eq. (15.1.20), the thermal force matrix for each element is given by

f f ð1Þg ¼ �EaTA

EaTA

� �
f f ð2Þg ¼ �EaTA

EaTA

� �
ð15:1:30Þ

where these forces are considered to be equivalent nodal forces.

Step 2

Applying the direct stiffness method to Eqs. (15.1.29) and (15.1.30), we assemble the
global equations fF 0g ¼ ½K �fdg as

8><
>:
�EaTA

0
EaTA

9>=
>; ¼

AE

L=2

2
64

1 �1 0

�1 1þ 1 �1

0 �1 1

3
75
8><
>:

u1

u2

u3

9>=
>; ð15:1:31Þ

Applying the boundary conditions u1 ¼ 0 and u3 ¼ 0 and solving the second part of
Eq. (15.1.31), we obtain

u2 ¼ 0 ð15:1:32Þ

Step 3

Back-substituting Eq. (15.1.32) into the global equation fFg ¼ ½K �fdg � fF 0g for the
nodal forces, we obtain the actual nodal forces as

8><
>:

F1x

F2x

F3x

9>=
>; ¼

8><
>:

0

0

0

9>=
>;�

8><
>:
�EaTA

0

EaTA

9>=
>; ¼

8><
>:

EaTA

0

�EaTA

9>=
>; ð15:1:33Þ

Using the numerical quantities for E, a, T, and A in Eq. (15.1.33), we obtain

F1x ¼ 42,000 lb F2x ¼ 0 F3x ¼ �42,000 lb
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as shown in Figure 15–6. The stress in the bar is then

s ¼ 42,000

4
¼ 10,500 psi ðcompressiveÞ ð15:1:34Þ 9

Example 15.2

For the bar assemblage shown in Figure 15–7, determine the reactions at the fixed
ends and the axial stress in each bar. Bar 1 is subjected to a temperature drop
of 10 �C. Let bar 1 be aluminum with E ¼ 70 GPa, a ¼ 23� 10�6 (mm/mm)/ �C,
A ¼ 12� 10�4 m2, and L ¼ 2 m. Let bars 2 and 3 be brass with E ¼ 100 GPa,
a ¼ 20� 10�6 (mm/mm)/ �C, A ¼ 6� 10�4 m2, and L ¼ 2 m.

SOLUTION:
We begin the solution by determining the stiffness matrices for each element.

Element 1

½kð1Þ� ¼ ð12� 10�4Þð70� 106Þ
2

1 �1

�1 1

� �
¼ 42,000

1 2

1 �1

�1 1

� �
kN

m

ð15:1:35Þ

Elements 2 and 3

½kð2Þ� ¼ ½kð3Þ� ¼ ð6� 10�4Þð100� 106Þ
2

1 �1

�1 1

� �
¼ 30,000

2 3

2 4

1 �1

�1 1

� �
kN

m

ð15:1:36Þ

Figure 15–7 Bar assemblage for thermal stress analysis

Figure 15–6 Free-body diagram of the bar of Figure 15–5
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Step 1

We obtain the element thermal force matrices by evaluating Eq. (15.1.20). First,
evaluating �EaTA for element 1, we have

�EaTA ¼ �ð70� 106Þð23� 10�6Þð�10Þð12� 10�4Þ ¼ 19:32 kN ð15:1:37Þ

where the �10 term in Eq. (15.1.37) is due to the temperature drop in element 1.
Using the result of Eq. (15.1.37) in Eq. (15.1.20), we obtain

f f ð1Þg ¼ f1x

f2x

� �
¼ 19:32

�19:32

� �
kN ð15:1:38Þ

There is no temperature change in elements 2 and 3, and so

f f ð2Þg ¼ f f ð3Þg ¼ 0

0

� �
ð15:1:39Þ

Step 2

Assembling the global equations using Eqs. (15.1.35), (15.1.36), (15.1.38), and
(15.1.39) into fF 0g ¼ ½K �fdg, we obtain

1000

42 �42 0 0

�42 42þ 30þ 30 �30 �30

0 �30 30 0

0 �30 0 30

2
6664

3
7775

u1

u2

u3

u4

8>>><
>>>:

9>>>=
>>>;
¼

þ19:32

�19:32

0

0

8>>><
>>>:

9>>>=
>>>;

ð15:1:40Þ

1 2 3 4

where the right-side thermal forces are considered to be equivalent nodal forces. Using
the boundary conditions

u1 ¼ 0 u3 ¼ 0 u4 ¼ 0 ð15:1:41Þ
we obtain, from the second equation of Eq. (15.1.40),

1000ð102Þu2 ¼ �19:32

Solving for u2, we obtain

u2 ¼ �1:89� 10�4 m ð15:1:42Þ

Step 3

Back-substituting Eq. (15.1.42) into the global equation for the nodal forces,
fFg ¼ ½K �fdg � fF 0g, we have

F1x

F2x

F3x

F4x

8>>><
>>>:

9>>>=
>>>;
¼ 1000

42 �42 0 0

�42 102 �30 �30

0 �30 30 0

0 �30 0 30

2
6664

3
7775

0

�1:89� 10�4

0

0

8>>><
>>>:

9>>>=
>>>;
�

19:32

�19:32

0

0

8>>><
>>>:

9>>>=
>>>;

ð15:1:43Þ
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Simplifying Eq. (15.1.43), we obtain the actual nodal forces as

F1x ¼ �11:38 kN

F2x ¼ 0:0 kN
ð15:1:44Þ

F3x ¼ 5:69 kN

F4x ¼ 5:69 kN

A free-body diagram of the bar assemblage is shown in Figure 15–8. The stresses in
each bar are then tensile and given by

sð1Þ ¼ 11:38

12� 10�4
¼ 9:48� 103 kN=m2 ð9:48 MPaÞ

ð15:1:45Þ
sð2Þ ¼ sð3Þ ¼ 5:69

6� 10�4
¼ 9:48� 103 kN=m2 ð9:48 MPaÞ 9

Example 15.3

For the plane truss shown in Figure 15–9, determine the displacements at node 1 and
the axial stresses in each bar. Bar 1 is subjected to a temperature rise of 75 �F. Let
E ¼ 30� 106 psi, a ¼ 7� 10�6 (in./in.)/ �F, and A ¼ 2 in2 for both bar elements.

Figure 15–8 Free-body diagram of the bar assemblage of Figure 15–7

x′ x′

Figure 15–9 Plane truss for thermal stress analysis
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SOLUTION:
First, using Eq. (3.4.23), we determine the stiffness matrices for each element.

Element 1

Choosing x 0 from node 2 to node 1, y ¼ 90�, and so cos y ¼ 0, sin y ¼ 1, and

½kð1Þ� ¼ ð2Þð30� 106Þ
ð8� 12Þ

2 1

0 0 0 0

1 0 �1

0 0

1

2
6664

3
7775

lb

in:

ð15:1:46Þ

Symmetry

Element 2

Choosing x 0 from node 3 to node 1, y ¼ 180� � 53:13� ¼ 126:87�, and so cos y ¼
�0:6, sin y ¼ 0:8, and

½kð2Þ� ¼ ð2Þð30� 106Þ
ð10� 12Þ

3 1

0:36 �0:48 �0:36 0:48

0:64 0:48 �0:64

0:36 �0:48

0:64

2
6664

3
7775

lb

in:

ð15:1:47Þ

Symmetry

Step 1

We obtain the element thermal force matrices by evaluating Eq. (15.1.20) as follows:

�EaTA ¼ �ð30� 106Þð7� 10�6Þð75Þð2Þ ¼ �31,500 lb ð15:1:48Þ

Using the result of Eq. (15.1.48) for element 1, we then have the local thermal force
matrix as

f f 0
ð1Þg ¼ f 02x

f 01x

� �
¼ �31,500

31,500

� �
lb ð15:1:49Þ

There is no temperature change in element 2, so

f f 0
ð2Þg ¼ f 03x

f 01x

� �
¼ 0

0

� �
ð15:1:50Þ

Recall that by Eq. (3.4.16), f f 0g ¼ ½T �f f g. Since we have shown that ½T ��1 ¼ ½T �T ,
we can obtain the global forces by premultiplying Eq. (3.4.16) by ½T �T to obtain the
element nodal forces in the global reference frame as

f f g ¼ ½T �Tf f 0g ð15:1:51Þ
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Using Eq. (15.1.51), the element 1 global nodal forces are then

f2x

f2y

f1x

f1y

8>>><
>>>:

9>>>=
>>>;
¼

C �S 0 0

S C 0 0

0 0 C �S

0 0 S C

2
6664

3
7775

f 02x

f 02y

f 01x

f 01y

8>>>><
>>>>:

9>>>>=
>>>>;

ð15:1:52Þ

where the order of terms in Eq. (15.1.52) is due to the choice of the x 0 axis from node 2
to node 1 and where ½T �, given by Eq. (3.4.15), has been used.

Substituting the numerical quantities C ¼ 0 and S ¼ 1 (consistent with x 0 for
element 1), and f 01x ¼ 31,500, f 01y ¼ 0, f 02x ¼ �31,500, and f 02y ¼ 0 into Eq. (15.1.52),
we obtain

f2x ¼ 0 f2y ¼ �31,500 lb f1x ¼ 0 f1y ¼ 31,500 lb ð15:1:53Þ

These element forces are now the only equivalent global nodal forces, because element 2
is not subjected to a change in temperature.

Step 2

Assembling the global equations using Eqs. (15.1.46), (15.1.47), and (15.1.53), into
fF 0g ¼ ½K �fdg, we obtain

0:50� 106

2
666666664

0:36 �0:48 0 0 0 0

1:89 0 �1:25 0 0

0 0 0 0

1:25 0 0

0:36 �0:48

0:64

3
777777775

8>>>>>>>><
>>>>>>>>:

u1

v1

u2

v2

u3

v3

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

0

31,500

0

�31,500

0

0

9>>>>>>>>=
>>>>>>>>;
ð15:1:54Þ

Symmetry

The boundary conditions are given by

u1 ¼ 0 u2 ¼ 0 v2 ¼ 0 u3 ¼ 0 v3 ¼ 0 ð15:1:55Þ
Using the boundary condition Eqs. (15.1.55) and the second equation of Eq. (15.1.54),
we obtain

ð0:945� 106Þv1 ¼ 31,500

v1 ¼ 0:0333 in: ð15:1:56Þor

Step 3

We now illustrate the procedure used to obtain the local element forces in local coor-
dinates; that is, the local element forces are

f f 0g ¼ ½k0�fd 0g � f f 00g ð15:1:57Þ
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We determine the actual local element nodal forces by using the relationship
fd 0g ¼ ½T ��fdg in Eq. (15.1.57) the usual bar element ½k0� matrix [Eq. (3.1.14)], the
transformation matrix ½T �� [Eq. (3.4.8)], and the calculated displacements and initial
thermal forces applicable for the element under consideration. Substituting the numer-
ical quantities for element 1, from Eq. (15.1.57) into f f 0g ¼ ½k0�½T��fdg � f f 00g,
we have

f 02x

f 01x

( )
¼ 2ð30� 106Þ

8� 12

1 �1

�1 1

� �
0 1 0 0

0 0 0 1

� � u2 ¼ 0

v2 ¼ 0

u1 ¼ 0

v1 ¼ 0:0333

8>>><
>>>:

9>>>=
>>>;
�
�31,500

31,500

� �

ð15:1:58Þ

Simplifying Eq. (15.1.58), we obtain

f 02x ¼ 10,700 lb f 01x ¼ �10,700 lb ð15:1:59Þ

Dividing the local element force f 01x (which is the far-end force consistent with the
convention used in Section 3.5) by the cross-sectional area, we obtain the stress as

sð1Þ ¼ �10,700

2
¼ �5350 psi ðCÞ ð15:1:60Þ

Similarly, for element 2, we have

f 03x

f 01x

� �
¼ 2ð30� 106Þ

10� 12

1 �1

�1 1

� � �0:6 0:8 0 0

0 0 �0:6 0:8

� � 0

0

0

0:0333

8>>><
>>>:

9>>>=
>>>;
ð15:1:61Þ

Simplifying, Eq. (15.1.61), we obtain

f 03x ¼ �13,310 lb f 01x ¼ 13,310 lb ð15:1:62Þ

where no initial thermal forces were present for element 2 because the element
was not subjected to a temperature change. Dividing the far-end force f 01x by the
cross-sectional area results in

sð2Þ ¼ 6660 psi ðTÞ ð15:1:63Þ

For two- and three-dimensional stress problems, this direct division of force by
cross-sectional area is not permissible. Hence, the total stress due to both applied load-
ing and temperature change must be determined by

fsg ¼ fsLg � fsTg ð15:1:64Þ
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We now illustrate Eq. (15.1.64) for bar element 1 of the truss of Example 15.3. For
the bar, sL can be obtained using Eq. (3.5.6) fsLg ¼ ½C0�fdg, and sT is obtained from

fsTg ¼ ½D�feTg ¼ EaT ð15:1:65Þ

because ½D� ¼ E and feTg ¼ aT for the bar element. The stress in bar element 1 is
then determined to be

sð1Þ ¼ E

L
½�C �S C S�

u2

v2

u1

v1

8>>><
>>>:

9>>>=
>>>;
� EaT ð15:1:66Þ

Substituting the numerical quantities for element 1 into Eq. (15.1.66), we obtain

sð1Þ ¼ 30� 106

8� 12
½0 � 1 0 1�

0

0

0

0:0333

8>>><
>>>:

9>>>=
>>>;
� ð30� 106Þð7� 10�6Þð75Þ ð15:1:67Þ

sð1Þ ¼ �5350 psi ðCÞ ð15:1:68Þ 9or

We will now illustrate the solutions of two plane thermal stress problems.

Example 15.4

For the plane stress element shown in Figure 15–10, determine the element equations.
The element has a 2000 lb/in2 pressure acting perpendicular to side j-m and is sub-
jected to a 30 �F temperature rise.

SOLUTION:
Recall that the stiffness matrix is given by [Eq. (6.2.52) or (6.4.1)]

½k� ¼ ½B�T ½D�½B�tA ð15:1:69Þ

bi ¼ yj � ym ¼ �3 gi ¼ xm � xj ¼ �1

bj ¼ ym � yi ¼ 3 gj ¼ xi � xm ¼ �1

bm ¼ yi � yj ¼ 0 gm ¼ xj � xi ¼ 2

and

A ¼ ð3Þð2Þ
2
¼ 3 in2 ð15:1:70Þand
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Therefore, substituting the results of Eqs. (15.1.70) into Eq. (6.2.34) for ½B�, we obtain

½B� ¼ 1

6

2
64
�3 0 3 0 0 0

0 �1 0 �1 0 2

�1 �3 �1 3 2 0

3
75 ð15:1:71Þ

Assuming plane stress conditions to be valid, we have

½D� ¼ E

1� n2

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ¼

30� 106

1� ð0:25Þ2

2
64

1 0:25 0

0:25 1 0

0 0 0:375

3
75

¼ ð4� 106Þ

2
64

8 2 0

2 8 0

0 0 3

3
75 psi ð15:1:72Þ

½B�T ½D� ¼ 1

6

2
666666664

�3 0 �1

0 �1 �3

3 0 �1

0 �1 3

0 0 2

0 2 0

3
777777775
ð4� 106Þ

2
64

8 2 0

2 8 0

0 0 3

3
75 ð15:1:73ÞAlso,

Figure 15–10 Plane stress element subjected to mechanical loading and a
temperature change
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Simplifying Eq. (15.1.73), we obtain

½B�T ½D� ¼ 4� 106

6

2
666666664

�24 �6 �3

�2 �8 �9

24 6 �3

�2 �8 9

0 0 6

4 16 0

3
777777775

ð15:1:74Þ

Therefore, substituting the results of Eqs. (15.1.71) and (15.1.74) into Eq. (15.1.69)
yields the element stiffness matrix as

½k� ¼ ð1 in:Þ ð3 in2Þ
6

4� 106

6

2
666666664

�24 �6 �3

�2 �8 �9

24 6 �3

�2 �8 9

0 0 6

4 16 0

3
777777775

2
64
�3 0 3 0 0 0

0 �1 0 �1 0 2

�1 �3 �1 3 2 0

3
75

ð15:1:75Þ

Simplifying Eq. (15.1.75), we have the element stiffness matrix as

½k� ¼ 1� 106

3

2
666666664

75 15 �69 �3 �6 �12

15 35 3 �19 �18 �16

�69 3 75 �15 �6 12

�3 �19 �15 35 18 �16

�6 �18 �6 18 12 0

�12 �16 12 �16 0 32

3
777777775

lb

in:
ð15:1:76Þ

Using Eq. (15.1.25), the thermal force matrix is given by

f fTg ¼
aEtT

2ð1� nÞ

8>>>>>>>><
>>>>>>>>:

bi

gi

bj

gj

bm

gm

9>>>>>>>>=
>>>>>>>>;

¼ ð7� 10�6Þð30� 106Þð1Þð30Þ
2ð1� 0:25Þ

8>>>>>>>><
>>>>>>>>:

�3

�1

3

�1

0

2

9>>>>>>>>=
>>>>>>>>;

¼ 4200

8>>>>>>>><
>>>>>>>>:

�3

�1

3

�1

0

2

9>>>>>>>>=
>>>>>>>>;

f fTg ¼

8>>>>>>>><
>>>>>>>>:

�12,600

�4200

12,600

�4200

0

8400

9>>>>>>>>=
>>>>>>>>;

lb ð15:1:77Þor
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The force matrix due to the pressure applied alongside j-m is determined as follows:

Lj-m ¼ ½ð2� 1Þ2 þ ð3� 0Þ2�1=2 ¼ 3:163 in:

px ¼ p cos y ¼ 2000
3

3:163

� �
¼ 1896 lb=in2 ð15:1:78Þ

py ¼ p sin y ¼ 2000
1

3:163

� �
¼ 632 lb=in2

where y is the angle measured from the x axis to the normal to surface j-m. Using Eq.
(6.3.7) to evaluate the surface forces, we have

f fLg ¼
ðð

Sj-m

½Ns�T
px

py

� �
dS

¼
ðð

Sj-m

2
666666664

Ni 0

0 Ni

Nj 0

0 Nj

Nm 0

0 Nm

3
777777775

evaluated
alongside j-m

px

py

� �
dS ¼ tLj-m

2

2
666666664

0 0

0 0

1 0

0 1

1 0

0 1

3
777777775

px

py

� �
ð15:1:79Þ

Evaluating Eq. (15.1.79), we obtain

f fLg ¼
ð1 in:Þð3:163 in:Þ

2

2
666666664

0 0

0 0

1 0

0 1

1 0

0 1

3
777777775

1896

632

� �
¼

8>>>>>>>><
>>>>>>>>:

0

0

3000

1000

3000

1000

9>>>>>>>>=
>>>>>>>>;

lb ð15:1:80Þ

Using Eqs. (15.1.76), (15.1.77), and (15.1.80), we find that the complete set of element
equations is

1� 106

3

2
666666664

75 15 �69 �3 �6 �12

35 3 �19 �18 �16

75 �15 �6 12

35 18 �16

12 0

32

3
777777775

ui

vi

uj

vj

um

vm

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

8>>>>>>>><
>>>>>>>>:

�12,600

�4200

15,600

�3200

3000

9400

9>>>>>>>>=
>>>>>>>>;

ð15:1:81Þ

Symmetry

where the force matrix is f fTg þ f fLg, obtained by adding Eqs. (15.1.77) and
(15.1.80). 9
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Example 15.5

For the plane stress plate fixed along one edge and subjected to a uniform temperature
rise of 50 �C as shown in Figure 15–11, determine the nodal displacements and the
stresses in each element. Let E ¼ 210 GPa, n ¼ 0:30, t ¼ 5 mm, and a ¼ 12� 10�6

(mm/mm)/ �C.

SOLUTION:
The discretized plate is shown in Figure 15–11. We begin by evaluating the stiffness
matrix of each element using Eq. (6.2.52).

Element 1

Element 1 has coordinates x1 ¼ 0, y1 ¼ 0, x2 ¼ 0:5, y2 ¼ 0, x5 ¼ 0:25, and y5 ¼ 0:25.
From Eqs. (6.2.10), we obtain

b1 ¼ y2�y5 ¼ �0:25 m b2 ¼ y5�y1 ¼ 0:25 m b5 ¼ y1�y2 ¼ 0

g1 ¼ x5�x2 ¼ �0:25 m g2 ¼ x1�x5 ¼ �0:25 m g5 ¼ x2�x1 ¼ 0:5 m

ð15:1:82Þ
Using Eqs. (6.2.32) in Eq. (6.2.34), we have

½B� ¼ 1

2A

2
64

b1 0 b2 0 b5 0

0 g1 0 g2 0 g5

g1 b1 g2 b2 g5 b5

3
75

¼ 1

0:125

2
64
�0:25 0 0:25 0 0 0

0 �0:25 0 �0:25 0 0:5

�0:25 �0:25 �0:25 0:25 0:5 0

3
75 1

m
ð15:1:83Þ

For plane stress, ½D� is given by

½D� ¼ E

ð1� n2Þ

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775 ¼

210� 109

0:91

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75N

m2
ð15:1:84Þ

Figure 15–11 Discretized plate subjected to a
temperature change
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We obtain the element stiffness matrix using

½k� ¼ tA½B�T ½D�½B� ð15:1:85Þ

Substituting the results of Eqs. (15.1.83) and (15.1.84) into Eq. (15.1.85) and carrying
out the multiplications, we have

½k� ¼ 4:615� 107

2
666666664

8:4375 4:0625 �4:0625 �0:3125 �4:375 �3:75

4:0625 8:4375 0:3125 4:0625 �4:375 �12:5

�4:0625 0:3125 8:4375 �4:0625 �4:375 3:75

�0:3125 4:0625 �4:0625 8:4375 4:375 �12:5

�4:375 �4:375 �4:375 4:375 8:75 0

�3:75 �12:5 3:75 �12:5 0 25

3
777777775

N

m

ð15:1:86Þ

u1 v1 u2 v2 u5 v5

Element 2

For element 2, the coordinates are x2 ¼ 0:5, y2 ¼ 0, x3 ¼ 0:5, y3 ¼ 0:5, x5 ¼ 0:25,
and y5 ¼ 0:25. Proceeding as for element 1, we obtain

b2 ¼ 0:25 m b3 ¼ 0:25 m b5 ¼ �0:5 m

g2 ¼ �0:25 m g3 ¼ 0:25 m g5 ¼ 0

The element stiffness matrix then becomes

½k� ¼ 4:615� 107

2
666666664

8:4375 �4:0625 4:0625 �0:3125 �12:5 4:375

�4:0625 8:4375 0:3125 �4:0625 3:75 �4:375

4:0625 0:3125 8:437 4:0625 �12:5 �4:375

�0:3125 �4:0625 4:0625 8:4375 �3:75 �4:375

�12:5 3:75 �12:5 �3:75 25 0

4:375 �4:375 �4:375 �4:375 0 8:75

3
777777775

N

m

ð15:1:87Þ

u2 v2 u3 v3 u5 v5

Element 3

For element 3, using the same steps as for element 1, we obtain the stiffness matrix as

½k� ¼ 4:615� 107

2
666666664

8:437 4:0625 �4:0625 �0:3125 �4:375 �3:75

4:0625 8:437 0:3125 4:0625 �4:375 �12:5

�4:0625 0:3125 8:437 �4:0625 �4:375 3:75

�0:3125 4:0625 �4:0625 8:4375 4:375 �12:5

�4:375 �4:375 �4:375 4:375 8:75 0

�3:75 �12:5 3:75 �12:5 0 25

3
777777775

N

m

ð15:1:88Þ

u3 v3 u4 v4 u5 v5
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Element 4

Finally, for element 4, we obtain

½k� ¼ 4:615� 107

2
666666664

8:437 �4:0625 4:0625 �0:3125 �12:5 4:375

�4:0625 8:4375 0:3125 �4:0625 3:75 �4:375

4:0625 0:3125 8:4375 4:0625 �12:5 �4:375

�0:3125 �4:0625 4:0625 8:4375 �3:75 �4:375

�12:5 3:75 �12:5 �3:75 25 0

4:375 �4:375 �4:375 �4:375 0 8:75

3
777777775

N

m

ð15:1:89Þ

u4 v4 u1 v1 u5 v5

Using the direct stiffness method, we assemble the element stiffness matrices, Eqs.
(15.1.86) through (15.1.89), to obtain the global stiffness matrix as

½K � ¼ 4:615� 107

2
6666666666666666664

16:874 8:125 �4:0625 �0:3125

8:125 16:874 0:3125 4:0625

�4:0625 0:3125 16:874 �8:125

�0:3125 4:0625 �8:125 16:875

0 0 4:0625 0:3125

0 0 �0:3125 �4:0625

4:0625 �0:3125 0 0

0:3125 �4:0625 0 0

�16:875 �8:125 �16:875 8:125

�8:125 �16:875 8:125 �16:875

0 0 4:0625 0:3125 �16:875 �8:125

0 0 �0:3125 �4:0625 �8:125 �16:875

4:0625 �0:3125 0 0 �16:875 8:125

0:3125 �4:0625 0 0 8:125 �16:875

16:875 8:125 �4:0625 �0:3125 �16:875 �8:125

8:125 16:875 0:3125 4:0625 �8:125 �16:875

�4:0625 0:3125 16:875 �8:125 �16:875 8:125

�0:3125 4:0625 �8:125 16:875 8:125 �16:875

�16:875 �8:125 �16:875 8:125 67:5 0

�8:125 �16:875 8:125 �16:875 0 67:5

3
7777777777777777775

N

m

ð15:1:90Þ

u1 v1 u2 v2

u3 v3 u4 v4 u5 v5
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Next, we determine the thermal force matrices for each element by using Eq. (15.1.25)
as follows:

Element 1

f fTg ¼
aEtT

2ð1� nÞ

8>>>>>>>><
>>>>>>>>:

b1

g1

b2

g2

b5

g5

9>>>>>>>>=
>>>>>>>>;

¼ ð12� 10�6Þð210� 109Þð0:005 mÞð50Þ
2ð1� 0:3Þ

8>>>>>>>><
>>>>>>>>:

�0:25

�0:25

0:25

�0:25

0

0:5

9>>>>>>>>=
>>>>>>>>;

¼ 450,000

8>>>>>>>><
>>>>>>>>:

�0:25

�0:25

0:25

�0:25

0

0:5

9>>>>>>>>=
>>>>>>>>;

¼

fT1x

fT1y

fT2x

fT2y

fT5x

fT5y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

�112,500

�112,500

112,500

�112,500

0

225,000

9>>>>>>>>=
>>>>>>>>;

N ð15:1:91Þ

Element 2

f fTg ¼ 450,000

8>>>>>>>><
>>>>>>>>:

0:25

�0:25

0:25

0:25

�0:5

0

9>>>>>>>>=
>>>>>>>>;

¼

fT2x

fT2y

fT3x

fT3y

fT5x

fT5y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

112,500

�112,500

112,500

112,500

�225,000

0

9>>>>>>>>=
>>>>>>>>;

N ð15:1:92Þ

Element 3

f fTg ¼ 450,000

8>>>>>>>><
>>>>>>>>:

0:25

0:25

�0:25

0:25

0

�0:5

9>>>>>>>>=
>>>>>>>>;

¼

fT3x

fT3y

fT4x

fT4y

fT5x

fT5y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

112,500

112,500

�112,500

112,500

0

�225,000

9>>>>>>>>=
>>>>>>>>;

N ð15:1:93Þ

Element 4

f fTg ¼ 450,000

8>>>>>>>><
>>>>>>>>:

�0:25

0:25

�0:25

�0:25

0:5

0

9>>>>>>>>=
>>>>>>>>;

¼

fT4x

fT4y

fT1x

fT1y

fT5x

fT5y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

�112,500

112,500

�112,500

�112,500

225,000

0

9>>>>>>>>=
>>>>>>>>;

N ð15:1:94Þ
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We then obtain the global thermal force matrix by direct assemblage of the element
force matrices [Eqs. (15.1.91) through (15.1.94)]. The resulting matrix is8>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

fT1x

fT1y

fT2x

fT2y

fT3x

fT3y

fT4x

fT4y

fT5x

fT5y

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

¼

�225,000

�225,000

225,000

�225,000

225,000

225,000

�225,000

225,000

0

0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

N ð15:1:95Þ

Using Eqs. (15.1.90) and (15.1.95) and imposing the boundary conditions u1 ¼
v1 ¼ u4 ¼ v4 ¼ 0, we obtain the system of equations for solution as

fT2x ¼ 225,000

fT2y ¼ �225,000

fT3x ¼ 225,000

fT3y ¼ 225,000

fT5x ¼ 0

fT5y ¼ 0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼ 4:615� 107

2
666666664

16:874 �8:125 4:0625 �0:3125 �16:875 8:125

�8:125 16:875 0:3125 �4:0625 8:125 �16:875

4:0625 0:3125 16:875 8:125 �16:875 �8:125

�0:3125 �4:0625 8:125 16:875 �8:125 �16:875

�16:875 8:125 �16:875 �8:125 67:5 0

8:125 �16:875 �8:125 �16:875 0 67:5

3
777777775

u2

v2

u3

v3

u5

v5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð15:1:96Þ
Solving Eq. (15.1.96) for the nodal displacements, we have

u2

v2

u3

v3

u5

v5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

8>>>>>>>><
>>>>>>>>:

3:327� 10�4

�1:911� 10�4

3:327� 10�4

1:911� 10�4

2:123� 10�4

6:654� 10�9

9>>>>>>>>=
>>>>>>>>;

m ð15:1:97Þ

We now use Eq. (15.1.64) to obtain the stresses in each element. Using Eqs. (6.2.36)
and (15.1.65), we write Eq. (15.1.64) as

fsg ¼ ½D�½B�fdg � ½D�feTg ð15:1:98Þ
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Element 1

sx

sy

txy

8<
:

9=
; ¼

E

1� n2

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775

1

2A

8><
>:

b1 0 b2 0 b5 0

0 g1 0 g2 0 g5

g1 b1 g2 b2 g5 b5

9>=
>;

8>>>>>>>><
>>>>>>>>:

u1

v1

u2

v2

u5

v5

9>>>>>>>>=
>>>>>>>>;

� E

1� n2

2
66664

1 n 0

n 1 0

0 0
1� n

2

3
77775

8><
>:

aT

aT

0

9>=
>; ð15:1:99Þ

Using Eqs. (15.1.82) and (15.1.97) along with the mechanical properties E, n, and a in
Eq. (15.1.99), we obtain

sx

sy

txy

8<
:

9=
; ¼

210� 109

0:91

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75

� 1

0:125

2
64
�0:25 0 0:25 0 0 0

0 �0:25 0 �0:25 0 0:5

�0:25 �0:25 �0:25 0:25 0:5 0

3
75

8>>>>>>>><
>>>>>>>>:

0

0

3:327� 10�4

�1:911� 10�4

2:123� 10�4

6:654� 10�9

9>>>>>>>>=
>>>>>>>>;

� 210� 109

0:91

2
64

1 0:3 0

0:3 1 0

0 0 0:35

3
75
ð12� 10�6Þð50Þ
ð12� 10�6Þð50Þ

0

8<
:

9=
; ð15:1:100Þ

Simplifying Eq. (15.1.100) yields

sx

sy

txy

8<
:

9=
; ¼

1:800� 108

1:342� 108

�1:600� 107

8><
>:

9>=
>;�

1:8� 108

1:8� 108

0

8><
>:

9>=
>; ¼

0

�4:57� 107

�1:60� 107

8><
>:

9>=
>; Pa

ð15:1:101Þ
Similarly, we obtain the stresses in element 2 as follows:

Element 2

sx

sy

txy

8<
:

9=
; ¼

1:640� 108

2:097� 108

�2150

8><
>:

9>=
>;�

1:8� 108

1:8� 108

0

8><
>:

9>=
>; ¼

�1:6� 107

2:973� 107

�2150

8><
>:

9>=
>; Pa ð15:1:102Þ
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Stresses in elements 3 and 4 can be determined similarly. The clamped plate sub-
jected to uniform heating (see the longhand solution, Example 15.5) was also solved
using the Algor computer program from Reference [1]. The plate was discretized using
the ‘‘automesh’’ feature of [1]. These results are similar to those obtained from the
longhand solution of Example 15.5 using the very coarse mesh. The computer pro-
gram solution with 342 elements is naturally more accurate than the longhand solution
with only four elements. Figure 15–12 shows the discretized plate with resulting dis-
placement superimposed on the maximum principal stress plot. 9

d Reference

[1] Linear Stress and Dynamics Reference Division, Docutech On-line Documentation, Algor,
Inc., Pittsburgh, PA.

Figure 15–12 Discretized plate showing displaced plate superimposed with
maximum principal stress plot in Pa (See the full-color insert for a color version of
this figure.)

752 d 15 Thermal Stress

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Finally, Figure 15–13 shows a three-dimensional solid part that is fixed on the
small front surfaces and uniformly heated by a temperature increase of 100 �C acting
over the entire inside surface of the hole. The resulting von Mises stress plot is shown
with the maximum value of 329.9 MPa occurring inside the hole.

d Summary Equations

Unconstrained displacement of bar due to uniform temperature change:

dT ¼ aTL ð15:1:1Þ

Strain due to uniform temperature change for a bar:

eT ¼ aT ð15:1:2Þ

Figure 15–13 von Mises stress plot for a solid part subjected to 100 �C temperature
rise inside the surface of the hole (See the full-color insert for a color version of this
figure.)
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Thermal strain matrix for a bar:

feTg ¼ fexTg ¼ faTg ð15:1:17Þ

Thermal force matrix for a bar:

f fTg ¼
fT1

fT2

� �
¼ �EaTA

EaTA

� �
ð15:1:20Þ

Thermal strain matrix for isotropic material in plane stress:

feTg ¼

8><
>:

aT

aT

0

9>=
>; ð15:1:22Þ

Thermal strain matrix for isotropic material in plane strain:

feTg ¼ ð1þ nÞ

8><
>:

aT

aT

0

9>=
>; ð15:1:23Þ

Thermal force matrix for plane stress triangle:

f fTg ¼

8>>>>><
>>>>>:

fTix

fTiy

..

.

fTmy

9>>>>>=
>>>>>;
¼ aEtT

2ð1� nÞ

8>>>>>>>><
>>>>>>>>:

bi

gi

bj

gj

bm

gm

9>>>>>>>>=
>>>>>>>>;

ð15:1:25Þ

Thermal strain matrix for axisymmetric triangular element:

feTg ¼

erT

ezT

eyT

grzT

8>>><
>>>:

9>>>=
>>>;
¼

aT

aT

aT

0

8>>><
>>>:

9>>>=
>>>;

ð15:1:26Þ

Thermal force matrix for axisymmetric element evaluated at its centroid:

f f
T
g ¼ 2prA½B�T ½D�feTg ð15:1:28Þ
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d Problems

15.1 For the one-dimensional steel bar fixed at the left end, free at the right end, and sub-
jected to a uniform temperature rise T ¼ 50 �F as shown in Figure P15–1, determine
the free-end displacement, the displacement 60 in. from the fixed end, the reactions at
the fixed end, and the axial stress. Let E ¼ 30� 106 psi, A ¼ 4 in2, and a ¼ 7:0� 10�6

(in./in.)/ �F.

Figure P15–1 Figure P15–2

15.2 For the one-dimensional steel bar fixed at each end and subjected to a uniform tem-
perature drop of T ¼ 20 �C as shown in Figure P15–2, determine the reactions at the
fixed ends and the stress in the bar. Let E ¼ 210 GPa, A ¼ 1� 10�2 m2, and
a ¼ 11:7� 10�6 (mm/mm)/ �C.

15.3 For the plane truss shown in Figure P15–3, bar element 2 is subjected to a uniform
temperature rise of T ¼ 50 �F. Let E ¼ 30� 106 psi, A ¼ 2 in2, and a ¼ 7:0� 10�6

(in./in.)/ �F. The lengths of the truss elements are shown in the figure. Determine the
stresses in each bar. [Hint: See Eqs. (3.6.4) and (3.6.6) in Example 3.5 for the global
and reduced ½K � matrices.]

Figure P15–3 Figure P15–4

15.4 For the plane truss shown in Figure P15–4, bar element 1 is subjected to a uniform tem-
perature rise of 30 �F. Let E ¼ 30� 106 psi, A ¼ 2 in2, and a ¼ 7:0� 10�6 (in./in.)/ �F.
The lengths of the truss elements are shown in the figure. Determine the stresses in each
bar. (Hint: Use Problem 3.21 for ½K �.)

15.5 For the structure shown in Figure P15–5, bar element 1 is subjected to a uniform
temperature rise of T ¼ 20 �C. Let E ¼ 210 GPa, A ¼ 2� 10�2 m2, and a ¼
12� 10�6 (mm/mm)/ �C. Determine the stresses in each bar.
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Figure P15–5 Figure P15–6

15.6 For the plane truss shown in Figure P15–6, bar element 2 is subjected to a uniform
temperature drop of T ¼ 20 �C. Let E ¼ 70 GPa, A ¼ 4� 10�2 m2, and a ¼
23� 10�6 (mm/mm)/ �C. Determine the stresses in each bar and the displacement of
node 1.

15.7 For the bar structure shown in Figure P15–7, element 1 is subjected to a uniform
temperature rise of T ¼ 30 �C. Let E ¼ 210 GPa, A ¼ 3� 10�2 m2, and a ¼
12� 10�6 (mm/mm)/ �C. Determine the displacement of node 1 and the stresses in
each bar.

Figure P15–7 Figure P15–8

15.8 A bar assemblage consists of two outer steel bars and an inner brass bar. The three-
bar assemblage is then heated to raise the temperature by an amount T ¼ 40 �F.
Let all cross-sectional areas be A ¼ 2 in2 and L ¼ 60 in., Esteel ¼ 30� 106 psi,
Ebrass ¼ 15� 106 psi, asteel ¼ 6:5� 10�6/ �F, and abrass ¼ 10� 10�6/ �F. Determine
(a) the displacement of node 2 and (b) the stress in the steel and brass bars. See
Figure P15–8.
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15.9 For the plane truss shown in Figure P15–9, bar element 2 is subjected to a uniform tem-
perature rise of T ¼ 10 �C. Let E ¼ 210 GPa, A ¼ 12:5 cm2, and a ¼ 12� 10�6/ �C.
What temperature change is needed in bars 1 and 3 to remove the stress due to the uni-
form temperature rise in bar 2? Show enough work to prove your answer. Use a long-
hand solution.

Figure P15–9

15.10 When do stresses occur in a body made of a single material due to uniform tempera-
ture change in the body? Consider Problem 15.1 and also compare the solution to
Example 15.1 in this chapter.

15.11 Consider two thermally incompatible materials, such as steel and aluminum, attached
together as shown in Figure P15–11. Will there be temperature-induced stress in each
material upon uniform heating of both materials to the same temperature when the
boundary conditions are simple supports (a pin and a roller such that we have a statically
determinate system)? Explain. Let there be a uniform temperature rise of T ¼ 50 �F.

Steel, E = 30 × 106 psi, α = 6.5 × 10−6/°F
A

L

Aluminum, E = 10 × 106 psi, α = 13 × 10−6/°F

Figure P15–11

15.12 A bimetallic thermal control is made of cold-rolled yellow brass and magnesium alloy
bars (Figure P15–12). The bars are arranged with a gap of 0.005 in. between them at
72�F. The brass bar has a length of 1.0 in. and a cross-sectional area of 0.10 in.2, and
the magnesium bar has a length of 1.5 in. and a cross-sectional area of 0.15 in.2. De-
termine (a) the axial displacement of the end of the brass bar and (b) the stress in each
bar after it has closed up due to a temperature increase of 100�F. Use at least one ele-
ment for each bar in your finite element model.

15.13 For the plane stress element shown in Figure P15–13 subjected to a uniform
temperature rise of T ¼ 50 �F, determine the thermal force matrix f fTg.
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Brass Magnesium

1.0 in. 1.5 in.

δ = 0.005 in.

Figure P15–12 Figure P15–13

Let E ¼ 10� 106 psi, n ¼ 0:30, and a ¼ 12:5� 10�6 (in./in.)/ �F. The coordinates (in
inches) are shown in the figure. The element thickness is t ¼ 1 in.

15.14 For the plane stress element shown in Figure P15–14 subjected to a uniform temper-
ature rise of T ¼ 30 �C, determine the thermal force matrix f fTg. Let E ¼ 70 GPa,
n ¼ 0:3, a ¼ 23� 10�6 (mm/mm)/ �C, and t ¼ 5 mm. The coordinates (in millimeters)
are shown in the figure.

Figure P15–14 Figure P15–15

15.15 For the plane stress element shown in Figure P15–15 subjected to a uniform temper-
ature rise of T ¼ 100 �F, determine the thermal force matrix f fTg. Let E ¼ 30� 106

psi, n ¼ 0:3, a ¼ 7:0� 10�6 (in./in.)/ �F, and t ¼ 1 in. The coordinates (in inches) are
shown in the figure.

15.16 For the plane stress element shown in Figure P15–16 subjected to a uniform temper-
ature drop of T ¼ 20 �C, determine the thermal force matrix f fTg. Let E ¼ 210 GPa,
n ¼ 0:25, and a ¼ 12� 10�6 (mm/mm)/ �C. The coordinates (in millimeters) are
shown in the figure. The element thickness is 10 mm.

15.17 For the plane stress plate fixed along the left and right sides and subjected to a uniform
temperature rise of 50 �F as shown in Figure P15–17, determine the stresses in each
element. Let E ¼ 10� 106 psi, n ¼ 0:30, a ¼ 12:5� 10�6 (in./in.)/ �F, and t ¼ 1

4 in.
The coordinates (in inches) are shown in the figure. (Hint: The nodal displacements are
all equal to zero. Therefore, the stresses can be determined from fsg ¼ �½D�feTg.)
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Figure P15–16 Figure P15–17

15.18 For the plane stress plate fixed along all edges and subjected to a uniform temperature
decrease of 20 �C as shown in Figure P15–18, determine the stresses in each element.
Let E ¼ 210 GPa, n ¼ 0:25, and a ¼ 12� 10�6 (mm/mm)/ �C. The coordinates of
the plate are shown in the figure. The plate thickness is 10 mm. (Hint: The nodal
displacements are all equal to zero. Therefore, the stresses can be determined from
fsg ¼ �½D�feTg.)

Figure P15–18

15.19 If the thermal expansion coefficient of a bar is given by a ¼ a0ð1þ x /LÞ, determine
the thermal force matrix. Let the bar have length L, modulus of elasticity E, and
cross-sectional area A.

15.20 Assume the temperature function to vary linearly over the length of a bar as T ¼
t1 þ t2x; that is, express the temperature function as fTg ¼ ½N�ftg, where ½N� is the
shape function matrix for the two-node bar element. In other words, ½N� ¼
½1� x /L x /L�. Determine the force matrix in terms of E, A, a, L, t1, and t2. [Hint:

Use Eq. (15.1.18).]

15.21 Derive the thermal force matrix for the axisymmetric element of Chapter 9. [Also see
Eq. (15.1.27).]
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Using a computer program, solve the following problems.

15.22 The square plate in Figure P15–22 is subjected to uniform heating of 80 �F. Deter-
mine the nodal displacements and element stresses. Let the element thickness be
t ¼ 0:1 in., E ¼ 30� 106 psi, n ¼ 0:33, and a ¼ 10� 10�6/ �F.

Figure P15–22 Figure P15–23

15.23 The square plate in Figure P15–23 has element 1 made of steel with E ¼ 30� 106 psi,
n ¼ 0:33, and a ¼ 10� 10�6/ �F and element 2 made of a material with E ¼ 15� 106

psi, n ¼ 0:25, and a ¼ 50� 10�6/ �F. Let the plate thickness be t ¼ 0:1 in. Determine
the nodal displacements and element stresses for element 1 subjected to an 80 �F
temperature increase and element 2 subjected to a 50 �F temperature increase.

15.24 Solve Problem 15.3 using a computer program.

15.25 Solve Problem 15.6 using a computer program.

15.26 The aluminum tube shown in Figure P15–26 fits snugly into a hole (with surrounding
material aluminum) at room temperature. If the temperature of the tube is then in-
creased by 40�C, determine the deformed configuration and the stress distribution of
the tube. Let E ¼ 70 GPa, n ¼ 0:33, and a ¼ 23� 10�6/ �C for the tube.

50-mm diameter

30-mm diameter

C

y

40 mm

30 mm

20 mm20 mm

40 mm

z

D

A B

Figure P15–26
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15.27 For the solid model of a fixture shown in Figure P15–27, the inside surface of the hole
is subjected to a temperature increase of 80 �C. The right end surfaces are fixed. De-
termine the von Mises stresses throughout the fixture due to this temperature increase.
What is the largest von Mises stress? Is it a concern against yielding of the material?
Assume the material is AISI 1020 cold-rolled steel.

20 rad.

30 dia.

(All dimensions in mm units)

40 mm

75 mm
50 mm

Fixed

Fixed

15 mm

30 m
m

Figure P15–27

15.28 For the fixture shown in Figure P15–28, the inside surfaces of the eight holes are in-
creased in temperature by 80 �F. Determine the von Mises stresses throughout the
fixture. What is the largest von Mises stress in the fixture? Is there concern for failure
due to yielding of the material? Assume the material is aluminum alloy 6061-O
(annealed). Fix the inside surface of the upper hole.

0.30 R
0.50

0.40
.500

R.150

φ 0.60

φ 0.50 0.30

0.60 dia.

0.150 R

0.775

2.50

0.625
.625

1.500

0.60 dia.

3.00

0.60

Y

X

0.50 in. R chamfer typ.

0.10

(All holes 0.60 in. dia. (φ)
with 0.50 in. rad. chamfer)

(All dimensions in inch units)

0.25 R

Figure P15–28
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15.29 A rectangular slab of concrete in a highway as shown in Figure P15–29 can be con-
sidered to have sides parallel to the road free and sides perpendicular to the road
simply supported. The critical buckling stress is shown to be

scr ¼
p2E

12ð1� v2Þ
t

a

� 	2

where for medium strength concrete we assume E ¼ 3:5� 106 psi and v ¼ 0:20. Let
the slab dimensions be length a ¼ 120 in., width b ¼ 96 in., and thickness t ¼ 6 in.
Determine the uniform temperature increase in the slab that will buckle it. Use a finite
element code to solve this problem.

b

a
x

y

N

Figure P15–29
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STRUCTURAL DYNAMICS

AND TIME-DEPENDENT

HEAT TRANSFERd

CHAPTER OBJECTIVES

. To discuss the dynamics of a single-degree-of freedom spring-mass system.

. To derive the finite element equations for the time-dependent stress analysis of
the one-dimensional bar, including derivation of the lumped and consistent
mass matrices.

. To introduce procedures for numerical integration in time, including the central
difference method, Newmark’s method, and Wilson’s method.

. To describe how to determine the natural frequencies of bars by the finite ele-
ment method.

. To illustrate the finite element solution of a time-dependent bar problem.

. To develop the beam element lumped and consistent mass matrices.

. To illustrate the determination of natural frequencies for beams by the finite ele-
ment method.

. To develop the mass matrices for truss, plane frame, plane stress, plane strain,
axisymmetric, and solid elements.

. To derive the time-dependent heat transfer equations, including the consistent
and lumped mass matrices in one dimension.

. To describe numerical time integration methods which originate from the gener-
alized trapezoid rule. These include the forward difference, Crank-Nicolson, Galer-
kin, and backward difference methods.

. To report some results of structural dynamics problems solved using a computer
program, including a fixed-fixed beam for natural frequencies, a bar, a fixed-
fixed beam, a rigid frame, and a gantry crane---all subjected to time-dependent
forcing functions.

Introduction

This chapter provides an elementary introduction to time-dependent problems. We
will introduce the basic concepts using the single-degree-of-freedom spring-mass

C H A P T E R 16
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system. We will include discussion of the stress analysis of the one-dimensional bar,
beam, truss, and plane frame. This is followed by the analysis of one-dimensional
heat transfer.

We will provide the basic equations necessary for structural dynamics analysis
and develop both the lumped- and the consistent-mass matrices involved in the ana-
lyses of the bar, beam, truss, and plane frame. We will describe the assembly of the
global mass matrix for truss and plane frame analysis and then present numerical in-
tegration methods for handling the time derivative. We also present the mass matrices
for the constant strain triangle and quadrilateral plane elements, for the axisymmetric
element, and for the tetrahedral solid element.

We will provide longhand solutions for the determination of the natural frequen-
cies for bars and beams and then illustrate the time-step integration process involved
with the stress analysis of a bar subjected to a time-dependent forcing function.

We will next derive the basic equations for the time-dependent one-dimensional
heat-transfer problem and discuss their applications. This chapter provides the basic
concepts necessary for the solution of time-dependent problems. We conclude with
a section on some computer program results for structural dynamics and time-dependent
heat-transfer problems.

d 16.1 Dynamics of a Spring-Mass System d
In this section, we discuss the motion of a single-degree-of-freedom spring-mass
system to introduce the important concepts necessary for the later study of con-
tinuous systems such as bars, beams, and plane frames. In Figure 16–1, we show the
single-degree-of-freedom spring-mass system subjected to a time-dependent force
FðtÞ. Here k represents the spring stiffness or constant, and m represents the mass of
the system.

The free-body diagram of the mass is shown in Figure 16–2. The spring force
T ¼ kx and the applied force F ðtÞ act on the mass, and the mass-times-acceleration
term is shown separately.

Figure 16–2 Free-body diagram of the mass of Figure 16–1

Figure 16–1 Spring-mass system subjected to a time-dependent force
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Applying Newton’s second law of motion, f ¼ ma, to the mass, we obtain the
equation of motion in the x direction as

FðtÞ � kx ¼ m€x ð16:1:1Þ

where a dot over a variable denotes differentiation with respect to time; that is,
ð�Þ ¼ dð Þ=dt. Rewriting Eq. (16.1.1) in standard form, we have

m€xþ kx ¼ FðtÞ ð16:1:2Þ

Equation (16.1.2) is a linear differential equation of the second order whose standard
solution for the displacement x consists of a homogeneous solution and a particular
solution. Standard analytical solutions for this forced vibration can be found in texts
on dynamics or vibrations such as Reference [1]. The analytical solution will not be
presented here as our intent is to introduce basic concepts in vibration behavior. How-
ever, we will solve the problem defined by Eq. (16.1.2) by an approximate numerical
technique in Section 16.3 (see Examples 16.1 and 16.2).

The homogeneous solution to Eq. (16.1.2) is the solution obtained when the right
side is set equal to zero. A number of useful concepts regarding vibrations are obtained
by considering this free vibration of the mass—that is, when FðtÞ ¼ 0. Hence, defining

o2 ¼ k

m
ð16:1:3Þ

and setting the right side of Eq. (16.1.2) equal to zero, we have

€xþ o2x ¼ 0 ð16:1:4Þ

where o is called the natural circular frequency of the free vibration of the mass,
expressed in units of radians per second or revolutions per minute (rpm). Hence, the
natural circular frequency defines the number of cycles per unit time of the mass
vibration. We observe from Eq. (16.1.3) that o depends only on the spring stiffness k

and the mass m of the body.
The motion defined by Eq. (16.1.4) is called simple harmonic motion. The dis-

placement and acceleration are seen to be proportional but of opposite direction.
Again, a standard solution to Eq. (16.1.4) can be found in Reference [1]. A typical
displacement/time curve is represented by the sine curve shown in Figure 16–3, where
xm denotes the maximum displacement (called the amplitude of the vibration). The
time interval required for the mass to complete one full cycle of motion is called the
period of the vibration t and is given by

t ¼ 2p

o
ð16:1:5Þ

where t is measured in seconds. Also the frequency in hertz (Hz ¼ 1/s) is f ¼
1=t ¼ o=ð2pÞ.

Finally, note that all vibrations are damped to some degree by friction forces.
These forces may be caused by dry or Coulomb friction between rigid bodies, by
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internal friction between molecules within a deformable body, or by fluid friction when
a body moves in a fluid. Damping results in natural circular frequencies that are
smaller than those for undamped systems; maximum displacements also are smaller
when damping occurs. A basic treatment of damping can be found in Reference [1]
and additional discussion is included in Example 16.12.

d 16.2 Direct Derivation of the Bar Element
Equations

d

We will now derive the finite element equations for the time-dependent (dynamic)
stress analysis of the one-dimensional bar. Recall that the time-independent (static)
stress analysis of the bar was considered in Chapter 3. The steps used in deriving
the dynamic equations are the same as those used for the derivation of the static
equations.

Step 1 Select Element Type

Figure 16–4 shows the typical bar element of length L, cross-sectional area A, and
mass density r (with typical units of lb-s2/in4), with nodes 1 and 2 subjected to exter-
nal time-dependent loads f e

x ðtÞ.

Step 2 Select a Displacement Function

Again, we assume a linear displacement function along the x axis of the bar [see
Eq. (3.1.1)]; that is, we let

u ¼ a1 þ a2x ð16:2:1Þ

Figure 16–3 Displacement=time curve for simple harmonic motion

u u

Figure 16–4 Bar element subjected to time-dependent loads
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As was shown in Chapter 3, Eq. (16.2.1) can be expressed in terms of the shape func-
tions as

u ¼ N1u1 þN2u2 ð16:2:2Þ

N1 ¼ 1� x

L
N2 ¼

x

L
ð16:2:3Þwhere

Step 3 Define the Strain=Displacement and Stress=Strain
Relationships

Again, the strain/displacement relationship is given by

fexg ¼
qu

qx
¼ ½B�fdg ð16:2:4Þ

½B� ¼ � 1

L

1

L

� �
fdg ¼ u1

u2

� �
ð16:2:5Þwhere

and the stress/strain relationship is given by

fsxg ¼ ½D�fexg ¼ ½D�½B�fdg ð16:2:6Þ

Step 4 Derive the Element Stiffness and Mass Matrices
and Equations

The bar is generally not in equilibrium under a time-dependent force; hence, f1x 0
f2x. Therefore, we again apply Newton’s second law of motion, f ¼ ma, to each node.
In general, the law can be written for each node as ‘‘the external (applied) force f e

x

minus the internal force is equal to the nodal mass times acceleration.’’ Equivalently,
adding the internal force to the ma term, we have

f e
1x ¼ f1x þm1

q2u1

qt2
f e
2x ¼ f2x þm2

q2u2

qt2
ð16:2:7Þ

where the masses m1 and m2 are obtained by lumping the total mass of the bar equally
at the two nodes such that

m1 ¼
rAL

2
m2 ¼

rAL

2
ð16:2:8Þ

In matrix form, we express Eqs. (16.2.7) as

f e
1x

f e
2x

� �
¼ f1x

f2x

� �
þ m1 0

0 m2

� � q2u1

qt2

q2u2

qt2

8>>><
>>>:

9>>>=
>>>;

ð16:2:9Þ
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Using Eqs. (3.1.13) and (3.1.14), we replace f f g with ½k�fdg in Eq. (16.2.9) to obtain
the element equations

f f eðtÞg ¼ ½k�fdg þ ½m�f€dg ð16:2:10Þ

½k� ¼ AE

L

1 �1

�1 1

� �
ð16:2:11Þwhere

is the bar element stiffness matrix, and

½m� ¼ rAL

2

1 0

0 1

� �
ð16:2:12Þ

is called the lumped-mass matrix. Also,

f€dg ¼ q2fdg
qt2

ð16:2:13Þ

Observe that the lumped-mass matrix has diagonal terms only. This facilitates
the computation of the global equations. However, solution accuracy is usually not
as good as when a consistent-mass matrix is used [2].

We will now develop the consistent-mass matrix for the bar element. Numerous
methods are available to obtain the consistent-mass matrix. The generally applicable
virtual work principle (which is the basis of many energy principles, such as the prin-
ciple of minimum potential energy for elastic bodies previously used in this text) pro-
vides a relatively simple method for derivation of the element equations and is
included in Appendix E. However, an even simpler approach is to use D’Alembert’s
principle; thus, we introduce an effective body force X e as

fX eg ¼ �rf€ug ð16:2:14Þ

where the minus sign is due to the fact that the acceleration produces D’Alembert’s
body forces in the direction opposite the acceleration. The nodal forces associated
with fX eg are then found by using Eq. (6.3.1), repeated here as

f fbg ¼
ððð

V

½N�TfXg dV ð16:2:15Þ

Substituting fX eg given by Eq. (16.2.14) into Eq. (16.2.15) for fXg, we obtain

f fbg ¼ �
ððð

V

r½N�Tf€ug dV ð16:2:16Þ

Recalling from Eq. (16.2.2) that fug ¼ ½N�fdg, we find that the first and second
derivatives with respect to time are

f _ug ¼ ½N�f _dg f€ug ¼ ½N�f€dg ð16:2:17Þ
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where f _dg and f€dg are the nodal velocities and accelerations, respectively. Substitut-
ing Eqs. (16.2.17) into Eq. (16.2.16), we obtain

f fbg ¼ �
ððð

V

r½N�T ½N� dVf€dg ¼ �½m�f€dg ð16:2:18Þ

where the element mass matrix is defined as

½m� ¼
ððð

V

r½N�T ½N� dV ð16:2:19Þ

This mass matrix is called the consistent-mass matrix because it is derived from the
same shape functions ½N� that are used to obtain the stiffness matrix ½k�. In general,
½m� given by Eq. (16.2.19) will be a full but symmetric matrix. Equation (16.2.19) is
a general form of the consistent-mass matrix; that is, substituting the appropriate
shape functions, we can generate the mass matrix for such elements as the bar,
beam, and plane stress.

We will now develop the consistent-mass matrix for the bar element of Figure 16–4
by substituting the shape function Eqs. (16.2.3) into Eq. (16.2.19) as follows:

½m� ¼
ððð

V

r

1� x

L

x

L

8>><
>>:

9>>=
>>;

1� x

L

x

L

h i
dV ð16:2:20Þ

Simplifying Eq. (16.2.20), we obtain

½m� ¼ rA

ðL

0

1� x

L

x

L

8>><
>>:

9>>=
>>;

1� x

L

x

L

h i
dx ð16:2:21Þ

or, on multiplying the matrices of Eq. (16.2.21),

½m� ¼ rA

ðL

0

1� x

L

� �2
1� x

L

� � x

L

1� x

L

� � x

L

x

L

� �2

2
664

3
775 dx ð16:2:22Þ

On integrating Eq. (16.2.22) term by term, we obtain the consistent-mass matrix for a
bar element as

½m� ¼ rAL

6

2 1

1 2

� �
ð16:2:23Þ
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Step 5 Assemble the Element Equations to Obtain
the Global Equations and Introduce Boundary Conditions

We assemble the element equations using the direct stiffness method such that interele-
ment continuity of displacements is again satisfied at common nodes and, in addition,
interelement continuity of accelerations is also satisfied; that is, we obtain the global
equations

fF ðtÞg ¼ ½K �fdg þ ½M�f €dg ð16:2:24Þ

½K � ¼
XN

e¼1

½kðeÞ� ½M� ¼
XN

e¼1

½mðeÞ� fFg ¼
XN

e¼1

f f ðeÞg ð16:2:25Þwhere

are the global stiffness, mass, and force matrices, respectively. Note that the global
mass matrix is assembled in the same manner as the global stiffness matrix. Equation
(16.2.24) represents a set of matrix equations discretized with respect to space. To ob-
tain the solution of the equations, discretization in time is also necessary. We will de-
scribe this process in Section 16.3 and will later present representative solutions
illustrating these equations.

d 16.3 Numerical Integration in Time d
We now introduce procedures for the discretization of Eq. (16.2.24) with respect to
time. These procedures will enable us to determine the nodal displacements at differ-
ent time increments for a given dynamic system. The general method used is called di-

rect integration. There are two classifications of direct integration: explicit and
implicit. We will formulate the equations for three direct integration methods. The
first, and simplest, is an explicit method known as the central difference method

[3, 4]. The second and third, more complicated but more versatile than the central dif-
ference method, are implicit methods known as the Newmark-Beta (or Newmark’s)
method [5] and the Wilson-Theta (or Wilson’s) method [7, 8]. The versatility of both
Newmark’s and Wilson’s methods is evidenced by their adaptation in many commer-
cially available computer programs. Wilson’s method is used in the Algor computer
program [16]. Numerous other integration methods are available in the literature.
Among these are Houboldt’s method [8] and the alpha method [13].

Central Difference Method

The central difference method is based on finite difference expressions in time for
velocity and acceleration at time t given by

f _dig ¼
fdiþ1g � fdi�1g

2ðDtÞ ð16:3:1Þ

f €dig ¼
_fdiþ1g � f _di�1g

2ðDtÞ ð16:3:2Þ
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where the subscripts indicate the time step; that is, for a time increment of Dt, fdig ¼
fdðtÞg and fdiþ1g ¼ fdðtþ DtÞg. The procedure used in deriving Eq. (16.3.1) is illus-
trated by use of the displacement/time curve shown in Figure 16–5. Graphically, Eq.
(16.3.1) represents the slope of the line shown in Figure 16–5; that is, given two points
at increments i � 1 and i þ 1 on the curve, two Dt increments apart, an approximation
of the first derivative at the midpoint i of the increment is given by Eq. (16.3.1). Simi-
larly, using a velocity/time curve, we could obtain Eq. (16.3.2), or we can see that
Eq. (16.3.2) is obtained simply by differentiating Eq. (16.3.1) with respect to time.

It has been shown using, for instance, Taylor series expansions [3] that the
acceleration can also be expressed in terms of the displacements by

f €dig ¼
fdiþ1g � 2fdig þ fdi�1g

ðDtÞ2
ð16:3:3Þ

Because we want to evaluate the nodal displacements, it is most suitable to use
Eq. (16.3.3) in the form

fdiþ1g ¼ 2fdig � fdi�1g þ f €digðDtÞ2 ð16:3:4Þ

Equation (16.3.4) will be used to determine the nodal displacements in the next time
step i þ 1 knowing the displacements at time steps i and i � 1 and the acceleration at
time i.

From Eq. (16.2.24), we express the acceleration as

f €dig ¼ ½M ��1�fF ig � ½K �fdig
	

ð16:3:5Þ

To obtain an expression for fdiþ1g, we first multiply Eq. (16.3.4) by the mass
matrix ½M � and then substitute Eq. (16.3.5) for f €dig into this equation to obtain

½M�fdiþ1g ¼ 2½M�fdig � ½M�fdi�1g þ ðfF ig � ½K �fdigÞðDtÞ2 ð16:3:6Þ

Figure 16–5 Numerical integration (approximation of derivative at ti)
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Combining like terms of Eq. (16.3.6), we obtain

½M�fdiþ1g ¼ ðDtÞ2fF ig þ ½2½M� � ðDtÞ2½K ��fdig � ½M �fdi�1g ð16:3:7Þ

To start the computations to determine fdiþ1g; f _diþ1g, and f €diþ1g, we need the dis-
placement fdi�1g initially, as indicated by Eq. (16.3.7). Using Eqs. (16.3.1) and
(16.3.4), we solve for fdi�1g as

fdi�1g ¼ fdig � ðDtÞf _dig þ
ðDtÞ2

2
f €dig ð16:3:8Þ

The procedure for solution is then as follows:

Step 1 Given: fd0g; f _d0g, and fF iðtÞg.
Step 2 If f €d0g is not initially given, solve Eq. (16.3.5) at t ¼ 0 for f €d0g; that is,

f €d0g ¼ ½M��1ðfF 0g � ½K �fd0gÞ

Step 3 Solve Eq. (16.3.8) at t ¼ �Dt for fd�1g; that is,

fd�1g ¼ fd0g � ðDtÞf _d0g þ
ðDtÞ2

2
f €d0g

Step 4 Having solved for fd�1g in step 3, now solve for fd1g using Eq. (16.3.7) as

fd1g ¼ ½M ��1
ðDtÞ2fF 0g þ ½2½M � � ðDtÞ2½K ��fd0g � ½M �fd�1g
�

Step 5 With fd0g initially given, and fd1g determined from step 4, use Eq. (16.3.7)
to obtain

fd2g ¼ ½M��1
ðDtÞ2fF 1g þ ½2½M� � ðDtÞ2½K ��fd1g � ½M�fd0g
�

Step 6 Using Eq. (16.3.5), solve for f €d1g as

f €d1g ¼ ½M��1ðfF 1g � ½K �fd1gÞ

Step 7 Using the result of step 5 and the boundary condition for fd0g given in
step 1, determine the velocity at the first time step by Eq. (16.3.1) as

f _d1g ¼
fd2g � fd0g

2ðDtÞ

Step 8 Use steps 5 through 7 repeatedly to obtain the displacement, acceleration,
and velocity for all other time steps.
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Figure 16–6 is a flowchart of the solution procedure using the central difference
equations. Note that the recurrence formulas given by equations such as Eqs. (16.3.1)
and (16.3.2) are approximate but yield sufficiently accurate results provided the time
step Dt is taken small in relation to the variations in acceleration. Methods for deter-
mining proper time steps for the numerical integration process are described in
Section 16.5.

We will now illustrate the central difference equations as they apply to the fol-
lowing example problem.

Figure 16–6 Flowchart of the central difference method
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Example 16.1

Determine the displacement, velocity, and acceleration at 0.05-s time intervals up to
0.2 s for the one-dimensional spring-mass oscillator subjected to the time-dependent
forcing function shown in Figure 16–7. [Guidelines regarding appropriate time inter-
vals (or time steps) are given in Section 16.5.] This forcing function is a typical one
assumed for blast loads. The restoring spring force versus displacement curve is also
provided. [Note that Figure 16–7 also represents a one-element bar with its left end
fixed and right node subjected to FðtÞ when a lumped mass is used.]

SOLUTION:
Because we are considering the single degree of freedom associated with the mass, the
general matrix equations describing the motion reduce to single scalar equations. We
will represent this single degree of freedom by d.

The solution procedure follows the steps outlined in this section and in the flow-
chart of Figure 16–6.

Step 1

At time t ¼ 0, the initial displacement and velocity are zero; therefore,

d0 ¼ 0 _d0 ¼ 0

Step 2

The initial acceleration at t ¼ 0 is obtained using Eq. (16.3.5) as

€d0 ¼
2000� 100ð0Þ

31:83
¼ 62:83 in:=s2

where we have used fF ð0Þg ¼ 2000 lb and ½K � ¼ 100 lb/in.

Figure 16–7 Spring-mass oscillator subjected to a time-dependent force
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Step 3

The displacement d�1 is obtained using Eq. (16.3.8) as

d�1 ¼ 0� 0þ ð0:05Þ2

2
ð62:83Þ ¼ 0:0785 in:

Step 4

The displacement at time t ¼ 0:05 s using Eq. (16.3.7) is

d1 ¼
1

31:83
fð0:05Þ2ð2000Þ þ ½2ð31:83Þ � ð0:05Þ2ð100Þ�0� ð31:83Þð0:0785Þg

¼ 0:0785 in:

Step 5

Having obtained d1, we now use Eq. (16.3.7) to determine the displacement at time
t ¼ 0:10 s as

d2 ¼
1

31:83
fð0:05Þ2ð1500Þ þ ½2ð31:83Þ � ð0:05Þ2ð100Þ�ð0:0785Þ � ð31:83Þð0Þg

¼ 0:274 in:

Step 6

The acceleration at time t ¼ 0:05 s is obtained using Eq. (16.3.5) as

€d1 ¼
1

31:83
½1500� 100ð0:0785Þ� ¼ 46:88 in:=s2

Step 7

The velocity at time t ¼ 0:05 s is obtained using Eq. (16.3.1) as

_d1 ¼
0:274� 0

2ð0:05Þ ¼ 2:74 in:=s

Step 8

Repeated use of steps 5 through 7 will result in the displacement, acceleration, and
velocity for additional time steps as desired. We will now perform one more time-
step iteration of the procedure.

Repeating step 5 for the next time step, we have displacement d3 as

d3 ¼
1

31:83
fð0:05Þ2ð1000Þ þ ½2ð31:83Þ � ð0:05Þ2ð100Þ�ð0:274Þ

� ð31:83Þð0:0785Þg ¼ 0:546 in:

Repeating step 6 for the next time step, we have acceleration €d2 as

€d2 ¼
1

31:83
½1000� 100ð0:274Þ� ¼ 30:56 in:=s2
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Finally, repeating step 7 for the next time step, we obtain velocity _d2 as

_d2 ¼
0:546� 0:0785

2ð0:05Þ ¼ 4:68 in:=s

Table 16–1 summarizes the results obtained through time t ¼ 0:25 s. In Table 16–1,
Q ¼ kdi is the restoring spring force. Also, the exact analytical solution for displace-
ment based on the equation in Reference [14] is given by

y ¼ F0

k
ð1� cos otÞ þ F0

ktd

sin ot

o
� t

� 

where F0 ¼ 2000 lb, k ¼ 100 lb/in., td ¼ 0:2 s, and

o ¼
ffiffiffiffi
k

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
100

31:83

r
¼ 1:77 rad=s 9

Newmark’s Method

We will now outline Newmark’s numerical method, which, because of its general ver-
satility, has been adopted into numerous commercially available computer programs
for purposes of structural dynamics analysis. (Complete development of the equations
can be found in Reference [5].) Newmark’s equations are given by

f _diþ1g ¼ f _dig þ ðDtÞ½ð1� gÞf €dig þ gf €diþ1g� ð16:3:9Þ

fdiþ1g ¼ fdig þ ðDtÞf _dig þ ðDtÞ2½ð12� bÞf €dig þ bf €diþ1g� ð16:3:10Þ
where b and g are parameters chosen by the user. The parameter b is generally chosen
between 0 and 1

4, and g is often taken to be 1
2. For instance, choosing g ¼ 1

2 and b ¼ 0,
it can be shown that Eqs. (16.3.9) and (16.3.10) reduce to the central difference
Eqs. (16.3.1) and (16.3.2). If g ¼ 1

2 and b ¼ 1
6 are chosen, Eqs. (16.3.9) and (16.3.10)

correspond to those for which a linear acceleration assumption is valid within each
time interval. For g ¼ 1

2 and b ¼ 1
4 , it has been shown that the numerical analysis is

stable; that is, computed quantities such as displacement and velocities do not become
unbounded regardless of the time step chosen. Furthermore, it has been found [5] that
a time step of approximately 1

10 of the shortest natural frequency of the structure being
analyzed usually yields the best results.

Table 16–1 Results of the analysis of Example 16.1

t (s) FðtÞ (lb) di (in.) Q (lb) €di (in./s2) _di (in./s) di (exact)

0 2000 0 0 62.83 0 0
0.05 1500 0.0785 7.85 46.88 2.74 0.0718
0.10 1000 0.274 27.40 30.56 4.68 0.2603
0.15 500 0.546 54.64 13.99 5.79 0.5252
0.20 0 0.854 85.35 �2.68 6.07 0.8250
0.25 0 1.154 115.4 �3.63 5.91 1.132
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To find fdiþ1g, we first multiply Eq. (16.3.10) by the mass matrix ½M � and then
substitute Eq. (16.3.5) for f €diþ1g into this equation to obtain

½M�fdiþ1g ¼ ½M�fdig þ ðDtÞ½M�f _dig þ ðDtÞ2½M �ð12� bÞf €dig� þ bðDtÞ2½fF iþ1g � ½K �fdiþ1g�
ð16:3:11Þ

Combining like terms of Eq. (16.3.11), we obtain

ð½M� þ bðDtÞ2½K� Þfdiþ1g ¼ bðDtÞ2fF iþ1g þ ½M�fdig þ ðDtÞ½M�f _dig þ ðDtÞ2½M�ð12� bÞf €dig
ð16:3:12Þ

Finally, dividing Eq. (16.3.12) by bðDtÞ2, we obtain

½K 0�fdiþ1g ¼ fF 0iþ1g ð16:3:13Þ

½K 0� ¼ ½K � þ 1

bðDtÞ2
½M� ð16:3:14Þ

where

fF 0iþ1g ¼ fF iþ1g þ
½M�

bðDtÞ2
fdig þ ðDtÞ _fdig þ

1

2
� b

� 
ðDtÞ2f €dig

� �

The solution procedure using Newmark’s equations is as follows:

1. Starting at time t ¼ 0, fd0g is known from the given boundary
conditions on displacement, and f _d0g is known from the initial
velocity conditions.

2. Solve Eq. (16.3.5) at t ¼ 0 for f €d0g (unless f €d0g is known from an
initial acceleration condition); that is,

f €d0g ¼ ½M��1ðfF 0g � ½K�fd0gÞ
3. Solve Eq. (16.3.13) for fd1g, because fF iþ1g is known for all time

steps and fd0g; f _d0g, and f €d0g are now known from steps 1 and 2.
4. Use Eq. (16.3.10) to solve for f €d1g as

f €d1g ¼
1

bðDtÞ2
fd1g � fd0g � ðDtÞf _d0g � ðDtÞ2 1

2
� b

� 
f €d0g

� �

5. Solve Eq. (16.3.9) directly for f _d1g.
6. Using the results of steps 4 and 5, go back to step 3 to solve for
fd2g and then to steps 4 and 5 to solve for f €d2g and f _d2g. Use
steps 3–5 repeatedly to solve for fdiþ1g; f _diþ1g, and f €diþ1g.

Figure 16–8 is a flowchart of the solution procedure using Newmark’s equations.
The advantages of Newmark’s method over the central difference method are that
Newmark’s method can be made unconditionally stable (for instance, if b ¼ 1

4 and
g ¼ 1

2) and that larger time steps can be used with better results because, in general,
the difference expressions more closely approximate the true acceleration and dis-
placement time behavior [8] to [11]. Other difference formulas, such as Wilson’s and
Houboldt’s, also yield unconditionally stable algorithms.

We will now illustrate the use of Newmark’s equations as they apply to the fol-
lowing example problem.
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Example 16.2

Determine the displacement, velocity, and acceleration at 0.1-s time increments up to a
time of 0.5 s for the one-dimensional spring-mass oscillator subjected to the time-
dependent forcing function shown in Figure 16–9, along with the restoring spring
force versus displacement curve. Assume the oscillator is initially at rest. Let b ¼ 1

6 and
g ¼ 1

2, which corresponds to an assumption of linear acceleration within each time step.

SOLUTION:
Because we are again considering the single degree of freedom associated with the
mass, the general matrix equations describing the motion reduce to single scalar equa-
tions. Again, we represent this single degree of freedom by d.

The solution procedure follows the steps outlined in this section and in the flow-
chart of Figure 16–8.

Step 1

At time t ¼ 0, the initial displacement and velocity are zero; therefore,

d0 ¼ 0 _d0 ¼ 0

Figure 16–8 Flowchart of numerical integration in time using Newmark’s equations
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Step 2

The initial acceleration from Eq. (16.3.5) at t ¼ 0 is obtained as

€d0 ¼
100� 70ð0Þ

1:77
¼ 56:5 in:=s2

where we have used fF 0g ¼ 100 lb and ½K � ¼ 70 lb/in.

Step 3

We now solve for the displacement from Eq. (16.3.13) and Eq. (16.3.14) at time
t ¼ 0:1 s as

K 0 ¼ 70þ 1�
1
6

	
ð0:1Þ2

ð1:77Þ ¼ 1132 lb=in:

F 01 ¼ 80þ 1:77�
1
6

	
ð0:1Þ2

0þ ð0:1Þð0Þ þ 1

2
� 1

6

� 
ð0:1Þ2ð56:5Þ

� �
¼ 280 lb

d1 ¼
280

1132
¼ 0:248 in:

Step 4

Solve for the acceleration from Eq. (16.3.10) at time t ¼ 0:1 s as

€d1 ¼
1�

1
6

	
ð0:1Þ2

0:248� 0� ð0:1Þð0Þ � ð0:1Þ2 1

2
� 1

6

� 
ð56:5Þ

� �

€d1 ¼ 35:4 in:=s2

Figure 16–9 Spring-mass oscillator subjected to a time-dependent force
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Step 5

Solve Eq. (16.3.9) for the velocity at time t ¼ 0:1 s as

_d1 ¼ 0þ ð0:1Þ
��

1� 1
2

	
ð56:5Þ þ

�
1
2

	
ð35:4Þ

�
_d1 ¼ 4:59 in:=s

Step 6

Repeated use of steps 3 through 5 will result in the displacement, acceleration, and ve-
locity for additional time steps as desired. We will now perform one more time-step
iteration.

Repeating step 3 for the next time step (t ¼ 0:2 s), we have

F 02 ¼ 60þ 1:77�
1
6

	
ð0:1Þ2

0:248þ ð0:1Þð4:59Þ þ 1

2
� 1

6

� 
ð0:1Þ2ð35:4Þ

� �

F 02 ¼ 934 lb

d2 ¼
934

1132
¼ 0:825 in:

Repeating step 4 for time step t ¼ 0:2 s, we obtain

€d2 ¼
1�

1
6

	
ð0:1Þ2

0:825� 0:248� ð0:1Þð4:59Þ � ð0:1Þ2 1

2
� 1

6

� 
ð35:4Þ

� �

€d2 ¼ 1:27 in:=s2

Finally, repeating step 5 for time step t ¼ 0:2 s, we have

_d2 ¼ 4:59þ ð0:1Þ
��

1� 1
2

	
ð35:4Þ þ 1

2 ð1:27Þ
�

_d2 ¼ 6:42 in:=s

Table 16–2 summarizes the results obtained through time t ¼ 0:5 s.

Table 16–2 Results of the analysis of Example 16.2

t (s) F ðtÞ (lb) di (in.) Q (lb) €di (in./s2) _di (in./s)

0. 100 0 0 56.5 0
0.1 80 0.248 17.3 35.4 4.59
0.2 60 0.825 57.8 1.27 6.42
0.3 48.6 1.36 95.2 �26.2 5.17
0.4 45.7 1.72 120.4 �42.2 1.75
0.5 42.9 1.68 117.6 �42.2 �2.45

9
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Wilson’s Method

We will now outline Wilson’s method (also called the Wilson-Theta method). Because
of its general versatility, it has been adopted into the Algor computer program for
purposes of structural dynamics analysis. Wilson’s method is an extension of the lin-
ear acceleration method wherein the acceleration is assumed to vary linearly within
each time interval now taken from t to tþYDt, where Y � 1:0. For Y ¼ 1:0, the
method reduces to the linear acceleration scheme. However, for unconditional sta-
bility in the numerical analysis, we must use Y � 1:37 [7, 8]. In practice, Y ¼ 1:40
is often selected. The Wilson equations are given in a form similar to the previous
Newmark’s equations, Eqs. (16.3.9) and (16.3.10), as

f _diþ1g ¼ f _dig þ
YDt

2
ðf €diþ1g þ f €digÞ ð16:3:15Þ

fdiþ1g ¼ fdig þYDtf _dig þ
Y2ðDtÞ2

6
ðf €diþ1g þ 2f €digÞ ð16:3:16Þ

where f €diþ1g; f _diþ1g, and fdiþ1g represent the acceleration, velocity, and displace-
ment, respectively, at time tþYDt.

We seek a matrix equation of the form of Eq. (16.3.13) that can be solved for
displacement fdiþ1g. To obtain this equation, first solve Eqs. (16.3.15) and (16.3.16)
for f €diþ1g and f _diþ1g in terms of fdiþ1g as follows:

Solve Eq. (16.3.16) for f €diþ1g to obtain

f €diþ1g ¼
6

Y2ðDtÞ2
ðfdiþ1g � fdigÞ �

6

YDt
f _dig � 2f €dig ð16:3:17Þ

Now use Eq. (16.3.17) in Eq. (16.3.15) and solve for f _diþ1g to obtain

f _diþ1g ¼
3

YDt
ðfdiþ1g � fdigÞ � 2f _dig �

YDt

2
f €dig ð16:3:18Þ

To obtain the displacement fdiþ1g (at time tþYDt), we use the equation of motion
Eq. (16.2.24) rewritten as

fF iþ1g ¼ ½M �f €diþ1g þ ½K �fdiþ1g ð16:3:19Þ

Now, substituting Eq. (16.3.17) for f €diþ1g into Eq. (16.3.19), we obtain

½M � 6

Y2ðDtÞ2
ðfdiþ1g � fdigÞ �

6

YDt
f _dig � 2f €dig

" #
þ ½K �fdiþ1g ¼ fF iþ1g

ð16:3:20Þ
Combining like terms and rewriting in a form similar to Eq. (16.3.13), we obtain

½K 0�fdiþ1g ¼ fF 0iþ1g ð16:3:21Þ

½K 0� ¼ ½K � þ 6

ðYDtÞ2
½M�

fF 0iþ1g ¼ fF iþ1g þ
½M�
ðYDtÞ2

½6fdig þ 6YDtf _dig þ 2ðYDtÞ2f €dig�

where

ð16:3:22Þ
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You will note the similarities between Wilson’s Eqs. (16.3.22) and Newmark’s Eqs.
(16.3.14). Because the acceleration is assumed to vary linearly, the load vector is
expressed as

fF iþ1g ¼ fF ig þYðfF iþ1g � fF igÞ ð16:3:23Þ

where fF iþ1g replaces fF iþ1g in Eq. (16.3.22). Note that if Y ¼ 1, fF iþ1g ¼ fF iþ1g.
Also, Wilson’s method (like Newmark’s) is an implicit integration method, be-

cause the displacements show up as multiplied by the stiffness matrix and we implicitly
solve for the displacements at time tþYDt.

The solution procedure using Wilson’s equations is as follows:

1. Starting at time t ¼ 0, fd0g is known from the given boundary
conditions on displacement, and f _d0g is known from the initial
velocity conditions.

2. Solve Eq. (16.3.5) for f €d0g (unless f €d0g is known from an initial
acceleration condition).

3. Solve Eq. (16.3.21) for fd1g, because fF 0iþ1g is known for all time steps,
and fd0g; f _d0g; and f €d0g are now known from steps 1 and 2.

4. Solve Eq. (16.3.17) for f €d1g.
5. Solve Eq. (16.3.18) for f _d1g.
6. Using the results of steps 4 and 5, go back to step 3 to solve for
fd2g, and then return to steps 4 and 5 to solve for f €d2g and f _d2g.
Use steps 3–5 repeatedly to solve for fdiþ1g; f _diþ1g, and f €diþ1g.

A flowchart similar to Figure 16–8, based on Newmark’s equation, is left to your dis-
cretion. Again, note that the advantage of Wilson’s method is that it can be made un-
conditionally stable by setting Y � 1:37. Finally, the time step, Dt, recommended is
approximately 1

10 to 1
20 of the shortest natural period tn of the finite element assemblage

with n degrees of freedom; that is, Dtj tn=10. In comparing the Newmark and Wil-
son methods, we observe little difference in the computational effort, because they
both require about the same time step. Wilson’s method is very similar to Newmark’s,
so hand solutions will not be presented. However, we suggest that you rework Exam-
ple 16.1 by Wilson’s method and compare your displacement results with the exact so-
lution listed in Table 16–1.

d 16.4 Natural Frequencies of a
One-Dimensional Bar

d

Before solving the structural stress dynamics analysis problem, we will first describe
how to determine the natural frequencies of continuous elements (specifically the bar
element). The natural frequencies are necessary in a vibration analysis and also are
important when choosing a proper time step for a structural dynamics analysis (as
will be discussed in Section 16.5).
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Natural frequencies are determined by solving Eq. (16.2.24) in the absence of a
forcing function F ðtÞ. Therefore, we solve the matrix equation

½M €�fdg þ ½K �fdg ¼ 0 ð16:4:1Þ
The standard solution for fdðtÞg is given by the harmonic equation in time

fdðtÞg ¼ fd 0geiot ð16:4:2Þ
where fd 0g is the part of the nodal displacement matrix called natural modes that is
assumed to be independent of time, i is the standard imaginary number given by
i ¼

ffiffiffiffiffiffiffi
�1
p

, and o is a natural frequency.
Differentiating Eq. (16.4.2) twice with respect to time, we obtain

f €dðtÞg ¼ fd 0gð�o2Þeiot ð16:4:3Þ
Substitution of Eqs. (16.4.2) and (16.4.3) into Eq. (16.4.1) yields

�½M �o2fd 0geiot þ ½K �fd 0geiot ¼ 0 ð16:4:4Þ
Combining terms in Eq. (16.4.4), we obtain

eiotð½K � � o2½M�Þfd 0g ¼ 0 ð16:4:5Þ

Because eiot is not zero, from Eq. (16.4.5) we obtain

ð½K � � o2½M�Þfd 0g ¼ 0 ð16:4:6Þ

Equation (16.4.6) is a set of linear homogeneous equations in terms of displacement
mode fd 0g. Hence, Eq. (16.4.6) has a nontrivial solution if and only if the determinant
of the coefficient matrix of fd 0g is zero; that is, we must have

j½K � � o2½M�j ¼ 0 ð16:4:7Þ
In general, Eq. (16.4.7) is a set of n algebraic equations, where n is the number of
degrees of freedom associated with the problem.

To illustrate the procedure for determining the natural frequencies, we will solve
the following example problem.

Example 16.3

For the bar shown in Figure 16–10 with length 2L, modulus of elasticity E, mass den-
sity r, and cross-sectional area A, determine the first two natural frequencies.

SOLUTION:
For simplicity, the bar is discretized into two elements each of length L as shown in
Figure 16–11. To solve Eq. (16.4.7), we must develop the total stiffness matrix for

Figure 16–10 One-dimensional bar used for natural frequency determination
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the bar by using Eq. (16.2.11). Either the lumped-mass matrix Eq. (16.2.12) or the
consistent-mass matrix Eq. (16.2.23) can be used. In general, using the consistent-
mass matrix has resulted in solutions that compare more closely to available analytical
and experimental results than those found using the lumped-mass matrix. However,
the longhand calculations are more tedious using the consistent-mass matrix than
using the lumped-mass matrix because the consistent-mass matrix is a full symmetric
matrix, whereas the lumped-mass matrix has nonzero terms only along the main diag-
onal. Hence, the lumped-mass matrix will be used in this analysis.

Using Eq. (16.2.11), the stiffness matrices for each element are given by

½kð1Þ� ¼ AE

L

1 2

1 �1

�1 1

� �
½kð2Þ� ¼ AE

L

2 3

1 �1

�1 1

� � ð16:4:8Þ

The usual direct stiffness method for assembling the element matrices, Eqs. (16.4.8),
yields the global stiffness matrix for the whole bar as

½K � ¼ AE

L

2
64

1 �1 0

�1 2 �1

0 �1 1

3
75 ð16:4:9Þ

Using Eq. (16.2.12), the mass matrices for each element are given by

½mð1Þ� ¼ rAL

2

1 2

1 0

0 1

� �
½mð2Þ� ¼ rAL

2

2 3

1 0

0 1

� � ð16:4:10Þ

The mass matrices for each element are assembled in the same manner as for the stiff-
ness matrices. Therefore, by assembling Eqs. (16.4.10), we obtain the global mass
matrix as

½M� ¼ rAL

2

2
64

1 0 0

0 2 0

0 0 1

3
75 ð16:4:11Þ

We observe from the resulting global mass matrix that there are two mass contribu-
tions at node 2 because node 2 is common to both elements.

Substituting the global stiffness matrix Eq. (16.4.9) and the global mass matrix
Eq. (16.4.11) into Eq. (16.4.6), and using the boundary condition u1 ¼ 0 (or now
d 01 ¼ 0) to reduce the set of equations in the usual manner, we obtain

AE

L

2 �1

�1 1

� �
� o2 rAL

2

2 0

0 1

� �� 
d 02
d 03

� �
¼ 0

0

� �
ð16:4:12Þ

Figure 16–11 Discretized bar of Figure 16–10
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To obtain a solution to the set of homogeneous equations in Eq. (16.4.12), we set the
determinant of the coefficient matrix equal to zero as indicated by Eq. (16.4.7). We
then have

AE

L

2 �1

�1 1

� �
� l

rAL

2

2 0

0 1

� �����
���� ¼ 0 ð16:4:13Þ

where l ¼ o2 has been used in Eq. (16.4.13). Dividing Eq. (16.4.13) by rAL and
letting m ¼ E=ðrL2Þ, we obtain

2m� l �m

�m m� l

2

�������

�������
¼ 0 ð16:4:14Þ

Evaluating the determinant in Eq. (16.4.14), we obtain

l ¼ 2mG m
ffiffiffi
2
p

l1 ¼ 0:60m l2 ¼ 3:41m ð16:4:15Þor

For comparison, the exact solution is given by l ¼ 0:616m, whereas the consistent-
mass approach yields l ¼ 0:648m. Therefore, for bar elements, the lumped-mass
approach can yield results as good as, or even better than, the results for the consis-
tent-mass approach. However, the consistent-mass approach can be mathematically
proved to yield an upper bound on the frequencies, whereas the lumped-mass
approach yields results that can be below or above the exact frequencies with no
mathematical proof of boundedness. From Eqs. (16.4.15), the first and second natural
frequencies are given by

o1 ¼
ffiffiffiffiffi
l1

p
¼ 0:77

ffiffiffi
m
p

o2 ¼
ffiffiffiffiffi
l2

p
¼ 1:85

ffiffiffi
m
p

Letting E ¼ 30� 106 psi, r ¼ 0:00073 lb-s2/in4, and L ¼ 100 in., we obtain

m ¼ E=ðrL2Þ ¼ ð30� 106Þ=½ð0:00073Þð100Þ2� ¼ 4:12� 106 s�2

Therefore, we obtain the natural circular frequencies as

o1 ¼ 1:56� 103 rad=s o2 ¼ 3:76� 103 rad=s ð16:4:16Þ

or in Hertz (1/s) units

f1 ¼ o1=2p ¼ 248 Hz; and so on

In conclusion, note that for a bar discretized such that two nodes are free to dis-
place, there are two natural modes and two frequencies. When a system vibrates with a
given natural frequency oi, that unique shape with arbitrary amplitude corresponding
to oi is called the mode. In general, for an n-degrees-of-freedom discrete system, there
are n natural modes and frequencies. A continuous system actually has an infinite
number of natural modes and frequencies. When the system is discretized, only n

degrees of freedom are created. The lowest modes and frequencies are approximated
most often; the higher frequencies are damped out more rapidly and are usually of less
importance. A rule of thumb is to use two times as many elements as the number of
frequencies desired.
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Substituting l1 from Eqs. (16.4.15) into Eq. (16.4.12) and simplifying, the first
modal equations are given by

1:4md
0ð1Þ
2 � md

0ð1Þ
3 ¼ 0

ð16:4:17Þ
�md

0ð1Þ
2 þ 0:7md

0ð1Þ
3 ¼ 0

It is customary to specify the value of one of the natural modes fd 0g for a given oi

or li. Letting d
0ð1Þ
3 ¼ 1 and solving Eq. (16.4.17), we find d

0ð1Þ
2 ¼ 0:7. Similarly, substi-

tuting l2 from Eqs. (16.4.15) into Eq. (16.4.12), we obtain the second modal equations.
For brevity’s sake, these equations are not presented here. Now letting d

0ð2Þ
3 ¼ 1 results

in d
0ð2Þ
2 ¼ �0:7. The modal response for the first and second natural frequencies of lon-

gitudinal vibration are plotted in Figure 16–12. The first mode means that the bar is
completely in tension or compression, depending on the excitation direction. The second
mode means the bar is in compression and tension or in tension and compression. 9

d 16.5 Time-Dependent One-Dimensional
Bar Analysis

d

Example 16.4

To illustrate the finite element solution of a time-dependent problem, we will solve
the problem of the one-dimensional bar shown in Figure 16–13(a) subjected to the
force shown in Figure 16–13(b). We will assume the boundary condition u1 ¼ 0 and
the initial conditions fd0g ¼ 0 and f _d0g ¼ 0. For later numerical computation pur-
poses, we let parameters r ¼ 0:00073 lb-s2/in4, A ¼ 1 in2, E ¼ 30� 106 psi, and
L ¼ 100 in. These parameters are the same values as used in Section 16.4.

SOLUTION:
Because the bar is discretized into two elements of equal length, the global stiffness
and mass matrices determined in Section 16.4 and given by Eqs. (16.4.9) and
(16.4.11) are applicable. We will again use the lumped-mass matrix because of its

Figure 16–12 First and second modes of longitudinal vibration for the cantilever bar
of Figure 16–10

786 d 16 Structural Dynamics and Time-Dependent Heat Transfer

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



resulting computational simplicity. Figure 16–14 shows the discretized bar and the
associated lumped masses.

For illustration of the numerical time integration scheme, we will use the central
difference method because it is easier to apply for longhand computations (and with-
out loss of generality).

We next select the time step to be used in the integration process. It has been
mathematically shown that the time step must be less than or equal to 2 divided by
the highest natural frequency when the central difference method is used [7]; that is,
Dt � 2=omax. However, for practical results, we must use a time step of less than or
equal to three-fourths of this value; that is,

Dt � 3

4

2

omax

� 
ð16:5:1Þ

This time step ensures stability of the integration method. This criterion for selecting a time
step demonstrates the usefulness of determining the natural frequencies of vibration, as
previously described in Section 16.4, before performing the dynamic stress analysis. An al-
ternative guide (used only for a bar) for choosing the approximate time step is

Dt ¼ L

cx

ð16:5:2Þ

where L is the element length, and cx ¼
ffiffiffiffiffiffiffiffiffiffiffi
Ex=r

p
is called the longitudinal wave velocity.

Evaluating the time step by using both criteria, Eqs. (16.5.1) and (16.5.2), from Eqs.
(16.4.16) for o, we obtain

Dt ¼ 3

4

2

omax

� 
¼ 1:5

3:76� 103
¼ 0:40� 10�3 s ð16:5:3Þ

Dt ¼ L

cx

¼ 100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30� 106=0:00073

p ¼ 0:48� 10�3 s ð16:5:4Þor

Figure 16–13 (a) Bar subjected to a time-dependent force and (b) the forcing
function applied to the end of the bar

Figure 16–14 Discretized bar with lumped masses
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Guided by the maximum time steps calculated in Eqs. (16.5.3) and (16.5.4), we choose
Dt ¼ 0:25� 10�3 s as a convenient time step for the computations.

Substituting the global stiffness and mass matrices, Eqs. (16.4.9) and (16.4.11),
into the global dynamic Eq. (16.2.24), we obtain

AE

L

2
64

1 �1 0

�1 2 �1

0 �1 1

3
75
8><
>:

u1

u2

u3

9>=
>;þ

rAL

2

2
64

1 0 0

0 2 0

0 0 1

3
75

€u1

€u2

€u3

8<
:

9=
; ¼

8><
>:

R1

0

F3ðtÞ

9>=
>; ð16:5:5Þ

where R1 denotes the unknown reaction at node 1. Using the procedure for solution
outlined in Section 16.3 and in the flowchart of Figure 16–6, we begin as follows:

Step 1

Given: u1 ¼ 0 because of the fixed support at node 1, and all nodal displacements and
velocities are zero at time t ¼ 0; that is, f _d0g ¼ 0 and fd0g ¼ 0. Also, assume €u1 ¼ 0
at all times.

Step 2

Solve for f €d0g using Eq. (16.3.5) as

f €d0g ¼
€u2

€u3

� �
t¼0

¼ 2

rAL

1
2 0

0 1

� �
0

1000

� �
� AE

L

2 �1

�1 1

� �
0

0

� �� �
ð16:5:6Þ

where Eq. (16.5.6) accounts for the conditions u1 ¼ 0 and €u1 ¼ 0. Simplifying
Eq. (16.5.6), we obtain

f €d0g ¼
2000

rAL

0

1

� �
¼ 0

27;400

� �
in:=s2 ð16:5:7Þ

where the numerical values for r;A, and L have been substituted into the final
numerical result in Eq. (16.5.7), and

½M ��1 ¼ 2

rAL

1
2 0

0 1

� �
ð16:5:8Þ

has been used in Eq. (16.5.6). The computational advantage of using the lumped-mass
matrix for longhand calculations is now evident. The inverse of a diagonal matrix,
such as the lumped-mass matrix, is obtained simply by inverting the diagonal elements
of the matrix.

Step 3

Using Eq. (16.3.8), we solve for fd�1g as

fd�1g ¼ fd0g � ðDtÞf _d0g þ
ðDtÞ2

2
f €d0g ð16:5:9Þ

Substituting the initial conditions on f _d0g and fd0g from step 1 and Eq. (16.5.7) for
the initial acceleration f €d0g from step 2 into Eq. (16.5.9), we obtain

fd�1g ¼ 0� ð0:25� 10�3Þð0Þ þ ð0:25� 10�3Þ2

2
ð27;400Þ 0

1

� �
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or, on simplification,

u2

u3

� �
�1

¼ 0

0:856� 10�3

� �
in: ð16:5:10Þ

Step 4

On premultiplying Eq. (16.3.7) by ½M��1, we now solve for fd1g by

fd1g ¼ ½M��1fðDtÞ2fF 0g þ ½2½M� � ðDtÞ2½K ��fd0g � ½M�fd�1gg ð16:5:11Þ

Substituting the numerical values for r;A;L, and E and the results of Eq. (16.5.10) into
Eq. (16.5.11), we obtain

u2

u3

( )

1

¼ 2

0:073

1
2 0

0 1

" #(
ð0:25� 10�3Þ2

0

1000

( )
þ
"

2ð0:073Þ
2

2 0

0 1

" #

� ð0:25� 10�3Þ2ð30� 104Þ
2 �1

�1 1

" ##
0

0

( )

� 0:073

2

2 0

0 1

" #
0

0:856� 10�3

( ))

Simplifying, we obtain

u2

u3

� �
1

¼ 2

0:073

1
2 0

0 1

� �
0

0:0625� 10�3

� �
� 0

0:0312� 10�3

� �� �

Finally, the nodal displacements at time t ¼ 0:25� 10�3 s become

u2

u3

� �
1

¼ 0

0:858� 10�3

� �
in: ðat t ¼ 0:25� 10�3 sÞ ð16:5:12Þ

Step 5

With fd0g initially given and fd1g determined from step 4, we use Eq. (16.3.7) to obtain

fd2g ¼ ½M��1fðDtÞ2fF 1g þ ½2½M� � ðDtÞ2½K ��fd1g � ½M �fd0gg

¼ 2

0:073

1
2 0

0 1

" #(
ð0:25� 10�3Þ2

0

1000

( )
þ
"

2ð0:073Þ
2

2 0

0 1

" #

� ð0:25� 10�3Þ2ð30� 104Þ
2 �1

�1 1

" ##

�
0

0:858� 10�3

( )
� 0:073

2

2 0

0 1

" #
0

0

( ))

¼ 2

0:073

1
2 0

0 1

" #
0

0:0625� 10�3

( )
þ

0:0161� 10�3

0:0466� 10�3

( )" #
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Simplifying, we obtain the nodal displacements at time t ¼ 0:50� 10�3 s as

u2

u3

� �
2

¼ 0:221� 10�3

2:99� 10�3

� �
in: ðat t ¼ 0:50� 10�3 sÞ ð16:5:13Þ

Step 6

Solve for the nodal accelerations f €d1g again using Eq. (16.3.5) as

f €d1g ¼
2

0:073

1
2 0

0 1

� �
0

1000

� �
� ð30� 104Þ 2 �1

�1 1

� �
0

0:858� 10�3

� �� �

Simplifying, we then obtain the nodal accelerations at time t ¼ 0:25� 10�3 s as

€u2

€u3

� �
1

¼ 3526

20;345

� �
in:=s2 ðat t ¼ 0:25� 10�3 sÞ ð16:5:14Þ

The reaction R1 could be found by using the results of Eqs. (16.5.12) and (16.5.14) in
Eq. (16.5.5).

Step 7

Using Eq. (16.5.13) from step 5 and the boundary condition for fd0g given in step 1,
we obtain f _d1g as

f _d1g ¼

0:221� 10�3

2:99� 10�3

� �
� 0

0

� �� �

2ð0:25� 10�3Þ

Simplifying, we obtain

_u2

_u3

� �
¼ 0:442

5:98

� �
in:=s ðat t ¼ 0:25� 10�3 sÞ

Step 8

We now use steps 5 through 7 repeatedly to obtain the displacement, acceleration, and
velocity for all other time steps. For simplicity, we calculate the acceleration only.

Repeating step 6 with t ¼ 0:50� 10�3 s, we obtain the nodal accelerations as

f €d2g ¼
2

0:073

1
2 0

0 1

� �
0

1000

� �
� 30� 104 2 �1

�1 1

� �
0:221� 10�3

2:99� 10�3

� �� �
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On simplifying, the nodal accelerations at t ¼ 0:50� 10�3 s are

€u2

€u3

( )

2

¼
0

27;400

( )
þ

10;500

�22;800

( )

¼
10;500

4600

( )
in:=s2 ðat t ¼ 0:5� 10�3 sÞ ð16:5:15Þ 9

d 16.6 Beam Element Mass Matrices
and Natural Frequencies

d

We now consider the lumped- and consistent-mass matrices appropriate for time-
dependent beam analysis. The development of the element equations follows the
same general steps as used in Section 16.2 for the bar element.

The beam element with the associated nodal degrees of freedom (transverse dis-
placement and rotation) is shown in Figure 16–15.

The basic element equations are given by the general form, Eq. (16.2.10), with
the appropriate nodal force, stiffness, and mass matrices for a beam element. The stiff-
ness matrix for the beam element is that given by Eq. (4.1.14). A lumped-mass matrix
is obtained as

v1 f1 v2 f2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

½m�¼ rAL

2

2
6664

3
7775 (16.6.1)

where one-half of the total beam mass has been lumped at each node, corresponding
to the translational degrees of freedom. In the lumped mass approach, the inertial
effect associated with possible rotational degrees of freedom has been assumed to be
zero in obtaining Eq. (16.6.1), although a value may be assigned to these rotational
degrees of freedom by calculating the mass moment of inertia of a fraction of the
beam segment about the nodal points. For a uniform beam we could then calculate
the mass moment of inertia of half of the beam segment about each end node using

v2v1

Figure 16–15 Beam element with nodal degrees of freedom
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basic dynamics as

I ¼ 1

3
ðrAL=2ÞðL=2Þ2

Again, the lumped-mass matrix given by Eq. (16.6.1) is a diagonal matrix, making
matrix numerical calculations easier to perform than when using the consistent-mass
matrix. The consistent-mass matrix can be obtained by applying the general
Eq. (16.2.19) for the beam element, where the shape functions are now given by Eqs.
(4.1.7). Therefore,

½m� ¼
ððð

V

r½N�T ½N� dV ð16:6:2Þ

½m� ¼
ðL

0

ðð

A

r

8>>>>><
>>>>>:

N1

N2

N3

N4

9>>>>>=
>>>>>;
½N1 N2 N3 N4� dA dx ð16:6:3Þ

N1 ¼
1

L3
ð2x3 � 3x2Lþ L3Þ

N2 ¼
1

L3
ðx3L� 2x2L2 þ xL3Þ

ð16:6:4Þ
N3 ¼

1

L3
ð�2x3 þ 3x2LÞ

N4 ¼
1

L3
ðx3L� x2L2Þ

with

On substituting the shape function Eqs. (16.6.4) into Eq. (16.6.3) and performing the
integration, the consistent-mass matrix becomes

½m� ¼ rAL

420

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2
6664

3
7775 ð16:6:5Þ

Having obtained the mass matrix for the beam element, we could proceed to formu-
late the global stiffness and mass matrices and equations of the form given by
Eq. (16.2.24) to solve the problem of a beam subjected to a time-dependent load. We
will not illustrate the procedure for solution here because it is tedious and similar to
that used to solve the one-dimensional bar problem in Section 16.5. However, a com-
puter program can be used for the analysis of beams and frames subjected to time-
dependent forces. Section 16.7 provides descriptions of plane frame and other element
mass matrices, and Section 16.9 describes some computer program results for dynam-
ics analysis of bars, beams, and frames.

To clarify the procedure for beam analysis, we will now determine the natural
frequencies of a beam.
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Example 16.5

We now consider the determination of the natural frequencies of vibration for a beam
fixed at both ends as shown in Figure 16–16. The beam has mass density r, modulus of
elasticity E, cross-sectional area A, area moment of inertia I, and length 2L. For simplicity
of the longhand calculations, the beam is discretized into (a) two beam elements of length
L (Figure 16–16(a)) and then (b) three beam elements of length L each (Figure 16–16(b)).

SOLUTION:
(a) Two-Element Solution

We can obtain the natural frequencies by using the general Eq. (16.4.7). First, we
assemble the global stiffness and mass matrices (using the boundary conditions v1 ¼ 0,
f1 ¼ 0, v3 ¼ 0, and f3 ¼ 0 to reduce the matrices) as

½K � ¼ EI

L3

v2 f2

24 0

0 8L2

� � ½M� ¼ rAL

2

2 0

0 0

� �
ð16:6:6Þ

where Eq. (4.1.14) has been used to obtain each element stiffness matrix and
Eq. (16.6.1) has been used to calculate the lumped-mass matrix. On substituting
Eqs. (16.6.6) into Eq. (16.4.7), we obtain

EI

L3

24 0

0 8L2

� �
� o2rAL

1 0

0 0

� �����
���� ¼ 0 ð16:6:7Þ

Dividing Eq. (16.6.7) by rAL and simplifying, we obtain

o2 ¼ 24EI

rAL4

o ¼ 4:90

L2

EI

Ar

� 1=2

ð16:6:8Þor

The exact solution for the first natural frequency, from simple beam theory, is given
by References [1] and [6]. It is

o ¼ 5:59

L2

EI

Ar

� 1=2

ð16:6:9Þ

(Here L ¼ half the beam length.)

The large discrepancy between the exact solution and the finite element solution
is assumed to be accounted for by the coarseness of the finite element model.
In Example 16.6, we show for a clamped-free beam that as the number of degrees of

1 2 3 4

L L L

(a) (b)

Figure 16–16 Beam for determination of natural frequencies

16.6 Beam Element Mass Matrices and Natural Frequencies d 793

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



freedom increases, convergence to the exact solution results. Furthermore, if we had
used the consistent-mass matrix for the beam [Eq. (16.6.5)], the results would have
been more accurate than with the lumped-mass matrix as consistent-mass matrices
yield more accurate results for flexural elements such as beams.
(b) Three-Element Solution:

Using Eq. (16.6.1), we calculate each element mass matrix as follows:

½mð1Þ� ¼ rAL

2

2
6664

v1 j1 v2 j2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
7775
½mð2Þ� ¼ rAL

2

2
6664

v2 j2 v3 j3

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
7775

½mð3Þ� ¼ rAL

2

2
6664

v3 j3 v4 j4

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
7775

ð16:6:10Þ

Knowing that v1 ¼ j1 ¼ v4 ¼ j4, we obtain the global mass matrix as

½M� ¼ rAL

2
6664

v2 j2 v3 j3

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
7775

ð16:6:11Þ

Using Eq. (4.1.14), we obtain each element stiffness matrix as

½kð1Þ� ¼EI

L3

2
6664

v1 j1 v2 j2

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

3
7775
½kð2Þ� ¼EI

L3

2
6664

v2 j2 v3 j3

12 6L �12 6L

6L 4L2 �6L 2L2

�12 �6L 12 �6L

6L 2L2 �6L 4L2

3
7775

½kð3Þ� ¼ EI

L3

2
6664

v3 j3 v4 j4

12 6L � 12 6L

6L 4L2 � 6L 2L2

�12 � 6L 12 � 6L

6L 2L2 � 6L 4L2

3
7775

ð16:6:12Þ

Using Eq. (16.6.12), we asemble the global stiffness matrix as

½K � ¼ EI

L3

2
6664

v2 j2 v3 j3

12� 12 6Lþ 6L �12 6L

6L� 6L 4L2 þ 2L2 �6L 2L2

�12 �6L 12þ 12 �6Lþ 6L

6L 2L2 �6Lþ 6L 4L2 þ 4L2

3
7775 ¼

EI

L3

2
6664

v2 j2 v3 j3

0 12L � 12 6L

0 6L2 � 6L 2L2

�12 � 6L 24 0

6L 2L2 0 8L2

3
7775

ð16:6:13Þ
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Using the general Eq. (16.4.7), we obtain the frequency equation as���������
EI

L3

2
6664

0 12L �12 6L

0 6L2 � 6L 2L2

�12 � 6L 24 0

6L 2L2 0 8L2

3
7775� o2rAL

2
6664

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

3
7775

���������

¼

���������

o2rAL 12EI=L2 �12EI=L3 6EI=L2

0 6EI=L �6EI=L2 2EI=L

�12EI=L3 �6EI=L2 24EI=L3 � o2rAL 0

6EI=L2 2EI=L 0 8EI=L

���������
¼ 0 ð16:6:14Þ

Simplifying Eq. (16.6.14), we have
���������

�o2b 12EI=L2 �12EI=L3 6EI=L2

0 6EI=L �6EI=L2 2EI=L

�12EI=L3 �6EI=L2 24EI=L3 � o2b 0

6EI=L2 2EI=L 0 8EI=L

���������
¼ 0 ð16:6:15Þ

where b ¼ rAL

Upon evaluating the four-by-four determinant in Eq. (16.6.15), we obtain

�1152o2E3I3b

L5
þ 48o4E2I2b2

L2
þ 576E4I 4

L8
� 1296E4I4

L8

þ 96o2E3I3b

L5
� 4o4b2E2I 2

L2
� 6912E4I4

L8
¼ 0

44o4b2E2I2

L2
� 1056o2bE3I3

L5
� 7632E4I4

L8
¼ 0 ð16:6:16Þ

11o4b2 � 264o2bEI

L3
� 1908E2I 2

L6
¼ 0

Dividing Eq. (16.6.16) by
4E2I2

L2
, we obtain two roots for o2

1b as

o2
1b ¼ �5:817254EI

L3
o2

1b ¼ 29:817254EI

L3
ð16:6:17Þ

Ignoring the negative root as it is not physically possible and solving explicitly for o1,
we have

o2
1 ¼

29:817254EI

bL3

o1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29:817254EI

bL3

s
¼ 5:46

L2

ffiffiffiffiffiffi
EI

Ar

s
ð16:6:18Þor
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In summary, comparing Eqs (16.6.8) and (16.6.18) with the exact solution,
Eq. (16.6.9), for the first natural frequency, we have

Two Beam Elements: o ¼ 4:90

L2

ffiffiffiffiffiffi
EI

Ar

s

Three Beam Elements: o ¼ 5:46

L2

ffiffiffiffiffiffi
EI

Ar

s
ð16:6:19Þ

Exact solution: o ¼ 5:59

L2

EI

Ar

� 1=2

We can observe that with just three elements the accuracy has significantly increased.
9

Example 16.6

Determine the first natural frequency of vibration of the cantilever beam shown in
Figure 16–17 with the following data:

Length of the beam: L ¼ 30 in.
Modulus of elasticity: E ¼ 3� 107 psi
Moment of inertia: I ¼ 0:0833 in4

Cross-sectional area: A ¼ 1 in2

Mass density: r ¼ 0:00073 lb-s2/in4

Poisson’s ratio: n ¼ 0:3

SOLUTION:
The finite element longhand solution result for the first natural frequency is obtained
similarly to that of Example 16.5 as

o ¼ 3:148

L2

EI

Ar

� 1=2

Figure 16–17 Fixed-free beam (two-element model, lumped-mass matrix)
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The exact solution according to beam theory [1] is

o ¼ 3:516

L2

EI

rA

� 1=2

ð16:6:20Þ

According to vibration theory for a clamped-free beam [1], we relate the second and
third natural frequencies to the first natural frequency by

o2

o1
¼ 6:2669

o3

o1
¼ 17:5475

Figure 16–18 shows the first, second, and third mode shapes corresponding to the
first three natural frequencies for the cantilever beam of Example 16.6 as obtained
from a computer program. Note that each mode shape has one fewer node where a
node is a point of zero displacement. That is, the first mode has all the elements of
the beam of the same sign [Figure 16–18(a)], the second mode has one sign change
and at some point along the beam the displacement is zero [Figure 16–18(b)], and

Figure 16–18 First, second, and third mode shapes of flexural vibration for a
cantilever beam
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the third mode has two sign changes and at two points along the beam the dis-
placement is zero [Figure 16–18(c)].

Table 16–3 shows the computer solution compared with the exact solution. 9

d 16.7 Truss, Plane Frame, Plane Stress,
Plane Strain, Axisymmetric, and Solid
Element Mass Matrices

d

The dynamic analysis of the truss and that of the plane frame are performed by
extending the concepts presented in Sections 16.2 and 16.6 to the truss and plane
frame, as has previously been done for the static analysis of trusses and frames.

Truss Element

The truss analysis requires the same transformation of the mass matrix from local to
global coordinates as in Eq. (3.4.22) for the stiffness matrix; that is, the global mass
matrix for a truss element is given by

½m� ¼ ½T �T ½m0�½T � ð16:7:1Þ
We are now dealing with motion in two or three dimensions. Therefore, we must

reformulate a bar element mass matrix with both axial and transverse inertial proper-
ties because mass is included in both the global x and y directions in plane truss anal-
ysis (Figure 16–19). Considering two-dimensional motion, we express both local axial

v1

v2

u2

u1

u′1

u′2

x′
Figure 16–19 Truss element arbitrarily oriented
in x-y plane showing nodal degrees of freedom

Table 16–3 Finite element computer solution compared to exact solution
for Example 16.6

o1 (rad/s) o2 (rad/s)

Exact solution from beam theory 228 1434
Finite element solution

Using 2 elements 205 1286
Using 6 elements 226 1372
Using 10 elements 227.5 1410
Using 30 elements 228.5 1430
Using 60 elements 228.5 1432
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displacement u and transverse displacement v for the element in terms of the local axial
and transverse nodal displacements as

u 0

v 0

� �
¼ 1

L

L� x 0 0 x 0 0

0 L� x 0 0 x 0

� � u 01
v 01
u 02
v 02

8>>><
>>>:

9>>>=
>>>;

ð16:7:2Þ

In general, ½c0� ¼ ½N�fd 0g; therefore, the shape function matrix from Eq. (16.7.2) is

½N� ¼ 1

L

L� x 0 0 x 0 0

0 L� x 0 0 x 0

� �
ð16:7:3Þ

We can then substitute Eq. (16.7.3) into the general expression given by Eq. (16.2.19)
to evaluate the local truss element consistent-mass matrix as

½m 0� ¼ rAL

6

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

2
6664

3
7775 ð16:7:4Þ

The truss element lumped-mass matrix for two-dimensional motion is obtained
by simply lumping mass at each node and remembering that mass is the same in both
the x 0 and y 0 directions. The local truss element lumped-mass matrix is then

½m 0� ¼ rAL

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775 ð16:7:5Þ

Plane Frame Element

The plane frame analysis requires first expanding and then combining the bar and
beam mass matrices to obtain the local mass matrix. Because we recall there are six
total degrees of freedom associated with a plane frame element (Figure 16–20), the
bar and beam mass matrices are expanded to order 6� 6 and superimposed.

u′1

v′1

v′2
u′2

x′

′

′

Figure 16–20 Frame element arbitrarily oriented
in local coordinate system showing nodal degrees
of freedom
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On combining the local axes consistent-mass matrices for the bar and beam from Eqs.
(16.2.23) and (16.6.5), we obtain

½m 0� ¼ rAL

2
666666666664

2=6 0 0 1=6 0 0

156=420 22L=420 0 54=420 �13L=420

4L2=420 0 13L=420 �3L2=420

2=6 0 0

156=420 �22L=420

4L2=420

3
777777777775

ð16:7:6Þ

Symmetry

On combining the lumped-mass matrices Eqs. (16.2.12) and (16.6.1) for the bar and
beam, respectively, the resulting local axes plane frame lumped-mass matrix is

u 01 v 01 f 01 u 02 v 02 f 02
1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

½m0� ¼ rAL

2

2
666666664

3
777777775

(16.7.7)

The global mass matrix ½m� for a plane frame element arbitrarily oriented in x-y coor-
dinates is transformed according to Eq. (16.7.1), where the transformation matrix ½T �
is now given by Eq. (5.1.10) and either Eq. (16.7.6) for consistent-mass or (16.7.7) for
lumped-mass matrices.

Because a longhand solution of the time-dependent plane frame problem is quite
lengthy, only a computer program solution will be presented in Section 16.9.

Plane Stress=Strain Element

The plane stress, plane strain, constant-strain triangle element (Figure 16–21) consis-
tent-mass matrix is obtained by using the shape functions from Eq. (6.2.18) and the
shape function matrix given by substituting

½N� ¼ N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

� �

Figure 16–21 CST element with nodal
degrees of freedom
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into Eq. (16.2.19) to obtain

½m� ¼ r

ð
V

½N�T ½N� dV ð16:7:8Þ

Letting dV ¼ t dA and noting that
Ð

A
N 2

1 dA ¼ 1
6 A,

Ð
A

N1N2 dA ¼ 1
12 A, and so on, we

obtain the CST global consistent-mass matrix as

½m� ¼ rtA

12

2
666666664

2 0 1 0 1 0

2 0 1 0 1

2 0 1 0

2 0 1

2 0

2

3
777777775

ð16:7:9Þ

Symmetry

For the isoparametric quadrilateral element for plane stress and plane strain con-
sidered in Chapter 10, we use the shape functions given by Eq. (10.2.5) with the shape
function matrix given in Eq. (10.2.4) substituted into Eq. (16.7.10). This yields the
quadrilateral element consistent-mass matrix as

½m� ¼ rt

ð1

�1

ð1

�1

½N�T ½N� j½J�j ds dt ð16:7:10Þ

The integral in Eq. (16.7.10) is evaluated best by numerical integration as described in
Section 10.4.

Axisymmetric Element

The axisymmetric triangular element (considered in Chapter 9 and shown in Fig-
ure 16–22) consistent-mass matrix is given by

½m� ¼
ð

V

r½N�T ½N� dV ¼
ð

A

r½N�T ½N�2pr dA ð16:7:11Þ

Since r ¼ N1r1 þN2r2 þN3r3, we have

½m� ¼ 2pr

ð
A

ðN1r1 þN2r2 þN3r3Þ½N�T ½N� dA ð16:7:12Þ

Figure 16–22 Axisymmetric triangular
element showing nodal degrees of
freedom

16.7 Truss, Plane Frame, Plane Stress, Plane Strain, Axisymmetric d 801

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Noting that ð
A

N 3
1 dA ¼ 2A

20

ð
A

N 2
1 N2 dA ¼ 2A

60
ð16:7:13Þð

A

N1N2N3 dA ¼ 2A

120
and so on

we obtain

½m� ¼ prA

10

2
66666666666666666664

4

3
r1 þ 2r 0 2r� r3

3
0 2r� r2

3
0

4

3
r1 þ 2r 0 2r� r3

3
0 2r� r2

3
4

3
r2 þ 2r 0 2r� r1

3
0

4

3
r2 þ 2r 0 2r� r1

3
4

3
r3 þ 2r 0

4

3
r3 þ 2r

3
77777777777777777775

ð16:7:14Þ

Symmetry

r ¼ r1 þ r2 þ r3

3
where

Tetrahedral Solid Element

Finally, the tetrahedral solid element (considered in Chapter 11) consistent-mass matrix

is obtained by substituting the shape function matrix Eq. (11.2.9) with shape functions
defined in Eq. (11.2.10) into Eq. (16.2.19) and performing the integration to obtain

½m� ¼ rV

20

2
66666666666666666666664

2 0 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0

2 0 0 1 0 0 1

2 0 0 1 0 0

2 0 0 1 0

2 0 0 1

2 0 0

2 0

2

3
77777777777777777777775

ð16:7:15Þ

Symmetry
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d 16.8 Time-Dependent Heat Transfer d
In this section, we consider the time-dependent heat transfer problem in one dimen-
sion only. The basic differential equation for time-dependent heat transfer in one
dimension was given previously by Eq. (13.1.7) with the boundary conditions given
by Eqs. (13.1.10) and (13.1.11).

The finite element formulation of the equations can be obtained by minimization
of the following functional:

ph ¼
1

2

ððð

V

Kxx
qT

qx

� 2

�2ðQ� cr _TÞT
" #

dV

�
ðð

S2

q�T dS þ 1

2

ðð

S3

hðT � TyÞ2 ds ð16:8:1Þ

Equation (16.8.1) is similar to Eq. (13.4.10) with definitions given by Eq. (13.4.11) ex-
cept that the Q term is now replaced by

Q� cr _T ð16:8:2Þ

where, again, c is the specific heat of the material, and the dot over the variable T

denotes differentiation with respect to time. Again, Eq. (13.4.22) obtained in Section
13.4 for the conductivity or stiffness matrix and Eqs. (13.4.23) through (13.4.25) for
the force matrix terms are applicable here.

The term given by Eq. (16.8.2) yields an additional contribution to the basic
element equations previously obtained for the time-independent problem as follows:

WQ ¼ �
ððð

V

TðQ� cr _TÞ dV ð16:8:3Þ

Again, the temperature function is given by

fTg ¼ ½N�ftg ð16:8:4Þ
where ½N� is the shape function matrix given by Eq. (13.4.3) or Eqs. (16.2.3) for the
simple one-dimensional element, and ft 0g is the nodal temperature matrix. Substitut-
ing Eq. (16.8.4) into Eq. (16.8.3) and differentiating with respect to time where indi-
cated yields

WQ ¼ �
ððð

V

ð½N�ftgQ� cr½N�ftg½N�f _tgÞ dV ð16:8:5Þ

where the fact that ½N� is a function only of the coordinate system has been taken into
account. Equation (16.8.5) must be minimized with respect to the nodal temperatures
as follows:

qWQ

qftg ¼ �
ððð

V

½N�T Q dV þ
ððð

V

cr½N�T ½N� dVf _tg ð16:8:6Þ

where we have assumed that f _tg remains constant during the differentiation with re-
spect to ftg. Equation (16.8.6) results in the additional time-dependent term added
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to Eq. (13.4.18). Hence, using previous definitions for the stiffness and force matrices,
we obtain the element equations as

f f g ¼ ½k�ftg þ ½m�f _tg ð16:8:7Þ

½m� ¼
ððð

V

cr½N�T ½N� dV ð16:8:8Þwhere now

For an element with constant cross-sectional area A, the differential volume is
dV ¼ A dx. Substituting the one-dimensional shape function matrix Eq. (13.4.3) into
Eq. (16.8.8) yields

½m� ¼ crA

ðL

0

1� x

L

x

L

8>><
>>:

9>>=
>>;

1� x

L

x

L

� �
dx

½m� ¼ crAL

6

2 1

1 2

� �
ð16:8:9Þor

Equation (16.8.9) is analogous to the consistent-mass matrix Eq. (16.2.23). The
lumped-mass matrix for the heat conduction problem is then

½m� ¼ crAL

2

1 0

0 1

� �
ð16:8:10Þ

which is analogous to Eq. (16.2.12) for the one-dimensional stress element.
The time-dependent heat-transfer problem can now be solved in a manner anal-

ogous to that for the stress analysis problem. We present the numerical time
integration scheme.

Numerical Time Integration

The numerical time integration method described here is similar to Newmark’s
method used for structural dynamics analysis and can be used to solve time-dependent
or transient heat-transfer problems.

We begin by assuming that two temperature states fTig at time ti and fTiþ1g at
time tiþ1 are related by

fTiþ1g ¼ fTig þ ½ð1� bÞf _Tig þ bf _Tiþ1g�ðDtÞ ð16:8:11Þ

Equation (16.8.11) is known as the generalized trapezoid rule. Much like Newmark’s
method for numerical time integration of the second-order equations of structural
dynamics, Eq. (16.8.11) includes a parameter b that is chosen by the user.

Next we express Eq. (16.8.7) in global form as

fFg ¼ ½K �fTg þ ½M�f _Tg ð16:8:12Þ
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We now write Eq. (16.8.12) for time ti and then for time tiþ1. We then multiply the
first of these two equations by 1� b and the second by b to obtain

ð1� bÞð½K �fTig þ ½M�f _TigÞ ¼ ð1� bÞfF ig ð16:8:13aÞ

bð½K �fTiþ1g þ ½M�f _Tiþ1gÞ ¼ bfF iþ1g ð16:8:13bÞ

Next we add Eqs. (16.8.13a and b) together to obtain

½M�½ð1� bÞf _Tig þ bf _Tiþ1g� þ ½K �½ð1� bÞfTig þ bfTiþ1g�
¼ ð1� bÞfF ig þ bfF iþ1g ð16:8:14Þ

Now, using Eq. (16.8.11), we can eliminate the time derivative terms from Eq.
(16.8.14) to write

½M�ðfTiþ1g�fTigÞ
Dt

þ ½K �½ð1� bÞfTig þ bfTiþ1g� ¼ ð1� bÞfF ig þ bfF iþ1g ð16:8:15Þ

Rewriting Eq. (16.8.15) by grouping the fTiþ1g terms on the left side, we have

1

Dt
½M � þ b½K �

� 
fTiþ1g

¼ 1

Dt
½M � � ð1� bÞ½K �

� �
fTig þ ð1� bÞfF ig þ bfF iþ1g ð16:8:16Þ

The time integration to solve for ½T � begins as follows. Given a known initial temperature
fT0g at time t ¼ 0 and a time step Dt, we solve Eq. (16.8.16) for fT1g at t ¼ Dt. Then,
using fT1g, we determine fT2g at t ¼ 2ðDtÞ, and so on. For a constant Dt, the left-side
coefficient of fTiþ1g need be evaluated only one time (assuming ½M � and ½K � do not
vary with time). The matrix Eq. (16.8.16) can then be solved in the usual manner, such
as by Gauss elimination. For a one-dimensional heat-transfer analysis, element ½k� is
given by Eqs. (13.4.22) and (13.4.28), whereas f f g is given by Eqs. (13.4.26) and (13.4.29).

It has been shown that depending on the value of b, the time step Dt may have an
upper limit for the numerical analysis to be stable. If b < 1

2, the largest Dt for stability
as shown in Reference [12] is

Dt ¼ 2

ð1� 2bÞlmax
ð16:8:17Þ

where lmax is the largest eigenvalue of

ð½K � � l½M �ÞfT 0g ¼ 0 ð16:8:18Þ
in which, as in Eq. (16.4.2), we have

fTðtÞg ¼ fT 0geilt ð16:8:19Þ
with fT 0g representing the natural modes. If b � 1

2, the numerical analysis is uncondi-
tionally stable; that is, stability of solution (but not accuracy) is guaranteed for Dt

greater than that given by Eq. (16.8.17), or as Dt becomes indefinitely large. Various
numerical integration methods result, depending on specific values of b:

b ¼ 0: Forward difference, or Euler [3], which is said to be conditionally
stable (that is, Dt must be no greater than that given by
Eq. (16.8.17) to obtain a stable solution).
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b ¼ 1
2: Crank-Nicolson, or trapezoid, rule, which is unconditionally stable.

b ¼ 2
3: Galerkin, which is unconditionally stable.

b ¼ 1: Backward difference, which is unconditionally stable.

If b ¼ 0, the numerical integration method is called explicit; that is, we can solve
for fTiþ1g directly at time Dt knowing only previous information at t ¼ fTig. If
b > 0, the method is called implicit. If a diagonal mass-type matrix ½M � exists and
b ¼ 0, the computational effort for each time step is small (see Example 16.4, where
a lumped-mass matrix was used), but so must be Dt. The choice of b > 1

2 is often
used. However, if b ¼ 1

2 and sharp transients exist, the method generates spurious oscil-
lations in the solution. Using b > 1

2, along with smaller Dt [12], is probably better. Ex-
ample 16.7 illustrates the solution of a one-dimensional time-dependent heat-transfer
problem using the numerical time integration scheme [Eq. (16.8.16)].

Example 16.7

A circular fin (Figure 16–23) is made of pure copper with a thermal conductivity of
Kxx ¼ 400 W/(m � 	C), h ¼ 150 W/(m2 � 	C), mass density r ¼ 8900 kg/m3, and spe-
cific heat c ¼ 375 J/(kg � 	C) (1 J ¼ 1 W � s). The initial temperature of the fin is
25 	C. The fin length is 2 cm, and the diameter is 0.4 cm. The right tip of the fin is
insulated. The base of the fin is then suddenly increased to a temperature of 85 	C
and maintained at this temperature. Use the consistent form of the capacitance ma-
trix, a time step of 0.1 s, and b ¼ 2

3. Use two elements of equal length. Determine the
temperature distribution up to 3 s.

SOLUTION:
Using Eq. (13.4.22), the stiffness matrix is

½kð1Þ� ¼ ½kð2Þ� ¼ AKxx

L

1 2

1 �1

�1 1

� �
þ hPL

6

2 3

2 1
1 2

� �

½kð1Þ� ¼ ½kð2Þ� ¼ pð0:004Þ2ð400Þ
4ð0:01Þ

1 �1

�1 1

� �
þ 150ð2pÞð0:002Þð0:01Þ

6

2 1

1 2

� �

ð16:8:20Þ

Figure 16–23 Rod subjected to time-dependent temperature
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Assembling the element stiffness matrices, Eq. (16.8.20), we obtain the global stiffness
matrix as

½K � ¼

1 2 3

0:50894 �0:49951 0

�0:49951 1:01788 �0:49951

0 �0:49951 0:50894

2
4

3
5W
	C

ð16:8:21Þ

Using Eq. (13.4.25), we obtain each element force matrix as

f f
ð1Þ
h g ¼ f f

ð2Þ
h g ¼

hTyPL

2

1

1

( )
¼ ð150Þð25 	CÞð2pÞð0:002Þð0:01Þ

2

1

1

( )

f f
ð1Þ
h g ¼ f f

ð2Þ
h g ¼

0:23561

0:23561

( )
ð16:8:22Þ

Using Eq. (16.8.22), we find that the assembled global force matrix is

fFg ¼
0:23561

0:47122

0:23561

8<
:

9=
; W ð16:8:23Þ

Next using Eq. (16.8.9), we obtain each element mass (capacitance) matrix as

½m� ¼ crAL

6

2 1

1 2

� �

½mð1Þ� ¼ ½mð2Þ� ¼
ð375Þð8900Þ pð0:004Þ2

4
ð0:01Þ

6

2 1

1 2

" #

¼ 0:06990
2 1

1 2

" #
W � s=	C ð16:8:24Þ

Using Eq. (16.8.24), the assembled capacitance matrix is

½M� ¼

1 2 32
64

0:13980 0:06990 0

0:06990 0:27960 0:06990

0 0:06990 0:13980

3
75W � s
	C

ð16:8:25Þ

Using Eq. (16.8.16) and Eqs. (16.8.21) and (16.8.25), we obtain

1

Dt
½M� þ b½K �

� 
¼

2
64

1:7374 0:36603 0

0:36603 3:4747 0:36603

0 0:36603 1:7374

3
75W
	C

ð16:8:26Þ

16.8 Time-Dependent Heat Transfer d 807

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Dt
½M� � ð1� bÞ½K �

� �
¼

2
64

1:2280 0:8655 0

0:8655 2:457 0:8655

0 0:8655 1:2280

3
75W
	C

ð16:8:27Þand

where b ¼ 2
3 and Dt ¼ 0:1 s have been used to obtain Eqs. (16.8.26) and (16.8.27). For

the first time step, t ¼ 0:1 s, we then use Eqs. (16.8.23), (16.8.27), and (16.8.26) in

Table 16–4 Nodal temperatures at various times
for Example 16.7

Temperature of Node Numbers (	C)

Time (s) 1 2 3

0.1 85 18.534 26.371
0.2 85 29.732 21.752
0.3 85 36.404 22.662
0.4 85 41.032 25.655
0.5 85 44.665 29.312
0.6 85 47.749 33.059
0.7 85 50.482 36.669
0.8 85 52.956 40.062
0.9 85 55.218 43.218
1.0 85 57.296 46.139
1.1 85 59.208 48.837
1.2 85 60.969 51.327
1.3 85 62.593 53.623
1.4 85 64.089 55.741
1.5 85 65.469 57.693
1.6 85 66.742 59.493
1.7 85 67.915 61.152
1.8 85 68.996 62.683
1.9 85 69.993 64.094
2.0 85 70.912 65.395
2.1 85 71.760 66.594
2.2 85 72.542 67.700
2.3 85 73.262 68.720
2.4 85 73.926 69.660
2.5 85 74.539 70.527
2.6 85 75.104 71.326
2.7 85 75.624 72.063
2.8 85 76.104 72.742
2.9 85 76.547 73.368
3.0 85 76.955 73.946
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Eq. (16.8.16) to obtain2
664

1:7374 0:36603 0

0:36603 3:4747 0:36603

0 0:36603 1:7374

3
775

8>><
>>:

85 	C

t2

t3

9>>=
>>;

¼

2
664

1:2280 0:8655 0

0:8655 2:457 0:8655

0 0:8655 1:2280

3
775

8>><
>>:

25 	C

25 	C

25 	C

9>>=
>>;
þ

8>><
>>:

0:23561

0:47122

0:23561

9>>=
>>;

ð16:8:28Þ

In Eq. (16.8.28), we should note that because fF ig ¼ fF iþ1g for all time, the sum of the
terms is ð1� bÞfF ig þ bfF iþ1g ¼ fF ig for all time. This is the column matrix on the
right side of Eq. (16.8.28). We now solve Eq. (16.8.28) in the usual manner by partition-
ing the second and third equations of Eq. (16.8.28) from the first equation and solving
the second and third equations simultaneously for t2 and t3. The results are

t2 ¼ 18:534 	C t3 ¼ 26:371 	C

At time t ¼ 0:2 s, Eq. (16.8.28) becomes2
664

1:7374 0:36603 0

0:36603 3:4747 0:36603

0 0:36603 1:7374

3
775

8>><
>>:

85 	C

t2

t3

9>>=
>>;

¼

2
664

1:2280 0:8655 0

0:8655 2:457 0:8655

0 0:8655 1:2280

3
775

8>><
>>:

85 	C

18:534 	C

26:371 	C

9>>=
>>;
þ

8>><
>>:

0:23561

0:47122

0:23561

9>>=
>>;

ð16:8:29Þ

Figure 16–24 Temperature as a function of time for nodes 2 and 3 of Example 16.7

16.8 Time-Dependent Heat Transfer d 809

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Solving Eq. (16.8.29) for t2 and t3, we obtain

t2 ¼ 29:732 	C t3 ¼ 21:752 	C

The results through a time of 3 s are tabulated in Table 16–4 and plotted in
Figure 16–24. 9

d 16.9 Computer Program Example Solutions
for Structural Dynamics

d

In this section, we report some results of structural dynamics from a computer pro-
gram. We report the results of the natural frequencies of a fixed-fixed beam using the
plane stress element in Algor [15] and compare how many elements of this type are
necessary to obtain correct results. We also report the results of three structural
dynamics problems, a bar, a beam, and a frame subjected to time-dependent loadings.

Finally, we show two additional models, one of a time-dependent three-dimensional
gantry crane made of beam elements and subjected to an impact loading, and the other of
a cab frame that travels along the underside of a crane beam.

Figure 16–25 shows a fixed-fixed steel beam used for natural frequency determi-
nation using plane stress elements. Table 16–5 shows the results of the first five natural
frequencies using 100 elements and then using 1000 elements. Comparisons to the an-
alytical solutions from beam theory are shown. We observe that it takes a large num-
ber of plane stress elements to accurately predict the natural frequencies whereas it

Figure 16–25 Fixed-fixed beam for natural frequency determination modeled using
plane stress element

Table 16–5 Results for first five frequencies using 100 and 1000 elements
and exact solution

o (rad/s) Analytical 100 Elements 1000 Elements

1 130.8 130.7 130.6
2 360.8 359.8 359.7
3 707.3 704.7 704.1
4 1169.2 1163.3 1161.6
5 1746.6 1734.5 1731.0
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only took a few beam elements to accurately predict natural frequencies (see Example
16.6 and Table 16–3).

Figure 16–26 shows a steel bar subjected to a time-dependent forcing function.
Using two elements in the model, the nodal displacements at nodes 2 and 3 are pre-
sented in Table 16–6. A time step of integration of 0.00025 s was used. This time
step is based on that recommended by Eq. (16.5.1) and determined in Example 16.4,
as the bar has the same properties as that of Example 16.4.

Figure 16–27 shows a plot of the axial displacement of the free end node 3 versus
time up to 0.01 s. Notice the oscillatory motion due to damping being neglected.

Table 16–6 lists the largest maximum absolute displacement of 7:646� 10�3 in.
at time of 0.00425 s. For comparison, the maximum static deflection from
(d ¼ PL=AE ¼ (1000 lb)(200 in.)/(1 in2 � 30� 106 psi) ¼ 6:667� 10�3 in.).

Figure 16–28 shows a fixed-fixed beam subjected to a forcing function. Here
E ¼ 6:58� 106 psi, I ¼ 100 in4, mass density of 0.1 lb-s2/in4 and a time step of in-
tegration of 0.001 s were used for the beam. The natural frequencies are shown in
Table 16–7.

Table 16–7 lists the first six natural frequencies for the fixed-fixed beam. The nat-
ural frequencies 1, 2, 3, and 6 are flexural modes, while mode 5 is an axial mode. These
modes are seen by looking at the modes from a frequency analysis. The undamped re-
sponse of the center node 3 is shown in Figure 16–29 along with a damped response
subsequently described. The maximum displacement under the load (at node 3) com-
pares with the solution in Reference [14]. This maximum displacement is at node 3 at a
time of 0.073 s with a value of 1.243 in. The static deflection for the beam with a con-
centrated load at mid-span is 0.633 in. as obtained from the classical solution of
y ¼ PL3/192EI . The undamped time-dependent response oscillates about zero deflec-
tion after the load is removed while the damped response oscillates in a damped man-
ner approaching zero deflection.

A time step of 0.001 was used in the fixed-fixed beam as it meets the recom-
mended time step as suggested in Section 16.3. That is, Dt < Tn/10 to Tn/20 is rec-
ommended to provide accurate results for Wilson’s direct integration scheme
as used in the Algor program. From the frequency analysis (see the output in
Table 16–7), the circular frequency o6 ¼ 197:52 or the natural frequency is
f6 ¼ o6=ð2pÞ ¼ 31:44 cycles/s or Hertz (Hz). Now we use Dt ¼ Tn/20 ¼ 1/
ð20f6Þ ¼ 1/½20ð31:43Þ� ¼ 0:00159 s. Therefore, Dt ¼ 0:001 s is acceptable. Using a

Figure 16–26 Bar subjected to forcing function shown
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time step greater than Tn/10 may result in loss of accuracy as some of the higher
mode response contributions to the solution may be missed. Often times a cut-off
period or frequency is used to decide what largest natural frequency to use in the
analysis. In many applications only a few lower modes contribute significantly to

Table 16–6 Displacement time history, nodes 2 and 3
of Figure 16–26

*NODE NUMBER* - (COMPONENT NUMBER)
TIME 2-( 2) 3-( 2)

.00025 4.410E-06 6.156E-05

.00050 4.600E-05 4.668E-04

.00075 2.147E-04 1.425E-03

.00100 6.507E-04 2.967E-03

.00125 1.481E-03 4.873E-03

.00150 2.699E-03 6.439E-03

.00175 4.061E-03 7.143E-03

.00200 5.109E-03 6.860E-03

.00225 5.349E-03 5.793E-03

.00250 4.501E-03 4.385E-03

.00275 2.670E-03 2.862E-03

.00300 3.265E-04 1.141E-03

.00325 -1.907E-03 -9.441E-04

.00350 -3.538E-03 -3.354E-03

.00375 -4.376E-03 -5.694E-03

.00400 -4.530E-03 -7.319E-03

.00425 -4.232E-03 -7.646E-03

.00450 -3.645E-03 -6.463E-03

.00475 -2.772E-03 -4.057E-03

.00500 -1.514E-03 -1.083E-03

.00525 1.599E-04 1.740E-03

.00550 2.082E-03 3.921E-03

.00575 3.867E-03 5.313E-03

.00600 5.055E-03 6.021E-03

.00625 5.312E-03 6.185E-03

.00650 4.583E-03 5.814E-03

.00675 3.106E-03 4.776E-03

.00700 1.282E-03 2.947E-03

.00725 -5.031E-04 4.073E-04

.00750 -2.015E-03 -2.460E-03

.00775 -3.183E-03 -5.051E-03

.00800 -4.013E-03 -6.763E-03

.00825 -4.477E-03 -7.233E-03

.00850 -4.466E-03 -6.464E-03

.00875 -3.838E-03 -4.770E-03

.00900 -2.542E-03 -2.594E-03

.00925 -7.098E-04 -3.179E-04

MAXIMUM ABSOLUTE VALUES

MAXIMUM 5.349E-03 7.646E-03
TIME 2.250E-03 4.250E-03
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Figure 16–27 Node 3 displacement versus time for bar of Figure 16–26

Figure 16–28 Fixed-fixed beam subjected to forcing function

Table 16–7 Natural frequencies and displacement
time history (nodes 2 and 3, Figure 16–28)

Frequencies = 6
mode
number

circular
frequency
(rad/sec)

1 4.52276232074113D+01
2 4.52276232074113D+01
3 1.20159893475319D+02
4 1.20159893475319D+02
5 1.24168832797688D+02
6 1.97518763916263D+02
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the response. The higher modes are then not necessary. The highest frequency used
in the analysis is called the cut-off frequency. For machinery parts, the cut-off fre-
quency is often taken as high as 250 Hz. In the fixed-fixed beam, we have selected a
cut-off frequency of f6 ¼ 31:44 Hz in determining the time step of integration. This
frequency is the highest flexural mode frequency computed for the four-element
beam model.

Damping

Damping is considered in the fixed-fixed beam example. Computer programs,
such as Algor and ANSYS, allow you to consider damping using Rayleigh damp-
ing in the direct integration method. For Rayleigh damping, the damping
matrix is

½C� ¼ a½M� þ b½K � (16.9.1)

where the constants a and b are calculated from the system equations

aþ bo2
i ¼ 2oizi (16.9.2)
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Figure 16–29 Undamped and damped response of center node 3 for fixed-fixed
beam of Figure 16–28
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where oi are circular natural frequencies obtained through modal analysis, and zi

are damping ratios specified by the analyst. For instance, assuming we assign damping
ratios z1 and z2, from the above Eq. (16.9.2), we can show that a and b are

a ¼ 2o1o2

o2
2 � o2

1

ðo2z1 � o1z2Þ b ¼ 2

o2
2 � o2

1

ðo2z2 � o1z1Þ ð16:9:3Þ

For b ¼ 0, ½C� ¼ a½M� and the higher modes are only slightly damped, while for
a ¼ 0, ½C� ¼ b½K � and higher modes are heavily damped. To obtain a and b, we

Figure 16–30 (a) Six-member plane frame; (b) dynamic load
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then necessarily run the modal analysis program first to obtain the frequencies.
For instance, in the fixed-fixed beam, the first two different frequencies are
o1 ¼ 45:23 rad/s and o3 ¼ 120:16 rad/s (o2 is the same as o3, so use o3). Now as-
sume light damping ðzU 0:05Þ. Therefore, let z1 ¼ z2 ¼ 0:05: Using these o’s and
z’s, in Eqs. (16.9.3), we obtain a ¼ 3:286 and b ¼ 0:000605: These values were used
for a and b in the damped response for the fixed-fixed beam to include 5% damping
(z ¼ 0:05Þ:

Figure 16–30(a) shows a plane frame consisting of six rigidly connected pris-
matic members with dynamic forces FðtÞ and 2FðtÞ applied in the x direction at joints
6 and 4, respectively. The time variation of FðtÞ is shown in Figure 16–30(b). The
results are for steel with cross-sectional area of 30 in2, moment of inertia
of 1000 in4, L ¼ 50 in., and F1 ¼ 10; 000 lb. Figure 16–31 shows the displaced
frame for the worst stress at time of 0.035 s. The largest x displacement of node 6
for the time of 0.035 s is 0.1551 inch. This value compares closely with the solution
in Reference [16].

Finally, Figures 16–32(a) and 16–33(a) show models of a gantry crane and a cab
frame subjected to dynamic loading functions [Figures 16–32(b) and (16–33(b)]. For
details of these design solutions consult [17–18].

Figure 16–31 Displaced frame with worst stress at time 0.035 s

816 d 16 Structural Dynamics and Time-Dependent Heat Transfer

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



0.1 0.4 0.6
Time, t (sec)

5400

F(t), lb

(b)

(a)

4

5

13

30

31

32

20

19

22
18

F(t)

F(t) 24
2625

28
29 27

39

40

Y

Z

1

9

17

7 6

3

8

2

11
12

1415

10

16

21 33

34

35

36

41

43

44

45 38

65

67

70

73

71
62

61

72

58
60

59

57

56
55 64

54

37

52
53

50
51

42
49

6863

69

Finite Element Analysis of Gantry Crane

23

48

46

1

x

Figure 16–32 (a) Gantry crane model composed of 73 beam elements and
(b) the time-dependent trapezoidal loading function applied to the top edge
of the crane [17]
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Figure 16–33 (a) Finite element model of a cab with 8 plate elements (upper right
triangular elements) and 15 beam elements and (b) the time-dependent trapezoidal
loading applied to node 10 [18]
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d Summary Equations

Equation of motion for spring-mass system:

m€xþ kx ¼ FðtÞ ð16:1:2Þ

Natural circular frequency:

o2 ¼ k

m
ð16:1:3Þ

Period of vibration:

t ¼ 2p

o
ð16:1:5Þ

Stiffness matrix for bar:

½k� ¼ AE

L

u1 u2

1 �1
�1 1

� �
ð16:2:11Þ

Lumped-mass matrix for bar:

½m� ¼ rAL

2

u1 u2

1 0
0 1

� �
ð16:2:12Þ

Consistent-mass matrix for bar:

½m� ¼ rAL

6

2 1

1 2

� �
ð16:2:23Þ

Global equations of motion:

fFðtÞg ¼ ½K �fdg þ ½M�f €dg ð16:2:24Þ

Central difference numerical integration equations for velocity and acceleration:

f _dig ¼
fdiþ1g � fdi�1g

2Dt
ð16:3:1Þ

f €dig ¼
_fdiþ1g � f _di�1g

2Dt
ð16:3:2Þ

For a flowchart for the central difference method, see Figure 16–6.

Newmark’s equations for numerical integration:

f _diþ1g ¼ f _dig þ ðDtÞ½ð1� gÞf €dig þ gf €diþ1g� ð16:3:9Þ

fdiþ1g ¼ fdig þ ðDtÞf _dig þ ðDtÞ2½ð12� bÞf €dig þ bf €diþ1g� ð16:3:10Þ
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For a flowchart of Newmark’s method, see Figure 16–8.

Wilson’s equations for numerical integration:

f _diþ1g ¼ f _dig þ
YDt

2
ðf €diþ1g þ f €digÞ ð16:3:15Þ

fdiþ1g ¼ fdig þYDtf _dig þ
Y2ðDtÞ2

6
ðf €diþ1g þ 2f €digÞ ð16:3:16Þ

Determinant to determine natural frequencies:

j½K � � o2Mj ¼ 0 ð16:4:7Þ

Time step recommended using central difference method:

Dt � 3

4

2

omax

� 
ð16:5:1Þ

Beam element lumped mass matrix:

v1 f1 v2 f2

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

½m� ¼ rAL

2

2
6664

3
7775 (16.6.1)

Beam element consistent mass matrix:

½m� ¼ rAL

420

v1 f1 v2 f2

156 22L 54 �13L

22L 4L2 13L �3L2

54 13L 156 �22L

�13L �3L2 �22L 4L2

2
664

3
775 ð16:6:5Þ

First natural frequency for beam based on classical beam theory solution:

Fixed-fixed beam:

o ¼ 5:59

L2

EI

Ar

� 1=2

ð16:6:9Þ

Fixed-free beam:

o ¼ 3:516

L2

EI

rA

� 1=2

ð16:6:20Þ
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Truss element consistent mass matrix:

u1 v1 u2 v2

2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2

½m0� ¼ rAL

6

2
6664

3
7775 (16.7.4)

Truss element lumped mass matrix:
u1 v1 u2 v2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

½m0� ¼ rAL

2

2
6664

3
7775 (16.7.5)

Plane frame consistent element mass matrix:

½m0� ¼ rAL

u1 v1 f1 u2 v2 f2

2=6 0 0 1=6 0 0
156=420 22L=420 0 54=420 �13L=420

4L2=420 0 13L=420 �3L2=420
2=6 0 0

156=420 �22L=420
Symmetry 4L2=420

2
6666664

3
7777775
ð16:7:6Þ

Plane frame lumped mass matrix:

u 01 v 01 f 01 u 02 v 02 f 02
1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

½m0�¼ rAL

2

2
666666664

3
777777775

(16.7.7)

Constant strain triangle consistent mass matrix:

½m� ¼ rtA

12

u1 v1 u2 v2 u3 v3

2 0 1 0 1 0
2 0 1 0 1

2 0 1 0
2 0 1

2 0
Symmetry 2

2
6666664

3
7777775

ð16:7:9Þ
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Axisymmetric element consistent mass matrix:

u1 v1 u2 v2 u3 v3

½m� ¼ prA

10

2
66666666666666666664

4

3
r1 þ 2r 0 2r� r3

3
0 2r� r2

3
0

4

3
r1 þ 2r 0 2r� r3

3
0 2r� r2

3
4

3
r2 þ 2r 0 2r� r1

3
0

4

3
r2 þ 2r 0 2r� r1

3
4

3
r3 þ 2r 0

4

3
r3 þ 2r

3
77777777777777777775

ð16:7:14Þ

Symmetry

r ¼ r1 þ r2 þ r3

3
where

Tetrahedral solid element consistent mass matrix:

u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4

½m� ¼ rV

20

2
66666666666666666666664

2 0 0 1 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0 0 1 0

2 0 0 1 0 0 1 0 0 1

2 0 0 1 0 0 1 0 0

2 0 0 1 0 0 1 0

2 0 0 1 0 0 1

2 0 0 1 0 0

2 0 0 1 0

2 0 0 1

2 0 0

2 0

2

3
77777777777777777777775

ð16:7:15Þ

Symmetry

One-dimensional bar element consistent mass matrix for heat transfer:

½m� ¼ crAL

6

t1 t2

2 1
1 2

� �
ð16:8:9Þ

One-dimensional bar element lumped mass matrix for heat transfer:

½m� ¼ crAL

2

t1 t2

1 0
0 1

� �
ð16:8:10Þ
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Global form of time-dependent heat transfer equation:

fFg ¼ ½K �fTg þ ½M�f _Tg ð16:8:12Þ

Upper limit time step for numerical analysis to be stable for heat transfer problem:

Dt ¼ 2

ð1� 2bÞlmax
ð16:8:17Þ
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d Problems

16.1 Determine the consistent-mass matrix for the one-dimensional bar discretized into two
elements as shown in Figure P16–1. Let the bar have modulus of elasticity E, mass
density r, and cross-sectional area A.

Figure P16–1 Figure P16–2

16.2 For the one-dimensional bar discretized into three elements as shown in Figure P16–2,
determine the lumped- and consistent-mass matrices. Let the bar properties be E; r,
and A throughout the bar.

16.3 For the one-dimensional bar shown in Figure P16–3, determine the natural frequencies
of vibration, o’s, using two elements of equal length. Use the consistent-
mass approach. Let the bar have modulus of elasticity E, mass density r, and cross-
sectional area A. Compare your answers to those obtained using a lumped-mass
matrix in Example 16.3.

Figure P16–3 Figure P16–4

16.4 For the one-dimensional bar shown in Figure P16–4, determine the natural fre-
quencies of longitudinal vibration using first two and then three elements of equal
length. Let the bar have E ¼ 30� 106 psi, r ¼ 0:00073 lb-s2/ in4, A ¼ 1 in2, and
L ¼ 60 in.

16.5 For the spring-mass system shown in Figure P16–5, determine the mass displacement,
velocity, and acceleration for five time steps using the central difference method. Let
k ¼ 2000 lb/ft and m ¼ 2 slugs. Use a time step of Dt ¼ 0:03 s. You might want to
write a computer program to solve this problem.
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Figure P16–5

16.6 For the spring-mass system shown in Figure P16–6, determine the mass displacement,
velocity, and acceleration for five time steps using (a) the central difference method,
(b) Newmark’s time integration method, and (c) Wilson’s method. Let k ¼ 1200 lb/ft
and m ¼ 2 slugs.

Figure P16–6

16.7 For the bar shown in Figure P16–7, determine the nodal displacements, velocities,
and accelerations for five time steps using two finite elements. Let E ¼ 30� 106 psi,
r ¼ 0:00073 lb-s2/in4, A ¼ 1 in2, and L ¼ 100 in.

Figure P16–7

16.8 For the bar shown in Figure P16–8, determine the nodal displacements, velocities,
and accelerations for five time steps using two finite elements. For simplicity of
calculations, let E ¼ 1� 106 psi, r ¼ 1 lb-s2/in4, A ¼ 1 in2, and L ¼ 100 in. Use
Newmark’s method and Wilson’s method.
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Figure P16–8

16.9,

16.10

Rework Problems 16.7 and 16.8 using a computer program.

16.11 For the beams shown in Figure P16–11, determine the natural frequencies using first
two and then three elements. Let E; r, and A be constant for the beams.

Figure P16–11

16.12 Rework Problem 16.11 using a computer program with E ¼ 3� 107 psi, r ¼
0:00073 lb-s2/in4, A ¼ 1 in2, L ¼ 100 in., and I ¼ 0:0833 in4.

16.13,

16.14

For the beams in Figures P16–13 and P16–14 subjected to the forcing functions
shown, determine the maximum deflections, velocities, and accelerations. Use a com-
puter program.
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Figure P16–13

Figure P16–14

16.15,

16.16

For the rigid frames in Figures P16–15 and P16–16 subjected to the forcing functions
shown, determine the maximum displacements, velocities, and accelerations. Use a
computer program.

Figure P16–15
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Figure P16–16

16.17 A marble slab with k ¼ 2 W/(m � 	C), r ¼ 2500 kg/m3, and c ¼ 800 W � s/(kg � 	C) is
2 cm thick and at an initial uniform temperature of Ti ¼ 200 	C. The left surface is
suddenly lowered to 0 	C and is maintained at that temperature while the other sur-
face is kept insulated. Determine the temperature distribution in the slab for 40 s. Use
b ¼ 2

3 and a time step of 8 s.

16.18 A circular fin is made of pure copper with a thermal conductivity of k ¼ 400 W/(m � 	C),
h ¼ 150 W/(m2 � 	C), mass density r ¼ 8900 kg/m3, and specific heat c ¼ 375 J/(kg � 	C).
The initial temperature of the fin is 25 	C. The fin length is 2 cm and the diameter is
0.4 cm. The right tip of the fin is insulated. See Figure P16–18. The base of the fin is
then suddenly increased to a temperature of 85 	C and maintained at this tempera-
ture. Use the lumped form of the capacitance matrix, a time step of 0.1 s, and b ¼ 2

3.
Use two elements of equal length. Determine the temperature distribution up to 3 s.
Compare your results with Example 16.7, which used the consistent form of the
capacitance matrix.

Figure P16–18

16.19,

16.20

Rework Problems 16.17 and 16.18 using a computer program.
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MATRIX ALGEBRAd

Introduction

In this appendix, we provide an introduction to matrix algebra. We will consider the
concepts relevant to the finite element method to provide an adequate background
for the matrix algebra concepts used in this text.

d A.1 Definition of a Matrix d
A matrix is an m� n array of numbers arranged in m rows and n columns. The matrix
is then described as being of order m� n. Equation (A.1.1) illustrates a matrix with
m rows and n columns.

½a� ¼

a11 a12 a13 a14 . . . a1n

a21 a22 a23 a24 . . . a2n

a31 a32 a33 a34 . . . a3n

..

. ..
. ..

. ..
. ..

.

am1 am2 am3 am4 . . . amn

2
6666664

3
7777775

ðA:1:1Þ

If m0 n in matrix Eq. (A.1.1), the matrix is called rectangular. If m ¼ 1 and
n > 1, the elements of Eq. (A.1.1) form a single row called a row matrix. If m > 1
and n ¼ 1, the elements form a single column called a column matrix. If m ¼ n, the
array is called a square matrix. Row matrices and rectangular matrices are denoted
by using brackets ½ �, and column matrices are denoted by using braces f g. For sim-
plicity, matrices (row, column, or rectangular) are often denoted by using a line
under a variable instead of surrounding it with brackets or braces. The order of
the matrix should then be apparent from the context of its use. The force and displace-
ment matrices used in structural analysis are column matrices, whereas the stiffness
matrix is a square matrix.

To identify an element of matrix ½a�, we represent the element by aij, where the
subscripts i and j indicate the row number and the column number, respectively, of
½a�. Hence, alternative notations for a matrix are given by

½a� ¼ ½aij� ðA:1:2Þ
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Numerical examples of special types of matrices are given by Eqs. (A.1.3)
through (A.1.6). A rectangular matrix ½a� is given by

½a� ¼

2
64

2 1

3 4

5 4

3
75 ðA:1:3Þ

where ½a� has three rows and two columns. In matrix ½a� of Eq. (A.1.1), if m ¼ 1, a
row matrix results, such as

½a� ¼ ½2 3 4 �1� ðA:1:4Þ

If n ¼ 1 in Eq. (A.1.1), a column matrix results, such as

½a� ¼ 2

3

� �
ðA:1:5Þ

If m ¼ n in Eq. (A.1.1), a square matrix results, such as

½a� ¼ 2 �1

3 �2

� �
ðA:1:6Þ

Matrices and matrix notation are often used to express algebraic equations in
compact form and are frequently used in the finite element formulation of equations.
Matrix notation is also used to simplify the solution of a problem.

d A.2 Matrix Operations d
We will now present some common matrix operations that will be used in this text.

Multiplication of a Matrix by a Scalar

If we have a scalar k and a matrix ½c�, then the product ½a� ¼ k½c� is given by

½aij� ¼ k½cij� ðA:2:1Þ

—that is, every element of the matrix ½c� is multiplied by the scalar k. As a numerical
example, consider

½c� ¼ 1 2

3 1

� �
k ¼ 4

The product ½a� ¼ k½c� is

½a� ¼ 4
1 2

3 1

� �
¼ 4 8

12 4

� �

Note that if ½c� is of order m� n, then ½a� is also of order m� n.
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Addition of Matrices

Matrices of the same order can be added together by summing corresponding ele-
ments of the matrices. Subtraction is performed in a similar manner. Matrices of
unlike order cannot be added or subtracted. Matrices of the same order can be
added (or subtracted) in any order (the commutative law for addition applies). That is,

½c� ¼ ½a� þ ½b� ¼ ½b� þ ½a� ðA:2:2Þ

or, in subscript (index) notation, we have

½cij� ¼ ½aij� þ ½bij� ¼ ½bij� þ ½aij� ðA:2:3Þ

As a numerical example, let

½a� ¼ �1 2

�3 2

� �
½b� ¼ 1 2

3 1

� �

The sum ½a� þ ½b� ¼ ½c� is given by

½c� ¼ �1 2

�3 2

� �
þ 1 2

3 1

� �
¼ 0 4

0 3

� �

Again, remember that the matrices ½a�, ½b�, and ½c� must all be of the same order. For
instance, a 2� 2 matrix cannot be added to a 3� 3 matrix.

Multiplication of Matrices

For two matrices ½a� and ½b� to be multiplied in the order shown in Eq. (A.2.4), the
number of columns in ½a� must equal the number of rows in ½b�. For example, consider

½c� ¼ ½a�½b� ðA:2:4Þ

If ½a� is an m� n matrix, then ½b� must have n rows. Using subscript notation, we can
write the product of matrices ½a� and ½b� as

½cij� ¼
Xn

e¼1

aiebej ðA:2:5Þ

where n is the total number of columns in ½a� or of rows in ½b�. For matrix ½a� of order
2� 2 and matrix ½b� of order 2� 2, after multiplying the two matrices, we have

½cij� ¼
a11b11 þ a12b21 a11b12 þ a12b22

a21b11 þ a22b21 a21b12 þ a22b22

� �
ðA:2:6Þ

For example, let

½a� ¼ 2 1

3 2

� �
½b� ¼ 1 �1

2 0

� �

The product ½a�½b� is then

½a�½b� ¼ 2ð1Þ þ 1ð2Þ 2ð�1Þ þ 1ð0Þ
3ð1Þ þ 2ð2Þ 3ð�1Þ þ 2ð0Þ

� �
¼ 4 �2

7 �3

� �
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In general, matrix multiplication is not commutative; that is,

½a�½b�0 ½b�½a� ðA:2:7Þ

The validity of the product of two matrices ½a� and ½b� is commonly illustrated by

½a�
ði � eÞ

½b�
ðe� jÞ

¼ ½c�
ði � jÞ ðA:2:8Þ

where the product matrix ½c� will be of order i � j; that is, it will have the same num-
ber of rows as matrix ½a� and the same number of columns as matrix ½b�.

Transpose of a Matrix

Any matrix, whether a row, column, or rectangular matrix, can be transposed. This
operation is frequently used in finite element equation formulations. The transpose
of a matrix ½a� is commonly denoted by ½a�T . The superscript T is used to denote the
transpose of a matrix throughout this text. The transpose of a matrix is obtained by
interchanging rows and columns; that is, the first row becomes the first column, the
second row becomes the second column, and so on. For the transpose of matrix ½a�,

½aij� ¼ ½aji�T ðA:2:9Þ
For example, if we let

½a� ¼

2
64

2 1

3 2

4 5

3
75

½a�T ¼ 2 3 4

1 2 5

� �
then

where we have interchanged the rows and columns of ½a� to obtain its transpose.
Another important relationship that involves the transpose is

ð½a�½b�ÞT ¼ ½b�T ½a�T ðA:2:10Þ

That is, the transpose of the product of matrices ½a� and ½b� is equal to the transpose of
the latter matrix ½b� multiplied by the transpose of matrix ½a� in that order, provided
the order of the initial matrices continues to satisfy the rule for matrix multiplication,
Eq. (A.2.8). In general, this property holds for any number of matrices; that is,

ð½a�½b�½c� . . . ½kÞ�T ¼ ½k�T . . . ½c�T ½b�T ½a�T ðA:2:11Þ

Note that the transpose of a column matrix is a row matrix.
As a numerical example of the use of Eq. (A.2.10), let

½a� ¼ 1 2

3 4

� �
½b� ¼ 5

6

� �

½a�½b� ¼ 1 2

3 4

� �
5

6

� �
¼ 17

39

� �
First,

ð½a�½b�ÞT ¼ ½17 39� ðA:2:12ÞThen,
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Because ½b�T and ½a�T can be multiplied according to the rule for matrix multiplica-
tion, we have

½b�T ½a�T ¼ ½5 6� 1 3

2 4

� �
¼ ½17 39� ðA:2:13Þ

Hence, on comparing Eqs. (A.2.12) and (A.2.13), we have shown (for this case) the
validity of Eq. (A.2.10). A simple proof of the general validity of Eq. (A.2.10) is left
to your discretion.

Symmetric Matrices

If a square matrix is equal to its transpose, it is called a symmetric matrix; that is, if

½a� ¼ ½a�T

then ½a� is a symmetric matrix. As an example,

½a� ¼

2
64

3 1 2

1 4 0

2 0 3

3
75 ðA:2:14Þ

is a symmetric matrix because each element aij equals aji for i 0 j. In Eq. (A.2.14),
note that the main diagonal running from the upper left corner to the lower right cor-
ner is the line of symmetry of the symmetric matrix ½a�. Remember that only a square
matrix can be symmetric.

Unit Matrix

The unit (or identity) matrix ½I � is such that

½a�½I � ¼ ½I �½a� ¼ ½a� ðA:2:15Þ

The unit matrix acts in the same way that the number one acts in conventional
multiplication. The unit matrix is always a square matrix of any possible order with
each element of the main diagonal equal to one and all other elements equal to zero.
For example, the 3� 3 unit matrix is given by

½I � ¼

2
64

1 0 0

0 1 0

0 0 1

3
75

Inverse of a Matrix

The inverse of a matrix is a matrix such that

½a��1½a� ¼ ½a�½a��1 ¼ ½I � ðA:2:16Þ

where the superscript, �1, denotes the inverse of ½a� as ½a��1. Section A.3 provides
more information regarding the properties of the inverse of a matrix and gives a
method for determining it.
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Orthogonal Matrix

A matrix ½T � is an orthogonal matrix if

½T �T ½T � ¼ ½T �½T �T ¼ ½I � ðA:2:17Þ

Hence, for an orthogonal matrix, we have

½T ��1 ¼ ½T �T ðA:2:18Þ

An orthogonal matrix frequently used is the transformation or rotation matrix
½T �. In two-dimensional space, the transformation matrix relates components of a vec-
tor in one coordinate system to components in another system. For instance, the dis-
placement (and force as well) vector components of d expressed in the x-y system are
related to those in the x0-y0 system (Figure A–1 and Section 3.3) by

fd 0g ¼ ½T �fdg ðA:2:19Þ

d 0x
d 0y

( )
¼ cos y sin y

�sin y cos y

� �
dx

dy

� �
ðA:2:20Þor

where ½T � is the square matrix on the right side of Eq. (A.2.20).
Another use of an orthogonal matrix is to change from the local stiffness matrix

to a global stiffness matrix for an element. That is, given a local stiffness matrix ½k0�
for an element, if the element is arbitrarily oriented in the x-y plane, then

½k� ¼ ½T �T ½k0�½T � ¼ ½T ��1½k0�½T � ðA:2:21Þ

Equation (A.2.21) is used throughout this text to express the stiffness matrix ½k� in the
x-y plane.

By further examination of ½T �, we see that the trigonometric terms in ½T � can be
interpreted as the direction cosines of lines Ox 0 and Oy 0 with respect to the x-y axes.
Thus for Ox0 or d 0x , we have from Eq. (A.2.20)

ht11 t12i ¼ hcos y sin yi ðA:2:22Þ

y ′

d′x

x ′
d ′y

Figure A–1 Components of a vector in x0-y0 and x-y coordinates
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and for Oy 0 or d 0y, we have

ht21 t22i ¼ h�sin y cos yi ðA:2:23Þ

or unit vectors i and j can be represented in terms of unit vectors i0 and j0 [also see
Section 3.3 for proof of Eq. (A.2.24)] as

i0 ¼ i cos yþ j sin y
ðA:2:24Þ

j0 ¼ �i sin yþ j cos y

and hence

t2
11 þ t2

12 ¼ 1 t2
21 þ t2

22 ¼ 1 ðA:2:25Þ

and since these vectors ( i0 and j0 ) are orthogonal, by the dot product, we have

ht11iþ t12 ji . ht21iþ t22 ji

t11t21 þ t12t22 ¼ 0 ðA:2:26Þor

or we say ½T � is orthogonal and therefore ½T �T ½T � ¼ ½T �½T �T ¼ ½I � and that the trans-
pose is its inverse. That is,

½T �T ¼ ½T ��1 ðA:2:27Þ

Differentiating a Matrix

A matrix is differentiated by differentiating every element in the matrix in the conven-
tional manner. For example, if

½a� ¼
x3 2x2 3x

2x2 x4 x

3x x x5

2
64

3
75 ðA:2:28Þ

the derivative d½a�=dx is given by

d½a�
dx
¼

3x2 4x 3

4x 4x3 1

3 1 5x4

2
64

3
75 ðA:2:29Þ

Similarly, the partial derivative of a matrix is illustrated as follows:

q½b�
qx
¼ q

qx

x2 xy xz

xy y2 yz

xz yz z2

2
64

3
75 ¼

2
64

2x y z

y 0 0

z 0 0

3
75 ðA:2:30Þ

In structural analysis theory, we sometimes differentiate an expression of the
form

U ¼ 1

2
½x y� a11 a12

a12 a22

� �
x

y

� �
ðA:2:31Þ
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where U might represent the strain energy in a bar. Expression (A.2.31) is known as a
quadratic form. By matrix multiplication of Eq. (A.2.31), we obtain

U ¼ 1

2
ða11x2 þ 2a12xyþ a22y2Þ ðA:2:32Þ

Differentiating U now yields
qU

qx
¼ a11xþ a12y ðA:2:33Þ

qU

qy
¼ a12xþ a22y

Equation (A.2.33) in matrix form becomes

qU

qx

qU

qy

8>>>><
>>>>:

9>>>>=
>>>>;
¼ a11 a12

a12 a22

� �
x

y

� �
ðA:2:34Þ

A general form of Eq. (A.2.31) is

U ¼ 1

2
fXgT ½a�fXg ðA:2:35Þ

Then, by comparing Eq. (A.2.31) and (A.2.35), we obtain

qU

qxi

¼ ½a�fXg ðA:2:36Þ

where xi denotes x and y. Here Eq. (A.2.36) depends on matrix ½a� in Eq. (A.2.35)
being symmetric.

Integrating a Matrix

Just as in matrix differentiation, to integrate a matrix, we must integrate every element
in the matrix in the conventional manner. For example, if

½a� ¼
3x2 4x 3

4x 4x3 1

3 1 5x4

2
64

3
75

we obtain the integration of ½a� as

ð
½a� dx ¼

x3 2x2 3x

2x2 x4 x

3x x x5

2
64

3
75

In our finite element formulation of equations, we often integrate an expression of the
form ðð

½X �T ½A�½X � dx dy ðA:2:37Þ
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The triple product in Eq. (A.2.37) will be symmetric if ½A� is symmetric. The form
½X �T ½A�½X � is also called a quadratic form. For example, letting

½A� ¼

2
64

9 2 3

2 8 0

3 0 5

3
75 ½X � ¼

x1

x2

x3

8<
:

9=
;

we obtain

fXgT ½A�fXg ¼ ½x1 x2 x3�

2
64

9 2 3

2 8 0

3 0 5

3
75

x1

x2

x3

8<
:

9=
;

¼ 9x2
1 þ 4x1x2 þ 6x1x3 þ 8x2

2 þ 5x2
3

which is in quadratic form.

d A.3 Cofactor or Adjoint Method
to Determine the Inverse of a Matrix

d

We will now introduce a method for finding the inverse of a matrix. This method is
useful for longhand determination of the inverse of smaller-order square matrices
(preferably of order 4� 4 or less). A matrix ½a� must be square for us to determine
its inverse.

We must first define the determinant of a matrix. This concept is necessary in
determining the inverse of a matrix by the cofactor method. A determinant is a square

array of elements expressed by

j½a�j ¼ j½aij�j ðA:3:1Þ

where the straight vertical bars, j j, on each side of the array denote the determinant.
The resulting determinant of an array will be a single numerical value when the
array is evaluated.

To evaluate the determinant of ½a�, we must first determine the cofactors of ½aij�.
The cofactors of ½aij� are given by

Cij ¼ ð�1Þ iþj j½d �j ðA:3:2Þ

where the matrix ½d �, called the first minor of ½aij�, is matrix ½a� with row i and column j

deleted. The inverse of matrix ½a� is then given by

½a��1 ¼ ½C�
T

j½a�j ðA:3:3Þ

where ½C � is the cofactor matrix and j½a�j is the determinant of ½a�. To illustrate the
method of cofactors, we will determine the inverse of a matrix ½a� given by

½a� ¼

2
64
�1 3 �2

2 �4 2

0 4 1

3
75 ðA:3:4Þ
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Using Eq. (A.3.2), we find that the cofactors of matrix ½a� are

C11 ¼ ð�1Þ1þ1 �4 2

4 1

����
���� ¼ �12

C12 ¼ ð�1Þ1þ2 2 2

0 1

����
���� ¼ �2

C13 ¼ ð�1Þ1þ3 2 �4

0 4

����
���� ¼ 8

ðA:3:5Þ
C21 ¼ ð�1Þ2þ1 3 �2

4 1

����
���� ¼ �11

C22 ¼ ð�1Þ2þ2 �1 �2

0 1

����
���� ¼ �1

C23 ¼ ð�1Þ2þ3 �1 3

0 4

����
���� ¼ 4

C31 ¼ �2 C32 ¼ �2 C33 ¼ �2 ðA:3:6ÞSimilarly,

Therefore, from Eqs. (A.3.5) and (A.3.6), we have

½C � ¼

2
64
�12 �2 8

�11 �1 4

�2 �2 �2

3
75 ðA:3:7Þ

The determinant of ½a� is then

j½a�j ¼
Xn

j¼1

aijCij with i any row number ð1W i W nÞ ðA:3:8Þ

j½a�j ¼
Xn

j¼1

ajiCji with i any column number ð1W i W nÞ ðA:3:9Þor

For instance, if we choose the first rows of ½a� and ½C �, then i ¼ 1 in Eq. (A.3.8), and j

is summed from 1 to 3 such that

j½a�j ¼ a11C11 þ a12C12 þ a13C13

¼ ð�1Þð�12Þ þ ð3Þð�2Þ þ ð�2Þð8Þ ¼ �10 ðA:3:10Þ

Using the definition of the inverse given by Eq. (A.3.3), we have

½a��1 ¼ ½C�
T

j½a�j ¼
1

�10

2
64
�12 �11 �2

�2 �1 �2

8 4 �2

3
75 ðA:3:11Þ
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We can then check that

½a�½a��1 ¼

2
64

1 0 0

0 1 0

0 0 1

3
75

The transpose of the cofactor matrix is often defined as the adjoint matrix; that is,

adj ½a� ¼ ½C �T

Therefore, an alternative equation for the inverse of ½a� is

½a��1 ¼ adj ½a�
j½a�j ðA:3:12Þ

An important property associated with the determinant of a matrix is that if the deter-
minant of a matrix is zero—that is, j½a�j ¼ 0—then the matrix is said to be singular. A
singular matrix does not have an inverse. The stiffness matrices used in the finite ele-
ment method are singular until sufficient boundary conditions (support conditions)
are applied. This characteristic of the stiffness matrix is further discussed in the text.

d A.4 Inverse of a Matrix by Row Reduction d
The inverse of a nonsingular square matrix ½a� can be found by the method of row
reduction (sometimes called the Gauss–Jordan method ) by performing identical
simultaneous operations on the matrix ½a� and the identity matrix ½I � (of the same
order as ½a�) such that the matrix ½a� becomes an identity matrix and the original iden-
tity matrix becomes the inverse of ½a�.

A numerical example will best illustrate the procedure. We begin by converting
matrix ½a� to an upper triangular form by setting all elements below the main diagonal
equal to zero, starting with the first column and continuing with succeeding columns.
We then proceed from the last column to the first, setting all elements above the
main diagonal equal to zero.

We will invert the following matrix by row reduction.

½a� ¼

2
64

2 2 1

2 1 0

1 1 1

3
75 ðA:4:1Þ

To find ½a��1, we need to find ½x� such that ½a�½x� ¼ ½I �, where

½x� ¼
x11 x12 x13

x21 x22 x23

x31 x32 x33

3
75

2
64

2
64

2 2 1

2 1 0

1 1 1

3
75½x� ¼

2
64

1 0 0

0 1 0

0 0 1

3
75That is, solve
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We begin by writing ½a� and ½I � side by side as

2
64

2 2 1 1 0 0

2 1 0 0 1 0

1 1 1 0 0 1

3
75 ðA:4:2Þ

j
j
j
j
j
j

where the vertical dashed line separates ½a� and ½I �.

1. Divide the first row of Eq. (A.4.2) by 2.

1 1 1
2

1
2 0 0

2 1 0 0 1 0

1 1 1 0 0 1

2
64

3
75 ðA:4:3Þ

j
j
j
j
j
j

2. Multiply the first row of Eq. (A.4.3) by �2 and add the result to the
second row.

1 1 1
2

1
2 0 0

0 �1 �1 �1 1 0

1 1 1 0 0 1

2
64

3
75 ðA:4:4Þ

j
j
j
j
j
j
j

3. Subtract the first row of Eq. (A.4.4) from the third row.

1 1 1
2

1
2 0 0

0 �1 �1 �1 1 0

0 0 1
2 � 1

2 0 1

2
64

3
75 ðA:4:5Þ

j
j
j
j
j
j
j

4. Multiply the second row of Eq. (A.4.5) by �1 and the third row by 2.

1 1 1
2

1
2 0 0

0 1 1 1 �1 0

0 0 1 �1 0 2

2
64

3
75 ðA:4:6Þ

j
j
j
j
j
j
j

5. Subtract the third row of Eq. (A.4.6) from the second row.

1 1 1
2

1
2 0 0

0 1 0 2 �1 �2

0 0 1 �1 0 2

2
64

3
75 ðA:4:7Þ

j
j
j
j
j
j
j

6. Multiply the third row of Eq. (A.4.7) by � 1
2 and add the result to the

first row.

2
64

1 1 0 1 0 �1

0 1 0 2 �1 �2

0 0 1 �1 0 2

3
75 ðA:4:8Þ

j
j
j
j
j
j
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7. Subtract the second row of Eq. (A.4.8) from the first row.

2
64

1 0 0 �1 1 1

0 1 0 2 �1 �2

0 0 1 �1 0 2

3
75 ðA:4:9Þ

j
j
j
j
j
j

The replacement of ½a� by the inverse matrix is now complete. The inverse of ½a� is then
the right side of Eq. (A.4.9); that is,

½a��1 ¼

2
64
�1 1 1

2 �1 �2

�1 0 2

3
75 ðA:4:10Þ

For additional information regarding matrix algebra, consult References [1]
and [2].

d A.5 Properties of Stiffness Matrices d
Stiffness matrix ½k� is defined in Chapter 2 as relating nodal forces to nodal displace-
ments. The stiffness matrix is also seen (for instance) in the strain energy expressions
for springs, Eq. (2.6.20), for bars, Eq. (3.10.28b) and for beams, Eq. (4.7.21). The
matrix has the properties of being square and symmetric, as defined in Sections A.1
and A.2, for nearly all applications in this textbook except for the mass transport
problem in Section 13.9.

In the strain energy expression, we see ½k� in the quadratic form

U ¼ 1

2
fdgT ½k�fdg ðA:5:1Þ

For most structures, the stiffness matrix is a positive definite matrix. That means
if arbitrary displacement vectors are chosen, and we calculate U , the result is a posi-
tive value. The exception to this is the trivial case where the displacement vector fdg
is set to zero. Therefore, for any arbitrary displacements of a multi-degree-of-freedom
system from its undeformed configuration, the strain energy is positive.

The exception to ½k� being positive definite is when a system has rigid-body
degrees of freedom. Then the displacement is taken as a rigid-body mode. In this
case, ½k� is called a positive semidefinite matrix. The strain energy U then can be zero
for rigid-body modes or greater than zero when we have deformable modes. When
½k� is positive semidefinite, j½k�j ¼ det(½k�Þ ¼ 0. Recall, from Section A.3, a matrix
whose determinant is zero is called a singular matrix. To physically remove the singu-
larity in a system in static equilibrium, sufficient boundary conditions must be applied.
This concept is further described in Chapter 2.

For instance, consider a bar with no supports as shown in Figure A–2. If the
bar is discretized into two elements and the 3� 3 stiffness matrix of the bar is deter-
mined as described in Chapter 2 and as shown by Eq. (A.5.2), the determinant of
this stiffness matrix, Eq. (A.5.3), is zero. Now if we fix one end of the bar, making
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u1 ¼ 0, the reduced 2� 2 stiffness matrix has a nonzero determinant. (Also see
Problem A.12.)

½k� ¼ AE

L

2
64

1 � 1 0

�1 2 �1

0 � 1 1

3
75 ðA:5:2Þ

Now the determinant of ½k� is�������
1 � 1 0

� 1 2 �1

0 � 1 1

�������
¼ 1

2 �1

�1 1

�����
������ ð�1Þ

�1 �1

0 1

�����
�����þ 0

¼ 2� 1� 1 ¼ 0

ðA:5:3Þ
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d Problems

Solve Problems A.1 through A.6 using matrices ½A�, ½B�, ½C �, ½D�, and fEg given by

½A� ¼ 1 0

�1 4

� �
½B� ¼ 2 0

�2 8

� �
½C� ¼ 3 1 0

�1 0 3

� �

½D� ¼

2
64

3 1 2

1 4 0

2 0 3

3
75 fEg ¼

1

2

3

8><
>:

9>=
>;

(Write ‘‘nonsense’’ if the operation cannot be performed.)

A.1 (a) ½A� þ ½B� (b) ½A� þ ½C�
(c) ½A�½C�T (d) ½D�fEg
(e) ½D�½C� (f ) ½C�½D�

A.2 Determine ½A��1 by the cofactor method.

A, ELL1 2 3
x

u1 u2 u3

Figure A–2 Two-element bar
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A.3 Determine ½D��1 by the cofactor method.

A.4 Determine ½C��1.

A.5 Determine ½B��1 by row reduction.

A.6 Determine ½D��1 by row reduction.

A.7 Show that ð½A�½B�ÞT ¼ ½B�T ½A�T by using

½A� ¼ a11 a12

a21 a22

� �
½B� ¼ b11 b12 b13

b21 b22 b23

� �

A.8 Find ½T ��1 given that

½T � ¼ cos y sin y

�sin y cos y

� �

and show that ½T ��1 ¼ ½T �T and hence that ½T � is an orthogonal matrix.

A.9 Given the matrices

½X � ¼ x y

1 x

� �
½A� ¼ a b

b c

� �

show that the triple matrix product ½X �T ½A�½X � is symmetric.

A.10 Evaluate the following integral in explicit form:

½k� ¼
ðL

0

½B�T E½B� dx

½B� ¼ � 1

L

1

L

� �
where

and E is the modulus of elasticity.

[Note: This is the step needed to obtain Eq. (10.1.16) from Eq. (10.1.15).]

A.11 The following integral represents the strain energy in a bar of length L and cross-
sectional area A:

U ¼ A

2

ðL

0

fdgT ½B�T ½D�½B�fdg dx

fdg ¼ u1

u2

� �
½B� ¼ � 1

L

1

L

� �
½D� ¼ Ewhere

and E is the modulus of elasticity.
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Show that dU=dfdg yields ½k�fdg, where ½k� is the bar stiffness matrix given by

½k� ¼ AE

L

1 �1

�1 1

� �

A.12 A two-element bar as shown in Figure PA–12 with element lengths L, cross-sectional
area A, and Young’s modulus E can be shown to have a stiffness matrix of

½k� ¼ AE

L

2
64

1 � 1 0

�1 2 �1

0 � 1 1

3
75

Show that the det ð½k�Þ ¼ 0 and hence that ½k� is positive semidefinite and the matrix is
also singular. Now fix the left end (set u1 ¼ 0) and show that the reduced ½k� is

½k� ¼ AE

L

2 �1

�1 1

� �

and that the det ð½k�Þ is no longer 0.

LL1 2 3
x

u1 u2 u3

Figure PA–12
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METHODS FOR SOLUTION

OF SIMULTANEOUS

LINEAR EQUATIONSd

Introduction

Many problems in engineering and mathematical physics require the solution of a sys-
tem of simultaneous linear algebraic equations. Stress analysis, heat transfer, and
vibration analysis are engineering problems for which the finite element formulation
for solution typically involves the solving of simultaneous linear equations. This
appendix introduces methods applicable to both longhand and computer solutions of
simultaneous linear equations. Many methods are available for the solution of equa-
tions; for brevity’s sake, we will discuss only some of the more common methods.

d B.1 General Form of the Equations d
In general, the set of equations will have the form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ c1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ c2 ðB:1:1Þ
..
. ..

. ..
. ..

.

an1x1 þ an2x2 þ � � � þ annxn ¼ cn

where the aij’s are the coefficients of the unknown xj’s, and the ci’s are the known
right-side terms. In the structural analysis problem, the aij’s are the stiffness coeffi-
cients kij’s, the xj’s are the unknown nodal displacements di’s, and the ci’s are the
known nodal forces Fi’s.

If the c’s are not all zero, the set of equations is nonhomogeneous, and all equa-
tions must be independent to yield a unique solution. Stress analysis problems typi-
cally involve solving sets of nonhomogeneous equations.
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If the c’s are all zero, the set of equations is homogeneous, and nontrivial solu-
tions exist only if all equations are not independent. Buckling and vibration problems
typically involve homogeneous sets of equations.

d B.2 Uniqueness, Nonuniqueness,
and Nonexistence of Solution

d

To solve a system of simultaneous linear equations means to determine a unique set of
values (if they exist) for the unknowns that satisfy every equation of the set simulta-
neously. A unique solution exists if and only if the determinant of the square coeffi-
cient matrix is not equal to zero. (All of the engineering problems considered in this
text result in square coefficient matrices.) The problems in this text usually result in a
system of equations that has a unique solution. Here we will briefly illustrate the
concepts of uniqueness, nonuniqueness, and nonexistence of solution for systems of
equations.

Uniqueness of Solution

2x1 þ 1x2 ¼ 6
ðB:2:1Þ

1x1 þ 4x2 ¼ 17

For Eqs. (B.2.1), the determinant of the coefficient matrix is not zero, and a unique
solution exists, as shown by the single common point of intersection of the two Eqs.
(B.2.1) in Figure B–1.

Nonuniqueness of Solution

2x1 þ 1x2 ¼ 6
ðB:2:2Þ

4x1 þ 2x2 ¼ 12

Figure B–1 Uniqueness of solution
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For Eqs. (B.2.2), the determinant of the coefficient matrix is zero; that is,

2 1

4 2

����
���� ¼ 0

Hence the equations are called singular, and either the solution is not unique or it does
not exist. In this case, the solution is not unique, as shown in Figure B–2.

Nonexistence of Solution

2x1 þ x2 ¼ 6
ðB:2:3Þ

4x1 þ 2x2 ¼ 16

Again, the determinant of the coefficient matrix is zero. In this case, no solution exists
because we have parallel lines (no common point of intersection), as shown in
Figure B–3.

d B.3 Methods for Solving Linear Algebraic Equations d
We will now present some common methods for solving systems of linear algebraic
equations that have unique solutions. Some of these methods work best for small
sets of equations solved longhand, whereas others are well suited for computer
application.

Cramer’s Rule

We begin by introducing a method known as Cramer’s rule, which is useful for the
longhand solution of small numbers of simultaneous equations. Consider the set of
equations

½a�fxg ¼ ½c� ðB:3:1Þ

Figure B–2 Nonuniqueness of solution Figure B–3 Nonexistence of solution
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or, in index notation,

Xn

i¼1

aijxj ¼ ci ðB:3:2Þ

We first let ½dðiÞ� be the matrix ½a� with column i replaced by the column matrix ½c�.
Then the unknown xi’s are determined by

xi ¼
j½dðiÞ�j
j½a�j ðB:3:3Þ

As an example of Cramer’s rule, consider the following equations:

�x1 þ 3x2 � 2x3 ¼ 2

2x1 � 4x2 þ 2x3 ¼ 1 ðB:3:4Þ

4x2 þ x3 ¼ 3

In matrix form, Eqs. (B.3.4) become
2
64
�1 3 �2

2 �4 2

0 4 1

3
75

x1

x2

x3

8<
:

9=
; ¼

2

1

3

8><
>:

9>=
>; ðB:3:5Þ

By Eq. (B.3.3), we can solve for the unknown xi’s as

x1 ¼
j½dð1Þ�j
j½a�j ¼

������
2 3 �2

1 �4 2

3 4 1

������������
�1 3 �2

2 �4 2

0 4 1

������

¼ �41

�10
¼ 4:1

ðB:3:6Þ

x2 ¼
j½dð2Þ�j
j½a�j ¼

������
�1 2 �2

2 1 2

0 3 1

������
�10

¼ 1:1

x3 ¼
j½dð3Þ�j
j½a�j ¼

������
�1 3 2

2 �4 1

0 4 3

������
�10

¼ �1:4

In general, to find the determinant of an n� n matrix, we must evaluate the
determinants of n matrices of order ðn� 1Þ � ðn� 1Þ. It has been shown that the sol-
ution of n simultaneous equations by Cramer’s rule, evaluating determinants by
expansion by minors, requires ðn� 1Þðnþ 1Þ! multiplications. Hence, this method
takes large amounts of computer time and therefore is not used in solving large sys-
tems of simultaneous equations either longhand or by computer.
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Inversion of the Coefficient Matrix

The set of equations ½a�fxg ¼ fcg can be solved for fxg by inverting the coefficient
matrix ½a� and premultiplying both sides of the original set of equations by ½a��1,
such that

½a��1½a�½x� ¼ ½a��1fcg

½I �fxg ¼ ½a��1fcg ðB:3:7Þ

fxg ¼ ½a��1fcg
Two methods for determining the inverse of a matrix (the cofactor method and row
reduction) were discussed in Appendix A.

The inverse method is much more time-consuming (because much time is
required to determine the inverse of ½a�) than either the elimination method or the iter-
ation method, which are discussed subsequently. Therefore, inversion is practical only
for small systems of equations.

However, the concept of inversion is often used during the formulation of the
finite element equations, even though elimination or iteration is used in achieving the
final solution for the unknowns (such as nodal displacements).

Besides the tedious calculations necessary to obtain the inverse, the method usu-
ally involves determining the inverse of sparse, banded matrices (stiffness matrices in
structural analysis usually contain many zeros with the nonzero coefficients located
in a band around the main diagonal). This sparsity and banded nature can be used
to advantage in terms of storage requirements and solution algorithms on the com-
puter. The inverse results in a dense, full matrix with loss of the advantages resulting
from the sparse, banded nature of the original coefficient matrix.

To illustrate the solution of a system of equations by the inverse method, con-
sider the same equations that we solved previously by Cramer’s rule. For conve-
nience’s sake, we repeat the equations here.2

64
�1 3 �2

2 �4 2

0 4 1

3
75

x1

x2

x3

8<
:

9=
; ¼

2

1

3

8><
>:

9>=
>; ðB:3:8Þ

The inverse of this coefficient matrix was found in Eq. (A.3.11) of Appendix A. The
unknowns are then determined as

x1

x2

x3

8<
:

9=
; ¼ �

1

10

2
64
�12 �11 �2

�2 �1 �2

8 4 �2

3
75

2

1

3

8><
>:

9>=
>; ¼

4:1

1:1

�1:4

8><
>:

9>=
>; ðB:3:9Þ

Gaussian Elimination

We will now consider a commonly used method called Gaussian elimination that is
easily adapted to the computer for solving systems of simultaneous equations. It is
based on triangularization of the coefficient matrix and evaluation of the unknowns
by back-substitution starting from the last equation.
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The general system of n equations with n unknowns given by

a11 a12 . . . a1n

a21 a22 . . . a2n

..

. ..
. ..

.

an1 an2 . . . ann

2
6664

3
7775

x1

x2

..

.

xn

8>>><
>>>:

9>>>=
>>>;
¼

c1

c2

..

.

cn

8>>><
>>>:

9>>>=
>>>;

ðB:3:10Þ

will be used to explain the Gaussian elimination method.

1. Eliminate the coefficient of x1 in every equation except the first one.
To do this, select a11 as the pivot, and
a. Add the multiple �a21=a11 of the first row to the second row.
b. Add the multiple �a31=a11 of the first row to the third row.
c. Continue this procedure through the nth row.
The system of equations will then be reduced to the following form:

a11 a12 . . . a1n

0 a 022 . . . a 02n

..

. ..
.

0 a 0n2 . . . a 0nn

2
66664

3
77775

x1

x2

..

.

xn

8>>>><
>>>>:

9>>>>=
>>>>;
¼

c1

c 02

..

.

c 0n

8>>>><
>>>>:

9>>>>=
>>>>;

ðB:3:11Þ

2. Eliminate the coefficient of x2 in every equation below the second
equation. To do this, select a 022 as the pivot, and
a. Add the multiple �a 032=a 022 of the second row to the third row.
b. Add the multiple �a 042=a 022 of the second row to the fourth row.
c. Continue this procedure through the nth row.
The system of equations will then be reduced to the following form:

a11 a12 a13 . . . a1n

0 a 022 a 023 . . . a 02n

0 0 a 0033 . . . a 003n

..

. ..
.

0 0 a 00n3 . . . a 00nn

2
6666664

3
7777775

x1

x2

x3

..

.

xn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

c1

c 02
c 003

..

.

c 00n

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ðB:3:12Þ

We repeat this process for the remaining rows until we have the
system of equations (called triangularized ) as

a11 a12 a13 a14 . . . a1n

0 a 022 a 023 a 024 . . . a 02n

0 0 a 0033 a 0034 . . . a 003n

0 0 0 a 00044 . . . a 0004n

..

. ..
. ..

. ..
. ..

.

0 0 0 0 . . . an�1
nn

2
666666664

3
777777775

x1

x2

x3

x4

..

.

xn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

c1

c 02
c 003
c 0004

..

.

cn�1
n

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðB:3:13Þ

3. Determine xn from the last equation as

xn ¼
cn�1

n

an�1
nn

ðB:3:14Þ
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and determine the other unknowns by back-substitution. These steps
are summarized in general form by

aij ¼ aij � akj

aik

akk

k ¼ 1; 2; . . . ; n� 1

i ¼ k þ 1; . . . ; n

j ¼ k; . . . ; nþ 1 ðB:3:15Þ

xi ¼
1

aii

ai;nþ1 �
Xn

r¼iþ1

airxr

 !

where ai;nþ1 represent the latest right side c’s given by Eq. (B.3.13).

We will solve the following example to illustrate the Gaussian elimination method.

Example B.1

Solve the following set of simultaneous equations using Gauss elimination method.

2x1 þ 2x2 þ 1x3 ¼ 9

2x1 þ 1x2 ¼ 4 ðB:3:16Þ

1x1 þ 1x2 þ 1x3 ¼ 6

SOLUTION:

Step 1

Eliminate the coefficient of x1 in every equation except the first one. Select a11 ¼ 2 as
the pivot, and

a. Add the multiple �a21=a11 ¼ �2=2 of the first row to the second row.
b. Add the multiple �a31=a11 ¼ �1=2 of the first row to the third row.

We then obtain

2x1 þ 2x2 þ 1x3 ¼ 9

0x1 � 1x2 � 1x3 ¼ 4� 9 ¼ �5 ðB:3:17Þ

0x1 þ 0x2 þ
1

2
x3 ¼ 6� 9

2
¼ 3

2

Step 2

Eliminate the coefficient of x2 in every equation below the second equation. In this
case, we accomplished this in Step 1.

Step 3

Solve for x3 in the third of Eqs. (B.3.17) as

x3 ¼
3
2
1
2

¼ 3
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Solve for x2 in the second of Eqs. (B.3.17) as

x2 ¼
�5þ 3

�1
¼ 2

Solve for x1 in the first of Eqs. (B.3.17) as

x1 ¼
9� 2ð2Þ � 3

2
¼ 1

To illustrate the use of the index Eqs. (B.3.15), we re-solve the same example as
follows. The ranges of the indexes in Eqs. (B.3.15) are k ¼ 1; 2; i ¼ 2; 3; and
j ¼ 1; 2; 3; 4.

Step 1

For k ¼ 1, i ¼ 2, and j indexing from 1 to 4,

a21 ¼ a21 � a11
a21

a11
¼ 2� 2

2

2

� �
¼ 0

a22 ¼ a22 � a12
a21

a11
¼ 1� 2

2

2

� �
¼ �1

ðB:3:18Þ
a23 ¼ a23 � a13

a21

a11
¼ 0� 1

2

2

� �
¼ �1

a24 ¼ a24 � a14
a21

a11
¼ 4� 9

2

2

� �
¼ �5

Note that these new coefficients correspond to those of the second of Eqs.
(B.3.17), where the right-side a’s of Eqs. (B.3.18) are those from the previous step
[here from Eqs. (B.3.16)], the right side a24 is really c2 ¼ 4, and the left side a24 is the
new c2 ¼ �5.

For k ¼ 1, i ¼ 3, and j indexing from 1 to 4,

a31 ¼ a31 � a11
a31

a11
¼ 1� 2

1

2

� �
¼ 0

a32 ¼ a32 � a12
a31

a11
¼ 1� 2

1

2

� �
¼ 0

ðB:3:19Þ
a33 ¼ a33 � a13

a31

a11
¼ 1� 1

1

2

� �
¼ 1

2

a34 ¼ a34 � a14
a31

a11
¼ 6� 9

1

2

� �
¼ 3

2

where these new coefficients correspond to those of the third of Eqs. (B.3.17) as previ-
ously explained.
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Step 2

For k ¼ 2, i ¼ 3, and j ð¼ kÞ indexing from 2 to 4,

a32 ¼ a32 � a22
a32

a22

� �
¼ 0� ð�1Þ 0

�1

� �
¼ 0

a33 ¼ a33 � a23
a32

a22

� �
¼ 1

2
� ð�1Þ 0

�1

� �
¼ 1

2
ðB:3:20Þ

a34 ¼ a34 � a24
a32

a22

� �
¼ 3

2
� ð�5Þ 0

�1

� �
¼ 3

2

where the new coefficients again correspond to those of the third of Eqs. (B.3.17),
because Step 1 already eliminated the coefficients of x2 as observed in the third of
Eqs. (B.3.17), and the a’s on the right side of Eqs. (B.3.20) are taken from Eqs.
(B.3.18) and (B.3.19).

Step 3

By Eqs. (B.3.15), for x3, we have

x3 ¼
1

a33
ða34 � 0Þ

or, using a33 and a34 from Eqs. (B.3.20),

x3 ¼
1

ð12Þ
3

2

� �
¼ 3

where the summation is interpreted as zero in the second of Eqs. (B.3.15) when r > n

(for x3, r ¼ 4, and n ¼ 3). For x2, we have

x2 ¼
1

a22
ða24 � a23x3Þ

or, using the appropriate a’s from Eqs. (B.3.18),

x2 ¼
1

�1
½�5� ð�1Þð3Þ� ¼ 2

and for x1, we have

x1 ¼
1

a11
ða14 � a12x2 � a13x3Þ

or, using the a’s from the first of Eqs. (B.3.16),

x1 ¼
1

2
½9� 2ð2Þ � 1ð3Þ� ¼ 1

In summary, the latest a’s from the previous steps have been used in Eqs. (B.3.15) to
obtain the x’s. 9

B.3 Methods for Solving Linear Algebraic Equations d 853

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Note that the pivot element was the diagonal element in each step. However, the
diagonal element must be nonzero because we divide by it in each step. An original
matrix with all nonzero diagonal elements does not ensure that the pivots in each step
will remain nonzero, because we are adding numbers to equations below the pivot in
each following step. Therefore, a test is necessary to determine whether the pivot akk

at each step is zero. If it is zero, the current row (equation) must be interchanged with
one of the following rows—usually with the next row unless that row has a zero at
the position that would next become the pivot. Remember that the right-side corre-
sponding element in fcg must also be interchanged. After making this test and, if nec-
essary, interchanging the equations, continue the procedure in the usual manner.

An example will now illustrate the method for treating the occurrence of a zero
pivot element.

Example B.2

Solve the following set of simultaneous equations.

2x1 þ 2x2 þ 1x3 ¼ 9

1x1 þ 1x2 þ 1x3 ¼ 6 ðB:3:21Þ

2x1 þ 1x2 ¼ 4

SOLUTION:
It will often be convenient to set up the solution procedure by considering the coeffi-
cient matrix ½a� plus the right-side matrix fcg in one matrix without writing down
the unknown matrix fxg. This new matrix is called the augmented matrix. For the
set of Eqs. (B.3.21), we have the augmented matrix written as2

64
2 2 1 9

1 1 1 6

2 1 0 4

3
75 ðB:3:22Þ

j
j
j
j
j
j

We use the steps previously outlined as follows:

Step 1

We select a11 ¼ 2 as the pivot and

a. Add the multiple �a21=a11 ¼ �1=2 of the first row to the second row
of Eq. (B.3.22).

b. Add the multiple �a31=a11 ¼ �2=2 of the first row to the third row of
Eq. (B.3.22) to obtain

2 2 1 9

0 0 1
2

3
2

0 �1 �1 �5

2
64

3
75 ðB:3:23Þ

j
j
j
j
j
j
j

At the end of Step 1, we would normally choose a22 as the next pivot. However, a22 is
now equal to zero. If we interchange the second and third rows of Eq. (B.3.23), the
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new a22 will be nonzero and can be used as a pivot. Interchanging rows 2 and 3
results in

2 2 1 9

0 �1 �1 �5

0 0 1
2

3
2

2
64

3
75 ðB:3:24Þ

j
j
j
j
j
j
j

For this special set of only three equations, the interchange has resulted in an upper-
triangular coefficient matrix and concludes the elimination procedure. The back-
substitution process of Step 3 now yields

x3 ¼ 3 x2 ¼ 2 x1 ¼ 1 9

A second problem when selecting the pivots in sequential manner without test-
ing for the best possible pivot is that loss of accuracy due to rounding in the results
can occur. In general, the pivots should be selected as the largest (in absolute value)
of the elements in any column. For example, consider the set of equations given by

0:002x1 þ 2:00x2 ¼ 2:00
ðB:3:25Þ

3:00x1 þ 1:50x2 ¼ 4:50

whose actual solution is given by

x1 ¼ 1:0005 x2 ¼ 0:999 ðB:3:26Þ

The solution by Gaussian elimination without testing for the largest absolute
value of the element in any column is

0:002x1 þ 2:00x2 ¼ 2:00

�2998:5x2 ¼ �995:5

x2 ¼ 0:3320

x1 ¼ 668 ðB:3:27Þ

This solution does not satisfy the second of Eqs. (B.3.25). The solution by interchanging
equations is

3:00x1 þ 1:50x2 ¼ 4:50

0:002x1 þ 2:00x2 ¼ 2:00

3:00x1 þ 1:50x2 ¼ 4:50

1:999x2 ¼ 1:997

x2 ¼ 0:999

x1 ¼ 1:0005 ðB:3:28Þ

or

Equations (B.3.28) agree with the actual solution [Eqs. (B.3.26)].
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Hence, in general, the pivots should be selected as the largest (in absolute value)
of the elements in any column. This process is called partial pivoting. Even better
results can be obtained by choosing the pivot as the largest element in the whole
matrix of the remaining equations and performing appropriate interchanging of
rows. This is called complete pivoting. Complete pivoting requires a large amount of
testing, so it is not recommended in general.

The finite element equations generally involve coefficients with different orders
of magnitude, so Gaussian elimination with partial pivoting is a useful method for
solving the equations.

Finally, it has been shown that for n simultaneous equations, the number of
arithmetic operations required in Gaussian elimination is n divisions, 1

3 n3 þ n2 multi-
plications, and 1

3 n3 þ n additions. If partial pivoting is included, the number of com-
parisons needed to select pivots is nðnþ 1Þ=2.

Other elimination methods, including the Gauss–Jordan and Cholesky methods,
have some advantages over Gaussian elimination and are sometimes used to solve
large systems of equations. For descriptions of other methods, see References [1–3].

Gauss–Seidel Iteration

Another general class of methods (other than the elimination methods) used to solve
systems of linear algebraic equations is the iterative methods. Iterative methods work
well when the system of equations is large and sparse (many zero coefficients). The
Gauss–Seidel method starts with the original set of equations ½a�fxg ¼ fcg written in
the form

x1 ¼
1

a11
ðc1 � a12x2 � a13x3 � � � � � a1nxnÞ

x2 ¼
1

a22
ðc2 � a21x1 � a23x3 � � � � � a2nxnÞ

ðB:3:29Þ
..
.

xn ¼
1

ann

ðcn � an1x1 � an2x2 � � � � � an;n�1xn�1Þ

The following steps are then applied.

1. Assume a set of initial values for the unknowns x1; x2; . . . ; xn, and
substitute them into the right side of the first of Eqs. (B.3.29) to solve
for the new x1.

2. Use the latest value for x1 obtained from Step 1 and the initial values
for x3; x4; . . . ; xn in the right side of the second of Eqs. (B.3.29) to
solve for the new x2.

3. Continue using the latest values of the x’s obtained in the left side of
Eqs. (B.3.29) as the next trial values in the right side for each succeed-
ing step.

4. Iterate until convergence is satisfactory.
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A good initial set of values (guesses) is often xi ¼ ci=aii. An example will serve to
illustrate the method.

Example B.3

Consider the set of linear simultaneous equations given by

4x1 � x2 ¼ 2

�x1 þ 4x2 � x3 ¼ 5
ðB:3:30Þ

�x2 þ 4x3 � x4 ¼ 6

�x3 þ 2x4 ¼ �2

Determine x1 through x4.

SOLUTION:
Using the initial guesses given by xi ¼ ci=aii, we have

x1 ¼ 2
4 ¼ 1

2 x2 ¼ 5
4 A1 x3 ¼ 6

4 A1 x4 ¼ �1

Solving the first of Eqs. (B.3.30) for x1 yields

x1 ¼
1

4
ð2þ x2Þ ¼

1

4
ð2þ 1Þ ¼ 3

4

Solving the second of Eqs. (B.3.30) for x2, we have

x2 ¼
1

4
ð5þ x1 þ x3Þ ¼

1

4
ð5þ 3

4þ 1Þ ¼ 1:68

Solving the third of Eqs. (B.3.30) for x3, we have

x3 ¼
1

4
ð6þ x2 þ x4Þ ¼

1

4
½6þ 1:68þ ð�1Þ� ¼ 1:672

Solving the fourth of Eqs. (B.3.30) for x4, we obtain

x4 ¼
1

2
ð�2þ x3Þ ¼

1

2
ð�2þ 1:67Þ ¼ �0:16

The first iteration has now been completed. The second iteration yields

x1 ¼
1

4
ð2þ 1:68Þ ¼ 0:922

x2 ¼
1

4
ð5þ 0:922þ 1:672Þ ¼ 1:899

x3 ¼
1

4
½6þ 1:899þ ð�0:16Þ� ¼ 1:944

x4 ¼
1

2
ð�2þ 1:944Þ ¼ �0:028

Table B–1 lists the results of four iterations of the Gauss–Seidel method and the
exact solution. From Table B–1, we observe that convergence to the exact solution
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has proceeded rapidly by the fourth iteration, and the accuracy of the solution is
dependent on the number of iterations. 9

In general, iteration methods are self-correcting, such that an error made in cal-
culations at one iteration will be corrected by later iterations. However, there
are certain systems of equations for which iterative methods are not convergent. The
following example illustrates a system of equations for which the Gauss–Seidel itera-
tion method will not converge to the exact solution, as the main diagonal terms are
smaller than the off-diagonal terms.

1x1 þ 3x2 ¼ 5
ðB:3:31Þ

4x1 � 1x2 ¼ 12

When the equations can be arranged such that the diagonal terms are greater than the
off-diagonal terms, which can be done for the previous Eq. (B.3.31), the possibility of
convergence is usually enhanced.

Finally, it has been shown that for n simultaneous equations, the number of
arithmetic operations required by Gauss–Seidel iteration is n divisions, n2 multiplica-
tions, and n2 � n additions for each iteration.

d B.4 Banded-Symmetric Matrices, Bandwidth,
Skyline, and Wavefront Methods

d

The coefficient matrix (stiffness matrix) for the linear equations that occur in struc-
tural analysis is always symmetric and banded. Because a meaningful analysis gener-
ally requires the use of a large number of variables, the implementation of compressed
storage of the stiffness matrix is desirable both from the standpoint of fitting into
memory (immediate access portion of the computer) and for computational efficiency.
We will discuss the banded-symmetric format, which is not necessarily the most effi-
cient format but is relatively simple to implement on the computer.

Another method, based on the concept of the skyline of the stiffness matrix, is
often used to improve the efficiency in solving the equations. The skyline is an envelope

that begins with the first nonzero coefficient in each column of the stiffness matrix

(Figure B–5). In skylining, only the coefficients between the main diagonal and the

Table B--1 Results of four iterations of the Gauss–Seidel method for Eqs. (B.3.30)

Iteration x1 x2 x3 x4

0 0.5 1.0 1.0 �1.0
1 0.75 1.68 1.672 �0.16
2 0.922 1.899 1.944 �0.028
3 0.975 1.979 1.988 �0.006
4 0.9985 1.9945 1.9983 �0.0008
Exact 1.0 2.0 2.00 0
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skyline are stored (normally by successive columns) in a one-dimensional array.
In general, this procedure takes even less storage space in the computer and is more
efficient in terms of equation solving than the conventional banded format. (For
more information on skylining, consult References [3, 10–11].)

A matrix is banded if the nonzero terms of the matrix are gathered about the
main diagonal. To illustrate this concept, consider the plane truss of Figure B–4.

From Figure B–4, we see that element 2 connects nodes 1 and 4. Therefore, the
2� 2 submatrices at positions 1–1, 1–4, 4–1, and 4–4 of Figure B–5 have nonzero
coefficients. Figure B–5 represents the total stiffness matrix of the plane truss. The
X ’s denote nonzero coefficients. From Figure B–5, we observe that the nonzero
terms are within the band shown. When we use a banded storage format, only the
main diagonal and the nonzero upper codiagonals need be stored as shown in Fig-
ure B–6. Note that any codiagonal with a nonzero term requires storage of the
whole codiagonal and any codiagonals between it and the main diagonal. The use of
banded storage is efficient for computational purposes. The Scientific Subroutine
Package gives a more detailed explanation of banded compressed storage [4].

We now define the semibandwidth nb as nb ¼ ndðmþ 1Þ, where nd is the number
of degrees of freedom per node and m is the maximum difference in node numbers

Figure B–4 Plane truss for bandwidth
illustration

Figure B–5 Stiffness matrix for the plane truss of Figure B–4, where X denotes,
in general, blocks of 2� 2 submatrices with nonzero coefficients

B.4 Banded-Symmetric Matrices, Bandwidth, Skyline, and Wavefront Methods d 859

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



determined by calculating the difference in node numbers for each element of a finite
element model. In the example for the plane truss of Figure B–4, m ¼ 4� 1 ¼ 3 and
nd ¼ 2, so nb ¼ 2ð3þ 1Þ ¼ 8.

Execution time (primarily equation-solving time) is a function of the number of
equations to be solved. It has been shown [5] that when banded storage of global stiff-
ness matrix ½K � is not used, execution time is proportional to ð1=3Þn3, where n is the
number of equations to be solved, or, equivalently, the size of ½K �. When
banded storage of ½K � is used, the execution time is proportional to ðnÞn2

b . The ratio
of time of execution without banded storage to that with banded storage is then
ð1=3Þðn=nbÞ2. For the plane truss example, this ratio is ð1=3Þð24=8Þ2 ¼ 3. Therefore,
it takes about three times as long to execute the solution of the example truss if
banded storage is not used.

Hence, to reduce bandwidth we should number systematically and try to have a
minimum difference between adjacent nodes. A small bandwidth is usually achieved
by consecutive node numbering across the shorter dimension, as shown in Figure B–4.
Some computer programs use the banded-symmetric format for storing the global
stiffness matrix, ½K�.

Several automatic node-renumbering schemes have been computerized [6]. This
option is available in most general-purpose computer programs. Alternatively, the
wavefront or frontal method is becoming popular for optimizing equation solution
time. In the wavefront method, elements, instead of nodes, are automatically
renumbered.

In the wavefront method, the assembly of the equations alternates with their sol-
ution by Gauss elimination. The sequence in which the equations are processed is
determined by element numbering rather than by node numbering. The first equations
eliminated are those associated with element 1 only. Next, the contributions of stiff-
ness coefficients of the adjacent element, element 2, are added to the system of equa-
tions. If any additional degrees of freedom are contributed by elements 1 and 2
only—that is, if no other elements contribute stiffness coefficients to specific degrees
of freedom—these equations are eliminated (condensed) from the system of equations.
As one or more additional elements make their contributions to the system of equa-
tions and additional degrees of freedom are contributed only by these elements, those

Figure B–6 Banded storage format of the
stiffness matrix of Figure B–5
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degrees of freedom are eliminated from the solution. This repetitive alternation
between assembly and solution was initially seen as a wavefront that sweeps over the
structure in a pattern determined by the element numbering. For greater efficiency of
this method, consecutive element numbering should be done across the structure in a
direction that spans the smallest number of nodes.

The wavefront method, though somewhat more difficult to understand and to
program than the banded-symmetric method, is computationally more efficient. A
banded solver stores and processes any blocks of zeros created in assembling the stiff-
ness matrix. In the wavefront method, these blocks of zero coefficients are not stored
or processed. Many large-scale computer programs are now using the wavefront
method to solve the system of equations. (For additional details of this method, see
References [7–9].) Example B.4 illustrates the wavefront method for solution of a
truss problem.

Example B.4

For the plane truss shown in Figure B–7, illustrate the wavefront solution procedure.

SOLUTION:
We will solve this problem in symbolic form. Merging k’s for elements 1, 2, and 3 and
enforcing boundary conditions at node 1, we have

u2 v2 u3 v3 u4 v4

k
ð1Þ
33 þ k

ð2Þ
11 þ k

ð3Þ
11 k

ð1Þ
34 þ k

ð2Þ
12 þ k

ð3Þ
12 k

ð3Þ
13 k

ð3Þ
14 k

ð2Þ
13 k

ð2Þ
14

k
ð1Þ
43 þ k

ð2Þ
21 þ k

ð3Þ
21 k

ð1Þ
44 þ k

ð2Þ
22 þ k

ð3Þ
22 k

ð3Þ
23 k

ð3Þ
24 k

ð2Þ
23 k

ð2Þ
24

k
ð2Þ
31 k

ð3Þ
32 k

ð3Þ
33 k

ð3Þ
34 k

ð2Þ
33 k

ð2Þ
34

k
ð3Þ
41 k

ð3Þ
42 k

ð3Þ
43 k

ð3Þ
44 k

ð2Þ
43 k

ð2Þ
44

k
ð2Þ
31 k

ð2Þ
32 0 0 0 0

k
ð2Þ
41 k

ð2Þ
42 0 0 0 0

2
6666666666664

3
7777777777775

8>>>>>>>>>>>><
>>>>>>>>>>>>:

u2

v2

u 03

v 03

u 04

v 04

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

0

0

0

�P

0

0

8>>>>>>>>>>>><
>>>>>>>>>>>>:
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Figure B–7 Truss for wavefront solution
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Eliminating u2 and v2 (all stiffness contributions from node 2 degrees of freedom have
been included from these elements; these contributions are from elements 1–3) by
static condensation or Gauss elimination yields

½k 0c�

u 03
v 03
u 04
v 04

8>>><
>>>:

9>>>=
>>>;
¼ fF 0cg ðB:4:2Þ

where the condensed stiffness and force matrices are (also see Section 7.5)

½k 0c� ¼ ½K 022� � ½K 021�½K 011�
�1½K 012� ðB:4:3Þ

fF 0cg ¼ fF 02g � ½K 021�½K 011�
�1fF 01g ðB:4:4Þ

where primes on the degrees of freedom, such as u 03 in Eq. (B.4.1), indicate that all
stiffness coefficients associated with that degree of freedom have not yet been
included. Now include elements 4–6 for degrees of freedom at node 3. The resulting
equations are

u3 v3 u4 v4

k 0c11 þ k
ð4Þ
33 þ k

ð5Þ
11 þ k

ð6Þ
11 k

ð4Þ
34 þ k

ð5Þ
12 þ k

ð6Þ
12 þ k 0c12 k

ð6Þ
13 þ k 0c13 k

ð6Þ
14 þ k 0c14

k 0c21 þ k
ð4Þ
34 þ k

ð5Þ
21 þ k

ð6Þ
21 k

ð4Þ
44 þ k

ð5Þ
22 þ k

ð6Þ
22 þ k 0c22 k

ð6Þ
23 þ k 0c23 k

ð6Þ
24 þ k 0c24

k 0c31 þ k
ð6Þ
31 k 0c32 þ k

ð6Þ
32 k 0c33 þ k

ð6Þ
33 k 0c34 þ k

ð6Þ
34

k 0c41 þ k
ð6Þ
41 k 0c42 þ k

ð6Þ
42 k 0c43 þ k

ð6Þ
43 k 0c44 þ k

ð6Þ
44

2
666664

3
777775

�

u3

v3

u 04

v 04

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

0

�P

0

0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ðB:4:5Þ

j
j
j
j
j
j
j
j
j
j
j
j

Using static condensation, we eliminate u3 and v3 (all contributions from node 3
degrees of freedom have been included from each element) to obtain

½k 00c �
u 04
v 04

� �
¼ fF 00c g ðB:4:6Þ

½k 00c � ¼ ½K 0022� � ½K 0021�½K 0011�
�1½K 0012� ðB:4:7Þwhere

fF 00c g ¼ fF 002 g � ½K 0021�½K 0011�
�1fF 001 g ðB:4:8Þ

Next we include element 7 contributions to the stiffness matrix. The condensed set of
equations yield

½k 000c �
u4

v4

� �
¼ fF 000c g ðB:4:9Þ
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½k 000c � ¼ ½K 00022� � ½K 00021�½K 00011�
�1½K 00012� ðB:4:10Þ

fF 000c g ¼ fF 0002 g � ½K 00021�½K 00011�
�1fF 0001 g ðB:4:11Þwhere

The elimination procedure is now complete, and we solve Eq. (B.4.9) for u4 and v4.
Then we back-substitute u4 and v4 into Eq. (B.4.5) to obtain u3 and v3. Finally, we
back-substitute u3 through v4 into Eq. (B.4.1) to obtain u2 and v2. Static condensation
and Gauss elimination with back-substitution have been used to solve the set of equa-
tions for all the degrees of freedom. The solution procedure has then proceeded
as though it were a wave sweeping over the structure, starting at node 2, engulfing
node 2 and elements with degrees of freedom at node 2, and then sweeping through
node 3 and finally node 4. 9

We now describe a practical computer scheme often used in computer pro-
grams for the solution of the resulting system of algebraic equations. The signifi-
cance of this scheme is that it takes advantage of the fact that the stiffness method
produces a banded ½K � matrix in which the nonzero elements occur about the
main diagonal in ½K�. While the equations are solved, this banded format is
maintained.

Example B.5

We will now use a simple example to illustrate this computer scheme. Consider the
three-spring assemblage shown in Figure B–8. The assemblage is subjected to forces
at node 2 of 100 lb in the x direction and 200 lb in the y direction. Node 1 is com-
pletely constrained from displacement in both the x and y directions, whereas node 3
is completely constrained in the y direction but is displaced a known amount d in the
x direction.

Figure B–8 Three-spring assemblage
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SOLUTION:
Our purpose here is not to obtain the actual ½K � for the assemblage but rather to illus-
trate the scheme used for solution. The general solution can be shown to be given by

k11 k12 k13 k14 k15 k16

k22 k23 k24 k25 k26

k33 k34 k35 k36

k44 k45 k46

k55 k56

k66

2
666666664

3
777777775

u1

v1

u2

v2

u3

v3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

F1x

F1y

F2x ¼ 100

F2y ¼ 200

F3x

F3y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðB:4:12Þ

Symmetry

where ½K � has been left in general form. Upon our imposing the boundary conditions,
the computer program transforms Eq. (B.4.12) to:

1 0 0 0 0 0

0 1 0 0 0 0

0 0 k33 k34 0 0

0 0 k43 k44 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
666666664

3
777777775

u1

v1

u2

v2

u3

v3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼

0

0

100� k35 d

200� k45 d

d

0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ðB:4:13Þ

From Eq. (B.4.13), we can see that u1 ¼ 0, v1 ¼ 0, v3 ¼ 0, and u3 ¼ d. These displace-
ments are consistent with the imposed boundary conditions. The unknown
displacements, u2 and v2, can be determined routinely by solving Eq. (B.4.13).

We will now explain the computer scheme that is generally applicable to trans-
form Eq. (B.4.12) to Eq. (B.4.13). First, the terms associated with the known displace-
ment boundary condition(s) within each equation were transformed to the right side
of those equations. In the third and fourth equations of Eq. (B.4.12), k35 d and k45 d

were transformed to the right side, as shown in Eq. (B.4.13). Then the right-side
force term corresponding to the known displacement row was equated to the known
displacement. In the fifth equation of Eq. (B.4.12), where u3 ¼ d, the right-side, fifth-
row force term F3x was equated to the known displacement d, as shown in Eq.
(B.4.13). For the homogeneous boundary conditions, the affected rows of fFg, corre-
sponding to the zero-displacement rows, were replaced with zeros. Again, this is done
in the computer scheme only to obtain the nodal displacements and does not imply
that these nodal forces are zero. We obtain the unknown nodal forces by determining
the nodal displacements and back-substituting these results into the original Eq.
(B.4.12). Because u1 ¼ 0, v1 ¼ 0, and v3 ¼ 0 in Eq. (B.4.12), the first, second, and
sixth rows of the force matrix of Eq. (B.4.13) were set to zero. Finally, for both non-
homogeneous and homogeneous boundary conditions, the rows and columns of ½K �
corresponding to these prescribed boundary conditions were set to zero except the
main diagonal, which was made unity. That is, the first, second, fifth, and sixth rows
and columns of ½K � in Eq. (B.4.12) were set to zero, except for the main diagonal
terms, which were made unity. Although doing so is not necessary, setting the main
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diagonal terms equal to 1 facilitates the simultaneous solution of the six equations in
Eq. (B.4.13) by an elimination method used in the computer program. This modifica-
tion is shown in the ½K � matrix of Eq. (B.4.13). 9
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d Problems

B.1 Determine the solution of the following simultaneous equations by Cramer’s rule.

1x1 þ 3x2 ¼ 5

4x1 � 1x2 ¼ 12

B.2 Determine the solution of the following simultaneous equations by the inverse method.

1x1 þ 3x2 ¼ 5

4x1 � 1x2 ¼ 12

B.3 Solve the following system of simultaneous equations by Gaussian elimination.

x1 � 4x2 � 5x3 ¼ 4

3x2 þ 4x3 ¼ �1

�2x1 � 1x2 þ 2x3 ¼ �3
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B.4 Solve the following system of simultaneous equations by Gaussian elimination.

2x1 þ 1x2 � 3x3 ¼ 11

4x1 � 2x2 þ 3x3 ¼ 8

�2x1 þ 2x2 � 1x3 ¼ �6

B.5 Given that
x1 ¼ 2y1 � y2 z1 ¼ �x1 � x2

x2 ¼ y1 � y2 z2 ¼ 2x1 þ x2

a. Write these relationships in matrix form.
b. Express fzg in terms of fyg.
c. Express fyg in terms of fzg.

B.6 Starting with the initial guess fXgT ¼ ½1 1 1 1 1�, perform five iterations of the
Gauss–Seidel method on the following system of equations. On the basis of the results
of these five iterations, what is the exact solution?

2x1 � 1x2 ¼ �1

�1x1 þ 6x2 � 1x3 ¼ 4

�2x2 þ 4x3 � 1x4 ¼ 4

�1x3 þ 4x4 � 1x5 ¼ 6

�1x4 þ 2x5 ¼ �2

B.7 Solve Problem B.1 by Gauss–Seidel iteration.

B.8 Classify the solutions to the following systems of equations according to Section B.2
as unique, nonunique, or nonexistent.

a. 2x1 � 4x2 ¼ 2 b. 10x1 þ 1x2 ¼ 0
�9x1 þ 12x2 ¼ �6 5x1 þ 1

2 x2 ¼ 3
c. 2x1 þ 1x2 þ 1x3 ¼ 6 d. 1x1 þ 1x2 þ 1x3 ¼ 1

3x1 þ 1x2 � 1x3 ¼ 4 2x1 þ 2x2 þ 2x3 ¼ 2
5x1 þ 2x2 þ 2x3 ¼ 8 3x1 þ 3x2 þ 3x3 ¼ 3

B.9 Determine the bandwidths of the plane trusses shown in Figure PB–9. What con-
clusions can you draw regarding labeling of nodes?

Figure PB–9
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EQUATIONS FROM

ELASTICITY THEORYd

Introduction

In this appendix, we will develop the basic equations of the theory of elasticity. These
equations should be referred to frequently throughout the structural mechanics por-
tions of this text.

There are three basic sets of equations included in theory of elasticity. These equa-
tions must be satisfied if an exact solution to a structural mechanics problem is to be
obtained. These sets of equations are (1) the differential equations of equilibrium formu-
lated here in terms of the stresses acting on a body, (2) the strain/displacement and com-
patibility differential equations, and (3) the stress/strain or material constitutive laws.

d C.1 Differential Equations of Equilibrium d
For simplicity, we initially consider the equilibrium of a plane element subjected to
normal stresses sx and sy, in-plane shear stress txy (in units of force per unit area),
and body forces Xb and Yb (in units of force per unit volume), as shown in Figure C–1.
The stresses are assumed to be constant as they act on the width of each face. How-
ever, the stresses are assumed to vary from one face to the opposite. For example,
we have sx acting on the left vertical face, whereas sx þ ðqsx=qxÞ dx acts on the
right vertical face. The element is assumed to have unit thickness.

Summing forces in the x direction, we have

X
Fx ¼ 0 ¼ sx þ

qsx

qx
dx

� �
dyð1Þ � sx dyð1Þ þ Xb dx dyð1Þ

þ tyx þ
qtyx

qy
dy

� �
dxð1Þ � tyx dxð1Þ ¼ 0 ðC:1:1Þ

After simplifying and canceling terms in Eq. (C.1.1), we obtain

qsx

qx
þ qtyx

qy
þ Xb ¼ 0 ðC:1:2Þ
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Similarly, summing forces in the y direction, we obtain

qsy

qy
þ qtxy

qx
þ Yb ¼ 0 ðC:1:3Þ

Because we are considering only the planar element, three equilibrium equations
must be satisfied. The third equation is equilibrium of moments about an axis normal
to the x-y plane; that is, taking moments about point C in Figure C–1, we have

X
Mz ¼ 0 ¼ txy dyð1Þ dx

2
þ txy þ

qtxy

qx
dx

� �
dx

2

� tyx dxð1Þ dy

2
� tyx þ

qtyx

qy
dy

� �
dy

2
¼ 0 ðC:1:4Þ

Simplifying Eq. (C.1.4) and neglecting higher-order terms yields

txy ¼ tyx ðC:1:5Þ

We now consider the three-dimensional state of stress shown in Figure C–2,
which shows the additional stresses sz; txz, and tyz. For clarity, we show only the
stresses on three mutually perpendicular planes. With a straightforward procedure,
we can extend the two-dimensional equations (C.1.2), (C.1.3), and (C.1.5) to three
dimensions. The resulting total set of equilibrium equations is

qsx

qx
þ qtxy

qy
þ qtxz

qz
þ Xb ¼ 0

qtxy

qx
þ qsy

qy
þ qtyz

qz
þ Yb ¼ 0 ðC:1:6Þ

qtxz

qx
þ qtyz

qy
þ qsz

qz
þ Zb ¼ 0

txy ¼ tyx txz ¼ tzx tyz ¼ tzy ðC:1:7Þand

Figure C–1 Plane differential element subjected to stresses
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d C.2 Strain=Displacement and Compatibility
Equations

d

We first obtain the strain/displacement or kinematic differential relationships for
the two-dimensional case. We begin by considering the differential element shown in
Figure C–3, where the undeformed state is represented by the dashed lines and the
deformed shape (after straining takes place) is represented by the solid lines.

Considering line element AB in the x direction, we can see that it becomes A 0B 0

after deformation, where u and v represent the displacements in the x and y directions.
By the definition of engineering normal strain (that is, the change in length divided by

Figure C–3 Differential element before and after deformation

Figure C–2 Three-dimensional stress element
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the original length of a line), we have

ex ¼
A 0B 0 � AB

AB
ðC:2:1Þ

AB ¼ dx ðC:2:2ÞNow

ðA 0B 0Þ2 ¼ dxþ qu

qx
dx

� �2

þ qv

qx
dx

� �2

ðC:2:3Þand

Therefore, evaluating A 0B 0 using the binomial theorem and neglecting the higher-
order terms ðqu=qxÞ2 and ðqv=qxÞ2 (an approach consistent with the assumption of
small strains), we have

A 0B 0 ¼ dxþ qu

qx
dx ðC:2:4Þ

Using Eqs. (C.2.2) and (C.2.4) in Eq. (C.2.1), we obtain

ex ¼
qu

qx
ðC:2:5Þ

Similarly, considering line element AD in the y direction, we have

ey ¼
qv

qy
ðC:2:6Þ

The shear strain gxy is defined to be the change in the angle between two lines,
such as AB and AD, that originally formed a right angle. Hence, from Figure C–3,
we can see that gxy is the sum of two angles and is given by

gxy ¼
qu

qy
þ qv

qx
ðC:2:7Þ

Equations (C.2.5) through (C.2.7) represent the strain/displacement relationships for
in-plane behavior.

For three-dimensional situations, we have a displacement w in the z direction. It
then becomes straightforward to extend the two-dimensional derivations to the three-
dimensional case to obtain the additional strain/displacement equations as

ez ¼
qw

qz
ðC:2:8Þ

gxz ¼
qu

qz
þ qw

qx
ðC:2:9Þ

gyz ¼
qv

qz
þ qw

qy
ðC:2:10Þ

Along with the strain/displacement equations, we need compatibility equations
to ensure that the displacement components u; v, and w are single-valued continuous
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functions so that tearing or overlap of elements does not occur. For the planar-elastic
case, we obtain the compatibility equation by differentiating gxy with respect to both x

and y and then using the definitions for ex and ey given by Eqs. (C.2.5) and (C.2.6).
Hence,

q2gxy

qxqy
¼ q2

qxqy

qu

qy
þ q2

qxqy

qv

qx
¼ q2ex

qy2
þ q2ey

qx2
ðC:2:11Þ

where the second equation in terms of the strains on the right side is obtained by not-
ing that single-valued continuity of displacements requires that the partial differentia-
tions with respect to x and y be interchangeable in order. Therefore, we have
q2=qxqy ¼ q2=qyqx. Equation (C.2.11) is called the condition of compatibility, and it
must be satisfied by the strain components in order for us to obtain unique expressions
for u and v. Equations (C.2.5), (C.2.6), (C.2.7), and (C.2.11) together are then suffi-
cient to obtain unique single-valued functions for u and v.

In three dimensions, we obtain five additional compatibility equations by differ-
entiating gxz and gyz in a manner similar to that described above for gxy. We need not
list these equations here; details of their derivation can be found in Reference [1].

In addition to the compatibility conditions that ensure single-valued continuous
functions within the body, we must also satisfy displacement or kinematic boundary
conditions. This simply means that the displacement functions must also satisfy pre-
scribed or given displacements on the surface of the body. These conditions often
occur as support conditions from rollers and/or pins. In general, we might have

u ¼ u0 v ¼ v0 w ¼ w0 ðC:2:12Þ

at specified surface locations on the body. We may also have conditions other than
displacements prescribed (for example, prescribed rotations).

d C.3 Stress-Strain Relationships d
We will now develop the three-dimensional stress-strain relationships for an iso-
tropic body only. This is done by considering the response of a body to imposed
stresses. We subject the body to the stresses sx; sy, and sz independently as shown
in Figure C–4.

We first consider the change in length of the element in the x direction due to the
independent stresses sx; sy, and sz. We assume the principle of superposition to hold;
that is, we assume that the resultant strain in a system due to several forces is the
algebraic sum of their individual effects.

Considering Figure C–4(b), the stress in the x direction produces a pos-
itive strain

e 0x ¼
sx

E
ðC:3:1Þ

where Hooke’s law, s ¼ Ee, has been used in writing Eq. (C.3.1), and E is defined as
the modulus of elasticity. Considering Figure C–4(c), the positive stress in the
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y direction produces a negative strain in the x direction as a result of Poisson’s effect
given by

e 00x ¼ �
nsy

E
ðC:3:2Þ

where n is Poisson’s ratio. Similarly, considering Figure C–4(d), the stress in the z

direction produces a negative strain in the x direction given by

e 000x ¼ �
nsz

E
ðC:3:3Þ

Using superposition of Eqs. (C.3.1) through (C.3.3), we obtain

ex ¼
sx

E
� n

sy

E
� n

sz

E
ðC:3:4Þ

The strains in the y and z directions can be determined in a manner similar to that
used to obtain Eq. (C.3.4) for the x direction. They are

ey ¼ �n
sx

E
þ sy

E
� n

sz

E ðC:3:5Þ
ez ¼ �n

sx

E
� n

sy

E
þ sz

E

Figure C–4 Element subjected to normal stress acting in three mutually
perpendicular directions
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Solving Eqs. (C.3.4) and (C.3.5) for the normal stresses, we obtain

sx ¼
E

ð1þ nÞð1� 2nÞ ½exð1� nÞ þ ney þ nez�

sy ¼
E

ð1þ nÞð1� 2nÞ ½nex þ ð1� nÞey þ nez� ðC:3:6Þ

sz ¼
E

ð1þ nÞð1� 2nÞ ½nex þ ney þ ð1� nÞez�

The Hooke’s law relationship, s ¼ Ee, used for normal stress also applies for
shear stress and strain; that is,

t ¼ Gg ðC:3:7Þ

where G is the shear modulus. Hence, the expressions for the three different sets of
shear strains are

gxy ¼
txy

G
gyz ¼

tyz

G
gzx ¼

tzx

G
ðC:3:8Þ

Solving Eqs. (C.3.8) for the stresses, we have

txy ¼ Ggxy tyz ¼ Ggyz tzx ¼ Ggzx ðC:3:9Þ

In matrix form, we can express the stresses in Eqs. (C.3.6) and (C.3.9) as

sx

sy

sz

txy

tyz

tzx

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
¼ E

ð1þ nÞð1� 2nÞ

�

2
6666666666666666664

1� n n n 0 0 0

1� n n 0 0 0

1� n 0 0 0

1� 2n

2
0 0

1� 2n

2
0

1� 2n

2

3
7777777777777777775

8>>>>>>>><
>>>>>>>>:

ex

ey

ez

gxy

gyz

gzx

9>>>>>>>>=
>>>>>>>>;

ðC:3:10Þ

Symmetry

where we note that the relationship

G ¼ E

2ð1þ nÞ
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has been used in Eq. (C.3.10). The square matrix on the right side of Eq. (C.3.10) is
called the stress-strain or constitutive matrix and is defined by ½D�, where ½D� is

½D� ¼ E

ð1þ nÞð1� 2nÞ

2
6666666666666666664

1� n n n 0 0 0

1� n n 0 0 0

1� n 0 0 0

1� 2n

2
0 0

1� 2n

2
0

1� 2n

2

3
7777777777777777775

ðC:3:11Þ

Symmetry

d Reference

[1] Timoshenko, S., and Goodier, J., Theory of Elasticity, 3rd ed., McGraw-Hill, New York,
1970.
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EQUIVALENT NODAL FORCESd

The equivalent nodal (or joint) forces for different types of loads on beam elements
are shown in Table D–1 (on the following page).

d Problems

D.1 Determine the equivalent joint or nodal forces for the beam elements shown in Fig-
ure PD–1.

Figure PD–1
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PRINCIPLE OF VIRTUAL WORKd

In this appendix, we will use the principle of virtual work to derive the general finite
element equations for a dynamic system.

Strictly speaking, the principle of virtual work applies to a static system, but
through the introduction of D’Alembert’s principle, we will be able to use the principle
of virtual work to derive the finite element equations applicable for a dynamic system.

The principle of virtual work is stated as follows:

If a deformable body in equilibrium is subjected to arbitrary virtual
(imaginary) displacements associated with a compatible deformation of the
body, the virtual work of external forces on the body is equal to the virtual
strain energy of the internal stresses.

In the principle, compatible displacements are those that satisfy the boundary
conditions and ensure that no discontinuities, such as voids or overlaps, occur
within the body. Figure E–1 shows the hypothetical actual displacement, a compatible
(admissible) displacement, and an incompatible (inadmissible) displacement for a sim-
ply supported beam. Here dv represents the variation in the transverse displacement
function v. In the finite element formulation, dv would be replaced by nodal degrees
of freedom ddi. The inadmissible displacements shown in Figure E–1(b) are the result
when the support condition at the right end of the beam and the continuity of dis-
placement and slope within the beam are not satisfied. For more details of this princi-
ple, consult structural mechanics references such as Reference [1]. Also, for additional
descriptions of strain energy and work done by external forces (as applied to a bar),
see Section 3.10.

Applying the principle to a finite element, we have

dU ðeÞ ¼ dW ðeÞ ðE:1Þ

where dU ðeÞ is the virtual strain energy due to internal stresses and dW ðeÞ is the virtual
work of external forces on the element. We can express the internal virtual strain
energy using matrix notation as

dU ðeÞ ¼
ððð

V

dfegTfsg dV ðE:2Þ
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From Eq. (E.2), we can observe that internal strain energy is due to internal stresses
moving through virtual strains de. The external virtual work is due to nodal, surface,
and body forces. In addition, application of D’Alembert’s principle yields effective or
inertial forces r€u dV ; r€v dV , and r €w dV , where the double dots indicate second deriva-
tives of the translations u; v, and w in the x; y, and z directions, respectively, with
respect to time. These forces are shown in Figure E–2. According to D’Alembert’s
principle, these effective forces act in directions that are opposite to the assumed pos-
itive sense of the accelerations. We can now express the external virtual work as

dW ðeÞ ¼ dfdgTfPg þ
ðð

S

dfcsgT fTs g dS þ
ððð

V

dfcgTðfXg � rf €cgÞ dV ðE:3Þ

where dfdg is the vector of virtual nodal displacements, dfcg is the vector of virtual
displacement functions du; dv, and dw; dfcsg is the vector of virtual displacement func-
tions acting over the surface where surface tractions occur, fPg is the nodal load matrix,
fTsg is the surface force per unit area matrix, and fXg is the body force per unit vol-
ume matrix.

Figure E–1 (a) Admissible and (b) inadmissible virtual displacement functions

Figure E–2 Effective forces acting on an element
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Substituting Eqs. (E.2) and (E.3) into Eq. (E.1), we obtain

ððð

V

dfegTfsg dV ¼ dfdgTfPg þ
ðð

S

dfcsgTfTsg dS þ
ððð

V

dfcgTðfXg � rf €cgÞ dV

ðE:4Þ
As shown throughout this text, shape functions are used to relate displacement

functions to nodal displacements as

fcg ¼ ½N�fdg fcsg ¼ ½Ns�fdg ðE:5Þ

½Ns� is the shape function matrix evaluated on the surface where traction fTsg occurs.
Strains are related to nodal displacements as

feg ¼ ½B�fdg ðE:6Þ
and stresses are related to strains by

fsg ¼ ½D�feg ðE:7Þ

Hence, substituting Eqs. (E.5), (E.6), and (E.7) for fcg; feg, and fsg into Eq. (E.4),
we obtain

ððð

V

dfdgT ½B�T ½D�½B�fdg dV ¼ dfdgTfPg þ
ðð

S

dfdgT ½Ns�T fTsg dS

þ
ððð

V

dfdgT ½N �TðfXg � r½N�f€dgÞ dV

ðE:8Þ

Note that the shape functions are independent of time. Because fdg (or fdgT ) is the
matrix of nodal displacements, which is independent of spatial integration, we can
simplify Eq. (E.8) by taking the fdgT terms from the integrals to obtain

dfdgT

ððð

V

½B�T ½D�½B� dVfdg ¼ dfdgTfPg þ dfdgT

ðð

S

½Ns�T fTsg dS

þ dfdgT

ððð

V

½N�TðfXg � r½N �f€dgÞ dV

ðE:9Þ

Because dfdgT is an arbitrary virtual nodal displacement vector common to each term
in Eq. (E.9), the following relationship must be true.

ððð

V

½B�T ½D�½B� dVfdg ¼ fPg þ
ðð

S

½Ns�T fTsg dS þ
ððð

V

½N�TfXg dV �
ððð

V

r½N�T ½N � dVf€dg

ðE:10Þ
We now define

½m� ¼
ððð

V

r½N�TfNg dV ðE:11Þ
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½k� ¼
ððð

V

½B�T ½D�½B� dV ðE:12Þ

f fsg ¼
ðð

S

½Ns�T fTsg dS ðE:13Þ

f fbg ¼
ððð

V

½N�T fXg dV ðE:14Þ

Using Eqs. (E.11) through (E.14) in Eq. (E.10) and moving the last term of Eq. (E.10)
to the left side, we obtain

½m�f€dg þ ½k�fdg ¼ fPg þ f fsg þ ffbg ðE:15Þ

The matrix ½m� in Eq. (E.11) is the element consistent-mass matrix [2], ½k� in Eq. (E.12)
is the element stiffness matrix, f fsg in Eq. (E.13) is the matrix of element equivalent
nodal loads due to surface forces, and f fbg in Eq. (E.14) is the matrix of element
equivalent nodal loads due to body forces.

Specific applications of Eq. (E.15) are given in Chapter 16 for bars and beams
subjected to dynamic (time-dependent) forces. For static problems, we set €fd g equal
to zero in Eq. (E.15) to obtain

½k�fdg ¼ fPg þ f fsg þ f fbg ðE:16Þ

Chapters 3 through 9, 11, and 12 illustrate the use of Eq. (E.16) applied to bars,
trusses, beams, frames, and to plane stress, axisymmetric stress, three-dimensional
stress, and plate-bending problems.

d References

[1] Oden, J. T., and Ripperger, E. A., Mechanics of Elastic Structures, 2nd ed., McGraw-Hill,
New York, 1981.

[2] Archer, J. S., ‘‘Consistent Matrix Formulations for Structural Analysis Using Finite Ele-
ment Techniques,’’ Journal of the American Institute of Aeronautics and Astronautics, Vol. 3,
No. 10, pp. 1910–1918, 1965.

References d 881

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PROPERTIES OF STRUCTURAL

STEEL SHAPESd

A P P E N D I X F

882

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table 1–1 

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W36×800h 236 42.6 421/2 2.38 23/8 13/16 18.0 18 4.29 45/16 5.24 59/16 23/8 313/8 71/2

×652h 192 41.1 41 1.97 2 1 17.6 175/8 3.54 39/16 4.49 413/16 23/16

×529h 156 39.8 393/4 1.61 15/8 13/16 17.2 171/4 2.91 215/16 3.86 43/16 2
×487h 143 39.3 393/8 1.50 11/2 3/4 17.1 171/8 2.68 211/16 3.63 4 115/16

×441h 130 38.9 387/8 1.36 13/8 11/16 17.0 17 2.44 27/16 3.39 33/4 17/8

×395h 116 38.4 383/8 1.22 11/4 5/8 16.8 167/8 2.20 23/16 3.15 37/16 113/16

×361h 106 38.0 38 1.12 11/8 9/16 16.7 163/4 2.01 2 2.96 35/16 13/4

×330 97.0 37.7 375/8 1.02 1 1/2 16.6 165/8 1.85 17/8 2.80 31/8 13/4

×302 88.8 37.3 373/8 0.945 15/16 1/2 16.7 165/8 1.68 111/16 2.63 3 111/16

×282c 82.9 37.1 371/8 0.885 7/8 7/16 16.6 165/8 1.57 19/16 2.52 27/8 15/8

×262c 77.0 36.9 367/8 0.840 13/16 7/16 16.6 161/2 1.44 17/16 2.39 23/4 15/8

×247c 72.5 36.7 365/8 0.800 13/16 7/16 16.5 161/2 1.35 13/8 2.30 25/8 15/8

×231c 68.1 36.5 361/2 0.760 3/4 3/8 16.5 161/2 1.26 11/4 2.21 29/16 19/16

W36×256 75.4 37.4 373/8 0.960 15/16 1/2 12.2 121/4 1.73 13/4 2.48 25/8 15/16 321/8 51/2

×232c 68.1 37.1 371/8 0.870 7/8 7/16 12.1 121/8 1.57 19/16 2.32 27/16 11/4

×210c 61.8 36.7 363/4 0.830 13/16 7/16 12.2 121/8 1.36 13/8 2.11 25/16 11/4

×194c 57.0 36.5 361/2 0.765 3/4 3/8 12.1 121/8 1.26 11/4 2.01 23/16 13/16

×182c 53.6 36.3 363/8 0.725 3/4 3/8 12.1 121/8 1.18 13/16 1.93 21/8 13/16

×170c 50.1 36.2 361/8 0.680 11/16 3/8 12.0 12 1.10 11/8 1.85 2 13/16

×160c 47.0 36.0 36 0.650 5/8 5/16 12.0 12 1.02 1 1.77 115/16 11/8

×150c 44.2 35.9 357/8 0.625 5/8 5/16 12.0 12 0.940 15/16 1.69 17/8 11/8

×135c,v 39.7 35.6 351/2 0.600 5/8 5/16 12.0 12 0.790 13/16 1.54 111/16 11/8

W33×387h 114 36.0 36 1.26 11/4 5/8 16.2 161/4 2.28 21/4 3.07 33/16 17/16 295/8 51/2

×354h 104 35.6 351/2 1.16 13/16 5/8 16.1 161/8 2.09 21/16 2.88 215/16 13/8

×318 93.6 35.2 351/8 1.04 11/16 9/16 16.0 16 1.89 17/8 2.68 23/4 15/16

×291 85.7 34.8 347/8 0.960 15/16 1/2 15.9 157/8 1.73 13/4 2.52 25/8 15/16

×263 77.5 34.5 341/2 0.870 7/8 7/16 15.8 153/4 1.57 19/16 2.36 27/16 11/4

×241c 71.0 34.2 341/8 0.830 13/16 7/16 15.9 157/8 1.40 13/8 2.19 21/4 11/4

×221c 65.2 33.9 337/8 0.775 3/4 3/8 15.8 153/4 1.28 11/4 2.06 21/8 13/16

×201c 59.2 33.7 335/8 0.715 11/16 3/8 15.7 153/4 1.15 11/8 1.94 2 13/16

W33×169c 49.5 33.8 337/8 0.670 11/16 3/8 11.5 111/2 1.22 11/4 1.92 21/8 13/16 295/8 51/2

×152c 44.8 33.5 331/2 0.635 5/8 5/16 11.6 115/8 1.06 11/16 1.76 115/16 11/8

×141c 41.6 33.3 331/4 0.605 5/8 5/16 11.5 111/2 0.960 15/16 1.66 113/16 11/8

×130c 38.3 33.1 331/8 0.580 9/16 5/16 11.5 111/2 0.855 7/8 1.56 13/4 11/8

×118c,v 34.7 32.9 327/8 0.550 9/16 5/16 11.5 111/2 0.740 3/4 1.44 15/8 11/8
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W36 – W33

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

800 2.10 13.5 64700 3040 16.6 3650 4200 467 4.22 743 5.14 38.3 1060 1540000
652 2.48 16.3 50600 2460 16.2 2910 3230 367 4.10 581 4.96 37.5 593 1130000
529 2.96 19.9 39600 1990 16.0 2330 2490 289 4.00 454 4.80 36.9 327 846000
487 3.19 21.4 36000 1830 15.8 2130 2250 263 3.96 412 4.74 36.7 258 754000
441 3.48 23.6 32100 1650 15.7 1910 1990 235 3.92 368 4.69 36.4 194 661000
395 3.83 26.3 28500 1490 15.7 1710 1750 208 3.88 325 4.61 36.2 142 575000
361 4.16 28.6 25700 1350 15.6 1550 1570 188 3.85 293 4.58 36.0 109 509000
330 4.49 31.4 23300 1240 15.5 1410 1420 171 3.83 265 4.53 35.8 84.3 456000
302 4.96 33.9 21100 1130 15.4 1280 1300 156 3.82 241 4.53 35.7 64.3 412000
282 5.29 36.2 19600 1050 15.4 1190 1200 144 3.80 223 4.50 35.5 52.7 378000
262 5.75 38.2 17900 972 15.3 1100 1090 132 3.76 204 4.46 35.4 41.6 342000
247 6.11 40.1 16700 913 15.2 1030 1010 123 3.74 190 4.42 35.3 34.7 316000
231 6.54 42.2 15600 854 15.1 963 940 114 3.71 176 4.40 35.2 28.7 292000

256 3.53 33.8 16800 895 14.9 1040 528 86.5 2.65 137 3.25 35.7 52.9 168000
232 3.86 37.3 15000 809 14.8 936 468 77.2 2.62 122 3.21 35.6 39.6 148000
210 4.48 39.1 13200 719 14.6 833 411 67.5 2.58 107 3.18 35.3 28.0 128000
194 4.81 42.4 12100 664 14.6 767 375 61.9 2.56 97.7 3.15 35.2 22.2 116000
182 5.12 44.8 11300 623 14.5 718 347 57.6 2.55 90.7 3.13 35.2 18.5 107000
170 5.47 47.7 10500 581 14.5 668 320 53.2 2.53 83.8 3.11 35.1 15.1 98500
160 5.88 49.9 9760 542 14.4 624 295 49.1 2.50 77.3 3.08 35.0 12.4 90200
150 6.37 51.9 9040 504 14.3 581 270 45.1 2.47 70.9 3.06 34.9 10.1 82200
135 7.56 54.1 7800 439 14.0 509 225 37.7 2.38 59.7 2.99 34.8 7.00 68100

387 3.55 23.7 24300 1350 14.6 1560 1620 200 3.77 312 4.49 33.7 148 459000
354 3.85 25.7 22000 1240 14.5 1420 1460 181 3.74 282 4.44 33.5 115 408000
318 4.23 28.7 19500 1110 14.5 1270 1290 161 3.71 250 4.39 33.3 84.4 357000
291 4.60 31.0 17700 1020 14.4 1160 1160 146 3.68 226 4.35 33.1 65.1 319000
263 5.03 34.3 15900 919 14.3 1040 1040 131 3.66 202 4.31 33.0 48.7 281000
241 5.66 35.9 14200 831 14.1 940 933 118 3.62 182 4.29 32.8 36.2 251000
221 6.20 38.5 12900 759 14.1 857 840 106 3.59 164 4.25 32.7 27.8 224000
201 6.85 41.7 11600 686 14.0 773 749 95.2 3.56 147 4.21 32.5 20.8 198000

169 4.71 44.7 9290 549 13.7 629 310 53.9 2.50 84.4 3.03 32.6 17.7 82400
152 5.48 47.2 8160 487 13.5 559 273 47.2 2.47 73.9 3.01 32.4 12.4 71700
141 6.01 49.6 7450 448 13.4 514 246 42.7 2.43 66.9 2.98 32.3 9.70 64400
130 6.73 51.7 6710 406 13.2 467 218 37.9 2.39 59.5 2.94 32.2 7.37 56600
118 7.76 54.5 5900 359 13.0 415 187 32.6 2.32 51.3 2.89 32.1 5.30 48300
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W30×391h 115 33.2 331/4 1.36 13/8 11/16 15.6 155/8 2.44 27/16 3.23 33/8 11/2 261/2 51/2

×357h 105 32.8 323/4 1.24 11/4 5/8 15.5 151/2 2.24 21/4 3.03 31/8 17/16

×326h 95.8 32.4 323/8 1.14 11/8 9/16 15.4 153/8 2.05 21/16 2.84 215/16 13/8

×292 85.9 32.0 32 1.02 1 1/2 15.3 151/4 1.85 17/8 2.64 23/4 15/16

×261 76.9 31.6 315/8 0.930 15/16 1/2 15.2 151/8 1.65 15/8 2.44 29/16 15/16

×235 69.2 31.3 311/4 0.830 13/16 7/16 15.1 15 1.50 11/2 2.29 23/8 11/4

×211 62.2 30.9 31 0.775 3/4 3/8 15.1 151/8 1.32 15/16 2.10 21/4 13/16

×191c 56.3 30.7 305/8 0.710 11/16 3/8 15.0 15 1.19 13/16 1.97 21/16 13/16

×173c 51.0 30.4 301/2 0.655 5/8 5/16 15.0 15 1.07 11/16 1.85 2 11/8

W30×148c 43.5 30.7 305/8 0.650 5/8 5/16 10.5 101/2 1.18 13/16 1.83 21/16 11/8 261/2 51/2

×132c 38.9 30.3 301/4 0.615 5/8 5/16 10.5 101/2 1.00 1 1.65 17/8 11/8

×124c 36.5 30.2 301/8 0.585 9/16 5/16 10.5 101/2 0.930 15/16 1.58 113/16 11/8

×116c 34.2 30.0 30 0.565 9/16 5/16 10.5 101/2 0.850 7/8 1.50 13/4 11/8

×108c 31.7 29.8 297/8 0.545 9/16 5/16 10.5 101/2 0.760 3/4 1.41 111/16 11/8

×99c 29.1 29.7 295/8 0.520 1/2 1/4 10.5 101/2 0.670 11/16 1.32 19/16 11/16

×90c,v 26.4 29.5 291/2 0.470 1/2 1/4 10.4 103/8 0.610 5/8 1.26 11/2 11/16

W27×539h 159 32.5 321/2 1.97 2 1 15.3 151/4 3.54 39/16 4.33 47/16 113/16 235/8 51/2g

×368h 108 30.4 303/8 1.38 13/8 11/16 14.7 145/8 2.48 21/2 3.27 33/8 11/2 51/2

×336h 98.9 30.0 30 1.26 11/4 5/8 14.6 141/2 2.28 21/4 3.07 33/16 17/16

×307h 90.4 29.6 295/8 1.16 13/16 5/8 14.4 141/2 2.09 21/16 2.88 3 17/16

×281 82.9 29.3 291/4 1.06 11/16 9/16 14.4 143/8 1.93 115/16 2.72 213/16 13/8

×258 76.0 29.0 29 0.980 1 1/2 14.3 141/4 1.77 13/4 2.56 211/16 15/16

×235 69.4 28.7 285/8 0.910 15/16 1/2 14.2 141/4 1.61 15/8 2.40 21/2 15/16

×217 64.0 28.4 283/8 0.830 13/16 7/16 14.1 141/8 1.50 11/2 2.29 23/8 11/4

×194 57.2 28.1 281/8 0.750 3/4 3/8 14.0 14 1.34 15/16 2.13 21/4 13/16

×178 52.5 27.8 273/4 0.725 3/4 3/8 14.1 141/8 1.19 13/16 1.98 21/16 13/16

×161c 47.6 27.6 275/8 0.660 11/16 3/8 14.0 14 1.08 11/16 1.87 2 13/16

×146c 43.1 27.4 273/8 0.605 5/8 5/16 14.0 14 0.975 1 1.76 17/8 11/8

W27×129c 37.8 27.6 275/8 0.610 5/8 5/16 10.0 10 1.10 11/8 1.70 2 11/8 235/8 51/2

×114c 33.5 27.3 271/4 0.570 9/16 5/16 10.1 101/8 0.930 15/16 1.53 113/16 11/8

×102c 30.0 27.1 271/8 0.515 1/2 1/4 10.0 10 0.830 13/16 1.43 13/4 11/16

×94c 27.7 26.9 267/8 0.490 1/2 1/4 10.0 10 0.745 3/4 1.34 15/8 11/16

×84c 24.8 26.7 263/4 0.460 7/16 1/4 10.0 10 0.640 5/8 1.24 19/16 11/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W30 – W27
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391 3.19 19.7 20700 1250 13.4 1450 1550 198 3.67 310 4.37 30.8 173 366000
357 3.45 21.6 18700 1140 13.3 1320 1390 179 3.64 279 4.32 30.6 134 324000
326 3.75 23.4 16800 1040 13.2 1190 1240 162 3.60 252 4.27 30.4 103 287000
292 4.12 26.2 14900 930 13.2 1060 1100 144 3.58 223 4.22 30.2 75.2 250000
261 4.59 28.7 13100 829 13.1 943 959 127 3.53 196 4.16 30.0 54.1 215000
235 5.02 32.2 11700 748 13.0 847 855 114 3.51 175 4.13 29.8 40.3 190000
211 5.74 34.5 10300 665 12.9 751 757 100 3.49 155 4.10 29.6 28.4 166000
191 6.35 37.7 9200 600 12.8 675 673 89.5 3.46 138 4.07 29.5 21.0 146000
173 7.04 40.8 8230 541 12.7 607 598 79.8 3.42 123 4.03 29.4 15.6 129000

148 4.44 41.6 6680 436 12.4 500 227 43.3 2.28 68.0 2.77 29.5 14.5 49400
132 5.27 43.9 5770 380 12.2 437 196 37.2 2.25 58.4 2.75 29.3 9.72 42100
124 5.65 46.2 5360 355 12.1 408 181 34.4 2.23 54.0 2.73 29.2 7.99 38600
116 6.17 47.8 4930 329 12.0 378 164 31.3 2.19 49.2 2.70 29.2 6.43 34900
108 6.89 49.6 4470 299 11.9 346 146 27.9 2.15 43.9 2.66 29.1 4.99 30900
99 7.80 51.9 3990 269 11.7 312 128 24.5 2.10 38.6 2.62 29.0 3.77 26800
90 8.52 57.5 3610 245 11.7 283 115 22.1 2.09 34.7 2.60 28.9 2.84 24000

539 2.15 12.1 25600 1570 12.7 1890 2110 277 3.65 437 4.41 29.0 496 443000
368 2.96 17.3 16200 1060 12.2 1240 1310 179 3.48 279 4.14 27.9 170 255000
336 3.19 18.9 14600 972 12.1 1130 1180 162 3.45 252 4.09 27.7 131 226000
307 3.46 20.6 13100 887 12.0 1030 1050 146 3.41 227 4.04 27.5 101 199000
281 3.72 22.5 11900 814 12.0 936 953 133 3.39 206 4.00 27.4 79.5 178000
258 4.03 24.4 10800 745 11.9 852 859 120 3.36 187 3.96 27.2 61.6 159000
235 4.41 26.2 9700 677 11.8 772 769 108 3.33 168 3.92 27.1 47.0 141000
217 4.71 28.7 8910 627 11.8 711 704 100 3.32 154 3.89 26.9 37.6 128000
194 5.24 31.8 7860 559 11.7 631 619 88.1 3.29 136 3.85 26.8 27.1 111000
178 5.92 32.9 7020 505 11.6 570 555 78.8 3.25 122 3.83 26.6 20.1 98400
161 6.49 36.1 6310 458 11.5 515 497 70.9 3.23 109 3.79 26.5 15.1 87300
146 7.16 39.4 5660 414 11.5 464 443 63.5 3.20 97.7 3.76 26.4 11.3 77200

129 4.55 39.7 4760 345 11.2 395 184 36.8 2.21 57.6 2.66 26.5 11.1 32500
114 5.41 42.5 4080 299 11.0 343 159 31.5 2.18 49.3 2.64 26.4 7.33 27600
102 6.03 47.1 3620 267 11.0 305 139 27.8 2.15 43.4 2.62 26.3 5.28 24000
94 6.70 49.5 3270 243 10.9 278 124 24.8 2.12 38.8 2.59 26.2 4.03 21300
84 7.78 52.7 2850 213 10.7 244 106 21.2 2.07 33.2 2.54 26.1 2.81 17900
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.
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W24×370h 109 28.0 28 1.52 11/2 3/4 13.7 135/8 2.72 23/4 3.22 35/8 19/16 203/4 51/2

×335h 98.4 27.5 271/2 1.38 13/8 11/16 13.5 131/2 2.48 21/2 2.98 33/8 11/2

×306h 89.8 27.1 271/8 1.26 11/4 5/8 13.4 133/8 2.28 21/4 2.78 33/16 17/16

x279h 82.0 26.7 263/4 1.16 13/16 5/8 13.3 131/4 2.09 21/16 2.59 3 17/16

×250 73.5 26.3 263/8 1.04 11/16 9/16 13.2 131/8 1.89 17/8 2.39 213/16 13/8

×229 67.2 26.0 26 0.960 15/16 1/2 13.1 131/8 1.73 13/4 2.23 25/8 15/16

×207 60.7 25.7 253/4 0.870 7/8 7/16 13.0 13 1.57 19/16 2.07 21/2 11/4

×192 56.3 25.5 251/2 0.810 13/16 7/16 13.0 13 1.46 17/16 1.96 23/8 11/4

×176 51.7 25.2 251/4 0.750 3/4 3/8 12.9 127/8 1.34 15/16 1.84 21/4 13/16

×162 47.7 25.0 25 0.705 11/16 3/8 13.0 13 1.22 11/4 1.72 21/8 13/16

×146 43.0 24.7 243/4 0.650 5/8 5/16 12.9 127/8 1.09 11/16 1.59 2 11/8

×131 38.5 24.5 241/2 0.605 5/8 5/16 12.9 127/8 0.960 15/16 1.46 17/8 11/8

×117c 34.4 24.3 241/4 0.550 9/16 5/16 12.8 123/4 0.850 7/8 1.35 13/4 11/8

×104c 30.6 24.1 24 0.500 1/2 1/4 12.8 123/4 0.750 3/4 1.25 15/8 11/16

W24×103c 30.3 24.5 241/2 0.550 9/16 5/16 9.00 9 0.980 1 1.48 17/8 11/8 203/4 51/2

×94c 27.7 24.3 241/4 0.515 1/2 1/4 9.07 91/8 0.875 7/8 1.38 13/4 11/16

×84c 24.7 24.1 241/8 0.470 1/2 1/4 9.02 9 0.770 3/4 1.27 111/16 11/16

×76c 22.4 23.9 237/8 0.440 7/16 1/4 8.99 9 0.680 11/16 1.18 19/16 11/16

×68c 20.1 23.7 233/4 0.415 7/16 1/4 8.97 9 0.585 9/16 1.09 11/2 11/16

W24×62c 18.2 23.7 233/4 0.430 7/16 1/4 7.04 7 0.590 9/16 1.09 11/2 11/16 203/4 31/2g

×55c,v 16.2 23.6 235/8 0.395 3/8 3/16 7.01 7 0.505 1/2 1.01 17/16 1 203/4 31/2g

W21×201 59.2 23.0 23 0.910 15/16 1/2 12.6 125/8 1.63 15/8 2.13 21/2 15/16 18 51/2

×182 53.6 22.7 223/4 0.830 13/16 7/16 12.5 121/2 1.48 11/2 1.98 23/8 11/4

×166 48.8 22.5 221/2 0.750 3/4 3/8 12.4 123/8 1.36 13/8 1.86 21/4 13/16

×147 43.2 22.1 22 0.720 3/4 3/8 12.5 121/2 1.15 11/8 1.65 2 13/16

×132 38.8 21.8 217/8 0.650 5/8 5/16 12.4 121/2 1.04 11/16 1.54 115/16 11/8

×122 35.9 21.7 215/8 0.600 5/8 5/16 12.4 123/8 0.960 15/16 1.46 113/16 11/8

×111 32.7 21.5 211/2 0.550 9/16 5/16 12.3 123/8 0.875 7/8 1.38 13/4 11/8

×101c 29.8 21.4 213/8 0.500 1/2 1/4 12.3 121/4 0.800 13/16 1.30 111/16 11/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W24 – W21
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370 2.51 14.2 13400 957 11.1 1130 1160 170 3.27 267 3.92 25.3 201 186000
335 2.73 15.6 11900 864 11.0 1020 1030 152 3.23 238 3.86 25.0 152 161000
306 2.94 17.1 10700 789 10.9 922 919 137 3.20 214 3.81 24.9 117 142000
279 3.18 18.6 9600 718 10.8 835 823 124 3.17 193 3.76 24.6 90.5 125000
250 3.49 20.7 8490 644 10.7 744 724 110 3.14 171 3.71 24.5 66.6 108000
229 3.79 22.5 7650 588 10.7 675 651 99.4 3.11 154 3.67 24.3 51.3 96100
207 4.14 24.8 6820 531 10.6 606 578 88.8 3.08 137 3.62 24.1 38.3 84100
192 4.43 26.6 6260 491 10.5 559 530 81.8 3.07 126 3.60 24.0 30.8 76300
176 4.81 28.7 5680 450 10.5 511 479 74.3 3.04 115 3.57 23.9 23.9 68400
162 5.31 30.6 5170 414 10.4 468 443 68.4 3.05 105 3.57 23.8 18.5 62600
146 5.92 33.2 4580 371 10.3 418 391 60.5 3.01 93.2 3.53 23.7 13.4 54600
131 6.70 35.6 4020 329 10.2 370 340 53.0 2.97 81.5 3.49 23.5 9.50 47100
117 7.53 39.2 3540 291 10.1 327 297 46.5 2.94 71.4 3.46 23.4 6.72 40800
104 8.50 43.1 3100 258 10.1 289 259 40.7 2.91 62.4 3.42 23.3 4.72 35200

103 4.59 39.2 3000 245 10.0 280 119 26.5 1.99 41.5 2.40 23.6 7.07 16600
94 5.18 41.9 2700 222 9.87 254 109 24.0 1.98 37.5 2.40 23.4 5.26 15000
84 5.86 45.9 2370 196 9.79 224 94.4 20.9 1.95 32.6 2.37 23.3 3.70 12800
76 6.61 49.0 2100 176 9.69 200 82.5 18.4 1.92 28.6 2.34 23.2 2.68 11100
68 7.66 52.0 1830 154 9.55 177 70.4 15.7 1.87 24.5 2.30 23.1 1.87 9430

62 5.97 50.1 1550 131 9.23 153 34.5 9.80 1.38 15.7 1.75 23.2 1.71 4620
55 6.94 54.6 1350 114 9.11 134 29.1 8.30 1.34 13.3 1.71 23.1 1.18 3870

201 3.86 20.6 5310 461 9.47 530 542 86.1 3.02 133 3.55 21.4 40.9 62000
182 4.22 22.6 4730 417 9.40 476 483 77.2 3.00 119 3.51 21.2 30.7 54400
166 4.57 25.0 4280 380 9.36 432 435 70.0 2.99 108 3.48 21.1 23.6 48500
147 5.44 26.1 3630 329 9.17 373 376 60.1 2.95 92.6 3.45 20.9 15.4 41100
132 6.01 28.9 3220 295 9.12 333 333 53.5 2.93 82.3 3.42 20.8 11.3 36000
122 6.45 31.3 2960 273 9.09 307 305 49.2 2.92 75.6 3.40 20.7 8.98 32700
111 7.05 34.1 2670 249 9.05 279 274 44.5 2.90 68.2 3.37 20.6 6.83 29200
101 7.68 37.5 2420 227 9.02 253 248 40.3 2.89 61.7 3.35 20.6 5.21 26200
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

W21×93 27.3 21.6 215/8 0.580 9/16 5/16 8.42 83/8 0.930 15/16 1.43 15/8 15/16 183/8 51/2

×83c 24.3 21.4 213/8 0.515 1/2 1/4 8.36 83/8 0.835 13/16 1.34 11/2 7/8

×73c 21.5 21.2 211/4 0.455 7/16 1/4 8.30 81/4 0.740 3/4 1.24 17/16 7/8

×68c 20.0 21.1 211/8 0.430 7/16 1/4 8.27 81/4 0.685 11/16 1.19 13/8 7/8

×62c 18.3 21.0 21 0.400 3/8 3/16 8.24 81/4 0.615 5/8 1.12 15/16 13/16

×55c 16.2 20.8 203/4 0.375 3/8 3/16 8.22 81/4 0.522 1/2 1.02 13/16 13/16

×48c,f 14.1 20.6 205/8 0.350 3/8 3/16 8.14 81/8 0.430 7/16 0.930 11/8 13/16

W21×57c 16.7 21.1 21 0.405 3/8 3/16 6.56 61/2 0.650 5/8 1.15 15/16 13/16 183/8 31/2

×50c 14.7 20.8 207/8 0.380 3/8 3/16 6.53 61/2 0.535 9/16 1.04 11/4 13/16

×44c 13.0 20.7 205/8 0.350 3/8 3/16 6.50 61/2 0.450 7/16 0.950 11/8 13/16

W18×311h 91.6 22.3 223/8 1.52 11/2 3/4 12.0 12 2.74 23/4 3.24 37/16 13/8 151/2 51/2

×283h 83.3 21.9 217/8 1.40 13/8 11/16 11.9 117/8 2.50 21/2 3.00 33/16 15/16

×258h 75.9 21.5 211/2 1.28 11/4 5/8 11.8 113/4 2.30 25/16 2.70 3 11/4

×234h 68.8 21.1 21 1.16 13/16 5/8 11.7 115/8 2.11 21/8 2.51 23/4 13/16

×211 62.1 20.7 205/8 1.06 11/16 9/16 11.6 111/2 1.91 115/16 2.31 29/16 13/16

×192 56.4 20.4 203/8 0.960 15/16 1/2 11.5 111/2 1.75 13/4 2.15 27/16 11/8

×175 51.3 20.0 20 0.890 7/8 7/16 11.4 113/8 1.59 19/16 1.99 27/16 11/4 151/8

×158 46.3 19.7 193/4 0.810 13/16 7/16 11.3 111/4 1.44 17/16 1.84 23/8 11/4

×143 42.1 19.5 191/2 0.730 3/4 3/8 11.2 111/4 1.32 15/16 1.72 23/16 13/16

×130 38.2 19.3 191/4 0.670 11/16 3/8 11.2 111/8 1.20 13/16 1.60 21/16 13/16

×119 35.1 19.0 19 0.655 5/8 5/16 11.3 111/4 1.06 11/16 1.46 115/16 13/16

×106 31.1 18.7 183/4 0.590 9/16 5/16 11.2 111/4 0.940 15/16 1.34 113/16 11/8

×97 28.5 18.6 185/8 0.535 9/16 5/16 11.1 111/8 0.870 7/8 1.27 13/4 11/8

×86 25.3 18.4 183/8 0.480 1/2 1/4 11.1 111/8 0.770 3/4 1.17 15/8 11/16

×76c 22.3 18.2 181/4 0.425 7/16 1/4 11.0 11 0.680 11/16 1.08 19/16 11/16

W18×71 20.8 18.5 181/2 0.495 1/2 1/4 7.64 75/8 0.810 13/16 1.21 11/2 7/8 151/2 31/2g

×65 19.1 18.4 183/8 0.450 7/16 1/4 7.59 75/8 0.750 3/4 1.15 17/16 7/8

×60c 17.6 18.2 181/4 0.415 7/16 1/4 7.56 71/2 0.695 11/16 1.10 13/8 13/16

×55c 16.2 18.1 181/8 0.390 3/8 3/16 7.53 71/2 0.630 5/8 1.03 15/16 13/16

×50c 14.7 18.0 18 0.355 3/8 3/16 7.50 71/2 0.570 9/16 0.972 11/4 13/16

W18×46c 13.5 18.1 18 0.360 3/8 3/16 6.06 6 0.605 5/8 1.01 11/4 13/16 151/2 31/2g

×40c 11.8 17.9 177/8 0.315 5/16 3/16 6.02 6 0.525 1/2 0.927 13/16 13/16

×35c 10.3 17.7 173/4 0.300 5/16 3/16 6.00 6 0.425 7/16 0.827 11/8 3/4
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W21 – W18
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93 4.53 32.3 2070 192 8.70 221 92.9 22.1 1.84 34.7 2.24 20.7 6.03 9940
83 5.00 36.4 1830 171 8.67 196 81.4 19.5 1.83 30.5 2.21 20.6 4.34 8630
73 5.60 41.2 1600 151 8.64 172 70.6 17.0 1.81 26.6 2.19 20.5 3.02 7410
68 6.04 43.6 1480 140 8.60 160 64.7 15.7 1.80 24.4 2.17 20.4 2.45 6760
62 6.70 46.9 1330 127 8.54 144 57.5 14.0 1.77 21.7 2.15 20.4 1.83 5960
55 7.87 50.0 1140 110 8.40 126 48.4 11.8 1.73 18.4 2.11 20.3 1.24 4980
48 9.47 53.6 959 93.0 8.24 107 38.7 9.52 1.66 14.9 2.05 20.2 0.803 3950

57 5.04 46.3 1170 111 8.36 129 30.6 9.35 1.35 14.8 1.68 20.4 1.77 3190
50 6.10 49.4 984 94.5 8.18 110 24.9 7.64 1.30 12.2 1.64 20.3 1.14 2570
44 7.22 53.6 843 81.6 8.06 95.4 20.7 6.37 1.26 10.2 1.60 20.2 0.770 2110

311 2.19 10.4 6970 624 8.72 754 795 132 2.95 207 3.53 19.6 176 76200
283 2.38 11.3 6170 565 8.61 676 704 118 2.91 185 3.47 19.4 134 65900
258 2.56 12.5 5510 514 8.53 611 628 107 2.88 166 3.42 19.2 103 57600
234 2.76 13.8 4900 466 8.44 549 558 95.8 2.85 149 3.37 19.0 78.7 50100
211 3.02 15.1 4330 419 8.35 490 493 85.3 2.82 132 3.32 18.8 58.6 43400
192 3.27 16.7 3870 380 8.28 442 440 76.8 2.79 119 3.28 18.6 44.7 38000
175 3.58 18.0 3450 344 8.20 398 391 68.8 2.76 106 3.24 18.5 33.8 33300
158 3.92 19.8 3060 310 8.12 356 347 61.4 2.74 94.8 3.20 18.3 25.2 29000
143 4.25 22.0 2750 282 8.09 322 311 55.5 2.72 85.4 3.17 18.2 19.2 25700
130 4.65 23.9 2460 256 8.03 290 278 49.9 2.70 76.7 3.13 18.1 14.5 22700
119 5.31 24.5 2190 231 7.90 262 253 44.9 2.69 69.1 3.13 17.9 10.6 20300
106 5.96 27.2 1910 204 7.84 230 220 39.4 2.66 60.5 3.10 17.8 7.48 17400
97 6.41 30.0 1750 188 7.82 211 201 36.1 2.65 55.3 3.08 17.7 5.86 15800
86 7.20 33.4 1530 166 7.77 186 175 31.6 2.63 48.4 3.05 17.6 4.10 13600
76 8.11 37.8 1330 146 7.73 163 152 27.6 2.61 42.2 3.02 17.5 2.83 11700

71 4.71 32.4 1170 127 7.50 146 60.3 15.8 1.70 24.7 2.05 17.7 3.49 4700
65 5.06 35.7 1070 117 7.49 133 54.8 14.4 1.69 22.5 2.03 17.6 2.73 4240
60 5.44 38.7 984 108 7.47 123 50.1 13.3 1.68 20.6 2.02 17.5 2.17 3850
55 5.98 41.1 890 98.3 7.41 112 44.9 11.9 1.67 18.5 2.00 17.5 1.66 3430
50 6.57 45.2 800 88.9 7.38 101 40.1 10.7 1.65 16.6 1.98 17.4 1.24 3040

46 5.01 44.6 712 78.8 7.25 90.7 22.5 7.43 1.29 11.7 1.58 17.5 1.22 1720
40 5.73 50.9 612 68.4 7.21 78.4 19.1 6.35 1.27 10.0 1.56 17.4 0.810 1440
35 7.06 53.5 510 57.6 7.04 66.5 15.3 5.12 1.22 8.06 1.52 17.3 0.506 1140
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W16×100 29.5 17.0 17 0.585 9/16 5/16 10.4 103/8 0.985 1 1.39 17/8 11/8 131/4 51/2

×89 26.2 16.8 163/4 0.525 1/2 1/4 10.4 103/8 0.875 7/8 1.28 13/4 11/16

×77 22.6 16.5 161/2 0.455 7/16 1/4 10.3 101/4 0.760 3/4 1.16 15/8 11/16

×67c 19.7 16.3 163/8 0.395 3/8 3/16 10.2 101/4 0.665 11/16 1.07 19/16 1

W16×57 16.8 16.4 163/8 0.430 7/16 1/4 7.12 71/8 0.715 11/16 1.12 13/8 7/8 135/8 31/2g

×50c 14.7 16.3 161/4 0.380 3/8 3/16 7.07 71/8 0.630 5/8 1.03 15/16 13/16

×45c 13.3 16.1 161/8 0.345 3/8 3/16 7.04 7 0.565 9/16 0.967 11/4 13/16

×40c 11.8 16.0 16 0.305 5/16 3/16 7.00 7 0.505 1/2 0.907 13/16 13/16

×36c 10.6 15.9 157/8 0.295 5/16 3/16 6.99 7 0.430 7/16 0.832 11/8 3/4

W16×31c 9.13 15.9 157/8 0.275 1/4 1/8 5.53 51/2 0.440 7/16 0.842 11/8 3/4 135/8 31/2

×26c,v 7.68 15.7 153/4 0.250 1/4 1/8 5.50 51/2 0.345 3/8 0.747 11/16 3/4 135/8 31/2

W14×730h 215 22.4 223/8 3.07 31/16 19/16 17.9 177/8 4.91 415/16 5.51 63/16 23/4 10 3-71/2-3g

×665h 196 21.6 215/8 2.83 213/16 17/16 17.7 175/8 4.52 41/2 5.12 513/16 25/8 3-71/2-3g

×605h 178 20.9 207/8 2.60 25/8 15/16 17.4 173/8 4.16 43/16 4.76 57/16 21/2 3-71/2-3
×550h 162 20.2 201/4 2.38 23/8 13/16 17.2 171/4 3.82 313/16 4.42 51/8 23/8

×500h 147 19.6 195/8 2.19 23/16 11/8 17.0 17 3.50 31/2 4.10 413/16 25/16

×455h 134 19.0 19 2.02 2 1 16.8 167/8 3.21 33/16 3.81 41/2 21/4

×426h 125 18.7 185/8 1.88 17/8 15/16 16.7 163/4 3.04 31/16 3.63 45/16 21/8

×398h 117 18.3 181/4 1.77 13/4 7/8 16.6 165/8 2.85 27/8 3.44 41/8 21/8

×370h 109 17.9 177/8 1.66 15/8 13/16 16.5 161/2 2.66 211/16 3.26 315/16 21/16

×342h 101 17.5 171/2 1.54 19/16 13/16 16.4 163/8 2.47 21/2 3.07 33/4 2
×311h 91.4 17.1 171/8 1.41 17/16 3/4 16.2 161/4 2.26 21/4 2.86 39/16 115/16

×283h 83.3 16.7 163/4 1.29 15/16 11/16 16.1 161/8 2.07 21/16 2.67 33/8 17/8

×257 75.6 16.4 163/8 1.18 13/16 5/8 16.0 16 1.89 17/8 2.49 33/16 113/16

×233 68.5 16.0 16 1.07 11/16 9/16 15.9 157/8 1.72 13/4 2.32 3 13/4

×211 62.0 15.7 153/4 0.980 1 1/2 15.8 153/4 1.56 19/16 2.16 27/8 111/16

×193 56.8 15.5 151/2 0.890 7/8 7/16 15.7 153/4 1.44 17/16 2.04 23/4 111/16

×176 51.8 15.2 151/4 0.830 13/16 7/16 15.7 155/8 1.31 15/16 1.91 25/8 15/8

×159 46.7 15.0 15 0.745 3/4 3/8 15.6 155/8 1.19 13/16 1.79 21/2 19/16

×145 42.7 14.8 143/4 0.680 11/16 3/8 15.5 151/2 1.09 11/16 1.69 23/8 19/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W16 – W14
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100 5.29 24.3 1490 175 7.10 198 186 35.7 2.51 54.9 2.92 16.0 7.73 11900
89 5.92 27.0 1300 155 7.05 175 163 31.4 2.49 48.1 2.88 15.9 5.45 10200
77 6.77 31.2 1110 134 7.00 150 138 26.9 2.47 41.1 2.85 15.8 3.57 8590
67 7.70 35.9 954 117 6.96 130 119 23.2 2.46 35.5 2.82 15.7 2.39 7300

57 4.98 33.0 758 92.2 6.72 105 43.1 12.1 1.60 18.9 1.92 15.7 2.22 2660
50 5.61 37.4 659 81.0 6.68 92.0 37.2 10.5 1.59 16.3 1.89 15.6 1.52 2270
45 6.23 41.1 586 72.7 6.65 82.3 32.8 9.34 1.57 14.5 1.88 15.6 1.11 1990
40 6.93 46.5 518 64.7 6.63 73.0 28.9 8.25 1.57 12.7 1.86 15.5 0.794 1730
36 8.12 48.1 448 56.5 6.51 64.0 24.5 7.00 1.52 10.8 1.83 15.4 0.545 1460

31 6.28 51.6 375 47.2 6.41 54.0 12.4 4.49 1.17 7.03 1.42 15.4 0.461 739
26 7.97 56.8 301 38.4 6.26 44.2 9.59 3.49 1.12 5.48 1.38 15.3 0.262 565

730 1.82 3.71 14300 1280 8.17 1660 4720 527 4.69 816 5.68 17.5 1450 362000
665 1.95 4.03 12400 1150 7.98 1480 4170 472 4.62 730 5.57 17.1 1120 305000
605 2.09 4.39 10800 1040 7.80 1320 3680 423 4.55 652 5.46 16.8 869 258000
550 2.25 4.79 9430 931 7.63 1180 3250 378 4.49 583 5.36 16.4 669 219000
500 2.43 5.21 8210 838 7.48 1050 2880 339 4.43 522 5.26 16.1 514 187000
455 2.62 5.66 7190 756 7.33 936 2560 304 4.38 468 5.17 15.8 395 160000
426 2.75 6.08 6600 706 7.26 869 2360 283 4.34 434 5.11 15.6 331 144000
398 2.92 6.44 6000 656 7.16 801 2170 262 4.31 402 5.06 15.4 273 129000
370 3.10 6.89 5440 607 7.07 736 1990 241 4.27 370 5.00 15.3 222 116000
342 3.31 7.41 4900 558 6.98 672 1810 221 4.24 338 4.94 15.1 178 103000
311 3.59 8.09 4330 506 6.88 603 1610 199 4.20 304 4.87 14.9 136 89100
283 3.89 8.84 3840 459 6.79 542 1440 179 4.17 274 4.81 14.7 104 77700
257 4.23 9.71 3400 415 6.71 487 1290 161 4.13 246 4.75 14.5 79.1 67800
233 4.62 10.7 3010 375 6.63 436 1150 145 4.10 221 4.69 14.3 59.5 59000
211 5.06 11.6 2660 338 6.55 390 1030 130 4.07 198 4.64 14.2 44.6 51500
193 5.45 12.8 2400 310 6.50 355 931 119 4.05 180 4.59 14.0 34.8 45900
176 5.97 13.7 2140 281 6.43 320 838 107 4.02 163 4.55 13.9 26.5 40500
159 6.54 15.3 1900 254 6.38 287 748 96.2 4.00 146 4.51 13.8 19.7 35600
145 7.11 16.8 1710 232 6.33 260 677 87.3 3.98 133 4.47 13.7 15.2 31700
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
h Flange thickness greater than 2 in. Special requirements may apply per AISC Specification Section A3.1c.

W14×132 38.8 14.7 145/8 0.645 5/8 5/16 14.7 143/4 1.03 1 1.63 25/16 19/16 10 51/2

×120 35.3 14.5 141/2 0.590 9/16 5/16 14.7 145/8 0.940 15/16 1.54 21/4 11/2

×109 32.0 14.3 143/8 0.525 1/2 1/4 14.6 145/8 0.860 7/8 1.46 23/16 11/2

×99f 29.1 14.2 141/8 0.485 1/2 1/4 14.6 145/8 0.780 3/4 1.38 21/16 17/16

×90f 26.5 14.0 14 0.440 7/16 1/4 14.5 141/2 0.710 11/16 1.31 2 17/16

W14×82 24.0 14.3 141/4 0.510 1/2 1/4 10.1 101/8 0.855 7/8 1.45 111/16 11/16 107/8 51/2

×74 21.8 14.2 141/8 0.450 7/16 1/4 10.1 101/8 0.785 13/16 1.38 15/8 11/16

×68 20.0 14.0 14 0.415 7/16 1/4 10.0 10 0.720 3/4 1.31 19/16 11/16

×61 17.9 13.9 137/8 0.375 3/8 3/16 10.0 10 0.645 5/8 1.24 11/2 1

W14×53 15.6 13.9 137/8 0.370 3/8 3/16 8.06 8 0.660 11/16 1.25 11/2 1 107/8 51/2

×48 14.1 13.8 133/4 0.340 5/16 3/16 8.03 8 0.595 5/8 1.19 17/16 1
×43c 12.6 13.7 135/8 0.305 5/16 3/16 8.00 8 0.530 1/2 1.12 13/8 1

W14×38c 11.2 14.1 141/8 0.310 5/16 3/16 6.77 63/4 0.515 1/2 0.915 11/4 13/16 115/8 31/2g

×34c 10.0 14.0 14 0.285 5/16 3/16 6.75 63/4 0.455 7/16 0.855 13/16 3/4 31/2

×30c 8.85 13.8 137/8 0.270 1/4 1/8 6.73 63/4 0.385 3/8 0.785 11/8 3/4 31/2

W14×26c 7.69 13.9 137/8 0.255 1/4 1/8 5.03 5 0.420 7/16 0.820 11/8 3/4 115/8 23/4g

×22c 6.49 13.7 133/4 0.230 1/4 1/8 5.00 5 0.335 5/16 0.735 11/16 3/4 115/8 23/4g

W12×336h 98.8 16.8 167/8 1.78 13/4 7/8 13.4 133/8 2.96 215/16 3.55 37/8 111/16 91/8 51/2

×305h 89.6 16.3 163/8 1.63 15/8 13/16 13.2 131/4 2.71 211/16 3.30 35/8 15/8

×279h 81.9 15.9 157/8 1.53 11/2 3/4 13.1 131/8 2.47 21/2 3.07 33/8 15/8

×252h 74.0 15.4 153/8 1.40 13/8 11/16 13.0 13 2.25 21/4 2.85 31/8 11/2

×230h 67.7 15.1 15 1.29 15/16 11/16 12.9 127/8 2.07 21/16 2.67 215/16 11/2

×210 61.8 14.7 143/4 1.18 13/16 5/8 12.8 123/4 1.90 17/8 2.50 213/16 17/16

×190 55.8 14.4 143/8 1.06 11/16 9/16 12.7 125/8 1.74 13/4 2.33 25/8 13/8

×170 50.0 14.0 14 0.960 15/16 1/2 12.6 125/8 1.56 19/16 2.16 27/16 15/16

×152 44.7 13.7 133/4 0.870 7/8 7/16 12.5 121/2 1.40 13/8 2.00 25/16 11/4

×136 39.9 13.4 133/8 0.790 13/16 7/16 12.4 123/8 1.25 11/4 1.85 21/8 11/4

×120 35.3 13.1 131/8 0.710 11/16 3/8 12.3 123/8 1.11 11/8 1.70 2 13/16

×106 31.2 12.9 127/8 0.610 5/8 5/16 12.2 121/4 0.990 1 1.59 17/8 11/8

×96 28.2 12.7 123/4 0.550 9/16 5/16 12.2 121/8 0.900 7/8 1.50 113/16 11/8

×87 25.6 12.5 121/2 0.515 1/2 1/4 12.1 121/8 0.810 13/16 1.41 111/16 11/16

×79 23.2 12.4 123/8 0.470 1/2 1/4 12.1 121/8 0.735 3/4 1.33 15/8 11/16

×72 21.1 12.3 121/4 0.430 7/16 1/4 12.0 12 0.670 11/16 1.27 19/16 11/16

×65f 19.1 12.1 121/8 0.390 3/8 3/16 12.0 12 0.605 5/8 1.20 11/2 1
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W14 – W12
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132 7.15 17.7 1530 209 6.28 234 548 74.5 3.76 113 4.23 13.6 12.3 25500
120 7.80 19.3 1380 190 6.24 212 495 67.5 3.74 102 4.20 13.5 9.37 22700
109 8.49 21.7 1240 173 6.22 192 447 61.2 3.73 92.7 4.17 13.5 7.12 20200
99 9.34 23.5 1110 157 6.17 173 402 55.2 3.71 83.6 4.14 13.4 5.37 18000
90 10.2 25.9 999 143 6.14 157 362 49.9 3.70 75.6 4.11 13.3 4.06 16000

82 5.92 22.4 881 123 6.05 139 148 29.3 2.48 44.8 2.85 13.5 5.07 6710
74 6.41 25.4 795 112 6.04 126 134 26.6 2.48 40.5 2.82 13.4 3.87 5990
68 6.97 27.5 722 103 6.01 115 121 24.2 2.46 36.9 2.80 13.3 3.01 5380
61 7.75 30.4 640 92.1 5.98 102 107 21.5 2.45 32.8 2.78 13.2 2.19 4710

53 6.11 30.9 541 77.8 5.89 87.1 57.7 14.3 1.92 22.0 2.22 13.3 1.94 2540
48 6.75 33.6 484 70.2 5.85 78.4 51.4 12.8 1.91 19.6 2.20 13.2 1.45 2240
43 7.54 37.4 428 62.6 5.82 69.6 45.2 11.3 1.89 17.3 2.18 13.1 1.05 1950

38 6.57 39.6 385 54.6 5.87 61.5 26.7 7.88 1.55 12.1 1.82 13.6 0.798 1230
34 7.41 43.1 340 48.6 5.83 54.6 23.3 6.91 1.53 10.6 1.80 13.5 0.569 1070
30 8.74 45.4 291 42.0 5.73 47.3 19.6 5.82 1.49 8.99 1.77 13.5 0.380 887

26 5.98 48.1 245 35.3 5.65 40.2 8.91 3.55 1.08 5.54 1.31 13.5 0.358 405
22 7.46 53.3 199 29.0 5.54 33.2 7.00 2.80 1.04 4.39 1.27 13.4 0.208 314

336 2.26 5.47 4060 483 6.41 603 1190 177 3.47 274 4.13 13.9 243 57000
305 2.45 5.98 3550 435 6.29 537 1050 159 3.42 244 4.05 13.6 185 48600
279 2.66 6.35 3110 393 6.16 481 937 143 3.38 220 4.00 13.4 143 42000
252 2.89 6.96 2720 353 6.06 428 828 127 3.34 196 3.93 13.2 108 35800
230 3.11 7.56 2420 321 5.97 386 742 115 3.31 177 3.87 13.0 83.8 31200
210 3.37 8.23 2140 292 5.89 348 664 104 3.28 159 3.82 12.8 64.7 27200
190 3.65 9.16 1890 263 5.82 311 589 93.0 3.25 143 3.76 12.6 48.8 23600
170 4.03 10.1 1650 235 5.74 275 517 82.3 3.22 126 3.71 12.5 35.6 20100
152 4.46 11.2 1430 209 5.66 243 454 72.8 3.19 111 3.66 12.3 25.8 17200
136 4.96 12.3 1240 186 5.58 214 398 64.2 3.16 98.0 3.61 12.2 18.5 14700
120 5.57 13.7 1070 163 5.51 186 345 56.0 3.13 85.4 3.56 12.0 12.9 12400
106 6.17 15.9 933 145 5.47 164 301 49.3 3.11 75.1 3.52 11.9 9.13 10700
96 6.76 17.7 833 131 5.44 147 270 44.4 3.09 67.5 3.49 11.8 6.85 9410
87 7.48 18.9 740 118 5.38 132 241 39.7 3.07 60.4 3.46 11.7 5.10 8270
79 8.22 20.7 662 107 5.34 119 216 35.8 3.05 54.3 3.43 11.6 3.84 7330
72 8.99 22.6 597 97.4 5.31 108 195 32.4 3.04 49.2 3.40 11.6 2.93 6540
65 9.92 24.9 533 87.9 5.28 96.8 174 29.1 3.02 44.1 3.38 11.5 2.18 5780
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.
v Shape does not meet the h/tw limit for shear in Specification Section G2.1a with Fy = 50 ksi.

W12×58 17.0 12.2 121/4 0.360 3/8 3/16 10.0 10 0.640 5/8 1.24 11/2 15/16 91/4 51/2

×53 15.6 12.1 12 0.345 3/8 3/16 10.0 10 0.575 9/16 1.18 13/8 15/16 91/4 51/2

W12×50 14.6 12.2 121/4 0.370 3/8 3/16 8.08 81/8 0.640 5/8 1.14 11/2 15/16 91/4 51/2

×45 13.1 12.1 12 0.335 5/16 3/16 8.05 8 0.575 9/16 1.08 13/8 15/16

×40 11.7 11.9 12 0.295 5/16 3/16 8.01 8 0.515 1/2 1.02 13/8 7/8

W12×35c 10.3 12.5 121/2 0.300 5/16 3/16 6.56 61/2 0.520 1/2 0.820 13/16 3/4 101/8 31/2

×30c 8.79 12.3 123/8 0.260 1/4 1/8 6.52 61/2 0.440 7/16 0.740 11/8 3/4

×26c 7.65 12.2 121/4 0.230 1/4 1/8 6.49 61/2 0.380 3/8 0.680 11/16 3/4

W12×22c 6.48 12.3 121/4 0.260 1/4 1/8 4.03 4 0.425 7/16 0.725 15/16 5/8 103/8 21/4g

×19c 5.57 12.2 121/8 0.235 1/4 1/8 4.01 4 0.350 3/8 0.650 7/8 9/16

×16c 4.71 12.0 12 0.220 1/4 1/8 3.99 4 0.265 1/4 0.565 13/16 9/16

×14c,v 4.16 11.9 117/8 0.200 3/16 1/8 3.97 4 0.225 1/4 0.525 3/4 9/16

W10×112 32.9 11.4 113/8 0.755 3/4 3/8 10.4 103/8 1.25 11/4 1.75 115/16 1 71/2 51/2

×100 29.4 11.1 111/8 0.680 11/16 3/8 10.3 103/8 1.12 11/8 1.62 113/16 1
×88 25.9 10.8 107/8 0.605 5/8 5/16 10.3 101/4 0.990 1 1.49 111/16 15/16

×77 22.6 10.6 105/8 0.530 1/2 1/4 10.2 101/4 0.870 7/8 1.37 19/16 7/8

×68 20.0 10.4 103/8 0.470 1/2 1/4 10.1 101/8 0.770 3/4 1.27 17/16 7/8

×60 17.6 10.2 101/4 0.420 7/16 1/4 10.1 101/8 0.680 11/16 1.18 13/8 13/16

×54 15.8 10.1 101/8 0.370 3/8 3/16 10.0 10 0.615 5/8 1.12 15/16 13/16

×49 14.4 10.0 10 0.340 5/16 3/16 10.0 10 0.560 9/16 1.06 11/4 13/16

W10×45 13.3 10.1 101/8 0.350 3/8 3/16 8.02 8 0.620 5/8 1.12 15/16 13/16 71/2 51/2

×39 11.5 9.92 97/8 0.315 5/16 3/16 7.99 8 0.530 1/2 1.03 13/16 13/16

×33 9.71 9.73 93/4 0.290 5/16 3/16 7.96 8 0.435 7/16 0.935 11/8 3/4

W10×30 8.84 10.5 101/2 0.300 5/16 3/16 5.81 53/4 0.510 1/2 0.810 11/8 11/16 81/4 23/4g

×26 7.61 10.3 103/8 0.260 1/4 1/8 5.77 53/4 0.440 7/16 0.740 11/16 11/16

×22c 6.49 10.2 101/8 0.240 1/4 1/8 5.75 53/4 0.360 3/8 0.660 15/16 5/8

W10×19 5.62 10.2 101/4 0.250 1/4 1/8 4.02 4 0.395 3/8 0.695 15/16 5/8 83/8 21/4g

×17c 4.99 10.1 101/8 0.240 1/4 1/8 4.01 4 0.330 5/16 0.630 7/8 9/16

×15c 4.41 10.0 10 0.230 1/4 1/8 4.00 4 0.270 1/4 0.570 13/16 9/16

×12c,f 3.54 9.87 97/8 0.190 3/16 1/8 3.96 4 0.210 3/16 0.510 3/4 9/16
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W12 – W10
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58 7.82 27.0 475 78.0 5.28 86.4 107 21.4 2.51 32.5 2.82 11.6 2.10 3570
53 8.69 28.1 425 70.6 5.23 77.9 95.8 19.2 2.48 29.1 2.79 11.5 1.58 3160

50 6.31 26.8 391 64.2 5.18 71.9 56.3 13.9 1.96 21.3 2.25 11.6 1.71 1880
45 7.00 29.6 348 57.7 5.15 64.2 50.0 12.4 1.95 19.0 2.23 11.5 1.26 1650
40 7.77 33.6 307 51.5 5.13 57.0 44.1 11.0 1.94 16.8 2.21 11.4 0.906 1440

35 6.31 36.2 285 45.6 5.25 51.2 24.5 7.47 1.54 11.5 1.79 12.0 0.741 879
30 7.41 41.8 238 38.6 5.21 43.1 20.3 6.24 1.52 9.56 1.77 11.9 0.457 720
26 8.54 47.2 204 33.4 5.17 37.2 17.3 5.34 1.51 8.17 1.75 11.8 0.300 607

22 4.74 41.8 156 25.4 4.91 29.3 4.66 2.31 0.848 3.66 1.04 11.9 0.293 164
19 5.72 46.2 130 21.3 4.82 24.7 3.76 1.88 0.822 2.98 1.02 11.8 0.180 131
16 7.53 49.4 103 17.1 4.67 20.1 2.82 1.41 0.773 2.26 0.982 11.7 0.103 96.9
14 8.82 54.3 88.6 14.9 4.62 17.4 2.36 1.19 0.753 1.90 0.962 11.7 0.0704 80.4

112 4.17 10.4 716 126 4.66 147 236 45.3 2.68 69.2 3.07 10.1 15.1 6020
100 4.62 11.6 623 112 4.60 130 207 40.0 2.65 61.0 3.03 10.0 10.9 5150
88 5.18 13.0 534 98.5 4.54 113 179 34.8 2.63 53.1 2.99 9.85 7.53 4330
77 5.86 14.8 455 85.9 4.49 97.6 154 30.1 2.60 45.9 2.95 9.73 5.11 3630
68 6.58 16.7 394 75.7 4.44 85.3 134 26.4 2.59 40.1 2.91 9.63 3.56 3100
60 7.41 18.7 341 66.7 4.39 74.6 116 23.0 2.57 35.0 2.88 9.54 2.48 2640
54 8.15 21.2 303 60.0 4.37 66.6 103 20.6 2.56 31.3 2.86 9.48 1.82 2320
49 8.93 23.1 272 54.6 4.35 60.4 93.4 18.7 2.54 28.3 2.84 9.42 1.39 2070

45 6.47 22.5 248 49.1 4.32 54.9 53.4 13.3 2.01 20.3 2.27 9.48 1.51 1200
39 7.53 25.0 209 42.1 4.27 46.8 45.0 11.3 1.98 17.2 2.24 9.39 0.976 992
33 9.15 27.1 171 35.0 4.19 38.8 36.6 9.20 1.94 14.0 2.20 9.30 0.583 791

30 5.70 29.5 170 32.4 4.38 36.6 16.7 5.75 1.37 8.84 1.60 10.0 0.622 414
26 6.56 34.0 144 27.9 4.35 31.3 14.1 4.89 1.36 7.50 1.58 9.89 0.402 345
22 7.99 36.9 118 23.2 4.27 26.0 11.4 3.97 1.33 6.10 1.55 9.81 0.239 275

19 5.09 35.4 96.3 18.8 4.14 21.6 4.29 2.14 0.874 3.35 1.06 9.85 0.233 104
17 6.08 36.9 81.9 16.2 4.05 18.7 3.56 1.78 0.845 2.80 1.04 9.78 0.156 85.1
15 7.41 38.5 68.9 13.8 3.95 16.0 2.89 1.45 0.810 2.30 1.01 9.72 0.104 68.3
12 9.43 46.6 53.8 10.9 3.90 12.6 2.18 1.10 0.785 1.74 0.983 9.66 0.0547 50.9
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Table 1–1 (continued)

W Shapes
Dimensions

Shape
Area,

A
Depth,

d

Web Flange Distance

Thickness,
tw

tw

2
Width,

bf

Thickness,
tf kdes kdet

k1

in.

T
Work-
able 
Gage

in.2 in. in. in. in. in. in. in. in.

k

in.

c Shape is slender for compression with Fy = 50 ksi.
f Shape exceeds compact limit for flexure with Fy = 50 ksi.
g The actual size, combination, and orientation of fastener components should be compared with the geometry of the cross-section

to ensure compatibility.

W8×67 19.7 9.00 9 0.570 9/16 5/16 8.28 81/4 0.935 15/16 1.33 15/8 15/16 53/4 51/2

×58 17.1 8.75 83/4 0.510 1/2 1/4 8.22 81/4 0.810 13/16 1.20 11/2 7/8

×48 14.1 8.50 81/2 0.400 3/8 3/16 8.11 81/8 0.685 11/16 1.08 13/8 13/16

×40 11.7 8.25 81/4 0.360 3/8 3/16 8.07 81/8 0.560 9/16 0.954 11/4 13/16

×35 10.3 8.12 81/8 0.310 5/16 3/16 8.02 8 0.495 1/2 0.889 13/16 13/16

×31f 9.12 8.00 8 0.285 5/16 3/16 8.00 8 0.435 7/16 0.829 11/8 3/4

W8×28 8.24 8.06 8 0.285 5/16 3/16 6.54 61/2 0.465 7/16 0.859 15/16 5/8 61/8 4
×24 7.08 7.93 77/8 0.245 1/4 1/8 6.50 61/2 0.400 3/8 0.794 7/8 9/16 61/8 4

W8×21 6.16 8.28 81/4 0.250 1/4 1/8 5.27 51/4 0.400 3/8 0.700 7/8 9/16 61/2 23/4g

×18 5.26 8.14 81/8 0.230 1/4 1/8 5.25 51/4 0.330 5/16 0.630 13/16 9/16 61/2 23/4g

W8×15 4.44 8.11 81/8 0.245 1/4 1/8 4.02 4 0.315 5/16 0.615 13/16 9/16 61/2 21/4g

×13 3.84 7.99 8 0.230 1/4 1/8 4.00 4 0.255 1/4 0.555 3/4 9/16

×10c,f 2.96 7.89 77/8 0.170 3/16 1/8 3.94 4 0.205 3/16 0.505 11/16 1/2

W6×25 7.34 6.38 63/8 0.320 5/16 3/16 6.08 61/8 0.455 7/16 0.705 15/16 9/16 41/2 31/2

×20 5.87 6.20 61/4 0.260 1/4 1/8 6.02 6 0.365 3/8 0.615 7/8 9/16

×15f 4.43 5.99 6 0.230 1/4 1/8 5.99 6 0.260 1/4 0.510 3/4 9/16

W6×16 4.74 6.28 61/4 0.260 1/4 1/8 4.03 4 0.405 3/8 0.655 7/8 9/16 41/2 21/4g

×12 3.55 6.03 6 0.230 1/4 1/8 4.00 4 0.280 1/4 0.530 3/4 9/16

×9f 2.68 5.90 57/8 0.170 3/16 1/8 3.94 4 0.215 3/16 0.465 11/16 1/2

×8.5f 2.52 5.83 57/8 0.170 3/16 1/8 3.94 4 0.195 3/16 0.445 11/16 1/2

W5×19 5.56 5.15 51/8 0.270 1/4 1/8 5.03 5 0.430 7/16 0.730 13/16 7/16 31/2 23/4g

×16 4.71 5.01 5 0.240 1/4 1/8 5.00 5 0.360 3/8 0.660 3/4 7/16 31/2 23/4g

W4×13 3.83 4.16 41/8 0.280 1/4 1/8 4.06 4 0.345 3/8 0.595 3/4 1/2 25/8 21/4g
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Table 1–1 (continued)

W Shapes
Properties

Nom-
inal
Wt.

Compact
Section
Criteria

I S r Z I S r Z

Axis X-X Axis Y-Y
Torsional 
Propertiesrts ho

J Cw

in.4 in.3 in. in.3 in.4 in.3 in. in.3 in. in. in.4 in.6
bf

2tflb/ft
h
tw

W8 – W4
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67 4.43 11.1 272 60.4 3.72 70.1 88.6 21.4 2.12 32.7 2.43 8.07 5.05 1440
58 5.07 12.4 228 52.0 3.65 59.8 75.1 18.3 2.10 27.9 2.39 7.94 3.33 1180
48 5.92 15.9 184 43.2 3.61 49.0 60.9 15.0 2.08 22.9 2.35 7.82 1.96 931
40 7.21 17.6 146 35.5 3.53 39.8 49.1 12.2 2.04 18.5 2.31 7.69 1.12 726
35 8.10 20.5 127 31.2 3.51 34.7 42.6 10.6 2.03 16.1 2.28 7.63 0.769 619
31 9.19 22.3 110 27.5 3.47 30.4 37.1 9.27 2.02 14.1 2.26 7.57 0.536 530

28 7.03 22.3 98.0 24.3 3.45 27.2 21.7 6.63 1.62 10.1 1.84 7.60 0.537 312
24 8.12 25.9 82.7 20.9 3.42 23.1 18.3 5.63 1.61 8.57 1.82 7.53 0.346 259

21 6.59 27.5 75.3 18.2 3.49 20.4 9.77 3.71 1.26 5.69 1.46 7.88 0.282 152
18 7.95 29.9 61.9 15.2 3.43 17.0 7.97 3.04 1.23 4.66 1.43 7.81 0.172 122

15 6.37 28.1 48.0 11.8 3.29 13.6 3.41 1.70 0.876 2.67 1.06 7.80 0.137 51.8
13 7.84 29.9 39.6 9.91 3.21 11.4 2.73 1.37 0.843 2.15 1.03 7.74 0.0871 40.8
10 9.61 40.5 30.8 7.81 3.22 8.87 2.09 1.06 0.841 1.66 1.01 7.69 0.0426 30.9

25 6.68 15.5 53.4 16.7 2.70 18.9 17.1 5.61 1.52 8.56 1.74 5.93 0.461 150
20 8.25 19.1 41.4 13.4 2.66 14.9 13.3 4.41 1.50 6.72 1.70 5.84 0.240 113
15 11.5 21.6 29.1 9.72 2.56 10.8 9.32 3.11 1.45 4.75 1.66 5.73 0.101 76.5

16 4.98 19.1 32.1 10.2 2.60 11.7 4.43 2.20 0.967 3.39 1.13 5.88 0.223 38.2
12 7.14 21.6 22.1 7.31 2.49 8.30 2.99 1.50 0.918 2.32 1.08 5.75 0.0903 24.7
9 9.16 29.2 16.4 5.56 2.47 6.23 2.20 1.11 0.905 1.72 1.06 5.69 0.0405 17.7

8.5 10.1 29.1 14.9 5.10 2.43 5.73 1.99 1.01 0.890 1.56 1.05 5.64 0.0333 15.8

19 5.85 13.7 26.3 10.2 2.17 11.6 9.13 3.63 1.28 5.53 1.45 4.72 0.316 50.9
16 6.94 15.4 21.4 8.55 2.13 9.63 7.51 3.00 1.26 4.58 1.43 4.65 0.192 40.6

13 5.88 10.6 11.3 5.46 1.72 6.28 3.86 1.90 1.00 2.92 1.16 3.82 0.151 14.0
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Table 1–11 

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.
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HSS14×10×5/8 0.581 93.10 25.7 14.2 21.1 687 98.2 5.17 120
×1/2 0.465 75.94 20.9 18.5 27.1 573 81.8 5.23 98.8
×3/8 0.349 58.07 16.0 25.7 37.1 447 63.9 5.29 76.3
×5/16 0.291 48.87 13.4 31.4 45.1 380 54.3 5.32 64.6
×1/4 0.233 39.48 10.8 39.9 57.1 310 44.3 5.35 52.4

HSS14×6×5/8 0.581 76.09 21.0 7.33 21.1 478 68.3 4.77 88.7
×1/2 0.465 62.33 17.2 9.90 27.1 402 57.4 4.84 73.6
×3/8 0.349 47.86 13.2 14.2 37.1 317 45.3 4.91 57.3
×5/16 0.291 40.35 11.1 17.6 45.1 271 38.7 4.94 48.6
×1/4 0.233 32.66 8.96 22.8 57.1 222 31.7 4.98 39.6
×3/16 0.174 24.66 6.76 31.5 77.5 170 24.3 5.01 30.1

HSS14×4×5/8 0.581 67.59 18.7 3.88 21.1 373 53.3 4.47 73.1
×1/2 0.465 55.53 15.3 5.60 27.1 317 45.3 4.55 61.0
×3/8 0.349 42.75 11.8 8.46 37.1 252 36.0 4.63 47.8
×5/16 0.291 36.09 9.92 10.7 45.1 216 30.9 4.67 40.6
×1/4 0.233 29.25 8.03 14.2 57.1 178 25.4 4.71 33.2
×3/16 0.174 22.12 6.06 20.0 77.5 137 19.5 4.74 25.3

HSS12×10×1/2 0.465 69.14 19.0 18.5 22.8 395 65.9 4.56 78.8
×3/8 0.349 52.93 14.6 25.7 31.4 310 51.6 4.61 61.1
×5/16 0.291 44.62 12.2 31.4 38.2 264 44.0 4.64 51.7
×1/4 0.233 36.00 9.90 39.9 48.5 216 36.0 4.67 42.1

HSS12×8×5/8 0.581 76.13 21.0 10.8 17.7 397 66.1 4.34 82.1
×1/2 0.465 62.33 17.2 14.2 22.8 333 55.6 4.41 68.1
×3/8 0.349 47.82 13.2 19.9 31.4 262 43.7 4.47 53.0
×5/16 0.291 40.36 11.1 24.5 38.2 224 37.4 4.50 44.9
×1/4 0.233 32.60 8.96 31.3 48.5 184 30.6 4.53 36.6
×3/16 0.174 24.78 6.76 43.0 66.0 140 23.4 4.56 27.8

HSS12×6×5/8 0.581 67.62 18.7 7.33 17.7 321 53.4 4.14 68.8
×1/2 0.465 55.53 15.3 9.90 22.8 271 45.2 4.21 57.4
×3/8 0.349 42.72 11.8 14.2 31.4 215 35.9 4.28 44.8
×5/16 0.291 36.10 9.92 17.6 38.2 184 30.7 4.31 38.1
×1/4 0.233 29.19 8.03 22.8 48.5 151 25.2 4.34 31.1
×3/16 0.174 22.22 6.06 31.5 66.0 116 19.4 4.38 23.7
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-Y sixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS14–HSS12

Depth

Workable Flat

Width
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HSS14×10×5/8 407 81.5 3.98 95.1 113/16 73/16 832 146 3.83
×1/2 341 68.1 4.04 78.5 113/4 73/4 685 120 3.87
×3/8 267 53.4 4.09 60.7 125/16 85/16 528 91.8 3.90
×5/16 227 45.5 4.12 51.4 129/16 89/16 446 77.4 3.92
×1/4 186 37.2 4.14 41.8 127/8 87/8 362 62.6 3.93

HSS14×6×5/8 124 41.2 2.43 48.4 113/16 33/16 334 83.7 3.17
×1/2 105 35.1 2.48 40.4 113/4 33/4 279 69.3 3.20
×3/8 84.1 28.0 2.53 31.6 125/16 45/16 219 53.7 3.23
×5/16 72.3 24.1 2.55 26.9 129/16 49/16 186 45.5 3.25
×1/4 59.6 19.9 2.58 22.0 127/8 47/8 152 36.9 3.27
×3/16 45.9 15.3 2.61 16.7 133/16 53/16 116 28.0 3.28

HSS14×4×5/8 47.2 23.6 1.59 28.5 111/4 — 148 52.6 2.83
×1/2 41.2 20.6 1.64 24.1 113/4 — 127 44.1 2.87
×3/8 33.6 16.8 1.69 19.1 121/4 21/4 102 34.6 2.90
×5/16 29.2 14.6 1.72 16.4 125/8 25/8 87.7 29.5 2.92
×1/4 24.4 12.2 1.74 13.5 127/8 27/8 72.4 24.1 2.93
×3/16 19.0 9.48 1.77 10.3 131/8 31/8 55.8 18.4 2.95

HSS12×10×1/2 298 59.7 3.96 69.6 93/4 73/4 545 102 3.53
×3/8 234 46.9 4.01 54.0 105/16 85/16 421 78.3 3.57
×5/16 200 40.0 4.04 45.7 109/16 89/16 356 66.1 3.58
×1/4 164 32.7 4.07 37.2 107/8 87/8 289 53.5 3.60

HSS12×8×5/8 210 52.5 3.16 61.9 93/16 53/16 454 97.7 3.17
×1/2 178 44.4 3.21 51.5 93/4 53/4 377 80.4 3.20
×3/8 140 35.1 3.27 40.1 105/16 65/16 293 62.1 3.23
×5/16 120 30.1 3.29 34.1 109/16 69/16 248 52.4 3.25
×1/4 98.8 24.7 3.32 27.8 107/8 67/8 202 42.5 3.27
×3/16 75.7 18.9 3.35 21.1 111/8 71/8 153 32.2 3.28

HSS12×6×5/8 107 35.5 2.39 42.1 93/16 33/16 271 71.1 2.83
×1/2 91.1 30.4 2.44 35.2 93/4 33/4 227 59.0 2.87
×3/8 72.9 24.3 2.49 27.7 105/16 45/16 178 45.8 2.90
×5/16 62.8 20.9 2.52 23.6 109/16 49/16 152 38.8 2.92
×1/4 51.9 17.3 2.54 19.3 107/8 47/8 124 31.6 2.93
×3/16 40.0 13.3 2.57 14.7 113/16 53/16 94.6 24.0 2.95

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS12×4×5/8 0.581 59.11 16.4 3.88 17.7 245 40.8 3.87 55.5
×1/2 0.465 48.72 13.5 5.60 22.8 210 34.9 3.95 46.7
×3/8 0.349 37.61 10.4 8.46 31.4 168 28.0 4.02 36.7
×5/16 0.291 31.84 8.76 10.7 38.2 144 24.1 4.06 31.3
×1/4 0.233 25.79 7.10 14.2 48.5 119 19.9 4.10 25.6
×3/16 0.174 19.66 5.37 20.0 66.0 91.8 15.3 4.13 19.6

HSS12×31/2×3/8 0.349 36.34 10.0 7.03 31.4 156 26.0 3.94 34.7
×5/16 0.291 30.77 8.46 9.03 38.2 134 22.4 3.98 29.6

HSS12×3×5/16 0.291 29.71 8.17 7.31 38.2 124 20.7 3.90 27.9
×1/4 0.233 24.09 6.63 9.88 48.5 103 17.2 3.94 22.9
×3/16 0.174 18.38 5.02 14.2 66.0 79.6 13.3 3.98 17.5

HSS12×2×5/16 0.291 27.58 7.59 3.87 38.2 104 17.4 3.71 24.5
×1/4 0.233 22.39 6.17 5.58 48.5 86.9 14.5 3.75 20.1
×3/16 0.174 17.10 4.67 8.49 66.0 67.4 11.2 3.80 15.5

HSS10×8×5/8 0.581 67.62 18.7 10.8 14.2 253 50.5 3.68 62.2
×1/2 0.465 55.53 15.3 14.2 18.5 214 42.7 3.73 51.9
×3/8 0.349 42.72 11.8 19.9 25.7 169 33.9 3.79 40.5
×5/16 0.291 36.10 9.92 24.5 31.4 145 29.0 3.82 34.4
×1/4 0.233 29.19 8.03 31.3 39.9 119 23.8 3.85 28.1
×3/16 0.174 22.22 6.06 43.0 54.5 91.4 18.3 3.88 21.4

HSS10×6×5/8 0.581 59.11 16.4 7.33 14.2 201 40.2 3.50 51.3
×1/2 0.465 48.72 13.5 9.90 18.5 171 34.3 3.57 43.0
×3/8 0.349 37.61 10.4 14.2 25.7 137 27.4 3.63 33.8
×5/16 0.291 31.84 8.76 17.6 31.4 118 23.5 3.66 28.8
×1/4 0.233 25.79 7.10 22.8 39.9 96.9 19.4 3.69 23.6
×3/16 0.174 19.66 5.37 31.5 54.5 74.6 14.9 3.73 18.0

HSS10×5×3/8 0.349 35.06 9.67 11.3 25.7 120 24.1 3.53 30.4
×5/16 0.291 29.71 8.17 14.2 31.4 104 20.8 3.56 26.0
×1/4 0.233 24.09 6.63 18.5 39.9 85.8 17.2 3.60 21.3
×3/16 0.174 18.38 5.02 25.7 54.5 66.2 13.2 3.63 16.3
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-Y sixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS12–HSS10

Depth

Workable Flat

Width
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HSS12×4×5/8 40.4 20.2 1.57 24.5 93/16 — 122 44.6 2.50
×1/2 35.3 17.7 1.62 20.9 93/4 — 105 37.5 2.53
×3/8 28.9 14.5 1.67 16.6 105/16 25/16 84.1 29.5 2.57
×5/16 25.2 12.6 1.70 14.2 105/8 25/8 72.4 25.2 2.58
×1/4 21.0 10.5 1.72 11.7 107/8 27/8 59.8 20.6 2.60
×3/16 16.4 8.20 1.75 9.00 113/16 33/16 46.1 15.7 2.62

HSS12×31/2×3/8 21.3 12.2 1.46 14.0 105/16 — 64.7 25.5 2.48
×5/16 18.6 10.6 1.48 12.1 105/8 — 56.0 21.8 2.50

HSS12×3×5/16 13.1 8.73 1.27 10.0 105/8 — 41.3 18.4 2.42
×1/4 11.1 7.38 1.29 8.28 107/8 — 34.5 15.1 2.43
×3/16 8.72 5.81 1.32 6.40 113/16 23/16 26.8 11.6 2.45

HSS12×2×5/16 5.10 5.10 0.820 6.05 105/8 — 17.6 11.6 2.25
×1/4 4.41 4.41 0.845 5.08 107/8 — 15.1 9.64 2.27
×3/16 3.55 3.55 0.872 3.97 113/16 — 12.0 7.49 2.28

HSS10×8×5/8 178 44.5 3.09 53.3 73/16 53/16 346 80.4 2.83
×1/2 151 37.8 3.14 44.5 73/4 53/4 288 66.4 2.87
×3/8 120 30.0 3.19 34.8 85/16 65/16 224 51.4 2.90
×5/16 103 25.7 3.22 29.6 85/8 65/8 190 43.5 2.92
×1/4 84.7 21.2 3.25 24.2 87/8 67/8 155 35.3 2.93
×3/16 65.1 16.3 3.28 18.4 93/16 73/16 118 26.7 2.95

HSS10×6×5/8 89.4 29.8 2.34 35.8 73/16 33/16 209 58.6 2.50
×1/2 76.8 25.6 2.39 30.1 73/4 33/4 176 48.7 2.53
×3/8 61.8 20.6 2.44 23.7 85/16 45/16 139 37.9 2.57
×5/16 53.3 17.8 2.47 20.2 85/8 45/8 118 32.2 2.58
×1/4 44.1 14.7 2.49 16.6 87/8 47/8 96.7 26.2 2.60
×3/16 34.1 11.4 2.52 12.7 93/16 53/16 73.8 19.9 2.62

HSS10×5×3/8 40.6 16.2 2.05 18.7 85/16 35/16 100 31.2 2.40
×5/16 35.2 14.1 2.07 16.0 85/8 35/8 86.0 26.5 2.42
×1/4 29.3 11.7 2.10 13.2 87/8 37/8 70.7 21.6 2.43
×3/16 22.7 9.09 2.13 10.1 93/16 43/16 54.1 16.5 2.45

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.
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HSS10×4×5/8 0.581 50.60 14.0 3.88 14.2 149 29.9 3.26 40.3
×1/2 0.465 41.91 11.6 5.60 18.5 129 25.8 3.34 34.1
×3/8 0.349 32.51 8.97 8.46 25.7 104 20.8 3.41 27.0
×5/16 0.291 27.58 7.59 10.7 31.4 90.1 18.0 3.44 23.1
×1/4 0.233 22.39 6.17 14.2 39.9 74.7 14.9 3.48 19.0
×3/16 0.174 17.10 4.67 20.0 54.5 57.8 11.6 3.52 14.6
×1/8 0.116 11.55 3.16 31.5 83.2 39.8 7.97 3.55 9.95

HSS10×31/2×1/2 0.465 40.21 11.1 4.53 18.5 118 23.7 3.26 31.9
×3/8 0.349 31.23 8.62 7.03 25.7 96.1 19.2 3.34 25.3
×5/16 0.291 26.51 7.30 9.03 31.4 83.2 16.6 3.38 21.7
×1/4 0.233 21.54 5.93 12.0 39.9 69.1 13.8 3.41 17.9
×3/16 0.174 16.46 4.50 17.1 54.5 53.6 10.7 3.45 13.7
×1/8 0.116 11.13 3.04 27.2 83.2 37.0 7.40 3.49 9.37

HSS10×3×3/8 0.349 29.96 8.27 5.60 25.7 88.0 17.6 3.26 23.7
×5/16 0.291 25.45 7.01 7.31 31.4 76.3 15.3 3.30 20.3
×1/4 0.233 20.69 5.70 9.88 39.9 63.6 12.7 3.34 16.7
×3/16 0.174 15.82 4.32 14.2 54.5 49.4 9.87 3.38 12.8
×1/8 0.116 10.70 2.93 22.9 83.2 34.2 6.83 3.42 8.80

HSS10×2×3/8 0.349 27.41 7.58 2.73 25.7 71.7 14.3 3.08 20.3
×5/16 0.291 23.32 6.43 3.87 31.4 62.6 12.5 3.12 17.5
×1/4 0.233 18.99 5.24 5.58 39.9 52.5 10.5 3.17 14.4
×3/16 0.174 14.54 3.98 8.49 54.5 41.0 8.19 3.21 11.1
×1/8 0.116 9.85 2.70 14.2 83.2 28.5 5.70 3.25 7.65

HSS9×7×5/8 0.581 59.11 16.4 9.05 12.5 174 38.7 3.26 48.3
×1/2 0.465 48.72 13.5 12.1 16.4 149 33.0 3.32 40.5
×3/8 0.349 37.61 10.4 17.1 22.8 119 26.4 3.38 31.8
×5/16 0.291 31.84 8.76 21.1 27.9 102 22.6 3.41 27.1
×1/4 0.233 25.79 7.10 27.0 35.6 84.1 18.7 3.44 22.2
×3/16 0.174 19.66 5.37 37.2 48.7 64.7 14.4 3.47 16.9
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-Y sixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS10–HSS9

Depth

Workable Flat

Width

Copyright © American Institute of Steel Construction. Reprinted with permission. All rights reserved.

HSS10×4×5/8 33.5 16.8 1.54 20.6 73/16 — 95.7 36.7 2.17
×1/2 29.5 14.7 1.59 17.6 73/4 — 82.6 31.0 2.20
×3/8 24.3 12.1 1.64 14.0 85/16 25/16 66.5 24.4 2.23
×5/16 21.2 10.6 1.67 12.1 85/8 25/8 57.3 20.9 2.25
×1/4 17.7 8.87 1.70 10.0 87/8 27/8 47.4 17.1 2.27
×3/16 13.9 6.93 1.72 7.66 93/16 33/16 36.5 13.1 2.28
×1/8 9.65 4.83 1.75 5.26 97/16 37/16 25.1 8.90 2.30

HSS10×31/2×1/2 21.4 12.2 1.39 14.7 73/4 — 63.2 26.5 2.12
×3/8 17.8 10.2 1.44 11.8 85/16 — 51.5 21.1 2.15
×5/16 15.6 8.92 1.46 10.2 85/8 — 44.6 18.0 2.17
×1/4 13.1 7.51 1.49 8.45 87/8 — 37.0 14.8 2.18
×3/16 10.3 5.89 1.51 6.52 93/16 211/16 28.6 11.4 2.20
×1/8 7.22 4.12 1.54 4.48 97/16 215/16 19.8 7.75 2.22

HSS10×3×3/8 12.4 8.28 1.22 9.73 85/16 — 37.8 17.7 2.07
×5/16 11.0 7.30 1.25 8.42 85/8 — 33.0 15.2 2.08
×1/4 9.28 6.19 1.28 6.99 87/8 — 27.6 12.5 2.10
×3/16 7.33 4.89 1.30 5.41 93/16 23/16 21.5 9.64 2.12
×1/8 5.16 3.44 1.33 3.74 97/16 27/16 14.9 6.61 2.13

HSS10×2×3/8 4.70 4.70 0.787 5.76 85/16 — 15.9 11.0 1.90
×5/16 4.24 4.24 0.812 5.06 85/8 — 14.2 9.56 1.92
×1/4 3.67 3.67 0.838 4.26 87/8 — 12.2 7.99 1.93
×3/16 2.97 2.97 0.864 3.34 93/16 — 9.74 6.22 1.95
×1/8 2.14 2.14 0.890 2.33 97/16 — 6.90 4.31 1.97

HSS9×7×5/8 117 33.5 2.68 40.5 63/16 43/16 235 62.0 2.50
×1/2 100 28.7 2.73 34.0 63/4 43/4 197 51.5 2.53
×3/8 80.4 23.0 2.78 26.7 75/16 55/16 154 40.0 2.57
×5/16 69.2 19.8 2.81 22.8 75/8 55/8 131 33.9 2.58
×1/4 57.2 16.3 2.84 18.7 77/8 57/8 107 27.6 2.60
×3/16 44.1 12.6 2.87 14.3 83/16 63/16 81.7 20.9 2.62

in. in.
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape

Design
Wall

Thick-
ness, t

Nominal 
Wt.

Area,
A I S r

Axis X-X

in. lb/ft in.2

b/t h/t

in.4 in.3 in. in.3

Z

Note: For compactness criteria, refer to the end of Table 1-12.
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HSS9×5×5/8 0.581 50.60 14.0 5.61 12.5 133 29.6 3.08 38.5
×1/2 0.465 41.91 11.6 7.75 16.4 115 25.5 3.14 32.5
×3/8 0.349 32.51 8.97 11.3 22.8 92.5 20.5 3.21 25.7
×5/16 0.291 27.58 7.59 14.2 27.9 79.8 17.7 3.24 22.0
×1/4 0.233 22.39 6.17 18.5 35.6 66.1 14.7 3.27 18.1
×3/16 0.174 17.10 4.67 25.7 48.7 51.1 11.4 3.31 13.8

HSS9×3×1/2 0.465 35.11 9.74 3.45 16.4 80.8 18.0 2.88 24.6
×3/8 0.349 27.41 7.58 5.60 22.8 66.3 14.7 2.96 19.7
×5/16 0.291 23.32 6.43 7.31 27.9 57.7 12.8 3.00 16.9
×1/4 0.233 18.99 5.24 9.88 35.6 48.2 10.7 3.04 14.0
×3/16 0.174 14.54 3.98 14.2 48.7 37.6 8.35 3.07 10.8

HSS8×6×5/8 0.581 50.60 14.0 7.33 10.8 114 28.5 2.85 36.1
×1/2 0.465 41.91 11.6 9.90 14.2 98.2 24.6 2.91 30.5
×3/8 0.349 32.51 8.97 14.2 19.9 79.1 19.8 2.97 24.1
×5/16 0.291 27.58 7.59 17.6 24.5 68.3 17.1 3.00 20.6
×1/4 0.233 22.39 6.17 22.8 31.3 56.6 14.2 3.03 16.9
×3/16 0.174 17.10 4.67 31.5 43.0 43.7 10.9 3.06 13.0

HSS8×4×5/8 0.581 42.10 11.7 3.88 10.8 82.0 20.5 2.64 27.4
×1/2 0.465 35.11 9.74 5.60 14.2 71.8 17.9 2.71 23.5
×3/8 0.349 27.41 7.58 8.46 19.9 58.7 14.7 2.78 18.8
×5/16 0.291 23.32 6.43 10.7 24.5 51.0 12.8 2.82 16.1
×1/4 0.233 18.99 5.24 14.2 31.3 42.5 10.6 2.85 13.3
×3/16 0.174 14.54 3.98 20.0 43.0 33.1 8.27 2.88 10.2
×1/8 0.116 9.85 2.70 31.5 66.0 22.9 5.73 2.92 7.02

HSS8×3×1/2 0.465 31.71 8.81 3.45 14.2 58.6 14.6 2.58 20.0
×3/8 0.349 24.85 6.88 5.60 19.9 48.5 12.1 2.65 16.1
×5/16 0.291 21.19 5.85 7.31 24.5 42.4 10.6 2.69 13.9
×1/4 0.233 17.28 4.77 9.88 31.3 35.5 8.88 2.73 11.5
×3/16 0.174 13.26 3.63 14.2 43.0 27.8 6.94 2.77 8.87
×1/8 0.116 9.00 2.46 22.9 66.0 19.3 4.83 2.80 6.11
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Table 1–11 (continued)

Rectangular HSS
Dimensions and Properties

Shape I S r

noisroTY-Y sixA
Surface

Area

in.4 in.3 in. in.3 ft 2/ft

Z J

in.4 in.3

C

—Flat depth or width is too small to establish a workable flat.

HSS9–HSS8

Depth

Workable Flat

Width
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HSS9×5×5/8 52.0 20.8 1.92 25.3 63/16 23/16 128 42.5 2.17
×1/2 45.2 18.1 1.97 21.5 63/4 23/4 109 35.6 2.20
×3/8 36.8 14.7 2.03 17.1 75/16 35/16 86.9 27.9 2.23
×5/16 32.0 12.8 2.05 14.6 75/8 35/8 74.4 23.8 2.25
×1/4 26.6 10.6 2.08 12.0 77/8 37/8 61.2 19.4 2.27
×3/16 20.7 8.28 2.10 9.25 83/16 43/16 46.9 14.8 2.28

HSS9×3×1/2 13.2 8.81 1.17 10.8 63/4 — 40.0 19.7 1.87
×3/8 11.2 7.45 1.21 8.80 75/16 — 33.1 15.8 1.90
×5/16 9.88 6.59 1.24 7.63 75/8 — 28.9 13.6 1.92
×1/4 8.38 5.59 1.27 6.35 77/8 — 24.2 11.3 1.93
×3/16 6.64 4.42 1.29 4.92 83/16 23/16 18.9 8.66 1.95

HSS8×6×5/8 72.3 24.1 2.27 29.5 53/16 33/16 150 46.0 2.17
×1/2 62.5 20.8 2.32 24.9 53/4 33/4 127 38.4 2.20
×3/8 50.6 16.9 2.38 19.8 65/16 45/16 100 30.0 2.23
×5/16 43.8 14.6 2.40 16.9 65/8 45/8 85.8 25.5 2.25
×1/4 36.4 12.1 2.43 13.9 67/8 47/8 70.3 20.8 2.27
×3/16 28.2 9.39 2.46 10.7 73/16 53/16 53.7 15.8 2.28

HSS8×4×5/8 26.6 13.3 1.51 16.6 53/16 — 70.3 28.7 1.83
×1/2 23.6 11.8 1.56 14.3 53/4 — 61.1 24.4 1.87
×3/8 19.6 9.80 1.61 11.5 65/16 25/16 49.3 19.3 1.90
×5/16 17.2 8.58 1.63 9.91 65/8 25/8 42.6 16.5 1.92
×1/4 14.4 7.21 1.66 8.20 67/8 27/8 35.3 13.6 1.93
×3/16 11.3 5.65 1.69 6.33 73/16 33/16 27.2 10.4 1.95
×1/8 7.90 3.95 1.71 4.36 77/16 37/16 18.7 7.10 1.97

HSS8×3×1/2 11.7 7.81 1.15 9.64 53/4 — 34.3 17.4 1.70
×3/8 9.95 6.63 1.20 7.88 65/16 — 28.5 14.0 1.73
×5/16 8.81 5.87 1.23 6.84 65/8 — 24.9 12.1 1.75
×1/4 7.49 4.99 1.25 5.70 67/8 — 20.8 10.0 1.77
×3/16 5.94 3.96 1.28 4.43 73/16 23/16 16.2 7.68 1.78
×1/8 4.20 2.80 1.31 3.07 77/16 27/16 11.3 5.27 1.80

in. in.
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Standard Weight (Std.)

Pipe 12 Std. 49.6 12.8 12.0 0.375 0.349 13.6 36.5 262 41.0 4.39 523 53.7
Pipe 10 Std. 40.5 10.8 10.0 0.365 0.340 11.1 31.6 151 28.1 3.68 302 36.9
Pipe 8 Std. 28.6 8.63 7.98 0.322 0.300 7.85 28.8 68.1 15.8 2.95 136 20.8
Pipe 6 Std. 19.0 6.63 6.07 0.280 0.261 5.22 25.4 26.5 7.99 2.25 52.9 10.6
Pipe 5 Std. 14.6 5.56 5.05 0.258 0.241 4.03 23.1 14.3 5.14 1.88 28.6 6.83
Pipe 4 Std. 10.8 4.50 4.03 0.237 0.221 2.97 20.4 6.82 3.03 1.51 13.6 4.05
Pipe 31/2 Std. 9.12 4.00 3.55 0.226 0.211 2.51 19.0 4.52 2.26 1.34 9.04 3.03
Pipe 3 Std. 7.58 3.50 3.07 0.216 0.201 2.08 17.4 2.85 1.63 1.17 5.69 2.19
Pipe 21/2 Std. 5.80 2.88 2.47 0.203 0.189 1.59 15.2 1.45 1.01 0.952 2.89 1.37
Pipe 2 Std. 3.66 2.38 2.07 0.154 0.143 1.00 16.6 0.627 0.528 0.791 1.25 0.713
Pipe 11/2 Std. 2.72 1.90 1.61 0.145 0.135 0.750 14.1 0.293 0.309 0.626 0.586 0.421
Pipe 11/4 Std. 2.27 1.66 1.38 0.140 0.130 0.620 12.8 0.184 0.222 0.543 0.368 0.305
Pipe 1 Std. 1.68 1.32 1.05 0.133 0.124 0.460 10.6 0.0830 0.126 0.423 0.166 0.177
Pipe 3/4 Std. 1.13 1.05 0.824 0.113 0.105 0.310 10.0 0.0350 0.0671 0.336 0.0700 0.0942
Pipe 1/2 Std. 0.850 0.840 0.622 0.109 0.101 0.230 8.32 0.0160 0.0388 0.264 0.0320 0.0555

Extra Strong (x-Strong)

Pipe 12 x-Strong 65.5 12.8 11.8 0.500 0.465 17.9 27.4 339 53.2 4.35 678 70.2
Pipe 10 x-Strong 54.8 10.8 9.75 0.500 0.465 15.0 23.1 199 37.0 3.64 398 49.2
Pipe 8 x-Strong 43.4 8.63 7.63 0.500 0.465 11.9 18.5 100 23.1 2.89 199 31.0
Pipe 6 x-Strong 28.6 6.63 5.76 0.432 0.403 7.88 16.4 38.3 11.6 2.20 76.6 15.6
Pipe 5 x-Strong 20.8 5.56 4.81 0.375 0.349 5.72 15.9 19.5 7.02 1.85 39.0 9.50
Pipe 4 x-Strong 15.0 4.50 3.83 0.337 0.315 4.14 14.3 9.12 4.05 1.48 18.2 5.53
Pipe 31/2 x-Strong 12.5 4.00 3.36 0.318 0.296 3.44 13.5 5.94 2.97 1.31 11.9 4.07
Pipe 3 x-Strong 10.3 3.50 2.90 0.300 0.280 2.83 12.5 3.70 2.11 1.14 7.40 2.91
Pipe 21/2 x-Strong 7.67 2.88 2.32 0.276 0.257 2.11 11.2 1.83 1.27 0.930 3.66 1.77
Pipe 2 x-Strong 5.03 2.38 1.94 0.218 0.204 1.39 11.6 0.827 0.696 0.771 1.65 0.964
Pipe 11/2 x-Strong 3.63 1.90 1.50 0.200 0.186 1.00 10.2 0.372 0.392 0.610 0.744 0.549
Pipe 11/4 x-Strong 3.00 1.66 1.28 0.191 0.178 0.830 9.33 0.231 0.278 0.528 0.462 0.393
Pipe 1 x-Strong 2.17 1.32 0.957 0.179 0.166 0.600 7.92 0.101 0.154 0.410 0.202 0.221
Pipe 3/4 x-Strong 1.48 1.05 0.742 0.154 0.143 0.410 7.34 0.0430 0.0818 0.325 0.0860 0.119
Pipe 1/2 x-Strong 1.09 0.840 0.546 0.147 0.137 0.300 6.13 0.0190 0.0462 0.253 0.0380 0.0686

Double-Extra Strong (xx-Strong)

Pipe 8 xx-Strong 72.5 8.63 6.88 0.875 0.816 20.0 10.6 154 35.8 2.78 308 49.9
Pipe 6 xx-Strong 53.2 6.63 4.90 0.864 0.805 14.7 8.23 63.5 19.2 2.08 127 27.4
Pipe 5 xx-Strong 38.6 5.56 4.06 0.750 0.699 10.7 7.96 32.2 11.6 1.74 64.4 16.7
Pipe 4 xx-Strong 27.6 4.50 3.15 0.674 0.628 7.64 7.17 14.7 6.53 1.39 29.4 9.50
Pipe 3 xx-Strong 18.6 3.50 2.30 0.600 0.559 5.16 6.26 5.79 3.31 1.06 11.6 4.89
Pipe 21/2 xx-Strong 13.7 2.88 1.77 0.552 0.514 3.81 5.59 2.78 1.94 0.854 5.56 2.91
Pipe 2 xx-Strong 9.04 2.38 1.50 0.436 0.406 2.51 5.85 1.27 1.07 0.711 2.54 1.60

Table 1–14

Pipe
Dimensions and Properties

Shape

Nom-
inal 
Wt.

Outside
Dia-

meter

Inside
Dia-

meter

D/t IArea

Dimensions

S J Z

lb/ft in. in.

Nominal
Wall

Thick-
ness

Design
Wall

Thick-
ness

in.4in.2in. .ni.ni 3 in. in.4 in.3

r

PIPE
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ANSWERS TO SELECTED

PROBLEMSd

Chapter 2

2.1 a. ½K � ¼

k1 0 �k1 0

0 k3 0 �k3

�k1 0 k1 þ k2 �k2

0 �k3 �k2 k2 þ k3

2
6664

3
7775

b. u3 ¼
k2P

k1k2 þ k1k3 þ k2k3
, u4 ¼

ðk1 þ k2ÞP
k1k2 þ k1k3 þ k2k3

c. F1x ¼
�k1k2P

k1k2 þ k1k3 þ k2k3
, F2x ¼

�k3ðk1 þ k2ÞP
k1k2 þ k1k3 þ k2k3

2.2 u2 ¼ 0:5 in., F3x ¼ 250 lb, f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �250 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �250 lb

2.3 a. ½K � ¼

2
6666664

k �k 0 0 0

�k 2k �k 0 0

0 �k 2k �k 0

0 0 �k 2k �k

0 0 0 �k k

3
7777775

b. u2 ¼
P

2k
, u3 ¼

P

k
, u4 ¼

P

2k
c. F1x ¼ �

P

2
, F5x ¼ �

P

2

2.4 a. ½K � same as 2.3a. b. u2 ¼
d

4
, u3 ¼

d

2
, u4 ¼

3 d

4
c. F1x ¼

�k d

4
, F5x ¼

k d

4

2.5 ½K � ¼

2
66664

1 �1 0 0

�1 10 0 �9

0 0 5 �5

0 �9 �5 14

3
77775

2.6 u2 ¼ 0:4746 in.
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2.7 ½k� ¼ k �k

�k k

� �

2.8 u2 ¼ 1 in., u3 ¼ 2 in.

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �500 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �500 lb, F1x ¼ �500 lb

2.9 u1 ¼ 0, u2 ¼ 3 in., u3 ¼ 7 in., u4 ¼ 11 in.

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �3000 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �4000 lb

f
ð3Þ
3x ¼ �f

ð3Þ
4x ¼ �4000 lb, F1x ¼ �3000 lb

2.10 u2 ¼ �2 in.

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ 2000 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �1000 lb

f
ð3Þ
2x ¼ �f

ð3Þ
4x ¼ �1000 lb, F1x ¼ 2000 lb, F3x ¼ F4x ¼ 1000 lb

2.11 u2 ¼ 0:01 m, f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �20 N

f
ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �20 N, F1x ¼ �20 N

2.12 u2 ¼ 0:027 m; u3 ¼ 0:018 m

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �270 N, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 180 N

f
ð3Þ
3x ¼ �f

ð3Þ
4x ¼ 180 N, F1x ¼ �270 N, F4x ¼ �180 N

2.13 u2 ¼ 0:125 m, u3 ¼ 0:25 m, u4 ¼ 0:125 m

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �2:5 kN, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �2:5 kN

f
ð3Þ
3x ¼ �f

ð3Þ
4x ¼ 2:5 kN, f

ð4Þ
4x ¼ �f

ð4Þ
5x ¼ 2:5 kN

F1x ¼ �2:5 kN, F5x ¼ �2:5 kN

2.14 u2 ¼ �0:25 m, u3 ¼ �0:75 m

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ 100 N, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 200 N

F1x ¼ 100 N

2.15 u3 ¼ 0:001 m, f
ð1Þ
1x ¼ �f

ð1Þ
3x ¼ �0:5 kN

f
ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �0:5 kN, f

ð3Þ
3x ¼ �f

ð3Þ
4x ¼ 1 kN

F1x ¼ �0:5 kN, F2x ¼ �0:5 kN, F4x ¼ �1 kN

2.16 u2 ¼ 1=3 in., u3 = �1=3 in.

2.17 u2 ¼ 0:526 mm, u3 ¼ 1:316 mm, F1x ¼ �263:2 N; F4x ¼ �736:8 N

2.18 a. x ¼ 0:5 in. #, ppmin
¼ �125 lb-in.

b. x ¼ 2:0 in. , ppmin
¼ �1000 lb-in.

c. x ¼ 1:962 mm #, ppmin
¼ �3849 N �mm

d. x ¼ 2:4525 mm!, ppmin
¼ �1203 N �mm
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2.19 x ¼ 2:0 in: "

2.20 x ¼ 0:707 in: ; ppmin
¼ �235:7 in-lb

2.21 Same as 2.10

2.22 Same as 2.15

Chapter 3

3.1 a. ½K � ¼

2
666666666666664

A1E1

L1

�A1E1

L1
0 0

�A1E1

L1

A1E1

L1
þ A2E2

L2

�A2E2

L2
0

0
�A2E2

L2

A2E2

L2
þ A3E3

L3

�A3E3

L3

0 0
�A3E3

L3

A3E3

L3

3
777777777777775

b. u2 ¼
PL

3AE
, u3 ¼

2PL

3AE

c. i. u2 ¼ 3:33� 10�4 in., u3 ¼ 6:67� 10�4 in.

ii. F1x ¼ �333 lb, F4x ¼ �667 lb

iii. sð1Þ ¼ 333 psi (T), sð2Þ ¼ 333 psi (T), sð3Þ ¼ �667 psi (C)

3.2 u2 ¼ �0:595� 10�4 m, u3 ¼ �1:19� 10�4 m, F1x ¼ 5 kN

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ 5 kN, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 5 kN

3.3 u2 ¼ 1:91� 10�3 in., F1x ¼ �5715 lb, F3x ¼ �2286 lb

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �5715 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 2286 lb

3.4 u2 ¼ �1:66� 10�4 in., u3 ¼ �1:33� 10�3 in.

F1x ¼ 667 lb, F4x ¼ 5333 lb

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ 667 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 4667 lb

f
ð3Þ
3x ¼ �f

ð3Þ
4x ¼ �5333 lb

3.5 u2 ¼ 0:003 in., u3 ¼ 0:009 in., F1x ¼ �15,000 lb

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �15,000 lb

3.6 u2 ¼ 3:16� 10�3 in., F1x ¼ �3790 lb, F3x ¼ F4x ¼ �2105 lb

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �3790 lb, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ f

ð3Þ
2x ¼ �f

ð3Þ
4x ¼ 2105 lb
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3.7 u2 ¼ 2:21� 10�5 in., u3 ¼ 6:65� 10�3 in.

F1x ¼ �33:15 lb, F4x ¼ �9975 lb

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �33:15 lb, f

ð3Þ
3x ¼ �f

ð3Þ
4x ¼ 9975 lb

3.8 u2 ¼ �0:250 mm, u3 ¼ �1:678 mm, F1x ¼ 20 kN

3.9 u2 ¼ 0:01238 m, F1x ¼ �520 kN, F3x ¼ 530 kN

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �520 kN, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ �530 kN

3.10 u2 ¼ 0:935� 10�3 m, u3 ¼ 0:727� 10�3 m

F1x ¼ �6:546 kN, F4x ¼ �1:455 kN

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �6:546 kN, f

ð2Þ
2x ¼ �f

ð2Þ
3x ¼ 1:455 kN,

f
ð3Þ
3x ¼ �f

ð3Þ
4x ¼ 1:455 kN

3.11 u2 ¼ 3:572� 10�4 m, F1x ¼ �7:50 kN, F3x ¼ F4x ¼ F5x ¼ �7:50 kN

f
ð1Þ
1x ¼ �f

ð1Þ
2x ¼ �7:50 kN,

f
ð2Þ
2x ¼ �f

ð2Þ
3x ¼ f

ð3Þ
2x ¼ �f

ð3Þ
4x ¼ f

ð4Þ
2x ¼ �f

ð4Þ
5x ¼ 7:50 kN

3.12 two-element solution, u1 ¼ �0:686� 10�3 in.

one-element solution, u1 ¼ �0:667� 10�3 in.

3.13 ½B� ¼ � 1

L
þ 4x

L2

�8x

L2

1

L
þ 4x

L2

� �
, ½k� ¼ A

ðL=2

�L=2

½B�T E½B� dx

3.15 a. ½k� ¼ 2:25� 106

1 1 �1 �1

1 1 �1 �1

�1 �1 1 1

�1 �1 1 1

2
6664

3
7775 lb=in:

b. ½k� ¼ 106

4

1 �
ffiffiffi
3
p

�1
ffiffiffi
3
p

�
ffiffiffi
3
p

3
ffiffiffi
3
p

�3

�1
ffiffiffi
3
p

1 �
ffiffiffi
3
p

ffiffiffi
3
p

�3 �
ffiffiffi
3
p

3

2
6664

3
7775 lb=in:

c. ½k� ¼ 7000

3 �
ffiffiffi
3
p

�3
ffiffiffi
3
p

�
ffiffiffi
3
p

1
ffiffiffi
3
p

�1

�3
ffiffiffi
3
p

3 �
ffiffiffi
3
p

ffiffiffi
3
p

�1 �
ffiffiffi
3
p

1

2
6664

3
7775 kN=m

d. ½k� ¼ 1:4� 104

0:883 0:321 �0:883 �0:321

0:321 0:117 �0:321 �0:117

�0:883 �0:321 0:883 0:321

�0:321 �0:117 0:321 0:117

2
6664

3
7775 kN=m

3.16 a. u1 ¼ 0:433 in., u2 ¼ 0:592 in.

b. u1 ¼ 0:433 in., u2 ¼ �0:1585 in.
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3.17 a. u1 ¼ 2:165 mm, v1 ¼ �1:25 mm,

u2 ¼ 0:098 mm, v2 ¼ �5:83 mm

b. u1 ¼ �1:25 mm, v1 ¼ 2:165 mm,

u2 ¼ 3:03 mm, v2 ¼ 5:098 mm

3.18 a. s ¼ 10;600 psi, b. 45.47 MPa

3.19 a. ½K � ¼ k

2 0 � 1
2

1
2
�1 0 � 1

2
� 1

2

0 1 1
2
� 1

2
0 0 � 1

2
� 1

2

� 1
2

1
2

1
2
� 1

2
0 0 0 0

1
2
� 1

2
� 1

2
1
2

0 0 0 0

�1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

� 1
2
� 1

2
0 0 0 0 1

2
1
2

� 1
2
� 1

2
0 0 0 0 1

2
1
2

2
6666666666666666664

3
7777777777777777775

b. u1 ¼ 0, v1 ¼
�10

k

3.20 u2 ¼ 0, v2 ¼ 0:142 in., sð1Þ ¼ sð2Þ ¼ 707 psi (T)

3.21 u1 ¼
231L

AE
, v1 ¼

43:5L

AE

3.22 u1 ¼
422L

AE
, v1 ¼

1570L

AE

sð1Þ ¼ 574

A
ðCÞ, sð2Þ ¼ 422

A
ðTÞ, sð3Þ ¼ 996

A
ðTÞ

3.23 u1 ¼ 0:24 in., v1 ¼ 0, sð1Þ ¼ 12,000 psi

3.24 u2 ¼
26;675

AE
, v2 ¼

105;021

AE
, u3 ¼

�26;675

AE
, v3 ¼

105;021

AE

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ �1333 lb, f

0ð2Þ
1x ¼ �f

0ð2Þ
3x ¼ �1667 lb

f
0ð3Þ
2x ¼ �f

0ð3Þ
4x ¼ 1667 lb, f

0ð4Þ
2x ¼ �f

0ð4Þ
3x ¼ 0

f
0ð5Þ
3x ¼ �f

0ð5Þ
4x ¼ 1333 lb, f

0ð6Þ
1x ¼ �f

0ð6Þ
4x ¼ 0

3.25 u2 ¼ 0, v2 ¼
225;000

AE
, u3 ¼

�53;340

AE
, v3 ¼

210;000

AE

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ 0, f

0ð2Þ
1x ¼ �f

0ð2Þ
3x ¼ �3333 lb

f
0ð4Þ
2x ¼ �f

0ð4Þ
3x ¼ 1000 lb, f

0ð5Þ
3x ¼ �f

0ð5Þ
4x ¼ 2667 lb

f
0ð6Þ
1x ¼ �f

0ð6Þ
4x ¼ 0

3.26 No, the truss is unstable, j½K �j ¼ 0.

3.27 u3 ¼ 0:0463 in., v3 ¼ �0:0176 in.

f
0ð1Þ
1x ¼ �f

0ð1Þ
3x ¼ �2:055 kip, f

0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ 6:279 kip

f
0ð3Þ
3x ¼ �f

0ð3Þ
4x ¼ �6:6 kip
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3.28 ½T �T ¼

C �S 0 0

S C 0 0

0 0 C �S

0 0 S C

2
6664

3
7775 and ½T �½T �T ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2
6664

3
7775

9 ½T �T ¼ ½T ��1

3.29 u1 ¼ �0:893� 10�4 m, v1 ¼ �4:46� 10�4 m

sð1Þ ¼ 31:2 MPa (T), sð2Þ ¼ 26:5 MPa (T), sð3Þ ¼ 6:25 MPa (T)

3.30 u1 ¼ 1:71� 10�4 m, v1 ¼ �7:55� 10�4 m

sð1Þ ¼ 79:28 MPa (T), sð2Þ ¼ 11:97 MPa (T), sð3Þ ¼ �23:87 MPa (C)

3.31 u1 ¼ 8:25� 10�4 m, v1 ¼ �3:65� 10�3 m

sð2Þ ¼ 57:74 MPa (T), sð3Þ ¼ �115:5 MPa (C)

3.32 u2 ¼ 0:135� 10�2 m, v2 ¼ �0:850� 10�2 m,

v3 ¼ �0:137� 10�1 m, v4 ¼ �0:164� 10�1 m,

sð1Þ ¼ �198 MPa (C), sð2Þ ¼ 0, sð3Þ ¼ 44:6 MPa (T)

sð4Þ ¼ �31:6 MPa (C), sð5Þ ¼ �191 MPa (C),

sð6Þ ¼ �63:1 MPa (C)

3.33 a. u1 ¼ �3:448� 10�3 m, v1 ¼ �6:896� 10�3 m

sð1Þ ¼ 102:4 MPa (T), sð2Þ ¼ �72:4 MPa (C)

3.34 u4 ¼ 9:93� 10�3 in., v4 ¼ �2:46� 10�3 in.

sð1Þ ¼ 31:25 ksi (T), sð2Þ ¼ 3:459 ksi (T), sð3Þ ¼ �1:538 ksi (C)

sð4Þ ¼ �3:103 ksi (C), sð5Þ ¼ 0

3.35 v1 ¼ �0:5� 10�3 in., sð1Þ ¼ 250 psi (T)

3.36 u1 ¼ 0:212 in.

3.37 u1 ¼ 0:0397 in.

3.38 u2 ¼ 16:98 mm

3.39 u2 ¼ 1:71 mm

3.40 u1 ¼ �3:018� 10�5 m, v1 ¼ �1:517� 10�5 m,

w1 ¼ 2:684� 10�5 m, sð1Þ ¼ �338 kN/m2 (C),

sð2Þ ¼ �1690 kN/m2 (C), sð3Þ ¼ �7965 kN/m2 (C)

sð4Þ ¼ �2726 kN/m2 (C)

3.41 u1 ¼ 1:383� 10�3 m, v1 ¼ �5:119� 10�5 m

w1 ¼ 6:015� 10�5 m, sð1Þ ¼ 20:51 MPa (T),

sð2Þ ¼ 4:21 MPa (T), sð3Þ ¼ �5:29 MPa (C)
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3.42 u5 ¼ 0:0014 in., v5 ¼ 0, w5 ¼ �0:00042 in.

sð1Þ ¼ sð4Þ ¼ 180 psi (T), sð2Þ ¼ sð3Þ ¼ 140 psi (C)

3.43 u4 ¼ 0:00863 in., v4 ¼ 0, w4 ¼ �0:00683 in.

sð1Þ ¼ �916 psi (C)

3.46 v2 ¼ �0:0192 in., v3 ¼ �0:0168 in., u1 ¼ �0:00427 in.

sð1Þ ¼ �1668 psi (C), sð2Þ ¼ 1332 psi (T), sð3Þ ¼ 1000 psi (T)

3.47 u1 ¼
�110P

AE
in., v1 ¼ 0, u2 ¼ 0, v2 ¼

�405P

AE
in.,

u3 ¼ 0, v3 ¼
�433P

AE
in., u4 ¼

50P

AE
in., v4 ¼

�208P

AE
in.

sð1Þ ¼ �0:156
P

A
, sð2Þ ¼ �0:208

P

A
, sð3Þ ¼ �1:16

P

A

sð4Þ ¼ 0:260
P

A
, sð5Þ ¼ �0:573

P

A
, sð6Þ ¼ 0:458

P

A

3.48 v2 ¼ �0:955� 10�2 m, v4 ¼ �1:03� 10�2 m,

sð1Þ ¼ 67:1 MPa (C), sð2Þ ¼ 60:0 MPa (T), sð3Þ ¼ 22:4 MPa (C)

sð4Þ ¼ 44:7 MPa (C), sð5Þ ¼ 20:0 MPa (T)

3.49 u 01 ¼ 0, v2 ¼ �0:00283 in., F2x ¼ 2000 lb

sð1Þ ¼ 0, sð2Þ ¼ 1414 psi (T), sð3Þ ¼ 0

3.50 v2 ¼ �0:00283 in.

3.51 u 02 ¼ 0:002 in., f 01x ¼ �2800 lb., f 02x ¼ �2000 lb

F 02y ¼ �2828 lb

3.52 a. u1 ¼ 0:010 in. #, ppmin
¼ �100 lb-in.

b. u1 ¼ 0:00833 in.!, ppmin
¼ �41:67 lb-in.

3.53 ½k� ¼ 3A0E

2L

1 �1

�1 1

� �

3.54 two-element solution: u2 ¼ 0:00825 in., u3 ¼ 0:012 in., sð1Þ ¼ 8250 psi (T),

sð2Þ ¼ 3750 psi (T)

3.55 two-element solution: u2 ¼ 6:75� 10�3 in., u3 ¼ 0:009 in.

sð1Þ ¼ 6750 psi (T), sð2Þ ¼ 2250 psi (T)

3.56 u2 ¼ 0:75� 10�3 in., sð1Þ ¼ 750 psi (T)

3.57 u1 ¼ gL2=ð2EÞ, u2 ¼ 3gL2=ð8EÞ, sð1Þ ¼ gL=8, sð2Þ ¼ 3gL=8

3.58 a. f1x ¼ 583:3 lb, f2x ¼ 666:7 lb

b. f1x ¼ 26:7 kN, f2x ¼ 80 kN
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Chapter 4

4.3 v2 ¼
�7PL3

768EI
, f1 ¼

�PL2

32EI
, f2 ¼

PL2

128EI

F1y ¼
5P

16
, M1 ¼ 0, F3y ¼

11P

16
, M3 ¼

�3PL

16

4.4 v1 ¼
�PL3

3EI
, f1 ¼

PL3

2EI
, F2y ¼ P, M2 ¼ �PL

4.5 v1 ¼ �2:688 in., f1 ¼ 0:0144 rad, f2 ¼ 0:0048 rad

F2y ¼ 2:5 kip, F3y ¼ �1:5 kip, M3 ¼ 10:0 k-ft

4.6 v3 ¼ �3:94 in.

4.7 v2 ¼ �0:105 in., f2 ¼ �0:003 rad, v3 ¼ �0:345 in., f3 ¼ �0:0045 rad

4.8 v2 ¼ �1:34� 10�4 m, f2 ¼ 8:93� 10�5 rad

F1y ¼ 10 kN, M1 ¼ 12:5 kN �m, F3y ¼ 1:87 N, M3 ¼ �2:5 kN �m

4.9 v3 ¼ �7:619� 10�4 m, f2 ¼ �3:809� 10�4 rad, f1 ¼ 1:904� 10�4 rad

F1y ¼ �0:889 kN, F2y ¼ 4:889 kN

4.10 v2 ¼ �0:886 in., f2 ¼ �0:00554 rad

F1y ¼ 1115 lb, M1 ¼ �267 k-in.

4.11 v2 ¼ �7:934� 10�3 m, f1 ¼ �2:975� 10�3 rad

F1y ¼ 5:208 kN, F3y ¼ 5:208 kN

Fspring ¼ 1:587 kN

4.12 v2 ¼ v4 ¼
�1wL4

607:5EI
, v3 ¼

�wL4

507EI

f2 ¼
�1wL3

270EI
, f4 ¼ �f2

F1y ¼
wL

2
, M1 ¼

wL2

12

4.13 v2 ¼
�wL4

384EI
, F1y ¼

wL

2
, M1 ¼

wL2

12

4.14 v2 ¼
�5wL4

384EI
, f1 ¼ �f3 ¼

�wL3

24EI
, F1y ¼

wL

2

4.15 v3 ¼
�wL4

4EI
, f2 ¼

�wL3

8EI
, f3 ¼

�7wL3

24EI

F1y ¼
�3wL

4
, M1 ¼

�wL2

4
, F2y ¼

7wL

4

4.16 f1y ¼
�3wL

20
, m1 ¼

�wL2

30
, f2y ¼

�7wL

20
, m2 ¼

wL2

20

4.17 F1y ¼
wL

4
, M1 ¼

5wL2

96
, F3y ¼

wL

4
, M3 ¼

�5wL2

96
, v2 ¼

�7wL4

3840EI

Answers to Selected Problems d 915

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4.18 f2 ¼
wL3

80EI
, F1y ¼

9wL

40
, M1 ¼

7wL2

120
, F2y ¼

11wL

40

4.19 v3 ¼ �0:0244 m, f3 ¼ �0:0071 rad, f2 ¼ �0:00305 rad

F1y ¼ �24 kN, M1 ¼ �32 kN �m, F2y ¼ 56 kN

f
ð1Þ
1y ¼ �f

ð1Þ
2y ¼ �24 kN, m

ð1Þ
1 ¼ �32 kN �m, m

ð1Þ
2 ¼ �64 kN �m

f
ð2Þ
2y ¼ 32 kN, m

ð2Þ
2 ¼ 64 kN �m, f

ð2Þ
3y ¼ 0, m

ð2Þ
3 ¼ 0

4.20 f1 ¼ �0:0032 rad, v2 ¼ �0:0115 m, f3 ¼ 0:0032 rad

F1y ¼ 29:94 kN, F2y ¼ 0:1152 kN, F3y ¼ 29:94 kN

f
ð1Þ
1y ¼ 29:94 kN, m

ð1Þ
1 ¼ 0, f

ð1Þ
2y ¼ 0:058 kN, m

ð1Þ
2 ¼ 59:65 kN �m

4.21 v2 ¼ �2:514 in., f2 ¼ �0:00698 rad, f3 ¼ 0:0279 rad

F1y ¼ 37:5 kip, M1 ¼ 225 k-in., F3y ¼ 22:5 kip

4.22 v3 ¼ �3:277 in., f3 ¼ �0:0323 rad, f2 ¼ �0:0130 rad

F1y ¼ �20:5 kip, M1 ¼ �71:67 k-ft, F2y ¼ 60:5 kip

4.23 v2 ¼ �2:34 in., F1y ¼ 5325 lb ¼ F3y, M1 ¼ 19;900 lb-ft ¼ �M3

4.24 f1 ¼ �3:596� 10�4 rad, f2 ¼ 9:92� 10�5 rad, f3 ¼ 1:091� 10�4 rad

F1y ¼ 9875 N, F2y ¼ 28;406 N, F3y ¼ 6719 N

4.25 vmax ¼ �0:000756 m at midspan of AB and BC

smax ¼ 34:3 MPa at midspan of AB and BC

smin ¼ �51:0 MPa at B

4.26 vmax ¼ �0:1953 m at midspan of BC

smin ¼ �469 MPa

4.27 vmax ¼ �1:028 in: under 7.5 kip load at B

smax ¼ 34,000 psi

smin ¼ �65,800 psi

4.28 vmax ¼ �0:0419 m at C

smax ¼ 66:97 MPa at fixed end A

smin ¼ �133:9 MPa at B

4.29 vmax ¼ �0:495 in: at C

smax ¼ 5625 psi at A

smin ¼ �22,500 psi at B

4.30 vmax ¼ �0:087 m at C

smax ¼ 257 MPa at B

4.37 v2 ¼
�PL3

192EI
� wL4

384EI
, F1y ¼

Pþ wL

2
, M1 ¼

PL

8
þ wL2

12
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4.38 v2 ¼
�5PL3

648EI

4.39 v2 ¼
�ð25Pþ 22wLÞL3

240EI
, f2 ¼

�ðPL2 þ wL3Þ
8EI

F1y ¼ Pþ wL

2
, M1 ¼

PL

2
þ wL2

3

4.40 v2 ¼ �1:57� 10�4 m, f2 ¼ 1:19� 10�4 rad

4.41 v2 ¼ �3:18� 10�4 m, f2 ¼ 1:58� 10�4 rad, f3 ¼ 1:58� 10�4 rad

4.42 v3 ¼ �4:26� 10�5 m, f2 ¼ �2:56� 10�5 rad, f3 ¼ 5:38� 10�5 rad

4.44 ½k� ¼ GAW

L

1 �1
�1 1

� �

4.47 ½k� ¼ EI

ðL

0

½B�T ½B� dxþ kf

ðL

0

½N�T ½N� dx

4.48 Same answer as 4.47

4.77 For 400 mm span,

d ¼ 1:28 mm ðNo shear area effectÞ
d ¼ 1:34 mm ðShear area includedÞ
For 100 mm span,

d ¼ 0:02 mm ðNo shear area effectÞ
d ¼ 0:0355 mm ðShear area effect includedÞ

Chapter 5

5.1 u2 ¼ 0:0278 in., v2 ¼ 0, f2 ¼ �0:555� 10�4 rad

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ �8300 lb, f

0ð1Þ
1y ¼ �f

0ð1Þ
2y ¼ 4:6 lb

m
0ð1Þ
1 ¼ 2775 lb-in., m

0ð1Þ
2 ¼ 0

5.2 u2 ¼ u3 ¼ 0:688 in., v2 ¼ �v3 ¼ 0:00171 in.

f2 ¼ �f3 ¼ �0:00173 rad

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ �2140 lb, f

0ð1Þ
1y ¼ �f

0ð1Þ
2y ¼ �2503 lb

m
0ð1Þ
1 ¼ 343;600 lb-in., m

0ð1Þ
2 ¼ 257;000 lb-in.

f
0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ 2497 lb, f

0ð2Þ
2y ¼ �f

0ð2Þ
3y ¼ �2140 lb

m
0ð2Þ
2 ¼ �257;000 lb-in., m

0ð2Þ
3 ¼ �256;600 lb-in.

f
0ð3Þ
3x ¼ �f

0ð3Þ
4x ¼ 2140 lb, f

0ð3Þ
3y ¼ �f

0ð3Þ
4y ¼ 2497 lb

m
0ð3Þ
3 ¼ 256;600 lb-in., m

0ð3Þ
4 ¼ 342;700 lb-in.

F1x ¼ F4x ¼ �2503 lb, F1y ¼ �F4y ¼ �2140 lb

M1 ¼ 343;600 lb-in., M4 ¼ 342;700 lb-in.

5.3 Channel section 6� 8:2 based on Mmax ¼ 106;900 lb-in.

Answers to Selected Problems d 917

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5.4 u4 ¼ 0:00445 in., v4 ¼ �0:0123 in., f4 ¼ �0:00290 rad

f
0ð1Þ
1x ¼ �f

0ð1Þ
4x ¼ 4:04 kip, f

0ð1Þ
1y ¼ �f

0ð1Þ
4y ¼ �1:43 kip

m
0ð1Þ
1 ¼ �254 k-in., m

0ð1Þ
4 ¼ �513 k-in.

f
0ð2Þ
2x ¼ �f

0ð2Þ
4x ¼ 5:82 kip, f

0ð2Þ
2y ¼ �f

0ð2Þ
4y ¼ �1:45 kip

m
0ð2Þ
2 ¼ �260 k-in., m

0ð2Þ
4 ¼ �519 k-in.

F1x ¼ 3:1 kip, F1y ¼ 2:96 kip, M1 ¼ �254 k-in.

F2x ¼ �1:31 kip, F2y ¼ 5:86 kip, M2 ¼ �260 k-in.

F3x ¼ �1:78 kip, F3y ¼ 11:17 kip, M3 ¼ �1736 k-in.

5.5 u2 ¼ 0:05618 in., v2 ¼ �0:1792 in., f2 ¼ �0:00965 rad

f
0ð1Þ
1x ¼ 90:07 kip, f

0ð1Þ
1y ¼ 3:83 kip, m

0ð1Þ
1 ¼ 361 k-in.

f
0ð1Þ
2x ¼ �73:43 kip, f

0ð1Þ
2y ¼ 7:27 kip, m

0ð1Þ
2 ¼ �1106 k-in.

f
0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ 46:8 kip, f

0ð2Þ
2y ¼ 17:05 kip, m

0ð2Þ
2 ¼ 1107 k-in.

f
0ð2Þ
3y ¼ 22:95 kip, m

0ð2Þ
3 ¼ �2171 k-in.

F1x ¼ F3x ¼ 46:8 kip, F1y ¼ 77:1 kip, M1 ¼ 361 k-in.

F3y ¼ 22:95 kip, M3 ¼ 2171 k-in.

5.6 u2 ¼ �0:000269 in., v2 ¼ �0:0363 in., f2 ¼ �0:00347 rad

f
0ð1Þ
1x ¼ 46:6 kip, f

0ð1Þ
1y ¼ 6:07 kip, m

0ð1Þ
1 ¼ 491:3 k-in.

f
0ð1Þ
2x ¼ �32:4 kip, f

0ð1Þ
2y ¼ 8:07 kip, m

0ð1Þ
2 ¼ �831:3 k-in.

f
0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ �0:28 kip, f

0ð2Þ
2y ¼ 58:31 kip, m

0ð2Þ
2 ¼ 1123:9 k-in.

f
0ð2Þ
3y ¼ 21:69 kip, m

0ð2Þ
3 ¼ �1611:8 k-in.

f
0ð3Þ
4x ¼ �f

0ð3Þ
2x ¼ 50:2 kip, f

0ð3Þ
4y ¼ �f

0ð3Þ
2y ¼ �1:49 kip, m

0ð3Þ
4 ¼ �154:2 k-in.

m
0ð3Þ
2 ¼ �293:2 k-in.

F1x ¼ 28:65 kip, F1y ¼ 37:24 kip, M1 ¼ 491:3 k-in.

F3x ¼ 0:28 kip, F3y ¼ 21:69 kip, M3 ¼ �1611:8 k-in.

F4x ¼ �28:93 kip, F4y ¼ 41:05 kip, M4 ¼ �154:2 k-in.

5.7 u2 ¼ 0:4308� 10�4 m, v2 ¼ �0:9067� 10�4 m,

f2 ¼ �0:1403� 10�2 rad

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ 23:8 kN, f

0ð1Þ
1y ¼ 17:26 kN, m

0ð1Þ
1 ¼ 32:77 kN �m

f
0ð1Þ
2y ¼ 22:74 kN, m

0ð1Þ
2 ¼ �54:64 kN �m

f
0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ 11:31 kN, f

0ð2Þ
2y ¼ 37:19 kN, m

0ð2Þ
2 ¼ 65:09 kN �m

f
0ð2Þ
3y ¼ 42:81 kN, m

0ð2Þ
3 ¼ �87:54 kN �m

f
0ð3Þ
2x ¼ �f

0ð3Þ
4x ¼ 17:55 kN, f

0ð3Þ
2y ¼ �f

0ð3Þ
4y ¼ 1:40 kN

m
0ð3Þ
2 ¼ �10:51 kN �m, m

0ð3Þ
4 ¼ �5:30 kN �m

F1x ¼ �17:26 kN, F1y ¼ 23:80 kN, M1 ¼ 32:77 kN �m
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F3x ¼ �11:31 kN, F3y ¼ 42:81 kN, M3 ¼ �87:54 kN �m
F4x ¼ �11:42 kN, F4y ¼ 13:40 kN, M4 ¼ �5:30 kN �m

5.9 u2 ¼ �4:95� 10�5 m, v2 ¼ �2:56� 10�5 m, f2 ¼ 2:66� 10�3 rad

f
0ð1Þ
1x ¼ �f

0ð1Þ
2x ¼ 26:9 kN, f

0ð1Þ
1y ¼ �f

0ð1Þ
2y ¼ �42:0 kN

m
0ð1Þ
1 ¼ 55:9 kN �m, m

0ð1Þ
2 ¼ 111:7 kN �m

f
0ð2Þ
2x ¼ �f

0ð2Þ
3x ¼ �42:0 kN, f

0ð2Þ
2y ¼ �f

0ð2Þ
3y ¼ 26:9 kN

M1 ¼ 55:9 kN �m, M3 ¼ 44:7 kN �m

5.10 v2 ¼ �0:1423� 10�2 m, f2 ¼ �0:5917� 10�3 rad

f
0ð1Þ
1x ¼ 0, f

0ð1Þ
1y ¼ 10 kN, m

0ð1Þ
1 ¼ 23:3 kN �m, f

0ð1Þ
2x ¼ 0,

f
0ð1Þ
2y ¼ �10 kN, m

0ð1Þ
2 ¼ 6:7 kN �m

5.11 v2 ¼ �3:712� 10�5 m, F1x ¼ 5440 N, F1y ¼ 10,000 N, M1 ¼ 112 N �m

5.12 u2 ¼ �0:2143 m, v1 ¼ �0:250 m, f1 ¼ 0:0893 rad, u2 ¼ �0:2143 m,

v2 ¼ �0:357� 10�4 m, f2 ¼ 0:0714 m

5.13 u2 ¼ 0:0559 in., v2 ¼ 0:00382 in., f2 ¼ �0:000150 rad

u3 ¼ 0:0558 in., v3 ¼ �0:000133 in., f3 ¼ 0:000149 rad

F1x ¼ �198 lb, F1y ¼ �4770 lb, M1 ¼ 27,460 lb � in.

F4x ¼ �4802 lb, F4y ¼ 4770 lb, M4 ¼ 27,430 lb � in.

5.14 u2 ¼ 0:0174 in., v2 ¼ �0:0481 in., f2 ¼ �0:00165 rad

f
0ð1Þ
1x ¼ 19,160 lb, f

0ð1Þ
1y ¼ �1385 lb, m

0ð1Þ
1 ¼ �59,050 lb � in.

f
0ð1Þ
2x ¼ �19,160 lb, f

0ð1Þ
2y ¼ 1385 lb, m

0ð1Þ
2 ¼ �176;000 lb � in.

5.15 u2 ¼ �1:76� 10�2 m, v2 ¼ �1:87� 10�5 m, f2 ¼ 5:00� 10�3 rad

u3 ¼ �1:76� 10�2 m, f3 ¼ �2:49� 10�3 rad

F1x ¼ 20:0 kN, F1y ¼ 13:1 kN, M1 ¼ �57:4 kN �m, F3y ¼ �13:1 kN

5.16 v3 ¼ �2:83� 10�5 m, u4 ¼ 1:0� 10�5 m, v4 ¼ �2:83� 10�5 m

5.17 v3 ¼ �0:397 in., f3 ¼ 0

5.18 u2 ¼ v2 ¼ �0:01� 10�3 m, f2 ¼ 1:766� 10�4 rad

5.19 u1 ¼ 0:702 in., v1 ¼ 0:00797 in., f1 ¼ �0:00446 rad

f
0ð1Þ
3x ¼ �f

0ð1Þ
1x ¼ �19:93 kip, f

0ð1Þ
3y ¼ �f

0ð1Þ
1y ¼ 18:1 kip, m

0ð1Þ
3 ¼ 1309 k � in.

m
0ð1Þ
1 ¼ 863 k � in.

5.20 u3 ¼ 1:24 in., v3 ¼ 0:00203 in., f3 ¼ �0:000556 rad

f
0ð1Þ
1x ¼ �2:76 kip, f

0ð1Þ
1y ¼ 1:79 kip, m

0ð1Þ
1 ¼ 0, f

0ð1Þ
2x ¼ 2:76 kip, f

0ð1Þ
2y ¼ �1:79 kip,

m
0ð1Þ
2 ¼ 322 k � in.

5.21 Use a W16� 31 for all sections

5.22 sbending max ¼ 11,924 psi
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5.23 u5 ¼ 0:0204 in., v5 ¼ 0:00122 in., f5 ¼ 0:000207 rad

5.24 u5 ¼ 2:82 in., v5 ¼ 0:00266 in., f5 ¼ �0:00139 rad

5.25 a. v2 ¼ �2:12� 10�3 in. b. v3 ¼ �6:07� 10�2 in.

5.26 u2 ¼ 0:596� 10�5 in., v2 ¼ �0:332� 10�2 in., f2 ¼ �0:100� 10�3 rad

F1x ¼ 130 lb, F1y ¼ 10,360 lb, F4x ¼ �130 lb, F4y ¼ 10,360 lb

5.27 v2 ¼ �0:0153 m, f
0ð1Þ

1x ¼ 30 kN, f
0ð1Þ
1y ¼ �6:67 kN, m

0ð1Þ
1 ¼ 0

5.28 u2 ¼ 5:70 mm, v2 ¼ �0:0244 mm, f2 ¼ 0:00523 rad

5.29 v3 ¼ �1:83 in., v4 ¼ �1:22 in.

5.30 v3 ¼ 6:67 in., v4 ¼ �6:67 in., f3 ¼ �f4 ¼ �3:20 rad

F1x ¼ 11:69 kN, F1y ¼ 30 kN, M1 ¼ �1810 kN �m
F6x ¼ �11:69 kN, F6y ¼ 30 kN, M6 ¼ 1810 kN �m

5.31 v2 ¼ �1:58� 10�2 in.

5.32 u2 ¼ 4:30 mm, f2 ¼ �0:241� 10�3 rad

F1x ¼ �8339 N, F1y ¼ �4995 N, M1 ¼ 26;700 N �m,

F4x ¼ �6661 N, F4y ¼ 4995 N, M4 ¼ 23;330 N �m

5.33 u7 ¼ 0:0264 m, v7 ¼ 0:463� 10�4 m, f7 ¼ 0:171� 10�2 rad

f
0ð1Þ
1x ¼ �21:1 N, f

0ð1Þ
1y ¼ 30:4 N, m

0ð1Þ
1 ¼ 74:95 N �m

f
0ð1Þ
3x ¼ 21:1 N, f

0ð1Þ
3y ¼ �30:4 N, m

0ð1Þ
3 ¼ 46:65 N �m

5.35 u9 ¼ 0:0174 m, f
0ð1Þ
1x ¼ �22:6 kN, f

0ð1Þ
1y ¼ 16:0 kN, m

0ð1Þ
1 ¼ 53:6 kN �m

f
0ð1Þ
3x ¼ 22:6 kN, f

0ð1Þ
3y ¼ �16:0 kN, m

0ð1Þ
3 ¼ 42:4 kN �m

5.36 v5 ¼ �2:80� 10�7 m, v7 ¼ �4:87� 10�7 m

5.37 v5 ¼ �1:29� 10�2 m

5.38 u2 ¼ 1:43� 10�1 m

5.39 Truss: u7 ¼ 0:0260 m, v7 ¼ 0:00566 m,

Frame: u7 ¼ 0:0180 m, v7 ¼ 0:00424 m

Truss, element 1: f1x ¼ �49;730 N, f1y ¼ 0

Frame, element 1: f1x ¼ �43;060 N, f1y ¼ 22,670 N

5.40 vmax ¼ �0:0105 m at midspan

Mmax ¼ 1:568� 106 N-m at C

5.41 vmax ¼ 0:0524 m

Mmax ¼ 6:22� 104 N-m

5.44 Max vertical deflection ¼ �0:694 in.

Max bending stress ¼ 12,330 psi

Structure is safe against yielding
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5.45 Tapered beam n ¼ 3

one element: v1 ¼ �0:222� 10�1 in.

two elements: v1 ¼ �0:189� 10�1 in.

four elements: v1 ¼ �0:181� 10�1 in.

eight elements: v1 ¼ �0:179� 10�1 in.

5.46 ½K� ¼ 15
GJ0

L

1 �1

�1 1

� �

5.48 v2 ¼ �0:214 in.

5.49 v2 ¼ �0:729 in.

5.51 v1 ¼ �0:690� 10�2 m

5.52 v5 ¼ �0:1776 in.

5.53 v4 ¼ �1:026 in.

5.55 v3 ¼ �2:54� 10�3 m

5.57 v5 ¼ �2:22� 10�2 m

5.58 u2 ¼ 1:24 in:; v2 ¼ �1:98� 10�4 in:; u2 ¼ 1:819 in:; w3 ¼ 1:818 in:

5.59 w7 ¼ �0:251 in.

5.73 4 element solution, r ¼ 120 in:; �max ¼ 0:0469 in.

r ¼ 20 in:; �max ¼ 0:000454 in. (shear area included)

Chapter 6

6.1 Use Eq. (6.2.10) in Eq. (6.2.18) to show Ni þNj þNm ¼ 1.

6.3 a. ½k� ¼ 4:0� 106

2
666666664

2:5 1:25 �2:0 �1:5 �0:5 0:25

4:375 �1:0 �0:75 �0:25 �3:625

4:0 0 �2:0 1:0

1:5 1:5 �0:75

2:5 �1:25

4:375

3
777777775

lb=in:

Symmetry

b. ½k� ¼ 13:33� 106

2
666666664

1:54 0:75 �1:0 �0:45 �0:54 �0:3

1:815 �0:3 �0:375 �0:45 �1:44

1:0 0 0 0:3

0:375 0:45 0

0:54 0

1:44

3
777777775

lb=in:

Symmetry
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c. ½k� ¼

2� 107 1� 107 �8� 106 �6� 106 �1:2� 107 �4� 106

1� 107 3:5� 107 �4� 106 �3� 106 �6� 106 �3:2� 107

�8� 106 �4� 106 8� 106 0 0 4� 106

�6� 106 �3� 106 0 3� 106 6� 106 0
�1:2� 107 �6� 106 0 6� 106 1:2� 107 0
�4� 106 �3:2� 107 4� 106 0 0 3:2� 107

2
6666664

3
7777775

6.4 a. sx ¼ 19:2 ksi, sy ¼ 4:8 ksi, txy ¼ �15:0 ksi

s1 ¼ 28:6 ksi, s2 ¼ �4:64 ksi, yp ¼ �32:2�

b. sx ¼ 32:0 ksi, sy ¼ 8:0 ksi, txy ¼ �25:0 ksi

s1 ¼ 47:7 ksi, s2 ¼ �7:73 ksi, yp ¼ �32:2�

c. Same answers as Part a.

6.5 a. svM ¼ 31:2 ksi; b. svM ¼ 52:0 ksi; c. svM ¼ 31:2 ksi

6.6 a. ½k� ¼ 2:074� 105

2
666666664

8437:5 1687:5 �7762:5 �337:5 �675 �1350

1687:5 3937:5 337:5 �2137:5 �2025 �1800

�7762:5 337:5 8437:5 �1687:5 �675 1350

�337:5 �2137:5 �1687:5 3937:5 2025 �1800

�675 �2025 �675 2025 1350 0

�1350 �1800 1350 �1800 0 3600

3
777777775

N=m

b. ½k� ¼ 4:48� 107

2
666666664

25:0 0 �12:5 6:25 �12:5 �6:25

9:375 9:375 �4:6875 �9:375 �4:6875

15:625 �7:8125 �3:125 �1:5625

27:343 1:5625 �3:125

15:625 7:8125

27:343

3
777777775

N=m

Symmetry

c. ½k�¼

1:225� 109 3:5� 108 �1:015� 109 �7� 107 �2:1� 108 �2:8� 108

3:5� 108 7� 108 7� 107 �1:4� 108 �4:2� 108 �5:6� 108

�1:015� 109 7� 107 1:225� 109 �3:5� 108 �2:1� 108 2:8� 108

�7� 107 �1:4� 108 �3:5� 108 7� 108 4:2� 108 �5:6� 108

�2:1� 108 �4:2� 108 �2:1� 108 4:2� 108 4:2� 108 0
�2:8� 108 �5:6� 108 2:8� 108 �5:6� 108 0 1:12� 109

2
6666664

3
7777775

6.7 a. sx ¼ �5:289 GPa, sy ¼ �0:156 GPa, txy ¼ 0:233 GPa

s1 ¼ �0:1459 GPa, s2 ¼ �5:30 GPa, yp ¼ �2:59�

b. sx ¼ 0, sy ¼ 42:0 MPa, txy ¼ 33:6 MPa

s1 ¼ 60:6 MPa, s2 ¼ �18:6 MPa, yp ¼ �29�

c. s1 ¼ 3942 MPa, s2 ¼ �3194 MPa, yp ¼ �10:28�

6.8 a. svM ¼ 5:231 GPa; b. svM ¼ 71:73 GPa; c. svM ¼ 68:16 GPa

6.9 a. sx ¼ �15:0 ksi, sy ¼ �45:0 ksi, txy ¼ �18:0 ksi

s1 ¼ �6:57 ksi, s2 ¼ �53:4 ksi, yp ¼ �25:1�
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b. sx ¼ �15:0 ksi, sy ¼ �45 ksi, txy ¼ �21:0 ksi

s1 ¼ �4:19 ksi, s2 ¼ �55:8 ksi, yp ¼ �27:2�

c. sx ¼ �30 ksi, sy ¼ �90 ksi, txy ¼ �21 ksi

s1 ¼ �23:38 ksi, s2 ¼ �96:6 ksi, yp ¼ �17:47�

d. s1 ¼ 4:89 ksi, s2 ¼ �46:9 ksi, yp ¼ �40:0�

e. s1 ¼ �14:2 ksi, s2 ¼ �394 ksi, yp ¼ �39:2�

f. sx ¼ �22:5 ksi, sy ¼ �67:5 ksi, txy ¼ �21:0 ksi

s1 ¼ �14:2 ksi, s2 ¼ �75:8 ksi, yp ¼ �21:5�

6.10 a. sx ¼ �52:5 MPa, sy ¼ �32:8 MPa, txy ¼ �5:38 MPa

s1 ¼ �31:4 MPa, s2 ¼ �53:9 MPa, yp ¼ �14:3�

b. sx ¼ �31:4 MPa, sy ¼ �13:5 MPa, txy ¼ 5:38 MPa

s1 ¼ �12:0 MPa, s2 ¼ �32:9 MPa, yp ¼ �15:5�

c. sx ¼ �27:6 MPa, sy ¼ �19:5 MPa, txy ¼ 4:04 MPa

s1 ¼ �17:9 MPa, s2 ¼ �29:3 MPa, yp ¼ �22:5�

d. sx ¼ �1:05 MPa, sy ¼ 7:0 MPa, txy ¼ 3:5 MPa

s1 ¼ 3:43 MPa, s2 ¼ �3:78 MPa, yp ¼ �38�

6.11 a. fs1x ¼ 0, fs1y ¼ 0, fs2x ¼ p0Lt=6, fs2y ¼ 0

fs3x ¼ p0Lt=3, fs3y ¼ 0

b. fs1x ¼ 0, fs2x ¼ p0Lt=12, fs3x ¼ p0Lt=4

6.12 a. fs1y ¼ p1Lt=6; fs3y ¼ 1p2Lt=3

b. fs1y ¼ fs2y ¼ p0Lt=�

6.13 u3 ¼ 0:5� 10�3 in., v3 ¼ �0:275� 10�2 in.

u4 ¼ �0:609� 10�3 in., v4 ¼ �0:293� 10�2 in.

s
ð1Þ
x ¼ 824 psi, s

ð1Þ
y ¼ 247 psi, t

ð1Þ
xy ¼ �1587 psi

s
ð1Þ
1 ¼ 2149 psi, s

ð1Þ
2 ¼ �1077 psi, yð1Þp ¼ �40�

s
ð2Þ
x ¼ �826 psi, s

ð2Þ
y ¼ 292 psi, t

ð2Þ
xy ¼ �411 psi

s
ð2Þ
1 ¼ 426 psi, s

ð2Þ
2 ¼ �960 psi, yð2Þp ¼ 18:15�

6.14 a. u2 ¼ 0:281� 10�4 m, v2 ¼ �0:330� 10�4 m

u5 ¼ 0:115� 10�4 m, v5 ¼ �0:103� 10�4 m

s
ð2Þ
x ¼ 16:4 MPa, s

ð2Þ
y ¼ 15:2 MPa

t
ð2Þ
xy ¼ �6:99 MPa, s

ð2Þ
1 ¼ 22:8 MPa

s
ð2Þ
2 ¼ 8:80 MPa, yð2Þp ¼ �42:7�

s
ð1Þ
x ¼ 10:6 MPa, s

ð1Þ
y ¼ 3:18 MPa

t
ð1Þ
xy ¼ �3:34 MPa, s

ð1Þ
1 ¼ 11:9 MPa

s
ð1Þ
2 ¼ 1:90 MPa, yð1Þp ¼ �21:0�
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c. u1 ¼ �u2 ¼ �0:165� 10�5 m, v1 ¼ v2 ¼ �0:125� 10�4 m

u5 ¼ 0:274� 10�12 m, v5 ¼ �0:163� 10�4 m

s
ð1Þ
x ¼ 5:99� 105 N/m2, s

ð1Þ
y ¼ �3:78� 106 N/m2

t
ð1Þ
xy ¼ 4:05� 10�1 N/m2, s

ð1Þ
1 ¼ 5:99� 105 N/m2

s
ð1Þ
2 ¼ �3:78� 106 N/m2, yð1Þp ¼ 0�, s

ð3Þ
x ¼ 5:64� 106 N/m2

s
ð3Þ
y ¼ 1:88� 107 N/m2, t

ð3Þ
xy ¼ �1:11� 10�1 N/m2

s
ð3Þ
1 ¼ 1:88� 107 N/m2, s

ð3Þ
2 ¼ 5:64� 106 N/m2, yð3Þp ¼ �90�

6.15 All fbx’s are equal to 0.

a. fb1y ¼ fb2y ¼ fb3y ¼ fb4y ¼ �10:28 N, fb5y ¼ �20:56 N

c. fb1y ¼ fb2y ¼ fb3y ¼ fb4y ¼ �8:03 N, fb5y ¼ �16:06 N

6.18 b. Yes, c. Yes, e. Yes, g. No

6.20 a. nb ¼ 8, b. nb ¼ 12

6.25 ex ¼ 0:0009375 in:=in:; ey ¼ �0:00125 in:=in:; gxy ¼ �0:000625 rad

sx ¼ 18:5 ksi, sy ¼ �31:9 ksi, txy ¼ �7:21 ksi

Chapter 7

7.12 u2 ¼ u3 ¼ 0:647� 10�3 in., v2 ¼ 0:666� 10�4 in.

v3 ¼ �0:666� 10�4 in., skew effect

7.13 Stress approaches 25 kPa near edge of hole.

7.14 At depth 4 in. equal to width, stress approaches uniform sy ¼ �1000 psi.

7.15 s1 ¼ 8836 psi at top and bottom of hole

7.16 s1 ¼ 133 MPa at fillet

7.17 For refined mesh at re-entrant corner, s1 ¼ 12,800 psi.

7.18 sVM ¼ 93:7 psi at load

7.20 For the model with 12 in.� 1
2 in. size elements, finite element solution yields free-end deflection

of �0:499 in.; exact solution is �1:15 in. (See Table 7–1 in text for other results.)

7.22 s1 ¼ 3 kN=m2 (round hole model)

s1 ¼ 3:51 kN=m2 (square hole with corner radius)

7.24 sVM ¼ 8:1 MPa

7.26 s1 ¼ 6:6 MPa at hole, 10.4 MPa at transition

7.28 Largest von Mises stress 35–45 MPa at inside edge at junction of narrow to larger section of

wrench

7.30 Largest principal stress s1 ¼ 111 MPa at narrowest width of member
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7.38 For a l cm thick wrench, sVM ¼ 502 MPa

7.39 Original: svM ¼ 7826 psi; Taper: svM ¼ 7723 psi

Radius: svM ¼ 4560 psi; undercut: svM ¼ 7221 psi

Relief holes: svM ¼ 7813 psi

Chapter 8

8.2 ex ¼
1

3b
ð�u1 þ u2 þ 4u4 � 4u5Þ, ey ¼

1

3h
ð�v1 þ v3 þ 4v4 � 4v6Þ

gxy ¼
1

3h
ð�u1 þ u3 þ 4u4 � 4u6Þ þ

1

3b
ð�v1 þ v3 þ 4v4 � 4v6Þ

sx ¼
E

1� n2
ðex þ neyÞ, sy ¼

E

1� n2
ðey þ nexÞ, txy ¼ Ggxy

8.3 fs1x ¼ fs3x ¼
�pth

6
, fs5x ¼

�2pth

3

8.4 fs1x ¼ 0, fs3x ¼
�p0th

6
, fs5x ¼

�p0th

3

8.5 a. ex ¼ �5� 10�5yþ 2:5� 10�4, ey ¼ �1:67� 10�4xþ 3:33� 10�5,

gxy ¼ �5� 10�5x� 1:11� 10�4yþ 4:17� 10�4

sx ¼ 3290 psi, sy ¼ �4850 psi, txy ¼ 1540 psi

b. ex ¼ �5� 10�5yþ 1:67� 10�4, ey ¼ �1:67� 10�4xþ 5� 10�5

gxy ¼ �5� 10�5x� 4:17� 10�5yþ 2:08� 10�4

sx ¼ 928 psi, sy ¼ �8290 psi, txy ¼ 632 psi

8.6 ex ¼ 2:54� 10�3

ey ¼ �7:62� 10�3

gxy ¼ �7:04� 10�3

8.7 N1 ¼ 1� x

20
þ x2

1800
, N2 ¼

�xþ y

60
þ x2 þ y2

1800
� xy

900

N3 ¼
�y

60
þ y2

1800
, N4 ¼

xy

900
� y2

900
, N5 ¼

y

15
� xy

900
, etc.

Chapter 9

9.1 a. ½K � ¼ 25:132� 106

2
666666664

5 1 0 �1 1 0

1 4 �2 �1 �2 �3

0 �2 8 0 4 2

�1 �1 0 1 1 0

1 �2 4 1 4 1

0 �3 2 0 1 3

3
777777775

lb=in:
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b. ½K� ¼ 50:265� 106

2
666666664

2:75 0 �2:25 0:5 0:25 �0:5

0 1 1 �1 �1 0

�2:25 1 5:75 �2:5 0:25 1:5

0:5 �1 �2:5 4 0:5 �3

0:25 �1 0:25 0:5 1:75 0:5

�0:5 0 1:5 �3 0:5 3

3
777777775

lb=in:

9.2 fs2r ¼
2pbp0h

6
, fs3r ¼

2pbp0h

3

9.3 fb1r ¼ fb2r ¼ fb3r ¼ 0:382 lb

fb1z ¼ fb2z ¼ fb3z ¼ �6:32 lb

9.4 a. sr ¼ 8000 psi, sz ¼ 0, sy ¼ 8000 psi, trz ¼ 1200 psi

b. sr ¼ 5830 psi, sz ¼ �3770 psi, sy ¼ 3090 psi, trz ¼ 400 psi

c. sr ¼ 9600 psi; sz ¼ 2400 psi; sy ¼ 12;000 psi; trz ¼ 1800 psi

9.6 a. ½k� ¼ 7:037

2
666666664

3125 625 0 �625 625 0

2500 �1250 �625 �1250 �1875

5000 0 2500 1250

625 625 0

2500 625

1875

3
777777775

kN=mm

Symmetry

b. ½k� ¼ 11:73

2
666666664

2475 0 �2025 450 225 �450

900 900 �900 �900 0

5175 �2250 225 1350

3600 450 �2700

1575 450

2700

3
777777775

kN=mm

Symmetry

c. ½k�¼

1:255� 108 2:513� 107 �5:341� 107 �1:257� 107 6:283� 106 �1:257� 107

2:513� 107 6:597� 107 �1:257� 107 �9:425� 106 �5:027� 107 �5:655� 107

�5:341� 107 �1:257� 107 2:231� 108 �5:027� 107 5:655� 107 6:283� 107

�1:257� 107 �9:425� 106 �5:027� 107 6:597� 107 2:513� 107 �5:655� 107

6:283� 106 �5:027� 107 5:655� 107 2:513� 107 8:796� 107 2:513� 107

�1:257� 107 �5:655� 107 6:283� 107 �5:655� 107 2:513� 107 1:131� 108

2
6666664

3
7777775

lb=in:

c. ½k� ¼

8:577� 108 1:759� 108 �3:738� 108 �8:796� 107 4:398� 107 �8:796� 107

1:759� 108 4:618� 108 �8:796� 107 �6:597� 107 �3:519� 108 �3:958� 108

�3:738� 108 �8:796� 107 1:561� 109 �3:519� 108 3:958� 108 4:398� 108

�8:796� 107 �6:597� 107 �3:519� 108 4:618� 108 1:759� 108 �3:958� 108

4:398� 107 �3:519� 108 3:958� 108 1:759� 108 6:158� 108 1:759� 108

�8:796� 107 �3:958� 108 4:398� 108 �3:958� 108 1:759� 108 7:917� 108

2
6666664

3
7777775
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9.7 a. sr ¼ �84 MPa, sz ¼ �84 MPa, sy ¼ 252 MPa, trz ¼ �101 MPa

b. sr ¼ �103 MPa, sz ¼ �103 MPa, sy ¼ 112 MPa, trz ¼ �73 MPa

c. sr ¼ �2870 MPa, sz ¼ �2450 MPa, sy ¼ 3570 MPa, trz ¼ �1890 MPa

9.12 s� ¼ sr

9.14 Using 0.5 in. radii in corners, s1 ¼ 7590 psi at inside corner

9.17 svM ¼ 68 ksi at fillet

9.18 s1 ¼ 4621 psi outer edge of hole, along axis of symmetry

9.19 s� ¼ 159 MPa, ur ¼ 23:9 mm

9.20 s1 ¼ 52:5 MPa, u ¼ 0:0782 m at top and bottom center of plates

9.25 svM ¼ 4838 psi for punch with groove

Chapter 10

10.2 a. s ¼ �0:2 b. N1 ¼ 0:6; N2 ¼ 0:4 (for both of the 3-noded bars)

10.3 a. s ¼ 0; b. N1 ¼ 0:5; N2 ¼ 0:5

10.4 N1 ¼ �ð2=3Þs3 þ ð2=3Þs2 þ s=6� 1=6; N2 ¼ ð4=3Þs3 � ð2=3Þs2 � ð4=3Þsþ 2=3

N3 ¼ �ð4=3Þs3 � ð2=3Þs2 þ ð4=3Þsþ 2=3; N4 ¼ ð2=3Þs3 þ ð2=3Þs2 � s=6� 1=6

10.5 a. s ¼ �0:4 b. N1 ¼ 0:28; N2 ¼ �0:12; N3 ¼ 0:84

10.6 a. s ¼ 0:5 b. N1 ¼ 0:125; N2 ¼ 0:375; N3 ¼ 0:75

10.8 u2 ¼ 4:859� 10�4 m (right end), u3 ¼ 2:793� 10�4 m (center)

10.13 fs3s ¼ 0; fs3t ¼ pLt=2; fs4s ¼ 0; fs4t ¼ pLt=2

10.14 a. fs3t ¼ 500 lb, fs4t ¼ 500 lb, b. fs1t ¼ 83:33 lb, fs4t ¼ 41:67 lb

10.15 a. 1.918, b. 0.667, c. 0.400, d. 2.87, f. 0

Chapter 11

11.1 a. ½B� ¼ 1

8

2
666666664

0 0 0 0 0 0 4 0 0 �4 0 0

0 0 0 0 4 0 0 0 0 0 �4 0

0 0 4 0 0 0 0 0 0 0 0 �4

0 0 0 4 0 0 0 4 0 �4 �4 0

0 4 0 0 0 4 0 0 0 0 �4 �4

4 0 0 0 0 0 0 0 4 �4 0 �4

3
777777775

b. ½B� ¼

�0:5 0 0 0 0 0 0:5 0 0 0 0 0
0 �0:75 0 0 0 0 0 0:25 0 0 0:5 0
0 0 �0:75 0 0 0:5 0 0 0:25 0 0 0
�0:75 �0:5 0 0 0 0 0:25 0:5 0 0:5 0 0

0 �0:75 �0:75 0 0:5 0 0 0:25 0:25 0 0 0:5
�0:75 0 �0:5 0:5 0 0 0:25 0 0:5 0 0 0

2
6666664

3
7777775
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11.2 a.

11.3 a. sx ¼ 77:9 ksi, sy ¼ 8:65 ksi, sz ¼ �49:0 ksi

txy ¼ 11:5 ksi, tyz ¼ �23:1 ksi, tzx ¼ 5:77 ksi

11.3 b. sx ¼ 8:654 ksi, sy ¼ 8:654 ksi, sz ¼ 20:19 ksi;

txy ¼ �34:62 ksi, tyz ¼ 28:85 ksi, tzx ¼ �23:08 ksi

11.6 a. ½B� ¼ 1

18,750

�

2
666666664

�625 0 0 0 0 0 0 0 0 625 0 0

0 �375 0 0 750 0 0 0 0 0 �375 0

0 0 �375 0 0 0 0 0 750 0 0 �375

�375 �625 0 750 0 0 0 0 0 �375 625 0

0 �375 �375 0 0 750 0 750 0 0 �375 �375

�375 0 �625 0 0 0 750 0 0 �375 0 625

3
777777775

b. ½B� ¼

�0:125 0 0 0 0 0 0 0 0 0:125 0 0
0 �0:05 0 0 0:2 0 0 0 0 0 �0:15 0
0 0 �0:05 0 0 0 0 0 0:2 0 0 �0:15
�0:05 �0:125 0 0:2 0 0 0 0 0 �0:15 0:125 0

0 �0:05 �0:05 0 0 0:2 0 0:2 0 0 �0:15 �0:15
�0:05 0 �0:125 0 0 0 0:2 0 0 �0:15 0 0:125

2
6666664

3
7777775

11.7 a. sx ¼ 72:7 MPa, sy ¼ 169:6 MPa, sz ¼ 72:7 MPa

txy ¼ 59:2 MPa, tyz ¼ 32:3 MPa, tzx ¼ 91:5 MPa

11.8 u ¼ a1 þ a2xþ a3yþ a4zþ a5xyþ a6xzþ a7yzþ a8x2 þ a9y2 þ a10z2

11.9 Loads must be in the y-z plane

11.10 N2 ¼
ð1� sÞð1� tÞð1� z 0Þ

8
, N3 ¼

ð1� sÞð1þ tÞð1� z 0Þ
8

,

N4 ¼
ð1� sÞð1þ tÞð1þ z 0Þ

8
,

½k� ¼

1 2 3 4 5 6 7 8 9 10 11 12
1 3:846 0 0 0 0 0 0 0 3:846 �3:846 0 �3:846
2 0 3:846 0 0 0 0 0 0 3:846 0 �3:846 �3:846
3 0 0 13:462 0 0 0 0 0 0 0 0 13:462
4 0 0 0 3:846 0 0 0 3:846 0 �3:846 �3:846 0
5 0 0 5:769 0 13:462 0 0 0 0 0 13:462 �5:769
6 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 5:769 0 5:769 0 13:462 0 0 13:462 �5:769 �5:769
8 0 0 0 3:846 0 0 0 3:846 0 �3:846 �3:846 0
9 3:846 3:846 0 0 0 0 0 0 7:692 �3:846 �3:846 �7:692

10 �3:846 0 �5:769 �3:846 �5:769 0 13:462 �3:846 �3:846 21:154 9:615 9:615
11 0 �3:846 �5:769 �3:846 13:462 0 0 �3:846 �3:846 3:846 21:154 9:615
12 �3:846 �3:846 13:462 0 0 0 0 0 �7:692 3:846 3:846 21:154

2
666666666666666666664

3
777777777777777777775

�106 lb

in:
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N5 ¼
ð1þ sÞð1� tÞð1þ z 0Þ

8
, N6 ¼

ð1þ sÞð1� tÞð1� z 0Þ
8

,

N7 ¼
ð1þ sÞð1þ tÞð1� z 0Þ

8
, N8 ¼

ð1þ sÞð1þ tÞð1þ z 0Þ
8

11.11 N1 ¼
ð1� sÞð1� tÞð1þ z 0Þð�s� tþ z 0 � 2Þ

8
,

N2 ¼
ð1� sÞð1� tÞð1� z 0Þð�s� t� z 0 � 2Þ

8

11.13 w ¼ �0:231 mm under the load, w ¼ �0:187 mm at front corner

11.14 dmax ¼ �0:56 mm at free end

11.18 Largest svM ¼ 758 MPa at elbow, dmax ¼ 4.13 mm at free end

11.20 Largest svM ¼ 219 MPa at elbow, dmax ¼ 18.8 mm at free end

11.21 Largest svM ¼ 5250 psi

11.22 Largest svM ¼ 24:53 ksi

11.23 Largest svM ¼ 1682 psi on lower bracket next to upper cylindrical part of bracket

11.25 Largest svM ¼ 534 MPa due to 1200 N

11.27 Largest svM ¼ 186 MPa at inner semi-circular face

Chapter 12

12.1 Using an 8� 8 mesh, �max ¼ 0:0785 in:; svM ¼ 7046 psi (These values match the analytical

solution.)

12.2 dmax ¼ 1:087 in:; smax ¼ 26;540 psi

12.3 dmax ¼ �0:0468 in:; smax ¼ 10;150 psi

12.4 �max ¼ 0:00308 in:

12.5 �max ¼ �0:341 in: (Analytical solution, PL3=48EI ¼� 0:341 in:Þ

12.6 �max ¼ 0:176 in: (1/4 in. thick plate)

12.9 �max ¼ 0:214 mm; s1 ¼ 40 MPa

12.10 �max ¼ 68:9 mm (too large for small deflection assumption)

12.13 �max ¼ �0:022 in: (top center of plate), svM ¼ 976 psi

12.15 �max ¼ 0:00565 in: at left end of plate, svM ¼ 1351 psi

Chapter 13

13.1 t2 ¼ 166:7 �C, t3 ¼ 233:3 �C

13.2 t2 ¼ 150 �F, t3 ¼ 100 �F, t4 ¼ 50 �F

13.3 t2 ¼ 875 �F, t3 ¼ 1250 �F, F1 ¼ �180 Btu/h

13.4 t1 ¼ 151 �F, t2 ¼ 148 �F, t3 ¼ 140 �F, t4 ¼ 125 �F
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13.5 t2 ¼ 117 �C, t3 ¼ 133 �C, t4 ¼ 150 �C, t5 ¼ 167 �C

13.6 t2 ¼ 421 �C, t3 ¼ 121 �C, qð3Þ ¼ 3975 W/m2

13.7 t2 ¼ 418:2 �C, t3 ¼ 527:3 �C

13.8 t1 ¼ 230 �C; t2 ¼ 110 �C; t3 ¼ 50 �C; qð3Þ ¼ 6000 W=m2

13.9 t1 ¼ 16:3 �C; t2 ¼ 16:1 �C; t3 ¼ 1:4 �C; t4 ¼ 1:2 �C

13.10 t1 ¼ 18:9 �C; t2 ¼ 17:5 �C; t3 ¼ �8:32 �C; t4 ¼ �9:45 �C; qð1Þ ¼ 5:46 W=m2

13.12 185 �C at right end, qmax ¼ 439 W

13.13 t1 ¼ 63:1 �F; t2 ¼ 61:8 �F; t3 ¼ 0:884 �F; t4 ¼ 0:731 �F

13.16 t2 ¼ 87:95 �C; t3 ¼ 86:72 �C; t4 ¼ 86:28 �C

13.17 ½k� ¼ AKxx

L

�
1 �1

�1 1

�

13.18 ½kh�left ¼ hA

�
1 0

0 0

�
; f fhgleft ¼ hT1A

�
1

0

�

13.19 ½k� ¼

2
64

39:57 7:076 �5:417

35:82 �1:667

7:083

3
75, f f g ¼

8><
>:

2936

2936

50

9>=
>; Btu=h

13.20 f f g ¼

8><
>:

1291

27:3

1254

9>=
>; W

13.23 t4 ¼ 75 �F, t5 ¼ 25 �F

13.37 12 �C at 2.5 cm from top, 25 �C 1.25 cm from top, �qmax ¼ 1416 W; �qmin ¼ �1083 W

13.44 T¼ 323 K located where q� is applied

13.48 t2 ¼ 64:7 �F; t3 ¼ 77:7 �F; t4 ¼ 89:7 �F; t5 ¼ 100:3 �F

Chapter 14

14.1 p2 ¼ 4:545 m, p3 ¼ 1:818 m, v
ð1Þ
x ¼ 10:91 m/s, Q

ð1Þ
f ¼ 21:82 m3/s

14.2 p2 ¼ �15 m, p3 ¼ �40 m, p4 ¼ �65 m, v
ð1Þ
x ¼ 25 m/s, Q1 ¼ 50 m3/s

14.3 p2 ¼ 8:182 in., p3 ¼ 5:455 in., v
ð1Þ
x ¼ 0:182 in./s, v

ð2Þ
x ¼ 0:273 in./s,

v
ð3Þ
x ¼ 0:545 in./s, Q

ð1Þ
f ¼ 1:091 in3/s

14.4 p2 ¼ �3 cm, p3 ¼ �8 cm, v
ð1Þ
x ¼ 1:2 cm/s, v

ð2Þ
x ¼ 2 cm/s,

Q1 ¼ Q2 ¼ 6 cm3/s

14.6 vð1Þ ¼ 2:0 in./s, vð2Þ ¼ 4:0 in./s, Qð1Þ ¼ Qð2Þ ¼ 4 in3/s

14.7 a. p1 ¼ 0:897 N=m2; p2 ¼ 0:691 N=m2; p3 ¼ 0:515 N=m2; q1 ¼ 0:897 m3=s;

q2 ¼ 0:103 m3=s; q3 ¼ 0:059 m3=s; q4 ¼ 0:044 m3=s; q5 ¼ 0:103 m3=s

b. p1 ¼ 8971 psi; p2 ¼ 6912 psi; p3 ¼ 5147 psi; q1 ¼ 897:1 in:3=s; q2 ¼ 102:9 in:3=s;

q3 ¼ 58:8 in:3=s; q4 ¼ 44:1 in:3=s; q5 ¼ 102:9 in:3=s
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14.8 f fQg ¼

8><
>:

54:76

28:57

16:67

9>=
>; m3=s

14.9 f1 ¼ f3 ¼ 5 in.3/s, f2 ¼ 0

14.10 p2 ¼ p3 ¼ 12 m, p5 ¼ 11 m

14.17 I1 ¼ 0:161 amps; I2 ¼ 0:027 amps; I3¼ �0:487 amps; branch amps: IAD¼ 0:134 amps;

IBC¼ 0:513 amps

14.18 I1¼ �0:853 amps; I2¼ �0:458 amps; I3¼ �0:158 amps; IAB¼�0:695 amps;

IBC ¼ �0:30 amps

14.19 Original resistors too small, standard resistor sizes, R1 ¼ 715 ohms; R2 ¼ 806 ohms make

I1 ¼ 0:024 amps; I2 ¼ 0:011 amps and branch amps: IAD ¼ 0:013 amps; IBC ¼ 0:011 amps

14.20 Original resistors too small, standard resistor sizes, R1 ¼ 2000 ohms; R2 ¼ 1270 ohms; make

I1 ¼ 0:015 amps; I2 ¼ 0:00945 amps: So diode amps are less than 0.015 amps.

Chapter 15

15.1 u2 ¼ 0:021 in., u3 ¼ 0:042 in., sx ¼ 0

15.2 u2 ¼ 0, sx ¼ 49:14 MPa

15.3 u1 ¼ v1 ¼ �0:0175 in., sð1Þ ¼ 4350 psi (T)

sð2Þ ¼ �6150 psi (C), sð3Þ ¼ 4350 psi (T)

15.4 u1 ¼ �0:0291 in., v1 ¼ �0:0095 in.

sð1Þ ¼ �1370 psi (C), sð2Þ ¼ 2375 psi (T), sð3Þ ¼ �1370 psi (C)

15.5 u2 ¼ 1:44� 10�4 m, sð1Þ ¼ �20:2 MPa (C), sð2Þ ¼ sð3Þ ¼ �10:1 MPa (C)

15.6 u1 ¼ 0, v1 ¼ 6:0� 10�4 m, sð1Þ ¼ sð3Þ ¼ �10:5 MPa (C)

sð2Þ ¼ 18:2 MPa (T)

15.7 u1 ¼ 0, v1 ¼ �3:6� 10�4 m, sð1Þ ¼ sð2Þ ¼ 0

15.8 u2 ¼ 0:0173 in., sst ¼ 840 psi (T), sbr ¼ 1680 psi (C)

15.9 10 �C increase in elements 1 and 3 also

15.11 Yes, u ¼ 406:25� 10�6 L, sst ¼ 2437 psi (T), sa1 ¼ �2437 psi (C)

15.12 a. 3:673� 10�4 in. b. sbr ¼ �11,440 psi, smg ¼ �7625 psi

15.13 fT1x ¼ �4464 lb, fT1y ¼ �8929 lb, fT2x ¼ 4464 lb

fT2y ¼ �8929 lb, fT3x ¼ 0, fT3y ¼ 17;857 lb

15.14 fT1x ¼ �43:125 kN, fT1y ¼ 0, fT2x ¼ 43:125 kN, fT2y ¼ �86:250 kN

fT3x ¼ 0, fT3y ¼ 86:250 kN
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15.15 fT1x ¼ �60:0 kip, fT1y ¼ �90 kip, fT2x ¼ 60 kip, fT2y ¼ 0,

fT3x ¼ 0, fT3y ¼ 90 kip

15.16 fT1x ¼ 134 kN, fT1y ¼ 134 kN, fT2x ¼ �134 kN, fT2y ¼ 0

fT3x ¼ 0, fT3y ¼ �134 kN

15.17 sx ¼ sy ¼ �8929 psi (C), txy ¼ 0

15.18 sx ¼ 67:2 MPa, sy ¼ 67:2 MPa, txy ¼ 0

15.19 f fTg ¼
3AEa0T

2

�1

1

� �

15.20
AEa

2

�t1 � t2

t1 þ t2

� �

15.21 f fTg ¼
2prAEaðTÞ½B�T

1� 2n

1

1

1

0

8>>><
>>>:

9>>>=
>>>;

15.22 u2 ¼ 0:8� 10�3 in., u3 ¼ 0, v3 ¼ 0:8� 10�3 in.

u4 ¼ v4 ¼ 0:8� 10�3 in.; stresses are zero

15.23 u2 ¼ 0:989� 10�3 in., u3 ¼ �0:756� 10�3 in.,

v3 ¼ 0:989� 10�3 in., u4 ¼ 0:132� 10�2 in.,

v4 ¼ 0:2045� 10�2 in., s
ð1Þ
1 ¼ 17 ksi, s

ð2Þ
2 ¼ �17 ksi

Chapter 16

16.1 ½M� ¼ rAL

6

2
64

2 1 0

1 4 1

0 1 2

3
75

16.2 a. ½M� ¼ rAL

2

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 1

2
6664

3
7775

b. ½M� ¼ rAL

6

2 1 0 0

1 4 1 0

0 1 4 1

0 0 1 2

2
6664

3
7775

16.3 o1 ¼ 0:806
ffiffiffi
u
p

, o2 ¼ 2:81
ffiffiffi
m
p

16.4 o1 ¼ 5:368� 103 rad/s, o2 ¼ 17:556� 103 rad/s
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16.5 a. t ðsÞ di ðftÞ _di ðft=sÞ €di ðft=s2Þ

0 0 0 25

0.03 0.01125 0.71 22.09

0.06 0.04238 1.03 �0.715

0.09 0.07287 0.67 �22.87

0.12 0.08278 �0.35 �45.28

0.15 0.05194 �1.43 �26.94

16.6 a. t ðsÞ di ðftÞ _di ðft=sÞ €di ðft=s2Þ

0 0 0 10.00

0.02 0.0020 0.168 6.80

0.04 0.00672 0.256 1.968

0.06 0.01223 0.242 �3.338

0.08 0.01640 0.130 �7.84

0.10 0.01743 �0.053 �10.46

b. t ðsÞ di ðftÞ _di ðft=sÞ €di ðft=s2Þ F ðtÞ ðlbÞ

0.00 0.00000 0.000 10.000 20.0

0.02 0.00179 0.169 6.923 16.0

0.04 0.00625 0.263 2.248 12.0

0.06 0.0115 0.254 �2.945 8.0

0.08 0.0157 0.150 �7.458 4.0

0.10 0.0169 �0.0147 �10.251 0.0

16.7 Node t ðsÞ di ðin:Þ _di ðin:=sÞ €di ðin:=s2Þ

2 0 0 0 0

0.00025 2.6E-6 0.031 249.6

0.00050 3.4E-5 0.284 1768.9

0.00075 1.9E-4 1.085 4641.9

0.0010 6.36E-4 2.605 7519.3

3 0 0 0 0

0.00025 6.59E-5 0.791 6328.8

0.00050 4.99E-4 2.817 9881.2

0.00075 1.51E-3 5.265 9701.7

0.0010 3.10E-3 7.369 7128.3
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16.8 Using Newmark’s method with g ¼ 1
2, b ¼ 1

6

Node t ðsÞ di ðin:Þ _di ðin:=sÞ €di ðin:=s2Þ FðtÞ ðlbÞ

2 0 0 0 0 0

0.05 0.00172 0.103 4.131 0

0.10 0.01544 0.513 12.27 0

3 0 0 0 40.0 2000

0.05 0.0448 1.685 27.39 1800

0.10 0.1536 2.479 4.37 1600

16.11 a. o1 ¼
3:15

L2

EI

rA

� �1=2

, o2 ¼
16:24

L2

EI

rA

� �1=2

(2 element model),

b. o1 ¼
198:4

L2

EI

rA

� �1=2

(3 element model),

c. o1 ¼
9:8

L2

EI

rA

� �1=2

(2 element model), d. o ¼ 14:8

L2

EI

rA

� �1=2

(2 element model)

16.17 Node: 1 2 3 4 5 6

i t (s) Temperature ð�CÞ
0 0 200 200 200 200 200 200

1 8 0 159.0095 191.4441 198.2110 199.6110 199.8444

2 16 0 135.5852 178.1491 193.6620 198.2112 199.1445

3 24 0 120.2309 165.7003 187.3485 195.5379 197.5152

4 32 0 109.1993 154.9587 180.4038 191.7446 194.8115

5 40 0 100.7600 145.7784 173.4129 187.1268 191.1242

6 48 0 94.00311 137.8529 166.6182 181.9599 186.6590

7 56 0 88.39929 130.9034 160.1012 176.4598 181.6395

8 64 0 83.61745 124.7101 153.8759 170.7856 176.2620

9 72 0 79.43935 119.1075 147.9316 165.0508 170.6822

10 80 0 75.71603 113.9733 142.2502 159.3352 165.0171

16.18 Node

Time ðsÞ 1 2 3 (using consistent capacitance matrix)

Temperature ð�CÞ
0 25 25 25

0.1 85 18.53611 26.36189

0.2 85 29.61303 21.63526

0.3 85 36.18435 22.42717

0.4 85 40.72491 25.30428

0.5 85 44.27834 28.85201

0.6 85 47.29072 32.49614

0.7 85 49.95809 36.01157 ðcontinuedÞ

934 d Answers to Selected Problems

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.18 (continued )

Node

Time ðsÞ 1 2 3

Temperature ð�CÞ
0 25 25 25

0.8 85 52.37152 39.31761

0.9 85 54.57756 42.39278

1 85 56.60353 45.23933

1.1 85 58.46814 47.86852

1.2 85 60.1859 50.29457

1.3 85 61.76908 52.53218

1.4 85 63.22852 54.59557

1.5 85 64.574 56.49814

1.6 85 65.81448 58.25235

1.7 85 66.95818 59.86974

1.8 85 68.01265 61.36096

1.9 85 68.98485 62.73586

2 85 69.88121 64.0035

2.1 85 70.70765 65.17226

2.2 85 71.46961 66.24984

2.3 85 72.17214 67.24336

2.4 85 72.81986 68.15938

2.5 85 73.41705 69.00393

2.6 85 73.96766 69.78261

2.7 85 74.47531 70.50053

2.8 85 74.94336 71.16246

2.9 85 75.3749 71.77274

3 85 75.77277 72.33542

Appendix A

A1. a.
3 0

�3 12

� �
b. Nonsense c. Nonsense

d.

8><
>:

11

9

11

9>=
>; e. Nonsense f.

10 7 6

3 �1 7

� �

A2.

"
1 0
1
4

1
4

#

A3.
1

17

2
64

12 �3 �8

�3 5 2

�8 2 11

3
75
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A4. Nonsense

A5.
1
2 0
1
8

1
8

" #

A6. Same as A3

A8.
cos y �sin y

sin y cos y

� �

A10.
E

L

1 �1

�1 1

� �

Appendix B

B1. x1 ¼ 3:15, x2 ¼ 0:62

B2. x1 ¼ 3:15, x2 ¼ 0:62

B3. x1 ¼ 2:5, x2 ¼ �1, x3 ¼ 0:5

B4. x1 ¼ 3, x2 ¼ �1, x3 ¼ �2

B5. a.
x1

x2

� �
¼ 2 �1

1 �1

� �
y1

y2

� �
b.

z1

z2

� �
¼ �3 2

5 �3

� �
y1

y2

� �

B6. x1 ¼ 0, x2 ¼ 1, x3 ¼ 2, x4 ¼ 2, x5 ¼ 0

B7. x1 ¼ 3:15, x2 ¼ 0:62

B8. a. Unique b. Nonexistent c. Unique d. Nonunique

Appendix D

D1. a. f1y ¼ f2y ¼ �5 kip, m1 ¼ �m2 ¼ �25 k-ft

b. f1y ¼ f2y ¼ �5 kip, m1 ¼ �m2 ¼ �18:75 k-ft

c. f1y ¼ f2y ¼ �15 kip, m1 ¼ �m2 ¼ �75 k-ft

d. f1y ¼ �18:75 kip, f2y ¼ �6:25 kip, m1 ¼ �58:3 k-ft, m2 ¼ 33:3 k-ft

e. f1y ¼ �6 kip, f2y ¼ �14 kip, m1 ¼ �26:67 k-ft, m2 ¼ 40 k-ft

f. f1y ¼ �4:0 kN, f2y ¼ �0:99 kN, m1 ¼ 5:10 kN �m, m2 ¼ �2:04 kN �m
g. f1y ¼ f2y ¼ �6 kN, m1 ¼ �m2 ¼ �7:5 kN �m
h. f1y ¼ f2y ¼ �10 kN, m1 ¼ �m2 ¼ �6:67 kN �m
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INDEXd

A

Admissible variation of displacement functions, 59
Air, heat transfer of, 643–646
Amplitude, vibration, 768
Approximation functions, 79–82

bar elements, 79–82
guidelines, 80–81

Arbitrary orientation, 85–89, 235–237, 277–290
bar elements, 85–89
beam elements, 235–237, 277–290
bending in, 277–281
three-dimensional space, 277–290
two-dimensional space (x–y plane), 85–89

Aspect ratio (AR), 385–388
Axial symmetry, 109
Axially loaded bars, analysis of, 124–125
Axis of symmetry, 453
Axisymmetric elements, 9–10, 452–485, 733–734,

801–802
applications of, 469–474
axis of symmetry, 453
body forces, distribution of, 349–351, 460–461
cylinders, 463–469
cylindrical coordinates for, 453–454
defined, 452–453
discretization of, 463–464
displacement functions for, 456–458
mass matrices for, 767–769, 791–796, 798–802
pressure vessel analysis, 463–469
representation of, 9–10
sti¤ness matrix for, 459–462, 464–469
sti¤ness method for, 452–463
strain in, 453–455
strain/displacement relationships, 455, 458–459
stress/strain relationships, 455, 458–459
stresses in, 453–454
structural dynamic analysis, 801–802

surface forces, distribution of, 351–354, 461–462
thermal stress analysis of, 733–734
time-dependent analysis, 801–802
von Mises stress and, 470–472

B

Banded matrix, 858–860
Bandwidth reduction, 859–860
Bar elements, 73–91, 118–140, 487–492, 515–521,

766–770, 782–791. See also Truss equations
approximation functions, 79–82
arbitrary orientation in x–y plane, 85–89
axially loaded, 124–125
boundary conditions, 770
displacement functions for, 75–76, 488–489,

766–767
equation derivation, 133–136, 766–770
Galerkin’s method for, 133–136, 140
global (total) equations, 770
global sti¤ness matrix for, 85–89
isoparametric formulation, 487–492
linear strain, 515–521
local coordinates, 73–79
longitudinal wave velocity, 787
mass matrices for, 767–769
natural frequency (w) of, 782–786
one-dimensional, 118–140, 782–791
potential energy method for, 118–129
quadratic isoparametric, 515–521
shape functions for, 488, 492, 515–521
sti¤ness matrix for, 76–77, 490–492, 767–769
sti¤ness method, 73–79, 487–492
strain/displacement relationships, 76, 767
stress computations in x–y plane, 90–91

stress/strain relationships, 76, 767
structural dynamic analysis of, 782–791
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surface traction loaded, 126–129
time-dependent analysis of, 766–770, 786–791
transformation (rotation) matrix, 84
two-dimensional, 82–85
vector displacement (transformation), 82–85
weighted residual methods for, 133–140

Beam, defined, 167
Beam elements, 167–177, 211–223, 235–239,

277–290, 791–798
arbitrarily oriented, 235–237, 277–290
beam equations for, 167–177, 211–223
bending deformation and, 168–174, 277–281
Euler-Bernoulli beam theory, 168–174
frame equations for, 235–239
Galerkin’s method for, 221–223
mass matrices for, 791–796
natural frequency (w), 791–798
sti¤ness matrix for, 167–179, 235–239, 277–290
structural dynamic analysis of, 791–798
three-dimensional space, 277–290
time-dependent analysis of, 791–798
Timoshenko beam theory, 174–177
transformation matrix for, 236–237, 280–281
transverse shear deformation and, 174–177
two-dimensional, 235–239

Beam equations, 166–234
beam assemblage, 177–211
beam elements, 167–177, 211–223
bending deformation, 168–174
boundary conditions, 177–179
cantilever beams, 196–203
direct sti¤ness method, 179–191
distributed loading, 192–205
e¤ective global nodal forces, 198
equivalent nodal forces, 195–196
Euler-Bernoulli beam theory, 168–174
exact compared to finite element solution for,

205–211
fixed-end reactions, 192–193
fixed-fixed beam, 192, 203–205
Galerkin’s method for, 221–223
global equations for, 177–179
introduction to, 166–167
load replacements, 194–195
nodal displacements, 192–205
nodal hinges and, 211–218
potential energy method for, 218–221
sti¤ness matrix for, 167–179
Timoshenko beam theory, 174–177

transverse shear deformation and, 174–177
work-equivalence method, 193–194

Bending, 168–174, 277–281, 372–373, 576–577.
See also Plate bending elements

arbitrary orientation and, 277–281
beam equations for, 168–174
deformation, 168–174, 277–281, 372–373
frame equations for, 277–281
moments, 576–577
planar element analysis stress results, 372–373

Body forces, 349–351, 460–461, 491, 500, 541–542
axisymmetric elements, 460–461
isoparametric formulation, 491, 500
planar elements, 349–351
plane quadrilateral elements, 500
tetrahedral elements, 541–542
three-dimensional stress analysis, 541–542

Boundary conditions, 13–14, 37, 42–56, 112–118,
177–179, 345–346, 396, 612–613, 678–679, 683,
710–711, 770

bar elements, 770
beam elements, 177–179
boundary elements, 118
constant-strain triangular (CST) elements, 345–346
Dirichlet, 43, 710
electrostatic problems, 710–711
finite element method use of, 13–14, 612–613, 683
fluid flow problems, 678–679, 683
heat transfer problems, 612–613
homogeneous, 42, 43–44
inclined supports, 112–118
infinite medium of, 396
modeling and, 396
natural, 43
Neumann, 43, 710–711
nodal displacements and, 43–46
nonhomogeneous, 42, 44–76
penalty method, 54–56
primary (essential), 43
skewed supports, 112–118
springs, 37, 42–56
sti¤ness method use of, 37, 42–56
structural dynamic analysis and, 770
transformation matrix for, 112–118
trusses, 112–118

C

Cantilever beams, analysis of, 196–203
Cartesian coordinates, 535–536
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Castigliano’s theorem, 12
Central di¤erence method, 770–776
Centrifugal body forces, 350
Circular (natural) frequency (w), 765
Coarse-mesh generation, 334–335
Coe‰cient matrix, 849, 858–863
Coe‰cient of thermal expansion (a), 729
Cofactor method, 837–839
Collocation method, 13, 138
Column matrix { }, 4–5, 829–830
Compatibility equations, elasticity theory and,

870–871
Compatibility of modeling results, 398–402
Compatibility requirement, 38–39
Compatible displacements, 878
Compatible function, truss equations, 80
Complete pivoting, 856
Computer programs, 6–7, 25–26, 141–144, 411–417,

550–553, 584–588, 646–650, 697–698, 713–716,
752–753, 810–818, 863–865

damping problems, 765–766, 814–816
electrostatic problems, 713–716
finite element method, role of in, 6–7
fluid flow problems, 697–698
general-purpose, 25
heat transfer problems, 646–650
hexahedral elements, 550–553
modeling, 411–417
natural frequency (w) problems, 810–816
plane stress/strain problems, 411–417
plate bending elements, solutions for, 584–588
simultaneous linear equation solutions using,

863–865
special-purpose, 25–26
step-by-step solutions using, 141–144, 411–417
structural dynamic analysis using, 810–818
thermal stress analysis using, 752–753
three-dimensional stress analysis using, 550–553
time-dependent analysis using, 810–818
truss equation solutions using, 141–144

Concentrated loadings, 249–255, 395–396
frame equations for, 249–255
infinite stress and, 395–396
modeling and, 395–396

Condition of compatibility, 871
Conduction, 601–604. See also Heat transfer
Conduction matrix, 608–612, 628–629

one-dimensional heat transfer, 607–626, 641
two-dimensional heat transfer, 626–635

Conforming function, truss equations, 80
Consistent-mass matrix, 768–769
Constant-strain triangular (CST) elements, 329,

334–356, 370–373, 394–397, 439, 445–447,
800–801

body forces, treatment of, 349–351
boundary conditions, 345–346
connecting (mixing) di¤erent kinds of elements

with, 396–397
defined, 329
discretization, 334–335
displacement functions, 335–340
global equations for, 345–346
LST elements, comparison of, 439, 445–447
mass matrices for, 800–801
modeling, 394–397, 446–447
nodal displacements, 335, 340–342, 347
rectangular plane (Q4) elements compared to,

370–373
sti¤ness matrix for, 342–345, 354–356
sti¤ness method for, 334–349
strain/displacement relationships, 340–342
stress/strain relationships, 340–342
structural dynamic analysis of, 800–801
surface forces, treatment of, 351–354
time-dependent analysis of, 800–801
transition triangles, 394–395

Constitutive (stress–strain) matrix, 333–334,
873–874

Continuity requirement, 38–39
Convection, 604–607

heat conduction equations, 604–605
forced, 604, 607
natural (free), 604, 606–607

Convergence of modeling solutions, 402–405
Coordinates, 73–79, 82–89, 453–454, 487,

535–536
arbitrary orientation, 85–89
axisymmetric elements, 453–454
bar elements, 73–79, 82–89
Cartesian, 535–536
cylindrical, 453–454
global (reference), 82–89
isoparametric formulation, 487
local, 73–79, 82–85
natural (intrinsic), 487
three-dimensional stress analysis, 535–536
transformation mapping, 487
vector transformation (displacement), 82–85
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Coulomb’s law, 702–704
Cramer’s rule, 847–848
Cubic elements, 9–10
Cubic quadrilateral rectangles (Q12), 524–525
Current flow, 698–702
Curvature (k) relationships, 580–581
Cylinders, see Pressure vessels
Cylindrical coordinates, 453–454

D

D’Alembert’s principle, 879–880
Damping, 765–766, 814–816
Deformation 168–177, 260–261, 277–281, 370–373

beam equations for, 168–177
bending, 168–174, 277–281
CST and Q4 analysis results, 370–373
displacement, 371–372
frame equations for
grid equations for, 260–261
stress results, 372–373
torsional, 260–261
transverse shear, 174–177

Degrees of freedom, 14, 15–16, 33, 342, 407
condensation (static) of, 407
finite element method and, 14, 15–16
finite element solution for, 14
modeling and, 407
nodal displacements as, 33, 342
primary unknown, 14
sti¤ness matrix and, 33, 407
stress/strain relationships and, 342
three-dimensional components, 15–16
unknown, 14, 342

Determinant, 830
Dielectric constants, 705–706
Di¤erential equations, 601–604, 675–679, 867–869

equilibrium, 867–869
fluid flow, 675–679
heat transfer, 601–604

Di¤erentiation of a matrix, 835–836
Direct equilibrium method, 11. See also Direct

sti¤ness method
Direct integration, 770–782, 804–806
Direct sti¤ness method, 3, 11, 13, 31, 40–42,

179–191
beam analysis using, 179–191
displacement method and, 31
finite-element method use of, 13
historical use of, 3

one-dimensional adaptability, 11
superposition and, 40–42
total system sti¤ness matrix derived from, 38–42

Dirichlet boundary condition, 43, 710
Discontinuities, natural subdivisions at, 388–391
Discretization, 1–2, 8–10, 334–335, 388–391,

463–464
axisymmetric elements, 463–464
coarse-mesh generation, 334–335
discontinuities and, 388–391
element types, selection of, 8–10
finite element method using, 1–2, 8–10
modeling process, 1–2, 388–391
natural subdivisions for, 388–391
triangular elements, 334–335

Displacement functions, 11, 34–36, 59–60, 75–76,
335–340, 368–369, 438–440, 444, 456–458,
488–489, 495–496, 538–540, 578–580, 766–767.
See also Nodal displacements

admissible variation of, 59–50
axisymmetric elements, 456–458
bar elements, 75–76, 488–489, 766–767
constant-strain triangular (CST) elements,

335–340
convergence of solutions, 402–405
finite element method, 11
interpolation, 36
isoparametric formulation, 488–489, 495–496
linear-strain triangular (LST) elements,

438–440, 444
plane quadrilateral elements, 495–496
plate bending elements, 578–580
potential energy method, 59–60
rectangular plane (Q4) elements, 368–369
shape, 35–36, 444, 457, 488, 495–496
spring elements, 34–36, 59–60
stationary values of, 59
sti¤ness method use of, 34–36
structural dynamic analysis and, 766–767
tetrahedral elements, 538–540
variation of, 59–60

Displacement method, see Sti¤ness method
Displacement results, 371–372, 402–405

CST and Q4 analysis comparison, 371–372
modeling convergence and, 402–405
patch test for, 403–405

Distributed loading, 192–205, 245–249
beam equations for, 192–205
cantilever beams, 196–203
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e¤ective global nodal forces, 198
equivalent nodal forces, 195–196
fixed-end reactions, 192–193
fixed-fixed beams, 192, 203–205
frame equations for, 245–249
load replacements, 194–195
work-equivalence method, 193–194

E

E¤ective (equivalent) stress, 366
E¤ective global nodal forces, 198
Elasticity theory, 867–874

compatibility equations, 870–871
equilibrium, equations of, 867–869
kinematic di¤erential relationships, 869–871
modulus of (E), 871
shear strain/displacement relationships, 869–871
stress/strain relationships, 871–874

Electric field/potential relationships, 707–708
Electric fields, 706, 711
Electrical networks, current flow through, 698–702
Electrostatics, 702–716

boundary conditions, 710–711
computer program solutions for, 713–716
Coulomb’s law, 702–704
dielectric constants for, 705–706
electric field/potential relationships, 707–708
electric fields, 706, 711
finite element formulation of, 706–713
Gauss’s law, 704–705
global (total) equations for, 710
gradient/potential relationships, 707–708
nodal potentials, 707, 710
Poisson’s equation for, 705–706
potential function for, 706–707
sti¤ness matrix for, 708–710
two-dimensional elements, 706–713

Elements, 8–13, 32–38, 56–65, 73–91, 118–136,
334–356, 367–373, 390–397, 402–405, 437–451,
452–485, 545–533, 537–545, 572–598. See also

Beam elements; Constant-strain triangular (CST)
elements; Linear-strain triangular (LST) elements;
Rectangular quadrilateral elements,
approximation functions for, 79–82

axisymmetric, 9–10, 452–485
bars, 73–91, 118–136
boundary conditions, 37
boundary, 118
connecting (mixing) di¤erent kinds of, 396–397

constant-strain triangular (CST), 334–356,
370–373, 394–397, 439, 445–448

cubic, 9–10
degrees of freedom, 33
discretization and, 8–10
finite element procedure for, 8–10
global equations for, 37, 77
hexahedral, 545–553
linear, 9–10
linear-strain triangular (LST), 437–451
modeling and, 390–394, 396–397, 402–405
nodal displacements of, 32–36, 77–78, 403–405
patch test for, 403–405
plate bending, 572–598
potential energy method for, 12, 56–65, 118–129
quadratic, 9–10, 367–373
rectangular plane (Q4), 367–373
refinement methods for, 390–394
selection of types, 8–10, 34, 75
sizing for modeling, 390–394
spring constant (k), 33
springs, 32–38
sti¤ness matrix and equations for, 11–13, 36–37,

73–79
sti¤ness method for, 32–38
tetrahedral, 537–545
three-dimensional, 9–10
two-dimensional, 9–10, 82–92

Energy (work) methods, 12
Equilibrium, 398–402, 867–869

elastic theory and, 867–869
equations of, 867–869
modeling results, 398–402

Equivalent (e¤ective) stress, 366
Equivalent joint force replacement method,

249–255
Equivalent nodal forces, 195–196, 875–877
Euler-Bernoulli beam theory, 168–174
Exact solutions, 129–133, 205–211

beam equations, 205–211
finite element solution compared to, 129–133,

205–211
truss equations, 129–133

Extensional strain, 332–333
External work, potential energy method and, 57–58

F

Field problems, 56
Finite element, defined, 8
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Finite element method, 1–30, 607–635, 638–646,
680–696, 706–713. See also Modeling

advantages of, 23–25
analytical solutions, 1–2
applications of, 15–23
boundary conditions for, 13–14, 612–613,

710–711
computer programs for, 6–7, 25–26
conduction matrix for, 608–612, 628–629
degrees of freedom, 14, 15–16
direct equilibrium (sti¤ness) method, 3, 11, 13, 31,

40–42
direct sti¤ness method, 3, 13
discretization, 1–2, 8–10
displacement (sti¤ness) method, 7
displacement function, selection of, 11
electric field/potential relationships, 707–708
electrostatics, 706–713
element equations derived for, 11–12
element types, selection of, 8–10
fluid flow, 680–696
force (flexibility) method, 7
Galerkin’s method and, 12–13, 641–646
global (total) equations for, 13–14, 612–613,

683, 710
gradient/potential relationships, 680–681, 693,

707–708
heat flux/temperature gradient relations, 608, 627
heat transfer problems, 607–635, 638–646
history of, 2–4
mass transport and, 641–646
matrix notation, 4–6
nodal potentials, 683, 707, 710
one-dimensional elements, 607–626, 641–646,

680–692
potential function (f) for, 680, 692–693, 706–707
primary unknowns of, 14
procedure for, 7–14
sti¤ness matrix derivation, 11–13, 681–683, 693–

694, 708–710
sti¤ness (displacement) method, 7
strain/displacement relationships, 11, 14
stress/strain relationships, 11, 14
temperature functions for, 607–608, 626–627
temperature gradient for, 608, 627
three-dimensional elements, 638–640
two-dimensional elements, 626–635, 692–696,

706–712
variational method for, 607–626

velocity/gradient relationships, 676, 680–681, 693
weighted residuals, methods of, 12–13
work (energy) method, 12

Finite element solution, 129–133, 205–211
beam equations, 205–211
exact solution compared to, 129–133, 205–211
truss equations, 129–133

Fins, heat transfer in, 621–622, 806–810
Fixed-fixed beams, analysis of, 192, 203–205,

810–814
Flexibility (force) method, 7
Flowcharts, 141, 411, 646, 697, 773, 778
Fluids, 641–646, 674–698

air, 643–646
boundary conditions for, 678–679, 683
computer programs for, 697–698
di¤erential equations for, 675–679
finite element formulation for, 680–696
flow, 674–698
flowcharts for, 697
Galerkin’s method for, 641–646
global (total) equations for, 683
gradient/potential relationships, 680–681, 693
heat transfer of, 641–646
hydraulic gradient, 676
hydraulic networks, flow through, 688–692
introduction to, 674–675
mass transport of, 641–646
nodal potentials, 683
one-dimensional flow, 680–692
pipes, flow through, 685–688, 691–692
porous medium, flow through, 675–678, 694–696
potential function (f) for, 680, 692–693
pumps, flow through, 696
solid bodies, flow around, 678–679
sti¤ness matrix for, 681–683, 693–694
two-dimensional flow, 692–696
velocity/gradient relationships, 676, 680–681, 693

Force (flexibility) method, 7
Forced convection, 604, 607
Frame equations, 235–258, 277–296, 799–800

beam elements, 235–239, 277–290
concentrated loadings and, 249–255
distributed loadings and, 245–249
equivalent joint force replacement method,

249–255
inclined supports, 258
mass matrices for, 799–800
rigid plane frame analysis, 239–258
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skewed supports, 258
space frame analysis, 283–290
sti¤ness matrix for, 235–239, 277–290
structural dynamic analysis, 799–800
substructure analysis, 290–296
three-dimensional space, 277–290
time-dependent analysis, 799–800
transformation matrix for, 236–237, 280–281
two-dimensional elements, 235–239

Functional, defined, 12

G

Galerkin’s method, 12–13, 133–136, 140, 221–223,
641–646

bar element equations from, 133–136, 140
beam element equations from, 221–223
finite element method and, 12–13, 641–646
heat transfer and, 641–646
mass transport (fluids) and, 641–646
orthogonal error and, 140
truss equations from, 133–136, 140
weighted residuals method of, 12–13

Gauss points, 504, 548
Gauss’s law, 704–705
Gauss-Seidel iteration, 856–858
Gaussian elimination method, 849–856
Gaussian quadrature method, 503–515

four-point, 509
isoparametric formulation, 506–515
Newton-Cotes method compared to, 503–506
one-point, 506–507
sti¤ness matrix evaluation by, 509–513
stress matrix evaluation by, 513–515
three-point, 508
two-point, 507–508

Global (total) equations, 5, 13–14, 37, 77, 177–179,
345–346, 612–613, 683, 710, 770

bar elements, 77–78, 770
beam elements, 177–179
constant-strain triangular (CST) elements,

345–346
electrostatic problems, 710
finite element method use of, 5, 13–14
fluid flow problems, 683
heat transfer problems, 612–613
matrix notation for, 13–14
spring elements, 37
sti¤ness method use of, 37
structural dynamic analysis and, 770

Global nodal displacement matrix, 40
Global nodal force matrix, 40
Gradient/potential relationships, 680–681, 693,

707–708
electrostatics, 707–708
fluid flow, 680–681, 693

Grid, defined, 259
Grid equations, 235, 259–276

grid analysis, 265–276
open sections, 262
polar moment of inertia (J), 261–263
shear center (SC), 263
sti¤ness matrix for, 259–265
torsional e¤ects, 256–263
transformation matrix for, 264–265

H

h method of refinement, 392–393
Heat flux/temperature gradient relations, 608, 627
Heat transfer, 599–673, 803–810

boundary conditions, 612–613
coe‰cient (h), 605–606
computer programs for, 646–650
conduction, 601–604
conduction matrix for, 608–612, 628–629
convection and, 604–607
di¤erential equations for, 601–604
finite element formulation of, 607–635, 638–646
flowcharts for, 646
fluids, 641–646
Galerkin’s method for, 641–646
global (total) equations for, 612–613
heat flux/temperature gradient relations, 608, 627
introduction to, 599–601
line sources, 635–638
mass transport and, 641–646
nodal temperature, 613
numerical integration for, 804–806
one-dimensional, 601–605, 607–626, 641
point sources, 635–638
structural dynamic analysis and, 803–810
temperature functions for, 607–608, 626–627
temperature gradient for, 608, 627
thermal conductivity (K), 605–606
three-dimensional, 638–640
time-dependent, 803–810
two-dimensional, 603–604, 626–635
units of, 605–606
variational method for, 607–626
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Hexahedral elements, 545–553
computer programs for, 550–553
integration for, 548
isoparametric formulation, 545–553
linear, 545–548
quadratic, 548–553
shape functions for, 546
three-dimensional stress analysis, 545–553

Hinges, beam elements with, 211–218
Homogeneous boundary conditions, 42, 43–44
Homogeneous solution, 846
Hydraulic gradient, 676
Hydraulic networks, fluid flow through, 688–692

I

Identity matrix, 833
Inclined supports, 112–118, 258

frame equations, 258
truss equations, 112–118

Integration, 503–515, 548, 770–782, 804–806,
836–837

central di¤erence method, 770–776
direct, 770–782 method, 804–806
Gaussian quadrature, 506–515
isoparametric formulation, 503–515
matrices, 836–837
Newmark’s method, 776–780
Newton-Cotes method, 503–506
numerical time, 770–782, 804–806
structural dynamic analysis and, 770–782,

804–806
three-dimensional stress analysis using, 548
time-dependent heat transfer analysis using,

804–806
Wilson’s method, 781–782

Interpolation functions, 36
Intrinsic coordinate system, 487
Inversion, 837–841, 849

coe‰cient matrix, 849
cofactor method, 837–839
inverse method, 849
matrix algebra for, 837–841
row reduction, 839–841
simultaneous linear equation solutions by, 849

Isoparametric, defined, 489, 492
Isoparametric formulation, 486–533, 545–553

bar elements, 487–492
body forces, distribution of, 491, 500

cubic quadrilateral rectangles (Q12), 524–525

displacement functions for, 488–489, 495–496
Gaussian quadrature method for, 506–515
hexahedral elements, 545–553
integration of, 503–509
introduction to, 486–487
Jacobian matrix for, 490–491, 497–499
linear elements, 487–492, 515–521, 545–548
linear strain bars, 515–521
natural (intrinsic) coordinate system for, 487
Newton-Cotes method for, 503–506
quadratic elements, 492–502, 521–525, 548–553
rectangular plane quadrilateral elements, 492–502,

521–524
shape functions for, 488, 492, 494–495, 515–525,

546
sti¤ness matrix for, 490–492, 499–500, 509–513
sti¤ness method for, 487–502
strain/displacement relationships, 489–490,

496–499
stress/strain relationships, 489–490, 496–499
surface forces, distribution of, 492, 500
three-dimensional stress analysis, 545–553

Isotropic stress/strain relationship, 455
Iteration, Gauss-Seidel method, 856–858

J

Jacobian matrix, 490–491, 497–499
Joints, 195–196, 249–255, 875–877

equivalent force replacement method, 249–255
equivalent nodal forces of, 195–196, 875–877

K

Kinematic di¤erential relationships, 869–871
Kirchho¤ plate theory, 573–575

L

Least squares method, 13, 139
Line sources, 635–638
Linear elements, 9–10, 72–165, 166–234, 235–327,

487–492, 545–548. See also One-dimensional
elements

bars, 73–91, 118–136, 487–492
beam equations, 166–234
frame equations, 235–258, 277–296
grid equations, 235, 259–276
hexahedral, 545–548
isoparametric formulation, 487–492, 545–548
representation of, 9–10
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three-dimensional stress analysis, 545–548
truss equations, 72–165

Linear strain bars, 515–521
Linear-strain triangular (LST) elements, 437–451

CST elements, comparison of, 439, 445–447
defined, 440
displacement function for, 438–440
introduction to, 437
modeling, 446–447
Pascal triangle terms for, 439
shape functions for, 444
sti¤ness matrix for, 441–442
sti¤ness method for, 437–445
strain/displacement relationships, 440–441
stress/strain relationships, 440–441

Load replacements, beams, 194–195
Local sti¤ness matrix, 37
Longitudinal strain, 332–333, 455
Longitudinal wave velocity, 787
Lumped-mass matrix, 768

M

Mass flow rate, 641
Mass matrices, 767–769, 791–796, 798–802

axisymmetric element analysis, 801–802
bar elements, 767–769
beam elements, 791–796
consistent, 768–769
lumped, 768
plane frame element analysis, 799–800
plane stress/strain analysis, 800–801
tetrahedral element analysis, 802
truss element analysis, 798–799
structural dynamic analysis and, 767–769,

791–796, 798–802
Mass transport, heat transfer and, 641–646
Matrices, 4–6, 40, 82–85, 100–109, 333–334, 829–

844, 849, 858–863. See also Mass matrices;
Sti¤ness matrix

addition of, 831
algebra, 829–844
banded, 858–860
coe‰cient, 849, 858–863
cofactor, 837–839
column { }, 4–5, 829–830
constitutive, 333–334
defined, 4, 829
determinant, 830
di¤erentiation of, 835–836

finite element method use of, 4–6
global nodal displacement, 40
global nodal force, 40
global sti¤ness equation, 5
identity, 833
integration of, 836–837
inverse of, 837–841, 858–863
multiplication of, 831–832
notation, 4–6
operations, 830–837
orthogonal, 834–835
quadratic form, 837
rectangular, 829–830
rotation, 84, 100–109
row, 82
row reduction, 839–841
scalar multiplication of, 830
simultaneous linear equation solutions using, 849,

858–863
singular, 839
square [ ], 829–830
sti¤ness influence coe‰cients, 5
sti¤ness, properties of, 841–842
stress–strain, 333–34
symmetric, 833, 858–860
transformation, 82–85, 100–109
transpose of, 832–833
unit, 833

Mindlin plate theory, 583, 584
Minimum potential energy, principle of, 12, 57,

62–65, 120
Modeling, 384–436

aspect ratio (AR), 385–388
boundary conditions for, 396
checking before and after results, 397–398
computer programs for, 411–417
concentrated (point) loads and, 395–396
connecting (mixing) di¤erent elements for,

396–397
convergence of solutions, 402–405
discontinuities and, 388–391
displacement functions, 402–405
finite element, 385–402
flowchart for, 411
infinite medium for, 396
infinite stress and, 395–396
introduction to, 384–385
patch test for, 403–405
plane stress/strain problems, 411–417
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refinement methods for, 390–394
results, equilibrium and compatibility of, 398–402
sizing elements for, 390–394
skew (directional bias) for, 408
static condensation, 407–411
sti¤ness matrix and, 407–411
stress interpretation, 405–407
symmetry, 388–390
transition triangles, 394–395

Modes, vibration response, 785–786
Modulus of elasticity (E), 871

N

Natural boundary condition, 43
Natural (free) convection, 604, 606–607
Natural (intrinsic) coordinate system, 487
Natural frequency (w), 765, 782–786, 791–798,

810–816
bar elements, 782–786
beam elements, 791–798
circular, 765
computer programs for, 810–816
damping, 766, 814–816
modes, 785–786
one-dimensional elements, 782–786
structural dynamic analysis and, 765, 782–786,

810–816
vibration analysis and, 765, 782–786

Neumann boundary condition, 43, 710–711
Newmark’s integration method, 776–780
Newton-Cotes constants, 503
Newton-Cotes numerical integration method, 503–

506
Nodal displacements, 32–40, 43–46, 77–78,

192–205, 292–293, 335, 340–342, 347, 367–368,
402–405, 442–445, 875–877

bar elements, 77–78
beam assemblage, 192–205
boundary conditions and, 43–46
constant-strain triangular (CST) elements, 335,

340–342, 347
degrees of freedom, 33, 342
displacement functions, 34–36
distributed loading and, 192–205
e¤ective global nodal forces, 198
equivalent nodal forces, 195–196, 875–877
interpolation functions, 36
linear-strain triangular (LST) elements, 442–445
load replacements, 194–195

modeling convergence and, 402–405
patch test for, 403–405
reactions (unknown), 44
rectangular plane (Q4) elements, 367–370
shape functions, 35–36
solution for, 37–38
spring assemblage, 38–40
spring constant (k), 33
spring elements, 32–36
static condensation for, 292–293
sti¤ness matrix and, 32–36
substructure analysis and, 292–293
unknown, 340–342
work-equivalence method, 193–194

Nodal hinges, beam elements with, 211–218
Nodal potentials, 683, 707, 710

electrostatics, 707, 710
fluid flow, 683

Nodal temperature, 613
Nodes, defined, 32
Nonexistence of solutions, 847
Nonhomogeneous boundary conditions, 42, 44–76
Nonhomogeneous solution, 845
Nonuniqueness of solutions, 846
Normal strain, 332–333, 455
Numerical time integration, 770–782, 804–806.

See also Integration

O

One-dimensional elements, 133–140, 601–605,
607–626, 641–646, 680–692, 730–732, 734–736,
782–791

bars, 782–791
collocation method, 138
convection heat conduction equations, 604–605
finite element method for, 607–626, 641–646,

680–692
fluid flow problems, 680–692
fluid heat transfer, 641–646
Galerkin’s methods, 133–136, 140, 641–646
heat conduction equations, 601–603
heat transfer problems, 601–605, 607–626,

641–646
least squares method, 139
mass transport and, 641–646
natural frequency (w) of, 782–786
structural dynamic analysis of, 782–791
subdomain method, 138–139
temperature distribution problems, 607–626
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thermal stress analysis of, 730–732, 734–736
time-dependent analysis of, 786–791
truss bars, 133–140
weighted residual methods, 133–140

Open sections, 262
Operator matrix, 497
Orthogonal matrix, 834–835

P

p method of refinement, 392–394
Partial pivoting, 856
Pascal triangle terms, 439
Patch test, modeling, 403–405
Penalty formulation of sti¤ness matrix, 354–356
Penalty method, boundary conditions, 54–56
Period (t) of vibration, 765–766
Pipes, fluid flow through, 685–688, 691–692
Pivot elements, 854–856
Planar elements, 328–383. See also Two-dimensional

elements
body forces, treatment of, 349–351
constant-strain triangular (CST), 329, 334–356,

370–373
displacement results, 372–373
introduction to, 328–329
plane strain and, 329–330, 345–356
plane stress and, 329, 333–349, 356–367
rectangular plane quadrilateral (Q4), 329,

367–373
sti¤ness method for, 334–349, 367–370
stress results, 372–373
surface forces, treatment of, 351–354

Plane frame elements, 799–800. See also Frame
equations

Plane quadrilateral elements, 329, 367–370,
492–502, 521–524. See also Rectangular
quadrilateral elements

eight-noded (Q8), 521–523
four-noded (Q4), 329, 367–373, 492–502
isoparametric formulation, 492–502, 521–524
nine-noded planar (Q9), 523–524
shape functions for, 492, 494–495, 515–524
sti¤ness method for, 367–370, 492–502
three-noded (linear strain bar), 515–521

Plane strain, 329–356, 411–417, 732–733, 800–801
constant-strain triangular (CST) elements, 329,

334–349, 354–356, 370–373, 800–801
defined, 329–330
mass matrices for, 800–801

modeling problems, 411–417
step-by-step solutions for, 411–417
structural dynamic analysis of, 800–801
thermal stress analysis of, 732–733
time-dependent analysis of, 800–801
two-dimensional state of, 330–334

Plane stress, 329–349, 356–367, 411–417, 732–733,
742–752, 800–801

constitutive (stress–strain) matrix, 333–34
defined, 329
discretization for, 356–357
equivalent (e¤ective), 366
finite element solution of, 356–367
mass matrices for, 800–801
modeling problems, 411–417
step-by-step solutions for, 411–417
sti¤ness matrix for, 357–366
structural dynamic analysis of, 800–801
thermal stress analysis of, 732–733, 742–752
time-dependent analysis of, 800–801
two-dimensional state of, 330–334
von Mises theory for, 366–367

Plane trusses, 92–100, 110–112, 738–742
defined, 92
symmetry of, 110–112
thermal stress analysis, 738–742
truss equation solutions for, 92–100

Plate, defined, 572
Plate bending elements, 572–598

computer solutions for, 584–588
curvature (k) relationships, 580–581
displacement function for, 578–580
Kirchho¤ assumptions for, 573–575
numerical comparisons for, 582–584
potential energy of, 577
quadrilateral plate element comparisons, 582–584
sti¤ness matrix for, 581–582
sti¤ness method for, 577–582
stress/strain relations, 575–577
thin-plate equations, 573

Point loads, see Concentrated loadings
Point sources, 635–638
Poisson’s equation, 705–706
Polar moment of inertia (J), 261–263
Porous medium, fluid flow through, 675–678, 694–696
Potential energy, plate bending elements, 577
Potential energy method, 12, 56–65, 118–129, 218–221

admissible variation of displacement functions,
59–60
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axially loaded bars, 124–125
beam equations, 218–221
external work and, 57–58
minimum potential energy, principle of, 57,

62–65, 120
spring element equations from, 56–65
spring equations, 56–65
stationary values of a function for, 59

strain energy (U) and, 58, 118– 120, 124
surface traction loaded bars, 126–129
total potential energy (pp), 57–60
truss equations, 118–129
use of, 12, 56
variation of displacement functions, 59–60

Potential function (f), 680, 692–693, 706–707
electrostatics, 706–707
fluid flow, 680, 692–693

Pressure vessel analysis, 463–469
discretization of, 463–464
sti¤ness matrix for, 464–469

Primary (essential) boundary condition, 43
Primary unknowns, finite element method

use of, 14
Principal angle, 331
Principal stresses, 331–332
Pumps, fluid flow through, 696

Q

Quadratic elements, 9–10, 367–373, 492–502,
515–525, 548–553, 582–584. See also

Rectangular quadrilateral elements
computer programs for, 550–553
constant-strain triangular (CST) elements

compared to, 370–373
cubic rectangles (Q12), 524–525

eight-noded plane rectangles (Q8), 521–523
four-noded plane rectangles (Q4), 492–502
hexahedral, 548–553
isoparametric formulation of, 492–502, 515–525,

548–553
nine-noded plane rectangles (Q9), 523–424
plane rectangles (Q8 and Q9), 521–525
plane sti¤ness method for, 367–370, 492–502
plate element comparisons, 582–584
representation of, 9–10
shape functions for, 492, 494–495, 515–525
three-dimensional stress analysis, 548–553
three-noded (linear strain bar), 515–521

Quadratic form, matrices, 837

R

r method of refinement, 393–394
Reactions (unknown nodal forces), 44
Rectangular matrix, 829–830
Rectangular quadrilateral elements, 329, 367–373,

492–502, 521–525
body forces, distribution of, 500

constant-strain triangular (CST) elements
compared to, 370–373

cubic (Q12), 524–525
displacement functions, 368–369, 495–496
eight-noded planar (Q8), 521–523
four-noded planar (Q4), 329, 367–373, 492–502
isoparametric formulation, 492–502, 521–525
Jacobian matrix for, 497–499
nine-noded planar (Q9), 523–524
nodal displacements, 367–368
operator matrix for, 497
planar, 329, 367–373, 492–502, 521–524
shape functions for, 492, 494–495, 515–525
sti¤ness matrix for, 370, 499–500
sti¤ness method for, 367–370, 492–502
strain/displacement relationships, 369–370,

496–499
stress/strain relationships, 369–370, 496–499
surface forces, distribution of, 500
three-noded (linear strain bar), 515–521

Refinement of elements, 390–394
Reflective symmetry, 109–112
Rigid plane frame analysis, 239–258
Rods, heat transfer in, 613–618
Rotation matrix, 84, 100–109. See also

Transformation matrix

Row matrix, 82
Row reduction, matrices, 839–841

S

Shape functions, 35–36, 444, 457, 488, 492, 494–
495, 515–525, 540, 546

axisymmetric elements, 457
cubic quadrilateral rectangles (Q12), 524–525

hexahedral elements, 546
isoparametric formulation, 488, 492, 494–495,

515–525
linear strain (3-noded quadrilateral) bars, 515–521
linear-strain triangular (LST) elements, 444
plane quadrilateral rectangles (Q4, Q8, and Q9),

494–495, 521–524
spring elements, 35–36
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tetrahedral elements, 540
three-dimensional stress analysis, 540, 546

Shear center (SC), 263
Shear strain, 333, 455
Shear strain/displacement relationships, 869–871
Shear stress, 331
Simple harmonic motion, 765
Simultaneous linear equations, 845–866

banded matrices, 858–860
bandwidth reduction for, 859–860
coe‰cient matrix for, 849, 858–863
computer programs for, 863–865
Cramer’s rule for, 847–848
Gaussian elimination method for, 849–856
Gauss-Seidel iteration, 856–858
homogeneous, 846
inverse method for, 849
nonexistence of, 847
nonhomogeneous, 845
nonuniqueness of, 846
pivot elements and, 854–856
skyline method for, 858–859
symmetric matrices, 858–860
uniqueness of, 846
wavefront method for, 860–863
zero pivot elements in, 854–855

Singular matrix, 839
Sizing elements for modeling, 390–394
Skew (directional bias), modeling, 408
Skewed supports, 112–118, 258

frame equations, 258
truss equations, 112–118

Skyline method, 858–859
Solid bodies, fluid flow around, 678–679
Space frame analysis, 283–290
Space truss analysis, 103–109
Spring constant (k), 33
Spring equations, 32–65

assemblage, 38–56
boundary conditions, 37, 42–56
continuity (compatibility) requirement for, 38–39
direct sti¤ness method for, 40–42
elements, 32–38, 56–65
global nodal displacement matrix of, 40
global nodal force matrix of, 40
nodal displacements of, 32–38
nodal displacements, 32–40, 43–46
penalty method, 54–56
potential energy approach, 56–65

sti¤ness matrix for, 32–42
sti¤ness method for, 32–40
total system sti¤ness matrix of, 38–40

Spring-mass systems, dynamics of, 764–766
Square matrix [ ], 829–830
Static condensation, 407–411
Stationary values of a function, 59
Steel shapes, structural properties of, 882–894
Sti¤ness equations, 328–383

body forces, treatment of, 349–351
constant-strain triangular (CST) elements,

334–349, 354–356, 370–373
plane strain, 329–330, 345–356
plane stress, 329, 333–349, 356–367
rectangular plane (Q4) elements, 367–373
sti¤ness matrix and, 329, 334–349, 354–356,

367–370
surface forces, treatment of, 351–354
two-dimensional state of stress and strain,

330–334
Sti¤ness influence coe‰cients, 5
Sti¤ness matrix, 11–13, 32–42, 76–77, 85–89, 100–

109, 167–179, 235–239, 259–265, 277–290, 342–
345, 354–356, 370, 407–411, 441–442, 459–462,
464–469, 490–492, 499–500, 509–513, 541–542,
581–582, 681–683, 693–694, 708–710, 767–769.
See also Conduction matrix

axisymmetric elements, 459–462, 464–469
bar elements, 76–77, 100–109, 490–492, 767–769
beam assemblage, 177–179
beam elements, 167–179, 235–239, 277–290
boundary conditions and, 37, 177–179
condensed, 408
constant-strain triangular (CST) elements,

342–345, 354–356
defined, 32
degrees of freedom, 33, 407
direct sti¤ness method for, 11, 40–42
electrostatic problems, 708–710
element equations for, 36–37, 76–77, 177–179
element type, selection of, 34, 75
Euler-Bernoulli beam theory for, 168–174
finite element methods for derivation of, 11–13
fluid flow problems, 681–683, 693–694
frame equations, 235–239, 277–290
Gaussian quadrature method of evaluation,

509–513
global element, 85–89, 237
grid equations for, 259–265
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isoparametric formulation, 490–492, 499–500,
509–513

linear-strain triangular (LST) elements, 441–442
local, 37
modeling and, 407–411
nodal displacements for, 32–36
penalty formulation, 354–356
plane quadrilateral elements, 499–500
plate bending elements, 581–582
rectangular plane (Q4) elements, 370
skew (directional bias), 408
spring assemblage, 38–40
spring constant (k), 33
spring elements, 32–38
static condensation for, 407–411
sti¤ness method for, 11, 32–40
structural dynamic analysis and, 767–769
superposition method for, 40–42
tetrahedral elements, 541–542
three-dimensional stress analysis, 541–542
Timoshenko beam theory for, 174–177
total system, 38–42
transformation matrix for, 100–103, 236–237
two-dimensional elements, 85–89, 235–239,

693–694
variational methods of work or energy for, 12
weighted residual methods for, 12–13

Sti¤ness method, 7, 31–71, 73–79, 100–109,
334–349, 367–370, 437–445, 452–463, 487–502,
537–545, 575–582. See also Direct sti¤ness
method

axisymmetric elements, 452–463
bar elements, 73–79, 100–109
boundary conditions, 37, 42–56
constant-strain triangular (CST) elements,

334–349
direct, 31, 40–42
element forces, solution for, 38, 347
finite element method approach, 7
interpolation functions, 36
introduction to, 31–32
isoparametric formulation, 487–502
Jacobian matrix, 490–491, 497–499
linear-strain triangular (LST) elements, 437–445
operator matrix, 497
penalty method, 54–56
planar elements, 334–349
plate bending elements, 577–582
potential energy approach, 56–65

procedure for, 34–38
rectangular plane (Q4) elements, 367–370
shape functions, 35–36, 444, 488, 492
springs, 32–65
superposition for, 40–42
tetrahedral elements, 537–545
three-dimensional stress analysis, 537–545
total sti¤ness matrix, 40–42

Sti¤ness properties, matrices, 841–842
Strain, 329–356, 453–455

axisymmetric elements, 453–455
normal (longitudinal), 332–333, 455
plane, 329–356
shear, 333, 455
tangential, 453–455
two-dimensional state of, 330–334

Strain/displacement relationships, 11, 14, 36, 76,
340–342, 369–370, 440–441, 455, 458–459,
489–490, 496–499, 536, 540–541, 580–581, 767

axisymmetric elements, 455, 458–459
bar elements, 76, 767
constant-strain triangular (CST) elements,

340–342
curvature (k), 580–581
finite element method and, 11, 14
isoparametric formulation, 489–490, 496–499
linear-strain triangular (LST) elements, 440–441
plane quadrilateral elements, 496–499
plate bending elements, 580–581
rectangular plane (Q4) elements, 369–370
spring elements, 36
sti¤ness method and, 36
structural dynamic analysis and, 767
tetrahedral elements, 540–541
three-dimensional stress analysis and, 536,

540–541
Strain energy (U), 58, 118–119, 124

bar elements, 118–118, 124
potential energy method and, 58, 118–119, 124
spring elements, 58

Stress, 90–91, 330–334, 356–367, 372–373, 395–396,
405–407, 453–454, 470–472, 580–581, 728–762

axisymmetric elements, 453–454, 470–472,
733–734

computations in x–y plane, 90–91
concentrated (point) loads and, 395–396
CST and Q4 analysis results,372–373
curvature (k) relations, 580–581
equivalent (e¤ective), 366
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infinite, 395–396
interpretation of, 405–407
modeling and, 395–396, 405–407
plane, 330–334, 356–367, 453
plate bending elements, 580–581
principal, 331–332
shear, 331
thermal, 728–762
two-dimensional state of, 330–334
von Mises, 366–367, 470–472, 753

Stress analysis, 534–571. See also Thermal stress
body forces, distribution of, 541–542
Cartesian coordinates for, 535–536
computer programs for, 550–553
displacement functions for, 538–540
hexahedral elements, 545–553
integration for, 548
isoparametric formulation, 545–553
linear elements, 545–548
quadratic elements, 548–553
shape functions for, 540, 546
sti¤ness matrix for, 541–542
sti¤ness method for, 537–545
strain/displacement relationships, 536, 540–541
stress/strain relationships, 535–537, 540–541
surface forces, distribution of, 542
tetrahedral elements, 537–545
three-dimensional elements, 534–571

Stress matrix, Gaussian quadrature evaluation by,
513–515

Stress–strain (constitutive) matrix, 333–334,
873–874

Stress/strain relationships, 11, 14, 36, 76, 340–342,
369–370, 440–441, 455, 458–459, 489–490, 496–
499, 535–537, 540–541, 575–577, 767, 871–874

axisymmetric elements, 455, 458–459
bar elements, 76, 767
bending moments, 576–577
constant-strain triangular (CST) elements,

340–342
elasticity theory and, 871–874
finite element method and, 11, 14
isoparametric formulation, 489–490, 496–499
isotropic, 455
linear-strain triangular (LST) elements, 440–441
plane quadrilateral elements, 496–499
plate bending elements, 575–577
rectangular plane (Q4) elements, 369–370
spring elements, 36

sti¤ness method and, 36
structural dynamic analysis and, 767
tetrahedral elements, 540–541
three-dimensional stress analysis and, 535–537,

540–541
Structural dynamics, 763–828

axisymmetric element analysis, 801–802
bar element analysis, 782–791
bar element equations derived for, 766–770
beam element analysis, 791–798
central di¤erence method for, 770–776
computer programs for, 810–818
constant-strain triangle (CST) elements, 800–801
damping, 765–766, 814–816
direct integration, 770–782, 804–806
heat transfer and, 803–810
mass matrices for, 767–769, 791–796, 798–802
natural frequency (w), 765, 782–786, 791–798
Newmark’s method for, 776–780
numerical time integration, 770–782, 804–806
plane frame element analysis, 799–800
plane stress/strain analysis, 800–801
spring-mass systems, 764–766
tetrahedral element analysis, 802
time-dependent problems and, 763–828
truss element analysis, 798–799
vibration analysis, 765–766, 782–786
Wilson’s method for, 781–782

Structures, 109–112, 235–327, 728–762, 763–828,
882–894

frame equations, 235–258, 277–296
grid equations, 235, 259–276
rigid plane frames, 239–258
steel shapes, properties of, 882–894
substructure analysis, 290–296
symmetry in, 109–112
thermal stress analysis of, 728–762
time-dependent problems, 763–828

Subdomain method, 13, 138–139
Substructure analysis, 290–296
Substructures, defined, 291
Superposition, 40–42. See also Direct sti¤ness method
Surface forces, 351–354, 461–462, 492, 500, 542

axisymmetric elements, 461–462
isoparametric formulation, 492, 500
planar elements, 351–354
plane quadrilateral elements, 500
tetrahedral elements, 542
three-dimensional stress analysis, 542
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Surface traction loaded bars, analysis of, 126–129
Symmetric matrix, 833, 833, 858–860
Symmetry, 109–112, 388–390

axial, 109
modeling use of, 388–390
reflective, 109–112
trusses, 109–112

T

Tangential strain, 453–455
Temperature change (T), 728–753
Temperature functions, 607–608, 626–627
Temperature gradient, 608, 627
Tetrahedral elements, 537–545, 802

body forces, distribution of, 541–542
displacement functions for, 538–540
mass matrices for, 802
shape functions for, 540
sti¤ness matrix for, 541–542
sti¤ness method for, 537–545
strain/displacement relationships, 540–541
stress/strain relationships, 540–541
structural dynamic analysis of, 802
surface forces, distribution of, 542

Thermal conductivity (K), 605–606
Thermal expansion (a), coe‰cient of, 729
Thermal strain matrix, 732–733
Thermal stress, 728–762

axisymmetric elements, 733–734
bar assemblage analysis, 736–738
coe‰cient of thermal expansion (a), 729
computer programs for, 752–753
introduction to, 728
one-dimensional problems, 730–732, 734–736
plane strain problems, 732–733
plane stress problems, 732–733, 742–752
plane truss analysis, 738–742
procedure for analysis of, 734–742
temperature change (T), 728–753
thermal strain matrix for, 732–733
three-dimensional problems, 753
two-dimensional problems, 732–733

Thin-plate equations, 573
Three-dimensional elements, 9–10, 100–109, 141,

277–290, 534–571, 638–640
bending deformation and, 277–281
finite element method for, 638–640
flowcharts for, 141
frame equations for, 277–290

heat transfer in, 638–640
representation of, 9–10
space truss analysis, 103–109
sti¤ness matrix for, 100–109, 277–290
stress analysis, 534–571
transformation matrix for, 100–103, 280–281
truss equations for, 100–109, 141

Time-dependent analysis, 763–828
axisymmetric elements, 801–802
bar element equations derived for, 766–770
bar elements, 782–791
beam elements, 791–798
central di¤erence method for, 770–776
computer programs for, 810–818
constant-strain triangle (CST) elements, 800–801
damping for, 765–766, 814–816
direct integration, 770–782, 804–806
heat transfer, 803–810
introduction to, 763–764
natural frequency (w), 765, 782–786, 791–798
Newmark’s method for, 776–780
numerical integration in, 770–782, 804–806
one-dimensional elements, 782–791
plane frame elements, 799–800
plane stress/strain, 800–801
spring-mass systems, 764–766
stress, 766–770
structural dynamics and, 763–828
tetrahedral elements, 802
truss elements, 798–799
Wilson’s method for, 781–782

Timoshenko beam theory, 174–177
Torsional constant (J), 261–263
Total potential energy (pp), 57–60
Total system sti¤ness matrix, 38–42

direct sti¤ness method for, 40–42
sti¤ness method for, 38–40

Transformation mapping, 487
Transformation matrix, 82–85, 100–103, 112–118,

236–237, 264–265, 280–281
bar elements, 82–85, 100–103
beam elements, 236–237, 280–281
boundary conditions and, 112–118
defined, 84
frame equations, 236–237, 280–281
grid equations, 264–265
inclined (skewed) truss supports and, 112–118
three-dimensional elements, 100–103, 280–281
truss equations, 82–85, 100–103, 112–118
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two-dimensional bar elements, 82–85, 236–237
vector transformation (displacement) using, 82–85

Transition triangles, modeling, 394–395
Transpose of a matrix, 832–833
Transverse shear deformation, beams, 174–177
Trapezoidal rule, 804
Triangular elements, 9–10. See also Constant-strain

triangular (CST) elements; Linear-strain
triangular (LST) elements

Truss equations, 72–165, 798–799. See also Bar
elements

approximation functions, 79–82
arbitrary orientation in x–y plane, 85–89
bar elements, 73–91, 118–140
boundary conditions and, 112–118
collocation method, 138
compatible function, 80
computer programs for, 141–144
conforming function, 80
exact compared to finite element solution for,

129–133
flowcharts for, 141
Galerkin’s methods, 133–136, 140
global sti¤ness matrix, 85–89
inclined supports, 112–118
introduction to, 72–73
least squares method, 139
local coordinates, 73–79
mass matrices, 798–799
one-dimensional, 133–140
plane truss analysis, 92–100, 110–112
potential energy method for, 118–129
rotation matrix, 84, 100–109
skewed supports, 112–118
space truss analysis, 103–109
step-by-step solutions for, 141–144
sti¤ness matrix for, 73–79, 103–109
stress computations in x–y plane, 90–91
structural dynamic analysis, 798–799
subdomain method, 138–139
symmetry in structures and, 109–112
time-dependent analysis, 798–799
transformation (rotation) matrix for, 84, 100–103
two-dimensional, 82–100
vector transformation, 82–85
weighted residual methods, 133–140

Tubes, heat transfer of air through, 643–646
Two-dimensional elements, 9–10, 82–100, 235–239,

328–383, 394–397, 437–451, 603–604, 626–635,

692–696, 706–713, 732–733, 738–742. See also

Planar elements
arbitrary orientation in x–y plane, 85–89,

235–237
bars, 85–89
beams, 235–237
constant-strain triangular (CST), 329, 334–356,

370–373, 394–397, 439, 445–447
electrostatic problems, 706–713
finite element method for, 626–635
fluid flow problems, 692–696
frame equations for, 235–239
global sti¤ness matrix, 85–89
heat conduction equations, 603–604
heat transfer problems, 603–604, 626–635
linear-strain triangular (LST), 437–451
local and global coordinate planes, 82–85
modeling, 394–397, 446–447
planar, 328–383
plane truss analysis, 92–100, 738–742
rectangular plane (Q4), 329, 367–373
representation of, 9–10
sti¤ness matrix for, 85–89, 235–239, 693–694
stress computations in x–y plane, 90–91
temperature distribution of, 626–635
thermal stress analysis of, 732–733, 738–742
transformation (rotation) matrix, 82–85, 235–239
truss bars, 82–100
vector transformation (displacement), 82–85

U

Uniqueness of solutions, 846
Unit matrix, 833

V

Variation of displacement functions, 59–60
Variational methods, 8, 12, 56–65, 607–626

heat transfer, 607–626
potential energy approach, 56–65
spring elements, 56–65
use of, 8, 12, 56
virtual work, 12, 878–881

Vectors, transformation of, 82–85. See also

Transformation matrix
Velocity/gradient relationships, 676, 680–681, 693
Veubeke plate theory, 583–584
Vibration analysis, 765–766, 782–786, 791–798

amplitude of, 765
bar elements, 782–786
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beam elements, 791–798
modes, 785–786
natural frequency (w), 765, 782–786, 791–798
one-dimensional elements, 782–786
period (t) of, 765–766
simple harmonic motion, 765–766

Virtual work, 12, 878–881
compatible displacements, 878
D’Alembert’s principle and, 879–880
principle of, 12, 878
variational method of, 12, 878–881
von Mises stress, 366–367, 470–472, 753

W

Walls, heat transfer in, 619–626
Wavefront method, 860–863
Weighted residual methods, 12–13, 56, 133–140,

221–223
bar element problems, 133–140
beam element problems, 221–223

collocation, 13, 138
finite element method use of, 12–13, 56
Galerkin’s, 12–13, 133–136, 140, 221–223
least squares, 13, 139
subdomain, 13, 138–139

Wilson’s integration method, 781–782
Work-equivalence method, 193–194
Work (energy) methods, 12, 56–65, 118–129,

218–221, 878–881
Castigliano’s theorem, 12
potential energy, 12, 56–65, 118–129, 218–221
virtual work, 12, 878–881
work-equivalence, 193–194

X

x-y planes, 82–100. See also Two-dimensional
elements

Z

Zero pivot elements, 854–855
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PROPERTIES OF PLANE AREAS Notes: A ¼ area, I ¼ area moment of inertia, J ¼ polar moment of inertia.
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PROPERTIES OF SOLIDS Notes: � ¼ mass density, m ¼ mass, I ¼ mass moment of inertia.
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PHYSICAL PROPERTIES IN SI AND USCS UNITS

Property Sl USCS

Water (fresh)

specific weight 9.81 kN/m3 62.4 lb/ft3

mass density 1000 kg/m3 1.94 slugs/ft3

Aluminum

specific weight 26.6 kN/m3 169/lb/ft3

mass density 2710 kg/m3 5.26 slugs/ft3

Steel

specific weight 77.0 kN/m3 490 lb/ft3

mass density 7850 kg/m3 15.2 slugs/ft3

Reinforced concrete

specific weight 23.6 kN/m3 150 lb/ft3

mass density 2400 kg/m3 4.66 slugs/ft3

Acceleration of gravity

(on the earth’s surface)

Recommended value 9.81 m/s2 32.2 ft/s2

Atmospheric pressure

(at sea level)

Recommended value 101 kPa 14.7 psi

TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Aluminum

Alloy 1100-H14

(99 % A1) 14 110(T) 14 95 10.1 70 3.7 13.1 23.6 0.098 2710

Alloy 2024-T3

(sheet and plate) 70 480(T) 50 340 10.6 73 4.0 12.6 22.7 0.100 2763

Alloy 6061-T6

(extruded) 42 260(T) 37 255 10.0 69 3.7 13.1 23.6 0.098 2710

Alloy 7075-T6

(sheet and plate) 80 550(T) 70 480 10.4 72 3.9 12.9 23.2 0.101 2795

Yellow brass (65% Cu, 35% Zn)

Cold-rolled 78 540(T) 63 435 15 105 5.6 11.3 20.0 0.306 8470

Annealed 48 330(T) 15 105 15 105 5.6 11.3 20.0 0.306 8470

Phosphor bronze

Cold-rolled (510) 81 560(T) 75 520 15.9 110 5.9 9.9 17.8 0.320 8860

Spring-tempered

(524) 122 840(T) — — 16 110 5.9 10.2 18.4 0.317 8780

Cast iron

Gray, 4.5%C,

ASTM A-48 25 170(T) — — 10 70 4.1 6.7 12.1 0.260 7200

95 650(C)

Malleable,

ASTM A-47 50 340(T) 33 230 24 165 9.3 6.7 12.1 0.264 7300

90 620(C) — —
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TYPICAL PROPERTIES OF SELECTED ENGINEERING MATERIALS (Continued )

Ultimate 0.2% Yield

Strength Strength Modulus of Sheer Coefficient of

�u �y Elasticity Modulus Thermal Expansion, � Density, �

——————— —————— E G —————————— ——————

Material ksi MPa ksi MPa (106 psi GPa) ð106 psi) 10�6=�F 10�6=�C lb/in.3 kg/m3

Copper and its alloys

CDA 145 copper,

hard 48 331(T) 44 303 16 110 6.1 9.9 17.8 0.323 8940

CDA 172 beryllium

copper, hard 175 1210(T) 240 965 19 131 7.1 9.4 17.0 0.298 8250

CDA 220 bronze,

hard 61 421(T) 54 372 17 117 6.4 10.2 18.4 0.318 8800

CDA 260 brass,

hard 76 524(T) 63 434 16 110 6.1 11.1 20.0 0.308 8530

Magnesium alloy

(8.5% A1) 55 380(T) 40 275 4.5 45 2.4 14.5 26.0 0.065 1800

Monel alloy 400 (Ni-Cu)

Cold-worked 98 675(T) 85 580 26 180 — 7.7 13.9 0.319 8830

Annealed 80 550(T) 32 220 26 180 — 7.7 13.9 0.319 8830

Steel

Structural

(ASTM-A36) 58 400(T) 36 250 29 200 11.5 6.5 11.7 0.284 7860

High-strength low-alloy

ASTM-A242 70 480(T) 50 345 29 200 11.5 6.5 11.7 0.284 7860

Quenched and tempered alloy

ASTM-A514 120 825(T) 100 690 29 200 11.5 6.5 11.7 0.284 7860

Stainless, (302)

Cold-rolled 125 860(T) 75 520 28 190 10.6 9.6 17.3 0.286 7920

Annealed 90 620(T) 40 275 28 190 10.6 9.6 17.3 0.286 7920

Titanium alloy

(6% A1, 4% V) 130 900(T) 120 825 16.5 114 6.2 5.3 9.5 0.161 4460

Concrete

Medium strength 4.0 28(C) — — 3.5 25 — 5.5 10.0 0.084 2320

High strength 6.0 40(C) — — 4.5 30 — 5.5 10.0 0.084 2320

Granite 35 240(C) — — 10 69 — 4.0 7.0 0.100 2770

Glass, 98% silica 7 50(C) — — 10 69 — 44.0 80.0 0.079 2190

Melamine 6 41(T) — — 2.0 13.4 — 17.0 30.0 0.042 1162

Nylon, molded 8 55(T) — — 0.3 2 — 45.0 81.0 0.040 1100

Polystyrene 7 48(T) — — 0.45 3 — 40.0 72.0 0.038 1050

Rubbers

Natural 2 14(T) — — — — — 90.0 162.0 0.033 910

Neoprene 3.5 24(T) — — — — — 0.045 1250

Timber, air dry, parallel to grain

Douglas fir, construction

grade 7.2 50(C) — — 1.5 10.5 — varies varies 0.019 525

Eastern spruce 5.4 37(C) — — 1.3 9 — 1.7– 3– 0.016 440

Southern pine,construction

grade 7.3 50(C) — — 1.2 8.3 — 3.0 5.4 0.022 610

The values given in the table are average mechanical properties. Further verification may be necessary for final design or analysis. For ductile

materials, the compressive strength is normally assumed to equal the tensile strength. Abbreviations: C, compressive strength; T, tensile strength. For

an explanation of the numbers associated with the aluminums, cast irons, and steels, see ASM Metals Reference Book, latest ed., American Society

for Metals, Metals Park, Ohio 44073
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Figure 1–11 Finite element model of contour roll forming or cold roll forming process.
(Courtesy of Valmont Coast Engineering Group)

Figure 1–6 (b) The three-dimensional visual of the die as the elements in the plane are rotated
through 360� around the z-axis of symmetry.
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Figure 7–11 Maximum principal stress contour (shrink fit plot) for a plate with hole. Largest
principal stresses of 29.48 MPa occur at the top and bottom of the hole, which indicates a stress
concentration of 2.948. Stresses were obtained by using an average of the nodal values (called
smoothing). (Same plate properties as in Figure 7–10.)

Figure 6–2 Plane strain problems: (a) dam subjected to horizontal loading. (Algor)
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Figure 7–21 Bicycle wrench (a) Outline drawing of wrench, (b) meshed model of wrench,
(c) boundary conditions and selecting surface where surface traction will be applied, (d) checked
model showing the boundary conditions and surface traction, and (e) von Mises stress plot.
(Compliments of Angela Moe)

B

S A

E

Figure 7–23 von Mises stress plot of overload protection device.
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(a)

(b)

Figure 7–26 (a) von Mises stress plot of beam welded to column (largest von Mises stress of
87.3 MPa is located at toe of top fillet weld as shown by), (b) Zoomed-in view of top fillet weld
(notice also that a surface contact was used between the beam and column that allowed for the
gap to form where the beam separated from the column).
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Figure 9–2 Examples of axisymmetric problems: (b) enclosed pressure vessel. (Courtesy of Algor, Inc.)
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Figure 11–1 (c) Subsoiler—12-row subsoiler used in agricultural equipment. (Courtesy of Algor, Inc.)

Figure 9–18 Three-dimensional visual of shaft of Figure 9–17 showing principal stress plot.
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Figure P11–19 Anvil used for forging operation (showing dimensions in inch units) and typical
finite element model. (Compliments of Dan Baxter)

Figure 11–9 Meshed model of a trailer hitch. (Courtesy of David Anderson)
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Figure P11–27 Locator part (dimensions in mm) with typical finite element model.

Figure P11–21 Radio-control front steering unit (all dimensions in inches) and finite element
model. (Compliments of Phillip Grommes)
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Figure 12–10 Displacement plot of the clamped plate of Example 12.1.

Figure 12–1 (b) Water tank.
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Figure 12–12 (b) The pressure load, boundary conditions, and resulting von Mises stress.
(by Nicholas Dachniwskyj)

Figure 13–1 Finite element results of cylinder head showing temperature distribution (brick
elements were used in the model). (Courtesy of Algor, Inc.)
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Figure 13–35 (b) The finite element model with resulting temperature variation through the
insulation.

Figure 13–34 (b) Finite element model with resulting temperature variation throughout the plate.
(Courtesy of David Walgrave)
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Figure 13–36 Temperature distribution in an anvil. (Dan Baxter)
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Figure 14–30 Voltage variation throughout channel.
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Figure 14–32 Busbar surrounded by air along with the finite element model and the resulting
voltage distribution.
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Figure 15–12 Discretized plate showing displaced plate superimposed with maximum principal
stress plot in Pa.
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Figure 15–13 von Mises stress plot for a solid part subjected to 100 �C temperature rise inside the
surface of the hole.
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CONVERSION FACTORS U.S. Customary Units to SI Units

Quantity Converted from U.S. Customary To SI Equivalent

(Acceleration)

1 foot/second2 (ft/s2) meter/second2 (m/s2) 0.3048 m/s2

1 inch/second2 (in./s2) meter/second2 (m/s2) 0.0254 m/s2

(Area)

1 foot2 (ft2) meter2 (m2) 0.0929 m2

1 inch2 (in.2) meter2 (m2) 645.2 mm2

(Density, mass)

1 pound mass/inch3 (lbm/in.3) kilogram/meter3 (kg/m3) 27.68 Mg/m3

1 pound mass/foot3 (lbm/ft3) kilogram/meter3 (kg/m3) 16.02 kg/m3

(Energy, Work)

1 British thermal unit (BTU) Joule (J) 1055 J
1 foot-pound force (ft-lb) Joule (J) 1.356 J
1 kilowatt-hour Joule (J) 3:60� 106 J

(Force)

1 kip (1000 lb) Newton (N) 4.448 kN
1 pound force (lb) Newton (N) 4.448 N

(Length)

1 foot (ft) meter (m) 0.3048 m
1 inch (in.) meter (m) 25.4 mm
1 mile (mi), (U.S. statute) meter (m) 1.609 km
1 mile (mi), (international nautical) meter (m) 1.852 km

(Mass)

1 pound mass (lbm) kilogram (kg) 0.4536 kg
1 slug (lb-sec2/ft) kilogram (kg) 14.59 kg
1 metric ton (2000 lbm) kilogram (kg) 907.2 kg

(Moment of force)

1 pound-foot (lb � ft) Newton-meter (N �m) 1.356 N �m
1 pound-inch (lb � in.) Newton-meter (N �m) 0.1130 N �m

(Moment of inertia of an area)

1 inch4 meter4 (m4) 0:4162� 10�6 m4

(Moment of inertia of a mass)

1 pound-foot-second2(lb � ft � s2) kilogram-meter2 (kg �m2) 1.356 kg �m2

(Momentum, linear)

1 pound-second (lb �s) kilogram-meter/second (kg �m/s) 4.448 N �s

(Momentum, angular)

pound-foot-second (lb � ft �s) Newton-meter-second (N �m �s) 1.356 N �m �s
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CONVERSION FACTORS U.S. Customary Units to SI Units (Continued )

Quantity Converted from U.S. Customary To SI Equivalent

(Power)

1 foot-pound/second (ft � lb/s) Watt (W) 1.356 W
1 horsepower (550 ft � lb/s) Watt (W) 745.7 W

(Pressure, stress)

1 atmosphere (std)(14.7.lb/in.2Þ Newton/meter2 (N/m2 or Pa) 101.3 kPa
1 pound/foot2 (lb/ft2) Newton/meter2 (N/m2 or Pa) 47.88 Pa
1 pound/inch2 (lb/in.2 or psi) Newton/meter2 (N/m2 or Pa) 6.895 kPa
1 kip/inch2(ksi) Newton/meter2 (N/m2 or Pa) 6.895 MPa

(Spring constant)

1 pound/inch (lb/in.) Newton/meter (N/m) 175.1 N/m

(Temperature)

T(�F) ¼ 1.8T(�C) þ 32

(Velocity)

1 foot/second (ft/s) meter/second (m/s) 0.3048 m/s
1 knot (nautical mi/h) meter/second (m/s) 0.5144 m/s
1 mile/hour (mi/h) meter/second (m/s) 0.4470 m/s
1 mile/hour (mi/h) kilometer/hour (km/h) 1.609 km/h

(Volume)

1 foot3 (ft3) meter3 (m3) 0.02832 m3

1 inch3 (in.3) meter3 (m3) 16:39� 10�6 m3
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