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Preface to the
Second Edition

As you may know, the first edition of The Control Handbook was very well received. Many copies were
sold and a gratifying number of people took the time to tell me that they found it useful. To the publisher,
these are all reasons to do a second edition. To the editor of the first edition, these same facts are a modest
disincentive. The risk that a second edition will not be as good as the first one is real and worrisome. I
have tried very hard to insure that the second edition is at least as good as the first one was. I hope you
agree that I have succeeded.

I have made two major changes in the second edition. The first is that all the Applications chapters
are new. It is simply a fact of life in engineering that once a problem is solved, people are no longer as
interested in it as they were when it was unsolved. I have tried to find especially inspiring and exciting
applications for this second edition.

Secondly, it has become clear to me that organizing the Applications book by academic discipline is
no longer sensible. Most control applications are interdisciplinary. For example, an automotive control
system that involves sensors to convert mechanical signals into electrical ones, actuators that convert
electrical signals into mechanical ones, several computers and a communication network to link sensors
and actuators to the computers does not belong solely to any specific academic area. You will notice that
the applications are now organized broadly by application areas, such as automotive and aerospace.

One aspect of this new organization has created a minor and, I think, amusing problem. Several
wonderful applications did not fit into my new taxonomy. I originally grouped them under the title
Miscellaneous. Several authors objected to the slightly pejorative nature of the term “miscellaneous.”
I agreed with them and, after some thinking, consulting with literate friends and with some of the
library resources, I have renamed that section “Special Applications.” Regardless of the name, they are
all interesting and important and I hope you will read those articles as well as the ones that did fit my
organizational scheme.

There has also been considerable progress in the areas covered in the Advanced Methods book. This is
reflected in the roughly two dozen articles in this second edition that are completely new. Some of these are
in two new sections, “Analysis and Design of Hybrid Systems” and “Networks and Networked Controls.”

There have even been a few changes in the Fundamentals. Primarily, there is greater emphasis on
sampling and discretization. This is because most control systems are now implemented digitally.

I have enjoyed editing this second edition and learned a great deal while I was doing it. I hope that you
will enjoy reading it and learn a great deal from doing so.

William S. Levine
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1.1 Differential Equations

A function containing variables and their derivatives is called a differential expression, and an equation
involving differential expressions is called a differential equation. A differential equation is an ordinary
differential equation if it contains only one independent variable; it is a partial differential equation
if it contains more than one independent variable. We shall deal here only with ordinary differential
equations.

In the mathematical texts, the independent variable is generally x, which can be anything such as time,
distance, velocity, pressure, and so on. In most of the applications in control systems, the independent
variable is time. For this reason we shall use here independent variable t for time, although it can stand
for any other variable as well.

The following equation (
d2y

dt2

)4

+ 3
dy

dt
+ 5y2(t) = sin t

is an ordinary differential equation of second order because the highest derivative is of second order.
An nth-order differential equation is linear if it is of the form

an(t)
dny

dtn + an−1(t)
dn−1y

dtn−1 + · · · + a1(t)
dy

dt
+ a0(t)y(t) = r(t) (1.1)

where the coefficients ai(t) are not functions of y(t). If these coefficients (ai) are constants, the equation
is linear with constant coefficients. Many engineering (as well as nonengineering) systems can be modeled
by these equations. Systems modeled by these equations are known as linear time-invariant (LTI) systems.

1-1
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1-2 Control System Fundamentals

In this chapter we shall deal exclusively with linear differential equations with constant coefficients.
Certain other forms of differential equations are dealt with elsewhere in this volume.

1.1.1 Role of Auxiliary Conditions in Solution of Differential Equations

We now show that a differential equation does not, in general, have a unique solution unless some
additional constraints (or conditions) on the solution are known. This fact should not come as a surprise.
A function y(t) has a unique derivative dy/dt, but for a given derivative dy/dt, there are infinite possible
functions y(t). If we are given dy/dt, it is impossible to determine y(t) uniquely unless an additional piece
of information about y(t) is given. For example, the solution of a differential equation

dy

dt
= 2 (1.2)

obtained by integrating both sides of the equation is

y(t) = 2t + c (1.3)

for any value of c. Equation 1.2 specifies a function whose slope is 2 for all t. Any straight line with a slope
of 2 satisfies this equation. Clearly the solution is not unique, but if we place an additional constraint
on the solution y(t), then we specify a unique solution. For example, suppose we require that y(0) = 5;
then out of all the possible solutions available, only one function has a slope of 2 and an intercept with
the vertical axis at 5. By setting t = 0 in Equation 1.3 and substituting y(0) = 5 in the same equation, we
obtain y(0) = 5 = c and

y(t) = 2t + 5

which is the unique solution satisfying both Equation 1.2 and the constraint y(0) = 5.
In conclusion, differentiation is an irreversible operation during which certain information is lost.

To reverse this operation, one piece of information about y(t) must be provided to restore the original
y(t). Using a similar argument, we can show that, given d2y/dt2, we can determine y(t) uniquely only
if two additional pieces of information (constraints) about y(t) are given. In general, to determine y(t)
uniquely from its nth derivative, we need n additional pieces of information (constraints) about y(t).
These constraints are also called auxiliary conditions. When these conditions are given at t = 0, they are
called initial conditions.

We discuss here two systematic procedures for solving linear differential equations of the form in
Equation 1.1. The first method is the classical method, which is relatively simple, but restricted to a certain
class of inputs. The second method (the convolution method) is general and is applicable to all types
of inputs. A third method (Laplace transform) is discussed elsewhere in this volume. Both the methods
discussed here are classified as time-domain methods because with these methods we are able to solve
the above equation directly, using t as the independent variable. The method of Laplace transform (also
known as the frequency-domain method), on the other hand, requires transformation of variable t into a
frequency variable s.

In engineering applications, the form of linear differential equation that occurs most commonly is
given by

dny

dtn + an−1
dn−1y

dtn−1 + · · · + a1
dy

dt
+ a0y(t) = bm

dmf

dtm + bm−1
dm−1f

dtm−1 + · · · + b1
df

dt
+ b0f (t) (1.4a)

where all the coefficients ai and bi are constants. Using operational notation D to represent d/dt, this
equation can be expressed as

(Dn + an−1Dn−1 + · · · + a1D + a0)y(t) = (bmDm + bm−1Dm−1 + · · · + b1D + b0)f (t) (1.4b)
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or

Q(D)y(t) = P(D)f (t) (1.4c)

where the polynomials Q(D) and P(D), respectively, are

Q(D) = Dn + an−1Dn−1 + · · · + a1D + a0

P(D) = bmDm + bm−1Dm−1 + · · · + b1D + b0

Observe that this equation is of the form of Equation 1.1, where r(t) is in the form of a linear combination
of f (t) and its derivatives. In this equation, y(t) represents an output variable, and f (t) represents an input
variable of an LTI system. Theoretically, the powers m and n in the above equations can take on any value.
Practical noise considerations, however, require [1] m ≤ n.

1.1.2 Classical Solution

When f (t) ≡ 0, Equation 1.4a is known as the homogeneous (or complementary) equation. We shall first
solve the homogeneous equation. Let the solution of the homogeneous equation be yc(t), that is,

Q(D)yc(t) = 0

or

(Dn + an−1Dn−1 + · · · + a1D + a0)yc(t) = 0

We first show that if yp(t) is the solution of Equation 1.4a, then yc(t) + yp(t) is also its solution. This
follows from the fact that

Q(D)yc(t) = 0

If yp(t) is the solution of Equation 1.4a, then

Q(D)yp(t) = P(D)f (t)

Addition of these two equations yields

Q(D)[yc(t) + yp(t)] = P(D)f (t)

Thus, yc(t) + yp(t) satisfies Equation 1.4a and therefore is the general solution of Equation 1.4a. We call
yc(t) the complementary solution and yp(t) the particular solution. In system analysis parlance, these
components are called the natural response and the forced response, respectively.

1.1.2.1 Complementary Solution (The Natural Response)

The complementary solution yc(t) is the solution of

Q(D)yc(t) = 0 (1.5a)

or

(Dn + an−1Dn−1 + · · · + a1D + a0)yc(t) = 0 (1.5b)

A solution to this equation can be found in a systematic and formal way. However, we will take a short cut
by using heuristic reasoning. Equation 1.5b shows that a linear combination of yc(t) and its n successive
derivatives is zero, not at some values of t, but for all t. This is possible if and only if yc(t) and all its n
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1-4 Control System Fundamentals

successive derivatives are of the same form. Otherwise their sum can never add to zero for all values of t.
We know that only an exponential function eλt has this property. So let us assume that

yc(t) = ceλt

is a solution of Equation 1.5b. Now

Dyc(t) = dyc

dt
= cλeλt

D2yc(t) = d2yc

dt2 = cλ2eλt

· · · · · · · · · · · · · · ·
Dnyc(t) = dnyc

dtn = cλneλt

Substituting these results in Equation 1.5b, we obtain

c(λn + an−1λ
n−1 + · · · + a1λ + a0)eλt = 0

For a nontrivial solution of this equation,

λn + an−1λ
n−1 + · · · + a1λ + a0 = 0 (1.6a)

This result means that ceλt is indeed a solution of Equation 1.5, provided that λ satisfies Equation 1.6a.
Note that the polynomial in Equation 1.6a is identical to the polynomial Q(D) in Equation 1.5b, with λ

replacing D. Therefore, Equation 1.6a can be expressed as

Q(λ) = 0 (1.6b)

When Q(λ) is expressed in factorized form, Equation 1.6b can be represented as

Q(λ) = (λ − λ1)(λ − λ2) · · · (λ − λn) = 0 (1.6c)

Clearly λ has n solutions: λ1, λ2, . . . , λn. Consequently, Equation 1.5 has n possible solutions:
c1eλ1t , c2eλ2t , . . . , cneλnt , with c1, c2, . . . , cn as arbitrary constants. We can readily show that a general
solution is given by the sum of these n solutions,∗ so that

yc(t) = c1eλ1t + c2eλ2t + · · · + cneλnt (1.7)

where c1, c2, . . . , cn are arbitrary constants determined by n constraints (the auxiliary conditions) on the
solution.

∗ To prove this fact, assume that y1(t), y2(t), . . ., yn(t) are all solutions of Equation 1.5. Then

Q(D)y1(t) = 0

Q(D)y2(t) = 0

· · · · · · · · · · · · ·
Q(D)yn(t) = 0

Multiplying these equations by c1, c2, . . . , cn, respectively, and adding them together yields

Q(D)[c1y1(t) + c2y2(t) + · · · + cnyn(t)] = 0

This result shows that c1y1(t) + c2y2(t) + · · · + cnyn(t) is also a solution of the homogeneous Equation 1.5.
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The polynomial Q(λ) is known as the characteristic polynomial. The equation

Q(λ) = 0 (1.8)

is called the characteristic or auxiliary equation. From Equation 1.6c, it is clear that λ1, λ2, . . ., λn

are the roots of the characteristic equation; consequently, they are called the characteristic roots. The
terms characteristic values, eigenvalues, and natural frequencies are also used for characteristic roots.∗
The exponentials eλi t(i = 1, 2, . . . , n) in the complementary solution are the characteristic modes (also
known as modes or natural modes). There is a characteristic mode for each characteristic root, and the
complementary solution is a linear combination of the characteristic modes.

Repeated Roots

The solution of Equation 1.5 as given in Equation 1.7 assumes that the n characteristic roots λ1, λ2, . . . , λn

are distinct. If there are repeated roots (the same root occurring more than once), the form of the solution
is modified slightly. By direct substitution we can show that the solution of the equation

(D − λ)2yc(t) = 0

is given by
yc(t) = (c1 + c2t)eλt

In this case, the root λ repeats twice. Observe that the characteristic modes in this case are eλt and teλt .
Continuing this pattern, we can show that for the differential equation

(D − λ)ryc(t) = 0 (1.9)

the characteristic modes are eλt , teλt , t2eλt , . . . , tr−1eλt , and the solution is

yc(t) = (c1 + c2t + · · · + crtr−1)eλt (1.10)

Consequently, for a characteristic polynomial

Q(λ) = (λ − λ1)r(λ − λr+1) · · · (λ − λn)

the characteristic modes are eλ1t , teλ1t , . . . , tr−1eλt , eλr+1t , . . . , eλnt . and the complementary solution is

yc(t) = (c1 + c2t + · · · + crtr−1)eλ1t + cr+1eλr+1t + · · · + cneλnt

1.1.2.2 Particular Solution (The Forced Response): Method of Undetermined Coefficients

The particular solution yp(t) is the solution of

Q(D)yp(t) = P(D)f (t) (1.11)

It is a relatively simple task to determine yp(t) when the input f (t) is such that it yields only a finite
number of independent derivatives. Inputs having the form eζt or tr fall into this category. For example,
eζt has only one independent derivative; the repeated differentiation of eζt yields the same form, that is, eζt .
Similarly, the repeated differentiation of tr yields only r independent derivatives. The particular solution
to such an input can be expressed as a linear combination of the input and its independent derivatives.
Consider, for example, the input f (t) = at2 + bt + c. The successive derivatives of this input are 2at + b
and 2a. In this case, the input has only two independent derivatives. Therefore the particular solution can

∗ The term eigenvalue is German for characteristic value.
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TABLE 1.1

Input f (t) Forced Response

1. eζtζ �= λi (i = 1, 2, · · · , n) βeζt

2. eζt ζ = λi βteζt

3. k (a constant) β (a constant)

4. cos(ωt + θ) β cos(ωt + φ)

5. (tr + αr−1tr−1 + · · · + α1t + α0)eζt (βr tr + βr−1tr−1 + · · · + β1t + β0)eζt

be assumed to be a linear combination of f (t) and its two derivatives. The suitable form for yp(t) in this
case is therefore

yp(t) = β2t2 + β1t + β0

The undetermined coefficients β0, β1, and β2 are determined by substituting this expression for yp(t) in
Equation 1.11 and then equating coefficients of similar terms on both sides of the resulting expression.

Although this method can be used only for inputs with a finite number of derivatives, this class of
inputs includes a wide variety of the most commonly encountered signals in practice. Table 1.1 shows
a variety of such inputs and the form of the particular solution corresponding to each input. We shall
demonstrate this procedure with an example.

Note: By definition, yp(t) cannot have any characteristic mode terms. If any term p(t) shown in the
right-hand column for the particular solution is also a characteristic mode, the correct form of the forced
response must be modified to tip(t), where i is the smallest possible integer that can be used and still
can prevent tip(t) from having a characteristic mode term. For example, when the input is eζt , the forced
response (right-hand column) has the form βeζt . But if eζt happens to be a characteristic mode, the correct
form of the particular solution is βteζt (see Pair 2). If teζt also happens to be a characteristic mode, the
correct form of the particular solution is βt2eζt , and so on.

Example 1.1:

Solve the differential equation

(D2 + 3D + 2)y(t) = Df (t) (1.12)

if the input

f (t) = t2 + 5t + 3

and the initial conditions are y(0+) = 2 and ẏ(0+) = 3.
The characteristic polynomial is

λ2 + 3λ + 2 = (λ + 1)(λ + 2)

Therefore the characteristic modes are e−t and e−2t . The complementary solution is a linear combi-
nation of these modes, so that

yc (t) = c1e−t + c2e−2t t ≥ 0

Here the arbitrary constants c1 and c2 must be determined from the given initial conditions.
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The particular solution to the input t2 + 5t + 3 is found from Table 1.1 (Pair 5 with ζ = 0) to be

yp(t) = β2t2 + β1t + β0

Moreover, yp(t) satisfies Equation 1.11, that is,

(D2 + 3D + 2)yp(t) = Df (t) (1.13)

Now

Dyp(t) = d

dt
(β2t2 + β1t + β0) = 2β2t + β1

D2yp(t) = d2

dt2 (β2t2 + β1t + β0) = 2β2

and

Df (t) = d

dt
[t2 + 5t + 3] = 2t + 5

Substituting these results in Equation 1.13 yields

2β2 + 3(2β2t + β1) + 2(β2t2 + β1t + β0) = 2t + 5

or
2β2t2 + (2β1 + 6β2)t + (2β0 + 3β1 + 2β2) = 2t + 5

Equating coefficients of similar powers on both sides of this expression yields

2β2 = 0

2β1 + 6β2 = 2

2β0 + 3β1 + 2β2 = 5

Solving these three equations for their unknowns, we obtain β0 = 1, β1 = 1, and β2 = 0. Therefore,

yp(t) = t + 1 t > 0

The total solution y(t) is the sum of the complementary and particular solutions. Therefore,

y(t) = yc (t) + yp(t)

= c1e−t + c2e−2t + t + 1 t > 0

so that
ẏ(t) = −c1e−t − 2c2e−2t + 1

Setting t = 0 and substituting the given initial conditions y(0) = 2 and ẏ(0) = 3 in these equations,
we have

2 = c1 + c2 + 1

3 = −c1 − 2c2 + 1

The solution to these two simultaneous equations is c1 = 4 and c2 = −3. Therefore,

y(t) = 4e−t − 3e−2t + t + 1 t ≥ 0



�

�

�

�

� �

1-8 Control System Fundamentals

1.1.2.3 The Exponential Input eζt

The exponential signal is the most important signal in the study of LTI systems. Interestingly, the particular
solution for an exponential input signal turns out to be very simple. From Table 1.1 we see that the
particular solution for the input eζt has the form βeζt . We now show that β = Q(ζ)/P(ζ)∗. To determine
the constant β, we substitute yp(t) = βeζt in Equation 1.11, which gives us

Q(D)[βeζt] = P(D)eζt (1.14a)

Now observe that

Deζt = d

dt

(
eζt)= ζeζt

D2eζt = d2

dt2

(
eζt)= ζ2eζt

· · · · · · · · · · · · · · ·
Dreζt = ζreζt

Consequently,
Q(D)eζt = Q(ζ)eζt and P(D)eζt = P(ζ)eζt

Therefore, Equation 1.14a becomes
βQ(ζ)eζt = P(ζ)eζt (1.14b)

and

β = P(ζ)

Q(ζ)

Thus, for the input f (t) = eζt , the particular solution is given by

yp(t) = H(ζ)eζt t > 0 (1.15a)

where

H(ζ) = P(ζ)

Q(ζ)
(1.15b)

This is an interesting and significant result. It states that for an exponential input eζt , the particular
solution yp(t) is the same exponential multiplied by H(ζ) = P(ζ)/Q(ζ). The total solution y(t) to an
exponential input eζt is then given by

y(t) =
n∑

j=1

cje
λj t + H(ζ)eζt

where the arbitrary constants c1, c2, . . ., cn are determined from auxiliary conditions.
Recall that the exponential signal includes a large variety of signals, such as a constant (ζ = 0), a sinusoid

(ζ = ±jω), and an exponentially growing or decaying sinusoid (ζ = σ ± jω). Let us consider the forced
response for some of these cases.

1.1.2.4 The Constant Input f(t) = C

Because C = Ce0t , the constant input is a special case of the exponential input Ceζt with ζ = 0. The
particular solution to this input is then given by

yp(t) = CH(ζ)eζt with ζ = 0

= CH(0)
(1.16)

∗ This is true only if ζ is not a characteristic root.
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1.1.2.5 The Complex Exponential Input ejωt

Here ζ = jω, and
yp(t) = H(jω)ejωt (1.17)

1.1.2.6 The Sinusoidal Input f(t) = cos ω0t

We know that the particular solution for the input e±jωt is H(±jω)e±jωt . Since cos ωt = (ejωt + e−jωt)/2,
the particular solution to cos ωt is

yp(t) = 1

2
[H( jω)ejωt + H(−jω)e−jωt]

Because the two terms on the right-hand side are conjugates,

yp(t) = Re[H( jω)ejωt]
But

H( jω) = |H( jω)|ej∠H( jω)

so that

yp(t) = Re {|H( jω)|ej[ωt+∠H( jω)]}
= |H( jω)| cos [ωt + ∠H( jω)] (1.18)

This result can be generalized for the input f (t) = cos(ωt + θ). The particular solution in this case is

yp(t) = |H( jω)| cos[ωt + θ + ∠H( jω)] (1.19)

Example 1.2:

Solve Equation 1.12 for the following inputs:

(a) 10e−3t (b) 5 (c) e−2t (d) 10 cos(3t + 30◦).

The initial conditions are y(0+) = 2, ẏ(0+) = 3.
The complementary solution for this case is already found in Example 1.1 as

yc (t) = c1e−t + c2e−2t t ≥ 0

For the exponential input f (t) = eζt , the particular solution, as found in Equation 1.15 is H(ζ)eζt ,
where

H(ζ) = P(ζ)
Q(ζ)

= ζ

ζ2 + 3ζ + 2

(a) For input f (t) = 10e−3t , ζ = −3, and

yp(t) = 10H(−3)e−3t

= 10
[ −3

(−3)2 + 3(−3) + 2

]
e−3t

= −15e−3t t > 0

The total solution (the sum of the complementary and particular solutions) is

y(t) = c1e−t + c2e−2t − 15e−3t t ≥ 0

and
ẏ(t) = −c1e−t − 2c2e−2t + 45e−3t t ≥ 0
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The initial conditions are y(0+) = 2 and ẏ(0+) = 3. Setting t = 0 in the above equations and
substituting the initial conditions yields

c1 + c2 − 15 = 2 and − c1 − 2c2 + 45 = 3

Solution of these equations yields c1 = −8 and c2 = 25. Therefore,

y(t) = −8e−t + 25e−2t − 15e−3t t ≥ 0

(b) For input f (t) = 5 = 5e0t , ζ = 0, and

yp(t) = 5H(0) = 0 t > 0

The complete solution is y(t) = yc (t) + yp(t) = c1e−t + c2e−2t . We then substitute the initial
conditions to determine c1 and c2 as explained in Part a.

(c) Here ζ = −2, which is also a characteristic root. Hence (see Pair 2, Table 1.1, or the comment at
the bottom of the table),

yp(t) = βte−2t

To find β, we substitute yp(t) in Equation 1.11, giving us

(D2 + 3D + 2)yp(t) = Df (t)

or
(D2 + 3D + 2)[βte−2t ] = De−2t

But

D
[
βte−2t

]
= β(1 − 2t)e−2t

D2
[
βte−2t

]
= 4β(t − 1)e−2t

De−2t = −2e−2t

Consequently,
β(4t − 4 + 3 − 6t + 2t)e−2t = −2e−2t

or
−βe−2t = −2e−2t

This means that β = 2, so that
yp(t) = 2te−2t

The complete solution is y(t) = yc (t) + yp(t) = c1e−t + c2e−2t + 2te−2t . We then substitute the
initial conditions to determine c1 and c2 as explained in Part a.

(d) For the input f (t) = 10 cos (3t + 30◦), the particular solution [see Equation 1.19] is

yp(t) = 10|H( j3)| cos[3t + 30◦ + ∠H( j3)]
where

H( j3) = P( j3)
Q( j3)

= j3

( j3)2 + 3( j3) + 2

= j3
−7 + j9

= 27 − j21
130

= 0.263e−j37.9◦

Therefore,
|H( j3)| = 0 263, ∠H( j3) = −37.9◦

and

yp(t) = 10(0.263) cos (3t + 30◦ − 37.9◦)

= 2.63 cos (3t − 7.9◦)

The complete solution is y(t) = yc (t) + yp(t) = c1e−t + c2e−2t + 2.63 cos(3t − 7.9◦). We then substi-
tute the initial conditions to determine c1 and c2 as explained in Part a.
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1.1.3 Method of Convolution

In this method, the input f (t) is expressed as a sum of impulses. The solution is then obtained as a sum
of the solutions to all the impulse components. The method exploits the superposition property of the
linear differential equations. From the sampling (or sifting) property of the impulse function, we have

f (t) =
∫ t

0
f (x)δ(t − x) dx t ≥ 0 (1.20)

The right-hand side expresses f (t) as a sum (integral) of impulse components. Let the solution of
Equation 1.4 be y(t) = h(t), when f (t) = δ(t) and all the initial conditions are zero. Then use of the
linearity property yields the solution of Equation 1.4 to input f (t) as

y(t) =
∫ t

0
f (x)h(t − x) dx (1.21)

For this solution to be general, we must add a complementary solution. Thus, the general solution is
given by

y(t) =
n∑

j=1

cje
λj t +

∫ t

0
f (x)h(t − x) dx (1.22)

where the lower limit 0 is understood to be 0− in order to ensure that impulses, if any, in the input f (t)
at the origin are accounted for side of Equation 1.22 is well known in the literature as the convolution
integral. The function h(t) appearing in the integral is the solution of Equation 1.4 for the impulsive input
[f (t) = δ(t)]. It can be shown that [1]

h(t) = P(D)[yo(t)u(t)] (1.23)

where yo(t) is a linear combination of the characteristic modes subject to initial conditions

y(n−1)
o (0) = 1

yo(0) = y(1)
o (0) = · · · = y(n−2)

o (0) = 0
(1.24)

The function u(t) appearing on the right-hand side of Equation 1.23 represents the unit step function,
which is unity for t ≥ 0 and is 0 for t < 0.

The right-hand side of Equation 1.23 is a linear combination of the derivatives of yo(t)u(t). Evaluating
these derivatives is clumsy and inconvenient because of the presence of u(t). The derivatives will gen-
erate an impulse and its derivatives at the origin [recall that d

dt u(t) = δ(t)]. Fortunately when m ≤ n in
Equation 1.4, the solution simplifies to

h(t) = bnδ(t) + [P(D)yo(t)]u(t) (1.25)

Example 1.3:

Solve Example 1.1.2.6, Part a using method of convolution.

We first determine h(t). The characteristic modes for this case, as found in Example 1.1.2.2, are e−t

and e−2t . Since yo(t) is a linear combination of the characteristic modes

yo(t) = K1e−t + K2e−2t t ≥ 0

Therefore,
ẏo(t) = −K1e−t − 2K2e−2t t ≥ 0
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The initial conditions according to Equation 1 24 are ẏo(0) = 1 and yo(0) = 0. Setting t = 0 in the
above equations and using the initial conditions, we obtain

K1 + K2 = 0 and − K1 − 2K2 = 1

Solution of these equations yields K1 = 1 and K2 = −1. Therefore,

yo(t) = e−t − e−2t

Also, in this case, the polynomial P(D) = D is of first order, and b2 = 0. Therefore, from Equation 1.25

h(t) = [P(D)yo(t)]u(t) = [Dyo(t)]u(t)

=
[

d

dt
(e−t − e−2t )

]
u(t)

= (−e−t + 2e−2t )u(t)

and

∫ t

0
f (x)h(t − x) dx =

∫ t

0
10e−3x

[
−e−(t−x) + 2e−2(t−x)

]
dx

= −5e−t + 20e−2t − 15e−3t

The total solution is obtained by adding the complementary solution yc (t) = c1e−t + c2e−2t to
this component. Therefore,

y(t) = c1e−t + c2e−2t − 5e−t + 20e−2t − 15e−3t

Setting the conditions y(0+) = 2 and y(0+) = 3 in this equation (and its derivative), we obtain
c1 = −3, c2 = 5 so that

y(t) = −8e−t + 25e−2t − 15e−3t t ≥ 0

which is identical to the solution found by the classical method.

1.1.3.1 Assessment of the Convolution Method

The convolution method is more laborious compared to the classical method. However, in system analysis,
its advantages outweigh the extra work. The classical method has a serious drawback because it yields the
total response, which cannot be separated into components arising from the internal conditions and the
external input. In the study of systems it is important to be able to express the system response to an input
f (t) as an explicit function of f (t). This is not possible in the classical method. Moreover, the classical
method is restricted to a certain class of inputs; it cannot be applied to any input.∗

If we must solve a particular linear differential equation or find a response of a particular LTI sys-
tem, the classical method may be the best. In the theoretical study of linear systems, however, it is
practically useless. General discussion of differential equations can be found in numerous texts on the
subject [2].

∗ Another minor problem is that because the classical method yields total response, the auxiliary conditions must be on
the total response, which exists only for t ≥ 0+. In practice we are most likely to know the conditions at t = 0− (before
the input is applied). Therefore, we need to derive a new set of auxiliary conditions at t = 0+ from the known conditions
at t = 0−. The convolution method can handle both kinds of initial conditions. If the conditions are given at t = 0−, we
apply these conditions only to yc(t) because by its definition the convolution integral is 0 at t = 0−.
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1.2 Difference Equations

The development of difference equations is parallel to that of differential equations. We consider here only
linear difference equations with constant coefficients. An nth-order difference equation can be expressed
in two different forms; the first form uses delay terms such as y[k − 1], y[k − 2], f [k − 1], f [k − 2], . . .,
and so on, and the alternative form uses advance terms such as y[k + 1], y[k + 2], . . . , and so on. Both
forms are useful. We start here with a general nth-order difference equation, using advance operator form

y[k + n] + an−1y[k + n − 1] + · · · + a1y[k + 1] + a0y[k]
= bmf [k + m] + bm−1f [k + m − 1] + · · · + b1f [k + 1] + b0f [k] (1.26)

1.2.1 Causality Condition

The left-hand side of Equation 1.26 consists of values of y[k] at instants k + n, k + n − 1, k + n − 2, and
so on. The right-hand side of Equation 1.26 consists of the input at instants k + m, k + m − 1, k + m − 2,
and so on. For a causal equation, the solution cannot depend on future input values. This shows that
when the equation is in the advance operator form of the Equation 1.26, causality requires m ≤ n. For a
general causal case, m = n, and Equation 1.26 becomes

y[k + n] + an−1y[k + n − 1] + · · · + a1y[k + 1] + a0y[k]
= bnf [k + n] + bn−1f [k + n − 1] + · · · + b1f [k + 1] + b0f [k] (1.27a)

where some of the coefficients on both sides can be zero. However, the coefficient of y[k + n] is normalized
to unity. Equation 1.27a is valid for all values of k. Therefore, the equation is still valid if we replace k by
k − n throughout the equation. This yields the alternative form (the delay operator form) of Equation 1.27a

y[k] + an−1y[k − 1] + · · · + a1y[k − n + 1] + a0y[k − n]
= bn f [k] + bn−1f [k − 1] + · · · + b1 f [k − n + 1] + b0 f [k − n] (1.27b)

We designate the form of Equation 1.27a the advance operator form, and the form of Equation 1.27b the
delay operator form.

1.2.2 Initial Conditions and Iterative Solution

Equation 1.27b can be expressed as

y[k] = −an−1y[k − 1] − an−2y[k − 2] − · · · − a0y[k − n]
+ bn f [k] + bn−1 f [k − 1] + · · · + b0 f [k − n] (1.27c)

This equation shows that y[k], the solution at the kth instant, is computed from 2n + 1 pieces
of information. These are the past n values of y[k] : y[k − 1], y[k − 2], . . . , y[k − n] and the present
and past n values of the input: f [k], f [k − 1], f [k − 2], . . . , f [k − n]. If the input f [k] is known for
k = 0, 1, 2, . . ., then the values of y[k] for k = 0, 1, 2, . . . can be computed from the 2n initial conditions
y[−1], y[−2], . . . , y[−n] and f [−1], f [−2], . . . , f [−n]. If the input is causal, that is, if f [k] = 0 for k < 0,
then f [−1] = f [−2] = . . . = f [−n] = 0, and we need only n initial conditions y[−1], y[−2], . . . , y[−n].
This allows us to compute iteratively or recursively the values y[0], y[1], y[2], y[3], . . . , and so on.∗ For

∗ For this reason, Equation 1.27 is called a recursive difference equation. However, in Equation 1.27, if a0 = a1 = a2 = · · ·
= an−1 = 0, then it follows from Equation 1.27c that determination of the present value of y[k] does not require the past
values y[k − 1], y[k − 2], . . ., and so on. For this reason, when ai = 0, (i = 0, 1, . . . , n − 1), the difference Equation 1.27
is nonrecursive. This classification is important in designing and realizing digital filters. In this discussion, however,
this classification is not important. The analysis techniques developed here apply to general recursive and nonrecursive
equations. Observe that a nonrecursive equation is a special case of recursive equation with a0 = a1 = . . . = an−1 = 0.
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instance, to find y[0] we set k = 0 in Equation 1.27c. The left-hand side is y[0], and the right-hand side
contains terms y[−1], y[−2], . . . , y[−n], and the inputs f [0], f [−1], f [−2], . . . , f [−n]. Therefore, to begin
with, we must know the n initial conditions y[−1], y[−2], . . . , y[−n]. Knowing these conditions and the
input f [k], we can iteratively find the response y[0], y[1], y[2], . . . , and so on. The following example
demonstrates this procedure. This method basically reflects the manner in which a computer would solve
a difference equation, given the input and initial conditions.

Example 1.4:

Solve iteratively

y[k] − 0.5y[k − 1] = f [k] (1.28a)

with initial condition y[−1] = 16 and the input f [k] = k2 (starting at k = 0). This equation can be
expressed as

y[k] = 0.5y[k − 1] + f [k] (1 28b)

If we set k = 0 in this equation, we obtain

y[0] = 0.5y[−1] + f [0]
= 0.5(16) + 0 = 8

Now, setting k = 1 in Equation 1.28b and using the value y[0] = 8 (computed in the first step) and
f [1] = (1)2 = 1, we obtain

y[1] = 0.5(8) + (1)2 = 5

Next, setting k = 2 in Equation 1.28b and using the value y[1] = 5 (computed in the previous step)
and f [2] = (2)2, we obtain

y[2] = 0.5(5) + (2)2 = 6.5

Continuing in this way iteratively, we obtain

y[3] = 0.5(6.5) + (3)2 = 12.25

y[4] = 0.5(12.25) + (4)2 = 22.125

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

This iterative solution procedure is available only for difference equations; it cannot be applied to
differential equations. Despite the many uses of this method, a closed-form solution of a difference
equation is far more useful in the study of system behavior and its dependence on the input and
the various system parameters. For this reason, we shall develop a systematic procedure to obtain a
closed-form solution of Equation 1.27.

1.2.2.1 Operational Notation

In difference equations it is convenient to use operational notation similar to that used in differential
equations for the sake of compactness and convenience. For differential equations, we use the operator D
to denote the operation of differentiation. For difference equations, we use the operator E to denote the
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operation for advancing the sequence by one time interval. Thus,

Ef [k] ≡ f [k + 1]
E2f [k] ≡ f [k + 2]
· · · · · · · · · · · · · · ·
Enf [k] ≡ f [k + n]

(1.29)

A general nth-order difference Equation 1.27a can be expressed as

(En + an−1En−1 + · · · + a1E + a0)y[k] = (bnEn + bn−1En−1 + · · · + b1E + b0)f [k] (1.30a)

or

Q[E]y[k] = P[E] f [k] (1.30b)

where Q[E] and P[E] are nth-order polynomial operators, respectively,

Q[E] = En + an−1En−1 + · · · + a1E + a0 (1.31a)

P[E] = bnEn + bn−1En−1 + · · · + b1E + b0 (1.31b)

1.2.3 Classical Solution

Following the discussion of differential equations, we can show that if yp[k] is a solution of Equation 1.27
or Equation 1.30, that is,

Q[E]yp[k] = P[E]f [k] (1.32)

then yp[k] + yc[k] is also a solution of Equation 1.30, where yc[k] is a solution of the homogeneous
equation

Q[E]yc[k] = 0 (1.33)

As before, we call yp[k] the particular solution and yc[k] the complementary solution.

1.2.3.1 Complementary Solution (The Natural Response)

By definition

Q[E]yc[k] = 0 (1.33a)

or

(En + an−1En−1 + · · · + a1E + a0)yc[k] = 0 (1.33b)

or

yc[k + n] + an−1yc[k + n − 1] + · · · + a1yc[k + 1] + a0yc[k] = 0 (1.33c)

We can solve this equation systematically, but even a cursory examination of this equation points to its
solution. This equation states that a linear combination of yc[k] and delayed yc[k] is zero not for some
values of k, but for all k. This is possible if and only if yc[k] and delayed yc[k] have the same form. Only an
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exponential function γk has this property as seen from the equation

γk−m = γ−mγk

This shows that the delayed γk is a constant times γk . Therefore, the solution of Equation 1.33 must be
of the form

yc[k] = cγk (1.34)

To determine c and γ, we substitute this solution in Equation 1.33. From Equation 1.34, we have

Eyc[k] = yc[k + 1] = cγk+1 = (cγ)γk

E2yc[k] = yc[k + 2] = cγk+2 = (cγ2)γk

· · · · · · · · · · · · · · · · · · · · · · · ·
Enyc[k] = yc[k + n] = cγk+n = (cγn)γk

(1.35)

Substitution of this in Equation 1.33 yields

c(γn + an−1γ
n−1 + · · · + a1γ + a0)γk = 0 (1.36)

For a nontrivial solution of this equation

(γn + an−1γ
n−1 + · · · + a1γ + a0) = 0 (1.37a)

or
Q[γ] = 0 (1.37b)

Our solution cγk [Equation 1.34] is correct, provided that γ satisfies Equation 1.37a. Now, Q[γ] is an
nth-order polynomial and can be expressed in the factorized form (assuming all distinct roots):

(γ − γ1)(γ − γ2) · · · (γ − γn) = 0 (1.37c)

Clearly γ has n solutions γ1, γ2, · · · , γn and, therefore, Equation 1.33 also has n solutions
c1γ

k
1, c2γ

k
2, . . . , cnγ

k
n. In such a case we have shown that the general solution is a linear combination

of the n solutions. Thus,
yc[k] = c1γ

k
1 + c2γ

k
2 + · · · + cnγ

k
n (1.38)

where γ1, γ2, . . . , γn are the roots of Equation 1.37a and c1, c2, . . . , cn are arbitrary constants determined
from n auxiliary conditions. The polynomial Q[γ] is called the characteristic polynomial, and

Q[γ] = 0 (1.39)

is the characteristic equation. Moreover, γ1, γ2, · · · , γn, the roots of the characteristic equation, are called
characteristic roots or characteristic values (also eigenvalues). The exponentials γk

i (i = 1, 2, . . . , n) are the
characteristic modes or natural modes. A characteristic mode corresponds to each characteristic root,
and the complementary solution is a linear combination of the characteristic modes of the system.

Repeated Roots

For repeated roots, the form of characteristic modes is modified. It can be shown by direct substitution
that if a root γ repeats r times (root of multiplicity r), the characteristic modes corresponding to this root
are γk , kγk , k2γk , . . . , kr−1γk . Thus, if the characteristic equation is

Q[γ] = (γ − γ1)r(γ − γr+1)(γ − γr+2) · · · (γ − γn) (1.40)

the complementary solution is

yc[k] = (c1 + c2k + c3k2 + · · · + crkr−1)γk
1

+ cr+1γ
k
r+1 + cr+2γ

k
r+2 + · · · + cnγ

k
n (1.41)



�

�

�

�

� �

Ordinary Linear Differential and Difference Equations 1-17

TABLE 1.2

Input f [k] Forced Response yp[k]
1. rk r �= γi (i = 1, 2, . . . , n) βrk

2. rk r = γi βkrk

3. cos (Ωk + θ) β cos (Ωk + φ)

4.

( m∑
i=0

αik
i

)
rk

( m∑
i=0

βik
i

)
rk

1.2.3.2 Particular Solution

The particular solution yp[k] is the solution of

Q[E]yp[k] = P[E] f [k] (1.42)

We shall find the particular solution using the method of undetermined coefficients, the same method
used for differential equations. Table 1.2 lists the inputs and the corresponding forms of solution with
undetermined coefficients. These coefficients can be determined by substituting yp[k] in Equation 1.42
and equating the coefficients of similar terms.

Note: By definition, yp[k] cannot have any characteristic mode terms. If any term p[k] shown in the
right-hand column for the particular solution should also be a characteristic mode, the correct form of
the particular solution must be modified to kip[k], where i is the smallest integer that will prevent kip[k]
from having a characteristic mode term. For example, when the input is rk , the particular solution in the
right-hand column is of the form crk . But if rk happens to be a natural mode, the correct form of the
particular solution is βkrk(see Pair 2).

Example 1.5:

Solve
(E2 − 5E + 6)y[k] = (E − 5)f [k] (1.43)

if the input f [k] = (3k + 5)u[k] and the auxiliary conditions are y[0] = 4, y[1] = 13.

The characteristic equation is

γ2 − 5γ + 6 = (γ − 2)(γ − 3) = 0

Therefore, the complementary solution is

yc[k] = c1(2)k + c2(3)k

To find the form of yp[k] we use Table 1.2, Pair 4 with r = 1, m = 1. This yields

yp[k] = β1k + β0

Therefore,

yp[k + 1] = β1(k + 1) + β0 = β1k + β1 + β0

yp[k + 2] = β1(k + 2) + β0 = β1k + 2β1 + β0

Also,
f [k] = 3k + 5

and
f [k + 1] = 3(k + 1) + 5 = 3k + 8
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Substitution of the above results in Equation 1.43 yields

β1k + 2β1 + β0 − 5(β1k + β1 + β0) + 6(β1k + β0) = 3k + 8 − 5(3k + 5)

or
2β1k − 3β1 + 2β0 = −12k − 17

Comparison of similar terms on two sides yields

2β1 = −12
−3β1 + 2β0 = −17

}
=⇒

β1 = −6

β2 = −35
2

This means

yp[k] = −6k − 35
2

The total response is

y[k] = yc[k] + yp[k]
= c1(2)k + c2(3)k − 6k − 35

2
k ≥ 0

(1.44)

To determine arbitrary constants c1 and c2 we set k = 0 and 1 and substitute the auxiliary conditions
y[0] = 4, y[1] = 13 to obtain

4 = c1 + c2 − 35
2

13 = 2c1 + 3c2 − 47
2

⎫⎪⎬
⎪⎭ =⇒

c1 = 28

c2 = −13
2

Therefore,

yc[k] = 28(2)k − 13
2

(3)k (1.45)

and

y[k] = 28(2)k − 13
2

(3)k

︸ ︷︷ ︸
yc[k]

− 6k − 35
2︸ ︷︷ ︸

yp[k]

(1.46)

1.2.4 A Comment on Auxiliary Conditions

This method requires auxiliary conditions y[0], y[1], …, y[n − 1] because the total solution is valid only
for k ≥ 0. But if we are given the initial conditions y[−1], y[−2], …, y[−n], we can derive the conditions
y[0], y[1], …, y[n − 1] using the iterative procedure discussed earlier.

1.2.4.1 Exponential Input

As in the case of differential equations, we can show that for the equation

Q[E]y[k] = P[E] f [k] (1.47)

the particular solution for the exponential input f [k] = rk is given by

yp[k] = H[r]rk r �= γi (1.48)

where

H[r] = P[r]
Q[r] (1.49)
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The proof follows from the fact that if the input f [k] = rk , then from Table 1.2 (Pair 4), yp[k] = βrk .
Therefore,

Eif [k] = f [k + i] = rk+i = rirk and P[E] f [k] = P[r]rk

Ejyp[k] = βrk+j = βrjrk and Q[E]y[k] = βQ[r]rk

so that Equation 1.47 reduces to
βQ[r]rk = P[r]rk

which yields β = P[r]/Q[r] = H[r].
This result is valid only if r is not a characteristic root. If r is a characteristic root, the particular solution

is βkrk where β is determined by substituting yp[k] in Equation 1.47 and equating coefficients of similar
terms on the two sides. Observe that the exponential rk includes a wide variety of signals such as a constant
C, a sinusoid cos(Ωk + θ), and an exponentially growing or decaying sinusoid |γ|k cos(Ωk + θ).

1.2.4.2 A Constant Input f (k) = C

This is a special case of exponential Crk with r = 1. Therefore, from Equation 1.48 we have

yp[k] = C
P[1]
Q[1] (1)k = CH[1] (1.50)

1.2.4.3 A Sinusoidal Input

The input ejΩk is an exponential rk with r = ejΩ. Hence,

yp[k] = H[ejΩ]ejΩk = P[ejΩ]
Q[ejΩ] ejΩk

Similarly for the input e−jΩk

yp[k] = H[e−jΩ]e−jΩk

Consequently, if the input

f [k] = cos Ωk = 1

2
(ejΩk + e−jΩk)

yp[k] = 1

2

{
H[ejΩ]ejΩk + H[e−jΩ]e−jΩk

}

Since the two terms on the right-hand side are conjugates

yp[k] = Re
{

H[ejΩ]ejΩk
}

If
H[ejΩ] = |H[ejΩ]|ej∠H[ejΩ]

then

yp[k] = Re
{
|H[ejΩ]∣∣ej(Ωk+∠H[ejΩ])}

= |H[ejΩ]| cos(Ωk + ∠H[ejΩ])
(1.51)

Using a similar argument, we can show that for the input

f [k] = cos(Ωk + θ)

yp[k] = |H[ejΩ]| cos(Ωk + θ + ∠H[ejΩ]) (1.52)
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Example 1.6:

Solve

(E2 − 3E + 2)y[k] = (E + 2)f [k]

for f [k] = (3)k u[k] and the auxiliary conditions y[0] = 2, y[1] = 1.

In this case

H[r] = P[r]
Q[r] = r + 2

r2 − 3r + 2

and the particular solution to input (3)k u[k] is H[3](3)k ; that is,

yp[k] = 3 + 2

(3)2 − 3(3) + 2
(3)k = 5

2
(3)k

The characteristic polynomial is (γ2 − 3γ + 2) = (γ − 1)(γ − 2). The characteristic roots are 1 and 2.
Hence, the complementary solution is yc[k] = c1 + c2(2)k and the total solution is

y[k] = c1(1)k + c2(2)k + 5
2

(3)k

Setting k = 0 and 1 in this equation and substituting auxiliary conditions yields

2 = c1 + c2 + 5
2

and 1 = c1 + 2c2 + 15
2

Solution of these two simultaneous equations yields c1 = 5.5, c2 = −5. Therefore,

y[k] = 5.5 − 6(2)k + 5
2

(3)k k ≥ 0

1.2.5 Method of Convolution

In this method, the input f [k] is expressed as a sum of impulses. The solution is then obtained as a sum
of the solutions to all the impulse components. The method exploits the superposition property of the
linear difference equations. A discrete-time unit impulse function δ[k] is defined as

δ[k] =
{

1 k = 0

0 k �= 0
(1.53)

Hence, an arbitrary signal f [k] can be expressed in terms of impulse and delayed impulse functions as

f [k] = f [0]δ[k] + f [1]δ[k − 1] + f [2]δ[k − 2] + · · · + f [k]δ[0] + · · · k ≥ 0 (1.54)

The right-hand side expresses f [k] as a sum of impulse components. If h[k] is the solution of
Equation 1.30 to the impulse input f [k] = δ[k], then the solution to input δ[k − m] is h[k − m]. This
follows from the fact that because of constant coefficients, Equation 1.30 has time-invariance property.
Also, because Equation 1.30 is linear, its solution is the sum of the solutions to each of the impulse
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components of f [k] on the right-hand side of Equation 1.54. Therefore,

y[k] = f [0]h[k] + f [1]h[k − 1] + f [2]h[k − 2] + · · · + f [k]h[0] + f [k + 1]h[−1] + · · ·
All practical systems with time as the independent variable are causal, that is, h[k] = 0 for k < 0. Hence,
all the terms on the right-hand side beyond f [k]h[0] are zero. Thus,

y[k] = f [0]h[k] + f [1]h[k − 1] + f [2]h[k − 2] + · · · + f [k]h[0]

=
k∑

m=0

f [m]h[k − m] (1.55)

The general solution is obtained by adding a complementary solution to the above solution. Therefore,
the general solution is given by

y[k] =
n∑

j=1

cjγ
k
j +

k∑
m=0

f [m]h[k − m] (1.56)

The last sum on the right-hand side is known as the convolution sum of f [k] and h[k].
The function h[k] appearing in Equation 1.30 is the solution of Equation 1.30 for the impulsive input

(f [k] = δ[k]) when all initial conditions are zero, that is, h[−1] = h[−2] = · · · = h[−n] = 0. It can be
shown that [2] h[k] contains an impulse and a linear combination of characteristic modes as

h[k] = b0

a0
δ[k] + A1γ

k
1 + A2γ

k
2 + · · · + Anγ

k
n (1.57)

where the unknown constants Ai are determined from n values of h[k] obtained by solving the equation
Q[E]h[k] = P[E]δ[k] iteratively.

Example 1.7:

Solve Example 1.5 using convolution method. In other words solve

(E2 − 3E + 2)y[k] = (E + 2)f [k]
for f [k] = (3)k u[k] and the auxiliary conditions y[0] = 2, y[1] = 1.

The unit impulse solution h[k] is given by Equation 1.57. In this case, a0 = 2 and b0 = 2. Therefore,

h[k] = δ[k] + A1(1)k + A2(2)k (1 58)

To determine the two unknown constants A1 and A2 in Equation 1 58, we need two values of h[k],
for instance h[0] and h[1]. These can be determined iteratively by observing that h[k] is the solution
of (E2 − 3E + 2)h[k] = (E + 2)δ[k], that is,

h[k + 2] − 3h[k + 1] + 2h[k] = δ[k + 1] + 2δ[k] (1 59)

subject to initial conditions h[−1] = h[−2] = 0. We now determine h[0] and h[1] iteratively from
Equation 1.59. Setting k = −2 in this equation yields

h[0] − 3(0) + 2(0) = 0 + 0 =⇒ h[0] = 0

Next, setting k = −1 in Equation 1.59 and using h[0] = 0, we obtain

h[1] − 3(0) + 2(0) = 1 + 0 =⇒ h[1] = 1
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Setting k = 0 and 1 in Equation 1.58 and substituting h[0] = 0, h[1] = 1 yields

0 = 1 + A1 + A2 and 1 = A1 + 2A2

Solution of these two equations yields A1 = −3 and A2 = 2. Therefore,

h[k] = δ[k] − 3 + 2(2)k

and from Equation 1.56

y[k] = c1 + c2(2)k +
k∑

m=0

(3)m
[
δ[k − m] − 3 + 2(2)k−m

]

= c1 + c2(2)k + 1.5 − 4(2)k + 2.5(3)k

The sums in the above expression are found by using the geometric progression sum formula

k∑
m=0

rm = rk+1 − 1
r − 1

r �= 1

Setting k = 0 and 1 and substituting the given auxiliary conditions y[0] = 2, y[1] = 1, we obtain

2 = c1 + c2 + 1.5 − 4 + 2.5 and 1 = c1 + 2c2 + 1.5 − 8 + 7 5

Solution of these equations yields c1 = 4 and c2 = −2. Therefore,

y[k] = 5.5 − 6(2)k + 2.5(3)k

which confirms the result obtained by the classical method.

1.2.5.1 Assessment of the Classical Method

The earlier remarks concerning the classical method for solving differential equations also apply to
difference equations. General discussion of difference equations can be found in texts on the subject [3].

References

1. Birkhoff, G. and Rota, G.C., Ordinary Differential Equations, 3rd ed., John Wiley & Sons, New York,
1978.

2. Lathi, B.P., Linear Systems and Signals, Berkeley-Cambridge Press, Carmichael, CA, 1992.
3. Goldberg, S., Introduction to Difference Equations, John Wiley & Sons, New York, 1958.



�

�

�

�

� �

2
The Fourier, Laplace,

and z-Transforms
2.1 Introduction ........................................................ 2-1
2.2 Fundamentals of the Fourier, Laplace, and

z-Transforms....................................................... 2-2
Laplace Transform • Rational Laplace Transforms •
Irrational Transforms • Discrete-Time FT •
z-Transform • Rational z-Transforms

2.3 Applications and Examples .............................. 2-15
Spectrum of a Signal Having a Rational Laplace
Transform • Numerical Computation of the FT •
Solution of Differential Equations • Solution of
Difference Equations • Defining Terms

References .................................................................... 2-26
Further Reading ........................................................... 2-26

Edward W. Kamen
Georgia Institute of Technology

2.1 Introduction

The study of signals and systems can be carried out in terms of either a time-domain or a transform-
domain formulation. Both approaches are often used together in order to maximize our ability to deal
with a particular problem arising in applications. This is very much the case in controls engineering
where both time-domain and transform-domain techniques are extensively used in analysis and design.
The transform-domain approach to signals and systems is based on the transformation of functions using
the Fourier, Laplace, and z-transforms. The fundamental aspects of these transforms are presented in this
section along with some discussion on the application of these constructs.

The development in this chapter begins with the Fourier transform (FT), which can be viewed as a
generalization of the Fourier series representation of a periodic function. The FT and Fourier series are
named after Jean Baptiste Joseph Fourier (1768–1830), who first proposed in a 1807 paper that a series of
sinusoidal harmonics could be used to represent the temperature distribution in a body. In 1822 Fourier
wrote a book on his work, which was translated into English many years later (see [1]). It was also during
the first part of the 1800s that Fourier was successful in constructing a frequency-domain representation
for aperiodic (nonperiodic) functions. This resulted in the FT, which provides a representation of a
function f (t) of a real variable t in terms of the frequency components comprising the function. Much
later (in the 1900s), an FT theory was developed for functions f (k) of an integer variable k. This resulted in
the discrete-time Fourier transform (DTFT) and the N-point discrete Fourier transform (N-point DFT),
both of which are briefly considered in this section.

2-1
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Also during the early part of the 1800s, Pierre Simon Laplace (1749–1827) carried out his work on the
generalization of the FT, which resulted in the transform that now bears his name. The Laplace transform
can be viewed as the FT with the addition of a real exponential factor to the integrand of the integral
operation. This results in a transform that is a function of a complex variable s = σ + jω. Although the
modification to the FT may not seem to be very major, in fact the Laplace transform is an extremely
powerful tool in many application areas (such as controls) where the utility of the FT is somewhat limited.
In this section, a brief presentation is given on the one-sided Laplace transform with much of the focus
on rational transforms.

The discrete-time counterpart to the Laplace transform is the z-transform which was developed primar-
ily during the 1950s (e.g., see [2–4]). The one-sided z-transform is considered, along with the connection
to the DTFT.

Applications and examples involving the Fourier, Laplace, and z-transforms are given in the second
part of this section. There the presentation centers on the relationship between the pole locations of a
rational transform and the frequency spectrum of the transformed function; the numerical computation
of the FT; and the application of the Laplace and z-transforms to solving differential and difference
equations. The application of the transforms to systems and controls is pursued in other chapters in this
handbook.

2.2 Fundamentals of the Fourier, Laplace, and z-Transforms

Let f (t) be a real-valued function of the real-valued variable t; that is, for any real number t, f (t) is a real
number. The function f (t) can be viewed as a signal that is a function of the continuous-time variable t
(in units of seconds) and where t takes values from −∞ to ∞. The FT F(ω) of f (t) is defined by

F(ω) =
∫ ∞

−∞
f (t)e−jωt dt, −∞ < ω < ∞ (2.1)

where ω is the frequency variable in radians per second (rad/s), j = √−1 and e−jωt is the complex
exponential given by Euler’s formula

e−jωt = cos(ωt) − j sin(ωt) (2.2)

Inserting Equation 2.2 into Equation 2.1 results in the following expression for the FT:

F(ω) = R(ω) + jI(ω) (2.3)

where R(ω) and I(ω) are the real and imaginary parts, respectively, of F(ω) given by

R(ω) =
∫ ∞

−∞
f (t) cos(ωt) dt

I(ω) = −
∫ ∞

−∞
f (t) sin(ωt) dt

(2.4)

From Equation 2.3, it is seen that in general the FT F(ω) is a complex-valued function of the frequency
variable ω. For any value of ω, F(ω) has a magnitude |F(ω)| and an angle ∠F(ω) given by

∠F(ω) =

⎧⎪⎪⎨
⎪⎪⎩

tan−1
(

I(ω)

R(ω)

)
, R(ω) ≥ 0

π + tan−1
(

I(ω)

R(ω)

)
, R(ω) < 0

(2.5)

where again R(ω) and I(ω) are the real and imaginary parts defined by Equation 2.4. The function |F(ω)|
represents the magnitude of the frequency components comprising f (t), and thus the plot of |F(ω)| versus
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ω is called the magnitude spectrum of f (t). The function ∠F(ω) represents the phase of the frequency
components comprising f (t), and thus the plot of ∠F(ω) versus ω is called the phase spectrum of f (t).
Note that F(ω) can be expressed in the polar form

F(ω) = |F(ω)| exp[ j∠F(ω)] (2.6)

whereas the rectangular form of F(ω) is given by Equation 2.3.
The function (or signal) f (t) is said to have an FT in the ordinary sense if the integral in Equation 2.1

exists for all real values of ω. Sufficient conditions that ensure the existence of the integral are that f (t)
have only a finite number of discontinuities, maxima, and minima over any finite interval of time and
that f (t) be absolutely integrable. The latter condition means that

∫ ∞

−∞
| f (t)| dt < ∞ (2.7)

There are a number of functions f (t) of interest for which the integral in Equation 2.1 does not exist; for
example, this is the case for the constant function f (t) = c for −∞ < t < ∞, where c is a nonzero real
number. Since the integral in Equation 2.1 obviously does not exist in this case, the constant function
does not have an FT in the ordinary sense, but it does have an FT in the generalized sense, given by

F(ω) = 2πcδ(ω) (2.8)

where δ(ω) is the impulse function. If Equation 2.8 is inserted into the inverse FT given by Equation 2.11,
the result is the constant function f (t) = c for all t. This observation justifies taking Equation 2.8 as the
definition of the (generalized) FT of the constant function.

The FT defined by Equation 2.1 can be viewed as an operator that maps a time function f (t) into a
frequency function F(ω). This operation is often given by

F(ω) = �[ f (t)] (2.9)

where � denotes the FT operator. From Equation 2.9, it is clear that f (t) can be recomputed from F(ω)
by applying the inverse FT operator denoted by �−1; that is,

f (t) = �−1[F(ω)] (2.10)

The inverse operation is given by

f (t) = 1

2π

∫ ∞

−∞
F(ω)ejωt dω (2.11)

The FT satisfies a number of properties that are very useful in applications. These properties are listed in
Table 2.1 in terms of functions f (t) and g(t) whose transforms are F(ω) and G(ω), respectively. Appearing
in this table is the convolution f (t) ∗ g(t) of f (t) and g(t), defined by

f (t) ∗ g(t) =
∫ ∞

−∞
f (τ)g(t − τ) dτ (2.12)

Also, in Table 2.1 is the convolution F(ω) ∗ G(ω) given by

F(ω) ∗ G(ω) =
∫ ∞

−∞
F(λ)G(ω − λ) dλ (2.13)

From the properties in Table 2.1 and the generalized transform given by Equation 2.8, it is possible
to determine the FT of many common functions. A list of FTs of some common functions is given in
Table 2.2.
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TABLE 2.1 Properties of FT

Property Transform/Property

Linearity �[af (t) + bg(t)] = aF(ω) + bG(ω) for any scalars a, b

Right or left shift in t �[f (t − to)] = F(ω) exp(−jωto) for any to

Time scaling �[f (at)] = (1/a)F(ω/a) for any real number a > 0

Time reversal �[f (−t)] = F(−ω) = F(ω) = complex conjugate of F(ω)

Multiplication by a power of t �[tnf (t)] = jn
dn

dωn F(ω), n = 1, 2, . . .

Multiplication by exp(jω0t) �[f (t) exp(jω0t)] = F(ω − ω0) for any real number ω0

Multiplication by sin(ω0t) �[f (t) sin(ω0t)] = (j/2)[F(ω + ω0) − F(ω − ω0)]
Multiplication by cos(ω0t) �[f (t) cos(ω0t)] = (1/2)[F(ω + ω0) + F(ω − ω0)]
Differentiation in the time domain �

[
dn

dtn f (t)

]
= (jω)nF(ω), n = 1, 2, . . .

Multiplication in the time domain �[f (t)g(t)] = 1

2π
[F(ω) ∗ G(ω)]

Convolution in the time domain �[f (t) ∗ g(t)] = F(ω)G(ω)

Duality �[F(t)] = 2πf (−ω)

Parseval’s theorem
∫ ∞
−∞

f (t)g(t) dt = 1

2π

∫ ∞
−∞

F(−ω)G(ω) dω

Special case of Parseval’s theorem
∫ ∞
−∞

f 2(t) dt = 1

2π

∫ ∞
−∞

|F(ω)|2 dω

2.2.1 Laplace Transform

Given the real-valued function f (t), the two-sided (or bilateral) Laplace transform F(s) of f (t) is defined by

F(s) =
∫ ∞

−∞
f (t)e−stdt (2.14)

TABLE 2.2 Common FTs

f (t) F(ω)

δ(t) = unit impulse 1

c, −∞ < t < ∞ 2πcδ(ω)

f (t) =
⎧⎨
⎩

1, −T/2 ≤ t ≤ T/2

0, all other t

2

ω
sin

(
Tω

2

)

sin(at)

t

⎧⎨
⎩

π, −a < ω < a

0, all other ω

e−b|t|, any b > 0
2b

ω2 + b2

e−bt2
any b > 0

√
π

b
e−ω2/4b

ejω0t 2πδ(ω − ω0)

cos(ω0t + θ) π[e−jθδ(ω + ω0) + ejθδ(ω − ω0)]
sin(ω0t + θ) jπ[e−jθδ(ω + ω0) − ejθδ(ω − ω0)]
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where s is a complex variable. The one-sided (or unilateral) Laplace transform of f (t) is defined by

F(s) =
∫ ∞

0
f (t)e−stdt (2.15)

Note that if f (t) = 0 for all t < 0, the one-sided and two-sided Laplace transforms of f (t) are identical.
In controls engineering, the one-sided Laplace transform is primarily used, and thus our presentation
focuses on only the one-sided Laplace transform, which is referred to as the Laplace transform.

Given a function f (t), the set of all complex numbers s such that the integral in Equation 2.15 exists
is called the region of convergence of the Laplace transform of f (t). For example, if f (t) is the unit-step
function u(t) given by u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0, the integral in Equation 2.15 exists for
any s = σ + jω with real part σ > 0. Hence, the region of convergence is the set of all complex numbers s
with positive real part, and, for any such s, the transform of the unit-step function u(t) is equal to 1/s.

Given a function f (t), if the region of convergence of the Laplace transform F(s) includes all complex
numbers s = jω for ω ranging from −∞ to ∞, then F(jω) = F(s)|s=jω is well defined (i.e., exists) and is
given by

F(jω) =
∫ ∞

0
f (t)e−jωtdt (2.16)

Then if f (t) = 0 for t < 0, the right-hand side of Equation 2.16 is equal to the FT F(ω) of f (t) (see
Equation 2.1). Hence, the FT of f (t) is given by

F(ω) = F(s)|s=jω (2.17)

(Note that we are denoting F(jω) by F(ω).) This fundamental result shows that the FT of f (t) can be
computed directly from the Laplace transform F(s) if f (t) = 0 for t < 0 and the region of convergence
includes the imaginary axis of the complex plane (all complex numbers equal to jω).

The Laplace transform defined by Equation 2.15 can be viewed as an operator, denoted by F(s) = L[f (t)]
that maps a time function f (t) into the function F(s) of the complex variable s. The inverse Laplace
transform operator is often denoted by L−1, and is given by

f (t) = L−1[F(s)] = 1

2πj

∫ c+j∞

c−j∞
X(s)estds (2.18)

The integral in Equation 2.18 is evaluated along the path s = c + jω in the complex plane from c − j∞
to c + j∞, where c is any real number for which the path c + jω lies in the region of convergence of the
transform F(s). It is often possible to determine f (t) without having to use Equation 2.18; for example,
this is the case when F(s) is a rational function of s. The computation of the Laplace transform or the
inverse transform is often facilitated by using the properties of the Laplace transform, which are listed in
Table 2.3. In this table, f (t) and g(t) are two functions with Laplace transforms F(s) and G(s), respectively,
and u(t) is the unit-step function defined by u(t) = 1 for t ≥ 0 and u(t) = 0 for t < 0. Using the properties
in Table 2.3, it is possible to determine the Laplace transform of many common functions without having
to use Equation 2.15. A list of common Laplace transforms is given in Table 2.4.

2.2.2 Rational Laplace Transforms

The Laplace transform F(s) of a function f (t) is said to be a rational function of s if it can be written as a
ratio of polynomials in s; that is,

F(s) = N(s)

D(s)
, (2.19)

where N(s) and D(s) are polynomials in the complex variable s given by

N(s) = bmsm + bm−1sm−1 + · · · + b1s + b0 (2.20)

D(s) = sn + an−1sn−1 + · · · + a1s + a0 (2.21)
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TABLE 2.3 Properties of the (One-Sided) Laplace Transform

Property Transform/Property

Linearity L[af (t) + bg(t)] = aF(s) + bG(s) for any scalars a, b

Right shift in t L[f (t − t0)u(t − t0)] = F(s) exp(−st0) for any t0 > 0

Time scaling L[f (at)] = (1/a)F(s/a) for any real number a > 0

Multiplication by a power of t L[tnf (t)] = (−1)n dn

dsn F(s), n = 1, 2, . . .

Multiplication by eαt L[f (t)eαt ] = F(s − α) for any real or complex number α

Multiplication by sin(ω0t) L[f (t) sin(ω0t)] = (j/2)[F(s + jω0) − F(s − jω0)]
Multiplication by cos(ω0t) L[f (t) cos(ω0t)] = (1/2)[F(s + jω0) + F(s − jω0)]
Differentiation in the time domain L

[
d

dt
f (t)

]
= sF(s) − f (0)

Second derivative L

[
d2

dt2 f (t)

]
= s2F(s) − sf (0) − d

dt
f (0)

nth derivative L

[
dn

dtn f (t)

]
= snF(s) − sn−1f (0) − sn−2 d

dt
f (0) − · · · − dn−1

dtn−1 f (0)

Integration L

[∫ t

0
f (τ)dτ

]
= 1

s
F(s)

Convolution in the time domain L[f (t) ∗ g(t)] = F(s)G(s)

Initial-value theorem f (0) = lim
s→∞ sF(s)

Final-value theorem If f (t) has a finite limit f (∞) as t → ∞, then f (∞) = lim
s→0

sF(s)

In Equations 2.20 and 2.21, m and n are positive integers and the coefficients bm, bm−1, . . . , b1, b0 and
an−1, . . . , a1, a0 are real numbers. In Equation 2.19, it is assumed that N(s) and D(s) do not have any
common factors. If there are common factors, they should always be cancelled. Also note that the poly-
nomial D(s) is monic; that is, the coefficient of sn is equal to 1. A rational function F(s) can always be
written with a monic denominator polynomial D(s). The integer n, which is the degree of D(s), is called
the order of the rational function F(s). It is assumed that n ≥ m, in which case F(s) is said to be a proper
rational function. If n > m, F(s) is said to be strictly proper.

Given a rational transform F(s) = N(s)/D(s) with N(s) and D(s) defined by Equations 2.20 and 2.21,
let z1, z2, . . . , zm denote the roots of the polynomial N(s), and let p1, p2, . . . , pn denote the roots of D(s);
that is, N(zi) = 0 for i = 1, 2, . . . , m and D(pi) = 0 for i = 1, 2, . . . , n. In general, zi and pi may be real or
complex numbers, but if any are complex, they must appear in complex conjugate pairs. The numbers
z1, z2, . . . , zm are called the zeros of the rational function F(s) since F(s) = 0 when s = zi for i = 1, 2, . . . , m;
and the numbers p1, p2, . . . , pn are called the poles of F(s) since the magnitude |F(s)| becomes infinite as
s approaches pi for i = 1, 2, . . . , n.

If F(s) is strictly proper (n > m) and the poles p1, p2, . . . , pn of F(s) are distinct (nonrepeated), then
F(s) has the partial fraction expansion

F(s) = c1

s − p1
+ c2

s − p2
+ · · · + cn

s − pn
, (2.22)

where the ci are the residues given by

ci = [(s − pi)F(s)]s=pi , i = 1, 2, . . . , n (2.23)

For a given value of i, the residue ci is real if and only if the corresponding pole pi is real, and ci is complex
if and only if pi is complex.



�

�

�

�

� �

The Fourier, Laplace, and z-Transforms 2-7

TABLE 2.4 Common Laplace Transforms

f (t) Laplace Transform F(s)

u(t) = unit-step function
1

s

u(t) − u(t − T) for any T > 0
1 − e−Ts

s

δ(t) = unit impulse 1

δ(t − t0) for any t0 > 0 e−t0s

tn, t ≥ 0
n!

sn+1 , n = 1, 2, . . .

e−at 1

s + a

tne−at n!
(s + a)n+1 , n = 1, 2, . . .

cos(ωt)
s

s2 + ω2

sin(ωt)
ω

s2 + ω2

cos2 ωt
s2 + 2ω2

s(s2 + 4ω2)

sin2 ωt
2ω2

s(s2 + 4ω2)

sinh(at)
a

s2 − a2

cosh(at)
s

s2 − a2

e−at cos(ωt)
s + a

(s + a)2 + ω2

e−at sin(ωt)
ω

(s + a)2 + ω2

t cos(ωt)
s2 − ω2

(s2 + ω2)2

t sin(ωt)
2ωs

(s2 + ω2)2

te−at cos(ωt)
(s + a)2 − ω2

[
(s + a)2 + ω2

]2

te−at sin(ωt)
2ω(s + a)[

(s + a)2 + ω2
]2

From Equation 2.22 we see that the inverse Laplace transform f (t) is given by the following sum of
exponential functions:

f (t) = c1ep1t + c2ep2t + · · · + cnepnt (2.24)

If all the poles p1, p2, . . . , pn of F(s) are real numbers, then f (t) is a sum of real exponentials given by
Equation 2.24. If F(s) has a pair of complex poles p = σ ± jω, then f (t) contains the term

ce(σ+jω)t + c̄e(σ−jω)t (2.25)
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where c̄ is the complex conjugate of c. Then writing c in the polar form c = |c|ejθ, we have

ce(σ+jω)t + c̄e(σ−jω)t = |c|ejθe(σ+jω)t + |c̄|e−jθe(σ−jω)t

= |c|eσt
[

ej(ωt+θ) + e−j(ωt+θ)
]

(2.26)

Finally, using Euler’s formula, Equation 2.26 can be written in the form

ce(σ+jω)t + c̄e(σ−jω)t = 2|c|eσt cos(ωt + θ) (2.27)

From Equation 2.27 it is seen that if F(s) has a pair of complex poles, then f (t) contains a sinusoidal
term with an exponential amplitude factor eσt . Note that if σ = 0 (so that the poles are purely imaginary),
Equation 2.27 is purely sinusoidal.

If one of the poles (say p1) is repeated r times and the other n − r poles are distinct, F(s) has the partial
fraction expansion

F(s) = c1

s − p1
+ c2

(s − p1)2 + · · · + cr

(s − p1)r + cr+1

s − pr+1
+ · · · + cn

s − pn
(2.28)

In Equation 2.28, the residues cr+1, cr+2, . . . , cn are calculated as in the distinct-pole case; that is,

ci = [(s − pi)F(s)]s=pi , i = r + 1, r + 2, . . . , n (2.29)

and the residues c1, c2, . . . , cr are given by

ci = 1

(r − i)!
{

dr−i

dsr−i

[
(s − p1)rF(s)

]}
s=p1

(2.30)

Then, taking the inverse transform of Equation 2.28 yields

f (t) = c1ep1t + c2tep1t + · · · + cr

(r − 1)! tr−1ep1t + cr+1epr+1t + · · · + cnepnt (2.31)

The above results reveal that the analytical form of the function f (t) depends directly on the poles of
F(s). In particular, if F(s) has a nonrepeated real pole p, then f (t) contains a real exponential term of the
form cept for some real constant c. If a real pole p is repeated r times, then f (t) contains terms of the
form c1ept , c2tept , . . . , crtr−1ept for some real constants c1, c2, . . . , cr . If F(s) has a nonrepeated complex
pair σ ± jω of poles, then f (t) contains a term of the form ceσt cos(ωt + θ) for some real constants c
and θ. If the complex pair σ ± jω is repeated r times, f (t) contains terms of the form c1eσt cos(ωt +
θ1), c2teσt cos(ωt + θ2), . . . , crtr−1eσt cos(ωt + θr) for some real constants c1, c2, . . . , cr and θ1, θ2, . . . , θr .
These results are summarized in Table 2.5.

TABLE 2.5 Relationship between the Poles of F(s) and the Form of f (t)

Pole Locations of F(s) Corresponding Terms in f (t)

Nonrepeated real pole at s = p cept

Real pole at s = p repeated r times
r∑

i=1

cit
i−1ept

Nonrepeated complex pair at s = σ ± jω ceσt cos(ωt + θ)

Complex pair at s = σ ± jω repeated r times
r∑

i=1

cit
i−1eσt cos(ωt + θi)
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If F(s) is proper, but not strictly proper (so that n = m in Equations 2.20 and 2.21), then using long
division F(s) can be written in the form

F(s) = bn + R(s)

D(s)
(2.32)

where the degree of R(s) is strictly less than n. Then R(s)/D(s) can be expanded via partial fractions as
was done in the case when F(s) is strictly proper. Note that for F(s) given by Equation 2.32, the inverse
Laplace transform f (t) contains the impulse bnδ(t). Hence, having n = m in F(s) results in an impulsive
term in the inverse transform.

From the relationship between the poles of F(s) and the analytical form of f (t), it follows that f (t)
converges to zero as t → ∞ if and only if all the poles p1, p2, . . . , pn of F(s) have real parts that are strictly
less than zero; that is, Re(pi) < 0 for i = 1, 2, . . . , n. This condition is equivalent to requiring that all the
poles be located in the open left half-plane (OLHP), which is the region in the complex plane to the left of
the imaginary axis.

It also follows from the relationship between the poles of F(s) and the form of f (t) that f (t) has a finite
limit f (∞) as t → ∞ if and only if all the poles of F(s) have real parts that are less than zero, except that
F(s) may have a nonrepeated pole at s = 0. In mathematical terms, the conditions for the existence of a
finite limit f (∞) are

Re(pi) < 0 for all poles pi �= 0 (2.33)

If pi = 0 is a pole of F(s), then pi is nonrepeated (2.34)

If the conditions in Equations 2.33 and 2.34 are satisfied, the limiting value f (∞) is given by

f (∞) = [sF(s)]s=0 (2.35)

The relationship in Equation 2.35 is a restatement of the final-value theorem (given in Table 2.3) in the
case when F(s) is rational and the poles of F(s) satisfy the conditions in Equations 2.33 and 2.34.

2.2.3 Irrational Transforms

The Laplace transform F(s) of a function f (t) is said to be an irrational function of s if it is not rational;
that is, F(s) cannot be expressed as a ratio of polynomials in s. For example, F(s) = e−t0s/s is irrational
since the exponential function e−t0s cannot be expressed as a ratio of polynomials in s. In this case, the
inverse transform f (t) is equal to u(t − t0), where u(t) is the unit-step function.

Given any function f (t) with transform F(s) and given any real number t0 > 0, the transform of the
time-shifted (or time-delayed) function f (t − t0)u(t − t0) is equal to F(s)e−t0s. Time-delayed signals arise
in systems with time delays, and thus irrational transforms appear in the study of systems with time
delays. Also, any function f (t) that is of finite duration in time has a transform F(s) that is irrational. For
instance, suppose that

f (t) = γ(t)[u(t − t0) − u(t − t1)], 0 ≤ t0 < t1 (2.36)

so that f (t) = γ(t) for t0 ≤ t < t1, and f (t) = 0 for all other t. Then f (t) can be written in the form

f (t) = γ0(t − t0)u(t − t0) − γ1(t − t1)u(t − t1) (2.37)

where γ0(t) = γ(t + t0) and γ1(t) = γ(t + t1). Taking the Laplace transform of Equation 2.37 yields

F(s) = Γ0(s)e−t0s − Γ1(s)e−t1s (2.38)

where Γ0(s) and Γ1(s) are the transforms of γ0(t) and γ1(t), respectively. Note that by Equation 2.38, the
transform F(s) is an irrational function of s.
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To illustrate the above constructions, suppose that

f (t) = e−at[u(t − 1) − u(t − 2)] (2.39)

Writing f (t) in the form of Equation 2.37 gives

f (t) = e−ae−a(t−1)u(t − 1) − e−2ae−a(t−2)u(t − 2) (2.40)

Then, transforming Equation 2.40 yields

F(s) = [e−(s+a) − e−2(s+a)] 1

s + a
(2.41)

Clearly, F(s) is an irrational function of s.

2.2.4 Discrete-Time FT

Let f (k) be a real-valued function of the integer-valued variable k. The function f (k) can be viewed as a
discrete-time signal; in particular, f (k) may be a sampled version of a continuous-time signal f (t). More
precisely, f (k) may be equal to the sample values f (kT) of a signal f (t) with t evaluated at the sample
times t = kT , where T is the sampling interval. In mathematical terms, the sampled signal is given by

f (k) = f (t)|t=kT = f (kT), k = 0, ±1, ±2, . . . (2.42)

Note that we are denoting f (kT) by f (k). The FT of a function f (k) of an integer variable k is defined by

F(Ω) =
∞∑

k=−∞
f (k)e−jΩk , −∞ < Ω < ∞ (2.43)

where Ω is interpreted as the real frequency variable. The transform F(Ω) is called the DTFT since it can
be viewed as the discrete-time counterpart of the FT defined above. The DTFT is directly analogous to
the FT, so that all the properties of the FT discussed above carry over to the DTFT. In particular, as is the
case for the FT, the DTFT F(Ω) is in general a complex-valued function of the frequency variable Ω, and
thus F(Ω) must be specified in terms of a magnitude function |F(Ω)| and an angle function ∠F(Ω). The
magnitude function |F(Ω)| (respectively, the angle function ∠F(Ω)) displays the magnitude (respectively,
the phase) of the frequency components comprising f (k). All of the properties of the FT listed in Table 2.1
have a counterpart for the DTFT, but this will not be pursued here.

In contrast to the FT, the DTFT F(Ω) is always a periodic function of the frequency variable Ω with
period 2π; that is,

F(Ω + 2π) = F(Ω) for − ∞ < Ω < ∞ (2.44)

As a result of the periodicity property in Equation 2.44, it is necessary to specify F(Ω) over a 2π interval
only, such as 0 to 2π or −π to π. Given F(Ω) over any 2π interval, f (k) can be recomputed using the
inverse DTFT. In particular, if F(Ω) is specified over the interval −π < Ω < π, f (k) can be computed
from the relationship

f (k) = 1

2π

∫ π

−π

F(Ω)ejkΩ dΩ (2.45)

In practice, the DTFT F(Ω) is usually computed only for a discrete set of values of the frequency
variable Ω. This is accomplished by using the N-point discrete Fourier transform (N-point DFT) of f (k)
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given by

Fn =
N−1∑
k=0

f (k)e−j2πkn/N , n = 0, 1, . . . , N − 1 (2.46)

where N is a positive integer. If f (k) = 0 for k < 0 and k ≥ N , comparing Equations 2.46 and 2.43 reveals
that

Fn = F

(
2πn

N

)
, n = 0, 1, . . . , N − 1 (2.47)

Hence, the DFT Fn is equal to the values of the DTFT F(Ω) with Ω evaluated at the discrete points
Ω = 2πn/N for n = 0, 1, 2, . . . , N − 1.

The computation of the DFT Fn given by Equation 2.46 can be carried out using a fast algorithm called
the Fast Fourier transform (FFT). The inverse FFT can be used to compute f (k) from Fn. A development
of the FFT is beyond the scope of this section (see “Further Reading”).

2.2.5 z-Transform

Given the function f (k), the two-sided (or bilateral) z-transform F(z) of f (k) is defined by

F(z) =
∞∑

k=−∞
f (k)z−k (2.48)

where z is a complex variable. The one-sided (or unilateral) z-transform of f (k) is defined by

F(z) =
∞∑

k=0

f (k)z−k (2.49)

Note that if f (k) = 0 for k = −1, −2, . . . , the one-sided and two-sided z-transforms of f (k) are the same.
As is the case with the Laplace transform, in controls engineering the one-sided version is the most useful,
and thus the development given below is restricted to the one-sided z-transform, which is referred to as
the z-transform.

Given f (k), the set of all complex numbers z such that the summation in Equation 2.49 exists is called
the region of convergence of the z-transform of f (k). If the region of convergence of the z-transform
includes all complex numbers z = ejΩ for Ω ranging from −∞ to ∞, then F(ejΩ) = F(z)|z=ejΩ is well
defined (i.e., exists) and is given by

F(ejΩ) =
∞∑

k=0

f (k)(ejΩ)−k (2.50)

But (ejΩ)−k = e−jΩk , and thus Equation 2.50 can be rewritten as

F(ejΩ) =
∞∑

k=0

f (k)e−jΩk (2.51)

Then if f (k) = 0 for all k < 0, the right-hand side of Equation 2.51 is equal to the DTFT F(Ω) of f (k) (see
Equation 2.43). Therefore, the DTFT of f (k) is given by

F(Ω) = F(z)|z=ejΩ (2.52)

This result shows that the DTFT of f (k) can be computed directly from the z-transform F(z) if f (k) = 0
for all k < 0 and the region of convergence includes all complex numbers z = ejΩ with −∞ < Ω < ∞.
Note that since |ejΩ| = 1 for any value of Ω and ∠ejΩ = Ω, the set of complex numbers z = ejΩ comprises
the unit circle of the complex plane. Hence, the DTFT of f (k) is equal to the values of the z-transform on
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TABLE 2.6 Properties of the (One-Sided) z-Transform

Property Transform/Property

Linearity Z[af (k) + bg(k)] = aF(z) + bG(z) for any scalars a, b

Right shift of f (k)u(k) Z[f (k − q)u(k − q)] = z−qF(z) for any integer q ≥ 1

Right shift of f (k) Z[f (k − 1)] = z−1F(z) + f (−1)

Z[f (k − 2)] = z−2F(z) + f (−2) + z−1f (−1)
...

Z[f (k − q)] = z−qF(z) + f (−q) + z−1f (−q + 1) + · · · + z−q+1f (−1)

Left shift in time Z[f (k + 1)] = zF(z) − f (0)z

Z[f (k + 2)] = z2F(z) − f (0)z2 − f (1)z
...

Z[f (k + q)] = zqF(z) − f (0)zq − f (1)zq−1 − · · · − f (q − 1)z

Multiplication by k Z[kf (k)] = −z
d

dz
F(z)

Multiplication by k2 Z[k2f (k)] = z
d

dz
F(z) + z2 d2

dz2 F(z)

Multiplication by ak Z[akf (k)] = F
( z

a

)

Multiplication by cos(Ωk) Z[cos(Ωk)f (k)] = 1

2
[F(ejΩz) + F(e−jΩz)]

Multiplication by sin(Ωk) Z[sin(Ωk)f (k)] = j

2
[F(ejΩz) − F(e−jΩz)]

Summation

⎡
⎣ k∑

i=0

f (i)

⎤
⎦= z

z − 1
F(z)

Convolution Z[f (k) ∗ g(k)] = F(z)G(z)

Initial-value theorem f (0) = lim
z→∞ F(z)

Final-value theorem If f (k) has a finite limit f (∞) as k → ∞, then f (∞) = lim
z→1

(z − 1)F(z)

the unit circle of the complex plane, assuming that the region of convergence of F(z) includes the unit
circle.

The z-transform defined by Equation 2.49 can be viewed as an operator, denoted by F(z) = Z[f (k)],
that maps a discrete-time function f (k) into the function F(z) of the complex variable z. The inverse
z-transform operation is denoted by f (k) = Z−1[F(z)]. As discussed below, when F(z) is a rational
function of z, the inverse transform can be computed using long division or by carrying out a partial
fraction expansion of F(z). The computation of the z-transform or the inverse z-transform is often
facilitated by using the properties of the z-transform given in Table 2.6. In this table, f (k) and g(k) are
two functions with z-transforms F(z) and G(z), respectively, and u(k) is the unit-step function defined
by u(k) = 1 for k ≥ 0 and u(k) = 0 for k < 0. A list of common z-transforms is given in Table 2.7. In
Table 2.7, the function δ(k) is the unit pulse defined by δ(0) = 1, δ(k) = 0 for k �= 0.

2.2.6 Rational z-Transforms

As is the case for the Laplace transform, the z-transform F(z) is often a rational function of z; that is, F(z)
is given by

F(z) = N(z)

D(z)
(2.53)
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TABLE 2.7 Common z-Transform Pairs

f (k) z-Transform F(z)

u(k) = unit-step function
z

z − 1

u(k) − u(k − N), N = 1, 2, . . .
zN − 1

zN−1(z − 1)
, N = 1, 2, . . .

δ(k) = unit pulse 1

δ(k − q), q = 1, 2, . . .
1

zq , q = 1, 2, . . .

ak , a real or complex
z

z − a

k
z

(z − 1)2

k + 1
z2

(z − 1)2

k2 z(z + 1)

(z − 1)3

kak az

(z − a)2

k2ak az(z + a)

(z − a)3

k(k + 1)ak 2az2

(z − a)3

cos(Ωk)
z2 − (cos Ω)z

z2 − (2 cos Ω)z + 1

sin(Ωk)
(sin Ω)z

z2 − (2 cos Ω)z + 1

ak cos(Ωk)
z2 − (a cos Ω)z

z2 − (2a cos Ω)z + a2

ak sin(Ωk)
(a sin Ω)z

z2 − (2a cos Ω)z + a2

where N(z) and D(z) are polynomials in the complex variable z given by

N(z) = bmzm + bm−1zm−1 + · · · + b1z + b0 (2.54)

D(z) = zn + an−1zn−1 + · · · + a1z + a0 (2.55)

It is assumed that the order n of F(z) is greater than or equal to m, and thus F(z) is proper. The poles and
zeros of F(z) are defined in the same way as given above for rational Laplace transforms.

When the transform F(z) is in the rational form in Equation 2.53, the inverse z-transform f (k) can be
computed by expanding F(z) into a power series in z−1 by dividing D(z) into N(z) using long division.
The values of the function f (k) are then read off from the coefficients of the power series expansion. The



�

�

�

�

� �

2-14 Control System Fundamentals

first few steps of the process are carried out below:

bmzm−n + (bm−1 − an−1bm)zm−n−1+ · · ·
zn + an−1zn−1 + · · · + a1z + a0

)
bmzm + bm−1zm−1 + · · ·

bmzm + an−1bmzm−1 + · · ·
(bm−1 − an−1bm)zm−1 + · · ·
(bm−1 − an−1bm)zm−1 + · · ·

...

Since the value of f (k) is equal to the coefficient of z−k in the power series expansion of F(z), it follows
from the above division process that f (n − m) = bm, f (n − m + 1) = bm−1 − an−1bm, and so on.

To express the inverse z-transform f (k) in closed form, it is necessary to expand F(z) via partial
fractions. It turns out that the form of the inverse z-transform f (k) is simplified if F(z)/z = N(z)/D(z)z
is expanded by partial fractions. Note that F(z)/z is strictly proper since F(z) is assumed to be proper.

Letting p1, p2, . . . , pn denote the poles of F(z), if the pi are distinct and are nonzero, then F(z)/z has
the partial fraction expansion

F(z)

z
= c0

z
+ c1

z − p1
+ c2

z − p2
+ · · · + cn

z − pn
(2.56)

where the residues are given by

c0 = F(0) (2.57)

ci =
[

(z − pi)
F(z)

z

]
z=pi

, i = 1, 2, . . . , n (2.58)

Then multiplying both sides of Equation 2.56 by z gives

F(z) = c0 + c1z

z − p1
+ c2z

z − p2
+ · · · + cnz

z − pn
(2.59)

and taking the inverse z-transform gives

f (k) = c0δ(k) + c1pk
1 + c2pk

2 + · · · + cnpk
n (2.60)

If the poles p1, p2, . . . , pn of F(z) are real numbers, then from Equation 2.60 it is seen that f (k) is the sum
of geometric functions of the form cpk , plus a pulse function c0δ(k) if c0 �= 0. If F(z) has a pair of complex
poles given in polar form by σe±jΩ, then it can be shown that f (k) contains a sinusoidal term of the form

cσk cos(Ωk + θ) (2.61)

for some constants c and θ.
If F(z) has a real pole p that is repeated r times, then f (k) contains the terms c1pk , c2kpk , . . . , crkr−1pk ;

and if F(z) has a pair of complex poles given by σe±jΩ that is repeated r times, then f (k) contains
terms of the form c1σ

k cos(Ωk + θ1), c2kσk cos(Ωk + θ2), . . . , crkr−1σk cos(Ωk + θr) for some constants
c1, c2, . . . , cr and θ1, θ2, . . . , θr . These results are summarized in Table 2.8.

From the relationship between the poles of F(z) and the analytical form of f (k), it follows that f (k)
converges to zero as k → ∞ if and only if all the poles p1, p2, . . . , pn of F(z) have magnitudes that are
strictly less than one; that is, |pi| < 1 for i = 1, 2, . . . , n. This is equivalent to requiring that all the poles be
located inside the open unit disk of the complex plane, which is the region of the complex plane consisting
of all complex numbers whose magnitude is strictly less than one.

It also follows from the relationship between pole locations and the form of the function that f (k) has
a finite limit f (∞) as k → ∞ if and only if all the poles of F(z) have magnitudes that are less than one,
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TABLE 2.8 Relationship between the Poles of F(z) and the Form of f (k)

Pole Locations of F(z) Corresponding Terms in f (k)

Nonrepeated real pole at z = p cpk

Real pole at z = p repeated r times
r∑

i=1

cik
i−1pk

Nonrepeated complex pair at z = σe±jΩ cσk cos(Ωk + θ)

Complex pair at z = σe±jΩ repeated r times
r∑

i=1

cik
i−1σk cos(Ωk + θi)

except that F(z) may have a nonrepeated pole at z = 1. In mathematical terms, the conditions for the
existence of a finite limit f (∞) are:

|pi| < 1 for all poles pi �= 1 (2.62)

If pi = 1 is a pole of F(z), then pi is nonrepeated (2.63)

If the conditions in Equations 2.62 and 2.63 are satisfied, the limiting value f (∞) is given by

f (∞) = [(z − 1)F(z)]z=1 (2.64)

The relationship in Equation 2.64 is a restatement of the final-value theorem (given in Table 2.6) in the
case when F(z) is rational and the poles of F(z) satisfy the conditions in Equations 2.62 and 2.63.

2.3 Applications and Examples

Given a real-valued signal f (t) of the continuous-time variable t, the FT F(ω) reveals the frequency
spectrum of f (t); in particular, the plot of |F(ω)| versus ω is the magnitude spectrum of f (t), and the plot
of ∠F(ω) versus ω is the phase spectrum of f (t). The magnitude function |F(ω)| is sometimes given in
decibels (dB) defined by

|F(ω)|dB = 20log10|F(ω)| (2.65)

Given a signal f (t) with FT F(ω), if there exists a positive number B such that |F(ω)| is zero (or
approximately zero) for all ω > B, the signal f (t) is said to be band limited or to have a finite bandwidth;
that is, the frequencies comprising f (t) are limited (for the most part) to a finite range from 0 to B rad/s.
The 3-dB bandwidth of such a signal is the smallest positive value B3dB such that

|F(ω)| ≤ .707Fmax for all ω > B3dB (2.66)

where Fmax is the maximum value of |F(ω)|. The inequality in Equation 2.66 is equivalent to requiring that
the magnitude |F(ω)|dB in decibels be down from its peak value by 3dB or more. For example, suppose
that f (t) is the T-second rectangular pulse defined by

f (t) =
{

1, −T/2 ≤ t ≤ T/2

0, all other t

From Table 2.2, the FT is

F(ω) = 2

ω
sin

(
Tω

2

)
(2.67)

Note that by l’Hôpital’s rule, F(0) = T . A plot of |F(ω)| vs. ω is given in Figure 2.1.
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FIGURE 2.1 Magnitude spectrum of the T-second rectangular pulse.

From Figure 2.1, it is seen that most of the frequency content of the rectangular pulse is contained in
the main lobe, which runs from −2π/T to 2π/T rad/s. Also, the plot shows that there is no finite positive
number B such that |F(ω)| is zero for all ω > B. However, |F(ω)| is converging to zero as ω → ∞, and
thus this signal can still be viewed as being bandlimited. Since the maximum value of |F(ω)| is Fmax = T ,
the 3-dB bandwidth of the T-second rectangular pulse is the smallest positive number B3dB for which

∣∣∣∣ 2

ω
sin

(
Tω

2

)∣∣∣∣≤ .707T for all ω > B3dB (2.68)

From Figure 2.1 it is clear that if the duration T of the rectangular pulse is decreased, the magnitude
spectrum spreads out, and thus the 3-dB bandwidth increases. Hence, a shorter duration pulse has a
wider 3-dB bandwidth. This result is true in general; that is, signals with shorter time durations have
wider bandwidths than signals with longer time durations.

2.3.1 Spectrum of a Signal Having a Rational Laplace Transform

Now suppose that the signal f (t) is zero for all t < 0, and that the Laplace transform F(s) of f (t) is rational
in s; that is F(s) = N(s)/D(s), where N(s) and D(s) are polynomials in s given by Equations 2.20 and 2.21.
It was noted in the previous section that if the region of convergence of F(s) includes the imaginary axis
(jω-axis) of the complex plane, then the FT F(ω) is equal to the Laplace transform F(s) with s = jω. When
F(s) is rational, it turns out that the region of convergence includes the jω-axis if and only if all the poles
of F(s) lie in the OLHP; thus, in this case, the FT is given by

F(ω) = F(s)|s=jω (2.69)

For example, if f (t) = ce−at for t ≥ 0 with a > 0, then F(s) = c/(s + a) which has a single pole at
s = −a. Since the point −a lies in the OLHP, the FT of the exponential function ce−at is

F(ω) = c

jω + a
(2.70)

It follows from Equation 2.70 that the 3-dB bandwidth is equal to a. Hence, the farther over in the OLHP
the pole −a (i.e., the larger a), the larger the bandwidth of the signal. Since the rate of decay to zero of
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ce−at increases as a is increased, this result again confirms the property that shorter duration time signals
have wider bandwidths. In the case when c = a = 1, a plot of the magnitude spectrum |F(ω)| is shown
in Figure 2.2. For any real values of a and c, the magnitude spectrum rolls off to zero at the rate of 20
dB/decade where a decade is a factor of 10 in frequency.

As another example, consider the signal f (t) whose Laplace transform is

F(s) = c

s2 + 2ζωns + ω2
n

(2.71)

where ωn is assumed to be strictly positive (ωn > 0). In this case, F(s) has two poles p1 and p2 given by

p1 = − ζωn + ωn

√
ζ2 − 1

p2 = − ζωn − ωn

√
ζ2 − 1

(2.72)

When ζ > 1, both poles are real, nonrepeated, and lie in the OLHP (assuming that ωn > 0). As ζ → ∞,
the pole p1 moves along the negative real axis to the origin of the complex plane and the pole p2 goes to
−∞ along the negative axis of the complex plane. For ζ > 1, F(s) can be expanded by partial fractions as
follows:

F(s) = c

(s − p1)(s − p2)
= c

p1 − p2

[
1

s − p1
− 1

s − p2

]
(2.73)

Taking the inverse Laplace transform gives

f (t) = c

p1 − p2
[ep1t − ep2t] (2.74)

and thus f (t) is a sum of two decaying real exponentials. Since both poles lie in the OLHP, the FT F(ω) is
given by

F(ω) = c

ω2
n − ω2 + j(2ζωnω)

(2.75)

For the case when c = ω2
n = 100 and ζ = 2, the plot of the magnitude spectrum |F(ω)| is given in Figure 2.3.

In this case, the spectral content of the signal f (t) rolls off to zero at the rate of 40dB/decade, starting with
the peak magnitude of 1 at ω = 0.
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FIGURE 2.2 Magnitude spectrum of the exponential function e−t .



�

�

�

�

� �

2-18 Control System Fundamentals

1

0.9

0.8

0.7

0.6

0.5

IF
(ω

)l

0.4

0.3

0.2

0.1

0 0 5 10
ω(rad/s)

15 20

FIGURE 2.3 Magnitude spectrum of the signal with transform F(s) = 100/(s2 + 40s + 100).

When ζ = 1, the poles p1 and p2 of F(s) are both equal to −ωn, and F(s) becomes

F(s) = c

(s + ωn)2 (2.76)

Taking the inverse transform gives
f (t) = cte−ωnt (2.77)

Since ωn is assumed to be strictly positive, when ζ = 1 both the poles are in the OLHP; in this case, the
FT is

F(ω) = c

(jω + ωn)2 (2.78)

As ζ varies from 1 to −1, the poles of F(s) trace out a circle in the complex plane with radius ωn. The
loci of pole locations is shown in Figure 2.4. Note that the poles begin at −ωn when ζ = 1, then split apart
and approach the jω-axis at ±jωn as ζ → 0 and then move to ωn as ζ → −1. For −1 < ζ < 1, the inverse
transform of F(s) can be determined by first completing the square in the denominator of F(s):

F(s) = c

(s + ζωn)2 + ω2
d

(2.79)

where
ωd = ωn

√
1 − ζ2 > 0 (2.80)

Note that ωd is equal to the imaginary part of the pole p1 given by Equation 2.72. Using Table 2.4, we
have that the inverse transform of F(s) is

f (t) = c

ωd
e−ζωnt sin ωdt (2.81)

From Equation 2.81, it is seen that f (t) now contains a sinusoidal factor. When 0 < ζ < 1, the poles lie in
the OLHP, and the signal is a decaying sinusoid. In this case, the FT is

F(ω) = c

(jω + ζωn)2 + ω2
d

(2.82)
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FIGURE 2.4 Loci of poles of F(s) as ζ varies from 1 to −1.

The magnitude spectrum |F(ω)| is plotted in Figure 2.5 for the values c = ω2
n = 100 and ζ = 0.3, 0.5, 0.7.

Note that for ζ = 0.5 and 0.3, a peak appears in |F(ω)|. This corresponds to the sinusoidal oscillation
resulting from the sin(ωdt) factor in f (t). Also note that as ζ is decreased from 0.5 to 0.3, the peak
increases in magnitude, which signifies a longer duration oscillation in the signal f (t). This result is
expected since the poles are approaching the jω-axis of the complex plane as ζ → 0. As ζ → 0, the peak
in |F(ω)| approaches ∞, so that |F(ω)| does not exist (in the ordinary sense) in the limit as ζ → 0.
When ζ → 0, the signal f (t) is purely oscillatory and does not have an FT in the ordinary sense. In
addition, when ζ < 0 there is no FT (in any sense) since there is a pole of F(s) in the open right half-plane
(ORHP).
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FIGURE 2.5 Magnitude spectrum of the signal with transform F(s) = 100/(s2 + 20ζs + 100) and with ζ =
0.7, 0.5, 0.3.
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The above results lead to the following generalized properties of the magnitude spectrum |F(ω)| of a
signal f (t) whose Laplace transform F(s) is rational with all poles in the OLHP:

• If the poles of F(s) are real, the magnitude spectrum |F(ω)| simply rolls off to zero as ω → ∞,
starting with a peak value at ω = 0 of F(0).

• If F(s) has a pair of complex conjugate poles at s = σ ± jωd with the ratio σ/ωd sufficiently small
and F(s) has no zeros located near the poles σ ± jωd in the complex plane, then |F(ω)| will have a
peak located approximately at ω = ωd .

2.3.2 Numerical Computation of the FT

In many applications, the signal f (t) cannot be given in function form; rather, all have a set of sample
values f (k) = f (kT), where k ranges over a subset of integers and T is the sampling interval. Without loss
of generality, we can assume that k starts with k = 0. Also, since all signals arising in practice are of finite
duration in time, we can assume that f (k) is zero for all k ≥ N for some positive integer N . The problem
is then to determine the FT of f (t) using the sample values f (k) = f (kT) for k = 0, 1, 2, . . . , N − 1.

One could also carry out a discrete-time analysis by taking the N-point DFT Fn of the sampled signal
f (k). In the previous section, it was shown that Fn is equal to F( 2πn

N ) for n = 0, 1, 2, . . . , N − 1, where
F( 2πn

N ) is the DTFT F(Ω) of f (k) with the frequency variable Ω evaluated at 2πn/N . Hence the discrete-
time counterpart of the frequency spectrum can be determined from Fn. For details on this, see “Further
Reading.”

Again letting F(ω) denote the FT of f (t), we can carry out a numerical computation of the FT as follows.
First, since f (t) is zero for t < 0 and t ≥ NT , from the definition of the FT in Equation 2.1 we have

F(ω) =
∫ NT

0
f (t)e−jωtdt (2.83)

Assuming that f (t) is approximately constant over each T-second interval [(k − 1)T , kT], we obtain the
following approximation to Equation 2.83:

F(ω) =
N−1∑
k=0

[∫ kT+T

kT
e−jωtdt

]
f (k) (2.84)

Then carrying out the integration in the right-hand side of Equation 2.84 gives

F(ω) = 1 − e−jωT

jω

N−1∑
k=0

e−jωkT f (k) (2.85)

Finally, setting ω = 2πn/NT in Equation 2.85 yields

F

(
2πn

NT

)
= 1 − e−j2πn/N

j2πn/NT
Fn (2.86)

where Fn is the DFT of f (k) given by Equation 2.46.
It should be stressed that the relationship in Equation 2.86 is only an approximation; that is, the right-

hand side of Equation 2.86 is an approximation to F(2πn/NT). In general, the approximation is more
accurate the larger the N is and/or the smaller the T is. For a good result, it is also necessary that f (t) be
suitably small for t < 0 and t ≥ NT .

As an example, let f (t) be the 2-second pulse given by f (t) = 1 for 0 ≤ t ≤ 2 and f (t) = 0 for all other t.
Using the time shift property in Table 2.1 and the FT of a rectangular pulse given in Table 2.2, we have
that the FT of f (t) is

F(ω) = 2

ω
sin(ω)e−jω (2.87)

A MATLAB program (adapted from [5]) for computing the exact magnitude spectrum |F(ω)| and the
approximation based on Equation 2.86 is given in Figure 2.6. The program was run for the case when
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N = 128 and T = 0.1, with the plots shown in Figure 2.7. Note that the approximate values are fairly
close, at least for frequencies over the span of the main lobe. A better approximation can be achieved by
increasing N and/or decreasing T . The reader is invited to try this using the program in Figure 2.6.

N  input('Input N:');

T  input('Input T:');

t  0:T:2;

f [ones(1,length(t)) zeros(1,N length(t))];

Fn fft( f );

gam 2*pi/N/T;

n 0:10/gam;

Fapp (1 exp( j*n*gam*T))/j/n/gam*Fn;

w 0:.05:10;

Fexact 2*sin(w)./w;

plot(n*gam,abs(Fapp(1:length(n))),'og',w,abs(Fexact),'b')

FIGURE 2.6 MATLAB program for computing the FT of the 2-second pulse.

2.3.3 Solution of Differential Equations

One of the major applications of the Laplace transform is in solving linear differential equations. To pursue
this, we begin by considering the first-order linear constant-coefficient differential equation given by

ḟ (t) + af (t) = w(t), t ≥ 0 (2.88)

where ḟ (t) is the derivative of f (t) and w(t) is an arbitrary real-valued function of t. To solve Equation
2.88, we apply the Laplace transform to both sides of the equation. Using linearity and the derivative

2.5

2

Exact

Approximate values
1.5

IF
(ω

)l

1

0.5

0
0 2 4 6

ω(rad/s)
8 10

FIGURE 2.7 Exact and approximate magnitude spectra of the 2-second pulse.
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properties of the Laplace transform given in Table 2.3, we have

sF(s) − f (0) + aF(s) = W(s) (2.89)

where F(s) is the transform of f (t), W(s) is the transform of w(t), and f (0) is the initial condition. Then
solving Equation 2.89 for F(s) gives

F(s) = 1

s + a
[f (0) + W(s)] (2.90)

Taking the inverse Laplace transform of F(s) then yields the solution f (t). For example, if w(t) is the
unit-step function u(t) and a �= 0, then W(s) = 1/s and F(s) becomes

F(s) = 1

s + a

[
f (0) + 1

s

]
= f (0)s + 1

(s + a)s
= f (0) − 1

a

s + a
+

1
a

s
(2.91)

Taking the inverse transform gives

f (t) =
[

f (0) − 1

a

]
e−at + 1

a
, t ≥ 0 (2.92)

Now consider the second-order differential equation

f̈ (t) + a1 ḟ (t) + a0f (t) = w(t) (2.93)

Again using the derivative property of the Laplace transform, taking the transform of both sides of
Equation 2.93 we obtain

s2F(s) − sf (0) − ḟ (0) + a1[sF(s) − f (0)] + a0F(s) = W(s) (2.94)

where f (0) and ḟ (0) are the initial conditions. Solving Equation 2.94 for F(s) yields

F(s) = 1

s2 + a1s + a0
[f (0)s + ḟ (0) + a1f (0) + W(s)] (2.95)

For example, if a0 = 2, a1 = 3, and w(t) = u(t), then

F(s) = 1

(s + 1)(s + 2)

[
f (0)s + ḟ (0) + 3f (0) + 1

s

]

F(s) =
f (0)s2 +

[
ḟ (0) + 3f (0)

]
s + 1

(s + 1)(s + 2)s

F(s) = 2f (0) + ḟ (0) − 1

s + 1
+ −f (0) − ḟ (0) + 0.5

s + 2
+ 0.5

s
(2.96)

Inverse transforming Equation 2.96 gives

f (t) = [2f (0) + ḟ (0) − 1]e−t + [−f (0) − ḟ (0) + 0.5]e−2t + 0.5, t ≥ 0 (2.97)

For the general case, consider the nth-order linear constant-coefficient differential equation

f (n)(t) +
n−1∑
i=0

aif
(i)(t) = w(t) (2.98)

where f (i)(t) is the ith derivative of f (t). Given w(t) and the initial conditions f (0), ḟ (0), . . . , f (n−1)(0), the
solution f (t) to Equation 2.98 is unique. The solution can be determined by taking the transform of both



�

�

�

�

� �

The Fourier, Laplace, and z-Transforms 2-23

sides of Equation 2.98 and solving for F(s). This yields

F(s) = 1

D(s)
[N(s) + W(s)] (2.99)

where D(s) is the polynomial

D(s) = sn + an−1sn−1 + · · · + a1s + a0 (2.100)

and N(s) is a polynomial in s of the form

N(s) = bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0 (2.101)

The coefficients b0, b1, . . . , bn−1 of N(s) depend on the values of the n initial conditions
f (0), ḟ (0), . . . , f (n−1)(0). The relationship between the bi and the initial conditions is given by the matrix
equation

b = Px (2.102)

where b and x are the column vectors

b =

⎡
⎢⎢⎢⎢⎢⎣

b0

b1
...

bn−2

bn−1

⎤
⎥⎥⎥⎥⎥⎦

x =

⎡
⎢⎢⎢⎢⎢⎣

f (0)
ḟ (0)

...
f (n−2)(0)
f (n−1)(0)

⎤
⎥⎥⎥⎥⎥⎦

(2.103)

and P is the n-by-n matrix given by

P =

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · an−2 an−1 1
a2 a3 · · · an−1 1 0
...

...
...

...
...

an−1 1 · · · 0 0 0
1 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(2.104)

The matrix P given by Equation 2.104 is invertible for any values of the ai , and thus there is a one-to-
one and onto correspondence between the set of initial conditions and the coefficients of the polynomial
N(s) in Equation 2.101. In particular, this implies that for any given vector b of coefficients of N(s), there
is a vector x of initial conditions that results in the polynomial N(s) with the given coefficients. From
Equation 2.102, it is seen that x = P−1b, where P−1 is the inverse of P.

Once N(s) is computed using Equation 2.102, the solution f (t) to Equation 2.98 can then be determined
by inverse transforming Equation 2.99. If W(s) is a rational function of s, then the right-hand side of
Equation 2.99 is rational in s and thus, in this case, f (t) can be computed via a partial fraction expansion.

An interesting consequence of the above constructions is the following characterization of a real-valued
function f (t) whose Laplace transform F(s) is rational. Suppose that

F(s) = N(s)

D(s)
(2.105)

where D(s) and N(s) are given by Equations 2.100 and 2.101, respectively. Then comparing Equations
2.105 and 2.99 shows that f (t) is the solution to the nth-order homogeneous equation

f (n)(t) +
n−1∑
i=0

aif
(i)(t) = 0 (2.106)

with the initial conditions given by x = P−1b, where x and b are defined by Equation 2.103. Hence, any
function f (t) having a rational Laplace transform is the solution to a homogeneous differential equation.
This result is of fundamental importance in the theory of systems and controls.
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2.3.4 Solution of Difference Equations

The discrete-time counterpart to the solution of differential equations using the Laplace transform is the
solution of difference equations using the z-transform. We begin by considering the first-order linear
constant-coefficient difference equation

f (k + 1) + af (k) = w(k), k ≥ 0 (2.107)

where w(k) is an arbitrary real-valued function of the integer variable k. Taking the z-transform of
Equation 2.107 using the linearity and left shift properties given in Table 2.6 yields

zF(z) − f (0)z + aF(z) = W(z) (2.108)

where F(z) is the z-transform of f (k) and f (0) is the initial condition. Then solving Equation 2.108 for
F(z) gives

F(z) = 1

z + a
[f (0)z + W(z)] (2.109)

For example, if w(k) is the unit-step function u(k) and a �= 1, then W(z) = z/(z − 1) and F(z) becomes

F(z) = 1

z + a

[
f (0)z + z

z − 1

]

F(z) = f (0)z(z − 1) + z

(z + a)(z − 1)
(2.110)

Then
F(z)

z
= f (0)(z − 1) + 1

(z + a)(z − 1)
(2.111)

and expanding by partial fractions gives

F(z)

z
= f (0) − 1

1+a

z + a
+

1
1+a

z − 1
(2.112)

Thus

F(z) =
[

f (0) − 1
1+a

]
z

z + a
+

1
1+a z

z − 1
(2.113)

and taking the inverse z-transform gives

f (k) =
[

f (0) − 1

1 + a

]
(−a)k + 1

1 + a
, k ≥ 0 (2.114)

For the general case, consider the nth-order linear constant-coefficient difference equation

f (k + n) +
n−1∑
i=0

aif (k + i) = w(k) (2.115)

The initial conditions for Equation 2.115 may be taken to be the n values f (0), f (1), . . . , f (n − 1). Another
choice is to take the initial values to be f (−1), f (−2), . . . , f (−n). We prefer the latter choice since the
initial values are given for negative values of the time index k. In this case, the use of the z-transform to
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solve Equation 2.115 requires that the equation be time shifted. This is accomplished by replacing k by
k − n in Equation 2.115, which yields

f (k) +
n∑

i=1

an−if (k − i) = w(k − n) (2.116)

Then using the right-shift property of the z-transform and transforming Equation 2.116 yields

F(z) = 1

D(z−1)

[
N(z−1) + z−nW(z) +

n∑
i=1

w(−i)z−n+i

]
(2.117)

where D(z−1) and N(z−1) are polynomials in z−1 given by

D(z−1) = 1 + an−1z−1 + · · · + a1z−n+1 + a0z−n (2.118)

N(z−1) = bn−1 + bn−2z−1 + · · · + b1z−n+2 + b0z−n+1 (2.119)

The coefficients bi of N(z−1) are related to the initial values by the matrix equation

b = Qφ (2.120)

where b and φ are the column vectors

b =

⎡
⎢⎢⎢⎢⎢⎣

b0

b1
...

bn−2

bn−1

⎤
⎥⎥⎥⎥⎥⎦

φ =

⎡
⎢⎢⎢⎢⎢⎣

f (−1)
f (−2)

...
f (−n + 1)

f (−n)

⎤
⎥⎥⎥⎥⎥⎦

(2.121)

and Q is the n-by-n matrix given by

Q =

⎡
⎢⎢⎢⎢⎢⎣

a0 0 · · · 0 0 0
a1 a0 · · · 0 0 0
...

...
...

...
...

an−2 an−3 · · · a1 a0 0
an−1 an−2 · · · a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎦

(2.122)

The matrix Q given by Equation 2.122 is invertible for any values of the ai as long as a0 �= 0, and thus for
any given vector b of coefficients of the polynomial N(z−1), there is a vector φ of initial conditions that
results in the polynomial N(z−1) with the given coefficients. Clearly, if a0 �= 0, then φ = Q−1b, where
Q−1 is the inverse of Q.

Once N(z−1) is computed using Equation 2.120, the solution f (k) to Equation 2.115 or Equation 2.116
can then be determined by inverse transforming Equation 2.117. If W(z) is a rational function of z, then
the right-hand side of Equation 2.117 is rational in z, and in this case, f (k) can be computed via a partial
fraction expansion.

Finally, it is worth noting (in analogy with the Laplace transform) that any function f (k) having a
rational z-transform F(z) is the solution to a homogeneous difference equation of the form

f (k + n) +
n−1∑
i=0

aif (k + i) = 0 (2.123)

where the initial conditions are determined using Equations 2.120 through 2.122.
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2.3.5 Defining Terms

3-dB bandwidth: For a bandlimited signal, this is the smallest value B3dB for which the magnitude
spectrum |F(ω)| is down by 3 dB or more from the peak magnitude for all ω > B3dB.

Bandlimited signal: A signal f (t) whose FT F(ω) is zero (or approximately zero) for all ω > B, where B
is a finite positive number.

Irrational function: A function F(s) of a complex variable s that cannot be expressed as a ratio of poly-
nomials in s.

Magnitude spectrum: The magnitude |F(ω)| of the FT of a function f (t).
One-sided (or unilateral) transform: A transform that operates on a function f (t) defined for t ≥ 0.
Open left half-plane (OLHP): The set of all complex numbers having negative real part.
Open unit disk: The set of all complex numbers whose magnitude is less than 1.
Phase spectrum: The angle ∠F(ω) of the FT of a function f (t).
Poles of a rational function N(s)/D(s): The values of s for which D(s) = 0, assuming that N(s) and D(s)

have no common factors.
Proper rational function: A rational function N(s)/D(s) where the degree of N(s) is less than or equal to

the degree of D(s).
Rational function: A ratio of two polynomials N(s)/D(s) where s is a complex variable.
Region of convergence: The set of all complex numbers for which a transform exists (i.e., is well defined)

in the ordinary sense.
Residues: The values of the numerator constants in a partial fraction expansion of a rational function.
Strictly proper rational function: A rational function N(s)/D(s) where the degree of N(s) is strictly less

than the degree of D(s).
Two-sided (or bilateral) transform: A transform that operates on a function f (t) defined for

−∞ < t < ∞.
Zeros of a rational function N(s)/D(s): The values of s for which N(s) = 0, assuming that N(s) and D(s)

have no common factors.
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3.1 Introduction

Matrices and linear algebra are indispensible tools for analysis and computation in problems involving
systems and control. This chapter presents an overview of these subjects that highlights the main concepts
and results.

3-1
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3.2 Matrices

To introduce the notion of a matrix, we start with some notation that will be used for describing matrices
and for presenting the rules for manipulating matrices in algebraic expressions.

Let R be a ring , a set of quantities together with definitions for addition and multiplication operations.
Standard notations for some examples of rings arising frequently in control systems applications include
R (the real numbers), C (the complex numbers), R[s] (the set of polynomials in the variable s having real
coefficients), and R(s) (the set of rational functions, i.e., ratios of polynomials). Each of these rings has
distinguished elements 0 and 1, the identity elements for addition and multiplication, respectively. Rings
for which addition and multiplication are commutative operations and for which multiplicative inverses
of all nonzero quantities exist are known as fields; in the examples given, the real numbers, the complex
numbers, and the rational functions are fields.

A matrix (more descriptively an R-matrix, e.g., a complex matrix or a real matrix) is a rectangular array
of matrix elements that belong to the ring R. When A is a matrix with m rows and n columns, denoted
A ∈ Rm×n, A is said to be “an m by n (written m × n) matrix,” and its matrix elements are indexed with
a double subscript, the first indicating the row position and the second indicating the column position.
The notation used is

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
· · ·
· · ·

am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦

and (A)ij = aij (3.1)

Three special “shapes” of matrices commonly arise and are given descriptive names. Rm×1 is the set
of column matrices, also known as column m-vectors, m-vectors, or when no ambiguity results simply as
vectors. Similarly, R1×n is the set of row vectors. Finally, Rn×n is the set of square matrices of size n.

3.3 Matrix Algebra

Since matrix elements belong to a ring R, they may be combined in algebraic expressions involving
addition and multiplication operations. This provides the means for defining algebraic operations for
matrices. The usual notion of equality is adopted: two m × n matrices are equal if and only if they have
the same elements.

3.3.1 Scalar Multiplication

The product of a matrix A ∈ Rm×n and a scalar z ∈ R may always be formed. The resulting matrix, also
in Rm×n, is obtained by elementwise multiplication:

(zA)ij = zaij = (Az)ij (3.2)

3.3.2 Matrix Addition

Two matrices, both in Rm×n, say A and B, may be added to produce a third matrix C ∈ Rm×n, A + B = C,
where C is the matrix of elementwise sums

(C)ij = cij = aij + bij (3.3)
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3.3.3 Matrix Multiplication

Two matrices, say A and B, may be multiplied with A as the left factor and B as the right factor if and
only if their sizes are compatible: if A ∈ RmA×nA and B ∈ RmB×nB , then it is required that nA = mB. That
is, the number of columns of the left factor must equal the number of rows of the right factor. When this
is the case, the product matrix C = AB is mA × nB, that is, the product has the same number of rows as
the left factor and the same number of columns as the right factor. With simpler notation, if A ∈ Rm×n

and B ∈ Rn×p, then the product matrix C ∈ Rm×p is given by

(C)ij = cij =
n∑

k=1

aikbkj (3.4)

Using the interpretation of the rows and the columns of a matrix as matrices themselves, several
important observations follow from the defining equation for the elements of a matrix product.

1. The columns of the product matrix C are obtained by multiplying the matrix A times the corre-
sponding columns of B.

2. The rows of the product matrix C are obtained by multiplying the corresponding rows of A times
the matrix B.

3. The (i, j)th element of the product matrix, (C)ij, is the product of the ith row of A times the jth
column of B.

4. The product matrix C may be expressed as the sum of products of the kth column of A times the
kth row of B.

Unlike matrix addition, matrix multiplication is generally not commutative. If the definition of matrix
multiplication allows for both of the products AB and BA to be formed, the two products are square
matrices, but they are not necessarily equal nor even the same size.

The addition and multiplication operations for matrices obey familiar rules of associativity and
distributivity: (a) (A + B) + C = A + (B + C); (b) (AB)C = A(BC); (c) (A + B)C = AC + BC; and (d)
A(B + C) = AB + AC.

3.3.4 The Zero Matrix and the Identity Matrix

The zero matrix, denoted 0, is any matrix whose elements are all zero:

(0)ij = 0 (3.5)

Usually the number of rows and columns of 0 will be understood from context; 0m×n will specifically
denote the m × n zero matrix. Clearly, 0 is the additive identity element for matrix addition: 0 + A = A =
A + 0; indeed, Rm×n with the operation of matrix addition is a group. For matrix multiplication, if A is
m × n then 0m×mA = 0m×n = A0n×n.

The identity matrix, denoted I, is a square matrix whose only nonzero elements are the ones along its
main diagonal:

(I)ij =
{

1 for i = j

0 for i �= j
(3.6)

Again, the dimensions of I are usually obtained from context; the n × n identity matrix is specifically
denoted In. The identity matrix serves as an identity element for matrix multiplication: ImA = A = AIn

for any A ∈ Rm×n. This has an important implication for square matrices: Rn×n, with the operations of
matrix addition and matrix multiplication, is a (generally noncommutative) ring.
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3.3.5 Matrix Inverse

Closely related to matrix multiplication is the notion of matrix inverse. If A and X are square matrices of
the same size and they satisfy AX = I = XA, then X is called the matrix inverse of A, and is denoted by
A−1. The inverse matrix satisfies

AA−1 = I = A−1A (3.7)

For a square matrix A, if A−1 exists, it is unique and (A−1)−1 = A. If A has a matrix inverse, A is said
to be invertible; the terms nonsingular and regular are also used as synonyms for invertible. If A has no
matrix inverse, it is said to be noninvertible or singular.

The invertible matrices in Rn×n, along with the operation of matrix multiplication, form a group, the
general linear group, denoted by GL(R, n); In is the identity element of the group.

If A and B are square, invertible matrices of the same size, then their products are invertible also and

(AB)−1 = B−1A−1; (BA)−1 = A−1B−1 (3.8)

This extends to products of more than two factors, giving the product rule for matrix inverses: The inverse
of a product of square matrices is the product of their inverses taken in reverse order, provided the inverses
of all of the factors exist.

3.3.5.1 Some Useful Matrix Inversion Identities

1. If the n × n matrices A, B, and A + B are all invertible, then

(A−1 + B−1)−1 = A(A + B)−1B (3.9)

2. Assuming that the matrices have suitable dimensions and that the indicated inverses all exist:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (3.10)

This simplifies in the important special case when C = 1, B is a column vector and D is a row
vector.

Determining whether a square matrix is invertible and, if so, finding its matrix inverse, are important
for a variety of applications. The determinant turns out to be a means of characterizing invertibility.

3.3.6 The Determinant

The determinant of a square matrix A ∈ Rn×n, denoted det A, is a scalar function taking the form of
a sum of signed products of n matrix elements. While an explicit formula for det A can be given [7],
it is common to define the determinant inductively as follows. For A = [a11] ∈ R1×1, det A = a11. For
A ∈ Rn×n, with n > 1,

det A =
n∑

k=1

(−1)i+kaikΔik(A) or det A =
n∑

k=1

(−1)i+kakiΔki(A) (3.11)

These are the Laplace expansions for the determinant corresponding to the ith row and ith column of
A respectively. In these formulas, the quantity Δik(A) is the determinant of the (n − 1) × (n − 1) square
matrix obtained by deleting the ith row and kth column of A, and similarly for Δki(A).

The quantities Δik(A) and Δki(A) are examples of (n − 1) × (n − 1) minors of A; for any k, 1 ≤ k ≤
n − 1, an (n − k) × (n − k) minor of A is the determinant of an (n − k) × (n − k) square matrix obtained
by deleting some set of k rows and k columns of A.

For any n, det In = 1. For A ∈ R2×2, the Laplace expansions lead to the well-known formula:
det A = a11a22 − a12a21.
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3.3.6.1 Properties of the Determinant

Many properties of determinants can be verified directly from the Laplace expansion formulas. For
example, consider the elementary row and column operations: replacing any row of a matrix by its sum
with another row does not change the value of the determinant, and, likewise, replacing any column
of a matrix by its sum with another column does not change the value of the determinant; replacing a
row (or a column) of a matrix with a nonzero multiple of itself changes the determinant by the same
factor; interchanging two rows (or columns) of a matrix changes only the sign of the determinant (i.e.,
the determinant is multiplied by −1).

If A ∈ Rn×n and z ∈ R, then det(zA) = zn det A. If A and B are matrices for which both products AB
and BA are defined, then det(AB) = det(BA). If in addition, both matrices are square then

det(AB) = det(BA) = det A det B = det B det A (3.12)

This is the product rule for determinants.

3.3.7 Determinants and Matrix Inverses

3.3.7.1 Characterization of Invertibility

The determinant of an invertible matrix and the determinant of its inverse are reciprocals. If A is inver-
tible, then

det(A−1) = 1/ det A (3.13)

This result indicates that invertibility of matrices is related to existence of multiplicative inverses in
the underlying ring R. In ring-theoretic terminology, the units of R are those ring elements having
multiplicative inverses. When R is a field, all nonzero elements are units, but for R = R[s] (or C[s]),
the ring of polynomials with real (or complex) coefficients, only the nonzero constants (i.e., the nonzero
polynomials of degree 0) are units.

Determinants provide a characterization of invertibility as follows:

The matrix A ∈ Rn×n is invertible if and only if det A is a unit in R.

When R is a field, all nonzero ring elements are units and the criterion for invertibility takes a simpler
form:

When R is a field, the matrix A ∈ Rn×n is invertible if and only if det A �= 0.

3.3.8 Cramer’s Rule and PLU Factorization

Cramer’s rule provides a general formula for the elements of A−1 in terms of a ratio of determinants:

(A−1)ij = (−1)i+jΔji(A)/ det A (3.14)

where Δji(A) is the (n − 1) × (n − 1) minor of A in which the jth row and ith column of A are deleted.
If A is a 1 × 1 matrix over R, then it is invertible if and only if it is a unit; when A is invertible,

A−1 = 1/A. (For instance, the 1 × 1 matrix s over the ring of polynomials, R[s], is not invertible; however,
as a matrix over R(s), the field of rational functions, it is invertible with inverse 1/s.)

If A ∈ R2×2, then A is invertible if and only if det A = Δ = a11a22 − a21a12 is a unit. When A is
invertible,

A =
[

a11 a12

a21 a22

]
and A−1 =

[
a22/Δ −a12/Δ

−a21/Δ a11/Δ

]
(3.15)

A 2 × 2 polynomial matrix has a polynomial matrix inverse just in case Δ equals a nonzero constant.
Cramer’s rule is almost never used for computations because of its computational complexity and

numerical sensitivity. When a matrix of real or complex numbers needs to be inverted, certain matrix
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factorization methods are employed; such factorizations also provide the best methods for numerical
computation of determinants.

Inversion of upper and lower triangular matrices is done by a simple process of back-substitution; the
inverses have the same triangular form. This may be exploited in combination with the product rule for
inverses (and for determinants) since any invertible matrix A ∈ R

n×n (R can be replaced by another field
F ) can be factored into the form

A = PLU (3.16)

where the factors on the right side are, respectively, a permutation matrix, a lower triangular matrix, and
an upper triangular matrix. The computation of this PLU factorization is equivalent to the process of
Gaussian elimination with pivoting [6]. The resulting expression for the matrix inverse (usually kept in
its factored form) is

A−1 = U−1L−1P−1 (3.17)

whereas det A = det P det L det U. (det P = ±1, since P is a permutation matrix.)

3.3.9 Matrix Transposition

Another operation on matrices that is useful in a number of applications is matrix transposition. If A is
an m × n matrix with (A)ij = aij, the transpose of A, denoted AT, is the n × m matrix given by

(AT)ij = aji (3.18)

Thus, the transpose of a matrix is formed by interchanging its rows and columns.
If a square matrix A satisfies AT = A, it is called a symmetric matrix. If a square matrix A satisfies

AT = −A, it is called a skew-symmetric matrix.
For matrices whose elements may possibly be complex numbers, a generalization of transposition is

often more appropriate. The Hermitian transpose of matrix A, denoted AH, is formed by interchanging
rows and columns and replacing each element by its complex conjugate:

(AH)ij = a∗
ji (3.19)

The matrix A is Hermitian symmetric if AH = A.

3.3.9.1 Properties of Transposition

Several relationships between transposition and other matrix operations are noteworthy. For any
matrix, (AT)T = A; for A ∈ Rm×n and z ∈ R, (zA)T = zAT. With respect to algebraic operations,
(A + B)T = AT + BT and (AB)T = BTAT. (The products AAT and ATA are always defined.) With respect
to determinants and matrix inversion, if A is a square matrix, det(AT) = det A, and if A is an invertible
matrix, AT is also invertible, with (AT)−1 = (A−1)T. A similar list of properties holds for Hermitian
transposition.

3.3.9.2 Orthogonal and Unitary Matrices

Even for 2 × 2 matrices, transposition appears to be a much simpler operation than inversion. Indeed,
the class of matrices for which AT = A−1 is quite remarkable. A real matrix whose transpose is also its
inverse is known as an orthogonal matrix. (This terminology is in common use, although it would be
preferable to use real unitary matrix as will become apparent later.) The set of n × n orthogonal matrices,
along with the operation of matrix multiplication, is a group; it is a subgroup of the group of invertible
matrices, GL(R, n). For complex matrices, when A satisfies AH = A−1, it is called a unitary matrix; the
unitary matrices form a subgroup of GL(C, n).
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3.3.10 Block Matrices

It is sometimes convenient to partition the rows and columns of a matrix so that the matrix elements
are grouped into submatrices. For example, a matrix A ∈ Rm×n may be partitioned into n columns
(submatrices in Rm×1) or into m rows (submatrices in R1×n). More generally

A =
⎡
⎢⎣

A11 · · · A1q
...

...
Ap1 · · · Apq

⎤
⎥⎦ (3.20)

where all submatrices in each block row have the same number of rows and all submatrices in each block
column have the same number of columns; that is, submatrix Aij is mi × nj, with m1 + · · · + mp = m and
n1 + · · · + nq = n. Such a matrix A is said to be a p × q block matrix, and it is denoted by A = (Aij) for
simplicity.

Matrix addition can be carried out blockwise for p × q block matrices with conformable partitions,
where the corresponding submatrices have the same number of rows and columns. Matrix multiplication
can also be carried out blockwise provided the left factor’s column partition is compatible with the right
factor’s row partition: it is required that if A = (Aij) is a pA × qA block matrix with block column i having
ni columns, and B = (Bij) is a pB × qB block matrix with block row j having mj rows, then when qA = pB

and, in addition, ni = mi for each i, the product matrix C = AB is a pA × qB block matrix C = (Cij), where
block Cij is given by

Cij =
r∑

k=1

AikBkj (3.21)

where r = qA = pB.
For square matrices written as p × p block matrices having square “diagonal blocks” Aii , the determi-

nant has a blockwise representation. For a square 2 × 2 block matrix,

det A = det

[
A11 A12

A21 A22

]
= det A11 det(A22 − A21A−1

11 A12) (3.22)

provided det A11 �= 0. If this block matrix is invertible, its inverse may be expressed as a conformable
block matrix:

A−1 =
[

A11 A12

A21 A22

]−1

=
[

S11 S12

S21 S22

]
(3.23)

and assuming A11 is invertible, the blocks of the inverse matrix are: S11 = A−1
11 + A−1

11 A12Φ
−1A21A−1

11 ;
S21 = −Φ−1A21A−1

11 ; S12 = −A−1
11 A12Φ

−1; S22 = Φ−1 = (A22 − A21A−1
11 A12)−1.

3.3.11 Matrix Polynomials and the Cayley--Hamilton Theorem

If A ∈ Rn×n, define A0 = In, and Ar equal to the product of r factors of A, for integer r ≥ 1. When A is
invertible, A−1 has already been introduced as the notation for the inverse matrix. Nonnegative powers
of A−1 provide the means for defining A−r = (A−1)r .

For any polynomial, p(s) = p0sk + p1sk−1 + · · · + pk−1s + pk , with coefficients pi ∈ R, the matrix
polynomial p(A) is defined as p(A) = p0Ak + p1Ak−1 + · · · + pk−1A + pkI. When the ring of scalars,
R, is a field (and in some more general cases), n × n matrices obey certain polynomial equations of
the form p(A) = 0; such a polynomial p(s) is an annihilating polynomial of A. The monic annihilating
polynomial of least degree is called the minimal polynomial of A; the minimal polynomial is the (monic)
greatest common divisor of all annihilating polynomials. The degree of the minimal polynomial of an
n × n matrix is never larger than n because of the following remarkable result.
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3.3.11.1 Cayley--Hamilton Theorem

Let A ∈ Rn×n, where R is a field. Let χ(s) be the nth degree monic polynomial defined by

χ(s) = det(sI − A) (3.24)

Then χ(A) = 0.

The polynomial χ(s) = det(sI − A) is called the characteristic polynomial of A.

3.3.12 Equivalence for Polynomial Matrices

Multiplication by A−1 transforms an invertible matrix A to a simple form: AA−1 = IAA−1 = I. For
A ∈ Rn×n with det A �= 0 but det A not equal to a unit in R, transformations of the form A �→ PAQ,
where P, Q ∈ Rn×n are invertible matrices, produce det A �→ det P det A det Q, that is, the determinant
is multiplied by the invertible element det P det Q ∈ R. Thus, invertible matrices P and Q can be sought
to bring the product PAQ to some simplified form even when A is not invertible; PAQ and A are said
to be related by R-equivalence.

For equivalence of polynomial matrices (see [5] for details), where R = R[s] (or C[s]), let P(s) and
Q(s) be invertible n × n polynomial matrices. Such matrices are called unimodular; they have constant,
nonzero determinants. Let A(s) be an n × n polynomial matrix with nonzero determinant. Then for the
equivalent matrix Ā(s) = P(s)A(s)Q(s), det Ā(s) differs from det A(s) only by a constant factor; with no
loss of generality Ā(s) may be assumed to be scaled so that det Ā(s) is a monic polynomial, that is, so that
the coefficient of the highest power of s in det Ā(s) is 1.

In forming Ā(s), the multiplication of A(s) on the left by unimodular P(s) corresponds to performing a
sequence of elementary row operations on A(s), and the multiplication of A(s) on the right by unimodular
Q(s) corresponds to performing a sequence of elementary column operations on A(s). By suitable choice
of P(s) and Q(s), A(s) may be brought to the Smith canonical form, AS (s), a diagonal polynomial matrix
whose diagonal elements are monic polynomials {φi(s) : 1 ≤ i ≤ n} satisfying the following divisibility
conditions: φk(s) is a factor of φk−1(s), for 1 < k ≤ n.

The polynomials in the Smith canonical form AS (s) are the invariant polynomials of A(s), and they
may be obtained from A(s) as follows. Let ε0(s) = 1, and for 1 ≤ i ≤ n, let εi(s) be the monic greatest
common divisor of all nonzero i × i minors of A(s). Then the invariant polynomials are given by φi(s) =
εi(s)/εi−1(s). It follows that det A(s) is a constant multiple of the polynomial εn(s) = φ1(s)φ2(s) · · · φn(s).

Example

As an example of the Smith canonical form, consider

A(s) =
[

s(s + 1)(s2 + s + 1) s2(s + 1)2

s(s + 1)2/3 s(s + 1)2/3

]

The 1 × 1 minors are the matrix elements: Δ11 = a22(s), Δ12 = a21(s), Δ21 = a12(s), and Δ22 =
a11(s). The sole 2 × 2 minor is det A(s). So the invariant polynomials are found from ε1(s) = s(s + 1)
and ε2(s) = s2(s + 1)3, giving φ1(s) = s(s + 1) and φ2(s) = s(s + 1)2. The corresponding Smith canoni-
cal form is indeed equivalent to A(s):

AS (s) =
[

s(s + 1) 0
0 s(s + 1)2

]
=
[

1 −s
0 3

]
A(s)

[
1 0

−1 1

]
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3.4 Vector Spaces

3.4.1 Definitions

A vector space consists of an ordered tuple (V , F , +, ·) having the following list of attributes:

1. V is a set of elements called vectors, containing a distinguished vector 0, the zero vector.
2. F is a field of scalars; most commonly F = R or C, the real or complex numbers.
3. The + operation is a vector addition operation defined on V . For all v1, v2, v3 ∈ V , the

following properties must hold: (a) v1 + v2 = v2 + v1, (b) v1 + 0 = v1, and (c) (v1 + v2) + v3 =
v1 + (v2 + v3).

4. The · operation is a scalar multiplication of vectors (and usually the · is not written explicitly).
For all v1, v2 ∈ V and α1, α2 ∈ F , the following properties must hold: (a) 0v1 = 0, (b) 1v1 = v1, (c)
α1(v1 + v2) = α1v1 + α1v2, (d) (α1 + α2)v1 = α1v1 + α2v1, and (e) α1(α2v1) = (α1α2)v1.

These conditions formalize the idea that a vector space is a set of elements closed under the operation
of taking linear combinations.

3.4.2 Examples and Fundamental Properties

The conventional notation for the vector space V consisting of (column) n-vectors of elements of F is F n;
thus, C

n and R
n denote the spaces of complex and real n-vectors, respectively. To show that the theory is

widely applicable, some other examples of vector spaces will be mentioned. Still others will arise later on.

1. The set of m × n matrices over a field F , with the usual rules for scalar multiplication and matrix
addition, forms a vector space, denoted F m×n.

2. The set of polynomial functions of a complex variable P = {p(s) : p(s) = p0sk + p1sk−1 + · · · +
pk−1s + pk} is a vector space over C because addition of two polynomials produces another poly-
nomial, as does multiplication of a polynomial by a complex number.

3. The set C[0, T] of real-valued continuous functions defined on the closed interval 0 ≤ t ≤ T is a
real vector space because the sum of two continuous functions is another continuous function and
scalar multiplication also preserves continuity.

A common form of vector space is the direct product space. If V1 and V2 are vector spaces over a common
field F , the direct product, V1 × V2, is the vector space whose elements are ordered pairs (v1, v2), where
v1 ∈ V1 and v2 ∈ V2, and where the vector space operations are defined elementwise. The extension to
n-fold direct products is straightforward; there is an obvious correspondence between the n-fold direct
product F × F × · · · F and F n.

A number of important concepts from the theory of vector spaces will now be introduced.

3.4.2.1 Subspaces

If V is a vector space and W is a subset of vectors from V , W is called a subspace of V if 0 ∈ W and if
α1v1 + α2v2 ∈ W for all v1 and v2 ∈ W and all α1 and α2 ∈ F . Notice that this means that W is a vector
space itself.

The geometric intuition of subspaces is that they consist of “planes” (often called “hyperplanes” in
spaces of high dimension) passing through the origin 0. The set W = {0} is always a subspace, and
V is a subspace of itself. If v is a nonzero vector in a vector space V , then the set {αv : α ∈ F } is a
subspace of V . For two subspaces W1 and W2, the intersection W1 ∩ W2 is a subspace, and the sum
W1 + W2 = {w1 + w2 : w1 ∈ W1 and w2 ∈ W2} is a subspace. When W1 ∩ W2 = {0}, the sum is said
to be a direct sum and is denoted by W1 ⊕ W2. When V = W1 ⊕ W2, the subspaces are said to be
complementary.
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3.4.2.2 Quotient Spaces

Let V be a vector space and let W be a subspace of V . Associated with W is an equivalence relation
on V defined by the condition that vectors v1 and v2 are equivalent just in case (v1 − v2) ∈ W . The
subset consisting of a vector v and all equivalent vectors in V is the equivalence class containing v; the
equivalence classes form a partition of V , with every vector belonging to exactly one equivalence class.
The set of equivalence classes inherits from V and W , the structure of a vector space known as the quotient
space, denoted by V/W . Scalar multiplication and vector addition in V extend to the equivalence classes
comprising V/W in the natural way, and W is the equivalence class serving as the zero element of V/W .

3.4.2.3 Linear Independence

A set of vectors {v1, v2, . . . , vk} is called linearly independent when the equation

k∑
i=1

αivi = 0 (3.25)

is satisfied only by the trivial choice of the scalars: α1 = α2 = · · · = αk = 0. No nontrivial linear combina-
tion of linearly independent vectors equals the zero vector. A set of vectors that is not linearly independent
is called linearly dependent. Any set containing 0 is linearly dependent.

3.4.2.4 Spanning Set

For any subset of vectors {v1, v2, . . . , vk} from V , the span of the subset is the subspace of elements
{v =∑k

i=1 αivi : αi ∈ F , 1 ≤ i ≤ k}, denoted sp {v1, v2, . . . , vk}. If v ∈ sp{v1, v2, . . . , vk} for every vector
v ∈ V , the subset is called a spanning set for V , and the vectors of the set span V .

3.4.2.5 Basis

A basis for a vector space V is any spanning set for V consisting of linearly independent vectors.

3.4.2.6 Dimension

If a vector space has a spanning set with finitely many vectors, then the number of vectors in every basis is
the same and this number is the dimension of the vector space. (By convention, the vector space consisting
of 0 alone has no basis, and has dimension zero.) A vector space having no spanning set with finitely
many vectors is called infinite dimensional.

All subspaces of a finite-dimensional vector space V are finite dimensional; if V has dimension n and
W is a subspace of V , then dim W ≤ dim V , and dim V/W = dim V − dim W .

3.4.2.7 Coordinates

If S is a linearly independent set of vectors, and v ∈ sp S, then there is a unique way of expressing v as
a linear combination of the vectors in S. Thus, given a basis, every vector in a vector space has a unique
representation as a linear combination of the vectors in the basis. If V is a vector space of dimension n
with basis B = {b1, b2, . . . , bn}, there is a natural correspondence between V and the vector space F n

defined by

v �→ vB =

⎡
⎢⎢⎢⎣

α1

α2
...

αn

⎤
⎥⎥⎥⎦ (3.26)
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where the elements of the coordinate vector vB give the representation of v ∈ V with respect to the basis B:

v =
n∑

i=1

αibi (3.27)

In particular, the basis vectors of V correspond to the standard basis vectors of F n: bi �→ ei , where
ei ∈ F n is the vector whose ith element is 1 and all of its other elements are 0; the ith element of the
standard basis of F n, ei , is called the ith unit vector or ith principal axis vector.

3.4.3 Linear Functions

Let X and Y be two vector spaces over a common field, F . A linear function (sometimes called a linear
transformation, linear operator, or linear mapping), denoted f : X → Y , assigns to each x ∈ X an element
y ∈ Y so as to make

f (α1x1 + α2x2) = α1f (x1) + α2f (x2) (3.28)

for every x1 and x2 ∈ X (the domain of the function) and for every choice of scalars α1 and α2 ∈ F .
For any α ∈ F , the function f : x �→ αx is a linear functions. For α = 0, it is the zero function; for α = 1

it is the identity function.
When its domain, X , is finite dimensional, a linear function is uniquely determined by its values on

any basis for X .
Composition of linear functions preserves linearity. If h : X → Z is defined as h(x) = g(f (x)), the

composition of two other linear functions, f : X → Y and g : Y → Z, then h is a linear function.
If f is a linear function, it necessarily maps subspaces of X to subspaces of Y . There are two subspaces

of particular importance associated with a linear function f : X → Y . The nullspace or kernel of f is the
subspace

ker f = {x ∈ X : f (x) = 0 ∈ Y} (3.29)

The range or image of f is the subspace

im f = {y ∈ Y : y = f (x) for some x ∈ X } (3.30)

If im f = Y , f is surjective or onto; if ker f = {0}, f is injective or 1 to 1. When f is both surjective and
injective, f is invertible, and there is an inverse function, f −1 : Y → X so that the compositions satisfy
f ( f −1(y)) = y and f −1( f (x)) = x for all y ∈ Y and all x ∈ X . The inverse function f −1 is a linear function,
when f is a linear function. When the linear function f : X → Y is invertible, the vector spaces X and Y
are said to be isomorphic.

If W is a subspace of X , the function f |W : W → Y , called the restriction of f to W and defined by
f |W (w) = f (w), is a linear function from W to Y . For example, f |ker f is the zero function on W = ker f .

When f is a linear function from a vector space X to itself, f : X → X , the composite function f (f (x))
is denoted succinctly as f 2(x); similarly, for n > 1, f n+1(x) = f (f n(x)) = f n(f (x)). Both ker f and im f
are subspaces of X . The quotient space X/ker f is the vector space of equivalence classes of vectors in
X , defined by the condition that vectors x1 and x2 belong to the same equivalence class just in case
(x1 − x2) ∈ ker f .

For finite-dimensional X , with f : X → X , the quotient space X/ker f and the subspace im f are
isomorphic; the linear function g : im f → X/ker f mapping x to its equivalence class in X/ker f for
every x ∈ im f is easily shown to be invertible. It follows that dim ker f + dim im f = dim X .

A linear function f : X → X is called a projection if f ( f (x)) = f (x) for all x; more precisely, f is a
projection onto im f . For a projection f , the subspaces ker f and im f are complementary; the linear
function defined as x �→ x − f (x) is called the complementary projection, and it is a projection onto ker f .

For f : X → X , any subspace mapped into itself is said to be f -invariant. For a subspace W ⊆ X , W is
f -invariant if f (w) ∈ W for all w ∈ W . ker f is f -invariant, and for any x ∈ X , the subspace spanned by
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the vectors {x, f (x), f (f (x)), . . .} is f -invariant. When W is f -invariant, f |W is a linear function from W
to W .

Let L(X , Y) denote the set of all linear functions from X to Y ; L(X , Y) is a vector space over F .
If X has dimension n and Y has dimension m, then L(X , Y) has dimension mn. If {x1, . . . , xn} is a
basis for X and {y1, . . . , ym} is a basis for Y , then a basis for L(X , Y) is the set of linear functions
{fij(x) : 1 ≤ i ≤ n , 1 ≤ j ≤ m}, where basis function fij(x) takes the value yj for basis vector xi and the
value 0 for all other basis vectors xk , k �= i.

For the special case of F -valued linear functions, L(X , F ) is known as the space of linear functionals
on X or the dual space of X . If X has dimension n, L(X , F ) also has dimension n. The basis of functions
described above is called the dual basis: with basis {x1, . . . , xn} for X , the dual basis functions of L(X , F )
are the linear functionals {fi(x) : 1 ≤ i ≤ n}, where fi(x) takes the value 1 for basis vector xi and the value
0 for all other basis vectors xk , k �= i.

3.4.3.1 Matrix Representations

Let A be an m × n matrix over F . Then the function f : F n → F m, defined in terms of matrix multi-
plication, x �→ Ax is a linear function. Indeed, every linear function f : F n → F m takes this form for a
unique matrix Af ∈ F m×n. Specifically, for 1 ≤ i ≤ n, the ith column of Af is defined to be the vector
f (ei) ∈ F m, where ei is the ith unit vector in F n. With this definition, for any x ∈ F n, f (x) = Af x; for
the case when f (x) = Ax, Af = A, as expected.

This same idea can be extended using bases and coordinate vectors to provide a matrix representation
for any linear function. Let f be a linear function mapping X to Y , let BX be a basis for X , and let BY

be a basis for Y . Suppose X has dimension n and Y has dimension m. Then there is a unique matrix
Af ∈ F m×n giving Af xBX = yBY if and only if f (x) = y, where xBX ∈ F n is the coordinate vector of x
with respect to the basis BX and yBY ∈ F m is the coordinate vector of y with respect to the basis BY . Thus
the ith column of Af is the coordinate vector (with respect to the basis BY ) of the vector f (bi) ∈ Y , where
bi ∈ X is the ith vector of the basis BX for X . Af is called the matrix representation of f with respect to
the bases BX and BY . When X = Y and BX = BY , Af is simply called the matrix representation of f with
respect to the basis BX .

If h : X → Z is defined as h(x) = g(f (x)), the composition of two other linear functions, f : X → Y and
g : Y → Z, and if the three vector spaces are finite dimensional and bases are chosen, the corresponding
relationship between the matrix representations of the linear functions is given by Ah = Ag Af , and
so composition of linear functions corresponds to matrix multiplication. For the case of Z = X and
h(x) = f n(x) for some n > 1, the corresponding matrix representation is Af n = An

f .
Certain matrix representations arise from the relationship between two bases of a single vector

space. If B = {b1, b2, . . . , bn} and B̂ = {̂b1, b̂2, . . . , b̂n} are two bases for a vector space X , let t : X → X
be the identity function on X , so that t(x) = x. Its matrix representation using basis B for t(x) and B̂
for x is the n × n matrix T whose ith column is the coordinate vector of b̂i with respect to the basis B.
Thus the coordinate vectors satisfy the equation

TxB̂ = xB (3.31)

T is an invertible matrix because the identity function is invertible: t−1(x) = t(x). Also, the matrix T−1 is
the matrix representation of the identity function on X with respect to the basis B̂ for t−1(x) and basis B
for x.

Let X = F n, and let B be the standard basis (i.e., the basis of standard unit vectors). Then every x is its
own coordinate vector: x = xB . Let T be an invertible n × n matrix with columns t1, . . . , tn. These n vectors
in F n are their own B coordinate vectors, so T is the matrix representation of the identity function on
F n corresponding to the standard basis B and basis B̂ = {t1, . . . , tn}. Clearly, B̂ and B coordinate vectors
are related by the equation TxB̂ = xB ; in other words, matrix T is the transformation of coordinates from
the basis for F n given by its columns to the standard basis.
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Now consider a linear function f : X → X along with bases B and B̂ for X . Let Af denote the matrix
representation of f with respect to basis B, and let Âf denote the matrix representation of f with respect to
basis B̂. The matrix representation T introduced above may be used to express the relationship between
the two matrix representations of f :

T−1Af T = Âf (3.32)

or equivalently

Af = TÂf T−1 (3.33)

Two n × n matrices A and Â related by the equation T−1AT = Â, for some invertible matrix T, are
said to be similar matrices, with T being called a similarity transformation. Keeping in mind the reasoning
that led to the similarity equation, we have the interpretation of T as the matrix formed from column
vectors selected as basis vectors, so that the product AT, viewed columnwise, gives the vectors obtained by
applying the linear function f (x) = Ax to these basis vectors. Then, the multiplication by T−1 produces
the matrix, T−1AT = Â, whose columns are the coordinate vectors with respect to this basis.

Similarity is an equivalence relation on F n×n, and a complete characterization of the similarity equiv-
alence classes is of major importance.

3.4.3.2 Linear Functionals

The matrix representation of linear functionals has some noteworthy aspects. Let BX = {x1, . . . , xn} be a
basis for X and let the dual basis of L(X , F ) be {h1(x), . . . , hn(x)}. Let the basis of F as a 1-dimensional
vector space over itself be {1}. From the definition of the dual basis functions, the matrix representation
of h(x) ∈ L(X , F ), where h(x) = α1h1(x) + · · · + αnhn(x) is given by Ah = [α1α2 · · · αn] ∈ F 1×n. Notice
that AT

h is the vector of coordinates of h(x) with respect to the dual basis.
Specializing to X = F n, there is a connection with matrix inversion. As in our discussion of similarity,

let T be the matrix formed from column vectors selected as basis vectors. The ith basis vector may be
expressed as Tei , where ei is the ith unit vector. Since T−1T = I, it follows that the linear functional
determined by the ith row of T−1, hi(x) = eT

i T−1x, is precisely the ith dual basis functional.
Matrix transposition also has its origins in this property of linear functions as shown by a consideration

of dual spaces. Let f be a linear function mapping X to Y , let BX be a basis for X , and let BY be a basis for
Y . Suppose X has dimension n and Y has dimension m. The matrix representation of f is Af ∈ F m×n.
Now consider the dual spaces L(X , F ) and L(Y , F ); each dual space has its associated dual basis. Take any
linear functional g ∈ L(Y , F ) and consider its composition with f , g(f (x)). For the matrix representations,
Ah = Ag Af . Using properties of matrix transposition, AT

h = (Ag Af )T = AT
f AT

g . As noted above, AT
h and

AT
g are the coordinate vectors of h(x) and g(y), respectively. So AT

f is the matrix representation of a linear

function, the adjoint function of f (x). f T : L(Y , F ) → L(X , F ), given by f T(g) : g(y) �→ g(f (x)), so that
f T(g)(x) = g(f (x)).

3.4.3.3 Lie Algebras of Linear Functions

For two linear functions f1(x) and f2(x) in L(X , X ), the composite functions f1(f2(x)) and f2(f1(x)) are
also linear functions. If X has dimension n and basis B, the matrix representations of f1 and f2 will be
denoted by A1 and A2, respectively; then A1A2 and A2A1 are the corresponding matrix representations
of the composite functions. We conclude that square matrices commute, that is, A1A2 = A2A1 if and only
if the associated composite functions are the same. To simplify notation, denote A1A2 − A2A1 = [A1, A2],
the Lie product of the matrices A1 and A2. [A1, A2] is the matrix representation of the linear function
f1(f2(x)) − f2(f1(x)), the Lie bracket of the linear functions, denoted by [f1, f2](x). Thus the matrices A1

and A2 commute if and only if the corresponding Lie bracket is the zero function.
In L(Rn, Rn), the real vector space of all linear functions mapping R

n to itself, a subspace A for which
the Lie bracket maps A × A into A is called a Lie algebra (over R). In the simplest cases, the Lie bracket
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of every pair of functions in A is the zero function, but more general subspaces may also be Lie algebras.
The dimension of A is its dimension as a subspace of linear functions.

For every point x̂ ∈ R
n, a real Lie algebra A associates a subspace of R

n given by x̂ �→ {f (̂x) ∈ R
n :

f (x) ∈ A}. Under certain conditions, this subspace is the space of tangent vectors at the point x̂ to a
manifold (“surface”) in R

n described implicitly as the solution space of an associated nonlinear equation.

Example

For x ∈ R
n and S ∈ R

n×n, Askew = {Sx : ST = −S} is the n(n − 1)/2-dimensional Lie algebra of skew
symmetric linear functions. Any two linearly independent functions in Askew have a nonzero Lie
bracket. For n = 3 the tangent vectors at each point x̂ form a subspace of R

3 having dimension 2, the
tangent plane at point x̂ to the solution manifold of F(x) = x2

1 + x2
2 + x2

3 − (̂x2
1 + x̂2

2 + x̂2
3 ) = 0. This

manifold is recognized as the surface of the sphere whose squared radius is x̂2
1 + x̂2

2 + x̂2
3 .

3.4.4 Norms and Inner Products

Vectors in R
2 and R

3 are often viewed as points in 2- and 3-dimensional Euclidean space, respectively.
The resulting geometric intuition may be extended to other vector spaces by developing more general
notions of length and angle.

3.4.4.1 Vector Norms

The notion of vector norm is introduced to play the role of length. For a vector space V over the real or
complex numbers, the notation ‖v‖ is used to denote the norm of vector v; ‖v‖ ∈ R. To qualify as a norm,
three properties must hold.

N1. For all v ∈ V , ‖v‖ ≥ 0 with equality holding only for v = 0
N2. For all v ∈ V and all α ∈ F , ‖αv‖ = |α|‖v‖
N3. (Triangle inequality) For all v1 and v2 ∈ V , ‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖

In N2, |α| denotes the absolute value when the field of scalars F = R, and it denotes the modulus (or
magnitude) when F = C.

Examples

The Euclidean norm on R
n is given by

‖v‖ = (vTv)
1/2 =

( n∑
i=1

v2
i

)1/2

(3 34)

It corresponds to Euclidean length for vectors in R
2 and R

3. Other norms for R
n are the uniform

norm, which will be denoted by ‖v‖∞, with

‖v‖∞ = max{|vi | : 1 ≤ i ≤ n} (3 35)

and the family of p-norms, defined for real numbers 1 ≤ p < ∞ by

‖v‖p =
( n∑

i=1

|vi |p

)1/p

(3 36)

The Euclidean norm is the p-norm for p = 2.
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Various norms turn out to be appropriate for applications involving vectors in other vector spaces;
as an example, a suitable norm for C[0, T ], the space of real-valued continuous functions on the
interval 0 ≤ t ≤ T is the uniform norm:

‖c(t)‖∞ = max{|c(t)| : 0 ≤ t ≤ T } (3 37)

The name and notation are the same as used for the uniform norm on R
n since the analogy is

apparent. A notion of p-norm for vector spaces of functions can also be established. The 2-norm is
the natural generalization of Euclidean norm:

‖c(t)‖2 =
(∫ T

0
|c(t)|2 dt

) 1/2

(3 38)

As a final example, the Frobenius norm of a matrix A ∈ R
m×n, denoted ‖A‖F, is the Euclidean norm

of the nm-vector consisting of all of the elements of A :

‖A‖F =
⎛
⎝ m∑

i=1

n∑
j=1

a2
ij

⎞
⎠

1/2

(3 39)

3.4.4.2 Norms of Linear Functions

When matrices are viewed as representations of linear functions, it is more appropriate to employ a
different kind of norm, one that arises from the role of a linear function as a mapping between vector
spaces. For example, consider the linear function f : R

n → R
n given by f (v) = Av. When R

n is equipped
with the Euclidean norm, the induced Euclidean norm of A, is defined by

‖A‖ = max{‖Av‖ : ‖v‖ = 1} (3.40)

This is easily generalized. For any linear function f : X → Y and norms ‖ · ‖X and ‖ · ‖Y , the induced
norm of f takes the form:

‖f ‖ = max{‖f (x)‖Y : ‖x‖X = 1} (3.41)

The subscripts are commonly suppressed when the choice of norms is readily determined from context.
The induced matrix norm ‖A‖ for A ∈ F n×m is simply the induced norm of the linear function Av.

A consequence of the definition of induced norm is the inequality

‖Av‖ ≤ ‖A‖ ‖v‖ (3.42)

which holds for all vectors v. This inequality also implies the following inequality for the induced norm
of a matrix product:

‖AB‖ ≤ ‖A‖ ‖B‖ (3.43)

Examples

Explicit expressions for three of the most important induced matrix norms can be determined.
Suppose A ∈ R

n×n. For the induced Euclidean norm,

‖A‖ = σ1(A) (3.44)

the largest singular value of the matrix. (Singular values are discussed later. Lacking an explicit for-
mula for ‖A‖, in some cases it suffices to have the easily evaluated bounds ‖A‖ ≤ ‖A‖F ≤ √

n‖A‖.)
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For the induced uniform norm,

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | (3.45)

which is the largest of the absolute row-sums of A. For the induced 1-norm,

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | (3.46)

which is the largest of the absolute column-sums of A.

3.4.4.3 Metric Spaces

It is sometimes useful to have a measure of the distance between two vectors v1 and v2 without imposing
the limitation of property N2 of norms. As an alternative, a distance function or metric is defined on a set
S of vectors as a real-valued function of vectors, d(v1, v2) : S × S → R, satisfying three properties:

M1. For all v1 and v2 ∈ S, d(v1, v2) = d(v2, v1)
M2. For all v1 and v2 ∈ S, d(v1, v2) ≥ 0 with equality holding only for v1 = v2

M3. (triangle inequality) For all v1, v2, and v3 ∈ S, d(v1, v2) ≤ d(v1, v3) + d(v3, v2)

A metric space is a vector space with associated metric. Since the definition of a metric makes no use of
vector space operations (scalar multiplication and vector addition), applications involving less structured
subsets S are also possible. For example, if S is the unit circle in R

2, that is, the points having Euclidean
norm equal to 1, then the (shortest) arc length between two points in S is a metric.

3.4.4.4 Inner Products and Orthogonality

For two vectors in F n, the dot product (also called the scalar product) is the function defined by v1 · v2 =
vT

1 v2.
For nonzero vectors v1 and v2 in R

2 or R
3, the Euclidean geometric notion of angle is easily expressed

in terms of the dot product. With v1 · v2 = vT
1 v2, the angle between v1 and v2, θ, satisfies

cos(θ) = vT
1 v2

((vT
1 v1)(vT

2 v2))
1/2

= vT
1 v2

‖v1‖ ‖v2‖ (3.47)

where the Euclidean norm is used in the second expression.
The notion of inner product of vectors is used to obtain a generalization of the dot product and thereby

to provide a geometric interpretation for angles between vectors in other vector spaces. If X is a vector
space over R, the mapping from the direct product space (ordered pairs of vectors) X × X to R defined
by (x1, x2) �→ 〈x1, x2〉 is an inner product if the following properties are satisfied:

I1. For all x ∈ X , 〈x, x〉 ≥ 0 with equality holding only for x = 0
I2. For all x1 and x2 ∈ X , 〈x1, x2〉 = 〈x2, x1〉
I3. For all x1 and x2 ∈ X and α ∈ R, 〈αx1, x2〉 = α〈x1, x2〉
I4. For all x1, x2, and x3 ∈ X , 〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉

Inner products for complex vector spaces are complex valued, and they satisfy similar properties (but
involving complex conjugation).
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The definition ‖x‖ = (〈x, x〉)1/2 provides X with a compatible norm. Furthermore, the Schwarz
inequality

|〈x1, x2〉| ≤ ‖x1‖ ‖x2‖ (3.48)

allows for the interpretation of the angle θ between vectors x1 and x2 through

cos(θ) = 〈x1, x2〉
‖x1‖ ‖x2‖ (3.49)

For the vector space R
n, the definition 〈v1, v2〉 = vT

1 v2, coincides with the dot product. Furthermore,
the Euclidean norm on R

n is compatible with this inner product.
With the notion of angle now defined in terms of inner product, two vectors are said to be orthogonal

if their inner product is zero.
For example, in the vector space C[0, T] of real-valued continuous functions on the interval 0 ≤ t ≤ T ,

the inner product of two functions c1(t) and c2(t) is defined by

〈c1(t), c2(t)〉 =
∫ T

0
c1(t)c2(t) dt (3.50)

and the Euclidean norm on C[0, T] defined earlier is compatible with this inner product.
While an inner product provides a norm, there are many cases of vector spaces having norms that are

not compatible with any definition of an inner product. For example, on R
n the uniform norm does not

correspond to any inner product.

3.4.4.5 Inner Product Spaces

Let V be an inner product space, a vector space with an inner product and compatible norm. A set of
mutually orthogonal vectors is known as an orthogonal set, and a basis consisting of mutually orthogonal
vectors is known as an orthogonal basis. An orthogonal basis consisting of vectors whose norms are all
one (i.e. consisting of vectors having unit length) is called an orthonormal basis.

Given an orthonormal basis, any vector is easily expressed as a linear combination of the orthonormal
basis vectors. If {w1, . . . , wk} is an orthonormal basis, the vector v is given by

v =
k∑

i=1

αiwi (3.51)

where αi = 〈v, wi〉. Also, as a generalization of the Pythagorean theorem,

‖v‖2 =
k∑

i=1

α2
i (3.52)

3.4.4.6 Orthogonal Projections

Suppose V is an inner product space and let W be a finite-dimensional subspace of V . The sub-
space W⊥ = {v : 〈v, w〉 = 0 for all w ∈ W} is called the orthogonal complement of W in V . Since every
v ∈ V can be written uniquely in the form v = w + w⊥, where w = v̂ ∈ W and w⊥ = (v − v̂) ∈ W⊥,
W ∩ W⊥ = {0}, and V = W ⊕ W⊥ is an orthogonal direct sum decomposition of V . The function
pW : V → V defined in terms of the unique decomposition, v �→ w = v̂ is a linear function. Further-
more, pW (pW (v)) = pW (v), so the function is a projection; it is called the orthogonal projection of V
onto W . The orthogonal direct sum decomposition of V may be written as V = im pW ⊕ ker pW . The
complementary orthogonal projection of pW is the orthogonal projection of V onto W⊥, denoted as pW⊥ ;
its kernel and image provide another orthogonal direct sum representation of V , whose terms correspond
to the image and kernel of pW , respectively.
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3.4.4.7 Linear Least-Squares Approximation

Suppose V is an inner product space and let W be a finite-dimensional subspace of V . (Other assumptions
about the subspace W can deal with some more general situations [10].) Every vector v ∈ V has a unique
linear least-squares approximation in W , that is, a unique vector v̂ ∈ W satisfying ‖v − v̂‖ ≤ ‖v − w‖
for any choice of w ∈ W . Indeed, v̂ = pW (v), the orthogonal projection of v onto W . The solution is
characterized by the projection theorem:

(v − v̂) ∈ W⊥ (3.53)

which expresses the condition that the error in the linear least-squares approximation of v is orthogonal
to every vector in W . More concretely, the linear least-squares approximation is found as the solution to
the normal equations

〈v − v̂, wi〉 = 0 for all wi ∈ W (3.54)

(For finite-dimensional W , it suffices to check the finite number of equations obtained by selecting {wi}
to be a basis for W , and the equations take their simplest form for an orthonormal basis of W .)

3.4.4.8 Gram--Schmidt Orthogonalization and QR Factorization

There is a constructive procedure for obtaining an orthonormal basis starting from an arbitrary basis,
the Gram–Schmidt procedure. Starting with a basis of k vectors {v1, v2, . . . , vk}, the orthonormal basis
{w1, w2, . . . , wk} is constructed sequentially according to the following steps:

1. w1 = z1/‖z1‖, where z1 = v1

2. For 2 ≤ i ≤ k, wi = zi/‖zi‖, where zi = vi −∑i−1
j=1〈vi , wj〉wj

A geometric interpretion of the Gram–Schmidt procedure is enlightening. With subspaces W0 = {0}
and Wi = sp{v1, . . . , vi} for i ≥ 1, the vectors zi are the orthogonal projections of vi onto W⊥

i−1, and the
orthonormal basis vectors are obtained by scaling these projections to vectors of unit length.

For k vectors in R
m, k ≤ m, take the vectors as columns of V ∈ R

m×k . Then the Gram–Schmidt
procedure produces the matrix factorization V = WU, where W ∈ R

m×k and U ∈ R
k×k is an upper

triangular matrix. The columns of the matrix W are orthonormal so that WTW = Ik .
The factorization of V into a product of a matrix with orthonormal columns times an upper triangular

matrix, WU, is traditionally known as the QR factorization [6]. It is rarely computed column-by-column
because better numerical accuracy can be achieved by taking a different approach. For simplicity, assume
that V is m × m. If any sequence of orthogonal matrices W1, W2, . . . , Wj can be found so that V is
transformed to an upper triangular matrix,

Wj · · · W2W1V = U (3.55)

then multiplying both sides of this equation by W = WT
1 WT

2 · · · WT
j produces the QR factorization.

A commonly applied computational procedure for QR factorization involves a certain sequence of
j = m symmetric orthogonal matrices known as Householder transformations [8], matrices of the form
W(y) = I − 2yyT/‖y‖2. The matrix Wi is chosen to be the Householder transformation that produces all
subdiagonal elements of the ith column of Wi · · · W1V equal to zero without changing any of the zeros
that are subdiagonal elements of the first i − 1 columns of Wi−1 · · · W1V.

3.4.4.9 Orthogonal Transformations, Orthogonal Matrices, and Orthogonal
Projection Matrices

A linear function f : V → V , where V is an inner product space over R, is an orthogonal transformation if
it maps an orthonormal basis to an orthonormal basis. If V is n dimensional, the matrix representation of
f with respect to an orthonormal basis is an orthogonal matrix, an n × n matrix O satisfying O−1 = OT.
The columns of an orthogonal matrix form an orthonormal basis for R

n (with the usual inner product,
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〈x1, x2〉 = xT
1 x2). For an orthogonal transformation, ‖f (v)‖ = ‖v‖, and for an orthogonal matrix ‖Ox‖ =

‖x‖, for all x. Any orthogonal matrix has induced Euclidean norm equal to 1.
A matrix formulation is also useful in studying orthogonal projections in the inner product space R

n.
A matrix A ∈ R

n×n is called a projection matrix when A2 = A, which corresponds to A being the matrix
representation of a projection f on an n-dimensional real vector space with respect to some basis. The
matrix representation of the complementary projection is I − A. In other words, Ax is a projection defined
on (the coordinate space) R

n. For the subspace W of R
n having an orthonormal basis {w1, . . . , wk}, an

orthogonal projection onto W is given by WWT = A, where W ∈ R
n×k is the matrix whose columns are

the orthonormal basis vectors. Notice that this orthogonal projection matrix is symmetric. In fact, the
choice of orthonormal basis does not matter; uniqueness of the orthogonal projection onto any subspace
can be shown directly from the defining equations A2 = A and AT = A.

3.5 Linear Equations

For a linear function f : X → Y , it is frequently of interest to find a vector x ∈ X whose image under
f is some given vector y ∈ Y , that is, to solve the equation f (x) = y for x. By resorting to the matrix
representation of f if necessary, there is no loss of generality in assuming that the problem is posed in
the framework of matrices and vectors, a framework that is suited to numerical computation as well as to
theoretical analysis using matrix algebra. With A ∈ F m×n, x ∈ F n, and y ∈ F m. the equation

Ax = y (3.56)

specifies m linear equations in n unknowns (the elements of x).

3.5.1 Existence and Uniqueness of Solutions

From the definition of matrix multiplication, the left-hand side of Equation 3.56 is a linear combination
of the n columns of A, the unknown coefficients of the linear combination being the elements of the
vector x. Thus for a given y ∈ F m, there will be a solution if and only if y ∈ im Ax; since this subspace,
the image or range of the linear function Ax, is spanned by the columns of A, it is conventionally called
the range of A, denoted by R(A).

In order that a solution x can be found for every possible choice of y, it is necessary and sufficient
that R(A) has dimension m, or equivalently that there are m linearly independent columns among the
n columns of A. When A has fewer than m linearly independent columns, the linear equations will be
inconsistent for some choices of y, and for such A the terminology overdetermined linear equations is
commonly used.

Solutions to linear equations are not necessarily unique; the terminology underdetermined linear equa-
tions is used in the case when the columns of A are not linearly independent, since uniqueness holds if
and only if the columns of A are linearly independent vectors. In the case n > m, uniqueness never holds,
whereas in the case n = m, the uniqueness condition coincides with the existence condition: the matrix
A must be invertible, and this is equivalent to the condition that the determinant of A be nonzero.

If a linear equation has two distinct solutions, x1 and x2, then the difference vector x = x1 − x2 is a
nontrivial (nonzero) solution to the related homogeneous equation

Ax = 0 (3.57)

This equation shows that a nontrivial solution to the homogeneous equation may be found if and only if
the columns of A are not linearly independent. For A ∈ F n×n this is equivalent to the condition det A = 0.

The set of all solutions to the homogeneous equation forms a subspace of F n, ker Ax, the kernel
or nullspace of the linear function Ax. It is conventionally called the nullspace of A, denoted N(A). By
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considering the quotient space F n/N(A). We find the following fundamental result relating the subspaces
associated with A: dimR(A) + dimN(A) = n. Indeed, N(A) provides a means of describing the entire set
of solutions to underdetermined linear equations. If Ax = y has a solution, say x0, the set of all solutions
can be expressed as

Sx = {x : x = x0 +
k∑

i=1

αixi} (3.58)

where the αi are arbitrary scalars and {x1, . . . , xk} is a basis for N(A). When N(A) = {0} consistent linear
equations have a unique solution.

The dimension of R(A) (a subspace of F m) is called the rank of A. Thus the rank of A is the number
of its linearly independent columns. Similarly, the dimension of N(A) (a subspace of F n) is called
the nullity of A. As already noted, for m × n matrices, these quantities are related by the equation
rank(A) + nullity(A) = n.

Remarkably, the rank of a matrix and the rank of its transpose are the same; in other words, for any
m × n matrix A, the number of linearly independent rows equals the number of linearly independent
columns. This follows from an examination of the duality between subspaces associated with A and those
associated with AT. In F n, the subspace (R(AT))⊥ is the same as the subspace N(A). Similarly, in F m,
the subspace (R(A))⊥ is the same as the subspace N(AT). Since dimR(AT) + dim(R(AT))⊥ = n and since
dimR(A) + dimN(A) = n, that is, rank(A) + nullity(A) = n, it follows that dimR(AT) = dimR(A), that is,
rank(AT) = rank(A)

When F m is an inner product space, a useful characterization of solvability of linear equations arises.
In this case, (R(A))⊥ = {0} when R(A) = F m so a solution x to Ax = y can be found for every possible
choice of y if and only if N(AT) = {0}.

3.5.2 Solving Linear Equations

For A ∈ F n×n, when A is invertible the solution of Ax = y can be written explicitly as a linear function
of y, y = A−1x; this relation also shows that the ith column of A−1 is the solution to the linear equation
Ax = ei , where ei is the ith unit vector.

For numerical computation of the solution of Ax = y, the PLU factorization of A (i.e., Gaussian
elimination) may be used. Given the factorization A = PLU, the solution x may be obtained from solving
two triangular sets of linear equations: solve PLz = y (which is triangular after a reordering of the
equations), and then solve Ux = z.

For the case of linear equations over the field of real numbers, additional results may be developed
by employing geometric concepts. Let A ∈ R

m×n, x ∈ R
n, and y ∈ R

m. The usual inner products will be
used for R

n and R
m: 〈x1, x2〉 = xT

1 x2 and 〈y1, y2〉 = yT
1 y2. In this framework, the matrix ATA ∈ R

n×n is
called the Gram matrix associated with A; the Gram matrix is symmetric and its (i, j)th element is the
inner product of the ith and jth columns of A. The Gram matrix is invertible if and only if A has linearly
independent columns, and so to test for uniqueness of solutions to consistent linear equations, it suffices
to verify that det ATA is nonzero. In this case, premultiplying both sides of the linear equation Ax = y
by AT produces the equation (the normal equations for the components of x), ATAx = ATy, which has
the solution x = (ATA)−1ATy. An alternative approach with better inherent numerical accuracy is to use
the QR factorization A = WU, premultiplying both sides of the linear equation by WT to give an easily
solved triangular system of linear equations, Ux = WTy.

3.5.2.1 Numerical Conditioning of Linear Equations

Geometric methods are useful in sensitivity analysis for linear equations. For A ∈ R
n×n, consider the

linear equations Ax = y, and suppose that the vector y is perturbed to become y + Δy. Then A(x + Δx) =
y + Δy, where Δx = A−1Δy. Using norms to quantify the relative change in x arising from the relative
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change in y, leads to the inequality
‖Δx‖
‖x‖ ≤ κ (A)

‖Δy‖
‖y‖ (3.59)

where κ(A) denotes the condition number of A, defined as

κ(A) = ‖A‖‖A−1‖ (3.60)

Since κ(A) = ‖A‖‖A−1‖ ≥ ‖AA−1‖ = 1, when κ(A) ≈ 1, the matrix A is well-conditioned, but when
κ(A) � 1, the matrix A is ill-conditioned. The condition number of A also serves as the multiplier scaling
relative errors in A, measured by the induced norm, to relative errors in x [7].

3.5.3 Approximate Solutions and the Pseudoinverse

A geometric approach provides a means of avoiding issues of existence and uniqueness of solutions by
replacing a consideration of the linear equation Ax = y with the following more general problem: among
the vectors x̂ that minimize the Euclidean norm of the error vector Ax̂ − y, find that vector x of smallest
Euclidean norm. The resulting vector x provides an approximate solution to inconsistent linear equations
and, alternatively, a solution in the case of consistent linear equations.

A unique solution to the general problem always exists and takes the form

x = A†y (3.61)

where the matrix A† is called the pseudoinverse of A [7] because it coincides with A−1, when A is square
and nonsingular. A† ∈ R

n×m, and it is the unique solution to the following set of matrix equations:

AA†A = A (3.62a)

A†AA† = A† (3.62b)

(AA†) is symmetric (3.62c)

(A†A) is symmetric (3.62d)

From these equations it is easily seen that (A†)† = A and that (AT)† = (A†)
T

.
The geometric interpretation of these equations is particularly significant. From Equation 3.62a,

(AA†)2 = AA†, so it is a projection. By Equation 3.62c, AA† is an orthogonal projection; Equation 3.62a
further implies that it is the orthogonal projection onto R(A). By similar reasoning, using Equation 3.62d,
A†A is the orthogonal projection onto R(AT).

The complemetary orthogonal projection of AA† is I − AA†, and the orthogonal complement of R(A)
in R

m is N(AT).
The roles of A and A† are interchanged in going from Equation 3.62a to Equation 3.62b. It follows that

A†A is the orthogonal projection onto R(A†) and so R(A†) = R(AT). [Similarly, AA† is the orthogonal
projection onto R((A†)T), etc.]

Closed-form expressions for A† are available in some cases. If A has linearly independent columns,
then the Gram matrix ATA is invertible and A† = (ATA)−1AT; for this case, A† may also be expressed in
terms of the QR factorization of A = WU: A† = U−1WT. If AT has linearly independent columns, then
the Gram matrix associated with AT, AAT, is invertible and A† = AT(AAT)−1. When neither A nor AT

has linearly independent columns, no simple expression for A† is available. In a later section, a matrix
factorization of A known as the singular value decomposition (SVD) will be used to provide an expression
for the pseudoinverse.

3.5.3.1 Sparse Solutions of Underdetermined Linear Equations

For consistent underdetermined linear equations, the solution x = A†y produces the solution of
smallest Euclidean norm. However, in some applications, a solution of a different character is desired.
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Any inherent nonuniqueness of solutions can be resolved by selecting a solution with sparseness, mean-
ing that a solution vector with many zero components is preferred. In this formulation, the number of
unknowns (elements of x) required to express the known quantities (elements of y) using the structural
relationships inherent in A can be minimized.

To solve the combinatorial optimization problem of maximizing the number of zero components over
the vectors in the solution set Sx in Equation 3.58 appears to be an intractable problem in general. However,
it turns out that finding the solution vector having minimum 1 norm produces sparse solutions in many
situations. Furthermore, the approach of minimizing ‖x‖1 also extends to solving for sparse approximate
solutions when inconsistencies, as suitably measured by the Euclidean norm, are small [3], much like
the problem formulation leading to the pseudoinverse solution. However, the computation of sparse
solutions relies on computational techniques for convex optimization problems, with no “closed-form”
solution like Equation 3.61.

3.6 Eigenvalues and Eigenvectors

Scalar multiplication, v �→ αv, is the simplest kind of linear function that maps a vector space into itself.
The zero function, v �→ 0, and the identity function, v �→ v, are two special cases. For a general linear
function, f : V → V , it is natural to investigate whether or not there are vectors, and hence subspaces of
vectors, on which f is equivalent to scalar multiplication.

3.6.1 Definitions and Fundamental Properties

If Wλ is a nonzero subspace such that f (w) = λw for all w ∈ Wλ, then it is called an eigenspace of f
corresponding to eigenvalue λ. The nonzero vectors in Wλ are called eigenvectors of f corresponding to
eigenvalue λ.

To study eigenvalues, eigenvectors, and eigenspaces it is customary to use matrix representations and
coordinate spaces. In this framework, the equation determining an eigenvector and its corresponding
eigenvalue takes the form

Au = λu for u �= 0 (3.63)

where A ∈ F n×n, u ∈ F n, and λ ∈ F . Equivalently,

(λI − A)u = 0 (3.64)

A nontrivial solution of this homogeneous linear equation will exist if and only if det(λI − A) = 0.
This equation is called the characteristic equation of the matrix A, since it involves the monic nth degree
characteristic polynomial of A,

det(λI − A) = χ(λ) = λn + χ1λ
n−1 + · · · + χn−1λ + χn (3.65)

Eigenvalues are zeros of the characteristic polynomial, that is, roots of the characteristic equation.
Depending on the field F , roots of the characteristic equation may or may not exist; that is, (λI − A)

may be invertible for all λ ∈ F . For a characteristic polynomial such as λ2 + 1, there are no real zeros even
though the polynomial has real coefficients; on the other hand, this polynomial has two complex zeros.
Indeed, by the Fundamental Theorem of Algebra, every nth degree polynomial with complex coefficients
has n complex zeros, implying that

det(λI − A) = (λ − λ1)(λ − λ2) · · · (λ − λn) (3.66)

for some set of complex numbers λ1, . . . , λn, not necessarily distinct. Thus, for finding eigenvalues and
eigenvectors of A ∈ R

n×n it is sometimes convenient to regard A as an element of C
n×n.
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The eigenvalues and eigenvectors of real matrices are constrained by conjugacy conditions. If A is
real and λ is an eigenvalue with nonzero imaginary part, then λ∗, the complex conjugate of λ, is also an
eigenvalue of A. (The characteristic polynomial of a real matrix has real coefficients and its complex zeros
occur in conjugate pairs.) If u is an eigenvector of the real matrix A corresponding to eigenvalue λ having
nonzero imaginary part, then u∗ (component wise conjugation) is an eigenvector of A corresponding to
eigenvalue λ∗.

Some classes of real matrices have real eigenvalues. Since the diagonal elements of any upper triangular
matrix are its eigenvalues, every real upper triangular matrix has real eigenvalues. The same is true of lower
triangular matrices and diagonal matrices. More surprisingly, any normal matrix, a matrix A ∈ C

n×n with
AHA = AAH, has real eigenvalues. A matrix A ∈ R

n×n is normal when ATA = AAT, and thus any real
symmetric matrix, that is, Q ∈ R

n×n with QT = Q, has real eigenvalues.

3.6.2 Eigenvector Bases and Diagonalization

When λ is an eigenvalue of A ∈ C
n×n, the subspace of C

n given by Wλ = N(λI − A) is the associated
maximal eigenspace; it has dimension greater than zero. If λ1 and λ2 are two eigenvalues of A with
λ1 �= λ2, corresponding eigenvectors u(λ1) ∈ Wλ1 and u(λ2) ∈ Wλ2 are linearly independent. This leads
to a sufficient condition for existence of a basis of C

n consisting of eigenvectors of A. If A has n distinct
eigenvalues, the set of n corresponding eigenvectors forms a basis for C

n.
More generally, if A has r ≤ n distinct eigenvalues, {λ1, . . . , λr}, with associated maximal eigenspaces

W1, W2, . . . , Wr having dimensions d1, d2, . . . , dr equal to the algebraic multiplicities of the eigenval-
ues (as zeros of the characteristic polynomial), respectively, then d1 + · · · + dr = n and C

n has a basis
consisting of eigenvectors of A. This case always holds for real symmetric matrices.

Let A ∈ C
n×n be a matrix whose eigenvectors {u1, u2, . . . , un} form a basis B for C

n; let {λ1, λ2, . . . , λn}
be the corresponding eigenvalues. Let T be the invertible n × n matrix whose ith column is ui . Then
AT = TΛ, where Λ is a diagonal matrix formed from the eigenvalues:

Λ =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0
0 λ2 ·
· · ·
· · ·
· · 0
0 · · · 0 λn

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.67)

Solving for Λ gives
T−1AT = Λ (3.68)

Thus A is similar to the diagonal matrix of its eigenvalues, Λ, and TΛT−1 = A. Also, Λ is the matrix
representation of the linear function f (x) = Ax with respect to the eigenvector basis B of C

n.
For any matrix whose eigenvectors form a basis of C

n, the similarity equation A = TΛT−1 may be
rewritten using the definition of matrix multiplication, giving

A = TΛT−1 =
n∑

i=1

λiuivi (3.69)

where vi is the ith row of T−1. This is called the spectral representation of A. The row vector vi is called a
left eigenvector of A since it satisfies viA = λivi .

3.6.3 More Properties of Eigenvalues and Eigenvectors

From the factored form of the characteristic polynomial it follows that det A = λ1λ2 · · · λn, the product of
the eigenvalues. Thus A will be invertible if and only if it has no zero eigenvalue. If λ = 0 is an eigenvalue
of A, N(A) is the associated maximal eigenspace.
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Let λ be an eigenvalue of A with corresponding eigenvector u. For integer k ≥ 0, λk is an eigenvalue of
Ak with corresponding eigenvector u; more generally, for any polynomial α(s) = α0sd + · · · + αd−1s + αd ,
α(λ) is an eigenvalue of α(A) with corresponding eigenvector u. If A is invertible, 1/λ is an eigenvalue of
A−1 with corresponding eigenvector u. The eigenvalues of A are the same as the eigenvalues of AT. Every
eigenvalue of an orthogonal matrix (or a unitary matrix) has unit magnitude.

For two square matrices of the same size, A1 and A2, the eigenvalues of A1A2 are the same as the
eigenvalues of A2A1. However, the Lie product, [A1, A2] = A1A2 − A2A1 is zero only when the matrices
commute. If A1 and A2 are n × n and have a common set of n linearly independent eigenvectors, then they
commute. Conversely, if A1 and A2 commute and if A1 has distinct eigenvalues, then A1 has n linearly
independent eigenvectors that are also eigenvectors of A2.

The spectral radius of a square matrix (over C or R) is defined as ρ(A) = limk→∞ ‖Ak‖1/k . Any induced
matrix norm can be used in the definition; the same limit value always exists. The spectral radius equals
the largest eigenvalue magnitude; ρ(A) = max{|λ| : det(λI − A) = 0}. All eigenvalues of A lie within the
disc {s ∈ C : |s| ≤ ρ(A)} in the complex plane. If A is invertible, all eigenvalues of A lie within the annulus
{s ∈ C : ρ(A−1) ≤ |s| ≤ ρ(A)} in the complex plane.

For an upper or lower triangular matrix, including a diagonal matrix, the diagonal elements are its
eigenvalues. In general, the diagonal elements of a real or complex matrix A define the centers of circular
Gershgorin discs in the complex plane, Gi(ai,i) = {s ∈ C : |s − ai,i| ≤ Σk �=i|ai,k|}, and every eigenvalue lies
in at least one Gershgorin disc.

Asymptotically stable linear time-invariant sytems in discrete time and in continuous time correspond,
respectively, to two classes of matrices characterized by their eigenvalue locations. A real or complex
matrix A is said to be a Schur matrix if its spectral radius is less than one; A is said to be a Hurwitz matrix
if its eigevalues all have negative real parts.

3.6.4 Symmetric Matrices

For a real symmetric matrix Q, all eigenvalues are real and the corresponding eigenvectors may be chosen
with real components. For this case, if λ1 and λ2 are two eigenvalues with λ1 �= λ2, the corresponding real
eigenvectors u(λ1) ∈ Wλ1 and u(λ2) ∈ Wλ2 are not only linearly independent, they are also orthogonal,
〈u(λ1), u(λ2)〉 = 0. Further, each maximal eigenspace has dimension equal to the algebraic multiplicity of
the associated eigenvalue as a zero of the characteristic polynomial, and each maximal eigenspace has an
orthogonal basis of eigenvectors. Thus, for any real symmetric matrix Q, there is an orthogonal basis for
R

n consisting of eigenvectors; by scaling the lengths of the basis vectors to one, an orthonormal basis of
eigenvectors is obtained. Thus Λ = OTQO, where O is an orthogonal matrix. (This may be generalized.
If A is a complex Hermitian matrix, that is, AH = A, where AH, denotes the combination of conjugation
and transposition: AH = (A∗)T. Then A has real eigenvalues and there is a basis of C

n comprised of
normalized eigenvectors so that Λ = UHAU, where U is a unitary matrix.)

For symmetric Q, when the eigenvectors are chosen to be orthonormal, the spectral representation
simplifies to

Q = OΛOT =
n∑

i=1

λiuiu
T
i (3.70)

A real symmetric matrix Q is said to be positive definite if the inequality xTQx > 0 holds for all x ∈ R
n

with x �= 0; Q is said to be nonnegative definite if xTQx ≥ 0 for all x ∈ R
n. When all eigenvalues of Q

are positive (nonnegative), Q is positive definite (nonnegative definite). When Q is nonnegative definite,
let V = Λ1/2O, where Λ1/2 denotes the diagonal matrix of nonnegative square roots of the eigenvalues;
then Q may be written in factored form as Q = VTV. This shows that if Q is positive definite, it is the
Gram matrix of a set of linearly independent vectors, the columns of V. If the QR factorization of V is
V = WU, then the Cholesky factorization of Q is Q = UTU [6], which is also seen to be the (symmetric)
PLU factorization of Q (i.e., P = I and L = UT).
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Conversely, for any matrix H ∈ R
m×n, the symmetric matrices Qn×n = HTH (the Gram matrix of the

columns of H) and Qm×m = HHT (the Gram matrix of the columns of HT) are both nonnegative definite
since xTQm×mx = 〈HTx, HTx〉 ≥ 0 for all x ∈ R

m and xTQn×nx = 〈Hx, Hx〉 ≥ 0 for all x ∈ R
n.

3.7 The Jordan Form and Similarity of Matrices

If the matrix A does not have a set of n linearly independent eigenvectors, it is not similar to a diagonal
matrix, but eigenvalues and eigenvectors still play a role in providing various useful representations; for
at least one of its eigenvalues λ, the dimension of Wλ is smaller than the algebraic multiplicity of λ

as a zero of the characteristic polynomial. For ease of notation let Aλ = (λI − A) so that Wλ = N(Aλ).
Then for k ≥ 1, N(Ak

λ) ⊆ N(Ak+1
λ ). Let I(Aλ) be the index of Aλ, the smallest positive integer k such that

N(Ak
λ) = N(Ak+1

λ ). Then the subspace Wλ,I = N(AI
λ) has dimension equal to the algebraic multiplicity

of λ as a zero of the characteristic polynomial; when I(Aλ) = 1, Wλ,I = Wλ, the associated maximal
eigenspace.

For each eigenvalue λ, Wλ,I is an A-invariant subspace (i.e., f -invariant for f (x) = Ax). For eigenvalues
λ1 �= λ2, the corresponding “generalized eigenspaces” are independent, that is, for nonzero vectors v1 ∈
Wλ1,I1 and v2 ∈ Wλ2,I2 , v1 and v2 are linearly independent. The vectors obtained by choosing bases of
all of the generalized eigenspaces, {Wλi ,Ii }, may be collected together to form a basis of C

n consisting
of eigenvectors and “generalized eigenvectors,” and the general form of the matrix representation of the
linear function Ax with respect to such a basis is a block diagonal matrix called the Jordan form [5]. Using
the basis vectors as the columns of T, the Jordan form of A is obtained by a similarity transformation,

T−1AT =

⎡
⎢⎢⎢⎢⎢⎢⎣

M(λ1, d1) 0 · · · 0
0 M(λ2, d2) ·
· · ·
· · ·
· · 0
0 · · · 0 M(λr , dr)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.71)

where block M(λi , di) has dimension di × di and di is the algebraic multiplicity of eigenvalue λi , assuming
there are r distinct eigenvalues.

The matrix M(λi , di) is the matrix representation of (Ax)|Wλi ,Ii
with respect to the basis chosen for

Wλi ,Ii . If there are ei linearly independent eigenvalues corresponding to eigenvalue λi then the basis
vectors can be chosen so that M(λi , di) takes the block diagonal form

M(λi , di) =

⎡
⎢⎢⎢⎢⎢⎢⎣

J1(λi) 0 · · · 0
0 J2(λi) ·
· · ·
· · ·
· · 0
0 · · · 0 Jei (λi)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.72)

where the Jordan blocks Jk(λi) take one of two forms: if the kth block has size δi,k = 1, then Jk(λi) = [λi];
if the kth block has size δi,k > 1, Jk(λi) is given elementwise as

(Jk(λi))p,q =

⎧⎪⎨
⎪⎩

λi , for p = q

1, for p = q + 1

0, otherwise

(3.73)

The sizes of the Jordan blocks can be expressed in terms of the dimensions of the subspaces Wλi ,j for
1 ≤ j ≤ Ii . The largest block size is equal to Ii = I(Aλi ). Of course

∑ei
k=1 δi,k = di . If every Jordan block

has size 1, ei = di and the Jordan form is a diagonal matrix.
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3.7.1 Invariant Factors and the Rational Canonical Form

Eigenvalues are invariant under similarity transformation. For any invertible matrix T, when T−1A1T =
A2, A1 and A2 have the same eigenvalues. Let λ be an eigenvalue of A1 and of A2. If u is a corresponding
eigenvector of A1, then T−1u is a corresponding eigenvector of A2. Likewise, T−1 transforms generalized
eigenvectors of A1 to generalized eigenvectors of A2. Given a convention for ordering the Jordan blocks,
the Jordan form is a canonical form for matrices under the equivalence relation of similarity, and two
matrices are similar if and only if they have the same Jordan form.

The use of eigenvectors and generalized eigenvectors, and related methods involving invariant sub-
spaces, is one approach to studying similarity of matrices. Polynomial matrix methods offer a second
approach, based on the transformation of the polynomial matrix (sI − A) corresponding to similarity:
(sI − A) �→ T−1(sI − A)T. This is a special case of the general equivalence transformation for polyno-
mial matrices A(s) �→ P(s)A(s)Q(s), whereby unimodular matrices P(s) and Q(s) transform A(s); two
polynomial matrices are equivalent if and only if they have the same invariant polynomials [11].

Two real or complex matrices A1 and A2 are similar if and only if the polynomial matrices (sI − A1)
and (sI − A2) have the same invariant polynomials [11]. The invariant polynomials of (sI − A) are also
known as the invariant factors of A since they are factors of the characteristic polynomial det(sI − A):
det(sI − A) = φ1(s)φ2(s) . . . φn(s). Also, φi+1(s) is a factor of φi(s), and φ1(s) is the minimal polynomial
of A, the monic polynomial p(s) of least degree such that p(A) = 0.

If A has q nontrivial invariant factors, then by similarity transformation it can be brought to the rational
canonical form by a suitable choice of T [5]:

T−1AT =

⎡
⎢⎢⎢⎢⎢⎢⎣

C(φ1(s)) 0 · · · 0
0 C(φ2(s)) ·
· · ·
· · ·
· · 0
0 · · · 0 C(φq(s))

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.74)

where the ith diagonal block of this matrix, C(φi(s)), is a companion matrix associated with ith invariant
factor: for a polynomial π(s) = sm + π1sm−1 + · · · + πm−1s + πm,

C(π(s)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 − πm

1 0 · · · 0 − πm−1

0 1 · ·
· · · ·
· · · ·
· 1 0 − π2

0 · · · 0 1 − π1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.75)

The characteristic polynomial of C(π(s)) is π(s).

3.8 Singular Value Decomposition

Another approach may be taken to the transformation of a matrix to a diagonal form. Using two orthonor-
mal bases obtained from eigenvectors of the symmetric nonnegative definite matrices ATA and AAT

provides a representation known as the singular value decomposition (SVD) of A [6]:

A = VΣUT (3.76)

In this equation, V is an orthogonal matrix of eigenvectors of the product AAT and U is an orthog-
onal matrix of eigenvectors of the product ATA. Σ is a diagonal matrix of nonnegative quantities
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σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 known as the singular values of A. The singular values are obtained from the
eigenvalues of the nonnegative definite matrix AAT (or those of ATA) by taking positive square roots
and reordering if necessary.

While not a similarity invariant, singular values are invariant under left and right orthogonal trans-
formations. For any orthogonal matrices O1 and O2, when O1A1O2 = A2, A1 and A2 have the same
singular values. The SVD holds for rectangular matrices in exactly the same form as for square matrices:
A = VΣUT, where V is an orthogonal matrix of eigenvectors of the product AAT and U is an orthogonal
matrix of eigenvectors of the product ATA. For A ∈ R

m×n, the matrix Σ ∈ R
m×n contains the singular

values (the positive square roots of the common eigenvalues of AAT and ATA) as diagonal elements of
a square submatrix of size min(m, n) located in its upper left corner, with all other elements of Σ being
zero.

The SVD is useful in a number of applications. If rank(A) = k (i.e., A has k linearly independent
columns or rows), then k is the number of its nonzero singular values. When Σ must be determined by
numerical techniques and is therefore subject to computational inaccuracies, judging the size of elements
of Σ in comparison to the “machine accuracy” of the computer being used provides a sound basis for
computing rank.

The SVD can be used to generate “low rank” approximations to the matrix A. If rank(A) = k, then for
κ < k the best rank κ approximation, that is, the one minimizing the induced Euclidean norm ‖A − Â‖
over rank κ matrices Â, is obtained by setting the smallest k − κ nonzero elements of Σ to zero and
multiplying by V and UT as in the defining equation for the SVD.

Finally, the SVD also provides a way of computing the pseudoinverse:

A† = UD†V T (3.77)

where D†, the pseudoinverse of Σ, is obtained from ΣT by inverting its nonzero elements.
The largest singular value of A ∈ R

n×n equals ‖A‖, its induced Euclidean norm. When A is invertible,
its smallest singular value gives the distance of A from the set of singular matrices, and the ratio of its
largest and smallest singular values is equal to its condition number, κ(A).

The singular values of a real symmetric matrix Q are equal to the absolute values of its eigenvalues and,
in particular, the spectral radius equals its induced Euclidean norm, ρ(Q) = ‖Q‖.

3.9 Matrices and Multivariable Functions

It has already been noted that the most general linear function f : R
n → R

m can be expressed in terms of
matrix multiplication as y = Ax, for y ∈ R

m, x ∈ R
n, and where A ∈ R

m×n is the matrix representation of
f (x) with respect to the standard bases of R

n and R
m. An important generalization involves linear matrix

equations; the case involving square matrices will be described below. Matrices also find application
involving a variety of more general nonlinear functions, and some important examples will be described.

3.9.1 Quadratic Forms

Homogeneous quadratic functionals arise in many important applications. A general setting would
involve a (real) inner product space X , with inner product 〈·, ·〉, along with a linear function f : X → X .
The associated homogeneous quadratic functional is q : X → R defined as q(x) = 〈x, f (x)〉.

In the case of X = R
n, the quadratic functional is often called a quadratic form and can be expressed

in terms of matrix multiplication as
q(x) = xTQx (3.78)

where Q ∈ R
n×n is the matrix representation of f (x) with respect to the standard basis of R

n. Without
loss of generality, it may be assumed that Q is symmetric, since the symmetric part of Q, (Q + QT)/2
yields the same quadratic form.
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Since every symmetric matrix has real eigenvalues and can be diagonalized by an orthogonal similarity
transformation, let OTQO = Λ. Taking y = OTx gives Q(x) = xTQx = yTΛy =∑n

i=1 λiy2
i . Thus, the

quadratic form may be expressed as a weighted sum of squares of certain linear functionals of x. The
quadratic form q(x) is positive (for all nonzero x), or equivalently the matrix Q is positive definite, when
all of the eigenvalues of Q are positive.

Another characterization of positive definiteness is given in terms of determinants. A set of principal
minors of Q consists of the determinants of a nested set of n submatrices of Q formed as follows.
Let (π1, π2, . . . , πn) be a permutation of (1, 2, . . . , n). Let Δ0 = det Q, and for 1 ≤ i < n let Δi be the
(n − i) × (n − i) minor given by the determinant of the submatrix of Q obtained by deleting rows and
columns π1, . . . , πi . Q is positive definite if and only if any set of principal minors has all positive elements.

A final characterization of positive definiteness is expressed in terms of Gram matrices. Q is positive
definite if and only if it can be written as the Gram matrix of a set of n linearly independent vectors;
taking such a set of vectors to be columns of a matrix H, Q = HTH and thus Q(x) = (Hx)T(Hx), which
expresses Q(x) as ‖Hx‖2, the squared Euclidean norm of the vector Hx.

Starting with the quadratic form xTQx, an invertible linear change of variables x = CTy
produces another quadratic form, yTCQCTy. The corresponding congruence transformation of sym-
metric matrices, whereby Q �→ CQCT, does not necessarily preserve eigenvalues; however, the signs of
eigenvalues are preserved. The number of positive, negative, and zero eigenvalues of Q characterizes its
equivalence class under congruence transformations.

3.9.2 Matrix-Valued Functions

The algebra of matrices provides a direct means for defining a polynomial function of a square matrix.
More generally, functions can be defined explicitly, like polynomial functions, or implicitly as the solution
to some matrix equation(s).

3.9.2.1 Matrix Functions

Let p : C → C, be a polynomial function, with p(s) = p0sm + p1sm−1 + · · · + pm−1s + pm, pi ∈ C,
0 ≤ i ≤ m. When A ∈ C

n×n, p(A) = p0Am + p1Am−1 + · · · + pm−1A + pmI.
For a function w : C → C given by a power series w(s) =∑∞

0 wisi , convergent in some region {s ∈ C :
|s| < R}, the corresponding matrix function w(A) =∑∞

0 wiAi is defined for matrices A with ρ(A) < R,
where ρ(A) denotes the spectral radius of A. Under this condition, the sequence of partial sums, Sk =∑k

0 wiAi , converges to a limiting matrix S∞, meaning that limk→∞ ‖S∞ − Sn‖ = 0.
Similarity transformations can simplify the evaluation of matrix functions defined by power series.

Suppose A is similar to a diagonal matrix of its eigenvalues, Λ = T−1AT. Then Ai = TΛiT−1 and for
a function w(A) defined as a power series, w(A) = Tw(Λ)T−1. Since w(Λ) is the diagonal matrix of
values w(λi), w(A) is determined by (a) the values of w(s) on the eigenvalues of A and (b) the similarity
transformation T whose columns are linearly independent eigenvectors of A. When A is not similar to a
diagonal matrix, w(A) may be still be evaluated using a similarity transformation to Jordan form.

When the eigenvalues of A are distinct, w(A) can be obtained by finding an interpolating poly-
nomial. Denote the characteristic polynomial by χ(s) = det(sI − A); its zeros are the eigenvalues,
{λi , 1 ≤ i ≤ n}. Define polynomials ξk(s) = χ(s)/(s − λk), 1 ≤ k ≤ n. Then each ξk(s) has degree n − 1 and
zeros {λj : j �= k}; let ξk = ξk(λk) �= 0. Then the polynomial L(s) =∑n

k=1(w(λk)/ξk)ξk(s) is the unique
polynomial of degree < n interpolating the function values; L(λi) = w(λi), 1 ≤ i ≤ n. Thus, w(A) = L(A),
since T−1f (A)T = w(Λ) = L(Λ) = T−1L(A)T, where Λ = T−1AT.

This shows that functions of a matrix A are not as general as might seem at first. Indeed, it is the Cayley–
Hamilton Theorem that implies every polynomial or power-series expression w(A) may be expressed as a
polynomial function of degree less than n; writing w(s) = χ(s)q(s) + rw(s) for a (unique) polynomial rw(s)
having degree less than n, the degree of the characteristic polynomial χ(s), it follows that w(A) = rw(A),
since χ(A) = 0.
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However, by using parametric functions w(s), a variety of useful matrix-valued functions of a real or
complex variable may be constructed. The polynomial dependence of the functions on A involves, for
these cases, parametric coefficients that depend on the characteristic polynomial coefficients of A and the
power series coefficients of the function w(s).

For example, consider the exponential function w(s) = exp(st), with parameter t ∈ R, defined by the
power series

exp(st) =
∞∑

i=0

ti

i! si (3.79)

For all t ∈ R, this series converges for all s ∈ C so that the matrix exponential function exp(At) is given by

exp(At) =
∞∑

i=0

ti

i! Ai (3.80)

for all A ∈ C
n×n. With further effort, this expression may be reduced to a polynomial function of A having

degree n − 1, whose coefficients are functions of t.
Alternatively, for any (fixed) A ∈ C

n×n, the power series in t defines exp(At) as a matrix-valued
function of t, exp(At) : R → C

n×n. Analogs of the usual properties of the exponential function include
exp(0) = I; exp(A(t + τ)) = exp(At)exp(Aτ); (exp(At))−1 = exp(−At). However, exp((A1 + A2)t) �=
exp(A1t)exp(A2t), unless A1 and A2 commute; indeed, exp(−A2t)exp((A1 + A2)t)exp(−A1t) = I +
[A1, A2]t2/2 + · · · , where [A1, A2] = A1A2 − A2A1, the Lie product of A1 and A2.

Another important parametric matrix function is obtained from the power series for w(s) = (λ − s)−1,

(λ − s)−1 =
∞∑

i=0

λ−(i+1)si (3.81)

which, given λ ∈ C, converges for those s ∈ C satisfying |s| < |λ|. The resulting matrix function is

(λI − A)−1 =
∞∑

i=0

λ−(i+1)Ai (3.82)

which is defined for A ∈ C
n×n satisfying ρ(A) < |λ|.

On the other hand, for any fixed A ∈ C
n×n, the power series in λ defines (λI − A)−1 as a matrix-

valued function of λ known as the resolvent matrix of A, (λI − A)−1 : D → C
n×n with the domain

D = {λ ∈ C : |λ| > ρ(A)}. Additional properties of the resolvent matrix arise because (λI − A) is a matrix
of rational functions, that is, (λI − A) ∈ F n×n, where F = C(λ), the field of rational functions of the
complex variable λ with complex coefficients. Over C(λ), (λI − A) is invertible because its determinant is
the characteristic polynomial of A, χ(λ), and is therefore a nonzero rational function. By Cramer’s rule,
the form of (λI − A)−1 is

(λI − A)−1 = Ψ(λ)

det(λI − A)
(3.83)

where Ψ(λ) is a matrix whose elements are polynomials having degree < n. Multiplying both sides of this
equation by (det(λI − A))(λI − A) and equating coefficients of powers of λ leads to an explicit form for
Ψ(λ):

Ψ(λ) = I λn−1 + (A + χ1I) λn−2 + (A2 + χ1A + χ2I) λn−3 + · · ·
+ (An−1 + χ1An−2 + χ2An−3 + · · · + χn−1I) (3.84)

Expressing (λI − A)−1 as a matrix of rational functions thus provides a means of defining it as a matrix-
valued function for all λ ∈ C except for the zeros of det(λI − A), that is, except for the eigenvalues of A.
Indeed, the explicit form of the resolvent is a polynomial of degree n − 1 in A where the functions of λ

giving the polynomial coefficients are rational functions of λ defined for all λ ∈ C except for the zeros of
det(λI − A).
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3.9.2.2 Matrix Functions from Solution of Matrix Equations

Matrix functions are not always given by explicit formulae; they can be defined implicitly as solutions to
algebraic equations. An important result for the study of matrix equations is the Contraction Mapping
Theorem [10]. With ‖ · ‖ a norm on R

n×n, suppose g : R
n×n → R

n×n, and suppose that S is a closed
g-invariant subset (not necessarily a subspace) so that when X ∈ S then g(X) ∈ S. If ‖g(X)‖ < γ‖X‖ for
some γ with 0 < γ < 1, then g is called a contraction mapping on S with contraction constant γ. If g is a
contraction mapping on S, then a solution to the fixed-point equation X = g(X) exists and is unique in
S. The solution may be found by the method of successive approximation: for an arbitrary X0 ∈ S let

Xi = g(Xi−1) for i > 0 (3.85)

Then X∞ = limi→∞ Xi exists and satisfies X∞ = g(X∞).

3.9.2.3 Linear Matrix Equations

For solving a linear equation of the form f (X) = Y, where f is a linear function and X and Y ∈ F n×n, the

selection of a basis leads to a matrix representation Af ∈ F n2×n2
, and hence to a corresponding linear

equation involving coordinate vectors: Af x = y, with x and y ∈ F n2
.

For the linear function having the form f (X) = A1XA2, with A1 and A2 ∈ F n×n, an equivalent linear
equation for coordinate vectors can be expressed concisely using Kronecker products. The Kronecker
product, or tensor product, for vectors and matrices provides a useful, systematic means of expressing
products of matrix elements [7,9], particularly useful for transforming linear matrix equations to the
form y = Ax. For any two matrices A ∈ RmA×nA and B ∈ RmB×nB , the Kronecker product, denoted
A ⊗ B, is the mAmB × nAnB matrix written in block-matrix form as

A ⊗ B =
⎡
⎢⎣

a11B · · · a1nA B
...

...
amA1B · · · amAnA B

⎤
⎥⎦ (3.86)

and with this definition, it satisfies (K1) associativity: (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C), so that A ⊗ B ⊗ C is
unambiguous; (K2) (A + B) ⊗ (C + D) = (A ⊗ C) + (A ⊗ D) + (B ⊗ C) + (B ⊗ D); (K3) (AB) ⊗ (CD) =
(A ⊗ C)(B ⊗ D). (It is assumed that the numbers of rows and columns of the various matrices allow the
matrix additions and matrix multiplications to be carried out.)

Some further properties of the Kronecker product of square matrices include: (K4) if A and B are
invertible, then (A ⊗ B)−1 = A−1 ⊗ B−1; (K5) A ⊗ B has eigenvalues given by the distinct products of
eigenvalues of A and B: λi(A)λj(B); (K6) (I ⊗ A + B ⊗ I) has eigenvalues given by the distinct sums of
eigenvalues of A and B: λi(A) + λj(B).

To use the Kronecker product formulation for solving f (X) = A1XA2 = Y, first form xT by concate-
nating the rows of X; similarly for yT. Then the matrix equation A1XA2 = Y is transformed to the
equivalent form (A1 ⊗ AT

2 ) x = y.
When the linear function f (X) takes a more complicated form, which may always be expressed as a

sum of terms,

f (X) =
∑

i

A1,iXA2,i (3.87)

the Kronecker product approach may provide important insight. For example, the linear matrix equation
A1X − XA2 = Y becomes (A1 ⊗ In − In ⊗ AT

2 ) x = y. To characterize invertibility of the resulting n2 × n2

matrix, it is most convenient to use the condition that it has no zero eigenvalue. From property (K6), its
eigenvalues are given by the differences of the eigenvalues of A1 and those of A2, λi(A1) − λj(A2); thus
there will be no zero eigenvalue unless some eigenvalue of A1 is also an eigenvalue of A2.
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As a second example, the linear matrix equation X − A1XA2 = Y becomes (I − A1 ⊗ AT
2 ) x = y, and

from property (K5), the resulting n2 × n2 matrix is invertible unless some eigenvalue of A1 is the mul-
tiplicative inverse of some eigenvalue of A2. Interestingly, under suitable conditions the contraction
mapping approach may be applied to find an expression for the solution in this example. Rewriting the
equation to be solved as X = g(X) = A1XA2 + Y and applying successive approximation with initial trial
solution X0 = Y, leads to the solution

X =
∞∑

i=0

Ai
1YAi

2 (3.88)

provided that every eigenvalue of A1 and of A2 has magnitude less than unity; that is, the matrices must
be Schur matrices.

There is a characterization of real Schur matrices involving the linear matrix equation:

ATXA − X = −Y (3.89)

A is a real Schur matrix if and only if (i) Equation 3.89 has a unique solution X for every choice of Y and
(ii) whenever Y is a real (symmetric) positive definite matrix, the solution X is a real (symmetric) positive
definite matrix.

Similarly, there is a characterization of real Hurwitz matrices involving another linear matrix equation:

ATX + XA = −Y (3.90)

A is a real Hurwitz matrix if and only if (i) Equation 3.90 has a unique solution X for every choice of Y
and (ii) whenever Y is a real (symmetric) positive definite matrix, the solution X is a real (symmetric)
positive definite matrix.
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Further Reading

The bibliography, a mix of “classics” (current editions and reprints) and more current titles, comprises a
set of personal favorites. Citations in the text have been used sparingly, mostly to indicate books where
more detailed discussions about a topic can be found.

Most books on linear systems at the introductory graduate level cover basic material on linear algebra
and matrices. Roger Brockett’s Finite Dimensional Linear Systems (John Wiley, 1970), David Delchamps’
State Space and Input-Output Linear Systems (Springer-Verlag, 1988), Thomas Kailath’s Linear Sys-
tems (Prentice-Hall, 1980), W.J. (Jack) Rugh’s Linear Systems (Prentice-Hall, 1995), and Eduardo Son-
tag’s Mathematical Control Theory: Deterministic Finite Dimensional Systems (Springer-Verlag, 1998) are
recommended.

For coverage of current research on matrices and linear algebra the following journals are rec-
ommended: Linear Algebra and Its Applications, published by Elsevier Science, Inc., New York,
NY, SIAM Journal on Matrix Analysis and Applications, published by the Society for Industrial and
Applied Mathematics, Philadelphia, PA, and Electronic Journal of Linear Algebra (ELA), www.math.
technion.ac.il/iic/ela, published online by ILAS, the International Linear Algebra Society.

A wealth of information is accessible in electronic form online. MathWorld (www.mathworld.
wolfram.com), PlanetMath (planetmath.org), and Wikipedia (www.wikipedia.org) are
valuable sources for finding specific topical information. Other online resources of interest are the
following:

www.matrixcookbook.com
The Matrix Cookbook, compiled by Kaare Brandt Petersen and Michael Syskind Pedersen, 2008.

www.mathworks.com
Home page of The MathWorks, producers of the MATLAB software package.

An online resource with examples and some additional material is available. See
www.princeton.edu/∼bradley/MatricesandLinearAlgebra.pdf
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4.1 Complex Numbers

From elementary algebra, the reader should be familiar with the imaginary number i where

i2 = −1 (4.1)

Historically, in engineering mathematics, the square root of −1 is often denoted by j to avoid notational
confusion with current i.

Every new number system in the history of mathematics created cognitive problems which were often
not resolved for centuries. Even the terms for the irrational number

√
2, transcendental number π, and

the imaginary number i = √−1 bear witness to the conceptual difficulties. Each system was encountered
in the solution or completeness of a classical problem. Solutions to the quadratic and cubic polynomial
equations were presented by Cardan in 1545, who apparently regarded the complex numbers as fictitious
but used them formally. Remarkably, A. Girald (1590–1633) conjectured that any polynomial of the nth
degree would have n roots in the complex numbers. This conjecture which is known as the fundamental
theorem of algebra become famous and withstood false proofs from d’Alembert (1746) and Euler (1749).
In fact, the dissertation of Gauss (1799) contains five different proofs of the conjecture, two of which are
flawed [2].

4.1.1 The Algebra of Complex Numbers

A complex number is formed from a pair of real numbers (x, y) where the complex number is

z = x + iy (4.2)

and where
x = �(z), y = �(z) (4.3)

4-1
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are called the real and imaginary parts of z. A complex number z which has no real part �(z) = 0 is called
purely imaginary. Two complex numbers are said to be equal if both their real and imaginary parts are
equal. Assuming the ordinary rules of arithmetic, one derives the rules for addition and multiplication of
complex numbers as follows:

(x + iy) + (u + iv) = (x + u) + i(y + v) (4.4)

(x + iy) · (u + iv) = (xu − yv) + i(xv + yu) (4.5)

Complex numbers form a field satisfying the commutative, associative, and distributive laws. The real
numbers 0 and 1 are the additive and multiplicative identities. Assuming these laws, the rule for division
is easily derived:

x + iy

u + iv
= x + iy

u + iv
· u − iv

u − iv
= (xu + yv) + i(yu − xv)

u2 + v2 (4.6)

4.1.2 Conjugation and Modulus

The formula for complex multiplication employs the fact that i2 = −1. The transformation,

z = x + iy → z̄ = x − iy (4.7)

is called complex conjugation and has the fundamental properties associated with an isomorphism

a + b = ā + b̄ (4.8)

ab = ā · b̄ (4.9)

The formulas

�(z) = z + z̄

2
and �(z) = z − z̄

2i
(4.10)

express the real and imaginary parts of z terms of conjugation. Consider the polynomial equation

anzn + an−1zn−1 + · · · + a1z + a0 = 0

Taking the complex conjugate of both sides,

ānz̄n + ān−1z̄n−1 + · · · + ā1z̄ + ā0 = 0

If the coefficients ai = āi are real, ξ and ξ̄ are roots of the same equation, and hence the nonreal roots of
a polynomial with real coefficients occur in conjugate pairs. The product zz̄ = x2 + y2 is always positive
if z �= 0. The modulus or absolute value is defined as

|z| = √
zz̄ =

√
x2 + y2 (4.11)

Properties of conjugation can be employed to obtain

|ab| = |a| · |b| and
∣∣∣a

b

∣∣∣= |a|
|b| (4.12)

Formulas for the sum and difference follow from expansion:

|a + b|2 = (a + b) · (ā + b̄) = aā + (ab̄ + bā) + bb̄

|a + b|2 = |a|2 + |b|2 + 2�(ab̄) (4.13)

The fact
�(ab̄) ≤ |ab|
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can be combined with Equation 4.13
|a + b|2 ≤ (|a| + |b|)2

to yield the triangle inequality
|a + b| ≤ |a| + |b| (4.14)

Cauchy’s inequality is true for complex numbers:
∣∣∣∣∣

n∑
i=1

aibi

∣∣∣∣∣
2

≤
(

n∑
i=1

|ai|2
)

·
(

n∑
i=1

|bi|2
)

(4.15)

4.1.3 Geometric Representation

A complex number z = x + iy can be represented as a pair (x, y) on the complex plane. The x-axis is called
the real axis and the y-axis the imaginary axis. The addition of complex numbers can be viewed as vector
addition in the plane. The modulus or absolute value |z| is interpreted as the length of the vector. The
product of two complex numbers can be evaluated geometrically if we introduce polar coordinates:

x = r cos θ (4.16)

and
y = r sin θ (4.17)

Hence, z = r(cos θ + i sin θ). This trigonometric form has the property that r = |z| is the modulus and θ

is called the argument,
θ = arg z (4.18)

Consider two complex numbers z1, z2 where, for k = 1, 2,

zk = rk(cos θk + i sin θk)

The product is easily computed as

z1z2 = r1r2[(cos θ1 cos θ2 − sin θ1 sin θ2) + i(sin θ1 cos θ2 + cos θ1 sin θ2)]
The standard addition formulas yield

z = z1z2 = r1r2[cos (θ1 + θ2) + i sin (θ1 + θ2)] = r(cos θ + i sin θ) (4.19)

The geometric interpretation of the product z = z1z2 of complex numbers can be reduced to the dilation
or stretch/contraction given by the product r = r1r2 and the sum of the rotations

arg (z1z2) = arg z1 + arg z2 (4.20)

The argument of the product is equal to the sum of the arguments. The argument of 0 is not defined and
the polar angle θ in Equations 4.16 and 4.17 is only defined to a multiple of 2π.

x

y

Im

Re

r

θ

FIGURE 4.1 Polar representation.
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The trigonometric form for the division z = z1/z2 can be derived by noting that the modulus is
r = r1/r2 and

arg
z1

z2
= arg z1 − arg z2 (4.21)

From the preceding discussion, we can derive the powers of z = r(cos θ + i sin θ) given by

zn = rn(cos nθ + i sin nθ) (4.22)

For a complex number on the unit circle r = 1, we obtain de Moivre’s formula (1730):

(cos θ + i sin θ)n = cos nθ + i sin nθ (4.23)

The above formulas can be applied to find the roots of the equation zn = a, where

a = r(cos θ + i sin θ)

and

z = ρ(cos φ + i sin φ)

Then Equation 4.22 yields

ρn(cos nφ + i sin nφ) = r(cos θ + i sin θ)

or

ρ = n
√

r (4.24)

and

φ = θ

n
+ k · 2π

n
(4.25)

for k = 0, 1, . . . , n − 1. We have found n roots to the equation zn = a. If a = 1, then all of the roots lie on
the unit circle and we can define the primitive nth root of unity ξ:

ξ = cos
2π

n
+ i sin

2π

n
(4.26)

The roots of the equation zn = 1 are easily expressed as 1, ξ, ξ2, . . . , ξn−1.

4.2 Complex Functions

Let Ω ⊆ C be a subset of the complex plane. A rule of correspondence which associates each element
z = x + iy ∈ Ω with a unique w = f (z) = u(x, y) + iv(x, y) is called a single-valued complex function.
Functions like f (z) = √

z are called multiple-valued and can be considered as a collection of single-valued
functions. Definitions of the concepts of limit and continuity are analogous to those encountered in the
functions of a real variable. The modulus function is employed as the metric.

Definition 4.1: Open Region

A subset Ω ⊆ C of the complex plane is called an open region or domain if, for every z0 ∈ Ω, there exists a
δ > 0 exists so that the circular disk |z − z0| < δ, centered at z0, is contained in Ω.
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Definition 4.2: Limit

lim
z→z0

f (z) = w0 (4.27)

if, for every ε > 0, a δ > 0 exists so that |f (z) − w0| < ε for all z satisfying 0 < |z − z0| < δ

Definition 4.3: Continuity

The function f (z) is continuous at the point z0 if

lim
z→z0

f (z) = f (z0) (4.28)

The function is said to be continuous in a region Ω if it is continuous at each point z0 ∈ Ω.

Definition 4.4: Derivative

If f (z) is a single-valued complex function in some region Ω of the complex plane, the derivative of f (z) is

f ′(z) = lim
Δz→0

f (z + Δz) − f (z)

Δz
(4.29)

The function is called differentiable provided that the limit exists and is the same regardless of the manner
in which the complex number Δz → 0.

A point where f (z) is not differentiable is called a singularity. As in the theory of real-valued functions,
the sums, differences, products, and quotients (provided the divisor is not equal to zero) of continuous or
differentiable complex functions are continuous or differentiable. It is important to note that the function
f (z) = z̄ is an example of a function which is continuous but nowhere differentiable.

lim
Δz→0

f (z + Δz) − f (z)

Δz
= ±1 (4.30)

depending upon whether the limit is approached through purely real or imaginary sequences Δz.

4.2.1 Cauchy–Riemann Equations

A function f (z) is said to be analytic in a region Ω if it is differentiable and f ′(z) is continuous at every
point z ∈ Ω. Analytic functions are also called regular or holomorphic. A region Ω, for which a complex-
valued function is analytic, is called a region of analyticity. The previous example showed that the function
z̄ is not an analytic function. The requirement that a function be analytic is extremely strong. Consider an
analytic function w = f (z) = u(x, y) + iv(x, y). The derivative f ′(z) can be found by computing the limit
through real variations Δz = Δx → 0:

f ′(z) = ∂f

∂x
= ∂u

∂x
+ i

∂v

∂x
(4.31)

or through purely imaginary variations Δz = iΔy:

f ′(z) = 1

i

∂f

∂y
= −i

∂f

∂y
= ∂v

∂y
− i

∂u

∂y
(4.32)
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Since the function is differentiable,

∂f

∂x
= −i

∂f

∂y
(4.33)

Equating expressions (Equations 4.31 and 4.32), one obtains the Cauchy–Riemann differential equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
(4.34)

Conversely, if the partial derivatives in Equation 4.34 are continuous and u, v satisfy the Cauchy–Riemann
equations, then the function f (z) = u(x, y) + iv(x, y) is analytic. If the second derivatives of u and v relative
to x, y exist and are continuous, then, by differentiation and use of Equation 4.34,

∂2u

∂x2 + ∂2u

∂y2 = 0,
∂2v

∂x2 + ∂2v

∂y2 = 0 (4.35)

The real part u and the imaginary part v satisfy Laplace’s equation in two dimensions. Functions satisfying
Laplace’s equation are called harmonic functions.

4.2.2 Polynomials

The constant functions and the function f (z) = z are analytic functions. Since the product and the sum
of analytic functions are analytic, it follows that any polynomial,

p(z) = anzn + an−1zn−1 + · · · + a1z + a0 (4.36)

with complex coefficients ai is also an analytic function on the entire complex plane. If an �= 0, the
polynomial p(z) is said to be of degree n. If an = 1, then p(z) is called a monic polynomial.

Theorem 4.1: Fundamental Theorem of Algebra

Every polynomial equation p(z) = 0 of degree n has exactly n complex roots ξi , i = 1, . . . , n. The polynomial
p(z) can be uniquely factored as

p(z) =
n∏

i=1

(z − ξi) (4.37)

The roots ξ are not necessarily distinct. Roots of p(z) are commonly called zeros. If the root ξi appears
k times in the factorization, it is called a zero of order k.

4.2.2.1 Bernoulli’s Method

The following numerical method, attributed to Bernoulii, can be employed to find the dominant (largest
in modulus) root of a polynomial. The method can be employed as a quick numerical method to check
if a discrete-time system is stable (all roots of the characteristic polynomial lie in the unit circle). If there
are several roots of the same modulus, then the method is modified and shifts are employed.
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Given a ∈ Cn, define the monic polynomial:

pa(z) = zn + an−1zn−1 + · · · + a0

Let {xk} be a nonzero solution to the difference equation

xk = −an−1xk−1 − · · · − a0xk−n

If pa(z) has a single largest dominant root r, then in general

r = lim
k→∞

xk+1

xk

If a complex conjugate pair of roots r1, r2 is dominant and the coefficients are real a ∈ Rn+1, then
r1, r2 = r(cos θ ± sin θ), where

r2 = lim
k→∞

x2
k − xk+1xk−1

x2
k−1 − xkxk−2

and

2r cos θ = lim
k→∞

xk+1xk−1 − xk−1xk

xkxk−2 − x2
k−1

We sketch the proof of Bernoulli’s method for a single real dominant root. The typical response of the
difference equation to a set of initial conditions can be written as

xk = c1rk
1 + c2rk

2 + · · · + cnrk
n

where r1, . . . rn are roots of the characteristic equation pa(x) with |r1| > |r2| ≥ · · · ≥ |rn|. If the initial
conditions are selected properly, c1 �= 0 and

xk+1

xk
= r1

1 + (c2/c1)(r2/r1)k+1 + · · · (cn/c1)(rn/r1)k+1

1 + (c2/c1)(r2/r1)k + · · · (cn/c1)(rn/r1)k

If r1 is dominant, then |rj/r1| < 1 and the fractional expression tends toward 1. Hence xk+1/xk tends
toward r1. The proof of the complex dominant root formula is a slight generalization.

4.2.2.2 Genji’s Formula

The following polynomial root perturbation formula can be employed with the root locus method to
adjust or tweak the gains of a closed-loop system.

Let a ∈ Cn+1 be a vector. Define the polynomial pa(z) = anzn + an−1zn−1 + · · · + a0. If r ∈ C is a
root pa(r) = 0, then the following formula relates a perturbation of the root dr to a perturbation of the
coefficients da ∈ Cn+1:

dr = −pda(r)

p′
a(r)

(4.38)

The formula follows from taking the total differential of the expression pa(r) = 0,

[danrn + dan−1rn−1 + · · · + da0] + [nanrn−1dr + (n − 1)an−1rn−2dr + · · · + a1dr]

Hence,

pda(r) + p′
a(r)dr = 0
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4.2.2.3 Lagrange’s Interpolation Formula

Suppose that z0, z1, . . . , zn are n + 1 distinct complex numbers. Given wi , where 0 ≤ i ≤ n, we wish to find
the polynomial p(z) of degree n so that p(zi) = wi . The polynomial p(z) can be employed as a method of
interpolation. For 0 ≤ i ≤ n, define

pi(z) =
∏
j �=i

(
z − zj

zi − zj

)
(4.39)

Clearly, pi(zi) = 1, and pi(zj) = 0, for i �= j. Hence the interpolating polynomial can be found by

p(z) =
n∑

i=0

wipi(z) (4.40)

4.2.3 Zeros and Poles

The notion of repeated root can be generalized:

Definition 4.5: Zeros

An analytic function f (z) has a zero at z = a of order k > 0 if the following limit exists and is nonzero:

lim
z→a

f (z)

(z − a)k
�= 0 (4.41)

A singular point of a function f (z) is a value of z at which f (z) fails to be analytic. If f (z) is analytic in
a region Ω, except at an interior point z = a, the point z = a is called an isolated singularity. For example,

f (z) = 1

z − a

The concept of a pole is analogous to that of a zero.

Definition 4.6: Poles

A function f (z) with an isolated singularity at z = a has a pole of order k > 0 if the following limit exists
and is nonzero:

lim
z→a

f (z)(z − a)k �= 0 (4.42)

A pole of order 1 is called a simple pole.

Clearly, if f (z) has a pole of order k at z = a, then

f (z) = g(z)

(z − a)k
(4.43)

and, if f (z) is analytic and has a zero of order k, then

f (z) = (z − a)kg(z) (4.44)

where g(z) is analytic in a region including z = a and g(a) �= 0.
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The function

f (z) = sin z

z

is not defined at z = 0, but could be extended to an analytic function which takes the value 1 at z = 0. If a
function can be extended to be analytic at a point z = a, then f (z) is said to have a removable singularity.
Hence, if a function f (z) has a pole of order k at z = a, then the function f (z)(z − a)k has a removable
singularity at z = a. A singularity at a point z = a, which is neither removable nor a pole of finite order k,
is called an essential singularity.

4.2.4 Rational Functions

A rational function H(z) is a quotient of two polynomials N(z) and D(z).

H(z) = N(z)

D(z)
= bmzm + bm−1zm−1 + · · · b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
(4.45)

We shall assume in the discussion that the quotient is in reduced form and there are no common factors
and hence no common zeros. A rational function is called proper if m ≤ n. If the degrees satisfy m < n,
then H(z) is called strictly proper. In control engineering, rational functions most commonly occur as the
transfer functions of linear systems. Rational functions H(z) of a variable z denote the transfer functions
of discrete systems and transfer functions H(s) of the variable s are employed for continuous systems.
Strictly proper functions have the property that

lim
z→∞ H(z) = 0

and hence roll off the power at high frequencies. Roots of the numerator and denominator are the zeros
and poles of the corresponding rational function, respectively.

4.2.4.1 Partial Fraction Expansion

Consider a rational function H(s) = N(s)/D(s) where the denominator D(s) is a polynomial with distinct
zeros ξ1, ξ2, . . . , ξn. H(s) can be expressed in a partial fraction expansion as

N(s)

D(s)
= A1

s − ξ1
+ A2

s − ξ2
+ · · · + An

s − ξn
(4.46)

Multiplying both sides of the equation by s − ξi and letting s → ξi ,

Ai = lim
s→ξi

(s − ξi)H(s) (4.47)

Applying L’Hospital’s rule,

Ai = lim
s→ξi

N(s)
(s − ξi)

D(s)
= N(ξi) lim

s→ξi

1

D′(s)
= N(ξi)

D′(ξi)

Thus
N(s)

D(s)
= N(ξ1)

D′(ξ1)
· 1

s − ξ1
+ N(ξ2)

D′(ξ2)
· 1

s − ξ2
+ · · · + N(ξn)

D′(ξn)
· 1

s − ξn
(4.48)

This formula is commonly called Heaviside’s expansion formula, and it can be employed for computing
the inverse Laplace transform of rational functions when the roots of D(s) are distinct.



�

�

�

�

� �

4-10 Control System Fundamentals

In general, any strictly proper rational function H(s) can be written as a sum of the strictly proper
rational functions

Aξ,r

(s − ξ)r (4.49)

where ξ is a zero of D(s) of order k, where r ≤ k. If ξ is a repeated zero of D(s) of order k, the coefficient
Aξ,r corresponding to the power r ≤ k can be found,

Aξ,r = lim
s→ξi

1

(k − r)!
dk−r

dsk−r
[(s − ξi)

kH(s)] (4.50)

4.2.4.2 Lucas’ Formula

The Nyquist stability criterion or the principle of the argument relies upon a generalization of Lucas’s
formula. The derivative of a factored polynomial of the form,

P(s) = an(s − ξ1)(s − ξ2) · · · (s − ξn)

yields Lucas’ formula,
P′(s)

P(s)
= 1

s − ξ1
+ 1

s − ξ2
+ · · · + 1

s − ξn
(4.51)

Let z = a be a zero of order k of the function f (z). Application of Equation 4.44

f (z) = (z − a)kg(z)

f ′(z) = k(z − a)k−1g(z) + (z − a)kg ′(z)

gives
f ′(z)

f (z)
= k

z − a
+ g ′(z)

g(z)
(4.52)

where g(a) �= 0 and g(z) is analytic at z = a. For a pole at z = a of order k of a function f (z), Equation 4.43
yields

f (z) = (z − a)−kg(z)

f ′(z) = −k(z − a)−k−1g(z) + (z − a)−kg ′(z)

This gives
f ′(z)

f (z)
= − k

z − a
+ g ′(z)

g(z)
(4.53)

where g(a) �= 0 and g(z) is analytic around z = a. Inductive use of the above expressions results in a
generalization of Lucas’ formula (Equation 4.51). For a rational function with zeros αj and poles ξi ,

H(s) = N(s)

D(s)
=
∏m

j=1(s − αj)∏n
i=1(s − ξi)

= (s − α1)(s − α2) · · · (s − αm)

(s − ξ1)(s − ξ2) · · · (s − ξn)
(4.54)

and
H ′(s)

H(s)
=

m∑
j=1

1

s − αj
−

n∑
i=1

1

s − ξi
(4.55)

Rational functions can be generalized:
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Definition 4.7: Meromorphic function

A function f (z), which is analytic in an open region Ω and whose every singularity is an isolated pole, is
said to be meromorphic.

The transfer function of every continuous time-invariant linear system is meromorphic in the complex
plane. Systems or block diagrams which employ the Laplace transform for a delay e−sT result in mero-
morphic transfer functions. If the meromorphic function f (z) has a finite number of zeros αj and poles
ξi in a region Ω, then Equations 4.55, 4.52, and 4.53 yield a generalized Lucas formula,

f ′(z)

f (z)
=

m∑
j=1

1

z − αj
−

n∑
i=1

1

z − ξi
+ g ′(z)

g(z)
(4.56)

where g(z) �= 0 is analytic in Ω.

4.2.5 Power Series Expansions

A power series is of the form

f (z) = a0 + a1z + a2z2 + · · · + anzn + · · · =
∞∑

n=0

anzn (4.57)

In general, a power series can be expanded around a point z = z0,

f (z) =
∞∑

n=0

an(z − z0)n (4.58)

Series expansions do not always converge for all values of z. For example, the geometric series

1

1 − z
= 1 + z + z2 + · · · + zn + · · · (4.59)

converges when |z| < 1. Every power series has a radius of convergence ρ. In particular, Equation 4.58
converges for all |z − z0| < ρ where, by Hadamard’s formula,

1

ρ
= lim

n→∞ sup n
√|an| (4.60)

Historically, two different approaches have been taken to set forth the fundamental theorems in the
theory of analytic functions of a single complex variable. Cauchy’s approach (1825) defines an analytic
function as in Subsection 4.2.1 employing the Cauchy-Riemann equations 4.34 and Green’s theorem in
the plane to derive the famous integral formulas (Section 4.3.1). The existence of a power series expansion
follows directly from the integral formulas.

Theorem 4.2: Taylor’s Series

Let f (z) be an analytic function on a circular region Ω centered at z = z0. For all points in the circle,

f (z) =
∞∑

n=0

an(z − z0)n where an = f (n)(z0)

n! (4.61)
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This expansion agrees with the form for the Taylor series expansion of a function of a real variable.
Most texts base their exposition of the theory of a complex variable on Cauchy’s approach incorporating
a slight weakening of the definition due to Goursat. Weierstrauss’ approach defines a function as analytic
at a point z0, if there is a convergent power series expansion (Equation 4.58). If one accepts the relevant
theorems concerning the ability to move integrals and derivatives through power series expansions, the
Cauchy integral formulas are easily demonstrated.

4.2.5.1 The Exponential Function

The exponential function is defined by the power series

ez = 1 + z

1! + z2

2! + · · · + zn

n! + · · · (4.62)

which converges for all complex values of z. Familiar identities of the form ea+b = ea · eb are true by virtue
of the formal power series expansion. Euler’s formula (1749)

eiθ = cos θ + i sin θ (4.63)

is easily derived from substitution in Equation 4.62,

eiθ =
(

1 − θ2

2! + · · ·
)

+ i

(
θ

1! − θ3

3! + · · ·
)

Thus, the polar form z = r(cos θ + i sin θ) can be compactly expressed as z = reiθ. De Moivre’s formula
(Equation 4.23) states the obvious relationship

(eiθ)n = einθ

The unit circle |z| = 1 can be parameterized as z = eiθ, where 0 ≤ θ < 2π. Substituting in a power series
expansion of the form (Equation 4.57) yields a Fourier series expansion,

f (z) =
∞∑

n=0

anzn =
∞∑

n=0

aneinθ

Curves of the form,

γ(t) = r1eiω1t + r2eiω2t + · · · + rmeiωmt

are epicycles and examples of almost periodic functions. The ancient approach of employing epicycles to
describe the motions of the planets can be viewed as an exercise in Fourier approximation. If z = x + iy,
then ez = ex(cos y + i sin y).

The multiple-valued logarithm function ln z is defined as the inverse of the exponential ez . Hence, if
z = reiθ is in polar form and n is an integer,

ln z = ln r + i(θ + 2πn) (4.64)

The imaginary part of the logarithm is the same as the argument function. The addition theorem of the
exponential implies

ln (z1z2) = ln z1 + ln z2 (4.65)

which makes sense only if both sides of the equation represent the same infinite set of complex numbers.



�

�

�

�

� �

Complex Variables 4-13

4.2.5.2 Trigonometric Functions

The trigonometric functions are defined as

cos z = eiz + e−iz

2
and sin z = eiz − e−iz

2i
(4.66)

Note that the sine and cosine functions are periodic,

sin (z + 2πn) = sin z and cos (z + 2πn) = cos z

The expressions for the trigonometric functions (4.66) can be employed to deduce the addition formulas

cos (z1 + z2) = cos z1 cos z2 − sin z1 sin z2 (4.67)

sin (z1 + z2) = cos z1 sin z2 + sin z1 cos z2 (4.68)

and the modulation formula

cos ω1t cos ω2t = 1

2
[cos (ω1 + ω2)t + cos (ω1 − ω2)t] (4.69)

If signals of frequencies ω1, ω2 are modulated with each other, they produce energy at the sum ω1 + ω2

and difference frequencies ω1 − ω2.

4.3 Complex Integrals

If f (z) = u(x, y) + iv(x, y) is defined and continuous in a region Ω, we define the integral of f (z) along
some curve γ ⊆ Ω by ∫

γ

f (z) dz =
∫

γ

(u + iv)(dx + i dy)

=
∫

γ

u dx − v dy + i
∫

γ

v dx + u dy (4.70)

These expressions depend upon line integrals for real-valued functions. If the curve γ(t) is a piecewise
differentiable arc γ(t) for a ≤ t ≤ b, then Equation 4.70 is equivalent to

∫
γ

f (z) dz =
∫ b

a
f (γ(t))γ′(t) dt (4.71)

The most important property of the line integral (4.71) is its invariance with a change of parameter.
Hence, if two curves start and end at the same points and trace out the same curve γ, the value of the
integrals (Equation 4.71) will be the same. Distinctions are made in terms of the direction of travel,∫

−γ

f (z) dz = −
∫

γ

f (z) dz

A curve or arc γ(t) is said to be closed if the endpoints coincide γ(a) = γ(b). A closed curve is called simple
if it does not intersect itself.

All points to the left of a curve as it is traversed are said to be enclosed by it. A counterclockwise
(CCW) traverse around a contour is said to be positive. A closed curve γ(t) is said to make n positive
encirclements of the origin z = 0 if vector γ(t) rotates in a CCW direction and completes n rotations. A
negative encirclement is obtained if the path is traversed in a clockwise (CW) directions.

The notions of enclosement or encirclement have different conventions in the mathematical literature
and in engineering expositions of classical control theory. Most texts in classical control state that a point
is enclosed or encircled by a contour if it lies to the right of the curve as it is traversed, and CW contours
and rotations are called positive.
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FIGURE 4.2 A single positive encirclement of the origin.

4.3.1 Integral Theorems

4.3.1.1 Cauchy’s Theorem

Suppose f (z) is analytic in a region Ω bounded by a simple closed curve γ. Cauchy’s theorem states that
∫

γ

f (z)dz =
∮

γ

f (z)dz = 0 (4.72)

This equation is equivalent to saying that
∫ z2

z1
f (z)dz is unique and is independent of the path joining z1

and z2.
Let γ(t) for 0 ≤ t ≤ 1 be a closed curve which does not pass through the origin z = 0. Consider the line

integral for an integer n, ∫
γ

zndz for n �= −1

By Cauchy’s theorem, this integral is zero if n ≥ 0. By computation,

∫
γ

zndz = zn+1

n + 1

∣∣∣∣
γ

= γ(1)n+1

n + 1
− γ(0)n+1

n + 1

Because the curve is closed, γ(0) = γ(1), and
∫

γ

zndz = 0 for n �= −1 (4.73)

This argument can be generalized: for any closed curve γ(t) not passing through the point z = a,
∫

γ

(z − a)ndz = 0 for n �= −1 (4.74)

Let f (z) be a power series expansion of the form

f (z) =
∞∑

n=0

an(z − a)n

and let γ(t) lie within the radius of convergence. Applying Equation 4.74 and moving the integration
through the expansion ∫

γ

f (z)dz =
∞∑

n=0

∫
γ

an(z − a)ndz = 0 (4.75)

gives a version of Cauchy’s theorem.
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4.3.1.2 Cauchy’s Integral Formulas

Consider the closed curve γ(t) = a + eit for 0 ≤ t ≤ 2πk. The curve lies on a unit circle centered at z = a
and completes k CCW positive encirclements of z = a. Consider the line integral∫

γ

1

z − a
dz (4.76)

By computation, ∫
γ

1

z − a
dz = ln (z − a)|γ

is a multivalued function. To obtain the integral, one must consider the expression

ln eit − ln e0 = it

for 0 ≤ t ≤ 2πk. Thus ∫
γ

1

z − a
dz = 2πki (4.77)

The equation can be generalized as

n(γ, a) = 1

2πi

∫
γ

1

z − a
dz (4.78)

where n(γ, a) is called the winding number of γ around z = a. The integral counts the number of CCW
encirclements of the point z = a.

If f (z) is analytic within and on a region Ω bounded by a simple closed curve γ and a ∈ Ω is a point
interior to γ, then

f (a) = 1

2πi

∮
γ

f (z)

z − a
dz (4.79)

where γ is traversed in the CCW direction. Higher-order derivatives f (r)(a) can be expressed as

f (r)(a) = r!
2πi

∮
γ

f (z)

(z − a)r+1 dz (4.80)

Equations 4.79 and 4.80 are known as the Cauchy integral formulas. The formulas imply that, if the
analytic function f (z) is known on a simple closed curve γ, then its value (and, its higher derivatives) in
the interior of γ are preordained by the behavior of the function along γ. This quite remarkable fact is
contrary to any intuition that one might infer from real-valued functions.

If f (z) has a Taylor power series expansion around the point z = a,

f (z) =
∞∑

n=0

an(z − a)n, where an = f (n)(a)

n! (4.81)

and the closed curve γ is contained in the radius of convergence, then

1

2πi

∫
γ

f (z)

(z − a)
dz = 1

2πi

∞∑
n=0

∫
γ

an(z − a)n−1 dz

The terms corresponding to n > 0 are zero by Cauchy’s theorem (Equation 4.74), and the use of
Equation 4.78 yields a version of the Cauchy integral formula (Equation 4.79):

n(γ, a)f (a) = n(γ, a)a0 = 1

2πi

∫
γ

f (z)

z − a
dz (4.82)
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Formal division of the power series expansion (Equation 4.81) by the term (z − a)r+1 yields the higher
derivative formulas

n(γ, a)f (r)(a) = 1

2πi

∫
γ

f (z)

(z − a)r+1 dz (4.83)

4.3.2 The Argument Principle

Every rational transfer function H(s) is meromorphic. The transfer function of a time-invariant linear
system is meromorphic, even when it employs delays of the form e−sT . Let f (z) be a meromorphic function
in a region Ω which contains a finite number of zeros αj and poles ξk . The generalized Lucas formula
(Equation 4.56) gives

f ′(z)

f (z)
=

m∑
j=1

1

z − αj
−

n∑
k=1

1

z − ξk
+ g ′(z)

g(z)
(4.84)

where g(z) �= 0 is analytic in Ω. Since g ′(z)/g(z) is analytic in Ω, one can apply Cauchy’s theorem
(Equation 4.72) to deduce

1

2πi

∫
γ

g ′(z)

g(z)
dz = 0

By Equations 4.78 and 4.84

1

2πi

∫
γ

f ′(z)

f (z)
dz =

m∑
j

n(γ, αj) −
n∑

k=1

n(γ, ξk) (4.85)

The function w = f (z) maps γ onto a closed curve Γ(t) = f (γ(t)) and, by a change in variables,

1

2πi

∫
Γ

1

w
dw = 1

2πi

∫
γ

f ′(z)

f (z)
dz (4.86)

hence

n(Γ, 0) =
∑

j

n(γ, αj) −
∑

k

n(γ, ξk) (4.87)

The left-hand side of Equation 4.85 can be viewed as the number of CCW encirclements of the origin
n(Γ, 0). If γ is a simple closed curve, then Equation 4.85 computes the difference m − n between the
number of zeros and number of poles. Equation 4.87 is known as the principle of the argument.

For example, consider the simple closed curve γ of Figure 4.3. If a function f (z) has three poles and a
single zero enclosed by the curve γ, then the argument principle states that the curve Γ = f (γ) must make
two negative encirclements of the origin.

f (γ) = Γ
Γ

FIGURE 4.3 The number of encirclements of the origin by Γ is equal to the difference between the number
encirclements of the zeros and poles.
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The argument principle (Equation 4.85) can be generalized. If g(z) is analytic in a region Ω and f (z) is
meromorphic in Ω with a finite number of zeros and poles, then, for any closed curve γ,

1

2πi

∫
γ

g(z)
f ′(z)

f (z)
dz =

m∑
j=1

n(γ, αj)g(αj) −
n∑

k=1

n(γ, ξk)g(ξk) (4.88)

The case g(z) = z is of interest. Suppose that f (z) is analytic in a circular region Ω of radius r > 0
around a. Ω is bounded by the simple closed curve γ(t) = a + reit for 0 ≤ t ≤ 2π. Suppose the function
f (z) has an inverse in Ω, then f (z) − w has only a single zero in Ω, and Equation 4.88 yields the inversion
formula

f −1(w) = 1

2πi

∮
γ

zf ′(z)

f (z) − w
dz (4.89)

4.3.2.1 Other Important Theorems

The following theorems are employed in H∞ control theory.

1. Liouville’s Theorem: If f (z) is analytic and |f (z)| < M is bounded in the entire complex plane, then
f (z) must be a constant.

2. Cauchy’s Estimate: Suppose the analytic function f (z) is bounded, |f (z)| < M, on and inside a
circular region of radius r centered at z = a, then the kth derivative satisfies

|f (k)(a)| ≤ Mk!
rk

(4.90)

3. Maximum Modulus Theorem: If f (z) is a nonconstant analytic function inside and on a simple
closed curve γ, then the maximum value of |f (z)| occurs on γ and is not achieved on the interior.

4. Minimum Modulus Theorem: If f (z) is a nonzero analytic function inside and on a simple closed
curve γ, then the minimum value of |f (z)| occurs on γ.

5. Rouche’s Theorem: If f (z), g(z) are analytic on a simple closed curve γ, then f (z) and the sum
f (z) + g(z) have the same number of zeros inside γ.

6. Gauss’ Mean Value Theorem: If f (z) is analytic inside and on the circle of radius r centered at
z = a, then f (a) is the average value of f (z) along the circle,

f (a) = 1

2π

∫ 2π

0
f (a + reiθ)dθ (4.91)

4.3.3 The Residue Theorem

Let f (z) be analytic in a region Ω except at a pole at z = a ∈ Ω of order k. By Equation 4.43,

g(z) = (z − a)kf (z)

has a removable singularity at z = a and can be viewed as analytic over Ω. Thus, g(z) may be expanded
in a Taylor series about z = a. Dividing by (z − a)k yields the Laurent expansion

f (z) = a−k

(z − a)k
+ · · · + a−1

z − a
+ a0 + a1(z − a) + a2(z − a)2 + · · · (4.92)

In general, a series of the form
∞∑

r=−∞
ar(z − a)r
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is called a Laurent series. Because power series expansions have a radius of convergence, a Laurent series
can be viewed as the expansion of two analytic functions h1(z), h2(z) where

H(z) = h1

(
1

z − a

)
+ h2(z − a) =

∞∑
r=−∞

ar(z − a)r

The series converges for values of z which lie in an annular region ρ1 < |z − a| < ρ2 where ρ1 can be
zero and ρ2 could be infinite. The principal part h1(1/(z − a)) corresponds to the coefficients ar , where
r < 0 and the analytic part h2(z) corresponds to the coefficients ar , where r ≥ 0. If the principal part has
infinitely many nonzero terms ar �= 0, then z = a is said to be an, essential singularity of the function
H(z). The coefficient a−1 is called the residue of H(z) at the point z = a.

If f (z) is analytic within and on a simple closed curve γ except for an isolated singularity at z = a,
then it has a Laurent series expansion around z = a where, by Equation 4.74 and the Cauchy integral
formula (4.79),

f (z) =
∞∑

r=−∞
ar(z − a)r , where ar−1 = 1

2πi

∮
γ

f (z)

(z − a)r dz (4.93)

The residue is defined as

Res(f , a) = a−1 = 1

2πi

∮
γ

f (z) dz (4.94)

and, for an arbitrary curve γ where z = a is the only singularity enclosed by γ,

n(γ, a)Res(f , a) = 1

2πi

∫
γ

f (z) dz

At a simple pole of f (z) at z = a,

Res(f , a) = lim
z→a

(z − a)f (z) (4.95)

and, at a pole of order k,

Res(f , a) = lim
z→a

1

(k − 1)!
dk−1

dzk−1
[(z − a)kf (z)] (4.96)

For a simple pole, Equation 4.95 is identical to Equation 4.47 and, for a pole of order k, Equation 4.96 is
identical to Equation 4.50 with r = 1.

The residue theorem states that, if f (z) is analytic within and on a region Ω defined by a simple closed
curve γ except at a finite number of isolated singularities ξ1, . . . , ξk , then,

∮
γ

f (z) dz = 2πi[Res(f , ξ1) + · · · + Res(f , ξk)] (4.97)

Cauchy’s theorem (Equation 4.72) and the integral theorems can be viewed as special cases of the residue
theorem.

The residue theorem can be employed to find the values of various integrals. For example, consider the
integral ∫ ∞

−∞
1

1 + z4 dz

The poles of the function f (z) = 1/(1 + z4) occur at the points

eiπ/4, ei3π/4, ei5π/4, ei7π/4
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γ1

γ2

FIGURE 4.4 Residue theorem example.

Two of the poles lie in the upper half-plane and two lie in the lower half-plane. Employing Equation 4.95,
one can compute the residues of the poles in the upper half-plane

Res(f , eiπ/4) = e−i3π/4

4

and

Res(f , ei3π/4) = e−iπ/4

4

and the sum of the residues in the upper half-plane is −i
√

2/4. Consider the contour integral of Figure 4.4.
The curve γ consists of two curves γ1 and γ2, and hence,

∮
γ

f (z)dz =
∫

γ1

f (z)dz +
∫

γ2

f (z)dz

By the residue theorem (4.97),

∮
γ

1

1 + z4 dz = 2πi(−i
√

2/4) = π
√

2

2

One can show that the limit of the line integral

∫
γ2

f (z)dz → 0

as the radius of the semicircle approaches infinity and the curve γ1 approaches the interval (−∞, ∞).
Thus ∫ ∞

−∞
1

1 + z4 dz = π
√

2

2

4.4 Conformal Mappings

Every analytic function w = f (z) can be viewed as a mapping from the z plane to the w plane. Suppose
γ(t) is a differentiable curve passing through a point z0 at time t = 0. The curve Γ = f (γ) is a curve passing
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through the point w0 = f (z0). An application of the chain rule gives

Γ′(0) = f ′(z0)γ′(0) (4.98)

Taking the argument and assuming f ′(z0) �= 0 and γ′(0) �= 0, then

arg Γ′(0) = arg f ′(z0) + arg γ′(0)

Hence the angle between the directed tangents of γ and Γ at the point z0 is the angle arg f ′(z0). Thus,
if f (z0) �= 0, two curves γ1, γ2 which intersect at angle are mapped by f (z) to two curves which intersect
at the same angle. A mapping with this property is called conformal, and hence, if f (z) is analytic and
f ′(z) �= 0 in a region Ω, then f (z) is conformal on Ω.

Equation 4.98 has an additional geometric interpretation. The quantity |f ′(z0)|2 can be viewed as the
area dilation factor at z0. Infinitesimal area elements dxdy around z0 are expanded (or contracted) by a
factor of |f ′(z0)|2.

4.4.1 Bilinear or Linear Fractional Transformations

A transformation of the form,

w = T(z) = az + b

cz + d
(4.99)

where ad − bc �= 0 is called a linear fractional or bilinear transformation. This important class of trans-
formations occurs in control theory in developing Padé delay approximations, transformations between
continuous s-domain and discrete z-domain realizations, and lead-lag compensators. There are four
fundamental transformations:

1. Translation. w = z + b.
2. Rotation. w = az where a = eiθ.
3. Dilation: w = az where a = r is real. If a < 1, the mapping contracts; if a > 1, its expands.
4. Inversion: w = 1/z.

Every fractional transformation can be decomposed into a combination of translations, rotations,
dilations, and inversions. In fact, every linear fractional transformation of the form (4.99) can be associated
with a 2 × 2 complex matrix AT ,

AT =
[

a b
c d

]
where det AT = ad − bc �= 0 (4.100)

By direct substitution, one can show that, if T , S are two bilinear transformations, then the composition
T · S = T(S(z)) is bilinear and

AT ·S = AT AS (4.101)

holds for the corresponding 2 × 2 matrix multiplication. The fundamental transformations correspond
to the matrices [

1 b
0 1

]
,

[
eiθ 0
0 1

]
,

[
r 0
0 1

]
, and

[
0 1
1 0

]

For a fractional transformation w = T(z), if γ is a curve which describes a circle or a line in the z
plane, then Γ = T(γ) is a circle or a line in the w plane. This follows from the fact that it is valid for the
fundamental transformations and, hence, for any composition.

Any scalar multiple αA, where α �= 0, corresponds to the same linear fractional transformation as A.
Hence, one could assume that the matrix AT is unimodular or det AT = ad − bc = 1; if α = √

det AT ,
then the linear transformation given by (a, b, c, d) is identical to one given by (a, b, c, d)/α.



�

�

�

�

� �

Complex Variables 4-21

Every linear fractional transformation T (Equation 4.99) has an inverse which is a linear fractional
transformation

z = T−1(w) = dw − b

−cw + a
(4.102)

If A is unimodular, then A−1 is unimodular and

A−1 =
[

d −b
−c a

]

For example, for a sample time Δt, the Tustin or bilinear transformation is the same as the Padé
approximation,

z−1 = e−sΔt ≈ 1 − sΔt/2

1 + sΔt/2

or

z = T(s) = 1 + sΔt/2

1 − sΔt/2
(4.103)

and Equation 4.102 yields

s = T−1(z) = z − 1

zΔt/2 + Δt/2
= 2

Δt
· z − 1

z + 1
(4.104)

The Tustin transformation conformally maps the left half-plane of the s-domain onto the unit disk in
the z-domain. Thus if one designs a stable system with a transfer function H(s) and discretizes the
system by the Tustin transformation, one obtains a stable z-domain system with transfer function G(z) =
H[T−1(z)].

4.4.2 Applications to Potential Theory

The real and the imaginary parts of an analytic function f (z) satisfy Laplace’s equation,

∇2Φ = ∂2Φ

∂x2 + ∂2Φ

∂y2 = 0 (4.105)

Solutions to Laplace’s equation are called harmonic. Laplace’s equation occurs in electromagnetics and
the velocity potential of stationary fluid flow. An equation of the form

∇2Φ = f (x, y) (4.106)

is called Poisson’s equation commonly occurring in problems solving for the potential derived from Gauss’
law of electrostatics. Let Ω be a region bounded by a simple closed curve γ. Two types of boundary-value
problem are commonly associated with Laplace’s equation:

1. Dirichlet’s Problem: Determine a solution to Laplace’s equation subject to a set of prescribed values
along the boundary γ.

2. Neumann’s Problem: Determine a solution to Laplace’s equation so that the derivative normal to
the curve ∂Φ/∂n takes prescribed values along γ.

Conformal mapping can be employed to find a solution of Poisson’s or Laplace’s equation. In general,
one attempts to find an analytic or meromorphic function w = f (z) which maps the region Ω to the
interior of the unit circle or the upper half-plane. The mapped boundary-valued problem is then solved
on the w plane for the unit circle or upper half-plane and is then transformed via f −1(w) to solve the
problem on Ω.
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Let f (z) = u(x, y) + iv(x, y) be analytic on a region Ω. Both u(x, y) and u(x, y) and v(x, y) satisfy
Equation 4.105. The function v(x, y) is called a conjugate harmonic function to u(x, y). Since the mapping
f (z) is conformal, the curves

u(x, y) = a, v(x, y) = b

for a fixed a, b are orthogonal. The first curve u(x, y) = a is often called the equipotential line and the
curve v(x, y) = b is called the streamline of the flow.
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5.1 Input--Output Models

William S. Levine
5.1.1 Introduction

A fundamental problem in science and engineering is to predict the effect a particular action will have on
a physical system. This problem can be posed more precisely as follows. What will be the response, y(t),
for all times t in the interval t0 ≤ t < tf , of a specified system to an arbitrary input u(t) over the same time
interval (t0 ≤ t < tf )? Because the question involves the future behavior of the system, its answer requires
some sort of model of the system.

Engineers use many different kinds of models to predict the results of applying inputs to physical
systems. One extreme example is the 15-acre scale model, scaled at one human stride to the mile, of the
drainage area of the Mississippi river that the U.S. Corps of Engineers uses to predict the effect of flood
control actions [1]. Such models, although interesting, are not very general. It is more useful, in a chapter
such as this one, to concentrate on classes of models that can be used for a wide variety of problems.

The input–output models form just such a class. The fundamental idea behind input–output models is
to try to model only the relation between inputs and outputs. No attempt is made to describe the “internal”
behavior of the system. For example, electronic amplifiers are often described only by input–output
models. The many internal voltages and currents are ignored by the model. Because of this concentration
on the external behavior, many different physical systems can, and do, have the same input–output models.
This is a particular advantage in design. Given that a particular input–output behavior is required and
specified, the designer can choose the most advantageous physical implementation.

This chapter is restricted to input–output models. Section 5.2 deals with state-space models. A com-
plete discussion of all types of input–output models would be virtually impossible. Instead, this chapter
concentrates on an exemplary subclass of input–output models, those that are linear invariant and time
invariant (LTI). Although no real system is either linear invariant or time invariant, many real systems
are well approximated by LTI models within the time duration and range of inputs over which they are
used. Even when LTI models are somewhat inaccurate, they have so many advantages over more accurate
models that they are often still used, albeit cautiously. These advantages will be apparent from the ensuing
discussion.

LTI ordinary differential and difference equation (ODE) models will be introduced in Section 5.1.2.
The same acronym is used for both differential and difference equations because they are very similar,
have analogous properties, and it will be clear from the context which is meant. ODE LTI models are very
often obtained from the physics of a given system. For example, ODE models for electrical circuits and
many mechanical systems can be deduced directly from the physics. The section concludes with a brief
introduction to nonlinear and time-varying ODE input–output models.

Section 5.1.3 deals with continuous-time and discrete-time impulse response models. These are slightly
more general than the ODE models. Such models are primarily used for LTI systems. An introduction to
impulse response models for time-varying linear systems concludes the section.

Section 5.1.4 describes transfer function models of LTI systems. Transfer functions are very important
in classical control theory and practice. They have the advantage of being directly measurable. That is,
given a physical system that is approximately LTI, its transfer function can be determined experimentally.

The chapter concludes with Section 5.1.5, in which the equivalence among the different descriptions
of LTI models is discussed.

5.1.2 Ordinary Differential and Difference Equation Models

Consider a simple example of a system, such as an electronic amplifier. Such a system normally has an
input terminal pair and an output terminal pair, as illustrated in Figure 5.1. Also, there is often a line
cord that must be connected to a wall outlet to provide power for the amplifier. Typically, the amplifier
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Amplifier

i0(t)iin(t)

v0(t)vin(t)
++

––

FIGURE 5.1 A representation of an electronic amplifier.

is designed to have very high impedance at the input and very low impedance at the output. Because of
this, the input voltage is not affected by the amplifier and the output voltage is determined only by the
amplifier. Thus, in normal operation, the amplifier can be regarded as a system with input u(t) = vin(t) and
output y(t) = v0(t). The relationship between y(t) and u(t) is designed to be approximately y(t) = au(t),
where a is some real constant. Notice that the power supply is ignored, along with the currents, in this
simplified model of the amplifier. Furthermore, the facts that the amplifier saturates and that the gain, a,
generally depends on the input frequency have also been ignored. This illustrates a fundamental aspect of
modeling. Those features of the real system that are deemed unimportant should be left out of the model.
This requires considerable judgement. The best models include exactly those details that are essential and
no others. This is context dependent. Much of the modeling art is in deciding which details to include in
the model.

It is useful to generalize this simple electronic example to a large class of single-input single-output
(SISO) models. Consider the structure depicted in Figure 5.2, where u(t) and y(t) are both scalars. In many
physical situations, the relation between u(t) and y(t) is a function of the derivatives of both functions.
For example, consider the RC circuit of Figure 5.3, where u(t) = v(t) and y(t) = i(t). It is well known that
a mathematical model for this circuit is [2]

v(t) = Ri(t) + 1

C

∫ t

−∞
i(τ) dτ (5.1)

Differentiating both sides once with respect to t, replacing v(t) by u(t), i(t) by y(t) and dividing by R gives

1

R
u̇(t) = ẏ(t) + 1

RC
y(t) (5.2)

This example illustrates two important points. First, Equations 5.1 and 5.2 are approximations to reality.
Real RC circuits behave linearly only if the input voltage is not too large. Real capacitors include some
leakage (large resistor in parallel with the capacitance) and real resistors include some small inductance.
The conventional model is a good model in the context of inputs, v(t), that are not too large (so the
nonlinearity can be ignored) and, not too high frequency (so the inductance can be ignored). The leakage
current can be ignored whenever the capacitor is not expected to hold its charge for a long time.

Second, Equation 5.1 implicitly contains an assumption that the input and output are defined for past
times, τ, −∞ < τ < t. Otherwise, the integral in Equation 5.1 would be meaningless. This has apparently
disappeared in Equation 5.2. However, in order to use Equation 5.2 to predict the response of the system
to a given input, one would also need to know an “initial condition,” such as y(t0) for some specific t0. In

S

System

OutputInput

y(t)u(t)

FIGURE 5.2 A standard input–output representation of a continuous-time system.
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i(t)
C

R

v(t)

+

–

FIGURE 5.3 A series RC circuit.

the context of input–output models it is preferable not to have to specify separately the initial conditions
and the input. The separate specification of initial conditions can be avoided, for systems that are known
to be stable, by assuming the system is “initially at rest”—that is, by assuming the input is zero prior to
some time t0 (which may be −∞) and that the initial conditions are all zero up to t0 (y(t) and all its
derivatives are zero prior to t0). If the response to nonzero initial conditions is important, as it is in many
control systems, nonzero initial conditions can be specified. Given a complete set of initial conditions,
the input prior to t0 is irrelevant.

The RC circuit is an example of a stable system. If the input is zero for a time duration longer than
5RC, the charge on the capacitor and the current, y(t), will decay virtually to zero. The choice of 5RC,
is somewhat arbitrary. The time constant of the transient response of the RC circuit is RC and 5 time
constants are commonly used as the time at which the response is approximately zero. If the input
subsequently changes from zero, say, at time t0, the RC circuit can be modeled by a system that is “initially
at rest” even though it may have had a nonzero input at some earlier time.

A simple generalization of the RC circuit example provides a large, and very useful class of input–output
models for systems. This is the class of models of the form

dny(t)

dtn + an−1
dn−1y(t)

dtn−1 + · · · + a0y(t) = bm
dmu(t)

dtm + · · · + b0u(t) (5.3)

where the ai , i = 0, 1, 2, . . . , n − 1, and the bj, j = 0, 1, 2, . . . , m are real numbers.
The reader is very likely to have seen such models before because they are common in many branches

of engineering and physics. Both the previous examples are special cases of Equation 5.3. Equations of
this form are also studied extensively in mathematics.

Several features of Equation 5.3 are important. Both sides of Equation 5.3 could be multiplied by any
nonzero real number without changing the relation between y(t) and u(t). In order to eliminate this
ambiguity, the coefficient of dyn(t)/dtn is always made to be one by convention.

Models of the form of Equation 5.3 are known as linear systems for the following reason. Assume,
in addition to Equation 5.3, that the system is at rest prior to some time, t0. Assume also that input
ui(t), t0 ≤ t < tf , produces the response yi(t), t0 ≤ t < tf , for i = 1, 2. That is,

dnyi(t)

dtn + an−1
dn−1yi(t)

dtn−1 t · · · + a0yi(t) = bm
dmui(t)

dtm + · · · + b0ui(t) for i = 1, 2 (5.4)

Then, if α and β are arbitrary constants (physically, α and β must be real, but mathematically they can
be complex), then the input

us(t) = αu1(t) + βu2(t) (5.5)

to the system (Equation 5.3) produces the response

ys(t) = αy1(t) + βy2(t) (5.6)

A proof is elementary. Substitute Equations 5.5 and 5.6 into Equation 5.3 and rearrange the terms [3].
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The mathematical definition of linearity requires that the superposition property described by Equa-
tions 5.5 and 5.6 be valid. More precisely, a system is linear if and only if the system’s response, ys(t), to any
linear combination of inputs (us(t) = αu1(t) + βu2(t)) is the same linear combination of the responses to
the inputs taken one at a time (ys(t) = αy1(t) + βy2(t)).

If nonzero initial conditions are included in Equation 5.3, as is often the case in control, the input
uk(t), k = 1, 2, will produce output

yk(t) = yic(t) + yuk (t) k = 1, 2 (5.7)

where yic(t) denotes the response to initial conditions with u(t) = 0, and yuk (t) denotes the response to
uk(t) with zero initial conditions. When the input us(t) in Equation 5.5 is applied to Equation 5.3 and the
initial conditions are not zero, the resulting output is

ys(t) = yic(t) + αyu1 (t) + βyu2 (t) (5.8)

When ys(t) is computed by means of Equations 5.6 and 5.7, the result is

ys(t) = (α + β)yic(t) + αyu1 (t) + βyu2 (t) (5.9)

The fact that Equation 5.8, the correct result, and Equation 5.9 are different proves that nonzero initial
conditions invalidate the strict mathematical linearity of Equation 5.3. However, systems having the form
of Equation 5.3 are generally known as linear systems, even when they have nonzero initial conditions.

Models of the form of Equation 5.3 are known as time-invariant systems for the following reason.
Assume, in addition to Equation 5.3, that the system is at rest prior to the time, t0, at which the input
is applied. Assume also that the input u(t), t0 ≤ t < ∞, produces the output y(t), t0 ≤ t < ∞. Then,
applying the same input shifted by any amount T produces the same output shifted by an amount T .
More precisely, letting (remember that u(t) = 0 for t < t0 as part of the “at rest” assumption)

ud(t) = u(t − T), t0 + T < t < ∞ (5.10)

Then, the response, yd(t), to the input ud(t) is

yd(t) = y(t − T), t0 + T < t < ∞ (5.11)

A proof that systems described by Equation 5.3 are time-invariant is simple; substitute u(t − T) into
Equation 5.3 and use the uniqueness of the solution to linear ODEs to show that the resulting response
must be y(t − T).

Of course, many physical systems are neither linear nor time invariant. A simple example of a nonlinear
system can be obtained by replacing the resistor in the RC circuit example by a nonlinear resistance, a
diode for instance. Denoting the resistor current–voltage relationship by v(t) = f (i(t)), where f (·) is some
differentiable function, Equation 5.1 becomes

v(t) = f (i(t)) + 1

C

∫ t

−∞
i(τ) dτ (5.12)

Differentiating both sides with respect to t, replacing v(t) by u(t), and i(t) by y(t) gives

u̇(t) = df

dy
(y(t))ẏ(t) + 1

C
y(t) (5.13)

The system in Equation 5.12 is not linear because an input of the form (Equation 5.5) would not produce
an output of the form (Equation 5.6).
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One could also allow the coefficients in Equation 5.3 (ais and bjs) to depend on time. The result would
still be linear but would no longer be time invariant. There will be a brief discussion of such systems in
the following section.

Before introducing the impulse response, the class of discrete-time models will be introduced. Consider
the ODE

y(k + n) + an−1y(k + n − 1) + · · · + a0y(k) = bmu(k + m) + · · · + b0u(k) (5.14)

where the ai , i = 0, 1, 2, . . . , n − 1 and bj, j = 0, 1, 2, . . . , m are real numbers and k = k0, k0 + 1, k0 +
2, . . . , kf are integers. Such models commonly arise from either sampling a continuous-time physical
system or as digital simulations of physical systems. The properties of Equation 5.14 are similar to those
of Equation 5.3. The leading coefficient (the coefficient of y(k + n)) is conventionally taken to be one.
The computation of y(k) given u(k), k = k0, k0 + 1, . . . , kf also requires n initial conditions. The need
for initial conditions can be addressed, for stable systems, by assuming the system is “initially at rest”
prior to the instant, k0, at which an input is first applied. This initially “at rest” assumption means that
(1) u(k) = 0 for k < k0 and (2) that the initial conditions (y(0), y(−1), . . . , y(−n + 1) for example) are all
zero. When the system is initially at rest, analogous arguments to those given for Equation 5.3 show that
Equation 5.14 is linear and time invariant. Generally, even when the system is not initially at rest, systems
of the form of Equation 5.14 are known as LTI discrete-time systems.

5.1.3 Impulse Response

The starting point for discussion of the impulse response is not the system but the signal, specifically the
input u(t) or u(k). Generally, inputs and outputs, as functions of time, are called signals. The discrete-time
case, u(k), will be described first because it is mathematically much simpler. The first step is to raise an
important question that has been heretofore ignored. What is the collection of possible inputs to a system?
This collection will be a set of signals. In Section 5.1.2, it was assumed that any u(k), such that u(k) = 0,
for k < k0, could be an input. In reality this is not so. For example, it would be physically impossible to
create the following signal:

u(k) =
{

0, k ≤ 0

k2, k ≥ 0
(5.15)

Some energy is required to produce any physical signal; the energy needed for the signal in Equation 5.15
would be infinite.

There was a second assumption about the collection of signals described in Section 5.1.2. Equation 5.5
and the definition of linearity assume that us(t) (us(k) gives the discrete-time version), defined only as a
linear combination of possible inputs, is also a possible input. Mathematically, this amounts to assuming
that the collection of possible input signals forms a vector space. For engineering purposes the requirement
is the following.

If ui(k), i = 1, 2, 3, . . . belong to a collection of possible input signals and αi , i = 1, 2, 3, . . . are real
numbers, then

ut(k) =
∞∑

i=1

αiui(k) (5.16)

also belongs to the collection of possible input signals.
Equation 5.16 provides the first key to an economical description of LTI discrete-time systems. The

second key is the signal known as the unit impulse or the unit pulse,

δ(k) =
{

1, k = 0

0 all other integers
(5.17)
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S

LTI discrete-time
system

OutputInput

h(k)δ(k)

FIGURE 5.4 An input–output representation of a discrete-time LTI system showing a unit pulse as input and the
discrete-time impulse response as output.

Using δ(k) and Equation 5.16, any signal

u(k) = uk (uk a real number) − ∞ < k < ∞ (5.18)

can be rewritten as a sum of unit pulses

u(k) =
∞∑

i=−∞
uiδ(k − i) (5.19)

This initially seems to be a ridiculous thing to do. Equation 5.19 is just a complicated way to write
Equation 5.18. However, suppose you are given an LTI discrete-time system, S, and that the response
of this system to an input δ(k) is h(k), as illustrated in Figure 5.4. Because the system is time invariant,
its response to an input δ(k − i) is just h(k − i). Because the ui in Equation 5.19 are constants, like α

and β in Equations 5.5 and 5.6, because the system is linear, and because Equations 5.5 and 5.6 can
be extended to infinite sums by induction, the following argument is valid. Denote the action of S on
u(k), −∞ < k < ∞, by

y(k) = S(u(k))

Then,

y(k) = S(
∞∑

i=−∞
uiδ(k − i))

=
∞∑

i=−∞
uiS(δ(k − i))

y(k) =
∞∑

i=−∞
uih(k − i) −∞ < k < ∞ (5.20)

Equation 5.20 demonstrates that the response of the LTI discrete-time system, S, to any possible input,
u(k), −∞ < k < ∞, can be computed from one output signal, h(k), −∞ < k < ∞, known as the impulse
(or unit pulse) response of the system. Thus, the impulse response, h(k), −∞ < k < ∞, is an input–output
model of S.

The main uses of impulse response models are theoretical. This is because using Equation 5.20 involves
a very large amount of computation and there are several better ways to compute y(k), −∞ < k < ∞,
when the impulse response and the input are given. One example of the use of the impulse response is in
the determination of causality.

A system is said to be causal if and only if the output at any time k, y(k), depends only on the input at
times up to and including time k, that is, on the set of u(�) for −∞ < � ≤ k. Real systems must be causal.
However, it is easy to construct mathematical models that are not causal.
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It is evident from Equation 5.20 that an impulse response, h(k), is causal if and only if

h(k) = 0 for all k < 0 (5.21)

For causal impulse responses, Equation 5.20 becomes

y(k) =
k∑

i=−∞
uih(k − i) (5.22)

because h(k − i) = 0 by Equation 5.21 for i > k.
The development of the continuous-time impulse response as an input–output model for LTI

continuous-time systems is analogous to that for discrete time. The ideas are actually easy to under-
stand, especially after seeing the discrete-time version. However, the underlying mathematics are very
technical. Thus, proofs will be omitted.

A natural beginning is with the second key to an economical description of LTI systems, the defini-
tion of the unit impulse. For reasons that will be explained below, the continuous-time unit impulse is
usually defined by the way it operates on smooth functions, rather than as an explicit function such as
Equation 5.17.

Definition 5.1:

Let f (t) be any function that is continuous on the interval −ε < t < ε for every 0 < ε < εm and some εm.
Then the unit impulse (also known as the Dirac delta function) δ(t) satisfies

f (0) =
∫ ∞

−∞
f (τ)δ(τ) dτ (5.23)

To see why Equation 5.23 is used and not something like Equation 5.17, try to construct a δ(t) that
would satisfy Equation 5.23. The required function must be zero everywhere but at t = 0 and its integral
over any interval that includes t = 0 must be one.

Given a signal, u(t) − ∞ < t < ∞, the analog to Equation 5.19 then becomes, using Equation 5.23,

u(t) =
∫ ∞

−∞
u(τ)δ(t − τ) dτ (5.24)

Equation 5.24 can then be used analogously to Equation 5.19 to derive the continuous-time equivalent of
Equation 5.20. That is, suppose you are given an LTI continuous-time system, S, and that the response
of this system to a unit impulse applied at t = 0, δ(t), is h(t) for all t, −∞ < t < ∞. In other words,

h(t) = S(δ(t)) −∞ < t < ∞

To compute the response of S, y(t)(−∞ < t < ∞), to an input u(t)(−∞ < t < ∞), proceed as follows.

y(t) = S(u(t))

= S(
∫ ∞

−∞
u(τ)δ(t − τ) dτ)

Because S(·) acts on signals (functions of time, t), because u(τ) acts as a constant (not a function of t),
and because integration commutes with the action of linear systems (think of integration as the limit of a
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sequence of sums),

y(t) =
∫ ∞

−∞
u(τ)S(δ(t − τ)) dτ

y(t) =
∫ ∞

−∞
u(τ)h(t − τ) dτ −∞ < t < ∞ (5.25)

As in the discrete-time case, the primary use of Equation 5.25 is theoretical. There are better ways to
compute y(t) than by direct computation of the integral in Equation 5.25. Specifically, the Laplace or
Fourier transform provides an efficient means to compute y(t) from knowledge of h(t) and u(t), −∞ <

t < ∞. The transforms also provide a good vehicle for the discussion of physical signals that can be used
as approximations to the unit impulse. These transforms will be discussed in the next section.

Two apparently different classes of input–output models have been introduced for both continuous-
time and discrete-time LTI systems. A natural question is whether the ODE models are equivalent to the
impulse response models. It is easy to see that, in continuous time, there are impulse responses for which
there are not equivalent ODEs. The simplest such example is a pure delay. That is

y(t) = u(t − td) −∞ < t < ∞ (5.26)

where td > 0 is a fixed time delay.
The impulse response for a pure delay is

h(t) = δ(t − td) −∞ < t < ∞ (5.27)

but there is no ODE that exactly matches Equation 5.26 or 5.27. Note that there are real systems for which
a pure delay is a good model. Electronic signals travel at a finite velocity. Thus, long transmission paths
correspond to pure delays.

The converse is different. Every ODE has a corresponding impulse response. It is easy to demonstrate
this in discrete time. Simply let δ(k) be the input in Equation 5.14 with n = 1 and m = 0. Assuming
Equation 5.14 is initially at rest results in a recursive calculation for h(k). For example, let

y(k + 1) + ay(k) = bu(k) −∞ < k < ∞
Replacing u(k) by δ(k) gives an input that is zero prior to k = 0. Assuming the system is initially at rest
makes y(k) = 0 for k < 0. Then

y(0) + ay(−1) = bu(−1)

gives

y(0) = h(0) = 0, y(1) + ay(0) = bu(0) = b

gives

y(1) = h(1) = b, y(2) + ay(1) = bu(1) = 0

gives

y(2) = h(2) = −ab,

and so on.
A similar recursion results in the general case when δ(k) is input to an arbitrary ODE.
The result in the continuous-time case is the same—every ODE has a corresponding impulse response—

but the mathematics is more complicated unless one uses transforms.
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The response of a system that is linear but time varying to a unit impulse depends on the time at which
the impulse is applied. Thus, the impulse response of a linear time-varying system must be denoted in
the continuous-time case by h(t, τ) where τ is the time at which the impulse is applied and t is the time
at which the impulse response is recorded. Because the system is linear, the argument that produced
Equation 5.25 also applies in the time-varying case. The result is

y(t) =
∫ ∞

−∞
u(τ)h(t, τ) dτ −∞ < t < ∞ (5.28)

The analogous result holds in discrete time.

y(k) =
∞∑

i=−∞
u(i)h(k, i) −∞ < k < ∞ (5.29)

See Control System Advanced Methods, Chapter 3, for more information about linear time-varying sys-
tems.

There are forms of impulse response models that are useful in the study of nonlinear systems. See
Control System Advanced Methods, Chapter 40.

5.1.4 Transfer Functions

The other common form for LTI input–output models is the transfer function. The transfer function,
as an input–output model, played a very important role in communications and in the development of
feedback control theory in the 1930s. Transfer functions are still very important and useful. One reason is
that for asymptotically stable, continuous-time LTI systems, the transfer function can be measured easily.
To see this, suppose that such a system is given. Assume that this system has an impulse response, h(t),
and that it is causal (h(t) = 0 for t < 0). Suppose that this system is excited with the input

u(t) = cos ωt −∞ < t < ∞ (5.30)

Equation 5.30 is a mathematical idealization of a situation where the input cosinusoid started long enough
in the past that all the transients have decayed to zero. The corresponding output is

y(t) =
∫ ∞

−∞
h(t − τ) cos ωτ dτ (5.31)

=
∫ ∞

−∞
h(t − τ)

(
ejωt + e−jωτ

2

)
dτ

= 1

2

∫ ∞

−∞
h(t − τ)ejωτdτ + 1

2

∫ ∞

−∞
h(t − τ)e−jωτdτ

= 1

2

∫ ∞

−∞
h(σ)ejω(t−σ)dσ + 1

2

∫ ∞

−∞
h(σ)e−jω(t−σ)dσ

y(t) =
(∫ ∞

−∞
h(σ)e−jωσdσ

)
ejωt

2
+
(

1

2

∫ ∞

−∞
h(σ)ejωσdσ

)
e−jωt

2
(5.32)

Define for all real ω, −∞ < ω < ∞,

H(jω) =
∫ ∞

−∞
h(σ)e−jωσ dσ (5.33)

Notice that H(jω) is a complex number for every real ω and that the complex conjugate of H(jω), denoted
H∗(jω), is H(−jω). Then, Equation 5.32 becomes

y(t) = H(jω)ejωt + H∗(jω)e−jωt

2
or, y(t) = |H(jω)| cos(ωt+ �< H(jω)) (5.34)
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where

|H(jω)| = magnitude of H(jω)

≮ H(jω) = angle of H(jω).

Of course, H(jω), for all real ω, −∞ < ω < ∞, is the transfer function of the given LTI system. It should
be noted that some authors call H(jω) the frequency response of the system and reserve the term “transfer
function” for H(s) (to be defined shortly). Both H(jω) and H(s) will be called transfer functions in this
article. Equation 5.34 shows how to measure the transfer function; evaluate Equation 5.34 experimentally
for every value of ω. Because it is impossible to measure H(jω) for every ω, −∞ < ω < ∞, what is actually
done is to measure H(jω) for a finite collection of ω’s and interpolate.

Suppose the object of the experiment was to measure the impulse response. Recognize that Equa-
tion 5.33 defines H(jω) to be the Fourier transform of h(t). The inverse of the Fourier transform is
given by

x(t)
Δ=
∫ ∞

−∞
X(jω)ejωt dω

2π
(5.35)

where X(jω) is a function of ω, −∞ < ω < ∞.
Applying Equation 5.35 to Equation 5.33 gives

h(t) =
∫ ∞

−∞
H(jω)ejωt dω

2π
(5.36)

Equation 5.36 provides a good way to determine h(t) for asymptotically stable continuous-time LTI
systems. Measure H(jω) and then compute h(t) from Equation 5.36. Of course, it is not possible to measure
H(jω) for all ω, −∞ < ω < ∞. It is possible to measure H(jω) for enough values of ω to compute a good
approximation to h(t). In many applications, control design using Bode, Nichols, or Nyquist plots for
example, knowing H(jω) is sufficient.

Having just seen that the transfer function can be measured when the system is asymptotically stable,
it is natural to ask what can be done when the system is unstable. The integral in Equation 5.33 blows
up; because of this the Fourier transform of h(t) does not exist. However, the Laplace transform of h(t) is
defined for unstable as well as stable systems and is given by

H(s) =
∫ ∞

−∞
h(t)e−stdt (5.37)

for all complex s such that the integral in Equation 5.37 is finite.
Transfer functions have several important and useful properties. For example, it is easy to prove that

the transfer function for a continuous-time LTI system satisfies

Y (s) = H(s)U(s) (5.38)

where Y (s) is the Laplace transform of the output y(t), −∞ < t < ∞, and U(s) is the Laplace transform
of the input u(t), −∞ < t < ∞.

To prove Equation 5.38, take the Laplace transform of both sides of Equation 5.25 to obtain

Y (s) =
∫ ∞

−∞

(∫ ∞

−∞
u(τ)h(t − τ)dτ

)
e−stdt

=
∫ ∞

−∞

∫ ∞

−∞
u(τ)h(t − τ)estdt dτ
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Make the change of variables σ = t − τ

=
∫ ∞

−∞

∫ ∞

−∞
u(τ)h(σ)e−s(σ+τ)dσ dτ

Y (s) =
∫ ∞

−∞
h(σ)e−sσdσ

∫ ∞

−∞
u(τ)e−stdτ = H(s)U(s) (5.39)

The Laplace transform provides an easy means to demonstrate the relationship between transfer
functions, H(s) or H(jω), and ODE models of LTI continuous-time systems. Take the Laplace transform
of both sides of Equation 5.3, assuming that the system is initially at rest. The result is

(sn + an−1sn−1 + · · · + a0)Y (s) = (bmsm + · · · + b0)U(s) (5.40)

where the fact that the Laplace transform of ẏ(t) is sY (s) has been used repeatedly. Dividing through
gives

Y (s) = bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 + · · · + a0
U(s) (5.41)

Equation 5.41 shows that, for a continuous-time ODE of the form of Equation 5.3,

H(s) = bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 + · · · + a0
(5.42)

The discrete-time case is very similar. The discrete-time analog of the Fourier transform is the discrete
Fourier transform. The discrete-time analog of the Laplace transform is the Z-transform. The results and
their derivations parallel those for continuous-time systems. Refer any textbook on signals and systems
such as [3] or [4] for details.

5.1.5 Conclusions

Although this chapter has treated the ODE, impulse response, and transfer function descriptions of
LTI systems separately, it should be apparent that they are equivalent descriptions for a large class of
systems. A demonstration that the impulse response and transfer function descriptions are more general
than the ODE descriptions has already been given; there is no continuous-time ODE corresponding to
H(s) = e−sT . However, all three descriptions are equivalent whenever H(s) can be written as a rational
function, that is, as a ratio of polynomials in s.

There is a result known as Runge’s theorem [5, p. 258] that proves that any H(s) that is analytic in a
region of the s-plane can be approximated to uniform accuracy, in that region, by a rational function. A
family of such approximations is known as the Padé approximants [6]. The basic idea is to expand the
given analytic function in a Taylor series (this is always possible) and then choose the coefficients of the
rational function so as to match as many terms of the series as possible. For example,

e−sT = 1 − Ts + T2

2! s2 + · · · + T2

n! sn + · · · ≈ bmsm + bm−1sm−1 + . . . + b0

sm + am−1sm−1 + · · · + a0

The 2m − 1 coefficients (b0, b1, . . . , bm, a0, . . . , am−1) can then be selected to match the first 2m − 1
coefficients of the Taylor series. The result is known as the Padé approximation to a pure delay of
duration T in the control literature [7, p. 332]. The approximation improves with increasing m.
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There are still examples for which approximation by ODEs is problematic. An example is the flow of
heat in a long solid rod. Letting x denote the displacement along the rod and assuming that the input is
applied at x = 0, that the initial temperature of the rod is zero, and that the output is the temperature of
the rod at point x, then the transfer function observed at x is [8, pp. 182–184] and [9, pp. 145–150]

H(s, x) = e−x
√

s/a (5.43)

where a is the thermal diffusivity.
Even for a fixed x, this is an example of a transfer function to which Runge’s theorem does not apply in

any region of the complex plane that includes the origin. The reason is that H(s, x) is not differentiable at
s = 0 for any x > 0 and is therefore not analytic in any region containing the origin. In many applications
it is nonetheless adequate to approximate this transfer function by a simple low-pass filter,

H(s) = b0

s + a0
(5.44)

This example emphasizes the difficulty of making general statements about modeling accuracy. Decid-
ing whether a given model is adequate for some purpose requires a great deal of expertise about the
physical system and the intended use of the model. The decision whether to use an input–output model
is somewhat easier. Input–output models are appropriate whenever the internal operation of the physical
system is irrelevant to the problem of interest. This is true in many systems problems, including many
control problems.
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Further Reading

There are literally hundreds of textbooks on the general topic of signals and systems. Most have use-
ful sections on input–output descriptions of LTI systems. References [3] and [4] are good examples.
Reference [3] has a particularly good and well-organized bibliography.

A particularly good book for those interested in the mathematical technicalities of Fourier transforms
and the impulse response is

10. Lighthill, M.J., Introduction to Fourier Analysis and Generalized Functions, Cambridge Monographs on
Mechanics and Applied Mathematics, London, England, 1958.

Those interested in nonlinear input–output models of systems should read Control System Advanced
Methods, Chapter 40. Those interested in linear time-varying systems should read Control System
Advanced Methods, Chapter 3. Chapter 57 in Control System Advanced Methods, is a good starting
point for those interested in the experimental determination of LTI input–output models.
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5.2 State Space

James T. Gillis
5.2.1 Introduction

This chapter introduces the state-space methods used in control systems; it is an approach deeply rooted
in the techniques of differential equations, linear algebra, and physics.

Webster’s Ninth College Dictionary [1] defines a “state” as a “mode or condition of being” (1a), and “a
condition or state of physical being of something” (2a). By a state-space approach one means a description
of a system in which the “state” gives a complete description of the system at a given time; it implies that
there are orderly rules for the transition from one state to another. For example, if the system is a particle
governed by Newton’s Law: F = ma, then the state could be the position and velocity of the particle or
the position and momentum of the particle. These are both state descriptions of such a system. Thus,
state-space descriptions of a system are not unique.

5.2.2 States

5.2.2.1 Basic Explanation

In this section the concepts of state and state space are introduced in an intuitive manner, then formally.
Several examples of increasing complexity are discussed. A method for conversion of an ordinary dif-
ferential equation (ODE) state-space model to a transfer function model is discussed along with several
conversions of a rational transfer function to a state-space model.

The key concept is the state of a system, which is a set of variables which, along with the current time,
summarizes the current configuration of a system. While some texts require it, there are good reasons
for not requiring the variables to be a minimal set.∗ It is often desirable to work with a minimal set of
variables, e.g., to improve numerical properties or to minimize the number of components used to build
a system.

Given the state of a system at a given time, the prior history is of no additional help in determining the
future behavior of the system. The state summarizes all the past behavior for the purposes of determining
future behavior. The state space is the set of allowable values. The state space defines the topological,
algebraic, and geometric properties associated with the evolution of the system over time. The state-space
description carries an internal model of the system dynamics. For example, one familiar equation is
Newton’s equation: F(t) = ma(t) = mẍ(t). The Hamiltonian formulation for this problem, yields a set of
coupled set of first-order equations for position (q = x) and momentum (p = mẋ):

d

dt

[
q

p

]
=
⎡
⎣

p

m
F(t)

⎤
⎦ (5.45)

[
q(0) p(0)

]T = [
x(0) mẋ(0)

]T
. (5.46)

∗ A typical example is the evolution of a direction cosine matrix. This is a three by three matrix that gives the orientation
of one coordinate system with respect to another. Such matrices have two restrictions on them; they have determinant
1, and their transpose is their inverse. This is also called SO(3), the special orthogonal group of order 3. A smaller set
of variables is pitch, roll, yaw (R3); however, this description is only good for small angles as R

3 is commutative and
rotations are not. When the relationship is a simple rotation with angular momentum ω = [ωx , ωy , ωz ], the dynamics

can be described with a state space in R
9 ∼ R

3×3, as

d

dt
A = −

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

⎤
⎦A

which is not a minimal representation, but is simple to deal with. There is no worry about large angles in this representation.
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This is indeed a state-space description of Newton’s equations. The state at a given time is the vector[
q(t) p(t)

]T
. The state space is R

2. Examples of topological properties of the state space are: it is
continuous, it has dimension two, etc. Of course, R

2 enjoys many algebraic and geometric properties also.
One could also integrate Newton’s equations twice and get

x(t) = x(0) + tẋ(0) + 1

m

∫ t

0

∫ s

0
F(τ) dτds. (5.47)

While very useful, this is an example of an “input–output” model of the system. The single variable “x(t)”
is not sufficient to characterize the future behavior; clearly, one needs ẋ(t). Many facts about Equation 5.47
can be deduced by examining the solution; however, methods such as phase portraits (plot of q -vs- p)
are frequently helpful in elucidating information about the behavior of the system without solving it.
See [2, Chapter 2, Section 1].

Often, the structure of the state space can be guessed by the structure of the initial conditions for the
problem. This is because the initial conditions summarize the behavior of the system up to the time that
they are given. In most mechanical systems, the state space is twice the number of the degrees of freedom;
this assumes that the dynamics are second order. The degrees of freedom are positions,“xi ,” and the
additional variables needed to make up a state description are the velocities, “ẋi .”

State-space descriptions can be quite complicated, as is the case when two connected bodies separate
(or collide), in which case the initial dimension of the state space would double (or half). Such problems
occur in the analysis of the motions of launch vehicles, such as the space shuttle which uses, and ejects,
solid rocket motors as well as a large liquid tank on its ascent into orbit. In such a case two different
models are often created, and an attempt is made to capture and reconcile the forces of separation. This
approach is not feasible for some systems, such as gimballed arms in robotics, which experience gimbal
lock or the dropping or catching of gripped objects. Such problems are, usually, intrinsically difficult.

5.2.2.2 Reduction to First Order

In the case of Newton’s laws, the state-space description arose out of a reduction to a system of first-order
differential equations. This technique is quite general. Given a higher-order differential equation:∗

y(n) = f (t, u(t), y, ẏ, ÿ, . . . , y(n−1)) (5.48)

with initial conditions:

y(t0) = y0, ẏ(t0) = y1, . . . , y(n−1)(t0) = yn−1. (5.49)

Consider the vector x ∈ R
n with x1 = y(t), x2 = ẏ(t), . . . , xn = y(n−1)(t). Then Equation 5.48 can be

written as:

d

dt
x =

⎡
⎢⎢⎢⎢⎢⎣

x2

x3
...

xn

f (t, u(t), x1, x2, x3, . . . , xn)

⎤
⎥⎥⎥⎥⎥⎦

(5.50)

with initial conditions:

x(t0) = [y0, y1, . . . , yn−1]T . (5.51)

∗ In this section superscripts in parenthesis represent derivatives, as do over–dots, e.g., ÿ = y(2) = d2/dt2y.
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Integration

State
space

X

Output
yInputs

u

B
A

C

D

Tangent space to X = Tx: dX/dt

FIGURE 5.5 A pictorial view of the state-space model for a system with dynamics: ẋ = A(x) + B(u) and measurement
equation y = C(x) + D(u). Note that the tangent space for R

n is identified with R
n itself, but this is not true for other

objects. For example, SO(3) is a differentiable manifold, and its tangent space is composed of skew symmetric 3 × 3
matrices noted earlier.

Here x is the state and the state space is R
n. This procedure is known as reduction to first order. It is the

center of discussion for most of what follows.
Another case that arises in electric circuits and elsewhere is the integro-differential equation, such as

that associated with Figure 5.6:

e(t) = RI(t) + L
d

dt
I(t) + 1

C

∫ t

0
I(τ) dτ. (5.52)

Letting x1(t) = ∫ t
0 I(τ)dτ, x2(t) = I(t), so that ẋ1 = x2. Then the state-space formulation is:

d

dt
x =

[
0 1

− 1
LC −R

L

]
x +

[
0
1
L

]
e(t) (5.53)

I(t) = [
0 1

]
x. (5.54)

This is a typical linear system with an output map.
Reduction to first order can also handle f (Equation 5.48) which depends on integrals of the inputs,∫ t

0 u(τ) dτ, by setting xn+1 = ∫ t
0 u(τ) dτ so that ẋn+1(t) = u(t), etc. However, unless u̇ can be considered

as the input, it cannot be handled in the reduction to first order. The sole exception is if f is linear, in

I

+

e

C

L

R

FIGURE 5.6 An RLC circuit, with impressed voltage e(t) (input function), yields an equation for the current, I(t).
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which case the equation can be integrated until no derivatives of the input appear in it. This procedure
will fail if there are more derivatives of the input than the original variable since there will not be
enough initial conditions to be compatible with the integrations! That is, differential equations of the

form
∑N

0
di

dti yi(t) =∑M
0

di

dti ui(t), discussed in Section 5.2.2.5, must have N ≥ M in order to develop a

state-space model for the system.
Equivalent reduction to first order works for higher-order difference equations (see Section 5.2.2.3).
Several other forms are commonly encountered. The first is the delay, e.g., ẋ(t) = ax(t) + bx(t − T)

for some fixed T . This problem is discussed in Section 5.2.2.8. Another form, the transfer function, is
discussed in Section 5.2.2.5.

5.2.2.3 ARMA

The standard ARMA (auto regressive moving average) model is given by:

yt =
n∑

l=1

alyt−l +
n∑

l=0

blut−l . (5.55)

The “ajyt−j” portion of this is the auto regressive part and the “bkut−k” portion is the moving average
part. This can always be written as a state space model,

xt+1 = Axt + But (5.56)

yt = Cxt + b0ut , (5.57)

with x ∈ R
n, as follows.

Using the “Z” transform, where yt−1 → z−1Y (z), Equation 5.55 transforms to

[1 − a1z−1 · · · − anz−n]Y (z) = [b0 + b1z−1 · · · + bnz−n]U(z).

Y (z)

U(z)
= b0 + b1z−1 · · · + bnz−n

1 − a1z−1 · · · − anz−n

= b0 + c1z−1 · · · + cn−1z−(n−1)

1 − a1z−1 · · · − anz−n

The last step is by division (multiply top and bottom by zn, do the division, and multiply top and bottom
by z−n). This is the transfer function representation; then, apply the process directly analogous to the one
explained in Section 5.2.2.5 for continuous systems to get the state-space model. The resulting state-space
model is

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

0 0 0 0 · · · 0 1
an an−1 · · · a2 a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

B = [0 0 · · · 0 1]T

C = [c1 c2 · · · cn−1]
The solution operator for this equation is given by the analog of the variation of constants formula:

xt = Atx0 +
t−1∑
l=0

At−1−lBul (5.58)
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5.2.2.4 Ordinary Differential Equation

An ordinary differential equation, such as: ÿ + 2ωξẏ + ω2y = u(t), with y(0) = y0; ẏ(0) = ẏ0, is actually

the prototype for this model. Here 0 < ξ < 1 and ω > 0. Consider x = [
y ẏ

]T
, then the equation could

be written

ẋ =
[

0 1

−ω2 −2ωξ

]
x +

[
0

1

]
u(t)

y(t) = [
1 0

]
x

x|t=0 = x0 = [
y0 ẏ0

]T
.

The state transition function is given by the variation of constants formula and the matrix exponential:∗

x(t) = exp

{[
0 1

−ω2 −2ωξ

]
t

}
x0 +

∫ t

0
exp

{[
0 1

−ω2 −2ωξ

]
(t − τ)

}[
0

1

]
u(τ) dτ (5.59)

= Γ(0, t, x0, u) (5.60)

w(t) = y(t) = [
1 0

]
x(t).

It is easy to confirm that the variation of constants formula meets the criterion to be a state transition
function. The system is linear and time invariant.

This is a specific case of the general first-order, linear time-invariant vector system which is written

ẋ(t) = Ax(t) + Bu(t) (5.61)

y(t) = Cx(t) + Du(t) (5.62)

where x(t) ∈ R
k , u(t) ∈ R

p, y(t) ∈ R
m, and the quadruple [A, B, C, D] are compatible constant matrices.

5.2.2.5 Transfer Functions and State-Space Models

This section is an examination of linear time-invariant differential equations (of finite order). All such
systems can be reduced to first order, as already explained. Given a state-space description with x(t) ∈ R

k ,
u(t) ∈ R

p, y(t) ∈ R
m and

ẋ = Ax + Bu with initial conditions x(t0) = x0 (5.63)

y = Cx + Du (5.64)

where [A, B, C, D] are constant matrices of appropriate dimensions, the transfer function is given by:
G(s) = C(sI − A)−1B + D. This is arrived at by taking the Laplace transform of the equation and
substituting—using initial conditions of zero. While this expression is simple, it can be deceiving as
numerically stable computation of (sI − A)−1 may be difficult. For small systems, one often computes
(sI − A)−1 by the usual methods (cofactor expansion, etc.). Other methods are given in [3]. One conse-
quence of this expression is that state-space models are proper (lims→∞ G(s) = D).

Given a transfer function G(s), which is a rational function, how does one develop a state-space
realization of the system? First the single–input–single–output (SISO) case is treated, then extend it to

∗ Since it is useful, let C(t) = cos ω
√

1 − ξ2t and S(t) = sin ω
√

1 − ξ2t, then

exp

{[
0 1

−ω2 −2ωξ

]
t

}
= exp {−ξωt}

⎡
⎢⎢⎣

C(t) + ξ√
1 − ξ2

S(t)
1

ω
√

1 − ξ2
S(t)

− ω√
1 − ξ2

S(t) C(t) − ξ√
1 − ξ2

S(t)

⎤
⎥⎥⎦
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the multi–input–multi–output (MIMO) case (where G(s) is a matrix of rational functions dimension m
(outputs) by p (inputs)). The idea is to seek a quadruple [A, B, C, D], representing the state equations as in
Equations 5.63 and 5.64, so that G(s) = C(sI − A)−1B + D, where A maps R

k → R
k ; C maps R

k → R
m;

B maps R
p → R

k ; and D maps R
p → R

m. Here the state space is R
k .

Let

G(s) = n(s)/d(s) + e(s) (5.65)

where n, d, and e are polynomials with deg(n) < deg(d), and this can be constructed by the Euclidean
algorithm [4]. The coefficient convention is d(s) = d0 + d1s + · · · + sk for deg(d) = k. Notice that the
leading order term of the denominator is normalized to one, and n is a polynomial of degree k − 1. The
transfer function is said to be proper if e(s) is constant and strictly proper if e(s) is zero. If a transfer
function is strictly proper, then the input does not directly appear in the output D ≡ 0; if it is proper then
D is a constant. If the transfer function is not proper, then derivatives of the input appear in the output.

Given the transfer function 5.65, by taking the inverse Laplace transform of ŷ(s) = G(s)û(s), and
substituting, one has the dynamics.∗

d

(
d

dt

)
y(t) =

(
n

(
d

dt

)
+ e0d(

d

dt
)

)
u(t) (5.66)

It is possible to work with this expression directly; however, the introduction of an auxiliary variable leads
to two standard state-space representations for transfer functions. Introduce the variable z(t) as

d

(
d

dt

)
z(t) = u(t) (5.67)

y(t) = n

(
d

dt

)
z + e0u (5.68)

or

d

(
d

dt

)
z(t) = n

(
d

dt

)
u (5.69)

y(t) = z(t) + e0u. (5.70)

Both of these expressions can be seen to be equivalent to Equation 5.66, by substitution.
Equations 5.67 and 5.68 can be reduced to first order by writing

dk

dtk
(z) + dk−1

dtk−1
(dk−1z) + · · · + d0z = u.

Then let x1 = z, x2 = ż, so that d
dt x1 = x2, d

dt x2 = x3, etc. This can be written in first-order matrix form as

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−d0 −d1 −d2 · · · −dk−2 −dk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t)

y(t) = [n0 n1 · · · nk−2 nk−1] x + e0 u(t).

This is known as the controllable canonical form.

∗ Here the initial conditions are taken as zero when taking the inverse Laplace transform to get the dynamics; they must

be incorporated as the initial conditions of the state-space model. As a notational matter, by d( d
dt )y(t) one means

d0y(t) + d1ẏ(t) + · · · + dk−1y(k−1) + y(k). Thus, d( d
dt ) is a polynomial in the operator d

dt and the same is true for n( d
dt ).
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The second pair of equations can be reduced to first order by writing Equation 5.69 as

0 = d0z − n0u + d

dt

(
d1z − n1u + d

dt

(
d2z − n2u

d

dt

(
· · · dk−2z − nk−2u

+ d

dt
(dk−1z − nk−1u + d

dt
(z)) · · ·

)))
(5.71)

Let x1 = everything past the first d
dt , then the complete equation is ẋ1 = −d0z + n0u. Let x2 = everything

past the second d
dt , then x1 = d1z − n1u + ẋ2, which is the same as: ẋ2 = x1 − d1z + n1u. Proceeding in

this fashion, ẋl = xl−1 − dl−1z + nl−1u; however, the interior of the last d
dt is the variable z so that xk = z!

Substituting and writing in matrix form

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 −d0

1 0 0 · · · 0 0 −d1

0 1 0 · · · 0 0 −d2
...

...
...

...
...

0 0 0 · · · 1 0 −dk−2

0 0 0 · · · 0 1 −dk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎣

n0

n1

n2
...

nk−1

⎤
⎥⎥⎥⎥⎥⎦

u(t)

y(t) = [0 0 · · · 0 1] x + e0 u(t) (5.72)

This is known as observable canonical form. This form is usually reduced from a block diagram making
the choice of variables more obvious.

Notice that Controllable Form is equal to Observable Form transposed,

[A, B, C, D] = [AT , CT , BT , DT ]

which is the beginning of duality for controllability and observability. The A matrix in these two examples
is in companion form, the negative of the coefficients of the characteristic equation on the outside
edge, with ones off the diagonal. There are two other companion forms, and these are also related to
controllability and observability.

If G(s) is strictly improper, that is, deg(e) ≥ 1, there is no state-space model; however, there is at least
one trick used to circumvent this. As an example, one might deal with this by modeling e(s) = s2 with
s2/s2 + as + b, moving the poles outside the range of the system. Since s2/s2 + as + b is proper, it has
a state-space model; then adjoin this model to the original, feeding its output into the output original
system. One effect is the bandwidth (dynamic range) of the system is greatly increased. This can result in
“stiff” ODEs which have numerical problems associated with them. Obviously, this technique could be
applied to more complex transfer functions e(s). However, improper systems should be closely examined
as such a system has an increasingly larger response to higher frequency inputs!

5.2.2.6 Miscellanea

Given a state-space representation of the form ẋ = Ax + Bu; y = Cx + Du, one could introduce a
change of variables z = Px, with P−1 existing. Then the system can be written, by substitution: ż =
PAP−1x + PBu; y = CP−1z + Du. Hence Px → z induces [A, B, C, D] → [PAP−1, PB, CP−1, D]. Note
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that such a transformation does not change the characteristic equation; and hence the eigenvalues asso-
ciated with A, since

det(sI − A) = det(P)det(P−1)det(sI − A)

= det(P)det(sI − A)det(P−1)

= det(P(sI − A)P−1)

= det(sPP−1 − PAP−1)

= det(sI − PAP−1).

A little more algebra shows that the transfer function associated with the two systems is the same. The
transformation A → P−1AP is known as a similarity transformation.

Finding a state-space representation of smaller dimension has two guises: the first is the search for a
minimal realization, touched on in Example 5.4. The second is the problem of model reduction.

Usual operations on transfer functions involve combining them, usually adding or cascading them. In
both of these cases the state-space model can be determined from the state-space models of the component
transfer functions. The total state-space size is usually the sum of the dimensions of the component state-
space models. Here xi is taken as the state (subvector) corresponding to transfer function Gi , rather than
a single component of the state vector. The exception to this rule about component size has to do with
repeated roots and will be illustrated below. The size of the state space is the degree of the denominator
polynomial of the combined system—note that cancellation can occur between the numerator and the
denominator of the combined system.

When two transfer functions are cascaded (the output of the first is taken as input to the second),
the resulting transfer function is the product of the two transfer functions: H(s) = G2(s)G1(s). To build
the corresponding state-space model, one could simply generate a state-space model for H(s); however,
if state-space models exist for G1 and G2, there are sound reasons for proceeding to work in the state-
space domain. This is because higher-order transfer functions are more likely to lead to poor numerical
conditioning (see the discussion at the end of Section 5.2.2.8). Given G1 ∼ [A1, B1, C1, D1] and G2 ∼
[A2, B2, C2, D2], then simple algebra shows that

H = G2G1 ∼ (5.73)

ẋ =
[

A1 0
B2C1 A2

]
x(t) +

[
B1

B2D1

]
u(t) (5.74)

y(t) = [D2C1 C2] x(t) + D2D1u(t). (5.75)

The state space used in this description is
[
x1 x2

]T
, where x1 ∼ G1 and x2 ∼ G2.

When two transfer functions are added, H(s) = G1(s) + G2(s), and state-space models are available the
equivalent construction yields:

H = G1 + G2 ∼ (5.76)

ẋ =
[

A1 0
0 A2

]
x(t) +

[
B1

B2

]
u(t) (5.77)

y(t) = [
C1 C2

]
x(t) + [D1 + D2] u(t). (5.78)

If state feedback is used, that is u = Fx(t) + v(t), then,

[A, B, C, D] → [A + BF, B, C + DF, D]
is the state-space system acting on v(t). If output feedback is used, that is, u = Fy(t) + v(t), then

[A, B, C, D] → [A + BFC, B, C + DFC, D]
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is the state-space system acting on v(t). Both of these are accomplished by simple substitution. Clearly,
there is a long list of such expressions, each one equivalent to a transfer function manipulation.

To illustrate these ideas, consider the system

G(s) = 2(s2 + 4)(s − 2)

(s + 3)(s + 2)2 = 2s3 − 4s2 + 8s − 16

s3 + 7s2 + 16s + 12
(5.79)

= 2 + −18s2 − 24s − 40

s3 + 7s2 + 16s + 12
(5.80)

= 2 − 130

s + 3
+ 112

s + 2
− 64

(s + 2)2 (5.81)

This can be realized as a state-space model using four techniques. The last expression is the partial
fractions expansion of G(s) (see Chapter 4).

Example 5.1:

Controllable canonical form; G(s) ∼ [Ac , Bc , Cc , Dc], where

Ac =
⎡
⎣ 0 1 0

0 0 1
−12 −16 −7

⎤
⎦ , Bc =

⎡
⎣0

0
1

⎤
⎦ , CT

c =
⎡
⎣−40

−24
−18

⎤
⎦ , Dc = [2].

Example 5.2:

Observable canonical form; G(s) ∼ [Ao, Bo, Co, Do], where

Ao =
⎡
⎣0 0 −12

1 0 −16
0 1 −7

⎤
⎦ , Bo =

⎡
⎣−40

−24
−18

⎤
⎦ , CT

o =
⎡
⎣0

0
1

⎤
⎦ , Do = [2].

Note that [Ac , Bc , Cc , Dc] = [AT
o , CT

o , BT
o , DT ], verifying the Controllable–Observable duality in this

case.

Example 5.3:

As a product, G = G2G1, G1(s) = s−2
s+3 = 1 + −5

s+3 , G2(s) = 2 s2+4
(s+2)2 = 2 + −8s

(s+2)2 . G1(s) ∼ [A1, B1, C1, D1]
= [−3, 1, −5, 1];

G2(s) ∼ [A2, B2, C2, D2], where

A2 =
[

0 1

−4 −4

]
, B2 =

[
0

1

]
, CT

2 =
[

0

8

]
, D2 = [2].

The combined system is

A21 =
⎡
⎣−3 0 0

0 0 1
−5 −4 −4

⎤
⎦ , B21 =

⎡
⎣1

0
1

⎤
⎦ , CT

21 =
⎡
⎣−10

0
8

⎤
⎦ , D21 = [2]
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Example 5.4:

As a sum, G = G1 + G2 + G3, where the summands are derived by the partial fractions method (see
Chapter 8). This case is used to illustrate the Jordan representation of the state space. If one were
to proceed hastily, using the addition method, then the resulting systems would have 1 + 1 + 2 = 4
states. The other realizations have three states. Why? Since the term s + 2 appears in the last two
transfer functions, it is possible to “reuse” it. The straightforward combination is not wrong, it simply
fails to be minimal. The transfer function for 1

(s+a)2 is given by the product rule, Equations 5.74 and

5.75: Let G2(s) = G(s)G(s), where G(s) = 1
s+a ∼ [−a, 1, 1, 0], so that G2 ∼ [A, B, C , D] with:

A =
[−a 0

1 −a

]
B =

[
1

0

]
CT =

[
0

1

]
D = [0]

The third power, G3 = GG2 [A, B, C , D], with

A =
⎡
⎣−a 0 0

1 −a 0
0 1 −a

⎤
⎦ , B =

⎡
⎣1

0
0

⎤
⎦ , CT =

⎡
⎣0

0
1

⎤
⎦ , D = [0]

This can be continued, and the A matrix will have −a on the diagonal and 1 on the subdiagonal;
B = [1 0 · · · 0]T , C = [0 0 · · · 0 1], D = 0. This is very close to the standard matrix form known as

Jordan form. For G2 a change of variables x′ =
[

0 1

1 0

]
x takes the system to

A =
[−a 1

0 −a

]
B =

[
0

1

]
CT =

[
1

0

]
D = [0] (5.82)

So that this is the system in Jordan form (this is just the exchange of variables x′ = [x2 x1]T ). Notice
that if C = [

0 1
]

in system 5.82, the transfer function is 1
s+a ! Thus if G(s) = α1

s+a + α2
(s+a)2 , use

system 5.82 with C = [
α2 α1

]
.

In general, consider Gk ∼ [A, B, C , D], obtained by the product rules Equations 5.74 and 5.75, apply
the conversion x′ = Px , with P = antidiagonal(1) (note that P = P−1). The resulting system is

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−a 1 0 · · · 0 0 0
0 −a 1 · · · 0 0 0
0 0 −a · · · 0 0 0
...

...
...

...
...

0 0 0 · · · 0 −a 1
0 0 0 · · · 0 0 −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u(t)

y(t) = [1 0 · · · 0 0] x

And if the desired transfer function is G(s) =∑k
l=1

αl
(s+a)l , then C = [αk αk−2 · · · α1].

Returning to the example, Equation 5.81, G1(s) = 2 − 130
s+3 ∼ [−3, 1, −130, 2], where:

The last two transfer functions are in Jordan form: G2(s) + G3(s) = 112
s+2 − 64

(s+2)2 ∼ [A2, B2, C2, D2],
where

G(s) ∼ [A, B, C , D], where

A =
[−2 1

0 −2

]
B =

[
0

1

]
CT =

[−64

112

]
D = [0]
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Since G1 is already in Jordan form (trivially), the combined system is G321(s) ∼ [A321, B321, C321, D321],
where

A321 =
⎡
⎣−2 1 0

0 −2 1
0 0 −2

⎤
⎦ , B321 =

⎡
⎣1

0
1

⎤
⎦ , CT

321 =
⎡
⎣ −64

112
−130

⎤
⎦ , D321 = [2]

Here A is also in Jordan form; this representation is very nice as it displays the eigenvalues and their
multiplicities.

5.2.2.7 MIMO Transfer Functions to State Space

One of the historical advantages of the state-space methods was the ability to deal with multi-input-
multi-output systems. The frequency-domain methods have matured to deal with this case also, and the
following section deals with how to realize a state-space model from a transfer function G(s), which is a
matrix with entries that are rational functions.

The methods discussed here are straightforward generalizations of Equations 5.69 and 5.70 and Equa-
tions 5.67 and 5.68. A variety of other methods are discussed in [3] and [5], where numerical consider-
ations are considered. The reader is referred to the references for more detailed information, including
the formal proofs of the methods being presented.

A useful approach is to reduce the multi-input–multi-output system to a series of single-input–multi-
output systems and then combine the results. This means treating the columns of G(s) one at a time. If
[Ai , Bi , Ci , Di] are the state-space descriptions associated with the ith column of G(s), denoted Gi(s), then
the state-space description of G(s) is

[
diag(A1, A2, . . . , An), [B1, B2, . . . , Bn], [C1C2 · · · Cn], [D1D2 · · · Dn]

]
.

where

diag(A1, A2) =
[

A1 0
0 A2

]

etc. The input to this system is the vector [u1 u2 · · · un]T . With this in mind, consider the development of
a single-input–multi-output transfer function to a state-space model.

Given G(s), a column vector, first subtract off the vector E = G(s)|s=∞ from G leaving strictly proper
rational functions as entries, then find the least common denominator of all of the entries, d(s) = sk +∑k−1

0 dlsl , and factor it out. This leaves a vector of polynomials ni(s) as entries of the vector. Thus G(s)
has been decomposed as

G(s) =

⎡
⎢⎢⎣

g1(s)
g2(s)
· · ·

gq(s)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

e1

e2

· · ·
eq

⎤
⎥⎥⎦+ 1

d(s)

⎡
⎢⎢⎣

n1(s)
n2(s)
· · ·

nq(s)

⎤
⎥⎥⎦

Writing nj(s) =∑k−1
l=0 νj,l sl , then the state-space realization is

d

dt
x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

−d0 −d1 −d2 · · · −dk−2 −dk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(t)
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⎡
⎢⎢⎣

y1

y2

· · ·
yq

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

ν1,k−1 ν1,k−2 · · · ν1,0

ν2,k−1 ν2,k−2 · · · ν2,0

· · · · · · · · · · · ·
νq,k−1 νq,k−2 · · · νq,0

⎤
⎥⎥⎦ x +

⎡
⎢⎢⎣

e1

e2

· · ·
eq

⎤
⎥⎥⎦ u(t)

This a controllable realization of the transfer function. In order to get an observable realization, treat the
transfer function by rows and proceed in a similar manner (this is multi-input–single output approach,
see [3]). The duality of the two realizations still holds.

Additional realizations are possible, perhaps the most important being Jordan form. This is han-
dled like the single-input-single-output case, using partial fractions with column coefficients rather than
scalars. That is, expanding the entries of G(s), a single-input–multi-output (column) transfer function,
as partial fractions with (constant) vector coefficients and then using Equations 5.77 and 5.78 for deal-
ing with the addition of transfer functions. Multiple inputs are handled one at a time and stacked
appropriately.

Example 5.5:

Let

G(s) =

⎡
⎢⎢⎣

s + 3

s2 + 2s + 2
s2 + 4

(s + 1)2

⎤
⎥⎥⎦=

⎡
⎢⎣

2
s + 1

− 1
s + 2

1 − 2
s + 1

+ 5

(s + 1)2

⎤
⎥⎦

=
[

0

1

]
+ 1

s + 1

[
2

−2

]
− 1

s + 2

[
1

0

]
+ 1

(s + 1)2

[
0

5

]

This results in the two systems

ẋ1 =
[−1 1

0 −1

]
x1 +

[
0

1

]
u(t)

y1(t) =
[−1 0

0 5

]
x1 +

[
0

1

]
u

ẋ2 = −2x2 + u

y2(t) =
[

2

−2

]
x2

which combine to form

d

dt

[
x1

x2

]
=
⎡
⎣−1 1 0

0 −1 0
0 0 −2

⎤
⎦
[

x1

x2

]
+
⎡
⎣0

1
1

⎤
⎦ u(t)

y(t) =
[−1 0 2

0 5 −2

] [x1

x2

]
+
[

0

1

]
u(t)

5.2.2.8 Padè Approximation of Delay

The most common nonrational transfer function model encountered is that resulting from a delay in
the system:∗ e−sT f̂ (s) = L

{
f (t − T)

}
. The function e−sT is clearly transcendental, and this changes the

∗ L {·} is used to denote the Laplace transform of the argument with respect to the variable t.
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fundamental character of the system if treated rigorously. However, it is fortunate that there is an often
useful approximation of the transfer function which is rational and hence results in the addition of finite
states to the differential equation.

The general idea is to find a rational function approximation to a given function, in this case, e−sT ,
and replace the function with the rational approximation. Then use the methods of Section 5.2.2.5 to
construct a state-space description. Specifically, given f (s) =∑∞

0 ansn find PN
M (s),

PN
M (s) =

∑N
0 Ansn

1 +∑M
1 Bnsn

(5.83)

so that the coefficients of the first N + M + 1 terms of the two Taylor series match.∗ It is usual to look at the
diagonal approximate PN

N (s). As will be shown, the diagonal Padé approximation of e−sT shares with e−sT

the fact that it has unit magnitude along the imaginary axis. Thus, the Bode magnitude plot (log magnitude
of the transfer function vs. log frequency) is the constant zero. However, the phase approximation deviates
dramatically, asymptotically. Put another way: the approximation is perfect in magnitude; all of the errors
is in phase. The difference in the phase (or angle) part of the Bode plot (which is phase vs. log frequency)
is displayed in Figure 5.7, which compares the pure delay, e−sT , with several Padé approximations.

The coefficients of Padé approximation to the delay can be in calculated in the following way which
takes advantage of the properties of the exponential function. Here it is easier to allow the B0 termto be

101100

Freq/T

1st order
2nd order

3rd order
4th order

12th order
condition number ~ 1.5e15

Three 4th order T/3
delays cascaded
condition number ~ 2e5

10th order
condition number ~ 8e11

Error in phase for various Padé approximations

10–1
–60

–50

–40

–30

–20

D
eg

.

–10

0

FIGURE 5.7 Comparison of e−sT and various order Padé approximations.

∗ There is an extensive discussion of Padé approximations in [6]. This includes the use of Taylor expansions at two points
to generate Padé approximates. While the discussion is not aimed at control systems, it is wide ranging and otherwise
complete. Let: f (s) ∼∑∞

0 an(s − s0)n as s → s0 and f (s) ∼∑∞
0 bn(s − s1)n as s → s1 then choose PN

M (s), as before a
rational function, so that the first J terms of the Taylor series match the s0 representation and so the first K terms of
the s1 representation likewise agree, where J + K = N + M + 1. The systems of equations used to solve for An and Bn
are given in [6] in both the simple and more complex circumstance. In the case of matching a single Taylor series, the
relationship between Padé approximations and continued fractions is exploited for a recursive method of computing the
Padé coefficients. A simpler trick will suffice for the case at hand.



�

�

�

�

� �

Standard Mathematical Models 5-27

something other than unity; it will work out to be one:

e−sT = e−s T
2

es T
2

(5.84)

Therefore:

e−s T
2

es T
2

=
∑N

0 Ansn∑M
0 Bnsn

+ O(M + N + 1) (5.85)

Hence:

e−s T
2 ×

M∑
0

Bnsn = es T
2 ×

(
N∑
0

Ansn + O(M + N + 1)

)
. (5.86)

Equality will hold if
∑M

0 Bnsn is the first M + 1 terms in the Taylor expansion of es T
2 and

∑N
0 Ansn is the

first N + 1 terms in the Taylor expansion of e−s T
2 . This yields the expression usually found in texts:

PN
M (s) =

∑N
0 (−1)n

(
sT
2

)n

n!
∑M

0

(
sT
2

)n

n!

. (5.87)

Notice that PN
N (s) is of the form p(−s)/p(s) so that it is an all pass filter; that is, it has magnitude one for

all jω on the imaginary axis. To see this, let s = jω and multiply the numerator and denominator by their
conjugates. Then note that (−jω)n = (−1)n(jω)n and that (−1)2n = 1. Hence the diagonal approximation
has magnitude one for all s = jω on the imaginary axis, just as e−sT does. This is one of the reasons that
this approximation is so useful for delays.

The approximation in Equation 5.87 has a zeroth-order term of 1 and the highest-order term contains
1
n! ; thus, numerical stability of the approximation is a concern, especially for high order (meaning over

several decades of frequency). It has already been noted that e−sT = e−s T
2 e−s T

2 , so that an approximation
is possible as cascaded lower-order approximations. In practice, it is best not to symmetrically divide the
delay, thus avoiding repeated roots in the system. For example,

e−sT = e−s 1.1T
3 e−s T

3 e−s .99T
3 (5.88)

and approximate each of the delays using a fourth-order approximation. This gives a twelve state model,
using cascaded state-space systems (see Equations 5.74 and 5.75). This model is compared in Figure 5.7,
where it is seen to be not as good as an order twelve Padé approximation; however, the condition number∗
of the standard twelfth order Padé approximation is on the order of 1014. Breaking the delay into three
unequal parts resulting in no repeated roots and a condition number for the A matrix of about 104, quite
a bit more manageable numerically. The resulting twelve state model is about as accurate as the tenth
order approximation, which has a condition of about 1010.

A nice property of the Padé approximation of a delay is that the poles are all in the left half-plane;
however, the zeros are all in the right half-plane which is difficult (Problem 8.61 [6]). This does reflect the
fact that delay is often destabilizing in feedback loops.

There are other common nonrational transfer functions, such as those that arise from partial differential
equations (PDEs) and from the study of turbulence (e.g., the von Karman model for turbulence, which
involves fractional powers of s). In such cases, use the off-diagonal approximates to effect an appropriate
roll-off at high frequency (for the exponential function, this forces the choice of the diagonal approximate).

∗ The condition number is the ratio of the largest to the smallest magnitude of the eigenvalue; see [7] for more on condition
numbers.



�

�

�

�

� �

5-28 Control System Fundamentals

5.2.2.8.1 Remarks on Padé Approximations

The Padé approximation is one of the most common approximation methods; however, in control
systems, it has several drawbacks that should be mentioned. It results in a finite-dimensional model,
which may hide fundamental behavior of a PDE. While accurately curve fitting the transfer function in
the s-domain, it is not an approximation that has the same pole–zero structure as the original transfer
function. Therefore, techniques that rely on pole–zero cancellation will not result in effective control. In
fact, the Padé approximation of a stable transfer function is not always stable!

A simple way to try to detect the situation where pole–zero cancellation is being relied upon is to use
different models for design and for validation of the control system. The use of several models provides a
simple, often effective method for checking the robustness of a control system design.

5.2.3 Linearization

5.2.3.1 Preliminaries

This section is a brief introduction to linearization of nonlinear systems. The point of the section is to
introduce enough information to allow linearization, when possible, in a way that permits for stabilization
of a system by feedback. The proofs of the theorems are beyond the scope of this section, since they
involve finding generalized energy functions, known as Lyapunov∗ functions. A good reference for this
information is [8, Chapter 5].

Let x = [x1x2 · · · xn]T ∈ R
n then the Jacobian of a function f(x, t) = [f1f2 · · · fm]T is the m × n matrix

of partials:

[
∂f

∂x

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

...
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.89)

=
[

∂f

∂x

]
. (5.90)

So that the Taylor expansion of f(x, t) about x0 is

f(x, t) = f(x0, t) +
[

∂f

∂x

]∣∣∣∣
x=x0

x + O(|x − x0|2).

The stability of a system of differential equations is discussed at length in Chapter 1. A brief review is
provided here for ease of reference. A differential equation, d

dt x = f(x, t), is said to have an equilibrium

point at x0 if f(x0, t) = 0 for all t, thus d
dt x

∣∣∣
x0

= 0 and the differential equation would have solution

x(t) ≡ x0.
A differential equation, d

dt x = f(x, t), with an equilibrium point at the origin is said to be stable if for
every ε > 0 and t > 0 there is a δ(ε, t0) so that |x0| < δ(ε, t0) implies that |x(t)| < ε for all t. If δ depends
only on ε, then the system is said to be uniformly stable. The equation is said to be exponentially stable
if there is a ball Br = |x| ≤ r so that for all x0 ∈ Br the solution obeys the following bound for some

∗ The methods used here were developed in Lyapunov’s monograph of 1892. There are several spellings of his name, benign
variations on the transliteration of a Russian name. The other common spelling is Liapunov, and this is used in the
translations of V. I. Arnold’s text [2] (Arnold’s name is also variously transliterated!).
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a, b > 0: |x0| < a|x0| exp {−bt} for all t. This is a strong condition. For autonomous linear systems, all of
these forms collapse to exponential stability, for which all of the eigenvalues having negative real parts is
necessary and sufficient. However, as Examples 5.1 and 5.2 show, this simple condition is not universal.
For time-varying systems, checking exponential stability can be quite difficult.

It is true that if the system is “slowly varying,” things do work out. That is, if x0 is an equilibrium point

and

[
∂f

∂x

]
has eigenvalues with negative real parts bounded away from the imaginary axis and additional

technical conditions hold, then the differential equation is exponentially stable. See Theorem 15, Chapter
5, Section 8 in [8]. Note that Example 5.2 is not slowly varying. The physical example of a pendulum in
which the length is varied (even slightly) close to twice the period (which is a model of a child on a swing)
shows that rapidly varying dynamics can take an exponentially stable system (a pendulum with damping)
and change it into an unstable system. See Section 25 in [2] where there is an analysis of Mathieu’s
equation: q̈ = −ω0(1 + ε cos(t))q, ε � 1, which is unstable for ω0 = k

2 , k = 1, 2, . . . . This instability
continues in the presence of a little damping. This phenomenon is known as parametric resonance.

5.2.3.2 Lyapunov’s Linearization Method

Consider d
dt x = f(x, t), with an equilibrium point at x0 and f continuously differentiable in both argu-

ments. Then

d

dt
x = f(x, t) (5.91)

=
{[

∂f

∂x

]∣∣∣∣
x=x0

}
x + f1(x, t) (5.92)

= A(t)x + f1(x, t). (5.93)

Here d
dt x = A(t)x is the candidate for the linearization of the system. The additional condition which

must hold is that the approximation be uniform in t, that is

lim|x|→x0
sup
t≥0

|f1(x, t)|
|x| = 0. (5.94)

Note that if f1(x, t) = f1(x), then the definition of the Jacobian guarantees that condition 5.94 holds. (see
Example 5.1 for an example where uniform convergence fails.)

Under these conditions, the system d
dt x = A(t)x represents a linearization of system about x0.

If it is desired to hold the system at x0 which is not an equilibrium point, then the system must be
modified to subtract off f(x0, t). That is, f̃(x, t) = f(x, t) − f(x0, t). Thus, f̃ has an equilibrium point at x0,
so the theorems apply.

Theorem 5.1:

Consider d
dt x = f(x, t), with an equilibrium point at the origin, and

1. f(x, t) − A(t)x converges uniformly to zero (i.e., that 5.94 holds).
2. A(t) is bounded.
3. The system d

dt x = A(t)x is exponentially stable.

Then x0 is an exponentially stable equilibrium of d
dt x = f(x, t).

If the system does not depend explicitly on time (i.e., f(x, t) = f(x)), it is said to be autonomous. For
autonomous systems, conditions 1 and 2 are automatically true, and exponential stability of 3 is simply
the condition that all of the eigenvalues of A have negative real parts.
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(0, 0)

(X, Y )m
θ

l

(0, h)

h

FIGURE 5.8 Simple pendulum.

Theorem 5.2:

Suppose d
dt x = f(x, t) has an equilibrium point at x0 and f(x, t) is continuously differentiable, further that

the Jacobian A(t) = A is constant, and that the uniform approximation condition Equation 5.94 holds.
Then, the equilibrium is unstable if A has at least one eigenvalue with positive real part.

5.2.3.3 Failures of Linearization

Example 5.6:

This example shows what happens in the case that there is no uniform approximation (i.e., that
condition 5.94 fails).

dx

dt
= −x + tx2 (5.95)

The right-hand side of this equation is clearly differentiable. The candidate for linearization is the first
term of Equation 5.95, it is not a linearization—this system has no linearization. It is clear as t grows
large the quadratic term will dominate the linear part. Thus, the system will grow rather than having
zero as a stable equilibrium, as would be predicted by Theorem 5.1, if the uniform approximation
condition were not necessary.

Example 5.7:

This example has fixed eigenvalues with negative real parts; nonetheless it is unstable.

dx

dt

[
x1(t)

x2(t)

]
=
[−1 0

eat −2

][
x1(t)

x2(t)

]
,

x =
[

1

1

]
(5.96)

The solution to this equation is x1(t) = exp{−t} and ẋ2(t) = −2x2(t) + exp{(a − 1)t}. So
that x2(t) = exp{−2t} + ∫ t

0 exp{−2(t − s)} exp{(a − 1)s}ds, or x2(t) = exp{−2t} + exp{−2t} ∫ t
0 exp{(a +

1)s}ds. Clearly, for a > 1, the system is unstable. This example is simple. Other slightly more complex
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examples show that systems with bounded A(t) can have fixed eigenvalues and still result in an unstable
system (see Example 90, Chapter 5, Section 4 in [8]).

5.2.3.4 Example of Linearization

Consider a simple pendulum and allow the length of the pendulum to vary (see Figure 5.8). Let (X , Y ) be
the position of the pendulum at time t. Then, X = l sin θ, Y = h − l cos θ. Further Ẋ = l̇ sin θ + lθ̇ cos θ,
Ẏ = −l̇ cos θ + lθ̇ sin θ. The kinetic energy (K.E.) is given by (1/2)m(Ẋ2 + Ẏ 2), or where m is the mass at
the end of the pendulum (and this is the only mass). The potential energy (P.E.) is: mgY = mg(h − l cos θ),
g being the gravitational constant (about 9.8 m/s2 at sea level). So, both g and l are nonnegative.

The Lagrangian is given by L(θ, l, θ̇, l̇) = L(x, ẋ) = K .E. − P.E.; and the Euler–Lagrange equations

0 = d

dt

[
∂L

∂ẋ

]
−
[

∂L

∂x

]
(5.97)

give the motions of the system (See [2]).
Here

[
∂L

∂ẋ

]
=
[

ml2θ̇

ml̇

]
, (5.98)

so

d

dt

[
∂L

∂ẋ

]
=
[

2mll̇θ̇ + ml2θ̈

ml̈

]
(5.99)

and

[
∂L

∂x

]
=
[ −mgl sin θ

mθ̇2l + mg cos θ

]
(5.100)

Combined, these yield

0 =
[

2mll̇θ̇ + ml2θ̈

ml̈

]
−
[ −mgl sin θ

mθ̇2l + mg cos θ

]
(5.101)

After a bit of algebraic simplification

0 = θ̈ + 2
l̇

l
θ̇ + g

l
sin θ (5.102)

0 = l̈ − θ̇2l − g cos θ (5.103)

Remarks

If the motion for l is prescribed, then the first equation of the Lagrangian is correct, but l and l̇ are
not degrees of freedom in the Lagrangian (i.e., L = L(θ, θ̇)). This happens because the rederivation of the
system yields the first equation of our system. Using the above derivation and setting l, l̇ to their prescribed
values will not result in the correct equations. Consider Case I below, if l = l0, l̇ = l̈ = 0 is substituted, then
the second equation becomes θ̇2l0 + g cos θ = 0. Taking d

dt of this results in θ̇(θ̈ + g
2l0

sin θ) = 0—which

is inconsistent with the first equation: θ̈ + g
l0

sin θ = 0.
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Case I

Let l̇ ≡ 0, then l̈ ≡ 0, and let l be a positive constant; equations of motion are (see the above remark)

0 = θ̈ + g

l
sin θ (5.104)

Writing Equation 5.104 in first-order form, by letting x = [
θ θ̇

]T
, then

ẋ = f(x) =
⎡
⎣ x2

g

l
sin x1

⎤
⎦ (5.105)

It is easy to check that f(0) = 0, and that f , otherwise meets the linearization criterion, so that a lineariza-
tion exists; it is given by

ẋ =
⎡
⎣ 0 1

−g

l
0

⎤
⎦ x (5.106)

Case II

Let x = [θ, l, θ̇, l̇]T , then Equations 5.102 and 5.103 are given by

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

x3

x4

−2
x4

x2
x3 − g

x2
sin x1

x2
3x2 + g cos x1

⎤
⎥⎥⎥⎥⎥⎦

(5.107)

Clearly, 0 is not an equilibrium point of this system. Physically, l = 0 doesn’t make much sense anyway.
Let us seek an equilibrium at x0 = [0, l0, 0, 0], which is a normal pendulum of length l0, at rest. Note
f(x0) = [0, 0, 0, g]T ; hence open-loop feedback of the form [0, 0, 0, −g]T will give the equilibrium at the
desired point. Let F(x) = f(x) − [0, 0, 0, g]T , then F(x0) = 0, and it can be verified that ẋ = F(x) meets all
the linearization criteria at x0. Thus, −f(x0) is the open-loop control that must be applied to the system.

The linearized system is given by z = x − x0, ż =
[

∂F

∂x

]
|x0 z.

[
∂F

∂x

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0
0 0 0 1

− g

x2
cos x1

2x3x4 + g sin x1

x2
2

−2
x4

x2
−2

x3

x2

−g sin x1 x2
3 2x3x2 0

⎤
⎥⎥⎥⎥⎥⎦

(5.108)

[
∂F

∂x

]
|x0 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

− g

l0
0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(5.109)

To determine the eigenvalues, examine det(sI − A); in this case expansion is easy around the last row
and det(sI − A) = s2(s2 + g

l0
). Thus, the system is not exponentially stable.



�

�

�

�

� �

Standard Mathematical Models 5-33

References

1. Webster’s Ninth New Collegiate Dictionary, First Digital Edition, Merriam-Webster and NeXT Comuter,
Inc., 1988.

2. Arnold, V.I., Mathematical Methods of Classical Mechanics, Second Edition, Springer-Verlag, 1989.
3. Chen, C.T., Linear Systems Theory and Design, Holt, Rinehart and Winston, 1984.
4. Wolovich, W., Automatic Control Systems, Harcourt Brace, 1994.
5. Kailith, T., Linear Systems Theory, Prentice Hall, 1980.
6. Bender C. and Orzag, S., Nonlinear Systems Analysis, Second Edition, McGraw-Hill, 1978.
7. Press, W., et. al., Numerical Recipes in C, Cambridge, 1988.
8. Vidyasagar, M., Nonlinear Systems Analysis, Second ed., Prentice Hall, 1993.
9. Balakrishnan, A.V., Applied Functional Analysis, Second Edition, Springer-Verlag, 1981.

10. Dorf, R.C., Modern Control Systems, 3rd ed., Addison-Wesley, 1983.
11. Fattorini, H., The Cauchy Problem, Addison-Wesley, 1983.
12. Kalman, R.E., Falb, P.E., and Arbib, M.A., Topics in Mathematical Systems Theory, McGraw-Hill, 1969.
13. Reed, M. and Simon, B., Functional Analysis, Academic Press, 1980.

5.3 Models for Sampled-Data Systems

Graham C. Goodwin, Juan I. Yuz, and Juan C. Agüero
5.3.1 Introduction

Models for dynamical systems usually arise from the application of physical laws such as conservation of
mass, momentum, and energy. These models typically take the form of linear or nonlinear differential
equations, where the parameters involved can usually be interpreted in terms of physical properties
of the system. In practice, however, these kinds of models are not appropriate to interact with digital
devices. For example, digital controllers can only act on a real system at specific time instants. Similarly,
information from signals of a given system can usually only be recorded (and stored) at specific instants.
This constitutes an unavoidable paradigm: continuous-time systems interact with actuators and sensors
that are accessible only at discrete-time instants. As a consequence, sampling of continuous-time systems
is a key problem both for estimation and control purposes [1,2].

The sampling process for a continuous-time system is represented schematically in Figure 5.9. In this
figure we see that there are three basic elements involved in the sampling process. All of these elements
play a core role in determining an appropriate discrete-time input–output description:

• The hold device, used to generate the continuous-time input u(t) of the system, based on a discrete-
time sequence uk defined at specific time instants tk ;

Hold uk u(t) y(t) yk
Physical 

continuous-time   
system 

Sample 

Sampled-data model 

v̇(t)

FIGURE 5.9 Sampling scheme of a continuous-time system.
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• The continuous-time system, in general, can be defined by a set of linear or nonlinear differential
equations, which generate the continuous-time output y(t) from the continuous-time input u(t),
initial conditions, and (possibly) unmeasured disturbances; and

• The sampling device, which generates an output sequence of samples yk from the continuous-time
output y(t), possibly including some form of anti-aliasing filter prior to instantaneous sampling.

For linear systems, it is possible to obtain exact sampled-data models from the sampling scheme shown
in Figure 5.9. In particular, given a deterministic continuous-time system, it is possible to obtain a discrete-
time model, which replicates the sequence of output samples. In the stochastic case, where the input of
the system is assumed to be a continuous-time white-noise (CTWN) process, a sampled-data model can
be obtained such that its output sequence has the same second-order properties as the continuous-time
output at the sampling instants.

In this chapter we will review the above concepts. These ideas are central to modern control and
measuring devices. We will focus on the linear SISO case for simplicity. We will briefly discuss extensions
to the nonlinear case. In the linear case, we can use superposition to consider deterministic inputs and
stochastic inputs separately. We begin in the next section with the deterministic case.

5.3.2 Sampled-Data Models for Linear Systems Having Deterministic Inputs

We begin our development by describing a general linear time-invariant continuous-time system by a
transfer function

G(s) = F(s)

E(s)
= fmsm + · · · + f0

sn + en−1sn−1 + · · · + e0
, fm �= 0 (5.110)

where s denotes the Laplace transform variable. For the moment we include the antialiasing filter in
this description. The system is of order n, and has relative degree r = n − m > 0. Such a system can be
equivalently expressed in state-space form as

ẋ(t) = Ax(t) + Bu(t) (5.111)

y(t) = Cx(t) (5.112)

Remark 5.1

For future use, it is also insightful to express model 5.111 in incremental form as

dx = Ax(t)dt + Bu(t) dt (5.113)

An exact discrete-time representation of the system can be obtained under appropriate assumptions.
A common assumption is that the continuous-time input signal is generated by a zero-order hold
(ZOH), that is,

u(t) = uk ; t ∈ [kΔ, kΔ + Δ) (5.114)

and that the output is (instantaneously) sampled at uniform times

yk = y(kΔ) (5.115)

where Δ is the sampling period. We then have the following standard result [2].

Lemma 5.1:

If the input of the continuous-time systems (Equations 5.111 and 5.112) is generated from the input sequence
uk using a ZOH, then a state-space representation of the resulting sampled-data model is given by
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q xk = xk+1 = Aqxk + Bquk (5.116)

yk = Cxk (5.117)

where the sampled output is yk = y(kΔ), q denotes the forward shift operator, and the (discrete) system
matrices are

Aq = eAΔ, Bq =
∫ Δ

0
eAηB dη (5.118)

A discrete-time transfer function representation of the sampled-data system can be readily obtained
from Lemma 5.1 as

Gq(z) = C(zIn − Aq)−1Bq (5.119)

Gq(z) = Fq(z)

Eq(z)
= f̄n−1zn−1 + · · · + f̄0

zn + ēn−1zn−1 + · · · + ē0
(5.120)

where z denotes the Z-transform variable. Note that if s = λ� is a continuous-time pole (i.e., an eigen-
value of the matrix A), then z = eλ�Δ is a pole of the discrete-time transfer function (i.e., an eigenvalue
of Aq).

The expression obtained in Equations 5.119 and 5.120 is equivalent to the pulse transfer function
obtained directly from the continuous-time transfer function, as stated in the following lemma.

Lemma 5.2:

The sampled-data transfer function 5.119 can be obtained using the inverse Laplace transform of the
continuous-time step response, computing its Z-transform, and dividing it by the Z-transform of a discrete-
time step:

Gq(z) = (1 − z−1)Z
{
L−1

{
G(s)

s

}
t=kΔ

}
(5.121)

= (1 − z−1)
1

2πj

∫ γ+j∞

γ−j∞
esΔ

z − esΔ

G(s)

s
ds (5.122)

where Δ is the sampling period and γ ∈ R is such that all poles of G(s)/s have real part less than γ.
Furthermore, if the integration path in Equation 5.122 is closed by a semicircle to the right, we obtain

Gq(z) = (1 − z−1)
∞∑

�=−∞

G((log z + 2πj�)/Δ)

log z + 2πj�
(5.123)

Equation 5.123, when considered in the frequency-domain, substituting z = ejωΔ, illustrates the well-
known aliasing effect: the frequency response of the sampled-data system is obtained by folding of the
continuous-time frequency response, that is,

Gq(ejωΔ) = 1

Δ

∞∑
�=−∞

HZOH

(
jω + j

2π

Δ
�

)
G

(
jω + j

2π

Δ
�

)
(5.124)

where HZOH(s) is the Laplace transform of the ZOH impulse response, that is,

HZOH(s) = 1 − e−sΔ

s
(5.125)

Equation 5.124 can be also derived from Equation 5.119 using the state-space matrices in Equation 5.118
(see, e.g., [2, Lemma 4.6.1]).
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Example 5.8:

Consider a system with transfer function

G(s) = 6(s + 5)
(s + 2)(s + 3)(s + 4)

(5.126)

The exact sampled-data model for a sampling period Δ = 0.01 is given by

Gq(z) = 2.96 × 10−4(z + 0.99)(z − 0.95)
(z − 0.98)(z − 0.97)(z − 0.96)

(5.127)

An important observation from the previous example is that the sampled-data system 5.120 will, in
general, have relative degree 1. This means that there are extra zeros in the discrete-time model with no
continuous-time counterpart. These are often called the sampling zeros. We will discuss these zeros in
more detail in the next section.

5.3.3 Asymptotic Sampling Zeros

As we have seen in Section 5.3.2, the poles of a sampled-data model can be readily characterized in terms
of the sampling period, Δ, and the continuous-time system poles. However, the relation between the
discrete- and continuous-time zeros is much more involved.

In this section, we review results concerning the asymptotic behavior of the zeros in sampled-data
models, as the sampling period goes to zero. These results follow the seminal work presented in [3], where
the asymptotic location of the intrinsic and sampling zeros was first described, for the ZOH case, using
shift operator models.

The next result characterizes the sampled-data model (and the sampling zeros) corresponding to a
special model, namely, an rth-order integrator.

Remark 5.2

Throughout this chapter we will see that the sampled-data model for an rth-order integrator plays a very
important role in obtaining asymptotic results. Indeed, as the sampling rate increases, a system of relative
degree r, behaves as an rth-order integrator. This will be a recurrent and insightful interpretation for
deterministic and stochastic systems.

Lemma 5.3: [3]

For sampling period Δ, the pulse transfer function corresponding to the rth-order integrator G(s) = s−r , is
given by

Gq(z) = Δr

r!
Br(z)

(z − 1)r (5.128)

where

Br(z) = br
1zr−1 + br

2zr−2 + · · · + br
r (5.129)

br
k =

k∑
�=1

(−1)k−��r
(

r + 1

k − �

)
(5.130)
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Remark 5.3

The polynomials defined in Equations 5.129 and 5.130 correspond, in fact, to the Euler–Fröbenius poly-
nomials (also called reciprocal polynomials [4]) and are known to satisfy several properties [5]:

1. Their coefficients can be computed recursively:

br
1 = br

r = 1; ∀r ≥ 1 (5.131)

br
k = kbr−1

k + (r − k + 1)br−1
k−1; k = 2, . . . , r − 1 (5.132)

2. Their roots always are negative real.
3. From the symmetry of the coefficients in Equation 5.130, that is, br

k = br
r+1−k , it follows that, if

Br(z0) = 0, then Br(z−1
0 ) = 0.

4. They satisfy an interlacing property, namely, every root of the polynomial Br+1(z) lies between
every two adjacent roots of Br(z), for r ≥ 2.

5. The following recursive relation holds:

Br+1(z) = z(1 − z)Br
′(z) + (rz + 1)Br(z); ∀r ≥ 1 (5.133)

where Br
′ = dBr

dz
.

We list below the first of these polynomials:

B1(z) = 1 (5.134)

B2(z) = z + 1 (5.135)

B3(z) = z2 + 4z + 1 = (z + 2 + √
3)(z + 2 − √

3) (5.136)

B4(z) = z3 + 11z2 + 11z + 1 = (z + 1)(z + 5 + 2
√

6)(z + 5 − 2
√

6) (5.137)

In the frequency-domain, a special case of interest is when we combine the infinite sum (Equation 5.123)
with the result in Lemma 5.3, as presented in the following result.

Lemma 5.4: [3]

The following identity holds for z = ejωΔ:

∞∑
k=−∞

1(
log z+j2πk

Δ

)r = Δr

(r − 1)!
zBr−1(z)

(z − 1)r (5.138)

where Br−1(z) is the Euler–Fröbenius polynomial.

We next extend Lemma 5.3 to a general transfer function when the sampling period Δ tends to zero.

Lemma 5.5: [3, Theorem 1]

Let G(s) be a rational function:

G(s) = F(s)

E(s)
= K

(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)
(5.139)

and Gq(z) the corresponding pulse transfer function. Assume that m < n, that is, G(s) is strictly proper
having relative degree r ≥ 1. Then, as the sampling period Δ goes to 0, then m zeros of Gq(z) go to 1 as eziΔ,
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and the remaining r − 1 zeros of Gq(z) go to the zeros of the polynomial Br(z) defined in Lemma 5.3, that
is,

Gq(z)
Δ≈0−−→ K

Δr(z − 1)mBr(z)

(r)!(z − 1)n (5.140)

Example 5.9:

Consider again the system in Example 5.8 defined by the transfer function (5.126). By Lemma 5.5, if
we use a ZOH to generate the input, then, as the sampling period Δ tends to zero, the associated
sampled-data transfer function is given by

Gq(z)
Δ≈0−−−−−−→
(ZOH)

6
Δ2(z + 1)(z − 1)

2!(z − 1)3 (5.141)

In fact, for Δ = 0.001, the exact sampled data model is given by

Gq(z) = 2.996 × 10−6(z + 0.999)(z − 0.995)
(z − 0.998)(z − 0.997)(z − 0.996)

(5.142)

Note that the resulting discrete-time model has two zeros, even though the continuous-time
system has only one finite zero. Also, the discrete poles and one of the zeros now all appear very
close to z = 1. Actually, the latter is a difficulty that we will address in the next section.

Remark 5.4

Obviously, a key question that arises from Lemma 5.5 is the properties of the asymptotic convergence
result (Equation 5.141), that is, how the approximation error behaves as Δ → 0. We will address this key
question in Section 5.3.6. Before doing that, in the next section we will take a small diversion to better
understand the limiting process.

5.3.4 Incremental Models

A fundamental problem with the model (Equation 5.116) is that, as we take the limit as Δ → 0, we lose all
information about the underlying continuous-time system. Indeed, it is easily seen from Equation 5.118
that the following result holds for all linear systems:

lim
Δ→0

Aq = I and lim
Δ→0

Bq = 0 (5.143)

The origin of this difficulty is that Equation 5.116 describes the next value of xk . However, it is clear that
xk+1 → xk as the sampling period Δ → 0. This difficulty is fundamental and intrinsic to shift operator
model descriptions. However, the problem is readily bypassed if we, instead, express Equation 5.116 in
incremental form. In order to do this, we subtract xk from both sides of the equation and factor Δ out of
the right-hand side. This leads to

dxk = xk+1 − xk = Ai xkΔ + BiukΔ (5.144)

where

Ai = Aq − I

Δ
and Bi = Bq

Δ
(5.145)
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Remark 5.5

The above model can be seen to have the same structure as the incremental continuous-time model 5.113.
Moreover, and importantly, if we now take the limit as the sampling period tends to zero, we obtain

Ai
Δ→0−−−→ A and Bi

Δ→0−−−→ B (5.146)

where A and B are the corresponding continuous-time matrices. This is a pleasing by-product of the use
of the incremental model 5.144. Indeed, we will see in the sequel that use of the incremental model is
crucial in obtaining meaningful connections between continuous models and their discrete counterparts
at fast sampling rates.

We see that we have achieved our objective of having a well-defined limit as the sampling rate is
increased. Moreover, the limiting model takes us back to continuous time in a heuristically satisfactory
fashion.

For future use, it will be convenient to define the discrete delta operator as

δxk = dxk

Δ
= xk+1 − xk

Δ
= q − 1

Δ
xk (5.147)

Also, we introduce γ as the complex variable associated with the δ-operator [1,2]:

δ = q − 1

Δ
⇐⇒ γ = z − 1

Δ
(5.148)

Use of this operator makes the sampling period Δ explicit, and is crucial in showing how discrete-time
results converge to their continuous-time counterpart when Δ → 0.

Example 5.10:

Consider the exact sampled-data (ESD) model (Equation 5.127) obtained in Example 5.8. We can
reparameterize the system to express it in incremental form by using the change of variable
z = (1 + Δγ) where, for this particular example, the sampling period is Δ = 0.01. This yields

Gδ(γ) = Gq(1 + Δγ) = 0.030(γ + 198.7)(γ + 4.88)
(γ + 1.98)(γ + 2.96)(γ + 3.92)

(5.149)

Remark 5.6

We wish to clarify a point of confusion that exists in some areas. The use of the delta operator is simply
a way of reparameterizing discrete models via the transformation q = δΔ + 1 or δ = (q − 1)/Δ. This has
the advantage of highlighting the link between discrete- and continuous-time domain and also achieving
improved numerical properties [6]. Of course, any shift-domain model can be converted to delta form and
vice versa. This is totally different to the use of Euler integration which, by chance, happens to have the
property that continuous poles and zeros appear in the same location in the corresponding delta-domain
discrete model.

5.3.5 Asymptotic Sampling Zeros for Incremental Models

We next use the incremental form (or equivalent δ-operator parameterization) to reexpress the results of
Section 5.3.3. We begin with the following incremental counterpart to Lemma 5.3.
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Lemma 5.6: [7]

Given a sampling period Δ, the exact sampled-data model corresponding to the rth-order integrator G(s) =
s−r , r ≥ 1, when using a ZOH input, is given by

Gδ(γ) = pr(Δγ)

γr (5.150)

where the polynomial pr(Δγ) is given by

pr(Δγ) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Δ

2! . . .
Δr−2

(r − 1)!
Δr−1

r!
−γ 1 . . .

Δr−3

(r − 2)!
Δr−2

(r − 1)!
...

. . .
. . .

...
...

0 . . . −γ 1
Δ

2!
0 . . . 0 −γ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Br(1 + Δγ)

r! (5.151)

where Br(·) is the Euler–Fröbenius polynomial defined in Equation 5.129.

From 5.151 it is straightforward to see that

pr(0) = 1 ⇐⇒ Br(1) = r! (5.152)

A more interesting situation arises when we consider a general continuous-time transfer function. We
saw in Lemma 5.5 that when the shift operator model was used, the m continuous zeros and n continuous
poles all converged to z = 1 in the discrete model as Δ → 0. We see below that when incremental discrete
models are used, then a much more pleasing result is obtained, that is, these intrinsic zeros and poles
converge to their continuous locations.

We recall the sampled-data model given in Equation 5.144, that is, expressed in incremental (or δ-)form
as

xk+1 − xk

Δ
= δxk = Aixk + Biuk (5.153)

In transfer function form, we have that Equation 5.120 can be rewritten as

Gδ(γ) = Fδ(γ)

Eδ(γ)
= f̃n−1γ

n−1 + · · · + f̃0
γn + ẽn−1γn−1 + · · · + ẽ0

(5.154)

Lemma 5.7:

In incremental form we have the following convergence result

Fδ(γ)
Δ→0−−−→ F(γ) (5.155)

Eδ(γ)
Δ→0−−−→ E(γ) (5.156)

where
Fδ(γ)

Δ≈0−−→ pr(Δγ) F(γ) (5.157)

and where pr(Δγ) is the equivalent to the Euler–Fröbenius polynomial in the γ-domain in Equation 5.151.
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Example 5.11:

Consider again the sampled-data model in Example 5.10 expressed in the incremental form 5.149.
Note that it can be rewritten as

Gδ(γ) = 5.882(1 + 0.005γ)(γ + 4.88)
(γ + 1.98)(γ + 2.96)(γ + 3.92)

(5.158)

If we compare Equation 5.158 with the transfer function 5.126, we can notice that the sampled-
data model expressed in incremental form recovers approximately the continuous-time poles, zeros
and gain. Moreover, we can see that the extra zero due to sampling appears at the location predicted
by Lemmas 5.6 and 5.7 if we notice that p2(Δγ) = 1 + Δ

2 γ.

The convergence results in Lemmas 5.5 and 5.7 are fundamentally different. In particular, in Lemma
5.5, the intrinsic poles and zeros all converge to z = 1, irrespective of the underlying continuous system,
whereas in Lemma 5.7, the intrinsic poles and zeros converge to their continuous locations, in particular,
we see from Equations 5.156 and 5.157 in Lemma 5.7 that the discrete poles converge to their continuous
counterparts as Δ → 0. Also, from Equation 5.157, we see that the discrete zeros split into m zeros which
converge to their continuous counterparts plus r − 1 extra zeros arising from the sampling process.

5.3.6 Model Error Quantification

In this section we examine various aspects of the errors that exist between the limiting model described in
Sections 5.3.3 and 5.3.5, and the true discrete model at different sampling rates. We will use the result
in Section 5.3.5 in preference to the results in Section 5.3.3. We will consider both absolute and relative
errors. Relative errors are of particular interest in applications. For example, it is typically more useful
to know that a model has 1% accuracy as opposed to knowing that the absolute error is 0.1 which leaves
open the question of whether the true value is 1 (corresponding to 10% error) or 0.01 (corresponding to
a 1000% error).

Of course, in the linear case, one can always calculate the sampled-data model to any desired degree of
accuracy by using the exact transformations given in Section 5.3.2. However, our goal here is to study the
degree of model approximation required to achieve relative error convergence properties as the sampling
period is reduced. This has the advantage of giving insights into different simple models. Of particular
interest is the sampling zeros as previously described in Sections 5.3.3 and 5.3.5. The location of these
zeros is highlighted in the approximate models, but their presence is blurred in the exact representation.

Our principal interest here will be in various simplified models and their associated relative error
properties. The models that we will compare are the following.

1. Exact sampled-data model (ESD model): This is not an approximate model, but the exact model
that is obtained for a linear deterministic system using the expressions in Section 5.3.2. This model
is given in Equation 5.120, or, in state-space form, by Equations 5.116 and 5.117. We can write the
model as

GESD
q (z) = Z

{
1 − esΔ

s
G(s)

}
(5.159)

where Z{H(s)} =∑∞
k=0 hkz−k denotes the Z-transform of hk , the sampled impulse response of

the transfer function H(s). In the sequel, we consider G(s) given by

G(s) =
∏m

i=1(s − ci)∏n
i=1(s − pi)

(5.160)

Notice that, without loss of generality, we have not included a gain K in the transfer function G(s).
This choice will not affect the relative error analysis in the sequel, provided we adjust the gain of
the approximated models such that d.c. gain matches the d.c. gain of the continuous-time system.
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2. Simple derivative replacement model (SDR model): We obtain this model by simply replacing
derivatives by divided differences. Note that this corresponds to the use of simple Euler integration
or, equivalently, the use of a first-order Taylor expansion:

GSDR
q (z) =

∏m
i=1( z−1

Δ
− ci)∏n

i=1( z−1
Δ

− pi)
; GSDR

δ (γ) =
∏m

i=1(γ − ci)∏n
i=1(γ − pi)

(5.161)

Note that this model does not include any sampling zeros. Also note that this model is not
equivalent to a delta model; see Remark 5.6.

3. Asymptotic sampling zeros model (ASZ model): In this case, we use a discrete-time transfer function
with sampling zeros located at their asymptotic location, and the intrinsic poles and zeros are placed
corresponding to their location given by Euler integration:

GASZ
q (z) = Br(z)

∏m
i=1( z−1

Δ
− ci)

r!∏n
i=1( z−1

Δ
− pi)

; GASZ
δ (γ) = pr(γΔ)

∏m
i=1(γ − ci)∏n

i=1(γ − pi)
(5.162)

Note that by using the fact that Br(1) = r!, we adjusted the d.c. gain of this model in order to match
the continuous-time d.c. gain.

4. Corrected sampling zero model (CSZ model): In this case, we place the (shift operator domain)
sampling zero near −1 (if one exists) at locations such that errors are of O(Δ2) while other
sampling zeros and the intrinsic poles and zeros are located at the values given by Euler integration
and the d.c. gain is matched to that of the continuous model. Note that there exists a sampling zero
at z = −1 if and only if the relative degree r is even. In such cases, we use the sampled-data model

GCSZ
q (z) = B̃r(z)

∏m
i=1( z−1

Δ
− ci)

r!∏n
i=1( z−1

Δ
− pi)

(5.163)

where

B̃r(z) = Br(z)
z + 1 + σΔ

z + 1
· 2

2 + σΔ

(5.164)

For r odd, then σΔ = 0. For r even, then we choose σΔ as follows [8]:

σΔ = Δ

r + 1

{
n∑

i=1

pi −
n∑

i=1

zi

}
(5.165)

where r is the relative degree and pi , ci denote the continuous poles and zeros. In particular, we
have

(r = 2) σΔ = Δ

3

(
m∑

i=1

ci −
n∑

i=1

pi

)
(5.166)

(r = 4) σΔ = Δ

5

(
m∑

i=1

ci −
n∑

i=1

pi

)
(5.167)

To compare the relative errors between the various sampled-data models, we use two possible choices
for the normalizing transfer function, namely, ESD or the approximate model. This leads to two H∞
relative error functions

Ri
1(Δ) =

∥∥∥∥∥
Gi

q(z) − GESD
q (z)

GESD
q (z)

∥∥∥∥∥∞
(5.168)

Ri
2(Δ) =

∥∥∥∥∥
Gi

q(z) − GESD
q (z)

Gi
q(z)

∥∥∥∥∥∞
(5.169)

where the superscript i refers to the model types SDR, ASZ, and CSZ. The error function R2(Δ) is closely
related to control where relative errors of this type appear in robustness analysis [9].

The key result of this section is described in the following theorem.
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Theorem 5.3: [10]

The relative error performance of the different discrete models is as follows:

Relative error r: odd r: even

Normalizing RSDR
1 (Δ) O(1) O(1/Δ)

by ESD RASZ
1 (Δ) O(Δ) O(1)

GESD
q (z) RCSZ

1 (Δ) O(Δ) O(Δ)

Normalizing RSDR
2 (Δ) O(1) O(1)

by RASZ
2 (Δ) O(Δ) ∞

Gi
q(z) RCSZ

2 (Δ) O(Δ) O(Δ)

Note that, for odd relative degree, the relative error is of order Δ for both the ASZ and CSZ models.
However, for even relative degree, we need to use the CSZ model to obtain relative errors of order Δ. We
illustrate these ideas by a simple example.

Example 5.12:

In this example we consider a third-order system with one finite zero. Such structure has also been
considered in the previous examples but, in this case, we will express it as the more general transfer
function:

G(s) = K (s − c1)
(s − p1)(s − p2)(s − p3)

(5.170)

Under the ZOH-input assumption, we discretize Equation 5.170 to obtain the exact sampled-data
model (compare with Examples 5.8 and 5.9):

GESD
q (z) = K

b2(Δ)z2 + b1(Δ)z + b0(Δ)

(z − ep1Δ)(z − ep2Δ)(z − ep3Δ)
(5.171)

where the coefficients b�(Δ) depend on the system coefficients and the sampling period. The exact
transfer function 5.171 can also be expressed in the γ-domain, corresponding to the use of operator
δ, as (compare with Examples 5.10 and 5.11)

GESD
δ (γ) = K

β0(Δ) + β1(Δ)γ + +β2(Δ)γ2(
γ − ep1Δ − 1

Δ

)(
γ − ep2Δ − 1

Δ

)(
γ − ep3Δ − 1

Δ

) (5.172)

We also have that

GSDR
q (z) =

K

(
z − 1
Δ

− c1

)
(

z − 1
Δ

− p1

)(
z − 1
Δ

− p2

)(
z − 1
Δ

− p3

) (5.173)

This model is equivalent to replacing derivatives by the forward Euler operator in Equation 5.170.
The equivalent δ-domain form is given by

GSDR
δ (γ) = K

(
γ − c1

)
(
γ − p1

) (
γ − p2

) (
γ − p3

) (5.174)
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Also,

GASZ
q (z) =

K (z + 1)
(

z − 1
Δ

− c1

)

2
(

z − 1
Δ

− p1

)(
z − 1
Δ

− p2

)(
z − 1
Δ

− p3

) (5.175)

or, equivalently,

GASZ
δ (γ) = K

(
γ − c1

)
(1 + γΔ

2 )(
γ − p1

) (
γ − p2

) (
γ − p3

) (5.176)

Finally, we have that

GCSZ
q (z) = NCSZ(z)

DCSZ(z)
(5.177)

where

NCSZ(z) = K

(
z + 1 + Δ(−c1 + p1 + p2 + p3)

3

)(
z − 1
Δ

− c1

)
(5.178)

DCSZ(z) =
(

z − 1
Δ

− p1

)(
z − 1
Δ

− p2

)(
z − 1
Δ

− p3

)(
2 + Δ(−c1 + p1 + p2 + p3)

3

)
(5.179)

The equivalent δ-domain form is in this case

GCSZ
δ (γ) =

K

(
1 + γ

Δ

2 + Δ(−c1+p1+p2+p3)
3

)
(γ − c1)

(
γ − p1

) (
γ − p2

) (
γ − p3

) (5.180)

We compute the relative error between the ESD model 5.172 and the three approximate sampled-
data models 5.174, 5.176, and 5.180 via Ri

2(Δ) (i.e., normalizing by Gi
q(z)). To be specific, we choose

K = 6, c1 = −5, p1 = −2, p2 = −3, and p3 = −4, as in the previous examples.
The relative errors are shown in Figure 5.10, for three different sampling periods: Δ = 0.1, 0.01,

and 0.001. From this figure, we can clearly see the relative error of the Euler model 5.174 is of the
order of 1, whereas for models that include the corrected sampling zero (models in 5.176 and 5.180)
the relative error decreases as the sampling period decreases (a factor of 0.1 is equivalent to −20 dB).

A surprising observation from the above example is that the Euler model (i.e., SDR) gives the smallest
relative errors up to a frequency which is about ten times the open-loop poles and zeros. Thus, provided
one samples quickly but restricts the bandwidth to about 10 times the location of open-loop poles and
zeros, then one can use simple Euler models with confidence. At higher frequencies, the relative error
of Euler models converges to order 1 when the relative degree is even. On the other hand, the model
using asymptotic sampling zeros gives good performance up to the vicinity of the folding frequency at
which time the relative error diverges to ∞ for even relative degree. The model with corrected asymptotic
sampling zero has relative errors that are of the order of Δ in all cases.

5.3.7 Stochastic Systems

We next consider the case of sampled stochastic linear systems described as

y(t) = H(ρ)v̇(t) (5.181)

where v̇(t) is a CTWN input process. These models are sometimes simply called noise models. We will
show how a sampled-data model can be obtained from Equation 5.181 that is exact, in the sense that
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FIGURE 5.10 Bode magnitude of the relative errors associated with approximate sampled-data models for different
sampling frequencies in Example 5.12. (a) SDR model; (b) ASZ model; and (c) CSZ model.

the second-order properties (i.e., spectrum) of its output sequence are the same as the second-order
properties of the output of the continuous-time system at the sampling instants.

We first review the relationship between the spectrum of a continuous-time process and the associated
discrete-time spectrum of the sequence of samples. We then briefly discuss the difficulties that may arise
when dealing with a white-noise process in continuous time. Next we show how sampled-data models
can be obtained for system 5.181. Finally, we characterize the asymptotic sampling zeros that appear in
the sampled spectrum in a similar way as we did for the deterministic case in previous sections.

5.3.8 Spectrum of a Sampled Process

We consider a stationary continuous-time stochastic process y(t), with zero mean and covariance
function:

ry(τ) = E{y(t + τ)y(t)} (5.182)

The associated spectral density, or spectrum, of this process is given by the Fourier transform of the
covariance function 5.182, that is,

Φy(ω) = F
{

ry(τ)
}=

∫ ∞

−∞
ry(τ)ejωτ dτ; ω ∈ (−∞, ∞)

(5.183)

If we instantaneously sample the continuous-time signal, with sampling period Δ, we obtain the
sequence yk = y(kΔ). The covariance of this sequence, rd

y [�], is equal to the continuous-time signal
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covariance at the sampling instants:

rd
y [�] = E{yk+� yk} = E{y(kΔ + �Δ) y(kΔ)} = ry(�Δ) (5.184)

The power spectral density of the sampled signal is given by the discrete-time fourier transform (DTFT)
of the covariance function, namely:

Φd
y (ω) = Δ

∞∑
k=−∞

rd
y [k]e−jωkΔ; ω ∈

[−π

Δ
,
−π

Δ

]
(5.185)

Remark 5.7

Note that we have used the DTFT as defined in [2], which includes the sampling period Δ as a scaling
factor. We have included this factor because the DTFT defined in this fashion converges to the continuous-
time Fourier transform as the sampling period Δ goes to zero.

Remark 5.8

The continuous- and discrete-time spectral densities, in Equations 5.183 and 5.185, respectively, are real
functions of the frequency ω. However, to make the connections to the deterministic case apparent, we
will sometimes express the continuous-time spectra in terms of the complex variable s = jω, that is,

Φy(ω) = Φ̄y(jω) = Φ̄y(s)
∣∣
s=jω (CT spectrum) (5.186)

Similarly, we express the discrete-time spectrum in terms of z = ejωΔ or γ = γω = ejωΔ−1
Δ

, for shift and
delta operator models, respectively, that is,

Φd
y (ω) = Φ

q
y(ejωΔ) = Φδ

y(γω) (5.187)

where

Φ
q
y(ejωΔ) = Φ

q
y(z)

∣∣
z=ejωΔ (q-domain DT spectrum) (5.188)

Φδ
y(γω) = Φδ

y(γ)
∣∣
γ= ejωΔ−1

Δ

(δ-domain DT spectrum) (5.189)

The following lemma relates the spectrum of the sampled sequence to the spectrum of the original
continuous-time process.

Lemma 5.8:

Let us consider a stochastic process y(t), with spectrum given by Equation 5.183, together with its sequence of
samples yk = y(kΔ), with discrete-time spectrum given by Equation 5.185. Then the following relationship
holds:

Φd
y (ω) =

∞∑
�=−∞

Φy

(
ω + 2π

Δ
�

)
(5.190)

Equation 5.190 reflects the well-known consequence of the sampling process: the aliasing effect. For
deterministic systems, an analogous result was presented earlier in Equation 5.124. In the stochastic case
considered here, the discrete-time spectrum is obtained by folding high-frequency components of the
continuous-time spectrum back onto the range (0, π

Δ
).



�

�

�

�

� �

Standard Mathematical Models 5-47

5.3.9 Continuous-Time White Noise

The input v̇(t) to system 5.181 is modeled as zero mean white-noise process in continuous time. This
means that it is a stochastic process that satisfies the following two conditions:

i. E{v̇(t)} = 0, for all t and
ii. v̇(t) is independent of v̇(s), that is, E{v̇(t)v̇(s)} = 0, for all t �= s.

Loosely, we can model a continuous stochastic process in state-space form as follows:

dx(t)

dt
= Ax(t) + Bv̇(t) (5.191)

y(t) = Cx(t) (5.192)

where the system state vector is x(t) ∈ R
n, the matrices are A ∈ R

n×n and B, CT ∈ R
n, and the input v̇(t)

is a CTWN process with (constant) spectral density σ2
v . However, if we look for a stochastic process with

continuous paths that satisfies the two conditions (i) and (ii), this happens to be equal to zero in the
mean square sense, that is, E{v̇(t)2} = 0, for all t. This suggests that difficulties will arise since the process
v̇(t) does not exist in a meaningful sense. However, we can circumvent these difficulties by expressing
Equation 5.191 in incremental form as a stochastic differential equation:

dx = A x dt + B dv (5.193)

Remark 5.9

Note that the connections between this model and the deterministic incremental model given in
Remark 5.1.

The process v(t) corresponds to a Wiener process and has the following properties:

i. It has zero mean, that is, E{v(t)} = 0, for all t;
ii. Its increments are independent, that is, E{(v(t1) − v(t2))(v(s1) − v(s2))} = 0, for all t1 > t2 > s1 >

s2 ≥ 0; and
iii. For every s and t, s ≤ t, the increments v(t) − v(s) have a Gaussian distribution with zero mean

and variance E{(v(t) − v(s))2} = σ2
v|t − s|.

This process is not differentiable anywhere. However, the CTWN, v̇(t), formally defined as the deriva-
tive of v(t) is a useful heuristic device in the linear case. Note that the third condition above implies that
CTWN will have infinite variance:

E{dv dv} = E{(v(t + dt) − v(t))2} = σ2
v dt ⇒ E{v̇2} = ∞ (5.194)

Remark 5.10

A CTWN process is a mathematical abstraction, but it can be approximated to any desired degree of
accuracy by conventional stochastic processes with broadband spectra.

We now give two alternative interpretations of σ2
v :

i. Equation 5.194 suggests that one may consider σ2
v as the incremental variance of the Wiener process

v(t). Moreover, we can think of v̇(t) as a generalized process, introducing a Dirac delta function to
define its covariance structure:

rv̇(t − s) = E{v̇(t) v̇(s)} = σ2
vδ(t − s) (5.195)
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ii. In the frequency-domain, σ2
v can be thought of as the power spectral density of v̇(t) [2]. Indeed,

from 5.195 we have that the spectral density satisfies

Φv̇(ω) =
∫ ∞

−∞
rv̇(τ)e−jωτ dτ = σ2

v ∀ω ∈ (−∞, ∞) (5.196)

We see that the spectral density of v̇(t) is constant for all ω, which corresponds to the usual heuristic
notion of white noise.

For simplicity of exposition, in the sequel, we will use models 5.191 and 5.192.

5.3.10 Stochastic Sampled-Data Models

For the moment we will assume that the process y(t) in Equation 5.181 does not contain any unfiltered
white-noise components. In practice, this can be guaranteed by the use of an antialiasing filter. As a
consequence, we assume that H(ρ) in Equation 5.181 is a strictly proper transfer function that can be
represented in state-space form as in Equations 5.191 and 5.192. The following result gives the appropriate
sampled-data model when considering instantaneous sampling of the output 5.192.

Lemma 5.9: [2]

Consider the stochastic system defined in state-space forms (Equations 5.191 and 5.192) where the input v̇(t)
is a CTWN process with (constant) spectral density σ2

v. When the output y(t) is instantaneously sampled,
with sampling period Δ, an equivalent discrete-time model is given by

δxk = Ai xk + vk (5.197)

yk = Cxk (5.198)

where Ai = (eAΔ − In)/Δ, and the sequence vk is a discrete-time white-noise (DTWN) process, with zero
mean and covariance structure given by

E{vk vT
� } = Ωi

δK [k − �]
Δ

(5.199)

where:

Ωi = σ2
v

Δ

∫ Δ

0
eAηBBT eAT η dη (5.200)

and δK (k) is the Kronecker delta given by

δK [k] =
{

1, k = 0

0, k �= 0
(5.201)

Remark 5.11

The matrix Ωi is in fact the (constant) spectral density of the noise vector vk , as can be seen by applying
the discrete-time Fourier transform to Equation 5.199:

Fd

{
Ωi

δK [k]
Δ

}
= Δ

∞∑
k=−∞

Ωi
δK [k]

Δ
e−jωkΔ = Ωi ; ω ∈

[
− π

Δ
,
π

Δ

]
(5.202)
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Remark 5.12

Note that the previous result allows us to recover the continuous-time stochastic description
(Equation 5.191), as the sampling period Δ goes to zero. In particular, the covariance (Equation 5.199)
corresponds (in continuous-time) to the covariance of the vector process Bv̇(t) in model 5.191, as it can
be readily seen on noting that

lim
Δ→0

Ωi = σ2
v BBT = Ωc (5.203)

lim
Δ→0

1

Δ
δK [k − �] = δ(tk − t�) (5.204)

Given the continuous-time system, Lemma 5.9 provides a sampled-data model expressed in terms of
the δ-operator. A corresponding shift operator model can readily be obtained by rewriting Equation 5.197
as

q xk = xk+1 = Aq xk + ṽk (5.205)

where ṽk = vk Δ and, as before, Aq = 1 + AiΔ. Note that, for this model, the covariance structure of the
noise sequence is given by

E{ṽk ṽT
� } = Δ2E{vk vT

� } = Δ Ωi δK [k − �] = Ωq δK [k − �] (5.206)

where we have defined Ωq = Ωi Δ.

Remark 5.13

The matrix Ωq in Equation 5.206 can be computed by solving the discrete-time Lyapunov equation

Ωq = P − AqPAT
q (5.207)

or, equivalently, in the δ-domain:

Ωi = AiP + PAT
i + ΔAiPAT

i (5.208)

where P satisfies the continuous-time Lyapunov equation AP + PAT + Ωc = 0, for stable systems, or
AP + PAT − Ωc = 0, for anti stable systems. For Lemma 5.9 we have, in particular, Ωc = σ2

vBBT .
The sampled-data models (Equations 5.197 and 5.198) are driven by a vector white-noise process vk .

The covariance of this process is determined by the matrix Ωi in Equation 5.200, which will generically be
full rank. However, we can gain additional insights by describing the sampled process yk = y(kΔ) as the
output of an equivalent sampled-data model driven by a single scalar noise source. This can be achieved
by, first, obtaining the discrete-time spectrum of the sampled sequence yk , and then performing spectral
factorization.

The output spectrum of the sampled-data model is given in the following result.

Lemma 5.10:

The output spectrum Φd
y (ω) of the sampled-data models 5.197 and 5.198 is

Φδ
y(γω) = C(γωIn − Ai)

−1Ωi(γ
∗
ωIn − AT

i )−1CT (5.209)
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where γω = 1
Δ

(ejωΔ − 1) and ∗ denote complex conjugation. Using Equation 5.205, this spectrum can be
equivalently obtained as

Φ
q
y(ejωΔ) = ΔC(ejωΔIn − Aq)−1Ωq(e−jωΔIn − AT

q )−1CT (5.210)

We can spectrally factor 5.210 to obtain a model driven by a single noise source. In the sequel, we will
use this idea to study asymptotic sampling zeros as was done earlier for deterministic systems.

Next we present examples showing how stochastic sampled-data models can be obtained utilizing the
above ideas.

Example 5.13:

We consider the first-order continuous-time auto-regressive (CAR) system

dy(t)
dt

− a0y(t) = b0v̇(t) (5.211)

where a0 < 0 and v̇(t) is a CTWN process of unitary spectral density, that is, σ2
v = 1. A suitable

state-space model can readily be obtained as

dx(t)
dt

= a0x(t) + b0v̇(t) (5.212)

y(t) = x(t) (5.213)

An equivalent sampled-data model for this system is readily obtained in terms of the shift operator
q or, equivalently, using the delta operator:

q xk = ea0Δxk + ṽk ⇐⇒ δxk =
(

ea0Δ − 1
Δ

)
xk + vk (5.214)

yk = xk (5.215)

where ṽk and vk are DTWN processes with variance Ωq and Ωi
Δ , respectively. Note that these variances

are not very useful when considering the sampling period Δ tending to zero. If we compute them,
for example, using Remark 5.13, we can see that they are badly scaled:

Ωq = ΔΩi = b2
0

(e2a0Δ − 1)
2a0

Δ→0−−−−→ 0 (5.216)

Ωi

Δ
= b2

0
(e2a0Δ − 1)

2a0Δ2
Δ→0−−−−→ ∞ (5.217)

On the other hand, as noticed in Remark 5.12, the spectral density Ωi converges naturally to its
continuous-time counterpart:

Ωi = b2
0

(e2a0Δ − 1)
2a0Δ

Δ→0−−−−→ b2
0 (5.218)

�

In the previous example, a stochastic sampled-data model was immediately obtained having a single
scalar noise source. For higher-order systems, Lemma 5.9 gives a sampled-data model in terms of a
vector input vk . However, as described above, we can use spectral factorization to obtain an equivalent
sampled-data model, with a single scalar noise source as input, using spectral factorization. The output
of this system has the same second-order statistics, that is, the same discrete-time spectrum 5.210, as the
original sampled-data model.
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Example 5.14:

Consider the second-order CAR system

d2y(t)
dt

+ a1
dy(t)

dt
+ a0y(t) = v̇(t) (5.219)

where v̇(t) is CTWN process of unitary spectral density, that is, σ2
v = 1. An appropriate state-space

model is given by

dx(t)
dt

=
[

0 1
−a0 −a1

]
x(t) +

[
0
1

]
v̇(t) (5.220)

y(t) = [
1 0

]
x(t) (5.221)

Using Equation 5.210, and after some lengthy calculations, we see that the discrete-time output
spectrum has the form

Φ
q
y (z) = K

z(b2z2 + b1z + b0)

(z − eλ1Δ)(z − eλ2Δ)(1 − eλ1Δz)(1 − eλ2Δz)
(5.222)

where λ1 and λ2 are the continuous-time system poles, and

b2 = (λ1 − λ2)
[

e(λ1+λ2)Δ(λ2eλ1Δ − λ1eλ2Δ) + λ1eλ1Δ − λ2eλ2Δ
]

(5.223)

b1 =
[

(λ1 + λ2)(e2λ1Δ − e2λ2Δ) + (λ1 − λ2)(e2(λ1+λ2)Δ − 1)
]

(5.224)

b0 = b2 (5.225)

K = Δ

2λ1λ2(λ1 − λ2)2(λ1 + λ2)
(5.226)

If we perform spectral factorization on the sampled spectrum 5.222 we can obtain a sampled-data
model in terms of only one noise source, that is,

Φ
q
y (z) = Hq(z)Hq(z−1) (5.227)

where

Hq(z) =
√

K (c1z + c0)

(z − eλ1Δ)(z − eλ2Δ)
(5.228)

The expression for the numerator coefficients (and, thus, of the only sampling zero) of the latter
discrete-time model are involved. However, it is possible to obtain an asymptotic characterization of
this sampled-data model as the sampling period goes to zero, in a similar fashion as was done for
the deterministic case. We will explore this idea in the next section.

5.3.11 Asymptotic Sampling Zeros for Stochastic Systems

In the previous section we have seen that the output spectrum of the sampled-data model contains
sampling zeros which have no counterpart in the underlying continuous-time system. Similar to the
deterministic case, these zeros can be asymptotically characterized. The following result characterizes the
asymptotic sampling zeros of the output spectrum in the case of instantaneous sampling.

Lemma 5.11: [11]

Consider the instantaneous sampling of the continuous-time process (Equation 5.181). We then have that

Φd
y (ω)

Δ→0−−−→ Φy(ω) (5.229)



�

�

�

�

� �

5-52 Control System Fundamentals

uniformly in s, on compact subsets. Moreover, let ±zi, i = 1, . . . , m be the 2m zeros of Φy(s), and ±pi,
i = 1, . . . , n its 2n poles. Then

i. 2m zeros of Φd
y (z) will converge to 1 as e±ziΔ;

ii. The remaining 2(n − m) − 1 will converge to the zeros of zB2(n−m)−1(z) as Δ goes to zero;
iii. The 2n poles of Φd

y (z) equal e±piΔ, and will hence go to 1 as Δ goes to zero.

Example 5.15:

Consider again the second-order CAR system in Example 5.14. The discrete-time spectrum 5 222
was obtained for the case of instantaneous sampling of the output y(t). Exact expressions for the
sampling zeros of this spectrum are quite involved. However, performing a Taylor-series expansion
of the numerator we have that

Kz(b2z2 + b1z + b0) = Δ4

3! z(z2 + 4z + 1) + O(Δ5) (5.230)

which, asymptotically, as Δ goes to zero, is consistent with Lemma 5.11, noting that B3(z) = z2 +
4z + 1 as in Equation 5.136.

The asymptotic sampled spectrum can be obtained as

Φ
q
y (z) = Δ4

6
(z + 4 + z−1)

(z − eλ1Δ)(z − eλ2Δ)(z−1 − eλ1Δ)(z−1 − eλ2Δ)

= Δ4

6(2 − √
3)

(z + 2 − √
3)

(z − eλ1Δ)(z − eλ2Δ)

(z−1 + 2 − √
3)

(z−1 − eλ1Δ)(z−1 − eλ2Δ)
(5.231)

Then, the spectrum can be written as Φ
q
y (z) = Hq(z)Hq(z−1), where

Hq(z) = Δ2

3 − √
3

(z + 2 − √
3)

(z − eλ1Δ)(z − eλ2Δ)
(5.232)

The corresponding δ-operator model can be obtained by changing variable z = 1 + γΔ. This yields
the following discrete-time model:

Hi (γ) =
(

1 + 1
3−√

3
Δγ

)
(
γ − eλ1Δ−1

Δ

) (
γ − eλ2Δ−1

Δ

) (5.233)

which clearly converges to the underlying continuous-time system 5.219, as the sampling period
goes to zero. �

5.3.12 Model Error Quantification for Stochastic Systems

In this section we study the stochastic version of model errors results described in Section 5.3.6 for the
case of deterministic inputs. We have seen that the discrete-time spectrum is given by an infinite sum (see
Equation 5.190). It can be shown (see, e.g. [12]) that the sum in Equation 5.190 can also be calculated by
using the Hurwitz-Zeta function given by

ζ(r, a) =
∞∑

k=0

1

(k + a)r , Re{r} > 1, a /∈ Z
−
0 (5.234)

This can be used to develop alternative expressions to those given in Equation 5.138. For simple cases, it is
possible to find a closed-form expression for the discrete-time spectrum. Indeed, we can readily establish
the following result.
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Lemma 5.12:

When the continuous spectrum is given by Ψc
r (s) = 1/sr , where r is an arbitrary positive integer, then we

see that the corresponding discrete-time spectrum is given by∗

Ψd
r (ejωΔ) = Δr

(r − 1)!
zBr−1(z)

(z − 1)r (5.235)

Lemma 5.12 is of particular interest in analyzing sampled-data models since, for high frequencies, all
(finite-dimensional) systems behave as 1/sr , where r is the relative degree of the continuous-time spectrum
of interest. In fact, for some simple cases, we have that the discrete-time spectrum corresponding to 1/sr

is given by

Ψd
r=2(ejωΔ) =

[ (
Δ
2

)
sin

(
ωΔ

2

)
]2

(5.236)

Ψd
r=3(ejωΔ) = cos

(
ωΔ

2

)[ (
Δ
2

)
sin

(
ωΔ

2

)
]3

(5.237)

Ψd
r=4(ejωΔ) = 1

3

[
1 + 2 cos2

(
ωΔ

2

)][ (
Δ
2

)
sin

(
ωΔ

2

)
]4

(5.238)

Ψd
r=5(ejωΔ) = 1

3
cos

(
ωΔ

2

)[
2 + cos2

(
ωΔ

2

)][ (
Δ
2

)
sin

(
ωΔ

2

)
]5

(5.239)

The above results give very simple expressions for the discrete spectrum corresponding to Φc(s) =
Ψc

r (s) = 1/sr . These results raise the question as to whether or not there exist simple relationships between
Φd(ejωΔ) and Φc(jω) in more general cases. The following result gives a surprisingly simple connection,
which holds generally when Δ → 0.

Lemma 5.13: [13]

Assuming that there exists an ωN such that for ω ≥ ωN we have that |Φc(jω)| ≤ β

ω2 , then

|Φd(ejωΔ) − Φc(jω)| = O(Δ2), 0 ≤ ω ≤ π

Δ
(5.240)

The result in Lemma 5.13 is valid for general systems. However, there is a subtle caveat. Specifically,
for high frequencies, the continuous-time spectrum also satisfies Φc(jω) = O(Δ2). This means that the
continuous- and discrete-time spectra are not necessarily close to each other at high frequencies, in the
sense of the relative error being small. To illustrate the difficulty, Figure 5.11 shows the relative error
given by

R(r, ω) =
∣∣∣∣∣
Φd(ejωΔ) − Φc(jω)

Φc(jω)

∣∣∣∣∣ (5.241)

for Φc(s) = Ψc
r (s) = 1/sr and different values of r. It can be seen that the relative error between continuous

and discrete spectra is certainly not small for frequencies close to ω = π/Δ.

∗ Here and in the sequel, we use Ψc
r for a particular spectrum parametrized in terms of r. Ψd

r represents the corresponding
discrete-time spectrum of Ψc

r .
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Thus, Lemma 5.13 does not adequately achieve the desired objective of connecting continuous and
discrete spectra. This raises a follow-up question as to whether there exist functions, closely related to
Φc(jω), which are near to Φd(ejωΔ) in the sense of small relative errors. The following result is immediate.

Lemma 5.14: [13]

Assuming that for ω ≥ ωN we have that α
ωp ≤ |Φc(jω)| ≤ β

ω2 (p ≥ 2), then for finite bandwidth (ω ≤ ωB <

π/Δ) we have that

∣∣∣∣∣
Φd(ejωΔ) − Φc(jω)

Φc(jω)

∣∣∣∣∣= O(Δ2) (5.242)

Lemma 5.14 does not hold for frequencies in the vicinity of π/Δ. Indeed, this has already been
illustrated for a special case in Figure 5.11. We are thus motivated to ask a further question: Are there
spectra related to Φc(jω), which are close to Φd(ejωΔ) (in the sense of relative error) over the full range
(0 < ω ≤ π/Δ)? We explore this question below.

Let the continuous-time spectrum be given by

Φc(s) = K0

∏m
i=1(s − zi)∏n
i=1(s − pi)

, r = n − m (5.243)

Some candidate approximations to the associated discrete-time spectrum are given by

• Model 1:

Φd
1 (ejωΔ) = Δr

(r − 1)!
ejωΔBr−1(ejωΔ)

(ejωΔ − 1)r
(5.244)

This model is exact when Φc(s) = 1/sr .
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FIGURE 5.11 R(r, ω) for different values of r.
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• Model 2:

Φd
2 (ejωΔ) = Φc(jω)

ejωΔBr−1(ejωΔ)

(r − 1)! (5.245)

Note that this model includes the continuous spectrum.
• Model 3:

Φd
3 (ejωΔ) = Φc

(
ejωΔ − 1

Δ

)
ejωΔBr−1(ejωΔ)

(r − 1)! (5.246)

Note that this model uses an Euler approximation for the intrinsic poles and zeros.
• Model 4:

Φd
4 (ejωΔ) = Φc

(
ejωΔ − 1

Δ

)
ejωΔpr−1(ejωΔ)

(r − 1)! (5.247)

where pr−1(z) is the polynomial corresponding to the corrected sampling zeros introduced in
Section 5.3.6. This latter model is the same as the previous one when the relative degree of the
continuous spectrum, r, is an even number (e.g., for the case of auto-spectrum).

• Model 5:

Φd
5 (ejωΔ) = K5

∏m
i=1(ejωΔ − eziΔ)∏n
i=1(ejωΔ − epiΔ)

ejωΔpr−1(ejωΔ)

(r − 1)! (5.248)

where K5 is such that Φd
5 (1) = Φc(0). Note that this is a refined form of Model 4.

We present a simple example to illustrate the errors introduced by the various models described above.

Example 5.16:

Let Φc (s) be given by

Φc (s) = 1

(s + 10)2(−s + 10)2 s = jω (5.249)

We choose Δ = 0.01 and we compare the following models:

• Model 0: The true discrete spectrum.
• Models 1 to 5 as described above. (Note that Model 4 is identical to Model 3 in this case.)
• Model 6: The continuous spectrum.

Figure 5.12a shows the various spectra. Note that it is virtually impossible to distinguish Models 0,
2, 3, 5, and 6 on this scale. The only model which shows any discernible difference is Model 1 which is
clearly only valid at high frequencies. This is to be expected since no attempt was made to accurately
map the intrinsic poles and zeros.

The above observations are consistent with Lemma 5.13. More informative results are shown in
Figure 5.12b. This shows the relative error with respect to the true discrete spectrum, that is,

ρk (ejωΔ) =
∣∣∣∣∣∣
Φd (ejωΔ) −Φd

k (ejωΔ)

Φd (ejωΔ)

∣∣∣∣∣∣ (5.250)

Note that a relative error of 100 implies 100% errors. Again, we see that Model 1 is only useful at
high frequencies. We also see that Model 6 only gives small errors over a limited bandwidth. Perhaps,
more surprisingly, we see that Model 2 (which corresponds to the continuous spectrum modified
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FIGURE 5.12 (a) Magnitude of the spectra. (b) Relative errors.

by the sampling zeros) is also only valid over a limited range. The only models which give small
relative errors over the complete frequency range are Model 3 (which maps the poles and zeros
using 1 + ζΔ) and Model 5 (which maps the poles and zeros using eζΔ). Moreover, the performance
of these models improves as Δ is decreased. Finally, in terms of the maximal relative error over all
frequencies, both Models 3 and 5 perform equally well.

Our conclusion from the previous example is that, in order to obtain an adequate discrete spectrum
over the complete frequency range (0, π/Δ), one needs to modify the continuous spectrum in two ways:

i. Map the poles and zeros, either using eζΔ (Model 5) or using 1 + ζΔ (Model 3); and
ii. add appropriate discrete sampling zeros.

If both of these two steps are taken, then a model having relative error of the order of Δ is obtained.

5.3.13 Robustness Issues

The reader will have noticed that the above discussion about sampled-data models is based on capturing
the effect of folding. Thus, to obtain approximate models one needs to make hypotheses about the
high-frequency behavior of the system. For example, asymptotic sampling zeros follow by applying
the assumption that when the sampling frequency is sufficiently high, then the model behaves above
the Nyquist frequency as 1/sr (where r is the relative degree). Clearly, this begs the question about
unmodeled high-frequency poles or zeros. If these are present, then they will clearly destroy the validity
of discrete-time models based on the (false) assumption that the continuous-time model is behaving
as 1/sr .
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Thus, one needs to be very careful about the frequency range of validity of models. In particular,
sampling zeros correspond to very precise assumptions about how the system behaves above the Nyquist
frequency. If one is uncertain about this behavior, then we recommend that one sample as quickly as
possible, but then to only use the model up to a fraction of the Nyquist frequency. In this case, one can
ignore sampling zeros, folding, etc. Indeed, a very accurate model in terms of either absolute or relative
errors, can simply be obtained by replacing s by δ. Of course, this model is not accurate (as we have shown
in Sections 5.3.6 and 5.3.12) in the vicinity of the Nyquist frequency.

5.3.14 Extensions to Nonlinear Systems

In this section we will make some brief comments about the extension of the results to nonlinear systems.
A key departure point from the linear sampled-data models considered in the previous sections, is that, for
linear systems, we can, in principle, obtain ESD models, whereas for nonlinear systems, only approximate
sampled-data models can be obtained (e.g., by using rth-order Runge–Kutta integration). However, the
accuracy of these models can be characterized in a precise way.

We have seen above that, in the linear case, the use of Euler integration leads to a discrete-time model
having no sampling zeros. If one uses an integration method with an rth-order Taylor’ series, where r is
the relative degree, then it turns out that this exactly captures the asymptotic sampling zeros in the linear
case. This leads to the following conjecture: Say one were to use an rth-order Runge–Kutta method in
the nonlinear case, would this reveal anything about nonlinear sampling zeros? Actually, this is precisely
what happens. Indeed, for deterministic inputs, the resultant approximate sampling zero dynamics for a
nonlinear system of relative degree r are the same as for a linear system having the same relative degree [7].
Related results hold for stochastic systems [14,15].

5.3.15 Summary

In this chapter we have studied sampled-data models for linear and nonlinear systems. We also discussed
the implications, and inherent difficulties, of using sampled-data models, defined at discrete-time instants,
to represent real systems evolving in continuous time. The following topics have been covered.

• Sampling of continuous-time systems: The sampled-data models obtained were shown to depend,
not only on the underlying continuous-time system, but also on the details of the sampling process
itself. Specifically, the hold device, used to generate a continuous-time input, and the sampling
device, that gives us the output sequence of samples, both play an important role in the sampling
process. The effect of these artifacts of sampling become negligible when the sampling period goes
to zero. However, for any finite sampling rate, their role has to be considered to obtain accurate
sampled-data models.

• Sampling zeros: Sampled-data models have, in general, more zeros than the underlying continuous-
time system. These extra zeros, called sampling zeros, have no continuous-time counterpart. For
the linear case, their presence can be interpreted as a consequence of the aliasing effect of the
system frequency response (or spectrum), where high-frequency components are folded back to
low frequencies due to the sampling process. We have seen that sampling zeros arise in both
deterministic and stochastic systems. They can be asymptotically characterized in terms of the
Euler–Fröbenius polynomials.

• Approximate sampled-data models: The presence of sampling zeros in discrete-time models is an
illustration of the inherent difference between continuous- and discrete-time system descriptions.
When using δ-operator models, the sampling zeros go to infinity as the sampling period goes to
zero; nonetheless they generally have to be taken into account to obtain accurate discrete-time
descriptions.

• Nonlinear systems: The above ideas can be also extended to the nonlinear case. In fact, the sampled-
data models obtained for nonlinear systems contain extra zero dynamics with no counterpart
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in continuous time. These sampling zero dynamics are a consequence of using a more accurate
discretization procedure than simple Euler integration. Surprisingly, if an rth-order Taylor series
is used for the integration (where r is the relative degree), then the extra zero dynamics turn out to
be the same as the dynamics associated with the asymptotic sampling zeros in the linear case.

• Robustness issues: The use of sampled data taken from continuous-time systems inherently implies
a loss of information. Even though it is possible to obtain accurate models, there will always exist
a gap between the discrete- and continuous-time representations. As a consequence, one needs to
rely on assumptions on the inter sample behavior of signals or, equivalently, on the characteristics
of the system response beyond the sampling frequency. Based on these issues we have stressed the
concept of bandwidth of validity for continuous-time models, within which assumptions, such as
relative degree or white noise, can be trusted. We have emphasized the importance of this concept,
in particular, when utilizing asymptotic results for sampling zeros.
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5.4 Behavioral Methods in Control

Harry L. Trentelman
5.4.1 Introduction

In systems and control, traditionally control has been almost invariably associated with the concepts of
input, output, and feedback. The mechanism of feedback involves observations, is able to adapt to its
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environment, and decides on the basis of the observed sensor outputs what the actuator inputs should
be. In other words, the typical features of feedback are the presence of sensing and generating control
inputs on the basis of the sensed observations. This principle, often called intelligent control, is depicted
in Figure 5.13.

It has been argued in [1] and [2] that for many practical control devices it is hard, or even impossible, to
give an interpretation as feedback controllers. Consider, for example, passive vibration-control systems
consisting of special bracings and oil dampers to protect large buildings against earthquakes, or passive
suspension applied by springs and dampers in automobiles. Such control mechanisms do certainly not act
as feedback controllers in the sense that control inputs are generated on the basis of sensed measurement
outputs. Rather, from a physical point of view, the action of such passive controllers can best be understood
using the concepts of interconnection and variable sharing. Many other devices act as controllers, but
not as feedback controllers. Examples are strips mounted on objects to improve aerodynamic properties,
stabilizers for ships, etc.

The behavioral point of view provides a natural framework for this more general way of looking at
control. In the behavioral approach, control means restricting the behavior of a system, for example the
plant, by interconnecting it with another system, the controller. In this paper, we will explain the basic
idea of control in the framework of behaviors, which allows a general interconnection stucture between
plant and controller. This will be the subject of Section 5.4.3.

Although there is an increasing body of literature on control of multidimensional linear systems, in
particular of behaviors represented by constant coefficient, linear, partial differential equations, in the
present paper we will restrict ourselves to one-dimensional linear differential systems. These are systems
represented by ordinary, constant coefficient, linear differential equations. In Section 5.4.4 we will review
the basic concepts and results for this class of systems.

In Section 5.4.5, we discuss the implementability problem. This problem may actually be considered
as a basic question in control: Given a plant behavior, together with some “desired” behavior, the latter
is called implementable (sometimes called: Achievable) if it can be achieved as controlled behavior by
interconnecting the plant with a suitable controller. In this section, for a given plant, we give a complete
characterization of all implementable behaviors. We also discuss the issues of regular interconnection
and regular implementability.

Next, in Section 5.4.6, we turn to the most basic of control problems: The problems of finding stabilizing
controllers and finding controllers that assign the poles of the controlled behavior. We give behavioral,
representation-free, formulations of these problems, and give necessary and sufficient conditions for the
existence of stabilizing controllers, and for pole placement. These conditions will turn out to involve the
behavioral versions of the notions of controllability, observability, stabilizability, and detectability.

Section 5.4.7 then deals with the natural problem of controller parametrization: Given a plant behavior
and an implementable desired behavior, we give a parametrization of all controllers that regularly imple-
ment this desired behavior. We also parametrize all controllers that stabilize a given stabilizable plant,
thus establishing a behavioral analogue of the well-known Youla parametrization.
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FIGURE 5.13 Intelligent control.
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In Section 5.4.8, we return to the stabilization problem. We study the problem of finding, for a given
plant, stabilizing controllers with the property that pre specified components of the interconnection vari-
able are free in these controllers. In this problem we embed classical feedback thinking into the behavioral
control framework by realizing that the controller should not be allowed to constrain interconnection
variables that correspond to, for example, measured plant outputs. These variables should obviously
remain free in the controller: The controller should “respect” the values that these variables take.

Finally, in Section 5.4.9, we look at robust control in a behavioral framework, and study the problem
of finding, for a given nominal plant, controllers that stabilize (in the behavioral sense) all plants in a
given ball around the nominal plant. This problem is closely related to behavioral H∞-control, and we
formulate the appropriate behavioral “small gain argument” to formalize this.

5.4.2 Notation and Nomenclature

To conclude this section, we will spend a few words on the notation and nomenclature used. We use the
standard symbols for the fields of real and complex numbers R and C. We use R

n, R
n×m, etc. for the real

linear spaces of vectors and matrices with components in R. Often, the notation R
w, R

d, R
c . . . is used

if w, d, c . . . denote typical elements of that vector space, or typical functions taking their values in that
vector space. Vectors are understood to be column vectors in equations, in text, however, we sometimes
write them as row vectors. Sometimes, we also use the notation col(w1, w2) to represent the column vector
formed by stacking w1 over w2.
C∞(R, Rw) will denote the set of infinitely often differentiable functions from R to R

w. The space of all
measurable functions w from R to R

w such that
∫∞
−∞ ‖w‖2dt < ∞ is denoted byL2(R, Rw). TheL2-norm

of w is ‖w‖2 := (
∫∞
−∞ ‖w‖2dt)1/2.

R[ξ] denotes the ring of polynomials in the indeterminate ξ with real coefficients, and R(ξ) denotes
its quotient field of real rational functions in the indeterminate ξ. A polynomial r ∈ R[ξ] is called monic
if the coefficient of its highest degree monomial is equal to 1. We use R

n[ξ], Rn×m[ξ], R
n(ξ), Rn×m(ξ),

etc. for the spaces of vectors and matrices with components in R[ξ] and R(ξ), respectively. Elements of
R
n×m[ξ] are called real polynomial matrices and elements of R

n×m(ξ) are called real rational matrices.
det(A) denotes the determinant of a square matrix A. A square, nonsingular real polynomial matrix R

is called Hurwitz if all roots of the polynomial det(R) lie in the open left-half complex plane C
−. A proper

real rational matrix G is called stable if all its poles are in C
−. If G is a proper stable rational matrix, then

its H∞ norm is defined as ‖G‖∞ := supλ∈C̄+‖G(λ)‖.

5.4.3 Control in a Behavioral Setting

In this section, we will first explain the basic elements of control in the context of the behavioral approach
to dynamical systems.

In the behavioral approach, a dynamical system is a triple, Σ = (T , W ,B), with T a set called the
time axis, W a set called the signal space, and B⊂ WT the behavior. The behavior consists of a family
of admissible functions w : T → W . The dynamical system aimes at specifying which functions of time
t ∈ T of the variable w can occur. This variable is called the manifest variable of the system. Since T and
W are often apparent from the context we identify the system Σ = (T , W ,B) simply with its behaviorB.
For a basic introduction to dynamical systems in a behavioral framework, we refer to the textbook [5],
and for background information to [3] or [4].

The basic idea of control in this framework is very simple. If Σ1 = (T , W ,B1) and Σ2 = (T , W ,B2)
are two dynamical systems with the same time axis and the same signal space, then the full intercon-
nection Σ1 ∧ Σ2 of Σ1 and Σ2 is defined as the dynamical system (T , W ,B1 ∩B2), that is, the system
whose behavior is equal to the set-theoretic intersection of the behaviors B1 and B2. We speak of full
interconnection since the entire variable w ofB1 is shared withB2 in the interconnection.
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More often, the interconnection can only take place through pre specified components of the manifest
variable. In that case, we speak of partial interconnection. Let Σ1 = (T , W1 × C,B1) and Σ2 = (T , W2 ×
C,B2) be two dynamical systems with the same time axis. We assume that the signal spaces W1 × C and
W2 × C of Σ1 and Σ2, respectively, are product spaces, with the factor C in common. Correspondingly,
trajectories ofB1 are denoted by (w1, c) and trajectories ofB2 by (w2, c). We define the interconnection
of Σ1 and Σ2 through c as the dynamical system

Σ1 ∧c Σ2 := (T , W1 × W2 × C,B)

with interconnected behavior

B= {(w1, w2, c) : T → W1 × W2 × C | (w1, c) ∈B1 and (w2, c) ∈B2}.

The behaviorsB1 andB2 in this case only share the variable c, which is called the interconnection variable.
Often, we denote the interconnected behavior B by B1 ∧cB2. This interconnection is illustrated in
Figure 5.14.

In this context, control is formalized as follows. Assume that the plant, a dynamical system Σp =
(T , W × C, Pfull) is given. It has two types of terminals: terminals carrying to-be-controlled variables w
and terminals carrying interconnection variables c. Therefore, the signal space of the plant is given as the
product space W × C, where W is the space in which w takes its values, and C denotes the space in which
c takes its values. The behavior of the plant is denoted by Pfull, called the full plant behavior, and consists
of all (w, c) : T → W × C that are compatible with the laws of the plant.

In the classical controller configuration, the to-be-controlled variables combine the exogenous distur-
bance inputs and the to-be-controlled outputs, while the interconnection variables combine the sensor
outputs and the actuator inputs. A feedback controller may be viewed as a signal processor that processes
the sensor outputs and returns the actuator inputs. It is the synthesis of such feedback processors that
is traditionally viewed as control design. However, we will look at control from a somewhat broader
perspective, and we consider any law that restricts the behavior of the interconnection variables as a
controller.

Thus a controller for the plant Σp is a dynamical system Σc = (T , C, C) with controller behavior C. The
interconnected system Σp ∧c Σc is called the controlled system. A control problem for the plant Σp is
now to specify a set of admissible controllers, to describe what desirable properties the controlled system
should have, and, finally, to find an admissible controller Σc such that Σp ∧c Σc has the desired properties.
In this framework, control is nothing more than general interconnection through the interconnection
variables (see Figure 5.15).

The main motivation for this alternative formulation of control is a practical one: many controllers,
for example, physical devices such as dampers, heat insulators, matched impedances, etc. simply do
not act as signal processors. For a more elaborate discussion of this point of view, we refer to [1]. As

B1 B2

B1 B2

w2w1

w2w1

c

FIGURE 5.14 Interconnection of Σ1 and Σ2.
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full

full

w

w

c

FIGURE 5.15 Σp controlled by Σc .

a comment related to our motivation to view a controller as any law that restricts the behavior of the
control variables, we emphasize our misgivings regarding the omnipresence of signal flow graph thinking
in systems modeling. The point of view that system interconnection should, or even can, be viewed as
identifying inputs of one system with outputs of another, simply does not agree with physical reality.
When interconnecting two systems, certain variables of one system are indeed identified with certain
variables of another. There is no reason for these variables to act as inputs, respectively outputs. When
connecting two wires of two electrical circuits, we impose the equality of two voltages and the equality
of a current into one circuit with the current out of another. Nothing requires that one circuit should
be current controlled, and the other voltage controlled. When connecting two pins of two mechanical
systems, we impose the equality of two generalized positions and of the generalized force on one system
with (the negative of) the generalized force on another. If the intuitive classification of forces as inputs is
tenable, then this interconnection results in equating two inputs and two outputs, and not equating inputs
with outputs. For thermal connections, we identify temperatures, and the heat flow into one system with
that out of another. Typically again, this results in equating inputs and (not with) outputs. Pressures and
flows: Same story.

5.4.4 Linear Differential Systems

In this section we will discuss control in a behavioral framework for linear differential systems. We will
first review the basic concepts and ideas. For more detailed information we refer to [5].

As explained in Section 5.4.3, in the behavioral approach, a dynamical system is given by a triple
Σ = (T , W ,B), where T is the time axis, W is the signal space, and the behavior B is a subset of WT ,
the set of all functions from T to W . A linear differential system is a dynamical system with time axis
T = R, and whose signal space W is a finite-dimensional Euclidean space, say, R

w. Correspondingly,
the manifest variable is then given as w = col(w1, w2, . . . , ww). The behavior B is a linear subspace of
C∞(R, Rw) consisting of all solutions of a set of higher order, linear, constant coefficient differential
equations. More precisely, there exists a positive integer g and a polynomial matrix R ∈ R

g×w[ξ] such
that

B=
{

w ∈ C∞(R, Rw) | R

(
d

dt

)
w = 0

}
.

The set of linear differential systems with manifest variable w taking its value in R
w is denoted by Lw.
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We make a clear distinction between the behavior as defined as the space of all solutions of a set of
(differential) equations, and the set of equations itself. A set of equations in terms of which the behavior
is defined is called a representation of the behavior. Let R ∈ R

g×w[ξ] be a polynomial matrix. If the
behaviorB is represented by R( d

dt )w = 0 then we call this a kernel representation ofB. Further, a kernel
representation is said to be minimal if every other kernel representation ofB has at least g rows. A given

kernel representation R
(

d
dt

)
w = 0 is minimal if and only if the polynomial matrix R has full row rank.

We speak of a system as the behavior B, one of whose representations is given by R
(

d
dt

)
w = 0 or just

B= ker(R). The “ d
dt ” is often suppressed to enhance readability.

We will also encounter behaviors B with manifest variable w, which are represented by equations of
the form R( d

dt )w = M( d
dt )�, in which an auxiliary, latent variable � appears. Here, R and M are polynomial

matrices with the same number of rows. Through such an equation, we can consider the subspace of all
w ∈ C∞(R, Rw) for which there exists an � ∈ C∞(R, Rl) such that the equation holds:

B=
{

w ∈ C∞(R, Rw) | ∃ � ∈ C∞(R, Rl) such that R(
d

dt
)w = M(

d

dt
)�

}
.

By the elimination theorem (see [5], Chapter 6, Theorem 6.2.6), B ∈ Lw, that is, B is again a linear
differential system. We call R( d

dt )w = M( d
dt )� a latent variable representation ofB.

Let B ∈ Lw. Let R( d
dt )w = 0 be a kernel representation. Assume rank(R) < w (which also means that

it is under determined: the number of variables is strictly larger than the number of equations). Then,
obviously, some components of w = col(w1, w2, . . . , ww) are unconstrained by the requirement w ∈B.
These components are said to be free inB. The maximum number of such components is called the input
cardinality of B (denoted as m(B)). Once m(B) free components are chosen, the remaining w−m(B)
components are determined up to a finite-dimensional affine subspace of C∞(R, Rw−m(B)). These are
called outputs, and the number of outputs is denoted by p(B), called the output cardinality ofB. Thus,
possibly after a permutation of components, w ∈B can be partitioned as w = (u, y), with the m(B)
components of u as inputs, and the p(B) components of y as outputs. We say that (u, y) is an input–
output partition of w ∈B, with input u and output y.

The input–output structure of B ∈ Lw is reflected in its kernel representations as follows. Suppose
R( d

dt )w = 0 is a minimal kernel representation ofB. Partition R = (Q P), and accordingly w = (w1, w2).
Then w = (w1, w2) is an i/o partition (with input w1 and output w2) if and only if P is square and
nonsingular. In general, there exist many input–output partitions, but the integers m(B) and p(B) are
invariants associated with a behavior. It can be verified that p(B) is equal to the rank of the polynomial
matrix in any (not necessarily minimal) kernel representation ofB (for details see [5]).

Definition 5.2:

A behavior whose input cardinality is equal to 0 is called autonomous. An autonomous behaviorB is said
to be stable if for all w ∈B we have w(t) → 0 as t → ∞.

In the context of stability, we often need to describe regions of the complex plane C. We denote the
closed right-half of the complex plane by C̄

+ and the open left-half complex plane by C
−. A polynomial

matrix R ∈ R
w×w[ξ] is called Hurwitz if rank(R(λ)) = w for all λ ∈ C

+ (equivalently, det(R) has no roots
in C

+). IfB ∈ Lw is represented by the minimal kernel representation R( d
dt )w = 0 thenB is stable if and

only if R is Hurwitz (see [5], Chapter 7).
For autonomous behaviors, we also speak about poles of the behavior. LetB ∈ Lw be autonomous. Then

there exists an R ∈ R
w×w[ξ] such that B is represented minimally by R

(
d
dt

)
w = 0. Obviously, for any

nonzero α ∈ R, αR also yields a kernel representation ofB. Hence, we can choose R such that det(R) is a
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monic polynomial. This monic polynomial is denoted by χB and is called the characteristic polynomial
of B. χB depends only on B, and not on the polynomial matrix R we used to define it: if R1, R2 both
representBminimally then there exists a unimodular U such that R2 = UR1 (see [5], Chapter 3). Hence,
if det(R1) and det(R2) are monic then det(R1) = det(R2). The poles ofB are defined as the roots of χB.
Note that χB = 1 if and only ifB= 0. A behavior is stable if and only if all its poles are in C

−.
Next, we review the concept of controllability in the behavioral approach.

Definition 5.3:

A behaviorB ∈ Lw is controllable if for all w1, w2 ∈B, there exist a T ≥ 0 and a w ∈B such that w(t) =
w1(t) for t < 0 and w(t + T) = w2(t) for t ≥ 0.

Often, we encounter behaviorsB ∈ Lw that are neither autonomous nor controllable. The controllable
part of a behavior B is defined as the largest controllable subbehavior of B. This is denoted by Bcont.
A givenB ∈ Lw can always be decomposed asB=Bcont ⊕Baut, whereBcont is the (unique) controllable
part ofB, andBaut is a (nonunique) autonomous subbehavior ofB. For details we refer to [5].

Definition 5.4:

A behavior B ∈ Lw is called stabilizable if for all w1 ∈B, there exists a w ∈B such that w(t) = w1(t) for
t < 0, and w(t) → 0 as t → ∞.

Thus every trajectory in a stabilizable behavior B can be steered to 0, asymptotically. Conditions for
controllability and stabilizability in terms of the polynomial matrix appearing in any kernel representation
ofB are well-known. Indeed, ifB= ker(R), thenB is controllable if and only if rank(R(λ)) = rank(R)
for all λ ∈ C.B is stabilizable if and only if rank(R(λ)) = rank(R) for all λ ∈ C̄

+.
We shall also deal with systems in which the signal space comes as a product space, with the first

component viewed as an observed variable, and the second as a to-be-deduced variable. We talk about
observability (in such systems).

Definition 5.5:

Given B ∈ Lw1+w2 with manifest variable w = (w1, w2), w2 is said to be observable from w1 if (w1, w′
2),

(w1, w′′
2 ) ∈B implies w′

2 = w′′
2 .

If R1

(
d
dt

)
w1 + R2

(
d
dt

)
w2 = 0 is a kernel representation of B, then observability of w2 from w1 is

equivalent to R2(λ) having full column rank for all λ ∈ C. The weaker notion of detectability is defined
along similar lines:

Definition 5.6:

GivenB ∈ Lw1+w2 , w2 is said to be detectable from w1 if (w1, w′
2), (w1, w′′

2 ) ∈B implies w′
2(t) − w′′

2 (t) → 0
as t → ∞.
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In the above kernel representation, detectability of w2 from w1 is equivalent to R2(λ) having full column
rank for all λ ∈ C̄

+. For details, we refer to [5].
To conclude this section, we review some facts on elimination of variables. Let B ∈ Lw1+w2 with

system variable w = (w1, w2). Let Pw1 denote the projection onto the w1-component. Then the set Pw1B

consisting of all w1 for which there exists w2 such that (w1, w2) ∈B is again a linear differential system.
We denote Pw1B byBw1 , and call it the behavior obtained by eliminating w2 fromB.

IfB= ker(R1 R2), then a representation forBw1 is obtained as follows: choose a unimodular matrix

U such that UR2 =
(

R12

0

)
, with R12 full row rank, and conformably partition UR1 =

(
R11

R21

)
. Then

Bw1 = ker(R21) (see [5], Section 6.2.2).

5.4.5 Implementability

We now turn to the question what controlled behaviors can be achieved by interconnecting a given plant
with a controller. This problem may actually be considered as a basic question in engineering design: a
behavior is prescribed, and the question is whether this “desired” behavior can be achieved by inserting
a suitably designed subsystem into the over all system. Details on the implementability problem can be
found in [6].

We first consider the full interconnection case, in which the interconnection variable c coincides with
the to be controlled variable w. In that case we have a plant behavior P ∈ Lw, and a controller for P is also
a behavior C ∈ Lw. The full interconnection of P and C is the system whose behavior is the intersection
P ∩ C. This controlled behavior is again a linear differential system. Indeed, if P = ker(R) and C = ker(C),

then P ∩ C = ker

(
R
C

)
∈ Lw.

Definition 5.7:

Let K ∈ Lw be a given behavior, to be interpreted as a desired behavior. If K can be achieved as con-
trolled behavior, that is, if there exists C ∈ Lw such that K = P ∩ C, then we call K implementable by full
interconnection (with respect to P).

Obviously, a given K ∈ Lw is implementable by full interconnection with respect to P if and only if
K ⊂ P. Indeed, if K ⊂ P, then with “controller” C = K we have K = P ∩ C.

Next we consider the case that not all variables are available for interconnection, but in which inter-
connection can only take place through prespecified interconnection variables c, that is, the case of partial
interconnection.

Before the controller acts, there are two behaviors of the plant that are relevant: the behavior Pfull ∈
Lw+c (the full plant behavior) of the variables w and c combined, and the behavior (Pfull)w of the
to-be-controlled variables w (with the interconnection variable c eliminated). Hence,

Pfull = {(w, c) ∈ C∞(R, Rw×c) | (w, c) satisfies the plant equations},

(Pfull)w = {w ∈ C∞(R, Rw) | ∃ c ∈ C∞(R, Rc) such that (w, c) ∈ Pfull}.

By the elimination theorem, (Pfull)w ∈ Lw. The controller restricts the interconnection variables c and
(assuming it is a linear differential system) is described by a controller behavior C ∈ Lc. Hence,

C = {c ∈ C∞(R, Rc) | c satisfies the controller equations}.

The full controlled behavior Pfull ∧c C is obtained by the interconnection of Pfull and C through the
variable c and is defined as

Pfull ∧c C = {(w, c) | (w, c) ∈ Pfull and c ∈ C}.
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Eliminating c from the full controlled behavior, we obtain its restriction (Pfull ∧c C)w to the behavior of
the to-be-controlled variable w, defined by

(Pfull ∧c C)w = {w ∈ C∞(R, Rw) | ∃ c ∈ C such that (w, c) ∈ Pfull}.

Note that, again by the elimination theorem, (Pfull ∧c C)w ∈ Lw.

Definition 5.8:

Given Pfull ∈ Lw+c, we say that C ∈ Lc implements K ∈ Lw through c if K = (Pfull ∧c C)w.

We now discuss the following problem:

The implementability problem: Given Pfull ∈ Lw+c, give a characterization of all K ∈ Lw for which there
exists a C ∈ Lc that implements K through c.

This problem has a very simple and elegant solution: it depends only on the projected full plant behav-
ior (Pfull)w and on the behavior consisting of the plant trajectories with the interconnection vari-
ables put equal to zero. This behavior is denoted by Nw(Pfull), and is called the hidden behavior. It is
defined as

Nw(Pfull) = {w | (w, 0) ∈ Pfull}.

Theorem 5.4: Sandwich Theorem

Let Pfull ∈ Lw+c be the full plant behavior. Then K ∈ Lw is implementable by a controller C ∈ Lc acting on
the interconnection variable c if and only if

Nw(Pfull) ⊂ K ⊂ (Pfull)w .

Theorem 5.4 shows that K can be any behavior that is wedged in between the given behaviors Nw(Pfull)
and (Pfull)w . The necessity of this condition is quite intuitive: K ⊂ (Pfull)w states that the controlled
behavior must be part of the plant behavior. Logical, since the controller merely restricts what can
happen. The condition K ⊃ Nw(Pfull) states that the behavior Nw(Pfull) must remain possible, whatever
be the controller. This is quite intuitive also, since the subbehavior of the plant behavior that is compatible
with c = 0, hence when the controller receives no information on what is happening in the plant, must
remain possible in the controlled behavior, whatever controller is chosen. This observation has important
consequences in control: in order for there to exist a controller that achieves acceptable performance, the
hidden behavior must already meet the specifications, since there is simply no way to eliminate it by means
of control. The fact that the hidden behavior must meet the control specifications has been observed before
in a H∞-control context for example in [7–9].

Theorem 5.4 reduces control problems to finding the controlled behavior K directly. Of course, the
problem of how to actually implement K needs to be addressed at some point. This problem was studied
in [10–12]. In particular, the question when a particular controlled behavior can be implemented by a
feedback processor remains a very important one, and is discussed, for example, in [1] and [13].

5.4.5.1 Regular Implementability

As discussed above, the implementability problem is to characterize all behaviors that can be achieved
as controlled behavior by interconnecting the plant with some controller. It turns out that in control
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problems in a behavioral framework one often has to require that the interconnection of plant and
controller is a regular interconnection. In this section we will discuss the issue of implementability by
regular interconnection. Detailed material can be found in [14]. Furthermore, in Section 5.4.6.3 some
remarks on the relevance of regular interconnections can be found. We now first deal with the full
interconnection case.

Let P ∈ Lw be a plant behavior, and let C ∈ Lw be a controller.

Definition 5.9:

The interconnection of P and C is called regular if

p(P) +p(C) = p(P ∩ C),

in other words, if the output cardinalities of the plant and the controller add up to the output cardinality of
the controlled behavior. In that case, we also call the controller C regular (with respect to P).

In terms of kernel representations this condition can be expressed as follows. Let P = ker(R) and
C = ker(C) be minimal kernel representations of the plant and the controller, respectively. Then P ∩ C =
ker

(
R
C

)
is a kernel representation of the controlled behavior. Since the output cardinality of a behavior is

equal to the rank of the polynomial matrix in any of its kernel representations, the interconnection of P

and C is regular if and only if

(
R
C

)
has full row rank, equivalently yields a minimal kernel representation

of P ∩ C.

Definition 5.10:

Given P ∈ Lw, a given behavior K ∈ Lw is called regularly implementable with respect to P by full inter-
connection if there exists a regular controller C ∈ Lw that implements K.

We now formulate the problem of regular implementability by full interconnection:

The problem of regular implementability by full interconnection: Given P ∈ Lw, give a characterization of
all K ∈ Lw for which there exists a regular controller C ∈ Lw that implements K by full interconnection.

The following theorem from [14] gives such characterization. Recall from Section 5.4.4 the definition of
controllable part of a behavior.

Theorem 5.5:

Let P ∈ Lw. Let Pcont be its controllable part. Let K ∈ Lw. Then K is regularly implementable with respect
to P by full interconnection if and only if K + Pcont = P.

Next, we turn to the partial interconnection case. Here, the problem is to find, for a given Pfull and a
given desired behavior K, a controller C such that the manifest controlled behavior is equal to K. Again,
often we shall restrict ourselves to C’s such that the interconnection of Pfull and C is regular. A motivation
for this is provided in Section 5.4.6.3.
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Definition 5.11:

Let Pfull ∈ Lw+c and C ∈ Lw. The interconnection of Pfull and C through c is called regular if

p(Pfull ∧c C) = p(Pfull) +p(C),

that is, the output cardinalities of Pfull and C add up to that of the full controlled behavior Pfull ∧c C. In
that case we also call the controller C regular.

Definition 5.12:

A given K ∈ Lw is called regularly implementable if there exists a C ∈ Lc such that K is implemented by C,
and the interconnection of Pfull and C is regular.

Similar to plain implementability, an important question is under what conditions a given subbehavior
K of P is regularly implementable:

The problem of regular implementability by partial interconnection: Given Pfull ∈ Lw+c, give a char-
acterization of all K ∈ Lw for which there exists a controller C ∈ Lc that implements K by regular
interconnection through c.

The following theorem from [14] provides a solution to this problem:

Theorem 5.6:

Let Pfull ∈ Lw+c. Let (Pfull)w and Nw(Pfull) be the corresponding projected plant behavior and hidden
behavior, respectively. Let (Pfull)w,cont be the controllable part of (Pfull)w. Let K ∈ Lw. Then K is imple-
mentable with respect to Pfull by regular interconnection through c if and only if the following two conditions
are satisfied:

• Nw(Pfull) ⊂ K ⊂ (Pfull)w

• K + (Pfull)w,cont = (Pfull)w

The above theorem has two conditions. The first one is exactly the condition for implementability
through c (as in the Sandwich theorem). The second condition formalizes the notion that the autonomous
part of (Pfull)w is taken care of by K. While the autonomous part of (Pfull)w is not unique, (Pfull)w,cont

is. This makes verifying the regular implementability of a given K computable. As a consequence of this
theorem, note that if (Pfull)w is controllable, then K ∈ Lw is regularly implementable if and only if it is
implementable.

We conclude this section with an example.

Example 5.17:

Consider the plant behavior Pfull with manifest variable w = (w1, w2) and control variable c = (c1, c2)
represented by

w1 + ẇ2 + ċ1 + c2 = 0

c1 + c2 = 0
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Clearly, the projected plant behavior (Pfull)w is equal to C∞(R, R2). For the desired behavior K
we take K = {(w1, w2) | w1 + ẇ2 = 0}. The following controller regularly implements K through c:
C = {(c1, c2) | ċ1 + c2 = 0}. Also every controller represented by kc1 + c2 = 0, with k �= 1, regularly
implements K.

5.4.6 Pole Placement and Stabilization

In this section we will discuss the problems of pole placement and stabilization from a behavioral point
of view. Given a plant behavior, the stabilization problem is to find a regular controller such that the
controlled behavior is stable. In the pole placement problem it is required to find a regular controller
such that the controlled behavior is autonomous and has a given desired polynomial as its characteristic
polynomial.

Again, we distinguish between the full interconnection and the partial interconnection case. A detailed
treatment of pole placement and stabilization in a behavioral framework for the full interconnection case
can be found in [1]. The partial interconnection case has been described extensively in [14].

5.4.6.1 Full Interconnection

We first introduce the pole placement problem. Given a plant behavior, the problem is to find conditions
under which for every a “desired” real monic polynomial, there exists a regular controller such that the
controlled behavior is autonomous and has the desired polynomial as its characteristic polynomial:

Pole placement by full interconnection: Given P ∈ Lw, find conditions under which there exists, and
compute, for every monic r ∈ R[ξ], a C ∈ Lw such that:

• The interconnection of P and C is regular.
• The controlled behavior P ∩ C is autonomous and has r as its characteristic polynomial.

Suppressing the controller C from the problem formulation, the problem can be stated alternatively as:
Given P ∈ Lw, find conditions under which there exists, and compute, for every monic r ∈ R[ξ], an
autonomous behavior K ∈ Lw that is regularly implementable by full interconnection, and such that
χK = r.

A solution to this problem is given below.

Theorem 5.7:

Let P ∈ Lw. For every monic r ∈ R[ξ], there exists a regular controller C ∈ Lw such that P ∩ C is autonomous
and its characteristic polynomial χP∩C is equal to r if and only P is controllable and m(P) ≥ 1 (i.e., P has
at least one input component).

Next, we consider the problem of stabilization by full interconnection.

Stabilization by full interconnection: Given P ∈ Lw, find conditions for the existence of, and compute
C ∈ Lw such that

• The interconnection of P and C is regular.
• The controlled behavior P ∩ C is autonomous and stable.

Again, suppressing the controller C from the formulation, the stabilization problem can be restated as:
given P, find conditions for the existence of, and compute a behavior K ∈ Lw that is autonomous, stable
and regularly implementable by full interconnection.
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A necessary and sufficient condition for the existence of a regular stabilizing controller for P is
stabilizability of P as defined in Section 5.4.4:

Theorem 5.8:

Let P ∈ Lw. There exists a regular controller C ∈ Lw such that P ∩ C is autonomous and stable if and only
P is stabilizable.

A regular controller that stabilizes a given plant is said to regularly stabilize this plant. In Section 5.4.7
we will deal with the problem how to compute regularly stabilizing controllers. In fact, there we will
establish a parametrization of all such controllers.

5.4.6.2 Partial Interconnection

Again, we first introduce the pole placement problem. Given a full plant behavior the problem is to find
conditions under which for every monic real polynomial there exists a regular controller such that the
projected controlled behavior has this polynomial as its characteristic polynomial:

Pole placement by partial interconnection: Given Pfull ∈ Lw+c, find conditions under which there exists,
and compute, for every monic r ∈ R[ξ], a C ∈ Lc such that:

• The interconnection of Pfull and C is regular.
• The projected full controlled behavior (Pfull ∧c C)w is autonomous and has r as its characteristic

polynomial.

Suppressing the controller C from the problem formulation, the problem can alternatively be stated as:
given Pfull, find conditions under which there exists, and compute, for every monic r ∈ R[ξ] a regularly
implementable, autonomous K ∈ Lw such that χK = r.

Necessary and sufficient conditions for pole placement are given in the following theorem, and involve
observability of the to-be-controlled variable from the interconnection variable, and controllability of the
projected full plant behavior:

Theorem 5.9:

Let Pfull ∈ Lw+c. For every monic r ∈ R[ξ], there exists a regular controller C ∈ Lc such that the character-
istic polynomial of (Pfull ∧c C)w is equal to r if and only

• In Pfull, w is observable from c.
• (Pfull)w is controllable and m((Pfull)w) ≥ 1.

Note that, by definition, observability of w from c means that if (w1, c), (w2, c) ∈ Pfull, then w1 = w2, or
equivalently, (w, 0) ∈ Pfull implies w = 0. Thus w is observable from c in Pfull if and only if the hidden
behavior Nw(Pfull) is equal to {0} ∈ Lw.

Next, we formulate the stabilization problem, which deals with finding a regular controller for the full
plant such that the projected behavior is autonomous and stable:
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Stabilization by partial interconnection: Given Pfull ∈ Lw+c, find conditions for the existence of, and
compute C ∈ Lc such that

• The interconnection of Pfull and C is regular.
• The projected full controlled behavior (Pfull ∧c C)w is autonomous and stable.

Again, suppressing the controller C from the formulation, the stabilization problem can be restated as:
Given Pfull, find conditions for the existence of, and compute a behavior K ∈ Lw that is autonomous,
stable, and regularly implementable.

A solution to this problem involves both the notions of stabilizability and detectability in a behavioral
framework (see Section 5.4.4):

Theorem 5.10:

Let Pfull ∈ Lw+c. There exists a regular controller C ∈ Lc such that the projected behavior (Pfull ∧c C)w is
autonomous and stable if and only if

• in Pfull, w is detectable from c.
• (Pfull)w is stabilizable.

Since, by linearity, detectability of w from c in Pfull is equivalent with: (w, 0) ∈ Pfull implies w(t) → 0 (t →
∞), detectability is equivalent with—the hidden behavior Nw(Pfull) is stable.

Example 5.18:

Consider the full plant behavior Pfull with to-be-controlled variable (w1, w2) and interconnection
variable (c1, c2), represented by

w1 + ẇ2 + ċ1 + c2 = 0

w2 + c1 + c2 = 0

ċ1 + c1 + ċ2 + c2 = 0

A stabilizing regular controller is given by C = {(c1, c2) | ċ2 + 2c1 + c2 = 0}. Indeed, by eliminating c
from the full controlled behavior Pfull ∧c C we find that (Pfull ∧c C)w = ker(R), with

R(ξ) =
(

0 ξ + 1
−1 2

)

which is Hurwitz. Yet another class of stabilizing controllers is represented by C(ξ) = (ξ(ξ + 1) + k, ξ +
1 + k), k ∈ R. In Section 5.4.7 we will find a parametrization of all 1 × 2 polynomial matrices C(ξ) such
that ker(C) is a stabilizing controller.

Neither in the problem formulations nor in the conditions of Theorems 5.9 and 5.10, representations of the
given plant appear. Indeed, our problem formulations and their resolutions are completely representation
free, and are formulated purely in terms of properties of the behavior Pfull. Thus, our treatment of the
pole placement and stabilization problems is genuinely behavioral. Of course, Theorems 5.9 and 5.10 are
applicable to any particular representation of Pfull as well. For example, in [14], it was illustrated how
the classical results on pole placement and stabilization by dynamic output feedback can be derived from
the results in this section. Indeed, this can be done starting with Pfull represented in input–state–output
representation.
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In both the stabilization problem and the pole placement problem, we have restricted ourselves to
regular interconnections. We give an explanation for this in Section 5.4.6.3. At this point we note that if
in the above problem formulations we omit the requirement that the interconnection should be regular,
then in the stabilization problem a necessary and sufficient condition for the existence of a stabilizing
controller is that Nw(Pfull) is stable (equivalently: in Pfull, w is detectable from c). In the pole placement
problem, necessary and sufficient conditions are that Nw(Pfull) = {0} (i.e., in Pfull, w is observable from
c) and that P is not autonomous.

5.4.6.3 Disturbances and Regular Interconnection

In this section we have formulated the problems of stabilization and pole placement for a given plant Pfull

with to-be-controlled variable w and control variable c. In most system models, an unknown external
disturbance variable, d, also occurs. The stabilization problem is then to find a controller acting on c
such that whenever d(t) = 0 (t ≥ 0), we have w(t) → 0 (t → ∞). Typically, the disturbance d is assumed
to be free, in the sense that every C∞ function d is compatible with the equations of the model. As an

example, think of a model of a car suspension system given by R1

(
d
dt

)
w + R2

(
d
dt

)
c + R3

(
d
dt

)
d = 0,

where d is the road profile as a function of time. In the stabilization problem, one puts d = 0 and solves

the stabilization problem for the full plant Pfull represented by R1

(
d
dt

)
w + R2

(
d
dt

)
c = 0. In doing this,

one should make sure that the stabilizing controller C: C
(

d
dt

)
c = 0, when connected to the actual model,

does not put restrictions on d. The notion of regular interconnection captures this, as explained below.
Consider the full plant behavior Pfull ∈ Lw+c. An extension of Pfull is a behavior Pext

full ∈ Lw+c+d (with
d an arbitrary positive integer), with variables (w, c, d), such that

1. d is free in Pext
full.

2. Pfull = {(w, c) | such that (w, c, 0) ∈ Pext
full}.

Thus, Pext
full being an extension of Pfull formalizes that Pfull has exactly those signals (w, c) that are

compatible with the disturbance d = 0 in Pext
full. Of course, a given full behavior Pfull has many extensions.

For a given extension Pext
full and a given controller C ∈ Lc, we consider the extended controlled behavior

given by
Pext

full ∧c C = {(w, c, d) | (w, c, d) ∈ Pext
full and c ∈ C}.

A controller C shall be acceptable only if the disturbance d remains free in Pext
full ∧c C, for any possible

extension Pext
full. It turns out that this is guaranteed exactly, by the regularity of the interconnection of Pfull

and C ! Indeed, the following was proven in [14], Theorem 7.1:

Theorem 5.11:

The following two conditions are equivalent.

1. The interconnection of Pfull and C is regular.
2. For any extension Pext

full of Pfull, d is free in Pext
full.

5.4.7 Parametrization of Stabilizing Controllers

In Section 5.4.5, both for the full information as well as for the partial interconnection case, necessary and
sufficient conditions have been given for a desired behavior to be regularly implementable. In Section
5.4.6, conditions have been given for the existence of regular, stabilizing controllers. The present section
deals with the issue on how to find the required controllers. Both for the full interconnection case as well
as for the partial interconnection case, the corresponding parametrization problems can be formulated
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and have been resolved in [12]. We will however restrict ourselves here to the full interconnection case.
We will only briefly state the main results. Details can be found in [12].

The first problem that we formulate is the problem of parametrizing all controllers that regularly
implement a given desired behavior.

Parametrization of regularly implementing controllers: Let P ∈ Lw be the plant behavior, and let K ∈
Lw be a desired behavior. Let P = ker(R) and K = ker(K) be minimal representations of the plant
and desired behavior, respectively. Find a parametrization, in terms of the polynomial matrices R
and K , of all polynomial matrices C such that the controller ker(C) regularly implements K by full
interconnection.

The next problem is to parametrize all regular, stabilizing controllers.

Parametrization of regular and stabilizing controllers: Let P ∈ Lw be a plant behavior. Let P = ker(R)
be a minimal kernel representation. Find a parametrization, in terms of the polynomial matrix R, of all
polynomial matrices C such that the controller ker(C) is regular and P ∩ ker(C) is stable.

First, we will establish a parametrization of all controllers that regularly implement a given behavior. We
make use of the following lemma from [12], which gives conditions in terms of the representations for
regular implementability.

Lemma 5.15:

Let P, K ∈ Lw. Let P = ker(R) and K = ker(K) be minimal kernel representations. Then K is regularly
implementable with respect to P by full interconnection if and only if there exists a polynomial matrix F
with F(λ) full row rank for all λ ∈ C, such that R = FK.

From the above, for a given regularly implementable K it is easy to obtain a controller, which regularly
implements it. Indeed, if R = FK with F(λ) full row rank for all λ, let V be such that col(F, V ) is
unimodular. Then clearly the controller ker(VK) does the job. Indeed, the corresponding controlled
behavior is given by

P ∩ ker(VK) = ker

(
R

VK

)
= ker

(
F
V

)
K = ker(K) = K,

and the interconnection is regular since
(

R
VK

)
has full row rank. A parametrization of all controllers that

regularly implement K is described in the following theorem:

Theorem 5.12:

Let P ∈ Lw, with minimal kernel representation P = ker(R). Let K ∈ Lw be regularly implementable by full
interconnection, and let K = ker(K) be a minimal kernel representation. Let F be as in Lemma 5.15 and
let V be such that col(F, V ) is unimodular. Then for any C ∈ Lw, C = ker(C), the following statements are
equivalent:

1. C = ker(C) is a minimal kernel representation, and C regularly implements K.
2. There exist a polynomial matrix G and a unimodular polynomial matrix U such that C = GR + UVK.
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Thus a parametrization is given by C = GR + UVK , where G ranges over all polynomial matrices, and U
ranges over all unimodular polynomial matrices.

We now turn to parametrizing all regular controllers that stabilize a given plant behavior. Let P =
ker(R) be a minimal kernel representation. Assume that P is stabilizable, equivalently, R(λ) has full row
rank for all λ ∈ C̄

+. The following theorem yields a parametrization of all stabilizing controllers.

Theorem 5.13:

Let P ∈ Lw be stabilizable. Let P = ker(R) be a minimal kernel representation, and let R1 be such that
ker(R1) is a minimal kernel representation of the controllable part Pcont of P. Let C0 be such that col(R1, C0)
is unimodular. Then for any C ∈ Lw with C = ker(C), the following statements are equivalent:

1. P ∩ C is autonomous and stable, the interconnection is regular, and the representation C = ker(C) is
minimal.

2. There exist a polynomial matrix G and a Hurwitz polynomial matrix D such that C = GR + DC0.

Thus, a parametrization of all regular stabilizing controllers ker(C) is given by C = GR + DC0, where G
ranges over all polynomial matrices, and D ranges over all Hurwitz polynomial matrices. We also refer
to [15].

Remark 5.13

In the special case that the plant P to be stabilized is given together with an input–output partition w =
(y, u), our parametrization result of Theorem 5.13 specializes to the well-known Youla parametrization
of all stabilizing controllers (see [16,17]). For simplicity, assume that P is controllable. Assume that, in P,
G is the transfer matrix from u to y. Let P−1Q be a left coprime factorization of G. Then P = ker(P − Q).
Choose polynomial matrices X and Y such that

(
P −Q
X Y

)

is unimodular. According to Theorem 5.13, a parametrization of all stabilizing controllers ker(Qc Pc) is
given by (Qc Pc) = F(P − Q) + D(X Y ), where F is arbitrary polynomial and D is Hurwitz. In transfer
matrix form this yields C : = −P−1

c Qc = −(DY − FQ)−1(DX + FP) = −(Y − D−1FQ)−1(X + D−1FP).
Finally, denote D−1F by T , and let T vary over all proper stable rational matrices to obtain the original
Youla parametrization C = −(Y − TQ)−1(X + TP) (see [16]).

5.4.8 Stabilization Using Controllers with a Priori Input–Output Structure

Often, certain components of the plant interconnection variables represent plant sensor measurements, or
unknown disturbance inputs to the plant. As argued in [18–20], in these cases, by physical considerations,
not all regular controllers are admissible anymore, since only those controllers are allowed that do not put
constraints on these particular plant interconnection variables: the controller should respect the values
that the plant has given to these variables. In the behavioral framework this is formalized by requiring
these plant interconnection variables to be free in the controllers that are allowed.

Therefore, in this section we deal with the problems of finding necessary and sufficient conditions
for a behavior to be stabilizable using regular controllers in which an a priori given subset of the plant
interconnection variables is free or maximally free, respectively. In other words, we require a priori given
components of the plant interconnection variable to be part of the controller input, or even to be the
controller input. The complementary subset in the set of all interconnection variables then necessarily
contains the controller output, or is equal to the controller output. We study these problems in both the
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full and the partial interconnection case. The material of this section can be found in full detail in [20].
Related results can be found in [19].

5.4.8.1 Full Interconnection

As usual, we first consider the full interconnection case. The problems we want to deal with are formulated
as follows.

Stabilization with pre specified free variables: Let P ∈ Lw1+w2 with plant variable (w1, w2). Find necessary
and sufficient conditions for the existence of, and compute a regular, stabilizing controller C ∈ Lw1+w2

in which w2 is free.

Stabilization with prespecified i/o structure: Let P ∈ Lw1+w2 with plant variable (w1, w2). Find necessary
and sufficient conditions for the existence of, and compute a regular, stabilizing controller C ∈ Lw1+w2

in which w2 is input and w1 is output.

Theorem 5.14:

Let P ∈ Lw1+w2 with plant variable (w1, w2). Then we have the following:

1. There exists a stabilizing controller C ∈ Lw1+w2 in which w2 is free if and only if P is stabilizable and
w2 ≤ p(P),

2. There exists a stabilizing controller C ∈ Lw1+w2 in which w2 is input and w1 is output if and only if
P is stabilizable and w2 = p(P).

In other words, necessary and sufficient conditions for the existence of a regular, stabilizing controller in
which the given plant variable w2 is free are that the plant is stabilizable, and the size of w2 does not exceed
the output cardinality of the plant. If we require w2 to be input to the controller (so, consequently, w1

output), then the size of w2 should be equal to the plant output cardinality. It follows from this theorem
that the actual choice of components that we want to be free in the controller does not matter, in the sense
that if the plant is stabilizable and if w2 ≤ p(P), then for any choice of w2 components of the plant variable
there exists a regular, stabilizing controller in which these components are free. A similar statement holds
for the input–output assignment in the controller under the condition w2 = p(P).

5.4.8.2 Partial Interconnection

Next, we study the above problems in the case of partial interconnection. The exact statement of these
problems is as follows:

Stabilization with prespecified free variables: Let Pfull ∈ Lw+c1+c2 with system variable (w, c), where
c = (c1, c2). Find necessary and sufficient conditions for the existence of, and compute a regular,
stabilizing controller C ∈ Lc1+c2 in which c2 is free.

Stabilization with prespecified i/o structure: Let Pfull ∈ Lw+c1+c2 with system variable (w, c), where
c = (c1, c2). Find necessary and sufficient conditions for the existence of, and compute a regular,
stabilizing controller C ∈ Lc1+c2 in which c2 is input and c1 is output.
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Recall the following definitions of hidden and projected behaviors from Section 5.4.5:

Nc(Pfull) = {(c1, c2) | (c1, c2, 0) ∈ Pfull},

Nc1 (Pfull) = {c1 | (c1, 0, 0) ∈ Pfull},

(Pfull)c = {(c1, c2) | ∃w such that (c1, c2, w) ∈ Pfull}.

In the following, we assume that c1 has size c1 and c2 has size c2, c1 +c2 = c.

Theorem 5.15:

Let Pfull ∈ Lw+c1+c2 with system variable (w, c), with c = (c1, c2). There exists a regular, stabilizing con-
troller C ∈ Lc1+c2 in which c2 is free if and only if

1. (Pfull)w is stabilizable and w is detectable from c in Pfull.
2. p(Nc(Pfull)) −p(Nc1 (Pfull)) ≤ p((Pfull)c).

Thus, in addition to the obvious condition (1) for the existence of a regular stabilizing controller, the
theorem requires that the difference between the output cardinalities of the hidden behaviors Nc(Pfull)
and Nc1 (Pfull) does not exceed the output cardinality of the projected behavior (Pfull)c .

If we want to assign the input–output structure of the controller, then the following theorem holds:

Theorem 5.16:

Let Pfull ∈ Lw+c1+c2 with system variable (w, c), where c = (c1, c2) . Consider the following conditions

1. (Pfull)w is stabilizable and w is detectable from c in Pfull.
2. p(Nc(Pfull)) −p(Nc1 (Pfull)) = p((Pfull)c).
3. p(Nc(Pfull)) = c1 +p((Pfull)c).

If conditions 1, 2, and 3 hold, then there exists a stabilizing controller C ∈ Lc1+c2 for which c2 is input and
c1 is output. If Nc(Pfull) is autonomous, then these conditions are also necessary, and conditions 2 and 3
reduce to the single condition p((Pfull)c) = c2.

We will illustrate the above by means of a worked-out example.

Example 5.19:

Let Pfull ∈ L5 with manifest variable w = (w1, w2) and interconnection variable c = (c1, c2, c3) be
represented by

w1 + ẇ2 + ċ3 = 0,

w2 + c1 + c2 + c3 = 0.

Clearly, (Pfull)w = C∞(R, R2) and (Pfull)c = C∞(R, R2). (Pfull)w is trivially stabilizable, and w is
detectable from c in Pfull. Clearly, p((Pfull)c ) = 0. We compute

Nc (Pfull) = ker
(

N

(
d

dt

))
, N(c1,c2)(Pfull) = ker

(
N12

(
d

dt

))
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and

N(c2,c3)(Pfull) = ker
(

N23

(
d

dt

))
.

where N(ξ) =
(

0 0 ξ

1 1 1

)
, N12(ξ) =

(
0 0
1 1

)
, and N23(ξ) =

(
0 ξ

1 1

)
. As a consequence,

p(Nc (Pfull)) = rank(N) = 2, p(N(c2,c3)(Pfull)) = rank(N23) = 2. Furthermore, p(N(c1,c2)(Pfull)) =
rank(N12) = 1. From these calculations it is evident that p(Nc (Pfull)) −p(N(c2,c3)(Pfull)) = p((Pfull)c )
andp(Nc (Pfull)) −p(N(c1,c2)(Pfull)) > p((Pfull)c ). Therefore, from Theorem 5.15 we conclude that the
plant is stabilizable using a controller in which c1 is free. We also conclude that there does not exist
a controller which stabilizes the plant and in which c3 is free.

5.4.9 Rational Representations

Recently, in [21], representations of linear differential systems using rational matrices instead of polyno-

mial matrices were introduced. In [21], a meaning was given to the equation R
(

d
dt

)
w = 0, where R(ξ) is

a given real rational matrix. In order to do this, we need the concept of left coprime factorization. Let R
be a real rational matrix R. Then a factorization R = P−1Q is called a left coprime factorization of R over
R[ξ] if P and Q are real polynomial matrices with P nonsingular, and the complex matrix

(
P(λ) Q(λ)

)
has full row rank for all λ ∈ C.

Definition 5.13:

Let R be a real rational matrix, and let R = P−1Q be a left coprime factorization of R over R[ξ]. Let

w ∈ C∞(R, Rw). Then we define w to be a solution to R
(

d
dt

)
w = 0 if Q

(
d
dt

)
w = 0.

It can be proven that the space of solutions of R
(

d
dt

)
w = 0 defined in this way is independent of

the particular left coprime factorization. Hence R
(

d
dt

)
w = 0 represents the linear differential system

Σ = (R, Rw, ker(Q)) ∈ Lw.

If a behaviorB is represented by R
(

d
dt

)
w = 0 (or:B= ker(R)), with R(ξ) a real rational matrix, then

we call this a rational kernel representation ofB. If R has g rows, then the rational kernel representation
is called minimal if every rational kernel representation of B has at least g rows. It can be shown that a
given rational kernel representation B= ker(R) is minimal if and only if the rational matrix R has full
row rank. As in the polynomial case, everyB ∈ Lw admits a minimal rational kernel representation. The
number of rows in any minimal rational kernel representation of B is equal to the number of rows in
any minimal polynomial kernel representation ofB, and therefore equal to p(B), the output cardinality
of B. In general, if B= ker(R) is a rational kernel representation, then p(B) = rank(R). This follows
immediately from the corresponding result for polynomial kernel representations (see [5]). The following
was proven in [21]:

Lemma 5.16:

For every behaviorB ∈ Lw there exists a stable, proper real rational matrix R such thatB= ker(R).

In other words, every linear differential system B admits a kernel representation with a stable proper
rational matrix. We will apply this useful result in the next section on robust stabilization.
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5.4.10 Optimal Robust Stabilization and H∞-Control

Given a nominal plant, together with a fixed neighborhood of this plant, the problem of robust stabilization
is to find a controller that stabilizes all plants in that neighborhood (in an appropriate sense). If a controller
achieves this design objective, we say that it robustly stabilizes the nominal plant. In this section we
formulate the robust stabilization problem in a behavioral framework. Details on the material in this
section can be found in [22].

Let P ∈ Lw be a stabilizable linear differential system, to be interpreted as the nominal plant. In addition,
we consider a fixed neighborhood of this plant. Of course, the concept of neighborhood should be made
precise. We do this in the following way. Assume that the nominal plant P is represented in rational kernel

representation by R
(

d
dt

)
w = 0, where R is a proper, stable real rational matrix. As noted in Lemma 5.16,

for a given P such R exists. For a given γ > 0, we define the ball B(P, γ) with radius γ around P as follows:

B(P, γ) := {PΔ ∈ Lw | there exists a proper, stable, real rational

RΔ of full row rank such that PΔ = ker(RΔ)

and ‖R − RΔ‖∞ ≤ γ }. (5.251)

Then we define the robust stabilization problem as follows:

Robust stabilization by full interconnection: Find conditions for the existence of, and compute a con-
troller C ∈ Lw that regularly stabilizes all plants PΔ in the ball with radius γ around P, that is, for all
PΔ ∈ B(P, γ), PΔ ∩ C is stable and PΔ ∩ C is a regular interconnection.

It turns out that a controller achieves robust stability in the above sense if and only if it solves a
given H∞-control problem for an auxiliary system associated with the nominal plant. This is a behav-
ioral version of the small gain theorem. Therefore, we now first formulate an appropriate behavioral
version of the H∞-control problem. Such problems were studied also in [6,13,23] and [24], see also
[8,25,26].

We start with a full plant behavior Pfull ∈ Lw+d+c, with system variable (w, d, c). The variable c is, as
before, the interconnection variable. The variable to be controlled consists of two components, that is, is
given as (w, d), with w a variable that should be kept “small” regardless of d, which should be interpreted
as an unknown disturbance. The fact that the variable d represents an unknown disturbance is formalized
by assuming d to be free in Pfull. As d is interpreted as unknown disturbance, it should be free also after
interconnecting the plant with a controller. Furthermore, in the context of H∞-control, a controller is
called stabilizing if, whenever the disturbance d is zero, the to be controlled variable w tends to zero as
time runs off to infinity. Therefore, we define:

Definition 5.14:

Let Pfull ∈ Lw+d+c, with d free. A controller C ∈ Lc is called disturbance-free if d is free in Pfull ∧c C.
A disturbance-free controller C ∈ Lc is called stabilizing if [(w, 0, c) ∈ Pfull ∧c C] ⇒ [limt→∞ w(t) = 0].

For a given controller C, let (Pfull ∧c C)(w,d) be the projection of the full controlled behavior onto (w, d).
H∞-control deals with finding controllers that make this projected behavior (strictly) contractive in the
following sense.
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Definition 5.15:

Let Pfull ∈ Lw+d+c. Let γ > 0. A controller C ∈ Lc is called strictly γ-contracting if there exists ε > 0
such that for all (w, d) ∈ (Pfull ∧c C)(w,d) ∩L2(R, Rw+d) we have ‖w‖2 ≤ (γ − ε)‖d‖2. The projected
controlled behavior is then called strictly γ-contractive.

We now formulate the H∞ control problem that will be instrumental in our solution of the behavioral
robust stabilization problem.

The H∞-control problem: Let Pfull ∈ Lw+d+c. Assume that d is free. Let γ > 0. Find a disturbance-free,
stabilizing, regular and strictly γ-contracting controller C ∈ Lc for Pfull.

In [23], necessary and sufficient conditions for the existence of a required controller were established
under the conditions that in Pfull the variable c is observable from (w, d), and the variable (w, d) is
detectable from c. The latter condition is sometimes referred to as the full information condition. In the
present section we will not explicitely state these necessary and sufficient conditions, since they require
the introduction of the behavioral theory of dissipative systems, quadratic differential forms and storage
functions as treated in [27] and [6]. Instead, we will directly turn to the connection between the robust
stabilization problem and the H∞-control problem.

Thus, we return to the stabilizable linear differential system P ∈ Lw, to be interpreted as the nominal
plant. Associated with this nominal plant P ∈ Lw, we define the auxiliary system Paux ∈ Lw+d+w by

Paux : = {(w, d, c) | R

(
d

dt

)
w + d = 0, c = w}. (5.252)

Let R(ξ) = P−1(ξ)Q(ξ) be a left coprime factorization over R[ξ], with P Hurwitz. Then by definition

Paux = {(w, d, c) | Q

(
d

dt

)
w + P

(
d

dt

)
d = 0, c = w}. (5.253)

The following lemma formulates a behavioral version of the “small gain theorem”:

Lemma 5.17:

Let Paux be the auxiliary system represented by Equation 5.252. Let C ∈ Lw be represented in minimal

rational kernel representation by C
(

d
dt

)
c = 0. Let γ > 0. Then the following statements are equivalent:

1. C regularly stabilizes PΔ for all PΔ ∈ B(P, γ), that is, PΔ ∩ C is stable and PΔ ∩ C is a regular
interconnection for all PΔ ∈ B(P, γ).

2. C is a disturbance-free, stabilizing, regular and strictly 1
γ

-contracting controller for Paux .

In other words, given the nominal plant P ∈ Lw, and given γ > 0, a controller C ∈ Lw regularly stabilizes
all plants PΔ in the ball B(P, γ) around P if and only if C solves the H∞-control problem for the auxiliary
full plant behavior Paux. This is a full information control problem since, in Equation 5.253, c = 0 implies
w = 0, and therefore (since P is Hurwitz) d(t) → 0 (t → ∞). Without going into the details, we now state
necessary and sufficient conditions for the existence of, and outline how to compute such controller C
from the representation of P and the given tolerance γ. The conditions involve the existence of a suitable
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J-spectral factorization. In the following, let Σγ be given by

Σγ : =
(

−Iw 0
0 1

γ2 Id

)

Denote R∼(ξ): = R((−ξ).

Theorem 5.17:

Let P ∈ Lw be stabilizable, and let R
(

d
dt

)
w = 0 be a minimal kernel representation, with R real rational,

proper and stable. Let γ > 0. Let R = DW−1 be a right coprime factorization of R over R[ξ]. Then there
exists a controller C ∈ Lw that regularly stabilizes all PΔ in the ball B(P, γ) if and only if there exists a

square nonsingular Hurwitz polynomial matrix F =
(

F+
F−

)
such that

1. −
(

W
D

)∼
Σγ

(
W
D

)
=
(

F+
F−

)∼ (
Iw−d 0

0 −Id

)(
F+
F−

)
.

2.
(

W
D

)(
F+
F−

)−1
is proper.

3.
(

D
F+

)
is Hurwitz.

If such F exists, then a suitable controller is computed as follows:

a. Factorize: F+W−1 = P−1
1 C with P1, C polynomial matrices, P1 Hurwitz.

b. Define C ∈ Lw by C := ker(C).

The controller C is then regular, disturbance-free, stabilizing and strictly 1
γ

-contracting for Paux ; so by the
small gain argument of Lemma 5.17, it regularly stabilizes all PΔ in the ball B(P, γ).

Of course, for a given nominal plant P, we would like to know the smallest upper bound (if it exists) of
those γ’s for which there exists a controller C that regularly stabilizes all perturbed plants PΔ in the ball
with radius γ around P. This is the problem of optimal robust stabilization.

Computation of the optimal stability radius: Find the optimal stability radius

γ∗ : = sup{γ > 0 | ∃C ∈ Lw that regularly stabilizes all PΔ ∈ B(P, γ)}.

In [22], a complete solution to this problem was given. Again, for this we would have to introduce the
behavioral theory of dissipative systems and two-variable polynomial matrices, which goes beyond the
scope of this study. It turns out that the optimal stability radius γ∗ can be computed in terms of certain
two-variable polynomial matrices obtained after polynomial spectral factorization.
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5.5 Discrete Event Systems

Richard Hill
5.5.1 Introduction

Discrete event systems (DES) are dynamic systems characterized by discrete states and event-driven
evolution. Care is taken to distinguish DES from digital or discrete-time systems. Whereas discrete-time
systems are continuous systems sampled at discrete intervals of time, DES are fundamentally discrete. A
state of a DES could be a buffer being empty or full, a machine being idle or busy, or a transmission being
in second or third gear. DES also evolve according to events, such as a part arriving at a machine or the
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FIGURE 5.16 Simple DES example, M.

value of a continuous signal crossing some threshold. For the purposes of modeling a DES, these events
are considered to occur instantaneously and asynchronously.

Figure 5.16 shows an example of a generic, isolated machine modeled as a DES using a finite state
automaton [1]. The modeled states represent the machine being Idle (I), Working (W) or Broken (B), as
opposed to perhaps more customary continuous states such as the position or cutting force of a tool bit.
Transitions between these discrete states are indicated by the events start (s), finish ( f ), break (b), and
repair (r), as opposed to evolving according to time.

A DES model is well suited to capturing important characteristics of many inherently discrete systems
including computer or manufacturing systems, as well as for the high-level modeling of complex systems
such as a fleet of autonomous vehicles. These models then can be employed for verifying certain system
properties and for designing the discrete control logic.

The discrete event control of these systems at its most fundamental level is concerned with the ordering
and synchronization of discrete events and the prevention of forbidden events. For example, discrete logic
is needed for routing parts through a factory, for choosing between a set of sensors in an airplane control
system, and for tasking a fleet of autonomous vehicles. Traditionally, the analysis and design of discrete
control logic has been handled in a rather ad hoc manner. The programming of a Programmable Logic
Controller (PLC) for factory automation is often described as being as much an art as it is a science. As
systems become increasingly complex and design cycle times become increasingly short, the need for
formal analysis and design techniques has become readily apparent to engineers and users alike. Anyone
who has had their desktop PC crash or their car’s “check engine” light come on for no apparent reason
can begin to appreciate the difficulty of designing DES and their control. Purely logical models also can
be appended with timing and probabilistic information for answering questions about when and with
what frequency certain events occur and for answering questions about the average behavior of a system.
Additionally, discrete event models can be combined with continuous time differential equation models
for generating what are referred to as hybrid system models.

Much of the body of DES theory has its foundations in computer science research on automata theory
and formal verification. More recently, the control engineering community has extended these ideas
so that not only can correct behavior be verified, but it is now further possible that control logic can
be synthesized to guarantee correct behavior. The basis for much of the theory for the control of DES
was developed in the 1980s and has its origins in the seminal work of Ramadge and Wonham [2]. This
broad approach to DES control is generally referred to as supervisory control and remains an active
area of research. Supervisory control is a feedback approach to control that has many analogs with
more commonly applied continuous, time-based control techniques and will be the focus of the material
presented here. Specifically, Section 5.5.2 discusses logical DES modeling, Section 5.5.3 presents results on
supervisory controller existence and synthesis, Section 5.5.4 discusses state estimation and fault diagnosis,
Section 5.5.5 introduces more sophisticated approaches to supervisory control involving hierarchy and
modularity, Section 5.5.6 introduces some DES models that include timing and probabilistic information,
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and the chapter concludes with a summary in Section 5.5.7. The discussion of DES in this chapter owes
much to the presentation in [1] and [3] and both references provide the reader sources from which to
seek further details.

5.5.2 Logical Discrete Event Models

5.5.2.1 Finite State Automata and Languages

As stated previously, DES models are characterized by discrete states and event-driven dynamics. One
of the most common types of DES models and the one that will be primarily employed here is the finite
state automaton, otherwise known as the finite state machine. The model shown in Figure 5.16 is an
example of a finite state automaton. This is a strictly logical model where the system remains in each
state for an unspecified amount of time and the transitions between states are triggered by events that
occur instantaneously. The logic by which these events are triggered is not necessarily specified within
the model and any analysis or control synthesis must assume that any transition that is possible in a given
state can occur at any time.

The current state of a deterministic automaton model can be completely determined by knowledge
of the events that have occurred in the model’s past. Specifically, the automaton begins in its initial
state, denoted graphically here by a short arrow (see Figure 5.16). When an event occurs, the transition
structure of the model indicates the next state of the model that is entered. With a deterministic model,
the occurrence of an event completely determines the successive state. In other words, an event may not
lead to multiple states from a given originating state. In the graphical model, states with double circles
are marked to indicate successful termination of a process. Mathematically, a deterministic automaton
can be denoted by the five-tuple G = (Q, Σ, δ, q0, Qm), where Q is the set of states, Σ is the set of events,
δ : Q × Σ → Q is the state transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is the set of marked
states. The notation Σ∗ will represent the set of all finite strings of elements of Σ, including the empty
string ε, and is called the Kleene-closure of the set Σ. The empty string ε is a null event for which the
system does not change state. In this presentation the function δ is also extended to δ : Q × Σ∗ → Q.
The notation δ(q, s)! for any q ∈ Q and any s ∈ Σ∗ denotes that δ(q, s) is defined. An event σ is said to
be feasible at a state q if δ(q, σ)!. It is sometimes appropriate to employ a nondeterministic automaton
model where there may be multiple initial states and an event σ may transition the model to any one of
several different states from the same originating state q. All automata employed here may be assumed to
be deterministic unless otherwise noted.

Another type of representation of a DES that will be employed here is that of a language. A language
representation consists of the set of all possible strings of events σ1σ2σ3 · · · that can be generated by a
DES. The language representation of a DES can be formally defined in terms of the automaton model
of the DES. For example, the language generated by the deterministic automaton model G is defined by
L(G) = {s ∈ Σ∗ | δ(q0, s)!}. Furthermore, the marked language generated by a DES represents the subset
of strings in L(G) that end in the successful termination of a process. Otherwise stated, Lm(G) = {s ∈
Σ∗ | δ(q0, s) ∈ Qm}. For the string s = ru ∈ Σ∗ formed from the catenation of the strings r and u, r is
called a prefix of s and is denoted r ≤ s. The notation K represents the set of all prefixes of strings in the
language K , and is referred to as the prefix-closure of K .

Let the automaton of Figure 5.16 be named M. Therefore, the languages generated and marked by
this automaton are L(M) = {ε, s, sf , sb, sbr, sfs, sbrs, . . .} and Lm(M) = {ε, sf , sbr, sfsf , sbrsf , . . .} where the
sets are countably infinite since they contain strings of arbitrarily long length. The fact that these sets are
countably infinite makes it impossible to list all of the strings that they contain. These languages, however,
have an obvious structure that allows them to be represented by a (nonunique) automaton that generates
and marks the given languages. Languages that can be generated by a finite-state automaton are said to be
regular. Note that there exist nonregular languages that cannot be represented by automata with a finite
state space. Other formalisms, however, do exist that can represent some nonregular languages with a
finite transition structure.
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Complex systems often consist of many individual subsystems. It is generally easiest to model each
component system by its own automaton. In order to model the synchronous operation of these compo-
nent models, a synchronous composition (or parallel composition) operator denoted ‖ may be employed.
With this operator, an event that is common to multiple automata can only occur if that event is able
to occur synchronously in each of the automata that share the given event. If a component automaton
employs an event that is not shared with any other automata, it may then enact the event without par-
ticipation of any of the other automata. A formal definition for the synchronous composition of two
automata is given below.

Definition 5.16:

The synchronous composition of two automata G1 and G2, where G1 = (Q1, Σ1, δ1, q01, Qm1) and G2 =
(Q2, Σ2, δ2, q02, Qm2) is the automaton

G1‖G2 = (Q1 × Q2, Σ1 ∪ Σ2, δ, (q01, q02), Qm1 × Qm2)

where the transition function δ : (Q1 × Q2) × (Σ1 ∪ Σ2) → (Q1 × Q2) is defined for q1 ∈ Q1, q2 ∈ Q2 and
σ ∈ (Σ1 ∪ Σ2) as

δ((q1, q2), σ) :=

⎧⎪⎪⎨
⎪⎪⎩

(δ1(q1, σ), δ2(q2, σ)) if δ1(q1, σ)! and δ2(q2, σ)!
(δ1(q1, σ), q2) if δ1(q1, σ)! and σ /∈ Σ2

(q1, δ2(q2, σ)) if σ /∈ Σ1 and δ2(q2, σ)!
undefined otherwise.

As an example, the synchronous composition of two instances of the automaton shown in Figure 5.16
can be considered where the event labels b, r, and s are appended by a “1” for the first machine M1 and a “2”
for the second machine M2. The finish event f for both machines remains unchanged meaning that this
event must occur simultaneously in the two machines. Figure 5.17 represents the resulting synchronous
composition M1‖M2 where each state is given by a pair (q1, q2) with the first element representing the
state of the first machine and the second element representing the state of the second machine. Note that
each of the individual machines are modeled by three states each, while the concurrent operation of the
machines requires 3 × 3 = 9 states. From this example, one can see that in the worst case the state space
of a synchronous composition grows exponentially with the number of components in the system. This
“explosion” of the state space represents one of the largest challenges to the application of DES theory.

In terms of the synchronous composition of languages, if G1 and G2 possess the same event set Σ, then
L(G1)‖L(G2) = L(G1) ∩ L(G2). In order to precisely define the synchronous composition for languages
possessing different event sets, the following natural projection operator Pi : Σ∗ → Σ∗

i needs to be defined:

Pi(ε) := ε

Pi(σ) :=
{

σ, σ ∈ Σi ⊆ Σ

ε, σ /∈ Σi ⊆ Σ

Pi(sσ) := Pi(s)Pi(σ), s ∈ Σ∗, σ ∈ Σ.

(5.254)

Given a string s ∈ Σ∗, the projection Pi erases those events in the string that are in the alphabet Σ but
not in the subset alphabet Σi . The inverse projection operation can also be defined:

P−1
i (t) := {s ∈ Σ∗ | Pi(s) = t}. (5.255)

The effect of the inverse projection P−1
i is to extend the local event set Σi to Σ. In terms of automata,

this is represented by adding self-loops at every state for each event in the set (Σ \ Σi). Formally, a self-
loop for the event σ means that q = δ(q, σ). These self-looped events are in essence enabled at every state
and as such do not meaningfully restrict the behavior of the system.
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The projection definitions given by Equations 5.254 and 5.255 can be extended naturally from strings
to languages and then applied to give a formal definition of the synchronous composition for languages
defined over different event sets. In the following, Pi : Σ∗ → Σ∗

i , where Σ = Σ1 ∪ Σ2:

L1‖L2 := P−1
1 (L1) ∩ P−1

2 (L2).

5.5.2.2 Petri Nets

An alternative and widely employed representation of DES is the Petri net [4]. Like automata, Petri
nets represent the structure of a DES graphically. Specifically, a Petri net is a bipartite graph with two
different types of nodes, transitions and places connected by arcs that only connect nodes of different
types. Referring to Figure 5.18, transitions represent events and are shown graphically by bars, and places
represent some condition being met and are represented by circles. When a token, represented by a
black dot, is in a place, it means that the condition represented by the place is currently satisfied. The
arrangement of tokens in a Petri net graph is referred to as the net’s marking and corresponds to the
state of the DES. When all of the places that have arcs directed toward a particular transition are filled,
it means that the conditions for that transition to occur have been met and the transition can “fire.”
When a transition fires, it consumes the tokens in the places with arcs directed toward the transition and
generates new tokens in the places that are reached by arcs directed away from the given transition. The
event represented by this transition is again modeled as occurring instantaneously. An arc may generate
or consume multiple tokens at once if it possesses a nonunity weighting. Mathematically, the Petri net
structure is represented (P, T , A, w), where P is the finite set of places, T is the finite set of transitions,
A ⊆ (P × T) ∪ (T × P) is the set of arcs directed from places to transitions and directed from transitions
to places, and w is the weighting associated with each arc. The state, or marking, of the Petri net may be
represented by a vector of integers equal to the number of tokens in each corresponding place.

r2 r2 r2
b2 b2

s1
I, I W, I B, I

I, W W, W B, W

I, B W, B B, B

r1

r1

r1

s2 s2 s2

s1

f

b1

b1

s1 b1

b2

FIGURE 5.17 Model of the concurrent operation of two machines, M1‖M2.
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The example in Figure 5.18 can be interpreted as representing two machines operating together with
an assembly station. For example, places {p1, p2, p3} together with transitions {t2, t3, t4, t9} model a
simple machine like the one modeled by the automaton in Figure 5.16. A token in place p1 indicates
that the machine is idle and a workpiece is available to be machined. A firing of transition t2 then
represents the machine beginning operation and causes the token to be removed from place p1 and a
token to be generated in place p2 representing that the machine is working. A firing of transition t3
represents the machine has broken down and a subsequent firing of transition t4 means the machine
has been repaired. The second machine is similarly represented by places {p4, p5, p6} and transitions
{t5, t6, t7, t8, t9}. Transition t9 represents the assembly of the finished parts from the individual machines
and place p7 represents a buffer containing the finished assemblies.

One of the primary advantages of Petri nets as compared to automata is that they are able to represent
concurrency more compactly. As seen in Figure 5.18, the complexity of the graph grew linearly with
the addition of the second machine, while the complexity of the automaton representation shown in
Figure 5.17 grew exponentially. Despite the compactness of the Petri net representation, the underlying
size of the state space is essentially unchanged. This can be seen by considering the different combinations
of token placements (presuming each machine employs only a single token at a time).

The number of tokens in place p7 represents the total number of assemblies that have been completed
and stored in a buffer. The fact that there is no limit to the number of tokens that can be collected in the
places of this example illustrates another advantage of the Petri net modeling formalism; Petri nets can

t1 t5

t4 t8

t3

t9

t7

p3

p2 p5

p6t6t2

p1 p4

p7

FIGURE 5.18 Petri net example.
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represent systems that have an infinite state space. Otherwise stated, Petri nets are able to represent a larger
class of behaviors than the class of regular languages that can be represented by finite state automata.
This class of Petri net languages, however, presents difficulties for implementing some verification and
synthesis algorithms that are readily implementable for regular languages using finite state automata.

Another useful aspect of Petri nets is that their structure and evolution can be represented by linear-
algebraic state equations. Specifically, the structure of the Petri net is captured by an n × m incidence
matrix A, where n is the number of transitions, m is the number of places, and the jith element of A is
equal to the difference between the weighting of the arc directed from the jth transition toward the ith
place and the arc directed from the ith place toward the jth transition. Mathematically, the jith element
of A is calculated:

aj,i = w(tj, pi) − w(pi , tj)

The (2,1) element of the incidence matrix for the Petri net given in Figure 5.18 is, therefore, equal to −1
since there is an arc of weight one directed from place p1 to transition t2 and there is no arc directed
from transition t2 to place p1. As mentioned previously, the marking of a Petri net corresponds to its
state and can be represented by an m-element vector where the ith element of the vector is equal to the
number of tokens in the place pi . For the current marking of the example in Figure 5.18, the state vector
is x = [1 0 0 0 1 0 0]T . The evolution of the Petri net from the state at step k − 1 to the state at step k is
then given by the following state equation

xk = xk−1 + AT uk , k = 1, 2, 3, . . .

where uk is referred to as the firing vector and indicates the transition(s) being fired at step k. The current
state of the Petri net in Figure 5.18 indicates that transition t2 and transition t7 could be fired. Petri nets
differ from automata in that multiple events can occur concurrently. If transition t2 and t7 were both
fired, then the firing vector would equal u = [0 1 0 0 0 0 1 0 0]T .

5.5.2.3 Other Model Types

Other types of discrete event models exist and have found acceptance besides finite state automata and
Petri nets; prominent examples include statecharts and a variety of process algebras. Statecharts are a pow-
erful extension of automata (state machines) that, much like Petri nets, are able to represent concurrency
much more compactly than traditional automata can. Process algebras use a small set of primitives to
generate traces that describe the desired and actual behavior of a system. With process algebras traces are
generated in a language without explicitly representing the system’s “state.” Operators are also defined
for combining these expressions. The Communicating Sequential Processes (CSP) formalism [5] is one
prominent example of a process algebra. Despite the compactness of some of these representations, if the
algorithms for verification or synthesis depend on a search of the state space, there are still challenges
with computational complexity. Some formalisms also exist for representing the state space and transition
structure of a DES, such as Binary Decision Diagrams (BDDs), that offer significant computational advan-
tages. In general, the specific modeling formalism that should be employed depends upon the particular
application.

5.5.3 Supervisory Control

The supervisory control framework of Ramadge and Wonham [2] employs a feedback-type architecture
similar to that employed in common control engineering practice. Figure 5.19 illustrates the supervisory
control architecture where both the plant G and the supervisory controller S are modeled as DES, for
example, as automata. In this framework, the supervisor observes the events generated by the plant and
makes its control decisions based upon these observations. One aspect of supervisory control that is
different from most control techniques is that a supervisor typically prevents rather than forces events
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FIGURE 5.19 The supervisory control architecture.

to occur. Furthermore, the logic that the “plant” uses for the triggering of events is not usually explicitly
included in its DES model. The conditions by which the transmission of an automobile changes gears,
for example, may depend on the engine speed, or load, or driver inputs, but this information would not
necessarily be included in a DES model of the transmission. The supervisor does not necessarily need
any knowledge of the triggering information to make its control decisions; it is concerned only with
preventing an event if it will lead to an “illegal” state or if it will occur in the wrong sequence as compared
to other events. In other words, it is the goal of the supervisory controller to restrict the behavior of the
uncontrolled plant to meet some given specification. For example, a supervisory controller may prevent a
transmission from entering reverse if it has observed events that indicate that the automobile is traveling
forward at greater than 15 miles per hour.

While the supervisor can be modeled as an automaton S, it is fundamentally a mapping that upon
observation of a string generated by a plant automaton G outputs a list of events to be enabled,
S : L(G) → 2Σ. This type of language-based formulation of supervisory control is a dynamic event-
feedback law characterized by the fact that the control action the supervisor generates depends not on
the current state of the plant G, but rather on the history of events that brought the system to that
state. The resulting closed-loop behavior S/G can be expressed as a prefix-closed language L(S/G).
It then follows that the closed-loop marked language is defined as Lm(S/G) = L(S/G) ∩ Lm(G). The
closed-loop behavior also can be represented by the synchronous composition S‖G. A less common for-
mulation of supervisory control implements a state-feedback law that bases its control only on the plant’s
current state.

5.5.3.1 Supervisor Existence

Given a specification language K representing the set of allowed behaviors for a given system, it is desired
that a supervisor be synthesized so that the closed-loop behavior S/G satisfies certain properties. A
complicating factor is that generally not all events can be disabled by the supervisor. For example, once
a machine begins a process it may not be possible to prevent the process from finishing. Other examples
include those events that come from the external environment, such as a human operator hitting a button
or opening a door. These events are defined to be uncontrollable and the event set of a DES is thus
partitioned into controllable and uncontrollable events, Σ = Σc∪̇Σuc . The set of events enabled by a
supervisor S, therefore, must implicitly include all uncontrollable events.

The most fundamental goal of a supervisor is to achieve the property of safety. Safety means that the
system’s behavior remains within the allowed set of behaviors, L(S/G) ⊆ K . Another desirable property
is that the closed-loop system be nonblocking. An automaton is said to be nonblocking when from all
of its reachable states a marked state can be reached. From a language point of view, this is defined
as Lm(S/G) = L(S/G). In other words, a system is nonblocking if its processes can always run to
“completion.” A secondary goal of a supervisor is that it be optimal. In this context, optimality is defined
as the supervisor allowing the largest set of behaviors as determined by set inclusion.

Before a supervisor that provides safe, nonblocking behavior can be constructed, it must be determined
if such a supervisor even exists. Specifically, the property of controllability guarantees that a supervisor
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exists that can restrict the behavior of the plant G to exactly achieve the set of allowed behaviors K . This
is stated formally as follows where the language L can be thought of as representing the behavior of the
DES G.

Definition 5.17:

Let K and L = L be languages defined over the event set Σ. Let Σuc ⊆ Σ be the set of uncontrollable events.
The language K is said to be controllable with respect to L and Σuc if

KΣuc ∩ L ⊆ K . (5.256)

The following theorem [3] employs this controllability property. �

Theorem 5.18:

Let the DES G be represented by the automaton G = (Q, Σ, δ, q0, Qm), where Σuc ⊆ Σ is the set of uncon-
trollable events. Also, let K ⊆ L(G), where K �= ∅. Then there exists supervisor S such that L(S/G) = K if
and only if K is controllable with respect to L(G) and Σuc. �

An alternative representation of the controllability condition is

for all s ∈ K , for all σ ∈ Σuc , sσ ∈ L ⇒ sσ ∈ K .

A string s that does not satisfy the above expression will be referred to as an uncontrollable string.
The controllability condition requires that an uncontrollable event cannot lead the DES G outside of
the allowed set of behaviors K because such an event cannot be prevented by a supervisor S. Note that
controllability is fundamentally a property of a language’s prefix-closure K .

In the case that K is a regular language and G is a finite state automaton, controllability can be verified
by comparing the transition functions of the automata G and H‖G where H is the automaton generator
for K . More specifically, if an uncontrollable event is defined at a state q in the automaton G, then the
same uncontrollable event must be defined in the corresponding state of H‖G, that is, for those states
(p, q) that share the same second element. In the worst case, the computational complexity of this test is
O(|Σ|mn), where |Σ| is the number of events in the set Σ, m is the number of states in H, and n is the
number of states in G.

If it is desired that a supervisor additionally provide nonblocking behavior, then a second requirement
denoted Lm(G)-closure is needed in addition to controllability. This result is captured in the following
theorem [3].

Theorem 5.19:

Let the DES G be represented by the automaton G = (Q, Σ, δ, q0, Qm), where Σuc ⊆ Σ is the set of uncon-
trollable events. Also, let K ⊆ Lm(G), where K �= ∅. Then there exists a nonblocking supervisor S such that
Lm(S/G) = K and L(S/G) = K if and only if the following two conditions hold:

1. Controllability: KΣuc ∩ L(G) ⊆ K
2. Lm(G)-closure: K = K ∩ Lm(G). �
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The Lm(G)-closure condition requires that the specification language K has a marking that is consistent
with the marking of the uncontrolled plant G. If it is desired to specify the marking of the system through
K , then only the controllability condition is needed to guarantee safe, nonblocking behavior. In this
instance, the associated S may be referred to as a marking supervisor.

In addition to some events being uncontrollable, an additional complication to the DES control prob-
lem is that some events may be unobservable. For example, a sensor needed to identify the occur-
rence of a particular event may not be included in a system in order to reduce cost. Another com-
mon type of unobservable event is a fault event. For example, the malfunction of an actuator may
not be directly observable even though events resulting from its failure could be observed. There are
also certain conditions under which an event may be intentionally hidden in a model in order to
reduce its complexity. Therefore, in addition to partitioning a system’s event set Σ into controllable
and uncontrollable events, the event set can also be partitioned into observable and unobservable events,
Σ = Σo∪̇Σuo.

The problem of control under partial observation [6] requires that the supervisor S make its control
decision based on the natural projection of the string s generated by the plant, where P : Σ∗ → Σ∗

o .
Recall from its previous definition that in this instance the natural projection P erases from the string s
those events that are unobservable. A supervisor acting under partial observation will, in essence, hold its
previous control action until the next observable event is generated by the plant. Such a supervisor will
be identified here as a P-supervisor SP : P(L(G)) → 2Σ. The behavior generated under P-supervision
SP/G can be represented by the language L(SP/G). Under conditions of partial observation it is nec-
essary that two strings that have the same observation not require conflicting control actions. In other
words, if an event must be disabled following a string s then it must be disabled following all strings
s′ with the same observation as s, P(s′) = P(s). This property is defined formally as observability in the
following.

Definition 5.18:

Let K and L = L be languages defined over the event set Σ. Let Σc and Σo be subsets of Σ and let the natural
projection P be defined P : Σ∗ → Σ∗

o . The language K is said to be observable with respect to L, P, and Σc

if for all s ∈ K and for all σ ∈ Σc,

(sσ /∈ K) and (sσ ∈ L) ⇒ P−1[P(s)]σ ∩ K = ∅ �

The property of observability technically means that if a continuation σ ∈ Σc can occur in the plant
language L following the string s, but is not allowed in the specification language K following s, then
the continuation should not be allowed following any string that has the same projection as s, that
is, for any string s′ ∈ P−1[P(s)]. As was the case with controllability, the observability of a language is
fundamentally a property of its prefix-closure. In the above definition, the event set Σc is arbitrary, but
often represents the set of controllable events because if the controllability requirement is satisfied then
the above definition is implicitly satisfied for all σ ∈ Σuc . The property of observability can be verified
with complexity O(m2n) where the term |Σ| has been absorbed into the constants of O(·) and again m is
the number of states in the automaton generator of K and n is the number of states in G where L = L(G).
Verification of the observability property will be discussed further when the topic of state estimation is
introduced.

This observability property then can be used in conjunction with previously defined properties to
guarantee the existence of a safe, nonblocking supervisor that exactly achieves the set of allowed behaviors
K under the condition that some events cannot be observed. This result is captured in the following
theorem [3].
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Theorem 5.20:

Let the DES G be represented by the automaton G = (Q, Σ, δ, q0, Qm), where Σuc ⊆ Σ is the set of uncontrol-
lable events and Σuo ⊆ Σ is the set of unobservable events. Also, let K ⊆ Lm(G), where K �= ∅. Then there
exists a nonblocking supervisor S such that Lm(S/G) = K and L(S/G) = K if and only if the following
three conditions hold:

1. K is controllable with respect to L(G) and Σuc .
2. K is observable with respect to L(G), P, and Σc .
3. K is Lm(G)-closed. �

5.5.3.2 Supervisor Synthesis

In the previous section, requirements were presented to provide for the existence of a safe, nonblocking
supervisor to exactly achieve the set of allowed behaviors K . These requirements not only demonstrate the
existence of a supervisor, but they are also constructive in that if the language K is regular and the plant G
is represented by a finite state automaton G, then an automaton that generates K and marks K represents
a supervisor function that provides safe, nonblocking behavior. For the full observation case, the set of
events that are defined in the supervisor automaton S = (QS, Σ, δS, qS0, QSm) at a given state q reached
by a string of events s defines the output of the function S. More formally, S(s) = {σ ∈ Σ|δS(q, σ)! where
q = δS(qS0, s)}. As stated previously, the supervised behavior of the system then can be represented by
the synchronous composition S‖G.

In general, the existence conditions of the previous section provide a means for testing whether or not a
given automaton representing the set of allowed behaviors may serve as a supervisor for the uncontrolled
plant. The theory of supervisory control is more developed, however, in that it can address the situation
where the conditions of Theorem 5.20 are not met. When a supervisor that is able to exactly achieve the
set of allowed behaviors K does not exist, it is often desirable to find the supervisor S (or SP) that can
provide the behavior that most closely approximates K . Since the specification language K represents
the set of allowed behaviors, it is generally the goal to find the least restrictive supervisor that keeps the
system behavior within this set of legal traces. Such a supervisor, if it exists, is considered optimal with
respect to set inclusion in that it provides behavior that is equal to the largest achievable sublanguage
of K .

The case where all events are observable will be considered first; in other words, consider that the
language K is not controllable with respect to L(G) and Σuc . It is, therefore, desired to find the largest
sublanguage of K (if possible) that is controllable with respect to L(G). Let C(K , L) represent the set
of sublanguages of K that are controllable with respect to the prefix-closed language L and the set of
uncontrollable events Σuc :

C(K , L) := {K ′ ⊆ K | K
′
Σuc ∩ L ⊆ K

′}
It can be shown that the property of controllability is preserved under arbitrary unions. Therefore, the

set C(K , L) has a supremal element sup C(K , L) that is equal to the union of all controllable sublanguages
of K :

sup C(K , L) :=
⋃

K ′∈ C(K ,L)

K ′

Furthermore, the sup C operation preserves Lm(G)-closure. Therefore, based on Theorem 5.19, the
supremal controllable sublanguage of K for a given plant G, sup C(K , L(G)), represents the largest set of
behaviors that can be achieved by a safe, nonblocking supervisor and the automaton generator for this
language represents an optimal supervisor function. If K is controllable with respect to L(G), it logically
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follows that sup C(K , L(G)) = K . Note also that in the worst case the supremal controllable sublanguage
may be empty.

The supremal controllable sublanguage sup C(K , L(G)) can be constructed in a rather intuitive manner.
From a language point of view, one can start with the language K and remove all strings that violate the
controllability condition of Equation 5.256. The resulting prefix-closed language K↑ is then controllable,
but may be blocking. In other words, there may be strings in K↑ whose continuations in the marked
language K are not in K↑. The intersection of K↑ with K produces a language K↑ ∩ K that is nonblocking,
but that may no longer be controllable. Therefore, the whole process starts over again with the language
K↑ ∩ K . This process is repeated until the resulting language is both controllable and nonblocking or the
language is empty.

The automaton generator for the supremal controllable sublanguage sup C(K , L(G)) can be constructed
in much the same manner as the outline presented from a language point of view. Consider the following
example.

Example 5.20:

Consider the automata G and H shown in Figure 5.20 that generate and mark the plant and specifi-
cation languages, respectively. Also, let the event set Σ be partitioned into controllable and uncon-
trollable event sets Σc = {a, c} and Σuc = {b}.

The automaton generator for the supremal controllable sublanguage sup C(K , L(G)) can be con-
structed by beginning with the parallel composition H‖G which is shown in Figure 5.21. Comparing
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FIGURE 5.20 Automata models of the plant G and the specification H.
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FIGURE 5.21 Automaton model of H‖G.

this automaton to the uncontrolled plant G, it is apparent that the specification language K is not
controllable with respect to L(G) and Σuc since the specification requires that the uncontrollable
continuation b be disabled following the occurrence of the string a.

If the state (1, 1) is removed from the automaton H‖G, then the generated language is control-
lable, but it is still blocking since from states (3, 3), (0, 2), and (5, 3) a marked state cannot be reached.
Removing these states makes the automaton nonblocking, but in turn also makes the generated
language uncontrollable since it would require that the uncontrollable continuation b be disabled
following an occurrence of the string ba. Removing the state (4, 4) leaves an automaton that gener-
ates and marks a controllable and nonblocking sublanguage of K . Otherwise stated, the automaton
generator for sup C(K , L(G)) consists of the states (0, 0) and (5, 5) and the transitions between them.

To summarize the procedure of the above example, the state space of H‖G is searched and states
are alternately removed that are either reached by strings that violate controllability or are blocking.
This process continues until the generated language is controllable and nonblocking or the resulting
automaton is empty. The maximum number of iterations of this naive algorithm is nm since H‖G has
at most nm states and at least one state is removed each time through the process. Note that there are
multiple academically available software packages to implement the various verification and synthesis
algorithms mentioned so far. Two widely employed software tools are DESUMA [7] and Supremica [8].
Furthermore, the development of increasingly efficient algorithms and data structures is an active area of
research; even the polynomial complexity algorithms mentioned thus far can be overwhelmed by systems
with very large state spaces.

5.5.3.3 Supervisor Synthesis under Partial Observation

The presence of events that cannot be observed makes the problem of supervisor synthesis much more
difficult. Recalling Theorem 5.20, under partial observation the existence of a supervisor that can provide
safety requires the property of observability. As stated previously, the property of observability can be
verified with polynomial complexity in the number of states of the automaton representations of the
languages. Despite this, and the fact that a supremal controllable sublanguage can also be constructed
with polynomial complexity, the construction of a supervisor under partial observation to achieve a
prescribed behavior K has, in the worst case, exponential complexity in the number of states. This fact
will become clearer when the problem of state estimation is discussed.

The problem of constructing a supervisor when the legal language K is not observable is also much
more difficult. Unlike controllability, the property of observability is not closed under union. Therefore,
when a language K is not observable there does not generally exist a supremal observable sublanguage.
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The implication of this fact is that it is, in general, not possible to find the supervisor under partial obser-
vation that is “optimal” with respect to set inclusion. For example, there may exist multiple observable
sublanguages of K that are not contained in any other observable sublanguage of K . Otherwise stated,
there may be multiple maximal observable sublanguages of K that are incomparable. While it may not
always be possible to construct a supremal observable sublanguage, techniques do exist for constructing
maximal observable sublanguages.

One approach for dealing with unobservability is to try to achieve a stronger property that implies
observability and is closed under union. The property of normality is such a condition and is defined in
the following.

Definition 5.19:

Let K and L = L be languages defined over the event set Σ. Let the natural projection P be defined for
the subset of events Σo ⊆ Σ such that P : Σ∗ → Σ∗

o . The language K is said to be normal with respect to
L and P if

K = P−1[P(K)] ∩ L

�

Normality means that the language K (with unobservable events) can be completely reconstructed
from knowledge of its observation P(K) and the language L. From a practical point of view, L may
represent the behavior of the plant L(G) and hence the legal behavior K that cannot be performed by the
plant does not need to be reconstructed. The fact that the property of normality is closed under union
provides that a supremal normal sublanguage of K with respect to L does exist and is denoted sup N (K , L).
Furthermore, a supremal controllable and normal sublanguage of K , sup CN (K , L), also exists and the
automaton generator of such a language can represent a supervisor SP that can be employed under partial
observation. Note that the construction of such a supervisor automaton has, in the worst case, exponential
complexity in the number of states of the automaton representations of the languages of interest. A special
case when a supremal control and observable sublanguage does exist is when all controllable events are
observable Σc ⊆ Σo.

An approach to control under partial observation that can be constructed with reduced complexity is
to employ a static state-feedback approach to control where the control is based on the current state of
the automaton rather than the history of events that brought the system to that state [1]. Under partial
observation, the state space is observed through a mask that effectively partitions the state space into sets
of indistinguishable states. Since the control action must be the same for different strings that take the
system to the same state (or partition), a state-feedback approach to control is, in general, more restrictive
than the dynamic event-feedback laws that are the focus of the discussion presented here. There may
be, however, instances where this trade-off of permissiveness for reduced computational complexity is
acceptable.

5.5.3.4 Control of Petri Nets

In the preceding section, the supervisory control framework was explored using the modeling formalism
of automata. Petri nets can also be employed for verifying system properties and synthesizing control.
Even though the representation of the state space differs with Petri nets, the underlying size of the
state space is essentially unchanged. Therefore, the necessary computation for verification or synthesis
is comparable if it depends on the number of states of the system. Furthermore, supervisory control in
the sense of Ramadge and Wonham is more difficult to implement using Petri nets because it is not as
straightforward to remove blocking states or implement a feedback architecture.
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There are, however, techniques for control that are specific to Petri nets that do not require the entire
explicit state space to be built [9]. Additionally, some properties of some classes of systems can be verified
without exploring the entire state space. Some properties, for example, can be determined based on the
Petri net’s incidence matrix.

5.5.4 Estimation and Diagnosis

When an automaton G has unobservable events or is nondeterministic, the same observed string can lead
the DES to different states; therefore, it may not be possible to determine the current state of the system.
Under these conditions, an observer automaton Gobs can be constructed with a transition structure
defined such that each string s leads to a single state that is the catenation of all states in the original
automaton G that are reached by strings bearing the observation s. This observer automaton Gobs is useful
in that it is deterministic, but generates the same observed language as G, that is, L(Gobs) = P(L(G)).
The observed marked languages are also equal, Lm(Gobs) = P(Lm(G)). The observer automaton can,
therefore, be used to convert a nondeterministic automaton into a deterministic one. The observer
automaton also can be used to construct a supervisor for a partially observed plant; consider the following
example.

Example 5.21:

Consider the nondeterministic automaton G shown in Figure 5.22 where the set of observable and
unobservable events are Σo = {b, c, d} and Σuo = {a, e}, respectively. The automaton G is considered
nondeterministic because after the occurrence of event b at state 1, it is unclear whether the system
is in state 0 or state 1. This type of uncertainty also arises because events a and e are unobservable.
For example, the transition of the automaton from state 0 to state 1 by event a cannot be observed.

The corresponding observer automaton Gobs can be constructed in the manner of [3] and is
shown in Figure 5.23.

As expected, the resulting observer automaton Gobs is deterministic and generates the same
observed language as G. Inspection of the observer automaton also provides some intuition for
the observability property introduced in Definition 5.18. For example, let the automaton G be the
plant and assume that there exists a specification language K that is generated and marked by an
automaton H that is equivalent to G except that the d transition from state 2 to state 0 has been
removed. In other words, the specification language K includes the string aced, but not the string
acd. The synchronous composition H‖G equals H and indicates that disablement of event d is desired
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FIGURE 5.22 Model of a nondeterministic automaton with unobservable events, G.
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FIGURE 5.23 Example 5.21 observer automaton, Gobs.

at state 2 of G, but not at state 3. The observer automaton for H‖G would in this case be equal to
Gobs and demonstrates that states 2 and 3 cannot be distinguished following an observation of the
string c where P(ac) = P(ace) = c. Therefore, the language K requires conflicting control actions for
an observation of the string c and hence is not observable.

An issue that arises with building an observer automaton is that in the worst case it has exponential
complexity in the number of states of the original automaton because the state space of the observer can
be as large as the power set 2Q of the original automaton’s state set Q. This gives some intuition as to why
an event-feedback supervisor for a partially observed system cannot be guaranteed to be constructed with
polynomial complexity.

The observer automaton also can be used to provide an estimate of what state a partially observed
or nondeterministic system is in. For example, following an observation of the string cd the observer
automaton Gobs indicates that the automaton G is in either state 0 or state 1. The concept of an observer
can, therefore, be modified for the purposes of fault diagnosis where the unobservable events represent
faults. Identification of the occurrence of a fault may be desirable for several reasons and can be inferred
from the occurrence of other events that can be observed. A diagnoser automaton has a similar structure
to an observer automaton, except that the states in the observer automaton are appended with a label to
indicate whether or not a specific type of fault has occurred or not, for example, {2F1, 3NF} where the
label F1 indicates that a fault of type 1 has occurred and the label NF indicates that no fault has occurred.
If all of the labels in a diagnoser automaton state are consistent, then a conclusion can be made as to
whether or not a certain type of fault has occurred. See [10] for further details.

5.5.5 Hierarchical and Modular Supervisory Control

The approach to supervisory control that has been discussed so far builds a single monolithic supervisor
to control a single plant. As mentioned previously, if a system is complicated and involves multiple
subsystems operating concurrently subject to multiple specifications, the complexity of verification and
supervisor design can become unmanageable very quickly. An approach for dealing with this complexity
is to construct a series of smaller modular supervisors that each attempt to satisfy a single component
specification [11]. The control of the monolithic system is then achieved by the conjunction of the
control actions of a series of modular supervisors. Specifically, in order for an event to be enabled for
the monolithic plant at a given instant that event must be enabled by each of the modular supervisors
simultaneously. The advantage of modular supervisory control is that it avoids building the full monolithic
system, thereby mitigating the state-space explosion problem. Modular control is able to provide safety,
but does not guarantee nonblocking unless the modular supervised languages are shown a priori to be
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nonconflicting. Two languages K1 and K2 are formally defined to be nonconflicting if

K1 ∩ K2 = K1 ∩ K2

Unfortunately, verifying nonconflict is typically as computationally expensive as building the mono-
lithic system. Therefore, these approaches provide complexity savings in terms of implementation, but
not in terms of design. If the modular supervisors are nonconflicting, then the behavior achieved by their
conjunction is also optimal.

Another approach for dealing with complexity is to employ abstraction. This approach is classified
as hierarchical supervisory control and is able to reduce the complexity of verification and controller
synthesis by performing the analysis on the abstracted system, which, in general, has fewer states and
fewer transitions [12]. In order for the verification to be valid for the real unabstracted system, or for
the hierarchical supervisor to provide certain properties like safety, nonblocking, and optimality when
applied to the unabstracted system, the abstraction may need to satisfy specific properties. For example,
abstractions meeting requirements for conflict equivalence can be employed to verify nonconflict, and
abstractions that meet requirements for observational equivalence (the observer property) can guarantee
that a hierarchical supervisor provides nonblocking.

More recent approaches to supervisory control combine elements of modular and hierarchical
approaches to control [13]. One class of approach is to build up the global system incrementally employ-
ing abstraction, for example. This approach is hierarchical in that different amounts of abstraction define
different levels of the hierarchy. The approach is also modular in that each “level” has its own control and
the component supervisors work in conjunction to meet the global desired behavior of the overall sys-
tem. A second class of approach builds modular supervisors that provide safety and nonblocking locally,
then employ another level of supervision to resolve conflict between these local supervisors in order to
provide global nonblocking. This higher level of control is generally constructed from an abstraction of
the local modular subsystems. It is often the case that there is a trade-off between the amount of complexity
reduction that can be achieved and the permissiveness of the resulting control.

A related type of DES control referred to as decentralized supervisory control involves a plant being
controlled by a series of component supervisors, each of which base their control decisions on a different
abstraction of the system. In a distributed control architecture, for example, one supervisor may be able
to observe event a because it is local, but not event b because it originates in another subsystem, while
a different supervisor can observe event b, but not event a. Different approaches to the control and
verification of such systems have been devised.

5.5.6 Timed and Stochastic Discrete Event Systems

So far, only purely logical discrete event models have been considered. These models can be appended
with timing and probabilistic information to answer questions about when and with what frequency
events occur and about the average behavior of systems [3].

One approach for modeling the timed behavior of DES is to append an automaton model with
a clock structure. In this framework the operation of a DES is no longer indicated by strings of
events only {σ1, σ2, . . .}, but by sequences where the time of occurrence of each event is also indi-
cated {(σ1, t1), (σ2, t2), . . .}. An automaton with clock structure is referred to as a timed automaton and
defined by the five-tuple GV = (Q, Σ, δ, q0, V ), where V is the clock structure and G = (Q, Σ, δ, q0) is
the underlying logical automaton. The clock structure V is comprised of clock sequences vi , one for each
corresponding event σi in the alphabet Σ. Each clock sequence vi = {vi,1, vi,2, . . .} indicates the time at
which the corresponding event σi will occur if it is feasible. In a timed automaton GV for example, if there
are multiple feasible events at a given state, the transition that actually will be taken is determined by the
clock sequence of the event whose next possible occurrence comes first. A consequence of this structure
is that the behavior of a timed automaton GV is completely predetermined and the language generated
by the timed automaton L(GV) consists of a single trace.
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The stochastic nature of a DES can be modeled by appending probabilistic information to the clock
structure of a timed automaton. Specifically, each clock sequence vi corresponding to an event σi can be
redefined as a stochastic clock sequence Vi = {Vi,1, Vi,2, . . .}, where the sequence Vi is characterized by
a distribution function Fi(t) = Prob[Vi ≤ t]. A stochastic timed automaton is then defined by the five-
tuple GF = (Q, Σ, p, p0, F), where p is the probabilistic transition function such that p(q′; q, σ) defines the
probability that q′ is reached by the event σ from the state q and p(q′; q, σ) = 0 if q′ /∈ δ(q, σ), p0 is the
probability mass function of the initial state such that p0(q) is the probability that q is the initial state, and
F is the stochastic clock structure that consists of the individual distribution functions Fi . The language
generated by an untimed automaton corresponds to the set of traces defined by a timed automaton over
all possible clock structures; when a single clock structure is chosen this language then reduces again to a
single trace.

A limitation of the deterministic timed automaton model presented above is that it may be too restric-
tive, while a limitation of the stochastic timed automaton model presented above is that its complexity
makes it difficult to analyze and control. In cases where the DES is too complicated to analyze, discrete
event simulation can be a powerful tool for analysis. Another approach is to employ a different type of
automaton model referred to as a timed discrete event system that introduces time and allows for non-
determinism. This type of model defines intervals of time for each transition in the automaton without
explicitly attaching probability distribution functions to the timing of the transitions. The timed DES
model allows for nondeterminism in that the exact sequence of events is not completely determined and
the model is simple enough that a theory of supervisory control has been developed based on them [14].
A timed DES model G = (Q, Σ, δ, q0, Qm) has the same format as a traditional automaton except that the
event set Σ includes the event tick which represents the passage of time of the global clock. This type of
model allows for control to be formulated that meets temporal specifications, but can also significantly
increase the required complexity.

Alternative models that include timing information other than the automata-based models introduced
above also exist. One example is the timed Petri net, which attaches a clock structure to the Petri net
in an analogous manner to timed automata. Here each clock sequence is associated with a transition.
Another class of model based on the algebraic structure of timed Petri nets is called max-plus algebra.
This formalism is a diod algebra based on two operations, the “max” operation written ⊕ and the “+”
operation written ⊗. The max-plus algebra allows questions to be formally answered about whether or
not events occur within some time window, and provides information about the steady-state behavior
of a system. Finally, process algebra type models can also capture the notion of time without explicitly
employing a clock. For example, such concepts as “something eventually being true” or commanding an
action “until something else is achieved” are concepts that can be expressed employing temporal logic.

5.5.7 Conclusion

The same underlying real-world system can be modeled in many different ways. An alternative to com-
monly employed time-driven models like differential and difference equations are DES models. DES
models have discrete state spaces and event-driven evolution and can be very useful for answering many
important equations about system behavior and for designing control systems to achieve desired behavior.
Three levels of abstraction for DES models are models that capture (1) purely logical behavior, (2) timed
logical behavior, and (3) stochastic timed logical behavior. Each level of abstraction can be used to answer
different questions and achieve different behavior, from guaranteeing a specific ordering of events, to
achieving a task in a desired time frame, to assuring a task is completed with some level of certainty. The
focus of this chapter has been on the analysis of automata models and the design of supervisory control
in the sense of Ramadge and Wonham [2]. Other logical, timed, and timed stochastic models have been
introduced including Petri net and process algebra models. Further details about DES theory can be found
in many sources, with [1,3] and [15] being three particularly good references.
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6.1 Block Diagrams

Dean K. Frederick and Charles M. Close
6.1.1 Introduction

A block diagram is an interconnection of symbols representing certain basic mathematical operations in
such a way that the overall diagram obeys the system’s mathematical model. In the diagram, the lines
interconnecting the blocks represent the variables describing the system behavior, such as the input and
state variables. Inspecting a block diagram of a system may provide new insight into the system’s structure
and behavior beyond that available from the differential equations themselves.

Throughout most of this chapter, we restrict the discussion to fixed linear systems that contain no
initial stored energy. After we transform the equations describing such a system, the variables that we
use are the Laplace transforms of the corresponding functions of time. The parts of the system can then
be described by their transfer functions. Recall that transfer functions give only the zero-state response.
However, the steady-state response of a stable system does not depend on the initial conditions, so in that
case there is no loss of generality in using only the zero-state response.

After defining the components to be used in our diagrams, we develop rules for simplifying block dia-
grams, emphasizing those diagrams that represent feedback systems. The chapter concludes by pointing
out that graphical models can be used for more general systems than those considered here, including
nonlinear blocks, multi-input/multi-output (MIMO) systems, and discrete-time systems.

Computer programs for the analysis and design of control systems exist that allow the entry of block
diagram models in graphical form. These programs are described in another section of this book.

6-1
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+
y(s)

X1(s)

X2(s)

X3(s)

+
–

FIGURE 6.1 Summer representing Y (s) = X1(s) + X2(s) − X3(s).

6.1.2 Diagram Blocks

The operations that we generally use in block diagrams are summation, gain, and multiplication by a
transfer function. Unless otherwise stated, all variables are Laplace-transformed quantities.

6.1.2.1 Summer

The addition and subtraction of variables is represented by a summer, or summing junction. A summer
is represented by a circle that has any number of arrows directed toward it (denoting inputs) and a
single arrow directed away from it (denoting the output). Next to each entering arrowhead is a plus or
minus symbol indicating the sign associated with the variable that the particular arrow represents. The
output variable, appearing as the one arrow leaving the circle, is defined to be the sum of all the incoming
variables, with the associated signs taken into account. A summer having three inputs X1(s), X2(s), and
X3(s) appears in Figure 6.1.

6.1.2.2 Gain

The multiplication of a single variable by a constant is represented by a gain block. We place no restriction
on the value of the gain, which may be positive or negative. It may be an algebraic function of other
constants and/or system parameters. Several self-explanatory examples are shown in Figure 6.2.

6.1.2.3 Transfer Function

For a fixed linear system with no initial stored energy, the transformed output Y (s) is given by

Y (s) = H(s)U(s)

where H(s) is the transfer function and U(s) is the transformed input. When dealing with parts of a larger
system, we often use F(s) and X(s) for the transfer function and transformed input, respectively, of an
individual part. Then

Y (s) = F(s)X(s) (6.1)

Any system or combination of elements can be represented by a block containing its transfer function
F(s), as indicated in Figure 6.3a. For example, the first-order system that obeys the input–output equation

ẏ + 1

τ
y = Ax(t)

Y(s)
–5

X(s)Y(s)
A

(a) (b)

X(s)

(c)

Y(s)K
M

X(s)

FIGURE 6.2 Gains. (a) Y (s) = AX(s); (b) Y (s) = −5X(s); and (c) Y (s) = (K/M)X(s).
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Y(s) Y(s)
F(s)

(a) (b)

X(s) X(s) A
s + 1/τ

(c)

Y(s)1
s

X(s)

FIGURE 6.3 Basic block diagrams. (a) Arbitrary transfer function; (b) first-order system; and (c) integrator.

has as its transfer function

F(s) = A

s + 1

τ

Thus, it could be represented by the block diagram shown in Figure 6.3b. Note that the gain block in
Figure 6.2a can be considered as a special case of a transfer function block, with F(s) = A.

6.1.2.4 Integrator

Another important special case of a general transfer function block, one that appears frequently in our
diagrams, is the integrator block. An integrator that has an input x(t) and an output y(t) obeys the
relationship

y(t) = y(0) +
∫ t

0
x(λ) dλ

where λ is the dummy variable of integration. Setting y(0) equal to 0 and transforming the equation give

Y (s) = 1

s
X(s)

Hence, the transfer function of the integrator is Y (s)/X(s) = 1/s, as shown in Figure 6.3c.
Because a block diagram is merely a pictorial representation of a set of algebraic Laplace-transformed

equations, it is possible to combine blocks by calculating equivalent transfer functions and thereby to
simplify the diagram. We now present procedures for handling series and parallel combinations of
blocks. Methods for simplifying diagrams containing feedback paths are discussed in the next section.

6.1.2.5 Series Combination

Two blocks are said to be in series when the output of one goes only to the input of the other, as shown
in Figure 6.4a. The transfer functions of the individual blocks in the figure are F1(s) = V (s)/X(s) and
F2(s) = Y (s)/V (s).

When we evaluate the individual transfer functions, it is essential that we take any loading effects into
account. This means that F1(s) is the ratio V (s)/X(s) when the two subsystems are connected, so any
effect the second subsystem has on the first is accounted for in the mathematical model. The same state-
ment holds for calculating F2(s). For example, the input–output relationship for a linear potentiometer
loaded by a resistor connected from its wiper to the ground node differs from that of the unloaded
potentiometer.

Y(s)

(b)

X(s) F1(s) F2(s)V(s) Y(s)

(a)

X(s) F1(s) F2(s)

FIGURE 6.4 (a) Two blocks in series and (b) equivalent diagram.
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F1(s) + F2(s)

F1(s)
V1(s)

(a) (b)

Y(s) Y(s)
+

+

V2(s)

X(s) X(s)

F2(s)

FIGURE 6.5 (a) Two blocks in parallel and (b) equivalent diagram.

In Figure 6.4a, Y (s) = F2(s)V (s) and V (s) = F1(s)X(s). It follows that

Y (s) = F2(s)[F1(s)X(s)]
= [F1(s)F2(s)]X(s)

Thus, the transfer function relating the input transform X(s) to the output transform Y (s) is F1(s)
F2(s), the product of the individual transfer functions. The equivalent block diagram is shown in
Figure 6.4b.

6.1.2.6 Parallel Combination

Two systems are said to be in parallel when they have a common input and their outputs are com-
bined by a summing junction. If, as indicated in Figure 6.5a, the individual blocks have the transfer
functions F1(s) and F2(s) and the signs at the summing junction are both positive, the overall trans-
fer function Y (s)/X(s) is the sum F1(s) + F2(s), as shown in Figure 6.5b. To prove this statement,
we note that

Y (s) = V1(s) + V2(s)

where V1(s) = F1(s)X(s) and V2(s) = F2(s)X(s). Substituting for V1(s) and V2(s), we have

Y (s) = [F1(s) + F2(s)]X(s)

If either of the summing-junction signs associated with V1(s) or V2(s) is negative, we must change
the sign of the corresponding transfer function in forming the overall transfer function. The following
example illustrates the rules for combining blocks that are in parallel or in series.

Example 6.1:

Evaluate the transfer functions Y (s)/U(s) and Z(s)/U(s) for the block diagram shown in Figure 6.6,
giving the results as rational functions of s.

Solution

Because Z(s) can be viewed as the sum of the outputs of two parallel blocks, one of which has Y (s) as
its output, we first evaluate the transfer function Y (s)/U(s). To do this, we observe that Y (s) can be
considered the output of a series combination of two parts, one of which is a parallel combination of two
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U(s) Y(s) Z(s)

2s + 1
s + 4

1
s + 2

+

+ +

+

s – 2
s + 3

FIGURE 6.6 Block diagram for Example 6.1.

blocks. Starting with this parallel combination, we write

2s + 1

s + 4
+ s − 2

s + 3
= 3s2 + 9s − 5

s2 + 7s + 12

and redraw the block diagram as shown in Figure 6.7a. The series combination in this version has the
transfer function

Y (s)

U(s)
= 3s2 + 9s − 5

s2 + 7s + 12
· 1

s + 2

= 3s2 + 9s − 5

s3 + 9s2 + 26s + 24

which leads to the diagram shown in Figure 6.7b. We can reduce the final parallel combination to the
single block shown in Figure 6.7c by writing

Z(s)

U(s)
= 1 + Y (s)

U(s)

= 1 + 3s2 + 9s − 5

s3 + 9s2 + 26s + 24

= s3 + 12s2 + 35s + 19

s3 + 9s2 + 26s + 24

3s2 + 9s –5
s2 + 7s + 12

3s2 + 9s –5
s3 + 9s2 + 26s + 24

3s3 + 12s2 + 35s + 19
s3 + 9s2 + 26s + 24

1
s + 2

Z(s)

Z(s)

Z(s)

+

+

+

+

Y(s)

Y(s)U(s)

U(s)

U(s)

(a)

(b)

(c)

FIGURE 6.7 Equivalent block diagrams for the diagram shown in Figure 6.6.
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In general, it is desirable to reduce the transfer functions of combinations of blocks to rational functions
of s in order to simplify the subsequent analysis. This will be particularly important in the following section
when we are reducing feedback loops to obtain an overall transfer function.

6.1.3 Block Diagrams of Feedback Systems

Figure 6.8a shows the block diagram of a general feedback system that has a forward path from the
summing junction to the output and a feedback path from the output back to the summing junction.
The transforms of the system’s input and output are U(s) and Y (s), respectively. The transfer function
G(s) = Y (s)/V (s) is known as the forward transfer function, and H(s) = Z(s)/Y (s) is called the feedback
transfer function. We must evaluate both of these transfer functions with the system elements connected
in order properly to account for the loading effects of the interconnections. The product G(s)H(s) is
referred to as the open-loop transfer function. The sign associated with the feedback signal from the block
H(s) at the summing junction is shown as minus because a minus sign naturally occurs in the majority of
feedback systems, particularly in control systems.

Given the model of a feedback system in terms of its forward and feedback transfer functions G(s) and
H(s), it is often necessary to determine the closed-loop transfer function T(s) = Y (s)/U(s). We do this by
writing the algebraic transform equations corresponding to the block diagram shown in Figure 6.8a and
solving them for the ratio Y (s)/U(s). We can write the following transform equations directly from the
block diagram.

V (s) = U(s) − Z(s)

Y (s) = G(s)V (s)

Z(s) = H(s)Y (s)

If we combine these equations in such a way as to eliminate V (s) and Z(s), we find that

Y (s) = G(s)[U(s) − H(s)Y (s)]

which can be rearranged to give

[1 + G(s)H(s)]Y (s) = G(s)U(s)

Hence, the closed-loop transfer function T(s) = Y (s)/U(s) is

T(s) = G(s)

1 + G(s)H(s)
(6.2)

where it is implicit that the sign of the feedback signal at the summing junction is negative. It is readily
shown that when a plus sign is used at the summing junction for the feedback signal, the closed-loop

U(s) 

(a) (b)

U(s)V(s) Y(s) Y(s)
G(s) G(s)

1 + G(s) H(s)

H(s) 
Z(s) 

– + 

FIGURE 6.8 (a) Block diagram of a feedback system and (b) equivalent diagram.
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transfer function becomes

T(s) = G(s)

1 − G(s)H(s)
(6.3)

A commonly used simplification occurs when the feedback transfer function is unity, that is, when
H(s) = 1. Such a system is referred to as a unity-feedback system, and Equation 6.2 reduces to

T(s) = G(s)

1 + G(s)
(6.4)

We now consider three examples that use Equations 6.2 and 6.3. The first two illustrate determining the
closed-loop transfer function by reducing the block diagram. They also show the effects of feedback gains
on the closed-loop poles, time constant, damping ratio, and undamped natural frequency. In Example 6.4,
a block diagram is drawn directly from the system’s state-variable equations and then reduced to give the
system’s transfer functions.

Example 6.2:

Find the closed-loop transfer function for the feedback system shown in Figure 6.9a, and compare
the locations of the poles of the open-loop and closed-loop transfer functions in the s-plane.

Solution

By comparing the block diagram shown in Figure 6.9a with that shown in Figure 6.8a, we see that
G(s) = 1/(s + α) and H(s) = β. Substituting these expressions into Equation 6.2 gives

T(s) =
1

s + α

1 +
(

1

s + α

)
β

which we can write as a rational function of s by multiplying the numerator and denominator by s + α.
Doing this, we obtain the closed-loop transfer function

T(s) = 1

s + α + β

This result illustrates an interesting and useful property of feedback systems: the fact that the poles of
the closed-loop transfer function differ from the poles of the open-loop transfer function G(s)H(s). In
this case, the single open-loop pole is at s = −α, whereas the single closed-loop pole is at s = −(α + β).

U(s) 

(a) (b)

Y(s) 1 
s + α 

Closed
loop

Open
loop

– + 

β 

–α–(α + β)

ω

σ

FIGURE 6.9 Single-loop feedback system for Example 6.2.



�

�

�

�

� �

6-8 Control System Fundamentals

These pole locations are indicated in Figure 6.9b for positive α and β. Hence, in the absence of feedback,
the pole of the transfer function Y (s)/U(s) is at s = −α, and the free response is of the form ε−αt . With
feedback, however, the free response is ε−(α+β)t . Thus, the time constant of the open-loop system is 1/α,
whereas that of the closed-loop system is 1/(α + β).

Example 6.3:

Find the closed-loop transfer function of the two-loop feedback system shown in Figure 6.10. Also
express the damping ratio ζ and the undamped natural frequency ωn of the closed-loop system in
terms of the gains a0 and a1.

Solution

Because the system’s block diagram contains one feedback path inside another, we cannot use Equation 6.2
directly to evaluate Y (s)/U(s). However, we can redraw the block diagram such that the summing junction
is split into two summing junctions, as shown in Figure 6.11a. Then it is possible to use Equation 6.2 to
eliminate the inner loop by calculating the transfer function W(s)/V (s). Taking G(s) = 1/s and H(s) = a1

in Equation 6.2, we obtain

W(s)

V (s)
=

1−s
1 + a1−s

= 1

s + a1

Redrawing Figure 6.11a with the inner loop replaced by a block having 1/(s + a1) as its transfer
function gives Figure 6.11b. The two blocks in the forward path of this version are in series and can
be combined by multiplying their transfer functions, which gives the block diagram shown in Fig-
ure 6.11c. Then we can apply Equation 6.2 again to find the overall closed-loop transfer function
T(s) = Y (s)/U(s) as

T(s) =
1

s(s + a1)

1 + 1

s(s + a1)
· a0

= 1

s2 + a1s + a0
(6.5)

The block diagram representation of the feedback system corresponding to Equation 6.5 is shown in
Figure 6.11d.

The poles of the closed-loop transfer function are the roots of the equation

s2 + a1s + a0 = 0 (6.6)

which we obtain by setting the denominator of T(s) equal to zero and which is the characteristic equation
of the closed-loop system. Equation 6.6 has two roots, which may be real or complex, depending on the

U(s) Y(s)1
s

a1

a0

–+

+ 1
s

FIGURE 6.10 System with two feedback loops for Example 6.3.
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– 

–

– + 

+

+ U(s)1 
s 

a1 

a0 

Y(s) 
Y(s)W(s)

V(s) 
V(s)

W(s) U(s) 

1
s

1
s + a1

1 
s 

– + 

U(s) 
U(s)

Y(s) 
Y(s)1 

s(s + a1) 1
s2 + a1s + a0

a0

a0 

(a) (b)

(c) (d)

FIGURE 6.11 Equivalent block diagrams for the system shown in Figure 6.10.

sign of the quantity a2
1 − 4a0. However, the roots of Equation 6.6 will have negative real parts and the

closed-loop system will be stable provided that a0 and a1 are both positive.
If the poles are complex, it is convenient to rewrite the denominator of T(s) in terms of the damping

ratio ζ and the undamped natural frequency ωn. By comparing the left side of Equation 6.6 with the
characteristic polynomial of a second-order system written as s2 + 2ζωns + ω2

n, we see that

a0 = ω2
n and a1 = 2ζωn

Solving the first of these equations for ωn and substituting it into the second gives the damping ratio and
the undamped natural frequency of the closed-loop system as

ζ = a1

2
√

a0
and ωn = √

a0

We see from these expressions that a0, the gain of the outer feedback path in Figure 6.10, determines the
undamped natural frequency ωn and that a1, the gain of the inner feedback path, affects only the damping
ratio. If we can specify both a0 and a1 at will, then we can attain any desired values of ζ and ωn for the
closed-loop transfer function.

Example 6.4:

Draw a block diagram for the translational mechanical system shown in Figure 6.12, whose state-
variable equations can be written as

ẋ1 = v1

K1

fa(t)

B1

x1

K2

B2

X2

M A

FIGURE 6.12 Translational system for Example 6.4.
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v̇1 = 1
M

[−K1x1 − B1v1 + K1x2 + fa(t)]

ẋ2 = 1
B2

[K1x1 − (K1 + K2)x2]

Reduce the block diagram to determine the transfer functions X1(s)/Fa(s) and X2(s)/Fa(s) as rational
functions of s.

Solution

Transforming the three differential equations with zero initial conditions, we have

sX1(s) = V1(s)

MsV1(s) = −K1X1(s) − B1V1(s) + K1X2(s) + Fa(s)

B2sX2(s) = K1X1(s) − (K1 + K2)X2(s)

We use the second of these equations to draw a summing junction that has MsV1(s) as its output.
After the summing junction, we insert the transfer function 1/Ms to get V1(s), which, from the first
equation, equals sX1(s). Thus, an integrator whose input is V1(s) has X1(s) as its output. Using the
third equation, we form a second summing junction that has B2sX2(s) as its output. Following this
summing junction by the transfer function 1/B2s, we get X2(s) and can complete the four feedback
paths required by the summing junctions. The result of these steps is the block diagram shown in
Figure 6.13a.

To simplify the block diagram, we use Equation 6.2 to reduce each of the three inner feedback loops,
obtaining the version shown in Figure 6.13b. To evaluate the transfer function X1(s)/Fa(s), we can apply
Equation 6.3 to this single-loop diagram because the sign associated with the feedback signal at the
summing junction is positive rather than negative. Doing this with

G(s) = 1

Ms2 + B1s + K1
and H(s) = K2

1

B2s + K1 + K2

– ––
+

+

+

+ +Fa(s) V1(s) X1(s)1
s

X2(s)

K1

(a)

(b)

K1

K1

K1 + K2

K1
B2s + K1 + K2

B1

1
Ms

1
B2s

1
Ms2 + B1s + K1

X1(s)Fa(s)

k1

X2(s)

FIGURE 6.13 Block diagrams for the system in Example 6.4. (a) As drawn from the differential equations and
(b) with the three inner feedback loops eliminated.
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we find

X1(s)

Fa(s)
=

1

Ms2 + B1s + K1

1 − 1

Ms2 + B1s + K1
· K2

1

B2s + K1 + K2

= B2s + K1 + K2

(Ms2 + B1s + K1)(B2s + K1 + K2) − K2
1

= B2s + K1 + K2

P(s)
(6.7)

where

P(s) = MB2s3 + [(K1 + K2)M + B1B2]s2 + [B1(K1 + K2) + B2K1]s + K1K2

To obtain X2(s)/Fa(s), we can write

X2(s)

Fa(s)
= X1(s)

Fa(s)
· X2(s)

X1(s)

where X1(s)/Fa(s) is given by Equation 6.7 and, from Figure 6.13b,

X2(s)

X1(s)
= K1

B2s + K1 + K2
(6.8)

The result of multiplying Equations 6.7 and 6.8 is a transfer function with the same denominator as
Equation 6.7 but with a numerator of K1.

In the previous examples, we used the rules for combining blocks that are in series or in parallel,
as shown in Figures 6.4 and 6.5. We also repeatedly used the rule for simplifying the basic feedback
configuration given in Figure 6.8a. A number of other operations can be derived to help simplify block
diagrams. To conclude this section, we present and illustrate two of these additional operations.

Keep in mind that a block diagram is just a means of representing the algebraic Laplace-transformed
equations that describe a system. Simplifying or reducing the diagram is equivalent to manipulating the
equations. In order to prove that a particular operation on the block diagram is valid, we need only show
that the relationships among the transformed variables of interest are left unchanged.

6.1.3.1 Moving a Pick-Off Point

A pick-off point is a point where an incoming variable in the diagram is directed into more than one block.
In the partial diagram of Figure 6.14a, the incoming signal X(s) is used not only to provide the output
Q(s) but also to form the signal W(s), which in practice might be fed back to a summer that appears earlier
in the complete diagram. The pick-off point can be moved to the right of F1(s) if the transfer function
of the block leading to W(s) is modified as shown in Figure 6.14b. Both parts of the figure give the same
equations:

Q(s) = F1(s)X(s)

W(s) = F2(s)X(s)

Example 6.5:

Use Figure 6.14 to find the closed-loop transfer function for the system shown in Figure 6.10.
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W(s) W(s)

F1(s)F1(s) 

F2(s) 

(a) (b)

F2(s)
F1(s)

X(s) Q(s) X(s) Q(s)

FIGURE 6.14 Moving a pick-off point.

Solution

The pick-off point leading to the gain block a1 can be moved to the output Y (s) by replacing a1 by a1s, as
shown in Figure 6.15a. Then the two integrator blocks, which are now in series, can be combined to give
the transfer function G(s) = 1/s2. The two feedback blocks are now in parallel and can be combined into
the single transfer function a1s + a0, as shown in Figure 6.15b. Finally, by Equation 6.2,

T(s) = Y (s)

U(s)
= 1/s2

1 + (a1s + a0)/s2 = 1

s2 + a1s + a0

which agrees with Equation 6.5, as found in Example 6.3.

6.1.3.2 Moving a Summing Junction

Suppose that, in the partial diagram of Figure 6.16a, we wish to move the summing junction to the
left of the block that has the transfer function F2(s). We can do this by modifying the transfer func-

– –– 
+ +U(s) U(s)Y(s) 

a1s a1s + a0

a0 

Y(s)1 
s 

1
s2

1 
s 

(a) (b)

FIGURE 6.15 Equivalent block diagrams for the system shown in Figure 6.10.

Q(s)

F1(s)

F2(s)

(a)

X2(s)

X1(s)

+

+
Q(s)

F1(s)
F2(s)

(b)

F2(s)X2(s)

X1(s)

+

+

FIGURE 6.16 Moving a summing junction.
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tion of the block whose input is X1(s), as shown in part (b) of the figure. For each part of the
figure,

Q(s) = F1(s)X1(s) + F2(s)X2(s)

Example 6.6:

Find the closed-loop transfer function T (s) = Y (s)/U(s) for the feedback system shown in
Figure 6.17a.

U(s) W(s) Z(s)

(a)

(b)

(c)

(d)

(e)

Y(s)

Y(s)

+
+

+

+

+

+

+
+

+++

+
+

– –

–

–

–

–

+

b2

sb1

U(s)

b2

a1

1

a0

a0

a1

b1

1
s

1
s

1
s(s + a1)sb1 + 1

sb1 + 1

b2s(s + a1)

1
s(s + a1)

1
s

1
s

b2

a0

a0

Y(s)

Y(s)

Y(s)

U(s)

U(s)

U(s) 1
s2 + a1s + a0

b2s(s + a1) + (sb1 + 1)

FIGURE 6.17 (a) Block diagram for Example 6.6; and (b)–(e) equivalent block diagrams.
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Solution

We cannot immediately apply Equation 6.2 to the inner feedback loop consisting of the first integrator
and the gain block a1 because the output of block b1 enters a summer within that loop. We therefore use
Figure 6.16 to move this summer to the left of the first integrator block, where it can be combined with
the first summer. The resulting diagram is given in Figure 6.17b.

Now Equation 6.2 can be applied to the inner feedback loop to give the transfer function

G1(s) = 1/s

1 + a1/s
= 1

s + a1

The equivalent block with the transfer function G1(s) is then in series with the remaining integrator,
which results in a combined transfer function of 1/[s(s + a1)]. Also, the two blocks with gains of sb1 and
1 are in parallel and can be combined into a single block. These simplifications are shown in Figure 6.17c.

We can now repeat the procedure and move the right summer to the left of the block labeled 1/[s(s +
a1)], where it can again be combined with the first summer. This is done in part (d) of the figure. The two
blocks in parallel at the left can now be combined by adding their transfer functions, and Equation 6.2
can be applied to the right part of the diagram to give

1

s(s + a1)

1 + a0

s(s + a1)

= 1

s2 + a1s + a0

These steps yield Figure 6.17e, from which we see that

T(s) = b2s2 + (a1b2 + b1)s + 1

s2 + a1s + a0
(6.9)

Because performing operations on a given block diagram is equivalent to manipulating the algebraic
equations that describe the system, it may sometimes be easier to work with the equations themselves. As
an alternative solution to the last example, suppose that we start by writing the equations for each of the
three summers in Figure 6.17a:

W(s) = U(s) − a0Y (s) − a1Z(s)

Z(s) = 1

s
W(s) + b1U(s)

Y (s) = 1

s
Z(s) + b2U(s)

Substituting the expression for W(s) into the second equation, we see that

Z(s) = 1

s
[U(s) − a0Y (s) − a1Z(s)] + b1U(s)

from which

Z(s) = 1

s + a1
[−a0Y (s) + (b1s + 1)U(s)] (6.10)

Substituting Equation 6.10 into the expression for Y (s) gives

Y (s) = 1

s(s + a1)
[−a0Y (s) + (b1s + 1)U(s)] + b2U(s)

Rearranging this equation, we find that

Y (s)

U(s)
= b2s2 + (a1b2 + b1)s + 1

s2 + a1s + a0

which agrees with Equation 6.9, as found in Example 6.6.
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6.1.4 Summary

Block diagrams are an important way of representing the structure and properties of fixed linear systems.
We start the construction of a block diagram by transforming the system equations, assuming zero initial
conditions.

The blocks used in diagrams for feedback systems may contain transfer functions of any degree of
complexity. We developed a number of rules, including those for series and parallel combinations and
for the basic feedback configuration, for simplifying block diagrams.

6.1.5 Block Diagrams for Other Types of Systems

So far, we have considered block diagrams of linear, continuous-time models having one input and one
output. Because of this restriction, we can use the system’s block diagram to develop an overall transfer
function in terms of the complex Laplace variable s. For linear discrete-time models we can draw block
diagrams and do corresponding manipulations to obtain the closed-loop transfer function in terms of the
complex variable z, as used in the z-transform. We can also construct block diagrams for MIMO systems,
but we must be careful to obey the rules of matrix algebra when manipulating the diagrams to obtain
equivalent transfer functions.

System models that contain nonlinearities, such as backlash, saturation, or dead band, can also be
represented in graphical form. Typically, one uses transfer-function blocks for the linear portion of the
system and includes one or more special blocks to represent the specific nonlinear operations. While such
diagrams are useful for representing the system and for preparing computer simulations of the nonlinear
model, they cannot be analyzed in the ways that we have done in the previous two sections. Similar
comments can be made for time-varying elements.

Acknowledgments
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6.2 Signal-Flow Graphs∗

Norman S. Nise
6.2.1 Introduction

Signal-flow graphs are an alternate system representation. Unlike block diagrams of linear systems, which
consist of blocks, signals, summing junctions, and pickoff points, signal-flow graphs of linear systems
consist of only branches, which represent systems, and nodes, which represent signals. These elements
are shown in Figure 6.18a and Figure 6.18b respectively. A system (Figure 6.18a) is represented by a line
with an arrow showing the direction of signal flow through the system. Adjacent to the line we write the
transfer function. A signal (Figure 6.18b) is a node with the signal name written adjacent to the node.

Figure 6.18c shows the interconnection of the systems and the signals. Each signal is the sum of signals
flowing into it. For example, in Figure 6.18c the signal X(s) = R1(s)G1(s) − R2(s)G2(s) + R3(s)G3(s). The
signal, C3(s) = −X(s)G6(s) = − R1(s)G1(s)G6(s) + R2(s)G2(s)G6(s) − R3(s)G3(s)G6(s).

∗ Reprinted from Nise, N. S., Control Systems Engineering, 5th ed., John Wiley & Sons, Inc., Hoboken, NJ. With permission.
© 2008.
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G(s)

(a)

X(s)

(b)

R3(s)

R2(s)

R1(s)
G1(s)

–G2(s)

–G6(s)

G5(s)

G4(s)
C1(s)

C2(s)

C3(s)

X(s)

(c)

G3(s)

FIGURE 6.18 Signal-flow graph component parts: (a) system; (b) signal; and (c) interconnection of systems and
signals.

Notice that the summing of negative signals is handled by associating the negative sign with the system
and not with a summing junction as in the case of block diagrams.

6.2.2 Relationship between Block Diagrams and Signal-Flow Graphs

To show the parallel between block diagrams and signal-flow graphs, we convert some block diagram
forms to signal-flow graphs. In each case, we first convert the signals to nodes and then interconnect the
nodes with systems.

Let us convert the cascaded, parallel, and feedback forms of the block diagrams shown in Figures 6.19
through 6.21, respectively, into signal-flow graphs.

In each case, we start by drawing the signal nodes for that system. Next, we interconnect the signal
nodes with system branches. Figures 6.22a, 6.22c, and 6.22e show the signal nodes for the cascaded,
parallel, and feedback forms, respectively. Next, interconnect the nodes with branches that represent the
subsystems. This is done in Figures 6.22b, 6.22d, and 6.22f for the cascaded, parallel, and feedback forms,
respectively. For the parallel form, positive signs are assumed at all inputs to the summing junction; for
the feedback form, a negative sign is assumed for the feedback.

In the next example we start with a more complicated block diagram and end with the equivalent
signal-flow graph. Convert the block diagram of Figure 6.23 to a signal-flow graph. Begin by drawing the
signal nodes as shown in Figure 6.24a.

G1(s) G2(s)

X2(s) =
G1(s)R(s)R(s)

X1(s) =
G2(s)G1(s)R(s)

C(s) =
G3(s)G2(s)G1(s)R(s)

G3(s)

FIGURE 6.19 Cascaded subsystems.

C(s) = [±G1(s) ± G2(s) ± G3(s)]R(s)

X3(s) = R(s)G3(s)

X2(s) = R(s)G2(s)

X1(s) = R(s)G1(s)

±±

±

G3(s)

G2(s)
R(s)

G1(s)

FIGURE 6.20 Parallel subsystems.
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R(s) E(s)
G(s)

H(s)

C(s)

Plant and
controller

Feedback

Actuating
signal
(error)

Input
+

+

– Output

FIGURE 6.21 Feedback control system.

G1(s) G2(s)

G2(s)

G3(s)

G1(s)

G3(s)

X1(s)X1(s)

X1(s)

X2(s)

X2(s)

X3(s)

E(s)

X1(s)

X2(s)

X2(s)

X3(s)

R(s)R(s)

R(s)

R(s)

R(s)

R(s)
E(s)

–H(s)

1

1

1

1

C(s)C(s)

C(s)

C(s) G(s)

C(s)

C(s)

(a) (b)

(c) (d)

(e) (f )

FIGURE 6.22 Building signal-flow graphs: (a) cascaded system: nodes (from Figure 6.19); (b) cascaded system:
signal-flow graph; (c) parallel system: nodes (from Figure 6.20); (d) parallel system: signal-flow graph; (e) feedback
system: nodes (from Figure 6.21); and (f) feedback system: signal-flow graph.

Next, interconnect the nodes showing the direction of signal flow and identifying each transfer function.
The result is shown in Figure 6.24b. Notice that the negative signs at the summing junctions of the block
diagram are represented by the negative transfer functions of the signal-flow graph.

Finally, if desired, simplify the signal-flow graph to the one shown in Figure 6.24c by eliminating signals
that have a single flow in and a single flow out such as V2(s), V6(s), V7(s), and V8(s).

C(s)

H3(s)

G3(s)
V5(s)V4(s)

H2(s)

H1(s)

G2(s)G1(s)

V8(s)V7(s)

V3(s)V2(s)V1(s)

V6(s)

R(s)

–––

++++

FIGURE 6.23 Block diagram.
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–H3(s)–H2(s)

–H1(s)

1

1

(a)

(b)

(c)

1 G3(s)

V1(s) V3(s) V4(s) V5(s)

G2(s)G1(s)
C(s)R(s)

H3(s)

V8(s)

H2(s)

H1

11

–1 –1–1

1

1 G3(s)

V1(s) V2(s)

V6(s)

V3(s)

V7(s)

V4(s)

V8(s)V7(s)V6(s)

V1(s) V2(s) V3(s) V4(s) V5(s)

V5(s)

G2(s)G1(s)
C(s)

C(s)

R(s)

R(s)

FIGURE 6.24 Signal-flow graph development: (a) signal nodes; (b) signal-flow graph; and (c) simplified signal-flow
graph.

6.2.3 Mason’s Rule

Block diagram reduction requires successive application of fundamental relationships in order to arrive
at the system transfer function. On the other hand, Mason’s Rule for the reduction of signal-flow graphs
to a transfer function relating the output to the input requires the application of a single formula. The
formula was derived by S. J. Mason when he related the signal-flow graphs to the simultaneous equations
that can be written from the graph ( [1,2]).

In general, it can be complicated to implement the formula without making mistakes. Specifically, the
existence of what we later call nontouching loops increases the complexity of the formula. However, many
systems do not have nontouching loops and thus lend themselves to the easy application of Mason’s gain
formula. For these systems, you may find Mason’s Rule easier to use than block diagram reduction.

The formula has several component parts that must be evaluated. We must first be sure that the
definitions of the component parts are well understood. Then, we must exert care in evaluating the
component parts of Mason’s formula. To that end, we now discuss some basic definitions applicable to
signal-flow graphs. Later we will state Mason’s Rule and show an example.

6.2.3.1 Definitions

Loop Gain: Loop gain is the product of branch gains found by traversing a path that starts at a node and
ends at the same node without passing through any other node more than once and following
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H1(s) H2(s)

H3(s)

X1(s)X2(s)X3(s)X5(s)

G7(s)

G6(s)

G3(s) G4(s)

X4(s)

G2(s)G1(s) G5(s)
C(s)R(s)

FIGURE 6.25 Sample signal-flow graph for demonstrating Mason’s Rule.

the direction of the signal flow. For examples of loop gains, look at Figure 6.25. There are four
loop gains as follows:

1. G2(s)H1(s) (6.11a)

2. G4(s)H2(s) (6.11b)

3. G4(s)G5(s)H3(s) (6.11c)

4. G4(s)G6(s)H3(s) (6.11d)

Forward-Path Gain: Forward-path gain is the product of gains found by traversing a path from the input
node to the output node of the signal-flow graph in the direction of signal flow. Examples of
forward-path gains are also shown in Figure 6.25. There are two forward-path gains as follows:

G1(s)G2(s)G3(s)G4(s)G5(s)G7(s) (6.12a)

G1(s)G2(s)G3(s)G4(s)G6(s)G7(s) (6.12b)

Nontouching Loops: Nontouching loops are loops that do not have any nodes in common. In Figure 6.25,
loop G2(s)H1(s) does not touch loop G4(s)H2(s), loop G4(s)G5(s)H3(s), or loop G4(s)G6(s)H3(s).

Nontouching-Loop Gain: Nontouching-loop gain is the product of loop gains from nontouching loops
taken two, three, four, etc. at a time. In Figure 6.25, the product of loop gain G2(s)H1(s) and
loop gain G4(s)H2(s) is a nontouching-loop gain taken two at a time. In summary, all three of
the nontouching-loop gains taken two at a time are

1. [G2(s)H1(s)][G4(s)H2(s)] (6.13a)

2. [G2(s)H1(s)][G4(s)G5(s)H3(s)] (6.13b)

3. [G2(s)H1(s)][G4(s)G6(s)H3(s)] (6.13c)

The product of loop gains [G4(s)G5(s)H3(s)][G4(s) G6(s)H3(s)] is not a nontouching-loop gain
since these two loops have nodes in common. In our example there are no nontouching-loop
gains taken three at a time since three nontouching loops do not exist in the example.
We are now ready to state Mason’s Rule.

Mason’s Rule: The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is

G(s) = C(s)

R(s)
=
∑

k TkΔk

Δ
(6.14)

where
∑

denotes summation; k = number of forward paths; Tk = the kth forward-path gain;
Δ = 1 −∑

loop gains +∑
nontouching-loop gains taken two at a time −∑

nontouching-loop
gains taken three at a time +∑

nontouching-loop gains taken four at a time − · · · ; Δk = Δ −∑
loop gain terms in Δ touching the kth forward path. In other words, Δk is formed by eliminating
from Δ those loop gains that touch the kth forward path.
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H1(s) H2(s)

X1(s)X2(s)X3(s)X4(s)

G4(s)G3(s)G2(s)G1(s) G5(s)
C(s)R(s)

G6(s)

G7(s)

G8(s)

X5(s)

H4(s)

X6(s)

FIGURE 6.26 Signal-flow graph.

Notice the alternating signs for each component part of Δ. The following example will help clarify Mason’s
Rule.

Find the transfer function, C(s)/R(s), for the signal-flow graph in Figure 6.26. First, identify the
forward-path gains. In this example, there is only one:

G1(s)G2(s)G3(s)G4(s)G5(s) (6.15)

Second, identify the loop gains. There are four loops as follows:

1. G2(s)H1(s) (6.16a)

2. G4(s)H2(s) (6.16b)

3. G7(s)H4(s) (6.16c)

4. G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s) (6.16d)

Third, identify the nontouching-loop gains taken two at a time. From Equations 6.16a to 6.16d and
Figure 6.26, we see that loop 1 does not touch loop 2, loop 1 does not touch loop 3, and loop 2 does not
touch loop 3. Notice that loops 1, 2, and 3 all touch loop 4. Thus, the combinations of nontouching-loop
gains taken two at a time are as follows:

Loop 1 and loop 2: G2(s)H1(s)G4(s)H2(s) (6.17a)

Loop 1 and loop 3: G2(s)H1(s)G7(s)H4(s) (6.17b)

Loop 2 and loop 3: G4(s)H2(s)G7(s)H4(s) (6.17c)

Finally, the nontouching-loop gains taken three at a time are as follows:

Loops 1, 2, and 3: G2(s)H1(s)G4(s)H2(s)G7(s)H4(s) (6.18)

Now, from Equation 6.14 and its definitions, we form Δ and Δk :

Δ = 1 − [G2(s)H1(s) + G4(s)H2(s) + G7(s)H4(s)

+ G2(s)G3(s)G4(s)G5(s)G6(s)G7(s)G8(s)] + [G2(s)H1(s)G4(s)H2(s)

+ G2(s)H1(s)G7(s)H4(s) + G4(s)H2(s)G7(s)H4(s)] − [G2(s)H1(s)G4(s)H2(s)G7(s)H4(s)] (6.19)

We form Δk by eliminating from Δ those loop gains that touch the kth forward path:

Δ1 = 1 − G7(s)H4(s) (6.20)
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Equations 6.15, 6.19, and 6.20 are substituted into Equation 6.14 yielding the transfer function

G(s) = T1Δ1

Δ
= [G1(s)G2(s)G3(s)G4(s)G5(s)][1 − G7(s)H4(s)]

Δ
(6.21)

Since there is only one forward path, G(s) consists only of one term rather than the sum of terms each
coming from a forward path.

6.2.4 Signal-Flow Graphs of Differential Equations and State Equations

In this section, we show how to convert a differential equation or state-space representation to a signal-
flow graph. Consider the differential equation

d3c

dt3 + 9
d2c

dt2 + 26
dc

dt
+ 24c = 24r (6.22)

Converting to the phase-variable representation in state-space∗

ẋ1 = x2 (6.23a)

ẋ2 = x3 (6.23b)

ẋ3 = −24x1 − 26x2 − 9x3 + 24r (6.23c)

y = x1 (6.23d)

To draw the associated signal-flow graph, first identify three nodes, as in Figure 6.27a, to be the three
state variables, x1, x2, and x3. Also identify a node as the input, r, and another node as the output, y. The
first of the three state equations, ẋ1 = x2, is modeled in Figure 6.27b by realizing that the derivative of
state variable x1, which is x2, would appear to the left at the input to an integrator. Remember, division by
s in the frequency domain is equivalent to integration in the time domain. Similarly, the second equation,
ẋ2 = x3, is added in Figure 6.27c. The last of the state equations, ẋ3 = −24x1 − 26x2 − 9x3 + 24r, is added
in Figure 6.27d by forming ẋ3 at the input of an integrator whose output is x3. Finally, the output, y = x1,
is also added in Figure 6.27d completing the signal-flow graph. Notice that the state variables are outputs
of the integrators.

x1x2x3

rr y

y yrr

y1

–24

–26

x1

x1x2x3 x3 x2 x1

x2x3
–9

24

(a) (b)

(c) (d)
1
s

1
s

1
s

1
s

1
s

1
s

FIGURE 6.27 Stages in the development of a signal-flow graph in phase-variable form for the system of
Equations 6.23. (a) Place nodes; (b) form dx1/dt; (c) form dx2/dt; (d) form dx3/dt and output, y.

∗ See [3] for description of how to convert differential equations into the phase-variable representation in state space.
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6.2.5 Signal-Flow Graphs of Transfer Functions

To convert transfer functions to signal-flow graphs, we first convert the transfer function to a state-space
representation. The signal-flow graph then follows from the state equations as in the preceding section.
Consider the transfer function

G(s) = s2 + 7s + 2

s3 + 9s2 + 26s + 24
(6.24)

Converting to the phase-variable representation in state-space∗

ẋ1 = x2 (6.25a)

ẋ2 = x3 (6.25b)

ẋ3 = −24x1 − 26x2 − 9x3 + 24r (6.25c)

y = 2x1 + 7x2 + x3 (6.25d)

Following the same procedure used to obtain Figure 6.27d, we arrive at Figure 6.28. Notice that the
denominator of the transfer function is represented by the feedback paths, while the numerator of the
transfer function is represented by the linear combination of state variables forming the output.

6.2.6 A Final Example

We conclude this chapter with an example that demonstrates the application of signal-flow graphs and the
previously discussed forms to represent in state space the feedback control system shown in Figure 6.29.
We first draw the signal-flow diagram for the forward transfer function, G(s) = 100(s + 5)/[(s + 2)(s +
3)], and then add the feedback path. In many physical systems, the forward transfer function consists of
several systems in cascade. Thus, for this example, instead of representing G(s) in phase-variable form
using the methods previously described, we arrive at the signal-flow graph by considering G(s) to be the
following terms in cascade:

G(s) = 100 ∗ 1

(s + 2)
∗ 1

(s + 3)
∗ (s + 5) (6.26)

X1(s)X2(s)X3(s)
R(s) C(s)

1
s 2

7

–24

–26

–9

1

1
1
s

1
s

FIGURE 6.28 Signal-flow graph in phase-variable form for Equation 6.24.

∗ See [3] for a description of how to convert transfer functions into the phase-variable representation in state space.
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C(s)E(s)R(s) +

–

100 (s + 5)
(s + 2) (s + 3)

FIGURE 6.29 Feedback control system.

Each first-order term is of the form

Ci(s)

Ri(s)
= 1

(s + ai)
(6.27)

Cross multiplying,

(s + ai)Ci(s) = Ri(s) (6.28)

Taking the inverse Laplace transform with zero initial conditions,

dci(t)

dt
+ aici(t) = ri(t) (6.29)

Solving for
dci(t)

dt
,

dci(t)

dt
= −aici(t) + ri(t) (6.30)

Figure 6.30 shows Equation 6.30 as a signal-flow graph. Here again, a node is assumed for Ci(s) at the
output of an integrator, and its derivative formed at the input. Using Figure 6.30 as a model, we represent
the first three terms on the right of Equation 6.26 as shown in Figure 6.31a. To cascade the zero, (s + 5),
we identify the output of 100/[(s + 2)(s + 3)] as X1(s). Cascading (s + 5) yields

C(s) = (s + 5)X1(s) = sX1(s) + 5X1(s) (6.31)

Thus, C(s) can be formed from a linear combination of previously derived signals as shown in Figure 6.31a.
Finally, add the feedback and input paths as shown in Figure 6.31b.

Now, by inspection, write the state equations.

ẋ1 = −3x1 + x2 (6.32a)

ẋ2 = −2x2 + 100(r − c) (6.32b)

But from Figure 6.31b,

c = 5x1 + (x2 − 3x1) = 2x1 + x2 (6.32c)

Ri(s)
sCi(s)

1
Ci(s)

–ai

1
s

FIGURE 6.30 First-order subsystem.
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51100

–2 –3

1

1
s

X1(s)X2(s)
E(s) C(s)

1
s

511001

–2 –3

–1

1

(a)

(b)

1
s

X1(s)X2(s)E(s)
R(s) C(s)

1
s

FIGURE 6.31 Steps in drawing the signal-flow graph for the feedback system of Figure 6.29: (a) forward transfer
function and (b) closed-loop system.

Substituting Equation 6.32c into Equation 6.32b, the state equations for the system are

ẋ1 = −3x1 + x2 (6.33a)

ẋ2 = −200x1 − 102x2 + 100r (6.33b)

The output equation is the same as Equation 6.32c, or

y = c = 2x1 + x2 (6.33c)

In vector-matrix form,

ẋ =
[ −3 1
−200 −102

]
x +

[
0

100

]
r (6.34a)

y = [
2 1

]
x (6.34b)

In this chapter, we discussed signal-flow graphs. We defined them and related them to block diagrams.
We showed that signals are represented by nodes, and systems by branches. We showed how to draw
signal-flow graphs from state equations and how to use signal-flow graphs as an aid to obtaining state
equations.

6.2.7 Defining Terms

Block diagram: A representation of the interconnection of subsystems. In a linear system, the block dia-
gram consists of blocks representing subsystems; arrows representing signals; summing junc-
tions, which show the algebraic summation of two or more signals; and pickoff points, which
show the distribution of one signal to multiple subsystems.

Branches: Lines that represent subsystems in a signal-flow diagram.
Cascaded form: An interconnection of subsystems, where the output of one subsystem is the input of

the next. For linear systems with real and distinct poles (eigenvalues), this model leads to a
triangular system matrix in state-space with the poles along the diagonal.
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Companion matrix: A system matrix that contains the coefficients of the characteristic equation along
a row or column. If the first row contains the coefficients, the matrix is an upper companion
matrix; if the last row contains the coefficients, the matrix is a lower companion matrix; if the
first column contains the coefficients, the matrix is a left companion matrix; and if the last
column contains the coefficients, the matrix is a right companion matrix.

Feedback form: An interconnection of two subsystems: forward-path and feedback. The input to the
forward-path subsystem is the algebraic sum of two signals: (1) the system input and (2) the
system output operated on by the feedback subsystem.

Forward-path gain: The product of gains found by traversing a path from the input node to the output
node of a signal-flow graph in the direction of signal flow.

Linear combination: A linear combination of n variables, xi , for i = 1 to n, is given by the sum, S =
KnXn + Kn−1Xn−1 + · · · K1X1 , where each Ki is a constant.

Linear system: A system possessing the properties of superposition and homogeneity.
Loop gain: The product of branch gains found by traversing a path that starts at a node and ends at the

same node without passing through any other node more than once and following the direction
of the signal flow.

Mason’s Rule: The transfer function, C(s)/R(s), of a system represented by a signal-flow graph is

G(s) = C(s)

R(s)
=
∑

k TkΔk

Δ

where
∑

denotes summation; k = number of forward paths; Tk = the kth forward-path gain;
Δ = 1 −∑

loop gains +∑
nontouching-loop gains taken two at a time −∑

nontouching-loop
gains taken three at a time +∑

nontouching-loop gains taken four at a time − . . .; Δk = Δ −∑
loop gain terms in Δ touching the kth forward path. In other words, Δk is formed by eliminating
from Δ those loop gains that touch the kth forward path.

Nodes: Points in a signal-flow diagram that represent signals.
Nontouching-loop gain: The product of loop gains from nontouching loops taken two, three, four, etc.

at a time.
Nontouching loops: Loops that do not have any nodes in common.
Parallel form: An interconnection of subsystems, where the input is common to all subsystems and the

output is an algebraic sum of the outputs of the subsystems.
Phase-variable form: A system representation where the state variables are successive derivatives and the

system matrix is a lower companion matrix.
Signal-flow graphs: A representation of the interconnection of subsystems that form a system. The repre-

sentation consists of nodes representing signals, and lines with arrows representing subsystems.
Transfer function: The ratio of the Laplace transform of the output of a system to the Laplace transform

of the input.
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7.1 Time Response of Linear Time-Invariant Systems

Raymond T. Stefani
7.1.1 Introduction

Linear time-invariant systems∗ may be described by either a scalar nth-order linear differential equation
with constant coefficients or a coupled set of n first-order linear differential equations with constant
coefficients using state variables. The solution in either case may be separated into two components:
the zero-state response, found by setting the initial conditions to zero; and zero-input response, found by
setting the input to zero. Another division is into the forced response (having the form of the input) and
the natural response due to the characteristic polynomial.

7.1.2 Scalar Differential Equation

Suppose the system has an input (forcing function) r(t) with the resulting output being y(t). As an example
of a second-order linear differential equation with constant coefficients

d2y

dt
+ 6

dy

dt
+ 8y = dr

dt
+ 8r (7.1)

∗ This section includes excerpts from Design of Feedback Control Systems, Third Edition by Raymond T. Stefani, Clement J.
Savant, Barry Shahian, and Gene H. Hostetter, copyright 1994 by Saunders College Publishing, reprinted by permission
of the publisher.

7-1
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The Laplace transform may be evaluated where the initial conditions are taken at time 0− and y′(0−)
means the value of dy/dt at time 0−.

s2Y (s) − sy(0−)−y′(0−) + 6[sY (s) − y(0−)] + 8Y (s) = sR(s) − r(0−) + 8R(s)

Y (s)[s2 + 6s + 8] = (s + 8)R(s) + sy(0−) + y′(0−) + 6y(0−) − r(0−)
(7.2)

In Equation 7.2, the quadratic s2 + 6s + 8 is the characteristic polynomial while the first term on the
right-hand side is due to the input R(s) and the remaining terms are due to initial conditions (the initial
state). Solving for Y (s)

Y (s) =
[

s + 8

s2 + 6s + 8

]
R(s)

︸ ︷︷ ︸
zero-state response

+ sy(0−) + y′(0−) + 6y(0−) − r(0−)

s2 + 6s + 8︸ ︷︷ ︸
zero-input response

(7.3)

In Equation 7.3, the zero-state response results by setting the initial conditions to zero while the
zero-input response results from setting the input R(s) to zero. The system transfer function results from

T(s) = Y (s)

R(s)

∣∣∣∣
initial conditions=0

= s + 8

s2 + 6s + 8
(7.4)

Thus, the zero-state response is simply T(s)R(s). The denominator of T(s) is the characteristic polyno-
mial, which, in this case, has roots at −2 and −4.

To solve Equation 7.4, values must be established for the input and the initial conditions. With a
unit-step input and choices for y(0−) and y′(0−)

r(0−) = 0 R(s) = 1/s y(0−) = 10 y′(0−) = −4

Y (s) =
[

s + 8

s2 + 6s + 8

]
1

s︸ ︷︷ ︸
zero-state response

+ 10s + 56

s2 + 6s + 8︸ ︷︷ ︸
zero-input response

(7.5)

Next, the zero-state and zero-input responses can be expanded into partial fractions for the poles of
T(s) at −2 and −4 and for the pole of R(s) at s = 0.

forced
response︷︸︸︷ natural response︷ ︸︸ ︷

Y (s) = 1

s
− 1.5

s + 2
+ 0.5

s + 4︸ ︷︷ ︸
zero-state response

+ 18

s + 2
− 8

s + 4︸ ︷︷ ︸
zero-input response

(7.6)

In this case, the forced response is the term with the pole of R(s), and the natural response contains
the terms with the poles of T(s), since there are no common poles between R(s) and T(s). When there are
common poles, those multiple poles are usually assigned to the forced response.

The division of the total response into zero-state and zero-input components is a rather natural and
logical division, because these responses can easily be obtained empirically by setting either the initial
conditions or the input to zero and then obtaining each response. The forced response cannot be obtained
separately in most cases; so the division into forced and natural components is more mathematical than
practical.
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FIGURE 7.1 y(t) and components. (a) Zero-state and zero-input components. (b) Forced and natural components.

The inverse transform of Equation 7.6 is

forced
response︷︸︸︷ natural response︷ ︸︸ ︷

Y (s) = 1 − 1.5e−2t + 0.5e−4t︸ ︷︷ ︸
zero-state response

+ 18e−2t − 8e−4t︸ ︷︷ ︸
zero-input response

(7.7)

The total response is therefore

y(t) = 1 + 16.5e−2t − 7.5e−4t (7.8)

Figure 7.1 contains a plot of y(t) and its components.

7.1.3 State Variables

A linear system may also be described by a coupled set of n first-order linear differential equations, in this
case having constant coefficients.

dx

dt
= Ax + Br

y = Cx + Dr
(7.9)

where x is an n × 1 column vector. If r is a scalar and there are m outputs, then A is n × n, B is n × 1, C
is m × n, and D is m × 1. In most practical systems, D is zero because there is usually no instantaneous
output response due to an applied input. The Laplace transform can be obtained in vector form, where
I is the identity matrix:

sIX(s) − x(0−) = AX(s) + BR(s)

Y (s) = CX(s) + DR(s)
(7.10)

Solving

X(s) = (sI − A)−1BR(s)︸ ︷︷ ︸
zero-state response

+ (sI − A)−1x(0−)︸ ︷︷ ︸
zero-input response

Y (s) = [C(sI − A)−1B + D]R(s)︸ ︷︷ ︸
zero-state response

+ C(sI − A)−1x(0−)︸ ︷︷ ︸
zero-input response

(7.11)

Thus, the transfer function T(s) becomes [C(sI − A)−1B + D].
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r dx2/dt x2 = dx1/dt x1+ +
– –

6

8
+

+
y

8

∫ ∫

FIGURE 7.2 Second-order system in state variable form.

The time response can be found in two ways. The inverse Laplace transform of Equation 7.11 can be
taken, or the response can be calculated by using the state transition matrix Φ(t), which is the inverse
Laplace transform of the resolvant matrix Φ(s).

Φ(s) = (sI − A)−1 Φ(t) = L−1{Φ(s)} (7.12)

Figure 7.2 contains a second-order system in state-variable form. The system is chosen to have the
dynamics of Equation 7.1. From Figure 7.2

[
dx1/dt
dx2/dt

]
=
[

0 1
−8 −6

] [
x1

x2

]
+
[
0
1

]

y = [
8 1

] [x1

x2

] (7.13)

Thus, D is zero. The resolvant matrix is

Φ(s) = (sI − A)−1 =
[

s −1
8 s + 6

]−1

= 1

s2 + 6s + 8

[
s + 6 1
−8 s

]
(7.14)

7.1.4 Inverse Laplace Transform Approach

First, the time response for y(t) is calculated using the inverse Laplace transform approach. The transfer
function is as before since D is zero and

C(sI − A)−1B =
[
8 1

]
s2 + 6s + 8

[
s + 6 1
−8 s

] [
0
1

]
= s + 8

s2 + 6s + 8
(7.15)

Suppose a unit-step input is chosen so that R(s) is 1/s. It follows that the zero-state response of
Equation 7.11 is the same as in Equations 7.5 through 7.7 since both T(s) and R(s) are the same. Suppose
x1(0−) is 1 and x2(0−) is 2. The zero-input response becomes

C(sI − A)−1x(0−) =
[
8 1

]
s2 + 6s + 8

[
s + 6 1
−8 s

] [
1
2

]
= 10s + 56

s2 + 6s + 8
(7.16)

The zero-input response is also the same as in Equations 7.5 through 7.7 because the initial conditions
on the state variables cause the same initial conditions as were used for y; that is,

y(0−) = 8x1(0−) + x2(0−) = 8 + 2 = 10

y′(0−) = 8dx1/dt(0−) + dx2/dt(0−)

= 8x2(0−) + [−8x1(0−) − 6x2(0−) + r(0−)]
= 16 + [−8 − 12 + 0] = −4
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7.1.5 State Transition Matrix Approach

The second procedure for calculating the time response is to use the state transition matrix. Φ(s) in
Equation 7.14 may be expanded in partial fractions to obtain Φ(t)

Φ(s) =
[

(2/s + 2 − 1/s + 4) (0.5/s + 2 − 0.5/s + 4)
(−4/s + 2 + 4/s + 4) (−1/s + 2 + 2/s + 4)

]

Φ(t) =
[

(2e−2t − e−4t) (0.5e−2t − 0.5e−4t)
(−4e−2t + 4e−4t) (−e−2t + 2e−4t)

] (7.17)

Using Φ(t), the solution to Equation 7.11 is

x(t) =
∫ t

0
Φ(t − τ)Br(τ) dτ

︸ ︷︷ ︸
zero-state response

+ Φ(t)x(0−)︸ ︷︷ ︸
zero-input response

y(t) =
∫ t

0
CΦ(t − τ)Br(τ) dt + Dr(t)

︸ ︷︷ ︸
zero-state response

+ CΦ(t)x(0−)︸ ︷︷ ︸
zero-input response

(7.18)

For this example, the zero-input response for y(t) is

yzi(t) = [
8 1

] [ (2e−2t − e−4t) (0.5e−2t − 0.5e−4t)
(−4e−2t + 4e−4t) (−e−2t + 2e−4t)

][
1
2

]

= 18e−2t − 8e−4t ,

(7.19)

which agrees with Equation 7.7. The form for the zero-state response in Equation 7.18 is called a convo-
lution integral. It is therefore necessary to evaluate the integral of

CΦ(t − τ)Bu(τ) = [
8 1

] [Φ11(t − τ) Φ12(t − τ)
Φ21(t − τ) Φ22(t − τ)

] [
0
1

]
(1)

= 8Φ12(t − τ) + Φ22(t − τ)

= 3e−2(t−τ) − 2e−4(t−τ)

= 3e−2t e2τ − 2e−4t e4τ

(7.20)

After integrating with respect to τ

yzs(t) = (3/2)e−2t[e2τ]∣∣t0 − (2/4)e−4t[e4τ]∣∣t0
= 1.5e−2t[e2t − 1] − 0.5e−4t[e4t − 1]
= 1.5[1 − e−2t] − 0.5[1 − e−4t]
= 1 − 1.5e−2t + 0.5e−4t

(7.21)

which agrees with Equation 7.7.

7.1.6 Use of MATLAB

MATLAB� software produced by The Math Works Inc. provides a platform for calculating the inverse
Laplace transform and for calculating and plotting the various time response components of a linear time-
invariant system, such as those covered in this section. To use MATLAB in this context, it is necessary to
define sand t as variables and then to use the appropriate MATLAB commands. For example, the zero-
state response of the transfer function in Equation 7.6, as plotted in Figure 7.1, can be obtained by defining
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the Laplace transform in terms of s, using the ilaplace command to get the inverse Laplace transform in
terms of t and then plotting the time response using the ezplot command. The latter command requires a
vector giving minimum and maximum times, which would be coded as [0 3] to reproduce the zero-state
response of Figure 7.1.

Syms s t

zst = ilaplace((s + 8)/(s ∧ 3 + 6 ∗ s ∧ 2 + 8 ∗ s))

ezplot(zst, [0 3])
(7.22)

Similarly, the inverse Laplace transform and time response for the zero-input component may be
found by

zit = ilaplace((10 ∗ s + 6)/(s ∧ 2 + 6 ∗ s + 8))

ezplot(zit, [0 3]) (7.23)

The two components may be combined using ezplot(zst + zit, [0 3]).
When working with the state space form, the system matrices are input row by row. The system of

Equation 7.13 and Figure 7.2 may be input to MATLAB and then the transfer function of Equation 7.15
can be found.

a = [0 1; −8 − 6], b = [0 1]′
c = [8 1], d = 0

tfn = c ∗ inv(s ∗ eye(2) − a) ∗ b

(7.24)

The command eye(n) creates an n × n identity matrix, inv creates a matrix inverse and the prime
symbol used to find b creates a transpose. The inverse Laplace transform of Equation 7.21 for the zero-
state component would be found by ilaplace (tfn/s). The time response could be obtained using ezplot.

For the zero-input transfer function of Equation 7.16, inverse Laplace transform of Equation 7.19 and
time response, one could use

x0 = [1 2]′
zis = c ∗ inv(s ∗ eye(2) − a) ∗ x0

zit = ilplace( zis), ezplot(zit, [0 3])
(7.25)

The Φ(s) and Φ(t) of Equation 7.17 may be found by

phis = inv(s ∗ eye(2) − a)

phit = ilaplace(phis)
(7.26)

7.1.7 Eigenvalues, Poles, and Zeros

It has been noted that the denominator of a transfer function T(s) is the characteristic polynomial.
In the previous examples, that denominator was s2 + 6s + 8 with roots at −2 and −4. The characteristic
polynomial may also be found from the system matrix since the characteristic polynomial is |sI − A|, where
|.| means the determinant. The eigenvalues of a matrix are those s values satisfying |sI − A| = 0; hence, the
eigenvalues of A are the same as the poles of the transfer function. As in Equations 7.6 and 7.7, the poles of
T(s) establish terms present in the natural response. The coefficients of the partial fraction expansion (and,
thus, the shape of the response) depend on the numerator of T(s) which, in turn, depends on the zeros
of T(s). In fact, some zeros of T(s) can cancel poles of T(s), eliminating terms from the natural response.
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To simplify this discussion, suppose the initial conditions are set to zero, and interest is focused on the
zero-state response for a unit-step input. As one example, consider a system with a closed-loop transfer
function T1(s):

T1(s) = 6s2 + 10s + 2

(s + 1)(s + 2)
= 6(s + 0.232)(s + 1.434)

(s + 1)(s + 2)

The zero-state response for a unit-step input is

Y1(s) = 6s2 + 10s + 2

s(s + 1)(s + 2)
= 1

s
+ 2

s + 1
+ 3

s + 2

If the denominator of the transfer function (the characteristic polynomial) remains the same but the
numerator changes to 3s2 + 7s + 2, the zero-state response changes considerably due to a cancellation of
the pole at −2 by a zero at the same location:

T2(s) = 3s2 + 7s + 2

(s + 1)(s + 2)
= 3(s + 1/3)(s + 2)

(s + 1)(s + 2)

Y2(s) = 3s2 + 7s + 2

s(s + 1)(s + 2)
= 1

s
+ 2

s + 1

Similarly, if the numerator changes to 4s2 + 6s + 2, there is a cancellation of the pole at −1 by a zero
at −1.

T3(s) = 4s2 + 6s + 2

(s + 1)(s + 2)
= 4(s + 0.5)(s + 1)

(s + 1)(s + 2)

Y3(s) = 4s2 + 6s + 2

s(s + 1)(s + 2)
= 1

s
+ 3

s + 2

The time responses y1(t), y2(t), and y3(t) are shown in Figure 7.3.
In summary, the terms in the time response are determined by the poles of the transfer function

(eigenvalues of the system matrix), while the relative excitation of each term is dictated by the zeros of
the transfer function.

6

y1

y3

y2

5.5
5

4.5
4

3.5
3

2.5
2

1.5
1

0 0.5 1 1.5
t(s)

2 2.5 3

FIGURE 7.3 Time response example.
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7.1.8 Second-Order Response

Many systems are describable by a second-order linear differential equation with constant coefficients
while many other higher-order systems have complex conjugate dominant roots that cause the response
to be nearly second order. Thus, the study of second-order response characteristics is important in
understanding system behavior. The standard form for a second-order transfer function is

T(s) = ω2
n

s2 + 2ζωn + ω2
n

(7.27)

where ζ is called the damping ratio and ωn is called the undamped natural frequency. The roots of
the characteristic polynomial depend on ζ as shown in Table 7.1. When the damping ratio exceeds one
(overdamped response), there are two real roots, which are distinct; hence, the natural response contains
two exponentials with differing time constants. When the damping ratio equals one (critically damped
response), there are two equal real roots and the natural response contains one term K1 exp(−ωnt) and a
second term K2t exp(−ωnt). When 0 ≤ ζ < 1, the resulting oscillatory response is called underdamped.
The zero-state response for a unit-step input is

y(t) = 1 − (1/k)e−at cos(ωt − Θ)

k = (1 − ζ2)
1/2

Θ = tan−1(ζ/k)

a = ζωn ω = ωn(1 − ζ2)1/2

(7.28)

When the damping ratio ζ is zero (undamped behavior), the system is marginally stable and there
are complex roots ±jωn; hence, the radian frequency of the sinusoid becomes ωn, explaining the term
undamped natural frequency. When 0 < ζ < 1, the system is underdamped-stable and the radian fre-

quency becomes ω = ωn(1 − ζ2)
1/2

, called the damped natural frequency.
Figure 7.4 shows the unit-step response for various values of ζ from 0 to 1. To normalize (generalize)

these plots, the horizontal axis is ωnt. Associated with this type of response are three figures of merit:
percent overshoot, rise time, and settling time.

Percent overshoot is defined by

% overshoot = 100
max value-steady-state value

steady-state value

From Figure 7.4, note that percent overshoot varies from 0% to 100%.
Rise time, Tr, is defined as the time required for the unit-step response to rise from 10% of the steady-

state value to 90% of the steady-state value. Alternatively, rise time may be defined from 5% of the
steady-state value to 95% of the steady-state value, but the 10–90% range is used here.

Settling time, Ts, is defined as the minimum time after which the response remains within ±5% of the
steady-state value.

Figure 7.5a shows the product ωnTr versus damping ratio ζ. Figure 7.5b shows percent overshoot
versus ζ. Figure 7.5c shows the product ωnTs versus ζ. Note that Figures 7.5a and 7.5b have opposite

TABLE 7.1 Roots of a Second-Order Characteristic Polynomial

Range for ζ Type of Response Root Locations

ζ > 1 Overdamped −ζωn ± ωn(ζ2 − 1)1/2

ζ = 1 Critically damped −ωn, −ωn

0 ≤ ζ < 1 Underdamped −ζωn ± jωn(1 − ζ2)1/2
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FIGURE 7.4 Second-order zero-state unit step responses.
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FIGURE 7.5 Figures of merit for second-order zero-state unit step responses. (a) Rise time. (b) Percent overshoot.
(c) Settling time.
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slopes. As ζ diminishes from 1 to 0, the rise time drops while the percent overshoot increases. The settling
time curve of Figure 7.5c provides a trade-off between percent overshoot and rise time. As ζ drops from
1 to 0.7, the product ωnTs drops monotonically toward a minimum value. For that range of ζ values, the
time response enters a value 5% below the steady-state value at ωnTs and does not exceed the upper limit
5% above the steady-state value after ωnTs. Near ζ = 0.7, the percent overshoot is near 5%; so a small
reduction in ζ below 0.7 causes ωnTs to jump upward to a value at which the response peaks and then
enters the ±5% boundary. The segment of Figure 7.5c, as ζ drops from about 0.7 to about 0.43, is a plot of
increasing values of ωnTs, corresponding to response curves in Figure 7.4, which go through a peak value
where the derivative is zero (extremum point) prior to entering and staying within the ±5% boundary.
Additional ωnTs curve segments correspond to regions where the unit-step response curve goes through
an integer number of extrema prior to entering the ±5% boundary, which is entered alternatively from
above and below. For a damping ratio of zero, the value of ωnTs is infinite since the peak values are
undamped.

7.1.9 Defining Terms

Characteristic polynomial: Denominator of the transfer function. The roots determine terms in the
natural response.

Forced response: The part of the response of the form of the forcing function.
MATLAB: A software package produced by The Math Works Inc which facilitates calculating and

plotting the time response, among many other options, using the Controls Toolbox.
Natural response: The part of the response whose terms follow from the roots of the characteristic

polynomial.
Percent overshoot: 100 (max. value–steady-state value)/steady-state value.
Resolvant matrix: Φ(s) = [sI − A]−1.
Rise time: The time required for the unit-step response to rise from 10% of the steady-state value to 90%

of the steady-state value.
Settling time: The minimum time after which the response remains within ±5% of the steady-state

value.
State transition matrix: Φ(t) = The inverse Laplace transform of the resolvant matrix.
Zero-input response: The part of the response found by setting the input to zero.
Zero-state response: The part of the response found by setting the initial conditions to zero.

Reference

1. Stefani, R.T., Shahian, B., Savant, C.J., and Hostetter, G.H., Design of Feedback Control Systems, 4th edn.,
Oxford University Press, Oxford, New York, 2002.

Further Reading

Additional information may be found in IEEE Control Systems Mag.; IEEE Trans. Autom. Control; and
IEEE Trans. Systems, Man, and Cybern.
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7.2 Controllability and Observability

William A. Wolovich
7.2.1 Introduction

The ultimate objective of any control system∗ is to improve and often to optimize the performance of a
given dynamical system. Therefore, an obvious question that should be addressed is how do we design an
appropriate controller? Before we can resolve this question, however, it is usually necessary to determine
whether or not an appropriate controller exists; i.e., can we design a satisfactory controller?

Most physical systems are designed so that the control input does affect the complete system and, as
a consequence, an appropriate controller does exist. However, this is not always the case. Moreover, in
the multi-input/multi-output (MIMO) cases, certain control inputs may affect only part of the dynamical
behavior. For example, the steering wheel of an automobile does not affect its speed, nor does the
accelerator affect its heading; i.e., the speed of an automobile is uncontrollable via the steering wheel, and
the heading is uncontrollable via the accelerator. In certain cases, it is important to determine whether or
not complete system control is possible if one or more of the inputs (actuators) or outputs (sensors) fails
to perform as expected.

The primary purpose of this chapter is to introduce two fundamental concepts associated with dynam-
ical systems, namely controllability and observability, which enable us to resolve the “can” question for
a large class of dynamical systems. These dual concepts, which were first defined by R. E. Kalman [1]
using state-space representations, are by no means restricted to systems described in state-space form.
Indeed, problems associated with analyzing and/or controlling systems that were either uncontrollable
or unobservable were encountered long before the state-space approach to control system analysis and
design was popularized in the early 1960s.

In those (many) cases where state-space equations can be employed to define the behavior of a dynam-
ical system, controllability implies an ability to transfer the entire state of the system from any initial
state x(t0) to any final state x(tf ) over any arbitrary time interval tf − t0 > 0 through the employment of
an appropriate control input u(t) defined over the time interval. The concept of observability implies an
ability to determine the entire initial state of the system from knowledge of the input and the output y(t)
over any arbitrary time interval tf − t0 > 0. These dual concepts play a crucial role in many of the control
system design methodologies that have evolved since the early 1960s, such as pole placement, LQG, H∞
and minimum time optimization, realization theory, adaptive control, and system identification.

These dual concepts are not restricted to linear and/or time-invariant systems, and numerous technical
papers have been directed at extending controllability and observability to other classes of systems,
such as nonlinear, distributed-parameter, discrete-event, and behavioral systems. This chapter, however,
focuses on the class of linear time-invariant systems whose dynamical behavior can be described by finite
dimensional state-space equations or (equivalently) by one or more ordinary linear differential equations,
since a fundamental understanding of these two concepts should be obtained before any extensions can
be undertaken.

7.2.2 State-Space Controllability and Observability

This section deals with the controllability and observability properties of systems described by linear,
time-invariant state-space representations. In particular, consider a single-input/single-output (SISO)
linear, time-invariant system defined by the state-space representation:

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t) + Eu(t) (7.29)

∗ Excerpts and figures from Automatic Control Systems, Basic Analysis and Design, by William A. Wolovich, copyright
©1994 by Saunders College Publishing, reproduced by permission of the publisher.
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whose state matrix A has (n) distinct eigenvalues, λ1, λ2, . . . , λn, which define the poles of the system and
the corresponding modes eλi t . Such an A can be diagonalized by any one of its eigenvector matrices V .
More specifically, there exists a state transformation matrix Q = V−1 that diagonalizes A, so that if

x̂(t) = Qx(t) = V−1x(t) (7.30)

the dynamical behavior of the equivalent system in modal canonical form then is defined by the state-space
representation:

˙̂x(t) =

⎡
⎢⎢⎢⎢⎣

˙̂x1(t)
˙̂x2(t)

...
˙̂xn(t)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

λ1 0 0 . . .

0 λ2 0 . . .
...

. . .
0 0 . . . λn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
QAQ−1 = Â

⎡
⎢⎢⎢⎣

x̂1(t)
x̂2(t)

...
x̂n(t)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

B̂11

B̂21
...

B̂n1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
QB = B̂

u(t)

y(t) = [Ĉ11, Ĉ12, . . . Ĉ1n]︸ ︷︷ ︸
CQ−1 = Ĉ

⎡
⎢⎢⎢⎣

x̂1(t)
x̂2(t)

...
x̂n(t)

⎤
⎥⎥⎥⎦+ Eu(t) (7.31)

as depicted in Figure 7.6.

7.2.2.1 Controllability

If B̂k1 = 0 for any k = 1, 2, . . . , n, then the state x̂k(t) is uncontrollable by the input u(t) = u1(t), since its
time behavior is characterized by the mode eλkt , independent of u(t); i.e.,

x̂k(t) = eλk(t−t0)x̂k(t0) (7.32)

B̂11 Ĉ11

B̂21

B̂n1

Ĉ12

Ĉ1n
x̂ n(t)

ẋ1(t)

ẋ2(t)

ẋn(t)

x1(t)

λ1

λ2

λn

∫

∫

∫

u(t) = u1(t) y(t) = y1(t)

x2(t)

+

E

+

+
+

+
+

Σ

Σ

Σ

Σ

+

+

+ +

FIGURE 7.6 A state-space system in modal canonical form. (Reproduced from Wolovich, W. A., Automatic Control
Systems, Basic Analysis and Design, © 1994 by Saunders College Publishing. With permission.)
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The lack of controllability of the state x̂k(t) (or the mode eλkt) by u(t) is reflected by a completely zero
kth row of the so-called controllability matrix of the system, namely the (n × n) matrix

Ĉ def= [B̂, ÂB̂, . . . , Ân−1B̂]

=

⎡
⎢⎢⎢⎢⎣

B̂11 λ1B̂11 . . . λn−1
1 B̂11

B̂21 λ2B̂21 . . . λn−1
2 B̂21

...
...

. . .
...

B̂n1 λnB̂n1 . . . λn−1
n B̂n1

⎤
⎥⎥⎥⎥⎦ (7.33)

because Âm = Λm = diag[λi
m], a diagonal matrix for all integers m ≥ 0. Therefore, each zero kth row

element B̂k1 of B̂ implies an uncontrollable state x̂k(t), whose time behavior is characterized by the
uncontrollable mode eλkt , as well as a completely zero kth row of the controllability matrix Ĉ.∗

On the other hand, each nonzero kth row element of B̂ implies a direct influence of u(t) on x̂k(t),
and hence a controllable state x̂k(t) (or mode eλkt) and a corresponding nonzero kth row of Ĉ defined
by B̂k1[1, λk , λ2

k , . . . , λn−1
k ]. In the case (assumed here) of distinct eigenvalues, each such nonzero row of

B̂ increases the rank of Ĉ by one. Therefore, the rank of Ĉ corresponds to the total number of states or
modes that are controllable by the input u(t), which is termed the controllability rank of the system.

Fortunately, it is not necessary to transform a given state-space system to modal canonical form in
order to determine its controllability rank. In particular, Equation 7.31 implies that B = Q−1B̂, AB =
Q−1ÂQQ−1B̂ = Q−1ÂB̂, or that AmB = Q−1ÂmB̂ in general, which defines the controllability matrix of
the system defined by Equation 7.29, namely,

C def= [B, AB, . . . , An−1B] = Q−1Ĉ (7.34)

with Q−1 = V nonsingular. Therefore, the rank of C (which is equal to the rank of Ĉ) equals the controlla-
bility rank of the system. It is important to note that this result holds in the case of nondistinct eigenvalues,
as well the multi-input case where B has m columns, so that

B = [B1, B2, . . . , Bm] (7.35)

and the controllability matrix C, as defined by Equation 7.34, is an (n × nm) matrix.
In light of the preceding, any state-space system defined by Equation 7.29 is said to be completely (state

or modal) controllable if its (n × nm) controllability matrix C has full rank n. Otherwise, the system is said
to be uncontrollable, although some (<n) of its states generally will be controllable. Note that for a general
state-space system, the rank of C tells us only the number of controllable (and uncontrollable) modes, and
not their identity, an observation that holds relative to the observability properties of a system as well.

We finally observe that there are several alternative ways of establishing state-space controllability. In
particular, it is well known [2], [3] that a state-space system defined by Equation 7.29 is controllable if and
only if any one of the following (equivalent) conditions is satisfied:

• The (n) rows of eAtB, where eAt represents the (unique) state transition matrix of the system, are
linearly independent over the real field R for all t.

• The controllability grammian

Gc(t0, tf )
def=

∫ tf

t0

e−AτBBT e−AT τdτ

is nonsingular for all tf > t0.

∗ The reader should be careful not to confuse the controllability matrix Ĉ of Equation 7.33 with the output matrix Ĉ of
Equation 7.31.
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• The controllability matrix C defined by Equation 7.34 has full rank n.
• The n × (n + m) matrix [λI − A, B] has rank n at all eigenvalues λi of A or, equivalently, λI − A

and B are left coprime∗ polynomial matrices.

Since the solution to Equation 7.29 is given by

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−τ)Bu(τ) dτ (7.36)

it follows that the controllability grammian-based control input

u(t) = BT e−AT tG−1
c (t0, tf )

[
e−Atf x(tf ) − e−At0 x(t0)

]
(7.37)

transfers any initial state x(t0) to any arbitrary final state x(tf ) at any arbitrary tf > t0, an observation that
is consistent with the more traditional definition of controllability.

7.2.2.2 Observability

We next note, in light of Figure 7.6, that if Ĉ1i = 0 for any i = 1, 2, . . . n, then the state x̂i(t) is unobservable
at the output y(t) = y1(t), in the sense that the mode eλi t , which defines the time behavior of

x̂i(t) = eλi(t−t0)x̂i(t0) (7.38)

does not appear at the output y(t). This lack of observability of the state x̂i(t) (or the mode eλi t) at y(t)
is reflected by a completely zero (ith) column of the so-called observability matrix of the system, namely,
the (n × n) matrix

Ô def=

⎡
⎢⎢⎢⎢⎣

Ĉ
ĈÂ

...
ĈÂn−1

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

Ĉ11 Ĉ12 . . . Ĉ1n

λ1Ĉ11 λ2Ĉ12 . . . λnĈ1n
...

...
. . .

...
λn−1

1 Ĉ11 λn−1
2 Ĉ12 . . . λn−1

n Ĉ1n

⎤
⎥⎥⎥⎥⎦ (7.39)

analogous to a completely zero (kth) row of Ĉ in Equation 7.33.
On the other hand, each nonzero ith-column element Ĉ1i of Ĉ implies a direct influence of x̂i(t) on y(t),

hence an observable state x̂i(t) or mode eλi t , and a corresponding nonzero ith column of Ô defined by

[1, λi , λ2
i , . . . , λn−1

i ]T
Ĉ1i . In the case (assumed here) of distinct eigenvalues, each such nonzero element

of Ĉ increases the rank of Ô by one. Therefore, the rank of Ô corresponds to the total number of states or
modes that are observable at the output y(t), which is termed the observability rank of the system.

As in the case of controllability, it is not necessary to transform a given state-space system to modal
canonical form in order to determine its observability rank. In particular, Equation 7.31 implies that
C = ĈQ, CA = ĈQQ−1ÂQ = ĈÂQ, or that CAm = ĈÂmQ in general, which defines the observability
matrix of the system defined by Equation 7.29, namely

O def=

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦= ÔQ (7.40)

with Q = V−1 nonsingular. Therefore, the rank of O (which is equal to the rank of Ô) equals the observ-
ability rank of the system. It is important to note that this result holds in the case of nondistinct eigenvalues,

∗ Two polynomials are called coprime if they have no common roots. Two polynomial matrices P(λ) and R(λ), which have
the same number of rows, are left coprime if the rank of the composite matrix [P(λ), R(λ)] remains the same for all
(complex) values of λ. Right coprime polynomial matrices, which have the same number of columns, are defined in an
analogous manner.
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as well as the multi-output case where C has p rows, so that

C =

⎡
⎢⎢⎢⎣

C1

C2
...

Cp

⎤
⎥⎥⎥⎦ (7.41)

and the observability matrix O, as defined by Equation 7.40, is a (pn × n) matrix. In view of the preceding,
a state-space system defined by Equation 7.29 is said to be completely (state or modal) observable if its
(pn × n) observability matrix O has full rank n. Otherwise, the system is said to be unobservable, although
some (<n) of its states generally are observable.

As in the case of controllability, there are several alternative ways of establishing state-space observ-
ability. In particular, it is well known [2,3] that a state-space system defined by Equation 7.29 is observable
if and only if any one of the following (equivalent) conditions is satisfied:

• The (n) columns of CeAt are linearly independent over R for all t.
• The observability grammian

Go(t0, tf )
def=

∫ tf

t0

eAT τCT CeAτ dτ

is nonsingular for all tf > t0.
• The observability matrix O defined by Equation 7.40 has full rank n.

• The (n + p) × n matrix

[
λI − A

C

]
has rank n at all eigenvalues λi of A or, equivalently, λI − A and

C are right coprime polynomial matrices.

If a state-space system is observable, and if

f (t)
def= y(t) − C

∫ t

t0

eA(t−τ)Bu(τ) dτ − Eu(t) (7.42)

it then follows that its initial state can be determined via the relation

x(t0) = eAt0 G−1
o (t0, tf )eAT t0

∫ tf

t0

eAT (t−t0)CT f (t) dt (7.43)

which is consistent with the more traditional definition of observability.

7.2.2.3 Component Controllability and Observability

In the multi-input and/or multi-output cases, it often is useful to determine the controllability and
observability rank of a system relative to the individual components of its input and output. Such a
determination would be important, for example, if one or more of the actuators or sensors were to fail.

In particular, suppose the system defined by Equation 7.29 has m > 1 inputs, u1(t), u2(t), . . . , um(t),
so that the input matrix B has m columns, as in Equation 7.35. If we disregard all inputs except for uj(t),
the resulting controllability matrix associated with input uj(t) is defined as the (n × n) matrix

Cj
def= [Bj, ABj, . . . , An−1Bj] (7.44)

The rank of each such Cj would determine the number of states or modes that are controllable by input
component uj(t).
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In a dual manner, suppose the given state-space system has p > 1 outputs, y1(t), y2(t), . . . yp(t), so that
the output matrix C has p rows, as in Equation 7.41. If we disregard all outputs except yq(t), the resulting
observability matrix associated with output yq(t) is defined as the (n × n) matrix

Oq
def=

⎡
⎢⎢⎢⎣

Cq

CqA
...

CqAn−1

⎤
⎥⎥⎥⎦ (7.45)

As in the case of controllability, the rank of each such Oq determines the number of states or modes that
are observable by output component yq(t).

Example 7.1:

To illustrate the preceding, we next note that the linearized equations of motion of an orbiting
satellite can be defined by the state-space representation [4]

⎡
⎢⎢⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎣

0 1 0 0
3ω2 0 0 2ω

0 0 0 1
0 −2ω 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦

︸ ︷︷ ︸
x(t)

+

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B

[
u1(t)
u2(t)

]
︸ ︷︷ ︸

u(t)

with a defined output
[

y1(t)
y2(t)

]
︸ ︷︷ ︸

y(t)

=
[

1 0 0 0
0 0 1 0

]
︸ ︷︷ ︸

C

x(t)

The reader can verify that the (n × nm = 4 × 8) controllability matrix C = [B, AB, A2B, A3B] has full
rank 4 = n in this case, so that the entire state is controllable using both inputs. However, since

C1 = [B1, AB1, A2B1, A3B1] =

⎡
⎢⎢⎣

0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω 0
0 −2ω 0 2ω3

⎤
⎥⎥⎦

is singular (i.e., the determinant of C1, namely | C1 |= 4ω4 − 4ω4 = 0, with rank C1 = 3 < 4 = n,) it
follows that one of the “states” cannot be controlled by the radial thruster u1(t) alone, which would
be unfortunate if the tangential thruster u2(t) were to fail.

We next note that

C2 = [B2, AB2, A2B2, A3B2] =

⎡
⎢⎢⎣

0 0 2ω 0
0 2ω 0 −2ω3

0 1 0 −4ω2

1 0 −4ω2 0

⎤
⎥⎥⎦

is nonsingular, since | C2 |= 4ω4 − 16ω4 = −12ω4 �= 0, so that complete state control is possible by
the tangential thruster u2(t) alone if the radial thruster u1(t) were to fail.

Insofar as observability is concerned, y1(t) = C1x(t) = x1(t) = r(t) − d represents the radial deviation
of r(t) from a nominal radius d = 1, while output y2(t) = C2x(t) = x3(t) = α(t) − ωt represents the
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tangential deviation of α(t) from a nominal angular position defined by ωt. The reader can verify that
the (pn × n = 8 × 4) observability matrix O has full rank n = 4 in this case, so that the entire state is
observable using both outputs. However, since

O1 =

⎡
⎢⎢⎣

C1

C1A
C1A2

C1A3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0

3ω2 0 0 2ω

0 −ω2 0 0

⎤
⎥⎥⎦

is clearly singular (because its third column is zero), with rank O1 = 3 < 4 = n, it follows that one of the
“states” cannot be observed by y1(t) alone.

We finally note that

O2 =

⎡
⎢⎢⎣

C2

C2A
C2A2

C2A3

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 −2ω 0 0

−6ω3 0 0 −4ω2

⎤
⎥⎥⎦

is nonsingular, since |O2| = −12ω4 �= 0, so that the entire state can be observed by y2(t) alone.

7.2.2.4 MIMO Case

In the general MIMO case, the explicit modal controllability and observability properties of a system with
distinct eigenvalues can be determined by transforming the system to modal canonical form. In particular,
a zero in any kth row of column B̂j of the input matrix B̂ implies the uncontrollability of state x̂k(t) (or the
mode eλkt) by uj(t). Furthermore, a completely zero kth row of B̂ implies the complete uncontrollability of
state x̂k(t) (or the mode eλkt) with respect to the entire vector input u(t). Each such zero row of B̂ implies
a corresponding zero row of Ĉ, thereby reducing the rank of the (n × nm) controllability matrices Ĉ and
C by one. The number of controllable modes therefore is given by the rank of Ĉ or C, the controllability
rank of the system.

Dual results hold with respect to the observability properties of a system. In particular, a zero in any ith
column of row Ĉq of the output matrix Ĉ implies the unobservability of state x̂i(t) (or the mode eλi t) by
yq(t). Furthermore, a completely zero ith column of Ĉ implies the complete unobservability of state x̂i(t)
(or the mode eλi t) with respect to the entire vector output y(t). Each such zero column of Ĉ implies a
corresponding zero column of Ô, thereby reducing the rank of the (pn × n) observability matrices Ô and
O by one. The number of observable modes therefore is given by the rank of Ô or O, the observability
rank of the system. Section 2.6 of [5] contains a MIMO example that illustrates the preceding.

7.2.3 Differential Operator Controllability and Observability

Suppose the defining differential equations of a dynamical system are in the differential operator form

a(D)z(t) = b(D)u(t)

y(t) = c(D)z(t) + e(D)u(t) (7.46)

where a(D), b(D), c(D), and e(D) are polynomials∗ in the differential operator D = d
dt , with a(D) a monic

polynomial of degree n, which defines the order of this representation, and z(t) is a single-valued function
of time called the partial state. We often find it convenient to “abbreviate” Equation 7.46 by the polynomial
quadruple {a(D), b(D), c(D), e(D)}; i.e., {a(D), b(D), c(D), e(D)} ⇐⇒ Equation 7.46.

∗ We will later allow both b(D) and c(D) to be polynomial vectors, thereby enlarging the class of systems considered beyond
the SISO case defined by Equation 7.46.
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7.2.3.1 An Equivalent State-Space Representation

We first show that Equation 7.46 has an equivalent state-space representation that can be determined
directly by inspection of a(D) and b(D) when deg[b(D)] < n = deg[a(D)]. In particular, suppose we
employ the coefficients of

a(D) = Dn + an−1Dn−1 + · · · + a1D + a0

and

b(D) = bn−1Dn−1 + · · · + b1D + b0

in order to define the following state-space system:

⎡
⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...
ẋn(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . −a0

1 0 0 . . . −a1

0 1 0 . . .
...

...
. . .

...
0 0 . . . 1 −an−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

+

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

u(t) (7.47)

with

z(t)
def= xn(t) = [0 0 . . . 0 1]x(t)

def= Czx(t) (7.48)

Since A is a (right column) companion matrix, the characteristic polynomial of A is given by

|λI − A| = λn + an−1λ
n−1 + · · · + a1λ + a0 = a(λ) (7.49)

Therefore, the n zeros of a(λ) correspond to the n eigenvalues λi of A, which define the system modes eλi t .
As in the previous section, we assume that these n eigenvalues of A are distinct.

In terms of the differential operator D, Equation 7.47 can be written as

⎡
⎢⎢⎢⎢⎢⎣

D 0 0 . . . a0

−1 D 0 . . . a1

0 −1 D . . . a2
...

. . .
...

0 0 . . . −1 D + an−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(DI−A)

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

=

⎡
⎢⎢⎢⎣

b0

b1
...

bn−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
B

u(t) (7.50)

If we now premultiply Equation 7.50 by the row vector [1 D D2 . . . Dn−1], noting that xn(t) = z(t), we
obtain the relation

[0 0 . . . 0 a(D)]

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦= a(D)z(t)

= b(D)u(t) (7.51)

thereby establishing the equivalence of the state-space system defined by Equation 7.47 and the partial
state/input relation a(D)z(t) = b(D)u(t) of Equation 7.46.
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Since xn(t) = z(t), in light of Equation 7.48, Equation 7.47 implies that

Dz(t) = ẋn(t) = xn−1(t) − an−1xn(t) + bn−1u(t)

D2z(t) = ẋn−1(t) − an−1ẋn(t) + bn−1u̇(t)

= xn−2(t) − an−2xn(t) + bn−2u(t) − an−1[xn−1(t) − an−1xn(t) + bn−1u(t)] + bn−1u̇(t)

etc., which enables us to express the output relation of Equation 7.46, namely,

y(t) = c(D)z(t) + e(D)u(t) = c(D)xn(t) + e(D)u(t)

as a function of x(t) and u(t) and its derivatives. As a consequence,

y(t) = Cx(t) + E(D)u(t) (7.52)

for some constant (1 × n) vector C and a corresponding polynomial E(D).
We have therefore established a complete equivalence relationship between the differential operator

representation of Equation 7.46 and the state-space representation defined by Equations 7.47 and 7.52,
with E expanded to E(D) (if necessary) to include derivatives of the input. We denote this equivalence
relationship as

{A, B, C, E(D)}︸ ︷︷ ︸
of Equations 7.47 and 7.52

equiv⇐⇒ {a(D), b(D), c(D), e(D)}︸ ︷︷ ︸
of Equation 7.46

(7.53)

7.2.3.2 Observable Canonical Forms

If c(D) = 1 in Equation 7.46, so that

a(D)z(t) = b(D)u(t); y(t) = z(t) + e(D)u(t) (7.54)

the equivalent state-space system defined by Equations 7.47 and 7.52 is characterized by an output matrix
C = Cz = [0 0 . . . 0 1] and an E(D) = e(D) in Equation 7.52; i.e.,

y(t) = [0 0 . . . 0 1]︸ ︷︷ ︸
C = Cz

x(t) + E(D)︸︷︷︸
e(D)

u(t) (7.55)

Therefore, Equations 7.47 and 7.55 represent a state-space system equivalent to the differential operator
system defined by Equation 7.54. We denote this equivalence relationship as

{A, B, C, E(D)}︸ ︷︷ ︸
of Equations 7.47 and 7.55

equiv⇐⇒ {a(D), b(D), c(D) = 1, e(D)}︸ ︷︷ ︸
of Equation 7.54

(7.56)

Moreover, both of these representations are completely observable. In particular, the differential operator
representation is observable because a(D) and c(D) = 1 are coprime,∗ and the state-space representation
is observable because its observability matrix

O =

⎡
⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAn−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0 1
0 . . . 1 ∗
... ∗ ...
0 1 . . . ∗
1 ∗ . . . ∗

⎤
⎥⎥⎥⎥⎥⎦

(7.57)

(where ∗ denotes an irrelevant scalar) is nonsingular.

∗ We formally establish this condition for differential operator observability later in this section.
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u(t)

b0

a0

b1

a1

bn –1 E(D)

xn –1(t)

an –1

ẋ1(t) ẋ2(t) ẋn(t) xn(t) y(t)x1(t) x2(t)+ +
Σ Σ Σ Σ∫ ∫ ∫

–

+ + + +
+

– –

FIGURE 7.7 A state-space system in observable canonical form. (Reproduced from Wolovich, W. A., Automatic
Control Systems, Basic Analysis and Design, © 1994 by Saunders College Publishing. With permission.)

Note further that the {A, C} pair of Equations 7.47 and 7.55 is in a special canonical form. In particular,
A is a right column companion matrix and C is identically zero except for a 1 in its right-most column.
In light of these observations, we say that both of the representations defined by Equation 7.56 are
in observable canonical form. Figure 7.7 depicts a block diagram of a state-space system in observable
canonical form, as defined by Equations 7.47 and 7.55.

7.2.3.3 Differential Operator Controllability

Because of the right-column companion form structure of A in Equation 7.47, it follows that in the case
(assumed here) of distinct eigenvalues,∗ the vector [1 λi λ2

i . . . λn−1
i ] is a row eigenvector of A in the sense

that

[1 λi λ2
i . . . λn−1

i ]A = λi[1 λi λ2
i . . . λn−1

i ] (7.58)

for each i = 1, 2, . . . n. Therefore, the transpose of a Vandermonde matrix V of n column eigenvectors of
A, namely,

V T =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
λ1 λ2 . . . λn

λ2
1 λ2

2 . . . λ2
n

...
...

...
λn−1

1 λn−1
2 . . . λn−1

n

⎤
⎥⎥⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎣

1 λ1 λ2
1 . . . λn−1

1
1 λ2 λ2

2 . . . λn−1
2

...
...

...
...

1 λn λ2
n . . . λn−1

n

⎤
⎥⎥⎥⎦ (7.59)

diagonalizes A. Otherwise stated, a transformation of state defined by x̂(t) = V T x(t) reduces the state-
space system defined by Equation 7.47 to the modal canonical form⎡

⎢⎢⎢⎢⎣

˙̂x1(t)
˙̂x2(t)

...
˙̂xn(t)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

λ1 0 0 . . .

0 λ2 0 . . .
...

. . .
0 0 . . . λn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
V T AV−T =Â=diag[λi]

⎡
⎢⎢⎢⎣

x̂1(t)
x̂2(t)

...
x̂n(t)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

b(λ1)
b(λ2)

...
b(λn)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
V T B

u(t) (7.60)

with the elements of V T B given by b(λi) because

[1 λi λ2
i . . . λn−1

i ]B = b(λi), for i = 1, 2, . . . , n. (7.61)

In light of the results presented in the previous section, and Figure 7.6 in particular, each x̂i(t)
is controllable if and only if b(λi) �= 0 when a(λi) = 0. Therefore, the state-space system defined by

∗ Although the results presented hold in the case of nondistinct eigenvalues as well.
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Equation 7.47 is completely (state or modal) controllable if and only if the polynomials a(λ) and b(λ), or
the differential operator pair a(D) and b(D), are coprime.

When this is not the case, every zero λk of a(λ), which also is a zero of b(λ), implies an uncontrollable
state x̂k(t) = [1 λk λ2

k . . . λn−1
k ]x(t), characterized by an uncontrollable mode eλkt . Moreover, each such

λk reduces the controllability rank of the system by one. The controllability properties of a dynamical
system in differential operator form therefore can be completely specified by the (zeros of the) polynomials
a(D) and b(D) of Equation 7.46, independent of any state-space representation.

7.2.3.4 Controllable Canonical Forms

When b(D) = 1 and deg[c(D)] < n = deg[a(D)], the differential operator system defined by Equation 7.46,
namely,

(Dn + an−1Dn−1 + · · · + a1D + a0)︸ ︷︷ ︸
a(D)

z(t) = u(t)

y(t) = (cn−1Dn−1 + · · · + c1D + c0)︸ ︷︷ ︸
c(D)

z(t) + e(D)u(t) (7.62)

has an alternative, equivalent state-space representation, which can be determined directly by inspection
of a(D) and c(D).

In particular, suppose we employ the coefficients of a(D) and c(D) to define the following state-space
system:

⎡
⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)

...
ẋn(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ(t)

=

⎡
⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
−a0 −a1 . . . −an−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
x(t)

+

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦

︸︷︷︸
B

u(t)

y(t) = [c0 c1 . . . cn−1]︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦+ E(D)︸︷︷︸

e(D)

u(t) (7.63)

Since A is a (bottom row) companion matrix, the characteristic polynomial of A is given by

|λI − A| = λn + an−1λ
n−1 + · · · + a1λ + a0 = a(λ) (7.64)

as in Equation 7.49. Therefore, the n zeros of a(λ) correspond to the n eigenvalues λi of A, which define
the system modes eλi t .

If z(t)
def= x1(t) in Equation 7.63, it follows that Dz(t) = ẋ1(t) = x2(t), D2z(t) = ẋ2(t) =

x3(t), . . . Dn−1z(t) = ẋn−1(t) = xn(t), or that

⎡
⎢⎢⎢⎣

1
D
...

Dn−1

⎤
⎥⎥⎥⎦ z(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...
xn(t)

⎤
⎥⎥⎥⎦= x(t) (7.65)
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The substitution of Equation 7.65 for x(t) in Equation 7.63 therefore implies that

⎡
⎢⎢⎢⎣

D −1 0 . . . 0
0 D −1 . . . 0
...

...
. . .

...
a0 a1 . . . D + an−1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
D
...

Dn−1

⎤
⎥⎥⎥⎦ z(t) =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ u(t)

or that

a(D)z(t) = u(t)

y(t) = Cx(t) + E(D)u(t) = c(D)z(t) + e(D)u(t) (7.66)

thus establishing the equivalence of the two representations. We denote this equivalence relationship as

{A, B, C, E(D)}︸ ︷︷ ︸
of Equation 7.63

equiv⇐⇒ {a(D), b(D) = 1, c(D), e(D)}︸ ︷︷ ︸
of Equation 7.62

(7.67)

Note that both of the representations defined by Equation 7.67 are completely controllable. In particular,
the differential operator representation is controllable because a(D) and b(D) = 1 clearly are coprime,
and the state-space representation is controllable because its controllability matrix, namely,

C = [B, AB, . . . , An−1B] =

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0 1
0 . . . 1 ∗
... ∗ ...
0 1 . . . ∗
1 ∗ . . . ∗

⎤
⎥⎥⎥⎥⎥⎦

(7.68)

(where ∗ denotes an irrelevant scalar) is nonsingular.
Furthermore, the {A, B} pair of Equation 7.63 is in a special canonical form. In particular, A is a

bottom row companion matrix and B is identically zero except for the 1 in its bottom row. In light of
these observations, we say that both of the representations defined by Equation 7.67 are in controllable
canonical form. Figure 7.8 depicts a block diagram of a state-space system in controllable canonical form,
as defined by Equation 7.63.

u(t)

E(D)

cn –1

an –1 a1 a0

c1

c0
xn(t) x2(t) x1(t) y(t)

+

+ ẋ n(t) ẋ 2(t) ẋ 1(t)

–

+

+ + + +

+

+

= + +

Σ

Σ

Σ Σ

∫ ∫ ∫ Σ

Σ

FIGURE 7.8 A state-space system in controllable canonical form. (Reproduced from Wolovich, W. A., Automatic
Control Systems, Basic Analysis and Design, Saunders College Publishing, Boston, MA. With permission. © 1994.)
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7.2.3.5 Differential Operator Observability

Because of the bottom row companion form structure of A in Equation 7.63, it follows that for each

i = 1, 2, . . . n,

⎡
⎢⎢⎢⎣

1
λi
...

λn−1
i

⎤
⎥⎥⎥⎦ is a column eigenvector of A in the sense that

A

⎡
⎢⎢⎢⎣

1
λi
...

λn−1
i

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

1
λi
...

λn−1
i

⎤
⎥⎥⎥⎦λi (7.69)

Therefore, if V is a Vandermonde matrix of n column eigenvectors of A, as in Equation 7.59, it follows
that its inverse V−1 diagonalizes A. Otherwise stated, a transformation of state defined by x̂(t) = V−1x(t)
reduces the state-space system defined by Equation 7.63 to the following modal canonical form:

⎡
⎢⎢⎢⎢⎣

˙̂x1(t)
˙̂x2(t)

...
˙̂xn(t)

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

λ1 0 0 . . .

0 λ2 0 . . .
...

. . .
0 0 . . . λn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
V−1AV=Â=diag[λi]

⎡
⎢⎢⎢⎣

x̂1(t)
x̂2(t)

...
x̂n(t)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

b̂0

b̂1
...

b̂n−1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
V−1B

u(t)

y(t) = [c(λ1), c(λ2), . . . c(λn)]︸ ︷︷ ︸
CV

⎡
⎢⎢⎢⎣

x̂1(t)
x̂2(t)

...
x̂n(t)

⎤
⎥⎥⎥⎦+ E(D)u(t) (7.70)

with the elements of CV given by c(λi) because

C

⎡
⎢⎢⎢⎢⎢⎣

1
λi

λ2
i
...

λn−1
i

⎤
⎥⎥⎥⎥⎥⎦

= c(λi), for i = 1, 2, . . . n (7.71)

In light of the results presented in the previous section, and Figure 7.6 in particular, each x̂i(t) is
observable if and only if c(λi) �= 0. Therefore, the state-space system defined by Equations 7.47 and 7.52
is completely (state or modal) observable if and only if the polynomials a(λ) and c(λ),or the differential
operator pair a(D) and c(D), are coprime.

When this is not the case, every zero λk of a(λ), which is also a zero of c(λ), implies an unobservable state
x̂k(t), characterized by an uncontrollable mode eλkt . Moreover, each such λk reduces the observability
rank of the system by one. The observability properties of a dynamical system in differential operator form
therefore can be completely specified by the (zeros of the) polynomials a(D) and c(D) of Equation 7.46,
independent of any state-space representation.
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7.2.3.6 The MIMO Case

Although we initially assumed that Equation 7.46 defines a SISO system, it can be modified to include
certain MIMO systems as well. In particular, a vector input

u(t) =

⎡
⎢⎢⎢⎣

u1(t)
u2(t)

...
um(t)

⎤
⎥⎥⎥⎦ (7.72)

can be accommodated by allowing the polynomial b(D) in Equation 7.46 to be a row vector of polynomials,
namely,

b(D) = [b1(D), b2(D), . . . , bm(D)] (7.73)

Each polynomial element of b(D) then defines a corresponding real (n × 1) column of the input matrix B
of an equivalent state-space system, analogous to that defined by Equation 7.47.

In a dual manner, a vector output

y(t) =

⎡
⎢⎢⎢⎣

y1(t)
y2(t)

...
yp(t)

⎤
⎥⎥⎥⎦ (7.74)

can be accommodated by allowing the polynomial c(D) in Equation 7.46 to be a column vector of
polynomials, namely,

c(D) =

⎡
⎢⎢⎢⎣

c1(D)
c2(D)

...
cp(D)

⎤
⎥⎥⎥⎦ (7.75)

Of course, e(D) also is a vector or matrix of polynomials in these cases. Each polynomial element of
c(D) then defines a corresponding real (1 × n) row of the output matrix C of an equivalent state-space
system, analogous to that defined by Equation 7.52. A block diagram of such a MIMO system is depicted
in Figure 7.9.

u(t)
b(D) = [b1(D), b2(D), · · · , bm(D)]

e(D)

1 z(t)
a(D) c(D) = Σ

c1(D)
c2(D)

cp(D)

···

+ +
y(t)

FIGURE 7.9 A MIMO differential operator system. (Reproduced from Wolovich, W. A., Automatic Control Systems,
Basic Analysis and Design, Saunders College Publishing, Boston, MA. With permission. © 1994.)
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Example 7.2:

To illustrate the preceding, consider a dynamical system defined by the (two-input/two-output)
differential equation

d4z(t)

dt4 + 2
d3z(t)

dt3 − 6
d2z(t)

dt2 − 22
dz(t)

dt
− 15z(t) = d2u1(t)

dt2 + 4
du1(t)

dt
+ 5u1(t) + d2u2(t)

dt2 − u2(t)

with

y1(t) = −2
dz(t)

dt
+ 6z(t)

and

y2(t) = − dz(t)
dt

− z(t)

This system can readily be placed in a MIMO differential operator form analogous to that defined by
Equation 7.46, namely,

(D4 + 2D3 − 6D2 − 22D − 15)︸ ︷︷ ︸
a(D)

z(t) = [D2 + 4D + 5, D2 − 1]︸ ︷︷ ︸
b(D)=[b1(D), b2(D)]

[
u1(t)
u2(t)

]
︸ ︷︷ ︸

u(t)

y(t) =
[

y1(t)
y2(t)

]
=
[

c1(D)
c2(D)

]
z(t) =

[−2D + 6
−D − 1

]
︸ ︷︷ ︸

c(D)

z(t)

Since a(D) can be factored as

a(D) = (D + 1)(D − 3)(D2 + 4D + 5)

= (D + 1)(D − 3)(D + 2 − j)(D + 2 + j)

the system modes are defined by the (n = 4) zeros of a(D), namely, −1, +3, and −2 ± j.

We next note that b1(D) = D2 + 4D + 5, which is a factor of a(D) as well. Therefore, the modes
e(−2+j)t and e(−2−j)t , which imply the real-valued modes e−2t sin t and e−2t cos t, are uncontrollable
by u1(t). Moreover, since b2(D) = (D + 1)(D − 1), the mode e−t is uncontrollable by u2(t). Therefore,
the remaining mode e3t is the only one that is controllable by both inputs. Since all of the modes
are controllable by at least one of the inputs, the system is completely (state or modal) controllable
by the vector input u(t). This latter observation also holds because a(D) and the polynomial vector
b(D) = [b1(D), b2(D)] are coprime; i.e., none of the zeros of a(D) are also zeros of both b1(D) and b2(D).

We further note that c1(D) = −2(D − 3) while c2(D) = −(D + 1). Therefore, the mode e3t is unob-
servable by y1(t), while e−t is unobservable by y2(t). Since all of the modes are observable by at least one
of the outputs, the system is completely (state or modal) observable by the vector output y(t). This latter
observation also holds because a(D) and the polynomial vector c(D) are coprime; i.e., none of the zeros
of a(D) are also zeros of both c1(D) and c2(D).

In the general p-output, m-input differential operator case, a(D) in Equation 7.46 could be a (q × q)
polynomial matrix, with z(t) a q-dimensional partial state vector [2] [3]. The zeros of the determinant of
a(D) would then define the (n) poles of the MIMO system and its corresponding modes. Moreover, b(D),
c(D) and e(D) would be polynomial matrices in D of dimensions (q × m), (p × q) and (p × m), respectively.
In such cases, the controllability and observability properties of the system can be determined directly in
terms of the defining polynomial matrices.
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In particular, as shown in [2], a(D) and b(D) always have a greatest common left divisor, namely
a nonsingular polynomial matrix gl(D) that is a left divisor of both a(D) and b(D) in the sense that
a(D) = gl(D)â(D) and b(D) = gl(D)b̂(D), for some appropriate pair of polynomial matrices, â(D) and
b̂(D). Furthermore, the determinant of gl(D) is a polynomial of maximum degree whose zeros define all of
the uncontrollable modes of the system.

If the degree of |gl(D)| is zero, then the following (equivalent) conditions hold:

• gl(D) is a unimodular matrix∗.
• a(D) and b(D) are left coprime.
• The differential operator system is controllable.

The astute reader will note that a nonunimodular gl(D) implies a lower-order differential operator
representation between z(t) and u(t) than that defined by Equation 7.46, namely, â(D)z(t) = b̂(D)u(t),
which implies a corresponding pole-zero “cancellation” relative to the transfer function matrix relation-
ship between the partial state and the input.

By duality, a(D) and c(D) always have a greatest common right divisor gr(D), whose determinant defines
all of the unobservable modes of the system. If the degree of |gr(D)| is zero, then the following (equivalent)
conditions hold:

• gr(D) is a unimodular matrix.
• a(D) and c(D) are right coprime.
• The differential operator system is observable.

The astute reader will note that a nonunimodular gl(D) or gr(D) implies a lower-order differential
operator representation between z(t) and u(t) or y(t) than that defined by Equation 7.46. For example, if
gl(D) is nonunimodular, then â(D)z(t) = b̂(D)u(t), which implies a corresponding pole-zero “cancella-
tion” relative to the transfer function matrix relationship between the partial state and the input. A dual
observation holds when gr(D) is nonunimodular.

The preceding observations, which extend the notions of controllability and observability to a more
general class of differential operator systems, are fully developed and illustrated in a number of references,
such as [2] and [3].
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8.1 The Routh–Hurwitz Stability Criterion

Robert H. Bishop and Richard C. Dorf
8.1.1 Introduction

In terms of linear systems, we recognize that the stability requirement may be defined in terms of the
location of the poles of the closed-loop transfer function. Consider a single-input, single-output closed-
loop system transfer function given by

T(s) = p(s)

q(s)
= K

∏M
i=1(s + zi)∏Q

k=1(s + σk)
∏R

m=1

(
s2 + 2αms + α2

m + ω2
m

) , (8.1)

where q(s) is the characteristic equation whose roots are the poles of the closed-loop system. The output
response for an impulse function input is then

c(t) =
Q∑

k=1

Ake−σkt +
R∑

m=1

Bm

(
1

ωm

)
e−αmt sin ωmt. (8.2)

To obtain a bounded response to a bounded input, the poles of the closed-loop system must be in the left-
hand portion of the s-plane (i.e., σk > 0 and αm > 0). A necessary and sufficient condition that a feedback

8-1
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system be stable is that all the poles of the system transfer function have negative real parts. We will call
a system not stable if not all the poles are in the left half-plane. If the characteristic equation has simple
roots on the imaginary axis (jω-axis) with all other roots in the left half-plane, the steady-state output
is sustained oscillations for a bounded input, unless the input is a sinusoid (which is bounded) whose
frequency is equal to the magnitude of the jω-axis roots. For this case, the output becomes unbounded.
Such a system is called marginally stable, since only certain bounded inputs (sinusoids of the frequency
of the poles) cause the output to become unbounded. For an unstable system, the characteristic equation
has at least one root in the right half of the s-plane or repeated jω-axis roots; for this case, the output
becomes unbounded for any input.

8.1.2 The Routh–Hurwitz Stability Criterion

The discussion and determination of stability has occupied the interest of many engineers. Maxwell
and Vishnegradsky first considered the question of stability of dynamic systems. In the late 1800s, A.
Hurwitz and E. J. Routh published independently a method of investigating the stability of a linear
system [1] and [2]. The Routh–Hurwitz stability method provides an answer to the question of stability
by considering the characteristic equation of the system. The characteristic equation in Equation 8.1 can
be written as

q(s) = ansn + an−1sn−1 + · · · + a1s + ao = 0. (8.3)

We require that all the coefficients of the polynomial must have the same sign if all the roots are in the left
half-plane. Also, it is necessary that all the coefficients for a stable system be nonzero. However, although
necessary, these requirements are not sufficient. That is, we immediately know the system is unstable if
they are not satisfied; yet if they are satisfied, we must proceed to ascertain the stability of the system.
The Routh–Hurwitz criterion is a necessary and sufficient criterion for the stability of linear systems.
The method was originally developed in terms of determinants, but here we utilize the more convenient
array formulation. The Routh–Hurwitz criterion is based on ordering the coefficients of the characteristic
equation in Equation 8.3 into an array or schedule as follows [3]:

sn

sn−1

∣∣∣∣ an an−2 an−4 · · ·
an−1 an−3 an−5 · · ·.

Further rows of the schedule are then completed as follows:

sn

sn−1

sn−2

sn−3

·
·
·

so

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−2 an−4

an−1 an−3 an−5

bn−1 bn−3 bn−5

cn−1 cn−3 cn−5

· · ·
· · ·
· · ·

hn−1 hn−3

where

bn−1 = (an−1)(an−2) − an(an−3)

an−1
= − 1

an−1

∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣ ,

bn−3 = − 1

an−1

∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣ ,

and

cn−1 = − 1

bn−1

∣∣∣∣an−1 an−3

bn−1 bn−3

∣∣∣∣ ,
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and so on. The algorithm for calculating the entries in the array can be followed on a determinant basis
or by using the form of the equation for bn−1.

The Routh–Hurwitz criterion states that the number of roots of q(s) with positive real parts is equal to the
number of changes of sign in the first column of the array. This criterion requires that there be no changes
in sign in the first column for a stable system. This requirement is both necessary and sufficient.

Four distinct cases must be considered and each must be treated separately:

1. No element in the first column is zero.
2. There is a zero in the first column, but some other elements of the row containing the zero in the

first column are nonzero.
3. There is a zero in the first column, and the other elements of the row containing the zero are also

zero.
4. As in case 3 with repeated roots on the jω-axis.

Case 1

No element in the first column is zero.

Example

The characteristic equation of a third-order system is

q(s) = a3s3 + a2s2 + a1s + ao. (8.4)

The array is written as

s3 a3 a1
s2 a2 ao
s1 b1 0
so c1 0

where

b1 = a2a1 − aoa3

a2
and c1 = b1ao

b1
= a0.

For the third-order system to be stable, it is necessary and sufficient that the coefficients be positive
and a2a1 > aoa3. The condition a2a1 = aoa3 results in a marginal stability case, and one pair of roots
lies on the imaginary axis in the s-plane. This marginal stability case is recognized as Case 3 because
there is a zero in the first column when a2a1 = aoa3. It is discussed under Case 3.

Case 2

Zeros in the first column while some other elements of the row containing a zero in the first column are
nonzero. If only one element in the array is zero, it may be replaced with a small positive number ε that is
allowed to approach zero after completing the array.

Example

Consider the characteristic equation

q(s) = s4 + s3 + s2 + s + K , (8.5)

where it is desired to determine the gain K that results in marginal stability. The Routh–Hurwitz array
is then
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s4 1 1 K
s3 1 1 0
s2 ε K 0
s1 c1 0 0
so K 0 0

where

c1 = ε − K

ε
→ −K

ε
as ε → 0.

Therefore, for any value of K greater than zero, the system is unstable (with ε > 0). Also, because
the last term in the first column is equal to K , a negative value of K results in an unstable system.
Therefore, the system is unstable for all values of gain K .

Case 3

Zeros in the first column, and the other elements of the row containing the zero are also zero. Case 3 occurs
when all the elements in one row are zero or when the row consists of a single element that is zero. This
condition occurs when the characteristic polynomial contains roots that are symmetrically located about
the origin of the s-plane. Therefore, Case 3 occurs when factors such as (s + σ)(s − σ) or (s + jω)(s − jω)
occur. This problem is circumvented by utilizing the auxiliary polynomial, U(s), which is formed from
the row that immediately precedes the zero row in the Routh array. The order of the auxiliary polynomial
is always even and indicates the number of symmetrical root pairs.

To illustrate this approach, let us consider a third-order system with a characteristic equation

q(s) = s3 + 2s2 + 4s + K , (8.6)

where K is an adjustable loop gain. The Routh array is then

s3 1 4
s2 2 K
s1 8−K

2 0
so K 0

Therefore, for a stable system, we require that

0 < K < 8.

When K = 8, we have two roots on the jω-axis and a marginal stability case. Note that we obtain a row of
zeros (Case 3) when K = 8. The auxiliary polynomial, U(s), is formed from the row preceding the row of
zeros which, in this case, is the s2 row. We recall that this row contains the coefficients of the even powers
of s and therefore, in this case, we have

U(s) = 2s2 + Ks0 = 2s2 + 8 = 2(s2 + 4) = 2(s + j2)(s − j2). (8.7)

Case 4

Repeated roots of the characteristic equation on the jω-axis. If the roots of the characteristic equation on the
jω-axis are simple, the system is neither stable nor unstable; it is instead called marginally stable, since it
has an undamped sinusoidal mode. If the jω-axis roots are repeated, the system response will be unstable,
with a form t

(
sin(ωt + f )

)
. The Routh–Hurwitz criterion does not reveal this form of instability [4].

Consider the system with a characteristic equation

q(s) = (s + 1)(s + j)(s − j)(s + j)(s − j) = s5 + s4 + 2s3 + 2s2 + s + 1. (8.8)
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The Routh array is

s5 1 2 1
s4 1 2 1
s3 ε ε 0
s2 1 1
s1 ε 0
so 1

where ε → 0. Note the absence of sign changes, a condition that falsely indicates that the system is
marginally stable. The impulse response of the system increases with time as t sin(t + f ). The auxiliary
equation at the s2 line is (s2 + 1) and the auxiliary equation at the s4 line is (s4 + 2s2 + 1) = (s2 + 1)2,
indicating the repeated roots on the jω-axis.

8.1.3 Design Example: Tracked Vehicle Turning Control

Using Routh–Hurwitz methods, the design of a turning control system for a tracked vehicle (which can
be modeled as a two-input, two-output system [5]) is considered. As shown in Figure 8.1a, the system
has throttle and steering inputs and vehicle heading and track speed differences as outputs. The two
vehicle tracks are operated at different speeds in order to turn the vehicle. The two-input, two-output
system model can be simplified to two independent single-input, single-output systems for use in the
control design phase. The single-input, single-output vehicle heading feedback control system is shown
in Figure 8.1b. For purposes of discussion, the control problem is further simplified to the selection of
two parameters. Our objective is to select the parameters K and a so that the system is stable and the
steady-state error for a ramp command is less than or equal to 24% of the magnitude of the command.
The characteristic equation of the feedback system is

1 + GcG(s) = 0 (8.9)

or

1 + K(s + a)

s(s + 1)(s + 2)(s + 5)
= 0. (8.10)

Therefore, we have

q(s) = s(s + 1)(s + 2)(s + 5) + K(s + a) = 0 (8.11)

Power train
and controller

Throttle

(a)

(b)

Steering Left

Track
torque
right

Vehicle

C(s)
Direction of

travel

Difference in track speed

R(s)
Desired

direction
of tuming

Controller
Gc(s)

Power train and
vehicle G(s)

+

–
s + a

s (s + 2)(s + 5) C(s)
K

s + l

FIGURE 8.1 (a) Turning control for a two-track vehicle; (b) block diagram. (From Dorf, R. C. and Bishop, R. H.,
Modern Control Systems, 7th ed., Addison-Wesley, Reading, MA, 293, 1995. With permission.)
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or
s4 + 8s3 + 17s2 + (K + 10)s + Ka = 0. (8.12)

To determine the stable region for K and a, we establish the Routh array as

s4 1 17 Ka
s3 8 K + 10 0
s2 b3 Ka
s1 c3

so Ka

where

b3 = 126 − K

8
and c3 = b3(K + 10) − 8Ka

b3
.

For the elements of the first column to be positive, we require that Ka, b3, and c3 be positive. We therefore
require

K < 126

Ka > 0 (8.13)

(K + 10)(126 − K) − 64Ka > 0.

The region of stability for K > 0 is shown in Figure 8.2. The steady-state error to a ramp input r(t) = At,
t > 0 is

ess = A

Kv
, (8.14)

where Kv is the velocity error constant, and in this case Kv = Ka/10. Therefore, we have

ess = 10A

Ka
. (8.15)

2.5

2

1.5

1

0.5

0
20 30 40 50 60 70

K

(K = 70, a = 0.6)

a

80 90 20 110 120

Stable region

FIGURE 8.2 The stability region. (From Dorf, R. C. and Bishop, R. H., Modern Control Systems, 7th ed., Addison-
Wesley, Reading, MA, 299, 1995. With permission.)
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12

10

8

6

4

2

0
0 2 4 6

Time (s)

c(t)

c(t)

Ramp input

8 10 12

FIGURE 8.3 Ramp response for a = 0.6 and K = 70 for two-track vehicle turning control. (From Dorf, R. C. and
Bishop, R. H., Modern Control Systems, 7th ed., Addison-Wesley, Reading, MA, 300, 1995. With permission.)

When ess is equal to 23.8% of A, we require that Ka = 42. This can be satisfied by the selected point
in the stable region when K = 70 and a = 0.6, as shown in Figure 8.2. Of course, another acceptable
design is attained when K = 50 and a = 0.84. We can calculate a series of possible combinations of K
and a that can satisfy Ka = 42 and that lie within the stable region, and all will be acceptable design
solutions. However, not all selected values of K and a will lie within the stable region. Note that K cannot
exceed 126.

The corresponding unit ramp input response is shown in Figure 8.3. The steady-state error is less than
0.24, as desired.

8.1.4 Conclusions

In this chapter, we have considered the concept of the stability of a feedback control system. A definition
of a stable system in terms of a bounded system response to a bounded input was outlined and related to
the location of the poles of the system transfer function in the s-plane.

The Routh–Hurwitz stability criterion was introduced, and several examples were considered. The
relative stability of a feedback control system was also considered in terms of the location of the poles and
zeros of the system transfer function in the s-plane.

8.1.5 Defining Terms

Stability: A performance measure of a system. A system is stable if all the poles of the transfer function
have negative real parts.

Routh–Hurwitz criterion: A criterion for determining the stability of a system by examining the charac-
teristic equation of the transfer function.
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8.2 The Nyquist Stability Test∗

Charles E. Rohrs
8.2.1 The Nyquist Criterion

8.2.1.1 Development of the Nyquist Theorem

The Nyquist criterion is a graphical method and deals with the loop gain transfer function, i.e., the
open-loop transfer function. The graphical character of the Nyquist criterion is one of its most appealing
features.

Consider the controller configuration shown in Figure 8.4. The loop gain transfer function is given
simply by G(s). The closed-loop transfer function is given by

Y (s)

R(s)
= G(s)

1 + G(s)
= KGNG(s)/DG(s)

1 + KGNG(s)/DG(s)

= KGNG(s)

DG(s) + KGNG(s)
= KGNG(s)

Dk(s)

where NG(s) and DG(s) are the numerator and denominator, respectively, of G(s), KG is a constant gain,
and Dk(s) is the denominator of the closed-loop transfer function. The closed-loop poles are equal to the
zeros of the function

1 + G(s) = 1 + KGNG(s)

DG(s)
= DG(s) + KGNG(s)

DG(s)
(8.16)

Of course, the numerator of Equation 8.16 is just the closed-loop denominator polynomial, Dk(s), so
that

1 + G(s) = Dk(s)

DG(s)
(8.17)

R E+
+

–

YG(s)

FIGURE 8.4 A control loop showing the loop gain G(s).

∗ Much of the material of this section is taken from Rohrs, Charles E., Melsa, James L., and Schultz, Donald G., Linear
Control Systems, McGraw-Hill, New York, 1993. It is used with permission.
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In other words, we can determine the stability of the closed-loop system by locating the zeros of 1 + G(s).
This result is of prime importance in the following development.

For the moment, let us assume that 1 + G(s) is known in factored form so that we have

1 + G(s) = (s + λk1)(s + λk2) · · · (s + λkn)

(s + λ1)(s + λ2) · · · (s + λn)
(8.18)

Obviously, if 1 + G(s) were known in factored form, there would be no need for the use of the Nyquist
criterion, since we could simply observe whether any of the zeros of 1 + G(s) [which are the poles of
Y (s)/R(s)], lie in the right half of the s plane. In fact, the primary reason for using the Nyquist criterion
is to avoid this factoring. Although it is convenient to think of 1 + G(s) in factored form at this time, no
actual use is made of that form.

Let us suppose that the pole–zero plot of 1 + G(s) takes the form shown in Figure 8.5a. Consider
next an arbitrary closed contour, such as that labeled Γ in Figure 8.5a, which encloses one and only
one zero of 1 + G(s) and none of the poles. Associated with each point on this contour is a value
of the complex function 1 + G(s). The value of 1 + G(s) for any value of s on Γ may be found ana-
lytically by substituting the appropriate complex value of s into the function. Alternatively, the value

jω Γ

−λ+1

S + λ+1

S plane

Im

(a)

(b)

1 + G(s) 1 + G(s) plane

Γ′

Re

S

σ

FIGURE 8.5 (a) Pole–zero plot of 1 + G(s) in the s plane; (b) plot of the Γ contour in the 1 + G(s) plane.
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may be found graphically by considering the distances and angles from s on Γ to the zeros and
poles.

If the complex value of 1 + G(s) associated with every point on the contour Γ is plotted, another closed
contour Γ′ is created in the complex 1 + G(s) plane, as shown in Figure 8.5b. The function 1 + G(s) is
said to map the contour Γ in the s plane into the contour Γ′ in the 1 + G(s) plane. What we wish to
demonstrate is that, if a zero is enclosed by the contour Γ, as in Figure 8.5a, the contour Γ′ encircles
the origin of the 1 + G(s) plane in the same sense that the contour Γ encircles the zero in the s plane.
In the s plane, the zero is encircled in the clockwise direction; hence we must show that the origin of
the 1 + G(s) plane is also encircled in the clockwise direction. This result is known as the Principle of the
Argument.

The key to the Principle of the Argument rests in considering the value of the function 1 + G(s) at any
point s as simply a complex number. This complex number has a magnitude and a phase angle. Since the
contour Γ in the s plane does not pass through a zero, the magnitude is never zero. Now we consider the
phase angle by rewriting Equation 8.18 in polar form:

1 + G(s) = |s + λk1|/ arg(s + λk1) · · · |s + λkn|/ arg(s + λkn)

|s + λ1|/ arg(s + λ1) · · · |s + λn|/ arg(s + λn)

= |s + λk1| · · · |s + λkn|
|s + λ1| · · · |s + λn| /arg(s + λk1) + · · · (8.19)

+ arg(s + λkn) − arg(s + λ1) − · · · − arg(s + λn)

We assume that the zero encircled by Γ is at s = −λk1. Then the phase angle associated with this zero
changes by a full −360◦ as the contour Γ is traversed clockwise in the s plane. Since the argument or angle
of 1 + G(s) includes the angle of this zero, the argument of 1 + G(s) also changes by −360◦. As seen from
Figure 8.5a, the angles associated with the remaining poles and zeros make no net change as the contour
Γ is traversed. For any fixed value of s, the vector associated with each of these other poles and zeros has
a particular angle associated with it. Once the contour has been traversed back to the starting point, these
angles return to their original value; they have not been altered by plus or minus 360◦ simply because
these poles and zeros are not enclosed by Γ.

In a similar fashion, we could show that, if the Γ contour were to encircle two zeros of 1 + G(s) in the
clockwise direction on the s plane, the Γ′ contour would encircle the origin of the 1 + G(s) plane twice in
the clockwise direction. On the other hand, if the Γ contour were to encircle only one pole and no zero
of 1 + G(s) in the clockwise direction, then the contour Γ′ would encircle the origin of the 1 + G(s) plane
once in the counterclockwise direction. This change in direction comes about because angles associated
with poles are accompanied by negative signs in the evaluation of 1 + G(s), as indicated by Equation 8.19.
In general, the following conclusion can be drawn: The net number of clockwise encirclements by Γ′ of the
origin in the 1 + G(s) plane is equal to the difference between the number of zeros nz and the number of
poles np of 1 + G(s) encircled in the clockwise direction by Γ.

This result means that the difference between the number of zeros and the number of poles enclosed by
any closed contour Γ may be determined simply by counting the net number of clockwise encirclements
of the origin of the 1 + G(s) plane by Γ′. For example, if we find that Γ′ encircles the origin three times
in the clockwise direction and once in the counterclockwise direction, then nz − np must be equal to
3 − 1 = 2. Therefore, in the s plane, Γ must encircle two zeros and no poles, three zeros and one pole, or
any other combination such that nz − np is equal to 2.

In terms of stability analysis, the problem is to determine the number of zeros of 1 + G(s), i.e., the
number of poles of Y (s)/R(s), that lie in the right half of the s−plane. Accordingly, the contour Γ is chosen
as the entire jω axis and an infinite semicircle enclosing the right half-plane as shown in Figure 8.6a. This
contour is known as the Nyquist D contour as it resembles the capital letter D.
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jω

ω < 0

ω > 0

ω = 0
ω = 0

j∞

–j∞

∞

Γ

Γ

σ

s plane

1 + G plane

Re

Im

+1

(a)

(b)

FIGURE 8.6 (a) Γ contour in the s plane—the Nyquist contour; (b) Γ′ contour in the 1 + G plane.

In order to avoid any problems in plotting the values of 1 + G(s) along the infinite semicircle, let us
assume that

lim|s|→∞ G(s) = 0

This assumption is justified since, in general, the loop gain transfer function G(s) is strictly proper. With
this assumption, the entire infinite semicircle portion of Γ maps into the single point s = +1 + j0 on the
1 + G(s) plane.

The mapping of Γ therefore involves simply plotting the complex values of 1 + G(s) for s = jω as ω

varies from −∞ to +∞. For ω ≥ 0, Γ′ is nothing more than the polar plot of the frequency response of
the function 1 + G(s). The values of 1 + G(jω) for negative values of ω are the mirror image of the values
of 1 + G(jω) for positive values of ω reflected about the real axis. The Γ′ contour may therefore be found
by plotting the frequency response 1 + G(s) for positive ω and then reflecting this plot about the real axis
to find the plot for negative ω. The Γ′ plot is always symmetrical about the real axis of the 1 + G plane.
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Care must be taken to establish the direction that the Γ′ plot is traced as the D-contour moves up the jω
axis, around the infinite semicircle and back up the jω axis from −∞ towards 0.

From the Γ′ contour in the 1 + G(s) plane, as shown in Figure 8.6b, the number of zeros of 1 + G(s) in
the right half of the s−plane may be determined by the following procedure. The net number of clockwise
encirclements of the origin by Γ′ is equal to the number of zeros minus the number of poles of 1 + G(s)
in the right half of the s−plane. Note that we must know the number of poles of 1 + G(s) in the right
half-plane if we are to be able to ascertain the exact number of zeros in the right half-plane and therefore
determine stability. This requirement usually poses no problem since the poles of 1 + G(s) correspond to
the poles of the loop gain transfer function. In Equation 8.17 the denominator of 1 + G(s) is just DG(s),
which is usually described in factored form. Hence, the number of zeros of 1 + G(s) or, equivalently, the
number of poles of Y (s)/R(s) in the right half-plane may be found by determining the net number of
clockwise encirclements of the origin by Γ′ and then adding the number of poles of the loop gain located
in the right-half s−plane.

At this point the reader may revolt. Our plan for finding the number of poles of Y (s)/R(s) in the
right-half s−plane involves counting encirclements in the 1 + G(s) plane and observing the number of
loop gain poles in the right-half s−plane. Yet we were forced to start with the assumption that all the
poles and zeros of 1 + G(s) are known, so that the Nyquist contour can be mapped by the function of
1 + G(s). Admittedly, we know the poles of this function because they are the poles of the loop gain, but
we do not know the zeros; in fact, we are simply trying to find how many of these zeros lie in the right-half
s−plane.

What we do know are the poles and zeros of the loop gain transfer function G(s). Of course, this
function differs from 1 + G(s) only by unity. Any contour that is chosen in the s−plane and mapped
through the function G(s) has exactly the same shape as if the contour were mapped through the function
1 + G(s) except that it is displaced by one unit. Figure 8.7 is typical of such a situation. In this diagram the
−1 point of the G(s) plane is the origin of the 1 + G(s) plane. If we now map the boundary of the right-
half s-plane through the mapping function G(s), which we often know in pole–zero form, information
concerning the zeros of 1 + G(s) may be obtained by counting the encirclements of the −1 point. The
important point is that, by plotting the open-loop frequency-response information, we may reach stability
conclusions regarding the closed-loop system.

–1

Im

1 + G

Re

G

ω = 0ω = ∞

FIGURE 8.7 Comparison of the G(s) and 1 + G(s) plots.
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As mentioned previously contour Γ of Figure 8.6a is referred to as the Nyquist D-contour. The map
of the Nyquist D-contour through G(s) is called the Nyquist diagram of G(s). There are three parts to the
Nyquist diagram. The first part is the polar plot of the frequency response of G(s) from ω = 0 to ω = ∞.
The second part is the mapping of the infinite semicircle around the right half-plane. If G(s) is strictly
proper, this part maps entirely into the origin of the G(s) plane. The third part is the polar plot of the
negative frequencies, ω = −∞ to ω = 0. The map of these frequencies forms a mirror image in the G(s)
plane about the real axis of the first part.

In terms of the Nyquist diagram of G(s), the Nyquist stability criterion may be stated as follows:

Theorem 8.1: The Nyquist Theorem

The closed-loop system is stable if and only if the net number of clockwise encirclements of the points
s = −1 + j0 by the Nyquist diagram of G(s) plus the number of poles of G(s) in the right half-plane is zero.

Notice that while the net number of clockwise encirclements are counted in the first part of the Nyquist
criterion, only the number of right half-plane poles of G(s) are counted in the second part. Right half-plane
zeros of G(s) are not part of the formula in determining stability using the Nyquist criterion.

Because the Nyquist diagram involves the loop gain transfer function G(s), a good approximation of
the magnitude and phase of the frequency response plot can be obtained by using the Bode diagram
straight-line approximations for the magnitude and for the phase. The Nyquist plot can be obtained by
transferring the magnitude and phase information to a polar plot. If a more accurate plot is needed, the
exact magnitude and phase may be determined for a few values of ω in the range of interest. However, in
most cases, the approximate plot is accurate enough for practical problems.

An alternative procedure for obtaining the Nyquist diagram is to plot accurately the poles and zeros
of G(s) and obtain the magnitude and phase by graphical means. In either of these methods, the fact
that G(s) is known in factored form is important. Even if G(s) is not known in factored form, the
frequency-response plot can still be obtained by simply substituting the values s = jω into G(s) or by
frequency-response measurements on the actual system.

Of course, computer programs that produce Nyquist plots are generally available. However, the abil-
ity to plot Nyquist plots by hand helps designers know how they can affect such plots by adjusting
compensators.

It is also important to note that the information required for a Nyquist plot may be obtainable by
measuring the frequency response of a stable plant directly and plotting this information. Thus, Nyquist
ideas can be applied even if the system is a “black box” as long as it is stable.

8.2.1.2 Examples of the Nyquist Theorem

Example 8.1:

To illustrate the use of the Nyquist∗ criterion, let us consider the simple first-order system shown in
Figure 8.8a. For this system the loop gain transfer function takes the form

G(s) = KGP (s) = K

s + 10
= 50

s + 10

The magnitude and phase plots of the frequency response of KGP (s) are shown. From these plots
the Nyquist diagram KGP (s) may be easily plotted, as shown in Figure 8.9. For example, the point

∗ Throughout the examples of this section, we assume that the gain K > 0. If K < 0, all the theory holds with the critical
point shifted to +1 + j0.
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R

|KGp( jω)|

arg[KGp( jω)]

ω

ω

5 = K/10

3

2

(a)

(b)

3 5 7 10 20 30 50 70

3′ 5 7 10 20

–30°

–60°

–90°

50 70

1
0.7

0.5

Y
s + 10

K = 50
+

1

–

FIGURE 8.8 Simple first-order example. (a) Block diagram; (b) magnitude and phase plots.

associated with ω = 10 rad/s is found to have a magnitude of K/(10
√

2) and a phase angle of −45◦.
The point at ω = −10 rad/s is just the mirror image of the value at ω = 10 rad/s.

From Figure 8.9 we see that the Nyquist diagram can never encircle the s = −1 + j0 point for any
positive value of K , and therefore the closed-loop system is stable for all positive values of K . In this
simple example, it is easy to see that this result is correct since the closed-loop transfer function is
given by

Y (s)

R(s)
= K

s + 10 + K
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Im

K K
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45°

ω = –10 rad/s

ω = 10 rad/s

ω = 0 ω = 0

10√2
10

Re

FIGURE 8.9 Nyquist diagram for Example 8.3.

For all positive values of K , the pole of Y (s)/R(s) is in the left half-plane.
In this example, G(s) remains finite along the entire Nyquist contour. This is not always the case even

though we have assumed that G(s) approaches zero as |s| approaches infinity. If a pole of G(s) occurs on
the jω axis, as often happens at the origin because of an integrator in the plant, a slight modification of the
Nyquist contour is necessary. The method of handling the modification is illustrated in the Example 8.2.

Example 8.2:

Consider a system whose loop transfer function is given by

G(s) =
(2K/7)

[
(s + 3/2)2 +

(√
5/2

)2
]

s(s + 2)(s + 3)

The pole–zero plot of G(s) is shown in Figure 8.10a. Since a pole occurs on the standard Nyquist
contour at the origin, it is not clear how this problem should be handled. As a beginning, let us plot
the Nyquist diagram for ω = +ε to ω = −ε, including the infinite semicircle; when this is done, the
small area around the origin is avoided. The resulting plot is shown as the solid line in Figure 8.10b
with corresponding points labeled.

From Figure 8.10b we cannot determine whether the system is stable until the Nyquist diagram is
completed by joining the points at ω = −ε and ω = +ε. In order to join these points, let us use a
semicircle of radius ε to the right of the origin, as shown in Figure 8.10a. Now G(s) is finite at all points on
the contour in the s plane, and the mapping to the G plane can be completed as shown by the dashed line
in Figure 8.10b. The small semicircle used to avoid the origin in the s plane maps into a large semicircle
in the G plane.

It is important to know whether the large semicircle in the G plane swings to the right around
positive real values of s or to the left around negative real values of s. There are two ways to deter-
mine this. The first way borrows a result from complex variable theory, which says that the Nyquist
diagram is a conformal map and for a conformal map right turns in the s plane correspond to
right turns in the G(s) plane. Likewise, left turns in the s plane correspond to left turns in the G(s)
plane.
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jω
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FIGURE 8.10 Example 8.2. (a) Pole–zero plot; (b) Nyquist diagram.

The second method of determining the direction of the large enclosing circle on the G(s) plane comes
from a graphical evaluation of G(s) on the circle of radius ε in the s plane. The magnitude is very large
here due to the proximity of the pole. The phase at s = −ε is slightly larger than +90◦ as seen from the
solid line of the Nyquist plot. The phase contribution from all poles and zeros except the pole at the origin
does not change appreciably as the circle of the radius ε is traversed. The angle from the pole at the origin
changes from −90◦ through 0◦ to +90◦. Since angles from poles contribute in a negative manner, the
contribution from the pole goes from +90◦ through 0◦ to −90◦. Thus, as the semicircle of radius ε is
traversed in the s−plane, a semicircle moving in a clockwise direction through about 180◦ is traversed
in the G(s) plane. The semicircle is traced in the clockwise direction as the angle associated with G(s)
becomes more negative. Notice that this is consistent with the conformal mapping rule, which matches
right turns of 90◦ at the top and bottom of both circles.

In order to ensure that no right half-plane zeros of 1 + G(s) can escape discovery by lying in the ε-radius
semicircular indentation in the s plane, ε is made arbitrarily small, with the result that the radius of the
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large semicircle in the G plane approaches infinity. As ε → 0, the shape of the Nyquist diagram remains
unchanged, and we see that there are no encirclements of the s = −1 + j0 point. Since there are no poles
of G(s) in the right half-plane, the system is stable. In addition, since changing the magnitude of K can
never cause the Nyquist diagram to encircle the −1 point, the closed-loop system must be stable for all
values of positive K .

We could just as well close the contour with a semicircle of radius ε into the left half-plane. Note that
if we do this, the contour encircles the pole at the origin and this pole is counted as a right half-plane pole
of G(s). In addition, by applying either the conformal mapping with left turns or the graphical evaluation,
we close the contour in the G(s) plane by encircling the negative real axis. There is 1 counterclockwise
encirclement (−1 clockwise encirclement) of the −1 point. The Nyquist criterion says that −1 clockwise
encirclement plus 1 right half-plane pole of G(s) yield zero closed-loop right half-plane poles. The result
that the closed-loop system is stable for all positive values of K remains unchanged, as it must. The two
approaches are equally good although philosophically the left turn contour, which places the pole on
the jω axis in the right half-plane, is more in keeping with the convention of poles on the jω axis being
classified as unstable.

In each of the two preceding examples, the system was open-loop stable; that is, all the poles of G(s)
were in the left half-plane. The next example illustrates the use of the Nyquist criterion when the system
is open-loop unstable.

Example 8.3:

This example is based on the system shown in Figure 8.11. The loop gain transfer function for this
system is

G(s) = K (s + 1)
(s − 1)(s + 2)

We use the Bode diagrams of magnitude and phase as an assistance in plotting the Nyquist diagram.
The magnitude and phase plots are shown in Figure 8.12a.

The Nyquist diagram for this system is shown in Figure 8.12b. Note that the exact shape of the plot is not
very important since the only information we wish to obtain at this time is the number of encirclements
of the s = −1 + j0 point. It is easy to see that the Nyquist diagram encircles the −1 point once in the
counterclockwise direction if K > 2 and has no encirclements if K < 2. Since this system has one right
half-plane pole in G(s), it is necessary that there be one counterclockwise encirclement if the system is to
be stable. Therefore, this system is stable if and only if K > 2.

Besides providing simple yes/no information about whether a closed-loop system is stable, the Nyquist
diagram also provides a clear graphical image indicating how close to instability a system may be. If the
Nyquist diagram passes close to the −1 point and there is some mismodeling of the plant so that the
characteristics of the plant are slightly different from those plotted in the Nyquist plot, then the true
Nyquist characteristic may encircle the −1 point more or fewer times than the nominal Nyquist plot. The
actual closed-loop system may be unstable. The Nyquist plot gives direct visual evidence of the frequencies

s + 1
s – 1

r
+
–

x1 = yx2K 1
s + 2

FIGURE 8.11 Example 8.3.
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FIGURE 8.12 Example 8.3. (a) Magnitude and phase plots; (b) Nyquist diagram.

where the plant’s nominal Nyquist plot passes near the −1 point. At these frequencies great care must be
taken to be sure that the nominal Nyquist plot accurately represents the plant transfer characteristic, or
undiagnosed instability may result. These ideas are formalized by a theory that goes under the name of
stability robustness theory.

8.2.2 Closed-Loop Response and Nyquist Diagrams

The Nyquist diagram has another important use. There are many possible designs that result in closed-
loop systems that are stable but have highly oscillatory and thus unsatisfactory responses to inputs and
disturbances. Systems that are oscillatory are often said to be relatively less stable than systems that
are more highly damped. The Nyquist diagram is very useful in determining the relative stability of a
closed-loop system.

For this development we must start with a system in the G configuration (Figure 8.4). The key for
extracting information about the closed-loop system is to determine the frequency-response function
of the closed-loop system, often referred to as the M−curve. The M−curve is, of course, a function of
frequency and may be determined analytically as

M(jω) = Y (jω)

R(jω)
= G(jω)

1 + G(jω)
(8.20)
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–1

1 + G( jω1)

G( jω1)

G( jω)

ω = ω1

FIGURE 8.13 Graphical determination of M(jω).

Figure 8.13 illustrates how the value of M(jω1) may be determined directly from the Nyquist diagram
of G(jω) at one particular frequency, ω1. In this figure the vectors −1 and G(jω1) are indicated, as
is the vector (G(jω1) − (−1)) = 1 + G(jω1). The length of the vector G(jω1) divided by the length of
1 + G(jω1) is thus the value of the magnitude M(jω1). The arg M(jω1) is determined by subtracting the
angle associated with the 1 + G(jω1) vector from that of G(jω1). The complete M−curve may be found
by repeating this procedure over the range of frequencies of interest.

In terms of the magnitude portion of the M(jω) plot, the point-by-point procedure illustrated above
may be considerably simplified by plotting contours of constant |M(jω)| on the Nyquist plot of G(s). The
magnitude plot of M(jω) can then be read directly from the Nyquist diagram of G(s). Fortunately, these
contours of constant |M(jω)| have a particularly simple form. For |M(jω)| = M, the contour is simply a
circle. These circles are referred to as constant M-circles or simply M-circles.

If these constant M-circles are plotted together with the Nyquist diagram of G(s), as shown in
Figure 8.14 for the system G(s) = 42

s(s+2)(s+15) , the values of |M(jω)| may be read directly from the plot.
Note that the M = 1 circle degenerates to the straight line X = −0.5. For M < 1, the constant M-circles
lie to the right of this line, whereas, for M > 1, they lie to the left. In addition, the M = 0 circle is the
point 0 + j0, and M = ∞ corresponds to the point −1.0 + j0.

In an entirely similar fashion, the contours of constant arg(M(jω)) can be found. These contours
turn out to be segments of circles. The circles are centered on the line X = − 1

2 . The contour of the
arg(M(jω)) = β for 0 < β < 180◦ is the upper half-plane portion of the circle centered at − 1

2 + j1/(2 tan β)
with a radius |1/(2 sin β)|. For β in the range −180◦ < β < 0◦, the portions of the same circles in the lower
half-plane are used. Figure 8.15 shows the plot of the constant-phase contours for some values of β. Notice
that one circle represents β = 45◦ above the real axis while the same circle represents β = −135◦ below
the real axis.

By using these constant-magnitude and constant-phase contours, it is possible to read directly the
complete closed-loop frequency response from the Nyquist diagram of G(s). In practice it is common
to dispense with the constant-phase contours, since it is the magnitude of the closed-loop frequency
response that provides the most information about the transient response of the closed-loop system. In
fact, it is common to simplify the labor further by considering only one point on the magnitude plot,
namely, the point at which M is maximum. This point of peak magnitude is referred to as Mp, and the
frequency at which the peak occurs is ωp. The point Mp may be easily found by considering the contours
of larger and larger values of M until the contour is found that is just tangent to the plot of G(s). The value
associated with this contour is then Mp, and the frequency at which the Mp contour and G(s) touch is
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FIGURE 8.14 Constant M-contours.

ωp. In the plot of G(s) shown in Figure 8.14, for example, the value of Mp is 1.1 at the frequency ωp ≈ 1.1
rad/s.

One of the primary reasons for determining Mp and ωp, in addition to the obvious saving of labor
as compared with the determination of the complete frequency response, is the close correlation of
these quantities with the behavior of the closed-loop system. In particular, for the simple second-order
closed-loop system,

Y (s)

R(s)
= ω2

n

s2 + 2sζωn + ω2
n

(8.21)

the values of Mp and ωp completely characterize the system. In other words, for this second-order system,
Mp and ωp specify the damping, ζ , and the natural frequency, ωn, the only parameters of the system. The
following equations relate the maximum point of the frequency response of Equation 8.21 to the values
of ζ and ωn;

ωp = ωn

√
1 − 2ζ2 (8.22)

Mp = 1

2ζ
√

1 − ζ2
for ζ ≤ 0.707 (8.23)

From these equations one may determine ζ and ωn if Mp and ωp are known, and vice versa. Figure 8.16
graphically displays the relations between Mp and ωp and ζ and ωn for a second-order system. Once ζ

and ωn are known, we may determine the time behavior of this second-order system.
Not all systems are of a simple second-order form. However, it is common practice to assume that the

behavior of many high-order systems is closely related to that of a second-order system with the same Mp

and ωp.
Two other measures of the qualitative nature of the closed-loop response that may be determined from

the Nyquist diagram of G(s) are the phase margin and crossover frequency. The crossover frequency ωc
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FIGURE 8.15 Constant-phase contours.

is the positive value of ω for which the magnitude of G(jω) is equal to unity, that is,

∣∣G(jωc)
∣∣= 1 (8.24)

The phase margin φm is defined as the difference between the argument of G(jωc) (evaluated at the
crossover frequency) and −180◦. In other words, if we define βc as

βc = arg(G(jωc)) (8.25)

the phase margin is given by

φm = βc − (−180◦) = 180◦ + βc (8.26)

While it is possible for a complicated system to possess more than one crossover frequency, most systems
are designed to possess just one. The phase margin takes on a particularly simple and graphic meaning in
the Nyquist diagram of G(s). Consider, for example, the Nyquist diagram shown in Figure 8.17. In that
diagram, we see that the phase margin is simply the angle between the negative real axis and the vector
G(jωc). The vector G(jωc) may be found by intersecting the G(s) locus with the unit circle. The frequency
associated with the point of intersection is ωc .

It is possible to determine φm and ωc more accurately directly from the Bode plots of the magnitude
and phase of G(s). The value of ω for which the magnitude crosses unity is ωc . The phase margin is then
determined by inspection from the phase plot by noting the difference between the phase shift at ωc and
−180◦. Consider, for example, the Bode magnitude and phase plots shown in Figure 8.18 for the G(s)
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FIGURE 8.16 Plots of Mp and ωp/ωn vs. ζ for a simple second-order system.
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FIGURE 8.17 Definition of phase margin.
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FIGURE 8.18 Magnitude and phase plots of G(s).

function of Figure 8.14. In time-constant form this transfer function is

G(s) = 1.4

s(1 + s/2)(1 + s/15)

From this figure we see that ωc = 1.4 and φm = 60◦.
The value of the magnitude of the closed-loop frequency response at ωc can be derived from φm. We

shall call this value Mc . Often the closest point to the −1 point on a Nyquist plot occurs at a frequency that
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is close to ωc . This means that Mc is often a good approximation to Mp. A geometric construction shown
in Figure 8.17 shows that a right triangle exists with a hypotenuse of 2, one side of length |1 + G(jωc)|,
and the opposite angle of φm/2 where φm is the phase margin. From this construction, we see

sin φm

2
=
∣∣1 + G(jωc)

∣∣
2

(8.27)

Since at ω = ωc′

∣∣G(jωc)
∣∣= 1 (8.28)

Mc =
∣∣G(jωc)

∣∣∣∣1 + G(jωc)
∣∣ = 1

2 sin φm/2
(8.29)

An oscillatory characteristic in the closed-loop time response can be identified by a large peak in
the closed-loop frequency response which, in turn, can be identified by a small phase margin and the
corresponding large value of Mc . Unfortunately, the correlation between response and phase margin
is somewhat poorer than the correlation between the closed-loop time response and the peak M. This
lower reliability of the phase margin measure is a direct consequence of the fact that φm is determined
by considering only one point, ωc on the G plot, whereas Mp is found by examining the entire plot, to
find the maximum M. Consider, for example, the two Nyquist diagrams shown in Figure 8.19. The phase
margin for these two diagrams is identical; however, it can be seen from the above discussion that the
closed-loop step response resulting from closing the loop gain of Figure 8.19b is far more oscillatory and
underdamped then the closed-loop step response resulting from closing the loop gain of Figure 8.19a.

In other words, the relative ease of determining φm as compared with Mp has been obtained only by
sacrificing some of the reliability of Mp. Fortunately, for many systems the phase margin provides a simple
and effective means of estimating the closed-loop response from the G(jω) plot.

A system such as that shown in Figure 8.19b can be identified as a system having a fairly large Mp by
checking another parameter, the gain margin. The gain margin is easily determined from the Nyquist
plot of the system. The gain margin is defined as the ratio of the maximum possible gain for stability to
the actual system gain. If a plot of G(s) for s = jω intercepts the negative real axis at a point −a between
the origin and the critical −1 point, then the gain margin is simply

Gain margin = GM = 1

a

If a gain greater than or equal to 1/a were placed in series with G(s), the closed-loop system would be
unstable.

–1

(a) (b)

–11 1
ϕm

ϕm

FIGURE 8.19 Two systems with the same phase margin but different Mp.
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While the gain margin does not provide very complete information about the response of the closed-
loop system, a small gain margin indicates a Nyquist plot that approaches the −1 point closely at the
frequency where the phase shift is 180◦. Such a system has a large Mp and an oscillatory closed-loop time
response independent of the phase margin of the system.

While a system may have a large phase margin and a large gain margin and still get close enough to the
critical point to create a large Mp, such phenomena can occur only in high-order loop gains. However, one
should never forget to check any results obtained by using phase margin and gain margin as indicators
of the closed-loop step response, lest an atypical system slip by. A visual check to see if the Nyquist plot
approaches the critical −1 point too closely should be sufficient to determine if the resulting closed-loop
system may be too oscillatory.

Using the concepts that give rise to the M-circles, a designer can arrive at a pretty good feel for the nature
of the closed-loop transient response by examining the loop gain Bode plots. The chain of reasoning is as
follows: From the loop gain Bode plots, the shape of the Nyquist plot of the loop gain can be envisioned.
From the shape of the loop gain Nyquist plot, the shape of the Bode magnitude plot of the closed-loop
system can be envisioned using the concepts of this section. Certain important points are evaluated by
returning to the loop gain Bode plots. From the shape of the Bode magnitude plot of the closed-loop
system, the dominant poles of the closed-loop transfer function are identified. From the knowledge of
the dominant poles, the shape of the step response of the closed-loop system is determined. Example 8.4
illustrates this chain of thought.

Example 8.4:

Consider the loop gain transfer function

G(s) = 80
s(s + 1)(s + 10)

The Bode plots for this loop gain are given in Figure 8.20.
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FIGURE 8.20 Bode plots of loop gain. (a) Magnitude plot; (b) Phase plot.
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From the Bode plots the Nyquist plot can be envisioned. The Nyquist plot begins far down the negative
imaginary axis since the Bode plot has large magnitude and −90◦ phase at low frequency. It swings to
the left as the phase lag increases and then spirals clockwise towards the origin, cutting the negative
real axis and approaching the origin from the direction of the positive imaginary axis, i.e., from the
direction associated with −270◦ phase. From the Bode plot it is determined that the Nyquist plot does not
encircle the −1 point since the Bode plot shows that the magnitude crosses unity (0dB) before the phase
crosses −180◦.

From the Bode plot it can be seen that the Nyquist plot passes very close to the −1 point near the
crossover frequency. In this case ωp ≈ ωc and the phase margin is a key parameter to establish how large
Mp, the peak in the closed-loop frequency magnitude plot, is. The crossover frequency is read from the
Bode magnitude plot as ωc = 2.5 rad/s and the phase margin is read from the Bode phase plot as φm = 6◦.

Our visualization of the Nyquist plot is confirmed by the diagram of the actual Nyquist plot shown in
Figure 8.21.

The magnitude of the closed-loop frequency response for this system can be envisioned using the
techniques learned in this section. At low frequencies G(s) is very large; the distance from the origin
to the Nyquist plot is very nearly the same as the distance from the −1 point to the Nyquist plot
and the closed-loop frequency response has magnitude near one. As the Nyquist plot of the loop gain
approaches −1, the magnitude of the closed-loop frequency-response function increases to a peak. At
higher frequencies the loop gain becomes small and the closed-loop frequency response decreases with
the loop gain since the distance from −1 point to the loop gain Nyquist plot approaches unity. Thus,
the closed-loop frequency response starts near 0dB, peaks as the loop gain approaches −1 and then
falls off.

The key point occurs when the loop gain approaches the −1 point and the closed-loop frequency
response peaks. The closest approach to the −1 point occurs at a frequency very close to the crossover
frequency, which has been established as ωc = 2.5 rad/s. The height of the peak can be established using
the phase margin which has been established as φm = 6◦, and Equation 8.29. The height of the peak
should be very close to (2 sin(φm/2))−1 = 9.5 = 19.6 dB.

Our visualization of the magnitude of the closed-loop frequency response is confirmed by the actual
plot shown in Figure 8.22.

From the visualization of the closed-loop frequency response function and the information about the
peak of the frequency response, it is possible to identify the dominant closed-loop poles. The frequency of
the peak identifies the natural frequency of a pair of complex poles, and the height of the peak identifies
the damping ratio. More precisely,

Mp = 1

2ζ
√

1 − ζ2
≈ 1

2ζ
for ζ small
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FIGURE 8.21 Nyquist plot of loop gain.
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FIGURE 8.22 Magnitude plot of closed-loop frequency response.

and

ωp = ωn

√
1 − 2ζ2 ≈ ωn for ζ small

Using the approximations for ωp and Mp that are obtained from the loop gain crossover frequency and
phase margin, respectively, the following values are obtained: ζ ≈ 1/(2Mp) ≈ 0.05 and ωn ≈ ωp ≈ ωc ≈
2.5 rad/s.

If the Nyquist plot of a loop gain does not pass too closely to the −1 point, the closed-loop frequency
response does not exhibit a sharp peak. In this case, the dominant poles are well damped or real. The
distance of these dominant poles from the origin can be identified by the system’s bandwidth, which
is given by the frequency at which the closed-loop frequency response begins to decrease. From the
M−circle concept it can be seen that the frequency at which the closed-loop frequency response starts to
decrease is well approximated by the crossover frequency of the loop gain.

Having established the position of the dominant closed-loop poles, it is easy to describe the closed-loop
step response. The step response has a percent overshoot given by

PO = 100e
−
(

ζπ√
1−ζ2

)
≈ 85%

The period of the oscillation is given

Td = 2π

ωd
= 2π

ωn
√

1 − ζ2
≈ 2.5s

The first peak in the step response occurs at a time equal to half of the period of oscillations, or about
1.25 s. The envisioned step response is confirmed in the plot of the actual closed-loop step response
shown in Figure 8.23.
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FIGURE 8.23 Closed-loop step response.
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The method of the previous example may seem a long way to go in order to get an approximation to
the closed-loop step response. Indeed, it is much simpler to calculate the closed-loop transfer function
directly from the loop gain transfer function. The importance of the logic in the example is not to create
a computational method; the importance lies in the insight that is achieved in predicting problems with
the closed-loop transient response by examining the Bode plot of the loop gain. The essence of the insight
can be summarized in a few sentences: Assume that the Nyquist plot of the loop gain indicates a stable
closed-loop system. If the Nyquist plot of the loop gain approaches the −1 point too closely, the transient
response characteristics of the closed-loop system are oscillatory. The speed of the transient response of the
closed-loop system is usually indicated by the loop gain crossover frequency. Detailed information about
the loop gain Nyquist plot is available in the loop gain Bode plots. In particular, the crossover frequency
and the phase margin can be read from the Bode plots.

Any information that can be wrenched out of the Bode plots of the loop gain is critically important for
two reasons. First, the Bode plots are a natural place to judge the properties of the feedback loop. When the
magnitude of the loop gain is large, positive feedback properties such as good disturbance rejection and
good sensitivity reduction are obtained. When the magnitude of the loop gain is small, these properties
are not enhanced. The work of this chapter completes the missing information about transient response
that can be read from the loop gain Bode plots. Second, it is the Bode plot that we are able to manipulate
directly using series compensation techniques. It is important to be able to establish the qualities of the
Bode plots that produce positive qualities in a control system because only then can the Bode plots be
manipulated to attain the desired qualities.
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8.3 Discrete-Time and Sampled-Data Stability Tests

Mohamed Mansour
8.3.1 Introduction

Discrete-time dynamic systems are described by difference equations. Economic systems are examples of
these systems where the information about the system behavior is known only at discrete points of time.

On the other hand, in sampled-data systems some signals are continuous and others are discrete in
time. Some of the discrete-time signals come from continuous signals through sampling. An example of
a sampled-data system is the control of a continuous process by a digital computer. The digital computer
only accepts signals at discrete points of time so that a sampler must transform the continuous time signal
to a discrete time signal.

Stability is the major requirement of a control system. For a linear discrete-time system, a necessary
and sufficient condition for stability is that all roots of the characteristic polynomial using the z-transform
lie inside the unit circle in the complex plane. A solution to this problem was first obtained by Schur [1].

The stability criterion in table and determinant forms was published by Cohn [2]. A symmetrix matrix
form was obtained by Fujiwara [3]. Simplifications of the table and the determinant forms were obtained
by Jury [4] and Bistritz [5]. A Markov stability test was introduced by Nour Eldin [6]. It is always possible to
solve the stability problem of a discrete-time system by reducing it to the stability problem of a continuous
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system with a bilinear transformation of the unit circle to the left half-plane. For sampled-data systems,
if the z-transform is used, then the same criteria apply. If the δ-transform is used, a direct solution of the
stability problem, without transformation to the z- or s-plane, is given by Mansour [7] and Premaratne
and Jury [8].

8.3.2 Fundamentals

8.3.2.1 Representation of a Discrete-Time System

A linear discrete-time system can be represented by a difference equation, a system of difference equations
of first order, or a transfer function in the z-domain.

Difference Equation

y(k + n) + a1y(k + n − 1) + · · · + any(k) = b1u(k + n − 1) + · · · + bnu(k) (8.30)

If z is the shift operator, i.e., zy(k) = y(k + 1) then the difference equation can be written as

zny(k) + a1zn−1y(k) + · · · + any(k) = b1zn−1u(k) + · · · + bnu(k) (8.31)

System of Difference Equations of First Order

Equation 8.30 can be decomposed in the following n difference equations using the state variables:

x1(k) . . . xn(k)

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

...

xn−1(k + 1) = xn(k)

xn(k + 1) = −anx1(k) − · · · − a1xn(k) + u(k)

y(k) = bnx1(k) + bn−1x2(k) + · · · + b1xn(k)

This can be written as
x(k + 1) = Ax(k) + bu(k), y(k) = cT x(k) (8.32)

where A is in the companion form.

Transfer Function in the z-Domain

The z-transform of Equation 8.30 gives the transfer function

G(z) = Y (z)

U(z)
= b1zn−1 + · · · + bn

zn + a1zn−1 + · · · + an
(8.33)

8.3.2.2 Representation of a Sampled-Data System

The digital controller is a discrete-time system represented by a difference equation, a system of difference
equations or a transfer function in the z-domain. The continuous process is originally represented by a
differential equation, a system of differential equations or a transfer function in the s-domain. However,
because the input to the continuous process is normally piecewise constant (constant during a sampling
period) then the continuous process can be represented in this special case by difference equations or
a transfer function in the z-domain. Figure 8.24 shows a sampled-data control system represented as a
discrete-time system.
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FIGURE 8.24 Sampled-data control system as a discrete time system.

Representation in the δ-Domain

Use the δ-operator which is related to the z-operator by

δ = z − 1

Δ
, (8.34)

where Δ is the sampling period.
In this case, δ corresponds to the differentiation operator in continuous systems and tends to it if Δ

goes to zero. The continuous system is the limiting case of the sampled-data system when the sampling
period becomes very small.

For stability, the characteristic equation with the δ-operator should have all its roots inside the circle
of radius 1/Δ in the left half-plane of Figure 8.25.

Representing sampled-data systems with the δ-operator has numerical advantages [9].

8.3.2.3 Definition of Stability

The output of a SISO discrete system is given by

y(k) =
∞∑

i=0

g(i)u(k − i), (8.35)

where g(i) is the impulse response sequence. This system is BIBO-stable if, and only if, a real number
P > 0 exists so that

∑∞
i=0 |g(i)| ≤ P < ∞.

8.3.2.4 Basics of Stability Criteria for Linear Systems

Stability criteria for linear systems are obtained by a simple idea: an n-degree polynomial is reduced to
an (n − 1)-degree polynomial insuring that no root crosses the stability boundary. This can be achieved
for discrete-time and sampled-data systems using the Rouché [1] or Hermite-Bieler theorem [10]. This

Im

Re
– 2

Δ
– 1

Δ

δ

1
Δ

FIGURE 8.25 The stability region in the δ-domain.
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reduction operation can be continued, thus obtaining a table form for checking stability, i.e., the impulse
response is absolutely summable. This is achieved if all roots of the characteristic equation (or the
eigenvalues of the system matrix) lie inside the unit circle. For sampled-data systems represented by the
δ-operator, all roots of the characteristic equation must lie inside the circle in Figure 8.25.

8.3.3 Stability Criteria

8.3.3.1 Necessary Conditions for Stability of Discrete-Time Systems [11]

Consider the characteristic polynomial,

f (z) = a0zn + a1zn−1 + · · · + an. (8.36)

The following conditions are necessary for the roots of Equation 8.36 to lie inside the unit circle (with
a0 = 1):

0 < f (1) < 2n, 0 < (−1)nf (−1) < 2n. (8.37)

|an| < 1. (8.38)

The ranges of the coefficients a1, a2, . . . an are given by the following table.

a1 a2 a3 a4 a5 a6 a7 …

n = 2 2 1

−2 −1

n = 3 3 3 −1

−3 −1 1

n = 4 4 6 4 1

−4 −2 −4 −1

n = 5 5 10 10 5 1

−5 −2 −10 −3 −1

n = 6 6 15 20 15 6 1

−6 −3 −20 −5 −6 −1

n = 7 7 21 35 35 21 7 1
... −7 −3 −35 −5 −21 −5 −1

Thus for example, a necessary condition for the stability of the characteristic polynomial, f (z) =
z2 + a1z + a2, is that −2 < a1 < 2 and −1 < a2 < 1. This table can detect instability without calculations.
It is analogous to the positivity of the characteristic polynomial coefficients for a continuous system, but
not equivalent to it.

8.3.3.2 Sufficient Conditions (with a0 > 0)

6.1

a0 >
∑

|ak| (8.39)

[2].

6.2

0 < an < an−1 < · · · < a1 < a0 (8.40)

[12].
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8.3.3.3 Necessary and Sufficient Conditions (a0 > 0)

Frequency Domain Criterion 1

“f (z) has all roots inside the unit circle of the z-plane if, and only if, f (ejθ) has a change of argument of
nπ when θ changes from 0 to π.” The proof of this criterion is based on the principle of the argument.

Frequency Domain Criterion 2

“f (z) has all its roots inside the unit circle of the z-plane if, and only if, f ∗ = h∗ + jg∗ has a change of
argument of nπ/2 when θ changes from 0 to π.”

f (z) = h(z) + g(z), (8.41)

where

h(z) = 1

2

[
f (z) + znf

(
1

z

)]
(8.42)

and

g(z) = 1

2

[
f (z) − znf

(
1

z

)]
(8.43)

are the symmetric and antisymmetric parts of f (z) respectively. Also

f (ejθ) = 2ejnθ/2[h∗ + jg∗]. (8.44)

For n even, n = 2m,

h∗(θ) = α0 cos mθ + α1 cos(m − 1)θ + · · · + αm−1 cos θ + αm

2
(8.45)

g ∗ (θ) = β0 sin mθ + β1 sin(m − 1)θ + · · · + βm−1 sin θ (8.46)

and for n odd, n = 2m − 1

h∗(θ) = a0 cos

(
m − 1

2

)
θ + a1 cos

(
m − 3

2

)
θ + · · · + αm−1

cos θ

2
(8.47)

g∗(θ) = β0 sin

(
m − 1

2

)
θ + β1 sin

(
m − 3

2

)
θ + · · · + βm−1

sin θ

2
(8.48)

h∗(x) and g∗(x) are the projections of h(z) and g(z) on the real axis with x = cos θ.

For n = 2m, h∗(x) =
m−1∑

0

αiTm−1 + αm

2
(8.49)

g∗(x) =
m−1∑

0

βiUm−i (8.50)

where Tk , Uk are Tshebyshef polynomials of the first and second kind, respectively. Tk and Uk can be
obtained by the recursions

Tk+1(x) = 2xTk(x) − Tk−1(x) (8.51)

Uk+1(x) = 2xUk(x) − Uk−1(x) (8.52)

where

T0(x) = 1, T1(x) = x, U0(x) = 0, U1(x) = 1
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Discrete Hermite–Bieler Theorem

“f (z) has all its roots inside the unit circle of the z-plane if, and only if, h(z) and g(z) have simple alternating

roots on the unit circle and
∣∣∣ an

a0

∣∣∣< 1 [13]. The necessary condition
∣∣∣ an

a0

∣∣∣< 1 distinguishes between f (z)

and its inverse which has all roots outside the unit circle.”

Schur–Cohn Criterion

“f (z) with |an/a0| < 1 has all roots inside the unit circle of the z-plane if, and only if, the polynomial
1
z

[
f (z) − an

a0
znf (1/z)

]
has all roots inside the unit circle.”

The proof of this theorem is based on the Rouché theorem [1] or on the discrete Hermite–Bieler
theorem [10]. This criterion can be translated in table form as follows: where

a0 a1 a2 . . . an

an an−1 an−2 . . . a0

b0 b1 . . . bn−1

bn−1 bn−2 . . . b0

c0 c1 . . . cn−2

cn−2 cn−3 . . . c0

. . .

g0 g1

g1 g0

h0

b0 =
∣∣∣∣a0 an

an a0

∣∣∣∣ , b1 =
∣∣∣∣a0 an−1

an a1

∣∣∣∣ , . . . ,

bn−1 =
∣∣∣∣a0 a1

an an−1

∣∣∣∣ ,

c0 =
∣∣∣∣ b0 bn−1

bn−1 b0

∣∣∣∣ , . . .

The necessary and sufficient condition for stability is that

b0, c0, . . . , g0, h0 > 0. (8.53)

Jury [4] has replaced the last condition by the necessary conditions

f (1) > 0, and (−1)nf (−1) > 0. (8.54)

Example: f (z) = 6z2 + z − 1.

6 1 −1

−1 1 6

35 7 35 > 0

7 35

1176 1176 > 0

Hence there is stability.
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Bistritz Table [5]

Bistritz used a sequence of symmetric polynomials Ti(z) i = 0, 1, . . . , n,

Tn(z) = 2h(z) (8.55)

Tn−1(z) = 2g(z)/(z − 1) (8.56)

Ti(z) = [δi+2(z + 1)Ti+1(z) − Ti+2(z)]/z i = n − 2, n − 3, . . . , 0 (8.57)

where

δi+2 = [Ti+2(0)]/[Ti+1(0)].

“The polynomial f (z) is stable if and only if

i) Ti(0) �= 0, i = n − 1, n − 2, . . . , 0, and
ii) Tn(1), Tn−1(1), . . . , T0(1)

have the same sign.”
Example: n = 2 a0 > 0.

T2(z) : (a0 + a2)z2 + 2a1z + a0 + a2

T1(z) : (a0 − a2)z + (a0 − a2)

T0(z) : 2(a0 + a2 − a1)

T2(1) = 2(a0 + a1 + a2) = 2f (1)

T1(1) = 2(a0 − a2)

T0(1) = 2(a0 + a2 − a1) = 2f (−1)

A necessary and sufficient condition for stability of a second-order system of characteristic equation
f (z) is

f (1) > 0

f (−1) > 0

a0 − a2 > 0

Determinant Criterion [2]

f (z) = a0zn + a1zn−1 + . . . + an

has all roots inside the unit circle if, and only if,

Δk < 0 k odd

Δk > 0 k even k = 1, 2, . . . , n (8.58)
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where

Δk =
[

Ak BT
k

Bk AT
k

]
(8.59)

Ak =

⎡
⎢⎢⎢⎣

an 0
an−1 an

...
. . .

. . .
an+k−1 · · · an−1 an

⎤
⎥⎥⎥⎦

Bk =

⎡
⎢⎢⎢⎣

a0 0
a1 a0
...

. . .
. . .

ak−1 · · · a1 a0

⎤
⎥⎥⎥⎦

Jury simplified this criterion so that only determinants of dimension n − 1 are computed [4]. The
necessary conditions f (1) > 0 and (−1)f (−1) > 0 replace the determinants of dimension n. Example:
f (z) = 6z2 + z − 1.

Δ1 =
∣∣∣∣−1 6
6 −1

∣∣∣∣= −35 < 0

Δ2 =

∣∣∣∣∣∣∣∣

−1 0 6 1
1 −1 0 6
6 0 −1 1
1 6 0 −1

∣∣∣∣∣∣∣∣
= 161 > 0.

Hence there is stability.

Positive Definite Symmetric Matrix

[3] “f (z) has all its roots inside the unit circle, if and only if, the symmetric matrix C = [cij] is positive
definite.”

C is given by

cij =
min(i j)∑

p=1

(ai−p − aj−pan−i+pan−j+p). (8.60)

For n = 2,

C =
[

a2
0 − a2

2 a0a1 − a1a2

a0a1 − a1a2 a2
0 − a2

2

]
. (8.61)

For n = 3,

C =
⎡
⎣a2

0 − a2
3 a0a1 − a2a3 a0a2 − a1a3

a0a1 − a2a3 a2
0 + a2

1 − a2
2 − a2

3 a0a1 − a2a3

a0a2 − a1a3 a0a1 − a2a3 a2
0 − a2

3

⎤
⎦ . (8.62)

For n = 4,

C =

⎡
⎢⎢⎣

a2
0 − a2

4 a0a1 − a3a4 a0a2 − a2a4 a0a3 − a1a4

a0a1 − a3a4 a2
0 + a2

1 − a2
3 − a2

4 a0a1 + a1a2 − a2a3 − a3a4 a0a2 − a2a4

a0a2 − a2a4 a0a1 + a1a2 − a2a3 − a3a4 a2
0 + a2

1 − a2
3 − a2

4 a0a1 − a3a4

a0a3 − a1a4 a0a2 − a2a4 a0a1 − a3a4 a2
0 − a2

4

⎤
⎥⎥⎦ (8.63)

Jury simplified this criterion. See, for example, [14] and [15].
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Example: f (z) = 6z2 + z − 1.

C =
[

35 7
7 35

]
> 0.

Markov Stability Criterion [6]

If
g∗(x)

h∗(x)
= s0

x
+ s1

x2 + s2

x3 + · · · , (8.64)

then, for n = 2m, the polynomial f (z) has all roots inside the unit circle if, and only if, the Hankel matrices

Sa =

⎡
⎢⎢⎢⎣

s0 + s1 s1 + s2 · · · sm−1 + sm

s1 + s2 s2 + s3 · · · sm + sm+1
...

...
...

sm−1 + sm sm + sm+1 · · · s2m−2 + s2m−1

⎤
⎥⎥⎥⎦ (8.65)

and

Sb =

⎡
⎢⎢⎢⎣

s0 − s1 s1 − s2 · · · sm−1 − sm

s1 − s2 s2 − s3 · · · sm − sm+1
...

...
...

sm−1 − sm sm − sm+1 · · · s2m−2 − s2m−1

⎤
⎥⎥⎥⎦ (8.66)

are positive definite.
For n odd, zf (z) is considered instead of f (z). Simplifications of the above critrion can be found in [16]

and [17].

Stability of Discrete-Time Systems Using Lyapunov Theory

Given the discrete system,

x(k + 1) = Ax(k) (8.67)

and using a quadratic form as a Lyapunov function

V (k) = x(k)T Px(k), (8.68)

the change in V (K)

ΔV (k) = x(k)T [AT PA − P]x(k). (8.69)

For stability, V (k) > 0, and ΔV (k) < 0.
This is achieved by solving the matrix equation

AT PA − P = −Q (8.70)

P and Q are symmetric matrices.
Q is chosen positive definite, e.g., the unity matrix, and P is determined by solving a set of algebraic

equations.
Necessary and sufficient conditions for the asymptotic stability of Equation 8.67 are that P is positive

definite.
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Stability Conditions of Low-Order Polynomials [14]

n = 2 :
f (z) = a0z2 + a1z + a2, a0 > 0
a) f (1) > 0, f (−1) > 0
b) a0 − a2 > 0

n = 3 :
f (z) = a0z3 + a1z2 + a2z + a3, a0 > 0
a) f (1) > 0, f (−1) < 0
b) |a3| < a0

c) a2
3 − a2

0 < a3a1 − a0a2

n = 4 :
f (z) = a0z4 + a1z3 + a2z2 + a3z + a4, a0 > 0
a) f (1) > 0, f (−1) > 0
b) a2

4 − a2
0 − a4a1 + a3a0 < 0

c) a2
4 − a2

0 + a4a1 − a3a0 < 0
d) a3

4 + 2a4a2a0 + a3a1a0 − a4a2
0

− a2a2
0 − a4a2

1 − a2
4a0 − a2

4a2

− a2
3a0 + a3

0 + a4a3a1 > 0

n = 5 :
f (z) = a0z2 + a1z4 + a2z3 + a3z2 + a4z + a5, a0 > 0
a) f (1) > 0, f (−1) < 0
b) |a5| < a0

c) a4a1a0 − a5a2
0 − a3a2

0 + a3
5 + a5a2a0

− a5a2
1 − (a2

4a0 − a5a3a0 − a3
0 + a2

5a2

+ a2
5a0 − a5a4a1) > 0

d) a4a1a0 − a5a2
0 − a3a2

0 + a3
5 + a5a2a0

− a5a2
1 + (a2

4a0 − a5a3a0 − a3
0 + a2

5a2

+ a2
5a0 − a5a4a1) < 0

e) (a2
5 − a2

0)2 − (a5a1 − a4a0)2 + (a5a1

− a4a0)(a2
1 + a4a2 − a2

4 − a3a1 − a2
5

+ a2
0) + (a5a2 − a3a0)(a5a4 − a1a0

− a5a2 + a3a0) − (a5a3 − a2a0)
[(a2

5 − a2
0) − 2(a5a1 − a4a0)] > 0

The critical stability constraints that determine the boundary of the stability region in the coefficient
space are given by the first condition

a) f (1) > 0 and (−1)nf (−1) > 0

and the last condition of the above conditions, i.e., condition b) for n = 2, condition c) for n = 3 and
so on.

Stability Criteria for Delta-Operator Polynomials

The characteristic equation of a sampled-data system, whose characteristic equation is in the δ-domain,
is given by

f (δ) = a0δ
n + a1δ

n−1 + · · · + an, (8.71)

where Δ is the sampling period. For stability, the roots of f (δ) must lie inside the circle in Figure 8.25.
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Necessary conditions for stability: [10]

i) a1, a2, . . . an > 0, (8.72)

ii) (−1)nf

(−2

Δ

)
> 0, and (8.73)

iii) ai <

(
n
i

)(
2

Δ

)i

i = 1, 2, . . . , n. (8.74)

Necessary and sufficient conditions: The stability of Equation 8.71 can be checked by one of the following
methods:

1. Transforming Equation 8.71 to the s-domain by the transformation

δ = 2s

2 − Δs
(8.75)

and applying the Routh–Hurwitz criterion
2. Transforming Equation 8.71 to the z-domain by the transformation

δ = z − 1

Δ
(8.76)

and applying Schur-Cohn criterion
3. Using a direct approach such as the one given in [8]

This direct approach is as follows: Let

f ∗(δ) = (1 + Δδ)nf

(
δ

1 + Δδ

)
. (8.77)

Consider the sequence of polynomials,

Tn(δ) = f (δ) + f ∗(δ) (8.78)

Tn−1(δ) = 1

δ
[f (δ) − f ∗(δ)] (8.79)

Tj(δ) = 1

1 + Δδ

[
δj+2(2 + Δδ)Tj+1(δ) − Tj+2(δ)

]
(8.80)

with

δj+2 = Tj+2
(− 1

Δ

)
Tj+1

(− 1
Δ

) , j = n − 2, n − 3, . . . , 0, (8.81)

where

Tj−1(−1/Δ) �= 0, j = 1, 2, . . . , n,

Stability is concluded if

var
{

Tj(0)
}n

j=0 = 0 (8.82)

(no change of sign).
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Further Reading

For comprehensive discussions of the stability of linear discrete-time and sampled-data systems, see [14]
and [15]. The Delta-operator approach and its advantages is dealt with in [9]. The application of the
Nyquist stability criterion, using the discrete frequency response, is given in [12] and [18].

8.4 Gain Margin and Phase Margin

Raymond T. Stefani
8.4.1 Introduction

According∗ to Nyquist plot stability evaluation methods, a system with no open-loop right half-plane
(RHP) poles should have no clockwise (CW) encirclements of the −1 point for stability, and a system
with open-loop RHP poles should have as many counterclockwise (CCW) encirclements as there are
open-loop RHP poles. It is often possible to determine whether the −1 point is encircled by looking at
only that part of the Nyquist plot (or Bode plot) that identifies the presence of an encirclement, that is,

∗ From Stefani, R.T., et al. Design of Feedback Control Systems, 4th ed., Oxford University Press, 2002. With permission.
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R(s) +

–
K G(s)

H(s)

Y(s)

FIGURE 8.26 Closed-loop system. (From Stefani, R.T., et al. Design of Feedback Control Systems, 4th ed., Oxford
University Press, 2002. With permission.)

the part of the Nyquist plot near the −1 point (the part of the Bode plot near 0 dB for magnitude and
−180◦ for phase).

Similarly, it is possible to examine part of the Nyquist plot (or Bode plot) to determine the factor by
which the system magnitude can be changed to make the system marginally stable. That factor is called
the gain margin. It is also possible to examine part of the Nyquist plot (or Bode plot) to determine the
amount of phase shift required to make the system marginally stable. The negative of that phase shift is
called the phase margin. Both margins are discussed in this chapter.

A polynomial is called minimum phase when all the roots are in the left half-plane (LHP) and non-
minimum phase when there are RHP roots. This means that stability is relatively easy to determine when
G(s)H(s) has minimum-phase poles, since there should be no encirclements of −1 for stability (a require-
ment that is easy to verify), but special care must be taken for the nonminimum-phase RHP pole case
where stability demands CCW encirclements.

8.4.2 Gain Margin

In general, a Nyquist plot establishes the stability of a system of the form of Figure 8.26 with K = 1 by
mapping G(s)H(s) for s along the RHP boundary. One measure of stability arises from use of the phase
crossover frequency, denoted ωPC and defined as the frequency at which the phase of G(s)H(s) is −180◦,
that is,

phase G(jωPC)H(jωPC) = −180◦ = Φ(ω)

The magnitude of G(s)H(s) at the phase crossover frequency is denoted A(ωPC). The gain margin, GM,
is defined to be 1/A(ωPC). Suppose that the gain K in Figure 8.26 is not selected to be one; rather K is
selected to be K = GM. Then

KG(jωpc)H(jωpc) = KA(ωpc)∠ − 180◦
= 1∠ − 180◦,

and the system becomes marginally stable.
For example, a system with G(s)H(s) = 4/s(s + 1)(s + 2) has the Nyquist plot of Figure 8.27. Table 8.1

contains magnitude and phase data spanning the frequency range from zero to infinity.
Figure 8.28a shows the root locus with variable K for the same system as Figure 8.27. Figures 8.28b

and 8.28c contain part of the Nyquist plot of G(s)H(s) and Figures 8.28d and 8.28e show the Bode plot
of G(s)H(s). The gain margin, GM, for the system of Figure 8.26 with K nominally equals 1 is the K for
marginal stability on the root locus of Figure 8.28a. More generally, GM is the gain at which the system

TABLE 8.1 Evaluation for G(s)H(s) for s = jω

ω 0 0.5 1 1.141 1.414 2 10 ∞
A(ω) ∞ 3.47 1.26 1.00 0.67 0.31 0.004 0

Φ(ω) −90◦ −131◦ −162◦ −169◦ −180◦ −198◦ −253◦ −270◦
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(b) Im [G(s)H(s)]

Re [G(s)H(s)]c, d, e

l

ω = 0+

b

–1 a

Im (s)(a)
c

I

b

–2 –1

ω = 0+

a

d

e Re (s)

FIGURE 8.27 Nyquist plot for G(s)H(s) = 4/s(s + 1)(s + 2). (a) RHP boundary; (b) Nyquist plot (not to scale).
(From Stefani, R.T., et al. Design of Feedback Control Systems, 4th ed., Oxford University Press, 2002. With
permission.)

becomes marginally stable divided by the nominal gain. That ratio can be expressed as a base 10 number
or in dB.

Viewed from the perspective of a Nyquist plot, A(ωPC) is the distance from the origin to where the
Nyquist plot crosses the negative real axis in Figure 8.28b, which occurs for A(ωPC) = 0.67. GM is thus
measured at ωPC = 1.414 rad/s. GM is 1/0.67 = 1.5 as a base 10 number while

dB(GM) = −dB[A(ωPC)] = 20 log10(1.5) = 3.5 dB

The GM in dB is the distance on the Bode magnitude plot from the amplitude at the phase crossover
frequency up to the 0-dB point (see Figure 8.28d).
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FIGURE 8.28 Stability of the system G(s)H(s) = 4/s(s + 1)/(s + 2) (a) Root locus for variable K ; (b) Nyquist plot
of G(s)H(s) showing GM; (c) Nyquist plot of G(s)H(s) showing PM. (d) Bode magnitude plot of G(s)H(s); (e) Bode
phase plot of G(s)H(s). (From Stefani, R.T., et al. Design of Feedback Control Systems, 4th ed., Oxford University Press,
2002. With permission.)

When a system is stable for all positive K , the phase crossover frequency is generally infinite: A(ωPC)
is zero; and GM is infinite. Conversely, when a system is unstable for all positive K , the phase crossover
frequency is generally at 0 rad/s; A(ωPC) is infinite; and the GM is zero.

GM can be interpreted in two ways. First, the designer can purposely vary K to some value other
than one, and K = GM represents an upper bound on the value of K for which the closed-loop system
remains stable. Second, the actual system open-loop transmittance may not actually be G(s)H(s). When
the uncertainty in G(s)H(s) is only in the magnitude, the GM is a measure of the allowable margin of
error in knowing |G(s)H(s)| before the system moves to marginal stability.

As an open-loop RHP pole example, consider the Nyquist and Bode plots of Figure 8.29. The Nyquist
plot of Figure 8.29a has one CCW encirclement of −1 so the number of closed-loop RHP poles is −1 (due
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FIGURE 8.29 Stability of the system G(s)H(s) = 2(s + 3)/(s + 2)2(s − 1). (a) Nyquist plot; (b) Bode magnitude plot
of G(s)H(s) showing GM; (c) Bode phase plot of G(s)H(s) showing PM. (From Stefani, R.T., et al. Design of Feedback
Control Systems, 4th ed., Oxford University Press, 2002. With permission.)

to the CCW encirclement) +1 (due to the open-loop RHP pole), which equals zero indicating stability.
Here the phase is −180◦ at ωPC = 0 rad/s and G(0)H(0) is −1.5, so that A(ωPC) is 1.5 and GM is 0.67 or
−3.5 dB. In this case, the system is stable with a dB(GM) that is negative.

Figure 8.30a shows part of the Nyquist plot for G(s)H(s) = 0.75(s + 2)2/s2(s + 0.5). From the complete
Nyquist plot it is easy to show that there are no CW encirclements of the −1 point; so the system is stable
with K = 1. The phase crossover frequency is 1.41 rad/s with a GM of 1/1.5 = 2/3 = 0.67(−3.53 dB).
The system is stable for a negative value of dB(GM). If the G(s)H(s) of Figure 8.30a is divided by 3,
as in Figure 8.30b, the complete Nyquist plot indicates that the system is unstable. Predictably, the
GM of Figure 8.30b is three times that of Figure 8.30a; thus, the GM of Figure 8.30b is 2.0 (6 dB)
with a phase crossover frequency of 1.41 rad/s. Here the system is unstable with a positive dB(GM)
value.

To be sure of stability, it is good practice to examine the Nyquist plot and the root locus plot. When
there is more than one GM value (due to more than one phase crossover frequency) for a stable system,
it is good practice to select the smallest GM value to ensure stability.
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FIGURE 8.30 Partial Nyquist plots. (a) G(s)H(s) = 0.75(s + 2)2/s2(s + 0.5), GM = 2/3(−3.53 dB), PM = 7.3◦, sta-
ble system; (b) G(s)H(s) = 0.25(s + 2)2/s2(s + 0.5), GM = 2(6 dB), PM = −9.2◦, unstable system.

8.4.3 Phase Margin

In contrast to GM, when only the magnitude of KG(s)H(s) is changed compared to that of G(s)H(s),
suppose instead that the gain K has unit magnitude and only the phase of KG(s)H(s) is changed compared
to that of G(s)H(s).

It is useful to define the gain crossover frequency ωGC as the frequency at which the magnitude of
G(s)H(s) is one (0 dB). Thus, A(ωGC) = 1. The phase of G(s)H(s) at the gain crossover frequency is
denoted by Φ(ωGC). The phase margin, PM, is defined by

PM = 180◦ + Φ(ωGC)

Suppose the gain K in Figure 8.26 is selected to be K = 1∠ − PM. Then at the gain crossover frequency

KG(jωGC)H(jωGC) =[1∠ − PM][1∠Φ(ωGC)],
|KG(jωGC)H(jωGC)| = 1,

phase KG(jωGC)H(jωGC) =−PM + Φ(ωGC) = −180◦ − Φ(ωGC)
+Φ(ωGC) = −180◦,

and the system is marginally stable.
For example, consider again the system with G(s)H(s) = 4/s(s + 1)(s + 2). From Table 8.1, the gain

crossover frequency is at 1.141 rad/s so that A(ωGC) = 1 whereas Φ(ωGC) = Φ(1.141) = −169◦. There-
fore, PM is 180◦ − 169◦ = 11◦. The phase margin, PM, is the angle in the Nyquist plot of Figure 8.28c
drawn from the negative real axis to the point at which the Nyquist plot penetrates a circle of unit radius
(called the unit circle). On the Bode phase plot of Figure 8.28e, the PM is the distance from −180◦ to
the phase at the gain crossover frequency. The phase margin is therefore the negative of the phase through
which the Nyquist plot can be rotated, and similarly the Bode plot can be shifted, so that the closed-loop
system becomes marginally stable.

In order to properly calculate PM, it is generally best to define Φ(ωGC) as −270◦ ≤ Φ(ωGC) ≤ 90◦. For
example, a third quadrant Φ(ωGC) would be written as −160◦; so PM would be +20◦.

For a nonminimum-phase example, consider again the system of Figure 8.29. The Nyquist plot indicates
stability. Here the gain crossover frequency is at 0.86 rad/s, Φ(ωGC) is −170◦ and the PM is 180◦ − 170◦
or 10◦; hence, the upward-directed arrow on the phase plot of Figure 8.29c.

For the example of Figure 8.30a, which is a stable system, ωGC is 1.71 rad/s and the PM is 7.3◦. For the
unstable system of Figure 8.30b, ωGC is 1.71 rad/s and the PM is −9.2◦. It should be noted that there is a
positive PM for all the stable systems just examined and a negative PM for all the unstable systems. This
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sign–stability relationship holds for the PM of most systems, while no such relationship holds for the sign
of dB(GM) in the examples just examined.

If there is more than one gain crossover frequency, there is more than one PM. For a stable system, the
smallest candidate PM should be chosen.

As noted earlier, when K = 1∠ − PM, the system becomes marginally stable. That fact can be inter-
preted in two ways. First, the designer can purposely vary K away from one and then 1∠ − PM represents
one extreme of selection of K . Second, the actual system open-loop transmittance may not actually be
G(s)H(s). When the uncertainty in G(s)H(s) affects only the phase, the PM is the allowable margin of
error in knowing phase G(s)H(s) before the system moves to marginal stability. In most systems, there is
uncertainty in both the magnitude and phase of G(s)H(s) so that substantial gain and PMs are required
to assure the designer that imprecise knowledge of G(s)H(s) does not necessarily cause instability. In fact,
there are examples of systems that have large GM and PM, but small variations in gain and phase cause
instability. It is of course important to check the complete Nyquist plot when there is any question about
stability.

Suppose in Figure 8.26 that K = 1, H(s) = 1 and G(s) = ω2
n/s(s + 2ζωn). The closed-loop transfer

function is T(s) = ω2
n/(s2 + 2ζωns + ω2

n), the standard form for a second-order system with damping
ratio ζ and undamped natural frequency ωn. For this system, the gain crossover frequency can be found
in closed form and the PM follows from a trigonometric identity.

ωGC = kωn,
k = ((4ζ4 + 1)0.5 − 2ζ2)0.5,

PM = tan−1(2ζ/k).

Table 8.2 shows values of gain crossover frequency and PM for this standard-form second-order system.
For other systems with two dominant closed-loop underdamped poles, Table 8.2 is often a good

approximation. Thus, the PM is approximately 100ζ degrees for damping ratios from zero to about 0.7.

8.4.4 Using MATLAB to Get GM and PM

GM and PM may be found automatically by the Control System Toolbox option of MATLAB�, a product
of The Math Works Inc. These margins are provided by the margin command for a stable system. Prior
to using the margin command, the open-loop system must be defined in either transfer function or
state-space form.

TABLE 8.2 Phase Margin for a Standard-Form

Second-Order System

Damping Phase

Ratio k Margin

ζ ωGC/ωn Degrees

0.0 1 0

0.1 0.99 11

0.2 0.96 23

0.3 0.91 33

0.4 0.85 43

0.5 0.79 52

0.6 0.72 59

0.7 0.65 65

0.8 0.59 70

0.9 0.53 74

1.0 0.49 76
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TABLE 8.3 Gain and Phase Margins of the Example Systems

Gain Margin

System of Stability Base 10 dB Phase Margin

Figure 8.28 Stable 1.5 3.5 11◦
Figure 8.29 Stable 0.67 −3.5 10◦
Figure 8.30a Stable 0.67 −3.5 7.3◦
Figure 8.30b Unstable 2.0 6.0 −9.2◦

The system in Figure 8.28 has the transfer function G(s)H(s) = 4/s (s + 1)(s + 2). That transfer function
may be input to MATLAB via the zpk or zero-pole-k(gain) command. That command requires that the
zeros and poles each be set off within a square bracket followed by the multiplying gain constant. Since
there is no zero in this case, the first bracket is empty. Suppose this G(s)H(s) is called gh1 in MATLAB.
The MATLAB command would be

gh1 = zpk([ ], [0 1 − 2], 4).

If gm represents gain margin, pm represents phase margin, wpc represents phase crossover frequency,
and wgc represents gain crossover frequency, the following command causes each of those defined values
to be calculated and displayed.

[gm, pm, wpc, wgc] = margin( gh1).

If the command is written as margin(gh1), without the argument list, the margins and crossover
frequencies are identified on Bode magnitude and phase plots. The results of Figure 8.28 are obtainable
by the above commands.

For the system in Figure 8.29, the following commands will generate those margins.

gh2 = zpk([−3], [−2 2 1], 2), [gm, pm, wpc, wgc] = margin(gh2).

Similarly, for Figure 8.30a, the following commands may be used:

gh3 = zpk([−2 − 2], [0 0 − 0.5], 0.75), [gm, pm, wpc, wgc] = margin(gh3).

The system of Figure 8.30b may be defined by gh4 = gh3/3. For that system it is necessary to obtain
either the Bode or Nyquist plot and then find gain and PM directly from the plot, since that system is
unstable and margins are calculated by the MATLAB Control System Toolbox only for a stable system.

The GM and PM results are summarized in Table 8.3.

Defining Terms

Gain crossover frequency (rad/s): Frequency at which the magnitude of GH is one (zero dB).
Gain margin: Negative of the dB of GH measured at the phase crossover frequency (inverse of the base

10 magnitude). When K = GM, the system becomes marginally stable.
MATLAB: MAThematical LABoratory produced by The Mathworks, Inc. The software offers a wide

range of mathematical commands plus additional toolboxes including control systems and
signal processing applications.

Phase crossover frequency (rad/s): Frequency at which the phase of GH is −180◦.
Phase margin: 180◦+ phase of GH measured at the gain cross-over frequency. When K = 1∠ − PM, the

system becomes marginally stable.
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9.1 Specification of Control Systems

Jiann-Shiou Yang and William S. Levine
9.1.1 Introduction

Generally, control system specifications can be divided into two categories, performance specifications
and robustness specifications. Although the boundaries between the two can be fuzzy, the performance
specifications describe the desired response of the nominal system to command inputs. The robustness
specifications limit the degradation in performance due to variations in the system and disturbances. Sec-
tion 9.1.2 of this chapter describes the classical performance specifications for single-input single-output
(SISO) linear time-invariant (LTI) systems. This is followed by a discussion of the classical robustness
specifications for SISO LTI systems. The fourth section gives some miscellaneous classical specifica-
tions. The fifth section describes performance specifications that are unique to multi-input multi-output
(MIMO) systems. This is followed by a section on robustness specifications for MIMO systems. The final
section contains conclusions.

9.1.2 Performance Specifications for SISO LTI Systems

9.1.2.1 Transient Response Specifications

In many practical cases, the desired performance characteristics of control systems are specified in terms
of time-domain quantities, and frequently, in terms of the transient and steady-state response to a unit
step input. The unit step signal, one of the three most commonly used test signals (the other two are ramp
and parabolic signals), is often used because there is a close correlation between a system response to a
unit step input and the system’s ability to perform under normal operating conditions. And many control
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systems experience input signals very similar to the standard test signals. Note that if the response to a
unit step input is known, then it is mathematically possible to compute the response to any input. We
discuss the transient and steady-state response specifications separately in this section and Section 9.1.2.2.
We emphasize that both the transient and steady-state specifications require that the closed-loop system
is stable.

The transient response of a controlled system often exhibits damped oscillations before reaching steady
state. In specifying the transient response characteristics, it is common to specify the following quantities:

1. Rise time (tr)
2. Percent overshoot (PO)
3. Peak time (tp)
4. Settling time (ts)
5. Delay time (td)

The rise time is the time required for the response to rise from x% to y% of its final value. For overdamped
second-order systems, the 0% to 100% rise time is normally used, and for underdamped systems (see
Figure 9.1), the 10–90% rise time is commonly used.

The peak time is the time required for the response to reach the first (or maximum) peak. The settling
time is defined as the time required for the response to settle to within a certain percent of its final value.
Typical percentage values used are 2% and 5%. The settling time is related to the largest time constant
of the controlled system. The delay time is the time required for the response to reach half of its final
value for the very first time. The percent overshoot represents the amount that the response overshoots its
steady-state (or final) value at the peak time, expressed as a percentage of the steady-state value. Figure 9.1
shows a typical unit step response of a second-order system

G(s) = ω2
n

s2 + 2ζωns + ω2
n

y(t)

1.00

Unit-step input

Rise time
tr

Peak time tp t

Setting
time ts

Maximum
overshoot

Steady-state
error bound

Delay
time

td

0.90

0.50

0.10

FIGURE 9.1 Typical underdamped unit-step response of a control system. An overdamped unit-step response
would not have a peak.
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where ζ is the damping ratio and ωn is the undamped natural frequency. For this second-order system
with 0 ≤ ζ < 1 (an underdamped system), we have the following properties:

PO = e−ζπ/
√

1−ζ2

tp = π

ωn
√

1 − ζ2

ts = 4

ζωn

where the 2% criterion is used for the settling time ts. If 5% is used, then ts can often be approximated by
ts = 3/ζωn. A precise formula for rise time tr and delay time td in terms of damping ratio ζ and undamped
natural frequency ωn cannot be found. But useful approximations are

td
∼=1.1 + 0.125ζ + 0.469ζ2

ωn

tr ∼=1 − 0.4167ζ + 2.917ζ2

ωn

Note that the above expressions are only accurate for a second-order system. Many systems are more
complicated than the pure second-order system. Thus, when using these expressions, the designer should
be aware that they are only rough approximations. The time-domain specifications are quite important
because most control systems must exhibit acceptable time responses. If the values of ts, td , tr , tp, and
PO are specified, then the shape of the response curve is virtually determined. However, not all these
specifications necessarily apply to any given case. For example, for an overdamped system (ζ > 1) or
a critically damped system (ζ = 1), tp and PO are not useful specifications. Note that the time-domain
specifications, such as PO, tr , ζ, etc., can be applied to discrete-time systems with minor modifications.

Quite often the transient response requirements are described in terms of pole–zero specifications
instead of step response specifications. For example, a system may be required to have its poles lying to
the left of some constraint boundary in the s-plane, as shown in Figure 9.2.

s-plane
j ω

σ

FIGURE 9.2 The shaded region is the allowable region in the s-plane.
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The parameters given above can be related to the pole locations of the transfer function. For example,
certain transient requirements on the rise time, settling time, and percent overshoot (e.g., tr , ts, and PO
less than some particular values) may restrict poles to a region of the complex plane. The poles of a
second-order system with ζ < 1 are given in terms of ζ and ωn by

p1 = −ζωn + jωn

√
1 − ζ2

p2 = −ζωn − jωn

√
1 − ζ2

Notice that |p1| = |p2| = ωn and ∠p1 = −∠p2 = 180o − tan−1
√

1 − ζ2/ζ. Thus, contours of constant
ωn are circles in the complex plane, while contours of constant ζ are straight lines (0 ≤ ζ ≤ 1), as shown
in Figure 9.3.

Because high-order systems can always be decomposed into a parallel combination of first- and second-
order subsystems, the parameters related to the time response of these high-order systems can be estimated
using the expressions given above. For instance, ts can be approximated by four (or three) times the slowest
time constant (i.e., the slowest subsystem normally determines the system settling time).

It is known that the location of the poles of a transfer function in the s-plane has great effects on
the transient response of the system. The poles that are close to the jω-axis in the left half s-plane give
transient responses that decay relatively slowly, whereas those poles far away from the jω-axis (relative
to the dominant poles) correspond to more rapidly decaying time responses. The relative dominance of
poles is determined by the ratio of the real parts of the poles, and also by the relative magnitudes of the
residues evaluated at these poles (the magnitudes of the residues depend on both the poles and zeros).
It has been recognized in practice that if the ratios of the real parts exceed five, then the poles nearest
the jω-axis will dominate in the transient response behavior. The poles that have dominant effects on
the transient response behavior are called dominant poles. And those poles with the magnitudes of their
real parts at least five times greater than the dominant poles may be regarded as insignificant (as far as
the transient response is concerned). Quite often, the dominant closed-loop poles occur in the form of
a complex-conjugate pair. It is not uncommon that some high-order systems can be approximated by
low-order systems. In other words, they contain insignificant poles that have little effect on the transient
response, and may be approximated by dominant poles only. If this is the case, then the parameters

ζ2

ζ2 > ζ1

ωn3 > ωn2 > ωn1

ζ2 ζ1

ζ1

ωn3
ωn2

ωn1

ζ = 0

ζ = 0

σ

s-plane
jω

FIGURE 9.3 Contours of constant ζ and ωn for a second-order system.
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y(t)

t

FIGURE 9.4 General envelope specification on a step response. The step response is required to be inside the region
indicated.

described above can still be used in specifying the system dynamic behavior, and we can use dominant
poles to control the dynamic performance, whereas the insignificant poles are used for ensuring the
controller designed can be physically realized.

Although, in general, high-order systems may not have dominant poles (and thus, we can no longer use
ζ, ωn, etc., to specify the design requirements), the time domain requirements on transient and steady-
state performance may be specified as bounds on the command step response, such as that shown in
Figure 9.4 (i.e., the system has a step response inside some constraint boundaries).

9.1.2.2 Steady-State Accuracy

If the output of a system at steady state does not exactly agree with the input, the system is said to have
steady-state error. This error is one measure of the accuracy of the system. Since actual system inputs
can frequently be considered combinations of step, ramp, and parabolic types of signals, control systems
may be classified according to their ability to follow step, ramp, parabolic inputs, etc. In general, the
steady-state error depends not only on the inputs but also on the “type” of control system. Let Go(s)
represent the open-loop transfer function of a stable unity feedback control system (see Figure 9.5), then
Go(s) can generally be expressed as

Go(s) = k(s − z1)(s − z2) · · · (s − zm)

sN (s − p1)(s − p2) · · · (s − pn)

where zi (�= 0, i = 1, 2, . . . , m) are zeros, pj (�= 0, j = 1, 2, . . . , n) and 0 (a pole at the origin with
multiplicity N) are poles, and m < n + N .

The type of feedback system refers to the order of the pole of the open-loop transfer function Go(s)
at s = 0 (i.e., the value of the exponent N of s in Go(s)). In other words, the classification is based on
the number of pure integrators in Go(s). A system is called type 0, type 1, type 2, . . . if N = 0, 1, 2, . . . ,
respectively. Note that a nonunity feedback system can be mathematically converted to an equivalent
unity feedback system from which its “effective” system type and static error constants (to be defined

R(s) Y(s)
+

Go(s)
–

FIGURE 9.5 A simple unity feedback system with open-loop transfer function Go(s) and closed-loop transfer
function Y (s)/R(s) = Go(s)/[1 + Go(s)].
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later) can be determined. For instance, for a control system with forward path transfer function G(s)
and feedback transfer function H(s), the equivalent unity feedback system has the forward path transfer
function Go(s) = G(s)/(1 + G(s)[H(s) − 1]).

Static error constants describe the ability of a system to reduce or eliminate steady-state errors. There-
fore, they can be used to specify the steady-state performance of control systems. For a stable unity
feedback system with open-loop transfer function Go(s), the position error constant Kp, velocity error
constant Kv , and acceleration error constant Ka are defined, respectively, as

Kp = lim
s→0

Go(s)

Kv = lim
s→0

sGo(s)

Ka = lim
s→0

s2Go(s)

In terms of Kp, Kv , and Ka, the system’s steady-state error for the three commonly used test signals,
i.e., a unit step input (u(t)), a ramp input (tu(t)), and a parabolic input ( 1

2 t2u(t)), can be expressed,
respectively, as

e(∞) = 1

1 + Kp

e(∞) = 1

Kv

e(∞) = 1

Ka

where the error e(t) is the difference between the input and output, and e(∞) = limt→∞ e(t). Therefore,
the value of the steady-state error decreases as the error constants increase. Just as damping ratio (ζ),
settling time (ts), rise time (tr), delay time (td), peak time (tp), and percent overshoot (PO) are used as
specifications for a control system’s transient response, so Kp, Kv , and Ka can be used as specifications
for a control system’s steady-state errors.

To increase the static error constants (and hence, improve the steady-state performance), we can
increase the type of the system by adding integrator(s) to the forward path. For example, provided the
system is stable, a type-1 system has no steady-state error for a constant input, a type-2 system has no
steady-state error for a constant or ramp input, a type-3 system has no steady-state error for a constant, a
ramp, or a parabolic input, and so forth. Clearly, as the type number is increased, accuracy is improved.
However, increasing the type number aggravates the stability problem. It is desirable to increase the error
constants, while maintaining the transient response within an acceptable range. A compromise between
steady-state accuracy and relative stability is always necessary.

Step response envelope specifications, similar to that of Figure 9.4, are often used as the time-domain
specifications for control system design. These specifications cover both the transient and steady-state
performance requirements. For MIMO systems, the diagonal entries of the transfer function matrix
represent the functions from the commanded inputs to their associated commanded variables, and the
off-diagonal entries are the transfer functions from the commands to other commanded variables. It
is generally desirable to require that the diagonal elements lie within bounds such as those shown in
Figure 9.4 , while the off-diagonal elements are reasonably small.

9.1.2.3 Frequency-Domain Performance Specifications

A stable LTI system G(s) subjected to a sinusoidal input will, at steady state, have a sinusoidal output
of the same frequency as the input. The amplitude and phase of the system output will, in general, be
different from those of the system input. In fact, the amplitude of the output is given by the product of
the amplitude of the input and |G(jω)|, while the phase angle differs from the phase angle of the input by
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∠G(jω). In other words, if the input is r(t) = A sinωt, the output steady-state response y(t) will be of the
form AR(ω) sin[ωt + φ(ω)], where R(ω) = |G(s)|s=jω = |G(jω)| and φ(ω) = ∠G(s)|s=jω = ∠G(jω) vary
as the input frequency ω is varied. Therefore, the magnitude and phase of the output for a sinusoidal
input may be found by simply determining the magnitude and phase of G(jω). The complex function
G(jω) = G(s)|s→jω is referred to as the frequency response of the system G(s). It is understood that the
system is required to be stable. In control system design by means of frequency-domain methods, the
following specifications are often used in practice.

1. Resonant peak (Mp)
2. Bandwidth (ωb)
3. Cutoff rate

The resonant peak Mp is defined as the maximum magnitude of the closed-loop frequency response, and
the frequency at which Mp occurs is called the resonant frequency (ωp). More precisely, if we consider a
LTI open-loop system described by its transfer function Go(s) and the unity feedback closed-loop system
pictured in Figure 9.5, then the closed-loop transfer function Gcl(s) will have transfer function

Gcl(s) = Go(s)

1 + Go(s)

and

Mp = maxω≥0 |Gcl(jω)|
ωp = arg

{
maxω≥0 |Gcl(jω)|}

In general, the magnitude of Mp gives an indication of the relative stability of a stable system. Normally,
a large Mp corresponds to a large maximum overshoot of the step response in the time domain. For most
control systems, it is generally accepted in practice that the desirable Mp should lie between 1.1 and 1.5.
The bandwidth, ωb, is defined as the frequency at which the magnitude of the closed-loop frequency
response drops to 0.707 of its zero-frequency value. In general, the bandwidth of a controlled system
gives a measure of the transient response properties, in that a large bandwidth corresponds to a faster
response. Conversely, if the bandwidth is small, only signals of relatively low frequencies are passed,
and the time response will generally be slow and sluggish. Bandwidth also indicates the noise-filtering
characteristics and the robustness of the system. Often, bandwidth alone is not adequate as an indication
of the characteristics of the system in distinguishing signals from noise. Sometimes it may be necessary to
specify the cutoff rate of the frequency response, which is the slope of the closed-loop frequency response
at high frequencies. The performance criteria defined above are illustrated in Figure 9.6.

The closed-loop time response is related to the closed-loop frequency response. For example, overshoot
in the transient response is related to resonance in the closed-loop frequency response. However, except
for first- and second-order systems, the exact relationship is complex and is generally not used. For the
standard second-order system, the resonant peak Mp, the resonant frequency ωp, and the bandwidth ωb

are uniquely related to the damping ratio ζ and undamped natural frequency ωn. The relations are given
by the following equations:

ωp = ωn

√
1 − 2ζ2 for ζ ≤ 0.707

Mp = 1

2ζ
√

1 − ζ2
for ζ ≤ 0.707

ωb = ωn[ (1 − 2ζ2) +
√

4ζ4 − 4ζ2 + 2 ]1/2

Like the general envelope specifications on a step response (e.g., Figure 9.4), the frequency-domain
requirements may also be given as constraint boundaries similar to those shown in Figure 9.7. That is,
the closed-loop frequency response of the designed system should lie within the specified bounds. This
kind of specification can be applied to many different situations.
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|Gc1 ( jω)|

1
ωp

ωb

ω
Mp

0.707

Cutoff-rate equals slope

FIGURE 9.6 Frequency response specification.

9.1.3 Robustness Specifications for SISO LTI Systems

9.1.3.1 Relative Stability----Gain and Phase Margins

In control system design, in general, we require the designed system to be not only stable, but to have a
certain guarantee of stability. In the time domain, relative stability is measured by parameters such as the
maximum overshoot and the damping ratio. In the frequency domain, the resonant peak Mp can be used
to indicate relative stability. Gain margin (GM) and phase margin (PM) are two design criteria commonly
used to measure the system’s relative stability. They provide an approximate indication of the closeness
of the Nyquist plot of the system’s open-loop frequency response L(jω). (L(jω) is also often called the
loop transfer function) to the critical point, −1, in the complex plane. The open-loop frequency response,
L(jω), is obtained by connecting all of the elements in the loop in series and not closing the loop. For
example, L(jω) = Go(jω) for the unity feedback system of Figure 9.5, but L(jω) = H(jω)Gp(jω)Gc(jω)
for the more complex closed-loop system of Figure 9.8.

The decibel (abbreviated dB) is a commonly used unit for the frequency response magnitude. The
magnitude of L(jω) is then 20 log10 |L(jω)| dB. For example, if |L(jωo)| = 5, |L(jωo)| = 20 log10 5 dB. The

0 ω

|Gc1 ( jω)|

FIGURE 9.7 General envelope specification on the closed-loop frequency response.
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R(s) Controller
Gc(s)

Process
Gp(s)

Sensor
H(s)

Control
input

Y(s)
+

–

FIGURE 9.8 A typical closed-loop control system.

gain margin is the amount of gain in dB that can be inserted in the loop before the closed-loop system
reaches instability. The phase margin is the change in open-loop phase shift required at unity gain to make
the closed-loop system unstable, or the magnitude of the minimum angle by which the Nyquist plot of the
open-loop transfer function must be rotated in order to intersect the −1 point (for a stable closed-loop
system). The Nyquist plot showing definitions of the gain and phase margins is given in Figure 9.9.

Although GM and PM can be obtained directly from a Nyquist plot, they are more often determined
from a Bode plot of the open-loop transfer function. The Bode plot (which includes Bode magnitude plot
and phase plot) and Nyquist plot (i.e., L(s)|s=jω drawn in polar coordinates) differ only in the coordinates
and either one can be obtained from the other. The gain crossover frequency ωc is the frequency at which
|L(jωc)| = 1 (i.e., the frequency at which the loop gain crosses the 0 dB line). Therefore, comparing both
Bode magnitude and phase plots, the distance in degrees between the −180◦ line and ∠ L(jωc) is the
PM. If ∠ L(jωc) lies above the −180◦ line, PM is positive, and if it lies below, PM is negative. The phase
crossover frequency ωp is the frequency at which ∠ L(jωp) = −180◦ (i.e., the frequency at which ∠ L(jωp)
crosses the −180◦ line). Thus, the distance in decibels between the 0 dB line and |L(jωp)| is the GM (i.e.,
−20 log10 |L(jωp)| dB). If |L(jωp)| lies below the 0 dB line, GM is positive. Otherwise, it is negative. A
proper transfer function is called minimum-phase if all its poles and zeros lie in the open left half s-plane.
In general, for a minimum-phase L(s), the system is stable if GM (in dB) > 0 and unstable if GM (in
dB) < 0. And generally, a minimum-phase system has a positive PM, and it becomes unstable if PM < 0.
For nonminimum phase systems, care must be taken in interpreting stability based on the sign of GM
(dB) and PM. In this case, the complete Nyquist plot or root locus must be examined for relative stability.
For a system in which multiple −180◦ crossovers occur, the simplest approach is to convert the Bode
plot to the corresponding Nyquist plot to determine stability and the frequencies at which the stability

Im [L( jω)]

Re [L( jω)]
– 1

0

P M

– α

FIGURE 9.9 Definitions of the gain and phase margins. The gain margin is 20 log 1
α

.
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margins occur. Obviously, systems with greater gain and phase margins can withstand greater changes in
system parameter variations before becoming unstable.

It should be noted that neither the GM alone nor the PM alone gives a sufficient indication of the
relative stability. For instance, the GM does not provide complete information about the system response;
a small GM indicates the Nyquist plot |L(jωp)| is very close to the −1 point. Such a system will have a
large Mp (which means an oscillatory closed-loop time response) independent of the PM. A Nyquist plot
approaching the −1 point too closely also indicates possible instability in the presence of modeling error
and uncertainty. Therefore, both GM and PM should be given in the determination of relative stability.
These two values bind the behavior of the closed-loop system near the resonant frequency. Since for most
systems there is uncertainty in both the magnitude and phase of the open-loop transfer function L(s), a
substantial amount of GM and PM is required in the control design to assure that the possible variations
of L(s) will not cause instability of the closed-loop system. For satisfactory performance, the PM should
lie between 30◦ and 60◦, and the GM should be greater than 6 dB. For an underdamped second-order
system, PM and ζ are related by

PM = tan−1 2ζ√√
4ζ4 + 1 − 2ζ2

This gives a close connection between performance and robustness, and allows one to fully specify such
a control system by means of phase margin and bandwidth alone. Note that for first- and second-order
systems, the Bode phase plot never crosses the −180◦ line. Thus, GM = ∞. In some cases, the gain and
phase margins are not helpful indicators of stability. For example, a high-order system may have large
GM and PM (both positive); however, its Nyquist plot may still get close enough to the −1 point to incur
a large Mp. Such a phenomenon can only occur in high-order systems. Therefore, the designer should
check any result obtained by using GM and PM as indicators of relative stability.

9.1.3.2 Sensitivity to Parameters

During the design process, the engineer may want to consider the extent to which changes in system
parameters affect the behavior of a system. One of the main advantages of feedback is that it can be used
to make the response of a system relatively independent of certain types of changes or inaccuracies in the
plant model. Ideally, parameter changes due to heat, humidity, age, or other causes should not appreciably
affect a system’s performance. The degree to which changes in system parameters affect system transfer
functions, and hence performance, is called sensitivity. The greater the sensitivity, the worse is the effect
of a parameter change.

A typical closed-loop control system may be modeled as shown in Figure 9.8, where Gp(s) represents
the plant or process to be controlled, Gc(s) is the controller, and H(s) may represent the feedback
sensor dynamics. The model Gp(s) is usually an approximation to the actual plant dynamic behavior,
with parameters at nominal values and high-frequency dynamics neglected. The parameter values in the
model are often not precisely known and may also vary widely with operating conditions. For the system
given in Figure 9.8, the closed-loop transfer function Gcl(s) is

Gcl(s) = C(s)

R(s)
= Gc(s)Gp(s)

1 + Gc(s)Gp(s)H(s)

If the loop gain |L| = |GcGpH| � 1, C/R depends almost entirely on the feedback H alone and is virtually
independent of the plant and other elements in the forward path and their parameter variations. This is
because |1 + GcGpH| ≈ |GcGpH| and |GcGp/GcGpH| ≈ 1/|H|. Therefore, the sensitivity of the closed-
loop performance to the elements in the forward path reduces as the loop gain increases. This is a major
reason for using feedback. With open-loop control (i.e., H = 0), C/R = GpGc . Choice of Gc on the basis
of an approximate plant model or a model for which the parameters are subjected to variations will cause
errors in C proportional to those in Gp. With feedback, the effects due to approximations and parameter
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variations in Gp can be greatly reduced. Note that, unlike Gp, the feedback element H is usually under the
control of the designer.

The sensitivity of the closed-loop transfer function Gcl to changes in the forward path transfer function,
especially the plant transfer function Gp, can be defined by

S = ∂Gcl

∂Gp

Gp

Gcl
= 1

1 + L

We can plot S(jω) as a function of ω, and such a plot shows how sensitivity changes with the frequency of
a sinusoidal input R. Obviously, for the sensitivity to be small over a given frequency band, the loop gain
L over that band should be large. Generally, for good sensitivity in the forward path of the control system,
the loop gain (by definition, the loop gain is |L(jω)|) is made large over as wide a band of frequencies as
possible.

The extent to which the plant model is unknown will be called uncertainty. Uncertainty is another
important issue, which designers might need to face. It is known that some uncertainty is always present,
both in the environment of the system and in the system itself. We do not know in advance exactly
what disturbance and noise signals the system will be subjected to. In the system itself, we know that no
mathematical expressions can exactly model a physical system. The uncertainty may be caused by param-
eter changes, neglected dynamics (especially, high-frequency unmodeled dynamics), or other unspecified
effects, which might adversely affect the performance of a control system. Figure 9.10 shows a possible
effect of high-frequency plant uncertainty due to dynamics in the high-frequency range being neglected
in the nominal plant.

In Figure 9.10, instability can result if an unknown high-frequency resonance causes the magnitude to
rise above 1. The likelihood of an unknown resonance in the plant Gp rising above 1 can be reduced if we
can keep the loop gain small in the high-frequency range.

In summary, to reduce the sensitivity we need to increase the loop gain. But, in general, increasing the
loop gain degrades the stability margins. Hence, we usually have a trade-off between low sensitivity and
adequate stability margins.

|L( jω)|

1 ω

FIGURE 9.10 Effect of high-frequency unmodeled plant uncertainty.
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9.1.3.3 Disturbance Rejection and Noise Suppression

All physical systems are subjected to some types of extraneous signals or noise during operation. External
disturbances, such as a wind gust acting on an aircraft, are quite common in controlled systems. Therefore,
in the design of a control system, consideration should be given so that the system is insensitive to noise and
disturbance. The effect of feedback on noise and disturbance depends greatly on where these extraneous
signals occur in the system. But in many situations, feedback can reduce the effect of noise and disturbance
on system performance. To explain these effects, let us consider a closed-loop unity feedback system as
shown in Figure 9.11, where a disturbance d(t) and a sensor noise n(t) have been added to the system.

For simplicity, we assume that the effect of external disturbances is collected and presented at the plant
output. The sensor noise, n(t), is introduced into the system via sensors. Both disturbances and sensor
noise usually include random high-frequency signals. Let D(s), N(s), R(s), and Y (s) be, respectively, the
Laplace transform of the disturbance d(t), sensor noise n(t), system input r(t), and system output y(t). It
is easy to find that, by superposition, the total output Y (s) is

Y (s) = Gc(s)Gp(s)

1 + Gc(s)Gp(s)
R(s) + 1

1 + Gc(s)Gp(s)
D(s) − Gc(s)Gp(s)

1 + Gc(s)Gp(s)
N(s)

and the tracking error e(t), defined as e(t) = r(t) − y(t) with its corresponding Laplace transform E(s),
becomes

E(s) = 1

1 + Gc(s)Gp(s)
R(s) − 1

1 + Gc(s)Gp(s)
D(s) + Gc(s)Gp(s)

1 + Gc(s)Gp(s)
N(s)

In terms of the sensitivity function S and closed-loop transfer function Gcl defined in Section 9.1.3.2,
the output Y (s) and tracking error E(s) become

Y (s) = Gcl(s)R(s) + S(s)D(s) − Gcl(s)N(s)

E(s) = S(s)R(s) − S(s)D(s) + Gcl(s)N(s)

Note that the transfer function Gcl is also called the complementary sensitivity function because S and
Gcl are related by S(s) + Gcl(s) = 1 for all frequencies. It is clear that S(s) must be kept small to min-
imize the effects of disturbances. From the definition of S, this can be achieved if the loop gain (i.e.,
|L(jω)| = |Gc(jω)Gp(jω)|) is large. |Gcl(jω)| must be kept small to reduce the effects of sensor noise on
the system’s output, and this can be achieved if the loop gain is small. For good tracking, S(s) must be small,
which implies that the loop gain should be large over the frequency band of the input signal r(t). Tracking
and disturbance rejection require small S, while noise suppression requires small Gcl . From the relation
between S and Gcl , clearly, we cannot reduce both functions simultaneously. However, in practice, distur-
bances and commands are often low-frequency signals, whereas sensor noises are often high-frequency
signals. Therefore, we can still meet both objectives by keeping S small in the low-frequency range and
Gcl small in the high-frequency range.

R(s)
E(s) U(s)

D(s)

Y(s)

N(s)

+
Gc(s) Gp(s)

–

+ +

+
+

FIGURE 9.11 A unity feedback control system showing sources of noise, N(s), and disturbance, D(s).
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FIGURE 9.12 Desirable shape for the open-loop frequency response.

Putting together the requirements of reducing the sensitivity to parameters, disturbance rejection, and
noise suppression, we arrive at a general desired shape for the open-loop transfer function, which is as
shown in Figure 9.12.

The general features of the open-loop transfer function are that the gain in the low-frequency region
should be large enough, and in the high-frequency region, the gain should be attenuated as much as
possible. The gain at intermediate frequencies typically controls the gain and phase margins. Near the
gain crossover frequency ωc , the slope of the log-magnitude curve in the Bode plot should be close to
−20 dB/decade (i.e., the transition from the low- to high-frequency range must be smooth). Note that
the PM of the feedback system is 180◦ + φc with φc = ∠ Gc(jωc)Gp(jωc). If the loop transfer function
L(jω) = Gc(jω)Gp(jω) is stable, proper, and minimum phase, then φc is uniquely determined from the
gain plot of GcGp (i.e., |Gc(jω)Gp(jω)|). Bode actually showed that φc is given, in terms of the weighted
average attenuation rate of |GcGp|, by

φc = 1

π

∫ ∞

−∞
d ln |Gc(jω(μ))Gp(jω(μ))|

dμ
(ln coth

|μ|
2

) dμ

where μ = ln (ω/ωc). And φc is large if |GcGp| attenuates slowly and small if it attenuates rapidly.
Therefore, a rapid attenuation of |GcGp| at or near crossover frequency will decrease the PM and a more
than −20 dB/decade slope near ωc indicates that PM is inadequate. Controlling φc is important because
it is related to the system stability and performance measure.

Based on the loop gain shown in Figure 9.12, therefore, the desirable shapes for the sensitivity
and complementary sensitivity functions of a closed-loop system should be similar to those shown in
Figure 9.13. That is, the sensitivity function S must be small at low frequencies and roll off to 1 (i.e., 0 dB)
at high frequencies, whereas Gcl must be 1 (0 dB) at low frequencies and get small at high frequencies.

Notice that Figures 9.12 and 9.13 can be viewed as specifications for a control system. Such graph-
ical specifications of the “loop shape” are suitable for today’s computer-aided design packages, which
have extensive graphical capabilities. As will be seen shortly, these specifications on the loop shape are
particularly easy to adapt to MIMO systems.

In order to achieve the desired performance shown in Figures 9.12 and 9.13, a “loop shaping” method,
which presents a graphical technique for designing a controller to achieve robust performance, may be
considered. The idea of loop shaping is to design the Bode magnitude plot of the loop transfer function
L(jω) = Gc(jω)Gp(jω) to achieve (or at least approximate) the requirements shown in Figure 9.12, and
then to back-solve for the controller from the loop transfer function. In other words, we first convert
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FIGURE 9.13 Desirable shape for the sensitivity and complementary sensitivity functions.

performance specifications on |S(jω)| and |Gcl(jω)| (as given in Figure 9.13) into specifications on |L(jω)|
(as shown in Figure 9.12). We then shape |L(jω)| to make it lie above the first constraint curve (|L(jω)| � 1)
at low frequencies, lie below the second constraint curve (|L(jω)| � 1), and roll off as fast as possible in
the high-frequency range, and make a smooth transition from low to high frequency, i.e., keep the slope as
gentle as possible (about −20 dB/decade) near the crossover frequency ωc . In loop shaping, the resulting
controller has to be checked in the closed-loop system to see whether a satisfactory trade-off between
|S(jω)| and |Gcl(jω)| has been reached. Note that it is also possible to directly shape |S(jω)| and/or
|Gcl(jω)|.

9.1.3.4 Control Effort

It is important to be aware of the limits on actuator signals in specifying controllers. Most actuators
have upper limits on their magnitudes and on their rates of change. These limits can severely constrain
the performance and robustness of the closed-loop system. For example, actuator saturation can cause
instability in conditionally stable systems and very poor transient response because of integral windup
(see Chapter 19.1).

The problem should be addressed in two places. The actuator specifications should state the allowable
limits on the magnitudes and rates of actuator signals. Proper specification of the actuators greatly
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facilitates the rest of the design. Secondly, the response of the closed-loop system to “large” inputs should
be specified. Such specifications ensure that, if it is necessary to saturate the actuators, the performance
and robustness of the closed-loop system remain satisfactory.

9.1.4 Miscellaneous Specifications

There are many other aspects of a control system that are often specified. There are usually constraints
on the allowable cost of the controller. In some applications, especially spacecraft, the size, weight, and
power required for the controller’s operation are restricted.

Control system reliability is also often specified. The simplest such specification is the life expectancy of
the controller. This is usually given as the mean time before failure (MTBF). The allowable ways in which
a controller may fail are also often specified, especially in applications involving humans. For example, a
control system may be required to “fail safe.” A stronger requirement is “fail soft.”

A good example of a control system that is designed to “fail soft” is the controller that regulates the
height of the water in a toilet tank. Sooner or later, the valve that stops the flow of water when the tank
is full gets stuck open. This would cause the tank to overflow, creating a mess. The MTBF is a few years,
not very long in comparison to the life of the whole system. This is acceptable because the control system
includes an overflow tube that causes the overflow to go into the toilet and, from there, into the sewer.
This is a soft failure. The controller does not work properly. Water is wasted. But, the failure does not
create a serious problem.

9.1.5 Performance Specifications for MIMO LTI Systems

From the discussion given for SISO LTI systems, it is clear that the open-loop transfer function L(jω) plays
an essential role in determining various performance and robustness properties of the closed-loop system.
For MIMO systems, the inputs and outputs are generally interacting. Due to such interactions, it can be
difficult to control a MIMO system. However, the classical Bode gain/phase plots can be generalized for
MIMO systems. In the following, we describe performance specifications for MIMO systems.

The responses of a MIMO system are generally coupled. That is, every input affects more than one
output, and every output is influenced by more than one input. If a controller can be found such that every
input affects one and only one output, then we say the MIMO system is decoupled. Exact decoupling
can be difficult, if not impossible, to achieve in practice. There are various ways to specify approximate
decoupling. Because decoupling is most obvious for square transfer functions, let G(jω) be a strictly
proper m × m transfer function and let gij(jω) denote the ijth element of the matrix G(jω). Then the
requirement that

|gij(jω)| < δ for all 0 ≤ ω < ∞; i, j = 1, 2, . . . , m; i �= j

would force G(jω) to be approximately decoupled provided δ were small enough. Such a specification
might be defective because it allows the diagonal transfer functions, the gii(jω), i = 1, 2, . . . , m, to be
arbitrary. Typically, one wants |gii(jω)|, i = 1, 2, . . . , m close to one, at least in some range ω1 ≤ ω ≤ ω2.
The requirement that

|gij(jω)|
|gii(jω)| < δ for all 0 ≤ ω1 ≤ ω ≤ ω2; i, j = 1, 2, . . . , m; i �= j

forces the gij(jω) to be small relative to the gii(jω). Of course, nothing prevents adding SISO specifications
on the gii(jω) to the decoupling specifications.
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Another useful decoupling specification is diagonal dominance. A strictly proper square m × m transfer
function G(jω) is said to be row diagonal dominant if

m∑
j=1 j �=i

|gij(jω)| < |gii(jω)| for alli = 1, 2, . . . , m and all 0 ≤ ω < ∞

Column diagonal dominance is defined in the obvious way. Decoupling specifications can also be written
in the time domain as limits on the impulse or step responses of the closed-loop system.

Decoupling is not always necessary or desirable. Thus, it is necessary to have other ways to specify the
performance of MIMO controlled systems. One effective way to do this is by means of the singular value
decomposition (SVD). It is known that the SVD is a useful tool in linear algebra, and it has found many
applications in control during the past decade. Let G be an m × n complex (constant) matrix. Then the
positive square roots of the eigenvalues of G∗G (where G∗ means the complex conjugate transpose of G)
are called the singular values of G. These square roots are always real numbers because the eigenvalues of
G∗G are always real and ≥ 0. The maximum and minimum singular values of G are denoted by σ̄(G) and
σ(G), respectively; and they can also be expressed by

σ̄(G) = max||u||=1 ||Gu||
σ(G) = min||u||=1 ||Gu||

where u ∈ Cn and the vector norm || · || is the Euclidean norm. That is, σ̄(G) and σ(G) are the maximum
and minimum gains of the matrix G. For a square G, σ(G) is a measure of how far G is from singularity,
and σ̄(G)/σ(G) is the condition number which is a measure of the difficulty of inverting G. The best way
to compute the SVD is by means of an algorithm also known as the singular value decomposition (SVD)
(see Control System Fundamentals, Chapter 3 and Control System Advanced Methods, Chapter 1).

For MIMO systems, the transfer function matrices evaluated at s = jω have proven useful in resolving
the complexities of MIMO design. The idea is to reduce the transfer function matrices to two critical
gains versus frequency, that is, the maximum and minimum singular values of the transfer function
matrix. Consider a MIMO system represented by a transfer matrix G(s). Similar to the constant matrix
case discussed, if we let s = jω (0 ≤ ω < ∞), then the singular values σi(G(jω)) will be functions of ω,
and a plot of σi(G(jω)) is called a singular value plot (or σ-plot) which is analogous to a Bode magnitude
plot of a SISO transfer function. The maximum and minimum singular values of G(jω) are defined,
respectively, as

σ̄(G(jω)) =√
λmax[G(jω)∗G(jω)]

σ(G(jω)) =√
λmin[G(jω)∗G(jω)]

where λ[·] denotes eigenvalues. Note that the H∞ norm of a stable transfer matrix G is the maximum of
σ̄(G) over all frequencies, i.e., ||G||∞ = supω≥0 σ̄(G(jω)). For the performance and robustness measures
of MIMO systems, we can examine σ̄ and σ in a manner similar to that used to examine the frequency–
response magnitude of a SISO transfer function. If σ̄(G) and σ(G) are very close to each other, then we
can simply treat the system like a SISO system. In general, they are not close and σ̄ is important to bound
the performance requirements.

Without loss of generality, consider the MIMO unity feedback system shown in Figure 9.11. Like the
SISO case, define the sensitivity and complementary sensitivity matrices as S(s) = [I + Gp(s)Gc(s)]−1

(where (·)−1 means the matrix inverse) and Gcl(s) = I − S(s), respectively. Note that Gcl(s) = [I +
Gp(s)Gc(s)]−1Gp(s)Gc(s) is the closed-loop transfer function matrix which describes the system’s input-
output relationship. From Figure 9.11, we have

Y (s) = Gcl(s)R(s) + S(s)D(s) − Gcl(s)N(s)

E(s) = S(s)R(s) − S(s)D(s) + Gcl(s)N(s)
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Similar to the arguments stated for SISO systems, for disturbance rejection, tracking error reduction,
and insensitivity to plant parameter variations, we need to make S(jω) “small” over the frequency range
(say, 0 ≤ ω ≤ ω0) where the commands, disturbances, and parameter changes of Gp are significant. That
is, to keep σ̄[(I + GpGc)−1] as small as possible, or σ[I + GpGc] as large as possible ∀ ω ≤ ω0 since
σ̄[(I + GpGc)−1] = 1/σ[I + GpGc]. The inequalities max(0, σ[GpGc] − 1) ≤ σ[I + GpGc] ≤ σ[GpGc] + 1
further imply that the loop gain σ[GpGc] should be made as large as possible ∀ ω ≤ ω0.

From the equations shown, it is also clear that for sensor noise reduction, the transfer matrix Gcl(jω)
should be “small” over the frequency range (say, ω ≥ ω1) where the noise is significant. Using the
equalities (I + X)−1X = (I + X−1)−1 and σ̄(X)σ(X−1) = 1 (assume X−1 exists), this implies that σ̄[(I +
GpGc)−1GpGc] = σ̄[(I + (GpGc)−1)−1] = 1/σ[I + (GpGc)−1] should be small, or σ[I + (GpGc)−1] should
be large ∀ ω ≥ ω1. Since σ[I + (GpGc)−1] ≥ σ[(GpGc)−1], we should make σ[(GpGc)−1] large, which
further means that σ̄[GpGc] should be kept as small as possible ∀ ω ≥ ω1.

In summary, disturbance rejection, tracking error, and sensitivity (to plant parameter variations)
reduction require large σ[GpGc], while sensor noise reduction requires small σ̄[GpGc]. Since σ̄[GpGc] ≥
σ[GpGc], a conflict between the requirements of S(jω) and Gcl(jω) exists, which is exactly the same as that
discussed for SISO systems. Therefore, a performance trade-off for command tracking and disturbance
reduction versus sensor noise reduction is unavoidable. Typical specifications for MIMO system loop gain
requirements will be similar to those of Figure 9.12, with the “low-frequency boundary (or constraint)”
being the lower boundary for σ[GpGc] when ω is small, and the “high-frequency boundary” representing
the upper boundary for σ̄[GpGc] when ω becomes large. In other words, we need “loop shaping” of the
singular values of the plant transfer function matrix Gp by using Gc (i.e., the design of controller Gc) so
that the nominal closed-loop system is stable, σ[GpGc] (thus, σ̄[GpGc]) at low frequencies lies above the
low-frequency boundary, and σ̄[GpGc] (thus, σ[GpGc]) at high frequencies lies below the high-frequency
boundary. That is, we want to increase the low-frequency value of σ (thus, σ̄) of GpGc to ensure adequate
attenuation of (low-frequency) disturbances and better command tracking, and roll-off σ̄ and σ in the
high-frequency range to ensure robust stability. Note that the “forbidden” areas shown in Figure 9.12 are
problem dependent, and they may be constructed from the design specifications.

It is generally desirable to require that the gap between σ̄[GpGc] and σ[GpGc] be fairly small and that
their slope be close to −20 dB/decade near the gain crossover frequencies. Here, there are a range of gain
crossover frequencies from the frequency ωc at which σ[Gp(jω)Gc(jω)] = 1 to the frequency ω̄c at which
σ̄[Gp(jω)Gc(jω)] = 1. As for SISO systems, the requirements near the crossover frequencies primarily
address robustness.

9.1.6 Robustness Specifications for MIMO LTI Systems

It is known that, in control system design, the plant model used is only an approximate representation
of the physical system. The discrepancies between a system and its mathematical representation (model)
may lead to a violation of some performance specification, or even to closed-loop instability. We say
the system is robust if the design performs satisfactorily under variations in the dynamics of the plant
(including parameter variations and various possible uncertainties). Stability and performance robustness
are two important issues that should be considered in control design. Generally, the form of the plant
uncertainty can be parametric, nonparametric, or both. Typical sources of uncertainty include unmod-
eled high-frequency dynamics, neglected nonlinearities, plant parameter variations (due to changes of
environmental factors), etc. The parametric uncertainty in the plant model can be expressed as Gp(s, γ),
a parameterized model of the nominal plant Gp(s) with the uncertain parameter γ. The three most com-
monly used models to represent unstructured uncertainty are additive, input multiplicative, and output
multiplicative types; and can be represented, respectively, as

G̃p(s) = Gp(s) + Δa(s)

G̃p(s) = Gp(s)[I + Δi(s)]
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G̃p(s) = [I + Δo(s)]Gp(s)

where G̃p(s) is the plant transfer matrix as perturbed from its nominal model Gp(s) due to the uncertainty
Δ (Δa or Δi or Δo) with σ̄[Δ(jω)] bounded above. That is, we have σ̄[Δ(jω)] ≤ l(ω), where l(ω) is a
known positive real scalar function. In general, l(ω) is small at low frequencies because we can model the
plant more accurately in the low-frequency range. The plant high-frequency dynamics are less known,
resulting in large l(ω) at high frequencies. Note that Δi (Δo) assumes all the uncertainty occurred at the
plant input (output). Both Δi and Δo represent relative deviation while Δa represents absolute deviation
from Gp(s). Of course, there are many possible ways to represent uncertainty, for example, G̃p(s) = [I +
Δo(s)]Gp(s)[I + Δi(s)], G̃p(s) = [N(s) + ΔN (s)][D(s) + ΔD(s)]−1 (a matrix fractional representation with
Gp(s) = N(s)D−1(s)), etc. We may even model the plant by combining both parametric and unstructured
uncertainties in the form of G̃p(s) = [I + Δo(s)]Gp(s, γ)[I + Δi(s)].

In the following, we examine the robustness of performance together with robust stability under output
multiplicative uncertainty Δo. Similar results can be derived if other types of unstructured uncertainty
are used. Via a multivariable version of the standard Nyquist criterion, the closed-loop system will remain
stable under the uncertainty Δo if

σ̄[GpGc(I + GpGc)−1(jω)] <
1

σ̄(Δo)
∀ω ≥ 0

where we assume that the nominal closed-loop system is stable, and Gp(s), G̃p(s) have the same number
of unstable poles. The above condition is actually necessary and sufficient for robust stability. Note that
the expression inside σ̄[·] in the left-hand side of the inequality is the complementary sensitivity matrix
Gcl(jω). Thus, the model uncertainty imposes an upper bound on the singular values of Gcl(s) for robust
stability. Rewriting the inequality, we get

σ̄(Δo) <
1

σ̄[GpGc(I + GpGc)−1(jω)] = σ[I + (GpGc)−1(jω)] ∀ ω ≥ 0

where we assume that GpGc is invertible. Obviously, σ[I + (GpGc)−1] can be used as a measure of the
degree of stability of the feedback system. This is a multivariable version of SISO stability margins (i.e.,
gain and phase margins) because it allows gain and phase changes in each individual output channel
and/or simultaneous gain and phase changes in several channels. The extent to which these changes are
allowed is determined by the inequality shown above. Therefore, we can use the singular values to define
GM for MIMO systems.

In the high-frequency range (where the loop gain is small), from the inequality given above, we have

σ̄[Gp(jω)Gc(jω)] <
1

σ̄(Δo)

This is a constraint on the loop gain GpGc for robust stability. This constraint implies that at high
frequencies the loop gain on GpGc (i.e., σ̄[GpGc]) should lie below a certain limit for robust stability (the
same argument described in the previous section). Obviously, satisfaction of the high-frequency boundary
shown in Figure 9.12 is mandatory for robust stability (not just desired for sensor noise reduction !).

For robust performance (i.e., good command tracking, disturbance reduction, and insensitivity to
plant parameter variations (i.e., structured uncertainty) under all possible G̃p(s)), we should keep σ̄[(I +
G̃pGc)−1] of the “perturbed” sensitivity matrix S̃(s) as small as possible in the low-frequency range.
Following the same argument given in the previous section, this further implies that σ[G̃pGc] should
be large at low frequencies. Making σ[GpGc] large enough ensures that σ[G̃pGc] is large. Clearly, high
loop gain can compensate for model uncertainty. Therefore, for robust performance the low-frequency
boundary given in Figure 9.12 should be satisfied, although this is not mandatory.
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For MIMO systems, as for the requirements on the loop gain in SISO control design, any violation of the
low-frequency boundary in Figure 9.12 constitutes a violation of the robust performance specifications,
while a violation of the upper boundary (in the high-frequency range) leads to a violation of the robust
stability specifications. The main distinction between MIMO and SISO design is the use of singular values
of the transfer function matrix to express the “size” of functions.

9.1.7 Conclusions

Writing specifications for control systems is not easy. The different aspects of controller performance and
robustness are interrelated and, in many cases, competing. While a good controller can compensate for
some deficiencies in the plant (system to be controlled), the plant implies significant limits on controller
performance. It is all too easy to impose unachievable specifications on a controller.

For these reasons, it is important to have the plant designer, the person responsible for the controller
specifications, and the control designer work together from the beginning to the end of any project with
demanding control requirements.

Further Reading

Most undergraduate texts on control systems contain useful descriptions of performance and robustness
specifications for SISO LTI systems. Three examples are

1. Franklin, G. F., Powell, J. D., and Emami-Naeni, A., Feedback Control of Dynamic Systems, 4th ed.,
Prentice-Hall, Englewood Cliffs, NJ, 2002.

2. Nise, N. S., Control Systems Engineering, 4th ed., John Wiley & Sons Inc., Hoboken, NJ, 2004.
3. Dorf, R. C. and Bishop, R. H., Modern Control Systems, 11th ed., Pearson Prentice Hall, Upper Saddle

River, NJ, 2008.

Several textbooks have been published recently that include a more loop shaping-oriented discussion of
control specifications. These include

4. Boyd, S. P. and Barratt, C. H., Linear Controller Design—Limits of Performance, Prentice-Hall, Engle-
wood Cliffs, NJ, 1991.

5. Doyle, J. C., Francis, B. A., and Tannenbaum, A. R., Feedback Control Theory, Macmillan, New York,
NY, 1992.

6. Belanger, P. R., Control Engineering—A Modern Approach, Saunders College Publishing, New York,
1995.

7. Wolovich, W. A., Automatic Control Systems—Basic Analysis and Design, Saunders College Publishing,
New York, 1994.

Specifications for MIMO LTI systems are covered in

8. Maciejowski, J. M., Multivariable Feedback Design, Addison-Wesley, Reading, MA, 1989.
9. Green, M. and Limebeer, D. J. N., Linear Robust Control, Prentice-Hall, Englewood Cliffs, NJ, 1995.

The limitations on control systems, including Bode’s results on the relation between gain and phase, are
described in

10. Freudenberg, J. S. and Looze, D. P., Frequency Domain Properties of Scalar and Multivariable Feedback
Systems, Springer-Verlag, New York, NY, 1988.

A good, detailed example of the specifications for a complex MIMO control system is

11. Hoh, R. H., Mitchell, D. G., and Aponso, B. L., Handling Qualities Requirements for Military Rotorcraft,
Aeronautical Design Standard, ADS-33C, US Army ASC, Aug. 1989.

12. Hoh, R. H., Mitchell, D. G., Aponso, B. L., Key, D. L., and Blanken, C. L., Background Information and
User’s Guide for Handling Quantities Requirements for Military Rotorcraft, USAAVSCOM TR89-A-8,
US Army ASC, Dec. 1989.
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Finally, all three publications of the IEEE Control Systems Society, the Transactions on Automatic
Control, the Transactions on Control Systems Technology, and the Control Systems Magazine regularly
contain articles on the design of control systems.

9.2 Design Using Performance Indices

Richard C. Dorf and Robert H. Bishop
9.2.1 Introduction

Modern control theory assumes that the systems engineer can specify quantitatively the required system
performance. Then a performance index∗ can be calculated or measured and used to evaluate the system’s
performance. A quantitative measure of the performance of a system is necessary for automatic parameter
optimization of a control system and for the design of optimum systems.

We consider a feedback system as shown in Figure 9.14 where the closed-loop transfer function is

C(s)

R(s)
= T(s) = Gc(s)G(s)

1 + Gc(s)G(s)
. (9.1)

Whether the aim is to improve the design of a system or to design a control system, a performance index
may be chosen [1]:

The system is considered an optimum control system when the system parameters are adjusted so that
the index reaches an extremum value, commonly a minimum value. A performance index, to be useful,
must be a number that is always positive or zero. Then the best system is defined as the system that
minimizes this index.

It is also possible to design an optimum system to achieve a deadbeat response, which is character-
ized by a fast response with minimal overshoot. The desired closed-loop system characteristic equation
coefficients are selected to minimize settling time and rise time.

9.2.2 The ISE Index

One performance index is the integral of the square of the error (ISE), which is defined as

ISE =
∫ T

0
e2(t) dt. (9.2)

The upper limit T is a finite time chosen somewhat arbitrarily so that the integral approaches a steady-
state value. It is usually convenient to choose T as the settling time, Ts. This criterion will discriminate
between excessively overdamped and excessively underdamped systems. The minimum value of the
integral occurs for a compromise value of the damping. The performance index of Equation 9.2 is easily
adapted for practical measurements because a squaring circuit is readily obtained. Furthermore, the
squared error is mathematically convenient for analytical and computational purposes.

R(s) + E(s)
Gc(s)

Controller

G(s) C(s)

Plant

–

FIGURE 9.14 Feedback control system.

∗ A performance index is a quantitative measure of the performance of a system and is chosen so that emphasis is given to
the important system specifications.
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9.2.3 The ITAE Index

To reduce the contribution of the relatively large initial error to the value of the performance integral, as
well as to emphasize errors occurring later in the response, the following index has been proposed [2]:

ITAE =
∫ T

0
t|e(t)| dt, (9.3)

where ITAE is the integral of time multiplied by the absolute magnitude of the error.
The coefficients that will minimize the ITAE performance criterion for a step input have been deter-

mined for the general closed-loop transfer function [2]

T(s) = C(s)

R(s)
= b0

sn + bn−1sn−1 + · · · + b1s + b0
. (9.4)

This transfer function has a steady-state error equal to zero for a step input. Note that the transfer function
has n poles and no zeros. The optimum coefficients for the ITAE criterion are given in Table 9.1 for a
step input. The transfer function, Equation 9.4, implies the plant and controller Gc(s)G(s) have one or
more pure integrations to provide zero steady-state error. The responses using optimum coefficients for
a step input are given in Figure 9.15 for ITAE. The responses are provided for normalized time, ωnt.
Other standard forms based on different performance indices are available and can be useful in aiding
the designer to determine the range of coefficients for a specific problem.

For a ramp input, the coefficients have been determined that minimize the ITAE criterion for the
general closed-loop transfer function [2]:

T(s) = b1s + b0

sn + bn−1sn−1 + · · · + b1s + b0
. (9.5)

This transfer function has a steady-state error equal to zero for a ramp input. The optimum coefficients
for this transfer function are given in Table 9.2. The transfer function, Equation 9.5, implies that the plant
and controller Gc(s)G(s) have two or more pure integrations, as required to provide zero steady-state
error.

9.2.4 Normalized Time

We consider the transfer function of a closed-loop system, T(s). To determine the coefficients that yield the
optimal deadbeat response, the transfer function is first normalized. An example of this for a third-order
system is

T(s) = ω3
n

s3 + αωns2 + βω2
ns + ω3

n
. (9.6)

Dividing the numerator and denominator by ω3
n yields

T(s) = 1
s3

ω3
n
+ α s2

ω2
n
+ β s

ωn
+ 1

. (9.7)

TABLE 9.1 The Optimum Coefficients of T(s) Based on the ITAE Criterion

for a Step Input

s + ωn

s2 + 1.4ωns + ω2
n

s3 + 1.75ωns2 + 2.15ω2
ns + ω3

n

s4 + 2.1ωns3 + 3.4ω2
ns2 + 2.7ω3

ns + ω4
n

s5 + 2.8ωns4 + 5.0ω2
ns3 + 5.5ω3

ns2 + 3.4ω4
ns + ω5

n

s6 + 3.25ωns5 + 6.6ω2
ns4 + 8.6ω3

ns3 + 7.45ω4
ns2 + 3.95ω5

ns + ω6
n
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FIGURE 9.15 The step response of a system with a transfer function satisfying the ITAE criterion.

Let s̄ = s/ωn to obtain

T(s) = 1

s̄3 + αs̄2 + βs̄ + 1
. (9.8)

Equation 9.8 is the normalized third-order closed-loop transfer function. For a higher-order system, the
same method is used to derive the normalized equation. When we let s̄ = s/ωn, this has the effect in
the time-domain of normalizing time, ωnt. The step response for a normalized system is as shown in
Figure 9.15.

9.2.5 Deadbeat Response

Often the goal for a control system is to achieve a fast response to a step command with minimal overshoot.
We define a deadbeat response as a response that proceeds rapidly to the desired level and holds at that
level with minimal overshoot. We use the ±2% band at the desired level as the acceptable range of
variation from the desired response. Then, if the response enters the band at time Ts, it has satisfied the
settling time Ts upon entry to the band, as illustrated in Figure 9.16. A deadbeat response has the following
characteristics:

1. Zero steady-state error
2. Fast response → minimum rise time and settling time

TABLE 9.2 The Optimum Coefficients of T(s) Based on the ITAE Criterion

for a Ramp Input

s2 + 3.2ωns + ω2
n

s3 + 1.75ωns2 + 3.25ω2
ns + ω3

n

s4 + 2.41ωns3 + 4.39ω2
ns2 + 5.14ω3

ns + ω4
n

s5 + 2.19ωns4 + 6.5ω2
ns3 + 6.3ω3

ns2 + 5.24ω4
ns + ω5

n
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FIGURE 9.16 The deadbeat response, where A is the magnitude of the step input.

3. 0.1% ≤ percent overshoot <2%
4. Percent undershoot <2%

Characteristics 3 and 4 require that the response remain within the ±2% band so that the entry to the
band occurs at the settling time.

A more general normalized transfer function of a closed-loop system may be written as

T(s) = 1

s̄n + αs̄n−1 + βs̄n−2 + γs̄n−3 + · · · + 1
. (9.9)

The coefficients of the denominator equation (α, β, γ, and so on) are then assigned the values necessary
to meet the requirement of deadbeat response. The coefficients recorded in Table 9.3 were selected to
achieve deadbeat response and to minimize settling time and rise time to 100% of the desired command.
The form of Equation 9.9 is normalized since s̄ = s/ωn. Thus, we choose ωn based on the desired settling
time or rise time. For example, if we have a third-order system with a required settling time of 1.2 seconds,
we note from Table 9.3 that the normalized settling time is

ωnTs = 4.04.

Therefore, we require

ωn = 4.04

Ts
= 4.04

1.2
= 3.37.

Once ωn is chosen, the complete third-order closed-loop transfer function is known, having the form
of Equation 9.6, where α = 1.9 and β = 2.2. When designing a system to obtain a deadbeat response,
the compensator is chosen and the closed-loop transfer function is found. This compensated trans-
fer function is then set equal to Equation 9.9 and the required compensator parameters can be
determined.
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TABLE 9.3 Coefficients and Response Measures of a Deadbeat System

Percent Percent 90% 100%

Coefficients Over- Under- Rise Rise Settling
System shoot shoot Time Time Time

Order α β γ δ ε P.O. P.U. Tr90 Tr Ts

2nd 1.82 0.10% 0.00% 3.47 6.58 4.82

3rd 1.90 2.20 1.65% 1.36% 3.48 4.32 4.04

4th 2.20 3.50 2.80 0.89% 0.95% 4.16 5.29 4.81

5th 2.70 4.90 5.40 3.40 1.29% 0.37% 4.84 5.73 5.43

6th 3.15 6.50 8.70 7.55 4.05 1.63% 0.94% 5.49 6.31 6.04

Note: All time is normalized.

Example 9.1:

Consider a sample plant

G(s) = 1
s(s + p)

(9.10)

and a controller Gc (s) = K . The goal is to select the parameters p and K to yield (1) an ITAE response,
and alternatively (2) a deadbeat response. In addition, the settling time for a step response is specified
as less than 1 second. The closed-loop transfer function is

T (s) = K

s2 + ps + K
. (9.11)

For the ITAE system we examine Figure 9.15 and note that for n = 2 we have ωnTs = 8. Then, for
Ts = 0.8, we use ωn = 10. From Table 9.1, we require

s2 + 1.4ωns + ω2
n = s2 + ps + K .

Therefore, we have K = ω2
n = 100 and p = 1.4ωn = 14.

If we seek a deadbeat response, we use Table 9.3 and note that the normalized settling time is

ωnTs = 4.82.

In order to obtain Ts less than 1 second, we use ωn = 6 and Ts = 0.8. Then we use Table 9.3 to obtain
α = 1.82. The closed-loop transfer function is

T(s) = ω2
n

s2 + αωns + ω2
n

= 36

s2 + 10.9s + 36
. (9.12)

Then we require K = 36 and p = 10.9. The deadbeat and the ITAE step response are shown in Figure 9.17.

9.2.6 Conclusions

The design of a feedback system using performance indices or deadbeat control leads to predictable
system responses. This permits the designer to select system parameters to achieve desired performance.

9.2.7 Defining Terms

Performance index: A quantitative measure of the performance of a system.
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FIGURE 9.17 ITAE (p = 14 and K = 100) and deadbeat (p = 10.9 and K = 36) system response.

ISE: Integral of the square of the error.
ITAE: Integral of time multiplied by the absolute error.
Deadbeat response: A system with a rapid response, minimal overshoot, and zero steady-state error for

a step input.
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9.3 Nyquist, Bode, and Nichols Plots

John J. D’Azzo and Constantine H. Houpis
9.3.1 Introduction

The frequency-response∗ method of analysis and design is a powerful technique for the comprehensive
study of a system by conventional methods. Performance requirements can be readily expressed in
terms of the frequency response. Since noise, which is always present in any system, can result in poor
overall performance, the frequency-response characteristics of a system permit evaluation of the effect of
noise. The design of a passband for the system response may result in excluding the noise and therefore
improving the system performance as long as the dynamic tracking performance specifications are met.
The frequency response is also useful in situations for which the transfer functions of some or all of

∗ The material contained in this chapter is based on Chapters 8 and 9 from the text Linear Control System Analysis &
Design—Conventional and Modern, 4th ed., McGraw-Hill, New York, 1995.
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the components in a system are unknown. The frequency response can be determined experimentally
for these situations, and an approximate expression for the transfer function can be obtained from the
graphical plot of the experimental data. The frequency-response method is also a very powerful method
for analyzing and designing a robust multi-input/multi-output (MIMO) system with structured uncertain
plant parameters. In this chapter, two graphical representations of transfer functions are presented: the
logarithmic plot and the polar plot. These plots are used to develop Nyquist’s stability criterion [1–4] and
closed-loop design procedures. The plots are also readily obtained by use of computer-aided design (CAD)
packages like MATLAB� or TOTAL-PC (see [5]). The closed-loop feedback response M( jω) is obtained
as a function of the open-loop transfer function G( jω). Design methods for adjusting the open-loop gain
are developed and demonstrated. They are based on the polar plot of G( jω) and the Nichols plot. Both
methods achieve a peak value Mm and a resonant frequency ωm of the closed-loop frequency response.
A correlation between these frequency-response characteristics and the time response is developed.

9.3.2 Correlation of the Sinusoidal and Time Responses

Once the frequency response [2] of a system has been determined, the time response can be determined
by inverting the corresponding Fourier transform. The behavior in the frequency domain for a given
driving function r(t) can be determined by the Fourier transform as

R( jω) =
∫ ∞

−∞
r(t)e−jωtdt (9.13)

For a given control system, the frequency response of the controlled variable is

C( jω) = G( jω)

1 + G( jω)H( jω)
R( jω) (9.14)

By use of the inverse Fourier transform, the controlled variable as a function of time is

c(t) = 1

2π

∫ ∞

−∞
C( jω)ejωtdω (9.15)

Equation 9.15 can be evaluated by numerical or graphical integration or by reference to a table of definite
integrals. This is necessary if C( jω) is available only as a curve and cannot be simply expressed in analytical
form, as is often the case. The procedure is described in several books [6]. In addition, methods have been
developed based on the Fourier transform and a step input signal, relating C( jω) qualitatively to the time
solution without actually taking the inverse Fourier transform. These methods permit the engineer to
make an approximate determination of the system response through the interpretation of graphical plots
in the frequency domain.

Elsewhere [5, sect. 4.12] it is shown that the frequency response is a function of the pole–zero pattern in
the s-plane. It is therefore related to the time response of the system. Two features of the frequency response
are the maximum value Mm and the resonant frequency ωm. Section 9.3.8 describes the qualitative
relationship between the time response and the values Mm and ωm. Since the location of the poles can
be determined from the root locus, there is a direct relationship between the root-locus and frequency-
response methods.

9.3.2.1 Frequency-Response Curves

The frequency domain plots belong to two categories. The first category is the plot of the magnitude
of the output–input ratio vs. frequency in rectangular coordinates, as illustrated in [5, sect. 4.12]. In
logarithmic coordinates these are known as Bode plots. Associated with this plot is a second plot of the
corresponding phase angle vs. frequency. In the second category the output–input ratio may be plotted in
polar coordinates with frequency as a parameter. Direct polar plots are generally used only for the open-
loop response and are commonly referred to as Nyquist plots. [7] The plots can be obtained experimentally



9-28 Control System Fundamentals

or by CAD packages. [6,8] When a CAD program is not available, the Bode plots are easily obtained by a
graphical procedure. The other plots can then be obtained from the Bode plots.

For a given sinusoidal input signal, the input and steady-state output are of the following forms:

r(t) = R sin ωt (9.16)

c(t) = C sin(ωt + α) (9.17)

The closed-loop frequency response is given by

C( jω)

R( jω)
= G( jω)

1 + G( jω)H( jω)
= M(ω)∠ [α(ω)] (9.18)

For each value of frequency, Equation 9.18 yields a phasor quantity whose magnitude is M and whose
phase angle α is the angle between C( jω) and R( jω). An ideal system may be defined as one where α = 0◦
and R( jω) = C( jω) for 0 < ω < ∞ (see curves 1 in Figures 9.18a and 9.18b). However, this definition
implies an instantaneous transfer of energy from the input to the output. Such a transfer cannot be
achieved in practice since any physical system has some energy dissipation and some energy-storage
elements. Curves 2 and 3 in Figures 9.18a and 9.18b represent the frequency responses of practical control
systems. The passband, or bandwidth, of the frequency response is defined as the range of frequencies
from 0 to the frequency ωb, where M = 0.707 of the value at ω = 0. However, the frequency ωm is more
easily obtained than ωb. The values Mm and ωm are often used as figures of merit (F.O.M.).

In any system, the input signal may contain spurious noise signals in addition to the true signal input,
or there may be sources of noise within the closed-loop system. This noise may be in a band of frequencies
above the dominant frequency band of the true signal. In that case, in order to reproduce the true signal
and attenuate the noise, feedback control systems are designed to have a definite passband. In certain
cases, the noise frequency may exist in the same frequency band as the true signal. However, when this
occurs, the problem of estimating the desired signal is more complicated. Therefore, even if the ideal
system were possible, it would not be desirable.

9.3.2.2 Bode Plots (Logarithmic Plots)

The use of semilog paper eliminates the need to take logarithms of very many numbers and expands the
low-frequency range, which is of primary importance. The basic factors of the transfer function fall into
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FIGURE 9.18 Frequency-response characteristics of C( jω)/R( jω) in rectangular coordinates.



Design Methods 9-29

three categories, and these can easily be plotted by means of straight-line asymptotic approximations. The
straight-line approximations are used to obtain approximate performance characteristics very quickly or
to check values obtained from the computer. As the design becomes more firmly specified, the straight-line
curves can be corrected for greater accuracy.

Some basic definitions of logarithmic terms follow.

Logarithm The logarithm of a complex number is itself a complex number. The abbreviation log is used
to indicate the logarithm to the base 10:

log
∣∣G( jω)

∣∣ ejφ(ω) = log
∣∣G( jω)

∣∣+ log ejφ(ω)

= log
∣∣G( jω)

∣∣+ j0.434φ(ω) (9.19)

The real part is equal to the logarithm of the magnitude, log |G( jω)|, and the imaginary part is
proportional to the angle, 0.434φ(ω). In the rest of this chapter, the factor 0.434 is omitted and
only the angle φ(ω) is used.

Decibels The unit commonly used for the logarithm of the magnitude is the decibel (dB). When loga-
rithms of transfer functions of physical systems are used, the input and output variables are not
necessarily in the same units; e.g., the output may be speed in radians per second (rad/s), and the
input may be voltage in volts (V).

Log magnitude The logarithm of the magnitude of a transfer function G( jω) expressed in decibels is

20 log
∣∣G( jω)

∣∣ dB (9.20)

This quantity is called the log magnitude, abbreviated Lm. Thus,

LmG( jω) = 20 log
∣∣G( jω)

∣∣ dB (9.21)

Since the transfer function is a function of frequency, the Lm is also a function of frequency.
Octave and decade Two units used to express frequency bands or frequency ratios are the octave and

the decade. An octave is a frequency band from f1 to f2, where f2/f1 = 2. Thus, the frequency band
from 1 to 2 Hz is 1 octave in width, and the frequency band from 17.4 to 34.8 Hz is also 1 octave in
width. Note that 1 octave is not a fixed frequency bandwidth but depends on the frequency range
being considered. The number of octaves in the frequency range from f1 to f2 is

log(f2/f1)

log 2
= 3.32 log

f2
f1

octaves (9.22)

There is an increase of 1 decade from f1 to f2 when f2/f1 = 10. The frequency band from 1 to 10 Hz
or from 2.5 to 25 Hz is 1 decade in width. The number of decades from f1 to f2 is given by

log
f2
f1

decades (9.23)

The dB values of some common numbers are given in Table 9.4. Note that the reciprocals of
numbers differ only in sign. Thus, the dB value of 2 is +6 dB and the dB value of 1/2 is −6 dB. The
following two properties are illustrated in Table 9.4:

Property 1 As a number doubles, the decibel value increases by 6 dB. The number 2.70 is twice as large
as 1.35, and its decibel value is 6 dB greater. The number 200 is twice as large as 100, and its decibel
value is 6 dB greater.

Property 2 As a number increases by a factor of 10, the decibel value increases by 20 dB. The number
100 is 10 times as large as the number 10, and its decibel value is 20 dB greater. The number 200 is
100 times as large as the number 2, and its decibel value is 40 dB greater.
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TABLE 9.4 Decibel Values of

Some Common Numbers

Number Decibels

0.01 −40

0.1 −20

0.5 −6

1.0 0

2.0 6

10.0 20

100.0 40

200.0 46

9.3.2.3 General Frequency Transfer Function Relationships

The frequency transfer function can be written in generalized form as the ratio of polynomials

G( jω) = Km(1 + jωT1)(1 + jωT2)r · · ·
( jω)m(1 + jωTa)

[
1 + (2ζ/ωn)jω + (1/ω2)( jω)2

] · · · (9.24)

where Km is the gain constant. The logarithm of the transfer function is a complex quantity; the real
portion is proportional to the Lm, and the complex portion is proportional to the angle. Two separate
equations are written, one for the Lm and one for the angle, respectively:

LmG( jω) = LmKm + Lm(1 + jωT1) + rLm(1 + jωT2) + · · · − mLmjω − Lm(1 + jωTa)

− Lm

[
1 + 2ζ

ωn
jω + 1

ω2 ( jω)2
]

− · · · (9.25)

∠[G( jω)] = ∠[Km] + ∠[1 + jωT1] + r∠[1 + jωT2] + · · · − m∠[jω] − ∠[1 + jωTa]
− ∠

[
1 + 2ζ

ωn
jω + 1

ω2 ( jω)2
]

− · · · (9.26)

The angle equation may be rewritten as

∠[G( jω)] = ∠[Km] + tan−1 ωT1 + r tan−1 ωT2 + · · · − m90◦ − tan−1 ωTa − tan−1 2ζω/ωn

1 − ω2/ω2
n

− · · ·
(9.27)

The gain Km is a real number but may be positive or negative; therefore, its angle is correspondingly 0◦
or 180◦. Unless otherwise indicated, a positive value of gain is assumed in this chapter. Both the Lm and
the angle given by these equations are functions of frequency. When the Lm and the angle are plotted
as functions of the log of frequency, the resulting curves are referred to as the Bode plots or the Lm
diagram and the phase diagram. Equations 9.25 and 9.26 show that the resultant curves are obtained by
the addition and subtraction of the corresponding individual terms in the transfer function equation. The
two curves can be combined into a single curve of Lm vs. angle, with frequency ω as a parameter. This
curve is called the Nichols or the log magnitude–angle diagram.

9.3.2.4 Drawing the Bode Plots

The properties of frequency-response plots are presented in this section, but the data for these plots
usually are obtained from a CAD program. The generalized form of the transfer function as given by
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Equation 9.24 shows that the numerator and denominator have four basic types of factors:

Km (9.28)

( jω)±m (9.29)

(1 + jωT)±r (9.30)[
1 + 2ζ

ωn
jω + 1

ω2
n

( jω)2
]±p

(9.31)

Each of these terms except for Km may appear raised to an integral power other than 1. The curves of Lm
and angle vs. the log of frequency can easily be drawn for each factor. Then these curves for each factor
can be added together graphically to get the curves for the complete transfer function. The procedure
can be further simplified by using asymptotic approximations to these curves, as shown in the following
pages.

Constants Since the constant Km is frequency invariant, the plot of

LmKm = 20 log Km dB

is a horizontal straight line. The constant raises or lowers the Lm curve of the complete transfer function
by a fixed amount. The angle, of course, is zero as long as Km is positive.

jω Factors The factor jω appearing in the denominator has an Lm

Lm( jω)−1 = 20 log
∣∣( jω)−1

∣∣= −20 log ω (9.32)

When plotted against log ω, this curve is a straight line with a negative slope of 6 dB/octave or 20
dB/decade. Values of this function can be obtained from Table 9.4 for several values of ω. The angle is
constant and equal to −90◦. When the factor jω appears in the numerator, the Lm is

Lm( jω) = 20 log |ω| = 20 log ω (9.33)

This curve is a straight line with a positive slope of 6 dB/octave or 20 dB/decade. The angle is constant
and equal to +90◦. Notice that the only difference between the curves for jω and for 1/jω is a change in
the sign of the slope of the Lm and a change in the sign of the angle. Both Lm curves go through the point
0 dB at ω = 1. For the factor ( jω)±m the Lm curve has a slope of ±6m dB/octave or ±20m dB/decade,
and the angle is constant and equal to ±m90◦.

1 + jωT Factors The factor 1 + jωT appearing in the denominator has an Lm

Lm(1 + jωT)−1 = 20 log
∣∣1 + jωT

∣∣−1 = −20 log
√[

1 + ω2T2
]

(9.34)

For very small values of ω, that is, ωT � 1,

Lm(1 + jωT)−1 ≈ log 1 = 0 dB (9.35)

Thus, the plot of the Lm at small frequencies is the 0 − dB line. For very large values of ω, that is, ωT � 1,

Lm(1 + jωT)−1 ≈ 20 log |jωT|−1 = −20 log ωT (9.36)

The value of Equation 9.36 at ω = 1/T is 0. For values of ω > 1/T this function is a straight line with a
negative slope of 6 dB/octave. Therefore, the asymptotes of the plot of Lm(1 + jωT)−1 are two straight
lines, one of zero slope below ω = 1/T and one of −6 dB/octave slope above ω = 1/T . These asymptotes
are drawn in Figure 9.19.

The frequency at which the asymptotes to the Lm curve intersect is defined as the corner frequency ωcf .
The value ωcf = 1/T is the corner frequency for the function

(1 + jωT)±r = (1 + jω/ωcf )±r

The exact values of Lm (1 + jωT)−1 are given in Table 9.5 for several frequencies in the range a decade
above and below the corner frequency. The exact curve is also drawn in Figure 9.19 The error, in dB,
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FIGURE 9.19 Log magnitude and phase diagram for (1 + jωT)−1 = [1 + j(ω/ωcf )]−1.

between the exact curve and the asymptotes is approximately as follows:

• At the corner frequency: 3 dB
• One octave above and below the corner frequency: 1 dB
• Two octaves from the corner frequency: 0.26 dB

Preliminary design studies are often made by using the asymptotes only. The correction to the straight-
line approximation to yield the true Lm curve is shown in Figure 9.20. The phase curve for this function
is also plotted in Figure 9.19. At zero frequency the angle is 0◦; at the corner frequency ω = ωcf the angle
is −45◦; and at infinite frequency the angle is −90◦. The angle curve is symmetrical about the corner
frequency value when plotted against log(ω/ωcf ) or log ω. Since the abscissa of the curves in Figure 9.19
is ω/ωcf , the shapes of the angle and Lm curves are independent of the time constant T . Thus, when the
curves are plotted with the abscissa in terms of ω, changing T just “slides” the Lm and the angle curves
left or right so that the −3 dB and the −45◦ points occur at the frequency ω = ωcf . The approximation
of the phase curve is a straight line drawn through the following three points:

ω/ωcf 0.1 1.0 10
Angle 0◦ −45◦ −90◦

TABLE 9.5 Values of Lm(1 + jωT)−1 for Several Frequencies

ω
ωcf

Exact value, dB Value of the asymptote, dB Error, dB

0.1 −0.04 0. −0.04

0.25 −0.26 0. −0.26

0.5 −0.97 0. −0.97

0.76 −2.00 0. −2.00

1 −3.01 0. −3.01

1.31 −4.35 −2.35 −2.00

2 −6.99 −6.02 −0.97

4 −12.30 −12.04 −0.26

10 −20.04 −20.0 −0.04
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The maximum error resulting from this approximation is about ±6◦. For greater accuracy, a smooth
curve is drawn through the points given in Table 9.6.

The factor 1 + jωT appearing in the numerator has the Lm

Lm(1 + jωT) = 20 log
√

(1 + ω2T2)

This is the same function as its inverse Lm (1 + jωT)−1 except that it is positive. The corner frequency is
the same, and the angle varies from 0 to 90◦ as the frequency increases from zero to infinity. The Lm and
angle curves for the function (1 + jωT) are symmetrical about the abscissa to the curves for (1 + jωT)−1.

Quadratic Factors Quadratic factors in the denominator of the transfer function have the form
[

1 + 2ζ

ωn
jω + 1

ω2
n

( jω)2
]−1

(9.37)

For ζ > 1, the quadratic can be factored into two first-order factors with real zeros which can be plotted
in the manner shown previously. But for ζ < 1 Equation 9.37 contains conjugate-complex factors, and
the entire quadratic is plotted without factoring:

Lm

[
1 + 2ζ

ωn
jω + 1

ω2
n

( jω)2
]−1

= −20 log

[(
1 − ω2

ω2
n

)2

+
(

2ζω

ωn

)2
]1/2

(9.38)

∠
[

1 + 2ζ

ωn
jω + 1

ω2
n

( jω)2
]−1

= − tan−1 2ζω/ωn

1 − ω2/ω2
n

(9.39)

From Equation 9.38 it is seen that for very small values of ω, the low-frequency asymptote is represented
by Lm = 0 dB. For very high values of frequency, the high-frequency asymptote has a slope of −40
dB/decade. The asymptotes cross at the corner frequency ωcf = ωn.

TABLE 9.6 Angles of (1 + jω/ωcf )−1

for Key Frequency Points

ω
ωcf

Angle, deg

0.1 −5.7

0.5 −26.6

1.0 −45.0

2.0 −63.4

10.0 −84.3
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From Equation 9.38, it is seen that a resonant condition exists in the vicinity of ω = ωn, where the
peak value of the Lm > 0 dB. Therefore, there may be a substantial deviation of the Lm curve from the
straight-line asymptotes, depending on the value of ζ. A family of Lm curves of several values of ζ < 1 is
plotted in Figure 9.21. For the appropriate ζ, the Lm curve can be drawn by selecting sufficient points
from Figure 9.21 or computed from Equation 9.38.

The phase-angle curve for this function also varies with ζ. At zero frequency the angle is 0◦; at the corner
frequency the angle is −90◦; and at infinite frequency the angle is −180◦. A family of phase-angle curves
for various values of ζ < 1 is plotted in Figure 9.21. Enough values to draw the appropriate phase-angle
curve can be taken from Figure 9.21 or computed from Equation 9.39. When the quadratic factor appears
in the numerator, the magnitudes of the Lm and phase angle are the same as those in Figure 9.21, except
that they are changed in sign.

The Lm[1 + j2ζ/ωn + ( jω/ωn)2]−1 with ζ < 0.707 has a peak value. The magnitude of this peak value
and the frequency at which it occurs are important terms. These values, derived in Section 9.3.8 [see 5,
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Sect. 9.3], are repeated here:

Mm = 1

2ζ
√

(1 − ζ2)
(9.40)

ωm = ωn

√
(1 − 2ζ2) (9.41)

Note that the peak value Mm depends only on the damping ratio ζ. Since Equation 9.41 is meaningful
only for real values of ωm, the curve of M vs. ω has a peak value greater than unity only for ζ < 0.707. The
frequency at which the peak value occurs depends on both the damping ratio ζ and the undamped natural
frequency ωn. This information is used when adjusting a control system for good response characteristics.
These characteristics are discussed in Sections 9.3.8 and 9.3.9.

The Lm curves for poles and zeros lying in the right-half (RH) s-plane are the same as those for poles
and zeros located in the left-half (LH) s-plane. However, the angle curves are different. For example, the
angle for the factor (1 − jωT) varies from 0 to −90◦ as ω varies from zero to infinity. Also, if ζ is negative,
the quadratic factor of Equation 9.37 contains RH s-plane poles or zeros. Its angle varies from −360◦ at
ω = 0 to −180◦ at ω = ∞. This information can be obtained from the pole–zero diagram [5, Sect. 4.12]
with all angles measured in a counter-clockwise (CCW) direction. Some CAD packages do not consistently
use a CCW measurement direction, thus resulting in inaccurate angle values.

9.3.3 System Type and Gain as Related to Lm Curves

The steady-state error of a closed-loop system depends on the system type and the gain. The system error
coefficients are determined by these two characteristics [5, Chap. 6]. For any given Lm curve, the system
type and gain can be determined. Also, with the transfer function given so that the system type and gain
are known, they can expedite drawing the Lm curve. This is described for Type 0, 1, and 2 systems.

9.3.3.1 Type 0 System

A first-order Type 0 system has a transfer function of the form

G( jω) = K0

1 + jωTa

At low frequencies, ω < 1/Ta, LmG( jω) ≈ 20 log K0, which is a constant. The slope of the Lm curve is
zero below the corner frequency ω1 = 1/Ta and −20 dB/decade above the corner frequency. The Lm
curve is shown in Figure 9.22.

For a Type 0 system the characteristics are as follows:

1. The slope at low frequencies is zero.

Lm
 (d

B)

0

0 slope
–20 dB/decade

(log scale)

K0 > 1

ω1 ω

20 log K0

FIGURE 9.22 Log magnitude plot for G( jω) = K0/(1 + jωTa).
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2. The magnitude at low frequencies is 20 log K0.
3. The gain K0 is the steady-state step error coefficient.

9.3.3.2 Type-1 System

A second-order Type 1 system has a transfer function of the form

G( jω) = K1

jω(1 + jωTa)

At low frequencies, ω < 1/Ta, Lm[G( jω)] ≈ Lm(K1/jω) = Lm K1− Lm jω, which has a slope of −20
dB/decade. At ω = K1, Lm(K1/jω) = 0. If the corner frequency ω1 = 1/Ta is greater than K1, the low-
frequency portion of the curve of slope −20 dB/decade crosses the 0−dB axis at a value of ωx = K1, as
shown in Figure 9.23a. If the corner frequency is less than K1, the low-frequency portion of the curve of
slope −20 dB/decade may be extended until it does cross the 0−dB axis. The value of the frequency at
which the extension crosses the 0−dB axis is ωx = K1. In other words, the plot Lm (K1/jω) crosses the
0−dB value at ωx = K1, as illustrated in Figure 9.23b.

At ω = 1, Lm jω = 0; therefore, Lm (K1/jω)ω=1 = 20 log(K1). For Ta < 1 this value is a point on the
slope of −20 dB/decade. For Ta > 1 this value is a point on the extension of the initial slope, as shown in
Figure 9.23b. The frequency ωx is smaller or larger than unity according as K1 is smaller or larger than
unity. For a Type-1 system the characteristics are as follows:

1. The slope at low frequencies is −20 dB/decade.
2. The intercept of the low-frequency slope of −20 dB/decade (or its extension) with the 0−dB axis

occurs at the frequency ωx , where ωx = K1.
3. The value of the low-frequency slope of −20 dB/decade (or its extension) at the frequency ω = 1

is equal to 20 log(K1).
4. The gain K1 is the steady-state ramp error coefficient.

9.3.3.3 Type-2 System

A Type-2 system has a transfer function of the form

G( jω) = K2

( jω)2(1 + jωTa)

At low frequencies, ω < 1/Ta, Lm [G( jω)] = Lm [K2/( jω)2] = Lm [K2] − Lm[jω]2, for which the
slope is −40 dB/decade. At ω2 = K2, Lm [K2/( jω)2] = 0; therefore, the intercept of the initial slope
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FIGURE 9.23 Log magnitude plot for G( jω) = K1/jω(1 + jωTa).
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FIGURE 9.24 Log magnitude plot for G( jω) = K2/( jω)2(1 + jωTa).

of −40 dB/decade (or its extension, if necessary) with the 0−dB axis occurs at the frequency ωy , where
ω2

y = K2.

At ω = 1, Lm [jω]2 = 0; therefore, Lm [K2/(ω)2]ω=1 = 20 log[K2]. This point occurs on the initial
slope or on its extension, according as ω1 = 1/Ta is larger or smaller than

√
K2. If K2 > 1, the quantity

20 log[K2] is positive, and if K2 < 1, the quantity 20 log[K2] is negative.
The Lm curve for a Type-2 transfer function is shown in Figure 9.24. The determination of gain K2

from the graph is shown. For a Type-2 system the characteristics are as follows:

1. The slope at low frequencies is −40 dB/decade.
2. The intercept of the low-frequency slope of −40 dB/decade (or its extension, if necessary) with the

0−dB axis occurs at a frequency ωy , where ω2
y = K2.

3. The value on the low-frequency slope of −40 dB/decade (or its extension) at the frequency ω = 1
is equal to 20 log[K2].

4. The gain K2 is the steady-state parabolic error coefficient.

9.3.4 Experimental Determination of Transfer Functions

The magnitude and angle of the ratio of the output to the input can [4,6] be obtained experimentally
for a steady-state sinusoidal input signal at a number of frequencies. For stable plants, the Bode data
for the plant is used to obtain the exact Lm and angle diagram. Asymptotes are drawn on the exact Lm
curve, using the fact that their slopes must be multiples of ±20 dB/decade. From these asymptotes and
their intersections, the system type and the approximate time constants are determined. In this manner,
the transfer function of the system can be synthesized. Care must be exercised in determining whether
any zeros of the transfer function are in the RH s-plane. A system that has no open-loop zeros in the
RH s-plane is defined as a minimum-phase system, [5,9,10] and all factors have the form (1 + Ts) and/or
(1 + As + Bs2). A system that has open-loop zeros in the RH s-plane is a nonminimum-phase system.
The stability is determined by the location of the poles and does not affect the designation of minimum
or nonminimum phase. The angular variation for poles or zeros in the RH s-plane is different from
those in the LH plane [9]. For this situation, one or more terms in the transfer function have the form
(1 − Ts) and/or (1 ± As ± Bs2). Care must be exercised in interpreting the angle plot to determine whether
any factors of the transfer function lie in the RH s-plane. Many practical systems are minimum phase.
Unstable plants must be handled with care. That is, first a stabilizing compensator must be added to
form a stable closed-loop system. From the experimental data for the stable closed-loop system, the plant
transfer function is determined by using the known compensator transfer function.
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9.3.5 Direct Polar Plots

The magnitude and angle of G( jω), for sufficient frequency points, are readily obtainable from the
Lm[G( jω)] and ∠[G( jω)] vs. log[ω] curves or by the use of a CAD program. It is also possible to visualize
the complete shape of the frequency-response curve from the pole–zero diagram, because the angular
contribution of each pole and zero is readily apparent. The polar plot of G( jω) is called the direct polar
plot. The polar plot of [G( jω)]−1 is called the inverse polar plot [11].

9.3.5.1 Lag–Lead Compensator [5]

The compensator transfer function is

Gc(s) = 1 + (T1 + T2)s + T1T2s2

1 + (T1 + T2 + T12)s + T1T2s2 (9.42)

As a function of frequency, the transfer function is

Gc( jω) = E0( jω)

Ei( jω)
= (1 − ω2T1T2) + jω(T1 + T2)

(1 − ω2T1T2) + jω(T1 + T2 + T12)
(9.43)

By the proper choice of the time constants, the compensator acts as a lag network [i.e., the output signal
E0( jω) lags the input signal Ei( jω)] in the lower-frequency range of 0 to ωx and as a lead network [i.e.,
the output signal leads the input signal] in the higher-frequency range of ωx to ∞. The polar plot of this
transfer function is a circle with its center on the real axis and lying in the first and fourth quadrants. Its
properties are

1. lim
ω→0

[G( jωT1)] → 1∠0◦

2. lim
ω→∞[G( jωT1)] → 1∠0◦

3. At ω = ωx , for which ω2
xT1T2 = 1,

Equation 9.43 yields the value

G( jωxT1) = T1 + T2

T1 + T2 + T12
= ∣∣G( jωxT1)

∣∣∠0◦ (9.44)

Note that Equation 9.44 represents the minimum value of the transfer function in the whole frequency
spectrum. For frequencies below ωx , the transfer function has a negative or lag angle. For frequencies
above ωx , it has a positive or lead angle.

9.3.5.2 Type 0 Feedback Control System

The field-controlled servomotor [11] illustrates a typical Type 0 device. It has the transfer function

G( jω) = C( jω)

E( jω)
= K0

(1 + jωTf )(1 + jωTm)
(9.45)

Note: G( jω) →
(

K0∠0◦ as ω → 0+
0∠ − 180◦ as ω → ∞

)
(9.46)

Also, for each term in the denominator the angular contribution to G( jω), as ω goes from 0 to ∞, goes
from 0 to −90◦. Thus, the polar plot of this transfer function must start at G( jω) = K0∠0◦ for ω = 0 and
proceed first through the fourth and then through the third quadrants to limω→∞ G( jω) = 0∠ − 180◦
as the frequency approaches infinity. In other words, the angular variation of G( jω) is continuously
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decreasing, going in a clockwise (CW) direction from 0◦ to −180◦. The exact shape of this plot is
determined by the particular values of the time constants Tf and Tm.

Consider the transfer function

G( jω) = K0

(1 + jωTf )(1 + jωTm)(1 + jωT)
(9.47)

In this case, when ω → ∞, G( jω) → 0∠ − 270◦. Thus, the curve crosses the negative real axis at a
frequency ωx for which the imaginary part of the transfer function is zero. When a term of the form (1 +
jωT) appears in the numerator, the transfer function experiences an angular variation of 0 to 90◦ (a CCW
rotation) as the frequency is varied from 0 to ∞. Thus, the angle of G( jω) may not change continuously in
one direction. Also, the resultant polar plot may not be as smooth as the one for Equations 9.45 and 9.47.

In the same manner, a quadratic in either the numerator or the denominator of a transfer function
results in an angular contribution of 0 to ±180◦, respectively, and the polar plot of G( jω) is affected
accordingly. It can be seen from the examples that the polar plot of a Type 0 system always starts at a value
K0 (step error coefficient) on the positive real axis for ω = 0 and ends at zero magnitude (for n > ω) and
tangent to one of the major axes at ω = ∞. The final angle is −90◦ times the order n of the denominator
minus the order w of the numerator of G( jω).

9.3.5.3 Type-1 Feedback Control System

A typical Type-1 system containing only poles is

G( jω) = C( jω)

E( jω)
= K1

jω(1 + JωTm)(1 + jωTc)(1 + jωTq)
(9.48)

Note: G( jω) →
(∞∠ − 90◦ as ω → 0+

0∠ − 360◦ as ω → ∞
)

(9.49)

Note that the jω term in the denominator contributes the angle −90◦ to the total angle of G( jω) for all
frequencies. Thus, the basic difference between Equations 9.47 and 9.48 is the presence of the term jω
in the denominator of the latter equation. Since all the (1 + jωT) terms of Equation 9.48 appear in the
denominator, the angle of the polar plot of G( jω) decreases continuously (CW) in the same direction
from −90 to −360◦ as ω increases from 0 to ∞. The frequency of the crossing point on the negative
real axis of the G( jω) function is that value of frequency ωx for which the imaginary part of G( jω) is
equal to zero. The real-axis crossing point is very important, because it determines closed-loop stability,
as described in later sections dealing with system stability.

9.3.5.4 Type-2 Feedback Control System

The transfer function of a Type-2 system is

G( jω) = C( jω)

E( jω)
= K2

( jω)2(1 + jωTf )(1 + jωTm)
(9.50)

Its properties are

G( jω) →
(∞∠ − 180◦ as ω → 0+

0∠ − 360◦ as ω → +∞ (9.51)

The presence of the ( jω)2 term in the denominator contributes −180◦ to the total angle of G( jω) for all
frequencies. The polar plot for the transfer function of Equation 9.50 is a smooth curve whose angle φ(ω)
decreases continuously from −180 to −360◦. The introduction of an additional pole and a zero can alter
the shape of the polar plot. It can be shown that as ω → 0+, the polar plot of a Type-2 system is below
the real axis if ∑

Tnumerator −
∑

Tdenominator (9.52)

is a positive value, and above the real axis if it is a negative value.
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9.3.5.5 Summary: Direct Polar Plots

To obtain the direct polar plot of a system’s forward transfer function, the following steps are used to
determine the key parts of the curve. Figure 9.25 shows the typical polar plot shapes for different system
types.

Step 1

The forward transfer function has the general form

G( jω) = Km(1 + jωTa)(1 + jωTb) · · · (1 + jωTw)

( jω)m(1 + jωT1)(1 + jωT2) · · · (1 + jωTu)
(9.53)

For this transfer function, the system type is equal to the value of m and determines the portion of the
polar plot representing the limω→0[G( jω)]. The low-frequency polar-plot characteristics (as ω → 0 ) of
the different system types are determined by the angle at ω = 0, i.e., ∠G( j0) = m(−90◦).

Step 2

The high-frequency end of the polar plot can be determined as follows:

lim
ω→+∞[G( jω)] = 0∠[(w − m − u)90◦] (9.54)

Note that since the degree of the denominator of Equation 9.53 is always greater than the degree of the
numerator, the angular condition of the high-frequency point (ω = ∞) is approached in the CW sense.
The plot ends at the origin and is tangent to the axis determined by Equation 9.54. Tangency may occur
on either side of the axis.

Step 3

The asymptote that the low-frequency end approaches, for a Type-1 system, is determined by taking the
limit as ω → 0 of the real part of the transfer function.

Type 3

–180°
–1 + j 0 K 0 0°

–270°

0+

0+

0+

Type 2

Type 1

Type 0

–90°

ω

ω = +∞ ω = 0

ω

ω

FIGURE 9.25 A summary of direct polar plots of different types of systems.
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Step 4

The frequencies at the points of intersection of the polar plot with the negative real axis and the imaginary
axis are determined, respectively, by

Im[G( jω)] = 0 (9.55)

Re[G( jω)] = 0 (9.56)

Step 5

If there are no frequency-dependent terms in the numerator of the transfer function, the curve is a smooth
one in which the angle of G( jω) continuously decreases as ω goes from 0 to ∞. With time constants in
the numerator, and depending upon their values, the angle may not change continuously in the same
direction, thus creating “dents” in the polar plot.

Step 6

As is seen later, it is important to know the exact shape of the polar plot of G( jω) in the vicinity of the
−1 ± j0 point and the crossing point on the negative real axis.

9.3.6 Nyquist’s Stability Criterion

The Nyquist stability criterion [1–4] provides a simple graphical procedure for determining closed-loop
stability from the frequency-response curves of the open-loop transfer function G( jω)H( jω) (for the case
of no poles or zeros on the imaginary axis, etc.). The application of this method in terms of the polar plot
is covered in this section; application in terms of the log magnitude–angle (Nichols) diagram is covered
in a later section.

For a stable closed-loop system, the roots of the characteristic equation

B(s) = 1 + G(s)H(s) = 0 (9.57)

cannot be permitted to lie in the RH s-plane or on the jω axis. In terms of G = N1/D1 and H = N2/D2,
Equation 9.57 becomes

B(s) = 1 + N1N2

D1D2
= D1D2 + N1N2

D1D2
= (s − Z1)(s − Z2) · · · (s − Zn)

(s − p1)(s − p2) · · · (s − pn)
(9.58)

Note that the numerator and denominator of B(s) have the same degree and the poles of the open-loop
transfer function G(s)H(s) are the poles of B(s). The closed-loop transfer function of the system is

C(s)

R(s)
= G(s)

1 + G(s)H(s)
= N1D2

D1D2 + N1N2
(9.59)

The denominator of C(s)/R(s) is the same as the numerator of B(s). The condition for stability may
therefore be restated as: For a stable system none of the zeros of B(s) can lie in the RH s-plane or on the
imaginary axis. Nyquist’s stability criterion relates the number of zeros and poles of B(s) that lie in the
RH s-plane to the polar plot of G(s)H(s).

9.3.6.1 Limitations

In this analysis, it is assumed that all the control systems are inherently linear or that their limits of
operation are confined to give a linear operation. This yields a set of linear differential equations that
describe the dynamic performance of the systems. Because of the physical nature of feedback control
systems, the degree of the denominator D1D2 is equal to or greater than the degree of the numerator N1N2

of the open-loop transfer function G(s)H(s). Mathematically, this means that lims→∞[G(s)H(s)] → 0 or a
constant. These two factors satisfy the necessary limitations to the generalized Nyquist stability criterion.
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9.3.6.2 Generalized Nyquist’s Stability Criterion

Consider a closed contour Q such that the whole RH s-plane is encircled (see Figure 9.26a with ε → 0),
thus enclosing all zeros and poles of B(s) that have positive real parts. The theory of complex variables
used in the rigorous derivation requires that the contour Q must not pass through any poles or zeros of
B(s). When these results are applied to the contour Q, the following properties are noted:

1. The total number of CW rotations of B(s) due to its zeros is equal to the total number of zeros ZR

in the RH s-plane.
2. The total number of CCW rotations of B(s) due to its poles is equal to the total number of poles

PR in the RH s-plane.
3. The net number of rotations N of B(s) = 1 + G(s)H(s) about the origin is equal to the total number

of poles PR minus the total number of zeros ZR in the RH s-plane. N may be positive (CCW),
negative (CW), or zero.

The essence of these three conclusions can be represented by

N = phase change of [1 + G(s)H(s)]
2π

= PR − ZR (9.60)

where CCW rotation is defined as being positive and CW rotation is negative. In order for B(s) to realize
a net rotation N , the directed line segment representing B(s) (see Figure 9.27a) must rotate about the
origin 360N◦, or N complete revolutions. Solving for ZR in Equation 9.60 yields ZR = PR − N . Since B(s)
can have no zeros ZR in the RH s-plane for a stable system, and it is therefore concluded that, for a stable
system, the net number of rotations of B(s) about the origin must be CCW and equal to the number of
poles PR that lie in the RH plane. In other words, if B(s) experiences a net CW rotation, this indicates that
ZR > PR, where PR ≥ 0, and thus the closed-loop system is unstable. If there are zero net rotations, then
ZR = PR and the system may or may not be stable, according as PR = 0 or PR > 0.

9.3.6.3 Obtaining a Plot of B(s)

Figures 9.27a and 9.27b show a plot of B(s) and a plot of G(s)H(s), respectively. By moving the origin of
Figure 9.27b to the −1 + j0 point, the curve is now equal to 1 + G(s)H(s), which is B(s). Since G(s)H(s)
is known, this function is plotted and then the origin is moved to the −1 point to obtain B(s). In general,
the open-loop transfer functions of many physical systems do not have any poles PR in the RH s-plane.
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FIGURE 9.26 (a) The contour Q, which encircles the right-half s-plane; (b) complete plot for G(s)H(s) = K1/s(1 +
T1s)(1 + T2s).
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FIGURE 9.27 A change of reference for B(s).

In this case, ZR = N . Thus, for a stable system the net number of rotations about the −1 + j0 point must be
zero when there are no poles of G(s)H(s) in the RH s-plane.

9.3.6.4 Analysis of Path Q

In applying Nyquist’s criterion, the whole RH s-plane must be encircled to ensure the inclusion of all
poles or zeros in this portion of the plane. In Figure 9.26, the entire RH s-plane is enclosed by the closed
path Q which is composed of the following four segments:

1. One segment is the imaginary axis from −j∞ to j0−.
2. The second segment is the semicircle of radius ε → 0.
3. The third segment is the imaginary axis from j0+ to +j∞.
4. The fourth segment is a semicircle of infinite radius that encircles the entire RH s-plane.

The portion of the path along the imaginary axis is represented mathematically by s = jω. Thus,
replacing s by jω in Equation 9.58 and letting ω take on all values from −∞ to +∞ gives the portion of
the B(s) plot corresponding to that portion of the closed contour Q that lies on the imaginary axis.

One of the requirements of the Nyquist criterion is that lims→∞[G(s)H(s)] → 0 or a constant. Thus,
lims→∞[B(s)] = lims→∞ [1 + G(s)H(s)] → 1 or 1 plus the constant. As a consequence, the segment of
the closed contour represented by the semicircle of infinite radius, the corresponding portion of the B(s)
plot is a fixed point. As a result, the movement along only the imaginary axis from −j∞ to +j∞ results
in the same net rotation of B(s) as if the whole contour Q were considered. In other words, all the rotation
of B(s) occurs while the point O, in Figure 9.26a, goes from −j∞ to +j∞ along the imaginary axis. More
generally, this statement applies only to those transfer functions G(s)H(s) that conform to the limitations
stated earlier in this section [3].

9.3.6.5 Effect of Poles at the Origin on the Rotation of B(s)

The manner in which the ω = 0− and ω = 0+ portions of the plot in Figure 9.26a are joined is now
investigated for those transfer functions G(s)H(s) that have sm in the denominator. Consider the transfer
function with positive values of T1 and T2 :

G(s)H(s) = K1

s(1 + T1s)(1 + T2s)
(9.61)

The direct polar plot of G( jω)H( jω) of this function is obtained by substituting s = jω into Equation 9.61,
as shown in Figure 9.26b. The plot is drawn for both positive and negative frequency values. The polar plot
drawn for negative frequencies (0− > ω > −∞) is the conjugate of the plot drawn for positive frequencies.
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This means that the curve for negative frequencies is symmetrical to the curve for positive frequencies,
with the real axis as the axis of symmetry.

The closed contour Q of Figure 9.26a, in the vicinity of s = 0, has been modified as shown. In other
words, the point O is moved along the negative imaginary axis from s = −j∞ to a point where s =
−jε = 0−∠ − π/2 becomes very small. Then the point O moves along a semicircular path of radius
s = εejθ in the RH s-plane with a very small radius ε until it reaches the positive imaginary axis at
s = +jε = j0+ = 0+∠π/2. From here the point O proceeds along the positive imaginary axis to s = +j∞.
Then, letting the radius approach zero, ε → 0, for the semicircle around the origin ensures the inclusion
of all poles and zeros in the RH s-plane. To complete the plot of B(s) in Figure 9.27, the effect of moving
point O on this semicircle around the origin must be investigated. For the semicircular portion of the
path Q represented by s = εejθ, where ε → 0 and −π/2 ≤ θ ≤ π/2, Equation 9.61 becomes

G(s)H(s) = K1

s
= K1

εejθ
= K1

ε
e−jθ = K1

ε
ejψ (9.62)

where K1/ε → ∞ as ε → 0, and ψ = −θ goes from π/2 to −π/2 as the directed segment s goes CCW
from ε∠ − π/2 to ε∠ + π/2. Thus, in Figure 9.26b, the end points from ω → 0− and ω → 0+ are joined
by a semicircle of infinite radius in the first and fourth quadrants. Figure 9.26b shows the completed
contour of G(s)H(s) as the point O moves along the contour Q in the s-plane in the CW direction. When
the origin is moved to the −1 + j0 point, the curve becomes B(s). The plot of B(s) in Figure 9.26b does
not encircle the −1 + j0 point; therefore, the encirclement N is zero. From Equation 9.61, there are no
poles within Q; that is, PR = 0. Thus, when Equation 9.60 is applied, ZR = 0 and the closed-loop system
is stable.

Transfer functions that have the term sm in the denominator have the general form, with s = εejθ as
ε → 0,

G(s)H(s) = Km

sm = Km

(εm)ejmθ
= Km

εm e−jmθ = Km

εm ejmψ (9.63)

where m = 1, 2, 3, 4, . . .. It is seen from Equation 9.63 that, as s moves from 0− to 0+, the plot of G(s)H(s)
traces m CW semicircles of infinite radius about the origin. Since the polar plots are symmetrical about
the real axis, all that is needed is to determine the shape of the plot of G(s)H(s) for a range of values of
0 < ω < +∞. The net rotation of the plot for the range of −∞ < ω < +∞ is twice that of the plot for
the range of 0 < ω < +∞.

9.3.6.6 When G( jω)H ( jω) Passes through the Point −1 + j0

When the curve of G( jω)H( jω) passes through the −1 + j0 point, the number of encirclements N is
indeterminate. This corresponds to the condition where B(s) has zeros on the imaginary axis. A necessary
condition for applying the Nyquist criterion is that the path encircling the specified area must not pass
through any poles or zeros of B(s). When this condition is violated, the value for N becomes indeterminate
and the Nyquist stability criterion cannot be applied. Simple imaginary zeros of B(s) mean that the closed-
loop system will have a continuous steady-state sinusoidal component in its output that is independent
of the form of the input. Unless otherwise stated, this condition is considered unstable.

9.3.6.7 Nyquist’s Stability Criterion Applied to Systems Having Dead Time

The transfer function representing transport lag (dead time) is

Gτ(s) = e−τs → Gτ( jω) = e−jωτ = 1∠ − ωτ (9.64)

It has a magnitude of unity and a negative angle whose magnitude increases directly in proportion
to frequency. The polar plot of Equation 9.64 is a unit circle that is traced indefinitely, as shown in
Figure 9.28a. The corresponding Lm and phase-angle diagram shows a constant value of 0 dB and a phase
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angle that decreases with frequency. When the contour Q is traversed and the polar-plot characteristic of
dead time, shown in Figure 9.28, is included, the effects on the complete polar plot are as follows:

1. In traversing the imaginary axis of the contour Q between 0+ < ω < +∞, the portion of the
polar plot of G( jω)H( jω) in the third quadrant is shifted CW, closer to the −1 + j0 point (see
Figure 10.28c). Thus, if the dead time is increased sufficiently, the −1 + j0 point is enclosed by the
polar plot and the system becomes unstable.

2. As ω → +∞, the magnitude of the angle contributed by the transport lag increases indefinitely.
This yields a spiraling curve as |G( jω)H( jω)| → 0.

A transport lag therefore tends to make a system less stable. This is illustrated for the transfer function

G(s)H(s) = K1e−τs

s(1 + T1s)(1 + T2s)
(9.64a)

Figure 9.28b shows the polar plot without transport lag; Figure 9.28c shows the destabilizing effect of
transport lag.
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FIGURE 9.28 (a) Polar-plot characteristic for transport lag, Equation 9.64; (b) polar plot for Equation 9.64a without
transport lag (τ = 0); and (c) destabilizing effect of transport lag in Equation 9.64a.
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9.3.7 Definitions of Phase Margin and Gain Margin and Their
Relation to Stability

The stability and approximate degree of stability [5] can be determined from the Lm and phase diagram.
The stability characteristic is specified in terms of the following quantities:

• Gain crossover This is the point on the plot of the transfer function at which the magnitude of G( jω)
is unity [LmG( jω) = 0 dB]. The frequency at gain crossover is called the phase-margin frequency
ωφ.

• Phase-margin angle γ This angle is 180◦ plus the negative trigonometrically considered angle of the
transfer function at the gain crossover point. It is designated as the angle γ, which can be expressed
as γ = 180◦ + φ, where ∠[G( jωφ)] = φ is negative.

• Phase crossover This is the point on the plot of the transfer function at which the phase angle is
−180◦. The frequency at which phase crossover occurs is called the gain-margin frequency ωc .

• Gain margin The gain margin is the factor a by which the gain must be changed in order to produce
instability., i.e.,

|G( jωc)|a = 1 → |G( jω)| = 1

a
→ Lm a = −LmG( jωc) (9.65)

These quantities are illustrated in Figure 9.29 on both the Lm and the polar curves. Note the algebraic
sign associated with these two quantities as marked on the curves. Figures 9.29a and 9.29b represent
a stable system, and Figures 9.29c and 9.29d represent an unstable system. The phase-margin angle is
the amount of phase shift at the frequency ωφ that would just produce instability. The γ for minimum-
phase systems must be positive for a stable system, whereas a negative γ means that the system is
unstable.

It is shown later that γ is related to the effective damping ratio ζ of the system. Satisfactory response is
usually obtained in the range of 40◦ ≤ γ ≤ 60◦. As an individual acquires experience, the value of γ to be
used for a particular system becomes more evident. This guideline for system performance applies only
to those systems where behavior is that of an equivalent second-order system. The gain margin must be
positive when expressed in decibels (greater than unity as a numeric) for a stable system. A negative gain
margin means that the system is unstable. The damping ratio ζ of the system is also related to the gain
margin. However, γ gives a better estimate of damping ratio, and therefore of the transient overshoot of
the system, than does the gain margin.

The values of ωφ, γ, ωc , and Lm a are also readily identified on the Nichols plot as shown in Figure 9.30
and described in the next section. Further information about the speed of response of the system can
be obtained from the maximum value of the control ratio and the frequency at which this maximum
occurs. The relationship of stability and gain margin is modified for a conditionally stable system. [3]
Instability can occur with both an increase or a decrease in gain. Therefore, both “upper” and “lower” gain
margins must be identified, corresponding to the upper crossover frequency ωcu and the lower crossover
frequency ωcl .

9.3.7.1 Stability Characteristics of the Lm and Phase Diagram

The total phase angle of the transfer function at any frequency is closely related to the slope of the
Lm curve at that frequency. A slope of −20 dB/decade is related to an angle of −90◦; a slope of −40
dB/decade is related to an angle of −180◦; a slope of −60 dB/decade is related to an angle of −270◦;
etc. Changes of slope at higher and lower corner frequencies, around the particular frequency being
considered, contribute to the total angle at that frequency. The farther away the changes of slope are
from the particular frequency, the less they contribute to the total angle at that frequency. The stability
of a minimum-phase system requires that γ > 0. For this to be true, the angle at the gain crossover
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FIGURE 9.29 Log magnitude and phase diagram and polar plots of G( jω), showing gain margin and phase margin:
(a) and (b) stable; (c) and (d) unstable.

[Lm G( jω) = 0 dB] must be greater than −180◦. This places a limit on the slope of the Lm curve at
the gain crossover. The slope at the gain crossover should be more positive than −40 dB/decade if the
adjacent corner frequencies are not close. A slope of −20 dB/decade is preferable. This is derived from the
consideration of a theorem by Bode. Thus, the Lm and phase diagram reveals some pertinent information.
For example, the gain can be adjusted (this raises or lowers the Lm curve) to achieve the desirable range of
45◦ ≤ γ ≤ 60◦. The shape of the low-frequency portion of the curve determines system type and therefore
the degree of steady-state accuracy. The system type and the gain determine the error coefficients and
therefore the steady-state error. The value of ωφ gives a qualitative indication of the speed of response of
a system.

9.3.7.2 Stability from the Nichols Plot (Lm–Angle Diagram)

The Lm–angle diagram is drawn by picking for each frequency the values of Lm and angle from the
Lm and phase diagrams vs. ω (Bode plot). The resultant curve has frequency as a parameter. The curve
for the example shown in Figure 9.30, shows a positive gain margin and phase margin angle; therefore,
this represents a stable system. Changing the gain raises or lowers the curve without changing the angle
characteristics. Increasing the gain raises the curve, thereby decreasing the gain margin and phase-margin
angle, with the result that the stability is decreased. Increasing the gain so that the curve has a positive Lm
at −180◦ results in negative gain margin and phase-margin angle; therefore, an unstable system results.
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Decreasing the gain lowers the curve and increases stability. However, a large gain is desired to reduce
steady-state errors [5].

The Lm–angle diagram for G(s)H(s) can be drawn for all values of s on the contour Q of Figure 9.26a.
The resultant curve for minimum-phase systems is a closed contour. Nyquist’s criterion can be applied
to this contour by determining the number of points (having the values 0 dB and odd multiples of
180◦) enclosed by the curve of G(s)H(s). This number is the value of N that is used in the equa-
tion ZR = N − PR to determine the value of ZR. An example for G(s) = K1/[s(1 + Ts)] is shown in
Figure 9.31. The Lm–angle contour for a nonminimum-phase system does not close [5]; thus, it is
more difficult to determine the value of N . For these cases, the polar plot is easier to use to determine
stability.

It is not necessary to obtain the complete Lm–angle contour to determine stability for minimum-
phase systems. Only that portion of the contour is drawn representing G( jω) for the range of values
0+ < ω < ∞. The stability is then determined from the position of the curve of G( jω) relative to the
(0 dB, −180◦) point. In other words, the curve is traced in the direction of increasing frequency, i.e.,
walking along the curve in the direction of increasing frequency. The system is stable if the (0 dB, −180◦)
point is to the right of the curve. This is a simplified rule of thumb, which is based on Nyquist’s stability
criterion for a minimum-phase system.

A conditionally stable system is one in which the curve crosses the −180◦ axis at more than one point.
The gain determines whether the system is stable or unstable. That is, instability (or stability) can occur
with both an increase (or a decrease) in gain.

9.3.8 Closed-Loop Tracking Performance Based on the Frequency Response

A correlation between the frequency and time responses of a system, leading to a method of gain setting
in order to achieve a specified closed-loop frequency response, is now developed [12]. The closed-loop
frequency response is obtained as a function of the open-loop frequency response. Although the design
is performed in the frequency domain, the closed-loop responses in the time domain are also obtained.
Then a “best” design is selected by considering both the frequency and the time responses. Both the polar
plot and the Lm–angle diagram (Nichols plot) are used.
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FIGURE 9.30 Typical log magnitude–angle diagram for G( jω) = 4(1+j0.5ω)
jω(1+j2ω)[1+j0.5ω+( j0.125ω)2] .



Design Methods 9-49

ω = ∞–ω = ∞+

ω = 0–ω = 0+

0–

–∞ dB

+∞ dB

This portion of contour
represents the semicircle
of radius ∋ of contour Q

This portion of contour represents the semicircle
of infinite radius r of contour Q

 ∞+

G (s) contour

– dB

+ dB

0 dB
0° +90°–90° +180°–180°

ω

ω
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9.3.8.1 Direct Polar Plot

The frequency control ratio C( jω)/R( jω) for a unity feedback system is given by

C( jω)

R( jω)
= A( jω)

B( jω)
=
∣∣A( jω)

∣∣ ejφ(ω)∣∣B( jω)
∣∣ ejλ(ω)

= G( jω)

1 + G( jω)

C( jω)

R( jω)
=
∣∣∣∣A( jω)

B( jω)

∣∣∣∣ ej(φ−λ) = M(ω)ejα(ω) (9.66)

where A( jω) = G( jω) and B( jω) = 1 + G( jω). Since the magnitude of the angle φ(ω), as shown in
Figure 9.32, is greater than the magnitude of the angle λ(ω), the value of the angle α(ω) is negative.
Remember that CCW rotation is taken as positive. The error control ratio E( jω)/R( jω) is given by

E( jω)

R( jω)
= 1

1 + G( jω)
= 1∣∣B( jω)

∣∣ ejλ
(9.67)

From Equation 9.67 and Figure 9.32, it is seen that the greater the distance from the −1 + j0 point to a
point on the G( jω) locus, for a given frequency, the smaller the steady-state sinusoidal error for a stated
sinusoidal input. Thus, the usefulness and importance of the polar plot of G( jω) have been enhanced.

9.3.8.2 Determination of Mm and ωm for a Simple Second-Order System

The frequency at which the maximum value of |C( jω)/ R( jω)| occurs (see Figure 9.33) is referred to as
the resonant frequency ωm. The maximum value is labeled Mm. These two quantities are figures of merit
(F.O.M.) of a system. Compensation to improve system performance is based upon a knowledge of ωm

and Mm. For a simple second-order system a direct and simple relationship can be obtained for Mm and
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FIGURE 9.32 Polar plot of G( jω) for a unity-feedback system.

ωm in terms of the system parameters [5, Sect. 9.3]. These relationships are

ωm = ωn

√
1 − 2ζ2 Mm = 1

2ζ
√

1 − ζ2
(9.68)

From these equations, it is seen that the curve of M vs. ω has a peak value, other than at ω = 0, for
only ζ < 0.707. Figure 9.34 shows a plot of Mmvs. ζ for a simple second-order system. It is seen for values
of ζ < 0.4 that Mm increases very rapidly in magnitude; the transient oscillatory response is therefore
excessively large and might damage the physical system. The correlation between the frequency and time
responses is shown qualitatively in Figure 9.35.

The corresponding time domain F.O.M [5] are

• The damped natural frequency ωd

• The peak value Mp

• The peak time Tp

• The settling time ts(±2%)

For a unit-step forcing function, these F.O.M. for the transient of a simple second-order system are

Mp = 1 + e−ζπ
√

1−ζ2
(9.69)

Tp = π/ωd (9.70)

ωd = ωn

√
1 − ζ2 (9.71)

ts = 4/ζωn (9.72)

MmM(ω)

1.0

ζ < 0.707

ωm ω

FIGURE 9.33 A closed-loop frequency-response curve indicating Mm and ωm.
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FIGURE 9.34 A plot of Mm vs. ζ for a simple second-order system.

Therefore, for a simple second-order system the following conclusions are obtained in correlating the
frequency and time responses:

1. Inspection of Equation 9.68 reveals that ωm is a function of both ωn and ζ. Thus, for a given ζ, the
larger the value of ωm, the larger ωn, and the faster the transient time of response for this system
given by Equation 9.72.

2. Inspection of Equations 9.68 and 9.69 shows that both Mm and Mp are functions of ζ. The smaller
ζ becomes, the larger in value Mm and Mp become. Thus, it is concluded that the larger the value
of Mm, the larger the value of Mp. For values of ζ < 0.4, the correspondence between Mm and Mp

is only qualitative for this simple case. In other words, for ζ = 0 the time domain yields Mp = 2,
whereas the frequency domain yields Mm = ∞. When ζ > 0.4, there is a close correspondence
between Mm and Mp.

3. Note that the shorter the distance between the −1 + j0 point and a particular G( jω) plot (see
Figure 9.36), the smaller the damping ratio. Thus, Mm is larger and consequently Mp is also larger.

From these characteristics, a designer can obtain a good approximation of the time response of a
simple second-order system by knowing only the Mm and ωm of its frequency response. A corresponding
correlation for ωm and Mm becomes tedious for more complex systems. Therefore, a graphic procedure
is generally used, as shown in the following sections [13,14].

0
0 0

M(ω)

1.0 1.0

(b)(a)
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ζ = 1.0 ζ = 1.0

∞

FIGURE 9.35 (a) Plots of M vs. ω/ωn for a simple second-order system and (b) corresponding time plots for a step
input.
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FIGURE 9.36 Polar plots of G( jω) = K1/[jω(1 + jωT)] for different values of K1 and the resulting closed-loop
damping ratios.

9.3.8.3 Correlation of Sinusoidal and Time Response

It has been found by experience [5] that Mm is also a function of the effective ζ and ωn for higher-
order systems. The effective ζ and ωn of a higher-order system is dependent upon the ζ and ωn of each
second-order term, the zeros of C(s)/R(s), and the values of the real roots in the characteristic equation of
C(s)/R(s). Thus, in order to alter the Mm, the location of some of the roots must be changed. Which ones
should be altered depends on which are dominant in the time domain. From the analysis for a simple
second-order system, whenever the frequency response has the shape shown in Figure 9.33, the following
correlation exists between the frequency and time responses for systems of any order:

1. The larger ωm is made, the faster the time of response for the system.
2. The value of Mm gives a qualitative measure of Mp within the acceptable range of the effective

damping ratio 0.4 < ζ < 0.707. In terms of Mm, the acceptable range is 1 < Mm < 1.4.
3. The closer the G( jω) curve comes to the −1 + j0 point, the larger the value of Mm.

The larger Kp, Kv , or Ka is made, the greater the steady-state accuracy for a step, a ramp, and a parabolic
input, respectively. In terms of the polar plot, the farther the point G( jω)

∣∣
ω=0 = K0 is from the origin,

the more accurate is the steady-state time response for a step input. For a Type-1 system, the farther the
low-frequency asymptote (as ω → 0) is from the imaginary axis, the more accurate is the steady-state time
response for a ramp input. All the factors mentioned above are merely guideposts in the frequency domain
to assist the designer in obtaining an approximate idea of the time response of a system. They serve as
“stop-and-go signals” to indicate if one is headed in the right direction in achieving the desired time
response. If the desired performance specifications are not satisfactorily met, compensation techniques
must be used.

9.3.8.4 Constant M(ω) and α(ω) Contours of C( jω)/R( jω) on the Complex Plane
(Direct Plot)

The contours of constant values of M drawn in the complex plane yield a rapid means of determining the
values of Mm and ωm and the value of gain required to achieve a desired value of Mm. In conjunction with
the contours of constant values of α(ω), also drawn in the complex plane, the plot of C( jω)/R( jω) can
be obtained rapidly. The M and α contours are developed only for unity-feedback systems by inserting
G( jω) = x + jy into M( jω) [5]. The derivation of the M and α contours yields the equation of a circle
with its center at the point (a, b) and having radius r. The location of the center and the radius for a
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specified value of M are given by

x0 = − M2

M2 − 1
(9.73)

y0 = 0 (9.74)

r0 =
∣∣∣∣ M

M2 − 1

∣∣∣∣ (9.75)

This circle is called a constant M contour for M = Ma. Figure 9.37 shows a family of circles in the complex
plane for different values of M. Note that the larger the value M, the smaller its corresponding M circle.
A further inspection of Figure 9.37 and Equation 9.73 reveals the following:

1. For M → ∞, which represents a condition of oscillation (ζ → 0), the center of the M circle
x0 → −1 + j0 and the radius r0 → 0. Thus, as the G( jω) plot comes closer to the −1 + j0 point,
the effective ζ becomes smaller and the degree of stability decreases.

2. For M(ω) = 1, which represents the condition where C( jω) = R( jω), r0 → ∞ and the M contour
becomes a straight line perpendicular to the real axis at x = −1/2.

3. For M → 0, the center of the M circle x0 → 0 and the radius r0 → 0.
4. For M > 1, the centers x0 of the circles lie to the left of x = −1 + j0; and for M < 1, x0 of the circles

lie to the right of x = 0. All centers are on the real axis.
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FIGURE 9.37 Constant M contours.
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α(ω) Contours The α(ω) contours, representing constant values of phase angle α(ω) for C( jω)/R( jω),
can also be determined in the same manner as for the M contours [5]. The derivation results in the equation
of a circle, with N = tan α as a parameter, given by

(
x + 1

2

)2

+
(

y − 1

2N

)2

= 1

4

N2 + 1

N2 (9.76a)

whose center is located at xq = − 1
2 , yq = 1

2N with a radius

rq = 1

2

(
N2 + 1

N2

)1/2

(9.76b)

Different values of α result in a family of circles in the complex plane with centers on the line represented
by (−1/2, y), as illustrated in Figure 9.38.

Tangents to the M Circles [5] The line drawn through the origin of the complex plane and tangent
to a given M circle plays an important part in setting the gain of G( jω). Referring to Figure 9.39 and
recognizing that bc = r0 is the radius and ob = x0 is the distance to the center of the particular M circle
yields sin ψ = 1/M and oa = 1.
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FIGURE 9.38 Constant α contours.
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9.3.9 Gain Adjustment for a Desired Mm of a Unity-Feedback System
(Direct Polar Plot)

Gain adjustment is the first step in adjusting the system for the desired performance. The procedure for
adjusting the gain is outlined in this section. Figure 9.40a shows Gx( jω) with its respective Mm circle in
the complex plane. Since

Gx( jω) = x + jy = KxG′
x( jω) = Kx(x′ + jy′) (9.77)

then
x′ + jy′ = x

Kx
+ j

y

Kx

where G′
x( jω) = Gx( jω)/Kx is defined as the frequency-sensitive portion of Gx( jω) with unity gain. Note

that changing the gain merely changes the amplitude and not the angle of the locus of points of Gx( jω).
Thus, if in Figure 9.40a a change of scale is made by dividing the x, y coordinates by Kx so that the new
coordinates are x′, y′, the following are true:

1. The Gx( jω) plot becomes the G′
x( jω) plot.

2. The Mm circle becomes a circle that is simultaneously tangent to G′
x( jω) and the line representing

sin ψ = 1/Mm.

o
o

α
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FIGURE 9.40 (a) Plot of Gx( jω) with respective Mm circle and (b) circle drawn tangent to both the plot of G′
x( jω)

and the line representing the angle ψ = sin−1(1/Mm).
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3. The −1 + j0 point becomes the −1/Kx + j0 point.
4. The radius r0 becomes r′

0 = r0/Kx .

It is possible to determine the required gain to achieve a desired Mm for a given system by using the
following graphical procedure:

Step 1

If the original system has a transfer function

Gx( jω) = KxG′
x( jω) = Kx(1 + jωT1)(1 + jωT2) · · ·

( jω)m(1 + jωTa)(1 + jωTb)(1 + jωTc) · · · (9.78)

with an original gain Kx , only the frequency-sensitive portion G′
x( jω) is plotted.

Step 2

Draw a straight line through the origin at the angle ψ = sin−1(1/Mm), measured from the negative real
axis.

Step 3

By trial and error, find a circle whose center lies on the negative real axis and is simultaneously tangent
to both the G′

x( jω) plot and the line drawn at the angle ψ.

Step 4

Having found this circle, locate the point of tangency on the ψ−angle line. Draw a vertical line from this
point of tangency perpendicular to the real axis. Label the point where this line intersects the real axis
as a′.

Step 5

For this circle to be an M circle representing Mm, the point a′ must be the −1 + j0 point. Thus, the x′, y′
coordinates must be multiplied by a gain factor Km in order to convert this plot into a plot of G( jω).
From the graphical construction the gain value is Km = 1/oa′.

Step 6

The original gain must be changed by a factor A = Km/Kx .
Note that if Gx( jω), which includes a gain Kx , is already plotted, it is possible to work directly with

the plot of the function Gx( jω). Following the procedure just outlined results in the determination of the
additional gain required to produce the specified Mm; that is, the additional gain is

A = Km

Kx
= 1

oa′ (9.79)

9.3.10 Constant M and α Curves on the Lm–Angle Diagram (Nichols Chart)

The transformation of the constant M curves (circles) [5,14] on the polar plot to the Lm-angle diagram
is done more easily by starting from the inverse polar plot since all the M−1 circles have the same center
at −1 + j0. Also, the constant α contours are radial lines drawn through this point [5]. There is a change
of sign of the Lm and angle obtained, since the transformation is from the inverse transfer function on
the inverse polar plot to the direct transfer function on the Lm vs. φ plot. This transformation results
in constant M and α curves that have symmetry at every 180◦ interval. An expanded 300◦ section of
the constant M and α graph is shown in Figure 9.41. This graph is commonly referred to as the Nichols
chart. Note that the M = 1 (0 dB) curve is asymptotic to φ = −90◦ and φ = −270◦ and the curves for
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FIGURE 9.41 Use of the log magnitude–angle diagram (Nichols Chart) for Gx( jω) = KxG′
x( jω).

M < 1/2(−6 dB) are always negative. The curve for M = ∞ is the point at 0 dB, −180◦, and the curves
for M > 1 are closed curves inside the limits φ = −90◦ and φ = −270◦. These loci for constant M and α

on the Nichols Chart apply only for stable unity-feedback systems.
The Nichols Chart has the Cartesian coordinates of dB vs. phase angle φ. Standard graph paper with

loci of constant M and α for the closed-loop transfer function is available. The open-loop frequency
response G( jω), with the frequencies noted along the plot, is superimposed on the Nichols Chart as
shown in Figure 9.41. The intersections of the G( jω) plot with the M and α contours yield the closed-loop
frequency response M∠α.

By plotting Lm G′
x( jω) vs. ∠G′

x( jω) on the Nichols Chart, the value of Kx required to achieve a desired
value of Mm can be determined. The amount Δ dB required to raise or lower this plot of Gx( jω) vs. φ in
order to make it just tangent to the desired M = Mm contour yields LmKx = Δ. The frequency value at
the point of tangency, i.e., LmGx( jωm), yields the value of the resonant frequency ω = ωm.

9.3.11 Correlation of Pole–Zero Diagram with Frequency
and Time Responses

Whenever the closed-loop control ratio M( jω) has the characteristic [5] form shown in Figure 9.33, the
system may be approximated as a simple second-order system. This usually implies that the poles, other
than the dominant complex pair, are either far to the left of the dominant complex poles or are close to
zeros. When these conditions are not satisfied, the frequency response may have other shapes. This can
be illustrated by considering the following three control ratios:

C(s)

R(s)
= 1

s2 + s + 1
(9.80)

C(s)

R(s)
= 0.313(s + 0.8)

(s + 0.25)(s2 + 0.3s + 1)
(9.81)
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FIGURE 9.42 Comparison of frequency and time responses for three pole–zero patterns.

C(s)

R(s)
= 4

(s2 + s + 1)(s2 + 0.4s + 4)
(9.82)

The pole–zero diagram, the frequency response, and the time response to a step input for each of
these equations are shown in Figure 9.42. For Equation 9.80 the following characteristics are noted from
Figure 9.42a:

1. The control ratio has only two complex dominant poles and no zeros.
2. The frequency-response curve has the following characteristics:

a. A single peak Mm = 1.157 at ωm = 0.7.
b. 1 < M < Mm in the frequency range 0 < ω < 1.

3. The time response has the typical waveform for a simple underdamped second-order system. That
is, the first maximum of c(t) due to the oscillatory term is greater than c(t)ss, and the c(t) response
after this maximum oscillates around the value of c(t)ss.

For Equation 9.81 the following characteristics are noted from Figure 9.42b:

1. The control ratio has two complex poles and one real pole, all dominant, and one real zero.
2. The frequency-response curve has the following characteristics:

a. A single peak, Mm = 1.27 at ωm = 0.95.
b. M < 1 in the frequency range 0 < ω < ωx .
c. The peak Mm occurs at ωm = 0.95 > ωx .

3. The time response does not have the conventional waveform. That is, the first maximum of c(t)
due to the oscillatory term is less than c(t)ss because of the transient term A3e−0.25t .

For Equation 9.82 the following characteristics are noted from Figure 9.42c:

1. The control ratio has four complex poles, all dominant, and no zeros.
2. The frequency-response curve has the following characteristics:
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a. There are two peaks, Mm1 = 1.36 at ωm1 = 0.81 and Mm2 = 1.45 at ωm2 = 1.9.
b. 1 < M < 1.45 in the frequency range 0 < ω < 2.1.
c. The time response does not have the simple second-order waveform. That is, the first maximum

of c(t) in the oscillation is greater than c(t)ss, and the oscillatory portion of c(t) does not oscillate
about a value of c(t)ss. This time response can be predicted from the pole locations in the s-plane
and from the two peaks in the plot of M vs. ω.

9.3.12 Summary

The different types of frequency-response plots are presented in this chapter. All of these plots indicate
the type of system under consideration. Both the polar plot and the Nichols plot can be used to determine
the necessary gain adjustment that must be made to improve its response. The methods presented for
obtaining the Lm frequency-response plots stress graphical techniques. For greater accuracy, a CAD
program should be used to calculate this data. This chapter shows that the polar plot of the transfer
function G(s), in conjunction with Nyquist’s stability criterion, gives a rapid means of determining
whether a system is stable or unstable. The phase-margin angle and gain margin are also used as a means
of measuring stability. This is followed by the correlation between the frequency and time responses. The
F.O.M. Mm and ωm are established as guideposts for evaluating the tracking performance of a system.
The addition of a pole to an open-loop transfer function produces a CW shift of the direct polar plot,
which results in a larger value of Mm. The time response also suffers because ωm becomes smaller. The
reverse is true if a zero is added to the open-loop transfer function. This agrees with the analysis using
the root locus, which shows that the addition of a pole or zero results in a less stable or more stable
system, respectively. Thus, the qualitative correlation between the root locus and the frequency response
is enhanced. The M and α contours are an aid in adjusting the gain to obtain a desired Mm. The methods
described for adjusting the gain for a desired Mm are based on the fact that generally the desired values
of Mm are slightly greater than 1. This yields a time response having an underdamped response, with a
small amplitude of oscillation that reaches steady state rapidly. When the gain adjustment does not yield
a satisfactory value of ωm, the system must be compensated in order to increase ωm without changing the
value of Mm.
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9.4 The Root Locus Plot

William S. Levine
9.4.1 Introduction

The root locus plot was invented by W. R. Evans around 1948 [1,2]. This is somewhat surprising because
the essential ideas behind the root locus were available many years earlier. All that is really needed is
the Laplace transform, the idea that the poles of a linear time-invariant system are important in control
design, and the geometry of the complex plane. One could argue that the essentials were known by 1868
when Maxwell published his paper “On Governors” [3]. It is interesting to speculate on why it took so
long to discover such a natural and useful tool.

It has become much easier to produce root locus plots over the last few years. Evans’s graphical
construction has been superseded by computer software. Today it takes just a few minutes to input the
necessary data to the computer. An accurate root locus plot is available seconds later [4]. In fact, the
computer makes it possible to extend the basic idea of the root locus to study graphically almost any
property of a system that can be parameterized by a single real number.

The detailed discussion of root locus plots and their uses begins with an example and a definition. This
is followed by a description of the original rules and procedures for constructing root locus plots. Using
the computer introduces different questions. These are addressed in Section 9.4.4. The use of root locus
plots in the design of control systems is described in Section 9.4.5. In particular, the design of lead, lag,
and lead/lag compensators, as well as the design of notch filters, is described. This is followed by a brief
introduction to other uses of the basic idea of the root locus. The final section summarizes and mentions
some limitations.

9.4.2 Definition

The situation of interest is illustrated in Figure 9.43, where G(s) is the transfer function of a single-input
single-output (SISO) linear time-invariant system and k is a real number. The closed-loop system has the
transfer function

Gcl(s) = y(s)

r(s)
= kG(s)

1 + kG(s)
(9.83)

The standard root locus only applies to the case where G(s) is a rational function of s. That is,

G(s) = n(s)/d(s) (9.84)

k++
–

G(s)
r(s) y(s)

FIGURE 9.43 Block diagram for a simple unity feedback control system.
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and n(s) and d(s) are polynomials in s with real coefficients. If this is true then it is easy to show that

Gcl(s) = kn(s)

d(s) + kn(s)
(9.85)

Note that the numerators of G(s) and of Gcl(s) are identical. We have just proved that, except possibly for
pole–zero cancellations, the open-loop system, G(s), and the closed-loop system, Gcl(s), have exactly the
same zeros regardless of the value of k.

What happens to the poles of Gcl(s) as k varies? This is precisely the question that is answered by the
root locus plot. By definition, the root locus plot is a plot of the poles of Gcl(s) in the complex plane as the
parameter k varies. It is very easy to generate such plots for simple systems. For example, if

G(s) = 3

s2 + 4s + 3

then

Gcl(s) = 3k

s2 + 4s + (3 + 3k)

The poles of Gcl(s), denoted by p1 and p2, are given by

p1 = −2 +
√

1 − 3k

p2 = −2 −
√

1 − 3k (9.86)

It is straightforward to plot p1 and p2 in the complex plane as k varies. This is done for k ≥ 0 in Figure 9.44.
Note that, strictly speaking, Gcl(s) = 0 when k = 0. However, the denominators of Equations 9.84 and
9.85 both give the same values for the closed-loop poles when k = 0, namely −1 and −3. Those values
are the same as the open-loop poles. By convention, all root locus plots use the open-loop poles as the
closed-loop poles when k = 0.
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FIGURE 9.44 Root locus plot for G(s) = 3/(s2 + 4s + 3) and k ≥ 0.
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The plot provides a great deal of useful information. First, it gives the pole locations for every possible
closed-loop system that can be created from the open-loop plant and any positive gain k. Second, if there
are points on the root locus for which the closed-loop system would meet the design specifications, then
simply applying the corresponding value of k completes the design. For example, if a closed-loop system
with damping ratio ζ = 0.707 is desired for the system whose root locus is plotted in Figure 9.44, then
simply choose the value of k that puts the poles of Gcl(s) at −2 ± j2. That is, from Equation 9.86, choose
k = 5/3.

The standard root locus can be easily applied to nonunity feedback control systems by using block
diagram manipulations to put the system in an equivalent unity feedback form (see Control System
Fundamentals, Chapter 6). Because the standard root locus depends only on properties of polynomials
it applies equally well to discrete-time systems. The only change is that G(s) is replaced by G(z), the
z-transform transfer function.

9.4.3 Some Construction Rules

Evans’s procedure for plotting the Root Locus consists of a collection of rules for determining if a test
point, st , in the complex plane is a pole of Gcl(s) for some value of k. The first such rule has already been
explained.

Rule 1

The open-loop poles, i.e., the roots of d(s) = 0, are all points in the root locus plot corresponding to k = 0.
The second rule is also elementary. Suppose that

d(s) = sn + an−1sn−1 + an−2sn−2 + · · · + a0

n(s) = bmsm + bm−1sm−1 + · · · + b0 (9.87)

For physical systems it is always true that n > m. Although it is possible to have reasonable mathematical
models that violate this condition, it will be assumed that n > m. The denominator of Equation 9.85 is
then

dcl(s) = sn + an−1sn−1 + · · · + an−m−1sn−m−1 + (an−m + kbm)sm + · · · + (a0 + kb0) (9.88)

Rule 2 is an obvious consequence of Equation 9.88, the assumption that n > m, and the fact that a
polynomial of degree n has exactly n roots.

Rule 2

The root locus consists of exactly n branches.
The remaining rules are derived from a different form of the denominator of Gcl(s). Equation 9.83 shows

that the denominator of Gcl(s) can be written as 1 + kG(s). Even though 1 + kG(s) is not a polynomial it
is still true that the poles of Gcl(s) must satisfy the equation

1 + kG(s) = 0 (9.89)

Because s is a complex number, G(s) is generally complex and Equation 9.89 is equivalent to two inde-
pendent equations. These could be, for instance, that the real and imaginary parts of Equation 9.89 must
separately and independently equal zero. It is more convenient, and equivalent, to use the magnitude and
angle of Equation 9.89. That is, Equation 9.89 is equivalent to the two equations

|kG(s)| = 1 (9.90)

∠(kG(s)) = ±(2h + 1)180◦, where h = 0, 1, 2, . . .

The first equation explicitly states that, for Equation 9.89 to hold, the magnitude of kG(s) must be one.
The second equation shows that the phase angle of kG(s) must be ±180◦, or ±540◦, etc. It is possible to
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simplify Equations 9.90 somewhat because k is a real number. Thus, for k ≥ 0 Equations 9.90 become

|G(s)| = 1/k (9.91)

∠(G(s)) = ±(2h + 1)180◦, where h = 0, 1, 2, . . .

The form for k ≤ 0 is the same for the magnitude of G(s), except for a minus sign (|G(s)| = − 1
k ), but the

angle condition becomes integer multiples of 360◦.
Equations 9.91 are the basis for plotting the root locus. The first step in producing the plot is to mark

the locations of the open-loop poles and zeros on a graph of the complex plane. The poles are denoted by
the symbol, ×, as in Figure 9.44, while the zeros are denoted by the symbol, ◦. If the poles and zeros are
accurately plotted it is then possible to measure |G(st)| and ∠(G(st)) for any given test point st .

For example, suppose G(s) = 10(s + 4)/(s + 3 + j4)(s + 3 − j4). The poles and zeros of this transfer
function are plotted in Figure 9.45. Notice that the plot does not depend, in any way, on the gain 10. It is
generally true that pole–zero plots are ambiguous with respect to pure gain. Figure 9.45 contains a plot
of the complex number (s + 4) for the specific value st = −1 + j3. It is exactly the same length as, and
parallel to, the vector drawn from the zero to the point s = −1 + j3, also shown. The same is true of the
vectors corresponding to the two poles. To save effort, only the vectors from the poles to the test point
st = −1 + j3 are drawn. Once the figure is drawn, simple measurements with a ruler and a protractor
provide

|G(−1 + j3)| = l1
l2l3

∠(G(−1 + j3)) = φ1 − φ2 − φ3

One can then check the angle condition in Equations 9.91 to see if st = −1 + j3 is a point on the root
locus for this G(s).

Denotes a pole

Re s

Im s

l1l1

l3

l2

j2

j2

j4

j4

ϕ1

ϕ3

ϕ2

ϕ1

Denotes a zero

2–2–4 4

FIGURE 9.45 Poles and zeros of G(s) = [10(s + 4)/(s + 3 + j4)(s + 3 − j4)]. The vectors from each of the singular-
ities to the test point st = −1 + j3 are also shown, as is the vector s + 4|st=−1+j3.
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Of course, it would be tedious to check every point in the complex plane. This is not necessary. There
is a collection of rules for finding points on the root locus plot. A few of these are developed below. The
others can be found in most undergraduate textbooks on control, such as [5,6].

Rule 3

For k ≥ 0, any point on the real axis that lies to the left of an odd number of singularities (poles plus
zeros) on the real axis is a point on the root locus. Any other point on the real axis is not. (Change “odd”
to “even” for negative k.)

A proof follows immediately from applying the angle condition in Equations 9.91 to test points on the
real axis. The angular contributions due to poles and zeros that are not on the real axis cancel as a result
of symmetry. Poles and zeros to the left of the test point have angles equal to zero. Poles and zeros to the
right of the test point contribute angles of −180◦ and +180◦, respectively. In fact, a fourth rule follows
easily from the symmetry.

Rule 4

The root locus is symmetric about the real axis.
We already know that all branches start at the open-loop poles. Where do they end?

Rule 5

If G(s) has n poles and m finite zeros (m ≤ n) then exactly m branches terminate, as k → ∞, on the finite
zeros. The remaining n − m branches go to infinity as k → ∞.

The validity of the rule can be proved by taking limits as k → ∞ in the magnitude part of Equations
9.91. Doing so gives

lim
k→∞

|G(s)| = lim
k→∞

1

k
= 0

Thus, as k → ∞, it must be true that |G(s)| → 0. This is true when s coincides with any finite zero of
G(s). From Equations 9.84 and 9.87,

lim
s→∞ G(s) = lim

s→∞
bmsm + bm−1sm−1 + · · · + b0

sn + an−1sn−1 + · · · + a0

= lim
s→∞

sm−n(bm + bm−1s−1 + · · · + b0s−m)

(1 + an−1s−1 + · · · + a0s−n)

Finally,

lim
s→∞ G(s) = lim

s→∞ bmsm−n = 0 (9.92)

The bm factors out and the fact that |G(s)| → 0 as s → ∞ with multiplicity n − m is apparent. One can
think of this as a demonstration that G(s) has n − m zeros at infinity. Equation 9.92 plays an important
role in the proof of the next rule as well.

Rule 6

If G(s) has n poles and m finite zeros (n ≥ m) and k ≥ 0 then the n − m branches that end at infinity
asymptotically approach lines that intersect the real axis at a point σ0 and that make an angle γ with the
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real axis, where

γ = ± (1 + 2h)180◦

n − m
where h = 0, 1, 2, . . .

and

σ0 =

n∑
i=1

Re(pi) −
m∑

l=1
Re(zl)

n − m

A proof of the formula for γ follows from applying the angle condition of Equations 9.91 to Equation
9.92. That is,

∠(sm−n) = ±(1 + 2h)180◦

so

γ = ∠(s) = ∓(1 + 2h)180◦

n − m

A proof of the equation for σ0 can be found in [5, pp. 239–249]. Most textbooks include around a dozen
rules for plotting the root locus; see, for example, [5–8]. These are much less important today than they
were just a few years ago because good, inexpensive software for plotting root loci is now widely available.

9.4.4 Use of the Computer to Plot Root Loci

There are many different software packages that can be used to plot the root locus. A particularly well-
known example is MATLAB. To some extent, the software is foolproof. If the data are input correctly,
the resulting root locus is calculated correctly. However, there are several possible pitfalls. For example,
the software automatically scales the plot. The scaling can obscure important aspects of the root locus, as
is described in the next section. This, and other possible problems associated with computer-generated
root locus plots, is discussed in more detail in [4].

9.4.5 Uses

The root locus plot can be an excellent tool for designing single-input single-output control systems.
It is particularly effective when the open-loop transfer function is accurately known and is, at least
approximately, reasonably low order. This is often the case in the design of servomechanisms. The root
locus is also very useful as an aid to understanding the effect of feedback and compensation on the
closed-loop system poles. Some ways to use the root locus are illustrated below.

9.4.5.1 Design of a Proportional Feedback Gain

Consider the open-loop plant G(s) = 1/s(s + 1)(0.1s + 1). This is a typical textbook example. The plant
is third order and given in factored form. The plant has been normalized so that lim

s→0
sG(s) = 1. This

is particularly helpful in comparing different candidate designs. A servo motor driving an inertial load
would typically have such a description. The motor plus load would correspond to the poles at 0 and −1.
The electrical characteristics of the motor add a pole that is normally fairly far to the left, such as the pole
at −10 in this example.

The simplest controller is a pure gain, as in Figure 9.43. Suppose, for illustration, that the specifications
on the closed-loop system are that ζ, the damping ratio, must be exactly 0.707 and the natural frequency,
ωn, must be as large as possible. Because the closed-loop system is actually third order, both damping
ratio and natural frequency are not well defined. However, the open-loop system has a pair of dominant
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poles, those at 0 and −1. The closed-loop system will also have a dominant pair of poles because the third
pole will be more than a factor of 10 to the left of the complex-conjugate pair of poles. The damping ratio
and natural frequency will then be defined by the dominant poles.

A root locus plot for this system, generated by MATLAB, is shown in Figure 9.46. (Using the default
scaling it was difficult to see the exact intersection of the locus with the ζ = 0.707 line because the automatic
scaling includes all the poles in the visible plot. A version of the same plot with better scaling was created
and is the one shown.) The diagonal lines on the plot correspond to ζ = 0.707. The four curved lines are
lines of constant ωn, with values 1, 2, 3, 4. The value of gain k corresponding to ζ = 0.707 is approximately
5, and the closed-loop poles resulting from this gain are roughly −10, −1/2 ± j/2. These values are easily
obtained from MATLAB [4]. The bandwidth of the closed-loop system is fairly small because, as you can
see from Figure 9.46, the dominant poles have ωn < 1. This indicates that the transient response will be
slow. If a closed-loop system that responds faster is needed, two approaches could be used. The plant
could be changed. For instance, if the plant is a motor then a more powerful motor could be obtained.
This would move the pole at −1 to the left, say to −3. A faster closed-loop system could then be designed
using only a feedback gain. The other option is to introduce a lead compensator.

9.4.5.2 Design of Lead Compensation

A lead compensator is a device that can be added in series with the plant and has a transfer function
Gc(s) = (s − z)/(s − p). Both z and p are real and negative. The zero, z, lies to the right of the pole,
p (z > p). Because the magnitude of the transfer function of a lead compensator will increase with
frequency between the zero and the pole, some combination of actuator limits and noise usually forces
p/z < 10. Lead compensators are always used in conjunction with a gain, k.

The purpose of a lead compensator is to speed up the transient response. The example we have been
working on is one for which lead compensation is easy and effective. For a system with three real poles
and no zeros one normally puts the zero of the lead compensator close to the middle pole of the plant. The
compensator pole is placed as far to the left as possible. The result of doing this for our example is shown
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FIGURE 9.46 Root locus plot of 1/s(s + 1)(s + 10). The dotted diagonal lines correspond to ζ = 0.707. The dotted
elliptical lines correspond to ωn = 1, 2, 3, 4, respectively.
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FIGURE 9.47 Root locus plot of Gc(s)G(s) = (s + 1)/(s + 10) [1/s(s + 1)(s + 10)]. The dotted diagonal lines corre-
spond to ζ = 0.707. The dotted elliptical curves correspond to ωn = 1, 2, 3, 4.

in Figure 9.47. Comparison of the root loci in Figures 9.46 and 9.47 shows that the lead compensator
has made it possible to find a gain, k, for which the closed-loop system has ζ = 0.707 and wn > 4. This
approach to designing lead compensators basically maximizes the bandwidth of the closed-loop system
for a given damping ratio. If the desired transient response of the closed-loop system is specified in more
detail, there are other procedures for placing the compensator poles and zeros [7, pp. 514–530].

9.4.5.3 Design of Lag Compensation

A lag compensator is a device that can be added in series with the plant and has a transfer function
Gc(s) = (s − z)/(s − p). Both z and p are real and negative. The zero, z, lies to the left of the pole, p (z < p).
Lag compensators are always used in series with a gain, k. Again, it is usually not feasible to have the
pole and the zero of the compensator differ by more than a factor of 10. One important reason for this is
explained below.

The purpose of a lag compensator is to improve the steady-state response of the closed-loop system.
Again, the example we have been working on illustrates the issues very well. Because our example already
has an open-loop pole at the origin it is a type-1 system. The closed-loop system will have zero steady-state
error in response to a unit step input. Adding another open-loop pole close to the origin would make
the steady-state error of the closed-loop system in response to a unit ramp smaller. In fact, if we put the
extra pole at the origin we would reduce this error to zero. Unfortunately, addition of only an open-loop
pole close to the origin will severely damage the transient response. No choice of gain will produce a
closed-loop system with a fast transient response.

The solution is to add a zero to the left of the lag compensator’s pole. Then, if the gain, k, is chosen
large enough, the compensator’s pole will be close to the compensator’s zero so they will approximately
cancel each other. The result is that the closed-loop transient response will be nearly unaffected by the
lag compensator while the steady-state error of the closed-loop system is reduced. Note that this will
not be true if the gain is too low. In that case, the closed-loop transient response will be slowed by the
compensator pole.
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9.4.5.4 Design of Lead/Lag Compensation

Conceptually, the lead and lag compensators are independent. One can design a lead compensator so as to
produce a closed-loop system that satisfies the specifications of the transient response while ignoring the
steady-state specifications. One can then design a lag compensator to meet the steady-state requirements
knowing that the effect of this compensator on the transient response will be negligible. As mentioned
above, this does require that the gain is large enough to move the pole of the lag compensator close to its
zero. Otherwise, the lag compensator will slow down the transient response, perhaps greatly.

There are a number of different ways to implement lead/lag compensators. One relatively inexpensive
implementation is shown in [8, p. 700]. It has the disadvantage that the ratio of the lead compensator
zero to the lead compensator pole must be identical to the ratio of the lag compensator pole to the lag
compensator zero. This introduces some coupling between the two compensators which complicates the
design process. See [7, pp. 537–547], for a discussion.

9.4.5.5 Design of a Notch Filter

The notch filter gets its name from the appearance of a notch in the plot of the magnitude of its trans-
fer function versus frequency. Nonetheless, there are aspects of the design of notch filters that are best
understood by means of the root locus plot. It is easiest to begin with an example where a notch fil-
ter would be appropriate. Such an example would have open-loop transfer function G(s) = 1/s(s + 1)
(s + 0.1 + j5)(s + 0.1 − j5). This transfer function might correspond to a motor driving an inertial load at
the end of a long and fairly flexible shaft. The flexure of the shaft introduces the pair of lightly damped
poles and greatly complicates the design of a good feedback controller for this plant. While it is fairly rare
that a motor can only be connected to its load by a flexible shaft, problems where the open-loop system
includes a pair of lightly damped poles are reasonably common.

The obvious thing to do is to add a pair of zeros to cancel the offending poles. Because the poles are
stable, although lightly damped, it is feasible to do this. The only important complication is that you
cannot implement a compensator that has two zeros and no poles. In practice, one adds a compensator
consisting of the desired pair of zeros and a pair of poles. The poles are usually placed as far to the left as
feasible and close to the real axis. Such a compensator is called a notch filter.

One rarely knows the exact location of the lightly damped poles. Thus, the notch filter has to work
well, even when the poles to be canceled are not exactly where they were expected to be. Simply plotting
the root locus corresponding to a plant plus notch filter for which the zeros are above the poles, as is
done in Figure 9.48, shows that such a design is relatively safe. The root locus lies to the left of the lightly
damped poles and zeros. The root locus plot corresponding to the situation where the compensator zeros
are below the poles curves the opposite way, showing that this is a dangerous situation, in the sense that
such a system can easily become unstable as a result of small variations in the plant gain.

9.4.5.6 Other Uses of the Root Locus Plot

Any time the controller can be characterized by a single parameter it is possible to plot the locus of the
closed-loop poles as a function of that parameter. This creates a kind of root locus that, although often
very useful and easy enough to compute, does not necessarily satisfy the plotting rules given previously.
An excellent example is provided by a special case of the optimal linear quadratic regulator. Given a SISO
linear time-invariant system described in state-space form by

ẋ(t) = Ax(t) + bu(t)

y(t) = cx(t)

find the control that minimizes

J =
∫ ∞

0
(y2(t) + ru2(t)) dt
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FIGURE 9.48 Root locus plot for the system Gc(s)G(s) = [(s + 0.11 + j5.5)(s + 0.11 − j5.5)]/(s + 8)2 1/[s(s + 1)(s +
0.1 + j5)(s + 0.1 − j5)].

The solution, assuming that the state vector x(t) is available for feedback, is u(t) = kx(t), where k is a
row vector containing n elements. The vector k is a function of the real number r so it is possible to plot
the locus of the closed-loop poles as a function of r. Under some mild additional assumptions this locus
demonstrates that these poles approach a Butterworth pattern as r goes to zero. The details can be found
in [9, pp. 218–233].

9.4.6 Conclusions

The root locus has been one of the most useful items in the control engineer’s toolbox since its invention.
Modern computer software for plotting the root locus has only increased its utility. Of course, there are
situations where it is difficult or impossible to use it. Specifically, when the system to be controlled is not
accurately known or cannot be well approximated by a rational transfer function, then it is better to use
other tools.
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9.5 PID Control

Karl J. Åström and Tore Hägglund
9.5.1 Introduction

The proportional–integral–derivative (PID) controller is by far the most commonly used controller.
About 90–95% of all control problems are solved by this controller which comes in many forms. It is
packaged in standard boxes for process control and in simpler versions for temperature control. It is a
key component of all distributed systems for process control. Specialized controllers for many different
applications are also based on PID control. The PID controller can thus be regarded as the “bread and
butter” of control engineering. The PID controller has gone through many changes in technology. The
early controllers were based on relays and synchronous electric motors or pneumatic or hydraulic systems.
These systems were then replaced by electronics and, lately, microprocessors [2–6,10–12].

Much interest was devoted to PID control in the early development of automatic control. For a long
time researchers paid very little attention to the PID controller. Lately, there has been a resurgence
of interest in PID control because of the possibility of making PID controllers with automatic tuning,
automatic generation of gain schedules and continuous adaptation. See the chapter “Automatic Tuning
of PID Controllers” in this handbook.

Even if PID controllers are very common, they are not always used in the best way. The controllers are
often poorly tuned. It is quite common that derivative action is not used. The reason is that it is difficult
to tune three parameters by trial and error.

In this chapter, we will first present the basic PID controller in Section 9.5.2. When using PID control,
it is important to be aware of the fact that PID controllers are parameterized in several different ways.
This means for example that “integral time” does not mean the same thing for different controllers. PID
controllers cannot be understood from linear theory. Amplitude and rate limitations in the actuators are
key elements that lead to the windup phenomena. This is discussed in Section 9.5.4 where different ways
to avoid windup are also discussed. Mode switches also are discussed in the same section.

Most PID controllers are implemented as digital controllers. In Section 9.5.5, we discuss digital imple-
mentation. In Section 9.5.6, we discuss uses of PID control, and in Section 9.5.7 we describe how complex
control systems are obtained in a “bottom up” fashion by combining PID controllers with other simple
systems.

We also refer to the companion chapter “Automatic Tuning of PID Controllers” in this handbook,
which treats design and tuning of PID controllers. Examples of industrial products are also given in that
chapter.

9.5.2 The Control Law

In a PID controller the control action is generated as a sum of three terms. The control law is thus
described as

u(t) = uP(t) + uI (t) + uD(t) (9.93)

where uP is the proportional part, uI the integral part and uD the derivative part.
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9.5.2.1 Proportional Control

The proportional part is a simple feedback

uP(t) = Ke(t) (9.94)

where e is the control error, and K is the controller gain. The error is defined as the difference between
the set point ysp and the process output y, i.e.,

e(t) = ysp(t) − y(t) (9.95)

The modified form,
uP(t) = K(bysp(t) − y(t)) (9.96)

where b is called set point weighting, admits independent adjustment of set point response and load
disturbance response. The setpoint response can also be influenced by a prefilter.

9.5.2.2 Integral Control

Proportional control normally gives a system that has a steady-state error. Integral action is introduced
to remove this. Integral action has the form

uI (t) = ki

∫ t

e(s) ds = K

Ti

∫ t

e(s) ds (9.97)

The idea is simply that control action is taken even if the error is very small provided that the average of
the error has the same sign over a long period.

Automatic Reset

A proportional controller often gives a steady-state error. A manually adjustable reset term may be added
to the control signal to eliminate the steady-state error. The proportional controller given by Equation 9.94
then becomes

u(t) = Ke(t) + ub(t) (9.98)

where ub is the reset term. Historically, integral action was the result of an attempt to obtain automatic
adjustment of the reset term. One way to do this is shown in Figure 9.49.

The idea is simply to filter out the low frequency part of the error signal and add it to the proportional
part. Notice that the closed loop has positive feedback. Analyzing the system in the figure we find that

U(s) = K(1 + 1

sTi
)E(s)

which is the input–output relation of a proportional–integral (PI) controller. Furthermore, we have

ub(t) = K

Ti

∫ t

e(s) ds = uI (t)

The automatic reset is thus the same as integral action.
Notice, however, that set point weighting is not obtained when integral action is obtained as automatic

reset.

1
1 + sTi

ub

up
K Σ

e u

FIGURE 9.49 Controller with integral action implemented as automatic reset.
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9.5.2.3 Derivative Control

Derivative control is used to provide anticipative action. A simple form is

uD(t) = kd
de(t)

dt
= KTd

de(t)

dt
(9.99)

The combination of proportional and derivative action is then

uP(t) + uD(t) = K

[
e(t) + Td

de(t)

dt

]

This means that control action is based on linear extrapolation of the error Td time units ahead. See
Figure 9.50. Parameter Td , which is called derivative time, thus has a good intuitive interpretation.

The main difference between a PID controller and a more complex controller is that a dynamic model
admits better prediction than straight-line extrapolation.

In many practical applications, the set point is piecewise constant. This means that the derivative of
the set point is zero except for those time instances when the set point is changed. At these time instances,
the derivative becomes infinitely large. Linear extrapolation is not useful for predicting such signals.
Also, linear extrapolation is inaccurate when the measurement signal changes rapidly compared to the
prediction horizon Td .

A better realization of derivative action is, therefore,

UD(s) = KTds

1 + sTd/N
(cYsp(s) − Y (s)) (9.100)

The signals pass through a low-pass filter with time constant Td/N . Parameter c is a set point weighting,
which is often set to zero.

Filtering of Process Variable

Instead of filtering the the derivative as discusssed above one can also filter the measured signal by a first
or second-order filter

Gf (s) = 1

1 + sTf
Gf (s) = 1

1 + sTf + (sTf )2/2
(9.101)

An ideal PID controller can then be applied to the filtered measurement. For PID controllers that are
implemented digitally, the filter can be combined with the antialiasing filter as discussed in Section 9.5.5.

e(1)
e(1 + Td)

e(1) + Td

210
0

0.5

1

1.5

3

de(1)
dt

t

e(t)

Td

FIGURE 9.50 Interpretation of derivative action as prediction.
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Set Point Weighting

The PID controller introduces extra zeros in the transmission from set point to output. From Equa-
tions 9.96, 9.97, and 9.99, the zeros of the PID controller can be determined as the roots of the equation

cTiTds2 + bTis + 1 = 0 (9.102)

There are no extra zeros if b = 0 and c = 0. If only c = 0, then there is one extra zero at

s = − 1

bTi
(9.103)

This zero can have a significant influence on the set point response. The overshoot is often too large
with b = 1. It can be reduced substantially by using a smaller value of b. This is a much better solution
than the traditional way of detuning the controller [2,3].

This is illustrated in Figure 9.51, which shows PI control of a system with the transfer function

Gp(s) = 1

s + a
(9.104)

9.5.3 Different Representations

The PID controller discussed in the previous section can be described by

U(s) = Gsp(s)Ysp(s) − Gc(s)Y (s) (9.105)

where

Gsp(s) = K

(
b + 1

sTi
+ c

sTd

1 + sTd/N

)

Gc(s) = K

(
1 + 1

sTi
+ sTd

1 + sTd/N

)
(9.106)

The linear behavior of the controller is thus characterized by two transfer functions: Gsp(s), which gives
the signal transmission from the set point to the control variable, and Gc(s), which describes the signal
transmission from the process output to the control variable.

Notice that the signal transmission from the process output to the control signal is different from the
signal transmission from the set point to the control signal if either set point weighting parameter b �= 1
or c �= 1. The PID controller then has two degrees of freedom.

1

0.5

0
0 5 10

Set point and measured variable

15 20
t

1

0
0 5 10

Control variable

15 20
t

FIGURE 9.51 The usefulness of set point weighting. The values of the set point weighting parameter are 0, 0.5,
and 1.
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Another way to express this is that the set point parameters make it possible to modify the zeros in the
signal transmission from set point to control signal.

The PID controller is thus a simple control algorithm that has seven parameters: Controller gain K ,
integral time Ti , derivative time Td , maximum derivative gain N , set point weightings b and c, and filter
time constant Tf . Parameters K , Ti and Td are the primary parameters that are normally discussed.
Parameter N is a constant, whose value typically is between 5 and 20. The set point weighting parameter b
is often 0 or 1, although it is quite useful to use different values. Parameter c is mostly zero in commercial
controllers.

9.5.3.1 The Standard Form

The controller given by Equations 9.105 and 9.106 is called the standard form, or the ISA (Instrument
Society of America) form. The standard form admits complex zeros, which is useful when controlling
systems with oscillatory poles. The parameterization given in Equation 9.106 is the normal one. There
are, however, also other parameterizations.

9.5.3.2 The Parallel Form

A slight variation of the standard form is the parallel form, which is described by

U(s) = k[bYsp(s) − Y (s)] + ki

s
[Ysp(s) − Y (s)] + kds

1 + sTdf
[cYsp(s) − Y (s)] (9.107)

This form has the advantage that it is easy to obtain pure proportional, integral or derivative control
simply by setting appropriate parameters to zero. The interpretation of Ti and Td as integration time and
prediction horizon is, however, lost in this representation. The parameters of the controllers given by
Equations 9.105 and 9.107 are related by

k = K

ki = K

Ti

kd = KTd (9.108)

Use of the different forms causes considerable confusion, particularly when parameter 1/ki is called
integral time and kd derivative time.

The form given by Equation 9.107 is often useful in analytical calculations, because the parameters
appear linearly. However, the parameters do not have nice physical interpretations.

The Parallel Form with Signal Filtering

If the measured signal is filtered [7] the controller transfer function is

C(s) = ki
1 + sTi + s2TiTd

s(1 + sTf )
(9.109)

C(s) = ki
1 + sTi + s2TiTd

s(1 + sTf + s2TiTf )
(9.110)

for systems with first- or second-order filtering. The controller with a first-order filter is sometimes
called a complex proportional–integral lead, [1]. The input–output relation for a controller with setpoint
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weighting becomes

U(s) = k[bYsp(s) − Yf (s)] + ki

s
[Ysp(s) − Yf (s)] + kds[cYsp(s) − Yf (s)]

Yf (s) = 1

1 + sTf + (sTf )2/2

(9.111)

Since the above forms are a cascade of and ideal PID controller and a filter, the filter can be combined
with the process and the design can be carried out for an ideal PID controller.

9.5.3.3 The Series Forms

If N = 0 and if Ti > 4Td the transfer function Gc(s) can be written as

G′
c(s) = K ′

(
1 + 1

sT ′
i

)
(1 + sT ′

d) (9.112)

This form is called the series form. The parameters are related to the parameters of the parallel form in
the following way:

K = K ′ T ′
i + T ′

d

T ′
i

Ti = T ′
i + T ′

d

Td = T ′
i T ′

d

T ′
i + T ′

d

(9.113)

The inverse relation is

K ′ = K

2

(
1 +√

1 − 4Td/Ti

)

T ′
i = Ti

2

(
1 +√

1 − 4Td/Ti

)

T ′
d = Ti

2

(
1 −√

1 − 4Td/Ti

)
(9.114)

Similar, but more complicated, formulas are obtained for N �= 0. Notice that the parallel form admits
complex zeros while the series form has real zeros.

The parallel form given by Equations 9.105 and 9.106 is more general. The series form is also called the
classical form because it is obtained naturally when a controller is implemented as automatic reset. The
series form has an attractive interpretation in the frequency domain because the zeros of the feedback
transfer function are the inverse values of T ′

i and T ′
d . Because of tradition, the form of the controller

remained unchanged when technology changed from pneumatic via electric to digital.
It is important to keep in mind that different controllers may have different structures. This means that

if a controller in a certain control loop is replaced by another type of controller, the controller parameters
may have to be changed. Note, however, that the series and parallel forms differ only when both the
integral and the derivative parts of the controller are used.

The parallel form is the most general form, because pure proportional or integral action can be obtained
with finite parameters. The controller can also have complex zeros. In this way, it is the most flexible
form. However, it is also the form where the parameters have little physical interpretation. The series
form is the least general, because it does not allow complex zeros in the feedback path.
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9.5.3.4 Velocity Algorithms

The PID controllers given by Equations 9.105, 9.107, and 9.112 are called positional algorithms, because
the output of the algorithms is the control variable. In some cases, it is more natural to let the control
algorithm generate the rate of change of the control signal. Such a control law is called a velocity algorithm.
In digital implementations, velocity algorithms are also called incremental algorithms.

Many early controllers that were built around motors used velocity algorithms. Algorithms and struc-
ture were often retained by the manufacturers when technology was changed in order to have products
that were compatible with older equipment. Another reason is that many practical issues, like windup
protection and bumpless parameter changes, are easy to implement using the velocity algorithm.

A velocity algorithm cannot be used directly for a controller without integral action, because such a
controller cannot keep the stationary value. The system will have an unstable mode, an integrator, that is
canceled. Special care must therefore be exercised for velocity algorithms that allow the integral action to
be switched off.

9.5.4 Nonlinear Issues

So far we have discussed only the linear behavior of the PID controller. There are several nonlinear issues
that also must be considered. These include effects of actuator saturation, mode switches, and parameter
changes.

9.5.4.1 Actuator Saturation and Windup

All actuators have physical limitations, a control valve cannot be more than fully open or fully closed, a
motor has limited velocity, etc. This has severe consequences for control [2,8]. Integral action in a PID
controller is an unstable mode. This does not cause any difficulty when the loop is closed. The feedback
loop will, however, be broken when the actuator saturates, because the output of the saturating element is
then not influenced by its input. The unstable mode in the controller may then drift to very large values.
When the actuator desaturates it may then take a long time for the system to recover. It may also happen
that the actuator bounces several times between high and low values before the system recovers.

Integrator windup is illustrated in Figure 9.52, which shows simulation of a system where the process
dynamics is a saturation at a level of ±0.1 followed by a linear system with the transfer function

G(s) = 1

s(s + 1)

The controller is a PI controller with gain K = 0.27 and Ti = 7.5. The set point is a unit step. Because
of the saturation in the actuator, the control signal saturates immediately when the step is applied. The
control signal then remains at the saturation level and the feedback is broken. The integral part continues
to increase, because the error is positive. The integral part starts to decrease when the output equals
the set point, but the output remains saturated because of the large integral part. The output finally
decreases around time t = 14 when the integral part has decreased sufficiently. The system then settles.
The net effect is that there is a large overshoot. This phenomenon, which was observed experimentally
very early, is called “integrator windup.” Many so-called antiwindup schemes for avoiding windup have
been developed; conditional integration and tracking are two common methods.

9.5.4.2 Conditional Integration

Integrator windup can be avoided by using integral action only when certain conditions are fulfilled.
Integral action is thus switched off when the actuator saturates, and it is switched on again when it
desaturates. This scheme is easy to implement, but it leads to controllers with discontinuities. Care must
also be exercised when formulating the switching logic so that the system does not come to a state where
integral action is never used.
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FIGURE 9.52 Simulation that illustrates integrator windup.

9.5.4.3 Tracking

Tracking or back calculation is another way to avoid windup. The idea is to make sure that the integral is
kept at a proper value when the actuator saturates so that the controller is ready to resume action as soon
as the control error changes. This can be done as shown in Figure 9.53. The actuator output is measured
and the signal et , which is the difference between the input v and the output u of the actuator, is formed.
The signal et is different from zero when the actuator saturates. The signal et is then fed back to the
integrator. The feedback does not have any effect when the actuator does not saturate because the signal
et is then zero. When the actuator saturates, the feedback drives the integrator output to a value such that
the error et is zero.

Figure 9.54 illustrates the effect of using the antiwindup scheme. The simulation is identical to the one
in Figure 9.52, and the curves from that figure are copied to illustrate the properties of the system. Notice
the drastic difference in the behavior of the system. The control signal starts to decrease before the output
reaches the set point. The integral part of the controller is also initially driven towards negative values.

The signal yt may be regarded as an external signal to the controller. The PID controller can then be
represented as a block with three inputs, ysp, y and yt , and one output v, and the antiwindup scheme can
then be shown as in Figure 9.55. Notice that tracking is disabled when the signals yt and v are the same.

The signal yt is called the tracking signal because the output of the controller tracks this signal. The
time constant Tt is called the tracking time constant.

e K
Ti

1
Tt

1
s

uI v u

uP + uD

Σ Σ

Σ

–
ytet

Actuator

FIGURE 9.53 PID controller that avoids windup by tracking.



9-78 Control System Fundamentals

0.1

–0.1

0 10 20

Integral part

30 40 50
t

0.05

–0.05

0 10 20

Control signal

30 40 50
t

1

0
0 10 20

Process output and set point

30 40 50
t

FIGURE 9.54 Simulation of PID controller with tracking. For comparison, the response for a system without windup
protection is also shown. Compare with Figure 9.52.

The configuration with a tracking input is very useful in many contexts. Manual control signals can be
introduced at the tracking input. Several controllers can also be combined to build complex systems. One
example is when controllers are coupled in parallel or when selectors are used as discussed in Section 9.5.8.

The tracking time constant influences the behavior of the system as shown in Figure 9.56. The values
of the tracking constant are 1, 5, 20, and 100. The system recovers faster with smaller tracking constants.
It is, however, not useful to make the time constant too small, because tracking may then be introduced
accidentally by noise. It is reasonable to choose Tt < Ti for a PI controller and Td < Tt < Ti for a PID
controller [2].

9.5.4.4 The Proportional Band

Let umax and umin denote the limits of the control variable. The proportional band Kp of the controller is
then

Kp = umax − umin

K

This is sometimes used instead of the gain of the controller; the value is often expressed in percent (%).

SP
PV
TR

PID v uActuator
model Actuator

FIGURE 9.55 Antiwindup in PID controller with tracking input.
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FIGURE 9.56 Effect of the tracking time constant on the antiwindup. The values of the tracking time constant are
1, 5, 20, and 100.

For a PI controller, the values of the process output that correspond to the limits of the control signal
are given by

ymax = bysp + uI − umax

K

ymin = bysp + uI − umin

K

The controller operates linearly only if the process output is in the range (ymin, ymax). The controller
output saturates when the predicted output is outside this band. Notice that the proportional band
is strongly influenced by the integral term. A good insight into the windup problem and antiwindup
schemes is obtained by investigating the proportional band. To illustrate this, Figure 9.57 shows the same
simulation as Figure 9.52, but the proportional band is now also shown. The figure shows that the output
is outside the proportional band initially. The control signal is thus saturated immediately. The signal
desaturates as soon as the output leaves the proportional band. The large overshoot is caused by windup,
which increases the integral when the output saturates.
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FIGURE 9.57 Proportional band for simulation in Figure 9.52.
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FIGURE 9.58 A scheme for avoiding windup in a controller with a series implementation.

9.5.4.5 Antiwindup in Controller on Series Form

A special method is used to avoid windup in controllers with a series implementation. Figure 9.58 shows a
block diagram of the system. The idea is to make sure that the integral term that represents the automatic
reset is always inside the saturation limits. The proportional and derivative parts do, however, change the
output directly. It is also possible to treat the input to the saturation as an external tracking signal.

Notice that the tracking time constant in the controller in Figure 9.58 is equal to the integration time.
Better performance can often be obtained with smaller values. This is a limitation of the scheme in
Figure 9.58.

9.5.4.6 Antiwindup in Velocity Algorithms

In a controller that uses a velocity algorithm we can avoid windup simply by limiting the input to the
integrator. The behavior of the system is then similar to a controller with conditional integration.

9.5.4.7 Mode Switches

Most PID controllers can be operated in one of two modes, manual or automatic [2,3]. So far we have
discussed the automatic mode. In the manual mode the controller output is manipulated directly. This is
often done by two buttons labeled “increase” and “decrease.” The output is changed with a given rate when
a button is pushed. To obtain this function the buttons are connected to the output via an integrator. The
integrator used for integral action can also be used if the manual input is introduced as a tracking signal.

It is important that the system be implemented in such a way that there are no transients when the
modes are switched. This is very easy to arrange in a controller based on a velocity algorithm, where the
same integrator is used in both modes.

It is more complicated to obtain bumpless parameter changes in the other implementations. It is often
handled via the tracking mode.

9.5.4.8 Parameter Changes

Switching transients may also occur when parameters are changed. Some transients cannot be avoided,
but others are implementation dependent. In a proportional controller it is unavoidable to have transients
if the gain is changed when the control error is different from zero.

For controllers with integral action, it is possible to avoid switching transients even if the parameters
are changed when the error is not zero, provided that the controller is implemented properly.

If integral action is implemented as

dx

dt
= e

I = K

Ti
x

there will be a transient whenever K or Ti is changed when x �= 0.
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If the integral part is realized as

dx

dt
= K

Ti
e

I = x

we find that the transient is avoided. This is a manifestation that linear time-varying systems do not
commute.

9.5.5 Digital Implementation

Most controllers are implemented using digital controllers. In this handbook several chapters deal with
these issues. Here we will summarize some issues of particular relevance to PID control. The following
operations are performed when a controller is implemented digitally:

• Step 1. Wait for clock interrupt.
• Step 2. Read analog input.
• Step 3. Compute control signal.
• Step 4. Set analog output.
• Step 5. Update controller variables.
• Step 6. Go to 1.

To avoid unnecessary delay, it is useful to arrange the computations so that as many as possible of the
calculations are performed in Step 5. In Step 3, it is then sufficient to do two multiplications and one
addition.

When computations are based on sampled data, it is good practice to introduce a prefilter that effectively
eliminates all frequencies above the Nyquist frequency, fN = π/h, where h is the sampling period. If this is
not done, high-frequency disturbances may be aliased so that they appear as low-frequency disturbances.
In commercial PID controllers this is often done by a first-order system.

9.5.5.1 Discretization

So far we have characterized the PID controller as a continuous time system. To obtain a computer
implementation, we have to find a discrete time approximation. There are many ways to do this. Refer
to the section on digital control for a general discussion; here we do approximations specifically for the
PID controller. We will discuss discretization of the different terms separately. The sampling instants
are denoted as tk where k = 0, 1, 2, . . .. It is assumed that the sampling instants are equally spaced. The
sampling period is denoted by h. The proportional action, which is described by

up = K(bysp − y)

is easily discretized by replacing the continuous variables with their sampled versions. This gives

up(tk) = K
(
bysp(tk) − y(tk)

)
(9.115)

The integral term is given by

uI (t) = K

Ti

t∫
0

e(τ) dτ

Differentiation with respect to time gives
duI

dt
= K

Ti
e
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There are several ways to discretize this equation. Approximating the derivative by a forward difference
gives

uI (tk+1) = uI (tk) + Kh

Ti
e(tk) (9.116)

If the derivative is approximated by a backward difference we get instead

uI (tk) = uI (tk−1) + Kh

Ti
e(tk) (9.117)

Another possibility is to approximate the integral by the trapezoidal rule, which gives

uI (tk+1) = uI (tk) + Kh

Ti

e(tk+1) + e(tk)

2
(9.118)

Yet, another method is called ramp equivalence. This method gives exact outputs at the sampling instants
if the input signal is continuous and piecewise linear between the sampling instants. In this particular
case, the ramp equivalence method gives the same approximation of the integral term as the Tustin
approximation. The derivative term is given by

Td

N

duD

dt
+ uD = −KTd

dy

dt

This equation can be approximated in the same way as the integral term.
The forward difference approximation is

uD(tk+1) =
(

1 − Nh

Td

)
uD(tk) − KN(y(tk+1) − y(tk)) (9.119)

The backward difference approximation is

uD(tk) = Td

Td + Nh
uD(tk−1) − KTdN

Td + Nh
(y(tk) − y(tk−1)) (9.120)

Tustin’s approximation gives

uD(tk) = 2Td − Nh

2Td + Nh
uD(tk−1) − 2KTdN

2Td + Nh
(y(tk) − y(tk−1)) (9.121)

The ramp equivalence approximation gives

uD(tk) = e−Nh/Td uD(tk−1) − KTd(1 − e−Nh/Td )

h
(y(tk) − y(tk−1)) (9.122)

9.5.5.2 Unification

The approximations of the integral and derivative terms have the same form, namely

uI (tk) = uI (tk−1) + bi1e(tk) + bi2e(tk−1)

uD(tk) = aduD(tk−1) − bd(y(tk) − y(tk−1)) (9.123)

The parameters for the different approximations are given in Table 9.7.
The controllers obtained can be written as

u(tk) = t0ysp(tk) + t1ysp(tk−1) + t2ysp(tk−2) − s0y(tk) − s1y(tk−1) − s2y(tk−2)

+ (1 + ad)u(tk−1) − adu(tk−2) (9.124)

where s0 = K + bi1 + bd ; s1 = −K(1 + ad) − bi1ad + bi2 − 2bd ; s2 = Kad − bi2ad + bd ; t0 = Kb + bi1;
t1 = −Kb(1 + ad) − bi1ad + bi2; and t2 = Kbad − bi2ad .

Equation 9.124 gives the linear behavior of the controller. To obtain the complete controller, we have
to add the antiwindup feature and facilities for changing modes and parameters.
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TABLE 9.7 Parameters for the Different Approximations

Forward Backward Tustin Ramp Equivalence

bi1 0
Kh

Ti

Kh

2Ti

Kh

2Ti

bi2
Kh

Ti
0

Kh

2Ti

Kh

2Ti

ad 1 − Nh

Td

Td
Td + Nh

2Td − Nh

2Td + Nh
e−Nh/Td

bd KN
KTdN

Td + Nh

2KTdN

2Td + Nh

KTd(1 − e−Nh/Td )

h

9.5.5.3 Discussion

There is no significant difference between the different approximations of the integral term. The approx-
imations of the derivative term have, however, quite different properties.

The approximations are stable when |ad| < 1. For the forward difference approximation, this implies
that Td > Nh/2. The approximation is thus unstable for small values of Td . The other approximations are
stable for all values of Td . Tustin’s approximation and the forward difference method give negative values
of ad if Td is small. This is undesirable, because the approximation then exhibits ringing. The backward
difference approximation gives good results for all values of Td .

Tustin’s approximation and the ramp equivalence approximation give the best agreement with the
continuous time case; the backward approximation gives less phase advance; and the forward approxi-
mation gives more phase advance. The forward approximation is seldom used because of the problems
with instability for small values of derivative time Td . Tustin’s algorithm has the ringing problem for
small Td . Ramp equivalence requires evaluation of an exponential function. The backward difference
approximation is used most commonly. The backward difference is well behaved.

9.5.5.4 Computer Code

As an illustration we give the computer code for a reasonably complete PID controller that has set
point weighting, limitation of derivative gain, bumpless parameter changes and antiwindup protection
by tracking.

Code
Compute controller coefficients
bi=K*h/Ti
ad=(2*Td-N*h)/(2*Td+N*h)
bd=2*K*N*Td/(2*Td+N*h)
a0=h/Tt
Bumpless parameter changes
uI=uI+Kold*(bold*ysp-y)-Knew*(bnew*ysp-y)
Read set point and process output from AD converter
ysp=adin(ch1)
y=adin(ch2)
Compute proportional part
uP=K*(b*ysp-y)
Update derivative part
uD=ad*uD-bd*(y-yold)
Compute control variable
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v=uP+uI+uD
u=sat(v,ulow,uhigh)
Command analog output
daout(ch1)
Update integral part with windup protection
uI=uI+bi*(ysp-y)+ao*(u-v)
yold=y

Precomputation of the controller coefficients ad, ao, bd, and bi in Equation 9.124 saves computer time
in the main loop. These computations are made only when the controller parameters are changed. The
main program is called once every sampling period. The program has three states: yold, uI, and uD. One
state variable can be eliminated at the cost of a less readable code.

PID controllers are implemented in many different computers, standard processors as well as dedicated
machines. Word length is usually not a problem if general-purpose machines are used. For special-purpose
systems, it may be possible to choose word length. It is necessary to have sufficiently long word length to
properly represent the integral part.

9.5.5.5 Velocity Algorithms

The velocity algorithm is obtained simply by taking the difference of the position algorithm

Δu(tk) = u(tk) − u(tk−1) = ΔuP(tk) + ΔI(tk) + ΔD(tk)

The differences are then added to obtain the actual value of the control signal. Sometimes the integration
is done externally. The differences of the proportional, derivative, and integral terms are obtained from
Equations 9.115 and 9.123.

ΔuP(tk) = uP(tk) − uP(tk−1)

= K
(
bysp(tk) − y(tk) − bysp(tk−1) + y(tk−1)

)
ΔuI (tk) = uI (tk) − uI (tk−1)

= bi1 e(tk) + bi2 e(tk−1)

ΔuD(tk) = uD(tk) − uD(tk−1)

= adΔuD(tk−1) − bd
(
y(tk) − 2y(tk−1) + y(tk−2)

)

One advantage with the incremental algorithm is that most of the computations are done using increments
only. Short word-length calculations can often be used. It is only in the final stage where the increments
are added that precision is needed. Another advantage is that the controller output is driven directly
from an integrator. This makes it very easy to deal with windup and mode switches. A problem with the
incremental algorithm is that it cannot be used for controllers with P or proportional–derivative (PD)
action only. Therefore, ΔuP has to be calculated in the following way when integral action is not used:

ΔuP(tk) = K
(
bysp(tk) − y(tk)

)+ ub − u(tk−1)

where ub is the bias term. When there is no integral action, it is necessary to adjust this term to obtain
zero steady-state error.

9.5.6 Uses of PID Control

The PID controller is by far the control algorithm that is most commonly used. It is interesting to observe
that in order to obtain a functional controller it is necessary to consider linear and nonlinear behavior of
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the controller as well as operational issues such as mode switches and tuning. For a discussion of tuning,
we refer to the chapter “Automatic Tuning of PID Controllers” in this handbook. These questions have
been worked out quite well for PID controllers, and the issues involved are quite well understood.

The PID controller in many cases gives satisfactory performance. It can often be used on processes
that are difficult to control provided that extreme performance is not required. There are, however,
situations when it is possible to obtain better performance by other types of controllers. Typical examples
are processes with long relative dead times and oscillatory systems.

There are also cases where PID controllers are clearly inadequate. If we consider the fact that a PI
controller always has phase lag and that a PID controller can provide a phase lead of at most 90◦, it is clear
that neither will work for systems that require more phase advance. A typical example is the stabilization
of unstable systems with time delays.

A few examples are given as illustrations.

9.5.6.1 Systems with Long Time Delays

Processes with long time delays are difficult to control [2,9–11]. The loop gain with proportional control
is very small so integral action is necessary to get good control. Such processes can be controlled by PI
controllers, but the performance can be increased by more sophisticated controllers. The reason derivative
action is not so useful for processes of this type is that prediction by linear extrapolation of the output
is not very effective. To make a proper prediction, it is necessary to take account of the past control
signals that have not yet shown up in the output. To illustrate this, we consider a process with the transfer
function

G(s) = e−10s

(s + 1)3

The dynamics of this process is dominated by the time delay. A good PI controller that gives a step
response without overshoot has a gain K = 0.27 and Ti = 4.8. The response to set point changes and load
disturbances of the system is shown in Figure 9.59. This figure shows the response to a step in the set
point at time t = 0 and a step at the process input at time t = 50.

One way to obtain improved control is to use a controller with a Smith predictor. This controller
requires a model of the process. If a model in the form of a first-order system with gain Kp, time constant

1
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t
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t

FIGURE 9.59 Control of a process with long time delays with a PI controller (dashed lines) and a Smith predictor
(solid lines).
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T , and a time delay L is used, the controller becomes

U(s) = K

(
1 + 1

sTi

) (
E(s) − Kp

1 + sT
(1 − e−sL)U(s)

)
(9.125)

The controller can predict the output better than a PID controller because of the internal process model.
The last term in the right-hand side of Equation 9.125 can be interpreted as the effect on the output of
control signals that have been applied in the time interval (t − T , t). Because of the time delay the effect of
these signals has not appeared in the output at time t. The improved performance is seen in the simulation
in Figure 9.59.

If load disturbance response is evaluated with the integrated absolute error (IAE), we find that the Smith
predictor is about 30% better than the PI controller. There are situations when the increased complexity
is worth while.

9.5.6.2 Systems with Oscillatory Modes

Systems with poorly damped oscillatory modes are another case where more complex controllers can
outperform PID control. The reason for this is that it pays to have a more complex model in the controller.
To illustrate this, we consider a system with the transfer function

G(s) = 25

(s + 1)(s2 + 25)

This system has two complex undamped poles.
The system cannot be stabilized with a PI controller with positive coefficients. To stabilize the

undamped poles with a PI controller, it is necessary to have controllers with a zero in the right half-
plane. Some damping of the unstable poles can be provided in this way. It is advisable to choose set point
weighting b = 0 in order to avoid unnecessary excitation of the modes. The response obtained with such
a PID controller is shown in Figure 9.60. In this figure, a step change in the set point has been introduced
at time t = 0, and a step change in the load disturbance has been applied at time t = 20. The set point
weighting b is zero. Because of this we avoid a right half-plane zero in the transfer function from set point
to output, and the oscillatory modes are not excited much by changes in the set point. The oscillatory
modes are, however, excited by the load disturbance.

1
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30 40
t

1

0.5
0

0 10 20

Set point and process output

30 40
t

FIGURE 9.60 Control of an oscillatory system with PI control. The controller parameters are K = −0.25, Ti = −1
and b = 0.
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FIGURE 9.61 Control of the system in Figure 9.60 with a third-order controller.

By using a controller that is more complex than a PID controller it is possible to introduce damping in
the system. This is illustrated by the simulation in Figure 9.61. The controller has the transfer functions

Gc(s) = 21s3 − 14s2 + 65s + 100

s(s2 + 16s + 165)

Gsp(s) = 100

s(s2 + 16s + 165)

The transfer function Gc(s) has poles at 0 and −8 ± 10.05i and zeros at −1 and 0.833 ± 2.02i. Notice that
the controller has two complex zeros in the right half-plane. This is typical for controllers of oscillatory
systems. The controller transfer function can be written as

Gc(s) = 0.6061

(
1 + 1

s

)
1 − 0.35s + 0.21s2

1 + 0.0970s + 0.00606s2

Gsp = 0.6061

s

1

1 + 0.0970s + 0.00606s2

The controller can thus be interpreted as a PI controller with an additional compensation. Notice that
the gain of the controller is 2.4 times larger than the gain of the PI controller used in the simulation in
Figure 9.60. This gives faster set point response and a better rejection of load disturbances.

9.5.7 Bottom-Up Design of Complex Systems

Control problems are seldom solved by a single controller. Many control systems are designed using
a “bottom-up” approach where PID controllers are combined with other components, such as filters,
selectors and others [2,3,11].

9.5.7.1 Cascade Control

Cascade control is used when there are several measured signals and one control variable. It is particularly
useful when there are significant dynamics (e.g., long dead times or long time constants) between the
control variable and the process variable. Tighter control can then be achieved by using an intermediate
measured signal that responds faster to the control signal. Cascade control is built up by nesting the
control loops, as shown in Figure 9.62. The system in this figure has two loops. The inner loop is called the
secondary loop; the outer loop is called the primary loop. The reason for this terminology is that the outer
loop controls the signal we are primarily interested in. It is also possible to have a cascade control with
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FIGURE 9.62 Block diagram of a system with cascade control.

more nested loops. The performance of a system can be improved with a number of measured signals, up
to a certain limit. If all state variables are measured, it is often not worthwhile to introduce other measured
variables. In such a case, the cascade control is the same as state feedback.

9.5.7.2 Feedforward Control

Disturbances can be eliminated by feedback. With a feedback system it is, however, necessary that there be
an error before the controller can take actions to eliminate disturbances. In some situations, it is possible
to measure disturbances before they have influenced the processes. It is then natural to try to eliminate
the effects of the disturbances before they have created control errors. This control paradigm is called
feedforward. The principle is illustrated simply in Figure 9.63. Feedforward can be used for both linear
and nonlinear systems. It requires a mathematical model of the process.

As an illustration we consider a linear system that has two inputs, the control variable u and the
disturbance v, and one output y. The transfer function from disturbance to output is Gv , and the transfer
function from the control variable to the output is Gu. The process can be described by

Y (s) = Gu(s)U(s) + Gv(s)V (s)

where the Laplace transformed variables are denoted by capital letters. The feedforward control law

U(s) = − Gv(s)

Gu(s)
V (s)

makes the output zero for all disturbances v. The feedforward transfer function should thus be chosen as

Gff (s) = − Gv(s)

Gu(s)

Σ

Control signal

Gu

Gv

Gff

Disturbance
Process

Feedforward

yu

v

FIGURE 9.63 Block diagram of a system with feedforward control from a measurable disturbance.
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FIGURE 9.64 Control system with selector control.

9.5.8 Selector Control

Selector control can be viewed as the inverse of split range control. In split range, there is one measured
signal and several actuators. In selector control, there are many measured signals and only one actuator.
A selector is a static device with many inputs and one output. There are two types of selectors: maximum
and minimum. For a maximum selector, the output is the largest of the input signals.

There are situations where several controlled process variables must be taken into account. One variable
is the primary controlled variable, but it is also required that other process variables remain within given
ranges. Selector control can be used to achieve this. The idea is to use several controllers and to have a
selector that chooses the controller that is most appropriate. For example, selector control is used when
the primary controlled variable is temperature and we must ensure that pressure does not exceed a certain
range for safety reasons.

The principle of selector control is illustrated in Figure 9.64. The primary controlled variable is the
process output y. There is an auxiliary measured variable z that should be kept within the limits zmin

and zmax. The primary controller C has process variable y, setpoint ysp, and output un. There are also
secondary controllers with measured process variables that are the auxiliary variable z and with set points
that are bounds of the variable z. The outputs of these controllers are uh and ul . The controller C is an
ordinary PI or PID controller that gives good control under normal circumstances. The output of the
minimum selector is the smallest of the input signals; the output of the maximum selector is the largest
of the inputs.

Under normal circumstances, the auxiliary variable is larger than the minimum value zmin and smaller
than the maximum value zmax. This means that the output uh is large and the output ul is small. The
maximum selector, therefore, selects un and the minimum selector also selects un. The system acts as if
the maximum and minimum controller were not present. If the variable z reaches its upper limit, the
variable uh becomes small and is selected by the minimum selector. This means that the control system
now attempts to control the variable z and drive it toward its limit. A similar situation occurs if the
variable z becomes smaller than zmin. To avoid windup, the finally selected control u is used as a tracking
signal for all controllers.
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9.6 State-Space--Pole Placement

Katsuhiko Ogata
9.6.1 Introduction

In this chapter∗, we present a design method commonly called the pole placement or pole assignment
technique. We assume that all state variables are measurable and are available for feedback. It will be
shown that if the system considered is completely state controllable, then poles of the closed-loop system
may be placed at any desired locations by means of state feedback through an appropriate state feedback
gain matrix.

The present design technique begins with a determination of the desired closed-loop poles based on the
transient-response and/or frequency-response requirements, such as speed, damping ratio, or bandwidth,
as well as steady-state requirements.

Let us assume that we decide that the desired closed-loop poles are to be at s = μ1, s = μ2, . . . , s = μn.
By choosing an appropriate gain matrix for state feedback, it is possible to force the system to have closed-
loop poles at the desired locations, provided that the original system is completely state controllable.

In what follows, we treat the case where the control signal is a scalar and prove that a necessary and
sufficient condition that the closed-loop poles can be placed at any arbitrary locations in the s plane is that
the system be completely state controllable. Then we discuss three methods for determining the required
state feedback gain matrix.

It is noted that when the control signal is a vector quantity, the state feedback gain matrix is not
unique. It is possible to choose freely more than n parameters; that is, in addition to being able to place
n closed-loop poles properly, we have the freedom to satisfy some of the other requirements, if any, of
the closed-loop system. This chapter, however, discusses only the case where the control signal is a scalar
quantity. (For the case where the control signal is a vector quantity, refer to MIMO LTI systems in this
handbook.)

9.6.2 Design via Pole Placement

In the conventional approach to the design of a single-input, single-output control system, we design a
controller (compensator) such that the dominant closed-loop poles have a desired damping ratio ζ and
undamped natural frequency ωn. In this approach, the order of the system may be raised by 1 or 2 unless

∗ Most of the material presented here is from [1].
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pole–zero cancellation takes place. Note that in this approach we assume the effects on the responses of
nondominant closed-loop poles to be negligible.

Different from specifying only dominant closed-loop poles (conventional design approach), the present
pole placement approach specifies all closed-loop poles. (There is a cost associated with placing all closed-
loop poles, however, because placing all closed-loop poles requires successful measurements of all state
variables or else requires the inclusion of a state observer in the system.) There is also a requirement on the
part of the system for the closed-loop poles to be placed at arbitrarily chosen locations. The requirement
is that the system be completely state controllable.

Consider a control system
ẋ = Ax + Bu (9.126)

where x = state vector (n-vector); u = control signal (scalar); A = n × n constant matrix; B = n × 1 con-
stant matrix.
We shall choose the control signal to be

u = −Kx (9.127)

This means that the control signal is determined by instantaneous state. Such a scheme is called state
feedback. The 1 × n matrix K is called the state feedback gain matrix. In the following analysis, we assume
that u is unconstrained.

Substituting Equation 9.127 into Equation 9.126 gives

ẋ(t) = (A − BK)x(t)

The solution of this equation is given by

x(t) = e(A−BK)tx(0) (9.128)

where x(0) is the initial state caused by external disturbances. The stability and transient response char-
acteristics are determined by the eigenvalues of matrix A − BK . If matrix K is chosen properly, then
matrix A − BK can be made an asymptotically stable matrix, and for all x(0) �= 0 it is possible to make
x(t) approach 0 as t approaches infinity. The eigenvalues of matrix A − BK are called the regulator poles.
If these regulator poles are located in the left half of the s plane, then x(t) approaches 0 as t approaches
infinity. The problem of placing the closed-loop poles at the desired location is called a pole placement
problem.

Figure 9.65a shows the system defined by Equation 9.126. It is an open-loop control system, because
the state x is not fed back to the control signal u. Figure 9.65b shows the system with state feedback. This
is a closed-loop control system because the state x is fed back to the control signal u.

In what follows, we prove that arbitrary pole placement for a given system is possible if and only if the
system is completely state controllable.

A

–K

++B
u x

∫

A

++B

(a) (b)
u x

∫

FIGURE 9.65 (a) Open-loop control system and (b) closed-loop control system with u = −Kx. (From
Ogata, K., Modern Control Engineering, 2nd ed., Prentice Hall, Inc., Englewood Cliffs, NJ, 1990, 777. With
permission.)
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9.6.3 Necessary and Sufficient Condition for Arbitrary Pole Placement

Consider the control system defined by Equation 9.126. We assume that the magnitude of the control
signal u is unbounded. If the control signal u is chosen as

u = −Kx

where K is the state feedback gain matrix (1 × n matrix), then the system becomes a closed-loop control
system as shown in Figure 9.65b and the solution to Equation 9.126 becomes as given by Equation 9.128, or

x(t) = e(A−BK)tx(0)

Note that the eigenvalues of matrix A − BK (which we denote μ1, μ2, . . . , μn) are the desired closed-loop
poles.

We now prove that a necessary and sufficient condition for arbitrary pole placement is that the system
be completely state controllable. We first derive the necessary condition. We begin by proving that if the
system is not completely state controllable, then there are eigenvalues of matrix A − BK that cannot be
controlled by state feedback.

Suppose the system of Equation 9.126 is not completely state controllable. Then the rank of the
controllability matrix is less than n, or

rank[B|AB| · · · |An−1B] = q < n

This means that there are q linearly independent column vectors in the controllability matrix. Let us
define such q linearly independent column vectors as f1, f2, . . . , fq. Also, let us choose n − q additional
n-vectors vq+1, vq+2, . . . , vn such that

P = [ f1| f2| · · · | fq|vq+1|vq+2| · · · |vn]
is of rank n. Then it can be shown that

Â = P−1AP =
[

A11 A12

0 A22

]
, B̂ = P−1B =

[
B11

0

]

Define
K̂ = KP = [k1 | k2]

Then we have

|sI − A + BK | = |P−1(sI − A + BK)P|
= |sI − P−1AP + P−1BKP|
= |sI − Â + B̂K̂ |

=
∣∣∣∣sI −

[
A11 A12

0 A22

]
+
[

B11

0

]
[k1 | k2]

∣∣∣∣
=
∣∣∣∣ sIq − A11 + B11k1 −A12 + B11k2

0 sIn−q − A22

∣∣∣∣
= |sIq − A11 + B11k1| · |sIn−q − A22|
= 0

where Iq is a q-dimensional identity matrix and In−q is an (n − q)-dimensional identity matrix.
Notice that the eigenvalues of A22 do not depend on K . Thus, if the system is not completely state

controllable, then there are eigenvalues of matrix A that cannot be arbitrarily placed. Therefore, to place
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the eigenvalues of matrix A − BK arbitrarily, the system must be completely state controllable (necessary
condition).

Next we prove a sufficient condition: that is, if the system is completely state controllable (meaning
that matrix M given by Equation 9.130 has an inverse), then all eigenvalues of matrix A can be arbitrarily
placed.

In proving a sufficient condition, it is convenient to transform the state equation given by Equa-
tion 9.126 into the controllable canonical form.

Define a transformation matrix T by
T = MW (9.129)

where M is the controllability matrix

M = [B|AB| · · · |An−1B] (9.130)

and

W =

⎡
⎢⎢⎢⎢⎢⎣

an−1 an−2 · · · a1 1
an−2 an−3 · · · 1 0

...
...

...
...

a1 1 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

(9.131)

where each ai is a coefficient of the characteristic polynomial

|sI − A| = sn + a1sn−1 + · · · + an−1s + an

Define a new state vector x̂ by
x = Tx̂

If the rank of the controllability matrix M is n (meaning that the system is completely state controllable),
then the inverse of matrix T exists and Equation 9.126 can be modified to

˙̂x = T−1ATx̂ + T−1Bu (9.132)

where

T−1AT =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−an −an−1 −an−2 · · · −a1

⎤
⎥⎥⎥⎥⎥⎦

(9.133)

T−1B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

(9.134)

Equation 9.132 is in the controllable canonical form. Thus, given a state equation, Equation 9.126, it
can be transformed into the controllable canonical form if the system is completely state controllable
and if we transform the state vector x into state vector x̂ by use of the transformation matrix T given by
Equation 9.129.
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Let us choose a set of the desired eigenvalues as μ1, μ2, . . . , μn. Then the desired characteristic equation
becomes

(s − μ1)(s − μ2) · · · (s − μn) = sn + α1sn−1 + · · · + αn−1s + αn = 0 (9.135)

Let us write
K̂ = KT = [δn δn−1 · · · δ1] (9.136)

When u = −K̂ x̂ = −KTx̂ is used to control the system given by Equation 9.132, the system equation
becomes

˙̂x = T−1ATx̂ − T−1BKTx̂

The characteristic equation is
|sI − T−1AT + T−1BKT| = 0

This characteristic equation is the same as the characteristic equation for the system, defined by
Equation 9.126, when u = −Kx is used as the control signal. This can be seen as follows: Since

ẋ = Ax + Bu = (A − BK)x

the characteristic equation for this system is

|sI − A + BK | = |T−1(sI − A + BK)T|
= |sI − T−1AT + T−1BKT| = 0

Now let us simplify the characteristic equation of the system in the controllable canonical form.
Referring to Equations 9.133, 9.134, and 9.136, we have

|sI − T−1AT + T−1BKT|

=

∣∣∣∣∣∣∣∣∣
sI −

⎡
⎢⎢⎢⎣

0 1 · · · 0
...

...
...

0 0 · · · 1
−an −an−1 · · · −a1

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ [δn δn−1 · · · δ1]

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

s −1 · · · 0
0 s · · · 0
...

...
...

an + δn an−1 + δn−1 · · · s + a1 + δ1

∣∣∣∣∣∣∣∣∣
= sn + (a1 + δ1)sn−1 + · · · + (an−1 + δn−1)s + (an + δn) = 0 (9.137)

This is the characteristic equation for the system with state feedback. Therefore, it must be equal to
Equation 9.135, the desired characteristic equation. By equating the coefficients of like powers of s, we get

a1 + δ1 = α1

a2 + δ2 = α2

...

an + δn = αn
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Solving the preceding equations for each δi and substituting them into Equation 9.136, we obtain

K = K̂T−1 = [δn δn−1 · · · δ1] T−1

(9.138)
= [αn − an|αn−1 − an−1| · · · |α2 − a2|α1 − a1] T−1

Thus, if the system is completely state controllable, all eigenvalues can be arbitrarily placed by choosing
matrix K according to Equation 9.138 (sufficient condition).

We have thus proved that the necessary and sufficient condition for arbitrary pole placement is that
the system be completely state controllable.

9.6.4 Design Steps for Pole Placement

Suppose that the system is defined by
ẋ = Ax + Bu

and the control signal is given by
u = −Kx

The feedback gain matrix K that forces the eigenvalues of A − BK to be μ1, μ2, . . . , μn (desired values)
can be determined by the following steps. (If μi is a complex eigenvalue, then its conjugate must also be
an eigenvalue of A − BK .)

Step 1

Check the controllability condition for the system. If the system is completely state controllable, then use
the following steps.

Step 2

From the characteristic polynomial for matrix A:
|sI − A| = sn + a1sn−1 + · · · + an−1s + an

determine the values of a1, a2, . . . , an.

Step 3

Determine the transformation matrix T that transforms the system state equation into the controllable
canonical form. (If the given system equation is already in the controllable canonical form, then T = I .)
It is not necessary to write the state equation in the controllable canonical form. All we need here is to
find the matrix T . The transformation matrix T is given by Equation 9.129, or

T = MW

where M is given by Equation 9.130 and W is given by Equation 9.131.

Step 4

Using the desired eigenvalues (desired closed-loop poles), write the desired characteristic polynomial

(s − μ1)(s − μ2) · · · (s − μn) = sn + α1sn−1 + · · · + αn−1s + αn

and determine the values of α1, α2, . . . , αn.

Step 5

The required state feedback gain matrix K can be determined from Equation 9.138, rewritten thus:

K = [αn − an|αn−1 − an−1| · · · |α2 − a2|α1 − a1]T−1
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9.6.5 Comments

Note that if the system is of lower order (n ≤ 3), then direct substitution of matrix K into the desired
characteristic polynomial may be simpler. For example, if n = 3, then write the state feedback gain
matrix K as

K = [k1 k2 k3]

Substitute this K matrix into the desired characteristic polynomial |sI − A + BK | and equate it to
(s − μ1)(s − μ2)(s − μ3), or

|sI − A + BK | = (s − μ1)(s − μ2)(s − μ3)

Since both sides of this characteristic equation are polynomials in s, by equating the coefficients of the
like powers of s on both sides it is possible to determine the values of k1, k2, and k3. This approach is
convenient if n = 2 or 3. (For n = 4, 5, 6, . . . , this approach may become very tedious.)

There are other approaches for the determination of the state feedback gain matrix K . In what follows,
we present a well-known formula, known as Ackermann’s formula, for the determination of the state
feedback gain matrix K .

9.6.6 Ackermann’s Formula

Consider the system given by Equation 9.126, rewritten thus:

ẋ = Ax + Bu

We assume that the system is completely state controllable. We also assume that the desired closed-loop
poles are at s = μ1, s = μ2, . . . , s = μn.

Use of the state feedback control

u = −Kx

modifies the system equation to

ẋ = (A − BK)x (9.139)

Let us define

Ã = A − BK

The desired characteristic equation is

|sI − A + BK | = |sI − Ã|
= (s − μ1)(s − μ2) · · · (s − μn)

= sn + α1sn−1 + · · · + αn−1s + αn = 0

Since the Cayley–Hamilton theorem states that Ã satisfies its own characteristic equation, we have

φ(Ã) = Ãn + α1Ãn−1 + · · · + αn−1Ã + αnI = 0 (9.140)

We utilize Equation 9.140 to derive Ackermann’s formula. To simplify the derivation, we consider the
case where n = 3. (For any other positive integer n, the following derivation can be easily extended.)
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Consider the following identities:

I = I

Ã = A − BK

Ã2 = (A − BK)2 = A2 − ABK − BKÃ

Ã3 = (A − BK)3 = A3 − A2BK − ABKÃ − BKÃ2

Multiplying the preceding equations in order by α3, α2, α1, α0 (where α0 = 1), respectively, and adding
the results, we obtain

α3I + α2Ã + α1Ã2 + Ã3

= α3I + α2(A − BK) + α1(A2 − ABK − BKÃ) + A3 − A2BK − ABKÃ − BKÃ2 (9.141)

= α3I + α2A + α1A2 + A3 − α2BK − α1ABK − α1BKÃ − A2BK − ABKÃ − BKÃ2

Referring to Equation 9.140, we have

α3I + α2Ã + α1Ã2 + Ã3 = φ(Ã) = 0

Also, we have
α3I + α2A + α1A2 + A3 = φ(A) �= 0

Substituting the last two equations into Equation 9.141, we have

φ(Ã) = φ(A) − α2BK − α1BKÃ − BKÃ2 − α1ABK − ABKÃ − A2BK

Since φ(Ã) = 0, we obtain

φ(A) = B(α2K + α1KÃ + KÃ2) + AB(α1K + KÃ) + A2BK
(9.142)

= [B | AB | A2B]
⎡
⎣α2K + α1KÃ + KÃ2

α1K + KÃ
K

⎤
⎦

Since the system is completely state controllable, the inverse of the controllability matrix

[B | AB | A2B]
exists. Premultiplying the inverse of the controllability matrix to both sides of Equation 9.142, we obtain

[B | AB | A2B]−1φ(A) =
⎡
⎣α2K + α1KÃ + KÃ2

α1K + KÃ
K

⎤
⎦

Premultiplying both sides of this last equation by [0 0 1], we obtain

[0 0 1][B | AB | A2B]−1φ(A) = [0 0 1]
⎡
⎣ α2K + α1KÃ + KÃ2

α1K + KÃ
K

⎤
⎦= K

which can be rewritten as
K = [0 0 1][B | AB | A2B]−1φ(A)

This last equation gives the required state feedback gain matrix K .
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For an arbitrary positive integer n, we have

K = [0 0 · · · 0 1][B | AB | · · · | An−1B]−1φ(A) (9.143)

Equations 9.139 to 9.143 collectively are known as Ackermann’s formula for the determination of the
state feedback gain matrix K .

Example 9.2:

Consider the system defined by
ẋ = Ax + Bu

where

A =
⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦ , B =

⎡
⎣0

0
1

⎤
⎦

By using the state feedback control u = −Kx , it is desired to have the closed-loop poles at s = −2 ± j4,
and s = −10. Determine the state feedback gain matrix K .

First, we need to check the controllability of the system. Since the controllability matrix M is given
by

M = [B | AB | A2B] =
⎡
⎣ 0 0 1

0 1 −6
1 −6 31

⎤
⎦

we find that det M = −1 and therefore rank M = 3. Thus, the system is completely state controllable
and arbitrary pole placement is possible.

Next, we solve this problem. We demonstrate each of the three methods presented in this chapter.

Method 1

The first method is to use Equation 9.128. The characteristic equation for the system is

|sI − A| =
∣∣∣∣∣∣

s −1 0
0 s −1
1 5 s + 6

∣∣∣∣∣∣
= s3 + 6s2 + 5s + 1

= s3 + a1s2 + a2s + a3 = 0

Hence,
a1 = 6, a2 = 5, a3 = 1

The desired characteristic equation is

(s + 2 − j4)(s + 2 + j4)(s + 10) = s3 + 14s2 + 60s + 200

= s3 + α1s2 + α2s + α3

= 0

Hence,
α1 = 14, α2 = 60, α3 = 200

Referring to Equation 9.138 we have

K = [α3 − a3 | α2 − a2 | α1 − a1]T−1
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where T = I for this problem because the given state equation is in the controllable canonical form. Then
we have

K = [200 − 1 | 60 − 5 | 14 − 6]
= [199 55 8]

Method 2

By defining the desired state feedback gain matrix K as

K = [k1 k2 k3]

and equating |sI − A + BK | with the desired characteristic equation, we obtain

|sI − A + BK | =
∣∣∣∣∣∣
⎡
⎣ s 0 0

0 s 0
0 0 s

⎤
⎦−

⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦+

⎡
⎣0

0
1

⎤
⎦ [k1 k2 k3]

∣∣∣∣∣∣

=
∣∣∣∣∣∣

s −1 0
0 s −1

1 + k1 5 + k2 s + 6 + k3

∣∣∣∣∣∣
= s3 + (6 + k3)s2 + (5 + k2)s + 1 + k1

= s3 + 14s2 + 60s + 200

Thus,
6 + k3 = 14, 5 + k2 = 60, 1 + k1 = 200

from which we obtain
k1 = 199, k2 = 55, k3 = 8

or
K = [199 55 8]

Method 3

The third method is to use Ackermann’s formula. Referring to Equation 9.143, we have

K = [0 0 1][B | AB | A2B]−1φ(A)

Since

φ(A) = A3 + 14A2 + 60A + 200I

=
⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦

3

+ 14

⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦

2

+ 60

⎡
⎣ 0 1 0

0 0 1
−1 −5 −6

⎤
⎦+

⎡
⎣200 0 0

0 200 0
0 0 200

⎤
⎦

=
⎡
⎣199 55 8

−8 159 7
−7 −43 117

⎤
⎦

and

[B | AB | A2B] =
⎡
⎣0 0 1

0 1 −6
1 −6 31

⎤
⎦
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we obtain

K = [0 0 1]
⎡
⎣ 0 0 1

0 1 −6
1 −6 31

⎤
⎦

−1 ⎡
⎣ 199 55 8

−8 159 7
−7 −43 117

⎤
⎦

= [0 0 1]
⎡
⎣ 5 6 1

6 1 0
1 0 0

⎤
⎦
⎡
⎣ 199 55 8

−8 159 7
−7 −43 117

⎤
⎦

= [199 55 8]

As a matter of course, the feedback gain matrix K obtained by the three methods are the same. With
this state feedback, the closed-loop poles are located at s = −2 ± j4 and s = −10, as desired.

It is noted that if the order n of the system is 4 or higher, methods 1 and 3 are recommended, since
all matrix computations can be carried by a computer. If method 2 is used, hand computations become
necessary because a computer may not handle the characteristic equation with unknown parameters
k1, k2, . . . , kn.

9.6.7 Comments

It is important to note that matrix K is not unique for a given system, but depends on the desired closed-
loop pole locations (which determine the speed and damping of the response) selected. Note that the
selection of the desired closed-loop poles or the desired characteristic equation is a compromise between
the rapidity of the response of the error vector and the sensitivity to disturbances and measurement
noises. That is, if we increase the speed of error response, then the adverse effects of disturbances and
measurement noises generally increase. If the system is of second order, then the system dynamics
(response characteristics) can be precisely correlated to the location of the desired closed-loop poles
and the zero(s) of the plant. For higher-order systems, the location of the closed-loop poles and the
system dynamics (response characteristics) are not easily correlated. Hence, in determining the state
feedback gain matrix K for a given system, it is desirable to examine by computer simulations the
response characteristics of the system for several different matrices K (based on several different desired
characteristic equations) and to choose the one that gives the best overall system performance.
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9.7 Internal Model Control

Masako Kishida and Richard D. Braatz
9.7.1 Introduction

The field of process control experienced a surge of interest during the 1960s, as engineers worked to apply
the newly developed state-space optimal control theory to industrial processes. Although these methods
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had been applied successfully to the control of many mechanical and electrical systems, applications to
most industrial processes were not so forthcoming. By the 1970s, both industrialists and academicians
began to understand that certain characteristics of most industrial processes make it very difficult to
directly apply the optimal control design procedures available at that time in a consistent and reproducible
manner.

Unknown disturbances, inaccurate values for the physical parameters of the process, and lack of com-
plete understanding of the underlying physical phenomena make it impossible to generate a highly accu-
rate model for most industrial processes, either phenomenologically or via input–output identification.
Another consideration for process control problems was the overwhelming importance of constraints on
the manipulated variables (e.g., valve positions, pump and compressor throughput) and the controlled
variables (e.g., pressure, temperature, or capacity limits). Both model uncertainty and process constraints
were not satisfactorily addressed by the state-space optimal control theory of the 1960s, and this to a large
part explained the difficulties in applying this theory to process control problems.

An approach for explicitly addressing industrial process control problems began to coalesce in the
late 1970s that came to be known as Internal Model Control (IMC). IMC became widely used in the
process industries, mostly in the form of Proportional–Integral–Derivative (PID) tuning rules, in which
a single parameter provides a clear tradeoff between closed-loop performance and robustness to model
uncertainty. IMC also provided a convenient theoretical framework for understanding Smith predic-
tors, multiple-degree-of-freedom problems, and the performance limitations due to nonminimum phase
behavior and model uncertainty. The main focus of this chapter is IMC for stable processes, as the
greatest strengths of the IMC framework occur in this case. The results will be developed initially for
continuous-time linear time-invariant systems, followed by extensions to nonlinear and spatially dis-
tributed processes and comments on more complicated control structures and more advanced methods
for handling constraints.

9.7.2 Fundamentals

Here the Internal Model and classical control structures are compared, which will illustrate the advantages
of IMC in terms of addressing model uncertainty and actuator constraints in the control design. Then
the IMC design procedure is presented.

9.7.2.1 Classical Control Structure

Before describing the IMC structure, let us consider the classical control structure used for the feedback
control of single-input single-input (SISO) linear time-invariant (LTI) processes (shown in Figure 9.66).
Here p refers to the transfer function of the process; d and l refer to the output and load disturbances,
respectively; y refers to the controlled variable; n refers to measurement noise; r refers to the setpoint;
and u refers to the manipulated variable specified by the controller k. The controlled variable is related to
the setpoint, measurement noise, and unmeasured disturbances by

pk

d

y

n

l

ur

–

FIGURE 9.66 Classical control structure.
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y = pk

1 + pk
(r − n) + 1

1 + pk
(d + pl) = T(r − n) + S(d + pl), (9.144)

where

S = 1

1 + pk
, T = 1 − S = pk

1 + pk
(9.145)

are the sensitivity and complementary sensitivity functions, respectively.
A well-known requirement of any closed-loop system is internal stability, that is, that bounded signals

injected at any point in the control system generate bounded signals at any other point. From the viewpoint
of internal stability, only the boundedness of outputs y and u needs to be considered, since all other signals
in the system are bounded provided u, y, and all inputs are bounded. Similarly, in terms of internal stability
only the inputs r and l need to be considered. Thus, the classic control structure is internally stable if and
only if all elements in the following 2 × 2 transfer matrix are stable (i.e., have all their poles in the open
left-half plane) (

y
u

)
=
(

pS T
−T kS

)(
l
r

)
. (9.146)

The closed-loop system is internally stable if and only if the transfer functions pS, T , and kS are stable.
For a stable process p the stability of these three transfer functions is implied by the stability of only one
transfer function, kS (the stability of p and kS implies the stability of T = pkS, the stability of 1 and T
implies the stability of S = 1 − T , and the stability of p and S implies the stability of pS). Thus, for a stable
process p, the closed-loop system is internally stable if and only if

kS = k

1 + pk
(9.147)

is stable. For good setpoint tracking, it is desirable in Equation 9.144 to have T(jω) ≈ 1, and for good
disturbance rejection it is desirable to have S(jω) ≈ 0 for all frequencies. These performance requirements
are commensurate, since S + T = 1. On the other hand, to avoid magnifying measurement noise at high
frequencies, it is desirable to have |T(jω)| roll off there. This is a fundamental tradeoff between system
performance (that corresponds to S ≈ 0) and insensitivity of the closed-loop system to measurement
noise (that corresponds to T ≈ 0).

To explicitly account for model uncertainty, it is necessary to quantify the accuracy of the process
model p̃ used in the control design procedure. A natural and convenient method for quantifying model
uncertainty is as a frequency-dependent bound on the difference between the process model p̃ and the
true process p ∣∣∣∣p(jω) − p̃(jω)

p̃(jω)

∣∣∣∣≤ |wu(jω)|, ∀ω. (9.148)

It should be expected that the inaccuracy of the model described by the uncertainty weight wu would
have a magnitude that increases with frequency and eventually exceeds 1, as it would be difficult to ascer-
tain whether the true process has unmodeled zeros on the imaginary axis at sufficiently high frequencies
(which would happen, for example, if there were any uncertainty in a process time delay), and these zeros
would give |(p(jω) − p̃(jω))/p̃(jω)| = |0 − p̃(jω)/p̃(jω)| = 1.

The Nyquist Theorem can be used to show that the closed-loop system is internally stable for all
processes that satisfy Equation 9.148 if and only if the nominal closed-loop system is internally stable and

|T̃(jω)| =
∣∣∣∣ p̃(jω)k(jω)

1 + p̃(jω)k(jω)

∣∣∣∣< 1

|wu(jω)| , ∀ω. (9.149)

As the magnitude of the uncertainty weight |wu(jω)| is expected to be greater than one at high frequen-
cies, it is necessary for the nominal complementary sensitivity T̃(jω) to be detuned at high frequencies
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to prevent the control system from being sensitive to model uncertainty. This is a fundamental trade-off
between nominal performance (that corresponds to S̃ ≈ 0) and insensitivity of the closed-loop system
to model uncertainty (that corresponds to T̃ ≈ 0). For industrial processes, closed-loop performance is
usually limited more by model uncertainty than measurement noise.

A disadvantage of the classical control structure is that the controller k enters the stability and per-
formance specifications (Equations 9.147 and 9.149) in an inconvenient manner. Also, in the presence
of actuator constraints it is not simple to design the classical feedback controller k to ensure internal
stability and performance for the closed-loop system. It is well known that a controller implemented
using the classical control structure can give arbitrarily poor performance or even instability when the
control action becomes limited.

9.7.2.2 Internal Model Control Structure

The IMC structure is shown in Figure 9.67, where p̃ refers to a model of the true process p and q refers
to the IMC controller. Simple block diagram manipulations show that the IMC structure is equivalent to
the classical control structure provided

k = q

1 − p̃q
, or, equivalently, q = k

1 + p̃k
. (9.150)

This control structure is referred to as Internal Model Control, because the process model p̃ is explicitly
an internal part of the controller k.

In terms of the IMC controller q, the transfer functions between the controlled variable and the setpoint,
measurement noise, and unmeasured disturbances are given by

y = T(r − n) + S(d + pl) = pq

1 + q(p − p̃)
(r − n) + 1 − p̃q

1 + q(p − p̃)
(d + pl). (9.151)

When the process model p̃ is not equal to the true process p, then the closed-loop transfer functions
S and T in Equation 9.151 do not appear to be any simpler for the IMC control structure than for the
classical control structure (Equation 9.144). However, when the process model p̃ is equal to the true
process p, then Equation 9.151 simplifies to

y = T̃(r − n) + S̃(d + pl) = p̃q(r − n) + (1 − p̃q)(d + p̃l), (9.152)

and the IMC controller is related to the classical controller by Equation 9.150

q = k

1 + p̃k
= kS̃. (9.153)

For stable processes, the stability of q in Equation 9.153 is exactly the condition for internal stability
derived for the classical control structure. This replaces the somewhat inconvenient task of selecting a
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FIGURE 9.67 Internal model control structure.
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controller k to stabilize k/(1 + pk) with the simpler task of selecting any stable transfer function q. Also,
the IMC controller q enters the closed-loop transfer functions T̃ and S̃ in Equation 9.152 in an affine
manner, that is,

T̃ = p̃q, S̃ = 1 − p̃q. (9.154)

This makes the trade-off between nominal performance and model uncertainty very simple, which will
be exploited in the IMC design procedure described later.

Another advantage of the IMC structure over the classical control structure is that the explicit consider-
ation of the process model provides a convenient means for understanding the role of model uncertainty
in the control system design. To see this, let us interpret the feedback signal d̃ in Figure 9.67 for the case
where the process model is not an exact representation of the true process (p̃ �= p):

d̃ = (p − p̃)u + n + d + pl. (9.155)

When there are no unknown disturbances or measurement noise (n = d = l = 0), and no model
uncertainty (p̃ = p), then the feedback signal d̃ is zero and the control system is an open loop, that is,
no feedback is necessary. If there are disturbances, measurement noise, or model uncertainty, then the
feedback signal d̃ is not equal to zero. All that is unknown about the system is expressed in d̃. This
motivates the idea of placing a filter on d̃ to reduce the effects of the deleterious signals on the system;
this is an important step in the IMC design procedure discussed in the next section.

In addition, for the case of no model uncertainty (p = p̃), actuator constraints cannot destabilize the
closed-loop system if the constrained process input is sent to the model p̃ (see Figure 9.68). In this case,
inspection of Figure 9.68 indicates that

d̃ = n + d + pl, (9.156)

which is independent of the controller q. When the process model is equal to the true process then the
control system is open loop, and the system is internally stable if and only if all the blocks in series are
stable. In this case internal stability is implied by the stability of the IMC controller q, the process p, and
the actuator nonlinearity. When model uncertainty is taken into account, then

d̃ = (pα − p̃α)u + n + d + pl = (p − p̃)αu + n + d + pl, (9.157)

where α represents a stable nonlinear operator, in this case, the static actuator limitation nonlinearity.
Observe that d̃ still represents all that is unknown about the process.

9.7.2.3 IMC Design Procedure

The objectives of setpoint tracking and disturbance rejection are to minimize the error e = y − r. When
the process model p̃ is equal to the true process p, then the error derived from Equation 9.152 is

e = r − y = p̃qn + (1 − p̃q)(r − d − pl) = T̃n + S̃(r − d − pl). (9.158)
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FIGURE 9.68 IMC implementation with actuator constraints.
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The error e is an affine function of the IMC controller q. The previous section discussed how introducing
a filter in the IMC feedback path (in d̃) reduces the effects of model uncertainty and measurement noise
on the system. This filter can just as easily be introduced elsewhere in the feedback path, such as directly
into q. This motivates the IMC design procedure, which consists of designing the IMC controller q in two
steps:

• Step 1: Nominal Performance: A nominal IMC controller q̃ is designed to yield optimal setpoint
tracking and disturbance rejection while ignoring measurement noise, model uncertainty, and
constraints on the manipulated variable.

• Step 2: Robust Stability and Performance: An IMC filter f is used to detune the controller q =
q̃f , to trade off performance with smoothing the control action and reducing the sensitivity to
measurement noise and model uncertainty.

These steps are described below.

Performance Measures

Almost any reasonable performance measure can be used in the design of the nominal IMC controller.
For fixed inputs (i.e., disturbances and/or setpoint), two of the most popular performance measures are
the integral absolute error (IAE) and the integral squared error (ISE):

IAE{e} ≡
∫ ∞

0
|e(t)| dt, (9.159)

ISE{e} ≡
∫ ∞

0
e2(t) dt. (9.160)

When the inputs are best described as being a set of stochastic signals (e.g., filtered white noise with
zero mean and specified variance), a popular performance measure is

Expected Value

{∫ ∞

0
e2(t) dt

}
. (9.161)

Another popular performance measure defined for a set of inputs v is the worst-case integral squared
error,

sup∫∞
0 v2(t)dt≤1

∫ ∞

0
e2(t) dt, (9.162)

which is commonly used in the design of closed-loop transfer functions to have desired frequency-domain
properties. Since the ISE performance measure for fixed inputs is the most popular in IMC, it will be used
in what follows.

Irrespective of the closed-loop performance measure that a control engineer may prefer, it is usually
important that the closed-loop system satisfies certain steady-state properties. For example, a common
control system requirement is that the error signal resulting from step inputs approaches zero at steady
state. The final value theorem applied to Equation 9.151 implies that this is equivalent to

q(0) = p̃−1(0). (9.163)

Another typical requirement is that the error signal resulting from ramp inputs approaches zero at
steady state. The final value theorem implies that this requirement is equivalent to having both of the
following conditions satisfied

q(0) = p̃−1(0);
d

ds

(
p̃(0)q(0)

)= 0. (9.164)

Such conditions are used when selecting the IMC filter.
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ISE-Optimal Performance

The ISE-optimal controller can be solved via a simple analytical procedure when the process is stable and
has no zeros on the imaginary axis. The first step in this procedure is a factorization of the process model
p̃ into an allpass portion p̃A and a minimum phase portion p̃M

p̃ = p̃Ap̃M , (9.165)

where p̃A includes all the open right-half plane zeros and delays of p̃ and has the form

p̃A = e−sθ
∏

i

−s + zi

s + z̄i
, Re{zi}, θ > 0, (9.166)

θ is the time delay and zi is a right-half plane zero in the process model, and z̄i is the complex conjugate of
zi . The unmeasured input v in Equation 9.158 is given by v = d + pl − r. The controller that minimizes
the ISE for these inputs is given in the following theorem.

Theorem 9.1:

Assume that the process model p̃ is stable. Factor p̃ and the input v into allpass and minimum phase portions

p̃ = p̃Ap̃M , v = vAvM . (9.167)

The controller that minimizes the ISE is given by

q̃ = (
p̃M vM

)−1
{

p̃−1
A vM

}
∗ (9.168)

where the operator {·}∗ denotes that, after a partial fraction expansion of the operand, all terms involving
the poles of p̃−1

A are omitted.

Provided that the input v has been chosen to be of the appropriate type (e.g., step or ramp), the
ISE-optimal controller q̃ will satisfy the appropriate asymptotic steady-state performance requirements
(Equation 9.163 or 9.164). In general, the q̃ given by Theorem 9.1 will not be proper, and the com-
plementary sensitivity T̃ = p̃q̃ will have undesirable high-frequency behavior. The q̃ is augmented by a
low-pass filter f (that is, q = q̃f ) to provide desirable high-frequency behavior, to prevent sensitivity to
model uncertainty and measurement noise, and to avoid overly rapid or large control actions. This filter
f provides the compromise between performance and robustness, and its selection is described next.

IMC Filter Forms

The IMC filter f should be selected so that the closed-loop system retains its asymptotic properties as q̃ is
detuned for robustness. In particular, for the error signal resulting from step inputs to approach zero at
steady state, the filter f must satisfy

f (0) = 1. (9.169)

Filters that satisfy this form include

f (s) = 1

(λs + 1)n , (9.170)

and

f (s) = βs + 1

(λs + 1)n , (9.171)

where λ is an adjustable filter parameter that provides the tradeoff between performance and robustness,
n is selected large enough to make q proper, and β is another free parameter that can be useful for some
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applications (its use is described in Example 9.8). For the error signal resulting from ramp inputs to
approach zero at steady state, the filter f must satisfy

f (0) = 1 and
df

ds
(0) = 0. (9.172)

A filter form that satisfies these conditions is

f (s) = nλs + 1

(λs + 1)n . (9.173)

The parameter β that is free in Equation 9.171 becomes fixed in Equation 9.173 to satisfy the additional
condition in Equation 9.172.

The IMC controller q is calculated from q = q̃f , and the adjustable parameters tuned to arrive at
the appropriate tradeoff between performance and robustness. The corresponding classical controller, if
desired, can be calculated by substituting q into Equation 9.150.

Rapid changes in the control action are generally undesirable, as they waste energy and may cause
the actuators to wear out prematurely. The IMC filter allows the control engineer to directly detune the
control action, as can be seen from (ignoring model uncertainty in Figure 9.67)

u = q̃f (r − n − d − pl). (9.174)

9.7.3 Applications

The IMC design procedure is applied to models for common industrial processes.

Example 9.3: A Nonminimum Phase Integrating Process

Processes with inverse response are common in industry. In the SISO case, these correspond to
processes with nonminimum phase (right-half plane) zeros. For example, a model of the level in a
reboiler (located at the base of a distillation column) to a change in steam duty is

p̃ = −3s + 1
s(s + 1)

. (9.175)

Developing an accurate model for the level in a reboiler is difficult because the level depends on
frothing, which does not respond in completely reproducible manner. The uncertainty in this model
of the process can be described by a frequency-dependent bound on the difference between the
process model p̃ and the true process p

∣∣∣∣p(jω) − p̃(jω)
p̃(jω)

∣∣∣∣≤ |wu(jω)|, ∀ω, (9.176)

where the Bode magnitude plot of the uncertainty weight wu(s) = (2s + 0.2)/(s + 1) is shown in
Figure 9.69. This uncertainty covers up to 20% error in the steady-state gain, and up to 200% error at
high frequencies.

The performance specification is to minimize the integral squared error in rejecting ramp output
disturbances, d = 1/s2. Because the process is not stable, a control system implemented using the Internal
Model structure (Figure 9.67) would not be internally stable, as bounded load disturbances would lead to
unbounded process outputs. On the other hand, Theorem 9.1 can still be used to design the ISE-optimal
controller, as long as the controller is implemented using the classical control structure (Figure 9.66), and
the integrators in the process also appear in the input v [1].
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The first step in calculating q̃ is to factor the process model p̃ and the input v = d into allpass and
minimum phase portions (Equation 9.167)

p̃A = −3s + 1

3s + 1
, p̃M = 3s + 1

s(s + 1)
, vA = 1, vM = 1

s2 . (9.177)

The ISE-optimal controller (Equation 9.168) is

q̃ = (
p̃M vM

)−1
{

p̃−1
A vM

}
∗ (9.178)

q̃ =
(

1

s

3s + 1

s + 1

1

s2

)−1
{(−3s + 1

3s + 1

)−1 1

s2

}
∗

(9.179)

q̃ = s3(s + 1)

3s + 1

{
6

s
+ 1

s2 + 18

−3s + 1

}
∗

(9.180)

q̃ = s3(s + 1)

3s + 1

(
6

s
+ 1

s2

)
(9.181)

q̃ = s(s + 1)(6s + 1)

3s + 1
. (9.182)

This is augmented with a filter form appropriate for ramp inputs (Equation 9.173), where the order of
the denominator is chosen so that the IMC controller

q = q̃ f = s(s + 1)(6s + 1)

3s + 1

3λs + 1

(λs + 1)3 = s(s + 1)(6s + 1)(3λs + 1)

(3s + 1)(λs + 1)3 (9.183)

is proper. The value of λ is selected just large enough that the inequality described by Equation 9.149,

|T̃(jω)| = ∣∣p̃(jω)q(jω)
∣∣=

∣∣∣∣ (6jω + 1)(−3jω + 1)(3λjω + 1)

(3jω + 1)(λjω + 1)3

∣∣∣∣<
∣∣∣∣ jω + 1

2jω + 0.2

∣∣∣∣ , (9.184)

is satisfied for all frequencies. A value of λ = 5.4 is adequate (Figure 9.69) for the closed-loop system
to be robust to model uncertainty (any larger would result in overly sluggish performance). As stated
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FIGURE 9.69 Bode magnitude plots for designing an IMC controller that achieves robust stability: 1/|wu| and |T̃|
for λ = 2.7, 5.4, and 10.8.
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earlier, this controller cannot be implemented using the IMC structure, but must be implemented using
the classical control structure with Equation 9.150

k = q

1 − p̃q
= (s + 1)(6s + 1)(3λs + 1)

s(3λ3s2 + (λ2 + 9λ + 54)λs + 3λ2 + 18)
. (9.185)

Closed-loop responses to ramp output disturbances for several processes included in the uncertainty
description (two have the same dynamics but different steady-state error; the other two were chosen so
that the inequality in Equation 9.176 is satisfied as an equality) are shown in Figure 9.70. The closed-loop
responses are bounded as desired.

Example 9.4: Minimum Phase Process Models

Although most processes have some nonminimum phase character, a large number of processes
can be approximated by a minimum phase model. In this case, p̃A = 1, and the ISE-optimal controller
(Equation 9.168) is

q̃ = (
p̃MvM

)−1
{

p̃−1
A vM

}
∗ (9.186)

q̃ = (
p̃MvM

)−1 {vM}∗ (9.187)

q̃ = p̃−1
M . (9.188)

The value for q̃ is the inverse of the process model (for this reason, IMC is often referred to as being
model inverse-based control). In this case, the integral squared error for the unfiltered nominal system
is zero irrespective of the disturbances and setpoint, because the resulting error (Equation 9.158),

e = y − r = (1 − p̃q̃)(d + pl − r) = (1 − p̃Mp̃−1
M )(d + pl − r) = 0, (9.189)

is zero. For the nominal process model, augmenting the ISE-optimal controller with an IMC filter
gives the controlled output (Equation 9.152)

y = T̃ (r − n) + S̃(d + pl) = p̃q(r − n) + (1 − p̃q)(d + pl) = fr + (1 − f )(d + pl). (9.190)
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FIGURE 9.70 Closed-loop output responses y for a ramp output disturbance for Example 1 for p = p̃, 1.2p̃, 0.8p̃,
(−3s + 1)(3s + 1.2)/s(s + 1)2, and (−3s + 1)(−s + .8)/s(s + 1)2 (p̃ is marked as ptilde in the figure).
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If the process has a relative degree of one, then the IMC filter can be chosen to have a relative
degree of one to give

y = 1
λs + 1

(r − n) + λs

λs + 1
(d + pl). (9.191)

The bandwidth of T̃ is very nearly equal to the bandwidth of S̃, with λ specifying the exact location
of these bandwidths. When the process model is not minimum phase, then the bandwidths of T̃
and S̃ can be far apart; the IMC filter parameter will still provide the trade-off between nominal
performance (S̃ ≈ 0) and insensitivity to measurement noise (T̃ ≈ 0).

Example 9.5: Processes with Common Stochastic Disturbances

Alhough the IMC design procedure was presented in terms of minimizing the integral squared error
for a fixed input, industrial disturbances are often more naturally modeled as stochastic inputs. For-
tunately, Parseval’s Lemma informs us that Theorem 9.1 provides the minimum variance controller
for stochastic inputs, if v is chosen correctly. For example, the minimum variance controller for inte-
grated white-noise inputs is equal to the ISE-optimal controller designed for a step input v. This and
other equivalences are provided in Table 9.8.

Since most industrial process disturbances are represented well by one of these stochastic descrip-
tions, for convenience the simplified expressions for the minimum variance (or ISE-optimal) controller
are given in the third column of Table 9.8. These expressions follow by analytically performing the
partial fraction expansion and applying the {·}∗ operator in Theorem 9.1. For example, for v = 1/s,
the ISE-optimal controller (Equation 9.168) is

q̃ = (
p̃MvM

)−1
{

p̃−1
A vM

}
∗ (9.192)

q̃ =
(

p̃M
1
s

)−1 {
p̃−1

A
1
s

}
∗

(9.193)

q̃ = sp̃−1
M

{
p̃−1

A (0)

s
+ · · ·

}
∗

(9.194)

q̃ = p̃−1
M . (9.195)

Example 9.6: Processes with Time Delay

It is common for processes to include time delays. This may be due to transport delays in reactors or
process piping, or to approximating high-order dynamics. Consider the design of an IMC controller

TABLE 9.8 Minimum Variance Controllers for Common Stochastic Inputs

v Stochastic Inputs Minimum Variance q̃

1

s
Integrated white noise p̃−1

M

1

τs + 1
Filtered white noise p−1

M p−1
A (−1/τ)

1

s(τs + 1)
Filtered integrated white noise p−1

M

(
1 +

(
1 − p−1

A (−1/τ)
)

τs
)

1

s2 Double integrated white noise p−1
M

(
1 − s

dpA

ds
(0)

)
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for the process
p̃ = pe−sθ, (9.196)

where θ is the time delay and p is the delay-free part of the process and can include nonminimum
phase zeros. Irrespective of the assumptions on the nature of the inputs, the IMC controller will have
the form

q = q̃f . (9.197)

From Equation 9.150, the corresponding classical controller has the form

k = q̃f

1 − q̃f pe−θs
. (9.198)

This controller is closely related to the well-known Smith predictor shown in Figure 9.71 and given
by [2]:

k = c

1 + cp(1 − e−θs)
. (9.199)

Actually, setting Equation 9.198 equal to Equation 9.199 and rearranging gives the Smith predictor
controller in terms of the IMC controller and vice versa

c = q̃f

1 − pq̃f
, q̃f = c

1 + pc
. (9.200)

This implies that the Smith predictor and IMC structures are equivalent.
Smith states in his original manuscript that the Smith predictor control structure in Figure 9.71

allows the controller c to be designed via any optimal controller design method applied to the
delay-free process. This seems to be confirmed by Equation 9.200, where c would be the form of
the classical controller designed via IMC applied to the delay-free process. Although c could be
designed by ignoring the delay in the process, the nominal closed-loop performance depends on
the sensitivity

S̃ = 1 − p̃q̃ = 1 − pe−θsq̃f , (9.201)

which is a function of the time delay and thus its effect should be considered in the controller design.
An appropriate method of designing the controller c would be to design q̃ based on the process
model with delay, and tune the IMC filter based on S̃ and T̃ taking performance and robustness
into account. Thus IMC provides a transparent method for designing Smith predictor controllers.
Alternatively, the controller could be implemented in the IMC control structure in Figure 9.68, which
would have the advantage of ensuring closed-loop stability in the presence of actuator constraints.

c p

p–(1−e−θs)

ur

d

y

n

––

FIGURE 9.71 Smith predictor control structure.
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Example 9.7: PID Tuning Rules for Low-Order Processes

In IMC, the resulting controller is of an order roughly equivalent to that of the process model. Many
models for SISO industrial processes are low order, so that an IMC controller based on such a model
is of low order and can be exactly or approximately described as a Proportional–Integral–Derivative
(PID) controller:

k = kc

(
1 + τDs + 1

τI s

)
, (9.202)

where kc is the gain, τI is the integral time constant, and τD is the derivative time constant. PID
controllers are the most popular and reliable controllers in the process industries. To a large part, this
explains why the largest number of industrial applications of IMC to SISO processes is for the tuning
of PID controllers.

To provide an example of the derivation of IMC PID tuning rules, consider a first-order process
model

p̃ = p̃M = kp

τs + 1
, (9.203)

where kp is its steady-state gain and τ is its time constant. Table 9.8 gives the IMC controller (with a
first-order filter) for step inputs as

q = p̃−1
M = τs + 1

kp(λs + 1)
. (9.204)

The corresponding classical controller is given by Equation 9.150

k = τs + 1
kpλs

. (9.205)

This can be rearranged to be in the form of an ideal Proportional-Integral (PI) controller

k = kc

(
1 + 1

τI s

)
(9.206)

with
kc = τ

kpλ
, τI = τ. (9.207)

An advantage of designing PID controllers via IMC is that only one parameter is required to provide
a clear tradeoff between robustness and performance; whereas PID has three parameters that do not
provide this clear tradeoff. IMC PID tuning rules for low-order process models and the most common
disturbance and setpoint model (step) are listed in Table 9.9.

TABLE 9.9 IMC PID Tuning Rules

Process Model p̃ kc τI τD

kp

τs + 1

τ

λkp
τ -

kp

τ2s2 + 2ζτs + 1
2ζτ
λkp

2ζτ
τ

2ζ

kp

s
1

λkp
- -

kp

s(τs + 1)

1

λkp
- τ

Source: Data from D. E. Rivera, S. Skogestad, and M. Morari. Ind. Eng. Chem.
Proc. Des. Dev., 25:252–265, 1986.
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Example 9.8: Processes with a Single Dominant Lag

Many processes have a time lag that is substantially slower than the other time lags and the time
delay. Several researchers over the last 25 years have claimed that IMC gives poor rejection of
load disturbances for these processes. To aid in the understanding of this claim, consider a process
modeled by a dominant lag

p̃ = 1
100s + 1

. (9.208)

An IMC controller designed for this process model is (see Example 9.4)

q = 100s + 1
λs + 1

. (9.209)

For simplicity of presentation only, let r = n = 0 and ignore model uncertainty in what follows. The
controlled output is related to the output disturbance d and load disturbance l by Equation 9.191

y = S̃(d + pl) = (1 − p̃q)d + (1 − p̃q)pl, (9.210)

y = λs

λs + 1
d + λs

(λs + 1)(100s + 1)
l. (9.211)

The value for λ is selected as 20 to provide nominal performance approximately five times faster
than open loop. The closed-loop responses to unit step load and output disturbances are shown
in Figure 9.72. As expected, the control system rejects the unit step output disturbance d with a
time constant of approximately 20 time units. On the other hand, the control system rejects the load
disturbance l very slowly. This difference in behavior is easily understood from Equation 9.211, since
the slow process time lag appears in the transfer function between the load disturbance and the
controlled output, irrespective of the magnitude of the filter parameter λ (as long as λ �= 0). The
open-loop dynamics appear in the closed-loop dynamics, resulting in the long tail in Figure 9.72.

Several researchers have proposed ad hoc fixes for this problem. The simplest solution is presented
here. The reason that the closed-loop dynamics are poor is because the commonly used IMC filter forms
are designed for output disturbances, not load disturbances. Thus, a simple fix is to design the correct
filter for the load disturbance. Consider the IMC filter (Equation 9.171) that provides an extra degree of
freedom (β) over the other filter forms (Equations 9.170 and 9.173). The order n of the filter is chosen
equal to 2 so that the IMC controller will be proper. Then the controlled output is related to the output
disturbance d and load disturbance l by Equation 9.210

y = S̃d + S̃pl = (1 − p̃q)d + (1 − p̃q)pl, (9.212)

y = λ2s2 + (2λ − β)s

(λs + 1)2 d + λ2s2 + (2λ − β)s

(λs + 1)2(100s + 1)
l. (9.213)

Since the sluggish response to load disturbances is due to the open-loop pole at s = −1/100, select the
extra degree of freedom β to cancel this pole

β = 2λ − λ2

100
. (9.214)

Then the controlled output (Equation 9.213) is

y = λ2s2 + λ2s/100

(λs + 1)2 d + λ2s2 + λ2s/100

(λs + 1)2(100s + 1)
l, (9.215)

y = sλ2(s + 1/100)

(λs + 1)2 d + sλ2/100

(λs + 1)2 l. (9.216)

The closed-loop responses to unit step load and output disturbances are shown in Figure 9.72 (with
λ = 20). This time the undesirable open-loop time constant does not appear in the controlled variable.
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FIGURE 9.72 Closed-loop output responses y for unit step output and load disturbances with common filter design
(Equation 9.211) and correct filter design (Equation 9.216).

9.7.4 Extension to Nonlinear Processes

This section describes an extension of IMC to open-loop stable nonlinear processes with stable inverses.
To simplify the presentation, the focus will be on controller design for setpoint tracking for SISO processes,
with similar ideas applying for disturbance rejection.

The IMC controller is a nonlinear inverse of the process model augmented by a nonlinear filter to
produce a physically realizable controller with a single tuning parameter. Assume that the nominal
process model p̃ available for controller design has the form

d

dt
x̃ = f̃ (x̃) + g̃(x̃)u, (9.217)

ỹ = h̃(x̃), (9.218)

where x̃ is an ñ-dimensional state vector, u is the manipulated variable, ỹ is the model output, f̃ (x̃) and
g̃(x̃) are ñ-dimensional vectors of nonlinear functions, and h̃(x̃) is a scalar nonlinear function. The true
process p is assumed to have a similar form

d

dt
x = f (x) + g(x)u, (9.219)

y = h(x), (9.220)

where x is an n-dimensional state vector, y is the true process output, f (x) and g(x) are n-dimensional
vectors of nonlinear functions, and h(x) is a scalar nonlinear function.

The nonlinear IMC controller has the form

q = q̃f , (9.221)

where f is a filter and q̃ minimizes the tracking error

‖r(t) − y(t)‖ = ‖(1 − p̃q̃)r‖. (9.222)
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When the nominal process model is stable with a stable inverse then

q̃ = p̃−1
r (9.223)

where p̃−1
r is the right inverse of the nominal process model, which is the operator that satisfies

p̃p̃−1
r y = y. (9.224)

For determining this right inverse, assume that the vector fields f̃ (x̃) and g̃(x̃) and scalar field h̃(x̃) have
continuous derivatives of all order. Also assume that

Lg̃ Lr−1
f̃

h̃(x̃) �= 0, ∀x̃ ∈ Rñ, (9.225)

where Lf̃ h̃(x̃) is a Lie derivative of h̃(x̃) with respect to the function f̃ (x̃) and r is the relative degree. Then,

the first r time derivatives of the nominal process output are:

ỹ(k) := dk

dtk
ỹ(t) = Lk

f̃
h̃(x̃), 1 ≤ k ≤ r − 1, (9.226)

ỹ(r) = Lr
f̃
h̃(x̃) + Lg̃ Lr−1

f̃
h̃(x̃)u. (9.227)

Solving Equation 9.227 for the manipulated variable u and substituting the result into Equation 9.217
produces the Hirschorn inverse:

d

dt
x̃ = f̃ (x̃) −

Lr
f̃
h̃(x̃)

Lg̃ Lr−1
f̃

h̃(x̃)
g̃(x̃) + g̃(x̃)

Lg̃ Lr−1
f̃

h̃(x̃)
ỹ(r), (9.228)

u = −
Lr

f̃
h̃(x̃)

Lg̃ Lr−1
f̃

h̃(x̃)
+ 1

Lg̃ Lr−1
f̃

h̃(x̃)
ỹ(r). (9.229)

These two equations define an inverse of the nominal process model, in which the manipulated variable
u(t) is recontructed from the rth derivative of the process output. To determine the manipulated variable
to track a setpoint r, replace ỹ with the filtered error e:

v(r) = α1e − αrL(r−1)

f̃
h̃(x̃) − αr−1L(r−2)

f̃
h̃(x̃) − · · · − α1h̃(x̃), (9.230)

where {αi} are tuning parameters. The IMC controller q = q̃f is obtained by combining Equations 9.229
and 9.230 to give

u =
α1e −

r+1∑
k=1

αkLk−1
f̃

h̃(x̃)

Lg̃ Lr−1
f̃

h̃(x̃)
(9.231)

where αr+1 ≡ 1. The above equations can be combined to show that, if

ỹ(k)(0) = e(k)(0), 0 ≤ k ≤ r − 1, (9.232)

then
ỹ(s)

e(s)
= α1

sr + αr sr−1 + · · · + α2s + α1
. (9.233)
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The tuning parameters {αi} can be reduced to a single IMC tuning parameter λ by setting this transfer
function equal to

ỹ(s)

e(s)
= 1

(λs + 1)r . (9.234)

For a perfect model (p̃ = p) with no disturbances or noise, the closed-loop relationship between the
controlled variable and setpoint is

y(s)

r(s)
= 1

(λs + 1)r . (9.235)

Example 9.9: Chemical Reactor

Consider a continuous-flow stirred-tank reactor with first-order kinetics that are irreversible and
exothermic:

dx1

dt
= −x1 + Da(1 − x1)ex2/(1+x2/γ), (9.236)

dx2

dt
= −(1 + β)x2 + HDa(1 − x1)ex2/(1+x2/γ) + βu, (9.237)

where x1 is the concentration, x2 is the temperature, Da is the Damköhler number, γ is the activation
energy, β is the cooling rate, and H is the heat of reaction (all parameters have been nondimension-
alized). The manipulated variable u acts by varying the temperature of water in a cooling jacket. The
control objective is to regulate the concentration subject to uncertainties in the model parameters
Da, H, β, and γ.

Writing Equations 9.236 and 9.237 in the form of Equations 9.217 and 9.218 for the nominal process
model results in

f̃1(x̃) = −x̃1 + D̃a(1 − x̃1)ex̃2/(1+x̃2/γ̃), (9.238)

f̃2(x̃) = −(1 + β̃)x̃2 + H̃D̃a(1 − x̃1)ex̃2/(1+x̃2/γ̃), (9.239)

g̃1(x̃) = 0, g̃2(x̃) = β̃, h̃(x̃) = x̃1. (9.240)

This nominal process model has a relative degree r = 2. Taking the Lie derivatives gives

Lg̃ Lr−1
f̃

h̃(x̃) = Lg̃ Lf̃ h̃(x̃) = β̃
∂ f̃1
∂x̃2

, (9.241)

and

L2
f̃
h̃(x̃) = f̃1

∂ f̃1
∂x̃1

+ f̃2
∂ f̃1
∂x̃2

. (9.242)

For the IMC tuning parameter λ = 1/10, the appropriate filter parameters

α1 = 1

λ2 = 100, α2 = 2

λ
= 20, α3 = 1, (9.243)

can be determined by matching term-by-term the powers of s in Equations 9.233 and 9.234.
The IMC controller q = q̃f is

u =
α1e − α1h̃ − α2 f̃1 − α3

(
f̃1

∂ f̃1
∂x̃1

+ f̃2
∂ f̃1
∂x̃2

)

β̃
∂ f̃1
∂x̃2

, (9.244)

where e = r − (y − ỹ) in the case of model uncertainties. The closed-loop process outputs track the
setpoint trajectory for ±30% perturbations in each of the parameters (see Figure 9.73). The spikes obtained
for some values of the parameters could be reduced by increasing the value of the tuning parameter λ,
which would make the setpoint tracking more sluggish.
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FIGURE 9.73 The setpoint (· · · ) and the closed-loop output responses when there is no model uncertainty (----) and
when there is model uncertainty (- · -). The nominal model parameters are (D̃a, H̃ , β̃, γ̃) = (0.072, 1, 0.3, 20) and the
“real” parameters are ±30% deviations in each parameter (hence 24 plots).

9.7.5 Extension to Infinite-Dimensional Systems

This section describes the extension of IMC design to linear infinite-dimensional systems. An infinite-
dimensional filter is coupled with the inverse of the process model to produce a physically realizable
controller with a single tuning parameter. Two design approaches are described: (1) inversion of process
model following by augmentation with an infinite-dimensional filter, or (2) augmentation of a process
model to be semiproper, followed by inversion.

9.7.5.1 Method 1

The IMC controller consists of the optimal controller for the process model combined with filtering to
reduce sensitivity to noise, provide robustness to model uncertainties, and smooth the control action.

Nominal performance

The first step is to determine the operator q̃ that optimizes the nominal performance:

min
q̃

∥∥wpS̃
∥∥∞ , (9.245)

where wp is a stable minimum-phase performance weight and

∥∥wpS̃
∥∥∞ := sup

ω

∣∣wp(jω)S̃(jω)
∣∣ . (9.246)

This performance objective, which is known as the H∞-norm, is equivalent to the worst-case integral
squared error (Equation 9.162). Several algorithms have been developed for solving the minimization
Equation 9.245 for infinite-dimensional processes [4]. As in the finite-dimensional case, the solution for
minimum-phase processes is

q̃ = p̃−1
M . (9.247)

This q̃ is usually improper since the nominal process model is usually strictly proper.
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Robust Stability and Performance

The IMC controller
q(s) = q̃(s)f (s, λ) (9.248)

augments q̃ from Equation 9.245 with a filter f to detune the optimal controller. As for finite-dimensional
processes, the corresponding classical feedback controller is given by

k = q

1 − p̃q
. (9.249)

Usually an infinite-dimensional filter is needed to make the IMC controller q proper and the feedback
controller k physically realizable. The filter f should be selected so that the closed-loop system retains
desired asymptotic properties as q is detuned for robustness. In particular, for the error signal resulting
from a step input to approach zero at steady state, the filter should satisfy

lim
s→0

f (s, λ) = 1. (9.250)

To provide a one-to-one correspondence to the IMC design method for finite-dimensional systems, the
tuning parameter λ in the infinite-dimensional filter f should be defined so that the optimal nominal
performance is achieved as λ → 0:

lim
λ→0

f (s, λ) = 1, (9.251)

so that increasing λ slows the closed-loop dynamics to increase robustness to model uncertainties.
The specific finite value for the tuning parameter λ can be selected in a number of ways, corresponding

to the same criteria used to tune IMC controllers for finite-dimensional systems. For example, λ can be
selected as small as possible while satisfying the robust stability condition∥∥∥wuT̃

∥∥∥∞ < 1, (9.252)

which equivalent to condition (Equation 9.149). Another criterion commonly used to tune λ that is appli-
cable to both finite- and infinite-dimensional systems is that the controller achieve robust performance,
that is, ∥∥wpS

∥∥∞ < 1, (9.253)

for all processes that satisfy the uncertainty description (Equation 9.148). It can be shown that this
condition is equivalent to ∥∥∥|wpS̃| + |wuT̃|

∥∥∥∞ < 1. (9.254)

Another approach for selecting λ is as the solution to the one-parameter optimization

min
λ>0

∥∥∥|wpS̃| + |wuT̃|
∥∥∥∞ , (9.255)

with a controller achieving robust performance if the attained objective is less than one.

9.7.5.2 Method 2

This approach first defines a stably invertible super-set of the process model. For a minimum-phase
process model, construct p̃s(s, λ) ⊃ p̃(s) for λ > 0 such that p̃s(s, λ) is minimum phase and biproper and
satisfies

lim
λ→0

p̃s(s, λ) = p̃(s). (9.256)

Then the IMC controller is
q(s, λ) = p̃−1

s (s, λ), (9.257)

where the IMC tuning parameter λ is selected as described in Method 1. If the nominal process model
is nonminimum phase, then p̃s(s, λ) should be constructed so that the IMC controller q optimizes the
nominal performance (Equation 9.245) as λ → 0.
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Implementation

Method 1 is closest in character to the IMC method for finite-dimensional systems, whereas Method
2 is more convenient when inspecting Laplace transform tables to identify suitable forms for the IMC
controller. As in IMC for finite-dimensional process models, the form of the filter is up to the designer.
The transfer function of the classical controller is determined by Equation 9.249 with a time-domain
description for the controller constructed by analytical or numerical solution of the inverse Laplace
transform. When the processes in the model uncertainty set are all stable, then the control system can be
implemented using either the IMC or classical feedback structure.

Example 9.10: Diffusion Equation

Consider the diffusion equation

∂C

∂t
= D

∂2C

∂x2 , ∀x ∈ (0, a), ∀t > 0, (9.258)

where C(x , t) is the concentration at spatial location x and time t, D is the diffusion coefficient with
nominal value D̃ = 10−10 m2/s, and the distance across the domain a = 10−5 m. The Dirichlet and
Neumann boundary conditions

C(0, t) = u(t), (9.259)

∂C

∂x

∣∣∣∣
x=a

= 0, (9.260)

are assumed, in which the manipulated variable is the concentration at x = 0 and the controlled
variable is the concentration at x = a.

The minimum-phase process model

p̃(s) = 1

cosh
√

s
(9.261)

between the manipulated variable u(t) and the process output C(a, t) is obtained by taking Laplace
transforms of the partial differential equation 9.258 and boundary conditions (Equations 9.259 and
9.260) with respect to t, and solving the resulting ordinary differential equation in x .

The performance weight

wp(s) = 0.5
0.06s + 1

0.06s
, (9.262)

is selected to specify zero steady-state error for a step input (i.e., integral action), a peak sensitivity less
than 2, and a closed-loop time constant of 0.06 s.

The model uncertainty is described by the frequency-dependent bound

∣∣∣∣p(jω) − p̃(jω)

p̃(jω)

∣∣∣∣≤ |wu(jω)|, ∀ω, (9.263)

with

wu(s) = cosh
√

s

cosh
√

s/1.2
−0.8, (9.264)

which includes variations in the diffusion coefficient, D ∈ [0.72, 1.2] × 10−10 m2/s. The model uncertainty
set (Equation 9.264) also includes processes that have the same dynamics as the nominal process model
but have up to 20% uncertainty in the steady-state gain.
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An invertible semiproper super-set of the nominal process model

p̃s(s, λ) = cosh λ
√

s

cosh
√

s
(9.265)

follows naturally from Equation 9.261. The corresponding IMC controller is

q(s, λ) = cosh
√

s

cosh λ
√

s
, (9.266)

which is the optimal solution of Equation 9.245 for any fixed λ ≥ 0 with p̃s(s, λ) in place of the nominal
process model.

The nominal sensitivity and complementary sensitivity for the above q and p̃ (Equation 9.261) are

S̃ = 1 − p̃q = 1 − 1

cosh λ
√

s
, (9.267)

T̃ = p̃q = 1

cosh λ
√

s
. (9.268)

Figure 9.74 shows that λ = 0.3 satisfies the robust stability condition (Equation 9.252) and robust
performance condition (Equation 9.254), and nearly minimizes Equation 9.255. The insensitivity of the
closed-loop response to +20% uncertainty in the diffusion coefficient is seen in Figure 9.75.

9.7.6 Defining Terms

Complementary Sensitivity: The transfer function T between the setpoint r and the controlled variable
y. For the classical control structure, this transfer function is given by

T = pk/(1 + pk),

where p and k are the process and controller transfer functions, respectively.

Robust performance 
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FIGURE 9.74 Bode magnitude plots for the evaluation of robust performance for the infinite-dimensional IMC
controller in Example 9.10 for λ = 0.5 (---), 0.4 (-·-), 0.3 (· · · ), and 0.2 (----).
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FIGURE 9.75 Setpoint trajectory and closed-loop output responses for Example 9.10 with no uncertainty and with
uncertainty in the diffusion coefficient, D = 1.2 × 10−10 m2/s. The “real” process was simulated by the finite-difference
method with 50 grid points.

Control Structure: The placement of controllers and their interconnections with the process.
H∞-norm: The largest value of the ISE-norm of the output that can be obtained using inputs with

ISE-norm less than one.
Hirschorn Inverse: The right inverse of a nonlinear process defined by Equations 9.228 and 9.229.
Stochastic Performance Measure: A closed-loop performance measure appropriate for stochastic inputs

that consists of the expected variable of the integral squared closed-loop error e over the stochas-
tic inputs:

Expected Value

{∫ ∞

0
e2(t) dt

}
. (9.269)

Internal Model Control (IMC): A method of implementing and designing controllers, in which the
process model is explicitly an internal part of the controller.

Integral Squared Error (ISE): A closed-loop performance measure appropriate for fixed inputs:

ISE{e} =
∫ ∞

0
e2(t) dt, (9.270)

where e is the closed-loop error. The ISE (Equation 9.270) is commonly referred in the modern
control literature as the L2-norm.

Internal Stability: The condition where bounded signals injected at any point in the control system
generates bounded signals at any other point.

Inverse-Based Control: Any control design method in which an explicit inverse of the model is used in
the design procedure.

Left Inverse: A left inverse (Figure 9.76) produces the manipulated variable given the process output.
Lie Derivative: The Lie derivative of a scalar function h̃(x̃) with respect to a vector function f̃ (x̃) is

defined as

Lf̃ h̃(x̃) = ∂h̃

∂x̃
f̃ (x̃). (9.271)
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Higher-order Lie derivatives can be defined recursively as:

Lk
f̃
h̃(x̃) =

n∑
j=1

∂

∂x̃j
{Lk−1

f̃
h̃(x̃)}f̃j(x̃), (9.272)

where
L0

f̃
h̃(x̃) = h̃(x̃). (9.273)

Load Disturbance: A disturbance that enters the input of the process.
Model Inverse-Based Control: Same as inverse-based control.
Proportional-Integral-Derivative (PID) controller: The most common controller in the process indus-

tries. The ideal form of this controller is given by

k = kc

(
1 + τDs + 1

τI s

)
. (9.274)

Relative Degree: The input in Equation 9.217 is said to have relative degree r at a point x̃0 if

1. Lg̃ Lk
f̃
h̃(x̃0) = 0, ∀x in a neighborhood of x̃0 and ∀k < r − 1, and

2. Lg̃ Lr−1
f̃

h̃(x̃0) �= 0.

Right Inverse: A right inverse (Figure 9.77) produces the manipulated variable required to obtain a given
process output, which makes the right inverse an ideal feedforward controller.

Robust Stability: A closed-loop system that is internally stable for all processes within a well-defined set.
Robust Performance: A closed-loop system that is internally stable and satisfies some performance

criterion for all processes within a well-defined set.
Sensitivity: The transfer function S between disturbances d at the process output and the controlled

variable y. For the classical control structure, this transfer function is given by S = 1/(1 + pk),
where p and k are the process and controller transfer functions, respectively.

Single-input Single-output (SISO): A process with one manipulated variable and one controlled variable
that is measured.

Smith Predictor: A strategy for designing controllers for processes with significant time delay, in which
a predictor in the control structure seems to allow the controller to be designed ignoring the
time delay.
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For Further Information

A review of the origins of the IMC control structure is provided in the PhD thesis of P. M. Frank [5].
Coleman B. Brosilow and Manfred Morari popularized the structure in a series of conference presentations
and journal articles published in the late 1970s and 1980s. Brosilow [6] showed that the Smith predictor is
equivalent to the IMC structure for processes with time delays. More thorough descriptions of IMC that
include many of the equations in this chapter are provided in a research monograph [1] and a textbook [7].

The IMC control structure cannot be implemented for unstable processes. The IMC approach can be
used to design feedback controllers for unstable processes, provided that the controllers are implemented
in the classical feedback structure, and any unstable poles in the nominal process model are cancelled by
unstable zeros in q [1].

Alternative techniques have been proposed for designing IMC controllers that provide reasonable
rejection of load disturbances for processes with a dominant lag. The approach described in Example 9.8
is the simplest to apply. A table of PID controller parameters for other process models is available [8].

A more detailed description of the nonlinear IMC method is available [9], which also surveys alternative
generalizations of IMC to nonlinear processes.

A much more detailed description of IMC for infinite-dimensional processes that includes all of the
proofs and Example 9.10 is available [10]. For most performance objectives, the solution of the optimal
control problem for q̃ is nontrivial when the nominal process model is nonminimum phase.

A control structure is said to have multiple degrees of freedom if it has more than one controller,
with each controller having different input signals. Examples common in the process industries include
combined cascade control and feedforward–feedback control. Strategies for placing and designing the
controllers in an IMC setting for the simple cases were derived in the 1970s to 1980s [1,5]. A general
method is available for constructing the optimal and most general multiple degree of freedom control
structures, in which each controller is designed independently [11].

When there are multiple process inputs and/or outputs, IMC is usually treated in discrete time, and the
performance objective is optimized on-line subject to the constraints. A linear or quadratic optimization
is typically solved at each sampling instance, with off-the-shelf software available for performing these
calculations. This method of control is referred to by many names, including Model Predictive Control,
Generalized Predictive Control, and Receding Horizon Control, and is the most popular multivariable
control method applied in industry today. A survey of these methods is available [12].

Alternative approaches for the control of the chemical reactor in Example 9.9 have been reported [13].
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9.8 Time-Delay Compensation: Smith Predictor
and Its Modifications

Z. J. Palmor

Despite the many articles and several book chapters that were published on this topic since the appearance
of the first edition of this chapter and in spite of the fact that the Smith predictor continues to be a very
active subject even today, we did not modify the presentation of this chapter as we believe that the original
material is still relevant and useful. Hence, we added at the end of the chapter (mainly in the “Further
Reading” section) brief comments pointing to newer references containing new related results.

9.8.1 Introduction

Time delays or dead times (DTs) between inputs and outputs are common phenomena in industrial
processes, engineering systems, and economical and biological systems. Transportation and measurement
lags, analysis times, and computation and communication lags, all introduce DTs into control loops. DTs
are also inherent in distributed parameter systems and frequently are used to compensate for model
reduction where high-order systems are represented by low-order models with delays. The presence of
DTs in the control loops has two major consequences: (1) it greatly complicates the analysis and the
design of feedback controllers for such systems and (2) it makes satisfactory control more difficult to
achieve.

In 1957, O.J.M. Smith [1] presented a control scheme for single-input single-output (SISO) systems,
which has the potential of improving the control of loops with DTs. This scheme became known as the
Smith predictor (SP) or Smith dead-time compensator (DTC). It can be traced back to optimal control
[2]. Early attempts to apply the SP demonstrated that classical design methods were not suitable for the
SP or similar schemes. Theoretical investigations performed in the late 1970s and early 1980s clarified
the special properties of the SP and provided tools for understanding and designing such algorithms.
Over the years, numerous studies on the properties of the SP have been performed, both in academia
and in industry. Many modifications have been suggested, and the SP was extended to multi-input and
multi-output (MIMO) cases with multiple DTs.

The SP contains a model of the process with a DT. Its implementation on analog equipment was
therefore difficult and inconvenient. When digital process controllers began to appear in the marketplace
at the beginning of the 1980s, it became relatively easy to implement the DTC algorithms. Indeed, in the
early 1980s some microprocessor-based industrial controllers offered the DTC as a standard algorithm
like the proportional–integral-derivative (PID).

It is impossible to include all the available results on the topic and the many modifications and
extensions in a single chapter. Hence, in this chapter, the SISO continuous case is treated. This case is a
key to understanding the sampled data and the multivariable cases. Attention is paid to both theoretical
and practical aspects. To make the reading more transparent, proofs are omitted but are referenced.

9.8.2 Control Difficulties due to Time Delays

A linear time-invariant (LTI) SISO plant with an input delay is represented in the state space as follows:

ẋ(t) = Ax(t) + Bu(t − θ),

y(t) = Cx(t).
(9.275)

where x ∈ Rn is the state vector, u ∈ R is the input, and y ∈ R is the output. A, B, and C are matrices of
appropriate dimensions and θ is the time delay (or DT). Similarly, an LTI SISO plant with an output delay
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FIGURE 9.78 A feedback control system with plant P and controller C.

is given by

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t − θ).
(9.276)

The transfer function of both Equations 9.275 and 9.276 is

y(s)/u(s) = P(s) = Po(s)e−θs, (9.277)

where

Po(s) = C(sI − A)−1B. (9.278)

Po(s) is seen to be a rational transfer function of order n. The presence of a DT in the control loop
complicates the stability analysis and the control design of such systems. Furthermore, it degrades the
quality of control due to unavoidable reduction in control gains as is demonstrated by the following
simple example.

Assume that in the feedback control loop shown in Figure 9.78 the controller, C(s), is a proportional (P)
controller [i.e., C(s) = K ,] and that Po(s) is a first-order filter [i.e., Po(s)=1/(τs+1)]. P(s) is thus given by

P(s) = e−θs/(τs + 1). (9.279)

The transfer function of the closed-loop system relating the output, y(s), to the setpoint (or reference),
r(s), is

y(s)

r(s)
= Ke−θs

τs + 1 + Ke−θs
. (9.280)

First, note that the characteristic equation contains e−θs. Hence, it is a transcendental equation in s,
which is more difficult to analyze than a polynomial equation. Second, the larger the ratio between the
DT, θ, and the time constant, τ, the smaller the maximum gain, Kmax, for which stability of the closed loop
holds. When θ/τ = 0 (i.e., the process is DT free), then Kmax → ∞, at least theoretically. When θ/τ = 1
(i.e., the DT equals the time constant), the maximum gain reduces drastically, from ∞ to about 2.26, and
when θ/τ → ∞, Kmax → 1.

The preceding example demonstrates clearly that when DTs are present in the control loop, controller
gains have to be reduced to maintain stability. The larger the DT is relative to the timescale of the
dynamics of the process, the larger the reduction required. Under most circumstances, this results in poor
performance and sluggish responses. One of the first control schemes aimed at improving the closed-loop
performance for systems with DTs was that proposed by Smith [1]. This scheme is discussed next.

9.8.3 Smith Predictor (DTC)

9.8.3.1 Structure and Basic Properties

The classical configuration of a system containing an SP is depicted in Figure 9.79. P(s) is the transfer
function of the process, which consists of a stable rational transfer function Po(s) and a DT as in Equa-
tion 9.277. P̂o(s) and P̂(s) are models, or nominal values, of Po(s) and P(s), respectively. The shaded area in
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FIGURE 9.79 Classical configuration of a system incorporating SP.

Figure 9.79 is the SP, or the DTC. It consists of a primary controller, Co(s), which in industrial controllers
is usually the conventional proportional–integral (PI) controller or PID controller, and a minor feedback
loop, which contains the model of the process with and without the DT. The overall transfer function of
the DTC is given by

C(s) = Co(s)/[1 + Co(s)(P̂o(s) − P̂(s))]. (9.281)

The underlying idea of the SP is clear, if one notes that the signal v(t) (see Figure 9.79), contains
a prediction of y(t) DT units of time into the future. For that reason, the minor feedback around the
primary controller is called a “predictor.” It is noted that e′ = r − Pou, whereas e = r − Pu. Therefore,
the “adjusted” error, e′(t), which is fed into the primary controller, carries that part of the error that is
“directly” caused by the primary controller. This eliminates the overcorrections associated with conven-
tional controllers that require significant reductions in gains as was discussed earlier. Thus, it is seen that
the SP should permit higher gains to be used.

The above qualitative arguments can be supported analytically. Assuming perfect model matching
(which is called in the sequel the ideal case), that is, P̂(s) = P(s), the transfer function of the closed loop
in Figure 9.79 from the setpoint to the output is

Gr(s) = y(s)

r(s)
= CoP

1 + CoPo
, (9.282)

where the arguments have been dropped for convenience. It is observed that the DT has been removed
from the denominator of Equation 9.282. This is a direct consequence of using the predictor. In fact, the
denominator of Equation 9.282 is the same as the one of a feedback system with the DT-free process, Po,
and the controller Co, without a predictor. Furthermore, Equation 9.282 is also the transfer function of
the system shown in Figure 9.80, which contains neither DT nor DTC inside the closed loop.

The input–output equivalence of the two systems in Figures 9.79 and 9.80 may lead to the conclusion
that one can design the primary controller in the SP by considering the system in Figure 9.80 as if DT
did not exist. While the elimination of the DT from the characteristic equation is the main source for
the potential improvement of the SP, its design cannot be based on Equation 9.282 or on the system
in Figure 9.80. The reason is that the two input–output equivalent systems possess completely different

+

–
r P^o(s) e–θsCo(s)

y

FIGURE 9.80 An input–output equivalent system.
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sensitivity and robustness properties. It turns out that, under certain circumstances (discussed in the next
section), an asymptotically stable design, which is based on Equation 9.282, with seemingly large stability
margins may in fact be practically unstable. That is, the overall system with an SP may lose stability under
infinitesimal model mismatchings.

An alternative way from which it can be concluded that the design and tuning of the SP should not
rely on the equivalent system in Figure 9.80 is to write down Gr , the closed-loop transfer function from
r to y, for the more practical situation, in which mismatchings, or uncertainties, are taken into account.
This transfer function is denoted G′

r . Thus, when P̂ �= P, G′
r takes the following form:

G′
r(s) = y(s)

r(s)
= CoP

1 + CoP̂o − CoP̂ + CoP
. (9.283)

It is evident from Equation 9.283 that when mismatching exists, the DT is not removed in its totality
from the denominator and therefore affects the stability. It is therefore more appropriate to state that the
SP minimizes the effect of the DT on stability, thereby allowing tighter control to be used. Also, note that
the DT has not been removed from the numerator of Gr (and G′

r). Consequently, the SP tracks reference
variations with a time delay.

The transfer function from the input disturbance d (see Figure 9.79) to the output y, in the ideal case,
is denoted Gd and is given by

Gd(s) = y(s)

d(s)
= P

[
1 − CoP

1 + CoPo

]
. (9.284)

It is seen that the closed-loop poles consist of the zeros of 1 + CoPo and the poles of P, the open-
loop plant. Consequently, the “classical” SP, shown in Figure 9.79, can be used for stable plants only. In
Section 9.8.5, modified SP schemes for unstable plants are presented. In addition, the presence of the
open-loop poles in Gd strongly influences the regulatory capabilities of the SP. This is discussed further
in Section 9.8.3.3.

An equivalent configuration of the SP is shown in Figure 9.81. Since the scheme in Figure 9.81 results
from a simple rearrangement of the block diagram in Figure 9.79, it is apparent that it leaves all input–
output relationships unaffected. Although known long ago, this scheme is commonly known as the IMC
(internal model control) form of the SP [4,5]. The dashed area in Figure 9.81 is the IMC controller, q(s),
which is related to the primary controller Co(s) via the following relationship:

q(s) = Co(s)/[1 + Co(s)P̂o(s)]. (9.285)

The controller q(s) is usually cascaded with a filter f (s). The filter parameters are adjusted to comply
with robustness requirements. Thus, the overall IMC controller, q̄(s), is

q(s) = f (s)q(s). (9.286)

The IMC parameterization is referred to in Section 9.8.3.4.
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y

FIGURE 9.81 SP in IMC form.
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9.8.3.2 Practical, Robust, and Relative Stability

Several stability results that are fundamental to understanding the special stability properties of the SP
are presented. Among other things, they clarify why the design of the SP cannot be based on the ideal
case. To motivate the development to follow, let us examine the following simple example.

Example 9.11:

Let the process in Figure 9.79 be given by P(s) = e−s/(s + 1) and the primary controller by Co(s) =
4(0.5s + 1), an ideal proportional derivative (PD) controller. In the ideal case (i.e., perfect matching),
the overall closed loop including the SP has, according to Equation 9.282, a single pole at s = −5/3.
The system not only is asymptotically stable, but possesses a gain margin and a phase margin of
approximately 2 and 80◦, respectively, as indicated by the Nyquist plot (the solid line) in Figure 9.82.

However, for a slight mismatch in the DT, the overall system goes unstable, as is clearly observed from
the dashed line in Figure 9.82, which shows the Nyquist plot for the nonideal case with 5% mismatch in
the DT. In other words, the system is practically unstable.

For methodological reasons, the next definition of practical instability is presented in rather nonrig-
orous fashion.

Definition

A system that is asymptotically stable in the ideal case but becomes unstable for infinitesimal modeling
mismatches is called a practically unstable system.

–2
–2.5

–2

–1.5

–1
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FIGURE 9.82 Nyquist plots of the system in Example 9.11. Solid line: ideal case; dashed line: nonideal case (5%
mismatch in DT).
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A necessary condition for practical stability of systems with SP is developed next. To this end, the
following quantity is defined:

Q(s) = CoP̂o/(1 + CoP̂o). (9.287)

It is noted that Q(s) is Gr(s)/e−θs, where Gr , defined in Equation 9.282, is the transfer function of the
closed loop in the ideal case. Hence, it is assumed in the sequel that Q(s) is stable. Denoting Im(s) by ω,
we have the following theorem:

Theorem 9.2: [3]

For the system with an SP to be closed-loop practically stable, it is necessary that

limω→∞ |Q(jω)| < 1/2. (9.288)

Remark 9.1

If only mismatches in DT are considered, then it can be shown that the condition in Equation 9.288 is
sufficient as well.

Remark 9.2

For Q(s) to satisfy Equation 9.288, it must be at least proper. If Q(s) is strictly proper, then the system is
practically stable.

Example 9.12:

Equation 9.288 is applied to Example 9.11. It is easily verified that Q(s) in that case is Q(s) =
(2s + 4)/(3s + 5). Hence, lims→∞|Q(s)| = 2/3 > 1/2 and the system is practically unstable as was
confirmed in Example 9.11.

Unless stated otherwise, it is assumed in all subsequent results that Q(s) satisfies Equation 9.288. When
the design complies with the condition in Theorem 9.2, one still may distinguish between two possible
cases: one in which the design is, stability wise, completely insensitive to mismatches in the DT; and the
second, where there is a finite maximum mismatch in the DT below which the system remains stable. Δθ

denotes the mismatch in DT and is given by

Δθ = θ − θ̂, (9.289)

where θ̂ is the estimated DT used in the SP. In the following theorem, it is assumed that Po = P̂o, that is,
mismatches may exist only in the DTs.

Theorem 9.3: [3]

a. The closed-loop system is asymptotically stable for any Δθ if

|Q(jω)| < 1/2∀ω ≥ 0. (9.290)

b. If

|Q(jω)| ≤ 1∀ω ≥ 0 and lim
ω→∞ |Q(jω)| < 1/2, (9.291)

then there exists a finite positive (Δθ)m such that the closed loop is asymptotically stable for all |Δθ| < (Δθ)m.
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Remark 9.3

In [3], it is shown that a rough (and frequently conservative) estimate of (Δθ)m is given by

(Δθ)m = π

(3ωo)
, (9.292)

where ωo is the frequency above which |Q(jω)| < 1/2.
The next example demonstrates the application of Theorem 9.3a.

Example 9.13:

If in Example 9.11 the gain of the primary controller is reduced such that Co=0.9(0.5s+1), then the cor-
responding Q(s) satisfies the condition in Equation 9.290. Consequently, the system with the above
primary controller not only is practically stable but also maintains stability for any mismatch in DT.

The conditions for robust stability presented so far were associated with uncertainties just in the
DT. While the SP is largely sensitive to mismatches in DTs (particularly when the DTs are large as
compared to the time constants of the process), conditions for robust stability of the SP for simultaneous
uncertainties in all parameters, or even for structural differences between the model used in SP and the
plant, may be derived. When modeling error is represented by uncertainty in several parameters, it is
often mathematically convenient to approximate the uncertainty with a single multiplicative perturbation.
Multiplicative perturbations on a nominal plant are commonly represented by

P(s) = P̂(s) [1 + �m(s)], (9.293)

where, as before, P̂(s), is the model used in the SP. Hence, �m(s), the multiplicative perturbation, is given by

�m(s) = (P(s) − P̂(s))/P̂(s) = Po(s)

P̂o(s)
e−Δθs − 1. (9.294)

A straightforward application of the well-known robust stability theorem (see, e.g., [4],) leads to the
following result:

Theorem 9.4: [3]

Assume that Q(s) is stable. Then the closed-loop system will be asymptotically stable for any multiplicative
perturbation satisfying the following condition:∣∣Q(jω)�m(jω)

∣∣< 1 ∀ω ≥ 0. (9.295)

Remark 9.4

It is common, where possible, to norm bound the multiplicative error �m(jω). If that bound is denoted by
�(ω), then, the condition in Equation 9.295 can be restated as∣∣Q(jω)

∣∣ �(ω) < 1 ∀ω ≥ 0. (9.296)

In [5], for example, the smallest possible �(ω) for the popular first order with DT model

P(s) = kpe−θs/(τs + 1) (9.297)

was found for simultaneous uncertainties in gain, kp, time-constant, τ, and DT, θ. When �(ω) is available
or can be determined, it is quite easy to check whether the SP design complies with Equation 9.296. This
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can be done by plotting the amplitude Bode diagram of |Q(jω)| and verifying that it stays below 1/�(ω)
for all frequencies.

Considering further the properties of the rational function Q(s), conditions under which the closed-
loop system containing the SP possesses some attractive relative stability properties may be derived. The
following result is due to [3]:

Theorem 9.5: [3]

Let Q(s) be stable. If

∣∣Q(jω)
∣∣≤ 1 ∀ω ≥ 0, (9.298)

then the closed-loop system has

a. A minimum gain margin of 2.
b. A minimum phase margin of 60◦.

Remark 9.5

It should be emphasized that unless the design is practically stable, the phase-margin property may be
misleading. That is to say that a design may satisfy Equation 9.298 but not Equation 9.288. Under such
circumstances, the system will go unstable for an infinitesimal mismatch in DT despite the 60◦ phase
margin.

Remark 9.6

Note that the gain margin property relates to the overall gain of the loop and not to the gain of the primary
controller.

9.8.3.3 Performance

Several aspects related to the performance of the SP are briefly discussed. The typical improvements
in performance, due to the SP, that can be expected are demonstrated. Both reference tracking and
disturbance attenuation are considered. It is shown that while the potential improvement in reference
tracking is significant, the SP is less effective in attenuating disturbances. The reasons for that are clarified
and the feedforward SP is presented.

First, the steady-state errors to step changes in the reference (r) and in the input disturbance (d) (see
Figure 9.79) are examined. The following assumptions are made:

1. P(s), the plant, is asymptotically stable.
2. P(s) does not contain a pure differentiator.
3. Co(s), the primary controller, contains an integrator.
4. Q(s) is asymptotically stable and practically stable.

With the above assumptions, it is quite straightforward to prove the following theorem by applying the
final-value theorem to Gr in Equation 9.282 and to Gd in Equation 9.284.

Theorem 9.6:

Under Assumptions 1–4, the SP system will display zero steady-state errors to step reference inputs and to
step disturbances.
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Remark 9.7

Theorem 9.5 remains valid for all uncertainties (mismatchings) for which the closed-loop stability is
maintained.

The next example is intended to demonstrate the typical improved performance to be expected by
employing the SP and to motivate further discussion on one of the structural properties of the SP that
directly affects its regulation capabilities.

Example 9.14:

The SP is applied to the following second order with DT process:

P(s) = e−.5s/(s + 1)2. (9.299)

The primary controller, Co(s), is chosen to be the following ideal PID controller:

Co(s) = K(s + 1)2/s; K = 6. (9.300)

This choice of Co(s) is discussed in more detailed form in Section 9.8.3.4. It should be emphasized that
the value of the gain K = 6 is quite conservative. This can be concluded from the inspection of Q(s) in
Equation 9.287 (or equivalently, Gr in Equation 9.282), which in this case is

Q(s) = K/(s + K). (9.301)

It is seen that one may employ K as large as desired in the ideal case, without impairing stability. K will
have, however, to be reduced to accommodate mismatching. For reasons to be elaborated in Section
9.8.3.4, the value of 6 was selected for the gain. Note that without the SP, the maximum gain allowed
would be 4.7 approximately.

In Figure 9.83, the time responses, in the ideal case, of the SP and a conventional PID controller to a
step change in reference are compared. The PID controller settings were determined via the well-known
Ziegler–Nichols rules, which can be found in Control System Advanced Methods, Chapter 32. It is evident
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FIGURE 9.83 Responses to step change in setpoint, the ideal case: (a) PID and (b) SP.
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FIGURE 9.84 Setpoint step responses, the nonideal case: (a) PID and (b) SP.

that despite the relatively conservative tuning of the SP it outperformed the PID in all respects: better rise
time, better settling time, no overshoot, etc. One may try to optimize the PID settings, but the response
of the SP is hard to beat.

In Figure 9.84, the same comparison of responses is made, but with a mismatch of 20% in the DT,
namely, θ̂ = 0.5, but the DT has been changed to 0.6. The effect of the mismatch on the responses of both
the SP and the PID is noticeable. However, the response of the SP is still considerably better.

In Figure 9.85, the corresponding responses to a unit input disturbance are depicted. While the response
of the SP has a smaller overshoot, its settling time is inferior to that of the PID. This point is elaborated
upon next.

Example 9.14 demonstrates that, on the one hand, the SP provides significant improvements in tracking
properties over conventional controllers, but on the other hand, its potential enhancements in regulatory
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FIGURE 9.85 Responses to a unit-step input disturbance: (a) PID; (b) SP; and (c) feed forward SP.
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capabilities are not as apparent. The reason for this has been pointed out in Section 9.8.3.1, where it
was shown that the open-loop poles are present in the transfer function Gd . These poles are excited by
input disturbances but not by the reference. Depending on their locations relative to the closed-loop
poles, these poles may dominate the response. The slower the open-loop poles, the more sluggish the
response to input disturbances. This is exactly the situation in Example 9.14: the closed-loop pole (the
zero of 1 + CoPo) is s = −6, while the two open-loop poles are located at s = −1. The presence of the
open-loop poles in Gd is a direct consequence of the structure of the SP, and many modifications aimed at
improving that shortcoming of the SP were proposed. Several modifications are presented in Section 9.8.4.
It is worth noting, however, that the influence of the open-loop poles on the response to disturbances is
less pronounced in cases with large DTs. In such a circumstance, the closed-loop poles cannot usually be
shifted much to the left, mainly due to the effect of model uncertainties. Hence, in such situations the
closed-loop poles do not differ significantly from the open-loop ones, and their influence on the response
to disturbances is less prominent.

For the reasons mentioned above, the SP is usually designed for tracking, and if necessary, a modifica-
tion aimed at improving the disturbance rejection properties is added. When other than step inputs are
considered, Co should and can be designed to accommodate such inputs. For a given plant and inputs, an
H2-optimal design in the framework of IMC (see Section 9.8.3.1) was proposed. The interested reader is
referred to [4,5] for details. A DTC of a special structure that can accommodate various disturbances is
discussed in Section 9.8.4.3.

Another way to improve on the regulation capabilities of the SP is to add a standard feedforward
controller, which requires on-line measurements of the disturbances. However, if disturbances are mea-
surable, the SP can provide significant improvements in disturbance attenuation in a direct fashion. This
may be achieved by transmitting the measured disturbance into the predictor. The general idea, in the
most simple form, is shown in Figure 9.86.

In this fashion, the plant model in the predictor is further exploited to predict the effect of the dis-
turbance on the output. The advantage of this scheme may be better appreciated by comparing the
closed-loop relations between the control signal, u, and the disturbance, d, in both the “conventional”
SP, Figure 9.79, and the one in Figure 9.86. In the conventional SP scheme (Figure 9.79), that relation is
given by

u(s)/d(s) = −CoPoe−θs/(1 + CoPo). (9.302)

The corresponding relation in the scheme in Figure 9.86 is

u(s)/d(s) = −CoPo/(1 + CoPo) (9.303)

and it is evident that the DT by which the control action is delayed in the conventional SP is effectively
canceled in the scheme in Figure 9.86. By counteracting the effect of the disturbance before it can
appreciably change the output, the scheme in Figure 9.86 behaves in a manner similar to that of a
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FIGURE 9.86 A simple form of the feedforward SP for measurable disturbances.
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conventional feedforward controller. For this reason, the scheme in Figure 9.86 is called feedforward SP. In
fact, the feedforward SP eliminates the need for a separate feedforward controller in many circumstances
under which it would be employed. The advantage of the scheme is demonstrated in Figure 9.85. It should
be noted that the feedforward SP in Figure 9.86 is presented in its most simplistic form. More realistic
forms and other related issues can be found in [6].

Finally, it is worth noting that it has been found from practical experience that a properly tuned SP
performs better than a PID in many loops typical to the process industries, even when the model used in
the SP is of lower order than the true behavior of the loop. This applies in many circumstances even to
DT-free loops. In those cases, the DT in the model is used to compensate for the order reduction.

9.8.3.4 Tuning Considerations

Since the SP is composed of a primary controller and a model of the plant, its tuning, in practice, involves
the determination of the parameters of the model and the settings of the primary controller. In this
chapter, however, it is assumed that the model is available, and the problem with which we are concerned
is the design and setting of the primary controller. From the preceding sections, it is clear that the tuning
should be related to the stability and robustness properties of the SP.

A simple tuning rule for simple primary controllers, Co(s), is presented. For low-order plant models
with poles and zeros in the left half-plane (LHP), a simple structure for Co(s), which can be traced back
to optimal control [2], is given by

Co(s) = K

s
P̂o(s)−1. (9.304)

When P̂o(s) is a first-order filter or a second-order one, then the resulting Co(s) is the classical PI or PID
controller, respectively. More specifically, in the first-order and the second-order cases, the corresponding
P̂o is given as in Equations 9.305 and 9.306, respectively:

P̂o(s) = kp/(τs + 1), (9.305)

P̂o(s) = kp/(τ2s2 + 2τξs + 1). (9.306)

The “textbook” transfer functions of the PI and PID controllers are as follows:

Kc

(
1 + 1

τis

)
, (9.307)

Kc

(
1 + 1

τis
+ τDs

)
. (9.308)

If Equation 9.305 is substituted into Equation 9.304, the resulting primary controller, Co, is equivalent
to the PI controller in Equation 9.307 if

Kc = Kτ/kp; τi = τ. (9.309)

Similarly, for the second-order case (Equation 9.306), Co will be equivalent to Equation 9.308 if:

Kc = K(2τξ)/kp; τi = 2τξ; τD = τ/2ξ. (9.310)

Commercially available SPs offer PI and PID controllers for Co. Thus, the structure in Equation 9.304
is well suited to SP with simple plant models. It should be noted that if the pole excess in P̂o is larger than
2, then Co in Equation 9.304 must be supplemented by an appropriate filter to make it proper.

The particular choice in Equation 9.304 leads to a Q(s) with the following simple form:

Q(s) = K/(s + K), (9.311)

and it is evident that stability of the closed loop, in the ideal case, is maintained for any positive K .
However, model uncertainty imposes an upper limit on K . Since the SP is mostly sensitive to mismatches
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FIGURE 9.87 Maximum K̄ for stability versus δθ (solid line) and the rule of thumb (dashed line) suggested in [4].

in the DT, a simple rule for the setting of K , the single tuning parameter of Co in Equation 9.304, can be
obtained by calculating Kmax [7] for stability as a function of δθ, the relative error in DT.

The solid line in Figure 9.87 depicts K̄max as a function of δθ. K̄ and δθ are defined as follows:

K̄Δ = K θ̂; δθΔ = Δθ/θ̂. (9.312)

Figure 9.87 reveals an interesting property, namely that the choice of K̄ < 2.984 (for all practical
purposes and for convenience 2.984 may be replaced by 3) assures stability for ±100% mismatches in DT.
Thus, a simple tuning rule is to set K as follows:

K = 3/θ̂. (9.313)

This rule was applied in Example 9.14 in Section 9.8.3.3. While the solid line in Figure 9.87 displays
the exact K̄max for all cases for which Co is given by Equation 9.304, some caution must be exercised in
using it, or Equation 9.313, since it takes into account mismatches in DT only. The dashed line in Figure
9.87 displays a rule of thumb suggested in [4] where K̄ is chosen as 1/δθ. This latter rule was developed
for first-order systems (see Equation 9.297) and mismatches in the DT only.

A method for tuning the primary controller of the SP for robust performance in the presence of
simultaneous uncertainties in parameters was developed in [5] in the framework of IMC. For the three
parameters first order with DT model given in Equation 9.297, the overall H2-optimal IMC controller
(see Equation 9.286) for step references and equipped with a filter, is given by

q̄(s) = (τs + 1)/
[
kp(λs + 1)

]
, (9.314)

where λ is the time constant of the filter f (s). In Equation 9.314, q̄(s) is equivalent to Co in Equation
9.304, for this case, with λ=1/K . Using various robust performance criteria, tuning tables for λ for various
simultaneous uncertainties in the three parameters have been developed and can be found in [5].

9.8.4 Modified Predictors

In the previous section, it was seen that the improvements in disturbance attenuation offered by the SP
are not as good as for tracking. The reasons for that were discussed and a “remedy” in the form of the
feedforward SP was presented. The feedforward SP is applicable, however, only if disturbances can be
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measured online. This may not be possible in many cases. Quite a number of researchers have recognized
this fact and proposed modifications aimed at improving on the regulatory capabilities of the SP. Three
such designs are briefly described in this section. In the first two, the structure of the SP is kept, but a new
component is added or an existing one is modified. In the third one, a new structure is proposed.

9.8.4.1 Internal Cancellation of Model Poles

The scheme suggested in [8] has the same structure as the SP in Figure 9.79, but P̂1 replaces P̂o in the
minor feedback around the primary controller. Hence, the minor feedback consists of (P̂1 − P̂) instead of
(P̂o − P̂). P̂1 may be considered to be a modified plant model without a DT. P̂1 is the nominal model of
P1, which is given by:

P1(s) = Ce−Aθ(sI − A)−1B −
∫ 0

θ

Ce−AτB dτ, (9.315)

where A, B, and C are the “true” matrices in the state-space representation of the plant given in Equation
9.275. The role of P1 will be clarified later. Note that Q(s) may be defined in a similar fashion to the one
defined in Equation 9.287 for the conventional SP. For the scheme under consideration, it is given by

Q(s) = CoP̂o/(1 + CoP̂1) (9.316)

and all the previous results on practical and robust stability of Section 9.8.3.2 apply to this case as well.
In [8], some general results, applicable to the scheme considered here with any stable P̂1 were stated

and proven. Under Assumptions 1–4 of Section 9.8.3.3, and for the particular P̂1 in Equation 9.315, the
application of the general results yields the following theorem:

Theorem 9.7:

Under assumptions 1 to 4, the modified SP, with P̂o replaced by P̂1 in the minor feedback, has the following
properties:

a. A zero steady-state error to step reference.
b. A zero steady-state error to step disturbance.
c. The poles of (P̂1 − P̂), the minor feedback are canceled with its zeros.

The following remarks explain and provide some insight into the properties stated in Theorem 9.7.

Remark 9.8

Property (a) holds for any P1 satisfying lims→0Po(s)/P1(s) = 1. It can be verified that the P1 in Equation
9.315 satisfies the latter condition.

Remark 9.9

Property (b) holds for any stable P1 satisfying lims→0(P1(s) − P(s)) = 0. It is easy to show that the P1 in
Equation 9.315 satisfies that condition.

Remark 9.10

Property (c) represents the major advantage of the scheme discussed here and is the source for its potential
improvement in regulatory capabilities. Due to the pole–zero cancellation in the minor feedback, Gd (see
Equation 9.284), the transfer function relating y to d, no longer contains the open-loop poles. The response
to disturbances, under these circumstances, is governed by the zeros of (1 + CoP1), after θ units of time
from the application time of the disturbances. That is, the error decay can be made as fast as desired (in
the ideal case) after the DT has elapsed. See the discussion following Example 9.15.
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Remark 9.11

An equivalent way to express properties (b) and (c) is to say that the states of the minor feedback, as well
as the state of the integrator of the primary controller, are unobservable in v (see Figure 9.79).

Remark 9.12

Note that for given A, B, C, and θ, the integral in P1 (Equation 9.315) is a constant scalar. Its sole purpose
is to nullify the steady-state gain of the minor feedback thus assuring an integral action in the DTC if the
primary controller includes one.

Remark 9.13

If the minor feedback, P̂1 − P̂, is realized as a dynamical system (i.e., by Equations 9.315 and 9.278), then
this scheme is not applicable to unstable plants. However, with a different realization, to be discussed in
Section 9.8.5, it can be applied to unstable plants.

Example 9.15:

Two cases are considered. In both, the plant is a first–order with DT (see Equation 9 297). In the
first case, the plant parameters are kp = 1, τ = 1, θ = 0.2. In the second case θ, the DT, is increased
to θ = 1. Primary controllers, Co, are designed for the SP and for the modified predictor, and the
responses to input disturbances are compared. For a fair comparison, both designs are required to
guarantee stability for ± 60% mismatching in the DT. Co for the SP is taken to be as in Equation 9 304
with K according to Equation 9.313. Thus, the Co for the SP is a PI controller, which clearly satisfies
the above stability requirement. A PI controller is also selected for the modified predictor. Kc and τi ,
the parameters of the PI controller (Equation 9.307), for the modified predictor are determined such
that the stability requirement is satisfied and the response optimized. The resulting parameters of
the PI controllers for both schemes and for the two cases are as follows:

1. SP
a. Case 1 –Kc = 15, τi = 1/15
b. Case 2 –Kc = 3, τi = 0.33.

2. Modified predictor
a. Case 1 −Kc = 3, τi = 0.14
b. Case 2 −Kc = 0.46, τi = 1.92.

Note the substantial reduction in the gains of the modified predictor, relative to the SP, required
to guarantee stability for the same range of mismatches in the DT. The responses to a unit-step input
disturbance of the SP [curve (1)] and the modified predictor [curve (2)] are compared in Figure 9.88a
for Case 1 and in Figure 9.88b for Case 2.

While the improvement achieved by the modified predictor is evident in Case 1, it is insignificant in
Case 2. This point is elaborated on next.

Example 9.15 demonstrates the potential improvement in the regulatory performance of the modified
scheme. However, practical considerations reduce the effectiveness of this scheme in certain cases. First,
note that P1 is a proper transfer function and frequently is nonminimum phase. Hence, the design of
Co is usually more involved. Simple primary controllers, like those in Equation 9.304, are not applicable,
and in many cases the conventional PI and PID controllers may not stabilize the system even in the ideal
case. Second, when it is designed for robust stability or robust performance, the resulting gains of the
primary controllers are considerably lower than those allowed in the conventional SP for the same range
of uncertainties. Therefore, the improvements in disturbance attenuation are usually less prominent. It
turns out, as is also evident in Example 9.15, that the modified scheme is advantageous in cases where
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FIGURE 9.88 Responses to a unit-step input disturbance: (a) Case 1 (θ/τ = 0.2); (b) Case 2 (θ/τ = 1). (1) SP. (2)
Modified predictor with internal cancellations. (3) SP with approximate inverse of DT.

DTs are small relative to the time constants of the plant, or when uncertainties are small. The chief reason
for this is that it is possible to improve on the conventional SP only if the closed-loop poles (i.e., zeros
of 1 + CoP1) can be made considerably faster than the open-loop ones. This can be achieved if relatively
high gains are allowed.

It was pointed out in the previous paragraph that the design of Co in the modified scheme is considerably
more involved than in the conventional SP, more so when plant models are of order higher than two. In
those cases, Co may be determined by input–output pole placement. A realizable Co and of low order, if
possible, is sought such that the closed-loop poles in the ideal case (i.e., the zeros of 1 + CoP̂1) are placed
in predetermined locations. Then the design is checked for robust stability and robust performance. If
the design fails the robustness tests, then Co is modified in a trial-and-error fashion until it complies with
the robustness requirements.

9.8.4.2 An Approximate Inverse of DT

A simple modification was suggested in [9]. It consists of a simple predictor, M(s), which is placed in the
major feedback of the SP as shown in Figure 9.89.

It is desired to have M(s) equal to the inverse of the DT, that is, M(s) = eθ̂s. In this fashion, the output,
y, is forecast one DT into the future. This in turn eliminates the DT between the disturbance, d, and the
control, u, in a similar fashion to the feedforward SP (see Figure 9.86). Indeed, with M(s) as above, the
transfer function u(s)/d(s) is exactly the one in Equation 9.303. It is clear, however, that it is impossible

+ 

+ 

+ + 

–  – 

– 

+ r 

P̂o(s) P̂o(s)e–θ̂s

Co(s)

d  

u 
P (s) 

M(s) 

y 
DTC 

FIGURE 9.89 Modified SP with an approximate inverse of DT.
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to realize an inverse of the DT. Hence, a realizable approximation of the inverse of the DT is employed.
In [9], the following M(s) is suggested:

M(s) = (1 + B(s))/[1 + B(s)e−Ls]. (9.317)

If B(s) is a high-gain low-pass filter given by

B(s) = Km/(τms + 1), (9.318)

then M(s) in Equation 9.317 approximates eLs at low frequencies.
A method for the design of M(s) is suggested in [9]. It consists of two steps. First, an SP is designed

based on methods like the one in [5], or the one described in Section 9.8.3.4. In the second step, the M(s)
in Equations 9.317 and 9.318 is designed to cope with uncertainties. With M(s) in the major feedback,
the condition for stability under multiplicative error, which corresponds to the one in Equation 9.296, is
easily shown to be

M(jω)Q(jω)|�(ω) < 1 ∀ω ≥ 0

or equivalently,

|M(jω)| < [|Q(jω)|�(ω)]−1 ∀ω ≥ 0. (9.319)

For good performance, it is desired to have |M(jω)Q(jω)| close to one at frequencies below the band-
width of the closed loop. Thus, the design of M(s) is to choose the three parameters, km, τm, and L,
such that the magnitude curve of |M(jω)| lies as close as possible to |Q(jω)|−1 and beneath the curve
[|Q(jω)|�(ω)]−1.

The three parameters of M(s) optimizing the regulatory properties of the SP with the primary controller
in Equation 9.304 tuned according to Equation 9.313 were determined experimentally in [6] for the first-
order case (Equation 9.297) and are summarized in Table 9.10.

It was found that for θ̂/τ̂ up to 2, the inclusion of the simple filter M(s) enhances the disturbance
attenuation properties of the SP. However, for θ̂/τ̂ above 2, the improvement via M(s) is minor and the
use of M(s) is not justified in those cases. In Figure 9.88, the responses to a step input disturbance for the
two cases considered in Example 9.15, with M(s) in place, are shown [curve (3)], and compared to those
of the two predictors discussed in Example 9.15. The primary controllers are the same as those used in
the conventional SP, and the parameters of M(s) were determined from Table 9.10. The improvement
achieved by M(s) in both cases shown in Figure 9.88 is evident.

9.8.4.3 Observer–Predictor

The structure of the observer–predictor (OP) is depicted in Figure 9.90. It consists of

• An asymptotic observer that estimates the states of both the plant and the disturbance.
• A predictor that uses the estimated state to forecast the output one DT into the future.

TABLE 9.10 Parameters of M(s) for the First Order

with DT Case with the Co in Equation 9.304 and Tuning

Rule in Equation 9.313

θ̂/τ̂ km L/θ̂ L/τm

0.3 10 0.75 0.05

0.6 8 0.6 0.1

1.0 4 0.45 0.2

2.0 2 0.27 0.3
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FIGURE 9.90 The structure of the observer–predictor (OP).

• A primary controller, Co.

The basic structure of the OP is not a new one. It was suggested in [10], where a static-state feedback
was employed and where the main concern was the stability properties of the scheme. No attention was
paid to tracking and regulation capabilities. Indeed, the performance of the OP in [10] is poor. The OP
outlined in this section was developed in [11] and contains several modifications aimed at improving
its regulatory properties. First, it contains a dynamical primary controller that operates on the forecast
output. Second, a model of the dynamics of the disturbance is incorporated in the observer [12]. It enables
the online estimation of the disturbance. Third, an additional feedback, similar to the one used in the SP,
which carries the difference between the measured and the estimated outputs, is introduced. The main
objective of that feedback is to compensate for uncertainties and disturbances. The equations of the OP
in Figure 9.90, are given next, followed by brief comments on several properties of the OP. An example
demonstrating the effectiveness of the OP in attenuating disturbances concludes this section.

As in Equation 9.275, the plant is given by

ẋ(t) = Ax(t) + B1u(t − θ) + B2d(t − θ),

y(t) = Cx(t).
(9.320)

The plant model in Equation 9.320 is slightly more general than before, as the control, u, and the
disturbance, d, go through different input matrices. The disturbance is assumed to obey the following
model:

ż(t) = Dz(t),

d(t) = Hz(t),
(9.321)

where z ∈ Rm is the state vector of the disturbance model. It is further assumed that the pairs (A, C) and
(D, H) are observable. Substitution of d from Equation 9.321 into Equation 9.320 yields:

ẋ(t) = Ax(t) + B1u(t − θ) + B2He−Dθz(t). (9.322)

Next, an augmented state vector is defined:

x̄(t)T = (x(t)T , z(t)T ). (9.323)

By means of Equation 9.323, the plant and the disturbance models are combined:

˙̄x(t) = Āx̄(t) + B̄u(t − θ),

y(t) = C̄x̄(t)
(9.324)
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where

Ā =
(

A B2He−Dθ

0 D

)
; B̄ =

(
B1

0

)
;

C̄ = (C 0).

(9.325)

The observer is given by

˙̄̂x(t) = Ā ˆ̄x(t) + B̄u(t − θ) − L(y(t) − C̄ ˆ̄x(t)), (9.326)

where ˆ̄x is the estimate of x̄, and L is the vector of gains of the observer. The predictor is given by

yp(t) � ŷ(t + θ) = CeAθx̂(t) + C
∫ 0

−θ

e−Ah
[

B1u(t + h) + B2d̂(t + h)
]

dh, (9.327)

where yp(t) is the forecast of the estimated output θ units of time ahead, and x̂(t) and d̂(t) are the estimates
of the state and of the disturbance, respectively, both generated by the observer. Equation 9.327 presents
the integral form of the predictor. If Equation 9.327 is Laplace transformed, then the dynamical form of
the predictor is obtained:

yp(s) � CeAθx̂(s) + C(I − e−(sI−A)θ)(sI − A)−1
[

B1u(s) + B2d̂(s)
]

. (9.328)

Finally, the control signal u(s) is

u(s) = Co(s)
[
r(s) − yp(s) − (y(s) − ŷ(s))

]
. (9.329)

The design of the OP consists of the selection of L, the observer’s gain vector, and of Co(s). L may be
determined by the well-known pole-placement techniques. If, in addition to the observability assumptions
stated above, it is further assumed that no pole–zero cancellations between the models of the plant and
the disturbances occur, then the pair (Ā, C̄) is observable and the observer poles can be placed at will. The
design of Co is referred to in the subsequent remarks.

The main properties of the OP are summarized in the following remarks:

Remark 9.14

In the ideal case, the DT is eliminated from the characteristic equation of the closed loop.

Remark 9.15

The overall closed-loop transfer function relating r to y is identical, in the ideal case, to that of the SP
given in Equation 9.282.

Remark 9.16

If the predictor is realized in the integral form of Equation 9.327, then the closed-loop poles consist of the
observer poles (i.e., the zeros of det[sI − Ā − LC̄]) and of the zeros of 1+CoPo.

Remark 9.17

According to the internal model principle (see, e.g., [12]), Co should contain the disturbance poles in
order to reject disturbances. Note that the poles of the disturbance in Equation 9.321 are the zeros of
det(sI – D). With the latter requirement the design of Co may be carried out by appropriate placement of
the zeros of 1 + CoPo.
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Remark 9.18

While the OP has far better disturbance rejection properties than the SP, as demonstrated in Example
9.16, it is, in general, considerably more sensitive to uncertainties.

Example 9.16 demonstrates the improved capability of the OP to reject disturbances.

Example 9.16:

The plant is the one used in Example 9.14, Equation 9.299. The disturbance, however, in this case is
given by

d(t) = sin 2t. (9.330)

The D in Equation 9.321 is therefore:

D =
(

0 1
−4 0

)

and det(sI − D) = s2 + 4. The latter factor is included (according to Remark 9.17) in the denominator of
Co.

The observer gains were selected such that all the observer poles are placed at s = −2. In addition to
containing the disturbance poles, Co was required to have an integrator. The rest of the design of Co

was based on placing the zeros of 1 + CoPo at s = −2. No claim is made that this is an optimal design.
For comparison purposes, the same Co was used in the SP. The responses of the OP and the SP to the
sinusoidal disturbance in Equation 9.330 are shown in Figure 9.91.

It is apparent that while the SP cannot handle such a disturbance, the OP does a remarkable job.

9.8.5 Time-Delay Compensation for Unstable Plants

In this section, we briefly discuss which of the schemes presented in the preceding sections is applicable
to unstable plants with DTs and under what conditions.
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FIGURE 9.91 Response of sinusoidal input disturbance: (a) SP and (b) OP.
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In Section 9.8.3.1, it was pointed out that the SP cannot be applied to unstable plants. It has been shown
that the plant models in the minor feedback of the SP are the cause for the appearance of the poles of the
plant as poles of the closed loop. This fact was evident in the transfer function Gd in Equation 9.284. A
straightforward calculation of the closed-loop poles of a system with an SP shows that they consist of the
zeros of 1 + CoPo and the poles of the open-loop plant. Hence, it is concluded that the SP is internally
unstable if the plant is unstable [13]. An alternative way to arrive at the same conclusion is to look at the
IMC form of the SP in Figure 9.81. It is seen that the control signal, u, is fed in parallel to the plant and
to the model. Such a structure is clearly uncontrollable. The above conclusion applies to the modified SP
with the approximate inverse of the DT as well.

The modified predictor with internal pole–zero cancellations in Section 9.8.4.1 is in the same situation.
Although the poles of the minor feedback are canceled with its zeros and therefore do not show up in
Gd , for example, these poles are clearly internal modes of the closed loop. Upon noting that the poles of
the minor feedback are those of the plant, we may conclude that the modified predictor with the internal
cancelation will be internally unstable for unstable plants. It is possible, however, to make the modified
predictor cope with unstable plants. Fortunately enough, the minor feedback in the modified predictor
can be realized as a finite impulse response (FIR) system which does not possess poles. The derivation of
the FIR form of the minor feedback is outlined next. Recall that the minor feedback is

P1 − P. (9.331)

Upon substitution of the P1 in Equation 9.315 and P in Equations 9.277 and 9.278, Equation 9.331 can
be written explicitly as follows:

P1 − P = Ce−Aθ(sI − A)−1B −
∫ θ

0
Ce−AτB dτ − C(sI − A)−1Be−θs. (9.332)

With the aid of the following, easily verified identity:

Ce−Aθ(sI − A)−1B − C(sI − A)−1Be−θs = Ce−Aθ

∫ 0

−θ

eτ(sI−A)B dτ. (9.333)

Equation 9.332 becomes:

P1 − P = Ce−Aθ

∫ 0

−θ

eτ(sI−A)B dτ −
∫ θ

0
Ce−AτB dτ. (9.334)

Finally, inverse Laplace transformation of Equation 9.332 yields

v(t) = Ce−Aθ

∫ 0

−θ

e−AτBu(t + τ) dτ −
[∫ θ

0
Ce−AτB dτ

]
u(t), (9.335)

where v(t) is the output variable of the minor feedback (see Figure 9.79). Due to the finite limits of the
integral, the right-hand side of Equation 9.335 is an entire function that does not possess singularities.
Consequently, if the minor feedback is realized via Equation 9.335, the modified predictor with the
internal cancelations is applicable to unstable plants. By applying exactly the same arguments to the case
of the OP of Section 9.8.4.3 it may be concluded, at once, that the OP can be applied to unstable plants if
the predictor is realized in the integral form given in Equation 9.327.

9.8.5.1 Concluding Remarks

In this chapter, we have presented the basic features and the special properties of the SP. The advantages
and drawbacks of the SP were discussed. For the benefit of potential users, attention was paid to both
theoretical and practical aspects. Several modifications and alternative schemes that were developed over
the years to improve, in certain cases, on some of the properties of the SP were presented also. Due
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to the lack of space, however, we confined our attention to the continuous SISO case. As mentioned
in the introduction, vast material exists on this topic and it was impossible to cover many additional
contributions and extensions in a single chapter.
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Further Reading

For the interested reader, we mention a few references that contain additional results and extensions.
This section has been extended relative to the original article by mentioning significant new results
on the topic that appeared in the literature in later years since the publication of the original article.

Results on the sampled-data version of SP can be found in [13], where it was shown that while some
of the properties of the continuous SP carry over to its discrete counterpart, there are properties
unique to the sampled-data case.

A simple automatic tuner for SP with simple models and that simultaneously identifies the model and
tunes the primary controller can be found in [6].

In [14] a quite similar modification to the one described in Section 9.8.4.2, called filtered Smith predictor,
where a low-pass filter is placed in the main feedback (similarly to M(s) in Figure 9.89) was
suggested. Its design is based upon robustness issues.
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The modified scheme discussed in Sections 9.8.4.1 and 9.8.5 was generalized and received over the years
the name MSP (modified Smith predictor), see [15] where the state-space version of the MSP is
discussed as well.

Issues related to possible discretized approximations of the integral in Equation 9.335 were discussed
and analyzed in [16]. It was shown there that some discretization schemes may lead to practical
instabilities even when discretization interval approaches zero and methods for safe implementa-
tions of that integral were proposed.

Parametrizations of all stabilizing DTCs for systems with a single DT have been derived in [17] showing
that every stabilizing DTC can be recasted in an observer-predictor-based form. Furthermore it
has been shown that if the nominal plant is stable then independent of the DT the DTC guarantees
the same robustness level for uncertainties in the rational part of the plant as its primary controller
for the delay free plant.

Surprisingly, very few attempts to extend the SP to MIMO plants with multiple delays were reported in
the literature. A straightforward extension in which all DTs are eliminated from the closed-loop
characteristic polynomial was given in [18]. More general extensions which were shown to extend
various properties of the SISO SP and which were based on the dynamic resilience theory [19]
were developed in [20], see also [14]. Just recently [21–23] novel DTCs for MIMO plants with
multiple input and output DTs were obtained via new H2 solutions. Those novel DTCs contain
interchannel feedforward compensators alongside the conventional feedback predictor and are
shown to be the source for potential improvements in resilience and performance.

The stability properties of the multivariable SP were analyzed in [24].
An SP-like schemes, specific for plants with an integral mode, one which decouples tracking from

regulation, has been presented in [25] and another one with fewer number of tuning parameters
was suggested in [26]. See also [14].

9.9 Architectural Issues in Control System Design

Mario E. Salgado and Graham C. Goodwin
9.9.1 Introduction

Feedback is a rich and powerful tool for solving control problems. However, it is also well known that
feedback is not a panacea but comes with a set of associated limitations. Perhaps the best known of those
limitations is the Bode Sensitivity Integral, which, inter alia, states that for a stable loop

∫ ∞

−∞
log |So(jω)| dω = 0 (9.336)

where So(s) is the nominal sensitivity function. The implication of this result is that attempts to reduce the
sensitivity below 1 (0 dB) over a range of frequencies, must be accompanied by an increase in sensitivity
above 1 (>0 dB) at other frequencies.

This result has wide spread implications. For example, if one places feedback around a quantizer, then
one can shift the frequency content of the quantization error (or quantization noise) to frequency bands
where they have less impact, but the errors cannot be eliminated. This principle is used in CD mastering,
where quantization noise arising from the A/D converter is placed at high frequencies, beyond the range
of human hearing.

There are other well-known fundamental limitations in feedback loops [1,2]. For example, real non-
minimum phase zeros always lead to undershoot in the step response. Moreover, the magnitude of the
undershoot depends on the distance of the zero from the jω axis.
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In this chapter, we wish to place a caveat on the above facts, namely they apply to a given feedback
architecture. Frequently, one is stuck with the given architecture but, on other occasions, it is possible to
enrich the architecture to mitigate one or more of the fundamental limitations.

To be more specific, the fundamentals of linear feedback control theory are usually developed,
explained, and evaluated using the basic feedback structure shown in Figure 9.92. This architecture
is usually known as a one degree of freedom (ODOF) control loop.

In Figure 9.92, Dg (s) is the Laplace transform of the generalized disturbance signal dg (t). The plant
nominal model is denoted by Go(s), where Go(s) = Go1(s)Go2(s). If Go1(s) = 1, then dg (t) is an input
disturbance; on the other hand, if Go2(s) = 1, then dg (t) is an output disturbance. Also, Dm(s) is the
Laplace transform of dm(t), which models measurement noise; apart from this noisy characteristic, the
measurement is assumed to be ideal, that is, linear, precise, and highly responsive to changes in the
measured variable y(t).

Key issues in the ODOF loop are stability, closed-loop dynamics, reference tracking, disturbance
rejection, noise immunity, and robustness to plant modeling errors, among others. Furthermore, these
issues are closely connected to other topics such as fundamental constraints and performance limitations.
Indeed, the design of the feedback controller with transfer function C(s) needs to consider a complex
web of conflicting requirements. In fact, when using the ODOF architecture, this set of compromises
creates severe, sometimes unacceptable, performance constraints. We will briefly review how and why
these constraints appear. To do that, we first recall the definitions of loop sensitivity functions, and we
will then write the formulae quantifying the main performance indicators. During the discussion we will
frequently refer to the closed-loop bandwidth, we will use this expression as a synonym for the bandwidth
of the complementary sensitivity, To(s).

9.9.1.1 Loop Nominal Sensitivities and Design Objectives

The nominal sensitivities are defined as [1,2]

So(s) = 1

1 + Go(s)C(s)
= 1 − To(s) Sensitivity

To(s) = Go(s)C(s)

1 + Go(s)C(s)
= 1 − So(s) Complementary sensitivity

Suo(s) = C(s)

1 + Go(s)C(s)
= To(s)

Go(s)
Control sensitivity

Sio(s) = Go(s)

1 + Go(s)C(s)
= Go(s)So(s) Input sensitivity

Sdo(s) = Go2(s)

1 + Go(s)C(s)
= Go2(s)So(s) Disturbance sensitivity

+

Go1(s)C(s) Go2(s)

Dm(s)

Dg(s)

U(s) Y(s)R(s)
+

+
−

+

+

FIGURE 9.92 Basic control loop with noisy measurements and a generalized disturbance.
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9.9.1.1.1 Reference Tracking

Reference tracking performance is closely related to the expression

Y (s) = To(s)R(s) (9.337)

If we assume that the reference is a signal with significant energy only in the frequency band [0; ωr],
then good tracking requires that To(jω) ≈ 1 in that band, or equivalently that |So(jω)| ≈ 0 in that band.
It can then be concluded that the larger the bandwidth of To then, the broader range of signals can be
tracked with acceptable errors.

9.9.1.1.2 Disturbance Rejection

Disturbance rejection in the loop can be quantified using the expression

Y (s) = Sd(s)Dg (s) = So(s)Go2(s)Dg (s) (9.338)

Consider the case when the disturbance filtered through Go2(s) is a signal with significant energy only
in the frequency band [0; ωd], then good disturbance rejection is achieved if and only if |So(jω)| ≈ 0 in that
band, or equivalently if and only if To(jω) ≈ 1 in that band. The most demanding case is when Go2(s) =
1; otherwise, the fact that Go2(s) typically has lowpass characteristics, helps to reduce the equivalent
disturbance bandwidth. As in the tracking case, a broader range of disturbances can be rejected by having
a large closed-loop bandwidth.

9.9.1.1.3 Noise Immunity

The ability of the control loop to reject measurement noise is quantified by the expression

Y (s) = −To(s)Dm(s) (9.339)

Therefore, to obtain good immunity to noise with significant energy only in the frequency band
[ωn1, ωn2], it is necessary and sufficient that |To(jω)| ≈ 0 in that band. Given that the noise is typically a
high-frequency signal, this requirement is equivalent to setting an upper bound on the loop bandwidth.
This requirement defines the first conflict, since we have already seen that disturbance compensation
encourages us to use a wide bandwidth. One of the most frequent cases is when the measurement
signal contains a d.c. component; this bias usually originates in hardware offsets. This offset should be
compensated independently, on a case by case basis; otherwise an error will always appear, since we
cannot make To(0) = 0, because then we could not achieve zero tracking error for constant reference and
disturbance signals. The above reasoning assumes that the compensation of the bias is complete.

9.9.1.1.4 Control Limitations

The control signal is related to the loop inputs (reference, disturbance and noise) through the expression

U(s) = Suo(s)
(
R(s) − Go2(s)Dg (s) − Dm(s)

)
(9.340)

Ideally, u(t) should exhibit no significant peaks and have low energy in the high-frequency band. These
desirable features have to do with the need to avoid exceeding amplitude constraints, and also with the
need to avoid unnecessary actuator stress. Thus, ideally Suo should be lowpass. However, this desirable
feature will usually conflict with the reference tracking and disturbance rejection design objectives. This
conflict arises from the consequent need to have the bandwidth of To larger than that of Go(s). To illustrate
this phenomenon, consider the following simple example:

Go(s) = 2

(s + 1)(s + 2)
(9.341)

We also assume that we require to track a reference in the frequency band [0, 8] (rad/s), and to reject
a disturbance in the frequency band [0, 6] (rad/s). In this framework, a sensible choice for the bandwidth
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of To is approximately 20 (rad/s); for example, we could choose

To(s) = 400

s2 + 28s + 400
(9.342)

This choice leads to

Suo(s) = 200(s + 1)(s + 2)

s2 + 28s + 400
(9.343)

This sensitivity function exhibits a frequency response, which emphasizes the high-frequency compo-
nent of the input. Note that the sensitivity gain at d.c. is 1; however, at very high frequencies (much larger
than 20 (rad/s)), the gain approaches 200.

It is thus natural to conclude that the bandwidth of To should be bounded above.
A key observation regarding this issue is the following. Assume that we specify that the output y(t)

must follow a particular trajectory for t ≥ 0; then, for a given disturbance dg (t) there is one, and only one
input u(t), which allows one to achieve the specific trajectory for y(t).

9.9.1.1.5 Robustness to Modeling Errors

A basic idea in control system design is to use a nominal plant model, Go(s), to synthesize a controller, and
then to test that controller in conjunction with the real plant, or with a more realistic model (sometimes
called the calibration model), G(s). A basic requirement is that the controller C(s), designed for the
nominal model, also stabilizes the calibration model. This property is known as robust stability. However,
we also usually aim to have robust performance. This property means that the performance of the control
loop defined by the pair {G(s), C(s)} should be close to that of the nominal loop defined by the pair
{Go(s), C(s)}. We will next examine how we can translate these robustness requirements into sensitivity
constraints.

We first assume that the nominal model and the calibration model are connected by the relation

G(s) = Go(s)(1 + GΔ(s)) (9.344)

where GΔ(s) is known as the multiplicative modeling error (MME).
This connection can be appreciated by examining some common situations, which are illustrated in

Table 9.11, where only stable models are considered.
The examples in Table 9.11 illustrate typical features of modeling errors: the multiplicative error is

small at low frequencies, and becomes more significant as the frequency increases. This characteristic has
implications on design, as described below.

TABLE 9.11 Examples of Multiplicative Modeling Errors

Go(s) G(s) GΔ(s)

W(s) W(s)
1

Ts + 1

−Ts

Ts + 1

W(s) W(s)e−τs e−τs − 1

W(s) W(s)
b2

s2 + 2abs + b2
−s(s + 2ab)

s2 + 2abs + b2

W(s)

(−τs + 2k

τs + 2k

)k
W(s)e−τs e−τs

(−τs + 2k

τs + 2k

)−k
− 1
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The achieved sensitivity S(s) and the nominal sensitivity are related by

S(s) = 1

1 + G(s)C(s)
= So(s)

1 + To(s)GΔ(s)
= SΔ(s)So(s) (9.345)

This result has been obtained by using Equation 9.344. The expression (Equation 9.345) leads to the
conclusion that the nominal design will achieve robust performance if ||SΔ(jω)| − 1| � 1, where

SΔ(s) = 1

1 + To(s)GΔ(s)
(9.346)

A sufficient condition is |To(jω)GΔ(jω)| � 1. This condition can be met if |To(jω)| is small over the
range of frequencies where |GΔ(jω)| is significant. Given that the MME is usually significant only at high
frequencies, we have that, to achieve robustness, the loop bandwidth must be bounded from above.

9.9.1.1.6 Summary

The design objectives described above conform to a complex web of conflicting constraints on the control
loop bandwidth. These are summarized in Table 9.12.

The problem is that, at this stage, we have only one degree of freedom to satisfy those conflicting
requirements. We next examine how these conflicts can be more readily dealt with by enriching the
control architecture with additional degrees of freedom.

9.9.2 Reference Feedforward

One possible strategy is to deal with reference tracking as a separate problem. We first design the feedback
controller C(s) taking into account only objectives O.2 to O.5 in Table 9.12. This process leads to a specific
To(s). Then a new block with transfer function H(s) is introduced [2,3] as shown in Figure 9.93.

From Figure 9.93 we see that reference tracking satisfies

Y (s) = To(s)RH (s) = To(s)H(s)R(s) (9.347)

Thus, given To(s) and the reference spectrum, by choosing an appropriate H(s) we can shape the
tracking performance, without modifying the ability of the loop to reject disturbance, the noise immunity,
or the performance robustness. The selected H(s) must be, at least, proper and stable.

Since the tracking properties are defined by the product To(s)H(s), we should choose an H(s) that
satisfies the above constraints and compensates the limited bandwidth of To(s). This compensation is
basically achieved by making H(jω)T(jω) ≈ 1 over the desired closed-loop bandwidth. In other words,
H(s) must be chosen to be a good inverse of To(s) in the desired bandwidth.

TABLE 9.12 Conflicting Requirements on the Closed-Loop Bandwidth

Objective Description Key Sensitivity Loop Bandwidth

O.1 Reference tracking To(s) Large

O.2 Disturbance compensation Sdo(s) Large

O.3 Control limitations Suo(s) Reduced

O.4 Noise immunity To(s) Reduced

O.5 Robustness So(s) Reduced



Design Methods 9-151

R(s)

−

U(s)

+
Go2(s)

Dg(s)

C(s)

+

+

+

+
H(s)

Dm(s)

RH(s)
Go1(s)

Y(s)

FIGURE 9.93 Alternative 1—Control loop with reference feedforward.

To illustrate the basic ideas in this approach, we will consider an example. Assume that the nominal
plant model is given by

Go(s) = 2

(s + 1)(s + 2)
(9.348)

Further, assume that, due to noise and robustness constraints, the maximum closed loop bandwidth is
limited to 3 rad/s. However, the desired reference signal has significant energy in the frequency band
[0; 8] rad/s. It is then requested to choose a convenient H(s).

We first choose To(s), with the maximum possible bandwidth, as

To(s) = 9

s2 + 4.5s + 9
(9.349)

Note that with this choice of To(s), the resulting controller is biproper, and the loop is internally stable.
Given that we need a bandwidth of Y (s)/R(s) which is, at least, equal to 8 rad/s, we choose

To(s)H(s) = 400

s2 + 28s + 400
=⇒ H(s) = 400(s2 + 4.5s + 9)

9(s2 + 28s + 400)
(9.350)

By inspection, we conclude that this choice of H(s) satisfies the given design requirements. As a further
comment, we note that the underlying philosophy (enhancing reference tracking in a desired frequency
range, using a high-pass filter) is similar to that used in the Dolby technique of audio processing.

A second possible architecture aimed at dealing with the reference tracking objective is shown in
Figure 9.94. The design block in this case, is F(s); this function must be, at least, stable and proper.

RF(s)

U(s)R(s)

+
−

Dm(s)

+

+

+

+

+ Y(s)
Go2(s)Go1(s)

F(s)

C(s)

Dg(s)

+

FIGURE 9.94 Alternative 2—Control loop with reference feedforward.



9-152 Control System Fundamentals

100 101 102
−30

−20

−10

0

10

Frequency (rad/s)

M
ag

ni
tu

de
 (d

B)

FIGURE 9.95 Bode plot (magnitude) of the term Go(s)F(s) − 1.

From Figure 9.94, we conclude that the tracking performance is quantified by the expressions

Y (s) = To(s)R(s) + Sio(s)F(s)R(s) = R(s) + (Go(s)F(s) − 1)So(s)R(s) (9.351)

E(s) = R(s) − Y (s) = (1 − Go(s)F(s))So(s)R(s) (9.352)

Thus, the ideal choice of F(s) would be Go(s)−1; however, this selection will typically yield an improper
transfer function. Hence, the basic idea is to choose F(s) so as to make |Go(jω)F(jω) − 1| small at the
frequencies where the spectrum |So(jω)R(jω)| is significant. Given that Go(s) is typically lowpass, then
F(s) will typically be high pass. If we now consider the same example developed for the first proposed
reference feedforward architecture, a sensible choice would be

F(s) = 200(s + 1)(s + 2)

s2 + 28s + 400
(9.353)

To examine the effect of this choice, we plot the (magnitude) Bode diagram of the term Go(s)F(s) − 1.
This is shown in Figure 9.95, where we can verify that the feedforward block contributes with a gain
smaller than 1 in the tracking error expression (Equation 9.352), in the frequency band [0; 8] (rad/s).

Faster reference tracking can be achieved by extending the frequency band in which H(s) is a good
inverse of To(s) (first scheme) or where F(s) is a good inverse of Go(s) (second scheme). This will not
affect the ability of the controller C(s) with respect to disturbance compensation, noise immunity, or
performance robustness. However, as anticipated, it does affect the requirement on the plant input u(t).
To gain insight into this problem, we compute the plant input for both alternatives:

First scheme U(s) = Suo(s)RH (s) = Suo(s)H(s)R(s) (9.354)

Second scheme U(s) = Suo(s)R(s) + So(s)F(s)R(s) (9.355)

Recall that C(s) should be designed to achieve a limited bandwidth To(s); this design most likely yields
a modest plant input. However, in the above expressions, this situation changes due to the intervention of
the high-pass transfer functions H(s) and F(s). Then, in both cases, the demand on the plant input would
increase as the desired bandwidth for reference tracking increases. (“There is no such a thing as a free
lunch”). The main reflection on this issue is that there is no way in which we can improve the reference
tracking without negatively impacting on the size of plant input.

9.9.3 Disturbance Rejection----Disturbance Feedforward

A second strategy aimed at resolving the conflicting design requirements is to add an open-loop mecha-
nism, which preempts, to a large extent, the impact of the disturbance on the process output [2,4,5]. The
basic idea is shown in Figure 9.96.
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Go2(s)
+ −

C(s)

+

+

U(s)

Gf (s)
Dg(s)

+

+

Y(s)
Go1(s)R(s)

FIGURE 9.96 Control loop with disturbance feedforward.

We can see that the effect of the disturbance on the output can now be expressed as

Y (s) = (1 + Go1(s)Gf (s))Sdo(s)Dg (s) = (Go1(s)−1 + Gf (s))Sio(s)Dg (s) (9.356)

It is thus clear that the ideal choice is

Gf (s) = −Go1(s)−1 (9.357)

That is, Gf (s) should be equal to the negative inverse of Go1(s). However, this would normally yield an
improper, noncausal, and unstable transfer function. We consider, the following example to illustrate this
point

Go1(s) = −s + 2

s2 + 1.2s + 0.5
=⇒ Gideal

f (s) = − s2 + 1.2s + 0.5

−s + 2
(9.358)

Here, the ideal Gf (s) is both improper and unstable.
Careful analysis of Equation 9.356 suggests that a more modest choice of Gf (s) will suffice to provide

significant disturbance pre-compensation. The appropriate design approach is to choose Gf (s), so that
|1 + Go1(jω)Gf (jω)| � 1 in the frequency band where |So(jω)Dg (jω)| is significant. If this criterion is
satisfied, then we achieve a net gain over the case when no disturbance feedforward is used, that is, when
Gf (s) = 0.

When using this architecture, the cost/benefit ratio must be carefully evaluated. There are two issues to
consider: the financial cost (initial and maintenance) of a new measurement subsystem, including sensor,
signal adaptation and signal transmission, and the introduction of additional measurement noise. The
preceding analysis was made under the assumption of a perfect disturbance measurement. If measurement
noise is considered on the disturbance, then a better description of the situation is the one shown in
Figure 9.97.

Gf (s)

+ −
C(s)

+

+

U(s)

+
+

Dg(s)

Dmg(s)

+

+
Go1(s) Go2(s)

Y(s)R(s)

FIGURE 9.97 Control loop with noisy disturbance feedforward.
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When disturbance measurement noise is added, the output is given by

Y (s) = (Go1(s)−1 + Gf (s))Sio(s)Dg (s) + Sio(s)Gf (s)Dmg (s) (9.359)

The impact of the additional term may be significant, given that the measurement noise in the loop
forward path is typically a wide-band disturbance. The situation is made worse by the fact that Gf (s) is
typically high pass or, at least, band pass with a pass band in the high frequency region. On the other
hand, Sio(s) is typically band pass, with a pass band in the low-frequency region. Therefore, Sio(s) provides
measurement noise attenuation.

We will next consider the impact of the disturbance feedforward mechanism on the plant input u(t).
The input, assuming Dmg (s) = 0, is now described by

U(s) = −Suo(s)Go2(s)Dg (s) + So(s)Gf (s)Dg (s)︸ ︷︷ ︸
feedforward contribution

(9.360)

If we assume that Gf (s) is chosen close to the ideal given in Equation 9.357, we have

U(s) ≈ −
(

Suo(s)Go2(s) + So(s)

Go1(s)

)
Dg (s) = −(So(s) + To(s))

Dg (s)

Go1(s)
= Dg (s)

Go1(s)
(9.361)

It is then clear from Equation 9.361 (and on noting that Go1(s) is typically lowpass) that perfect distur-
bance rejection will demand enhanced control effort, which is a negative byproduct of this architecture.

In summary, disturbance feedforward is an open-loop technique, which pre-compensates a disturbance
at the point it enters the loop. This strategy will not adversely affect other design objectives, such as
tracking, noise immunity, and robustness. Morever, it can be superimposed on a pre-existing ODOF
control loop.

9.9.4 Disturbance Rejection: Cascade Architecture

The disturbance feedforward architectures presented in the previous section require that the disturbance
be measured. This architecture is also based on an open-loop philosophy, which means that any inaccuracy
in the model for Go1(s) will translate into erroneous feedforward action. If, however, another plant internal
variable is available to be measured, another architecture can be devised to achieve a similar goal, that is,
to compensate the disturbance to a significant extent, before it produces a deleterious effect at the plant
output.

Consider the architecture shown in Figure 9.98, where V (s) is the Laplace transform of a plant inner
variable, v(t). Inspection of that architecture reveals two main differences with the disturbance feedfor-
ward scheme shown in Figure 9.96, namely

• Cascade control is based upon a closed-loop strategy

Y(s)R(s)
Go1(s) Ga(s) Gb(s)

Go2(s)Dg(s)

C2(s)C1(s)
U1(s) V(s)+

+++ − −

FIGURE 9.98 Cascade control loop.
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• Cascade control design aimed at improving disturbance rejection needs to be carried out in con-
junction with other design objectives. It is clear that the primary controller C1(s) cannot be designed
if the secondary controller C2(s) is not known in advance.

To build a step-by-step design strategy, we first derive the key relationships in the cascade architecture
shown in Figure 9.98.

V (s) = Go1(s)Ga(s)C2(s)

1 + Go1(s)Ga(s)C2(s)︸ ︷︷ ︸
To2(s)

U1(s) + 1

1 + Go1(s)Ga(s)C2(s)︸ ︷︷ ︸
So2(s)

Ga(s)Dg (s) (9.362)

The above expression gives rise to an equivalent control loop, which is shown in Figure 9.99.
The benefits of the cascade architecture are now evident from Figure 9.99, namely it can be seen that

the disturbance can be attenuated by the impact of C2(s) in the inner sensitivity function So2(s). The
design goal is then to choose the bandwidth of the inner loop so that it covers the frequency band where
|Dg (jω)| is significant.

We can now sketch the full design procedure for the cascade architecture

Step 1 Design C2(s) to achieve the best possible disturbance compensation
Step 2 Compute the blocks appearing in Figure 9.99
Step 3 Design C1(s) by considering the following equivalent plant:

Geq(s) = To2(s)Gb(s) (9.363)

The design should focus on reference tracking, noise immunity, and robustness.
Step 4 Evaluate the performance of the complete control system design. If not satisfactory, then go back

to Step 1 or Step 3. If no significant improvement is achieved, then go to Step 5.
Step 5 Add reference feedforward and/or disturbance feedforward, as necessary, and concentrate on the

design of C1(s) to achieve the remaining design objectives.
Step 6 If the resulting performance is still unsatisfactory, then rethink the problem, and possibly consider

a process redesign.

We next write the expressions for Y (s) and U1(s), as

Y (s) = To1(s)R(s) + Sd1(s)So2(s)Dg (s) (9.364)

U1(s) = Suo1(s)R(s) − Suo1Go2(s)So2(s)Dg (s) (9.365)

+ +

+

Dg(s)

V(s) Y(s)R(s)

−

Go2(s)

To2(s)

So2(s)

Ga(s)C1(s)
U1(s)

Ga(s)
Gb(s)

FIGURE 9.99 Equivalent cascade control loop.
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where

To1(s) = C1(s)To2(s)Gb(s)

1 + C1(s)To2(s)Gb(s)
(9.366)

Sd1(s) = So1(s)Go2(s) (9.367)

Suo1(s) = C1(s)

1 + C1(s)To2(s)Gb(s)
(9.368)

The benefits of using the cascade architecture must be weighed against the cost of an additional
measurement, and the deleterious effect on performance of the additional measurement noise.

9.9.5 Case Studies

In this section, we will present three case studies, which illustrate the benefits that the architectures
described above can provide. One of the key issues regarding feedforward and cascade control is that they
are especially effective when their action is significantly faster than the feedback loop (in the feedforward
strategy) or than the outer or main loop (in the cascade strategy). Otherwise, their contribution may
possibly be overshadowed by the associated implementation costs.

The first case is simple, but it is a widespread application of cascade control. The second case is a more
complex case where several of the ideas presented above can be used to the designer’s advantage.

9.9.5.1 Cascade Control in Valves

We assume that we want to control a variable y(t) by manipulating the flow rate q(t). The simplest
architecture for achieving this is the one shown in part (a) of Figure 9.100. Note that the controller
output commands the valve opening; however, in this case, changes in the supply pressure ps(t) will yield
different flow rates for the same value of u(t) and thus affect the control goal.

An alternate cascade architecture is shown in part (b) of Figure 9.100. A second loop has been intro-
duced to control the flow rate q(t). This loop requires that one also measure q(t), denoted by qm(t) in the
figure. Note that the first controller output provides the reference for the second loop.

If we assume that the flow q(t) feeds a process with slow dynamics, such as a large reactor tank or a large
furnace, then the benefits of the cascade architecture are evident. When the ODOF control loop is used,
the disturbance can be compensated only when it impacts the output, after going through the reactor or
the furnace, and that will introduce a significant lag. If we build the cascade architecture, then there will
be a preemptive action to compensate the disturbance before it enters the reactor or the furnace.

In this particular case, it is advisable to use cascade, since the inner loop is a flow control loop. The
latter loop is well understood, easy to design and, in general, not very expensive. The above strategy will
be part of the proposed control architecture in the next case.

q(t) q(t)

+
−

+ –

r(t)

u(t)u(t)
Supply
pressure

+ −
C(s)

(a) (b)

ps(t)ps(t)

ym(t)

ym(t) r(t) qm(t)

C2(s)

C1(s)

FIGURE 9.100 Example of application of cascade control.
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C(s)
+
_

qi(t)
ci(t)

qu(t)

qo(t)
co(t)

ps(t)

cref

cu

FIGURE 9.101 Mixing stirred tank.

9.9.5.2 Concentration Control in a Mixing Stirred Tank

We will next examine the case of a mixing stirred tank, as shown in Figure 9.101.
In the process shown in the figure, there is an unknown inflow qi(t) having an unknown concentration

ci(t) of a component X. The system aims to obtain a specified concentration cref of X in the outflow qo(t),
that is, it is desirable that co(t) = cref ∀t ≥ 0. To achieve this goal, a controlled flow qu(t) with known
constant concentration cu is added. It is assumed that ci(t) ≤ cref ≤ cu. Figure 9.101 shows a ODOF
control architecture, aimed at achieving the specified goal. In this setting, qi(t), ci(t) and the supply
pressure ps(t) are disturbances. The main difficulty is that big changes in those variables will be detected
only once their effect appears on the output concentration co(t).

To improve the rejection of the disturbances, we can introduce feedforward and cascade structures as
shown in Figure 9.102.

The way in which these structures work is as follows:

Cascade To compensate the effect of changes in the supply pressure ps(t), an inner loop with a controller
C2(s) is introduced, to ensure that the command issued by C1(s) has direct authority on the flow
qu(t).

+
−

+
+

C1(s)
Gf (s)

C2(s)

+
−

qo(t)
co(t)

qu(t)

ps(t)

cu
qi(t)
ci

cref

FIGURE 9.102 Feedforward and cascade control for the mixing stirred tank.
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Feedforward Changes in qi(t) and in ci(t) are fed to a block Gf (s), which additively adjusts the value of
the reference for the inner control loop for qu(t). In this case, two additional measurements are
needed, one to measure the incoming flow and the other to measure the concentration of X in that
flow.

9.9.5.3 Centerline Gauge Control in Steel Reversing Mills

A typical reversing mill is shown schematically in Figure 9.103.
The basic function of the mill is to change the thickness of the steel strip as well as to make adjustments

to the metallurgical properties.
There are many industrial control issues in these systems. A key point is that the control system

architecture plays a fundamental role in achieving high performance. We briefly describe two such issues
below.

1. Measurement delay
The centerline strip thickness is typically measured by a radiation gauge placed downstream from
the mill, say displaced from the roll gap by about one meter. If the strip is traveling at 60 (km/h),
then this displacement amounts to a 60 (ms) delay. Due to robustness considerations, this delay
effectively limits the closed-loop bandwidth to about 100 (rad/s). This constraint severely limits
achievable performance. A well-known architectural change is to add an extra measurement of
the roll force via a strain gauge. We next show how we can use this additional measurement to
improve the performance of the controller.
The mill can be approximately modeled by the spring equation

f (t) = M[h(t) − σ(t)] (9.369)

where f (t): force; σ(t): unloaded roll gap; h(t): output thickness; and M: mill modulus (constant).
Then, an estimate of the exit thickness is

ĥ(t) = f (t)

M
+ σ(t) (9.370)

Back-up rolls Unloaded gap
σ(t)

Work rolls

h(t)

Uncoiler Coiler

Coiler motor
ic(t)

Uncoiler motor
iu(t)

ωu(t) ωc(t)

FIGURE 9.103 Reversing mill schematic representation.
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+

Feedforward Reversing
mill Force

measurement

Radiation gauge
measurement of thickness

Reversing
motor control

Roll gap

Primary
feedback control

Integral action

+

FIGURE 9.104 Block diagram of the control architecture for the reversing mill.

Typically, the estimate provided by Equation 9.370 is used for fast disturbance rejection whilst the
the delayed thickness provided by the radiation gauge is used for steady-state error compensation.

2. Strip stretch compensation
One might believe that improved measurement architectures, such as the one described in (1)
might be sufficient to achieve very wide bandwidth control. However, when this is tried, then one
observes a limit to the achievable bandwidth. This limit has a mathematical description (see [2]).
The phenomenon also has a nice physical explanation, as follows
– We first note that strip tension plays a key role in the thickness reduction process; the higher

the tension, then the greater the reduction.
– Now if we notice that the exit thickness is too high, then we would close the roll gap.
– Then less metal exits the mill at constant exit strip velocity.
– Then the velocity of the strip entering the mill must fall.
– Due to inertia of the uncoiler, its radial velocity remains substantially unchanged.
– Hence, the tension in the strip will drop and the exit thickness goes up (contrary what was

trying to be achieved).
It turns out that the above limitation (known as the hold-up effect) is fundamental and no ODOF
architecture can overcome the problem. However, this does not mean that an alternative architec-
ture will not help.
Indeed, a little thought indicates that one should try to slow down the uncoiler whenever the roll
gap is reduced. This can be easily achieved by using feedforward into the uncoiler motor current
(so that when the roll gap diminishes, then the uncoiler current goes up). Indeed, one can adjust
the feedforward gain to completely remove the hold-up effect. The final control architecture is
then as in Figure 9.104.
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10.1 Discrete-Time Systems

10.1.1 Introduction to Digital Control

Rapid advances in digital system technology have radically altered the control system design options.
It has become routinely practicable to design very complicated digital controllers and to carry out the
extensive calculations required for their design. These advances in implementation and design capability
can be obtained at low cost because of the widespread availability of inexpensive and powerful digital
computers and their related devices.

A digital control system uses digital hardware, usually in the form of a programmed digital computer, as
the heart of the controller. A typical digital controller has analog components at its periphery to interface
with the plant. It is the processing of the controller equations that distinguishes analog from digital
control.

In general, digital control systems have many advantages over analog control systems. Some of the
advantages are

1. Low cost, low weight, and low power consumption
2. Zero drift of system parameters despite wide variations in temperature, humidity, and component

aging
3. High accuracy
4. High reliability and ease of making software and design changes

The signals used in the description of digital control systems are termed discrete-time signals. Discrete-
time signals are defined only for discrete instants of time, usually at evenly spaced time steps. Discrete-time
computer-generated signals have discrete (or quantized) amplitudes and thus attain only discrete values.
Figure 10.1 shows a continuous amplitude signal that is represented by a 3-bit binary code at evenly
spaced time instants. In general, an n-bit binary code can represent only 2n different values. Because of
the complexity of dealing with quantized signals, digital control system design proceeds as if the signals
involved are not of discrete amplitude. Further analysis usually must be performed to determine whether
the proposed level of quantization is acceptable.

A discrete-time system is said to be linear if it satisfies the principle of superposition. Any linear
combination of inputs produces the same linear combination of corresponding output components. If a
system is not linear, then it is termed nonlinear. A discrete-time system is step invariant if its properties do

10-1
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000 

001 

010 

011 

100 

101 

110 

111 

x(t) 

Δt Δt Δt Δt Δt t 

FIGURE 10.1 An example of a 3-bit quantized signal.

not change with time step. Any time shift of the inputs produces an equal time shift of every corresponding
output signal.

Figure 10.2 shows a block diagram of a typical digital control system for a continuous-time plant.
The system has two reference inputs and five outputs, two of which are measured directly by analog
sensors. The analog-to-digital converters (A/D) sample the analog sensor signals and produce equivalent
binary representations of these signals. The sampled sensor signals are then modified by the digital
controller algorithms, which are designed to produce the necessary digital control inputs u1(k) and u2(k).
Consequently, the control inputs u1(k) and u2(k) are converted to analog signals u1(t) and u2(t) using
digital-to-analog converters (D/A). The D/A transforms the digital codes to signal samples and then
produces step reconstruction from the signal samples by transforming the binary-coded digital input to
voltages. These voltages are held constant during the sampling period T until the next sample arrives.
This process of holding each of the samples is termed sample and hold. Then the analog signals u1(t) and

A/D

D/A
with
S/H

D/A
with
S/H

Digital 
computer Plant Outputs 

Sensor 

Disturbances Reference inputs 

A/D

u1(k) u1(t ) 

u2(k) u2(t ) 

Sensor 

FIGURE 10.2 A digital control system controlling a continuous-time plant.
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u2(t) are applied to control the behavior of the plant. Not shown in Figure 10.2 is a real-time clock that
synchronizes the actions of the A/D, D/A, and shift registers.

Of course, there are many variations on this basic theme, including situations where the signals of the
analog sensors are sampled at different sampling periods and where the system has many controllers with
different sampling periods. Other examples include circumstances where (1) the A/D and D/A are not
synchronized; (2) the sampling rate is not fixed; (3) the sensors produce digital signals directly; (4) the
A/D conversion is different from sample and hold; and (5) the actuators accept digital commands.

10.1.2 Discrete-Time Signals and Systems

A discrete-time signal f (k) is a sequence of numbers called samples. It is a function of the discrete variable
k, termed the step index. Figure 10.3 shows some fundamental sequences, all having samples that are
zero prior k = 0. In this figure, the step and the ramp sequences consist of samples that are values of the
corresponding continuous-time functions at evenly spaced points in time. But the unit pulse sequence
and the unit impulse function are not related this way, because the pulse has a unit sample at k = 0 while
the impulse is infinite at t = 0.

10.1.2.1 z-Transformation

The one-sided z-transform of a sequence f (k) is defined by the equation

Z[f (k)] = F(z) =
∞∑

k=0

f (k)z−k

It is termed one-sided, because samples before step zero are not included in the transform. The z-transform
plays much the same role in the analysis of discrete-time systems as the Laplace transform does with

2 
4 

(b) 

1 

(a) 1, k = 0
0, otherwise

–1 1 step k

δ(k) =

2 3 4 5 

1 

0, k = –1,  –2,  –3, …
1, k = 0, 1, 2, …

–1 1 step k 

u(k) =

2 3 4 5 

(c) (d) f (k) = ku(k)

1 step k2 3 4 5 –1 –1 1 step k 2 3 4 5 

1 

–1 

(e) f (k) = cos (bk T + θ) u(k)

–1 1 2 

3 4 5 

step k 

f (k) =  exp (–akT ) u(k)
=  (exp (–aT ))ku(k)
=  c ku(k)

FIGURE 10.3 Some fundamental sequences. (a) unit pulse; (b) unit step; (c) unit ramp; (d) geometric (or exponen-
tial); and (e) sinusoidal.



�

�

�

�

� �

10-4 Control System Fundamentals

TABLE 10.1 z-Transform Pairs

f (k) F(z)

δ(k), unit pulse 1

u(k), unit step
z

z − 1

ku(k)
z

(z − 1)2

cku(k)
z

z − c

kcku(k)
cz

(z − c)2

u(k) sin Ωk
z sin Ω

z2 − 2z cos Ω + 1

u(k) cos Ωk
z(z − cos Ω)

z2 − 2z cos Ω + 1

u(k)ck sin Ωk
z(c sin Ω)

z2 − (2c cos Ω)z + c2

u(k)ck cos Ωk
z(z − c cos Ω)

z2 − (2c cos Ω)z + c2

continuous-time systems. Important sequences and their z-transforms are listed in Table 10.1, and
properties of the z-transform are summarized in Table 10.2.

A sequence that is zero prior to k = 0 is recovered from its z-transform via the inverse z-transform

f (k) = 1

2πj

∮
F(z)zk−1dz

in which the integration is performed in a counterclockwise direction along a closed contour on the
complex plane. In practice, the integrals involved are often difficult; so other methods of inversion have

TABLE 10.2 z-Transform Properties

Z[f (k)] =
∞∑

k=0

f (k)z−k = F(z)

Z[cf (k)] = cF(z) c a constant

Z[f (k) + g(k)] = F(z) + G(z)

Z[kf (k)] = −z
dF(z)

dz
Z[ckf (k)] = F(z/c) c a constant

Z[f (k − 1)] = f (−1) + z−1F(z)

Z[f (k − 2)] = f (−2) + z−1f (−1) + z−2F(z)

Z[f (k − n)] = f (−n) + z−1f (1 − n) + z−2f (2 − n) + · · · + z1−nf (−1) + z−nF(z)

Z[f (k + 1)] = zF(z) − zf (0)

Z[f (k + 2)] = z2F(z) − z2f (0) − zf (1)

Z[f (k + n)] = znF(z) − znf (0) − zn−1f (1) − · · · − z2f (n − 2) − zf (n − 1)

f (0) = lim
z→∞ F(z)

If lim
k→∞ f (k) exists and is finite, lim

k→∞ f (k) = lim
z→1

[
z − 1

z
F(z)

]

Z

⎡
⎣ k∑

i=0

f1(k − i)f2(i)

⎤
⎦= F1(z)F2(z)
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been developed to replace the inverse transform calculations. For rational F(z), sequence samples can be
obtained from F(z) by long division. Another method of recovering the sequence from its z-transform
is to expand F(z)/z in a partial fraction expansion and use appropriate transform pairs from Table 10.1.
Rather than expanding a z-transform F(z) directly in a partial fraction, the function F(z)/z is expanded so
that terms with a z in the numerator result. Yet another method of determining the inverse z-transform
that is well suited to digital computation is to construct a difference equation from the rational function
and then solve the difference equation recursively.

10.1.2.2 Difference Equations

Analogous to the differential equations that describe continuous-time systems, the input–output behavior
of a discrete-time system can be described by difference equations. Linear discrete-time systems are
described by linear difference equations. If the coefficients of a difference equation are constant, the
system is step invariant and the difference equation has the form

y(k + n) + an−1y(k + n − 1) + an−2y(k + n − 2) + · · · + a1y(k + 1) + a0y(k)

= bmr(k + m) + bm−1r(k + m − 1) + · · · + b1r(k + 1) + b0r(k), (10.1)

where r is the input and y is the output. The order of the difference equation is n, which is the number of
past output steps that are involved in calculating the present output:

y(k + n) = −an−1y(k + n − 1) − an−2y(k + n − 2) − · · · − a1y(k + 1) − a0y(k)︸ ︷︷ ︸
n terms

+bmr(k + m) + bm−1r(k + m − 1) + · · · + b1r(k + 1) + b0r(k)︸ ︷︷ ︸
m+1 terms

Returning to Equation 10.1, a discrete-time system is said to be causal if m ≤ n so that only past and
present inputs, not future ones, are involved in the calculation of the present output. An alternative
equivalent form of the difference equation is obtained by replacing k by k − n in Equation 10.1.

Difference equations can be solved recursively using the equation and solutions in the previous steps
to calculate the solution in the next step. For example, consider the difference equation

y(k) − y(k − 1) = 2u(k) (10.2)

with the initial condition y(−1) = 0 and u(k) = 1 for all k. Letting k = 0 and substituting into the differ-
ence equation gives

y(0) − y(−1) = 2u(0),

y(0) = 2.

Letting k = 1 and substituting gives

y(1) − y(0) = 2u(1),

y(1) = 2 + 2 = 4.

At Step 2,

y(2) − y(1) = 2,

y(2) = 6,

and so on.
A difference equation can be constructed using a computer by programming its recursive solution.

A digital hardware realization of the difference equation can also be constructed by coding the signals
as binary words, storing present and past values of the input and output in registers, and using binary
arithmetic devices to multiply the signals by the equation coefficients and adding them to form the output.
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10.1.3 z-Transfer Function Methods

Solutions of linear step-invariant difference equations can be found using z-. For example, consider the
single-input, single-output system described by Equation 10.2. Using z-transformation,

Y (z) − z−1Y (z) = 2z

z − 1
,

Y (z)

z
= 2z

(z − 1)2 = k1

(z − 1)
+ k2

(z − 1)2

Y (z) = 2z

(z − 1)
+ 2z

(z − 1)2 ,

and
y(k) = 2u(k) + 2ku(k).

Checking,

y(0) =2,

y(1) =2 + 2 = 4,

y(2) =2 + 4 = 6,

which agrees with the recursive solution in the previous example.
In general, an nth-order linear discrete-time system is modeled by a difference equation of the form

y(k + n) + an−1y(k + n − 1) + · · · + a1y(k + 1) + a0y(k) = bmr(k + m) + · · · + b1r(k + 1) + b0r(k)

or

y(k) + an−1y(k − 1) + · · · + a1y(k − n + 1) + a0y(k − n)

= bmr(k + m − n) + · · · + b1r(k − n + 1) + b0r(k − n),

which has a z-transform given by

Y (z) + an−1[z−1Y (z) + y(−1)] + · · · + a1[z−n+1Y (z) + z−n+2y(−1) + · · · + y(−n + 1)]
+ a0[z−nY (z) + z−n+1y(−1) + · · · + y(−n)]

= bm[z−n+mR(z) + z−n+m−1r(−1) + · · · + r(−n + m − 1)] + · · ·
+ b0[z−nR(z) + z−n+1r(−1) + · · · + r(−n)],

Y (z) = bmzm + bm−1zm−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
R(z)

︸ ︷︷ ︸
Zero-state component

+
(Polynomial in z of degree n or less with coefficients
dependent on initial conditions)

zn + an−1zn−1 + · · · + a1z + a0︸ ︷︷ ︸
Zero-input component

.

If all the initial conditions are zero, the zero-input component of the response is zero. The zero-state
component of the response is the product of the system z-transfer function

T(z) = bmzm + bm−1zm−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0



�

�

�

�

� �

Discrete-Time Systems 10-7

R(z) = 1

r(k) = δ(k)
T(z)

Ypulse(z) = R(z) T(z) = T(z)

ypulse(k)

FIGURE 10.4 Unit pulse response of a discrete-time system.

and the z-transform of the system input:

Yzero state(z) = T(z)R(z).

Analogous to continuous-time systems, the transfer function of a linear step-invariant discrete-time
system is the ratio of the z-transform of the output to the z-transform of the input when all initial
conditions are zero.

It is also common practice to separate the system response into natural (or transient) and forced (or
steady-state) components. The natural response is a solution of the homogeneous difference equation.
This is the solution of the difference equation due to initial conditions only with all independent inputs
set to zero. The remainder of the response, which includes a term in a form dependent on the specific
input, is the forced response component.

10.1.3.1 Stability and Response Terms

As shown in Figure 10.4, when the input to a linear step-invariant discrete-time system is the unit pulse
δ(k) and all initial conditions are zero, the response of the system is given by

Ypulse(z) = R(z)T(z) = T(z).

A linear step-invariant discrete-time system is said to be input–output stable if its pulse response
decays to zero asymptotically. This occurs if and only if all the roots of the denominator polynomial of
the transfer function are inside the unit circle in the complex plane.

Figure 10.5 shows pulse responses corresponding to various pole (denominator root) locations.
Sequences corresponding to pole locations inside the unit circle decay to zero asymptotically; hence
they are stable. Systems with poles that are outside the unit circle or repeated on the unit circle have
outputs that expand with step and are thus unstable. Systems with nonrepeated poles on the unit circle
have responses that neither decay nor expand with step and are termed marginally stable. Methods for
testing the location of the roots of the denominator polynomial of a transfer function are presented in
Chapter 8 of this handbook.

A pole–zero plot of a z-transfer function consists of Xs denoting poles and Os denoting zeros in the
complex plane. The z-transfer function

T(z) = 3z + 3z3

4z4 + 6z3 − 4z2 + z + 2

=
(

3

4

)
z(z + j)(z − j)

(z + 2)

(
z + 1

2

)(
z − 1

2
+ j

1

2

)(
z − 1

2
− j

1

2

)

has the pole–zero plot shown in Figure 10.6. It represents an unstable discrete-time system because it has
a pole at z = −2, which is outside the unit circle.
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Pole location(s) on
the complex plane Sequence

Im

c Re

Ac k 

1

1

1

Decaying geometric sequence 

Decaying geometric sequence 
with alternating signs 
A( –c)k 

Expanding geometric series 
A ck 

Expanding geometric series with 
alternating signs 
A( –c)k 

Im

–c Re1

1
Im

c Re1

1
Im

–c Re1

R 

R 

R 

R 

FIGURE 10.5 Sequences corresponding to various z-transform pole locations.
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Pole location(s) on
the complex plane Sequence

Constant sequence 
A( l)k  = A 

Sinusoidal sequence 
A cos (Ωk +θ) 

Alternating sequence 
A( –l)k  

Damped sinusoidal sequence
Ack  cos (Ωk + θ)

Im

Re1

1

Im

Im
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Ω 
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1
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c

FIGURE 10.5 Continued.
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Pole location(s) on
the complex plane Sequence

Exponentially expanding sinusoidal
sequence
Ak cos (Ωk + θ)
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FIGURE 10.6 An example.

10.1.3.2 Block Diagram Algebra

The rules of block diagram algebra for linear time-invariant continuous-time systems apply to linear
step-invariant discrete-time systems as well. Combining blocks in cascade or in tandem or moving a
pick-off point in front of or behind a block, etc. with discrete-time systems is done the same way as
with continuous-time systems. However, as we see in Chapter 11, these rules do not necessarily apply for
sampled data systems containing discrete-time as well as continuous-time components.

Similar to a continuous-time system, when a discrete-time system has several inputs and/or outputs,
there is a z-transfer function relating each one of the inputs to each one of the outputs, with all other
inputs set to zero:

Tij(z) = Yi(z)

Rj(z)

∣∣∣∣, when all initial cond tions
are zero and when all inputs

except Rj are zero

.

In general, when all the initial conditions of a system are zero, the outputs of the system are given by

Y1(z) =T11(z)R1(z) + T12(z)R2(z) + T13(z)R3(z) + · · ·
Y2(z) =T21(z)R1(z) + T22(z)R2(z) + T23(z)R3(z) + · · ·
Y3(z) =T31(z)R1(z) + T32(z)R2(z) + T33(z)R3(z) + · · ·

...

For example, the four transfer functions of the two-input, two-output system shown in Figure 10.7 are
as follows:

T11(z) =Y1(z)

R1(z)
= z2

z2 + 0.5z − 0.5
,

T21(z) =Y2(z)

R1(z)
= z2(z + 0.5)

z2 + 0.5z − 0.5
,

T12(z) =Y1(z)

R2(z)
= z(z − 1)

z2 + 0.5z − 0.5
,

T22(z) =Y2(z)

R2(z)
= (z − 1)(z + 0.5)

z2 + 0.5z − 0.5
.
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FIGURE 10.7 Multiple-input, multiple-output block diagram reduction. (a) Two-input, two-output system; (b)
block diagram reduction to determine T11(z) and T12(z); and (c) block diagram reduction to determine T21(z) and
T22(z).

A linear step-invariant discrete-time multiple-input, multiple-output system is input–output stable if,
and only if, all the poles of all its z-transfer functions are inside the unit circle on the complex plane.

10.1.3.3 Discrete-Frequency Response

As shown in Figure 10.8, when the input to a linear step-invariant discrete-time system is a sinusoidal
sequence of the form

r(k) = A cos(Ωk + θ),

the forced output y(k) of the system includes another sinusoidal sequence with the same frequency, but
generally with different amplitude B and different phase φ.

r (t ) 
= A cos (ωt + θ)

r (k)
= A cos (ω kT + θ)

yforced(k) 
= B cos (ωkT + ϕ)
= B cos (Ωk + ϕ)= A cos (Ω k + θ)

A/D

Linear,
step-invariant,
discrete-time

system

yforced(k) 

k 

r (k) 

k 

FIGURE 10.8 Discrete-time system with a sinusoidal input sequence and the sinusoidal forced output sequence.
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If a discrete-time system is described by the difference equation

y(k + n) + an−1y(k + n − 1) + · · · + a1y(k + 1) + a0y(k)

= bmr(k + m) + bm−1r(k + m − 1) + · · · + b0r(k),

its transfer function is given by

T(z) = bmzm + bm−1zm−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0
.

The magnitude of the z-transfer function, evaluated at z = exp(jΩ), is the ratio of the amplitude of the
forced output to the amplitude of the input:

B

A
= |T(z = ejΩ)|.

The angle of the z-transfer function, evaluated at z = exp(jΩ), is the phase difference between the input
and output:

φ − θ = /T(z = ejΩ).

These results are similar to the counterpart for continuous-time systems, in which the transfer function
is evaluated at s = jω.

Frequency response plots for a linear step-invariant discrete-time system are plots of the magnitude and
angle of the z-transfer function, evaluated at z = exp(jΩ), vs. Ω. The plots are periodic, because exp(jΩ)
is periodic in Ω with period 2π. This is illustrated in Figure 10.9, which gives the frequency response
for the z-transfer function in the accompanying pole–zero plot. In general, the frequency response plots
for discrete-time systems are symmetric about Ω = π, as shown. The amplitude ratio is even symmetric
while the phase shift is odd symmetric about Ω = π. Therefore, the frequency range of Ω from 0 to π is
adequate to completely specify the frequency response of a discrete-time system. Logarithmic frequency
response plots for the system given in Figure 10.9 are shown in Figure 10.10.

10.1.4 Discrete-Time State Equations and System Response

We now make the transition from classical system description and analysis methods to state variable
methods. System response is expressed in terms of discrete convolution and in terms of z-transforms.
z-Transfer function matrices of multiple-input, multiple-output systems are found in terms of the state
equations. The state equations and response of step-varying systems are also discussed.

10.1.4.1 State Variable Models of Linear Step-Invariant Discrete-Time Systems

An nth-order linear discrete-time system can be modeled by a state equation of the form

x(k + 1) = Ax(k) + Bu(k) (10.3a)

where x is the n-vector state of the system, u is an r-vector of input signals, the state coupling matrix A is
n × n, and the input coupling matrix B is n × r. The m-vector of system measurement outputs y is related
to the state and inputs by a measurement equation of the form

y(k) = Cx(k) + Du(k), (10.3b)

where the output coupling matrix C is m × n, and the input-to-output coupling matrix D is m × r. A
block diagram showing how the various quantities of the state and output equations are related is shown
in Figure 10.11. In the diagram, wide arrows represent vectors of signals. A system given by Equations
10.3a, b is termed step invariant if the matrices A, B, C, and D do not change with step.
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FIGURE 10.9 Periodicity of the frequency response of a discrete-time system. (a) Pole–zero plot of a transfer
function T(z) and (b) frequency response plots for T(z).

10.1.4.2 Response in Terms of Discrete Convolution

In terms of the initial state x(0) and the inputs u(k) at step zero and beyond, the solution for the state
after step zero can be calculated recursively. From x(0) and u(0), x(1) can be calculated:

x(1) = Ax(0) + Bu(0).

Then, using x(1) and u(1),

x(2) = Ax(1) + Bu(1) = A2x(0) + ABu(0) + Bu(1).

From x(2) and u(2),

x(3) = Ax(2) + Bu(2) = A3x(0) + A2Bu(0) + ABu(1) + Bu(2),
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FIGURE 10.10 Logarithmic frequency response plots for the system shown in Figure 10.9.

and in general

x(k) = Akx(0)

Zero-input component

+
k−1∑
i=0

Ak−1−jBu(i)

Zero-state component

, (10.4)

and the solution for the output y(k) in Equation 10.3b is

y(k) = CAkx(0) +
{

k−1∑
i=0

CAk−i−1Bu(i)

}
+ Du(k).

The system output when all initial conditions are zero is termed the zero-state response of the system.
When the system initial conditions are not all zero, the additional components in the outputs are termed
the zero-input response components.

Delay
u (k) Bu (k)

Du (k)

y (k)x (k + 1) Cx(k )x (k )

Ax (k )

B
+ +

+

+

A

D

C

FIGURE 10.11 Block diagram showing the relations between signal vectors in a discrete-time state-variable model.
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10.1.4.3 Response in Terms of z-Transform

The response of a discrete-time system described by the state Equations 10.3a, b can be found by
z-transforming the state equations

x(k + 1) = Ax(k) + Bu(k).

That is,

zX(z) − zx(0) = AX(z) + BU(z)

or

(zI − A)X(z) = zx(0) + BU(z).

Hence,

X(z) = z(zI − A)−1x(0) + (zI − A)−1BU(z)

and

Y (z) = Cz(zI − A)−1x(0) + {C(zI − A)−1B + D}U(z). (10.5)

The solution for the state is then

x(k) = Z−1[z(zI − A)−1]x(0) + Z−1[(zI − A)−1BU(z)].

Comparing this result with Equation 10.4 shows that

Ak = Z−1[z(zI − A)−1],

which is analogous to the continuous-state transition matrix. Setting the initial conditions in Equation
10.5 to zero gives the m × r transfer function matrix

T(z) = C(zI − A)−1B + D,

where m is the number of outputs in y(k) and r is the number of inputs in u(k). The elements of T(z) are
functions of the variable z, and the element in the ith row and jth column of T(z) is the transfer function
relating the ith output to the jth input:

Tij(z) = Yi(z)

Uj(z)

∣∣∣∣ Zero initial conditions
and all other inputs zero

.

For an n × n matrix A,

(zI − A)−1 = adj(zI − A)

|zI − A| ,

where |zI − A| is the determinant of zI − A, and hence each element of T(z) is a ratio of polynomials in
z that shares the denominator polynomial

q(z) = |zI − A|

which is the characteristic polynomial of the matrix A. Each transfer function of T(z) then has the
same poles, although there may be pole-zero cancelation. Stability requires that all the system poles (or
eigenvalues) be within the unit circle on the complex plane.
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As an example, consider the second-order three-input, two-output system described by

[
x1(k + 1)
x2(k + 1)

]
=
[

2 −5
1

2
−1

][
x1(k)
x2(k)

]
+
[
1 −2 0
0 1 3

]⎡⎣u1(k)
u2(k)
u3(k)

⎤
⎦

= Ax(k) + Bu(k),

[
y1(k)
y2(k)

]
=
[
2 0
1 −1

] [
x1(k)
x2(k)

]
+
[
0 4 0
0 0 −2

]⎡⎣u1(k)
u2(k)
u3(k)

⎤
⎦

= Cx(k) + Du(k).

This system has the characteristic equation

|zI − A| =

∣∣∣∣∣∣∣
(z − 2) 5

−1

2
(z + 1)

∣∣∣∣∣∣∣
= z2 − z + 1

2

=
(

z − 1

2
− j

1

2

)(
z − 1

2
+ j

1

2

)
= 0.

All its six transfer functions share the poles

z1 = 1

2
+ j

1

2
z2 = 1

2
− j

1

2
.

The transfer function matrix for this system, which is stable, is given by

T(z) = C(zI − A)−1B + D

[
2 0
1 −1

][(z − 2) 5

−1

2
(z + 1)

]−1 [
1 −2 0
0 1 3

]
+
[

0 4 0
0 0 −2

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2z + 2

z2 − z + 1

2

4 + −4z − 14

z2 − z + 1

2

−30

z2 − z + 1

2
z + 1

2

z2 − z + 1

2

−3z − 4

z2 − z + 1

2

−2 + −3z − 9

z2 − z + 1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Linear step-invariant discrete-time causal systems must have transfer functions with numerator poly-
nomials of an order less than or equal to that of the denominator polynomials. Only causal systems can
be represented by the standard state-variable models.

10.1.4.4 State Equations and Response of Step-Varying Systems

A linear step-varying discrete-time system has a state equation of the form

x(k + 1) = A(k)x(k) + B(k)u(k),

y(k) = C(k)x(k) + D(k)u(k).

In terms of the initial state x(0) and the inputs u(k) at step zero and beyond, the solution for the state
after step zero is

x(k) = Φ(k, 0)x(0) +
k−1∑
i=0

Φ(k, i + 1)B(i)u(i),
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where the state transition matrices, Φ(· , ·), are the n × n products of state coupling matrices

Φ(k, j) = A(k − 1)A(k − 2) · · · A(j−)A(j) k > j,

Φ(i, i) = I ,

where I is the n × n identity matrix.
A linear step-varying discrete-time system of the form

x(k + 1) = A(k)x(k) + B(k)u(k)

is said to be zero-input stable if, and only if, for every set of initial conditions xzero-input(0), the zero-input
component of the state, governed by

xzero-input(k + 1) = A(k)xzero-input(k)

approaches zero with step. That is,
lim

k→∞
||xzero-input(k)|| = 0,

where the symbol ||.|| denotes the Euclidean norm of the quantity.
The system is zero-state stable if, and only if, for zero initial conditions and every bounded input

||u(k)|| < δ k = 0, 1, 2, . . .

the zero-state component of the state, governed by
{

xzero-state(k + 1) = A(k)xzero-state(k) + B(k)u(k)

xzero-state(0) = 0

is bounded
||xzero-state(k)|| < σ k = 0, 1, 2, . . .

10.1.4.5 Change of Variables

A nonsingular change of state variables

x(k) = Px̄(k) x̄(k) = P−1x(k)

in discrete-time state-variable equations

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k)

gives new equations of the same form

x̄(k + 1) = (P−1AP)x̄(k) + (P−1B)u(k) = Āx̄(k) + B̄u(k),

y(k) = (CP)x̄(k) + Du(k) = C̄x̄(k) + Du(k).

The system transfer function matrix is unchanged by a nonsingular change of state variables

T̄(z) = C̄(zI − Ā)−1B̄ + D

= CP(zP−1P − P−1AP)−1P−1B + D

= CP[P−1(zI − A)P]−1P−1B + D

= CPP−1(zI − A)−1PP−1B + D

= C(zI − A)−1B + D = T(z).
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Each different set of state-variable equations having the same z-transfer function matrix is termed a
realization of the z-transfer functions. The transformation

Ā = P−1AP

is called a similarity transformation. The transformation matrix P can be selected to take the system to a
convenient realization such as the controllable form, observable form, diagonal form, block Jordan form,
etc. Using these forms, it is especially easy to synthesize systems having desired transfer functions. For
example, if the eigenvalues of the A matrix are distinct, there exists a nonsingular matrix P such that the
state coupling matrix A of the new system

x̄(k + 1) = Āx̄(k) + B̄u(k),

y(k) = C̄x̄(k) + D̄u(k)

is diagonal with the eigenvalues of A as the diagonal elements. The new state equations are decoupled
from one another, and each equation involves only one state variable. In this example, the columns of the
P matrix are the eigenvectors of the A matrix. It should be noted that taking a system from one realization
to another may not always be possible. This depends on the characteristics of the system.

10.1.4.6 Controllability and Observability

A discrete-time system is said to be completely controllable if, by knowing the system model and its state
x(k) at any specific step k, a control input sequence u(k), u(k + 1), . . . , u(k + i − 1) can be determined
that it will take the system to any desired later state x in a finite number of steps. For a step-invariant
system, if it is possible to move the state at any step, say x(0), to an arbitrary state at a later step, then it is
possible to move it to an arbitrary desired state starting with any beginning step.

For an nth-order step-invariant system with r inputs

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k)

and a desired state δ, the system state at step n, in terms of the initial state x(0) and the inputs, is

δ = x(n) = Anx(0) +
n−1∑
i=0

An−1−iBu(i)

or

Bu(n − 1) + ABu(n − 2) + · · · + An−2Bu(1)

+ An−1Bu(0) = δ − Anx(0),

where the terms on the right-hand side are known. These equations have a solution for the inputs
u(0), u(1), . . . , u(n − 1) if, and only if, the n × (rn) array of coefficients

Mc = [B|AB| · · · |An−2B|An−1B],
called the controllability matrix of the system, is of full rank. Additional steps, giving additional equations
with coefficients AnB, An+1B, and so on, do not affect this result because, by the Cayley–Hamilton
theorem, these equations are linearly dependent on the others.

For a multiple-input system, the smallest possible integer η for which the matrix

Mc(η) = [B|AB|A2B| · · · |Aη−1B]
has full rank is called the controllability index of the system. It is the minimum number of steps needed
to control the system state.
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A discrete-time system is said to be completely observable if its state x(k) at any specific step k can be
determined from the system model and its inputs and measurement outputs for a finite number of steps.
For a step-invariant system, if it is possible to determine the state at any step, x(0), then with a shift of
step, the state at any other step can be determined in the same way.

For an nth-order step-invariant system with m outputs,

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k)

the initial state x(0), in terms of the outputs and inputs, is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0) = Cx(0) + Du(0)

y(1) = Cx(1) + Du(1) = CAx(0)

+CBu(0) + Du(1)

y(2) = Cx(2) + Du(2)

= CA2x(0) + CABu(0) + CBu(1) + Du(2)
...

y(n − 1) = Cx(n − 1) + Du(n − 1)

= CAn−1x(0) + CAn−2Bu(0) + CAn−3Bu(1) + · · ·
+CBu(n − 2) + Du(n − 1)

Collecting the x(0) terms on the left⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cx(0) = y(0) − Du(0)

CAx(0) = y(1) − CBu(0) − Du(1)

CA2x(0) = y(2) − CABu(0) − CBu(1) − Du(2)
...

CAn−1x(0) = y(n − 1) − CAn−2Bu(0) − · · ·
−CBu(n − 2) − Du(n − 1),

where the terms on the right-hand side are known and x(0) is unknown. This set of linear algebraic
equations can be solved for x(0) only if the array of coefficients

M0 =

⎡
⎢⎢⎢⎢⎢⎣

C
CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦

is of full rank. Additional outputs are of no help, because they give additional equations with coefficients
CAn, CAn+1, . . . , which are linearly dependent on the others.

For a multiple-output system, the smallest possible integer ν for which

M0 =

⎡
⎢⎢⎢⎢⎢⎣

C
CA

CA2

...

CAν−1

⎤
⎥⎥⎥⎥⎥⎦

has full rank is called the observability index of the system. It is the minimum number of steps needed to
determine the system state.
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The replacements ⎧⎪⎨
⎪⎩

A → A†

B → C†

C → B†,

where † denotes matrix transposition, creates a system with a controllability matrix that is the observability
matrix of the original system and an observability matrix that is the controllability matrix of the original
system. Every controllability result has a corresponding observability result and vice versa, a concept
termed duality.
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11.1 Introduction and Mathematical Preliminaries

The advances in digital computer technology have led to its application in a very wide variety of areas.
In particular, it has been used to replace the analog controller in many control systems. However, to use
the digital computer as a controller one has to overcome the following problem: The input and output
signals of the physical plant are analog, namely, continuous-time signals, and the digital computer can
only accept and generate sequences of numbers, namely, discrete-time signals (we do not discuss here the
quantization problem).

This problem was solved by developing two types of interfacing units: a sampler, which transforms
the analog signal to a discrete one, and a hold unit, which transforms the discrete signal to an analog
one. A typical configuration of the resulting system, Figure 11.1, shows that the control system contains
continuous-time signals and discrete-time signals (drawn in full and broken lines, respectively).

Because mathematical tools were available for analyzing systems with either continuous-time signals
or discrete-time signals, the approach to controller design evolved accordingly. One approach is to design
a continuous-time controller and then approximate it by a discrete-time system. Another approach is
to look at the system, from the input to the hold unit to the output of the sampler, as a discrete-time
system. Then, use discrete-time control design methods (the development of which was prompted by that
approach) to design the controller.

Both approaches are acceptable when the sampling is fast enough. However, in many applications the
sampling rate may be constrained and as a result the approaches above may prove inappropriate. This
realization prompted many researchers to develop tools to analyze systems containing both continuous-
and discrete-time signals, referred to as sampled-data systems.

The purpose of this chapter is to introduce one such tool which is based on frequency-domain con-
siderations and seems to be a very natural approach. Because we will heavily rely on Fourier transforms
(FT), it will be helpful to review some of the definitions and properties.

11-1



�

�

�

�

� �

11-2 Control System Fundamentals

Set point
r s e s u sController

C s
Hold
H 0

Plant
G +

+

+

+

Disturbance

Measurement
noiseSampler

Δ

Output
y

n

z

v

u+

–

FIGURE 11.1 Configuration of a typical sampled data control system.

11.1.1 Fourier Transform (FT)

X(ω) = F {x(t)}
=
∫ ∞

−∞
x(t)e−jωt dt, (11.1)

x(t), a continuous-time signal, ω, angular frequency (in rad/s).

11.1.2 Inverse Fourier Transform (IFT)

x(t) = 1

2π

∫ ∞

−∞
X(ω)e−jωt dω. (11.2)

11.1.3 Discrete-Time Fourier Transform (DTFT)

Xs(ω) = Δ

∞∑
k=−∞

x[k]e−jωΔk , (11.3)

x[k], a discrete-time signal obtained by sampling x(t) at the instants t = kΔ k = 0, 1, 2, . . ., Δ, the
associated sampling time interval.

11.1.4 Inverse Discrete-Time Fourier Transform (IDTFT)

x[k] = 1

2π

∫ π/Δ

−π/Δ

Xs(ω)ej−ωΔk dω. (11.4)

Given that x[k] are samples of x(t), namely,

x[k] = x(kΔ), (11.5)

Xs(ω) =
∞∑

k=−∞
X

(
ω − k

2π

Δ

)
(11.6)

(see Chapter 15 in this Handbook). Xs(ω) results from “folding” X(ω) every 2π/Δ and repeating it
periodically (this is sometimes referred to as “aliasing”).
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We adopt the following notation

[X]s �
∞∑

k=−∞
X

(
ω − k

2π

Δ

)
(11.7)

and readily observe the following properties:

[X1 + X2]s = [X1]s + [X2]s (11.8)

[CsX]s = Cs[X]s (11.9)

where Cs is the frequency response of a discrete-time system.
We should also point out that the most commonly used hold unit is the zero order hold (ZOH) given by

Ho(ω) = 1 − e−jωΔ

jωΔ
(11.10)

11.2 “Sensitivity Functions” in Sampled-Data Control Systems

It is well known that sensitivity functions play a key role in control design, be it a continuous-time
controller for a continuous-time system or a discrete-time controller for a discrete-time system. Let us
start our discussion with a brief review of commonly known facts about sensitivity functions. Consider
the system in Figure 11.2.

Denoting by capital letters the Fourier transforms of their lower-case counterparts in the time domain,
from Figure 11.2:

Y = TR + SV − TN , (11.11)

where

S = 1

1 + GC
(11.12)

is the sensitivity function, and

T = GC

1 + GC
(11.13)

is the complementary sensitivity function as well as the closed-loop transfer function. Here are some facts
regarding these functions:

1. Let ΔG denote the change in the open-loop transfer function G, and let ΔT denote the corre-
sponding change in the closed-loop transfer function. Then

ΔT

T
. S

ΔG

G
. (11.14)

e

–
+

+

+

+

+

C G
z

v

y

n

ur

FIGURE 11.2 Control system with uniform type of signals (either all continuous-time or all discrete-time).
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2. Clearly,

S + T = 1. (11.15)

3. The zeros of T are the open-loop zeros. Hence, if zo is an open-loop zero, S(zo) = 1.
4. The zeros of S are the open-loop poles. Hence if po is an open-loop pole, T(po) = 1.
5. |T| is usually made to approach 1 at low frequencies to give zero steady-state errors at d.c.
6. |T| is usually made small at high frequencies to give insensitivity to high-frequency noise n (this

implies |S| ≈ 1 at high frequencies).
7. Because of (3) and (5), to avoid peaks in |T| it is desirable that, moving from low to high frequencies,

we meet a closed-loop pole before we meet each open-loop zero.
8. Because of (4) and (6), to avoid large peaks in |S| it is desirable that, moving from high to low

frequencies, we meet a closed-loop pole before we meet each open-loop pole.
9. For stable, well-damped open-loop poles and zeros, (7) and (8) can easily be achieved by cancella-

tion. However, open-loop unstable poles and zeros place fundamental limitation on the desirable
closed-loop bandwidth.
In particular, the following bandwidth limitations are necessary to avoid peaks in either S or T :

bandwidth < open-loop unstable zeros
bandwidth > open-loop unstable poles

}
(11.16)

With the above in mind, one may adopt the approach mentioned in Section 11.1. View the system of
Figure 11.1 as a discrete-time system by looking at the discrete-time equivalent of the ZOH, the plant, and
the sampler. Then, using the above, one gets a discrete-time system for which a discrete-time controller
can be designed. The problem is that this approach guarantees desired behavior only at the sampled
outputs. However, there is no a priori reason to presume that the response between samples would not
deviate significantly from what is observed at the sample points. Indeed we shall see later that it is quite
possible for the intersample response to be markedly different from the sampled response. It is then
clear that the sensitivity functions calculated for the discrete equivalents are unsatisfactory tools for the
sampled data system. In the following, we will develop equivalent functions for the sampled-data system.

Let us again consider the system in Figure 11.1. We have the following key result describing the
continuous output response under the digital control law:

Theorem 11.1:

Subject to closed-loop stability, the Fourier transform of the continuous-time output of the single-input,
single-output system in Figure 11.1 is given by

Y (ω) = P(ω)(Rs(ω) − Ns(ω)) + D(ω)V (ω) − P(ω)
∞∑

k=−∞
k �=0

V

(
ω − k

2π

Δ

)
,

= P(ω)(Rs(ω) − Ns(ω)) + V (ω) − P(ω)[V ]s. (11.17)

P(ω) and D(ω) are frequency response functions given, respectively, by

P(ω) � Cs(ω)G(ω)Ho(ω)Ss(ω) (11.18)

and

D(ω) = 1 − P(ω) (11.19)
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where Ss(ω) is the usual discrete sensitivity calculated for the discrete equivalent system given by

Ss(ω) � 1

1 + Cs(ω)[GHo]s . (11.20)

Note that [GHo]s is the frequency response of the discrete equivalent of GHo.

Proof. Observing Figure 11.1 we have (using Equation 11.6)

Y s(ω) =
∑

k=−∞
Y

(
ω − k

2π

Δ

)
,

=
∑

k=−∞

(
Z

(
ω − k

2π

Δ

)
+ V

(
ω − k

2π

Δ

))
,

=
∑

k=−∞
G

(
ω − k

2π

Δ

)
Ho

(
ω − k

2π

Δ

)
Cs

(
ω − k

2π

Δ

)(
Rs
(

ω − k
2π

Δ

)

− Y s
(

ω − k
2π

Δ

)
− Ns

(
ω − k

2π

Δ

))
+ V

(
ω − k

2π

Δ

)
.

Because, Cs, Rs, Y s, and Ns are periodic functions of ω,

Y s(ω) = Cs(ω)
∑

k=−∞
G

(
ω − k

2π

Δ

)
Ho

(
ω − k

2π

Δ

) [
Rs(ω) − Y s(ω) − Ns(ω)

]+ V s(ω)

= Cs(ω) [GHo]s [Rs(ω) − Y s(ω) − Ns(ω)
]+ V s(ω).

Hence,

Y s(ω) = [1 − Ss(ω)][Rs(ω) − Ns(ω)] + Ss(ω)V s(ω). (11.21)

Now, from Figure 11.1,

Y (ω) = G(ω)Ho(ω)Cs(ω)(Rs(ω) − Y s(ω) − Ns(ω)) + V (ω)

and substituting Equation 11.21 results in

Y (ω) = G(ω)Ho(ω)Cs(ω)Ss(ω)[Rs(ω) − Ns(ω)] − G(ω)Ho(ω)Cs(ω)Ss(ω)V s(ω) + V (ω)

which, by substituting Equations 11.18 and 11.19, leads to Equation 11.17. �

Comparing Equations 11.17 and 11.11, the roles that D and P play in a sampled-data system are very
similar to the roles that sensitivity and complementary sensitivity play in Figure 11.2.

We also note that the functions P(ω) and D(ω) allow computing the continuous output in the frequency
domain using the input Rs(ω), the disturbance V (ω), and the noise Ns(ω). We will thus refer to P(ω) and
D(ω) as the reference and disturbance gain functions, respectively. Observe that the infinite sum defining
[GHo]s is convergent provided the transfer function GHo is strictly proper.

The result in Theorem 11.1 holds for general reference, noise, and disturbance inputs. However, it is
insightful to consider the special case of sinusoidal signals. In this case, the result simplifies as follows. Let
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r[k] be a sampled sinewave
r[k] = cos(ωokΔ)

Then

Rs(ω) = π

∞∑
k=−∞

[
δ

(
ω − ωo − k

2π

Δ

)
+ δ

(
ω + ωo − k

2π

Δ

)]
(11.22)

Hence, using Equation 11.17 (assuming V (ω) = Ns(ω) = 0),

Y (ω) = π

∞∑
k=−∞

P(ω)

[
δ

(
ω − ωo − k

2π

Δ

)
+ δ

(
ω + ωo − k

2π

Δ

)]
(11.23)

Thus, the continuous-time output in this case is multifrequency with corresponding magnitudes and
phases determined by the reference gain function P(ω). In particular, for a sinusoidal reference signal as
above, where 0 < ωo < π/Δ, the first two components in the output are at frequencies ωo and 2π/Δ − ωo

and have amplitudes |P(ω)| and |P(2π/Δ − ωo)|, respectively. Similar observations can be made for Ns(ω)
and V (ω).

In the next section we will show that the connections of P and D with Ts and Ss go beyond the apparent
similarity in roles.

11.3 Sensitivity Consideration

In the previous section we found that the reference gain function P(ω) and the disturbance gain function
D(ω) allow computing the continuous-time output response in a sampled-data system, namely, a digital
controller in a closed loop, with a continuous-time plant. We recall the definitions for convenience

P(ω) = Cs(ω)G(ω)Ho(ω)Ss(ω) (11.24)

D(ω) = 1 − P(ω) (11.25)

Ss(ω) = 1

1 + Cs(ω)[GHo]s (11.26)

Ts(ω) = Cs(ω)[GHo]s

1 + Cs(ω)[GHo]s (11.27)

where Cs, G, and Ho are the frequency responses of the controller, plant, and ZOH, respectively.
First we note that, as in Equation 11.15 for Ss and Ts,

P + D = 1 (11.28)

Next it is interesting to note that the open-loop continuous-time zeros of the plant appear as zeros of
P(ω). Thus, irrespective of any discrete-time consideration, the locations of the continuous-time plant
zeros are of concern because they affect the continuous-time output responses. Specifically, the existence
of a nonminimum phase zero in the plant results in performance constraints for any type of controller,
continuous time or discrete time.

The magnitude of the ratio between the P and Ts at frequency ωo is
∣∣∣∣ P(ωo)

Ts(ωo)

∣∣∣∣=
∣∣∣∣G(ωo)Ho(ωo)

[GHo]s

∣∣∣∣ (11.29)

Hence, to avoid large peaks in |P(ω)|, |Ts(ω)| must not be near 1 at any frequency where the gain of the
composite continuous-time transfer function GHo is significantly greater than the gain of its discrete-time
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equivalent [GHo]s. Otherwise, as Equation 11.28 indicates, a large |P(ω)| and a large |D(ω)| result, showing
large sensitivity to disturbances. There are several reasons why the gain of GHo might be significantly
greater than that of [GHo]s. Two common reasons are

1. For continuous plants having a relative degree exceeding one, there is usually a discrete zero
near the point z = −1. Thus, the gain of [GHo]s typically falls near ω = π/Δ (i.e., the folding
frequency). Hence, it is rarely desirable to have a discrete closed-loop bandwidth approaching the
folding frequency as will be demonstrated in later examples.

2. Sometimes high-frequency resonances can perturb the discrete transfer function away from the
continuous-time transfer function by folding effects leading to differences between GHo and
[GHo]s.

One needs to be careful about the effect these factors have on the differences between P and Ts. In
particular, the bandwidth must be kept well below any frequency where folding effects reduce [GHo]s

relative to the continuous plant transfer function. This will also be illustrated in the examples presented
later.

Finally, we look at the sensitivity of the closed-loop system to changes in the open-loop plant transfer
function.

Recall, using Equations 11.15 and 11.26 that

Ts(ω) = Cs(ω)[GHo]s

1 + Cs(ω)[GHo]s (11.30)

and

P(ω) = Cs(ω)G(ω)Ho(ω)Ss(ω). (11.31)

Clearly,

Ts(ω) = [P]s. (11.32)

Furthermore, we have the following result which extends Equation 11.14 to the case of mixed continuous
and discrete signals:

Lemma 11.1:

The relative changes in the reference gain function and the closed-loop discrete-time transfer function are

ΔP

P
= D

ΔG

G
−

∞∑
k=−∞

k �=0

P

(
ω − k

2π

Δ

)
ΔG(ω − k 2π

Δ
)

G(ω − k 2π
Δ

)
(11.33)

and

ΔTs

Ts = Ss(ω)

[GHo]s

∞∑
k=−∞

G

(
ω − k

2π

Δ

)
· H

(
ω − k

2π

Δ

)
ΔG(ω − k 2π

Δ
)

G(ω − k 2π
Δ

)
. (11.34)

Proof. By differentiating Equations 11.30 and 11.31 with respect to G, we see that, up to first order,

ΔP . Cs(ω)Ho(ω)(
1 + Cs(ω)[GHo]s

)2

[
(1 + Cs(ω)[HoG]s)ΔG(ω) − G(ω)Cs(ω)[HoΔG]s]

ΔTs . Cs(ω)(
1 + Cs(ω)[GHo]s

)2 [HoΔG]s.

Dividing by P and Ts, respectively, and recalling Equation 11.7 leads to Equations 11.33 and 11.34. �
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Again note the similarity of the roles of P and D in Equation 11.33 to those of T and S in Equation
11.14. Typically, the magnitude of (ΔG/G) approaches unity at high frequencies. Hence, Equations 11.33
and 11.34 show that a sensitivity problem will exist even for the discrete-time transfer function, if [GHo]s

is small at a frequency where GHo is large, unless, of course, Ss is small at the same frequency. This further
reinforces the claim that the bandwidth must be kept well below any frequencies where folding effects
reduce [GHo]s relative to the continuous plant transfer function GHo.

11.4 Examples

In this section, we present some simple examples which illustrate the application of Theorem 11.1 in
computing the intersample behavior of continuous-time systems under the action of sampled data control.
The examples are not intended to illustrate good sampled data control design but have been chosen to show
the utility of the functions P(ω) and D(ω) in giving correct qualitative and quantitative understanding of
the continuous time response in a difficult situation (when it is significantly different from that indicated
by the sampled response).

For each example we give G, Δ and the desired Ts. Then we show the resulting functions, P, D, and Ss

and make comparisons enabling us to predict the effects of various test signals, the results of which will
also be shown.

Example 11.1:

G(ω) = 1
jω(jω + 1)

Δ = 0.4 s

Cs is chosen so that
T s(ω) = e−0.4jω.

Figure 11.3 shows |G(ω)Ho(ω)| and |[GHo]s|. Over the range (0, π/Δ) the two are very nearly equal.
Only near ω = π/Δ = 7.85 is there “some” discrepancy due to the sampling zero of [GHo]s. Fig-
ure 11.4 shows |T s| and |P|. Although T s seems ideal, the graph for P indicates “trouble” around
ω = π/Δ rad/s. The peak in P results from the discrepancy in Figure 11.3 around the same frequency.
Similar trouble is, naturally, observed in Figure 11.5 from the graph of D. These peaks indicate that a
large continuous-time response is to be expected whenever reference input, noise, or disturbance
have frequency content around that frequency. This is demonstrated in Figure 11.6 for a step refer-
ence input and in Figure 11.7 for a sinusoidal disturbance of frequency 3/Δ rad/s and unit amplitude.
The exact expressions for both responses can be derived from Equation 11.17. In particular, as marked
in Figures 11.4 and 11 5 the disturbance response of the two dominant frequencies will be 3/Δ with

amplitude |D(3/Δ)| ≈ 4 and (2π − 3)/Δ with amplitude
∣∣∣P ( 2π−3

Δ

)∣∣∣≈ 2.4. Adding the two, with the

appropriate phase shift, will give the signal in Figure 11.7. Note that the sampled responses for both
cases (marked in both figures) are very misleading.

Example 11.2:

The plant and Δ are the same as in Example 11.1. However, Cs is chosen so that

T s(ω) = B(ω)
B(0)

e−0.8jω

where B(ω) is the numerator of [GHo]s (this is a deadbeat control). In this case, both P and T s and D
and Ss are very close in the range (0, π/Δ) as in Figures 11.8 and 11.9. Predictably, the same test signal
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as in Example 11.1 produces a sampled response more indicative of the continuous-time response.
This is clearly noted in Figures 11.10 and 11.11.

Examples 11.1 and 11.2 represent two controller designs; the design in Example 11.2 is more along
the recommendations in the previous section with clearly superior continuous-time performance.

Example 11.3:

G(ω) = 100

(jω)2 + 2jω + 100
Δ = 0.5 s

Cs is chosen so that

T s(ω) = 0 5

e0.5jω − 0.5
.

Figure 11.12 compares the |[GHo]s| and |GHo|. The resonant peak has been folded into the low-
frequency range in the discrete-frequency response. Figure 11.13 shows |P| and |Ts|. P(ω) has a sig-
nificant peak at ω = π/Δ, reflected in the intersample behavior of the step response in Figure 11.15.
However, the sampled response in Figure 11.15 is a simple exponential as could be predicted from Ts in
Figure 11.13.

Significant differences in Ss and D can also be observed in Figure 11.14. When a sinusoidal disturbance
of frequency 1/Δ rad/s was applied, we observe a multifrequency continuous-time response, but the
sampled response is a single sinusoid of frequency 1/Δ shown in Figure 11.16. This result can again be
predicted from Equation 11.17 and Figures 11.13 and 11.14.
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11.4.1 Observations and Comments from Examples

1. The reference and disturbance gain functions, P(ω) and D(ω), give qualitative and quantitative
information about the true continuous-time response resulting from reference, noise, or distur-
bance input.

2. In many cases, the first two components in the multifrequency output response suffice for an
accurate qualitative description of the response to a sinewave disturbance input.

3. For a sinewave disturbance of frequency ωo ∈ [0, π/Δ), the continuous-time response will (if we
consider only the first two frequency components).
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12.1 Introduction

Similar to continuous-time methods, digital controllers are usually designed using frequency-domain or
time-domain methods so that the overall closed-loop system meets its transient and steady-state require-
ments. When a digital controller is designed to control a continuous-time plant it is important to have
a good understanding of the plant to be controlled as well as of the controller and its interfaces with the
plant. This chapter deals with digitizing continuous-time plants and continuous-time controllers. In the
first approach, called the direct method, the plant is discretized first and then a discrete-time controller
is designed directly to control the discretized plant. The second approach, called the indirect method,
deals with discretizing the existing continuous-time controllers to be implemented digitally. Several dis-
cretization methods, using transfer function and state-space techniques, are presented to approximate the
behavior of continuous-time plants and continuous-time controllers. In general, as the sampling period

12-1
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12-2 Control System Fundamentals

is reduced, the discrete-time response using these discretization methods will be nearly indistinguishable
from that of the continuous-time counterpart. As we shall see later, reducing the sampling period may not
be practical and may cause numerical problems. Simulation of the closed-loop system including the plant
and the controller is essential to verify the properties of a preliminary design and to test its performance
under conditions (e.g., noise, disturbances, delays, quantization, parameter variations, and nonlineari-
ties) that might be difficult or cumbersome to study analytically. Through simulation, difficulties with
between-sample plant response are also discovered and solved.

12.2 Design of Discrete-Time Control Systems for
Continuous-Time plants

There are two fundamental approaches to designing discrete-time control systems for continuous-time
plants. The first approach is to derive a discrete-time equivalent of the plant and then design a discrete-
time controller directly to control the discretized plant. This approach is discussed in Section 12.2.3.
The other and more traditional approach to designing discrete-time control systems for continuous-
time plants is to first design a continuous-time controller for the plant, then derive a discrete-time
equivalent that closely approximates the behavior of the original analog controller. This approach is
especially useful when an existing continuous-time controller or a part of the controller is to be replaced
with a discrete-time controller. Usually, however, even for small sampling periods, the discrete-time
approximation performs less well than the continuous-time controller from which it was derived. The
approach to deriving a discrete-time controller that closely approximates the behavior of the original
analog controller is discussed in Section 12.3.

Before we discuss discrete-time equivalents of continuous-time systems, it is instructive to briefly
discuss sampling and reconstruction in order to gain greater insight into the process of discretizing
continuous-time systems.

12.2.1 Sampling and Analog-to-Digital Conversion

Sampling is the process of deriving a discrete-time sequence from a continuous-time function. As shown
in Figure 12.1, an incoming continuous-time signal f (t) is sampled by an analog-to-digital (A/D) converter
to produce the discrete-time sequence f (k). Usually, but not always, the samples are evenly spaced in time.
The sampling interval T is generally known and is indicated on the diagram or elsewhere.

The A/D converter produces a binary representation, using a finite number of bits, of the applied input
signal at each sample time. Using a finite number of bits to represent a signal sample generally results
in quantization errors in the A/D process. For example, the maximum quantization error in 16-bit A/D
conversion is 2−16 = 0.0015%, which is very low compared with typical errors in analog sensors. This
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0.25f(t)
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0
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FIGURE 12.1 Sampling of a continuous-time signal using an A/D converter.
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TABLE 12.1 Laplace and z-Transform Pairs

f (t) F(s) f (k) F(z)

u(t), unit step
1

s
u(k), unit step

z

z − 1

tu(t)
1

s2 kTu(k)
Tz

(z − 1)2

e−atu(t)
1

s + a
(e−aT)ku(k)

z

z − e−aT

te−atu(t)
1

(s + a)2 kT(e−aT)ku(k)
Tze−aT

(z − e−aT)2

sin(ωt)u(t)
ω

s2 + ω2 sin(kωT)u(k)
z sin ωT

z2 − 2z cos ωT + 1

cos(ωt)u(t)
s

s2 + ω2 cos(kωT)u(k)
z(z − cos ωT)

z2 − 2z cos ωT + 1

error, if taken to be “noise,” gives a signal-to-noise (SNR) of 20 log10(2−16) = −96.3 db which is much
better than that of most control systems. The control system designer must ensure that enough bits are
used to give the desired system accuracy. That is, it is important to use adequate word lengths in fixed or
floating point computations. Years ago, digital hardware was very expensive, so minimizing word length
was much more important than it is today. Study of the effects of roundoff or truncation errors in digital
computation is presented in Chapter 14.

When a continuous-time signal f (t) is sampled to form the sequence f (k), there exists a relationship
between the Laplace transform of f (t) and the z-transform of f (k). If a rational Laplace transform is
expanded into partial fraction terms, the corresponding continuous-time signal components in the time
domain are powers of time, exponentials, sinusoids, and so on. Uniform samples of these elementary
signal components have, in turn, simple z-transforms that can be summed to give the z-transform of the
entire sampled signal. Table 12.1 lists some Laplace transform terms and the resulting z-transforms when
the corresponding time functions are sampled uniformly.

As an example, consider the continuous-time function with Laplace transform

F(s) = 2

s(s + 2)
= 1

s
+ −1

s + 2

The z-transform of the sampled signal with a sampling interval T = 0.1 s is

F(z) = z

z − 1
− z

z − e−0.2 = 0.18z

(z − 1)(z − 0.82)

12.2.2 Reconstruction and Digital-to-Analog Conversion

Reconstruction is the formation of a continuous-time function from a sequence of samples. Many dif-
ferent continuous-time functions can have the same set of samples; so a reconstruction is not unique.
Reconstruction is performed using digital-to-analog (D/A) converters. Electronic D/A converters typi-
cally produce a step reconstruction from incoming signal samples by converting the binary-coded digital
input to a voltage, transferring the voltage to the output, and holding the output voltage constant until
the next sample is available. The symbol for a D/A converter that generates the step reconstruction f 0(t)
from signal samples f (k) is shown in Figure 12.2a. Sample and hold (S/H) is the operation of holding
each of these samples for a sampling interval T to form the step reconstruction. The step reconstruction
of a continuous-time signal from samples can be represented as the conversion of the sequence f (k) to its
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FIGURE 12.2 D/A conversion with S/H (a) Symbol for D/A conversion with S/H. (b) Representation of a D/A
converter with S/H.

corresponding impulse train f ∗(t), where

f ∗(t) =
∞∑

k=0

f (k)δ(t − kT), (12.1)

and then conversion of the impulse train to the step reconstruction as shown in Figure 12.2b. This
viewpoint neatly separates conversion of the discrete sequence to a continuous-time waveform and the
details of the shape of the reconstructed waveform. The continuous-time transfer function that converts
the impulse train with sampling interval T to a step reconstruction is termed zero-order-hold (ZOH). Each
incoming impulse in Equation 12.1 to the ZOH produces a rectangular pulse of duration T . Therefore,
the transfer function of the ZOH is given by

Lo(s) = 1

s
(1e−sT ).

One way to improve the accuracy of the reconstruction is to employ higher-order holds than the ZOH.
An nth-order hold produces a piecewise nth-degree polynomial that passes through the most recent
n + 1 input samples. It can be shown that, as the order of the hold is increased, a well-behaved signal
is reconstructed with increased accuracy. For example, a first-order hold (FOH) uses the previous two
samples to construct a straight-line approximation during each interval. The transfer function of the FOH
is

L1(s) = (Ts + 1)(1 − e−sT )2

Ts2 .

A model of the FOH is shown in Figure 12.3a. If the hardware of the FOH is not available, one can
implement an FOH as shown in Figure 12.3b.

12.2.3 Discrete-Time Equivalents of Continuous-Time Plants

The first approach to designing discrete-time control systems for continuous-time plants is to derive a
discrete-time equivalent of the plant and then design a discrete-time controller directly to control the
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f (k) f *(t) f 1(t) 

f 1(t) 

Impulse 
train 

generator 

(a) 

(b) 

f (k) D/A
with
S/H

First-order 
hold 

L1(s) = (Ts + 1)(1 – e–sT)2

Ts 2 

G(s) = (s + 1/T )(1 – e–sT)
s  

FIGURE 12.3 First-order hold reconstruction. (a) A model of first-order hold; (b) implementation of first order
hold using ZOH.

discretized plant. Consider the general configuration shown in Figure 12.4a where it is desired to design
a discrete-time controller transfer function Gc(z) to control the continuous-time plant described by the
transfer function Gp(s). The first step is to derive a discrete-time equivalent of the plant described by Gp(z)
as shown in Figure 12.4b. To do so, the dashed portion of Figure 12.4b has been redrawn in Figure 12.5a
to emphasize the relationship between the discrete-time signals, f (k) and y(k). It is desired now to find
the discrete-time transfer function Gp(z) of the arrangement, and this can be done by finding its pulse
response.

For a unit pulse input of

f (k) = δ(k),

R(z) 

(a) 

(b) 

Digital controller 

+ 

– 

E(z) F(z) 
Gc(z) 

D/A
with
S/H

D/A
with
S/H

Gp(s) A/D
Y(z) 

Gp(z) 

A/D

Gp(s) 
Y(s) 

R(z) E(z) F(k) 
Gc(z) 

+ 

– 

FIGURE 12.4 A discrete-time equivalent of a continuous-time plant. (a) General configuration of a digital control
system; (b) rearranging the system in (a) to discretize the plant.
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f (k) 

f (k) 

y(k) 

Gp(z) (a)

(b)

Gp(s) A/D
D/A
with
S/H

Gp(z) = Z Gp(s)
y(k) (1 – e–sT)

s

FIGURE 12.5 Discretizing a continuous-time plant. (a) Continuous-time plant with discrete inputs and outputs;
(b) discretized plant.

the sampled-and-held continuous-time signal that is the input to Gp(s) is given by

f 0(t) = u(t) − u(t − T)

or

F0(s) = 1 − e−sT

s
,

where T is the sampling interval. Then

Y (s) = F0(s)Gp(s) = 1 − e−sT

s
Gp(s), (12.2)

and therefore

Gp(z) = Z

[
1 − e−sT

s
Gp(s)

]
, (12.3)

where Z is the z-transform as given in Table 12.1. This equivalence is shown in Figure 12.5b.
As a numerical example, suppose that the continuous-time transfer function of the plant is given by

Gp(s) = 4

s(s + 2)
,

and the sampling interval is T = 0.2 s. According to Equation 12.2,

Y (s) = F0(s)Gp(s) = 1 − e−0.2s

s

[
4

s(s + 2)

]
= (1 − e−0.2s)

[
4

s2(s + 2)

]

= (1 − e−0.2s)

[−1

s
+ 2

s2 + 1

(s + 2)

]
.

Using Table 12.1, the discrete-time plant transfer function, for T = 0.2, is determined using Equa-
tion 12.3 as

Gp(z) = (1 − z−1)

[ −z

z − 1
+ 2(0.2)z

(z − 1)2 + z

z − e−0.4

]
= 0.0703z + 0.0616

(z − 1)(z − 0.6703)
.

Knowing Gp(z), and returning to Figure 12.4b, the control system designer can now proceed to specify
the digital controller Gc(z) using classical design techniques to meet the control system requirements.
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The classical approach to designing a digital controller directly, which has many variations, parallels the
classical approach to analog controller design. We begin with simple discrete-time controllers, increasing
their complexity until the performance requirements can be met. Classical discrete-time control system
design is beyond our scope in this chapter and therefore will not be discussed.

In the following section, we present several methods for discretizing continuous-time controllers. In
the latter section, the relationship between continuous-time state variable plant models and their discrete
counterparts are derived with the results being useful for designing digital controllers for discrete-time
systems.

12.3 Digitizing Analog Controllers

The second approach to designing discrete-time control systems for continuous-time plants is to derive a
continuous-time (or analog) controller and then approximate the behavior of the analog controller with
a digital one.

Consider the situation shown in Figure 12.6 where it is desired to derive a discrete-time controller
Gc(z) that approximates the behavior of the continuous-time controller described by Gc(s). For the sake

R(s) 

R(s) 

+ 

Continuous-time controller 

Digital controller 

E(s) 

(a)

(b)

E(s) E(z) A/D
D/A
with
S/H

F(s) 

F(z) Y(s) F 0(s) 

Gc(s) 

Gc(z) Gp(s) 

Gp(s) 
Y(s) 

– 

+ 
– 

FIGURE 12.6 Discrete-time equivalents of continuous-time controllers. (a) Continuous-time controller; (b)
discrete-time equivalent of analog controllers.

e(t) 

e(t) 

f (t) 
Gc(s) 

D/A
with
S/H

f̂ (t) 
Gc(z) A/D

FIGURE 12.7 Digitizing a continuous-time controller.



�

�

�

�

� �

12-8 Control System Fundamentals

of clarity, the dashed portion of Figure 12.6 has been redrawn in Figure 12.7. As shown in the figure,
the digital controller consists of an A/D converter driving the discrete-time controller described by the
z-transfer function Gc(z) followed by a D/A converter with the sample and the hold. If the sample rate
is sufficiently high and the approximation sufficiently good, the behavior of the digital controller will be
nearly indistinguishable from that of the analog controller. The digital controller will have such advantages
as high reliability, low drift with temperature, power supply and age, and the ability to make changes in
software.

We now discuss several methods for discretizing continuous-time controllers. These methods are

1. Numerical approximation of differential equations.
2. Matching step and other responses.
3. Pole–zero matching.

In the material to follow, the accent ˆ over a symbol denotes an approximation of the quantity.

12.3.1 Numerical Approximation of Differential Equations

One way to approximate an analog controller with a digital one is to convert the analog controller transfer
function Gc(s) to a differential equation and then obtain a numerical approximation to the solution of
the differential equation. There are two basic methods of numerical approximation of the solution of
differential equations. They are (a) numerical integration and (b) numerical differentiation. We first
discuss numerical integration and then summarize numerical differentiation.

Numerical integration is an important computational problem in its own right and is fundamental to
the numerical solution of differential equation. The most common approach of performing numerical
integration is to divide the interval of integration into many T subintervals and approximate the contri-
bution to the integral in each T strip by the integral of a polynomial approximation to the integrand in
that strip.

Consider the transfer function

Gc(s) = F(s)

E(s)
= 1

s
, (12.4)

which has the corresponding differential equation

df

dt
= e(t). (12.5)

Integrating both sides of Equation 12.5 from t0 to t,

f (t) = f (t0) +
∫ t

t0

e(t) dt, t ≥ t0.

For evenly spaced sample times t = kT , k = 0, 1, 2, . . . and during one sampling interval t0 = kT to
t = kT + T , the solution is

f (kT + T) = f (kT) +
∫ kT+T

kT
e(t) dt. (12.6)

12.3.1.1 Euler’s Forward Method (One Sample)

The simplest approximation of the integral in Equation 12.6 is simply to approximate the integrand by a
constant equal to the value of the integrand at the left endpoint of each T subinterval and multiply by the
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sampling interval T as in Figure 12.8a. Thus,

f̂ (kT + T) = f̂ (kT) + Te(kT). (12.7)

Z-transforming both sides of Equation 12.7,

zF̂(z) − F̂(z) = TE(z),

and, therefore,

Gc(z) = F̂(z)

E(z)
= T

z − 1
. (12.8)

Comparing Equation 12.8 with the analog controller transfer function Equation 12.4 implies that a
discrete-time equivalence of an analog controller can be determined with Euler’s forward method by
simply replacing each s in the analog controller transfer function with (z − 1)/T , that is,

Gc(z) = Gc(s)|s=z−1/T .

12.3.1.2 Euler’s Backward Method (One Sample)

Instead of approximating the integrand in Equation 12.6 during one sampling interval by its value at
the left endpoint, Euler’s backward method approximates the integrand by its value at the right endpoint

(a) (b)

(c)

FIGURE 12.8 Comparing Euler’s and trapezoidal integration approximations. (a) approximation using Euler’s
forward method; (b) approximation using Euler’s backward method; and (c) approximation using the trapezoidal
method.
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of each T subinterval and multiplies by the sampling interval, as in Figure 12.8b. Then, Equation 12.6
becomes

f̂ (kT + T) = f̂ (kT) + Te(kT + T) (12.9)

or, using the z-transformation,

Gc(z) = F̂(z)

E(z)
= Tz

z − 1
(12.10)

Comparing Equation 12.10 with Equation 12.4 shows that the equivalent discrete-time transfer function
of the analog controller can be obtained by replacing each s in Gc(s) with (z − 1)/Tz, that is,

Gc(z) = Gc(s)|s=z−1/Tz .

For the analog controller,

Gc(s) = a

s + a
,

for example, the discrete-time equivalent controller using Euler’s backward method is

Gc(z) = a

(z − 1)/Tz + a
= aTz

(1 + aT)z − 1

and the discrete-time equivalent controller using Euler’s forward method is

Gc(z) = aT

z − 1 + aT
.

12.3.1.3 Trapezoidal Method (Two Samples)

Euler’s forward and backward methods are sometimes called rectangular methods because, during the
sampling interval, the area under the curve is approximated with a rectangle. Additionally, Euler’s methods
are also called first order because they use one sample during each sampling interval.

The performance of the digital controller can be improved over the simpler approximation by either
Euler’s forward or backward methods if more than one sample is used to update the approximation of
the analog controller transfer function during a sampling interval. As in Figure 12.8c, the trapezoidal
approximation approximates the integrand with a straight line. Applying the trapezoidal rule to the
integral in Equation 12.6 gives

f̂ (kT + T) = f̂ (kT) + T

2
{e(kT) + e(kT + T)},

which has a corresponding z-transfer function,

(z − 1)F̂(z) = T

2
(z + 1)E(z),

or

Gc(z) = F̂(z)

E(z)
= T

2

(
z + 1

z − 1

)
. (12.11)

Comparing Equation 12.11 with Equation 12.4, the digital controller transfer function can be obtained
by simply replacing each s in the analog controller transfer function with 2

T (z − 1)/(z + 1).
That is,

Gc(z) = Gc(s)|s=(2/T)(z−1/z+1).

The trapezoidal method is also called Tustin’s method, or the bilinear transformation. Higher-order
polynomial integrals can be approximated in the same way, but for a recursive numerical solution, an
integral approximation should involve only present and past values of the integrand, not future ones.
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A summary of some common approximations for integrals, along with the corresponding z-transfer
function of each integral approximation, is shown in Table 12.2. Higher-order approximations result in
digital controllers of progressively higher order. The higher the order of the approximation, the better
the approximation to the analog integrations and the more accurately the digital controller output tends
to track samples of the analog controller output for any input. The digital controller, however, probably
has a sample-and-held output between samples, so that accurate tracking of samples is of less concern to
the designer than the sample rate.

12.3.1.4 An Example

As an example of deriving a digital controller for a continuous-time plant, consider the system shown in
Figure 12.9a, where it is assumed that the continuous-time controller

Gc(s) = 0.5(s + 5)

s(s + 2)

has been designed to control the continuous-time plant with the transfer function

Gp(s) = 5

s2 + 4s + 8

Using Euler’s forward method, the discrete-time controller transfer function is

Gc(z) = 0.5T(z − 1 + 5T)

(z − 1)(z − 1 + 2T)
,

as shown in Figure 12.9b. The plant and the discrete-time controller are shown in Figure 12.9c. The step
response of the overall feedback system for various sampling intervals T is shown in Figure 12.10. When
T = 0.4 s, which is relatively large as compared to the continuous-time closed-loop time constants and/or
frequencies, the discrete-time approximation of the overall feedback response deviates significantly from
the continuous-time response. As the sampling interval is decreased so that there are several steps during
each time constant of the closed-loop poles, the step responses of the analog and digital system are
nearly the same. Similar conclusions can be made when comparing the step responses of the analog and

TABLE 12.2 Some Integral Approximations Using Present and Past Integrand Samples

Difference Equation for the z-Transmittance of the
Approximation to the Integral Over One Step Approximate Integral Approximate Integral

One-Sample∫ kT+T

kT
e(t)dt ∼= Te(kT) f̂ [(k + 1)T] = f̂ (kT) + Te(kT)

T

z − 1∫ kT+T

kT
e(t)dt ∼= Te(kT + T) f̂ [(k + 1)T] = f̂ (kT) + Te(kT + T)

Tz

z − 1

Two-Sample (Tustin approximation)

∫ kT+T

kT
e(t)dt ∼= T

{
1

2
e[(k + 1)T] + 1

2
e(kT)

} f̂ [(k + 1)T] = f̂ (kT) + T

2
e[(k + 1)T]

+ T

2
e(kT)

T(z + 1)

2(z − 1)

Three sample∫ kT+T

kT
e(t)dt ∼= T

{
5

12
e[(k + 1)T] + 8

12
e(kT)

− 1

12
e[(k − 1)T]

}
f̂ [(k + 1)T] = f̂ (kT) + 5T

12
e[(k + 1)T]

+ 8T

12
e(kT) − T

12
e[(k − 1)T]

T[(5/12)z2 + (8/12)z − (1/12)]
z(z − 1)
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E(s) E(z) F(z) Y(s)0.5T(z – 1 + 5T)
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s2 + 4s + 8
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Gp(z) =
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FIGURE 12.9 An example of digitizing an analog control system. (a) Continuous-time control system, (b) discrete-
time equivalent of analog controller using Euler’s forward method, and (c) discrete-time control system.

discrete-time controllers. When T = 0.4 s, which is relatively large as compared to the continuous-time
controller’s fastest mode e−2t , the discrete-time controller approximation deviates significantly from the
continuous-time controller. As the sampling interval is decreased, the step responses of the analog and
discrete-time controllers are the same.
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FIGURE 12.10 Step response of the example system using Euler’s forward method.
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If, on the other hand, we use the trapezoidal method, the transfer function of the digital controller
becomes

Gc(z) = 0.5[(5T2 + 2T)z2 + 10T2z + (5T2 − 2T)]
(4T + 4)z2 − 8z − 4T + 4

.

For the same sampling interval, the step response of the overall feedback system using Tustin’s method
tends to track the output of the continuous-time system more accurately at the sample times than Euler’s
forward method because the approximations to the analog integration are better. The step responses of
the overall feedback system using Tustin’s and Euler’s forward methods are shown in Figure 12.11a–c for
the sampling intervals T = 0.4, 0.2, and 0.1 s, respectively.

Because Euler’s and Tustin’s methods result in controllers of the same order, the designer usually opts
for Tustin’s approximation. In general, if the sampling interval is sufficiently small and the approxi-
mation is sufficiently good, the behavior of the discrete-time controller, designed using any one of the
approximation methods, will be similar to the behavior of the continuous-time controller. One should
not be too hasty in abandoning the simple Euler approximation for higher-order approximation. In
modeling physical systems, poor accuracy of the Euler approximation with very small sampling inter-
val is often indicative of an underlying lack of physical robustness that probably ought to be carefully
examined.

Warning The approximation methods summarized in Table 12.2 apply by replacing each s in the analog
controller transfer function with the corresponding z-transmittance. Every z-transmittance is a mapping
from the s-plane to the z-plane. As shown in Figure 12.12b, Euler’s forward method has the potential of
mapping poles in the left-half of the s-plane, as shown in Figure 12.12a, to poles outside the unit circle on
the complex plane. Then, some stable analog controllers may produce unstable digital controllers. Euler’s
backward rule maps the left hand of the s-plane to a region inside the unit circle, as shown in Figure
12.12c. The trapezoidal rule, however, maps the left-half of the s-plane to the interior of the unit circle on
the z-plane, the right-half of the s-plane to the exterior of the unit circle, and the imaginary axis of the
s-plane to the boundaries of the unit circle, as shown in Figure 12.12d.

12.3.1.5 Frequency Response Approximations

Consider the second-order, continuous-time, low-pass Butterworth filter described by the transfer
function

G(s) = ω2
c

s2 + √
2ωcs + ω2

c

,

where ωc = 2π(10) rad/s. The discrete-time transfer function of this filter can be derived using any one of
the methods summarized in Table 12.2 above. For a sampling rate of 100 Hz, which is 10 times higher than
the filter corner frequency, the frequency responses of the filter using Euler’s and Tustin’s methods are
shown in Figures 12.13a and b. As shown in this figure, for low frequencies, the analog and discrete-time
magnitude and phase responses are nearly the same. As the frequency increases beyond the filter corner
frequency, the magnitude and phase responses using Euler’s methods deviate significantly from the analog
frequency response. On the other hand, the frequency response using Tustin’s method tend to track the
analog filter response more accurately than Euler’s. As the sampling rate increases, the behavior of the
discrete-time filter, derived using any one of the approximation methods, will be nearly indistinguishable
from that of the analog filter.

12.3.1.6 Bilinear Transformation with Frequency Prewarping

In many digital control and digital signal processing applications, it is desired to design a digital fil-
ter G(z) that closely approximates the frequency response of a continuous-time filter G(s) within the
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FIGURE 12.11 Step responses of the example system using Tustin’s and Euler’s approximations. (a) Step response
using Tustin’s and Euler’s forward methods (T = 0.4 s); (b) step response using Tustin’s and Euler’s forward methods
(T = 0.2 s); and (c) step response using Tustin’s and Euler’s forward methods (T = 0.1 s).
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FIGURE 12.12 Mapping between the s-plane and the z-plane. (a) Stability region in the s-plane; (b) corresponding
region in the z-plane using Euler’s forward approximation; (c) corresponding region in the z-plane using Euler’s
backward approximation; and (d) corresponding region in the z-plane using Tustin approximation.

band-limited range

G(z = e jωT ) ∼= G(s = jω) 0 ≤ ω < ω0 = π

T
.

The bilinear (trapezoidal) method applies but with minor modifications. If the frequency response of
the digital filter G(z) is to approximate the frequency response of the analog controller G(s), then

G(z) = G

(
s = 2

T

z − 1

z + 1

)
,

G(z = e jωd T ) = G

(
jωc = 2

T

ejωd T − 1

e jωd T + 1

)

= G

[
jωc = 2

T

(
e( jωd T/2) − e(−jωd T/2)

e(jωd T/2) + e(−jωd T/2)

)]

= G

[
jωc = j

2

T

sinωdT/2

cosωdT/2

]

= G

[
jωc = j

2

T
tanωdT

]
,

and, therefore,

ωc = 2

T
tan

ωdT

2
, (12.12)

where ωc is the continuous frequency and ωd is the discrete frequency. This nonlinear relationship arises
because the entire jω-axis of the s-plane is mapped into one complete revolution of the unit circle in the
z-plane.
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of Butterworth filter using Tustin’s and Euler’s methods and (b) phase response of Butterworth filter using Tustin’s
and Euler’s methods.
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For relatively small values of ωd as compared to the folding frequency π/T , then,

jωc ∼= j
2

T

ωdT

2
= jωd ,

and the behavior of the discrete-time filter closely approximates the frequency response of the corre-
sponding continuous-time filter. When ωd approaches the folding frequency π/T ,

jωc = j
2

T
tan

ωdT

2
→ j∞,

the continuous frequency approaches infinity, and distortion becomes evident. However, if the bilinear
transformation is applied together with Equation 12.12 near the frequencies of interest, the frequency
distortion can be reduced considerably.

The general design procedure for discretizing a continuous-time filter using the bilinear transformation
with frequency prewarping is as follows:

1. Beginning with the continuous-time filter G(s), obtain a new continuous-time filter with transfer
function G′(s) whose poles and zeros with critical frequencies (s + α′) are related to those of the
original G(s) by

(s + α) → (s + α′)|α′=2/T tan αT/2

in the case of real roots, and by

s2 + 2ζωns + ω2
n → s2 + 2ζω′

ns + ω′2
n |ω′

n=2/T tan ωnT/2

in the case of complex roots.
2. Apply the bilinear transformation to G′(s) by replacing each s in G′(s) with

s = 2

T

z − 1

z + 1
.

3. Scale the multiplying constant of G(z) to match the multiplying constant of the continuous-time
filter G(z) at a specific frequency.
To illustrate the above steps, consider the second-order low-pass filter described by the transfer
function

G(s) = ω2
n

s2 + 0.4ωns + ω2
n

, (12.13)

where ωn = 2π(10) rad/s. This filter has a unity DC gain, undamped natural frequency f = 10 Hz,
and a damping ratio ζ = 0.2. For a sampling interval T = 0.02 s, the folding frequency of f0 = 25 Hz,
which is above the 10 Hz cutoff of the filter. At ωn = 2π(10),

ω′
n = 2

T
tan

ωnT

2
= 100 tan

20π

100
= 72.65 rad/s,

and hence the warped transfer function is

G′(s) = K

s2 + 29.06s + (72.65)2 .

Therefore,

G′(z) = K

[100(z − 1)/(z + 1)]2 + 2906(z − 1)/(z + 1) + (72.65)2

= K(z + 1)2

18184z2 − 9444z + 12372
.
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For unity DC gain of the continuous filter,

G′(1) = 4K

21112
= 1

then
K = 5278

and hence

G′(z) = 0.2903(z + 1)2

z2 − 0.5193z + 0.6804
(12.14)

which is the required filter.
Figure 12.14a and b show the frequency responses of the continuous-time filter and the digital filters

given by Equations 12.13 and 12.14. For the sake of comparison, the frequency response using Tustin’s
approximation is also shown. As expected, the digital filter obtained using the bilinear transformation
with frequency prewarping approximates the frequency response more accurately within the bandlimited
range than the filter obtained using Tustin’s method. Also, as the sampling interval T is reduced to
0.005 s, the frequency response of the digital controllers using either Tustin or the bilinear transformation
with frequency prewarping will be nearly indistinguishable from that of the continuous-time filter for
frequencies below 100 rad/s. Frequency response plots of digital equivalents are periodic in ω with period
2π/T . The magnitude plots are even-symmetric about the Nyquist frequency π/T while the phase plots are
odd-symmetric about the Nyquist frequency π/T . In Figure 12.14, the Nyquist frequency is 157.08 rad/s.
More details on Nyquist frequency and the sampling rate selection will be discussed in Chapter 15.

The other main approach to approximating the solution of a differential equation is numerical differen-
tiation. The approximate solution of the differential equation is obtained by replacing the derivative terms
in the differential equation with finite difference approximations. The resulting difference equation can
then be solved numerically. Three methods of first- and second-order derivative approximations listed in
Table 12.3 are called finite-difference approximations of derivatives. The corresponding z-transmittance
of each of these finite difference approximations is also listed in Table 12.3.

As an example, for the analog controller

Gc(s) = K(s + a)

(s + b)

the forward-difference approximation gives the digital controller,

Gc(z) = K[(z − 1)/T + a]
(z − 1)/T + b

= K(z − 1 + aT)

z − 1 + bT

and the backward-difference approximation yields the digital controller

Gc(z) = K[(z − 1)/Tz + a]
(z − 1)/Tz + b

= K(1 + aT)

1 + bT

[
z − 1

1+aT

z − 1
1+bT

]

Similar to integral approximations, higher-order derivative approximations can be generated in the
same way, but for a recursive numerical solution, a derivative approximation should involve only present
and past values of the input, not future ones.

12.3.2 Matching Step and Other Responses

Another way of approximating the behavior of the analog controller with a digital controller is to require
that, at the sampling times, the step response of the digital controller matches the analog controller step
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TABLE 12.3 Finite Difference Approximations of Derivatives

z-Transmittance of the

Derivative Approximation Approximate Differentiator

First-Order Derivative

Forward difference
f [(k + 1)T] − f (kT)

T

z − 1

T

Backward difference
f (kT) − f [(k − 1)T]

T

z − 1

Tz

Central difference
f [(k + 1)T] − f [(k − 1)T]

2T

z2 − 1

2Tz

Second-Order Derivative

Forward difference
f [(k + 2)T] − 2f [(k + 1)T] + f (kT)

T2
z2 − 2z + 1

T2

Backward difference
f (kT) − 2f [(k − 1)T] + f [(k − 2)T]

T2
z2 − 2z + 1

T2z2

Central difference
f [(k + 1)T] − 2f (kT) + f [(k − 1)T]

T2
z2 − 2z + 1

T2z

response. Consider the unit step response fstep(t) of the analog controller with transfer function Gc(s)
shown in Figure 12.15a. Our objective is to design a discrete-portion Gc(z) of the digital controller, as in
Figure 12.15b, such that its step response fstep(k) to a unit step input consists of samples of fstep(t). Then,
as in Figure 12.15c, the digital controller has a step response that equals the step response of the analog
controller at the sample times. This method is termed a step-invariant approximation of the analog system
by a digital system.

As an example, consider the continuous-time controller that has the transfer function

Gc(s) = 20

s2 + 4s + 20
,

which can be written as

Gc(s) = 5
b

(s + a)2 + b2 ,

where a = 2 and b = 4.
This controller has the unit step response

Fstep(s) = 1

s
Gc(s) = 5

b

a2 + b2

[
1

s
− (s + a)

(s + a)2 + b2 − a

(s + a)2 + b2

]
.

Using the transform pairs in Table 12.1, the samples of fstep(t) have the z-transform

Fstep(z) = 5
b

a2 + b2

[
z

z − 1
− z(z − c cos Ω)

z2 − 2c cos Ωz + c2 − a

b

zc sin Ω

z2 − 2c cos Ωz + c2

]
, (12.15)

where
Ω = bT and c = e−aT .

Taking these samples to be the output of a discrete-time system Gc(z) driven by a unit step sequence

Fstep(z) =
(

z

z − 1

)
Gc(z),

the step-invariant approximation is

Gc(z) =
(

z − 1

z

)
Fstep(z).
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FIGURE 12.15 Finding a step-invariant approximation of a continuous-time controller. (a) analog controller step
response; (b) discrete step response consisting of samples of the analog controller step response; and (c) step-invariant
digital controller.

Using Equation 12.15, and for a sampling interval T = 0.25 s, then

Gc(z) = 0.4171z + 0.2954

z2 − 0.6554z + 0.3679
.

Figure 12.16a shows the step response of the continuous-time controller and the step response of the
step-invariant approximation. As shown in the figure, the step response of the digital controller equals
the step response of the continuous-time controller at the sample times. Reducing the sampling interval
to T = 0.1 s, the step-invariant approximation becomes

Gc(z) = 0.0865z + 0.0756

z2 − 1.508z + 0.6703
.
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FIGURE 12.16 Matching step response of a continuous-time controller. (a) Matching step response of a continuous-
time controller (T = 0.25 s). (b) Matching step response of a continuous-time controller (T = 0.1 s).

The step response of this controller and the continuous-time one are shown in Figure 12.16b.
It is occasionally desirable to design digital controllers so that their response to some input other

than a step consists of a sampled-and-held version of an analog controller’s response to that input. The
impulse-invariant approximation, for example, has a discrete-time response to a unit pulse sequence that
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consists of samples of the unit impulse response of the continuous-time system. The ramp-invariant
approximation is another possibility.

12.3.3 Pole–Zero Matching

Yet another method of approximating an analog controller by a digital one is to map the poles and zeros
of the analog controller transfer function Gc(s) to those of the corresponding digital controller Gc(z) as
follows:

(s + a) → z − e−aT ,

for real roots, and
(s + a)2 + b2 → z2 − 2(e−aT cos bT)z + e−2aT ,

for complex conjugate pairs.
Usually, an analog controller has more finite poles than zeros. In this case, its high-frequency response

tends to zero as ωc approaches infinity. Because the entire jω axis of the s-plane is mapped into one
complete revolution of the unit circle in the z-plane, the highest possible frequency on the jω-axis is at
ωc = π/T . Hence,

z = esT = e j(π/T)T = −1,

and, therefore, infinite zeros of the analog controller map into finite zeros located at z = −1 in the
corresponding digital equivalence. The resulting transfer function of the digital controller will always
have the number of poles equal to the number of zeros.

For example, the analog controller,

Gc(s) = 6s + 10

s2 + 2s + 5
= 6(s + 5

3 )

(s + 1)2 + 22 ,

has two finite poles and one finite zero. For a sampling interval T = 0.1 s,

Gc(z) = K(z + 1)(z − e−(5/30))

z2 − 2(e−0.1cos 2T)z + e−0.2 = K(z + 1)(z − 0.85)

z2 − 1.773z + 0.818
.

The DC gain of the analog controller is

Gc(s = j0) = 2.

For the identical DC gain of the digital controller

Gc(z = 1) = K(2)(0.15)

1 − 1.773 + 0.818
= 2,

then K = 0.3. Hence,

Gc(z) = 0.3(z + 1)(z − 0.85)

z2 − 1.773z + 0.818
.

If the analog controller has poles or zeros at the origin of the s-plane, the multiplying constant of the
digital controller is selected to match the gain of the analog controller at a specified frequency.

At low frequency,
Gc(z)|z=1 = Gc(s)|s=0,

and at high frequency,
Gc(z)|z=−1 = Gc(s)|s=∞.

All of the approximation methods presented thus far in this section for digitizing analog controllers
tend to perform well for sufficiently short sampling intervals. For longer sampling intervals, dictated by
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design and cost constraints, one approximation method or another might perform the best in a given
situation.

Digitizing an analog controller is not a good general design technique, although it is very useful when
replacing all or part of an existing analog controller with a digital one. The technique requires beginning
with a good analog design, which is probably as difficult as creating a good digital design. The digital design
usually performs less well than the analog counterpart from which it was originally derived. Furthermore,
the step-invariant and other approximations are not easily extended to systems with multiple inputs
and outputs. When the resulting feedback system performance is inadequate, the designer may have few
options besides raising the sampling rate.

12.4 Discretization of Continuous-Time State Variable Models

We now discuss the relationship between continuous-time state variable plant models and discrete-time
models of plant signal samples.

12.4.1 Discrete-Time Models of Continuous-Time Systems

Consider an nth-order continuous-time system described by the state variable equation

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(12.16)

Script symbols are now used for state and input coupling matrices to distinguish between them and
the corresponding discrete-time models. The time t is a continuous variable, x is the n-vector state of the
system, u is an r-vector of system inputs, and y is an m-vector of system outputs. The remaining matrices
in Equation 12.16 are of appropriate dimensions.

The solution for the state for t ≥ 0 is given by the convolution,

x(t) = eAtx(0) +
∫ t

0
eA(t−τ)Bu(τ) dτ.

At the sample times kT , k = 0, 1, 2, . . . , the state is

x(kT) = eAkT x(0) +
∫ kT

0
eA(kT−τ)Bu(τ) dτ.

The state at the (k + 1)th step can be expressed in terms of the state at the kth step as follows:

x(kT + T) = eA(kT+T)x(0) +
∫ kT+T

0
eA(kT+T−τ)Bu(τ) dτ

= eAT eAkT x(0) +
∫ kT

0
eA(kT+T−τ)Bu(τ) dτ +

∫ kT+T

kT
eA(kT+T−τ)Bu(τ) dτ

= eAT

[
eAkT x(0) +

∫ kT

0
eA(kT−τ)Bu(τ) dτ

]
+
∫ kT+T

kT
eA(kT+T−τ)Bu(τ) dτ

= eAT x(kT) + (input term).

When the input u(t) is constant during each sampling interval, as it is when driven by sample-and-hold,
then the input term becomes

∫ kT+T

kT
eA(kT+T−τ)Bu(τ) dτ =

[∫ kT+T

kT
eA(kT+T−τ)dτ

]
Bu(kT).
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The discrete-time input coupling matrix is

B =
[∫ kT+T

kT
eA(kT+T−τ)dτ

]
B.

Let
γ = kT + T − τ, dγ = −dτ;

then

B =
[∫ T

0
eAγ dγ

]
B. (12.17)

Expanding the integrand into a power series,

eAγ = I + Aγ

1! + A2γ2

2! + · · · + Aiγi

i! + · · ·,
and integrating term by term results in

B =
{∫ T

0

[
I + Aγ

1! + A2γ2

2! + · · · + Aiγi

i! + · · ·
]

dγ

}
B

=
[

IT + AT2

2! + A2T3

3! + · · · + AiTi+1

(i + 1)! + · · ·
]

B

or

B =
[

T
∞∑

k=0

(AT)k

(k + 1)!

]
B = ΨB. (12.18)

Because

AB =
[

AT

1! + A2T2

2! + · · · + Ai+1Ti+1

(i + 1)! + · · ·
]

B = (eAT − I)B

and, if A is nonsingular, then

B = A−1(eAT − I)B = (eAT − I)A−1B.

The discrete-time model of Equation 12.16 is then

x[(k + 1)T] = Ax(kT) + Bu(kT),

y(kT) = Cx(kT) + Du(kT)
(12.19)

or

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k) + Du(k),

where

A = eAT =
[ ∞∑

k=0

(AT)k

k!

]
= I + AΨ = I + ΨA (12.20)

B =
[

IT + AT2

2! + A2T3

3! + · · · + AiTi+1

(i + 1)! + · · ·
]

B = ΨB (12.21)

and where
B = A−1[eAT − I]B = [eAT − I]A−1B

when A is nonsingular.
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As a numerical example, consider the continuous-time system,

[
ẋ1(t)
ẋ2(t)

]
=
[−2 2

1 −3

] [
x1(t)
x2(t)

]
+
[−1

5

]
u(t),

y(t) =[2 − 4]
[

x1(t)
x2(t)

]
+ 6u(t),

with a sampling interval T = 0.2 s. The matrix exponential is

eAT = e0.2A =
[

0.696 0.246
0.123 0.572

]
,

which can be calculated by truncating the power series

eAT ∼= I + AT + (AT)2

2! + (AT)3

3! + · · · + (AT)i

i! .

By examining the finite series as more and more terms are added, it can be decided when to truncate
the series. However, there are pathologic matrices for which the series converges slowly, for which the
series seems to converge first to one matrix then to another, and for which numerical rounding can give
misleading results.

Continuing with the example, if the input u(t) is constant in each interval from kT to kT + T , then

B = [eAT − I]A−1B

=
[−0.304 0.246

0.123 −0.428

]⎡⎢⎣
−3

4
−1

2

−1

4
−1

2

⎤
⎥⎦
[−1

5

]
=
[−0.021

0.747

]
,

which could also have been found using Equation 12.21. The discrete-time model of the continuous-time
system is then

[
x1(kT + T)
x2(kT + T)

]
=
[

0.696 0.246
0.123 0.572

] [
x1(kT)
x2(kT)

]
+
[−0.021

0.747

]
u(kT),

y(kT) = [2 − 4]
[

x1(kT)
x2(kT)

]
+ 6u(kT).

(12.22)

12.4.2 Approximation Methods

Another method for finding discrete-time equivalents of continuous-time systems described by state
variable equations is to integrate Equation 12.16 as follows:

x(t) = x(t0) +
∫ t

t0

[Ax(t) + Bu(t)] dt. (12.23)

For evenly spaced samples at t = kT , k = 0, 1, 2, . . .

x(kT + T) = x(kT) +
∫ kT+T

kT
[Ax(t) + Bu(t)] dt. (12.24)

Applying Euler’s forward rectangular approximation of the integral,

x(kT + T) ∼= x(kT) + [Ax(kT) + Bu(kT)]T
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or
x(kT + T) ∼= [I + AT]x(kT) + BTu(kT).

For the previous example, Euler’s forward rectangular rule gives

[
x1(kT + T)
x2(kT + T)

]
∼=
{[

1 0
0 1

]
+
[−2 2

1 −3

]
(0.2)

}[
x1(kT)
x2(kT)

]
+
[−1

5

]
(0.2)u(kT)

or [
x1(kT + T)
x2(kT + T)

]
∼=
[

0.6 0.4
0.2 0.4

] [
x1(kT)
x2(kT)

]
+
[−0.2

1

]
u(kT)

and

y(kT) = [2 − 4]
[

x1(kT)
x2(kT)

]
+ 6u(kT),

which does not match well with the result given by Equation 12.22.
Reducing the sampling interval to T = 0.01 s, Euler’s approximation gives

[
x1(kT + T)
x2(kT + T)

]
∼=
[

0.98 0.02
0.01 0.97

] [
x1(kT)
x2(kT)

]
+
[−0.01

0.05

]
u(kT),

y(kT) = [2 − 4]
[

x1(kT)
x2(kT)

]
+ 6u(kT).

Taking the first two terms in the series in Equations 12.20 and 12.21 results in

[
x1(kT + T)
x2(kT + T)

]
∼=
[

0.9803 0.0195
0.0098 0.9706

] [
x1(kT)
x2(kT)

]
+
[−0.0094

0.0492

]
u(kT),

which is in close agreement with Euler’s result.
Euler’s backward approximation of the integral in Equation 12.24 gives

x(kT + T) ∼= x(kT) + [Ax(kT + T) + Bu(kT + T)]T

or
[I − AT]x(kT + T) ∼= x(kT) + BTu(kT + T).

Hence,

x(kT + T) ∼= [I − AT]−1x(kT) + [I − AT]−1BTu(kT + T).

Letting
x̄(kT + T) = x(kT)

then
[I − AT]x(kT + T) ∼= x̄(kT + T) + BTu(kT + T)

or
[I − AT]x(kT) ∼= x̄(kT) + BTu(kT).

Hence,

x(kT) ∼= [I − AT]−1x̄(kT) + [I − AT]−1BTu(kT),
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and, therefore,

x̄(kT + T) ∼= [I − AT]−1x̄(kT) + [I − AT]−1BTu(kT).

The output equation
y(kT) = Cx(kT) + Du(kT)

in terms of the new variable x̄ becomes

y(kT) ∼= C[I − AT]−1x̄(kT) + C[I − AT]−1BTu(kT) + Du(kT)

or

y(kT) ∼= C[I − AT]−1x̄(kT) + {
C[I − AT]−1BT + D

}
u(kT).

Some formulas for discretizing continuous-time state variable equations using numerical integration
are listed in Table 12.4. Derivative approximations, such as those listed in Table 12.3, are also possibilities
for discretizing continuous-time state equations. Improved accuracy and a reduced sampling interval may
also result from using more involved approximations, such as the predictor-corrector or Runge–Kutta
methods.

12.4.3 Discrete-Time Equivalents of Pulsed Inputs

In the previous sections, the control input u(t) is held constant during the entire sampling period T . In
some applications, however, the control u(t) may be constant for a fraction of the sampling period, Tw ,
that is, 0 < Tw ≤ T as shown in Figure 12.17. In this situation, the state-space representation described
in Section 1.3.4.1 above should be modified as follows:

x(kT + T) = eAT x(kT) +
∫ kT+T

kT
eA(kT+T−τ)Bu(τ) dτ

= eAT x(kT) +
∫ kT+Tw

kT
eA(kT+T−τ)Bu(τ) dτ +

∫ kT+T

kT+Tw

eA(kT+T−τ)Bu(τ) dτ

= eAT x(kT) +
∫ kT+Tw

kT
eA(kT+T−τ)Bu(τ) dτ,

because the value of the control input between kT + Tw and kT + T is zero. Letting

η = kT + T − τ, dη = −dτ,

then

x(kT + T) = eAT x(kT) +
∫ T

T−Tw

eAηB dηu(kT)

Again, letting
γ = η − (T − Tw), dγ = dη,

then

x(kT + T) = eAT x(kT) + eA(T−Tw)
[∫ Tw

0
eAγB dγ

]
u(kT) (12.25)

which is in the form given by Equation 12.19. The term eA(T−Tw) on the right-hand side of Equation 12.25
can be easily obtained using Equation 12.20 by substituting T − Tw instead of T . The term in brackets in
Equation 12.25 can be evaluated using Equation 12.17 or 12.18 except T is replaced with Tw .
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TABLE 12.4 Some Formulas for Discretizing Continuous-Time State Variable Models

For the nth-order continuous-time plant described by

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

its discrete-time equivalence is given by

1. Zero-order hold method

x[(k + 1)T] = Ax(kT) + Bu(kT)

y(kT) = Cx(kT) + Du(kT)

where

A = eAT = I + AT

1! + A2T2

2! + · · · + AiTi

i! + · · ·

B =
[

IT + AT2

2! + A2T3

3! + · · · + AiTi+1

i + 1! + · · ·
]

B

or

B = A−1[exp(AT) − I]B = [exp(AT) − I]A−1B

when A is nonsingular.

2. Euler’s forward rectangular method

x(kT + T) ∼= x(kT) + [Ax(kT) + Bu(kT)]T
y(kT) = Cx(kT) + Du(kT)

3. Euler’s backward rectangular method

x̄(kT + T) ∼= [I − AT]−1x̄(kT) + [I − AT]−1BTu(kT)

y(kT) ∼= C[I − AT]−1x̄(kT) + {C[I − AT]−1BT + D}u(kT)

where

x(kT) = x̄(kT + T)

4. Trapezoidal method

x̄(kT + T) =
(

I − AT

2

)−1 (
I + AT

2

)
x̄(kT)

+ T

2

(
I − AT

2

)−1
Bu(kT − T) + T

2

(
I − AT

2

)−1
Bu(kT)

y(kT) = C

(
I − AT

2

)−1 (
I + AT

2

)
x̄(kT)

+ T

2
C

(
I − AT

2

)−1
Bu(kT − T) +

[
T

2
C

(
I − AT

2

)−1
B + D

]
u(kT)

where

x(kT) = x̄(kT + T)

For the example presented in Section 12.4.1, letting T = 0.2 and Tw = 0.08 gives[
x1(kT + T)
x2(kT + T)

]
=
[

0.696 0.246
0.123 0.572

] [
x1(kT)
x2(kT)

]
+
[

0.0265
0.2463

]
u(kT),

y(kT) = [2 − 4]
[

x1(kT)
x2(kT)

]
+ 6u(kT).
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u(t)

0 Tw T t

FIGURE 12.17 Control input u(t) is constant for a fraction of the sampling period.

12.5 The Delta Operator

It is well known that when a digital controller, formulated using the z-transform and the shift operator
methods discussed in the previous sections, is implemented with a finite-precision device, it may achieve a
lower-than-predicted performance, or even become unstable due to the finite word length (FWL) effects.
Furthermore, when the sampling period of a z-transform discrete-time system is very small, the response
of the system may not converge smoothly to its continuous counterpart and hence may cause significant
implementation issues.

On the other hand, the delta operator, given by

δ = z − 1

T
(12.26)

offers superior numerical performance in FWL implementation over the z-transform and the shift oper-
ator. And, as the sampling rate is increased, the discrete-time results and models converge to their
continuous counterparts. In this section, we will discuss the mathematical representation of discrete time
controllers using the delta operator. The implementation of these digital controllers using FWL registers
and finite-precision arithmetic is discussed in detail in Chapter 14.

12.5.1 Transfer Function Representation

Consider the second-order analog filer

G(s) = s2 + 2ξzωns + ω2
n

s2 + 2ξpωns + ω2
n

(12.27)

Using the pole–zero matching method, the equivalent discrete-time filter G(z) is determined by trans-
forming the numerator and the denominator of G(s) using the pair

(s + a)2 + b2 → z2 − 2(e−aT cos bT)z + e−2aT

Then

G(z) =
K
[

z2 − 2e−ξzωnT cos
(
ωnT

√
1 − ξ2

z

)
z + e−2ξzωnT

]
[

z2 − 2e−ξpωnT cos
(
ωnT

√
1 − ξ2

p

)
z + e−2ξpωnT

]
or

G(z) = K(z2 + a1z + a0)

z2 + b1z + b0
(12.28)
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where a1 = −2e−ξzωnT cos ωnT
√

1 − ξ2
z ; a0 = e−2ξzωnT ; b1 = −2e−ξpωnT cos ωnT

√
1 − ξ2

p; and b0 =
e−2ξpωnT .

The gain K is selected such that the DC gain of the digital filter is identical to the continuous-time filter
given in Equation 12.27. Hence,

K = 1 + b1 + b0

1 + a1 + a0
.

In terms of the delta operator δ, substituting Equation 12.26 into Equation 12.28 gives

G(δ) =
K

[
δ2 + 2 + a1

T
δ + 1 + a1 + a0

T2

]

δ2 + 2 + b1

T
δ + 1 + b1 + b0

T2

.

As a numerical example, let

ξz = 0.07, ξp = 0.7, ωn = 2π(0.2), T = 0.02.

Then, one can easily show that

G(s) = s2 + 0.1759s + 1.5791

s2 + 1.7593s + 1.5791
, (12.29)

G(z) = 0.9843z2 − 1.9646z + 0.9809

z2 − 1.9648z + 0.9654
, (12.30)

G(δ) = 0.9843δ2 + 0.2039δ + 1.5516

δ2 + 1.7597δ + 1.5516
. (12.31)

The relationship between the Laplace transform, the z transform, and the delta operator is given by

z = esT = 1 + sT + h.o.t,

δ = esT − 1

T
= sT

T
+ h.o.t.

As the sampling interval approaches 0, z → sT + 1, and δ → s, which means that the z transform model
is sensitive to roundoff while the delta operator model converges to its continuous counterpart and is less
sensitive to roundoff. This will be discussed further in Article 15. Also, it is instructive to compare the
coefficients of the numerator and the denominator polynomials in Equations 12.29 and 12.31 to those in
Equation 12.30.

12.5.2 State-Space Representation

Consider the nth-order continuous-time system described by the state variable Equation 12.16. The
corresponding discrete-time system using the delta operator is

δ[x(kT)] = Aδx(kT) + Bδu(kT),

y(kT) = Cx(kT) + Du(kT),
(12.32)

where

Aδ = ΩA
Bδ = ΩB

(12.33)

and

Ω = 1

T

T∫
0

eAγdγ. (12.34)
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Recall that the delta operator is given by

δ(.) = z − 1

T
.

An easy way to derive Equations 12.32 through 12.34 is to subtract x(kT) from both sides of Equation
12.19 as follows:

x[(k + 1)T] − x(kT) = Ax(kT) − x(kT) + Bu(kT).

Dividing both sides of the resulting Equation by Tgives

x[(k + 1)T] − x(kT)

T
= A − I

T
x(kT) + B

T
u(kT).

But the left-hand side of this equation is simply the delta operator of the state vector x. Then

δ [x(kT)] = A − I

T
x(kT) + B

T
u(kT). (12.35)

Comparing Equation 12.32 to Equation 12.35 gives

Aδ = A − I

T
, Bδ = B

T
, (12.36)

where A and B are determined using Equations 12.20 and 12.21 and repeated here for convenience:

A = eAT (12.37)

and

B =
[

IT + AT2

2! + A2T3

3! + · · · + AiTi+1

(i + 1)! + · · ·
]

B (12.38)

Finally, the equations in Equation 12.36 can be easily verified using Equations 12.33 and 12.34 and
employing Equations 12.37 and 12.38.

It is evident from Equations 12.36 through 12.38 that as T approaches zero (neglect higher-order
terms),

Aδ = eAT − I

T
= I + AT − I

T
= A

Bδ = B

T
= 1

T

[
IT + AT2

2! + A2T3

3! + · · · + AiTi+1

(i + 1)! + · · ·
]

B = B

Hence, the discrete-time system described by Equation 12.35 approaches its continuous-time counter-
part described by Equation 12.16.

Table 12.5 shows the Matlab code for simulating the unit step response of the second-order filter
described by Equation 12.27. The results are shown in Figure 12.18 where the unit step response of the
continuous-time filter and its discrete-time equivalent using the delta operator are indistinguishable.

One of the most important control system design tools is simulation, computer modeling of the plant
and controller to verify the properties of a preliminary design and to test its performance under conditions
(e.g., noise, disturbances, parameter variations, and nonlinearities) that might be difficult or cumbersome
to study analytically. Through simulation, difficulties with between-sample plant response are discovered
and solved.

When a continuous-time plant is simulated on a digital computer, its response is computed at closely
spaced discrete times. It is plotted by joining the closely spaced calculated response values with straight
line segments approximating a continuous curve. Digital computer simulation of discrete-time control
of a continuous-time system involves at least two sets of discrete-time calculations. One runs at high rate
to simulate the continuous-time plant. The other runs at a lower rate (say once every 10–50 of the former
calculations) to generate new control signals at each discrete control step.



�

�

�

�

� �

Discrete-Time Equivalents of Continuous-Time Systems 12-33

TABLE 12.5 Matlab Code to Simulate the Unit Step Response of a Second-Order Filter Using the Delta Operator

clear all

% Input continous-time filter parameters

dz = 0.07;

dp = 0.7;

wn = 2*pi*0.2;

T = 0.02; % sampling period

numc = [1 2*dz*wn wnˆ2];

denc = [1 2*dp*wn wnˆ2];

sysc = tf(numc,denc);

% State space and T.F. using Dleta Operator

sysd=c2d(sysc,T);

[phi,gamma,cd,dd]=ssdata(sysd);

Adel = (phi-eye(size(phi)))/T;

Bdel = gamma/T;

sys=ss(Adel,Bdel,cd,dd);

sysdelta=canon(sys,’companion’);

[numdDel,dendDel]=ss2tf(Adel,Bdel,cd,dd);

% Unit step input

u=1;

% parameters

tend = 12;

i=0;

x=zeros(length(phi),1);

% Simulation loop

for t=0:T:tend

i=i+1;

time(i) = t;

y=cd*x+dd*u;

delx = Adel*x+Bdel*u;

x = x+T*delx;

y2(:,i) = y;

end

figure(1)

plot(time,y2);

hold on

[z,time]=step(sysc,time);

plot(time,z);

xlabel(’Time (sec)’)

ylabel(’filter step response’)

grid

figure(2)

plot(time,z’-y2);

xlabel(’Time (sec)’)

ylabel(’error’)

grid
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FIGURE 12.18 Analog filter unit step response and discrete-time filter unit step response using delta operator.
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13.1 An Overview

The starting point of most beginning studies of classical and state-space control is with control of a linear,
single-input–single-output, time-invariant plant. The tools of classical discrete-time linear control system
design, which parallel the tools for continuous-time systems, are the z-transform, stability testing, root
locus, and frequency response methods.

As in the classical approach to designing analog controllers, one begins with simple digital controllers,
increasing their complexity until the performance requirements are met. The digital controller parameters
are chosen to give feedback system pole locations that result in acceptable zero-input (transient) response.
At the same time, requirements are placed on the overall system’s zero-state response components for
representative discrete-time reference inputs, such as steps or ramps.

13-1
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Extending classical single-input–single-output control system design methods to the design of compli-
cated feedback structures involving many loops, each including a compensator, is not easy. Put another
way, modern control systems require the design of compensators having multiple inputs and multiple
outputs. Design is iterative, involving considerable trial and error. Therefore with many design variables,
it is important to deal efficiently with those design decisions that need not be iterative. The powerful
methods of state space offer insights into what is possible and what is not. They also provide an excellent
framework for general methods of approaching and accomplishing design objectives.

A tracking system is one in which the plant outputs are controlled so that they become and remain
nearly equal to externally applied reference inputs. A special case of a tracking system in which the desired
tracking system output is zero is termed a regulator. In general, tracking control system design has two
basic concerns:

1. Obtaining acceptable zero-input response.
2. Obtaining acceptable zero-state system response to reference inputs.

In addition, if the plant is continuous-time, and the controller is discrete-time, it is necessary to

3. Obtain acceptable between-sample response of the continuous-time plant.

Through superposition, the zero-input response due to initial conditions and the individual zero-state
response contributions of each input can be dealt with separately. The character of a system’s zero-input
response is determined by its pole locations, so that the first concern of tracking system design is met by
selecting a controller that places all of the overall system poles in acceptable locations. Having designed
a feedback structure placing all of the overall system poles to achieve the desired character of zero-input
response, additional design freedom can then be used to obtain good tracking of reference inputs.

The above three concerns of digital tracking system design are the subject of this section.

13.2 Classical Control System Design Methods

A typical classical control system design problem is to determine and specify the transfer function Gc(z)
of a cascade compensator that results in a feedback tracking system with prescribed performance require-
ments. This is only a part of complete control system design, of course. It applies after a suitable model
has been found and the performance requirements are quantified. In describing solution methods for
idealized problems such as these, we separate general design principles from the highly specialized details
of a particular application.

The basic system configuration for this problem is shown in Figure 13.1. There are, of course, many
variations on this basic theme, including situations where the system structure is more involved, where
there is a feedback transmittance H(z), and where there are disturbance inputs to be considered. Usually,
these disturbances are undesirable inputs that the plant should not track.

Plant 
Gp(z) 

Compensator
Gc(z)

R(z) Y(z)+ 

– 

 

FIGURE 13.1 Cascade compensation of a unity feedback system.
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The first concern of tracking system design is met by choosing the compensator Gc(z) that results in
acceptable pole locations for the overall transfer function

T(z) = Y (z)

R(z)
= Gc(z)Gp(z)

1 + Gc(z)Gp(z)

Root locus is an important design tool because, with it, the effects on closed-loop system pole location of
varying design parameters are quickly and easily visualized.

The second concern of tracking system design is obtaining acceptable closed-loop zero-state response
to reference inputs. Zero-state performance is simple to deal with if it can be expressed as a maximum
steady-state error to a power-of-time input. For the discrete-time system shown in Figure 13.2, the
open-loop transfer function may have the form

KG(z)H(z) = K(z + α1)(z + α2) · · · (z + αl)

(z − 1)n(z + β1)(z + β2) · · · (z + βm)
= KN(z)

(z − 1)nD(z)
(13.1)

If n is nonnegative, the system is said to be type n.
The error between the input and the output of the system is

E(z) = R(z) − Y (z)H(z)

but

Y (z) = KE(z)G(z)

Then

TE(z) = E(z)

R(z)
= 1

1 + KG(z)H(z)

The steady-state error to a power-of-time input is given by the final value theorem

lim
k→∞

e(k) = lim
z→1

(1 − z−1)E(z) = lim
z→1

(1 − z−1)R(z)

1 + KG(z)H(z)
(13.2)

provided that the limit exists. A necessary condition for the limit to exist and be finite is that all the
closed-loop poles of the system be inside the unit circle on the z-plane.

Similar to continuous-time systems, there are three reference inputs for which steady-state errors are
commonly defined. They are the step (position), ramp (velocity), and parabolic (acceleration) inputs. The

+ 

– 

R(z) 

H(z) 

E(z) K Y(z) G(z) 

FIGURE 13.2 A discrete-time control system.
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TABLE 13.1 Steady State Errors to Power-of-Time Inputs

Steady-State Error Steady-State Error Steady-State Error

System to Step Input to Ramp Input to Parabolic Input

Type R(z) = Az

z − 1
R(z) = ATz

(z − 1)2 R(z) = T2

2

Az(z + 1)

(z − 1)3

0
A

1 + K
N(1)

D(1)

∞ ∞

1 0
AT

K
N(1)

D(1)

∞

2 0 0
AT2

K
N(1)

D(1)
...

...
...

...

n 0 0 0

step input has the form
r(kT) = Au(kT)

or, in the z-domain,

R(z) = Az

z − 1
and the ramp input is

r(kT) = AkTu(kT)

or

R(z) = ATz

(z − 1)2

The parabolic input is

r(kT) = 1

2
A(kT)2u(kT)

or

R(z) = T2

2

Az(z + 1)

(z − 1)3

Table 13.1 summarizes steady-state errors using Equations 13.1 and 13.2 for various system types for
power-of-time inputs.

We now present an overview of classical discrete-time control system design using an example.

13.2.1 Root Locus Design Methods

Similar to continuous-time systems, the root locus plot of a discrete-time system consists of the loci of
the poles of a transfer function as some parameter is varied. For the configuration shown in Figure 13.2
where the constant gain K is the parameter of interest, the overall transfer function of this system is

T(z) = KG(z)

1 + KG(z)H(z)

and the poles of the overall system are the roots of

1 + KG(z)H(z) = 0

which depend on the parameter K . The rules for constructing the root locus of discrete-time systems are
identical to the rules for plotting the root locus of continuous-time systems (see Chapter 9.4). The root
locus plot, however, must be interpreted relative to the z-plane.
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Desired 
tape 

position 

Digital controller Tape motion 
dynamics 

Tape
posittion

P(s)

Position 
sensor 

Position-
velocity
relation

R(z)

R(z)

E(z)

E(z)

D/A
with
S/H

D/A
with
S/H

Gc(z)

Gc(z) GP(s)

GP(z)

+ 

+ 
– 

– 

A/D

A/D

G(s) = 

40e 
1 — s 

1—s

1 —— 120 – s 

s + 40 

1

(a) 

(b) 

P(s) P(z)

FIGURE 13.3 Example of positioning system. (a) Block diagram. (b) Relation between discrete-time signals.

Consider the block diagram of a positioning system shown in Figure 13.3a. The transfer function G(s)
relates the input to a motion actuator and the speed of the element being positioned at two different points.
The delay term accounts for the propagation of speed changes over the distance physically separating
the two points. The pole term in G(s) represents the dynamics of the actuator and the element being
positioned. The position variable is sensed directly.

It is desired to design a digital controller that results in zero steady-state error to any step change in
desired position. Also, the system should have a zero-input (or transient) response that decays to no
more than 10% of any initial value within a 1/30 s interval. The sampling period of the controller is
chosen as T = 1/120 s. In Figure 13.3b the diagram of Figure 13.3a has been rearranged to emphasize the
discrete-time input R(z) and the discrete-time samples P(z) of the positioning system output.

The open-loop transfer function of the system is

Gp(z) = Z

[(
1 − e−(1/120)s

s

) (
40e−(1/120)s

s + 40

)(
1

s

)]

= Z
{
[1 − e−(1/120)s]e−(1/120)s

[−(1/140)

s
+ 1

s2 + 1/40

s + 40

]}

= (1 − z−1)z−1
[−z/40

z − 1
+ z/120

(z − 1)2 + z/40

z − 0.72

]

= 0.00133(z + 0.75)

z(z − 1)(z − 0.72)

The position error signal, in terms of the compensator’s z-transfer function Gc(z), is

E(z) = R(z) − Y (z)

=
[

1 − Gc(z)Gp(z)

1 + Gc(z)Gp(z)

]
R(z) = 1

1 + Gc(z)Gp(z)
R(z)
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For a unit step input sequence,

E(z) = 1

1 + Gc(z)Gp(z)

(
z

z − 1

)

Assuming that the feedback system is stable,

lim
k→∞

e(k) = lim
z→1

[
z − 1

z
E(z)

]
= lim

z→1

[
1

1 + Gc(z)Gp(z)

]

Provided that the compensator does not have a zero at z = 1, the system type is 1 and, therefore
according to Table 13.1, the steady-state error to a step input is zero. For the feedback system transient
response to decay by at least a factor 1/10 within 1/30 s, the desired closed-loop poles must be located so
that a decay of at least this amount occurs every 1/120 s step. This implies that the closed-loop poles must
lie within a radius c of the origin on the z-plane, where

c4 = 0.1, c = 0.56

Similar to continuous-time systems, one usually begins with the simplest compensator consisting of
only a gain K . The feedback system is stable for

0 < K < 95

but, as shown in Figure 13.4, this compensator is inadequate because there are always poles at distances
from the origin greater than the required c = 0.56 regardless of the value of K . As shown in Figure 13.5a,
another compensator with z-transfer function,

Gc(z) = K(z − 0.72)

z

which cancels the plant pole at z = 0.72, is tried. The root locus plot for this system is shown in
Figure 13.5b. For K = 90, the design is close to meeting the requirements, but it is not quite good

(a)

(b)

+
–

R(z) E(z)
Gc (z) = K

Gp(z) =
P(z)0.00133 (z + 0.75)

z(z – 1) (z – 0.72)

Im Im

K =
1000 K = 100

0.00133 0.00133

0.72 0.72– 0.75

(c)

–0.75

Unit circle Unit circle

Circle of
radius 0.56

K ≅ 10

K ≅ 95

K = 1000

Re Re

FIGURE 13.4 Constant-gain compensator. (a) Block diagram. (b) Root locus for positive K . (c) Root locus for
negative K .
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(a) 

+ 
– 

R(z) E(z) Gp(z) = P(z) 
0.00133 (z + 0.75) 
z(z – 1) (z – 0.72) 

Gc (z) = 
K(z – 0.72)

z

(b) Im

K = 90 0.00133 

–0.75 

Circle of 
radius 0.56 

K ≅ 370

K = 1000

K ≅ 370 

K ≅ 90 
Re

K = 1000 
Unit circle 

FIGURE 13.5 Compensator with zero at z = 0.72 and pole at z = 0. (a) Block diagram. (b) Root locus for positive K .

enough. However, if the compensator pole is moved from the origin to the left as shown in Figure 13.6,
the root locus is pulled to the left and the performance requirements are met.

For the compensator with z-transfer function

Gc(z) = 150(z − 0.72)

z + 0.4
(13.3)

the feedback system z-transfer function is

T(z) = Gc(z)Gp(z)

1 + Gc(z)Gp(z)
= 0.2(z + 0.75)

z3 − 0.6z2 − 0.2z + 0.15

= 0.2(z + 0.75)

(z − 0.539 − j0.155)(z − 0.539 + j0.155)

1

(z + 0.477)

As expected, the steady-state error to a step input is zero,

lim
z→1

{(
z − 1

z

)
[1 − T(z)]

(
z

z − 1

)}
= lim

z→1

z3 − 0.6z2 − 0.4z

z3 − 0.6z2 − 0.2z + 0.15
= 0

The steady-state error to a unit ramp input is

lim
z→1

{(
z − 1

z

)
[1 − T(z)]

[
Tz

(z − 1)2

]}

= lim
z→1

1
120 (z2 + 0.4z)

z3 − 0.6z2 − 0.2z + 0.15
= 1

30
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(a)

+
–

R(z) E(z) Gp(z) = P(z)
0.00133 (z + 0.75)
z(z – 1) (z – 0.72)

Gc (z) =
K(z – 0.72)

z + 0.4

(b) Im

K = 150
0.00133

–0.75 –0.4

Circle of
radius 0.56

Unit circle

K ≅ 150

K = 1000

Re

K = 1000

FIGURE 13.6 Compensator with zero at z = 0.72 and pole at z = 0.4. (a) Block diagram. (b) Root locus for
positive K .

For a compensator with a z-transfer function of the form

Gc(z) = 150(z − 0.72)

z + a

the feedback system has the z-transfer function,

T(z) = Gc(z)Gp(z)

1 + Gc(z)Gp(z)
= 0.2(z + 0.75)

(z + a)(z2 − z) + 0.2(z + 0.75)

= 0.2(z + 0.75)

z3 − z2 + 0.2z + 0.15 + a(z2 − z)
= 0.2(z + 0.75)/[z3 − z2 + 0.2z + 0.15]

1 + az(z − 1)/[z3 − z2 + 0.2z + 0.15]
= numerator

1 + az(z − 1)/[(z − 0.637 − j0.378)(z − 0.637 + j0.378)(z + 0.274)]
A root locus plot in terms of positive a in Figure 13.7 shows that choices of a between 0.4 and 0.5 give

a controller that meets the performance requirements.
Classical discrete-time control system design is an iterative process just like its continuous-time coun-

terpart. Increasingly complicated controllers are tried until both the steady-state error and transient
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Im

a = 0.4 

a = 0.6 a = 0.6 

a = 0.2 1 

Circle of 
radius 0.56 

Unit circle 

Re

FIGURE 13.7 Root locus plot as a function of the compensator pole location.

performance requirements are met. Root locus is an important tool because it easily indicates qualitative
closed-loop system pole locations as a function of a parameter. Once feasible controllers are selected, root
locus plots are refined to show quantitative results.

13.2.2 Frequency-Domain Methods

Frequency response characterizations of systems have long been popular because steady-state sinusoidal
response methods are easy and practical. Furthermore, frequency response methods do not require explicit
knowledge of system transfer function models.

For the positioning system in the previous example, the open-loop z-transfer function that includes
the compensator given by Equation 13.3 is

Gc(z)Gp(z) = (150)(0.00133)(z + 0.75)

z(z + 0.4)(z − 1)

Substituting z = ejωT , then

Gc(ejωT )Gp(ejωT ) = 0.1995(ejωT + 0.75)

ejωT (ejωT + 0.4)(ejωT − 1)
(13.4)

which has frequency response plots shown in Figure 13.8. At the phase crossover frequency (114.2 rad/s),
the gain margin is 11.48 dB, and, at the gain crossover frequency (30 rad/s), the phase margin is about
66.5◦.

For ease in generating frequency response plots and gaining greater insight into the design process,
frequency-domain methods such as Nyquist, Bode, Nichols, etc. for discrete-time systems are best devel-
oped with the w-transform. In the w-plane, the wealth of tools and techniques developed for continuous-
time systems are directly applicable to discrete-time systems as well.
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50

G
ai

n 
(d

B)

Frequency (rad/s)

0

–50
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0

–90
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e (
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g)
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–360
10–1 100 101 102 103

FIGURE 13.8 Frequency response plots of the positioning system.

The w-transform is

w = z − 1

z + 1
, z = w + 1

1 − w

which is a bilinear transformation between the w-plane and the z-plane.
The general procedure for analyzing and designing discrete-time systems with the w-transform is

summarized as follows:

1. Apply the w-transform to the open-loop transfer function G(z)H(z) by replacing each z in
G(z)H(z) with

z = w + 1

1 − w

to obtain G(w)H(w). Note that the functions G and H actually are different after the substitution.
2. Visualizing the w-plane as if it were the s-plane, substitute w = jv into G(w)H(w) and generate

frequency response plots in terms of the real frequency ν, such as Nyquist, Bode, Nichols, etc.
3. Determine the gain margin, phase margin, crossover frequencies, bandwidth, closed-loop fre-

quency response, or any other desired frequency response characteristics.
4. If it is necessary, design an appropriate compensator Gc(w) to satisfy the frequency-domain per-

formance requirements.
5. Convert critical frequencies v in the w-plane to frequencies ω in the z-domain according to

ν = tan
ωT

2

or

ω = 2

T
tan−1 ν

6. Transform the controller Gc(w) to Gc(z) according to

w = z − 1

z + 1
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E 

x (k)

u(k)ρ(k)
x (k + 1) = Ax (k) + Bu (k)

Plant 

+ 
+ 

FIGURE 13.9 State feedback.

Control system design for discrete-time systems using Bode, Nyquist, or Nichols methods can be found
in [1,2]. Frequency response methods are most useful in developing models from experimental data, in
verifying the performance of a system designed by other methods, and in dealing with those systems and
situations in which rational transfer function models are not adequate.

13.3 Eigenvalue Placement with State Feedback

All of the results for eigenvalue placement with state feedback for continuous-time systems carry over to
discrete-time systems. For a linear, step-invariant nth-order system, described by the state equation

x(k + 1) = Ax(k) + Bu(k)

consider the state-feedback arrangement

u(k) = Ex(k) + ρ(k)

where ρ(k) is a vector of external inputs, as shown in Figure 13.9. Provided that the plant is completely
controllable, and that the state is accessible for feedback,∗ the feedback gain matrix E can always be chosen
so that each of the eigenvalues of the feedback system

x(k + 1) = (A + BE)x(k) + Bρ(k)

is at an arbitrary desired location selected by the designer. This is to say that the designer can freely choose
the character of the overall system’s transient performance.

13.3.1 Eigenvalue Placement for Single-Input Systems

There are a number of methods for finding the state feedback gain vector of single-input plants, one
is summarized below, and additional ones can be found in [3,4] and in Control System Fundamentals,
Chapter 5 and Control System Advanced Methods, Chapter 16.

∗ When the plant state vector is not available for feedback, as is usually the case, an observer is designed to estimate the
state vector. The observer state estimate is used for feedback in place of the state itself.
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One method for calculating the state feedback gain vector is given by Ackermann’s formula:

e† = −j†
nM−1

c Δc(A)

where j†
n is the transpose of the nth-unit coordinate vector

j†
n = [0 0 · · · 0 1]

Mc is the controllability matrix of the system, and Δc(A) is the desired characteristic equation with the
matrix A substituted for the variable z.

For example, for the completely controllable system,
[

x1(k + 1)
x2(k + 1)

]
=
[

1 −1
3 0

] [
x1(k)
x2(k)

]
+
[

1
2

]
u(k)

it is desired to place the feedback system eigenvalues at z = 0, −0.5. Then,

Δc(z) = z(z + 0.5) = z2 + 0.5z

and
Δc(A) = A2 + 0.5A

Using Ackermann’s formula, the state-feedback gain vector is

e† = −[0 1]
[

1 −1
2 3

]−1 {[−2 −1
3 −3

]
+ 0.5

[
1 −1
3 0

]}
= [−1.5 0

]

13.3.2 Eigenvalue Placement with Multiple Inputs

If the plant has multiple inputs and if it is completely controllable from one of the inputs, then that one
input alone can be used for feedback. If the plant is not completely controllable from a single input, a
single input can usually be distributed to the multiple ones so that the plant is completely controllable
from the single input.

For example, for the system

⎡
⎣x1(k + 1)

x2(k + 1)
x3(k + 1)

⎤
⎦=

⎡
⎣−0.5 0 1

0 0.5 2
1 −1 0

⎤
⎦
⎡
⎣x1(k)

x2(k)
x3(k)

⎤
⎦+

⎡
⎣ 1 0

0 −2
−1 1

⎤
⎦[u1(k)

u2(k)

]

letting
u1(k) = 3μ(k)

and
u2(k) = μ(k)

then ⎡
⎣x1(k + 1)

x2(k + 1)
x3(k + 1)

⎤
⎦=

⎡
⎣−0.5 0 1

0 0.5 2
1 −1 0

⎤
⎦
⎡
⎣x1(k)

x2(k)
x3(k)

⎤
⎦+

⎡
⎣ 3

−2
−2

⎤
⎦ [μ(k)]

which is a controllable single-input system. If the desired eigenvalues are located at z1 = −0.1, z2 = −0.15.
and z3 = 0.1, Ackermann’s formula gives

e† = [0.152 0.0223 0.2807]
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1

+

+
+

+

3

Plant

E

μ(k)

u1(k)

u2(k)ρ2(k)

ρ1(k)

x (k)

x (k + 1) = A x (k) + B u(k)

e†

FIGURE 13.10 State feedback to a plant with multiple inputs.

and hence, the feedback gain matrix for the multiple input system is

E =
[

0.4559 0.0669 0.8420
0.1520 0.0223 0.2807

]

The structure of this system is shown in Figure 13.10.

13.3.3 Eigenvalue Placement with Output Feedback

It is the measurement vector of a plant, not the state vector, that is available for feedback. For the nth-order
plant with state and output equations

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

if the output coupling matrix C has n linearly independent rows, then the plant state can be recovered
from the plant inputs and the measurement outputs and the method of the previous section applied:

x(k) = C−1{y(k) − Du(k)}
When the nth-order plant does not have n linearly independent measurement outputs, it still might be

possible to select a feedback matrix E in

u(k) = E{y(k) − Du(k)} + ρ(k) = ECx(k) + ρ(k)

to place all of the feedback system eigenvalues, those of (A + BEC), acceptably. Generally, however,
measurement feedback alone is insufficient for arbitrary eigenvalue placement.

13.3.4 Pole Placement with Feedback Compensation

Similar to output feedback, pole placement with feedback compensation assumes that the measurement
outputs of a plant, not the state vector, are available for feedback.
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Feedback 
compensator 

Plant 

Plant with feedback T(z)

G(z) = 
Y (z)P (z) Np(z)

Dp(z)

H (z) = 
Nc(z)
Dc(z)

+ 
– 

FIGURE 13.11 Pole placement with feedback compensation.

Consider the single-input–single-output, nth-order, linear, step-invariant, discrete-time system
described by the transfer function G(z). Arbitrary pole placement of the feedback system can be accom-
plished with an mth-order feedback compensator as shown in Figure 13.11.

Let the numerator and the denominator polynomials of G(z) be Np(z) and Dp(z), respectively. Also,
let the numerator and the denominator of the compensator transfer function H(z) be Nc(z), and Dc(z),
respectively. Then, the overall transfer function of the system is

T(z) = G(z)

1 + G(z)H(z)
= Np(z)/Dp(z)

1 + [Np(z)/Dp(z)][Nc(z)/Dc(z)]
= Np(z)Dc(z)

Dp(z)Dc(z) + Np(z)Nc(z)
= P(z)

Q(z)

which has closed-loop zeros in P(z) that are those of the plant, in Np(z), together with zeros that are the
poles of the feedback compensator, in Dc(z).

For a desired set of poles of T(z), given with an unknown multiplicative constant by the polynomial
Q(z),

Dp(z)Dc(z) + Np(z)Nc(z) = Q(z)

The desired polynomial Q(z) has the form

Q(z) = α0(zn+m + βn+m−1zn+m−1 + · · · + β1z + β0)

where the βs are known coefficients, but the α0 is unknown. In general, for a solution to exist, there must
be at least as many unknowns as equations

n + m + 1 ≤ 2m + 2

or
m ≥ n − 1 (13.5)

where n is the order of the plant and m is the order of the compensator. Equation 13.5 states that the
order of the feedback controller cannot be less than the order of the plant minus one. If the plant transfer
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function has coprime numerator and denominator polynomials (i.e., plant pole–zero cancellations have
been made), then a solution is guaranteed to exist.

For example, consider the second-order plant

G(z) = (z + 1)(z + 0.5)

z(z − 1)
= Np(z)

Dp(z)
(13.6)

According to Equation 13.5, a first-order feedback compensator of the form

H(z) = α1z + α2

z + α3
= Nc(z)

Dc(z)

places the three closed-loop poles of the feedback system at any desired location in the z-plane by
appropriate choice of α1, α2, and α3. Let the desired poles of the plant with feedback be at z = 0.1. Then,

Q(z) = α0(z − 0.1)3 = α0(z3 − 0.3z2 + 0.03z − 0.001) (13.7)

In terms of the compensator coefficients, the characteristic equation of the feedback system is

Dp(z)Dc(z) + Np(z)Nc(z)

= z(z − 1)(z + α3) + (z + 1)(z + 0.5)(α1z + α2) (13.8)

= (α1 + 1)z3 + (1.5α1 + α2 + α3 − 1)z2 + (0.5α1 + 1.5α2 − α3)z + 0.5α2

Equating coefficients in Equations 13.7 and 13.8 and solving for the unknowns,

α0 = 1.325 α1 = 0.325 α2 = −0.00265 α3 = 0.1185

Therefore, the compensator

H(z) = 0.325z − 0.00265

z + 0.1185

will place the closed-loop poles where desired.
As far as feedback system pole placement is concerned, a feedback compensator of order n − 1, where

n is the order of the plant, can always be designed. It is possible, however, that a lower-order feedback
controller may give acceptable feedback pole locations even though those locations are constrained and
not completely arbitrary. This is the thrust of classical control system design, in which increasingly
higher-order controllers are tested until satisfactory results are obtained.

For the plant given by Equation 13.6, for example, a zeroth-order feedback controller of the form

H(z) = K

gives overall closed-loop poles at z = 0.1428 and z = 0.5 for K = 1/6 which might be an adequate pole
placement design.

13.4 Step-Invariant Discrete-Time Observer Design

When the plant state vector is not entirely accessible, as is usually the case, the state is estimated with an
observer, and the estimated state is used in place of the actual state for feedback. See the article entitled
“Observers.”
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13.4.1 Full-Order Observers

A full-order state observer of an nth-order step-invariant discrete-time plant

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(13.9)

is another nth-order system of the form

ξ(k + 1) = Fξ(k) + Gy(k) + Hu(k) (13.10)

driven by the inputs and outputs of the plant so that the error between the plant state and the observer
state

x(k + 1) − ξ(k + 1) = Ax(k) + Bu(k) − Fξ(k) − Gy(k) − Hu(k)

= Ax(k) + Bu(k) − Fξ(k) − GCx(k) − GDu(k) − Hu(k)

= (A − GC)x(k) − Fξ(k) + (B − GD − H)u(k)

is governed by an autonomous equation. This requires that

F = A − GC (13.11)

H = B − GD (13.12)

so that the error satisfies

x(k + 1) − ξ(k + 1) = (A − GC)[x(k) − ξ(k)]
or

x(k) − ξ(k) = (A − GC)k[x(0) − ξ(0)] = Fk[x(0) − ξ(0)]

The eigenvalues of F = A − GC can be placed arbitrarily by the choice of G, provided that the system is
completely observable. The observer error, then, approaches zero with step regardless of the initial values
of x(0) and ξ(0) that is, the observer state ξ(k) will approach the plant state x(k). The full-order observer
relations are summarized in Table 13.2. If all n of the observer eigenvalues (eigenvalues of F) are selected
to be zero, then the characteristic equation of F is

λn = 0

and, because every matrix satisfies its own characteristic equation, then

Fn = 0

At the nth step, the error between the plant state and the observer state is

x(n) − ξ(n) = Fn[x(0) − ξ(0)]

so that

x(n) = ξ(n)

and the observer state equals the plant state. Such an observer is termed deadbeat. In subsequent steps,
the observer state continues to equal the plant state.



�

�

�

�

� �

Design Methods for Discrete-Time, Linear Time-Invariant Systems 13-17

TABLE 13.2 Full-Order State Observer

Relations

Plant model

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

Observer

ξ(k + 1) = Fξ(k) + Gy(k) + Hu(k)

where

F = A − GC

H = B − GD

Observer error

x(k + 1) − ξ(k + 1) = F[x(k) − ξ(k)]
x(k) − ξ(k) = Fk[x(0) − ξ(0)]

There are a number of ways for calculating the observer gain matrix g for single-output plants. Similar
to the situation with state feedback, the eigenvalues of F = A − gc† can be placed arbitrarily by choice of
g as given by Ackermann’s formula

g = Δ0(A)M−1
0 jn (13.13)

provided that (A, c†) is completely observable. In Equation 13.13, Δ0(A) is the desired characteristic
equation of the observer eigenvalues with the matrix A substituted for the variable z, M0 is the observability
matrix

M0 =

⎡
⎢⎢⎢⎢⎢⎣

c†

c†A
c†A2

...
c†An−1

⎤
⎥⎥⎥⎥⎥⎦

and jn is the nth-unit coordinate vector

jn =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...
1

⎤
⎥⎥⎥⎥⎥⎦

It is enlightening to express the full-order observer equations given by Equations 13.10 through 13.12
in the form

ξ(k + 1) = (A − GC)ξ(k) + Gy(k) + (B − GD)u(k)

= Aξ(k) + Bu(k) + G[y(k) − w(k)]
where

w(k) = Cξ(k) + Du(k)

The observer consists of a model of the plant driven by the input u(k) and the error between the plant
output y(k) and the plant output that is estimated by the model w(k).

13.4.2 Reduced-Order State Observers

Rather than estimating the entire state vector of a plant, if a completely observable nth-order plant has
m linearly independent outputs, a reduced-order state observer, of order n − m, having an output that
observes the plant state can be constructed. See the article entitled “Observers.”
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When an observer’s state
ξ(k + 1) = Fξ(k) + Gy(k) + Hu(k)

estimates a linear combination Mx(k) of the plant state rather than the state itself, the error between the
observer state and the plant state transformation is given by

Mx(k + 1) − ξ(k + 1) = MAx(k) + MBu(k) − Fξ(k) − Gy(k) − Hu(k)

= (MA − GC)x(k) − Fξ(k) + (MB − GD − H)u(k)

where M is (n − m)xn. For the observer error system to be autonomous,

FM = MA − GC (13.14)

H = MB − GD

so that the error is governed by

Mx(k + 1) − ξ(k + 1) = F[Mx(k) − ξ(k)]
For a completely observable plant, the observer gain matrix g can always be chosen so that all of the

eigenvalues of F are inside the unit circle on the complex plane. Then the observer error

Mx(k) − ξ(k) = Fk[Mx(0) − ξ(0)]
will approach zero asymptotically with step, and then

ξ(k) → Mx(k)

If the plant outputs, which also involve linear transformation of the plant state, are used in the formu-
lation of a state observer, the dynamic order of the observer can be reduced. For the nth-order plant given
by Equation 13.9 with the m rows of C linearly independent, an observer of order n − m with n outputs

w′(k) =
[

0
I

]
ξ(k) +

[
I
0

]
y(k) −

[
D
0

]
u(k)

observes

w′(k) →
[

C
M

]
x(k) = Nx(k)

Except in special cases, the rows of M and the rows of C are linearly independent. If they are not so,
slightly different observer eigenvalues can be chosen to give linear independence. Therefore,

w(k) = N−1w′(k)

observes x(k).

13.4.3 Eigenvalue Placement with Observer Feedback

When observer feedback is used in place of plant state feedback, the eigenvalues of the feedback system
are those the plant would have, if the state feedback were used, and those of the observer. This result is
known as the separation theorem for observer feedback. For a completely controllable and completely
observable plant, an observer of the form

ξ(k + 1) = Fξ(k) + Gy(k) + Hu(k) (13.15)

w(k) = Lξ(k) + N[y(k) − Du(k)] (13.16)

with feedback to the plant given by
u(k) = Ew(k) (13.17)
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FIGURE 13.12 Eigenvalue placement with full-order observer feedback.

can thus be designed so that the overall feedback system eigenvalues are specified by the designer. The
design procedure can proceed in two steps. First, the state feedback is designed to place the n state
feedback system eigenvalues at desired locations as if the state vector is accessible. Second, the state
feedback is replaced by feedback of an observer estimate of the same linear transformations of the state.
As an example of eigenvalue placement with observer feedback, Figure 13.12 shows eigenvalue placement
with full-order state observer. The eigenvalues of the overall system are those of the state feedback and
those of the full-order observer.

13.5 Tracking System Design

The second concern of tracking system design, obtaining acceptable zero-state system response to refer-
ence inputs, is now discussed.

A tracking system is one in which the plant’s outputs are controlled so that they become and remain
nearly equal to externally applied reference signals r(k) as shown in Figure 13.13a. The outputs ȳ(k) are
said to track or follow the reference inputs.

As shown in Figure 13.13b, a linear, step-invariant controller of a multiple-input–multiple-output plant
is described by two transfer function matrices: one relating the reference inputs to the plant inputs and
the other relating the output feedback vector to the plant inputs. The feedback compensator is used for
shaping the plant’s zero-input response by placing the feedback system eigenvalues at desired locations as
discussed in the previous subsections. The input compensator, on the other hand, is designed to achieve
good tracking of the reference inputs by the system outputs.

The output of any linear system can always be decomposed into two parts: the zero-input component
due to the initial conditions alone and the zero-state component due to the input alone, that is,

ȳ(k) = ȳzero−input(k) + ȳzero−state(k)
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ȳ (k)

Plant
inputs
ρ(k)

FIGURE 13.13 Controlling a multiple-input–multiple-output plant. The output ȳ(k) is to track the reference input
r(k). (a) A tracking system using the reference inputs and plant outputs. (b) Representing a controller with a feedback
compensator and an input compensator. (c) Feedback compensator combined with plant to produce a plant-with-
feedback transfer function matrix T(z). (d) Using a reference input filter for tracking.

Basically, there are three methods for tracking system design:

1. Ideal tracking system design
2. Response model design
3. Reference model design

13.5.1 Ideal Tracking System Design

In this first method, ideal tracking is obtained if the measurement output equals the tracking input

ȳzero−state(k) = r(k)

The tracking outputs ȳ(k) have initial transient error due to any nonzero plant initial conditions, after
which they are equal to the reference inputs r(k), no matter what these inputs are.

As shown in Figure 13.13c, if the plant with feedback has the z-transfer function matrix T(z) relating
the tracking output to the plant inputs, then

Ȳ (z) = T(z)ρ(z)

An input compensator or a reference input filter, as shown in Figure 13.13d, with the transfer function
matrix Gr(z), for which

ρ(z) = Gr(z)R(z)

gives
Ȳ (z) = T(z)Gr(z)R(z)

Ideal tracking is achieved if
T(z)Gr(z) = I

where I is the identity matrix with dimensions equal to the number of reference inputs and tracking
outputs. This is to say that ideal tracking is obtained if the reference input filter is an inverse filter of
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the plant with feedback. Reference input filters do not change the eigenvalues of the plant with feedback
which are assumed to have been previously placed with output or observer feedback.

When a solution exists, ideal tracking system design achieves exact zero-state tracking of any reference
input. Because it involves constructing inverse filters, ideal tracking system design may require unstable
or noncausal filters. An ideal tracking solution can also have other undesirable properties, such as unrea-
sonably large gains, highly oscillatory plant control inputs, and the necessity of canceling plant poles and
zeros when the plant model is not known accurately.

13.5.2 Response Model Design

When ideal tracking is not possible or desirable, the designer can elect to design response model tracking,
for which

T(z)Gr(z) = Ω(z)

where the response model z-transfer function matrix Ω(z) characterizes an acceptable relation between
the tracking outputs and the reference inputs. Clearly, the price one pays for the added freedom designing
a reference model can be degraded tracking performance. However, performance can be improved by
increasing the order of the reference input filter. Response model design is a generalization of the classical
design technique of imposing requirements for a controller’s steady-state response to power-of-time
inputs.

The difficulty with the response model design method is in selecting suitable model systems. For
example, when two or more reference input signals are to be tracked simultaneously, the response model
z-transfer functions selected include those relating plant tracking outputs and the reference inputs they
are to track, and those relating unwanted coupling between each tracking output and the other reference
inputs.

13.5.3 Reference Model Tracking System Design

The practical response model performance is awkward to design because it is difficult to relate perfor-
mance criteria to the z-transfer functions of response models. An alternative design method models the
reference input signals r(k) instead of the system response. This method, termed reference model track-
ing system design, allows the designer to specify a class of representative reference inputs that are to be
tracked exactly, rather than having to specify acceptable response models for all the possible inputs.

In reference model tracking system design, additional external input signals r(k) to the composite
system are applied to the original plant inputs and to the observer state equations so that the feedback
system, instead of Equations 13.15 through 13.17, is described by Equation 13.9 and

ξ(k + 1) = Fξ(k) + Gy(k) + Hu(k) + Jr(k) (13.18)

w(k) = Lξ(k) + N[y(k) − Du(k)] (13.19)

with
u(k) = Ew(k) + Pr(k) (13.20)

Then, the overall composite system has the state equations
[

x(k + 1)
ξ(k + 1)

]
=
[

A + BENC BEL
GC + H̄ENC F + H̄EL

] [
x(k)
ξ(k)

]
+
[

BP
H̄P + J

]
r(k)

= Āx̄(k) + B̄r(k),

and the output equation

ȳ(k) = [C + DENC DEL]x̄(k) + D Pr(k)

= C̄x̄(k) + D̄r(k)
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where
H̄ = H + GD

The composite state coupling matrix Ā above shows that the coupling of external inputs r(k) to the
feedback system does not affect its eigenvalues. The input coupling matrix B̄ has matrices P and J which
are entirely arbitrary and thus can be selected by the designer. Our objective is to select P and J so that
the system output ȳ(k) tracks the reference input r(k).

Consider the class of reference signals, generated by the autonomous state variable model of the form

σ(k + 1) = Ψσ(k)

r(k) = Θσ(k) (13.21)

The output of this reference input model system may consist of step, ramp, parabolic, exponential,
sinusoidal, and other common sequences. For example, the model,

[
σ1(k + 1)
σ2(k + 1)

]
=
[

2 1
−1 0

] [
σ1(k)
σ2(k)

]

r(k) = [1 0]
[
σ1(k)
σ2(k)

]

has an arbitrary constant plus an arbitrary ramp,

r(k) = β1 + β2k

In reference model tracking system design, the concept of an observer is used in a new way; it is the
plant with feedback that is an observer of the fictitious reference input model system in Figure 13.14.
When driven by r(k), the state of the composite system observes

x̄(k) → Mσ(k)

where M, according to Equation 13.14, satisfies

MΨ − ĀM = b̄Θ (13.22)

The plant tracking output ȳ(k) observes

ȳ(k) = C̄x̄(k) + D̄r(k) → C̄Mσ(k) + D̄r(k)

and, for
ȳ(k) → r(k)

it is necessary that
C̄Mσ(k) + D̄r(k) = r(k) (13.23)

Equations 13.22 and 13.23 constitute a set of linear algebraic equations where the elements of M, P,
and J are unknowns. If, for an initial problem formulation, there is no solution to the equations, one

Fictitious
autonomous
reference signal
model

Observer of the
signal model

Plant with
observer
feedback

r (k)
ȳ (k) = r (k)

FIGURE 13.14 Observing a reference signal model.
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can reduce the order of the reference signal model and/or raise the order of the observer used for plant
feedback until an acceptable solution is obtained.

The autonomous reference input model has no physical existence; the actual reference input r(k) likely
deviates somewhat from the prediction of the model. The designer deals with representative reference
inputs, such as constants and ramps, and, by designing for exact tracking of these, obtains acceptable
tracking performance for other reference inputs.

13.6 Designing Between-Sample Response

The first two design problems for a tracking system, obtaining acceptable zero-input response and zero-
state response, were discussed and solved in the previous subsections.

When a digital controller is to control a continuous-time plant, a third design problem is achieving
good between-sample response of the continuous-time plant. A good discrete-time design will insure
that samples of the plant response are well-behaved, but satisfactory response between the discrete-time
steps is also necessary. Signals in a continuous-time plant can fluctuate wildly, even though discrete-
time samples of those signals are well-behaved. The basic problem is illustrated in Figure 13.15 with the
zero-input continuous-time system[

ẋ1(t)
ẋ2(t)

]
=
[ −0.2 1
−1.01 0

] [
x1(t)
x2(t)

]
= Ax(t)

y(t) = [1 0]
[

x1(t)
x2(t)

]
= c†x(t)

This system has a response of the form

y(t) = Me−0.1t cos(t + θ)

y (t = kT )

y (t = kT )
y (t)

4π 6π

2π
3ππ

t

t

y (t)

2π t

(a)

(b)
y (t = kT )

6π

y (t)

3π

(c)

FIGURE 13.15 Hidden oscillations in a sampled continuous-time signal. (a) T = π; (b) T = 2π; and (c) T = 3π.
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where M and θ depend on the initial conditions x(0). When the output of this system is sampled with
T = π, the output samples are

y(k) = y(t = kπ) = Me−0.1kπ cos(kπ + θ)

= M(e−0.1π)k(−1)k cos θ = M cos θ(−0.73)k

as shown in Figure 13.15a. But these samples are the response of a first-order discrete-time system with
a single geometric series model. The wild fluctuations of y(t) between sampling times, termed hidden
oscillations, cannot be determined from the samples y(k).

As one might expect, the discrete-time model of this continuous-time system

x(k + 1) = [exp(AT)]x(k)

y(k) = c†x(k)

or
[

x1(k + 1)
x2(k + 1)

]
=
[−0.73 0

0 −0.73

] [
x1(k)
x2(k)

]
= Ax(k)

y(k) = [1 0]
[

x1(k)
x2(k)

]
= c†x(k)

is not completely observable in this circumstance because

M0 =
[

c†

c†A

]
=
[

1 0
−0.73 0

]

This phenomenon is called loss of observability due to sampling. The discrete-time system would
normally have two modes, those given by its characteristic equation

[
(z + 0.73) 0

0 (z + 0.73)

]
= (z + 0.73)2 = 0

which are (−0.73)k and k(−0.73)k . Only the (−0.73)k mode appears in the output, however.
Hidden oscillations occur at any other integer multiple of the same sampling period T = π.

Figure 13.15b shows sampling with T = 2π, for which only a [(−0.73)2]k = (0.533)k mode is observ-
able from y(k). In Figure 13.15c, with T = 3π, only a [(−0.73)3]k = (−0.39)k is observable from y(k).
For a slightly different sampling interval, for example, T = 3 s, there are no hidden oscillations, and the
discrete-time model is completely observable.

Hidden oscillations in a continuous-time system and the accompanying loss of observability of the
discrete-time model occur when the sampling interval is half the period of oscillation of an oscillatory
mode or an integer multiple of that period. Although it is very unlikely that the sampling interval chosen
for a plant control system would be precisely one resulting in hidden oscillations, intervals close to these
result in modes in discrete-time models that are “almost unobservable.” With limited numerical precision
in measurements and in controller computations, these modes can be difficult to detect and control.

Between input changes, the continuous-time plant behaves as if it has a constant input without feedback.
Often, the abrupt changes in the plant inputs at the sample times are the major cause of poor between-
sample plant response. If the between-sample response of a continuous-time plant is not acceptable, there
are a number of ways of improving the between-sample response.

The first approach is to increase the controller sampling rate so that each step change in the plant
input is of smaller amplitude. Higher sample rates are often expensive, however, because the amount of
computation that must be performed by the controller is proportional to the sample rate.
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The second approach is to change the plant, perhaps by adding continuous-time feedback. The
continuous-time plant with feedback, rather than the original plant, then becomes the plant to be con-
trolled digitally. This too is often undesirable because of its susceptibility to noise and drift at the expense
of routing analog signals.

The third approach is to change the shape of the plant input signals from having step changes at
the controller sample rate to a shape that gives improved plant response. This third approach is now
examined. First, input signal shaping with analog filters is considered, and then input signal shaping with
high-speed dedicated digital filters is discussed.

13.6.1 Analog Plant Input Filtering

Analog filters between the D/A converters and the plant inputs are usually acceptable in a controller
design. As indicated in Figure 13.16, the idea is to use a filter or filters to smooth or shape the plant inputs
so that the undesirable modes of the plant’s open-loop response are not excited as much as they would
be with abrupt changes in the plant inputs at each step. Figure 13.17 shows simulation results for the
continuous-time plant

[
ẋ1(t)
ẋ2(t)

]
=
[−0.6 1

−9 0

] [
x1(t)
x2(t)

]
+
[−1

1

]
u(t) = Ax(t) + Bu(t)

ȳ(t) = [1 0]
[

x1(t)
x2(t)

]
= c̄†x(t) (13.24)

driven by a discrete-time control system

u(k) = −9r(k)

where r(k) is the reference input and T = 5. The highly undamped zero-input plant response results in
large fluctuations (“ringing”) of the tracking output each time there is a step change in the plant input by
the controller. The plant response is improved considerably by the insertion of a plant input analog filter
with the transfer function

G(s) = 1/3

s + 1/3

as shown in Figure 13.17b. The filter was designed with a 3-s time constant to smooth the plant input
waveform during each 5-s sampling interval, resulting in much less ringing of the tracking output.

In general, insertion of a plant input filter with the transfer function matrix G(s) before a plant with
transfer function matrix T(s) results in a composite continuous-time model plant with the transfer
function matrix

M(s) = G(s)T(s)

Controller
Plant
input
filter

PlantD/A

r (k)
u (t )

ȳ(t )

y (k)
A/D

FIGURE 13.16 Use of an analog plant input filter to improve between-sample response.
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FIGURE 13.17 Improvement of between-sample response with analog plant input filtering. (a) Response of a system
without a plant input filter. (b) Response with an added first-order analog plant input filter. (c) Response with a better
analog plant input filter.

Designing analog plant input filters is quite similar to designing discrete-time reference input filters.
The objective of the design is to improve the between-sample plant response by obtaining a model plant
with acceptable step response. As an example, consider again the continuous-time plant Equation 13.26
with the transfer function

T(s) = c̄†(sI − A)−1B = −s + 1

s2 + 0.6s + 9

A plant input filter with the transfer function

G(s) = s2 + 0.6s + 9

(s + 1)2 = 1 + −1.4s + 8

s2 + 2s + 1

cancels the plant poles and results in a model plant transfer function

M(s) = G(s)T(s) = −s + 1

(s + 1)2
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The resulting response is shown in Figure 13.17c. The original plant’s zero-input response, excited by
nonzero plant initial conditions, is apparent at first but eventually decays to zero.

13.6.2 Higher-Rate Digital Filtering and Feedback

Another method for performing plant input filtering is to use a digital filter that operates at many times
the rate of the controller, as in Figure 13.18. A/D conversion is usually accomplished with repeated
approximations, one for each bit. With a given technology, one can perform several D/A conversions as
fast as one A/D conversion. The cost of a digital plant input filter is thus relatively low because it requires
higher D/A, not A/D, speed.

As an example, consider again the continuous-time plant given by Equation 13.26. The discrete-time
controller for this plant operates with a sampling interval T = 5 s.

It was found earlier that an analog filter with transfer function

G(s) = 1/3

s + 1/3

improves the plant’s between-sample response. The step response of the plant alone and the response of
the plant with this input filter are shown in Figure 13.19a.

A state variable realization of the analog filter is

ε̇(t) = −1

3
ε(t) + 1

3
w(t)

u(t) = ε(t)

A discrete-time model of this filter with sampling interval Δt = 1, one-fifth the controller interval, is

ε(k′ + 1) = 0.717ε(k′) + 0.283w(k′)
u(k′) = ε(k′)

where k′ is the index for steps of size Δt. The step response of the plant with a digital filter that approxi-
mates the continuous-time filter is shown in Figure 13.19b. Figure 13.19c is a tracking response plot for
the combination of plant, high-speed digital plant input filter, and lower speed digital controller.

Higher-rate digital plant feedback can improve a plant’s between-sample response, but this requires
high-rate A/D as well as high-rate D/A conversion. Another possibility is to sample the plant measurement
outputs at a lower rate, but estimate the plant state at a high rate, feeding the state estimate back at high
rate.

r (k)
w(k) u(k´) u(t)

ȳ(t)

y(k)

Controller
High-speed

input
smoothing

filter

High-
speed
D/A

Plant

 Low-
speed
A/D

FIGURE 13.18 Use of high-speed digital plant input filtering to improve between-sample response.
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FIGURE 13.19 Improvement of between-sample plant response with high-speed digital input filtering. (a) Step
response of the example system, with and without an analog input filter. (b) Step response with an analog input filter
and with a digital input filter. (c) Tracking response of the system with a digital input filter.

13.6.3 Higher-Order Holds

A traditional approach to improving reconstruction is to employ higher-order holds than the zero-
order ones. An nth-order hold produces a piecewise nth-degree polynomial output that passes through
the most recent n + 1 input samples. As the order of the hold is increased, a well-behaved signal
is reconstructed with increasing accuracy. Several holds and their typical responses are shown in
Figure 13.20.

Although higher-order holds do have a smoothing effect on the plant inputs, the resulting improvement
of plant between-sample response is generally poor compared with that possible with a conventional filter
of comparable complexity. Hardware for holds of higher than zero order (which is the sample-and-hold
operation) is not routinely available. One approach is to employ high-speed digital devices and D/A
conversion, as in the technique of Figure 13.18, but where the high-speed input-smoothing filter performs
the interpolation calculations for a hold.
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FIGURE 13.20 Typical response of holds. (a) Zero-order hold. (b) First-order hold. (c) Second-order hold.
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14.1 Overview

The digital control system analysis and design methods that were presented in the previous chapters
proceeded as if the controller signals and coefficients were of continuous amplitude. However, because
digital controllers are implemented with finite word length (FWL) registers and finite precision arithmetic,
their signals and coefficients can attain only discrete values. Therefore, further analysis is needed to
determine if the performance of the resulting digital controller in the presence of signal and coefficient
quantization is acceptable.

In this chapter, we discuss three error sources that may occur in digital processing of controllers. These
error sources are (1) coefficient quantization, (2) quantization in A/D conversion, and (3) arithmetic
operations. Limit cycles and deadbands are also discussed. Before discussing these errors, however, a brief
review of fixed- and floating-point number arithmetic is presented.

14-1
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14.2 Fixed-Point and Floating-Point Number Representations

There are many choices of arithmetic that can be used to implement digital controllers. The two most
popular ones are fixed-point and floating-point binary arithmetic. Other nonstandard arithmetic such as
logarithmic and residue representations are also possibilities.

14.2.1 Fixed-Point Arithmetic

In general, an n-bit fixed-point binary number can be expressed as [1]

N =
n−1∑

j=−m

bj2
j = bn−12n−1 + bn−22n−2 + · · · + b121 + b020 + b−12−1

+ b−22−2 + · · · + b−m2−m

= (bn−1 · · · b0 • b−1b−2 · · · b−m)2

(14.1)

where bj is either zero or one.
The bit bn−1 is termed the most significant bit (MSB) and b−m is termed the least significant bit (LSB).

The integer portion of the number, bnbn−1b0, is separated from the fractional portion, b−1b−2 · · · b−m,
by the binary point or radix point.

In the binary representation, each bit can be either a zero or a one. For example, the binary number
1101.101 has the decimal value

1101.101 = 1(23) + 1(22) + 0(21) + 1(20) + 1(2−1) + 0(2−2) + 1(2−3)

= 13.625

In fixed-point arithmetic, numbers are always normalized as binary fractions (i.e., less than one) of the
form b0 • b1b2 · · · bc where b0 is the sign bit. The C + 1 bit normalized number is stored in a register as
shown in Figure 14.1 where the sign bit is separated from the C-bit number by a fictitious binary point.
The binary point is fictitious because it does not occupy any bit location in the register. The word length,
C is defined as the number of bit locations in the register to the right of the binary point.

There are three commonly used methods for representing signed numbers:

1. Signed-magnitude
2. Two’s complement
3. One’s complement

Consider the C+1 bit binary fraction b0 • b1b2 · · · bc where b0 is the sign bit. In the signed-magnitude
representation, the fractional number is positive if b0 is zero, and it is negative if b0 is one. For example,
the decimal number 0.75 equals 0.11 in binary representation, and −0.75 equals 1.11.

Sign bit

b0 b1

Binary point

b2 bc…

C bits

FIGURE 14.1 Normalized fixed-point numbers in a register.
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In signed-magnitude representation, binary numbers can be converted to decimal numbers using the
relation

N = (−1)b0

C∑
i=1

bi2
−i (14.2)

The two’s complement representation of positive numbers is the same as signed-magnitude represen-
tation. The two’s complement representations of negative numbers, however, are obtained by comple-
menting (i.e., replacing every 1 with 0 and every 0 with 1) all of the bits of the positive number and adding
one to the LSB of the complemented number. For example, the two’s complement representation of the
decimal number 0.75 is 0.11 and the two’s complement representation of −0.75 is 1.01.

A decimal number can be recovered from its two’s complement representation using the relationship

N = −b0 +
C∑

i=1

bi2
−i (14.3)

The one’s complement representation of fractional numbers is the same as the two’s complement
without the addition of one to the LSB. For example, the one’s complement representation of 0.75 is 0.11
and the one’s complement representation of −0.75 is 1.00. A decimal number can be recovered from its
one’s complement representation via the relationship

N = b0(2−c − 1) +
C∑

i=1

bi2
−i (14.4)

The two’s complement representation of binary numbers has several advantages over the signed-
magnitude and the one’s complement representations and therefore is more popular.

In general, the sum of two normalized C-bit numbers using fixed-point arithmetic is a C-bit number
while the product of two C-bit numbers is a 2C-bit number. Hence, if the register word length is fixed
to C bits, a quantization error will be introduced in multiplication but not in addition.∗ The product is
quantized either by rounding or by truncation. For example, rounding the binary number 0.010101 to
four bits after the binary point gives 0.0101 but rounding it to three bits yields 0.011. When a number is
truncated, all of the bits to the right of its LSB are discarded. For example, truncating the number 0.010101
to three bits after the binary point gives 0.010.

14.2.2 Floating-Point Arithmetic

A major disadvantage of fixed-point arithmetic is the limited range of numbers that can be represented
with a given word length. Another type of arithmetic which, for the same number of bits, has a much larger
range of numbers is floating-point arithmetic. In general, a floating-point number can be expressed as

N = M × 2E (14.5)

where M and E, both expressed in binary form, are termed the mantissa and the exponent of the number,
respectively. In binary floating-point representation, numbers are always normalized by scaling M as a
fraction whose decimal value lies in the range 0.5 ≤ M < 1.

Figure 14.2 shows a floating-point number stored in a register. The register is divided into the mantissa
and the exponent. Both the mantissa and the exponent have fictitious binary points to separate the sign bits
from the numbers. In floating-point arithmetic, negative mantissas and negative exponents are coded the
same way as in fixed-point arithmetic using two’s complement, signed-magnitude, or one’s complement.

∗ When normalized signed numbers are added and the result is larger than one, then overflow occurs. Overflow does not
occur in multiplication, because the product of two normalized numbers is always less than one.
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Sign bit

……

Sign bit

Mantissa Exponent

FIGURE 14.2 Normalized floating-point number in a register.

The product of two floating-point numbers is

(M1 × 2E1 )(M2 × 2E2 ) = (M1 × M2)2(E1+E2)

Thus, if the mantissa is limited to C bits, the product M1 × M2 must be rounded or truncated to C bits.
The sum of two floating-point numbers is performed by shifting the bits of the mantissa of the smaller
number to the right and increasing its exponent until the two exponents are equal. Then the two mantissas
are added, and, if necessary, normalized to satisfy Equation 14.5. The shifted mantissa may exceed its
limited range and thus must be quantized. Hence, in floating-point arithmetic, quantization errors are
introduced in both addition and multiplication. Roundoff or truncation errors will be introduced in the
mantissa M but not in the exponent E, because the exponent, E, is always a positive or negative integer
and integers have exact binary representations. Of course, if the number is too large or too small then
over- or underflow can occur.

14.3 Truncation and Roundoff

Because of the FWL of registers in digital computers, errors are always introduced when the numbers to
be processed are quantized. These errors depend on (1) the way the numbers are represented (fixed- or
floating-point arithmetic, signed-magnitude, two’s or one’s complement, etc.) and (2) how the numbers
are quantized.

Consider the normalized binary number b0 • b1b2 · · · bc , where b0 is the sign bit, and b1b2 · · · bc is the
binary code of a fixed-point number or the mantissa of a floating-point number. Denoting the number
before quantization by x, the error introduced by quantization is

eq = Q[x] − x

where Q[x] is the quantized value of x. The range of quantization error depends on the type of arithmetic
and the type of quantization used. Figure 14.3 shows the transfer characteristics of truncation and roundoff
for signed-magnitude, two’s complement, and one’s complement representations.

For fixed-point arithmetic, the error caused by truncating a number to C bits is [2]

− 2−c < eT � 0, x � 0

0 � eT < 2−c , x < 0
(14.6)

for the signed-magnitude and one’s complement representations. For two’s complement, the truncation
error is

−2−c < eT � 0 (14.7)

for all x.
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Q[x](a) (b)

(c) Q[x]

3q

2q

q

3q

2q

q

Q[x]
3q

2q

q

2q 3q 4q xq 2q 3q xq

2q 3q xq—2

FIGURE 14.3 Transfer characteristics of truncation and rounding. (a) Truncation with signed-magnitude and one’s
complement; (b) truncation with two’s complement; and (c) rounding with signed-magnitude, one’s complement,
and two’s complement.

On the other hand, the error caused by rounding a number to C bits is

−2−c

2
� eR <

2−c

2
(14.8)

for signed-magnitude, one’s complement and two’s complement representations.
In fixed-point arithmetic, truncation or roundoff errors are independent of the magnitude of the orig-

inal unquantized numbers. However, in floating-point arithmetic, these errors depend on the magnitude
of the unquantized number. In floating-point arithmetic, roundoff and truncation errors occur only in
the mantissa. Thus, if the mantissa is truncated to C bits the quantized number is

xq = (1 + ε)x

where ε is the relative error in x. In the case of truncation, for signed-magnitude and one’s complement
representations, the relative error in the value of the floating-point word is

−2.2−c < ε � 0 (14.9)
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P(e)(a) (b) P(e)
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FIGURE 14.4 Probability density functions of fixed- and floating-point errors. (a) Fixed-point errors. (b) Floating-
point errors.

and for two’s complement truncation, the error is

−2.2−c < ε � 0, x � 0 (14.10)

0 � ε < 2.2−c , x < 0 (14.11)

On the other hand, the roundoff error in the mantissa is of the form

−2−c � ε � 2−c (14.12)

for all three types of representations. Figure 14.4 shows the probability density functions of fixed- and
floating-point errors. As shown, the probability density function is uniformly distributed over the range
of quantization. In the remainder of this chapter, and unless otherwise stated, we model fixed- and
floating-point errors as stationary, white noise, random processes.

We now discuss the major sources of error caused by FWL and then determine their effects on the
behavior of digital controllers. These errors are coefficient quantization, quantization errors in A/D
converters and quantization errors in arithmetic operations.

14.4 Effects of Coefficient Quantization

The digital control system design methods that were presented in the previous articles resulted in con-
trollers whose coefficients are of arbitrary precision. However, because the controller is implemented
with FWL registers, each of its coefficients must be quantized. For example, consider the digital controller
described by the transfer function

H(z) = z3 + 1.584z2 + 1.2769z + 0.5642

z4 + 2.689z3 + 3.3774z2 + 2.3823z + 0.6942
(14.13)
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which has poles located at z1 = 0.999, z2 = 0.697, and z3,4 = 0.4965 ± j0.8663. If the binary form of the
coefficients of this controller are truncated to three bits to the right of the binary point, then the quantized
controller transfer function becomes

Hq(z) = z3 + 1.5z2 + 1.25z + 0.5

z4 + 2.625z3 + 3.3749z2 + 2.3748z + 0.6249
(14.14)

which has two poles outside the unit circle. Another example is quoted in reference [3] in which a stable
fifth-order controller can become unstable even if it is realized with 18-bit arithmetic. One can also find
examples where stable controllers can become unstable even if they are realized with 18-bit arithmetic.

In general, consider the digital controller described by the transfer function

H(z) =
∑m

k=0 bkz−k

1 −∑n
k=1 akz−k

(14.15)

If the controller coefficients are quantized to C bits, then

âk = ak + δk

for fixed-point arithmetic or
âk = ak(1 + δk)

for floating-point arithmetic, where δk is bounded in absolute value by 2−c . Similarly,

b̂k = bk + ηk

for fixed-point arithmetic or
b̂k = bk(1 + ηk)

for floating-point arithmetic.
In terms of the quantized coefficients, the controller transfer function becomes

Hq(z) =
∑m

k=0 b̂kz−k

1 −∑n
k=1 âkz−k

(14.16)

One approach for analyzing the effects of coefficient quantization on system performance is to compare
the response of the quantized controller with that of the ideal controller before quantization. One can
also apply sensitivity analysis to determine the variations of the controller response to variations in its
numerator and denominator coefficients. If the controller transfer function given by Equation 14.15 is
rewritten in the form (assuming bo = 1)

H(z) =
∏m

i=1 (1 + βiz−1)∏n
j=1 (1 − αiz−1)

= N(z−1)

D(z−1)

where αi is the location of the ith pole of H(z) and if the product of the quantized poles is expressed as

Dq(z−1) =
n∏

j=1

(1 − α̂jz
−1)

where
α̂j = αj + Δαj

then

Δαj =
n∑

k=1

αn−k
j∏n

i=1
i �=j

(αj − αi)
Δak (14.17)

which relates the incremental changes of the jth pole of the controller transfer function to incremental
changes in the ak coefficient of the denominator polynomial of the controller transfer function. Recall
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U(z) Y(z)
First- or
second
order

First- or
second
order

First- or
second
order

…

FIGURE 14.5 Cascade first- or second-order subsystems.

that

Δak = δk

for fixed-point arithmetic and

Δak = akδk

for floating-point arithmetic. Similar results can also be obtained for the controller’s zeros.
Equation 14.17 shows that, when the controller poles are close to each other, small changes in the

coefficients ak of the denominator polynomial cause large changes in the locations of the controller poles.
As the order of the controller increases, the roots of its denominator become more sensitive to changes
in the coefficients of the denominator polynomial.

To avoid the coefficient sensitivity problem, higher-order controller transfer functions are decomposed
into cascaded first- or second-order transfer functions as in Figure 14.5. When all the poles and zeros of
the controller transfer function are real, the cascaded transfer functions are all of first order. Complex
conjugate pairs of roots should be grouped into second-order subsystems to avoid complex number
arithmetic operations.

Another way to avoid the coefficient sensitivity problem is to use the parallel form as shown in
Figure 14.6. The parallel form is obtained by decomposing the controller transfer function into first-
or second-order subsystems using the method of partial fraction expansion. Using either form, that is
cascade or parallel, each first-order subsystem can be realized using the structure shown in Figure 14.7a,
where

H(z) = 1 + β1z−1

1 − α1z−1

and each second-order subsystem may be realized as shown in Figure 14.7b, where

H(z) = 1 + β1z−1 + β2z−2

1 − α1z−1 − α2z−2

+
+
+

U(z) Y(z)

First- or
second
order

First- or
second
order

First- or
second
order

…

FIGURE 14.6 Parallel first- or second-order subsystems.
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z–1

z–1

α1 β1

α1 β1

α2 β2

FIGURE 14.7 First- and second-order realizations. (a) First-order realization. (b) Second-order realization.

As a numerical example, consider again the controller transfer function given by Equation 14.13.
Rewriting the transfer function in factored form yields

H(z) =
[

z + 0.862

z + 0.999

] [
1

z + 0.697

] [
z2 + 0.722z + 0.6545

z2 + 0.993z + 0.997

]

As in the previous example, if the binary representations of the coefficients of each factor are truncated
to three bits to the right of the binary point, then the resulting quantized transfer function is

Hq(z) =
[

z + 0.75

z + 0.875

] [
1

z + 0.625

] [
z2 + 0.625z + 0.625

z2 + 0.875z + 0.875

]

which is stable and can be realized using first- and second-order subsystems. This controller is significantly
different from the quantized controller given by Equation 14.14.

14.5 Digital Filter Design Using the Delta Operator

We mentioned in Chapter 12 that for high sampling applications where the sampling intervals are very
small, the dynamic response of the z-transformed discrete-time system does not converge smoothly to
the continuous-time counterpart causing significant implementation issues. We also mentioned that the
delta operator [4], given by

δ = z − 1

T
(14.18)

offers superior numerical performance in FWL implementation over the z-transform and shift operator.
As the sampling interval approaches zero, the filter coefficients using the delta operator have the property
that they converge to the equivalent continuous time filter coefficients, and therefore, the response of the
filter based on the delta operator converges to it continuous-time counterpart.
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Consider the continuous-time notch filter

G(s) = Nc(s)

Dc(s)
= s2 + 2ξzω0s + ω2

0

s2 + 2ξpω0s + ω2
0

(14.19)

The discrete-time equivalent of this filter, using the pole–zero matching method presented in Chapter 12,
is given by

G(z) = Nd(z)

Dd(z)
= K(z2 + α1z + α0)

z2 + β1z + β0
(14.20)

where

α1 = −2e−ξzω0T cos

(
ω0T

√
1 − ξ2

z

)

α0 = e−2ξzω0T

β1 = −2e−ξpω0T cos

(
ω0T

√
1 − ξ2

p

)

β0 = e−2ξpω0T

(14.21)

and where the gain K is selected to match the DC gain of the continuous-time filter which, in this example,
is unity. That is,

K = Dd(1)

Nd(1)
= 1 + β1 + β0

1 + α1 + α0

Let the filter parameters ω0 = 2π(0.2) rad/s, ξz = 0.07, ξp = 0.7; then

G(s) = s2 + 0.1759292s + 1.5791367

s2 + 1.7592918s + 1.5791367
(14.22)

Let the sampling interval be T = 0.02 s; then, the digital filter transfer function in Equation 14.20 becomes

G(z) = 0.9843413z2 − 1.9646046z + 0.9808839

z2 − 1.9648053z + 0.9654259
(14.23)

Assuming a fixed-point arithmetic processor with 12 bits accuracy, the transfer function of the digital
filter in Equation 14.23 becomes, after rounding off,

Gq(z) = Nq

Dq
= 0.9843750z2 − 1.9645996z + 0.9809570

z2 − 1.9648437z + 0.9653320
(14.24)

where the numerator and the denominator of Gq(z) are determined using the MATLAB� commands:

Nq = q ∗ round(Nd/q)

Dq = q ∗ round(Dd/q)

In this example, the quantum size is q = 2−12. As shown in Figures 14.8a and b, the frequency response
plots of the infinite precision digital filter, given by Equation 14.23 match very well with the frequency
response plots of the continuous-time filter given by Equation 14.22. But, as shown in the same figure,
the frequency response plots of the filter with quantized coefficients, given by Equation 14.24, differ
significantly from those given by Equation 14.23 resulting in an unacceptable filter performance.

One can observe from Equations 14.21 that as the sampling period approaches zero, the coefficients
of the discrete-time filter using the shift operator approach fixed values that are independent of the
coefficients of the continuous-time filter.
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FIGURE 14.8 (a) Magnitude response of the notch filter using shift and delta operators. (b) Phase response of the
notch filter using shift and delta operators.
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Using the delta operator, let us substitute Equation 14.18 into Equation 14.20. Then,

Gd(δ) =
K

[
δ2 +

(
2 + α1

T

)
δ +

(
1 + α1 + α0

T2

)]

δ2 +
(

2 + β1

T

)
δ +

(
1 + β1 + β0

T2

) (14.25)

In terms of the specified filter parameters and the specified sampling period, the delta operator transfer
function using infinite precision is given by

Gd(δ) = 0.9843413δ2 + 0.20390199δ + 1.5515964

δ2 + 1.75973257δ + 1.5515964
(14.26)

Using 12-bit accuracy, the quantized delta operator filter transfer function is

Gdq(δ) = 0.9843750δ2 + 0.2038574δ + 1.5515136

δ2 + 1.7597656δ + 1.5515136
(14.27)

The frequency response plots of this quantized delta operator filter are also shown in Figures 14.8a
and b. Its performance compares very well with the continuous-time filter. Also, note the resemblance of
the coefficients in Equations 14.26 and 14.27 to those of the continuous-time filter given in Equation 14.22.

As another example, consider the 4th-order elliptic analog low-pass filter whose passband-edge
frequency is 20 Hz, peak-to-peak ripple is of 1 db, and has a minimum stopband attenuation of 80 db. The
discrete-time equivalent of this filter, using Tustin’s method with prewarping at 20 Hz, and T = 0.00166 s
is given by

G(z) = 2.8808099x10−4
[

z2 + 0.2813048z + 1

z2 − 1.8552558z + 0.8670579

] [
z2 − 1.24580094z + 1

z2 − 1.9030691z + 0.9450667

]

Using floating-point arithmetic with p = 13-bit mantissa, the transfer function of the quantized digital
filter becomes

Gq(z) = 2.88069248x10−4
[

z2 + 0.2811842z + 1

z2 − 1.8459314z + 0.86177303

] [
z2 − 1.24580248z + 1

z2 − 1.9123693z + 0.9508977

]

where the numerator and the denominator of the quantized transfer function have been determined using
the MATLAB implementation of floating-point quantization given in reference [2] as

[f , e] = log 2(Nd)

dxp = sign(Nd). ∗ pow2(max(e, −1021) + 52 − p)

Nq = (Nd + dxp) − dxp

[f , e] = log 2(Dd)

dxp = sign(Dd). ∗ pow2(max(e, −1021) + 52 − p)

Dq = (Dd + dxp) − dxp

where p is the number of floating-point quantization bits, Nd and Dd are the numerator and the denom-
inator of the transfer function to be quantized, and Nq and Dq are the numerator and the denominator
of the quantized transfer function. As shown in Figure 14.9, the step response of the quantized filter does
not match the step response of the continuous-time filter. As a matter of fact, this quantized filter goes
unstable for p = 12. As shown in this figure, the quantized delta operator filter compares very well with
the continuous-time filter. The transfer function of the delta operator filter is

G(δ) = 1 × 10−4
[

δ2 + 0.5847δ + 4.5641

δ2 − 1.8556δ + 0.8673

] [
δ2 − 1.1228δ + 0.923

δ2 − 1.9027δ + 0.9447

]
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FIGURE 14.9 Step response of the 4th-order elliptic filter using shift and delta operators.

The delta operator described by Equation 14.18 can be modified as follows:

δ = z − 1

Δ
(14.28)

where Δ is a fraction of the sampling period. This is called the modified delta operator and is useful, because
Δ can be selected to optimize the numerical performance of the filter and allow lower rounding errors.
One can repeat the above examples and demonstrate performance improvements using the modified
delta operator.

14.6 Quantization Effects in A/D Conversion

The second source of error that we shall discuss is quantization in analog-to-digital conversion. Con-
ceptually, A/D conversion involves two steps: sampling and quantization. Sampling is the process of
converting a continuous-time signal x(t) to a discrete-time sequence x(k), and quantization is the process
of approximating each sample of the sequence with a digital code word, that is, each sample is rounded or
truncated to fit into the finite length register. Rounding approximates the sample by the nearest quanti-
zation level and truncating approximates the sample by the highest quantization level that is smaller than
or equal to the sample value. Figure 14.10a shows a block diagram of an A/D converter in which the input
signal x(t) is sampled and then quantized to produce xq(k).

Let the word length of the A/D converter be C bits and let the number converted be of the form

xq = b12−1 + b22−2 + b32−3 + · · · + bc2−c

where b1, b2, . . . bc are the binary codes. The sign bit, however coded, will always be present. The largest
xq possible that is produced by the A/D converter is

xq = 2−1 + 2−2 + 2−3 + · · · + 2−c = 1

2

C−1∑
i=0

(
1

2

)i

= 1 − 2−C
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FIGURE 14.10 Block diagram of an A/D converter and its statistical model. (a) Block diagram of an A/D converter.
(b) Statistical model of an A/D converter.

and the smallest nonzero xq is 2−C . The dynamic range of the converter is commonly defined as

DR = 1 − 2−C

2−C = 2C − 1

Thus,
C � log2(DR + 1) (14.29)

For roundoff, taking the error e as a random variable with a uniform probability density shown in
Figure 14.4,

E{e} =
∫ q/2

−q/2
xp(x) dx = 0 (14.30)

where E denotes expected value, and

E{e2} =
∞∫

−∞
x2 p(x) dx =

q/2∫
−q/2

x2

q
dx = q2

12

In terms of the number of bits, C, the variance is

E{e2} = 2−2C

12
(14.31)

For signed-magnitude and one’s complement truncation, the error is uniformly distributed between
–q and q as shown in Figure 14.4. Then

E{e} =
∞∫

−∞
xp (x) dx = 0 (14.32)

and

E{e2} =
∞∫

−∞
x2 p(x) dx =

q∫
−q

x2

2q
dx = q2

3

In terms of the number of bits, C,

E{e2} = 2−2C

3
(14.33)

Comparing Equation 14.31 with Equation 14.33 for roundoff quantization gives

E{e2} = q2

12
= 2−2C

12
= 2−2(C+1)

3
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For two’s complement truncation, the error is uniformly distributed as shown in Figure 14.4. Thus,

E{e} = −2−C

2
(14.34)

and

E{e2} = 2−C

12
= 2−2(C+1)

3
(14.35)

As will be discussed in Section 14.7, the quantization error e(k) can be viewed as an additive, stationary,
white-noise process, as shown in Figure 14.10b, with mean and variance given by Equations 14.30 through
14.35 depending on whether the quantization is due to roundoff or truncation. Using superposition, the
output of the digital controller can be decomposed into two parts: one due to the input x(k) alone, and
the other due to e(k) which is assumed to be uncorrelated with x(k).

14.6.1 Signal-to-Noise Ratio of an A/D Converter

Referring to Figure 14.10, the signal-to-noise ratio (SNR) of an A/D converter is defined as

(SNR)dB = 10 log10

(
Ps

Pe

)

where Ps is the output signal power and Pe is the output noise power. Assuming that the output signal
and the output noise are both zero mean signals,

Ps = Px = E
{

x2(k)
}= var {x(k)} = σ2

x

and
Pe = E

{
e2(k)

}= var {e(k)} = σ2
e

and, therefore, the SNR becomes

(SNR)dB = 10 log10
E
{

x2(k)
}

E
{

e2(k)
} = 10 log10

σ2
x

σ2
e

= 20 log10
σx

σe
(14.36)

The SNR of an A/D converter that quantizes by rounding which generates zero-mean quantization
noise can be determined by substituting Equation 14.31 into Equation 14.36 to give

(SNR)dB = 10 log10
σ2

x
2−2C

12

= 10 log10 σ2
x + 10 log10(12) − 10 log10 2−2C

= 10 log10 σ2
x + 10.79 + 6.02C

(14.37)

A/D converters are typically marketed using all of the A/D converter’s bits including its sign bit. Thus,
for a B bit A/D converter, where C = B − 1, Equation 14.37 can be written as

(SNR)dB = 10 log10 σ2
x + 4.77 + 6.02B (14.38)

Equation 14.38 shows that the SNR increases 6.02 dB for every additional bit of resolution.
As an example, consider the input signal x(k) = sin(ωk). For this signal,

E{x2(k)} = σ2
x = 1

2
(14.39)

Substituting Equation 14.39 into 14.37,

(SNR)dB = −3.01 + 10.79 + 6.02C = 7.78 + 6.02C (14.40)

which is equivalent to
(SNR)dB = 7.78 + 6.02(B − 1) = 1.76 + 6.02B

where B = C + 1, so that B includes all the A/D converter’s bits including its sign bit.
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If the input sequence x(k) is a random signal which has a zero mean Gaussian probability density so
that 3σ = 1 (i.e., the unity input level is a 3σ event), then

E{x2(k)} = σ2
x =

(
1

3

)2

= 1

9
(14.41)

Substituting Equation 14.41 into Equation 14.37,

(SNR)dB = −9.54 + 10.79 + 6.02C = 1.25 + 6.02C

which implies that
C = 0.166(SNR)dB − 0.208

As a simple design procedure, one may choose the number of bits of the A/D converter to be the larger
of the two values necessary for required dynamic range and required SNR, that is,

C = max
{

log2(DR + 1), 0.166(S/N)dB − 0.208
}

The quantization error of an A/D converter is not a serious problem. In an ideal 16-bit A/D con-
verter, that is, C = 15, the maximum quantization error is 2−C/2 = 2−16 = 0.0015%, which is quite
low compared with typical errors in analog sensors. This error, if taken to be “noise,” gives an SNR
of 20 log10(2−16) = −96.3 dB, which is much better than that of most high-fidelity audio systems. The
designer must insure that enough bits are used to give the desired system accuracy.

14.6.2 SNR of an Oversampling A/D Converter

Oversampling A/D converters are A/D converters that sample signals at rates significantly higher than
their Nyquist rate which is the minimum sampling frequency from which the analog signal can be
reconstructed from its samples. For example, if a real signal of interest has a spectrum which contains
frequencies from DC to fBW Hz, which implies that it contains frequencies from −fBW Hz to fBW Hz,
then the signal’s Nyquist rate would be 2fBW . If this signal is oversampled by a factor M, then the signal
is sampled at a rate of 2MfBW . This factor M is often referred to as an oversampling rate (OSR). After a
signal has been oversampled, it is typically filtered digitally, and then the filtered signal’s sampling rate is
reduced to a rate near the original analog signal’s Nyquist rate. Oversampling A/D converters are typically
used to simplify antialiasing filters and improve an A/D converter’s SNR, or to implement certain classes
of A/D converters such as delta sigma (ΔΣ) modulators.

When a signal is sampled at or near its Nyquist rate, an analog antialiasing filter with a very narrow
transition band is often required. Such filters are typically difficult and expensive to implement and may
also have highly nonlinear phase responses. The implementation of this system can be simplified by
increasing the A/D converter’s sampling rate by a factor of M which increases the antialiasing filter’s
transition bandwidth. The oversampled signal can be filtered digitally using a linear phase finite impulse
response (FIR) antialiasing filter, and then the filtered signal’s sampling rate can be reduced by only
retaining every Mth sample of the digitally filtered signal. To illustrate, consider the system shown in
Figure 14.11, where x(t) is a real analog signal that has a spectrum which contains frequencies from DC
to fBW Hz. If the A/D converter oversamples x(t) by a factor of M, then the A/D converter samples the
signal at a rate of 2MfBW , and thus, the antialiasing filter’s transition band would extend from fBW Hz
to 2MfBW − fBW Hz. The oversampled signal, xo(k), is then filtered by a digital linear phase FIR filter
that has a cutoff frequency of fBW Hz, or π/M radians/sample, and a very narrow transition band. The
sampling rate of the resulting signal can then be reduced to the Nyquist rate of the signal of interest by
only retaining every Mth sample of the digitally filtered signal, xf (k).

Theoretically, the oversampling process in Figure 14.11 can also improve the SNR of the sampling
process. To illustrate, let us model the quantization noise of the A/D converter in Figure 14.11 as an
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fs = 2M fBW

x(t) Antialiasing 
filter 

xa(t) A/D 
converter 

Digital linear 
phase FIR 

antialiasing filter 

Sampling
rate reduction

M

xo(k) xf (k) x(k) = xf (kM) 

FIGURE 14.11 A system that uses an oversampling A/D converter that simplifies the design and implementation
of the analog antialiasing filter. The sampling frequency of the A/D converter is fs and M is the OSR.

additive, stationary, white-noise process, denoted by eo(k), as shown in Figure 14.12. Because the signal of
interest is bandlimited from DC to fBW Hz, the signal of interest will pass through the digital antialiasing
filter and the sampling rate reduction block. Therefore, if the signal of interest has a zero mean, then
the power Px of the signal of interest can be expressed as Px = E{x2(k)} = σ2

x . However, because the
quantization from the A/D converter is a broadband signal, the digital antialiasing filter reduces its
power.

To illustrate, recall that

Pe = E{e2(k)} = E{e(k)e(k + n)}|n=0 = φee(n)|n=0 = φee(0)

where φee(n) is the autocorrelation of e(k). Therefore,

Pe = F−1{Φee(ejω)}|n=0 = 1

2π

π∫
ω=−π

Φee(ejω)ejωndω|n=0 = 1

2π

π∫
ω=−π

Φee(ejω) dω (14.42)

where F−1 is the inverse Fourier transform for discrete signals, Φee(ejω) is the Fourier transform of φee(n)
or the power spectral density (PSD) of e(k), and ω represents frequency in radians/sample. Assuming
that the digital antialiasing filter is linear and time invariant, then

Φee(ejω) = |H(ejω)|2Φeoeo (ejω) (14.43)

where Φeoeo (ejω) is the PSD of eo(k), and H(ejω) is the frequency response of the digital antialiasing
filter which is ideally a low-pass filter with a very narrow transition band and a cutoff frequency of π/M
radians/sample. Therefore, substituting Equation 14.43 into Equation 14.42 gives

Pe = 1

2π

π/M∫
ω=−π/M

Φeoeo (ejω) dω = Peo

M
(14.44)

eo(k) 

Sampler x(t) xo(k) 

fs = 2M fBW 

Digital
antialiasing
filter with

cutoff of 1/M 

xf (k)+ef (k) Sampling
rate reduction

M

x(k)+e(k) 

xf (Mk)+ef (Mk) 

FIGURE 14.12 Simple linear model of the oversampling system shown in Figure 14.11.
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Digital
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filter with a

cutoff of 1/M
ΔΣM 

fs = MfNyquist 

x(t) y(k) Sampling
rate reduction

M

x(k) + e(k)xf (k) + ef (k)

xf (kM) + ef (kM)

FIGURE 14.13 An oversampling system that uses a ΔΣM. The sampling rate of the ΔΣM’s is fs, M is the OSR, and
fNyquist is the Nyquist rate of the signal of interest.

Assuming that the A/D converter performs quantization by rounding, eo(k) will be a zero mean random
process which implies that Peo = σ2

eo
. Therefore, Equation 14.44 can be written as

Pe = σ2
eo

M
(14.45)

Substituting Equation 14.31 into Equation 14.45 gives

Pe = σ2
eo

M
= 2−2C/12

M

Therefore, the oversampling system’s SNR can be determined as

(SNR)dB = 10 log10
σ2

x

2−2C/12M
= 10 log10 σ2

x + 10.79 + 6.02C + 10 log10 M (14.46)

or as
(SNR)dB = 10 log10 σ2

x + 4.77 + 6.02B + 10 log10 M

Equation 14.46 shows that the oversampling system shown in Figure 14.11 improves the SNR from the
A/D converter’s output by 10 log10 M dB, which implies that for every quadrupling of the oversampling
factor M, the output signal’s SNR improves by 6.02 dB which is equivalent to adding a bit of resolution.
This increase in resolution is only possible if the A/D converter can generate samples at this higher
resolution and if the digital antialiasing filter is designed to process signals at this higher resolution.

14.6.3 SNR of a Delta Sigma Modulator

Delta sigma modulators (ΔΣMs) are an A/D converter architecture that uses an oversampling A/D
converter with a small number of bits and a feedback loop that shapes the A/D converter’s quantization
noise to achieve high SNRs and large dynamic ranges. The feedback loop can also be designed to act as
an antialiasing filter. The output of a delta sigma modulator (ΔΣM) is processed in a manner similar to
the oversampling A/D converters discussed in the previous section as shown in Figure 14.13.

Figure 14.14 shows a block diagram of a typical ΔΣM. Figure 14.15 shows a linear model of the
ΔΣM given in Figure 14.14 where the A/D converter in Figure 14.14 has been modeled as an additive,
stationary, random, white noise source, E(s), that has a uniform probability density function, and the
digital-to-analog (D/A) converter in the feedback loop has been modeled by the system function H(s).
The transfer function that describes the relationship between the ΔΣM’s quantization noise, Eo(s), and
the ΔΣM’s output, Y (s), is referred to as the ΔΣM’s noise shaping filter or noise transfer function (NTF).
For the ΔΣM shown in Figure 14.15,

NTF(s) = Y (s)

Eo(s)
= 1

1 + G(s)H(s)
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FIGURE 14.14 A block diagram of a typical ΔΣM.

The transfer function that describes the relationship between the ΔΣM’s input, X(s), and ΔΣM’s out-
put, Y (s), is referred to as the ΔΣM’s signal transfer function (STF). For the ΔΣM shown in Figure 14.15,

STF(s) = Y (s)

X(s)
= F(s)G(s)

1 + G(s)H(s)

Because the block diagram in Figure 14.15 is a linear model, the ΔΣM’s output, Y (s), can be written as

Y (s) = STF(s)X(s) + NTF(s)Eo(s)

A ΔΣM’s NTF is designed to shape the quantization noise, Eo(s), so that quantization noise is atten-
uated over the frequencies of interest while ΔΣM’s STF is often designed as an antialiasing filter. For
example, consider the ΔΣM model in Figure 14.15 where F(s) = 1, G(s) = 1/s, and H(s) = 1 which
implies that

STF(s) = Y (s)

X(s)
= 1

s + 1
and NTF(s) = Y (s)

Eo(s)
= s

s + 1

Figure 14.16 shows the magnitude response of the ΔΣM’s STF and NTF. As shown in the figure, the NTF
attenuates the A/D converter’s quantization noise at low frequencies, and the STF acts as an antialiasing
filter. The ΔΣM’s NTF and STF cannot be designed independently, because the NTF and STF share
a common denominator. Since the NTF directly affects the ΔΣM’s SNR, a ΔΣM’s NTF is typically
designed before the ΔΣM’s STF.

Because a ΔΣM’s quantization noise is shaped by the ΔΣM’s NTF, a ΔΣM’s SNR is a function of its
particular NTF. To estimate the SNR of a ΔΣM, consider a simple ΔΣM where

F(s) = 1, G(s) = (2πfc)N

sN , H(s) = 1

where fc is the 3-dB frequency of the ΔΣM’s STF and NTF, and N is an integer value which is referred to
as the ΔΣM’s order. For this ΔΣM,

STF(s) = Y (s)

X(s)
= (2πfc)N

sN + (2πfc)N and NTF(s) = Y (s)

Eo(s)
= sN

sN + (2πfc)N

+
+

+

–

x(t)
Sampler

fs

F(s) G(s)

eo(t)

H(s)

y(t) y(k)

FIGURE 14.15 A linear model of the ΔΣM in Figure 14.14.
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FIGURE 14.16 Magnitude response of the STF and NTF.

Assuming that the ΔΣM’s input signal and the quantization noise are zero mean signals,

(SNR)dB = 10 log10
Px(k)

Pe
= 10 log10

σ2
x(k)

σ2
e

where x(k) and e(k) are the output signal and output noise of the sampling rate converter, respectively.
If the STF and the digital antialiasing filter pass the input signal with unity gain, the analog input signal
power, Px(t) and the digital output signal power, Px(k), are related by

Px(k) = f 2
s Px(t) = f 2

s σ2
x(t) (14.47)

The output noise power can be calculated as

Pe = 1

2π

π∫
Ω=−π

Φee(ejΩ) dΩ = 1

2πfs

πfs∫
ω=−πfs

Φee(ejω/fs ) dω (14.48)

where Φee(ejΩ) is the PSD of e(k), Ω represents frequency in radians/sample and ω represents frequency
in rad/s. Assuming that the digital antialiasing filter and the STF are linear and time invariant,

Φee(ejω) =
∣∣∣NTF(ejω/fs )

∣∣∣2∣∣∣Ha(ejω/fs )
∣∣∣2Φeoeo (ejω/fs )

= ∣∣ fs · NTF(jω)
∣∣2 ∣∣∣Ha(ejω/fs )

∣∣∣2Φeoeo (ejω/fs )
(14.49)

where Ha(ejω/fs ) is the frequency response of the digital antialiasing filter which is ideally a low-pass filter
with a very narrow transition band and a cutoff frequency of πfs/M rad/s. Substituting Equation 14.49 into
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Equation 14.48 and assuming that the quantization noise is white which implies that φeoeo (n) = σ2
eo

δ(n),
or equivalently

Φeoeo (ejω/fs ) = σ2
eo

Pe = fsσ2
eo

2π

πfs/M∫
ω=−πfs/M

∣∣NTF(jω)
∣∣2dω

(14.50)

For proper operation of this ΔΣM, πfs/M � 2πfc , which implies that

∣∣NTF(jω)
∣∣2 =

∣∣∣∣∣
(jω)N

(jω)N + (2πfc)N

∣∣∣∣∣
2

≈
∣∣∣∣ (jω)N

(2πfc)N

∣∣∣∣
2

= ω2N

(2πfc)2N (14.51)

Substituting Equation 14.51 into Equation 14.50 and integrating,

Pe = fsσ2
eo

2π

2

(2N + 1)(2πfc)2N

(
πfs
M

)2N+1

= f 2N+2
s σ2

eo

2N + 1

π2N

(2πfc)2N

(
1

M

)2N+1

(14.52)

Using Equations 14.47 and 14.52,

SNR = Px(k)

Pe
= f 2

s σ2
x(t)

f 2N+2
s σ2

eo
2N+1

π2N

(2πfc)2N

( 1
M

)2N+1
= σ2

x(t)

σ2
eo

(2N + 1)M2N+1(2πfc)2N

(πfs)
2N

In dB, the SNR becomes

(SNR)dB = 10log10σ
2
x(t) − 10log10σ

2
eo

+ (20N + 10)log10M + 10log10(2N + 1) + 20N log10
fc

fs/2
(14.53)

Substituting Equation 14.31 into Equation 14.53,

(SNR)dB = 10 log10 σ2
x(t) + 10.79 + 6.02C + (20N + 10) log10 M + 10 log10(2N + 1) + 20N log10

fc
fs/2

or equivalently, in terms of B,

(SNR)dB = 10 log10 σ2
x(t) + 4.77 + 6.02B + (20N + 10) log10 M + 10 log10(2N + 1)

+ 20N log10
fc

fs/2
(14.54)

Recall that B = C + 1 so that B includes all the A/D converter’s bits including its sign bit. If, for example,
the input signal is a full-scale sine wave, then σ2

x(t) = 1/2, and Equation 14.54 can be written as

(SNR)dB = 6.02B + 1.76 + +(20N + 10) log10 M + 10 log10(2N + 1) + 20N log10
fc

fs/2

Throughout the literature, it is also common to assume that fc/( fs/2) = 1/π, then

(SNR)dB = 6.02B + 1.76 + (20N + 10) log10 M + 10 log10(2N + 1) − 9.94N

Unlike the previously described oversampling system which has an SNR that can be limited by the
accuracy of its A/D converter, a ΔΣM’s SNR is typically not limited by the accuracy of its A/D converter
because the A/D converter’s output is filtered by the NTF. Instead, a ΔΣM’s SNR is often limited by
the accuracy of its D/A converter, because the D/A converter’s output is added directly to the input
signal and then filtered by the STF. Typically, ΔΣMs with single bit A/D converters are inherently linear;
however, the linearity of a ΔΣM with multibit A/D converters is typically limited by the DAC’s accuracy.
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For ΔΣMs with multibit A/D converters, techniques such as dynamic element matching can be used to
improve the linearity of the D/A converter [3].

14.7 Stochastic Analysis of Quantization Errors
in Digital Processing

One approach for analyzing roundoff and truncation errors generated in digital processing of controllers
is to derive deterministic upper bounds on the maximum errors that can possibly result from roundoff
or truncation. In general, however, these bounds are pessimistic because the errors usually add up in the
worst possible way.

Another popular approach for analyzing roundoff and truncation errors is to develop stochastic noise
models of these errors first, and then determine their effects on system performance.

14.7.1 Fixed-Point Arithmetic

It was mentioned earlier that, in fixed-point arithmetic, quantization errors occur in multiplication and
not in addition. Figure 14.17a shows a block diagram of a multiplier model in which two C-bit numbers are
multiplied and then quantized to produce a C-bit number. An equivalent noise model of the multiplier,
useful for analysis, is shown in Figure 14.17b. The quantization error e(k) is modeled as a stationary,
additive, white-noise sequence so that

E{e(k)} = μe

E{e(i)e(j)} =
{

0, i �= j

E{e2}, i = j

where the mean and the variance of the error can be determined from the probability density function
shown in Figure 14.4.

Using superposition, the output of a digital controller due to the error e(k) alone is given by the
convolution solution

ye(k) =
k∑

m=0

g(m)e(k − m)

C bit
coefficient

C bits

Coefficient Noise
sequence

Truncation 
or 

roundoff 

C bit
input

(a)

(b)

Input 

2C bit
product 

True
product

sequence

+ + 

Multiplier 

Multiplier 

FIGURE 14.17 Model of multiplier. (a) Multiplier model. (b) Statistical model of multiplier.
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where g(m) is the unit pulse response of the system whose input is the error source and whose output is
the digital controller output. The mean of the output is

E{ye(k)} =
k∑

m=0

g(m)E{e(k − m)}

= μe

k∑
m=0

g(m)

(14.55)

and the variance of ye(k) is

E{y2
e (k)} = E

{[
k∑

m=0

g(m)e(k − m)

]
·
[

k∑
n=0

g(n)e(k − n)

]}

=
k∑

m=0

k∑
n=0

g(n)g(m)E{e(k − m)e(k − n)}

Because e(k) is modelled as a white noise sequence

E{e(k − m)e(k − n)} = E{e2}δ(m − n)

where δ is the unit pulse function. Then as a result,

E{y2
e (k)} = E{e2}

k∑
m=0

g2(m)

Therefore as k approaches infinity, the mean and the variance of the output are

E{ye(k)} = μe

∞∑
m=0

g(m) (14.56)

and

E{y2
e (k)} = E{e2}

∞∑
m=0

g2(m) (14.57)

respectively. Hence, the variance of the output equals the variance of the quantization noise times the
noise power gain, NPG, where

(NPG) =
∞∑

m=0

g2(m) (14.58)

Because digital controller transfer functions are realized using first- and second-order subsystems in
parallel or cascade forms, the noise power gains of first- and second-order subsystems are now determined.

The transfer function of a first-order recursive subsystem is

G(z) = A(1 + β1z−1)

1 − α1z−1 = k0 + k1

1 − α1z−1

Hence,
g(m) = k0δ(m) + k1α

m
1 , m = 0, 1, 2, . . .

and ∞∑
m=0

g(m) = k0 + k1

1 − α1
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Therefore, the mean of the output is

E{ye(k)} = μe

[
k0 + k1

1 − α1

]
(14.59)

Similarly,

g2(m) =
{

(k0 + k1)2, m = 0

k2
1α

2m
1 , m = 1, 2, . . .

and therefore, the noise power gain becomes

(NPG) = k2
0 + 2k0k1 + k2

1

1 − α2
1

(14.60)

On the other hand, the transfer function of a second-order recursive subsystem is

G(z) = A
1 + β1z−1 + β2z−2

1 − α1z−1 − α2z−2

= k0 + k1

1 − r1z−1 + k2

1 − r2z−1

(14.61)

Therefore,

g(m) = k0δ(m) + k1rm
1 + k2rm

2 , m = 0, 1, 2, . . .

and hence,
∞∑

m=0

g(m) = k0 + k1

1 − r1
+ k2

1 − r2
(14.62)

Similarly,

g2(m) =
{

(k0 + k1 + k2)2, m = 0

(k1rm
1 + k2rm

2 )2, m = 1, 2, . . .

and the noise power gain becomes

(NPG) = k2
0 + 2k0k1 + 2k0k2 + k2

1

1 − r2
1

+ 2k1k2

1 − r1r2
+ k2

2

1 − r2
2

(14.63)

which is real. For the special case

G(z) = 1

1 − α1z−1 − α2z−2

the (NPG), in terms of the polynomial coefficients, is

(NPG) = 1 − α2

1 + α2

1

(1 − α2)2 − α2
1

Equations 14.59 through 14.63 are used regularly in the stochastic analysis of quantization error.
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Another method for calculating the noise power gain is to use contour integration as follows:

(NPG) =
∞∑

m=0

g2(m)

=
∞∑

m=0

g(m)
1

2πj

∮
C

G(z)zm−1dz

where C is the contour of integration chosen as the unit circle |z| = 1. Thus,

(NPG) = 1

2πj

∮
C

G(z)z−1

( ∞∑
m=0

g(m)zm

)
dz

but ∞∑
m=0

g(m)zm = G(z−1)

Therefore,

(NPG) = 1

2πj

∮
C

G(z)G(z−1)z−1dz (14.64)

which is the sum of residues of G(z)G(z−1)z−1 within the unit circle. Note that Equation 14.64 can be
easily solved numerically [5].

14.7.2 Quantization Noise Model of First-Order Subsystems

Consider the first-order subsystem shown in Figure 14.18. Setting all the noise sources to zero, the transfer
function of the ideal subsystem is

T(z) = Y (z)

X(z)
= A(1 + β1z−1)

1 − α1z−1

The effect of the A/D converter on the output can be determined by setting all signals but e0 to zero.
The transfer function that relates e0 to the filter output is

Y0(z) = G0(z)E0(z)

where

G0(z) = T(z) = k0 + k1

1 − α1z−1

A/D noise
eo(k)

e2(k)

e1(k)

A
+

+
+

+

+Input
x(k)

First multiplier
noise

ea(k) = e1(k)+e2(k)

e3(k)

Second
multipier

noise
e2(k)

y(k)

α1 β1

Unit
delay
z–1

FIGURE 14.18 Fixed-point quantization noise model of first-order subsystem.
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Then, the mean of the output is given by Equation 14.56:

E{y0} = μ0

[
k0 + k1

1 − α1

]

and using Equation 14.57, the variance of the output is

E{y2
0} =

[
k2

0 + 2k0k1 + k2
1

1 − α2
1

]
E{e2

0}

= (NPG)0E{e2
0}.

The effect of quantization error due to multiplication on system output is determined as follows. Setting
all signals but ea to zero,

ya(z) = Ga(z)Ea(z) = T(z)Ea(z)

Therefore,

E{ya(z)} = μa

[
k0 + k1

1 − α1

]

and

E{y2
a} =

[
k2

0 + 2k0k1 + k2
1

1 − α2
1

]
E{e2

a}

Assuming the multiplier errors e1 and e2 are uncorrelated, then

variance{ea} = variance{e1 + e2} = E{e2
1} + E{e2

2}

Similarly, the second multiplier noise gain is calculated by setting all sources but e3 to zero. The transfer
function that relates e3 to the output is

Y3(z) = G3(z)E3(z)

where

G3(z) = 1

Thus,

E{y3} = E{e3}

and

E{y2
3} = E{e2

3}

Also,

(NPG)3 = 1

Assuming the output noises y0, ya, and y3 are uncorrelated, then

variance{y0 + ya + y3} = (NPG)0E{e2
0} + (NPG)a[E{e2

1} + E{e2
2}] + (NPG)3E{e2

3}
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14.7.3 Quantization Noise Model of Second-Order Subsystems

The previous analysis of first-order subsystems can easily be extended to second-order subsystems. The
quantization noise model shown in Figure 14.18 for first-order subsystems can easily be modified for
second-order subsystems. Setting all the noise sources to zero, the ideal transfer function of a second-
order subsystem that relates X(z) to Y (z) is

T(z) = Y (z)

X(z)
= A(1 + β1z−1 + β2z−2)

1 − α1z−1 − α2z−2

Assuming that the output noises y0, ya, and yb are uncorrelated, then

variance{y0 + ya + yb} = (NPG)0E{e2
0} + (NPG)a[E{e2

1} + E{e2
2} + E{e2

3}] + (NPG)b[E{e2
4} + E{e2

5}]

where

(NPG)0 = (NPG)a

is determined from T(z) and

(NPG)b = 1

14.7.4 Floating-Point Arithmetic

The analysis of quantization errors in floating-point digital controllers is more complicated than in fixed-
point digital controllers. It was mentioned earlier that in floating-point arithmetic, errors occur only in
the mantissa. It was also mentioned that roundoff and truncation errors are introduced in both addition
and multiplication. Let x1 and x2 be any two numbers before quantization. Quantizing the sum and the
product of these two numbers gives

(x1 + x2)q = (x1 + x2)(1 + εs) (14.65)

and

(x1 · x2)q = (x1 · x2)(1 + εp) (14.66)

respectively, where the relative errors εs and εp, depending on the number representation, satisfy Equations
14.9 through 14.12. Each arithmetic operation introduces quantization error according to Equations 14.65
and 14.66. Detailed examples of roundoff and truncation errors accumulated in first- and second-order
subsystems using floating-point arithmetic are given in [6].

14.8 Limit Cycle and Deadband Effects

When digital controllers are implemented with FWL, limit cycles, or sustained oscillations, may appear at
the controller output even in the absence of any applied input. Basically, there are two different kinds of
limit cycles. One is due to roundoff in multiplication, termed the deadband effect, and the other is due to
register overflow. Limit cycles exist in fixed-point digital controllers but can be ignored in floating-point
controllers.
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To illustrate the phenomenon of limit cycle due to roundoff, consider the first-order controller
described by the difference equation

y(k) = ay(k − 1) + x(k) (14.67)

Let
x(k) = 0.9δ(k), a = 0.5, y(−1) = 0

If the controller equation is implemented with infinite word length registers, then

y(k) = 0.9(0.5)k

As k approaches infinity, the steady-state value of the output y(k) approaches zero. However, assuming
that the controller equation is implemented with a 3-bit word length, then

yq(k) = Q[0.5yq(k − 1)] + 0.75δ(k)

Using decimal representation, the output can be calculated recursively as follows:

yq(0) = Q[(0.5)(0)] + 0.75 = 0.75

yq(1) = Q[(0.5)(0.75)] = 0.375

yq(2) = Q[(0.5)(0.375)] = 0.25

yq(3) = Q[(0.5)(0.25)] = 0.125

yq(4) = Q[(0.5)(0.125)] = 0.125

...

yq(k) = Q[(0.5)(0.125)] = 0.125

Hence, as k approaches infinity, the steady-state value of yq(k) approaches 0.125 and not zero.
As another example, consider the system described by Equation 14.67, where

x(k) = 0, a = −0.5, y(−1) = 0.75

Again, if the controller equation is implemented with infinite word length registers, then the output,

y(k) = 0.75(−0.5)k

which approaches zero as k approaches infinity. Assuming that the controller equation is implemented
with a 3-bit word length, then

yq(k) = Q[−0.5yq(k − 1)]
The output can be calculated recursively as follows:

yq(0) = Q[(−0.5)(0.75)] = Q[−0.375] = −0.375

yq(1) = Q[(−0.5)(−0.375)] = 0.25

yq(2) = Q[(−0.5)(0.25)] = −0.125

yq(3) = Q[(−0.5)(−0.125)] = 0.125

yq(k) = Q[(−0.5)(0.125)] = −0.125

and the output oscillates between 0.125 and −0.125 indefinitely.
An interesting example of limit cycle due to register overflow is given in [7]. Limit cycles due to roundoff

and overflow are unwanted and their effect on control system performance should be minimized.
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15.1 Introduction

In this chapter, the selection of sampling rate for a digital control system is briefly discussed. As the
sampling rate is increased, the performance of the digital controller usually improves. Computer cost also
increases because less time is available to process the controller equations. Reducing the sample rate for the
sake of reducing cost, however, may degrade system performance or even cause instability. Additionally,
for systems with analog-to-digital converters, higher sample rates require faster A/D conversion speed
which may also be expensive.

Aside from cost, the selection of sampling rate for digital control systems depends on many factors,
including smoothness of the time response, effects of disturbances and sensor noise, parameter variations,
and quantization. The best sampling rate which can be chosen for a digital control system is the slowest rate
that meets all performance requirements. Before we discuss the selection of sampling rate, a statement of
the sampling theorem is in order.

15.2 The Sampling Theorem

Sampling is the process of deriving a discrete-time sequence from a continuous-time function. Usually,
but not always, the samples are evenly spaced in time. Reconstruction is the reverse; it is the formation
of a continuous-time function from a sequence of samples. Many different continuous-time functions
can have the same set of samples, so a reconstruction is not unique. Figure 15.1 shows two different
continuous-time signals with the same samples, illustrating how, except in highly restricted circumstances,
a sampled function is not uniquely determined by its samples. One important situation for which samples
of a continuous-time function are unique occurs when the function is bandlimited. A signal g(t) and its

15-1
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f1 (t)

f2 (t)

t

FIGURE 15.1 Two different continuous-time signals with the same samples.

Fourier transform G(ω) are generally related by

G(ω) =
∫ ∞

−∞
g(t)e−jωtdt

g(t) = 1

2π

∫ ∞

−∞
G(ω)ejωtdω

(15.1)

This relationship is similar to Laplace transformation with s = jw, but the transform integral of
Equation 15.1 extends over all time rather than from t = 0− on. The Fourier transform G(ω) is termed
the spectrum of g(t).

If a signal g(t) is uniformly sampled with sampling period T to form the sequence

g(k) = g(t = kT)

then the corresponding impulse train that extends both ways in time

g∗(t) =
∞∑

k=−∞
g(kT)δ(t − kT)

is a continuous-time (hence it has a Fourier transform) signal that is equivalent to g(kT) and has the
Fourier transform

G∗(ω) = 1

T

∞∑
n=−∞

G(ω − nωs) (15.2)

where

ωs = 2πfs = 2π

T
To prove this result, the periodic function

s(t) =
∞∑

k=0

δ(t − kT)

is represented by an exponential Fourier series of the form

s(t) =
∞∑

n=−∞
dne( jn2π/T)t

where

dn = 1

T

∫ T/2

−T/2

∞∑
k=−∞

δ(t − kT)e−( jn2π/T)tdt = 1

T
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Hence,

s(t) = 1

T

∞∑
n=−∞

e( jn2π/T)t

Substituting this result in the impulse train

g∗(t) =
∞∑

k=−∞
g(kT)δ(t − kT)

gives

g∗(t) = 1

T
g(t)

∞∑
n=−∞

e( jn2π/T)t

and taking the Fourier transform yields

G∗(ω) = 1

T

∞∑
n=−∞

∫ ∞

−∞
g(t)e( jn2π/T)t e−jωtdt

Therefore,

G∗(ω) = 1

T

∞∑
n=−∞

G

(
ω − n

2π

T

)

= 1

T

∞∑
n=−∞

G(ω − nωs)

which completes the proof.
The function G∗(ω) in Equation 15.2 is periodic in ω, and each individual term in the series has the

same form as the original G(ω), with the exception that the nth term is centered at

ω = n
2π

T
n = . . . , −2, −1, 0, 1, 2, . . .

In general, then, if G(ω) is not limited to a finite frequency range, these terms overlap each other along
the ω-axis. A signal is bandlimited at (Hertz) frequency fB if

G(ω) = 0 for |ω| > 2πfB = ωB

as shown in Figure 15.2a. Equation 15.1 becomes

g(t) = 1

2π

∫ ωB

−ωB

G(ω)ejωtdω

If the sampling frequency fs is more than twice the bandlimit frequency fB, the individual terms in
Equation 15.2 do not overlap as shown in Figure 15.2b, and G(ω), and thus g(t), can be determined from
G∗(ω), which in turn, is determined from the samples g(k). Furthermore, if the sampling frequency fs is
exactly twice the bandlimit frequency fB, the individual terms in Equation 15.2 do not overlap as shown
in Figure 15.2c.

In terms of the sampling period,
ωs = 2ωB

and

T = 2π

ωs
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G(ω)

G*(ω)

– 2π
T1

(a)

(b)

(c)

(d)

–ωB

–ωB

–2ωB

…

ωB
ω

ωB ω

A

A/T1

G*(ω)

A/T2

G*(ω)

A/T3

– 2π
T2

2π
T2

2π
T3

–ωB = 2ωB ω

ω

π
T2

ωB =

ωB

π
T2

2π
T1

π
T1

… …

…

FIGURE 15.2 Frequency spectra of a signal sampled at various frequencies. (a) Frequency spectrum of an analog
bandlimited signal g(t). (b) Frequency spectrum of a sampled signal g∗(t) with fs1 > 2fB(fs1 = 1/T1). (c) Frequency
spectrum of a sampled signal g∗(t) with fs2 = 2fB( fs2 = 1/T2). (d) Frequency spectrum of a sampled signal g∗(t) <

2fB(fs3 = 1/T3).

Then

T = π

ωB
= 1

2fB

which relates the sampling period to the highest frequency fB in the signal.
A statement of the sampling theorem is the following:
The uniform samples of a signal g(t), that is bandlimited above (Hertz) frequency fB, are unique if, and

only if, the sampling frequency is higher than 2fB.
In terms of the sampling period,

T <
1

2fB
(15.3)
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The frequency 2fB is termed the Nyquist frequency for a bandlimited signal. As shown in Figure 15.2d,
if the sampling frequency does not exceed the Nyquist frequency, the individual terms in Equation 15.2
overlap, a phenomenon called aliasing (or foldover).

In digital signal processing applications, selection of the sampling period also depends on the recon-
struction method used to recover the bandlimited signal from its samples [1]. Another statement of the
sampling theorem related to signal reconstruction states that when a bandlimited continuous-time signal
is sampled at a rate higher than twice the bandlimit frequency, the samples can be used to reconstruct
uniquely the original continuous-time signal.

Åström and Wittenmark [2] suggest, by way of an example, a criterion for the selection of the sample
rate that depends on the magnitude of the error between the original signal and the reconstructed signal.
The error decreases as the sampling rate is increased considerably higher than the Nyquist rate. Depending
on the hold device used for reconstruction, the number of samples required may be several hundreds per
sampling period.

Although the sampling theorem is not applicable to most discrete-time control systems, because the
signals (e.g., steps and ramps) are not bandlimited and because good reconstruction requires long time
delays, it does provide some guidance in selecting the sample rate and in deciding how best to filter sensor
signals before sampling them.

15.3 Control System Response and the Sampling Period

The main objective of many digital control system designs is to select a controller so that the system-
tracking output, as nearly as possible, tracks or “follows” the tracking command input. Perhaps, the first
figure of merit that the designer usually selects is the closed-loop bandwidth, fc (Hz), of the feedback
system because fc is related to the speed at which the feedback system should track the command input.
Also, the bandwidth fc is related to the amount of attenuation the feedback system must provide in the face
of plant disturbances. It is then appropriate to relate the sampling rate to the bandwidth fc , as suggested by
the sampling theorem, because the bandwidth of the closed-loop system is related to the highest frequency
of interest in the command input.

Consider the control system shown in Figure 12.9a in the Chapter 12 where the controller,

Gc(s) = 0.5(s + 5)

s(s + 2)

has been designed so that the resulting feedback system has a 3-dB bandwidth fc = 0.228 Hz. The step
response of the digital control system using Euler’s and Tustin’s approximations for various sampling
periods is shown in Figure 12.10. Raising the sample rate tends to decrease the amplitude of each step
input change and thus reduces the amplitude of the undesirable between-sample response. As the sampling
period is decreased from T = 0.4 s to T = 0.1 s, or equivalently, the sampling rate is increased from 2.5 Hz
(11 times fc) to 10 Hz (44 times fc), the step response of the feedback system using either approximation
approaches the step response of the continuous-time system. However, as discussed in Chapter 12,
Tustin’s approximation usually gives better results than Euler’s approximation for the same sampling
period.

As a general rule of thumb, the sampling period should be chosen in the range

1

40fc
< T <

1

10fc
(15.4)

Of course, other design requirements may require even higher sample rates, but sampling rates less than
10 times fc are not desirable and should be avoided if possible.

An interesting problem involving the sample rate selection is encountered in the control system design
of flexible spacecraft. The spacecraft has a large number of bending modes of which the lowest bending
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mode frequency may be a fraction of 1 Hz and the highest frequency of interest may be 100 Hz or even
higher. Typically, the closed-loop bandwidth of the spacecraft is an order of magnitude less than the lowest
mode frequency, and as long as the controller does not excite any of the flexible modes, the sampling
period may be selected solely based on the closed-loop bandwidth. Otherwise, these modes need to be
attenuated∗ or controlled, and therefore, their frequencies will impact the sampling rate selection [3].

Another criterion for selecting the sampling period is based on the rise time of the feedback system so
as to provide smoothness in the time response. It can easily be shown that the rise time (10–90%), Tr , of
a first-order system of the form

H(s) = 1

τs + 1
is

Tr = 2.2τ

The sampling period, in terms of the rise time, can be selected according to

0.095Tr < T < 0.57Tr

which is derived from Equation 15.4. Similarly, the rise time of the second-order system,

H(s) = ω2
n

s2 + 2ζωns + ω2
n

is

Tr = π − β

ωd

where
ωd = ωn

√
1 − ζ2

and
β = sin−1

√
1 − ζ2

For a damping ratio ζ = 0.707, the rise time is

Tr = 3.33

ωn

Based on Equation 15.4, the sampling period is

0.05Tr < T < 0.19Tr (15.5)

Continuing with the previous example shown in Figure 12.10, according to Equation 15.5, a sampling
period T = 0.11 s is selected which agrees with the previous results.

In digital control systems, a time delay of up to a full sample period may be possible before the digital
controller can respond to the next input command. Franklin et al. [3] suggest that the time delay be kept
to about 10% of the rise time. Then, the sampling period should satisfy

T <
0.05

fc

Yet another criterion for selecting the sampling period, which depends on the frequency response of the
continuous-time system, is selected so that

0.08 < Tω0 < 0.3 (15.6)

where ω0 is the gain crossover frequency of the continuous-time system in rad/s.

∗ When the modal parameters are well known, notch filters can be used to attenuate the modes, if necessary. In this case,
the notch frequency of the filter attenuating the mode with the highest frequency may dictate the sampling rate of the
digital controller.
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Continuing with the previous example, the open-loop transfer function is

G(s)H(s) = 2.5(s + 5)

s(s2 + 4s + 8)(s + 2)

The frequency response of GH is shown in Figure 15.3 where the gain crossover frequency is ω0 =
0.74 rad/s. According to Equation 15.6, the sampling period should be chosen in the range

0.1 < T < 0.4

which also agrees with the previous results.

15.4 Control System Response to External Disturbances

Plant disturbances are undesired, inaccessible plant inputs that the plant should not track. An example of
disturbance is wind gusts buffeting a positioning system for a microwave antenna. Like initial conditions,
the specific disturbance signals are normally unknown, although something is probably known about
their character, their statistics, or both. As far as the selection of sampling rate is concerned, the most
important plant disturbance to consider is random white noise because of its high-frequency contents.

In general, when the controller is implemented digitally, it will perform less well than the analog
controller in the face of white-noise disturbance inputs. As the sampling rate is increased, the response
of the digital controller usually approaches the response of the continuous-time controller.

Consider the continuous-time system described by

ẋ = Ax(t) + Bu(t) + Lw(t) (15.7)

where u(t) is the control input and w(t) is a white-noise process with covariance matrix

E{w(t)w†(t + τ)} = Qδ(τ)

where E denotes expected value. If the control input is given by

u(t) = Ecx(t) (15.8)

then

ẋ = (A + BEc)x(t) + Lw(t) = Acx(t) + Lw(t) (15.9)

Let the state covariance matrix be

Pc(t) = E{x(t)x†(t)}
It can be shown [4] that the steady-state solution of the state covariance matrix Pc is

AcPc + PcA†
c + LQL† = 0 (15.10)

where Pc is a measure of the variation of the state vector about its mean. The solution of Equation 15.10
can be easily obtained using MATLAB� (see LYAP.m) or some other computer-aided design tools.

When the controller is implemented digitally, however, the covariance of the discretized state vector
will, in general, be higher than the covariance of the continuous-time state vector for identical disturbance
inputs. This is to say that the amplitude of the state will be higher with the discrete controller than its
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continuous-time counterpart. When the continuous-time system described by Equation 15.7 is sampled
with sampling period T , its discrete-time equivalent is (see Chapter 12).

x(k + 1) = Φx(k) + Bu(k) + ω(k) (15.11)

where

Φ = eAT = I + AT + A2T2

2! + A3T3

3! + · · · (15.12)

and

B =
(∫ T

0
eAη dη

)
B =

[
IT + AT2

2! + A2T3

3! + · · ·
]

(15.13)

The discrete-time noise is given by the integral

ω(k) =
∫ kT+T

kT
Φ(kT + T − τ)Lw(τ)dτ

The covariance of the discrete-time noise is

Qd = E{ω(k)ω†(k)} =
∫ kT+T

kT

∫ kT+T

kT
Φ(kT + T − τ)

× LE{w(τ)w†(λ)}L†Φ†(kT + T − λ) dλ dτ

=
∫ kT+T

kT

∫ kT+T

kT
Φ(kT + T − τ)

× LQδ(τ − λ)L†Φ†(kT + T − λ) dλ dτ

=
∫ kT+T

kT
Φ(kT + T − τ)

× LQL†Φ†(kT + T − τ) dτ

Let
γ = kT + T − τ

Then

Qd =
∫ T

0
Φ(γ)LQL†Φ†(γ) dγ (15.14)

Returning to Equation 15.11, the state feedback

u(k) = Edx(k)

gives

x(k + 1) = (Φ + BEd)x(k) + ω(k)

x(k + 1) = Φcx(k) + ω(k)
(15.15)

Therefore, using Equation 15.15, the discrete-time state covariance matrix is

Pd(k + 1) = E{x(k + 1)x†(k + 1)}
= E{[Φcx(k) + ω(k)][Φcx(k) + ω(k)]†}
= ΦcPd(k)Φ†

c + Qd

where Qd is given by Equation 15.14. Hence, the steady-state covariance discrete-time matrix is

Pd = ΦcPdΦ†
c + Qd (15.16)

which can easily be solved using MATLAB (see DLYAP.m).
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To illustrate the ideas involved in the selection of the sampling rate of a system driven by a white-noise
disturbance, consider the following simplified model for the roll attitude control of a spacecraft:

ẋ(t) =
[

0 1
0 0

]
x(t) +

[
0

1/J

]
u(t) +

[
0

1/J

]
w(t)

y(t) = [1 0]x(t)

where x1 is the roll attitude of the spacecraft in radians, x2 is the roll rate in rad/s, u is the control torque
about the vehicle roll axis produced by the spacecraft actuators in foot-pounds, w is the disturbance
torque acting on the spacecraft in foot-pounds, and J is the moment of inertia of the vehicle about the
roll axis at the vehicle center of mass in slug-feet squared.

For simplicity, we assume that J = 1. Suppose that it is desired to have both eigenvalues of the state
feedback system at s1,2 = −4.6. Then the feedback gain vector is

e† = [−21.16 − 9.2]
If the noise covariance Q = 1, then the steady-state solution of the state covariance matrix given by

Equation 15.10 is

Pc =
[

0.002568 0
0 0.0543476

]

and, therefore, the RMS of the spacecraft attitude,∗ x1, is 0.0507, and the RMS of the spacecraft attitude
rate, x2, is 0.2231.

If the continuous-time model of the spacecraft is discretized with sampling period T , then, according
to Equations 15.12, 15.13, and 15.14,

Φ =
[

1 T

0 1

]

b =
⎡
⎢⎣

T2

2

T

⎤
⎥⎦

and

Qd =

⎡
⎢⎢⎣

T3

3

T2

2

T2

2
T

⎤
⎥⎥⎦

If the eigenvalues of the discrete-time system are located at z1,2 = e−4.6T , then the feedback gain vector
for the discrete-time system is

e† =
[

2e−4.6T − e−9.2T − 1

T2

2e−4.6T + e−9.2T − 3

2T

]

Figure 15.4 shows the RMS values of the states x1 and x2 in terms of the sampling period generated
with Equation 15.16. As the sampling period is increased, the RMS values of the states increase, and, as
the sampling period is decreased, the RMS values decrease and eventually approach the RMS values of
the continuous-time state variables calculated earlier. Examining the figure, an appropriate value of the
sampling period is T = 0.05 s. The performance of the digital controller degrades as T is increased. This
value of the sampling period also agrees with inequality Equation 15.4.

∗ Root-mean-square (RMS) of a random variable X is the square root of the mean-square value (second moment) of X. If
the random variable X has zero mean, then the RMS value and standard deviation of X are equal.
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FIGURE 15.4 Response of digital control system as a function of a sampling period. As the sampling period is
increased, the response degrades and, as the sampling period is decreased, response approaches continuous-time
response.

15.5 Measurement Noise and Prefiltering

The sampling theorem is important to control system design, because when A/D conversion is done
on noisy signals with significant frequency components above half the sampling frequency, the high
frequencies produce errors in the sampling indistinguishable from lower frequency errors. For this reason,
low-pass filters, termed prefilters, or antialiasing filters, are used to reduce the high frequencies in sensor
signals before their A/D conversion as in Figure 15.5.

For example, consider the noisy voltage signal, in Figure 15.6a, composed of a 2 Hz sinusoidal signal of
amplitude 2 V and an 80 Hz sinusoidal noise of amplitude 0.2 V. If this signal is sampled with T = 1/45 s,
then according to the sampling theorem, the sampled signal will be aliased as in Figure 15.6b.

The first-order low-pass filter,

H(s) = 50

s + 50

A/D Digital
controller

Antialiasing
filter

Noise

+

+

D/A
with
S/H

Plant

Analog
sensor

FIGURE 15.5 Antialiasing filters reduce high-frequency noise in the sensor signal before A/D conversion.
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FIGURE 15.6 Filtering of measurement noise using antialiasing filters. (a) Noisy signal; (b) aliased signal; (c) filtered
signal; and (d) sampled-filtered signal.

selected with a corner frequency of about one-sixth the sampling frequency, will attenuate the 80 Hz
noise, as shown in Figure 15.6c. Samples of the filtered analog signal are shown in Figure 15.6d.

In feedback control systems, the phase lag of antialiasing filters may be significant enough to cause
system instability. However, if the corner frequency of the filter is sufficiently higher than the control
system bandwidth, the phase lag of the filter may not affect the performance of the system. On the
other hand, if noise attenuation requires higher-order filters or filters with corner frequencies close to
the control system bandwidth, the filter should be treated as if it is part of the plant controlled by the
discrete-time controller.

15.6 Effect of Sampling Rate on Quantization Error

Quantization errors in digital control systems are discussed in detail in the chapter entitled “Quantization
Effects.” In some applications, quantization errors cannot be ignored and their effect on system output
depends on the sampling period.

As an example, consider the analog controller described by

H(s) = 104

s + 1
(15.17)
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Its discrete-time equivalent, using the impulse invariant approximation, is

H(z) = 104z

z − e−T
= 104

1 − e−T z−1

= k0 + k1

1 − αz−1

where
k0 = 0, k1 = 104, α = e−T

As discussed in the chapter entitled “Quantization Effects,” the variance of the controller output equals
the variance of the roundoff noise times the noise power gain. For the first-order controller, the variance
of the output is determined with Equations 15.20, 15.29, 15.30, and 15.32. Figure 15.7 shows the RMS of
the controller output in terms of the sampling period and the word length C. As the sampling period is
decreased, the RMS value of the output is increased. Also shown in the figure, increasing the word length
C decreases the RMS value of the output. The RMS output does not necessarily increase as the sampling
period is decreased. If the analog controller described by Equation 15.17 is discretized using Tustin’s
approximation, the discrete-time controller becomes

H(z) = 104(z + 1)(
2

T
+ 1

)
z + 1 − 2

T

Repeating the previous RMS analysis on this controller gives the results in Figure 15.8. Although the
RMS of the controller output increases as T increases, the RMS value is less with Tustin’s approximation
than with the impulse-invariant approximation. Also, as shown in the figure, the RMS of the output
increases as the word length is decreased.
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FIGURE 15.7 Response of controller using impulse invariant approximation as a function of sampling period for
various word lengths. As the sampling is increased, the error is decreased, and, as the word length is increased, the
error is decreased.
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It is through computer simulation of the plant and the controller that the best sample rate is achieved.
It is good practice to investigate carefully the behavior of the controlled system for various sample rates
when the arithmetic precision of the controller is reduced, when disturbances and noises are injected into
the system at likely points, and when the plant model is changed in ways that might occur in practice.
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16.1 An Application Context

Digital computers are the primary means of implementing feedback control for physical systems. Real-
time software is the medium in which these solutions are expressed. Computers are sequential devices, and,
as such, can act only as sampled-data controllers, with time discretized. The fundamental characteristics
of the real-time software, as distinct from “regular” software, are that the control algorithms must be
run at their scheduled sample intervals (with some specified tolerance) and that associated software
components, which interact with the sensors and actuators, can have critical time-window constraints.

The nature and difficulty of producing real-time software depends on the complexity and timing
constraints of the problem. The tighter the time constraints with respect to the computer’s basic computing
speed limitations and the more things that need to be serviced simultaneously (at least “simultaneously”
from the viewpoint of the control object), the more difficult it will be to complete the software design and
implementation successfully. Truly simultaneous operation is provided by using multiple communicating
processors; this does not change any of the basic system designs, but can add complexity and delay due
to communication.

16.2 The Software Hierarchy

Implementing software in a layered, or hierarchical, manner makes far more maintainable, more readable,
and more reliable software. To the extent that the layers are truly independent, this modularity allows
changes to be made at any layer without any software changes needed at other layers. This model follows
the extremely successful layered model used for Internet software.

Up to four distinct hierarchical levels are used in this model for software implementing feedback
control. The extent to which all of these levels are used and the degree of interaction within and across
levels determines the degree of complexity referred to above. The methods described here are appropriate
for the types of demands placed on each of these levels by typical feedback control problems. Other
problems, which might require more complex relationships within or across hierarchical levels, would
require additional and/or different formalities for organizing the software design.

The four potential hierarchical levels are:

1. Instrument/actuation activities: The lowest level of interaction with the instruments and actuators.
Software at this level is usually short and might need to run frequently. It can be activated either
by time or by an external signal. This level is also shared with peripheral controllers, such as disk,
network, or printer controllers.

2. Feedback control algorithms: Use the information from the instruments to compute actuation
commands. Normally run on a specified time schedule.

3. Supervisory/sequence control: Provide set point information to the feedback algorithms. Can also
be used for corrections and adjustments to the feedback algorithms, such as adaptive control or
set point scheduling.

4. Other: Data logging, operator interface, communication with other computers, and so on.

16.3 The Ground Rules

The following items describe the “ground rules” used to formulate the design methodology presented
here.
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16.3.1 Generic Solution

The methods and software developed here are designed for generic implementation. Although a number
of proprietary means exist for implementing feedback control, for example, code translators that produce
real-time code from a design, analysis, or simulation package, none of them are used widely enough to
represent a de facto standard for feedback control implementation. For that reason, the methods here
are intended for a broad variety of environments, without purchasing anything beyond basic computing
tools.

16.3.2 Stand-Alone Feedback Control

The designs implemented are intended for stand-alone feedback control systems. When feedback con-
trol is a part of a larger software system, a variety of design constraints will be imposed based on the
environment in which that system has been designed. The software methods described here will often be
amenable to implementation in such environments, but, in some cases, may need substantial modification
to be compatible.

16.3.3 Single Processor

The design formality used here is presented in a format that is suitable for running in a single computer.
However, the formality itself is applicable to multiprocessor systems and a number of methods exist for
the extension of applications to multiprocessor environments.

16.4 Portability

Software portability, the ease with which software written in one environment can be used in another, is a
major factor in overall development costs, time to market, maintainability, and upgradability. It has thus
been a major focus in formulating the feedback control implementation methodology presented here.

16.4.1 Design Cycle

The design cycle for a control product typically goes through phases starting with simulation, followed by
laboratory prototypes, preproduction prototypes, and finally, production systems. Each of these phases
can use different computers and different development environments. Unless care is taken to assure
software portability, large sections of code may need rewriting for each phase. In addition to the obvious
cost consequences, there is a significant probability of introducing new bugs with each rewrite. To
compound this problem, it is likely that software responsibility will rest with different people at each
phase, placing a premium on consistent design methodology and documentation.

16.4.2 Life Cycle

While current commercial life cycles for computers are two to three years, with overall capability approx-
imately doubling in each new generation, the commercial lifetime of the equipment being controlled can
be as long as 20 years. To keep a product up-to-date, it is often necessary to introduce new product models
with minor changes in the physical design, but with new computational equipment greatly increasing the
system’s functionality, diagnostic abilities, communications, and so on.

To accomplish this in a timely, cost-effective manner, it must be possible to build on existing software, as
new models are introduced, and rapidly port old software to new platforms and operating environments.
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16.4.3 Execution Shell

There are always parts of a control program that depend on the specific computational hardware and
software being used. The execution shell isolates these environment-specific portions from the rest of the
program. This part of the program will normally include interfaces to the:

• Instrumentation/actuation hardware
• Real-time operating system (if any)
• Interrupt system
• Clock
• Operator interface

Concentrating this type of code in the execution shell insulates the control engineer from the need to
do system-level programming, a critical part of portable software design.

16.4.4 Language

The general structure described here is independent of language, but some language must be chosen for
the actual implementation. As of this writing, there are three top choices for languages to write portable
control system implementation code: C, C++, and Java.

Of these, C (currently the most widely used) is now an old design, which has been brought up-to-date
with C++, a superset of C. Java was originally invented at Sun Microsystems, Inc., as an embedded
computing language for use in TV set-top boxes. It was then adapted for use as a client-side computing
language for World-Wide-Web Internet applications, then extended for server-side applications and
stand-alone use (see http://java.sun.com/features/1998/05/birthday.html for a more detailed history of
Java). Because of its origins as an embedded systems language, Java is an excellent candidate for a language
to implement feedback control.

C++ has been chosen for the samples in this chapter. The style of program writing that it encourages
is much more conducive to writing code that can be maintained and modified more easily than C, and,
because C++ is a superset of C, applications can be created by C programmers with only a recent
introduction to C++. Java has a basic language structure that is very similar to C++ but is simpler and
easier to use. On the other hand, its implementation structure via a virtual machine and internal memory
recovery (“garbage collection”) make its real-time performance more questionable.

There are a large number of C++ instructional books currently available. The useful tutorial book by
Lippman [1] introduces the C++ language without requiring previous background in C. The reference
manual to C++ is written by Stroustrup [2], the inventor of the language.

Software for implementing the design model described here is available in C, C++, and Java from
one of the authors (Auslander, dma@me.berkeley.edu). This software was written for instructional rather
than commercial purposes and is available on an as-is basis.

16.5 Software Structure: Scan Mode

Successful control system design requires programming paradigms beyond the basic structure of algo-
rithmic languages. In particular, the parallelism inherent in the control of physical systems and the notion
of duration, are not concepts included within the syntax of standard languages.

16.5.1 Parallelism

Except for the simplest of control systems, several activities must be carried out simultaneously. A single
computer, however, is a strictly sequential device, so that the parallelism viewed from the outside must
be constructed by a rapid succession of sequential activities on the inside of the computer. The paradigm
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used for control system software must deal with the need for pseudo-simultaneous execution of program
components, and it must do that in a way that meets the portability requirements. Multiple computers
combined to do a single control job can exhibit true parallelism. In most practical cases, though, even
when multiple computers are used, many of them must carry out more than one activity at a time.

A number of mechanisms, both commercial and ad hoc, exist for realizing parallelism in computing.
The focus in this chapter will be on exploiting those mechanisms without compromising portability.

16.5.2 Nonblocking Code

The first step in constructing the paradigm for control system software design is to recognize the difference
between blocking and nonblocking code. For a segment of code to be nonblocking, it must have a predictable
computing time. The computing time need not be short, but it must be predictable.

A typical example of blocking code in many control programs is the “wait-for-something” statement
based on a while loop,

while(-check-for-something-) ;
//Wait for an event

Because the event, in general, is asynchronous, there is no way to know when (or whether) the event
will happen. The code is blocking, because its execution time is not predictable. Likewise the scanf (or
cin) statement is blocking, because its execution time depends on when the user completes typing the
requested input.

The methodology presented here is based on code that is completely nonblocking. Waiting for events,
however, is fundamental to system control, so that a higher level of structure will be provided to accom-
modate such waits without the blocking code.

16.5.3 Scanned Code

The restriction to nonblocking code permits adopting a scan model for all software. In this model, all
software elements are designed to be operated through repeated execution. It is the rapid repetition that
gives the illusion of parallel execution even within a strictly sequential environment. By using the scan
structure, parallelism can be maintained in computational environments that do not normally support
real-time multitasking, or across competitive and, therefore, usually incompatible real-time environ-
ments. In many respects, this software structure is an extension of the model used by programmable
logic controllers (PLCs), which have successfully solved an important class of industrial control
problems.

16.6 Control Software Design

Most important in assuring that software design will meet the engineering specifications of a project
is a design structure that matches the problem reasonably well and allows for separating the solution
into components matching the designers’ interests and skills. In feedback control software, the system
engineering of the problem and its computational structure are partitioned. This facilitates designing
portable software, and matching the skills for control system design to control the engineer’s knowledge.

16.6.1 System Engineering Structure: Tasks and States

A two-level structure characterizes the system engineering of the control job. Tasks, expressing the
parallelism in the job, are a partition of the job into a set of semi-independent, activities, which, in general,
are all active simultaneously. Tasks are internally characterized by states, indicating the particular action
a task is carrying out.
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The major creative engineering effort consists of selecting and describing tasks and states. Once done,
creating the actual computer code is relatively straightforward, because the formal definition of tasks
and states modularizes the code, with code sections specifically connected to these design elements. This
is very important for maintenance and upgrading where the code will need to be modified by people
uninvolved in its original creation.

An additional benefit of the task/state paradigm is that the system operation is described in terms
understandable to any engineers involved in the project. This opens the door to broad design review,
sorely lacking in many software control projects.

Characterizing tasks as “semi-independent” recognizes that they are part of a system with a well-
defined objective. Tasks will exchange data with other tasks and must synchronize their operations with
other tasks. In all other aspects, they operate independently and asynchronously. They are asynchronous,
because their operation can be governed by activities outside of the computer, which, in general, are not
synchronous. Except for explicit synchronization, there is no a priori way to know how tasks will relate
to each other computationally. This has important consequences for debugging and system reliability. In
conventional software, erroneous situations can be repeatedly recreated until the cause of the problem
is found. This is not possible in real-time systems, because with asynchronous operation of tasks, with
respect to each other and to external events, it may not be possible to reproduce an erroneous situation
except in a statistical sense.

The concept of state in control theory means capturing information about the operation of a system
in a set of variables. The state variable for a task also serves this purpose. Using the scan model for
computing, the state provides the task with information indicating what action is required at each scan.
It thus captures the scan history for the task. In this context, states are represented as integer variables,
with each task recognizing only a finite number of state variable values (i.e., states). The task is thus a
finite-state machine and the whole program is a set of finite-state machines.

16.6.2 Computational Structure: Threads

The system engineering part of the design effort is founded on the operational description of the machine,
but the computational structure is determined by detailed performance specifications. As long as the
program is constructed from nonblocking code and the scan model for software structure, it is theoretically
possible to accommodate any control job with a single, fast computer without special real-time hardware
or software. However, computers are never as fast or inexpensive as desired. Fortunately, in most problems
only a few tasks lack computational resources. In these cases, a computational structure is necessary to
allow shifting resources from those tasks with excess to those that have need.

This is done by threads. Threads represent separate computing entities that can run asynchronously
with respect to each other. They are activated by the interrupt mechanism of the computer. Resource
shifting can be accomplished by putting selected groups of tasks into threads that are activated to receive
more computational resources than would otherwise be the case.

In computing terminology, threads are distinguished as lightweight and heavyweight threads.
Lightweight threads are executed asynchronously but share the same address space, whereas heavy-
weight threads do not share address spaces (also called “processes” in operating system terminology). In
this chapter, the term thread will always refer to a lightweight thread.

Real-time environments are characterized by the types of thread structures implemented. By separating
the system engineering from the computational structure, exactly the same application source code can
be used in a variety of thread structures for the most effective implementation.

16.7 Design Formalism

Design formalisms are used in engineering to organize the design process, allow for effective
communication, and to specify the documentation needed for modifying or analyzing the object designed.
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Software design has traditionally been a notable exception to this rule! Because real-time software adds the
element of asynchronous operation, appropriate design formalism is even more important in designing
control system software than conventional engineering software.

A major purpose for formalizing design is to establish a mechanism for modularizing the software.
Modular software clearly connects sections of software with specific machine operations, keeps those
sections short and readable, and clearly identifies interactions between software elements.

Given the state/scan model for control software, many tasks will have only a single action repeated on
a fixed schedule. For those tasks, no further internal structure is needed. The task itself will have only one
small or modest-sized code module, and the task’s description will relate very closely to that code.

16.7.1 Formality/Complexity

The degree of formality required is related to the complexity of the problem. Overly formalistic procedures
can result in a rigid design environment absorbing too much overhead; too little formalism can create a
chaotic environment and can fail to meet delivery and/or reliability commitments.

The stand-alone control system software described in this chapter falls into the range of low to moderate
complexity. Some formalism is needed, but how it is applied is left to the designer’s discretion. In
particular, the state-transition notation described below will be used in a manual construction mode
to achieve maximum portability and flexibility. Because no specialized design software is required, the
method can be used to design software for any target computer in any host environment. On the other
hand, if more complex designs are attempted, a more organized approach is needed to control the design
process.

The structure for control system software based on tasks and states has already been established. No
further formal structure will be applied to tasks, but state transition logic will be used to characterize the
relationships of states.

16.7.2 State-Transition Logic

A task can be in only one state at a time, characterized by the integer value of its state variable. State-
transition logic describes how states change within a task. It is most commonly shown in diagrammatic
form, with circles for states and arrows for transitions between the states. These diagrams are widely used
for sequential logic design, from which they can be directly converted to logic equations, and also to
design software, for operating systems design [3–6]. A distinction in the usage described here, as well as
in the more formal real-time usage referred to below, is that the software derived from the diagrams and
the portable real-time implementation are tightly connected.

To make computer graphics easier, the transition logic diagram in Figure 16.1, for pulse-width mod-
ulation (PWM) generation, is drawn with rectangles for states and ovals for the transition conditions.
In addition, the transition conditions are connected by dashed lines to the transition they describe. This
avoids ambiguity if the transition description is close to more than one transition line. If none of the
indicated transition conditions is true, no change of state takes place. Each state is identified by a name,
and information about what the state does, if that is necessary.

Software-generated PWM can be used whenever the required frequency is not too high, for example,
for running a heater. This logic diagram shows the task states needed to implement PWM, including the
special cases of duty cycles of 0 or 1. This diagram translates directly into highly modular code, is specific
enough so that it specifies in detail how the system should operate, and yet can be read by any engineer
familiar with the application. Thus, it is a primary document and a template for generating code in a
relatively mechanical way.

PWM would normally be a low level task, forming the interface between a feedback control algorithm
and an actuator. It would need to run often and would have a tight tolerance on its actual run times,
because errors in the run times will change the output power delivered by the actuator (and appear as
noise to the control system).
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Compute on/off
times

Time up &&
off-time == 0

Time up && off-time > 0

Output off

Time up

On-time == 0

On-time > 0

Output on

FIGURE 16.1 State transition logic for pulse-width modulation.

A higher level supervisory task, shown in Figure 16.2, would be used to generate the set point for a
servo (mechanical position) controller or other types of controllers. The task would run less frequently
and have more tolerant requirements for its actual run times.

The profile is based on a trapezoidal velocity, a constant acceleration section followed by a constant
velocity section and, finally, a constant deceleration. The associated velocity and position are shown in
Figure 16.3. In this case, the “path” is the motion of the motor under control; in the case of an XY motion,
for example, the path velocity could be along a line in XY space with the X and Y motions derived from
the path velocity and position.
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FIGURE 16.2 Motion profile generator.
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FIGURE 16.3 Trapezoidal velocity profile.

16.7.3 Transition Logic Implementation

Implementation of the transition logic in code is up to the user, as is the maintenance of the transition
logic diagrams and other design documentation. The execution shell will tend to the storage of state
information and the scanning of the task code, but the user is responsible for all other aspects. This
recommended design procedure is thus a semi formal method, and the user is responsible for keeping the
design documentation up-to-date. However, by avoiding specialized design tools, the method is much
more widely applicable.

Transition logic code can be implemented directly with the switch statement of C++ (and C or Java).
Each case in the switch represents a state. The code associated with the state can be placed in-line if it
is short, or as a separate function if it is longer. Within the code for the state, a decision is made as to
which state should be executed next. The code is usually set up so that the default is to stay in the same
state.

An example of implementing the PWM task is shown in Figure 16.4. In this implementation, it is
assumed that the task is invoked at timed intervals, and that the task can control when it will next be
invoked. Only the relevant transition logic code is shown here; variable definitions, and so on are not
shown.

Each scan of this code executes only one state, and so the scan will be extremely short. When
set_next_time() is executed, the intention is that no more scans will take place until that time
is reached. All code used is nonblocking as specified above. Any operations requiring waiting for some
event to take place are coded at the transition logic level, rather than at the C++ code level. These logic
elements tend to be the critical parts of control programs, so that placing them in the higher level of
specification makes it easier to understand and critique a program.

This is not the only possible implementation. For example, the task could be written for an environment
where the task is scanned continuously (see continuous tasks below). In that case, the transition conditions
would include a test of time as well as velocity or position, and there would be no set_next_time()
call. For the control system software implementation recommended here, a form roughly equivalent to
the above code would be used.
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...
switch(state)

{
case 1: // Compute on/off times

on_time = duty_cycle * period;
off_time = period - on_time;

if(on_time > 0)next_state = 2; // Turn output on
else next_state = 3; // Turn output off directly
break; // Completes the scan for this state

case 2: // Output on
digital_out(bit_no,1); // Turn on the relevant bit
set_next_time(current_time + on_time);
if(off_time > 0)next_state = 3; // to output off
else next_state = 1; // Duty cycle is 1.0; no off time
break;

case 3: // Output off
digital_out(bit_no,0); // Turn off the relevant bit
set_next_time(current_time + off_time);
next_state = 1; // Back to compute times
break;

} // End of switch
...

FIGURE 16.4 Implementation of the PWM task.

16.7.4 Further State Structure

While the software structure shown in Figure 16.4 is adequate for many feedback control problems, a
further level of formalization is used in the instructional software mentioned above (Section 16.4.4). In
these cases, the state structure is further defined by specification of entry, action, transition test, and exit
functions. This provides for further modularization of the code.

The entry function (or code section) is executed only when a state is activated, that is, on a transition
from another state. It modularizes whatever initialization is needed for that state. The action function is
executed on every scan and thus performs the ongoing activities of the state. The transition test functions
check to see whether a state transition is called for and to what state, while the exit function associated
with each transition test function is executed only if the transition is taken.

16.8 Scheduling

The computational technology needed to insure that all of the tasks meet their timing specifications
is generally referred to as scheduling. The subsections below present various scheduling technolo-
gies in order of increasing complexity, and thus increasing cost and difficulty in development and
utilization.

Because of the scan mode/nonblocking software paradigm, scheduling takes on a somewhat different
flavor than it does in more general discussions. In particular, choosing a specific scheduling method is
strictly a matter of performance. Any scheduling method could meet performance specifications if a fast
enough computer were available. While this is a general statement of the portability principles given
above, it is also an important design element, because commitments to specific hardware and/or software
execution environments can be delayed until sufficient software testing has been done to provide accurate
performance data.
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There are two general criteria for performance specification:

1. General rate of progress
2. Execution within the assigned time slot

All tasks have a specification for (1). The job cannot be accomplished unless all tasks get enough
computing resources to keep up with the demand for results. There is a large variation among tasks in the
second performance specification. As noted above, some tasks have a very strict tolerance defining the
execution time slot; others have none at all. The failure to meet time slot requirements is usually referred
to as latency error, that is, the delay between the event that triggers a task and when the task is actually
executed. The event is most often time, but can also be an external or internal signal.

16.8.1 Cooperative Scheduling

This is by far the simplest of all of the scheduling methods, because it requires no special-purpose hardware
or software. It will run on any platform that supports a C++ (or other appropriate language) compiler
and has a means of determining time (and even the time determination requirement can be relaxed in
some cases). Cooperative scheduling utilizes a single computing thread encompassing the scheduler and
all of the tasks. For the scheduler to gain access to the CPU, the tasks have to relinquish their control
of the CPU voluntarily at timely intervals, thus the name “cooperative.” In conventional programming,
the most difficult aspect of using cooperative scheduling is building the “relinquishment points” into the
code. For control system code built with the scan/nonblocking rules, however, this is not an issue because
control is given up after every scan.

The performance problems with cooperative scheduling are not general progress but latency. The
cooperative scheduler is extremely efficient because it has no hardware-related overhead. If some tasks
exceed general progress requirements and others are too slow, the relative allocation of computing
resources can be adjusted by changing the number of scans each task gets. However, if the overall general
progress requirements cannot be met, then either a faster processor must be found, the job must be
redesigned for multiple processors, or the job requirements must be redefined.

The most efficient form of cooperative scheduler gives each task in turn some number of scans in
round-robin fashion. The latency for any given task is thus the worst-case time it takes for a complete
round-robin. This can easily be unacceptable for some low-level tasks. A minimum-latency cooperative
scheduler can be designed. At the expense of efficiency, it checks high-priority tasks between every scan.
In this case, the maximum latency is reduced to the worst-case execution time for a single scan.

Cooperative scheduling is also a mechanism that allows for portability of the control code to a simu-
lation environment. Because it will run on any platform with the appropriate compiler, all that needs to
be done is replace the time-keeping mechanism with a computed (simulated) time and add a hook to the
simulation of the control object.

When cooperative scheduling is used, all tasks occupy a single computing thread.

16.8.2 Interrupt Scheduling

When general progress requirements can be met, but latency specifications cannot, then some form of
scheduling beyond cooperative must be used. All of these start with interrupts. In effect, the interrupt
mechanism is a hardware-based scheduler. In its simplest usage, it can reduce the latency of the highest-
priority task from the worst-case single scan time in cooperative, minimum latency scheduling down to a
few microseconds or less. It does this by operating in parallel with the CPU to monitor external electrical
signals. When a specified signal changes, the interrupt controller signals the CPU to stop its current
activity and change context to an associated interrupt task. Changing context requires saving internal
CPU information and setting up to execute the interrupt task. When the interrupt task is done, the CPU
resumes its former activity. Each interrupt occurrence activates a new computing thread.
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Used by itself, the interrupt system can reduce the latency for a group of tasks that have very tight
latency tolerances. The design rule for interrupt-based tasks is that they also have short execution times.
This is important if there are several interrupt tasks, so that interference among them is minimal. An
interrupt task will often prevent any other interrupt tasks from running until it is done. In other cases,
an interrupt task will prevent interrupt tasks at equal or lower priority from running until it is done. Any
priority system in this environment must be implemented as part of the interrupt hardware. The PWM
task illustrated above would often be implemented as an interrupt task.

Many computer systems have fewer actual interrupt inputs than needed, but latency can still be reduced
by “sharing” the existing interrupts. To do that, there must be software to determine which task to activate
when the interrupt occurs. This scheme cannot match the low latencies achieved when each task is attached
to its own interrupt, but there still can be a large improvement over cooperative scheduling.

16.8.3 Preemptive Scheduling

When tasks have latencies comfortably met by cooperative scheduling but too long (in execution time)
for interrupt tasks, a preemptive scheduler must be used. The preemptive scheduler is itself activated
by interrupts. It checks a set of tasks for priority, then runs the highest priority task that has requested
computing resource. It then resets the interrupt system so that further interrupts can occur. If, at the
time of a later interrupt, a task of priority higher than the currently running task becomes ready to run,
it will preempt the existing task, which will be suspended until the higher priority task completes. In the
same manner, if an interrupt-based task is activated, it will take precedence over a task scheduled by the
preemptive scheduler.

The preemptive scheduler is thus a software version of the interrupt controller. Because of the time
needed for the scheduler itself to run, the latencies for the tasks it schedules are longer than for interrupt
tasks. The priority structure, in this case, is software based.

In order for preemptive scheduling to work, interrupt-activated code must be allowed to be reentrant
or to overlap in time. Each interrupt activates a new computing thread. If several interrupts overlap, there
will be several computing threads active simultaneously.

The simplest form of preemptive scheduler, adequate for control problems, requires that, once a task
is activated, it will run to completion before any other tasks at the same or lower-priority level run.
Other than suspension due to preemptive activity, the task cannot “suspend itself” until it completes (by
executing a return statement).

16.8.4 Time Slice Scheduling

If several tasks with only weak latency requirements have scan execution times that vary greatly from one
state to another, it may not be possible to balance the resource allocation by giving different numbers
of scans to each. In the worst circumstances, it might be necessary to use some blocking code, or one
task might be technically nonblocking (i.e., predictable), but have such a long execution time per scan
that it might as well be blocking. A time slicing scheduler can balance the computing resource in these
cases by allocating a given amount of computing time to each task in turn, rather than allocating scans
as a cooperative scheduler does. This can be quite effective, but the time slicing scheduler itself is quite
complex and thus better avoided, if possible. Time slice schedulers are usually part of more general
scheduling systems that also include the ability of tasks to suspend themselves, for example, to wait for a
resource to become available.

16.9 Task Type Preferences

Tasks that follow the state model (scan/nonblock) need no further differentiation, in theory, to solve all
control software problems. Designing and building a code on this basis would, however, be bad practice.
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If a scheduling mode other than cooperative was required, changes to the code would be necessary for
implementation, thereby destroying the important portability. For this reason, task types are defined for
using the code in any scheduling environment needed to meet the performance specifications. Designation
of a task type is an indication of preference. The actual implementation might use a simpler scheduling
method if it can meet performance demands.

Tasks are broken down into two major categories, intermittent and continuous, and into several
subcategories within the intermittent tasks.

16.9.1 Intermittent

Tasks that run in response to a specific event, complete their activity, and are then dormant until the next
such events are categorized as intermittent. Most control system tasks fit into this category. Following the
types of schedulers available, they are subcategorized as unitary or preemptable.

Unitary tasks can be scheduled as direct interrupt tasks. To simplify scheduling and make execution as
fast as possible, each time a unitary task is run it gets only a single scan. Control is then returned to the
interrupt system. This design is based on the assumption that most tasks of this type will be single-state
tasks and will thus only need one scan. The PWM task shown above is an exception to this rule. The
“compute on/off times” state is transient. Before returning from the interrupt, either the “output on”
or “output off” state must be executed. Therefore, it sometimes uses a single scan when it is invoked,
and sometimes uses two scans. To accommodate this, the repetition through the scans must be handled
internally, a structural compromise, but one that improves the overall efficiency of these very high-priority
tasks.

No specific task priorities are associated with unitary tasks. Because any priority structure must exist in
the interrupt controller, from the software perspective they are all considered to be of the same priority,
the highest priority of any tasks in the project.

Preemptable tasks generally use more computing time than unitary tasks and are often more complex.
For that reason, they are given as many scans as needed to complete their activity. When they are finished,
they must signal the scanner that they are ready to become dormant. Software-based preemption is the
characteristic of this class of tasks, so that each task must be assigned a priority.

The external control of scans is very important for preemptable tasks, and somewhat in contrast to
the policy for unitary tasks. It is the scans that allow for effective cooperative scheduling. The external
capture of state-transition information is necessary for an automatically produced audit trail of operation.
The audit trail is a record of transitions that have taken place. It is particularly useful in verifying proper
operation or in determining what each task has been doing just prior to a system malfunction. The
exception for internal transitions in unitary tasks is based on assuming that many of them will not do any
state transitions, and, when they do, they will be few and the total execution time will still be very short.
State transitions in unitary tasks that occur across invocations are still tracked externally and are available
for audit purposes.

16.9.2 Continuous

Continuous tasks have no clean beginning or ending points. They will absorb all the computing resource
they can get. The scan/nonblock structure is absolutely essential for continuous tasks; otherwise they
would never relinquish the central processing unit (CPU)!

Continuous tasks represent the most primitive form of task. Given the state transition structure,
continuous tasks are all that is needed to implement the “universal” solution referred to above. If all
of the timing and event detection is done internally using transition logic, the same functionality can
be produced as can be realized from unitary and preemptable tasks. However, that information will be
entered in an ad hoc manner and so cannot be used to implement any scheduler other than cooperative.
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16.9.3 Task Type Assignment

Control tasks are dominated by unitary and preemptable tasks. The choice between the two is based
on the nature of the task and defines the type of scheduling used with the task to meet performance
issues. Over the life of the software, it is likely that it will actually be executed in several different
environments.

Unitary tasks are used for activities that are very short and of high priority. Most low-level interactions
with instruments and actuators fall into this category. Separate tasks are used when the data requires some
processing as in PWM, pulse timing, step-rate generation for a stepping motor and so on, or when the
data are needed by several tasks and conflicts could arise from multiple access to the relevant I/O device.
Use of analog-to-digital converters could fall into that category. Very little computation should be done
in the unitary task, enough to insure the integrity of the data, but no more. Further processing is left to
lower-priority tasks.

Preemptable tasks are used for longer computations. This would include the control algorithms, super-
visory tasks to coordinate several feedback loops, batch process sequencers, adaptation or identifica-
tion algorithms, and so on. Some tasks, such as a PID controller, could still be single state, but the
amount of computation needed makes them better grouped with preemptable tasks rather than unitary
tasks.

Continuous tasks are usually used for functions, such as the operator interface, data logging, commu-
nication with a host computer, generation of process statistics, and other such activities. They form the
lowest-priority group of activities and only receive CPU resource when preemptable and interrupt tasks
are not active.

16.10 Intertask Communication

Tasks cooperate by exchanging information. Because the tasks can execute asynchronously (in separate
threads) in some scheduling domains, the data exchange must be done to assure correct and timely
information. The methods discussed here are valid for single computer systems; other methods for data
exchange must be used for multicomputer systems.

16.10.1 Data Integrity

The primary danger in data exchange is that a mixture of old and new data will be used in calculations. For
example, if a task is transferring a value to a variable in an ordinary C or C++ expression, an interrupt
may occur during this transfer. If the interrupt occurs when the transfer is partially complete, the quantity
represented will have a value consisting of some of the bits from its earlier value and some from the later
value. For most C data types, that quantity will not necessarily lie anywhere between those two values
(earlier, later) and might not even be a valid number.

At a higher level, if a task is carrying out a multiline calculation, an interrupt could occur somewhere in
the middle. As a result of the interrupt, if a value that is used both above and below the point of interrupt
is changed, the early part of the calculation will be carried out with the old value and the later part with
the new value. In some cases, this could be benign, because no invalid data are used, but in other cases it
could lead to erroneous results.

The most insidious factor associated with these errors is that, whether or not the error will occur is
statistical—sometimes it happens, sometimes not. Because interrupts arise from sources whose timing is
not synchronized with the CPU, the relative timing will never repeat. The “window” for such an error
occurrence could be as small as a microsecond. Debugging in the conventional sense then becomes
impossible. The usual strategy of repeating the program over and over again, each time watching how
the error occurs and extracting different data, does not work here because the error occurrence has a
probability of only one chance in several hundred thousand per second. However, while it is almost



�

�

�

�

� �

Real-Time Software for Implementation of Feedback Control 16-15

impossible to catch such an error in lab testing, or even know that it exists, on a system installed for
long-term operation the probability that the error will occur sooner or later approaches 100%! Careful
program design is the only antidote.

16.10.2 Mutual Exclusion

In single processor systems, the general method of guarding data is to identify critical data transactions
and to protect them from interruption by globally disabling the computer’s interrupt system. In effect,
this temporarily elevates the priority of the task, in which this action is taken, to the highest priority
possible, because nothing can interrupt it. This is a drastic action, so that the time spent in this state must
be minimized. Other less drastic ways can be used to protect data integrity, but they are more complex to
program requiring substantially more overhead.

Assuring data integrity in information interchange has two components:

1. Defining sets of variables in each task used solely for data exchange (exchange variables).
2. Establishing regions of mutual exclusion in each task for protected exchange activities.

The exchange variables can only be accessed under mutual exclusion conditions, which must be
kept as short as possible. The best way to keep them short is to allow nothing but simple assignment
statements in mutual exclusion zones. Under this method, the exchange variables themselves are never
used in computations. This controls both low-level problems (mid-data-value interrupts) and high-level
problems (ambiguous values), because the exchange values are changed only when data are being made
available to other tasks.

16.10.3 Exchange Mechanisms

There are two direct mechanisms for implementing data exchange in C/C++. One is the use of global
variables for the exchange variables; the other is to use local variables for the exchange variables and
implement data exchange through function calls. Global variables (statics if task functions are in the
same file, externs otherwise) are more efficient, but functions encapsulate data better and are more eas-
ily generalizable (e.g., to multiprocessor systems). Unless computing efficiency is the critical design
limitation, the function method is recommended. An example using the function call method fol-
lows.

16.10.3.1 Function Exchange Method

Assume that Task1 and Task2 are in the same file. Each of the tasks is defined as a C++ class in Figure 16.5.
The “exchange variables” are designated by the prefix exch_. They are defined within the class used

for each task, and thus have scope only within that class.
A similar definition exists for Task2.
Within the Task1 function, the exchange now can be defined as in Figure 16.6.
The functions_disable() and_enable(), which act directly on the interrupt system, are compiler

dependent. These definitions are from Microsoft Visual C++.

16.11 Prototyping Platform

The software developed to implement this design methodology is used primarily in an instructional
environment. The environment used is similar to what might be used for early-stage prototyping in
an industrial environment. PC-class computers running a standard operating system are the basis for
program development, simulation, and, in many cases, are also used to run real-time control of physical
systems. In other cases, similar computing hardware running real-time operating systems are used for the
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...
static
class task1_class

{
private:
float exch_a,exch_b; // Exchange variables
... // Other stuff
public:
float get_a(void)

{
float a; // Local variable to hold copied data

_disable();
a = exch_a;
_enable();
return a;
}

float get_b(void)
...

... // Other stuff
}task1;

FIGURE 16.5 Task1 class.

real-time control applications. The move to a real-time operating system was often essential as the time-
reproducibility of standard operating systems can be quite bad by control standards—tens of milliseconds
in many cases. This is not a criticism of these operating systems as they are not designed or advertised
for real-time operation. However, the recent change to multicore processors has changed that equation.
In the examples showing control of actual physical objects (Section 16.13), performance using dual core
computers built in 2007 running Windows XP ProfessionalTM achieved time reproducibility (or from the
negative perspective, time jitter) of a few hundred microseconds.

Although space limitations preclude a detailed discussion here of implementation software, the use
of one of these packages is shown in some detail. Five implementation packages have been produced:
two in C++ (TranRun4 and GrpCpp), two in Java (TranRunJ and TranRunJLite) and one in C (Tran-
RunC). As noted earlier, these software packages were written for instructional rather than commercial
use. However, they are available in full source form for interested readers (contact David Auslander,
dma@me.berkeley.edu). These packages are written in standard forms of their respective languages and
so it should be relatively easy to port them to other environments.

A detailed study of an example control program is given below as a model of software usage and control
program construction. Task structures and relevant details are given for several other sample problems.

...
// Get information from Task2
a = task2.get_a(); // The disable/enable is inside the ’get’ function
b = task2.get_b();
... // Do some computation
// Copy results to exchange variables
_disable();
exch_a = a;
exch_b = b;
_enable();
...

FIGURE 16.6 Task2 class.
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16.11.1 Control Hardware

For the PC environment, laboratory I/O boards are used for communicating with physical systems. In
general, these boards provide analog-to-digital conversion, digital-to-analog conversion, digital input,
and digital output. A variety of such boards have been used over the years.

16.11.2 Compilers

C++ and C programs tend not to be as portable as one would like them to be! As a result, which compiler
to use often becomes an issue. The C++ packages used here have been compiled with the Microsoft
and Borland compilers and the C package has been compiled with the National Instruments and GCC
compilers. Java programs tend to be more portable; the Java packages were primarily compiled with the
Sun compiler, but the IBM Java compiler was also used.

16.11.3 Time-Keeping

The time resolution depends entirely on the nature of the physical objects under control and the operation
of the actuation and sensor elements. The time resolution of most standard operating systems, 1–10 ms,
is adequate for slow systems, such as many thermal systems, but is too crude for most motion or other
small-motor applications. Real-time operating systems may give better resolutions, but not always. In the
WindowsTM environment, the Windows Performance Timer is a convenient way to get relative timing
with much better resolution—1 μs or better. Note that the time resolution is not necessarily related to the
time reproducibility. The time reproducibility is a measure of how accurate the timing will be in real-time
operation, which is a critical measure of control software performance. It can be much worse than the
time resolution! Other computing environments will have other ways to get timing information, but, in
general, they will depend on the presence of time-keeping hardware.

For systems with very loose timing accuracy requirements, the most portable mode for timing is to run
the system as if it were a simulation, but calibrate the “tick time” so that computed time in the program
matches actual time. This is completely portable, because no special facilities are required. It will actually
solve a surprisingly large number of practical problems. Recalibration is needed whenever the program
or the processor is changed, but the recalibration process is very easy.

16.11.4 Operator Interface

The operator interface is an extremely important part of any control system but far beyond the scope of this
chapter to discuss adequately. The primary problem in prototype development is that nothing in C or C++
syntax is helpful in developing a suitable, portable operator interface package. Like every other part of the
program, the operator interface must be nonblocking, but all of the basic console interaction in C or C++
is blocking (scanf, cin, etc.). Java does include graphical user interface (GUI) construction as part of its
language definition, and so it is easier to construct a native operator interface when programming in Java.

A simple, character-based interface is provided for use with one of the C++ packages (TranRun4). It
is suitable for prototype use and is relatively easy to port. The motor and robot examples (Section 16.13)
use LabVIEWTM for operator interfaces.

16.12 Program Structure: The Anatomy of a Control Program

A relatively simple control problem will illustrate the construction of a control program. It is a single-
loop position control of an inertial object with a PID controller. To simplify the job, it is assumed that
the position is measured directly (from an analog signal or from a wide-enough decoder not requiring
frequent scanning) and that the actuation signal is a voltage. Thus, no special measurement or actuation
tasks are needed.
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Four tasks are required:

1. Feedback (PID) control, sample-time
2. Supervisor, which gives set points to the feedback task, sample time
3. Operator interface, continuous
4. Data logger, continuous

The supervisory task generates a set point profile for the move. The state-transition logic diagram
is shown in Figure 16.2. The profile is trapezoidal, with constant acceleration, constant velocity, and
constant deceleration sections.

Tasks are defined as C++ classes. The tasks communicate among themselves by making calls to public
functions for data exchange, as discussed above. However, any task could call a function in any other task,
so the order in which the parts of the class are defined is important. In implementing a small control job,
it is convenient to put all of the tasks into a single file. For larger jobs, however, each task should have its
own file, as should the “main” section.

To meet these needs, the following program structure is recommended:

1. Define all of the classes for all of the tasks in a header file.
2. Put global references to each task (pointers) in the same header file.
3. The functions associated with each task can go in separate files or can be collected in fewer files.
4. The system setup information and the UserMain() function can go in the same or a separate file.
5. Use the new operator to instantiate all of the tasks in the same file as UserMain().
6. Make sure the header file is included in all files.

The function UserMain() plays the role of a program main function. The actual main function definition
will be in different places, depending on the environment to which the program is linked.

Because this is a relatively small job, only two files are used: mass1.hpp for the header and mass1.cpp
for everything else.

16.12.1 Task Class Definition

Classes for the tasks are all derived from an internal class called CTask. This task contains all the informa-
tion needed to schedule and run tasks as well as a virtual function called Run. This function must have a
counterpart in the derived class for the task, where it becomes the function that is executed each time the
task is scanned. Other class-based functions are normally defined for data exchange and other additional
computation.

The supervisory task is a good starting point. Its class definition is as in Figure 16.7.

16.12.2 Instantiating Tasks
Tasks represent instantiations of the task classes. In most cases, each class has only one associated task.
However, as noted below, several tasks can be defined from the same class. All task references are made
by pointers to the tasks. These are declared as global (extern) in the header file,

#ifdef CX_SIM_PROC
extern CMassSim *mass_sim;

#endif
extern Mass1Control *Mass1;
extern CDataLogger *DataLogger;
extern CSupervisor *Supervisor;
extern COpInt *OpInt;

The pointers are defined in the file (or section of the file) containing UserMain(),

#ifdef CX_SIM_PROC
CMassSim *mass_sim;

#endif
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class CSupervisor : public CTask
{
private:

float position_set;
float vprof,xprof; // Profile velocity and position
float xinit,xtarget,dir;
float dt;
int newtarget;
real_time t4,thold; // Used to time the hold period
float accel,vcruise; // Accel (and decel), cruise velocity
float exch_t,exch_v,exch_x,exch_target; // Exchange variables

public:
CSupervisor(real_time dtt,int priority); // Constructor
void Run(void); // The ‘run’ method -- virtual from CTask
void SetTarget(float xtrgt);
};

FIGURE 16.7 Supervisory task class.

Mass1Control *Mass1;
CDataLogger *DataLogger;
CSupervisor *Supervisor;
COpInt *OpInt;

Then, within UserMain(), the actual tasks are instantiated with the memory allocation operator, new,

#ifdef CX_SIM_PROC
mass_sim = new CMassSim;

#endif
Mass1 = new Mass1Control;
DataLogger = new CDataLogger;
Supervisor = new CSupervisor(0.02,5);
// Send sample time and priority
OpInt = new COpInt(0.2);
// Set the print interval.

Each of these variables has now been allocated memory, so that tasks can call functions in any of
the other task classes. The simulation, mass_sim, is treated differently from the other tasks and will be
discussed after the control tasks. The simulation material is only compiled with the program when it is
compiled for simulation, as noted by the #ifdef sections.

16.12.3 Task Functions
The functions in the public section of CSupervisor are typical of the way tasks are defined. The constructor
function for the Supervisor task (CSupervisor is the name of the class; Supervisor is the name of the task)
sets initial values for variables and passes basic configuration information on to the parent CTask by a
call to its constructor. This is the constructor for Supervisor:

CSupervisor::CSupervisor(real_time dtt,
int priority) // Constructor
: CTask("Supervisor", SAMPLE_TIME,
priority,dtt)
{

dt = dtt;
xinit = 0.0;
xtarget = 1.2;
dir = 1.0;
accel = 0.5;
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vcruise = 0.6;
thold = 0.1;
// Hold for 100 ms after the
// end of the profile
t4 = 0.0;
vprof = 0.0;
xprof = xinit;
newtarget = 0;
State = 0;
};

The Run function is where all the work is done. In CSupervisor it is based on a transition logic structure
moving through the various stages of the profile, accelerate, cruise, decelerate, and hold. It will then wait
for a new target position command, or time-out and stop the program if the command does not come.
The virtualized Run function is called from the parent CTask every time the task is activated (in this case,
every sample time). See Figure 16.8.

The Idle() at the end of the function is extremely important. It is the signal to the scheduler that this
task needs no attention until the next time increment elapses. If this is left out of a sample-time or event
task, the scheduler will continue to give it attention, at the expense of any lower-priority tasks and all of
the continuous tasks. Leaving out the Idle() statement or putting it in the wrong position is a common
bug.

References to other tasks are made by calling public functions in those tasks. Both Mass1 and DataLogger
are referenced here. When functions from other tasks are called, they run at the priority level of the calling
task, rather than the priority level of the task where they are defined.

The SetTarget function allows other tasks to change the target value, thus defining a new move. This
would most likely be done from the operator interface task. Because the state structure is set up so that the
check for a new target is made only in state 4, a move will be completed before the next move is started.
This also means that, if two new moves are sent while a previous move is still in progress, only the last
will be recognized.

void CSupervisor::SetTarget(float trgt)
{
DisableInterrupts();
exch_target = trgt;
newtarget = 1;
EnableInterrupts();
}

16.12.4 A Generic Controller Class

Where several tasks of similar function will be used, the inheritance property of C++ can be used to
great advantage. PID controllers are so common that a class for PID controllers has been defined that
can act as a parent class for any number of actual PID controllers. The class definition for this is in
Figure 16.9.

The arguments to the constructor function have the data needed to customize a task to the scheduler. All
the variables are protected rather than private so that they can be referred to readily from the derived class.
The major properties, distinguishing one actual derived PID control task from another, are where it gets
its process data from and where it sends its actuation information. These are specified in the GetProcVal
and SetActVal functions, listed here as virtual, and must be supplied in the derived class because the
versions here are just dummies.

The Run function in the PIDControl class is not virtual so that the control calculation can be completely
defined in the parent class (it is, of course, virtual in the higher level parent class, Ctask). Its only connection
to the derived class is in getting the process value and sending out the actuation value (Figure 16.10).
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void CSupervisor::Run(void)
{
float d_end,d_decel;
real_time tt; // Curent time

tt = GetTimeNow();
switch(State)

{
case 0: // Initial call
Mass1->SetSetpoint(xprof); // Send a new setpoint to the
controller
Mass1->SetStart(); // Send a start message to the controller
if(xtarget > xinit)dir = 1.0; // Determine direction of
the move
else dir = -1.0;
State = 1;
break;

case 1: // Start profile -- Accelerate
vprof += dir * accel * dt;// Integrate the velocity and
position
if(fabs(vprof) >= vcruise)

{
// This is the end of the acceleration section
vprof = dir * vcruise;
State = 2; // Go on to next state
}

// Check whether
// cruise should be skipped because decel should be started
d_end = fabs(xprof - xtarget); // Absolute distance to end
d_decel = vprof * vprof / (2.0 * accel); // Distance to
decelerate

// to stop at current velocity
if(d_decel >= d_end)

{
// Yes, go straight to decel
vprof -= dir * accel * dt; // Start decel
State = 3;
}

xprof += vprof * dt;
break;

case 2: // Cruise -- constant velocity
xprof += vprof * dt;
d_end = fabs(xprof - xtarget); // Absolute distance to end
d_decel = vprof * vprof / (2.0 * accel); // Distance to
decelerate

// to stop at current velocity
if(d_decel >= d_end)
{

// Yes, go to decel
vprof -= dir * accel * dt; // Start decel
State = 3;
}
break;
case 3: // Deceleration

FIGURE 16.8 Run function.
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d_end = fabs(xprof - xtarget); // Absolute distance
to end
vprof = dir * sqrt(2.0 * d_end * accel);// Velocity that
will get

// to stop in desired distance
xprof += vprof *dt;
if(fabs(xprof - xinit) >= fabs(xtarget - xinit))
{

// This is the end of the profile
xprof = xtarget;
vprof = 0.0; // Stop

t4 = GetTimeNow(); // Start a timer for the hold state
State = 4; // Go to HOLD state
}

break;

case 4: // Hold final position until either a command for a
// new target is sent, or time runs out

// Check for new target
DisableInterrupts();
if(newtarget)
{

xinit = xtarget; // Start new profile where this
one ended
xtarget = exch_target; // New target position
newtarget = 0;
vprof = 0.0;
xprof = xinit;
State = 0; // Start the profile again
break;
}
if((GetTimeNow() - t4) >= thold) // Check for timeout
{
// End the program
TheMaster->Stop();
}
break;
}

DisableInterrupts(); // Copy data to exchange variables
exch_t = tt;
exch_v = vprof;
exch_x = xprof;
EnableInterrupts();
Mass1->SetSet point(exch_x); // Send a new set point to
the controller
DataLogger->LogProfileVal(exch_t,exch_v,exch_x);
Idle();
};

FIGURE 16.8 Continued.

The use of the waiting state (state 0) prevents the controller from becoming active before appropriate
initialization and setup work has been done by other tasks. No call to Idle is in the portion of state 0 that
is doing the transition to state 1. This is done to prevent a delay between the start signal and the actual
beginning of control.
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class PIDControl : public CTask
{
protected:// This is just the generic part of a control task

// so all variables are made accessible to the derived class
float integ;
float set,val; // Set point and output (position) value
float prev_set,prev_val;
float kp,ki,kd,min,max; // Controller gains, limits
real_time dt;
float mc; // Controller output
int start_flag; // Used for transition from initial state

// Exchange variables, set in this class
float exch_val,exch_mc;
// Exchange variables obtained from other tasks
float exch_set,exch_kp,exch_ki,exch_kd,exch_min,exch_max;
int exch_newgains;// Use this as a flag to indicate that new gains

// have been set
int exch_start_flag;

public:
PIDControl(char *name,int priority,float dtt); // Constructor
void Run (void); // Run method
float PIDCalc(void); // Do the PID calculation
void SetGains(float kpv,float kiv,float kdv,float minv,float maxv);
void SetStart(void); // Set the start flag to 1

virtual void SetActVal(float val){}// Set the actuation value --
// The real version of this must be supplied in the derived class
void SetSetpoint(float sp);
void GetData(float *pval,float *pmc,float *pset);

virtual float GetProcVal(void){return 0.0;}
//Get the process value --
// The real version of this must be supplied in the derived class

};

FIGURE 16.9 PID controller class.

Defining a class for an actual PID control is very simple, and has very little in it. Here is the definition
for the position control task used in this sample problem:

class Mass1Control : public PIDControl
{
public:

Mass1Control(); // Constructor
void SetActVal(float val);
// Set the actuation value
float GetProcVal(void);
// Get the process value --

};

It has no private data at all, and only defines a constructor and the two virtual functions for getting
process data and setting the actuation value. Its constructor is

Mass1Control::Mass1Control() :
PIDControl("Mass1",10,0.02)
// Call base class constructor also
{
kp = 1.5;
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void PIDControl::Run (void) // Task function
{
// This task has two states - a ‘‘waiting’’ state when it
// first turns on and
// a ‘‘runnning’’ state when other tasks have properly
initialized
// everything
// The variable ’State’ is inherited as a ’protected’
// variable from the parent class, CTask.

switch(State)
{
case 0: // Waiting for ’start’ signal
DisableInterrupts(); // copy relevant exchange

// variables for this state
start_flag = exch_start_flag;
EnableInterrupts();
if(start_flag)
{
State = 1;
return; // Set new state and return.

// Next scan will go to ’run’ state
}
else
{
// Stay in ’wait’ state
Idle(); // Indicate that the task can inactivate

// until next sample time
return;
}

case 1: // Run the control algorithm

{
DisableInterrupts(); // copy relevant exchange variables
if(exch_newgains) // Using this flag minimizes interrupt

// disabled time
{
kp = exch_kp;
ki = exch_ki;
kd = exch_kd;
min = exch_min;
max = exch_max;
exch_newgains = 0; //Turn off the flag
}
set = exch_set;
EnableInterrupts();
val = GetProcVal(); // Get the process output
mc = PIDCalc(); // Do the PID calculation
SetActVal(mc); // Send out the actuation value
DisableInterrupts();
// Set output exchange values
exch_val = val;
exch_set = set;
exch_mc = mc;
EnableInterrupts();
Idle(); // Wait for next sample interval
}
}
}

FIGURE 16.10 Run function for the PID control class.
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// Initial controller gains
ki = 0.0;
kd = 2.0;
set = 0.0;
// Initial set point
min = -1.0;
max = 1.0;
}

It first calls the constructor for the parent class to set the task name, priority, and sample time, and
then sets the controller gains, limits and initial set point. These variables are protected in the parent class,
and so are freely accessible from this derived class.

The GetProcVal and SetActVal functions are where much of the hardware-dependent code goes, at
least as relates to the control system hardware. The versions shown here use define statements for the
simulation code so that other sections can be easily added as the environment changes.

void Mass1Control::SetActVal(float val)
// Set the actuation value

{
#ifdef CX_SIM_PROC
// The following code is for
// simulation
mass_sim->SetSimForce(val);
// No mutual exclusion is needed for
// simulation
#endif
}

float Mass1Control::GetProcVal(void)
{
float x,v;

#ifdef CX_SIM_PROC
// The following code is for
// simulation
mass_sim->GetSimVal(&x,&v);
return(x);
// Position is the controlled
// variable
#endif
}

Other such generic definitions can be used to great advantage when multiple elements with similar
function are in a control system. For example, the CSupervisor class could easily be generalized in a similar
manner to allow for several simultaneous profile generating tasks.

Because the remaining tasks are constructed in a similar manner and do not introduce any new
elements, they will not be discussed in detail here.

16.12.5 The Simulation Function

Simulation is extremely important to control system development, but because it appears as “overhead,”
it is often neglected. In addition to whatever simulation has been done on the algorithm side, it is very
important that the actual control system software be tested in simulation. The environment of simulation
is so much more friendly than the actual control environment that there is a large time saving for every
bug or misplaced assumption found while simulating.

The simulation part of the software is treated as a separate category. In principle, it is handled similarly
to the tasks, but is kept separate so that the task structure is not distorted by the simulation.
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There are two ways to handle simulation. The method here is to define an internal simulation class,
CSim, from which a class is derived to define the particular simulation. The simulation itself is then
written in C++, with the simulation function called whenever time is updated. An alternative method
is to provide an interface to a commercial simulation system, most of which have the ability to call C or
C++ functions. To do this, the internal computing paradigm must be changed. The simulation system
is in charge, so that the call to the simulation must also trigger the operation of the control system. This
latter method is not implemented in the current software.

The simulation class defined for the sample position control problem is
#ifdef CX_SIM_PROC
class CMassSim : public CSim

{
private:

float dt;
float x,v; // position and velocity
float m; // mass
float f; // force
FILE *file;
public:
CMassSim();
void RunSimStep(real_time t,real_time dt);
// The simulation function
void GetSimVal(float *px,float *pv);
void SetSimForce(float ff);

};
#endif // End of simulation section

Similarly to the tasks, the RunSimStep function is declared virtual in the base class and must be defined
in the derived class. This is the function called when time is updated. For the position control problem, it
contains a very simple simulation of an inertial object, based on the parameter values set in the constructor:

CMassSim::CMassSim() : CSim()
// Call base class constructor also

{

x = v = 0.0;
m = 0.08; // Mass value
f = 0.0; // Initial value of force
file = fopen("mass_sim.dat","w");
}

void CMassSim::RunSimStep(real_time t,
real_time dtt)

{
// Calculate one step
// (Modified Euler method)

dt = dtt;
// Set internal value for step size
v += f * dt / m;
x += v * dt;
fprintf(file,"%lg %g %g %g\n",t,v,x,f);
}

The simulation output is also created directly from this function. Because the simulation is not present
in other conditions, it is more appropriate to put this output here than to send it to the data logging
task. The other functions in the class exchange data. Because the simulation is not used in a real-time
environment, it is not necessary to maintain mutual exclusion on the simulation side of these exchanges.
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FIGURE 16.11 Profile position change, inertial system.

16.12.6 Results

The graphs in Figure 16.11 show the results for the data sets given in the listings above. These results are
for a simulation. The top graph shows the position of the mass (solid line) and the set point generated by
the nearly overlaid profile (dashed line). The bottom graph shows the force applied to the mass to achieve
these results.

These results were plotted from the output of the data logging task and the output generated directly
by the simulation.

In addition to these, there is also a transition audit trail that is generated. The transition audit trail
keeps track of the most recent transitions, which, in this case, includes all of the transitions that take place.
The file is produced when the control is terminated:

CTL_EXEC State Transition Logic Trace File

Time Task From To

0 OpInt 0 1
0.01 Supervisor 0 1
0.03 Mass1 0 1
0.2 OpInt 1 0
0.21 OpInt 0 1
0.41 OpInt 1 0
0.42 OpInt 0 1
0.62 OpInt 1 0
0.63 OpInt 0 1
0.83 OpInt 1 0
0.84 OpInt 0 1
1.04 OpInt 1 0
1.05 OpInt 0 1
1.23 Supervisor 1 2
1.25 OpInt 1 0
1.26 OpInt 0 1
1.46 OpInt 1 0
1.47 OpInt 0 1
1.68 OpInt 1 0
1.69 OpInt 0 1
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1.9 OpInt 1 0
1.91 OpInt 0 1
2.01 Supervisor 2 3
2.11 OpInt 1 0
2.12 OpInt 0 1
2.32 OpInt 1 0
2.33 OpInt 0 1
2.53 OpInt 1 0
2.54 OpInt 0 1
2.74 OpInt 1 0
2.75 OpInt 0 1
2.96 OpInt 1 0
2.97 OpInt 0 1
3.15 Supervisor 3 4
3.18 OpInt 1 0
3.19 OpInt 0 1

This shows the Supervisor task turning on and then moving through states 1, 2, 3, and 4. Task Mass1,
the control task, starts in its “waiting” state, 0, and goes to the “running” state, 1, in response to the
command from the Supervisor. It also shows the transitions in the operator interface task going back and
forth between a state that prints the ongoing results (state 0) and a state that waits (0.2 s in this case) for
the next time to print its progress report. Because standard C/C++ input/output functions are used for
this implementation, a progress check is about all that can be done in the operator interface because the
input functions (scanf or cin) are blocking.

The audit trail is a fundamental debugging tool. It can be used to find out where a program went astray,
whether critical timing constraints are being met, and so on.

16.13 Some Real Examples

Two motor-based examples are used to illustrate the low-level operation of control software using the
task-state structure to do profiled position control. The two systems are a bare motor (i.e., no load attached
to the motor’s shaft), Figure 16.12, and one axis of an articulated robot, Figure 16.13.

These examples are controlled by a PC system running Windows connected to a National Instruments
7833R lab IO system. The field-programmable gate array (FPGA) on the 7833R is used to decode the

FIGURE 16.12 Bare motor.
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FIGURE 16.13 Robot.

quadrature and also to generate the PWM signals to drive the H-bridge amplifiers. It is programmed in
LabVIEW. The software uses the methodology described above, but is written in C rather than in C++.

The program is structured so that the real-time portion can be run either in Windows or in LabVIEW-
Real-Time, an operating system that runs on PC hardware. Although performance is better on the

–14

–12

–10

–8

–6

–4

–2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Po
sit

io
n 

(r
ev

)

Time (s)

Position
Setpoint

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A
ct

ua
tio

n

Time (s)

Actuation

–0.05

–0.04

–0.03

–0.02

–0.01

0

0.01

 0.02

0.03

0.04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Er
ro

r (
re

v)

Time (s)

Error

–15

–10

–5

0

5

10

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Ve
lo

ci
ty

 (r
ev

/s
)

Time (s)

Velocity

FIGURE 16.14 Bare motor point-to-point moves: Tuned for minimum error.
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FIGURE 16.15 Bare motor point-to-point moves: Tuned for smoother actuation.

real-time operating system, time jitter of only a few hundred microseconds when running in Windows
on a dual-core PC system is low enough for excellent control performance. The data shown below were
taken from systems running Windows.

16.13.1 Bare Motor

Position control of this motor is dominated by stick-friction (“stiction”) as it stops or when it is moving
at very low velocity. As the velocity approaches zero, the motion will suddenly stop. The stopping point
is not predictable so, in point-to-point motion, the final error will be different each time the system is
run. As shown below, the bounds for this error are affected by how the controller is tuned and what
performance trade-offs are selected.

In this example, a pair of point-to-point moves is made using a trapezoidal profile (see Figure 16.3). The
advantage to a profiled move is that control is maintained throughout the move, even for relatively large
moves such as these. In contrast, if a step change is made to the set point for a large move, the actuation
will saturate and the system will run open loop until it gets close enough to the target for the controller
output values to unsaturate. Such a move is also nonlinear, necessitating, for example, integrator windup
protection if the integrator term is non zero. No such problems exist when the move is profiled, because
the controller never saturates and stays within small-signal operating bounds.
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FIGURE 16.16 Robot point-to-point move.

Figure 16.14 shows the performance using an aggressive controller tuning to achieve minimum error.
Two profiled moves are shown, one from the initial position to −13 revolutions and a second move back
to the initial location.

The residual error at the end of the move is approximately 0.01 rev (about 4 degrees). This is only
approximate, because with stiction in the system the error will be different each time. A better-specified
range can be established by doing enough experiments to give a statistically significant data set. The
sticking behavior can be observed at the end of the second profile by looking at the error plot. The
movement initially stops at about t = 3.7 s with an error of a bit more that −0.01 rev. It stays there for a
while, then jumps to 0.002 rev. Unless the controller is turned off at this point, there can be small jumps
of this sort at any time. Just turning off the integral term after the end of the profile will reduce these
jumps greatly, although jumps triggered by small disturbances would still be possible.

This tuning produces low error but at the expense of rather rough actuation (see the Actuation plot on
Figure 16.14). If the particular application can tolerate larger errors, but would suffer because of the rough
actuation (e.g., because it would cause vibration in the system structure) the controller can be retuned for
smoother performance. Figure 16.15 shows the performance with such a tuning. The actuation is indeed
much smoother, but the error at the end of the profile is much larger (about 0.2 rev compared to 0.01 rev).
This is ultimately corrected by the integral action, however, to leave much smaller residual error. This
tuning uses only the proportional and integral terms; the tighter tuning uses the derivative term as well.
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The smoother tuning shows the stiction action very graphically. Looking at the Position graph in
Figure 16.15, the motor does not move at all at the beginning of each of the profiles until the actuation
builds up to a high-enough value to unstick it. The same phenomenon happens with the tighter tuning,
but, because of the high controller gains, it is too fast to be visible on the graphs.

16.13.2 Robot

The robot of Figure 16.13 uses motors connected through gearboxes to drive the articulated links. The
software is set up to control all of the robot’s motions, but for this example only the upper arm is actually
moved (the link with the label “Intelitek” in the figure).

The major challenge in controlling this axis is the large gravity load. The gearing for this axis is a fairly
high ratio, but not so high that the gravity load cannot drive the axis away from its setpoint when the
power is turned off (i.e., the axis is back drivable). Figure 16.16 shows the behavior of this system using a
controller with proportional, integral, and derivative control terms.

The motion is a single-profiled move of 20 deg (moving up to approximately the position shown in
Figure 16.13). The control is very effective, the integral action canceling the gravity effects, with an error
of 0.1 degree at the end of the move settling quickly to no measurable error (note that the scale on these
graphs is in degrees; it is revolutions on the graphs for the bare motor).
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17.1 Introduction

Programmable logical controllers (PLCs) have been in use since the 1960s and are still the basis for the
low-level control in many automation systems. Today PLCs can handle not only the lowest levels of
control but also advanced control of hybrid systems, where time-driven continuous controllers have to be
integrated with event-driven controllers. The state concept is of fundamental importance to understand
sequencing control.

Binary combinatorial and sequencing control is the basis of this chapter. Switching theory, which
provides the foundation for binary control, is used not only in automation technology but is also of
fundamental importance in many other fields. This theory provides the very principle on which the
function of digital computers is based. In general, binary combinatorial and sequencing control is simpler
than conventional feedback (analog and digital) control, because both the measurement values and

17-1
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the control signals are binary. However, also binary control has its specific properties that have to be
considered in more detail.

Logical circuits have traditionally been implemented with different techniques; until the mid-1970s
when most circuits were built with electromechanical relays and pneumatic components. During the
1970s PLCs became more and more commonplace, and today sequencing control is almost exclusively
implemented in software. Despite the change in technology, the symbols for the description of switching
operations, known as ladder diagrams (LDs) that derive from earlier relay technology, are still used to
describe and document sequencing control operations implemented in software. Another important type
of description language that can be used not only for programming but also as documentation tool
is sequential function charts (SFCs). Programming of a modern PLC can be realized in five different
programming languages, text oriented or graphical. An international standard IEC 61131-3 forms the
basis for advanced automation system programming.

In Section 17.2, the finite-state concept is introduced as the fundamental importance for discrete event
systems. In Section 17.3, hardware is described for binary sensors and actuators. Section 17.4 gives an
elementary description of Boolean algebra. LDs are still used to describe logical circuits and are described
in Section 17.5. The structure of PLCs is outlined in Section 17.6, and their programming is described in
Section 17.7. Their role in large automation systems is shown in Section 17.8, where communication is
emphasized.

17.2 The Finite-State Concept

The concept of a finite state is fundamental for the understanding of discrete event systems. Such a system
can be described as always being in one well-defined state. For example, a machine can be operating or
idle, which means that it is always in one of these two states. A buffer storage can be in many states, equal
to the number of places (N) plus one. The complexity of a discrete state system is not the sum of all the
states, but is closer to the product of all the states, if all the variants have to be described.

Some condition has to be satisfied in order to make a transfer between two states. Such a condition can,
for example, be an external event, an operator command, or a timer signal. When a machine operation is
finished, its state will change from operating to idle. In our models we assume that such a state transition
takes place immediately. Likewise, a timer can indicate a state transfer, for example, the start of a pump.
Consequently, the pump condition will (immediately) change from idle to operating.

In a discrete event control system there are two basic elements, states and transitions. While the system
is in one state there will be some action (operation) taking place. We will illustrate this by a simple
example.

A tank is to be filled with a liquid. When the tank is full its content must be heated up to a predefined
temperature and the liquid has to be well mixed. After a specified time, the tank is emptied, and the
process starts all over again. First we will consider the states. It is important to note that the states describe
the transportation or progress of the product. This means that actuators (motors and valves) and sensors
are not part of the state definition:

• A sensor signal empty signals that the tank is empty and can be filled again. This is defined as the
initial state of the operation.

• A signal start will initiate the filling of the tank. The start signal then indicates the transition from
the initial state to the filling state. In this state there are two actions being performed. First the
bottom valve of the tank is closed. Then a filling pump is started.

• The next transition signal is a sensor signal, indicating that the tank is full. This transition will bring
the tank into the state heating. Now there are another two actions being started. First the filling
pump is turned off, and then a heater is switched on.
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• The tank will remain in the heating state and the heater will stay on until the temperature has
reached the predefined setpoint. When the preset temperature has been reached, another transition
takes place. At this point the state will be transferred to the state wait.

• In the wait state the heater is first switched off and a timer is initiated. The timer will run a predefined
waiting time “time out” to make sure that the temperature in the liquid has become homogeneous.
A mixer may also be running in this state.

• The timer initiates the next state transition to the emptying state. The action open the discharge
valve is initiated and will stay on until the tank is empty. Once the tank is empty a sensor signal will
indicate empty, and there is a state transition to return to the initial state.

We have now defined the four states filling, heating, waiting, and emptying as well as the initial state.
We have also defined the control signals that initiate the transitions from one state to another. The signals
empty, start, full, temp, and wait_time are usually global variables. We have also seen that there are certain
activities at each step. In the initial step, usually nothing happens, since the step is a “resting state.” In
the filling state, the discharge valve is closed and the pump turned on. Similarly, there are other activities
related to the other steps. This structure of dividing the sequence in states, control signals or transitions,
and actions is important for all sequencing control.

We summarize the typical features:

• The system is only in one state at a time;
• The state transition is initiated by some sensors, timers, or operator signals and it takes place

immediately;
• While the system is in one state, some action will take place. There may be more than one action at

the same time. The actions have to stop at the next state transition.

In order to implement the various states and the state transitions, the software has to guarantee that
the three conditions above are satisfied at all times.

17.3 Binary Sensors and Actuators

In sequential control, measurements are of the on/off type and depend on binary sensors. In a typical
process or manufacturing industry, there are literally thousands of on/off conditions that have to be
recorded. Binary sensors are used to detect the position of contacts, count discrete components in material
flows, detect alarm limits of levels and pressures, and find end positions of manipulators.

17.3.1 Limit Switches

Limit switches have been used for decades to indicate positions. They consist of mechanically actuated
electrical contacts. A contact opens or closes when some variable (position, level) has reached a certain
value. There are hundreds of types of limit switches. Limit switches represent a crucial part of many
control systems, and the system reliability depends, to a great extent, on them. Many process failures are
due to limit switches. They are located “where the action is” and are often subject to excessive mechanical
forces or too large currents.

A normally opened (n.o.) and a normally closed (n.c.) switch contact are shown in their normal and
actuated positions in Figure 17.1. A switch can have two outputs, called change-over and transfer contacts.
In a circuit diagram it is common practice to draw each switch contact the way it appears with the system
at rest.

The simplest type of sensor consists of a single-pole, single-throw (SPST) mechanical switch. Closing a
mechanical switch causes a problem because it “bounces” for a few milliseconds. When it is important to
detect only the first closure, such as in a limit switch or in a “panic button” the subsequent opening and
closing bounces need not be monitored. When the opening of the switch must be detected after a closing,
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Normal
position

(non-actuated)

N. O.
(SPST)

N. C.
(SPST)

Change-over
(SPDT)

Actuated
position

FIGURE 17.1 Limit switch symbols for different contact configurations.

the switch must not be interrogated until after the switch “settling time” has expired. A programmed
delay is one means of overcoming the effects of switch bounce.

A transfer contact (sometimes called single-pole, double-throw, SPDT) can be classified as either “break-
before-make” (BBM) or “make-before-break” (MBB) (Figure 17.2). In a BBM contact, both contacts are
open for a short moment during switching. In an MBB contact, there is a current in both contacts briefly
during a switch.

Contact debouncing in an SPDT switch can be produced in the hardware. When the grounded moving
contact touches either input, the input is pulled low and the circuit is designed to latch the logic state
corresponding to the first contact closure and to ignore the subsequent bounces.

17.3.2 Point Sensors

There are many kinds of measurement sensors that switch whenever a variable (level, pressure, tem-
perature, or flow) reaches a certain point. Therefore, they are called point sensors. They are used as
devices that actuate an alarm signal or shut down the process whenever some dangerous situation occurs.
Consequently, they have to be robust and reliable.

17.3.3 Digital Sensors

Digital measuring devices (digital sensors) generate discrete output signals, such as pulse trains or encoded
data that can be directly read by the processor. The sensor part of a digital measuring device is usually quite
similar to that of their analog counterparts. There are digital sensors with microprocessors to perform
numerical manipulations and conditioning locally, and to provide output signals in either digital or analog
form. When the output of a digital sensor is a pulse signal, a counter is used to count the pulses or to
count clock cycles over one pulse duration. The count is first represented as a digital word according to
some code and then read by the computer.

Actuation

n.o.

(a) (b) 

n.c.

n.c.

n.o.

Actuation

FIGURE 17.2 (a) BBM contact. (b) MBB contact.
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17.3.4 Binary Actuators

In many situations, sufficient control of a system can be achieved if the actuator has only two states:
one with electrical energy applied (on) and the other with no energy applied (off ). In such a system, no
digital-to-analog converter is required and amplification can be performed by a simple switching device
rather than by a linear amplifier.

Many types of actuators, such as magnetic valves controlling pneumatic or hydraulic cylinders, elec-
tromagnetic relays controlling electrical motors, and lamps, can receive digital signals from a controller.
There are two main groups of binary actuators, monostable and bistable units. A monostable actuator has
only one stable position and gives only one signal. A contactor for an electric motor is monostable. As
long as a signal is sent to the contactor, the motor rotates, but, as soon as the signal is broken, the motor
will stop.

A bistable unit remains in its given position until another signal arrives. In that sense the actuator is
said to have a memory. For example, in order to move a cylinder, controlled by a bistable magnet valve,
one signal is needed for the positive movement and another one for the negative movement.

17.3.5 Switches

The output lines from a computer output port can supply only small amounts of power. Typically, a
high-level output signal has a voltage between 2 and 5 V and a low-level output of less than 1 V. The
current capacity depends on the connection of the load but is generally less than 20 mA, so that the output
can switch power of less than 100 mW.

For higher power handling capability, it is more important to avoid a direct electrical connection
between a computer output port and the switch. The switch may generate electrical noise which would
affect the operation of the computer if there were a common electrical circuit between the computer and
the switch. Also, if the switch fails, high voltage from the switch could affect the computer output port
and damage the computer.

The most common electrically isolated switch in control applications has been the electromechanical
relay. Low-power reed relays are available for many computer bus systems and can be used for isolated
switching of signals. Relays for larger power ratings cannot be mounted on the computer board. A relay is
a robust switch that can block both direct and alternating currents. Relays are available for a wide range of
power, from reed relays used to switch millivolt signals to contactors for hundreds of kilowatts. Moreover,
their function is well understood by maintenance personnel. Some of the disadvantages are that relays are
relatively slow, switching in the order of milliseconds instead of microseconds. They suffer from contact
bouncing problems that can generate electric noise, and, in turn, may influence the computer.

The switching of high power is easily done in solid-state switches which avoid many deficiencies of
relays. A solid-state switch has a control input which is coupled optically or inductively to a solid-state
power switching device. The control inputs to solid-state switches, designed to be driven directly from
digital logic circuits, are quite easily adaptable to computer control.

17.4 Elementary Switching Theory

In this section, we describe elementary switching theory that is relevant for process control applications.

17.4.1 Notations

An electric switch or relay contact and a valve intended for logic circuits are both binary, designed to
operate in the on/off mode. A transistor can also be used as a binary element operating only in on/off
mode, either conducting or not conducting current.



�

�

�

�

� �

17-6 Control System Fundamentals

The state of a binary element is indicated by a binary variable that can consequently only take two values,
conventionally indicated as “0” or “1.” For a switch contact, relay contact, or a transistor (represented by
a Boolean variable x), the statement x = 0 means that the element is open (does not conduct current) and
x = 1 means closed (conducts). For a push button or a limit switch, x = 0 means that the switch is not
being actuated, and x = 1 indicates actuation.

Often a binary variable is represented as a voltage level. In positive logic, the higher level corresponds to
logical 1 and the lower level to logical 0. In transistor–transistor logic (TTL), logical 0 is typically defined
by levels between 0 and 0.8 V and logical 1 by any voltage higher than 2 V. Similarly, in pneumatic systems,
x = 0 may mean that the line is exhausted to atmospheric pressure while x = 1 means a pressurized line.

Standardized symbols are used to represent logic (combinatorial and/or sequencing) circuits indepen-
dently of the practical implementation (with electric or pneumatic components). This type of represen-
tation is called a function block. There are international standards for the logic symbols, IEC 113-7 and
IEC 617; many other national standards are also defined on their basis.

17.4.2 Basic Logical Gates

Combinatorial circuits consist of several logical connections, in which the output y depends only on the
current combination of input signals u = (u1, u2, . . .) or

y(t) = f [u(t)].
Gates have no memory, so the network is a static system. Therefore, there are no states defined. Here
follows a brief recapitulation of Boolean algebra. The simplest logical operation is the negation (NOT),
with one input and one output. If the input u = 0, then the output y = 1, and vice versa. We denote
negation of x by x̄. The behavior of a switching circuit can be represented by truth tables, where the
output value is given for all possible combinations of inputs. The symbol and the truth table for NOT is
shown in Figure 17.3.

Two n.o. switch contacts connected in series constitute an AND gate defined by Boolean multiplica-
tion as

y = u1 · u2.

y = 1 only if both u1 and u2 are equal to 1, otherwise y = 0 (Figure 17.4). The multiplication sign is
often omitted, just as in ordinary algebra. An AND gate can have more than two inputs, because any
number of switches can be connected in series. Adding a third switch results in y = u1 · u2 · u3. We use
the International Standards Organization (ISO) symbol for the gate.

A common operation is a logical AND between two bytes in a process called masking. The first byte
is the input register reference while the other byte is defined by the user to mask out bits of interest. The

y1 u
u

0 
1 

1 
0 

y

FIGURE 17.3 The ISO symbol and its truth table for NOT.

u2u1

1 y
u1 & 

u2
y

u2u1

0 0 
0 1 
1 0 
1 

0
0
0
11 

y

FIGURE 17.4 An AND gate, its ISO symbol, and its truth table.



�

�

�

�

� �

Programmable Controllers 17-7

Input register
mask

1 1 0 1 1 0 0 0  
0 1 1 0 1 1 0 1  

Output 0 1 0 0 1 0 0 0

FIGURE 17.5 Masking two bytes with an AND operation.

u1

u2

u1 ≥1

u2

yy

u2u1

0 0
0 1
1 0
1

0
1
1
11

y

FIGURE 17.6 An OR gate, its ISO symbol, and its truth table.

AND operation is made bit by bit of the two bytes (Figure 17.5). In other words, only where the mask byte
contains “ones” is the original bit of the reference byte copied to the output.

If two switches u1 and u2 are connected in parallel, the operation is a Boolean addition and the
function is of the OR type. Here, y = 1 if either u1 or u2 is actuated; otherwise y = 0. The logic is denoted
(Figure 17.6) by

y = u1 + u2.

As for the AND gate, more switches can be added (in parallel), giving y = u1 + u2 + u3 . . .. The “≥1”
designation inside the OR symbol means that gate output is “high” if the number of “high” input signals
is equal to or greater than 1.

A logical OR between two bytes also makes a bit-by-bit logical operation (Figure 17.7). The OR
operation can be used to set one or several bits unconditionally to 1.

There are some important theorems for one binary variable x, such as

x + x = x,
x · x = x,
x + x̄ = 1,
x · x̄ = 0.

Similarly, for two variables we can formulate and easily verify

x + y = y + x,

x · y = y · x,

x + xy = x,

Input register
mask

1 1 0 1 1 0 0 0  
0 1 1 0 1 1 0 1  

Output 1 1 1 1 1 1 0 1

FIGURE 17.7 Masking two bytes with an OR operation.
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x · (x + y) = x,

(x + ȳ) · y = x · y,

x · ȳ + y = x + y,

xy + ȳ = x + ȳ.

The De Morgan theorems are useful in manipulating Boolean expressions:

(
x + y + z + · · ·)= x̄ · ȳ · z̄ · · ·(
x · y · z · · · ·)= x̄ + ȳ + z̄ · · ·

The theorems can help in simplifying complex binary expressions, thus saving components for the
actual implementation.

17.4.3 Additional Gates

Two n.c. gates in series may define a NOR gate, that is, the system conducts if neither the first nor the
second switch is actuated. According to De Morgan’s theorem, this can be expressed as

y = u1 · u2 = (u1 + u2),

showing that the NOR gate can be constructed from the combination of a NOT and an OR gate
(Figure 17.8). The circle at an input or output line of the symbol represents Boolean inversion.

A NOR gate is easily implemented electronically or pneumatically. Moreover, any Boolean function
can be obtained only from a NOR gate, which makes it a universal gate. For example, a NOT gate is a
NOR gate with a single input. An OR gate can be obtained by connecting a NOR gate and a NOT gate in
series. An AND gate, obtained by using two NOT gates and one NOR gate (Figure 17.9), is written as

y = u1 + u2 = u1 · u2 = u1 · u2.

A NAND gate is defined by
y = u1 · u2 = u1 + u2.

The system does not conduct if both u1 and u2 are actuated, that is, it conducts if either switch is not
actuated. Like the NOR gate, the NAND gate is a universal gate (Figure 17.10).

The NAND and NOR operations are called complete operations, because all others can be derived from
either of them. No other gate or operation has the same property.

A circuit with two switches, each having double contacts (one n.o. and the other n.c.), is shown in
Figure 17.11. This is an exclusive OR (XOR) circuit, and the output is defined by

y = u1 · u2 + u1 · u2.

The circuit conducts only if either u1 = 1 or u2 = 1, but y = 0 if both u1 and u2 have the same sign
(compare with the OR gate). For example, such a switch can be used to control the room light from

u2u1
y1 

u1 ≥1 

u2

y

u2u1

0 0 
0 1 
1 0 
1 

1
0
0
01 

y

FIGURE 17.8 A NOR gate, its ISO symbol, and its truth table.
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y = u1 + u2 = u1• u2 = u1• u2

u1
≥1 0 

y

u2
≥1 0 

u1
≥1 

u2

FIGURE 17.9 Three NOR gates acting as an AND gate (this is not the minimal realization of an AND gate).

u1 & 

u2

y

u2u1

0 0
0 1
1 0
1 

1
1
1
01

y
u1

u2

1 y

FIGURE 17.10 A NAND gate, its ISO symbol, and its truth table.

two different switch locations u1 and u2. In digital computers, XOR circuits are extremely important for
binary addition.

An exclusive OR (XOR) between two bytes will copy the 1 in the input register only where the mask
contains 0. Where the mask contains 1, the bits of the first operand are inverted. In other words, in the
positions where the operands are equal, the result is 0 and, conversely, where the operands are not equal,
the result is 1 (Figure 17.12). This is often used to determine if and how a value of an input port has been
changed between two readings.

u1

u2

u2

u1

u1

=1 

u2

y
u2u1

0 0 
0 1 
1 0 
1 

0
1
1
01 

y
y1

y = u1 • u2 + u1 • u2

FIGURE 17.11 An exclusive-OR gate, its ISO symbol, and its truth table.

Input register
mask

1 1 0 1 1 0 0 0  
0 1 1 0 1 1 0 1  

Output 1 0 1 1 0 1 0 1

FIGURE 17.12 Masking two bytes with an XOR operation.
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Example 17.1: Simple Combinatorial Network

A simple example of a combinatorial circuit expressed in ISO symbols is shown in Figure 17.13. The
logical expressions are

y3 = u1 · u12,

y4 = u2 · y2,

y2 = y4 + u1.

The ISO organization that deals specifically with questions concerning electrotechnical and electronic
standards is the International Electrotechnical Commission (IEC). Standards other than IEC are often
used to symbolize switching elements. The IEC symbols are not universally accepted and in the United
States there are at least three different sets of symbols. In Europe, the DIN (the German standardization
organization) standard is common. Three common standards are shown in Figure 17.14.

In principle, all switching networks can be tested by truth tables. Unfortunately, the number of Boolean
functions grows rapidly with the number of variables n, because the number of combinations becomes
2n. It is outside the scope of this text to discuss different simplifications of Boolean functions. A method
known as the Karnaugh map may be used if the number of variables is small. For systems with many
variables (more than about 10), there are numerical methods to handle the switching network. The method
by Quine–McCluskey may be the best known, and is described in standard textbooks on switching theory
(e.g., [4,5]).

17.4.4 Flip-Flops

Hitherto we have described combinatorial networks, that is, the gate output Y depends only on the present
combination of input signals. In other words, the gates have no memory, so the network is a static system.
In a sequencing network instead it is possible to store signal values and states and to use them later in
the course of another operation. The memory function can be realized with flip-flop elements or bistable
switches. The flip-flop has two stable output states (hence the term “bistable”) that depend not only on
the present state of the inputs but also on the previous state of the flip-flop output.

The basic type of flip-flop is the Set-Reset (SR) flip-flop. The two inputs S and R can be either 1 or 0.
Both are, however, not permitted to be 1 or 0 at the same time. The output is called y and normally y
also is an output. If S = 1, then y = 1 (y = 0) and the flip-flop becomes set. If S returns to 0, then the gate
remembers that S had been 1 and keeps y = 1. If R becomes 1 (assuming that S = 0), the flip-flop is reset,
and y = 0 (y = 1). Again R can return to 0, and y remains 0 until a new S signal appears. Let us call the
states at consecutive moments yn and yn+1. Then the operation can be written as

yn+1 = R · (S + yn).

An SR flip-flop can be illustrated by two logical elements (Figure 17.15).

y3

y4 u2
y2

& u1

u1

u12

& ≥1 

FIGURE 17.13 Simple combinatorial circuit.
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FIGURE 17.14 Commonly used logical gate symbols.
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FIGURE 17.15 Three different illustrations of a flip-flop gate and its DIN/IEC symbol.
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yn yn+1 yn+1Dn yn Tn
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y
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FIGURE 17.16 A delay (D) flip-flop and a trigger (T) flip-flop.

By adding two AND gates and a clock-pulse (CP) input to the flip-flop, we obtain a delay (D) flip-flop
or a latch. The delay flip-flop has two inputs, a data (D) and a CP (Figure 17.16). Whenever a CP appears,
the output y accepts the D input value that existed before the appearance of the CP. In other words, the
D input is delayed by one CP. The new state yn+1 is always independent of the old state.

By introducing a feedback from the output to the flip-flop input and a time delay in the circuit, we
obtain a trigger or a toggle (T) flip-flop. The T flip-flop (Figure 17.16) is often used in counting and timing
circuits as a “frequency divider” or a “scale-of-two” gate. It has only one input, T . Whenever an upgoing
pulse appears in T , the output y flips to the other state.

All three types of flip-flops can be realized in a JK (Master–Slave) flip-flop, with J being the set signal and
K the reset signal. It frequently comes with a CP input. Depending on the input signals, the JK flip-flop
can be an SR flip-flop, a latch, or a trigger.

17.4.5 Realization of Switching

Electronic logic gates, for example, of AND and OR types can be implemented in a straightforward way
with diodes. The cascade connection of several diode gates in series brings, however, about problems,
among others, because the signals are strongly attenuated at each step (diodes are passive elements), so
that this solution is not particularly attractive. A common way to implement gate circuits to avoid this
problem is by using transistor logic, since the output signals at each step are amplified back to the full
logical level.

Today gates realized on integrated circuits (ICs), also known as “chips” are mostly used. There are
several types of ICs for the realization of logical operations; each type is characterized by particular power
consumption and speed. Conventional, simple TTL circuits have been used for long time but are now
being replaced by other product families.

The low-power Schottky TTL (LS-TTL) elements contain so-called Schottky diodes, which in com-
parison with conventional diodes are faster and in addition use considerably less power than the older
TTL types. Largely used are also the complementary metal-oxide semiconductor (CMOS) ICs that are
based on field-effect transistors (FETs) rather than on bipolar transistors. The power consumption of a
CMOS circuit is about three orders of magnitude less than for a corresponding TTL element. In addition,
the CMOS circuits are less sensitive to electrical noise and variations in the supply voltage. On the other
hand, CMOS circuits are more sensitive for static electricity and are also slower than corresponding TTL
circuits. A solution will be probably represented by a new generation of CMOS circuits, the high-speed
CMOS (HC) Logic.

Complex circuits can also be manufactured as medium-scale (MSI) or large-scale (LSI) ICs; this type
of production is, however, economically justifiable only for large quantities (i.e., a minimum of some
thousands of components). An alternative is the use of so-called programmable logic devices (PLDs) that
allow the inexpensive production of semicustomized ICs. PLDs mostly belong to the LS-TTL family. They
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contain a large array of gates that are interconnected by microscopic fuses. By using special programming
equipment, these fuses can be selectively blown, so that the result is an IC with the desired logical
properties.

There are several types of ICs in the PLD family: the programmable array logic (PAL), the field-
programmable logic arrays (FPLA), and the programmable read-only memory (PROM). A PAL circuit
is built with a programmable AND-gate array, where the AND gates are connected to an OR gate.
An FPLA circuit has a similar structure, with the difference that both the AND and the OR gates are
programmable. Special PAL and FPLA chips with other gates such as NOR, XOR, and D-flip-flops are
available, so that a complete sequencing control system can be realized by the user with one or few chips
(Figure 17.17).

The programming of PLDs is made easier by using software packages that are also available for personal
computers. These programs convert the description of a control sequence in the form of Boolean relations
into the data for the programming unit. Also, the testing of the programmed chips is usually carried out
by this software.

The function of a PLD circuit can be freely defined by the user. The basic structure of the PLD consists
of an AND and of an OR matrix, programming takes place by “burning” fast connections in the AND
and in the OR matrices.

In a PAL circuit, the AND matrix is programmable, while the connections between the AND and the
OR gates are fixed. In a PROM, the AND-matrix is fixed and the OR matrix is programmable. In this
case, for example, each combination of the input bits (the “address”) leads to the activation of a single
AND gate, and the programmable state of the cell in the OR matrix reflects the stored logical value. In an
FPLA, the AND as well as the OR matrix can be freely programmed.

u1

1 1 1 1 

u2 u3 u4

Input buffer with inversion 

OR matrix 

AND matrix 

& 

& 

& 

& 

& 

& 

& 

& 

≥1 

y1 y2 y3 y4

≥1 ≥1 ≥1 

FIGURE 17.17 A functional circuit for PAL, FPLA, and PROM circuits.
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17.5 Ladder Diagrams

The implementation of Boolean expressions can be programmed in LDs, which now make up a part of the
international standard IEC 61131-3. An LD consists of graphic symbols, representing logic expressions
and contacts and coils, representing outputs.

Many switches are produced from solid-state gates, but electromechanical relays are still used in many
applications. Statistics show that the share of electromechanical relays versus the total number of gates
in use is decreasing. This does not mean that their importance is dwindling; relays remain, in fact, a
necessary interface between the control electronics and the powered devices.

Relay circuits are usually drawn in the form of LDs. Even if the relays are replaced by solid-state switches
or programmable logic, they are still quite popular for describing combinatorial circuits or sequencing
networks. They are also a basis for writing programs for programmable controllers.

17.5.1 Basic Description

An LD reflects a conventional wiring diagram (Figure 17.18). A wiring diagram shows the physical
arrangement of the various components (switches, relays, motors, etc.) and their interconnections, and
is used by electricians to do the actual wiring of a control panel. The LDs are more schematic and show
each branch of the control circuit on a separate horizontal row (the rungs of the ladder). They emphasize
the function of each branch and the resulting sequence of operations. The base of the diagram shows two
vertical lines, one connected to a voltage source and the other to ground.

Relay contacts are either n.o. or n.c., where normally refers to the state in which the coil is not energized.
Relays can implement elementary circuits such as AND and OR as well as SR flip-flops. The relay symbols
are shown in Figure 17.19.

Voltage Ground

FIGURE 17.18 Framework of an LD.

Norm DIN 19239 US symbols 

FIGURE 17.19 Relay symbols for n.o. and n.c. contacts, and the relay coil.
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n.o. contact

u1 Y3

Y4

Y2

Coil outputs

u12

u2

u1

y4

y2

n.c. contact

FIGURE 17.20 The combinatorial circuit in Figure 17.13 represented by an LD.

Example 17.2: Combinatorial Circuit

The combinatorial circuit of Figure 17.13 can be represented by an LD (Figure 17.20). All of the
conditions have to be satisfied simultaneously. The series connection is a logical AND and the
parallel connection a logical OR. The lower-case characters (u, y) denote the switches and the capital
symbols (Y ; the ring symbol) denote the coil.

The relay contacts usually have negligible resistance, whether they are limit switches, pressure, or
temperature switches. The output element (the ring) could be any resistive load (relay coil) or a lamp,
motor, or any other electrical device that can be actuated. Each rung of the LD must contain at least one
output element, otherwise a short circuit would occur.

Example 17.3: A Flip-Flop as an LD

A flip-flop (Figure 17.15) can also be described by an LD (Figure 17.21). When a set signal is given, the
S relay conducts a current that reaches the relay coil Y . Note that the R is not touched. Energizing the
relay coil closes the relay contact y in line 2. The set push button can now be released and current
continues to flow to coil Y through the contact y, that is, the flip-flop remains set. Thus, the y contact
provides the ‘memory’ of the flip-flop. In industrial terminology, the relay is a self-holding or latched
relay. At the moment the reset push button is pressed, the circuit to Y is broken and the flip-flop
returns to its former reset state.

Self-holding relay 

y

S R Y

FIGURE 17.21 An SR flip-flop described by an LD.
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17.5.2 Sequencing Circuits

In a combinatorial network the outputs depend only on the momentary values of the inputs. In a sequence
chart, however, the outputs also depend on earlier inputs and states of the system. The related graphical
representation of the operation must therefore contain signals and states at different times. Many sequence
operations can be described by LDs and can be defined by a number of states, where each state is associated
with a certain control action.

Note that only one state at a time can be active. In the LD this will correspond to the fact that only one
rung (step) at a time can be executed. Therefore some kind of execution control signal is necessary in
order to transfer from one state to another. This type of control signal can be given when a condition is
satisfied (the condition could of course also be a complex combination of control signals). The conditional
order acts at the same time as reset (R) signal for one step and as set signal for the following step (compare
with Figure 17.21). The sequencing control execution can be described as a series of SR flip-flops, where
each step (= state) corresponds to a rung of the ladder (Figure 17.22). At each execution control signal,
the next flip-flop is set. The execution proceeds one step at a time and after the last step it returns to the
beginning of the sequence (Step 1).

In practical execution, Step 1 can be initiated with a start button. When running in an infinite loop,
it can also be started from the last step. When the last step is active together with a new condition for
the startup of Step 1, then the Step 1 coil is activated, and the self-holding relay keeps it set. When the
condition for Step 2 is satisfied, the relay Step 2 latches circuit 2 and at the same time guarantees that
circuit 1 is broken. This is then continued in the same fashion. In order to insure a repetitive sequence,
the last step has to be connected to Step 1 again.

This is an example of an asynchronous execution. In switching theory there are also synchronous charts,
where the state changes are caused by a CP. In industrial automation applications, we mostly talk about
asynchronous charts, because the state changes do depend not on CPs but on several conditions in different
parts of the sequence. In other words, an asynchronous system is event based, while a synchronous system
is time based. Moreover, we are dealing with design of asynchronous systems with sustained input signals
rather than pulse inputs.

Condition 

Condition 

Step N 

Step N-1 Step N+1 Step N 

Last step Step 2 

Step 1

Step N

Step 1 

Start 
Self-holding 

(Self-holding) 

Step 1 

FIGURE 17.22 A sequence described by an LD.
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17.6 Programmable Controllers

PLCs are particular microcomputers designed to carry out Boolean switching operations in industrial
environments. The name is actually a misnomer, because PLCs can today perform much more than
simple logic operations. However, the abbreviation has been retained in order to avoid confusion between
the more general term Programmable Controller and Personal Computer (both PC). A PLC generates
on/off signal outputs for the control of actuators like electric motors, valves, lights, etc. that can be found
in all industrial branches as vital parts of automation equipment.

The PLC was initially developed by a group of engineers from General Motors in 1968, where the initial
specification was formulated: it had to be easily programmed and reprogrammed, preferably in-plant,
easily maintained and repaired, smaller than its relay equivalent, and cost-competitive with the solid-
state and relay panels then in use. This provoked great interest from engineers of all disciplines using
the PLC for industrial control. A microprocessor-based PLC was introduced in 1977 by Allen-Bradley
Corporation in the United States, using an Intel 8080 microprocessor with circuitry to handle bit logic
instructions at high speed.

The early PLCs were designed only for logic-based sequencing jobs (on/off signals). Today there are
hundreds of different PLC models on the market. They differ in their memory size and I/O capacity. The
difference also lies in the features they offer. The smallest PLCs serve just as relay replacers with added
timer and counter capabilities. Many modern PLCs also accept proportional signals. They can perform
arithmetic calculations and handle analog input and output signals and PID controllers. This is the reason
why the letter L was dropped from PLC, but the term PC may cause confusion with personal computers
so we keep the L here.

The logical decisions and calculations may be simple in detail, but the decision chains in large plants
are very complex. This naturally raises the demand for structuring the problem and its implementation.
Sequencing networks operate asynchronously, that is, the execution is not directly controlled by a clock.
The chain of execution may branch for different conditions, and concurrent operations are common.
This makes it crucial to structure the programming and the programming languages and an interna-
tional software standard IEC 61131-3 has been defined. Applications of function charts in industrial
control problems are becoming more and more common. Graphical tools for programming and opera-
tor communication are also becoming a standard of many commercial systems. Furthermore, in a large
automation system, communication between the computers becomes crucial for the whole operation.

17.6.1 Basic Structure

The basic operation of a PLC corresponds to a software-based equivalent of a relay panel. However, a PLC
can also execute other operations, such as counting, delays, and timers. Because a PLC can be programmed
in easy-to-learn languages, it is naturally more flexible than any hardware relay system. PLCs are more
flexible than programmable logical devices but usually slower, so that PLDs and PLCs often coexist in
industrial installations offering the best and most economical solutions.

Figure 17.23 shows the basic structure of a PLC. The input signals are read into a buffer, the input
memory register. This function is already included in the system software in the PLC. An input–output
register could consist of only a bit but is often a full byte. Consequently, one input instruction gives the
status of eight different input ports.

The instructions fetch the value from the input register and operate on only this or on several operands.
The central processing unit (CPU) works toward a result register or accumulator (A). The result of an
instruction is stored either in some intermediate register or directly in the output memory register that is
written to the outputs. The output function is usually included in the system programs in a PLC.

A PLC is specifically made to fit an industrial environment where it is exposed to hostile conditions,
such as heat, humidity, unreliable power, mechanical shocks, and vibrations. A PLC also comes with
input–output modules for different voltages and can be easily interfaced to hundreds of input and output
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FIGURE 17.23 Basic structure of a PLC.

lines. PLCs have both hardware and software features that make them attractive as controllers of a
wide range of industrial equipment. They are specially built computers with three functions, memory,
processing, and input/output.

17.6.2 Basic Instructions and Execution

To make a PLC system for industrial automation, it has to work in real time. Consequently, the controller
has to act on external events very quickly, with a short response time. There are two principal ways to
sense the external signals, by polling (repeated requests) the input signals regularly or by using interrupt
signals. The polling method’s drawback is that some external event may be missed if the processor is not
sufficiently fast. On the other hand, such a system is simple to program.

A system with interrupts is more difficult to program but the risk of missing some external event is
much smaller. The polling method is usually used in simpler automation systems while interrupts are
used in more complex control systems.

“Programming” a PLC consists mainly of defining sequences. The input and output functions are
already prepared. The instructions from an LD, a logical gate diagram, or Boolean expressions are trans-
lated into machine code. At the execution, the program memory is run through cyclically in an infinite
loop. In this way, it is simulating the parallelism inherent in the wired relay logic. The read-execute-write
cycle is called a scan cycle. Every scan may take some 15–30 ms in a small PLC, and the scanning time is
approximately proportional to the memory size. In some PLCs the entire memory is always scanned even
if the code is shorter. In other systems the execution stops at an end statement that concludes the code;
thus the loop time can be shortened for short programs.

The response time of the PLC of course depends on the processing time of the code. While the
instructions and the output executions are executed, the computer system cannot read any new input
signals. Usually this is not a big problem, since most signals in industrial automation are quite slow or
last for a relatively long time.
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The LD can be considered as if every rung were executed at the same time. Thus it is not possible to
visualize that the LD is executed sequentially on a row-by-row basis. The execution has to be very fast
compared to the timescale of the process.

A small number of basic machine instructions can solve most sequencing problems. A program that
contains these instructions is called instruction list (IL). Some of the fundamental machine instructions
are listed here; usually they can operate on bits as well as on bytes:

ld, ldi A number from the computer input memory is loaded (LD) or inverted (LDI) before it is read
into the accumulator (A).

and, ani An AND or AND Inverse instruction executes an AND logical operation between A and an
input channel, and stores the result in A.

or, ori An OR or OR Inverse instruction executes an OR logical operation between A and an input
channel, and stores the result in A.

out The instruction outputs A to the output memory register. The value remains in A, so that the same
value can be sent to several output relays.

Example 17.4: Translation from an LD to Machine Code

The translation from the LD to machine code is illustrated in Figure 17 24. The gate y11 gives a
self-holding capability. Note that y11 is a memory cell, and Y11 is an output.

A logical sequence or LD is often branched. Then there is a need to store intermediate signals for later
use. This can be done with special help relays, but in a PLC it is better to use two instructions orb (OR
Block) or anb (AND Block). They use a memory stack area (last in, first out) in the PLC to store the output
temporarily.

Example 17.5: Using the Block Instruction and Stack Memory

The LD (Figure 17.25) can be coded with the following machine code:

ld x1 Channel 1 is read into the accumulator (A).
and x2 The result of the AND operation is stored in A.
ld x3 The content of A is stored on the stack. Channel 3 is read into A.
and x4 The result of lines 3 and 4 is stored in A.
orb An OR operation between A and the stack. The result is stored in A. The last element of the stack

is eliminated.
out Y1 Output of A on Channel 1.

x11

y11

x12

x12 x13 Y11

Y12

LD x11
OR y11
AND x12
AND x13
OUT Y11
OUT Y12
LDI x12
OUT Y13

Y13

FIGURE 17.24 Translation of an LD into a machine code.
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x1
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x2

x4

Y1

FIGURE 17.25 Example of using a stack memory.

Example 17.6: Using the Block Instructions and the Stack Memory

The logical gates in Figure 17.26 are translated to machine code by using block instructions.
The corresponding machine code is as follows:

ld x1 Load Channel 1.
and x2 The result is stored in A.
ld x3 The content of A is stored on the stack. Status of Channel 3 is loaded into A.
and x4 The result of lines 3 and 4 is stored in A.
ld x5 The content of A is stored on the stack. Status of Channel 5 is loaded into A.
and x6 The result of lines 5 and 6 is stored in A.
orb Operates on the last element in the stack (the result of lines 3 and 4) and the content of A. The

result is stored in A. The last element of the stack is removed.
anb Operates on the last element in the stack (the result of lines 1 and 2) and the content of A. The

result is stored in A. The last element of the stack is removed.
out Y1.

17.6.3 Additional PLC Instructions

For logical circuits there are also operations such as XOR, NAND, and NOR as described earlier. Modern
PLC systems are supplied with instructions for alphanumerical or text handling and communication as
well as composed functions such as timers, counters, memory, and pulses.

A pulse instruction (PLS) gives a short pulse, for example, to reset a counter. A PLC may also contain
delay gates or time channels so that a signal in an output register may be delayed for a certain time. Special
counting channels can count numbers of pulses.

& 

& & 

& 
x1

x2

x3
Y1

x4

x5
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x6

FIGURE 17.26 Example of a logical circuit.
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Different signals can be shaped, such as different combinations of delays, oscillators, rectangular
pulses, ramp functions, shift registers, or flip-flops. As already mentioned, advanced PLCs also con-
tain floating-point calculations as well as prepared functions for signal filtering and feedback control
algorithms.

17.7 PLC Programming and Software Standards

PLCs can be programmed in different ways: with the assembler-like IL or in higher, problem-oriented
Structured Text (ST). We have demonstrated that both combinatorial networks and sequences can be
described using LDs. The LD has been particularly popular in the United States, while in Europe the
use of function block diagrams (FBDs) with the graphical symbols for logical gates is more common.
The high-level description of sequencing functions using the Grafcet-like SFC is naturally gaining in
popularity. This will be described in the next section.

PLCs are usually programmed via external units. These units as a rule are not needed for the PLC
online operation and may be removed when the PLC is in operation. Programming units are typically
small hand-held portable units or portable personal computers. A manual PLC programmer looks like a
large pocket calculator, with a certain number of keys and a simple display. Each logic element of the LD
or program instruction is entered with specific keys or key combinations.

More sophisticated programming can be performed with a PC, offering both graphical and text editors.
The editor typically shows several LD lines at a time or the basic structure of an SFC. To make debugging
and testing simpler the computer can also indicate the power flow within each line during operation,
so that the effect of the input over the output is immediately recognizable. In some cases programming
can take place by drawing on the display an FBD with logical gates. The gate symbols are input with key
combinations and/or with the mouse, by choosing from a predefined table.

The international standard IEC 61131-3 (earlier called IEC 65A (SEC) 67) is the only global standard
for industrial control programming. It harmonizes the way people design and operate industrial controls
by standardizing the programming interface. A standard programming interface allows people with
different backgrounds and skills to create different elements of a program during different stages of the
software lifecycle: specification, design, implementation, testing, installation, and maintenance. Yet all
pieces adhere to a common structure and work together harmoniously.

IEC 61131-3 includes the definition of the SFC language, used to structure the internal organization of
a program, and four interoperable programming languages: IL, LD, FBD, and ST. ST has a formal syntax
similar to that of the programming language Pascal, as shown in this short example:

IF TEMP1 > 50.0 THEN

Flow_rate := 65.0 + OFFSET

ELSE

Flow_rate := 75.0; PUMP := ON ;

END IF;

ST supports a wide range of standard functions and operators. ST and IL represent algorithmic formu-
lations in clear text. The FBD, the LD, and the SFC are instead graphical representations of the function
and the structure of logical circuits. The international standard IEC 61131-3 should therefore guarantee
a wide application spectrum for PLC programming.

17.7.1 Sequential Function Charts

The need for structuring a sequencing process problem may not be immediately apparent for small
applications, but as the complexity of the control action increases, also the need for better functional
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descriptions becomes more important. We have seen already in the simple transfer line example that
structuring becomes necessary. As a tool for an appropriate top-down analysis and the representation of
control sequences, function charts have been introduced. Today, function charts are offered as program-
ming tools by several PLC producers, such as Grafcet, GRAPH-5 (Siemens), HI-FLOW (Hitachi), and
others. The basic ideas at the basis of these languages are similar and the differences are only of secondary
importance. On the surface we may say that the function charts are implementations of Petri nets.

17.7.2 Describing States and Transitions Using SFCs

An SFC can be considered as a special purpose language for the description of control sequences in the
form of a graphical scheme. Toward the late 1970s the first function chart language, Grafcet (GRAphe de
Commande Etape-Transition “Function chart—step transition”), was developed in France and has later
provided the basis for the definition of the international standard IEC 848 (Preparation of function charts
for control systems). Now there is an international standard for the control of sequences, IEC 61131-3.
This standard lists a number of alternative languages. Of these the SFC is the most important. It may
be noted that the IEC 61131-3 standard does not really consider an SFC to be a programming language,
but rather a program-structuring element used to organize the program written in one or more of the
other languages. Here we will consider the SFC a programming language. The SFCs have evolved through
Grafcet from safe Petri nets.

Function charts describe control sequences with the help of predefined rules for

• The controls that must be carried out and in the order in which they are carried out.
• The execution details of each instruction.

The function diagram is correspondingly divided into two parts (Figure 17.27). The “sequence” part
describes the order between the major control steps (left part of Figure 17.27). It consists of the states
(marked by the five boxes to the left), also called steps in the SFC.

The vertical lines that connect each box with the following one represent active connections (directed
links). Each transition from a step to the following one is connected with a logical condition, the transition
condition or receptivity. The Boolean expression for the transition condition is written in proximity of
a small horizontal line that intersects the link from one box to the next. When the logical condition is
satisfied, that is, the related Boolean expression is true, the transition takes place, and the system proceeds
with the following step. The actions taking place in each state (step) are described by the “object” or
“control” part of the diagram. This part consists of the boxes to the right of the sequence steps. Every
action has to be connected to a step and can be described either by an LD, a logical circuit, a Boolean
expression, or even a continuous control action such as a PID controller.

The use of function charts will be illustrated with the example of control of the batch tank in
Figure 17.27. The states can now be recognized as boxes 1–5, while the state transitions are the marked
signals between the states.

In the function charts syntax, a step (=state) at any given time can be either active or inactive. “Active”
means that this step is currently being executed. The initial step is represented in the function chart by a
double-framed box. An “action” is a description of the commands that have to be executed at each step.
A logical condition can be associated with a step, so that the related commands are executed only when
the step is active and the condition is fulfilled. The association with a condition represents, therefore, a
security control. Several commands can be associated with a step. These commands can be simple controls
but also represent more complex functions such as timer, counters, regulators, filtering procedures, or
commands for the external communication. As we have already seen, in the function chart there is also a
function for transition, that is, a kind of obstacle between two steps to which only an active step can follow.
After a transition, a new step becomes active and the earlier one inactive. The transition is controlled by
a logical condition and takes place only when the condition is satisfied.
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FIGURE 17.27 SFC for the control of a batch tank process.

The function chart syntax allows much more than just the iterative execution of the same control
instructions. The three functional blocks initial step, step(s), and transitions can be interconnected in
many different ways, thus allowing the description of a large number of complex functions. Three types
of combinations are possible—in analogy with Petri nets:

• Simple sequences
• Execution branching (alternative parallel sequence)
• Execution splitting (simultaneous parallel sequence)

In the simple sequence, there is only one transition after a step and only one step after a transition. No
branching takes place. In the alternative parallel sequence (Figure 17.28), there are two or more transitions
after one step. In this way, the execution flow can take alternative routes depending on external conditions.
Often this is an if-then-else condition and is useful to describe, for example, alarm situations.

In the alternative parallel sequence, it is very important to verify that the condition for the selection of
one of the program execution branches is consistent and unambiguous; in other words, the alternative
branches should not be allowed to start simultaneously. Each branch of an alternative parallel sequence
must always start and end with logical conditions for a transition.
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FIGURE 17.28 SFC for alternative parallel paths.

In the simultaneous parallel sequence (Figure 17.29) two or more steps are foreseen after a transition,
and these steps can be simultaneously active. The simultaneous parallel sequence represents therefore the
concurrent (parallel) execution of several actions.

The double horizontal lines indicate the parallel processing. When the condition for the transition
is satisfied, both branches become simultaneously active and are executed separately and concurrently.
The transition to the step below the lower double horizontal line can take place only after the execu-
tion of all concurrent processes has been terminated. This corresponds to the simultaneous execution
of control instructions and is comparable with the notation cobegin-coend, used in real-time progra-
mming.

The three types of sequence processing can be also used together. However, one should act carefully
in order to avoid potential conflicts. For example, if two branches of an alternative execution sequence
are terminated with the graphic symbol for the end of parallel execution (the double horizontal bars),
then further execution is locked, since the computer waits for both branches to terminate their execution,
while only one branch was started because of the alternative condition. Also the opposite error is possible.
If parallel branches that have to be executed simultaneously are terminated with an alternative ending
(a single horizontal bar), then many different steps may remain active, so that further process execution
might no longer take place in a controlled way.

Of course a compiler would recognize such a mismatch of beginning and end clauses and would thus
alarm the user before the code is executed. But even with the best compiler around, many errors remain
tricky and undetectable. A structured and methodical approach on the part of the programmer is always
an important requirement.
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FIGURE 17.29 SFC for simultaneous parallel paths.

17.7.3 Computer Implementation of SFCs

Programs written with the help of functions charts operate under real-time conditions; so each implemen-
tation must exhibit real-time capabilities. Usually, the realization of real-time systems requires intensive
efforts with considerable investments in time and personnel.

However, in this specific case, the designer of the function chart language compiler carries most of
the burden, while the user can describe complex control sequences in a comparatively simple way. The
aspects of real-time programming are also valid for the design of PLCs, but concern the final user only
indirectly and in a limited way.

Compilers for function charts are available for many different industrial control computers. The
programming and program compilation on PCs is commonplace. After compilation, the code in the form
of control instructions is transferred to a PLC for execution. The PC is then no longer necessary during
the real-time PLC operation. Some compilers can also operate as simulation tools and show the execution
flow on the computer screen without needing to be connected to the object PLC. There are also PLCs
with the compiler already built into their software.

The obvious advantage of abstract descriptions in the form of function charts is their independence
from any specific hardware and their orientation to the task to be performed rather than to the computer.
Unfortunately, it must be said that high-level languages like function charts do not yet enjoy the success
they deserve. It seems odd that so many programmers always start anew with programming in low-level
languages, even for those applications that would be much easier to solve with function chart description
languages.

As in any complex system description, the diagram or the code has to be structured suitably. A function
chart implementation should allow the division of the code into smaller parts. For example, each machine
of a complex line to be controlled may have its own graph, and the graphs for several machines could then
be assembled together. Such hierarchical structuring is of fundamental importance when programming
the operation of large, complex systems.
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Function charts are not only suitable for complex operations, but can also be useful for simpler tasks. A
function chart is quite easy for the nonspecialist to understand. An accepted standard for the description of
automated operations has also the advantage that more computer codes can be maintained and reutilized
and do not need to be written anew each time, as it would be the case with incompatibles devices and
languages.

The translation of function charts to computer code depends on the specific PLC and its tools, as not
all devices have such compilers. Still, even if the function charts cannot be transformed in programming
code, the diagrams are very useful, since they provide the user with a tool to analyze and structure the
problem. Some companies use function charts to describe the function and use of their equipment. Of
course, it would be much simpler if function charts would be used all the way from functional description
to actual programming.

The importance of structuring is obvious. The sequencing operations of an industrial operation could
have been written in machine code or as an LD. However, long codes in low-level languages are not meant
for people to read, understand, debug, or maintain. In a high-level language like SFC, the code itself is a
good documentation. Finally, remember that comments are crucial parts of the documentation!

17.7.4 Application of Function Charts in Industrial Control

The use of function charts for sequential programming is demonstrated for a manufacturing cell in a
flexible manufacturing system. The cell consists of three NC machines (e.g., a drill, lathe, and mill), a
robot for material handling, and a buffer storage (Figure 17.30).

At the cell level we do not deal with the individual control loops of the machines or of the robot. They are
handled by separate systems. The cell computer sends on/off commands to the machines and its main tasks
are to control the individual sequencing of each machine (and the robot) and to synchronize the operations
between the machines and the robot. The control task is a mixture of sequencing control and real-time
synchronization. We will demonstrate how an SFC expresses the operations. The implementation of the
function chart is then left to the compiler.

The manufactured product has to be handled in the three machines in a predefined order (like a transfer
line). The robot delivers new parts to each machine and moves them between the machines.

17.7.4.1 Synchronization of Tasks

The synchronization of the different machines is done by a scheduler graph with a structure indicated in
Figure 17.31.

The scheduler communicates with each machine and with the robot and determines when they can
start or when the robot can be used. It works like a scheduler in a real-time operating system, distributing

Buffer Robot

Machine 2

Machine 1

Machine 3

FIGURE 17.30 Layout of the manufacturing cell.



�

�

�

�

� �

Programmable Controllers 17-27

Scheduler

Machine 3 Robot BufferMachine 1 Machine 2

FIGURE 17.31 Logical structure of the machine cell.

the common resource, the robot, as efficiently as possible. The scheduler has to guarantee that the robot
does not cause any deadlock. If the robot has picked up a finished part from a machine and has nowhere to
place it, then the system will stop. Consequently, the scheduler has to match demands from the machines
with the available resources (robot and buffer capacity).

The scheduler graph is described by a number of parallel branches, one for each machine, robot,
and buffer. Because all of the devices are operating simultaneously, the scheduler has to handle all of
them concurrently by sending and receiving synchronization signals of the type start and ready. When a
machine gets a start command from the scheduler, it performs a task defined by its function chart. When
the machine has terminated, it sends a ready signal to the scheduler. Figure 17.31 shows that no machine
communicates directly with the robot. Instead all the communication signals go via the scheduler. The
signals are transition conditions in each function chart branch. By structuring the graph in this hierarchical
way, new machines can be added to the cell without reprogramming any of the sequences of the other
machines. The robot has to add the new operations to serve the new machines.

A good implementation of SFCs supports a hierarchical structuring of the problem. The total operation
can first be defined by a few complex operations, each one consisting of many steps. Then it is possible to
go on to more and more detailed operations.

17.7.5 Analog Controllers

Many PLCs can handle not only binary signals, but also analog-to-digital (A/D) and digital-to-analog
(D/A) converters that can be added to the PLC rack. The resolution, that is, the number of bits to represent
the analog signal, varies between the systems. The converted analog signal is placed in a digital register in
the same way as a binary signal and is available for the standard PLC arithmetic and logical instructions.

In the event that plant signals do not correspond to any of the standard analog ranges, most manu-
facturers provide signal conditioning modules. Such a module provides buffering and scaling of plant
signals to standard signals (typically 0–5 V or 0–10 V).

A PLC equipped with analog input channels may perform mathematical operations on the input
values and pass the results directly to analog output modules to drive continuous actuators in the process
directly. The sophistication of the control algorithms may vary, depending on the complexity of the PLC,
but most systems today offer proportional-integral-derivative (PID) controller modules. The user has to
tune the regulator parameters. To obtain sufficient capacity, many systems provide add-on PID function
modules, containing input and output analog channels together with dedicated processors to carry out
the necessary control calculations. This processor operates in parallel with the main CPU. When the main
CPU requires status data from the PID module, it reads the relevant locations in the I/O memory where
the PID processor places this information each time it completes a control cycle.

Many PLC systems also supply modules for digital filtering, for example, first-order smoothing (expo-
nential filter) of input signals. The user gives the time constant of the filter as a parameter.

A PLC system may provide programming panels with a menu of questions and options relating to the
setup of the control modules, such as gain parameters, integral and derivative times, filter time constants,
sampling rate, and engineering unit conversions.



�

�

�

�

� �

17-28 Control System Fundamentals

17.8 PLCs as Part of Automation Systems

The demands for communication in any process or manufacturing plant are steadily increasing. Any user
today demands flexible and open communication, following some standard. Here we will just mention
some of the crucial concepts essential for any nontrivial PLC installation.

17.8.1 Communication

A distributed system is more than simply connecting different units in a network. Certainly, the units in
such a system can communicate, but the price is too much unnecessary communication, and the capacity
of the systems cannot be fully used. Therefore, the architecture of the communication is essential. Reasons
for installing network instead of point-to-point links are that

• All devices can access and share data and programs.
• Cabling for point-to-point becomes impractical and prohibitively expensive.
• A network provides a flexible base for contributing communication architectures.

To overcome the difficulties of dealing with a large number of incompatible standards, the ISO has
defined the open systems interconnection (OSI) scheme. OSI itself is not a standard, but offers a framework
to identify and separate the different conceptual parts of the communication process. In practice, OSI does
not indicate which voltage levels, transfer speeds, or protocols need to be used to achieve compatibility
between systems. It says that there has to be compatibility of voltage levels, speed, and protocols as well
as for a large number of other factors. The practical goal of OSI is optimal network interconnection, in
which data can be transferred between different locations without wasting resources for conversion and
creating related delays and errors.

PLC systems are an essential part of most industrial control systems. In the following, we will illustrate
how they are connected at different levels of a plant network (Figure 17.32).

17.8.2 Fieldbus: Communication at the Sensor Level

There is a trend to replace conventional cables from sensors with a single digital connection. Thus, a
single digital loop can replace a large number of 4–20 mA conductors. This has been implemented not
only in manufacturing plants but also in aircraft and automobiles. Each sensor needs an interface to the
bus, and standardization is necessary. This structure is known as Fieldbus.

The term “fieldbus” is subject to a wide variety of definitions. A European standard exists that defines
certain characteristics of a network that make it a fieldbus. To further confuse the issue, there is also a
fieldbus called Fieldbus. The various definitions of fieldbus do have some common ground.

• The network is open and supported by multiple vendors.
• The network interconnects components of an automated industrial system for control and mon-

itoring purposes. (Note that this definition does not mention performance, network services, or
intended use, which are not factors in a network’s designation as a fieldbus. They simply affect the
suitability of a particular fieldbus for a specific application.)

There is another network type called a “sensor bus” that is either a subset of fieldbus or a completely
independent category, depending on the vendor. A sensor bus is a low-level network whose primary
purpose is to replace I/O wiring.

Two fundamental types of fieldbus can be identified: those that define a software architecture in
addition to a communication protocol, and those that define only the communication protocol.

When all communicating units located in a close work cell are connected to the same physical bus,
there is no need for multiple end-to-end transfer checks as if the data were routed along international
networks. To connect computers in the restricted environment of a factory, the data exchange definition
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FIGURE 17.32 Structure of a plant network.

of OSI layers 1 (physical layer) and 2 (data link layer) and an application protocol at the OSI level 7 are
enough.

Fieldbuses open notable possibilities. A large share of the intelligence required for process control is
moved out to the field. The maintenance of sensors becomes much easier because test and calibration
operations can be remotely controlled and require less direct intervention by maintenance personnel.
And as we have already pointed out, the quality of the collected data influences directly the quality of
process control.

There is now an international standard for fieldbuses, called IEC 61158. Under the general title Digital
data communications for measurement and control—Fieldbus for use in industrial control systems, the
following parts are defined:

1. Overview and guidance for the IEC 61158 series
2. Physical Layer specification and service definition
3. Data Link Service definition
4. Data Link Protocol specification
5. Application Layer Service definition
6. Application Layer Protocol specification

The standard should ensure interconnectivity of different devices connected to the same physical
medium. Some examples of fieldbuses are Interbus, LonWorks, PROFIBUS, BITBUS. All of them are
based on industrial Ethernet. Other examples include the CAN bus, widely used, for example, in the
automotive industry.
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17.8.3 Local Area Networks (LANs)

To communicate between different PLC systems and computers within a plant there is a clear trend to use
Ethernet as the medium. Ethernet is a widely used local area network (LAN) for both industrial and office
applications. Jointly developed by the Xerox, Intel, and Digital Equipment, Ethernet was introduced in
1980. Ethernet follows the IEEE 802.3 specifications.

Ethernet has a bus topology with branch connections. Physically, Ethernet consists of a screened coaxial
cable to which peripherals are connected with “taps.” Ethernet does not have a network controlling unit.
All devices decide independently when to access the medium. Consequently, because the line is entirely
passive, there is no single-failure point on the network. Ethernet supports communication at different
speeds, as the connected units do not need to decode messages not explicitly directed to them.

Ethernet’s concept is flexible and open. There is little capital bound up in the medium, and the medium
itself does not have active parts like servers or network control computers which could break down or
act as bottlenecks to tie up communication capacity. Some companies offer complete Ethernet-based
communication packages which may also implement higher-layer services in the OSI hierarchy.
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Further Reading

A wealth of literature exists on PLCs and their applications. One good representative is

1. Bolton, W., Programmable Logic Controllers, 5th edn, Newnes, Oxford, 2009.

There are several books with good coverage on, not only PLCs and the IEC 61131 standard, but their
application in discrete manufacturing:

2. John, K.-H. and Tiegelkamp, M., IEC 61131-3: Programming Industrial Automation Systems. Concepts
and Programming Languages, Requirements for Programming Systems, Decision-Making Aids, Springer-
Verlag, Berlin, 2001, ISBN: 978-3-540-67752-9.

The international standard, IEC 61131-3 is documented in

3. International Electrotechnical Commission (IEC), Programmable Controllers-Part 3: Programming Lan-
guages, 2nd edn, IEC, 2003.

For updated information on IEC standards, see the webpage http://www.iec.ch
The manuals from different PLC manufacturers provide full details of the facilities and programming
methods for a given model.
Switching theory is described in numerous textbooks, such as

4. Lee, S.C., Modern Switching Theory and Digital Design, Prentice Hall, Englewood Cliffs, NJ, 1978.

5. Fletcher, D.I., An Engineering Approach to Digital Design, Prentice Hall, Englewood Cliffs, NJ, 1980.

A good overview of sensors, actuators, and switching elements for both electric environment and pneu-
matic environment is contained in

6. Pessen, D.W., Industrial Automation: Circuit Design and Components, John Wiley & Sons, New York,
NY, 1989.

There is an overwhelming literature on communication, in textbooks, articles, and on the web. Since this
field is so rapidly changing, we just give references to the fundamental principles. Information about the



�

�

�

�

� �

Programmable Controllers 17-31

current development of networks and fieldbuses is best followed via the standards organizations and the
vendor information.

7. Tanenbaum, A.S., Computer Networks, 3rd edn, Prentice Hall, Upper Saddle River, NJ, 1996.

Describes almost everything that is to be mentioned about computer communication, at a very high level
and yet not boring, while

8. Tanenbaum, A.S., Distributed Operating Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.

Deals with computer communication networks as fundamental components in distributed computer
systems. Tanenbaum provides a very solid technical foundation, breaking established writing patterns to
give new insights.

Several articles on components, PLCs, and market reviews appear regularly in journals such as Control
Engineering, Control Engineering Practice (Elsevier), Instruments and Control Systems (Springer).
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18.1 Introduction

18.1.1 The Describing Function Method

The describing function method, abbreviated as DF, was developed in several countries in the 1940s [1], to
answer the question: “What are the necessary and sufficient conditions for the nonlinear feedback system
of Figure 18.1 to be stable?” The problem still remains unanswered for a system with static nonlinearity,
n(x), and linear plant G(s), All of the original investigators found limit cycles in control systems and
observed that, in many instances with structures such as Figure 18.1 the waveform of the oscillation at
the input to the nonlinearity was almost sinusoidal. If, for example, the nonlinearity in Figure 18.1 is an
ideal relay, that is, has an on–off characteristic, so that an odd symmetrical input waveform will produce a
square wave at its output, the output of G(s) will be almost sinusoidal when G(s) is a low-pass filter which
attenuates the higher harmonics in the square wave much more than the fundamental. It was, therefore,
proposed that the nonlinearity should be represented by its gain to a sinusoid and that the conditions for
sustaining a sinusoidal limit cycle be evaluated to assess the stability of the feedback loop. This gain of the
nonlinearity in response to a sinusoid is a function of the amplitude of the sinusoid and is known as the
DF. Because DF methods can be used for other than a single sinusoidal input to distinguish this DF it is
also referred to as the single sinusoidal DF or sinusoidal DF.

18.1.2 The Sinusoidal DF

For the reasons explained above, if we assume in Figure 18.1 that x(t) = a cos θ, where θ = ωt and n(x) is
a symmetrical odd nonlinearity, then the output y(t) will be given by the Fourier series

y(θ) =
∞∑

n=0

an cos nθ + bn sin nθ (18.1)

18-1
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+
0 Gc(s) n(x) G1(s) c(t)y(t)x(t)

–

FIGURE 18.1 Block diagram of a nonlinear system.

where

a0 = 0 (18.2)

a1 = (1/π)
∫ 2π

0
y(θ) cos θ dθ (18.3)

and

b1 = (1/π)
∫ 2π

0
y(θ) sin θ dθ (18.4)

The fundamental output from the nonlinearity is a1 cos θ + b1 sin θ, so that the DF, defined as the
fundamental output divided by the input amplitude, is complex and is given by

N(a) = (a1 − jb1)

a
(18.5)

which may be written

N(a) = Np(a) + jNq(a) (18.6)

where

Np(a) = a1

a
and Nq(a) = −b1

a
(18.7)

Alternatively, in polar coordinates,

N(a) = M(a)ejΨ(a) (18.8)

where

M(a) = (a2
1 + b2

1)1/2

a

and

Ψ(a) = − tan−1 b1

a1
(18.9)

If n(x) is single valued, then b1 = 0 and

a1 = 4

π

∫ π/2

0
y(θ) cos θ dθ (18.10)

giving

N(a) = a1

a
= 4

aπ

∫ π/2

0
y(θ) cos θ dθ (18.11)

Although Equations 18.3 and 18.4 are an obvious approach to evaluating the fundamental output
of a nonlinearity, they are indirect, because one must first determine the output waveform y(θ) from
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the known nonlinear characteristic and sinusoidal input waveform. This is avoided if the substitution
θ = cos−1 (x/a) is made. After some simple manipulations,

a1 = 4

a

∫ a

0
xnp(x)p(x) dx (18.12)

and

b1 = 4

aπ

∫ a

0
nq(x) dx (18.13)

The function p(x) is the amplitude probability density function of the input sinusoidal signal given by

p(x) = 1

π
(a2 − x2)−1/2 (18.14)

The nonlinear characteristics np(x) and nq(x), called the in-phase and quadrature nonlinearities, are
defined by

np(x) = n1(x) + n2(x)

2
(18.15)

and

nq(x) = n2(x) − n1(x)

2
(18.16)

where n1(x) and n2(x) are the portions of a double-valued characteristic traversed by the input for ẋ >0
and ẋ < 0, respectively. When the nonlinear characteristic is single valued, n1(x) = n2(x), so np(x) = n(x)
and nq(x)=0. Integrating Equation 18.12 by parts yields

a1 = 4

π
n(0+) + 4

aπ

∫ a

0
n′(x)(a2 − x2)1/2dx (18.17)

where n′(x) = dn(x)/d(x) and n(0+) = limε→0 n(ε) a useful alternative expression for evaluating a1.
An additional advantage of using Equations 18.12 and 18.13 is that they yield proofs of some properties

of the DF for symmetrical odd nonlinearities. These include the following:

1. For a double-valued nonlinearity, the quadrature component Nq(a) is proportional to the area of
the nonlinearity loop, that is,

Nq(a) = − 1

a2π
(area of nonlinearity loop) (18.18)

2. For two single-valued nonlinearities nα(x) and nβ(x), with nα(x) < nβ(x) for all 0 < x < b, Nα(a) <

Nβ(a) for input amplitudes less than b.
3. For a single-valued nonlinearity with k1x < n(x) < k2x for all 0< x < b, k1 < N(a) < k2 for input

amplitudes less than b. This is the sector property of the DF; a similar result can be obtained for a
double-valued nonlinearity [2].

When the nonlinearity is single valued, from the properties of Fourier series, the DF, N(a), may also
be defined as

1. The variable gain, K , having the same sinusoidal input as the nonlinearity, which minimizes the
mean-squared value of the error between the output from the nonlinearity and that from the
variable gain and

2. The covariance of the input sinusoid and the nonlinearity output divided by the variance of the
input.

18.1.3 Evaluation of the DF

To illustrate the evaluation of the DF, several simple examples are considered.
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18.1.3.1 Cubic Nonlinearity

For this nonlinearity, n(x) = x3 and using Equation 18.3,

a1 = 4

π

∫ π/2

0
(a cos θ)3 cos θ dθ

= 4

π
a3
∫ π/2

0
cos4θ dθ

= 4

π
a3
∫ π/2

0

(1 + cos 2θ)2

4
dθ

= 4

π
a3
∫ π/2

0

(
3

8
+ cos 2θ

2
+ cos 4θ

8

)
dθ = 3a3

4

giving N(a) = 3a2/4.
Alternatively from Equation 18.12,

a1 = 4

a

∫ a

0
x4p(x) dx

The integral μn = ∫∞
−∞ xnp(x) dx is known as the nth moment of the probability density function and,

for the sinusoidal distribution with p(x) = (1/π)(a2 − x2)−1/2, μn has the value

μn =
⎧⎨
⎩

0, for n odd, and

an (n − 1)

n

(n − 3)

(n − 2)
· · · 1

2
, for n even

(18.19)

Therefore,

a1 =
(

4

a

)
1

2
.
3

4
.
1

2
a4

= 3a3/4 as before.

18.1.3.2 Saturation Nonlinearity

To calculate the DF, the input can alternatively be taken as a sin θ. For an ideal saturation characteristic, the
nonlinearity output waveform y(θ) is as shown in Figure 18.2. Because of the symmetry of the nonlinearity,
the fundamental of the output can be evaluated from the integral over a quarter period so that

N(a) = 4

aπ

∫ π/2

0
y(θ) sin θ dθ

which, for a > δ, gives

N(a) = 4

aπ

[∫ α

0
ma sin2θ dθ +

∫ π/2

α

mδ sin θ dθ

]

where α = sin−1 δ/a. Evaluation of the integrals gives

N(a) = 4m

π

[
α

2
− sin 2α

4
+ δ cos α

]

which, on substituting for δ, gives the result

N(a) = m

π
(2α + sin 2α) (18.20)
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Slope m

–mδ

mδ

α π θ0 0

FIGURE 18.2 Saturation nonlinearity.

Because, for a < δ, the characteristic is linear, giving N(a) = m, the DF for ideal saturation is mNs (δ/a)
where

Ns(δ/a) =
⎧⎨
⎩

1, for a < δ and
1

π
(2α + sin 2α), for a > δ

(18.21)

where α = sin−1 δ/a.
Alternatively, one can evaluate N(a) from Equation 18.17, yielding

N(a) = a1

a
=
(

4

a2π

)∫ δ

0
m(a2 − x2)1/2dx

Using the substitution x = a sin θ,

N(a) = 4m

π

∫ α

0
cos2 θ dθ = m

π
(2α + sin 2α)

as before for a > δ.

18.1.3.3 Relay with Dead Zone and Hysteresis

The characteristic is shown in Figure 18.3 together with the input, assumed to be equal to a cos θ, and the
corresponding output waveform.

Using Equations 18.3 and 18.4 over the interval −π/2 to π/2 and assuming that the input amplitude
a is greater than δ + Δ,

a1 = 2

π

∫ β

−α

h cos θ dθ

= 2h

π
(sin β + sin α)

where α = cos−1[(δ − Δ)/a] and β = cos−1[(δ + Δ)/a], and

b = 2

π

∫ β

−α

h sin θ dθ

= −2h

π

(
(δ + Δ)

a
− (δ − Δ)

a

)
= 4hΔ

aπ
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h

v w
–π/2

–π/2

0

π/2 a cos θ

v = δ – Δ

w = δ + Δ

π/2

β θ–α 0

θ

FIGURE 18.3 Relay with dead zone and hysteresis.

Thus

N(a) = 2h

a2π

{[
a2 − (δ + Δ)2

]1/2 +
[

a2 − (δ − Δ)2
]1/2

}
− j4hΔ

a2π
(18.22)

For the alternative approach, one must first obtain the in-phase and quadrature nonlinearities shown
in Figure 18.4. Functions np(x) and nq(x) for the relay of Figure 18.3. Using Equations 18.12 and 18.13,

a1 = 4

a

∫ δ+Δ

δ−Δ

x
h

2
p(x) dx +

∫ a

δ+Δ

xhp(x) dx

= 2h

aπ

{[
a2 − (δ + Δ)2

]1/2 +
[

a2 − (δ − Δ)2
]1/2

}

and

b = 4

aπ

∫ δ+Δ

d−Δ

(
h

2

)
dx = 4hΔ

aπ
= Area of nonlinearity loop

aπ

as before.
The DF of two nonlinearities in parallel equals the sum of their individual DFs, a result very useful

for determining DFs, particularly of linear segmented characteristics with multiple break points. Several

w

h

v = δ – Δ
w = δ + Δ

h/2
h/2

np(x) nq(x)

wv xv x

FIGURE 18.4 Functions n(x)
p and n(x)

q for the relay of Figure 18.3.
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TABLE 18.1 DFs of Single-Valued Nonlinearities

a < δ Np = 0

(2M + 1) δ > a > (2M – 1)δ

n = (2m – 1)/2

h1 = h2 = … h
δm =  (2m – 1)δ/2

Uniform quantizer

Np = (4h/a2π)   Σ   (a2 – n2δ2)1/2
M

m = 1

General quantizer a < δ1

δM + 1 > a > δM

Np = 0

Np = (4/a2π)   Σ   hm(a2 – δm
2)1/2

h1

δ1 δ2 δ3 δ4

h2
h3

h4
M

m = 1

Np = 0a < δ

a > δh

δ

Relay with dead zone

Np = 4h(a2 – δ2)1/2/a2π

h

Ideal relay Np = 4h/aπ

h m

Preload Np = (4h/aπ) + m

a < δ1

δM + 1 > a > δM

δ1 δ2 δ3

m1
h m2

m3
m4

General piecewise linear Np = (4h/aπ) + m1

Np = (4h/aπ) + mM + 1

+ Σ   (mj – mj + 1)Ns(δj /a)
M

j = 1

mδ

δ

Ideal saturation Np = mNs(δ/a)

m

δ

Dead zone Np = m[1 – Ns(δ/a)]

Gain changing nonlinearity

m2
m1

δ

Np = (m1 – m2)Ns(δ/a) + m2

continued
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TABLE 18.1 (continued) DFs of Single-Valued Nonlinearities

y = xm

Np = Γ(m + 1)am – 1

2m – 1 Γ[3 + m)/2]Γ [(1 + m)/2]
m > –2 Γ is the gamma function

= Γ(m + 2)/2]am – 1

Γ[(m + 3)/2]
2
π

δ
m1

Np = m1

Np = (m1Ns(δ/a) – 4m1δ(a2 + δ2)1/2/a2π

a < δ

a > δ

Limited field of view

Np = (m1 + m2)Ns(δ/a)
         – m2Ns[(m1 + m2)δ/m2a]

δ
m1

–m2

Np = 4h/aπ

Np = 4h/[a – (a2 – δ2)1/2]/a2π

a < δ

a > δδ

h

Np = (m1 – m2)Ns(δ/a) + m2
         + 4h(a2 – δ2)1/2/a2π

Np = m1a < δ

a > δ
δ

m1

m2h

δ

h m

Np = 4h(a2 – δ2)1/2/a2π + m – mNs(δ/a)

Np = 0a < δ

a > δ

Np = –m1Ns(δ1/a) + (m1 – m2)Ns(δ2/a)
+m2

δ1 δ2

m2
m1

Saturation with dead zone

m
δ1 δ2

Np = m[Ns(δ2/a) – Ns(δ1/a)]

procedures [1] are available for approximating the DF of a given nonlinearity either by numerical inte-
gration or by evaluating the DF of an approximating nonlinear characteristic defined, for example, by a
quantized characteristic, linear segmented characteristic, or Fourier series. Table 18.1 gives a list of DFs
for some commonly used approximations of nonlinear elements. Several of the results are in terms of the
DF for an ideal saturation characteristic of unit slope, Ns(δ/a), defined in Equation 18.21.

18.1.4 Limit Cycles and Stability

To investigate the possibility of a limit cycle in the autonomous closed-loop system of Figure 18.1, the
input to the nonlinearity n(x) is assumed to be a sinusoid so that it can be replaced by the amplitude-
dependent DF gain N(a). The open-loop gain to a sinusoid is thus N(a)G(jω) and, therefore, a limit cycle
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exists if
N(a)G(jω) = −1 (18.23)

where G( jω) = Gc( jω)G1( jω). As in general, G( jω) is a complex function of ω and N(a) is a complex
function of a, solving Equation 18.23 will yield both the frequency ω and the amplitude a of a possible
limit cycle.

Various procedures can be used to examine Equation 18.23; the choice is affected to some extent by
the problem, for example, whether the nonlinearity is single valued or double valued or whether G(jω)
is available from a transfer function G(s) or as measured frequency response data. Usually the functions
G(jω) and N(a) are plotted separately on Bode or Nyquist diagrams, or Nichols charts. Alternatively,
stability criteria (e.g., the Hurwitz-Routh) or root locus plots may be used with the characteristic equation

1 + N(a)G(s) = 0 (18.24)

although the equation is appropriate only for s ≈ jω.
Figure 18.5 illustrates the procedure on a Nyquist diagram, where the G(jω) and C(a) = −1/N(a) loci

are plotted intersecting for a = a0 and ω = ω0. The DF method indicates therefore that the system has
a limit cycle with the input sinusoid to the nonlinearity, x, equal to a0 sin (ω0t + φ), where φ depends
on the initial conditions. When the G(jω) and C(a) loci do not intersect, the DF method predicts that no
limit cycle will exist if the Nyquist stability criterion is satisfied for G(jω) with respect to any point on the
C(a) locus. Obviously, if the nonlinearity has unit gain for small inputs, the point (−1, j0) will lie on C(a)
and may be used as the critical point, analogous to a linear system.

For a stable case, it is possible to use the gain and phase margin to judge the relative stability of the
system. However, a gain and phase margin can be found for every amplitude a on the C(a) locus, so it is
usually appropriate to use the minimum values of the quantities [1]. When the nonlinear block includes
dynamics so that its response is both amplitude and frequency dependent, then it may be represented by
an amplitude- and frequency-dependent DF N(a, ω), and a limit cycle will exist if

G(jω) = −1/N(a, ω) = C(a, ω) (18.25)

G( jω)

C(a) a0

ω0

Im

Re

FIGURE 18.5 Nyquist plot showing solution for a limit cycle.
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To check for possible solutions of this equation, a family of C(a,ω) loci, usually as functions of a for
fixed values of ω, is drawn on the Nyquist diagram.

When a solution to Equation 18.23 exists, an additional point of interest is whether the predicted limit
cycle is stable. This is important if the control system is designed to have a limit cycle operation, as in
an on–off temperature control system. It may also be important in other systems, because, if an unstable
limit cycle condition is obtained, the signal amplitudes will not become bounded but continue to grow.
Provided that only one possible limit cycle solution is predicted by the DF method, the stability of the limit
cycle can be assessed by applying the Nyquist stability criterion to points on the C(a) locus on both sides
of the solution point. For this perturbation approach, usually known as the Loeb criterion, if the stability
criterion indicates instability (stability) for the point on C(a) with a < a0 and stability (instability) for the
point on C(a) with a > a0, the limit cycle is stable (unstable).

When multiple solutions exist, the situation is more complicated and the Loeb criterion is a necessary
but not sufficient result for the stability of the limit cycle [3].

Normally in these cases, the stability of the limit cycle can be ascertained by examining the roots of the
characteristic equation

1 + Niγ(a)G(s) = 0 (18.26)

where Niγ(a) is known as the incremental describing function (IDF) and is the gain to an unrelated
small signal in the presence of the sinusoid of amplitude a. Niγ(a) for a single-valued nonlinearity can be
evaluated from

Niγ(a) =
∫ a

−a
n′(x)p(x) dx (18.27)

where n′(x) and p(x) are as previously defined. Niγ(a) is related to N(a) by the equation

Niγ(a) = N(a) + (a/2) dN(a)/da (18.28)

Thus, for example, for an ideal relay, taking δ = Δ = 0 in Equation 18.22 gives N(a) = 4h/aπ, which
may also be found directly from Equation 18.17, and, substituting this value in Equation 18.28, yields
Niγ(a) = 2h/aπ. Some examples of feedback system analysis using the DF follow.

18.1.4.1 Autotuning in Process Control

In 1943, Ziegler and Nichols [4] suggested a technique for tuning the parameters of a PID controller.
Their method was based on testing the plant in a closed loop with the PID controller in the proportional
mode. The proportional gain was increased until the loop started to oscillate and then the value of gain
and the oscillation frequency were measured. Formulae were given for setting the controller parameters
based on the gain named the critical gain, Kc , and the frequency called the critical frequency, ωc .

Assuming that the plant has a linear transfer function G1(s), then Kc is its gain margin and ωc the
frequency at which its phase shift is 180◦. Performing this test in practice may prove difficult. Even if the
plant has a linear transfer function, which is very unlikely, and the gain is adjusted too quickly, a large
amplitude oscillation may start to build up. In 1984 Astrom and Hagglund [5] suggested replacing the
proportional control by a relay element to control the amplitude of the oscillation. Consider therefore the
feedback loop of Figure 18.1 with n(x) a relay with hysteresis Δ, Gc(s) = 1, and the plant with a transfer
function G1(s) = 10/(s + 1)3. The C(a) locus, −1/N(a), in Equation 18.33 is a line parallel to the negative
real axis and at a distance πΔ/4h below it, as illustrated in Figure 18.6, which also shows the Nyquist locus
of G(jω). For the ideal relay, Δ = 0; so C(a) lies on the negative real axis and is given by C(a) = −aπ/4h.
The values of a and ω at the intersection can be calculated from

−aπ/4h = 10

(1 + jω)3 (18.29)

which can be written as

Arg

(
10

(1 + jω)3

)
= 180◦ (18.30)
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C(a)

G( jω)

FIGURE 18.6 Nyquist plot for 10/(s+1)3 and C(a) locus for relay with hysteresis.

and
aπ

4h
= 10

(1 + ω2)3/2
(18.31)

The solution for ωc from Equation 18.30 is tan−1 ωc = 60◦, where ωc = √
3. Because the DF solution is

approximate, the actual measured frequency of oscillation will differ from this value by an amount which
will be smaller the closer the oscillation is to a sinusoid. The exact frequency of oscillation in this case is
1.708 rad/s, which is in error by a relatively small amount. For a square wave input to the plant at this
frequency, the plant output signal will be distorted by a small percentage. The distortion, d, is defined by

d =
[

M.S. value of signal − M.S. value of fundamental harmonic

M.S. value of fundamental harmonic

]1/2

(18.32)

Solving Equation 18.31 gives the amplitude of oscillation a as 5h/π. The gain through the relay is N(a)
equal to the critical gain Kc . In the practical situation where a is measured, typically taken as the peak
value of the limit cycle although strictly it should be the amplitude of the fundamental component, Kc is
then calculated from 4h/aπ. Its value should be close to the known value of 0.8 for this transfer function
as the distortion in the limit cycle is quite small.

If the relay has an hysteresis of Δ, then from Equation 18.22

N(a) = 4h(a2 − Δ2)1/2

a2π
− j

4hΔ

a2π

from which

C(a) = −1

N(a)
= −π

4h

[
(a2 − Δ2)1/2 + jΔ

]
(18.33)

Taking Δ = 1 and h = π/4 gives C(a) = −(a2 − 1)1/2 − j. If the same transfer function is used for the
plant, then the limit cycle solution is given by

−(a2 − 1)1/2 − j = 10

(1 + jω)3
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n(x)

δ

h

1 a/δ

N(a)

x

FIGURE 18.7 N(a) for ideal relay with dead zone.

where ω = 1.266, which compares with an exact solution value of 1.254, and a = 1.91. For the oscillation
with the ideal relay, Equation 18.26 with Niγ(a) = 2h/aπ shows that the limit cycle is stable. This agrees
with the perturbation approach which also shows that the limit cycle is stable when the relay has hysteresis.

18.1.4.2 Feedback Loop with a Relay with Dead Zone

For this example, the feedback loop of Figure 18.1 is considered with n(x) a relay with dead zone and
G(s) = 2/s (s + 1)2. From Equation 18.22, with Δ = 0, the DF for this relay is given by

N(a) = 4h(a2 − δ2)1/2

a2π
for a > δ (18.34)

and is real, because the nonlinearity is single valued. A graph of N(a) against a is given in Figure 18.7, and
shows that N(a) starts at zero, when a = δ, increases to a maximum, with a value of 2h/πδ at a = δ

√
2, and

then decreases toward zero for larger inputs. The C(a) locus, shown in Figure 18.8, lies on the negative real
axis starting at −∞ and returning there after reaching a maximum value of −πδ/2h. The given transfer
function G( jω) crosses the negative real axis, as shown in Figure 18.8, at a frequency of tan−1 ω = 45◦,
that is, ω = 1 rad/s and, therefore, cuts the C(a) locus twice. The two possible limit cycle amplitudes at

a1

a2

G( jω)

–πδ/2h

Im

Re
C(a)

FIGURE 18.8 Two limit cycles: a1, unstable; a2, stable.
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this frequency can be found by solving

a2π

4h(a2 − δ2)1/2
= 1

which gives a = 1.04 and 3.86 for δ = 1 and h = π. Using the perturbation method or the IDF criterion,
the smallest amplitude limit cycle is unstable and the larger one is stable. If a condition similar to the
lower amplitude limit cycle is excited in the system, an oscillation will build up and stabilize at the
higher-amplitude limit cycle.

Other techniques, see Section 18.1.8, show that the exact frequencies of the limit cycles for the smaller
and larger amplitudes are 0.709 and 0.989, respectively. Although the transfer function is a good low-pass
filter, the frequency of the smallest amplitude limit cycle is not predicted accurately, because the output
from the relay, a waveform with narrow pulses, is highly distorted.

If the transfer function of G(s) is K/s(s + 1)2, then no limit cycle will exist in the feedback loop, and it
will be stable if

K

ω(1 + ω2)

∣∣∣∣
ω=1

<
πδ

2h

that is, K < πδ/h. If δ = 1 and h = π, K < 1, which may be compared with the exact result for stability of
K < 0.96.

18.1.4.3 Feedback Loop with a Polynomial Nonlinearity

In this example, the possibility of a limit cycle in a feedback loop with n(x) = x − (x3/6) and G(s) =
K(1 − s)/s(s + 1) is investigated. For the nonlinearity N(a) = 1 − (a2/8), and the C(a) locus starts at −1
on the Nyquist diagram. As a increases, the C(a) locus moves along the negative real axis to −∞ for
a = 2

√
2. For a greater than 2

√
2, the locus returns along the positive real axis from ∞ to the origin

as a becomes large. For small signal levels, N(a) ≈ 1, and an oscillation will start to build up, assuming
that the system is initially at rest with x(t) = 0, only if the feedback loop with G(s) alone is unstable. The
characteristic equation

s2 + s + K − Ks = 0

must have a root with a positive real part, that is, K > 1. The phase of G(jω) = 180◦, when ω = 1, and the
corresponding gain of G( jω) is K . Thus the DF solution for the amplitude of the limit cycle is

|G( jω)|ω=1 = 1

1 − (a2/8)

resulting in

K = 8

(8 − a2)

and
a = 2

√
2[(K − 1)/K]1/2 (18.35)

As K increases, the limit cycle becomes more distorted because of the shape of the nonlinearity. For
example, if K = 2.4, the DF solution gives ω = 1 and a = 2.10. If four harmonics are balanced [1], the
limit cycle frequency is 0.719 and the amplitudes of the fundamental, third, fifth, and seventh harmonics
at the input to the nonlinearity are 2.515, 0.467, 0.161, and 0.065, respectively.

Because the DF approach is a method for evaluating limit cycles, it is sometimes argued that it cannot
guarantee the stability of a feedback system, when instability is caused by an unbounded, not oscillatory,
signal in the system. Fortunately, another result is helpful with this problem [6]. This states that, in the
feedback system of Figure 18.1, if the symmetric odd nonlinearity n(x) is such that k1x < n(x) < k2x, for
x >0, and n(x) tends to k3x for large x, where k1 < k3 < k2, then the nonlinear system is either stable or
possesses a limit cycle, provided that the linear system with gain K replacing N is stable for k1 < K < k2.
For this situation, often true in practice, the nonexistence of a limit cycle indicates stability.
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G1( jω)

G2( jω)

–1/k1

–1/k2

Im
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FIGURE 18.9 Circle criterion and stability.

18.1.5 Stability and Accuracy

Because the DF method is an approximate procedure, it is desirable to be able to judge its accuracy.
Predicting that a system will be stable, when in practice it is not, may have unfortunate consequences.
Many attempts have been made to solve this problem, but those obtained are difficult to apply or produce
too conservative results [7].

The problem is illustrated by the system in Figure 18.1 with a symmetrical odd single-valued nonlinear-
ity confined to a sector between lines of slope k1 and k2, that is, k1x < n(x) < k2x for x > 0. For absolute
stability, the circle criterion essentially requires satisfying the Nyquist criterion for the locus G(jω) for all
points within a circle having its diameter on the negative real axis of the Nyquist diagram between the
points (−1/k1, 0) and (−1/k2, 0), as shown in Figure 18.9. On the other hand, because the DF for this
nonlinearity lies within the diameter of the circle, the DF method requires satisfying the Nyquist criterion
for G(jω) for all points on the circle diameter, if the autonomous system is to be stable.

Therefore, for a limit cycle in the system of Figure 18.1, errors in the DF method relate to its inability
to predict a phase shift, which the fundamental harmonic may experience in passing through the nonlin-
earity, rather than an incorrect magnitude of the gain. When the input to a single-valued nonlinearity is
a sinusoid together with some of its harmonics, the fundamental output is not necessarily in phase with
the fundamental input, that is, the fundamental gain has a phase shift. The actual phase shift varies with
the harmonic content of the input signal in a complex manner, because the phase shift depends on the
amplitudes and phases of the individual input harmonic components.

From an engineering viewpoint, one can judge the accuracy of DF results by estimating the distortion,
d, in the input to the nonlinearity. This is straightforward when a limit cycle solution is given by the
DF method; the loop may be considered opened at the nonlinearity input, the sinusoidal signal corre-
sponding to the DF solution can be applied to the nonlinearity, and the harmonic content of the signal
fed back to the nonlinearity input can be calculated. Experience indicates that the percentage accuracy
of the DF method in predicting the fundamental amplitude and frequency of the limit cycle is less than
the percentage distortion in the fed back signal. In the previous section, the frequency of oscillation in
the autotuning example, where the distortion was relatively small, was given more accurately than in the
third example. Due to the relatively poor filtering of the plant in this example, the distortion in the fed
back signal was much higher. As mentioned previously, the DF method may incorrectly predict stability.
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To investigate this problem, the procedure above can be used again, by taking, as the nonlinearity input,
a sinusoid with amplitude and frequency corresponding to values of those parameters where the phase
margin is small. If the distortion calculated for the fed back signal is high, say greater than 2% per degree
of phase margin, the DF result should not be relied on.

The limit cycle amplitude predicted by the DF is an approximation to the fundamental harmonic.
Use of the peak value of a distorted limit cycle for the fundamental amplitude is clearly therefore not
appropriate for assessing the DF accuracy. It is possible to estimate the limit cycle more accurately by
balancing more harmonics, as mentioned earlier. Although this is difficult algebraically, other than with
loops where the nonlinearity has a simple mathematical description, for example, a cubic, software has
been written for this purpose [8]. The procedure involves solving sets of nonlinear algebraic equations
but good starting guesses can usually be obtained for the magnitudes and phases of the other harmonic
components from the waveform fed back to the nonlinearity, assuming its input is the DF solution. This
procedure was used to balance four harmonics to obtain the better solution given for the distorted limit
cycle in example 3 of the previous section.

18.1.6 Compensator Design

Although the design specifications for a control system are often in terms of step-response behavior,
frequency-domain design methods rely on the premise that the correlation between a frequency response
and a step response is such that a less oscillatory step response is obtained if the gain and phase margins
are increased. Therefore, the design of a suitable linear compensator for the system of Figure 18.1 using
the DF method is usually done by selecting, for example, a lead network to provide adequate gain and
phase margins for all amplitudes. This approach may be used in example 2 of the previous section where
a phase lead network could be added to stabilize the system, say for a gain of 1.5, for which it is unstable
without compensation. Other approaches are the use of additional feedback signals or modification of
the nonlinearity n(x) directly or indirectly [1,9].

When the plant is nonlinear, its frequency response also depends on the input sinusoidal amplitude;
hence, it can be represented as G(jω, a) or N(a, ω) as mentioned in Section 18.1.4. In recent years, several
approaches [10,11] use the DF method to design a nonlinear compensator for the plant, with the objective
of producing closed-loop performance approximately independent of the input amplitude.

18.1.7 Closed-Loop Frequency Response

When the closed-loop system shown in Figure 18.1 has a sinusoidal input r(t) = R sin(ωt + θ), it is possible
to evaluate the closed-loop frequency response using the DF. If the feedback loop has no limit cycle when
r(t) = 0 and, in addition, the sinusoidal input r(t) does not induce a limit cycle, then, provided that
Gc(s)G1(s) gives good filtering, x(t), the nonlinearity input, almost equals the sinusoid a sin ωt. Balancing
the components of frequency ω around the loop,

gcR sin(ωt + θ + φc) − ag1gcM(a)

sin[ωt + φ1 + φc + Ψ(a)] = a sin ωt (18.36)

where Gc(jω) = gcejφc and G1(jω) = g1ejφ1. In principle, Equation 18.36, which can be written as two
nonlinear algebraic equations, can be solved for the two unknowns a and θ and the fundamental output
signal can then be found from

c(t) = aM(a)g1 sin[ωt + Ψ(a) + φ1] (18.37)

to obtain the closed-loop frequency response for R and ω.
Various graphical procedures have been proposed for solving the two nonlinear algebraic equations

resulting from Equation 18.36 [12–14]. If the system is lightly damped, the nonlinear equations may have
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more than one solution, indicating that the frequency response of the system has a jump resonance. This
phenomenon of a nonlinear system has been studied by many authors, both theoretically and practically
[15,16].

18.1.8 Limit Cycles in Relay Systems

The examples presented in Sections 18.1.4.1 and 18.1.4.2 contained relay nonlinearities and accurate
values for the limit cycle frequencies were given for comparison with the DF results. Exact methods
[17–21] are available for evaluating limit cycles, and also their stability, in systems with a relay element.
The reason for this is that the relay is a unique form of nonlinearity in that the output does not depend
continuously on the input, as between switches the input has no control of the output.

The approach used to obtain a limit cycle solution is to start with an assumed relay output wave-
form. For the simplest case, namely an on–off relay operating symmetrically, the output will be a
symmetrical periodic square wave. The waveform that this produces when passed through a trans-
fer function G(s) can be calculated by any one of the three methods mentioned below. One, due to
Tsypkin [17], is to use a Fourier series representation for the square wave and then combine the
individual harmonics at the output, which can be obtained in a closed-form expression. Alterna-
tively, one can sum a limited number of harmonics and if the first only is used, the DF solution is
obtained. The second is to use a Laplace transform approach, as done by Hamel [18], and the third
is to use a state-space formulation as introduced by Chung [19]. If this output of G(s) is the signal
fed back through −1 to the relay, then for the assumed square wave to exist the signal must pass
through zero, if the relay is ideal, with the correct slope, to switch it at the correct time to generate
the assumed relay output square wave. This switching condition yields a nonlinear algebraic equation
which can be solved for the limit cycle frequency, which is the only unknown. The solution is best
obtained using computational methods [22] so that the actual waveform at the relay input can also be
shown. This is important, because the solution will only be valid provided it does not pass through
the switching level at other time instants, which can happen for some G(s), for example, if G(s) has a
resonance.

If the relay has a dead zone and a symmetrical odd limit cycle is considered, then there will be two
switching conditions, one for the relay switching on from zero and the other for the relay switching off.
The resulting two nonlinear algebraic equations yield the two unknowns, namely the limit cycle frequency
and the pulse width of the relay output. With software solving the switching equations and showing the
resultant limit cycle waveform, it is possible to extend the approach to cover quite complex limit cycles
in relay systems. Studies [22–27] have included limit cycles with multiple pulses per period, limit cycles
in multivariable systems, and limit cycles with sliding. Forced oscillations in relay systems, including
situations resulting in multiple pulses per period, have also been studied [22].

Further Information

Many control engineering textbooks contain material on nonlinear systems where the DF is discussed.
The coverage, however, is usually restricted to the basic sinusoidal DF for determining limit cycles in
feedback systems. The basic DF method, which is one of quasilinearization, can be extended to cover
other signals, such as random signals, and also to cover multiple input signals to nonlinearities. These
descriptions are required to investigate phenomena such as subharmonic resonance, synchronization of
a loop limit cycle with an external signal, and other unique phenomena that may occur in a nonlinear
feedback loop. The two books with the most comprehensive coverage of this are Gelb and van der Velde
[9] and Atherton [28]. More specialized books on nonlinear feedback systems usually cover the phase
plane method, the subject of the next article, and the DF together with other topics such as absolute
stability, exact linearization, and so on.



�

�

�

�

� �

Analysis Methods 18-17

References

1. Atherton, D.P., Non Linear Control Engineering, Student Ed., Van Nostrand Reinhold, New York, 1982.
2. Cook, P.A., Describing function for a sector nonlinearity, Proc. Inst. Electr. Eng., 120, 143–44, 1973.
3. Choudhury, S.K. and Atherton, D.P., Limit cycles in high order nonlinear systems, Proc. Inst. Electr.

Eng., 121, 717–24, 1974.
4. Ziegler, J.G. and Nichols, N.B., Optimal setting for automatic controllers, Trans. ASME, 65, 433–44,

1943.
5. Astrom, K.J. and Haggland, T., Automatic tuning of single regulators, in IFAC Congress, pp. 267–72,

Budapest, Vol 4, 1984.
6. Vogt, W.G. and George, J.H., On Aizerman’s conjecture and boundedness, IEEE Trans. Autom. Control,

12, 338–39, 1967.
7. Mees, A.I. and Bergen, A.R., Describing function revisited, IEEE Trans. Autom. Control, 20, 473–78,

1975.
8. McNamara, O.P. and Atherton, D.P., Limit cycle prediction in free structured nonlinear systems, IFAC

Congress, Munich, Vol. 8, 23–8, July 1987.
9. Gelb, A. and van der Velde, W.E., Multiple Input Describing Functions and Nonlinear Systems Design,

McGraw-Hill, New York, 1968.
10. Nanka-Bruce, O. and Atherton, D.P., Design of nonlinear controllers for nonlinear plants, IFAC

Congress, Tallinn, Vol. 6, 75–80, 1990.
11. Taylor, J.H. and Strobel, K.L., Applications of a nonlinear controller design approach based on the

quasilinear system models, Proc ACC, San Diego, 817–24, 1984.
12. Levinson, E., Some saturation phenomena in servo-mechanisms with emphasis on the techometer

stabilised system, Trans. Am. Inst. Electr. Eng., Part 2, 72, 1–9, 1953.
13. Singh, T.P., Graphical method for finding the closed loop frequency response of nonlinear feedback

control systems, Proc. Inst. Electr. Eng., 112, 2167–70, 1965.
14. West, J.C. and Douce, J.L., The frequency response of a certain class of nonlinear feedback systems,

Br. J. Appl. Phys., 5, 201–10, 1954.
15. Lamba, S.S. and Kavanagh, R.J., The phenomenon of isolated jump resonance and its applications, Proc.

Inst. Electr. Eng., 118, 1047–50, 1971.
16. West, J.C., Jayawant, B.V., and Rea, D.P., Transition characteristics of the jump phenomenon in non-

linear resonant circuits, Proc. Inst. Electr. Eng., 114, 381–92, 1967.
17. Hamel B, Etude Mathematique des Systemes a plusieurs Degrees de Liberte Decrits par des Equations

Lineaires avec un Terme de Commande Discontinu, Proc. Journees d’Etude des Vibrations, AERA, Paris,
1950.

18. Tsypkin Ya, Z., Relay Control Systems, Cambridge University Press, Cambridge, England, 1984. (English
version of a much earlier Russian edition.)

19. Chung, J.K.-C. and Atherton, D.P.,The determination of periodic modes in relay systems using the state
space approach, Int. J. Control, 4, 105–26, 1966.

20. Willems, J.L., Stability Theory of Dynamical Systems, 112–13, Nelson, London, 1970.
21. Balasubramanian, R., Stability of limit cycles in feedback systems containing a relay, IEE Proc. D Control

Theory Appl., 128, 24–9, 1981.
22. Wadey, M., Extensions of Tsypkin’s Method for Computer Aided Control System Design, DPhil Thesis,

University of Sussex, England, 1984.
23. Atherton, D.P. and Wadey, M.D., Computer aided analysis and design of relay systems, IFAC Symposium

on CAD of MV Tech. Systems, 355–60, Purdue, USA, September 15–7, 1982.
24. Atherton, D.P, Conditions for Periodicity in Control Systems Containing Several Relays, Paper 28E, 3rd

IFAC Congress, London, 16pp., June 1966,
25. Atherton, D.P., Oscillations in relay systems, Trans. InstMC, 3(4), 171–84, 1982.
26. Atherton, D.P., Analysis and design of relay control systems. CAD for Control Systems, Chapter 15,

367–94, Marcel Dekker, New York, NY, 1993.
27. Rao, U.M. and Atherton, D.P., Multi-Pulse Oscillations in Relay Systems. Proc. 7th IFAC World Congress,

Helsinki, Vol. 3, Paper No. 42.4, pp. 1747–54, 1978.
28. Atherton, D.P., Nonlinear Control Engineering, Describing Function Analysis and Design, Van Nostrand

Reinhold, London, 1975.



�

�

�

�

� �

18-18 Control System Fundamentals

18.2 The Phase Plane Method

18.2.1 Introduction

The phase plane method was the first method used by control engineers for studying the effects of
nonlinearity in feedback systems. The technique which can only be used for systems with second-order
models was examined and further developed for control engineering purposes for several major reasons.

1. The phase plane approach had been used for several studies of second-order nonlinear differential
equations arising in fields such as planetary motion, nonlinear mechanics, and oscillations in
vacuum tube circuits.

2. Many of the control systems of interest, such as servomechanisms, could be approximated by
second order nonlinear differential equations.

3. The phase plane was particularly appropriate for dealing with nonlinearities with linear segmented
characteristics which were good approximations for the nonlinear phenomena encountered in
control systems.

The next section considers the basic aspects of the phase plane approach but later concentration
is focused on control engineering applications where the nonlinear effects are approximated by linear
segmented nonlinearities.

18.2.2 Background

Early analytical work [1], on second-order models assumed the equations

ẋ1 = P(x1, x2)

ẋ2 = Q(x1, x2) (18.38)

for two first-order nonlinear differential equations. Equilibrium, or singular points, occur when

ẋ1 = ẋ2 = 0

and the slope of any solution curve, or trajectory, in the x1 − x2 state plane is

dx2

dx1
= ẋ2

ẋ1
= Q(x1, x2)

P(x1, x2)
(18.39)

A second-order nonlinear differential equation representing a control system can be written

ẍ + f (x, ẋ) = 0

If this is rearranged as two first-order equations, choosing the phase variables as the state variables, that
is x1 = x, x2 = ẋ, then Equation 18.2.2 can be written as

ẋ1 = x2 ẋ2 = −f (x1, x2) (18.40)

which is a special case of Equation 18.39. A variety of procedures has been proposed for sketching state
[phase] plane trajectories for Equations 18.39 and 18.40. A complete plot showing trajectory motions
throughout the entire state (phase) plane is known as a state (phase) portrait. Knowledge of these methods,
despite the improvements in computation since they were originally proposed, can be particularly helpful
for obtaining an appreciation of the system behavior. When simulation studies are undertaken, phase
plane graphs are easily obtained and they are often more helpful for understanding the system behavior
than displays of the variables x1 and x2 against time.
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The step response of the second-order linear system is discussed in section 8.1.8 and Figure 8.4 shows
the unit step response against the normalized time ωnt for various values of the damping ratio ζ. For no
input the equation with ωn taken as unity is ẍ + 2ζẋ + x = 0 and in state space form it can be written as

ẋ1 = x2 ẋ2 = −x1 − 2ζx2. (18.41)

The response to a unit step can be shown in a phase plane, where the final rest, or equilibrium position,
will be the origin by using the initial condition of (−1, 0). For no damping, that is ζ = 0, the plot will be
a circle about the origin, which is called a center and for 0 < ζ < 1 the trajectory spirals into the origin,
which is known as a focus. For ζ ≥ 1 the trajectory moves to the origin, which is now called a node,
without overshoot.

Many investigations using the phase plane technique were concerned with the possibility of limit cycles
in the nonlinear differential equations. When a limit cycle exists, this results in a closed trajectory in the
phase plane. Typical of such investigations was the work of Van der Pol, who considered the equation

ẍ − μ(1 − x2)ẋ + x = 0 (18.42)

where μ is a positive constant. The phase plane form of this equation can be written as

ẋ1 = x2

ẋ2 = −f (x1, x2) = μ(1 − x2
1)x2 − x1 (18.43)

The slope of a trajectory in the phase plane is

dx2

dx1
= ẋ2

ẋ1
= μ(1 − x2

1)x2 − x1

x2
(18.44)

and this is only singular (that is, at an equilibrium point), when the right-hand side of Equation 18.44 is
0/0, that is x1 = x2 = 0.

The form of this singular point which is obtained from linearization of the equation at the origin
depends upon μ, being an unstable focus for μ < 2 and an unstable node for μ > 2. All phase plane
trajectories have a slope of r when they intersect the curve

rx2 = μ(1 − x2
1)x2 − x1 (18.45)

One way of sketching phase plane behavior is to draw a set of curves given for various values of r by
Equation 18.45 and marking the trajectory slope r on the curves. This procedure is known as the method
of isoclines and has been used to obtain the limit cycles shown in Figure 18.10 for the Van der Pol equation
with μ = 0.2 and 4.

18.2.3 Piecewise Linear Characteristics

When the nonlinear elements occurring in a second-order model can be approximated by linear seg-
mented characteristics then the phase plane approach is usually easy to use because the nonlinearities
divide the phase plane into various regions within which the motion may be described by different linear
second-order equations [2]. The procedure is illustrated by the simple relay system in Figure 18.11.

The block diagram represents an “ideal” relay position control system with velocity feedback. The plant
is a double integrator, ignoring viscous (linear) friction, hysteresis in the relay, or backlash in the gearing.
If the system output is denoted by x1 and its derivative by x2, then the relay switches when −x1 − x2 = ±1;
the equations of the dotted lines are marked switching lines on Figure 18.12.
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FIGURE 18.10 Phase portraits of the Van der Pol equation for two values of μ. (a) μ = 0.2; (b) μ = 5.0.

Because the relay output provides constant values of ±2 and 0 to the double integrator plant, if the
constant value is denoted by h, then the state equations for the motion are

ẋ1 = x2

ẋ2 = h (18.46)

which can be solved to give the phase plane equation

x2
2 − x2

20 = 2h(x1 − x10) (18.47)

s + 1

–2–

+I/P
–1 1

2 O/P5
2s2

FIGURE 18.11 Relay system.
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FIGURE 18.12 Phase plane for relay system.

which is a parabola for h finite and the straight line x2 = x20 for h = 0, where x20 and x10 are the initial
values of x2 and x1. Similarly, more complex equations can be derived for other second-order transfer
functions. Using Equation 18.47 with the appropriate values of h for the three regions in the phase plane,
the step response for an input of 4.6 units can be obtained as shown in Figure 18.12.

In the step response, when the trajectory meets the switching line x1 + x2 = −1 for the second time,
trajectory motions at both sides of the line are directed toward it, resulting in a sliding motion down the
switching line. Completing the phase portrait by drawing responses from other initial conditions shows
that the autonomous system is stable and also that all responses will finally slide down a switching line to
equilibrium at x1 = ±1.

An advantage of the phase plane method is that it can be used for systems with more than one
nonlinearity and for those situations where parameters change as functions of the phase variables. For
example, Figure 18.13 shows the block diagram of an approximate model of a servomechanism with
nonlinear effects due to torque saturation and Coulomb friction.

The differential equation of motion in phase variable form is

ẋ2 = fs(−x1) − (1/2) sgn x2 (18.48)

where fs denotes the saturation nonlinearity and sgn the signum function, which is +1 for x2 > 0 and
−1 for x2 < 0. There are six linear differential equations describing the motion in different regions of the

Output
position

1/2

–2

–2

2

2

–1/2 o

– –

+ +i/p

0
1
s

1
s

FIGURE 18.13 Block diagram of servomechanism.
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phase plane. For x2 positive, Equation 18.48 can be written

ẍ1 + fs(x1) + 1/2 = 0

so that for

a. x2+ve, x1 < −2, we have ẋ1 = x2, ẋ2 = 3/2, a parabola in the phase plane.
b. x2+ ve |x1| < 2, we have ẋ1 = x2, ẋ2 + x1 + 1/2 = 0, a circle in the phase plane.
c. x2+ve, x1 > 2, we have ẋ1 = x2, ẋ2 = −5/2, a parabola in the phase plane.

Similarly for x2 negative,
d. x2−ve, x1 − 2, we have ẋ1 = x2, ẋ2 = 5/2, a parabola in the phase plane.
e. x2−ve, |x2| < 2, we have ẋ1 = x2, ẋ2 + x1 − 1/2 = 0, a circle in the phase plane.
f. x2−ve,x1 > 2, we have ẋ1 = x2, ẋ2 = −3/2, a parabola in the phase plane.

Because all the phase plane trajectories are described by simple mathematical expressions, it is
straightforward to calculate specific phase plane trajectories.

18.2.4 Discussion

The phase plane approach is useful for understanding the effects of nonlinearity in second-order systems,
particularly if it may be approximated by a linear segmented characteristic. Solutions for the trajectories
with other nonlinear characteristics may not be possible analytically so that approximate sketching tech-
niques were used in early work on nonlinear control. These approaches are described in many books, for
example, [3–10]. Although the trajectories are now easily obtained with modern simulation techniques,
knowledge of the topological aspects of the phase plane are still useful for interpreting the responses in
different regions of the phase plane and appreciating the system behavior.
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19.1 Dealing with Actuator Saturation

R. H. Middleton
19.1.1 Description of Actuator Saturation

Essentially all plants have inputs (or manipulated variables) that are subject to hard limits on the range
(or sometimes also rate) of variations that can be achieved. These limitations may be due to restrictions
deliberately placed on actuators to avoid damage to a system and/or physical limitations on the actuators
themselves. Regardless of the cause, limits that cannot be exceeded invariably exist. When the actuator has
reached such a limit, the actuator is said to be “saturated” since no attempt to further increase the control
input gives any variation in the actual control input. The simplest case of actuator saturation in a control
system is to consider a system that is linear apart from an input saturation as depicted in Figure 19.1.

Mathematically, the action of a saturating actuator can be described as:

ū =
⎧⎨
⎩

umax : u ≥ umax

u : umin < u < umax

umin : umin ≥ u

⎫⎬
⎭

Heuristically, it can be seen that once in saturation, the incremental (or small signal) gain of the actuator
becomes zero. Alternatively, from a describing function viewpoint, a saturation is an example of a sector
nonlinearity with a describing function as illustrated in Figure 19.2.

This describing function gives exactly a range of gains starting at 1 and reducing to zero as amplitude
increases. From both perspectives, actuator saturation can be seen to be equivalent to a nonlinear reduction
in gain.

19-1
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Linear system

G(s)
y(t)u(t) ū(t)

Input

Saturating actuator

FIGURE 19.1 Linear plant model including actuator saturation.

Im

Re
–1

FIGURE 19.2 Describing function for a saturation.

19.1.2 Effects of Actuator Saturation

The main possible effects of actuator saturation on a control system are poor performance and/or
instability to large disturbances. These effects are seen as “large” disturbance effects since for “small”
disturbances, actuator saturation may be averted, and a well-behaved linear response can occur. The
following two examples illustrate the possible effects of actuator saturation.

Example 19.1: Integral Windup

In this example, we consider the control system depicted in Figure 19.3, with umin = −1 and
umax = 1

The simulated response for this system with a step change in the setpoint of 0.4 is illustrated in
Figure 19.4. Note that this step change corresponds to a “small” step where saturation is evident, but only
to a small extent. In this case, the step response is well behaved, with only a small amount of overshoot
occurring.

u y

y

y*
+

–
Σ 6y + 5

s
1
s

ū

FIGURE 19.3 Example control system for saturating actuators.
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In contrast to this, Figure 19.5 shows simulation results for a step change of four units in the set-point.
In this case, note that the response is very poor with large overshoot and undershoot in the response. The
input response shows why this is occurring, where the unsaturated input reaches very large values due to
integral action in the controller. This phenomenon is termed integral (or reset∗) windup.

An even more dramatic effect is shown in Figure 19.6 where an open loop system is strictly unstable.†
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FIGURE 19.5 Response to a large step change.

∗ The term reset is commonly used in the process control industry for integral action.
† The strict sense is that the plant has an open-loop pole with positive real part.
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FIGURE 19.6 Open-loop unstable system with actuator saturation.

Example 19.2: Controller Saturation for an Unstable Plant

In this case (where again we take umin = −1 and umax = 1), a step change in the reference of 0.8
units causes a dramatic failure∗ of the control system as illustrated in Figure 19.7. This instability is
caused solely by saturation of the actuator since, for small step changes, the control system is well
behaved.

19.1.3 Reducing the Effects of Actuator Saturation

The effects of actuator saturation cannot always be completely avoided. However, there are ways of
reducing some of the effects of actuator saturation, as indicated below.

1. Where possible, avoid conditionally stable† control systems. Conditionally stable feedback control
systems are undesirable for several reasons. Included in these reasons is the effect of actuator
saturations. Simple describing function arguments show that the combination of a conditionally
stable control system and a saturating actuator give rise to limit cycle behavior. In most cases, this
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FIGURE 19.7 Actuator saturation causing instability in Example 19.2.

∗ It has been reported (e.g., Stein, G., [1]) that this type of failure was one of the factors that caused the Chernobyl nuclear
disaster (in this case, a limit on the rate of change of the actuator exacerbated an already dangerous situation).

† A conditionally stable control system is one in which a reduction in the loop gain may cause instability.
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limit cycle behavior is unstable. Instability of such a limit cycle generally means that for slightly
larger initial conditions or disturbances, compared with the limit cycle, the output diverges; and,
conversely, for smaller initial conditions, stable convergence to a steady state occurs. This is clearly
undesirable, but cannot always be avoided. Note that a controller for a plant can be designed that
gives unconditional stability if and only if the plant has:
a. No poles with positive real part
b. No purely imaginary poles of repetition greater than 2
Therefore, a plant that is open loop strictly unstable can be only conditionally stabilized.

2. Avoid applying unrealistic reference commands to a control system. Note that in the examples
presented previously, the reference commands were in many cases unrealistic. Take, for example,
the situation shown in Figure 19.5. In this case, an instantaneous change of 4 units is being
commanded. Clearly, however, because of the actuator saturation, the output, y, can never change
by more than 1 unit per second. Therefore, we know that the commanded trajectory can never
be achieved. A more sensible reference signal would be one that ramps up (at a rate of 1 unit
per second) from 0 to 4 units. If this reference were applied instead of the step, a greatly reduced
overshoot, etc. would be obtained. The implementation of this type of idea is often termed a
reference governor or reference conditioner for the system. See, for example, [2] for more details.

3. Utilize saturation feedback to implement the controller. To implement saturation feedback, we note
that any linear controller of the form

U(s) = C(s)E(s) (19.1)

can be rewritten as

U(s) = P(s)

L(s)
E(s) (19.2)

where L(s) = sn + ln−1sk−1 + · · · + lo is a monic polynomial in s, and P(s) = pnsn + pn−1sn−1 +
· · · + po is a polynomial in s. Let the closed-loop poles be at s = −αi ; i = 1 . . . N > n. Then the
controller can be implemented via saturation feedback as shown in Figure 19.8.

In the above implementation E1(s) can, in principle, be any stable monic polynomial of degree
n. The quality of the performance of this anti-integral windup scheme depends on the choice of
E1(s). A simple choice that gives good results in most cases is

E1(s) = (s + αm1)(s + αm2 ) . . . (s + αmn ) (19.3)

where αm1 . . . αmn are the n fastest closed-loop poles. Note that when the actuator is not saturated
we have that U(s) = P(s)

E1(s) E(s) − L(s)−E1(s)
E1(s) U(s) and so U(s)

E(s) = P(s)
L(s) , which is precisely the desired

linear transfer function. When the actuator does saturate, the fact that E1 is stable improves the
controller behavior. The following examples illustrate the advantages of this approach.
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FIGURE 19.8 Controller implementation using saturation feedback.
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FIGURE 19.9 Control system for Example 19.3.

Example 19.3: Anti-Integral Windup (Example 19.1 Revisited)

In this case L(s) = s; P(s) = 6s + 5; and the closed-loop poles are at s = −1 and s = −5. We therefore
choose E1(s) = (s + 5) and obtain the control system structure illustrated in Figure 19.9.

Figure 19.10 compares the performance of this revised arrangement with that of Figure 19.5, showing
excellent performance in this case.

Example 19.4: Improved Control of Unstable Systems (Example 19.2 Revisited)

Let us now consider Example 19.2 again. In this case, P(s) = 7s + 5; L(s) = s and the closed-loop poles
are again at s = −1 and s = −5. This suggests E1(s) = (s + 5) giving the following control system
structure:
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FIGURE 19.10 Response to a large step change for Example 19.3.
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FIGURE 19.11 Controller structure for Example 19.4.
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FIGURE 19.12 Response for Example 19.4.

The comparative step response to Figure 19.7 is given for a slightly larger step (in this case, 1.0
units) in Figure 19.12. Note in this case that previously where instability arose, in this case very good
response is obtained.
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Further Reading

The idea of using saturation feedback to help prevent integral windup (and related phenomena) has
been known for many years now. Astrom and Wittenmark [3] give a description of this and an
interpretation in terms of observer design with nonlinear actuators.

More advanced, constrained optimization-based procedures are the subject of current research by many
authors. Gilbert [4] gives an overview of this area (together with the problem of maintaining system
states within desired constraints).

Another approach that may be useful where actuator saturation is caused by large changes in the
reference signal (as opposed to disturbances or other effects) is that of a reference governor or
reference conditioner. Seron and Goodwin [2] explore this and its relationship with the technique
of saturation feedback. Also, as mentioned previously, it has long been known that strictly unstable
systems with actuator constraints can never be globally stabilized; see, for example, [5] for a recent
look at this problem.

19.2 Bumpless Transfer

Stefan F. Graebe and Anders Ahlén
19.2.1 Introduction

Traditionally, the problem of bumpless transfer refers to the instantaneous switching between manual
and automatic control of a process while retaining a smooth (“bumpless”) control signal. As a simple
example illustrating this issue, we consider a typical start-up procedure.

Example 19.5:

Consider a system with open-loop dynamics

ẋ(t) = −0 2x(t) + 0 2u(t), x(to) = xo

y(t) = x(t)
(19.4)

where u(t) is the control signal and y(t) is a noise-free measurement of the state x(t). With s denoting
the Laplace transform complex variable, we also consider the proportional-integral (PI) controller

C(s) = 2.3
(

1 + 1
4.2s

)

digitally approximated as

X I (t + Δ) = X I (t) + Δ0.547e(t)

uctrl(t) = X I (t) + 2.3e(t)
(19.5)

In Equation 19.5, X I (t) denotes the integrator state of the PI controller, Δ is the sampling period,

e(t)
Δ= r(t) − y(t) is the control error, and uctrl(t) is the control signal generated by the feedback

controller. The reference signal is assumed to have a constant value of r ≡ 4. Then the following
procedure, although simplified for this example, is typical of industrial start-up strategies.
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The system is started from rest, xo = 0, and the control is manually held at uman(t) = 4 until, say at
time t−s , the system output is close to the desired setpoint

y(t−s ) ≈ r = 4

At that point, control is switched to the PI controller for automatic operation. Figure 19.13 illustrates
what happens if the above start-up procedure is applied blindly without bumpless transfer and the
controller state is XI (ts) = 0 at switching time ts = 16. With a manual control of uman(t) = 4, t ∈ [1,2),
the control error at switching time can be computed from Equation 19.4 as

e(t−s ) = y(t−s ) − r(t−s ) = 0.2

Hence, from Equation 19.5, the automatic control at switching time for XI (ts) = 0 yields uctrl(t+s ) = 0.46.
As a result, there is a “bump” in the control signal, u, when switching from manual control, u = uman(t−s ) =
4, to automatic control, u = uctrl(t+s ) = 0.46, and an unacceptable transient follows.

Avoiding transients after switching from manual to automatic control can be viewed as an initial
condition problem on the output of the feedback controller. If the manual control just before switching
is uman(t−s ) = uo

man, then bumpless transfer requires that the automatic controller take that same value as
initial condition on its output, uctrl, so that uctrl(t+s ) = uo

man. By mapping this condition to the controller
states, bumpless transfer can be viewed as a problem of choosing the appropriate initial conditions on the
controller states.

In the case of the PI controller in Equation 19.5, the initial condition on the controller state XI that
yields an arbitrary value uo

man is trivially computed as

XI (t−s ) = uo
man − 2.3e(t−s ) (19.6)
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FIGURE 19.13 Without bumpless transfer mechanism, poor performance occurs at switching from manual to
automatic control at time ts . (Top) Reference signal, r(t), (solid); output, y(t), (dashed). (Bottom) Control signal, u(t).
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FIGURE 19.14 Bumpless transfer from manual to automatic control at switching time ts . (Top) Reference signal,
r(t), (solid); output, y(t), (dashed). (Bottom) Control signal, u(t).

By including Equation 19.6 as initial condition at the switching time on the PI controller in Equation 19.5,
bumpless transfer is achieved as shown in Figure 19.14.

Taking a more general point of view, there are several practical situations that call for strategies that
could be classified as bumpless transfer. We list these and their associated constraints in Section 19.2.2. In
Section 19.2.3, we review a general framework in which bumpless transfer is considered to be a tracking
control problem. Section 19.2.4 presents a number of other techniques and Section 19.2.5 provides a brief
summary.

19.2.2 Applications of Bumpless Transfer

In this section, we present several scenarios that may all be interpreted as bumpless transfer problems.
Since each of theses scenarios is associated with different constraints, they tend to favor different bumpless
transfer techniques.

19.2.2.1 Switching between Manual and Automatic Control

The ability to switch between manual and automatic control while retaining a smooth control signal is
the traditional bumpless transfer problem. Its essence is described in Example 19.5, although the general
case allows arbitrary controller complexity instead of being restricted to PI controllers. This is probably
the simplest bumpless transfer scenario, as it tends to be associated with three favorable factors.

Firstly, the switching scheme is usually designed for a particular feedback loop. Thus, the controller
and its structure are known and can be exploited. If it is a PI controller, for example, the simple strategy
of Section 19.2.1 suffices. Other techniques take advantage of the particular structures of observer-based
controllers [1], internal model controllers (IMC) [3,4], or controllers implemented in incremental form [1].
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Secondly, in contrast to the scenario of Section 19.2.1, manual to automatic switching schemes are
usually implemented in the same process control computer as the controller itself. In that case, the exact
controller state is available to the switching algorithm, which can manipulate it to achieve the state
associated with a smooth transfer. The main challenge is therefore to compute the appropriate state for
higher-order controllers.

Thirdly, switching between manual and automatic controllers usually occurs under fairly benign condi-
tions specifically aimed at aiding a smooth transfer. Many strategies implemented in practice (see Section
19.2.4) are simple, because they implicitly assume constant signals.

19.2.2.2 Filter and Controller Tuning

It is frequently desired to tune filter or controller parameters on-line and in response to experimental
observations.

Example 19.6:

Consider Figure 19.15, which shows the sinusoid

s(t) = 5 sin(0.4πt) + 2

filtered by a filter F1. Until the switching time, the filter is given by

F1(s) = 1
0.5s + 1

Assume that, at time ts ≈ 10, it is desired to retune the time constant of the filter to obtain

F2(s) = 1
2s + 1

Then, merely changing the filter time constant without adjusting the filter state results in the transient
shown in Figure 19.15.
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FIGURE 19.15 Transient produced by changing a filter time constant without adjusting the filter state.
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The scenario of Example 19.6 can be considered as a bumpless transfer problem between two dynamical
systems, F1 and F2. Although these systems have the meaning of filters in Example 19.6, the same
considerations apply, of course, to the retuning of controller parameters.

Assuming that the bumpless transfer algorithm is implemented in the same computer as the filter or
controller to be tuned, this problem amounts to an appropriate adjustment of the state as discussed in
the previous section. The main difference is now that one would like to commence with the tuning even
during transients. Although the general techniques of Sections 19.2.3 and 19.2.4 could be applied to this
case, a simpler scheme, sufficient for low-order filters and controllers, can be derived as follows.

Let the signal produced by the present filter or controller be denoted by u1 and let the retuned filter or
controller be implemented by the state-space model

ẋ(t) = Ax(t) + Be(t)

u2(t) = Cx(t) + De(t)
(19.7)

Bumpless retuning at time ts requires that the state of Equation 19.7 be such that

u2(ts) ≈ u1(ts) (19.8)

and
dku2(t)

dtk

∣∣∣∣∣
t=ts

≈ dku1(t)

dtk

∣∣∣∣∣
t=ts

k = 1, . . . , n (19.9)

for n as large as possible. This ensures that the retuning not only avoids discontinuous jumps, but also
retains smooth derivatives. Substituting Equation 19.7 into Equation 19.8 yields, at time t = ts,

u1 = Cx + De

du1

dt
= CAx + CBe + D

de

dt
d2u1

dt2 = CA2x + CABe + CB
de

dt
+ D

d2e

dt2

...

dn−1u1

dtn−1 = CAn−1x + CAn−2Be + · · · + CB
dn−2e

dtn−2 + D
dn−1e

dtn−1

Hence, assuming that the system in Equation 19.7 is observable and x has dimension n, the observatibility
matrix

O Δ=

⎛
⎜⎜⎜⎜⎜⎝

C
CA
CA2

...
CAn−1

⎞
⎟⎟⎟⎟⎟⎠

is nonsingular and

x = O−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎝

u1
du1

dt
...

dn−1u1

dtn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎝

D
CB

CAB
...

CAn−2B

⎞
⎟⎟⎟⎟⎟⎠

e −

⎛
⎜⎜⎜⎜⎜⎝

0
D

CB
...

CAn−3B

⎞
⎟⎟⎟⎟⎟⎠

de

dt
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
D

CB
...

CAn−4B

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

d2e

dt2 − · · · −

⎛
⎜⎜⎜⎜⎜⎝

0
0
...
0
D

⎞
⎟⎟⎟⎟⎟⎠

dn−1e

dtn−1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(19.10)
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uniquely determines the state, x, that will match the (n − 1) first derivatives of the output of the retuned
system to the corresponding derivatives of the output from the original system. Of course, the state cannot
be computed directly from Equation 19.10, as this would require (n − 1) derivatives of u1 and e, which
could be noisy. A standard technique, however, is to approximate the required derivatives with band-pass
filters as

dke

dtk
≈ L−1

{
sk

emsm + · · · + e1s + 1
E(s)

}

where E(s) denotes the Laplace transform of the control error, L−1 is the inverse Laplace transform, and
[emsm + · · · + e1s + 1], m ≥ n − 1, is an observer polynomial with roots and degree selected to suit the
present noise level. Filters and controllers with on-line tuning interface can easily be augmented with
Equation 19.10 to recompute a new state whenever the parameters are changed by a user.

Clearly, as the order n of Equation 19.7 increases, Equation 19.10 becomes increasingly noise sensitive.
Therefore, it is not the approach we would most recommend, although its simplicity bears a certain
attraction for low-order applications. Our primary reason for including it here is because it captures
the essence of bumpless transfer as being the desire to compute the state of a dynamical system so its
output will match another signal’s value and derivatives. Indeed, Equation 19.10 can be interpreted as a
simple observer that reconstructs the state by approximate differentiation of the output. As we will see
in Section 19.2.4, this idea can be extended by considering more sophisticated observers with improved
noise rejection properties.

Consider the setup of Example 19.6. Retuning the filter constant and adjusting the state according to
Equation 19.10 yields the smooth performance shown in Figure 19.16.

19.2.2.3 Scheduled and Adaptive Controllers

Scheduled controllers are controllers with time-varying parameters. These time variations are usually due
to measured time-varying process parameters (such as a time delay varying with production speed) or due
to local linearization in different operating ranges. If the time variations are occasional and the controller
remains observable for all parameter settings, the principle of the previous section could be applied.
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FIGURE 19.16 Smooth retuning of the filter constants by adjustment of the state according to Equation 19.10.
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If, however, the controller order becomes large, the noise sensitivity of Equation 19.10 can become
prohibitive. Furthermore, due to the inherent bandwidth limitations of evaluating the filtered derivatives,
Equation 19.10 is not suitable for bumpless transfer if the parameters change significantly at every
sampling interval, such as in certainty equivalence adaptive controllers. In that case, the techniques of
Sections 19.2.3 and 19.2.4 are preferable.

19.2.2.4 Tentative Evaluation of New Controllers

This is a challenging, and only recently highlighted (see [5,6]), bumpless transfer scenario. It is motivated
by the need to test tentative controller designs safely and economically on critical processes during normal
operation.

Consider, for example, a process operating in closed loop with an existing controller. Assume that
the performance is mediocre, and that a number of new controller candidates have been designed and
simulated. It is then desired to test these controllers, tentatively, on the plant to assess their respective
performances. Frequently it is not possible or feasible to shut down the plant intermittently, and the
alternative controllers therefore have to be brought on-line with a bumpless transfer mechanism during
normal plant operation.

This is not a hypothetical situation; see [7] for a full-scale industrial example. Indeed, this scenario
has considerable contemporary relevance, since economic pressures and ecological awareness require
numerous existing plants to be retrofitted with high-performance advanced controllers during normal
operation.

There are four primary factors that make the tentative evaluation phase particularly challenging for
bumpless transfer: safety, economic feasibility, robustness, and generality.

Safety. The actual performance of the new controllers is not reliably known, even if they have been
simulated. In a worst case, one of them might drive the process unstable. It is then of overriding
concern that bumpless transfer back to the original, stabilizing, controller is still possible. Due to
this safety requirement, the technique should not rely on steady-state or constant signals, but be
dynamic.

Economic feasibility. Since the achievable improvement due to the new controllers is not accurately
known in advance, there tends to be a reluctance for costly modifications in hardware and/or
software during the evaluation phase. Therefore, the bumpless transfer algorithm should be exter-
nal to the existing controller and require only the commonly available signals of process input,
output and reference. In particular, it should not require manipulating the states of the existing
controller, as they may be analog. The technique should not only provide smooth transfer to the
new controller, but also provide the transfer back to the existing controller. Thus, it should be
bidirectional.

Robustness. Since the existing controller could very well be analog, it might be only approximately
known. Even digital controllers are commonly implemented in programmable logic controllers
(PLC) with randomly varying sampling rates that change the effective controller gains. Hence, the
technique should be insensitive to inaccurately known controllers.

Generality. To be applicable as widely as possible, the bumpless transfer technique should not require
the existing controller to have a particular order or structure, such as the so-called velocity form
or such as constant feedback from a dynamical observer.

These objectives can be achieved by considering the tentative (also called the idle or latent) controller
itself as a dynamic system and forcing its output to track the active controller by means of a tracking
loop [5,6]. This recasts bumpless transfer into an associated tracking problem to which systematic analysis
and design theory may be applied.
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19.2.3 Robust Bidirectional Transfer

In this section, we describe a general framework in which the problem of bumpless transfer is recast into
a tracking problem. The solution is specifically aimed at the scenario described above. Beyond providing
a practical solution to such cases, the framework also provides useful insights when analyzing other
techniques described later in Section 19.2.4.

Consider Figure 19.17, where G denotes the transfer function of a single-input single-output (SISO)
plant currently controlled by the active controller CA. The bold lines in Figure 19.17 show the active
closed loop

y = CAG

1 + CAG
r (19.11)

The regular lines make up an additional feedback configuration governed by

uL = FLTLCL

1 + TLCLQL
uA + CL

1 + TLCLQL
(r − y) (19.12)

which describes the two-degree-of-freedom tracking loop of Figure 19.18. Within this configuration, the
latent controller, CL, takes the role of a dynamical system whose output, uL, is forced to track the active
control signal, uA, which is the reference signal to the tracking loop. Tracking is achieved by means
of the tracking controller triplet (FL, TL, QL). Frequently, a one-degree-of-freedom tracking controller,
in which FL = QL = 1, is sufficient; we include the general case mainly for compatibility with other
techniques, which we will mention in Section 19.2.4. Note that the plant control error, r − y, acts as an
input disturbance in the tracking loop. Its effect can be eliminated by an appropriate choice of FL, or it
can be attenuated by designing (FL, TL, QL) for good input disturbance rejection.

While uL is tracking uA, the plant input can be switched bumplessly from the active controller to the
latent controller (for graphical clarity, this switch is not shown in Figure 19.17). Simultaneously, the effect

Active
controller Plant

Latent
controller

yr uA

uA

CA

FL TL+–
CL

uL

QL

uT
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r y

G+
–

+
–

+
+

FIGURE 19.17 The unidirectional bumpless transfer diagram, in which the plant, G, is controlled by the active
controller, CA. The output, uL, of the latent controller, CL, is forced to track the active control signal, uA, by means
of the tracking controller, (FL, TL, QL). Any time uL is tracking uA, the plant input can be switched from the active
controller to the latent controller and bumpless transfer is achieved. Simultaneously, the effect of the tracking loop
(FL, TL, QL) is removed from the plant loop by opening switch S1. Complementing the diagram with a second tracking
circuit allows bidirectional transfer.
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FIGURE 19.18 Tracking loop with latent control signal uL tracking the active control signal uA. The plant control
error, e = r − y, acts as input disturbance to the latent controller CL, here regarded as a “system” to be controlled.

of the tracking loop is removed by opening the switch S1 in Figure 19.17. Thus, CL becomes the now-active
controller regulating the plant, while the tracking loop (FL, TL, QL) is disconnected and never affects the
plant control loop. Clearly, a second tracking loop (also not included in Figure 19.17 for clarity) can then
be switched in to ensure that the previously active controller now becomes a latent controller in tracking
mode.

The control problem associated with bumpless transfer, then, is the design of the triplet (FL, TL, QL)
to guarantee a certain tracking bandwidth in spite of noise and controller uncertainty in CL, which is the
“plant” of the tracking loop.

Note that this strategy achieves the objectives set out in Section 19.2.2. Firstly, assume that a newly
designed controller is temporarily activated for performance analysis (becoming CA) and the existing
controller is placed into tracking mode (becoming CL). Then, if the new controller inadvertently drives
the plant unstable, the existing controller still retains stable tracking of the (unbounded) active control, uL.
Therefore, control can be bumplessly transferred back to the existing controller for immediate stabilization
of the plant; see [5] for an example. This guarantees safety during the testing of newly designed controllers.

Secondly, the only signals accessed by the tracking loop are the plant reference, the plant output and
the active control signals, all of which are commonly available. Furthermore, by adding a second tracking
loop to the diagram of Figure 19.17, the scheme becomes bidirectional and does not require the existing
controller to feature bumpless transfer facilities. Thirdly, a distinguishing feature compared to alternative
techniques is that the tracking controllers are operating in closed loop for QL �= 0. Thus, they can be
designed to be insensitive to inaccurately known controllers. Fourthly and finally, the technique does
not presuppose the plant controllers to have any particular structure. As long as one can conceive of a
tracking controller for them, there is no requirement for them to be biproper, minimum phase, digital or
linear.

Once bumpless transfer has been associated with a control problem in this way, tracking controllers can
be created by considering the plant controllers as being, themselves, “plants” and designing regulators
for them by any desired technique. For a discussion of tracking controller design and the associated
robustness issues, see [6].

19.2.4 Further Bumpless Transfer Techniques

In this section, we outline a number of further bumpless transfer techniques commonly referred to in the
literature. Most of these techniques are presented in the context of antiwindup design. To be consistent
with the literature, we adopt this context here.

If a process exhibits actuator saturations that were neglected in a linear control design, the closed loop
may suffer from unacceptable transients after saturation. This is due to the controller states becoming
inconsistent with the saturated control signal and is known as windup.

Techniques designed to combat windup are known as antiwindup. Their aim is to ensure that the
control signal never attempts to take a value beyond the saturation limits. In the sense that this requires
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the control output to track a signal (i.e., the saturation curve), the problem of antiwindup is structurally
equivalent to the problem of bumpless transfer.

The perhaps most well-known techniques for antiwindup and bumpless transfer design are the con-
ditioning technique of Hanus [8] and Hanus et al. [9] and the observer-based technique by Åström and
Wittenmark [1]. The fundamental idea of the conditioning technique is to manipulate the reference signal
such that the control signal under consideration is in agreement with the desired control signal, that is, the
saturated signal in an antiwindup context and the active control signal in the bumpless transfer context.

The observer-based technique is built on the idea of feeding an observer with the desired (active) control
signal and thereby obtaining controller states that are matched to the states of the active controller. Both
the above-described techniques have recently been found to be special cases of a more general antiwindup
and bumpless transfer structure presented by Rönnbäck [10] and Rönnbäck et al. [11]. We present the
conditioning and observer-based techniques in this context next.

Consider the system

y = B

A
v (19.13)

and the controller

Fu = (F − PR)v + PTr − PSy (19.14)

v = sat(u)
Δ=

⎧⎪⎨
⎪⎩

umin u ≤ umin

u umin ≤ u ≤ umax

umax u ≥ umax

(19.15)

where v is a signal caused by actuator saturations, r is the reference signal, and P and F constitute
additional design freedom to combating windup. See Figure 19.19.

When u(t) does not saturate, we obtain the nominal two-degree-of-freedom controller

Ru = Tr − Sy (19.16)

whereas when u(t) does saturate, feeding back from v(t) prevents the controller states from winding up.
The observer-based technique of Åström and Wittenmark [1] is directly obtained by selecting the

polynomials P and F above as P = 1 and F = A◦, where A◦ is the characteristic polynomial of the observer.
For a particular choice of observer polynomial, namely A◦ = T/t0, where t0 represents the high-frequency
gain of T/R in the nominal controller in Equation 19.16, we obtain the conditioning technique.

In the context of antiwindup design, bumpless transfer between an active control signal, uA, and
a latent control signal, uL, is achieved by setting u = uL, and umin = umax = uA. Choosing bumpless
transfer technique is thus a matter of choosing polynomials P and F in Equation 19.14. For details about
the relations between antiwindup design and bumpless transfer tracking controller design, the reader is

yv
PT

F – PR

ur

+ – + +

B
A

1
F

PS

FIGURE 19.19 General antiwindup and bumpless transfer structure.
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FIGURE 19.20 Conventional high-gain antiwindup and bumpless transfer strategy, with K = K0 � 1 or K = K0/s
with K0 � 1.

referred to Graebe and Ahlén [6]. More details about antiwindup design can be found in, e.g., [10,11] as
well as in another chapter of this book.

Another technique that is popularly used for both antiwindup and bumpless transfer is depicted in the
diagram of Figure 19.20, where G is a plant being controlled by the active controller, CA, and CL is a latent
alternative controller. If

K = K0 � 1 (19.17)

is a large constant [or a diagonal matrix in the multiple-input multiple-output (MIMO) case], then this
technique is also known as high gain conventional antiwindup and bumpless transfer. In a slight variation,
Uram [12] used the same configuration but proposed K to be designed as the high-gain integrator

K = K0

s
, K0 � 1 (19.18)

Clearly, the configuration of Figure 19.20 is a special case of the general tracking controller approach
of Figure 19.17 with the particular choices FL = 1, QL = 1 and TL = K , where K is given by either
Equation 19.17 or Equation 19.18. One of the advantages of viewing bumpless transfer as a tracking
problem is that we can immediately assess some of the implications of the choices in Equation 19.17 or
Equation 19.18. The performance of these two schemes is determined by how well the latent controller CL,
viewed as a system, lends itself to wide bandwidth control by a simple proportional or integral controller
such as in Equation 19.17 or Equation 19.18.

Campo et al. [2] and Kotare et al. [13] present a general framework that encompasses most of the
known bumpless transfer and antiwindup schemes as special cases. This framework lends itself well for
the analysis and comparison of given schemes. It is not as obvious, however, how to exploit the framework
for synthesis. The fact that different design choices can indeed have a fairly strong impact on the achieved
performance is nicely captured by Rönnbäck et al. [11] and Rönnbäck [10]. These authors focus on the
problem of controller windup in the presence of actuator saturations. They gain interesting design insights
by interpreting the difference between the controller output and the saturated plant input as a fictitious
input disturbance. As discussed by Graebe and Ahlén [6], the proposal of Rönnbäck [10] is structurally
equivalent to the tracking controller configuration of Section 19.2.3. It is rarely pointed out, however, that
the design considerations for bumpless transfer and antiwindup can be rather different.

19.2.5 Summary

This section has discussed the problem of bumpless transfer, which is concerned with smooth switching
between alternative dynamical systems. We have highlighted a number of situations in which this problem
arises, including switching from manual to automatic control, on-line retuning of filter or controller
parameters and tentative evaluation of new controllers during normal plant operation.
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If it is possible to manipulate the states of the controller directly, there are several techniques to compute
the value of the state vector that will give the desired output. If it is not possible to manipulate the states
directly, such as in an analog controller, then the input to the controller can be used instead. Viewed in this
way, bumpless transfer becomes a tracking problem, in which the inputs to the controller are manipulated
so that its output will track an alternative control signal. Once bumpless transfer is recognized as a tracking
problem, systematic design techniques can be applied to design appropriate tracking controllers. We have
outlined several advantages with this approach and showed that some other known techniques can be
interpreted within this setting.

19.2.6 Defining Terms

Active controller: A regulator controlling a plant at any given time. This term is used to distinguish the
active controller from an alternative standby controller in a bumpless transfer context.

Conditioning technique: A technique in which the reference signal is manipulated in order to achieve
additional control objectives. Typically, the reference signal is manipulated in order to avoid the
control signal’s taking a value larger than a known saturation limit.

High-frequency gain: The high-frequency for gain of a strictly proper transfer function is zero; of a
biproper transfer function, it is the ratio of the leading coefficients of the numerator and denom-
inator; and for an improper transfer function, it is infinity. Technically, the high-frequency gain
of a transfer function H(s) is defined as lims→∞ H(s).

Internal model controller (IMC): A controller parameterization in which the model becomes an explicit
component of the controller. Specifically, C = Q/(1 − QĜ), where Ĝ is a model and Q is a stable
and proper transfer function.

Latent controller: A standby controller that is not controlling the process, but that should be ready for a
smooth takeover from an active controller in a bumpless transfer context.

Observer-based controller: A controller structure in which the control signal is generated from the states
of an observer.

One-degree-of-freedom controller: A control structure in which the reference signal response is
uniquely determined from the output disturbance response.

Two-degree-of-freedom controller: A control structure in which the reference signal response can be
shaped, to a certain extent, independently of the disturbance response. This is usually achieved
with a setpoint filter.
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19.3 Linearization and Gain-Scheduling

Jeff S. Shamma
19.3.1 Introduction

A classical dilemma in modeling physical systems is the trade-off between model accuracy and tractabil-
ity. While sophisticated models might provide accurate descriptions of system behavior, the result-
ing analysis can be considerably more complicated. Simpler models, on the other hand, may be more
amenable for analysis and derivation of insight, but might neglect important system behaviors. Indeed, the
required fidelity of a model depends on the intended utility. For example, one may use a very simplified
model for the sake of control design, but then use a sophisticated model to simulate the overall control
system.

One instance where this dilemma manifests itself is the use of linear versus nonlinear models. Nonlin-
earities abound in most physical systems. Simple examples include saturations, rate limiters, deadzones,
and backlash. Further examples include the inherently nonlinear behavior of systems such as robotic
manipulators, aircraft, and chemical process plants. However, methods for analysis and control design
are considerably more available for linear systems than nonlinear systems.

One approach is to directly address the nonlinear behavior of such systems, and nonlinear con-
trol design remains an topic of active research. An alternative is to linearize the system dynamics,
i.e., to approximate the nonlinear model by a linear one. Some immediate drawbacks are that (1) the
linear model can give only a local description of the system behavior and (2) some of the intrica-
cies of the system behavior may be completely neglected by the linear approximation—even locally.
In some cases, these consequences are tolerable, and one may then employ methods for linear sys-
tems.

One approach to address the local restriction of linearization-based controllers is to perform several
linearization-based control designs at many operating conditions and then interpolate the local designs
to yield an overall nonlinear controller. This procedure is known as gain-scheduling. It is an intuitively
appealing but heuristic practice, which is used in a wide variety of control applications. It is especially
prevalent in flight control systems.

This chapter presents a review of linearization and gain scheduling, exploring both the benefits and
practical limitations of each.

19.3.2 Linearization

19.3.2.1 An Example

To illustrate the method of linearization, consider a single link coupled to a rotational inertia by a flexible
shaft (Figure 19.21). The idea is to control the link through a torque on the rotational inertia. This physical
system may be viewed as a very simplified model of a robotic manipulator with flexible joints.



Design Methods 19-21
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FIGURE 19.21 Rotational link.

The equations of motion are given by

d

dt

⎛
⎜⎜⎝

θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0

(mgL sin(θ1(t)))/J1 − cθ̇1(t)
∣∣θ̇1(t)

∣∣
0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−k/J1 k/J1 0 0
k/J2 −k/J2 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0

1/J2

⎞
⎟⎟⎠T(t) (19.19)

Here θ1(t), θ2(t) are angles measured from vertical, T(t) is the torque input, k is a rotational spring
constant, c is a nonlinear damping coefficient, J1, J2 are rotational inertias, L is the link length, and m is
the link mass.

Now suppose the link is to be controlled in the vicinity of the upright stationary position. First-order
approximations near this position lead to sin θ1 . θ1 and cθ̇1

∣∣θ̇1
∣∣. 0. The state equation 19.19 is then

approximated by the equations,

d

dt

⎛
⎜⎜⎝

θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)

⎞
⎟⎟⎠.

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

(mgL − k)/J1 k/J1 0 0
k/J2 −k/J2 0 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝

θ1(t)
θ2(t)
θ̇1(t)
θ̇2(t)

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

0
0
0

1/J2

⎞
⎟⎟⎠T(t) (19.20)

The simplified dynamics are now in the general linear form

ẋ(t) = Ax(t) + Bu(t) (19.21)

Two consequences of the linearization are

• Global behavior, such as full angular rotations, are poorly approximated.
• The nonlinear damping, cθ̇1

∣∣θ̇1
∣∣, is completely neglected, even locally.

Despite these limitations, an analysis or control design based on the linearization can still be of value for
the nonlinear system, provided that the state vector and control inputs are close to the upright equilibrium.
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19.3.2.2 Linearization of Functions

This section reviews some basic concepts from multivariable calculus. For a vector x ∈ Rn, |x| denotes
the Euclidean norm, i.e.,

|x| =
(

n∑
i=1

x2
i

)1/2

(19.22)

Let f : Rn → Rp, i.e., f is a function which maps vectors in Rn to values in Rp. In terms of individual
components,

f (x) =
⎛
⎜⎝

f1(x1, . . . , xn)
...

fp(x1, . . . , xn)

⎞
⎟⎠ (19.23)

where the xi are scalar components of the Rn-vector x, and the fi are scalar valued functions of Rn.
The Jacobian matrix of f is denoted Df and is defined as the p × n matrix of partial derivatives

Df =

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fp
∂x1

. . .
∂fp
∂xn

⎞
⎟⎟⎟⎟⎟⎠

(19.24)

In case f is continuously differentiable at xo, then the Jacobian matrix can be used to approximate f . A
multivariable Taylor series expansion takes the form

f (x) = f (xo) + Df (xo)(x − xo) + r(x) (19.25)

where the remainder, r(x), represents higher-order terms which satisfy

lim
h→0

|r(xo + h)|
|h| = 0 (19.26)

Now let f : Rn × Rm → Rp, i.e., f is a function which maps a pair of vectors in Rn and Rm, respectively,
to values in Rp. The notations D1f and D2f denote the Jacobian matrices with respect to the first variable
and second variables, respectively. Thus, if

f (x, u) =
⎛
⎜⎝

f1(x1, . . . , xn, u1, . . . , um)
...

fp(x1, . . . , xn, u1, . . . , um)

⎞
⎟⎠ (19.27)

then D1f denotes the p × n matrix

D1f =

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂x1

. . .
∂f1
∂xn

...
. . .

...
∂fp
∂x1

. . .
∂fp
∂xn

⎞
⎟⎟⎟⎟⎟⎠

(19.28)

and D2f denotes the p × m matrix

D2f =

⎛
⎜⎜⎜⎜⎜⎝

∂f1
∂u1

. . .
∂f1
∂um

...
. . .

...
∂fp
∂u1

. . .
∂fp
∂um

⎞
⎟⎟⎟⎟⎟⎠

(19.29)
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Example 19.7: Rotational Link Jacobian Matrices

Consider again the rotational link example in Equation 19.19. Let x denote the state vector, u denote
the torque input, and f (x , u) denote the right-hand side of Equation 19.19. The Jacobian matrices D1f
and D2f are given by

D1f (x , u) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

(mgL cos θ1 − k)/J1 k/J1 2c
∣∣θ̇1

∣∣ 0
k/J2 −k/J2 0 0

⎞
⎟⎟⎠

D2f (x , u) =

⎛
⎜⎜⎝

0
0
0

1/J2

⎞
⎟⎟⎠ (19 30)

19.3.2.3 Linearization about an Equilibrium

Approximation of System Dynamics

A general form for nonlinear differential equations is

ẋ(t) = f (x(t), u(t)) (19.31)

where x(t) is the state vector, u(t) is the input vector, and f : Rn × Rm → Rn. The existence and unique-
ness of solutions will be assumed.

The pair (xo, uo) is called an equilibrium if

0 = f (xo, uo) (19.32)

The reasoning behind this terminology is that, starting from the initial condition x(0) = xo with a constant
input u(t) = uo, the solution remains at x(t) = xo.

Assuming that f is continuously differentiable at (xo, uo), a multivariable Taylor series expansion yields

ẋ(t) = f (xo, uo) + D1f (xo, uo)(x(t) − xo)

+ D2f (xo, uo)(u(t) − uo) + r(x(t), u(t)) (19.33)

where the remainder, r(x, u), satisfies

lim
(x,u)→(xo ,uo)

r(x, u)√
|x − xo|2 + |u − uo|2

= 0 (19.34)

Thus, the approximation is accurate up to first order. Define the deviation-from-equilibrium terms

x̃(t) = x(t) − xo (19.35)

ũ(t) = u(t) − uo (19.36)

Assuming that the equilibrium is fixed, i.e., d
dt xo = 0, along with the condition 0 = f (xo, uo), leads to

˙̃x(t) . D1f (xo, uo)x̃(t) + D2f (xo, uo)ũ(t) (19.37)

Equation 19.37 represents the linearization of the nonlinear dynamics (Equation 19.31) about the equi-
librium point (xo, uo).
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Example 19.8: Rotational Link Linearization

Consider again the rotational link example of Equation 19.19. In addition to the upright equilibrium,
there is a family of equilibrium conditions given by

xo =

⎛
⎜⎜⎝

q
(q − mgL sin q)/k

0
0

⎞
⎟⎟⎠ uo = −mgL sin q (19 38)

where q denotes the equilibrium angle for θ1. When q = 0, Equation 19 38 yields the upright
equilibrium.

For a fixed q, the linearized dynamics about the corresponding equilibrium point may be obtained by
substituting the Jacobian matrices from Example 19.7 into Equation 19.37 to yield

˙̃x(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

(mgL cos q − k)/J1 k/J1 0 0
k/J2 −k/J2 0 0

⎞
⎟⎟⎠ x̃(t) +

⎛
⎜⎜⎝

0
0
0

1/J2

⎞
⎟⎟⎠ ũ(t) (19.39)

As before, the nonlinear damping is completely neglected in the linearized equations.

Stability

This section discusses how linearization of a nonlinear system may be used to analyze stability. First, some
definitions regarding stability are reviewed.

Let xo be an equilibrium for the unforced state equations:

ẋ(t) = f (x(t)) (19.40)

i.e., f (xo) = 0.
The equilibrium xo is stable if for each ε > 0, there exists a δ(ε) > 0 such that

|x(0) − xo| < δ(ε) ⇒ |x(t) − xo| < ε, ∀t ≥ 0 (19.41)

It is asymptotically stable if it is stable and for some δ∗

|x(0) − xo| < δ∗ ⇒ |x(t) − xo| → 0, as t → ∞ (19.42)

It is unstable if it is not stable. Note that the conditions for stability pertain to a neighborhood of an
equilibrium.

The following is a standard analysis result. Let f : Rn → Rn be continuously differentiable. The equi-
librium xo is asymptotically stable if all of the eigenvalues of Df (xo) have negative real parts. It is unstable
if Df (xo) has an eigenvalue with a positive real part.

Since the eigenvalues of Df (xo) determine the stability of the linearized system

˙̃x(t) = Df (xo)x̃(t) (19.43)

this result states that the linearization can provide sufficient conditions for stability of the nonlinear system
in a neighborhood of an equilibrium. In case Df (xo) has purely imaginary eigenvalues, then nonlinear
methods are required to assess stability of the nonlinear system.
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Example 19.9: Rotational Link Stability

Consider the unforced rotational link equations, i.e., torque T (t) = 0. In this case, the two equilibrium
conditions are the upright position, xo = 0, or the hanging position, xo = (π 0 0 0)T . Intuitively, the
upright equilibrium is unstable, while the hanging equilibrium is stable.

Let J1, J2, k, m, g , L, c = 1. For the upright equilibrium, the linearized equations are

˙̃x(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 1 0 0
1 −1 0 0

⎞
⎟⎟⎠ x̃(t) (19.44)

which has eigenvalues of (±0.79, ±1.27j). Since one of the eigenvalues has a positive real part, the upright
equilibrium of the original nonlinear system is unstable.

For the hanging equilibrium, the linearized equations are

˙̃x(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−2 1 0 0
1 −1 0 0

⎞
⎟⎟⎠ x̃(t) (19.45)

Note that x̃(t) represents different quantities in the two linearizations, namely the deviation from the
different corresponding equilibrium positions. The linearization now has eigenvalues of (±1.61j, ±0.61j).
In this case, the linearization does not provide information regarding the stability of the nonlinear system.
This is because the nonlinear damping term cθ̇1

∣∣θ̇1
∣∣ is completely neglected. If this term were replaced

by linear damping in (Equation 19.19), e.g., cθ̇1, then the linearized dynamics become

˙̃x(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−2 1 −1 0
1 −1 0 0

⎞
⎟⎟⎠ x̃(t) (19.46)

and the resulting eigenvalues are (−0.35 ± 1.5j, −0.15 ± 0.63j). In this case, the linearized dynamics are
asymptotically stable, which in turn implies that the nonlinear dynamics are asymptotically stable. In the
case of the nonlinear damping, one may use alternate methods to show that the hanging equilibrium is
indeed asymptotically stable. However, this could not be concluded from the linearization.

Stabilization

Linearization of a nonlinear system also may be used to design stabilizing controllers. Let (xo, uo) be an
equilibrium for the nonlinear equations 19.31. Let

y(t) = g(x(t)) (19.47)

denote the outputs available for measurement. In case f and g are continuously differentiable, the
linearized equations are

˙̃x(t) = D1(xo, uo)x̃(t) + D2(xo, uo)ũ(t) (19.48)

ỹ(t) = Dg(xo)x̃(t) (19.49)

where x̃(t) = x(t) − xo, ũ(t) = u(t) − uo, and ỹ(t) = y(t) − g(xo).
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Using the results from the previous section, if the controller

ż(t) = Az(t) + Bỹ(t) (19.50)

ũ(t) = Cz(t) + Dỹ(t) (19.51)

asymptotically stabilizes the linearized system, then the control

u(t) = uo + ũ(t) (19.52)

asymptotically stabilizes the nonlinear system at the equilibrium (xo, uo).
Conversely, a linearized analysis under certain conditions can show that no controller with continu-

ously differentiable dynamics is asymptotically stabilizing. More precisely, consider the controller

ż(t) = F(z(t), y(t)) (19.53)

u(t) = G(z(t)) (19.54)

where (0, y0) is an equilibrium and uo = G(0). Suppose [D1f (xo, uo), D2f (xo, uo)] either is not a stabilizable
pair or [Dg(xo), D1f (xo, uo)] is not a detectable pair. Then no continuously differentiable F and G lead to
an asymptotically stablilizing controller.

Example 19.10: Rotational Link Stabilization

Consider the rotational link equations with J1, J2, k, m, g, L, c = 1. The equilibrium position with the
link at 45 degrees is given by

xo =

⎛
⎜⎜⎜⎝

π
4

π
4 − 1√

2
0
0

⎞
⎟⎟⎟⎠ , uo = −1√

2
(19 55)

For this equilibrium, the linearized equations are

˙̃x(t) = Ax̃(t) + Bũ(t) (19 56)

where

A =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

1√
2

− 1 1 0 0

1 −1 0 0

⎞
⎟⎟⎟⎠ x̃ , B =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ũ (19 57)

One can show that the state feedback (which resembles proportional-derivative feedback)

ũ(t) = −K x̃(t) = −(2 4 4 2)x̃(t) (19 58)

is stabilizing. Therefore the control

u(t) = uo − K (x(t) − xo) (19 59)

stabilizes the nonlinear system at the 45◦ equilibrium.
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Now suppose only θ1(t) is available for feedback, i.e.,

y(t) = Cx(t) = (1 0 0 0)x(t) (19.60)

Let ỹ(t) = y(t) − Cxo. A model-based controller which stabilizes the linearization is

ż(t) = Az(t) − BKz(t) + H(ỹ(t) − Cz(t)) (19.61)

ũ(t) = −Kz(t) (19.62)

where

H =

⎛
⎜⎜⎝

1
2
2
1

⎞
⎟⎟⎠ (19.63)

Therefore, the control

ż(t) = Az(t) − BKz(t) + H(y(t) − yo − Cz(t)) (19.64)

u(t) = uo − Kz(t) (19.65)

stabilizes the nonlinear system.

19.3.2.4 Limitations of Linearization

This section presents several examples that illustrate some limitations in the utility of linearizations.

Example 19.11: Hard Nonlinearities

Consider the system

ẋ(t) = Ax(t) + BN(u(t)) (19.66)

This system represents linear dynamics where the input u first passes through a nonlinearity, N. Some
common nonlinearities are saturation:

N(u) =

⎧⎪⎨
⎪⎩

1 u ≥ 1

u −1 ≤ u ≤ 1

−1 u ≤ −1

(19.67)

deadzone:

N(u) =

⎧⎪⎨
⎪⎩

u − 1 u ≥ 1

0 −1 ≤ u ≤ 1

u + 1 u ≤ −1

(19.68)

and relay:

N(u) =
{

1 u > 0

−1 u < 0
(19.69)

Other nonlinearities are backlash and hysteresis. All of these nonlinearities do not lend themselves
to linearization-based analysis. Even in the regions where the nonlinearities are differentiable, a
linearization completely removes the intricacies that the nonlinearities cause.
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Example 19.12: Local Nature of Linearization

Consider the scalar equation
ẋ(t) = −sin(x(t)) (19.70)

The equilibrium xo = 0 is asymptotically stable. However, the equilibrium xo = π is not.

Example 19.13: Linearization not Asymptotically Stable

Consider the scalar equation
ẋ(t) = −x3(t) (19.71)

The equilibrium xo = 0 is globally asymptotically stable, i.e., x(t) → 0 as t → ∞ for any initial condi-
tion. However, the linearization yields

x̃(t) = 0 (19.72)

which is inconclusive. A similar phenomenon was seen with the rotational link in the hanging
equilibrium.

Example 19.14: Linearization not Stabilizable

Consider the scalar equation
ẋ(t) = x(t) + x(t)u(t) (19.73)

At the equilibrium xo, uo = 0, the linearization is

x̃(t) = x̃(t) (19.74)

This is not stabilizable, since no input term appears. However, the constant feedback u(t) = −2 in
Equation 19.73 yields

ẋ(t) = −x(t) (19.75)

which is asymptotically stable.

Example 19.15: Non-Differentiable Feedback

Consider the second-order nonlinear system

ẋ1(t) = u(t) (19.76)

ẋ2(t) = x2(t) − x3
1 (t) (19.77)

For the equilibrium xo, uo = 0, any stabilizing feedback law, u = g(x), must satisfy g(0) = 0. Suppose
that g is continuously differentiable. The linearization of the closed-loop system yields

x̃(t) =
(

∂g/∂x1(0) ∂g/∂x2(0)
0 1

)
x̃(t) (19.78)

which is unstable. Therefore, no continuously differentiable feedback is stabilizing. However, one
can show that the nondifferentiable feedback

u(x) = −x1 + x2 + 4
3

x
1/3
2 − x3

1 (19.79)

is stabilizing.
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19.3.2.5 Linearization about a Trajectory

The previous sections addressed linearization about a single equilibrium point. Another situation in
which linearization can be useful is where the nonlinear system is to follow a prescribed trajectory.
Possible sources for this trajectory are repeated maneuvers of the nonlinear system or the outcome of
some trajectory optimization (e.g., a robot following a specified optimal path or an aerospace vehicle
executing an optimal flight path). The objective of the linearization is then to study the behavior of the
system near the prescribed trajectory.

Let x∗(t) and u∗(t) satisfy the nonlinear differential equation 19.31. Let f be continuously differentiable.
The objective is to examine the behavior of the nonlinear system near the trajectory (x∗(t), u∗(t)). Toward
this end, let

x̃(t) = x(t) − x∗(t), ũ(t) = u(t) − u∗(t) (19.80)

Assuming that f is continuously differentiable, it may be approximated near the trajectory (x∗(t), u∗(t)) by

f (x(t), u(t)) . f (x∗(t), u∗(t)) + D1f (x∗(t), u∗(t))x̃(t)

+ D2f (x∗(t), u∗(t))ũ(t) (19.81)

Substituting this approximation into Equation 19.31 leads to

ẋ(t) . f (x∗(t), y∗(t)) + D1f (x∗(t), u∗(t))x̃(t)

+ D2f (x∗(t), u∗(t))ũ(t) (19.82)

Using ẋ∗(t) = f (x∗(t), u∗(t)) then leads to the linear time-varying dynamics:

˙̃x(t) = D1f (x∗(t), u∗(t))x̃ + D2f (x∗(t), u∗(t))ũ(t) (19.83)

The time-varying nature of the linearization occurs even though the original nonlinear system is time-
invariant.

As in the case of linearization about an equilibrium, the linearized dynamics may be used to infer
properties of the nonlinear system when the state-trajectory is close to x∗(t) and the input history is close
to u∗(t). Linearization along a trajectory does not restrict the nonlinear system to stay close to a single
equilibrium point. The cost of this advantage is that the situation is more complicated, in that one must
establish stability properties and/or design stabilizing controllers for linear—but time-varying—system
dynamics. These issues are discussed in other articles.

Example 19.16: Rotational Link along a Trajectory

Consider the rotational link equations with J1, J2, k, m, g, L, c = 1. The nominal trajectory of interest
is the link at a constant rate of rotation, i.e., θ∗

1(t) = ωot. Solving for the remaining states and torque
leads to

θ∗
2(t) = ωo + ω2

o + ωt o − sin ωot (19.84)

θ̇∗
1(t) = ωo (19.85)

θ̇∗
2(t) = ωo − ωo cos ωot (19.86)

T∗(t) = 2ωo + ω2
o − ωo cos ωot − sin ωot (19.87)

Linearizing along this trajectory yields

˙̃x(t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

cos ωot − 1 1 2ωo 0
1 −1 0 0

⎞
⎟⎟⎠ x̃(t) +

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ ũ(t) (19.88)

As expected, the linearized dynamics are time-varying (note the cos ωot term).
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19.3.3 Gain Scheduling

19.3.3.1 Motivation

A major drawback of linearization is that a control design based on the linearized dynamics need not
exhibit good performance or even be stabilizing when operating away from the equilibrium. One possi-
bility is to linearize along a trajectory which is not restricted to a local operating region. However, this
trajectory must be known in advance in order to perform the control design. Such advance knowledge of
the trajectory is often not available.

One approach to address the local restriction in linearization is a design procedure called gain schedul-
ing. The main idea is to break the control design process into two steps. First, one designs local linear
controllers based on linearizations of the nonlinear system at several different equilibria, usually called
in this context operating conditions. Second, a global nonlinear controller for the nonlinear system is
obtained by interpolating, or “scheduling,” the local operating point designs.

One example is flight control. Here, the linearized systems correspond to the aircraft in a particular
flight condition characterized by the atmospheric conditions, aircraft orientation, and aircraft velocity.
The local linear controllers are adequate to control the aircraft near a particular operating condition. The
global controller, formed by patching together local controllers, is needed to provide transitions between
flight conditions.

While intuitively appealing, gain scheduling is an ad hoc practice guided by heuristic rules of thumb.
Nevertheless, it does enjoy widespread usage in a variety of applications, such as aircraft control, missile
autopilots, jet-engine control, and process control.

This section provides an outline of gain scheduling, its advantages, and limitations.

19.3.3.2 Gain-Scheduled Control Design

Nonlinear Systems

Consider the nonlinear system

ẋ(t) = f (x(t), u(t)) (19.89)

y(t) = g(x(t)) (19.90)

where y(t) denotes the measured output. Assume that there exists a parameterized family of equilibrium
points (xeq, ueq), i.e.,

0 = f (xeq(s), ueq(s)) (19.91)

where s takes its values in some specified operating region. The variable s, called the scheduling variable,
will be measured upon operation of the control system and will be used to infer the equilibrium to which
the system is near.

Now assuming that s is fixed leads to a family of linearizations

˙̃x(t) = A(s)x̃(t) + B(s)ũ(t) (19.92)

ỹ(t) = C(s)x̃(t) (19.93)

where

A(s) = D1f (xeq(s), ueq(s))

B(s) = D2f (xeq(s), ueq(s))

C(s) = Dg(xeq(s)) (19.94)

x̃(t) = x(t) − xeq(s)

ũ(t) = u(t) − ueq(s)

ỹ(t) = y(t) − g(xeq(s)) (19.95)
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FIGURE 19.22 Gain-scheduled command following.

Under the appropriate stabilizability/detectability assumptions, one can design stabilizing linear con-
trollers (using any of a variety of linear design methods). The result is an indexed collection of controllers,

ż(t) = A(s)z(t) + B(s)ỹ(t) (19.96)

ũ(t) = C(s)z(t) + D(s)ỹ(t) (19.97)

In practice, controllers usually are not designed at every value of s but rather at several operating
points indexed by selected values {s1, s2, . . . , sN }. In between these points, the controller matrices are
interpolated according to the scheduling variable, s.

Although the family of controllers is designed assuming that s is fixed, upon operation of the control
system the controller matrices vary in time according to the evolution of s. The method of changing
the controller matrices can either be smooth or discontinuous switching. In either case, the desired
effect is to alleviate the restriction to the local operating region of any individual linearized design.
Therefore, depending on the current region of operation (according to s), appropriate controller gains are
employed. For example, Figure 19.22 shows a block diagram of gain scheduling for command following.
The scheduling variable, s, can either be endogenous to the plant (e.g., a particular state-variable) or an
exogenous signal (e.g., a function of some reference command r).

Example 19.17: Gain-Scheduled Design for Simplified Rotational Link

Consider the rotational link example with the simplification that the rotational flexibility is now rigid.
In this case, θ1 = θ2 and J = J1 + J2. Dropping the subscript on the angles, the equations simplify to

d

dt

(
θ(t)
θ̇(t)

)
=
(

θ(t)
mgL sin(θ(t))/J − cθ̇(t)

∣∣θ̇(t)
∣∣+ T (t)

)
(19.98)

which are in the form ẋ(t) = f (x(t), u(t)). Let r(t) denote the reference command for θ(t). A family of
equilibrium conditions is parameterized by

xeq(s) =
(

s
0

)
, ueq(s) = −mgL sin s/J (19.99)

For a fixed s, the linearization is
x̃(t) = A(s)x̃(t) + B(s)ũ(t) (19.100)
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where

A(s) =
(

0 1
mgL cos s/J 0

)
, B(s) =

(
0
1

)
(19.101)

Let m, g, L, J = 1. At any fixed equilibrium, the proportional–derivative feedback

ũ(t) = −
(

cos s + 2 2
)

x̃(t) + 2r̃(t) (19.102)

places the closed-loop poles at −1 ± j and has zero steady-state error to step commands, where
r̃(t) = r(t) − s. The family of linearization-based controllers is then

u(t) = ueq(s) −
(

cos s + 2 2
)

(x(t) − xeq(s)) + 2(r(t) − s) (19.103)

At this point, the scheduling variable s will vary in time according to some scheduling variable. The
decision now becomes how to schedule the gains and what to use as a scheduling variable. More precisely,
the choices are s(t) = θ(t) vs. s(t) = r(t) for the scheduling variable and smooth vs. switched scheduling.
These options are described as follows:

Switched Scheduling on θ(t) In this case, the operating range is divided into several regions
{R1, . . . , RN }. Within each region is a representative equilibrium, say

{
θ∗

1, . . . , θ∗
N

}
and the

scheduling variable varies according to

s(t) = θ∗
i whenever θ(t) ∈ Ri (19.104)

Smooth Scheduling on θ(t) Rather than switch between operating points, let s(t) = θ(t). A peculiar con-
sequence of such scheduling is that the linearization of the overall closed-loop system differs
from the original linearized plant and linear controller. This is due to terms that were constant,
but now vary, such as ueq(s) and cos s.

Switched Scheduling on r(t) This scheduling is based on the anticipation that the angle θ(t) will follow
the reference command. Similarly to switched scheduling on θ(t), set

s(t) = θ∗
i whenever r(t) ∈ Ri (19.105)

Smooth Scheduling on r(t) Again an inherent assumption is that the angle θ(t) does not lag the reference
command dramatically. One possibility is s(t) = r(t − T).

Note that the gain-scheduled design allows larger variations in θ(t) than would a design based on a
single equilibrium. However, effects such as the nonlinear damping are still neglected. In case θ̇(t) is large,
the approximation accuracy of the fixed linearizations (upon which the gain-scheduled designs are based)
suffers. Fast changes in the scheduling variable also increase the discrepancy between the resulting system
dynamics and the design model linearization.

Linear Parameter Varying Systems

A “linear parameter varying” (LPV) system is defined as a linear system whose coefficients depend on an
exogenous time-varying parameter, e.g.,

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) (19.106)

y(t) = C(θ(t))x(t) (19.107)

The exogenous parameter, θ(t), is unknown a priori; however, it can be measured or estimated upon
operation of the system. The reason for the special nomenclature is to distinguish LPV systems from
linear time-varying systems for which the time variations are known beforehand (as in periodic systems).
Typical a priori assumptions on θ(t) are bounds on its magnitude and rate of change.
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LPV systems form a useful paradigm for the study of gain-scheduled control. Gain-scheduled control
design traditionally starts with a family of linearizations of a nonlinear system indexed by a schedul-
ing variable. This naturally leads to the LPV structure. An LPV structure also arises from simplifying
assumptions on the internal structure of a nonlinear model. Rather than model the dynamic evolution
of a particular variable, one can treat it as an exogenous independent parameter. For example, in flight
control, the dynamic pressure is a dynamic function of the aircraft maneuvers. However, it is useful to
model it as an independent time-varying variable.

Example 19.18: Rotational Link as LPV

Recall that the rotational link model has a family of equilibrium points:

xeq(s) =

⎛
⎜⎜⎝

s
(s − mgL sin s)/k

0
0

⎞
⎟⎟⎠ ueq(s) = −mgL sin s (19.108)

Define the new state and input variables:

xnew (t) =

⎛
⎜⎜⎝

θ1(t)
θ2(t) − θ2,eq(t)

θ̇1(t)
θ̇2(t)

⎞
⎟⎟⎠

unew (t) = u(t) − ueq(θ1(t)) (19.109)

Then, neglecting the nonlinear damping, the state dynamics can be written as:

ẋnew (t) =

⎛
⎜⎜⎝

0 0 1 0
0 0 mg cos θ1(t)/K 0
0 k/J2 0 0
0 −k/J2 0 0

⎞
⎟⎟⎠ xnew (t) +

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ unew (t) (19.110)

Note that the original state equations are transformed into a quasi-LPV form, with the “exogenous”
parameter actually the angle θ1(t). It is interesting to note that this quasi-LPV family is not the same
family obtained by performing linearizations about equilibrium conditions.

Now suppose that the parameter in the LPV plant (Equation 19.106) satisfies the bounds |θ(t)| ≤ 1.
A traditional gain-scheduled design approach is to assume that the parameter is constant and design a
family parameter-dependent controller to achieve desired stability and performance specifications. This
results in an LPV controller such as

ż(t) = A(θ(t))z(t) + B(θ(t))y(t) (19.111)

u(t) = C(θ(t))z(t) + D(θ(t))y(t) (19.112)

In practice, the LPV controller gains come from an interpolation of several designs throughout the param-
eter range of values. Upon operation of the control system, the controller gains are updated according to
the parameter time variations.

Because the parameter is actually time varying, the gain-scheduled design can experience degradation
of performance or even loss of stability. However, one can show that if the parameter variations are
sufficiently slow, then the desired properties are maintained.
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Example 19.19: Time-Varying Oscillator

A classical example of parameter-varying instability from frozen parameter stability is the time-
varying oscillator:

ẋ(t) =
(

0 1
−(1 + θ(t)/2) −.2

)
x(t) (19.113)

These equations can be viewed as a mass-spring-damper system with time-varying spring stiffness.
For fixed parameter values, θ(t) = θo = a constant, the equilibrium xo = 0 is asymptotically stable.
However, for the parameter trajectory θ(t) = cos 2t, it becomes unstable. An intuitive explanation is
that the stiffness variations are timed to pump energy into the oscillations.

19.3.3.3 Discussion

Conceptually, gain scheduling allows for greater operating regions than a design based on a single equi-
librium. However, since the scheduling variable is no longer constant, the gain schedule introduces time
variations in the overall control system. Such time variations typically are not addressed in the original
frozen-equilibrium design. One consequence is possible degradation in performance or even instability
of the gain-scheduled system. Another consequence is that the state of the nonlinear system while in
transition need not be close to any of the equilibrium points, and hence outside of the design regions
of the linearized controllers. However, the effects of these phenomena are reduced in the case of slow
transitions among the operating conditions. In the end, the quality of a gain-scheduled design is typically
inferred from extensive computer simulations.

Despite its widespread popularity, gain scheduling has received relatively little theoretical attention.
Some references are stated in the section for further information. However, the theoretical basis for gain
scheduling can be summarized as follows. The overall design is based on a collection of linearizations
at fixed equilibrium conditions. If these design models are reasonable representations of the system
dynamics, then one can expect that the stability and performance properties of the linearized designs
should carry over to the overall gain-scheduled design. If the nonlinearities dominate or if the transitions
between operating conditions are fast, and if these phenomena are not recognized in the design process,
then one should not expect that the gain-scheduled design will perform satisfactorily. This reasoning leads
to the popular heuristic guideline for successful gain-scheduled designs to “schedule on a slow-variable
which captures the nonlinearities.”
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A/D converter. See Analog-to-digital converter
(A/D converter)

Absolute value. See Modulus
Ackermann’s formula, 9-96

observer gain matrix calculation, 13-17
for state feedback gain matrix, 9-97, 9-98 to 9-100
state feedback gain vector calculation, 13-12

Action function, 16-10
Active closed loop, 19-15
Active controller, 19-14, 19-18, 19-19
Actuator saturation, 9-76, 19-1

causing instability, 19-4, 19-15
control system failure, 19-4n
effect reduction, 19-4 to 19-5
effects, 19-2
integral windup, 19-2 to 19-3
linear plant model, 19-2
open loop system, 19-3 to 19-4
saturation feedback, 19-5
step change responses, 19-3

Actuators, 9-76, 19-1, 17-2
binary, 17-5
bistable, 17-5
controller behavior, 19-5
controller implementation, 19-5
monostable, 17-5
saturation, 19-1 to 19-2

Adaptive controllers, 19-13
Aliasing. See Foldover
Analog controllers, digitizing, 12-7

bilinear transformation, 12-13 to 12-18
Butterworth filter, 12-13, 12-16
differential equation approximation, 12-8
discrete-time controller, 12-7
Euler’s backward method, 12-9
Euler’s forward method, 12-8
frequency response approximations, 12-13
matching step, 12-18
pole–zero matching, 12-23
trapezoidal method, 12-10

Analog-to-digital converter (A/D converter),
10-2, 12-2, 17-27

block diagram, 14-14
dynamic range, 14-14

quantization, 14-13
sampling, 14-13
statistical model, 14-14
in unitary task, 16-14

AND gate, 17-6, 17-8
FPLA circuit, 17-13
ISO symbol, 17-6
NOR gates acting as, 17-9
PAL circuit, 17-13
truth table, 17-6

Annihilating polynomial, 3-7
Antialiasing filters, 5-34, 15-11

digital, 14-17, 14-20
feedback loop act as, 14-18
high-frequency noise reduction, 15-11
measurement noise filtration, 15-12
STF acts as, 14-19

Anti-integral windup, 19-6
control system, 19-6
step change response, 19-6

Antiwindup, 19-16, 19-17. See also
Conditioning technique

in controller on series form, 9-80
high-gain, 19-18
in PID controller, 9-78
tracking time constant, 9-79
velocity algorithm, 9-80

Argument principle, 4-16
generalization, 4-17
inversion formula, 4-17
Lucas formula, 4-16
number of encirclements, 4-16

ARMA. See Auto regressive moving average (ARMA)
Asymptotic sampling zeros model (ASZ model),

5-36, 5-42, 5-56
Euler–Fröbenius polynomials, 5-37
general transfer function, 5-37 to 5-38
for incremental models, 5-39 to 5-41
rth-order integrator, 5-36
for stochastic systems, 5-51 to 5-52

Asymptotically stable, 5-11, 9-127 to 9-131, 19-24
linear time-invariant systems, 3-24
linearized dynamics, 19-25

Asynchronous execution, 17-16

Index-1
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Index-2 Index

ASZ model. See Asymptotic sampling zeros model
(ASZ model)

Auto regressive moving average (ARMA), 5-17
solution operator, 5-17
using z-transform, 5-17

Automaton model, nondeterministic, 5-95
Autotuning, 18-10

feedback loop, 18-13
in PID controller, 18-10

Auxiliary conditions, 1-2
comment on, 1-18 to 1-19
differential equations solution, 1-2

B

Back calculation. See Tracking
Bandlimited signal, 2-26

3-dB bandwidth, 2-26
Nyquist frequency for, 15-5

Bandwidth, 9-8
closed-loop system, 9-66, 9-147
conflicting requirements, 9-150

Bare motor, 16-28, 16-30 to 16-32
point-to-point moves, 16-29, 16-30
position control, 16-30

Basis, 3-10
BBM. See Break-before-make (BBM)
BDD. See Binary Decision Diagram (BDD)
Behavioral methods

behavioral setting, 5-60 to 5-62
implementability, 5-65 to 5-69
linear differential systems, 5-62 to 5-65, 5-77
parametrization, 5-72 to 5-74
pole placement, 5-69 to 5-72
robust stabilization, 5-78 to 5-80
stabilization, 5-69 to 5-72, 5-74 to 5-75

Behavioral setting, 5-60
alternative formulation of control,

5-61, 5-62
dynamical system, 5-60
feedback controller, 5-61
full plant behavior, 5-61
partial interconnection, 5-61
terminal types, 5-61

Bernoulli’s method, 4-6 to 4-7
Bilateral transform. See Two-sided transform
Bilinear method. See Trapezoidal method
Bilinear transformation, 4-21- See Trapezoidal

method
with frequency prewarping, 12-13, 12-15, 12-17
second-order filter frequency response, 12-19

Binary Decision Diagram (BDD), 5-87
Binary element, 17-5 to 17-6. See also De Morgan

theorems
Binary point, 14-2
Binary sensors, 17-3
Bistable switches, 17-10

Block diagram, 6-1, 6-24
A/D converter, 14-14
algebra, 10-11 to 10-12
compensator, 13-7, 13-8
constant-gain compensator, 13-6
control architecture for reversing mill, 9-159
feedback systems, 6-6 to 6-11, 9-60
gain, 6-2
integrator, 6-3
for MIMO systems, 6-15
nonlinear system, 18-2
parallel combination, 6-4 to 6-6
pick-off point, 6-11 to 6-12
relation between discrete-time signals, 13-5
relations between signal vectors, 10-15
series combination, 6-3 to 6-4
servomechanism, 18-21
summer, 6-2
summing junction, 6-12 to 6-14
system with cascade control, 9-88
system with feedforward control, 9-88
transfer function, 6-2 to 6-3

Block matrices, 3-7
Blocking code, 16-5
Bode diagrams, 8-17. See also Bode plots;

Nyquist diagram
loop gain, 8-25
magnitude, 8-18, 8-22, 8-23
phase margin, 8-21
transient response, 8-25

Bode plots, 9-10, 9-27, 9-30. See also
Bode diagrams

constant, 9-31
corner frequency, 9-31
factors, 9-31, 9-32, 9-33

Bode Sensitivity Integral, 9-146
Branches, 6-24
Break-before-make (BBM), 17-4
Bumpless control signal, 19-8
Bumpless transfer, 19-8

antiwindup, 19-16, 19-17
conditioning technique, 19-17
controller evaluation, 19-14
factors affecting evaluation, 19-14
filter and controller tuning, 19-11 to 19-13
filter constant smooth retuning, 19-13
observer-based technique, 19-17
robust bidirectional transfer, 19-15 to 19-16
scheduled and adaptive controllers, 19-13 to 19-14
strategy, 19-18
structure, 19-17
switching between manual and automatic

control, 19-10
transient by filter time constant change, 19-11
windup, 19-16

Butterworth filter, 12-13, 12-16
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Index Index-3

C

CAD. See Computer-aided design (CAD)
Candidate approximation models, 5-54 to 5-56
Cascade architecture, 9-154

cascade control, 9-154, 9-155, 9-156
gauge control, 9-158 to 9-159
mixing stirred tank, 9-157 to 9-158
step-by-step design strategy, 9-155

Cascaded form, 6-24
Cascaded subsystems, 6-16
Cauchy’s estimate theorem, 4-17
Cauchy’s inequality, 4-3
Cauchy’s integral formulas, 4-15, 4-16
Cauchy’s theorem, 4-14
Cauchy–Riemann equations, 4-5

harmonic functions, 4-6
region of analyticity, 4-5

Causality condition, 1-13
Cayley–Hamilton theorem, 3-8, 3-28, 9-96
CCW. See Counter-clockwise (CCW)
Center, 18-19
Central processing unit (CPU), 16-13, 17-17
Change-over, 17-3
Characteristic equation, 1-16, 8-1, 8-2, 8-3, 9-94

closed-loop system, 6-8
discrete-time system, 13-24
of feedback system, 8-5
matrix, 3-22
roots, 1-5, 4-7
sampled-data system, 8-37

Characteristic modes, 1-5, 1-16
Characteristic polynomial, 1-5, 1-16, 3-8, 7-2, 7-6, 7-10

behavior, 5-64
companion matrix, 3-26, 7-18
real matrix, 3-23
second-order roots, 7-8

Characteristic roots, 1-5, 1-16
Chips. See Integrated circuit (IC)
Circle criterion and stability, 18-14
Classical form. See Series form
Classical method, 1-2

assessment, 1-22
drawback, 1-12
for linear differential equations, 1-2

Classical solution, 1-3, 1-15
assessment, 22
characteristic equation, 1-16
characteristic modes, 1-16
characteristic polynomial, 1-16
characteristic roots, 1-16
complementary solution, 1-3 to 1-5, 1-15
complex exponential input, 1-9
constant input, 1-8
exponential function, 1-16
exponential input, 1-8
particular solution, 1-5 to 1-7

repeated roots, 1-16
sinusoidal input, 1-9

Clock-pulse (CP), 17-12
Clockwise (CW), 4-13, 8-39, 9-39
Closed-loop system, 8-40

Bode plots, 8-25
constant M-circles, 8-19
frequency balancing, 18-15
gain margin, 8-24
internal stability, 9-102
limit cycle, 18-8
magnitude plot, 8-27
M-curve, 8-18, 8-19
Nyquist plot, 18-9
Nyquist theorem, 9-102
oscillatory characteristic, 8-24, 8-27
stability determination, 8-9
step response, 8-27, 8-28
transfer function, 8-28
transient response, 8-25, 8-28

Closed-loop tracking performance, 9-48
constant M contour, 9-53
constant α contours, 9-54
direct plot, 9-52
direct polar plot, 9-49
Mm and ωm determination, 9-49 to 9-52
sin ψ determination, 9-54
sinusoidal and time response correlation, 9-52

Closed-loop transfer function, 6-6, 6-13
block diagrams, 6-15
closed-loop control system, 9-11
feedback system, 6-6
ITAE performance criterion, 9-22
Nyquist criterion. 8-8 to 8-9, 9-41
sensitivity, 9-12

CMOS. See Complementary metal-oxide
semiconductor (CMOS)

Code section. See Entry function
Combinatorial circuit, 17-6, 17-10

Ladder diagrams, 17-15
Communicating Sequential Processes (CSP), 5-87
Companion matrix, 3-26, 6-25, 7-20, 7-22
Complementary equation. See Homogeneous equation
Complementary metal-oxide semiconductor

(CMOS), 17-12
Complementary sensitivity, 9-13, 9-120, 9-147

functions, 9-15, 9-102 See Transfer function
and reference gain functions, 11-9, 11-11, 11-13

Complementary solution, 1-3, 1-5, 1-15
characteristic equation, 1-5
characteristic polynomial, 1-5
exponential function, 1-4
repeated roots, 1-5

Complete operations, 17-8
Complex conjugation, 4-2
Complex exponential, 2-2

input, 1-9
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Index-4 Index

Complex functions, 4-4, 9-8, 17-21
Cauchy–Riemann equations, 4-5, 4-6
continuity, 4-5
derivative, 4-5
limit, 4-5
meromorphic function, 4-11
multiple-valued, 4-4
open region, 4-4
poles, 4-8 to 4-9
polynomials, 4-6 to 4-8
power series expansions, 4-11 to 4-13
rational functions, 4-9 to 4-10
single-valued, 4-4
zeros, 4-8

Complex integrals, 4-13
argument principle, 4-16 to 4-17
Cauchy’s integral formulas, 4-15, 4-16
Cauchy’s theorem, 4-14
encirclement, 4-13, 4-14
invariance, 4-13
residue theorem, 4-17 to 4-19
Taylor power series expansion, 4-15
theorems in H∞ control theory, 4-17

Complex numbers, 4-1
addition formulas, 4-3
algebra, 4-1 to 4-2
Cauchy’s inequality, 4-3
complex conjugation, 4-2
de Moivre’s formula, 4-4
geometric interpretation, 4-3
modulus or absolute value, 4-2
polar coordinates, 4-3
polar representation, 4-3
primitive nth root of unity, 4-4
triangle inequality, 4-3

Complex proportional–integral lead, 9-74.
See also PID controller

Computer-aided design (CAD), 9-27
Concurrent operation model, 5-85
Conditioning technique, 19-17, 19-19
Conformal mappings, 4-19 to 4-20

area dilation factor, 4-20
bilinear transformation, 4-21
boundary-value problem, 4-21, 4-22
fundamental transformations, 4-20
Laplace’s equation, 4-21
linear fractional transformations, 4-20
Poisson’s equation, 4-21

Constant input, 1-8, 1-19
Constant M contour, 8-20, 9-53
Constant M-circles, 8-19
Constant α contours, 9-54, 9-56
Constant-phase contours, 8-19, 8-21
Continuous-time notch filter, 14-10

magnitude response, 14-11
phase response, 14-11

Continuous-time spectrum, 5-53 to 5-54

Continuous-time state variable models
discretization, 12-24

approximation methods, 12-26 to 12-28
continuous-time systems discrete-time models,

12-24 to 12-26
formula, 12-29
pulsed inputs discrete-time equivalents,

12-28 to 12-30
Continuous-time system, 5-3, 5-33, 12-2, 12-4

direct method, 12-1
discrete-time models, 12-24 to 12-26, 13-24
gain crossover frequency, 15-6
indirect method, 12-1
input–output representation, 5-3
Laplace and z-transform pairs, 12-3
nth-order, 12-31
reconstruction and D/A conversion, 12-3 to 12-4
sampling and A/D conversion, 12-2
sampling scheme, 5-33 to 5-34

Continuous-time white-noise (CTWN), 5-34, 5-47
conditions, 5-47
incremental variance, 5-47
properties, 5-47
spectral density, 5-48

Contraction mapping theorem, 3-30
Control program, 16-17

generic controller class, 16-20 to 16-25
Idle(), 16-20
instantiating tasks, 16-18
PID controller class, 16-23
Run function, 16-21 to 16-22, 16-24
SetTarget function, 16-20
simulation function, 16-25 to 16-26
supervisory task class, 16-18, 16-19
task class definition, 16-18
task functions, 16-19

Control sensitivity, 9-147
Control signals, 9-78, 17-3
Control structure, 9-121, 9-123

classical, 9-101 to 9-103
internal model, 9-103 to 9-104
Smith predictor, 9-111

Control system, 19-6
applications, 3-2
for discrete-time systems, 13-11
fail soft, 9-16
objective, 7-11
performance specifications, 9-2, 9-16
reliability, 9-16
robustness specifications, 9-9, 9-18
with selector control, 9-89
underdamped unit-step response, 9-1
with uniform signals type, 11-3

Control system design methods, 13-2
cascade compensation, 13-2
digital, 14-6
discrete-time control system, 13-3
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Index Index-5

frequency-domain methods, 13-9 to 13-11
root locus design methods, 13-4
steady-state error to power-of-time input, 13-3, 13-4

Controllability, 5-64, 7-12, 10-19. See also
Multi-input/multi-output (MIMO);
State-space system

in behavioral approach, 5-64 to 5-65
component, 7-15 to 7-17
differential operator, 7-17, 7-20
MIMO, 7-17
property, 5-89
state space, 7-11 to 7-12

Controllability index, 10-19
Controllability matrix, 7-13, 9-92, 10-19
Controllable canonical form, 5-19, 5-22, 7-21

characteristic equation simplification, 9-94
state-space system in, 7-22

Controller evaluation, 19-14
economic feasibility, 19-14
generality, 19-14
robustness, 19-14
safety, 19-14

Controllers, programmable, 17-1
actuators, 17-2
binary sensors, 17-3
change-over, 17-3
control signals, 17-3
digital sensors, 17-4
discrete event systems, 17-2
finite-state concept, 17-2
limit switches, 17-3 to 17-4
point sensors, 17-4
relay, 17-5
sequential control, 17-3
states, 17-2 to 17-3
switches, 17-5
transfer contact, 17-3
transitions, 17-2, 17-3

Convolution integral, 1-11, 7-5
Convolution method, 1-2, 1-11, 1-20

arbitrary signal, 1-20 to 1-21
assessment, 1-12
convolution integral, 1-11
convolution sum, 1-21
discrete-time unit impulse function, 1-20
impulse function sampling property, 1-11
unit step function, 1-11

Convolution sum, 1-21
Coordinates, 3-10
Coprime, 7-14n
Corner frequency, 9-31

log magnitude and phase diagram, 9-32
log magnitude correction, 9-33
values, 9-32

Corrected sampling zero model (CSZ model), 5-42
Counter-clockwise (CCW), 4-13, 8-39, 9-35
CP. See Clock-pulse (CP)

CPU. See Central processing unit (CPU)
Cramer’s rule, 3-5
Critical frequency, 18-10
Critical gain, 18-10
CSP. See Communicating Sequential Processes (CSP)
CSZ model. See Corrected sampling zero model

(CSZ model)
CTWN. See Continuous-time white-noise (CTWN)
CW. See Clockwise (CW)

D

D/A converter. See Digital-to-analog converter (D/A
converter)

Damping ratio, 6-9, 7-8, 9-46
second-order zero-state unit, 7-9
undamped, 7-8

dB. See Decibel (dB)
3-dB bandwidth, 2-15, 2-26, 5-16
de Moivre’s formula, 4-4
De Morgan theorems, 17-8
Dead time (DT), 9-45, 9-124

control difficulties, 9-124 to 9-125
polar-plot characteristic, 9-45
unstable plants, 9-143 to 9-144

Dead-time compensator (DTC), 9-124.
See Smith predictor (SP)

Dead zone, 18-7
feedback loop with relay, 18-12 to 18-13
relay with, 18-5, 18-12
two limit cycles, 18-12

Deadband effects, 14-27. See also Limit cycle
Deadbeat, 13-16. See also Step-invariant

discrete-time observer design
Deadbeat response, 9-21, 9-23, 9-26

characteristics, 9-23
coefficients and response measures, 9-25
normalized transfer function, 9-24

Decade, 9-29
Decentralized supervisory control, 5-97
Decibel (dB), 2-15, 9-9, 9-29

properties, 9-29
values of common numbers, 9-30

Delay time, 9-3
Delta operator, 5-39, 12-30

digital filter design, 14-9
filter transfer function, 14-12
MATLAB code, 12-33
modified, 14-13
state-space representation, 12-31
step response of elliptic filter, 14-13
transfer function representation, 12-30 to 12-31
unit step response, 12-34

Delta sigma modulator (ΔΣM), 14-18, 14-19
linear model, 14-19
NTF, 14-18
output noise power, 14-20
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Index-6 Index

Delta sigma modulator, (Continued)
SNR, 14-21
STF, 14-19

ΔΣM. See Delta sigma modulator (ΔΣM)
Derivative time, 9-72
DES. See Discrete event systems (DES)
Describing function (DF), 18-1, 19-1

closed-loop frequency response, 18-15 to 18-16
compensator design, 18-15
cubic nonlinearity, 18-4
evaluation, 18-3 to 18-8
relay with dead zone and hysteresis, 18-5
for saturation, 19-2
saturation nonlinearity, 18-4 to 18-5
of single-valued nonlinearities, 18-7 to 18-8
stability and accuracy, 18-14 to 18-15

Design formalism, 16-6
formality, 16-7
further state structure, 16-10
motion profile generator, 16-8
state-transition logic, 16-7 to 16-9
transition logic implementation, 16-9
trapezoidal velocity profile, 16-9

Designing between-sample response, 13-23
analog plant input filtering, 13-25 to 13-27
hidden oscillations, 13-23, 13-24
higher-order holds, 13-28
higher-rate digital filtering and feedback,

13-27 to 13-28
response of holds, 13-29

Detectability, 5-64 to 5-65
Determinant, 3-4

criterion, 8-34 to 8-35
invertibility characterization, 3-5
Laplace expansions, 3-4
properties, 3-5

Deterministic automaton model, 5-83
DF. See Describing function (DF)
Diagnoser automaton, 5-96
Difference equation, 1-1, 1-13, 10-5

approximate solution, 12-18
causality condition, 1-13
classical solution, 1-15 to 1-16
construction, 10-5
convolution method, 1-20 to 1-22
derivatives finite difference

approximations, 12-20
initial conditions, 1-13, 1-14
iterative solution, 1-13, 1-14
nth-order, 1-13
operational notation, 1-14 to 1-15
particular solution, 1-17 to 1-20
types, 1-1

Differential equation, scalar, 7-1
characteristic polynomial, 7-2
eigenvalues, 7-6 to 7-7
forced and natural components, 7-3

inverse transform, 7-3
poles, 7-6 to 7-7
second-order response, 7-8 to 7-10
second-order transfer function
system transfer function, 7-2
time response, 7-7
zero-state and input components, 7-3
zeros, 7-6 to 7-7

Differential expression, 1-1
Differential operator

controllability, 7-17 to 7-19, 7-20
MIMO, 7-24 to 7-26
observability, 7-23

Differentiation, 1-2
numerical, 12-18

Digital computers, 8-28, 16-2
Digital control system, 5-33, 8-29, 10-1, 12-1

advantages, 10-1, 12-8
algorithms, 10-2
3-bit quantized signal, 10-2
continuous-time plant, 10-2
digital implementation, 9-81
discrete-time signals, 10-1
frequency response, 12-18
output, 14-23
performance improvement, 12-10
PID controllers, 9-70

Digital sensors, 17-4
Digital-to-analog converter (D/A converter),

10-2, 17-27
electronic, 12-3
modeled in feedback loop, 14-18
representation, 12-4

Dimension, 3-10
DIN (German standardization organization),

17-10
Dirac delta function. See Unit impulse
Direct polar plots. See Nyquist plots
Direct product space, 3-9
Discrete event systems (DES), 5-81 to 5-82, 17-2

automata models, 5-92 to 5-93
concurrent operation model, 5-85
control system elements, 17-2
decentralized supervisory control, 5-97
deterministic automaton model, 5-83
diagnoser automaton, 5-96
finite state automaton, 5-83
language representation, 5-83
logical models, 5-83 to 5-87
max-plus algebra, 5-98
model types, 5-87
nondeterministic automaton model, 5-95
observer automaton, 5-95, 5-96
Petri nets, 5-85 to 5-87, 5-94 to 5-95
sequencing control, 17-3
stochastic timed automaton, 5-98
supervisory control, 5-82, 5-87 to 5-94
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Index Index-7

synchronous composition operator,
5-84 to 5-85

timed automaton, 5-97, 5-98
timed Petri net, 5-98

Discrete Hermite Bieler theorem, 8-33
Discrete time model, 5-34
Discrete-time dynamic system, 8-28

difference equation, 8-29
digital controller, 8-29
sampled-data control system as, 8-30
stability criteria, 8-31 to 8-38
transfer function, 8-29

Discrete-Time Fourier Transform (DTFT),
2-1, 2-10, 5-46, 11-2

computation, 2-10 to 2-11
periodic function, 2-10
sampled signal, 2-10

Discrete-time LTI system, 5-6 to 5-7, 5-8 to 5-10
Discrete-time signals, 10-1, 10-3
Discrete-time signals and systems, 10-3

difference equations, 10-5
z-transform pairs, 10-4
z-transform properties, 10-4
z-transformation, 10-3

Discrete-time spectrum, 5-46, 5-52 to 5-53
candidate approximation models, 5-54 to 5-56

Discrete-time state equations and system
response, 10-13

controllability and observability, 10-19
discrete convolution, 10-14
state equations and system response, 10-17 to 10-18
state variable models, 10-13
system zero-state response, 10-15
variables change, 10-18
z-transform, 10-16 to 10-17
zero-input response components, 10-15

Discrete-time systems, 10-1
completely observable, 10-20
digital control, 10-1
fundamental sequences, 10-3
with input sequence, 10-12
response components, 10-7
signals and systems, 10-3
state equations and system response, 10-13
unit pulse response, 10-7
z-transfer function methods, 10-6

Distortion, 18-11
Disturbance gain functions, 11-5, 11-6,

11-10, 11-12, 11-15
Disturbance sensitivity, 9-147
Dominant poles, 8-27, 9-5

closed-loop transfer function, 8-25
to control dynamic performance, 9-6

Dot product, 3-16
Double-valued nonlinearity, 18-3
DT. See Dead time (DT)
DTC. See Dead-time compensator (DTC)

DTFT. See Discrete-Time Fourier Transform (DTFT)
Dual basis, 3-12
Duality, 10-21
Dynamic event feedback law, 5-88

E

Eigenvalue placement
with multiple inputs, 13-12
with output feedback, 13-13
pole placement, 13-13 to 13-15
for single-input systems, 13-11
with state feedback, 13-11, 13-13

Eigenvalues, 3-22, 13-19
characteristic equation, 3-22
constrained by conjugacy conditions, 3-23
diagonal matrix, 3-23
Jordan matrices, 3-25
matrix, 7-6, 9-91
properties, 3-23 to 3-24
symmetric matrices, 3-24 to 3-25

Eigenvectors, 3-22
bases and diagonalization, 3-23
constrained by conjugacy conditions, 3-23
Jordan matrices, 3-25
properties, 3-23 to 3-24
symmetric matrices, 3-24 to 3-25

Electronic amplifier representation, 5-2 to 5-3
Encirclement, 4-13, 4-16

negative, 4-13
net number of clockwise, 8-12, 8-13
single positive, 4-14

Entry function, 16-10
ESD model. See Exact sampled-data model

(ESD model)
Essential singularity, 4-9, 4-18
Ethernet, 17-30
Euler’s backward method, 12-9
Euler’s forward method, 12-8
Euler–Fröbenius polynomials, 5-37
Exact sampled-data model (ESD model),

5-34, 5-39, 5-41
Exclusive OR (XOR), 17-8, 17-9- See also

Masking
symbol, truth table, 17-9

Exit function, 16-10
Exponential input, 1-8

for auxiliary conditions, 1-18
complex, 1-9

F

F.O.M. See Figures of merit (F.O.M.)
FBD. See Function block diagram (FBD)
Feedback, 9-146

basic structure, 9-147
fundamental limitations, 9-146



�

�

�

�

� �

Index-8 Index

Feedback control system
containing poles, 9-39
field-controlled servomotor, 9-38 to 9-39
noise and disturbance, 9-13
performance index, 9-21
with plant P and controller C, 9-125
polar plot, 9-39
signal-flow graphs, 6-17
single-input-single-output vehicle, 8-5
state space, 6-23
unity, 9-60

Feedback controller, 5-61
classical, 9-118
IMC approach, 9-123
lower-order, 13-15
zeroth-order, 13-15

Feedback form, 6-25
Feedback system, 6-6, 9-6

closed-loop transfer function, 6-6, 6-8 to 6-9, 6-13
closed-loop transfer function, 9-21
feedback transfer function, 6-6
forward transfer function, 6-6
with open and closed-loop transfer function, 9-6
open-loop transfer function, 6-6
single-loop feedback system, 6-7 to 6-8
translational system, 6-9 to 6-11
unity-feedback system, 6-7

Feedback transfer function, 6-6
Feedforward, 9-88, 9-158

and cascade control, 9-157
control law, 9-88
SP for measurable disturbances, 9-134
transfer function, 9-88

Feedforward, disturbance, 9-152
control loop with, 9-153
plant input, 9-154

Feedforward, reference, 9-150
control loop with, 9-151
nominal plant model, 9-151
reference tracking, 9-150, 9-152
tracking performance, 9-152

FET. See Field-effect transistor (FET)
Field programmable logic arrays (FPLA),

17-13
Fieldbus, 17-28

standard, 17-29
Field-effect transistor (FET), 17-12
Field-programmable gate array (FPGA),

16-28
Fields, 3-2
Figures of merit (F.O.M.), 9-28, 9-49

time domain, 9-50
Finite impulse response (FIR), 9-144, 14-16
Finite state automaton, 5-83, 5-89
Finite state machine. See Finite state

automaton
Finite word length (FWL), 12-30, 14-1

Finite-state concept, 17-2
conditions, 17-2
features, 17-3
state definitions, 17-2 to 17-3

FIR. See Finite impulse response (FIR)
First-order hold (FOH), 12-4

reconstruction, 12-5
response of holds, 13-29

Fixed-point arithmetic, 14-2, 14-22
disadvantage, 14-3
error by truncating number, 14-4
normalized fixed-point numbers, 14-2
probability density functions, 14-6
two’s complement representations, 14-3

Flip-flop gate, 11, 12, 17-10
delay and trigger, 17-12
illustrations and DIN/IEC symbol, 17-11
ladder diagrams, 17-15

Floating-point arithmetic, 14-3, 14-27
normalized floating-point numbers, 14-4
probability density functions, 14-6
quantization errors, 14-4
roundoff and truncation errors, 14-5

FOH. See First-order hold (FOH)
Foldover, 15-5
Forced response, 7-2, 7-10
Forced response. See Particular solution
Forward transfer function, 6-6, 9-89

direct polar plot, 9-40
signal-flow graph, 6-24

Forward-path gain, 6-19, 6-20, 6-25
Fourier transform (FT), 2-1, 11-2

common functions, 2-4
dB, 2-15
3-dB bandwidth, 2-15
exact and approximate magnitude spectra, 2-21
frequency function, 2-2, 2-3
generalization, 2-2
inverse of, 5-11
magnitude spectrum, 2-3
MATLAB program, 2-20 to 2-21
numerical computation, 2-20
phase spectrum, 2-3
properties, 2-4
signal, 2-2

FPGA. See Field-programmable gate array (FPGA)
FPLA. See Field programmable logic

arrays (FPLA)
Frequency domain criteria, 8-32. See also

Principle of argument
Frequency response, 9-26 to 9-27

Butterworth filter, 12-16
characteristics of closed-loop, 9-28
closed-loop, 9-28
of controlled variable, 9-27
curves, 9-27
Fourier transform, 9-27
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Index Index-9

noise, 9-26
open loop transfer function, 15-8
plots, 10-13, 12-18, 13-10
second-order filter, 12-19
specification, 9-9

Frequency transfer function, 9-30
angle, 9-30
logarithm, 9-30

Frequency-domain method. See Laplace transform
Frequency-response function. See M-curve
FT. See Fourier transform (FT)
Full interconnection, 5-60, 5-69, 5-75, 5-78

for implementability problem, 5-65, 5-67
pole placement, 5-69
robust stabilization, 5-78
stabilization, 5-69, 5-75

Full plant behavior, 5-61
Function block, 17-6
Function block diagram (FBD), 17-21
Fundamental theorem of algebra, 4-1, 4-6
FWL. See Finite word length (FWL)

G

G(s) plots comparison, 8-12
Gain, 6-2

adjustment, 9-55 to 9-56
changing nonlinearity, 18-7
crossover, 9-46
crossover frequency, 8-44 to 8-45, 8-46, 9-10

Gain margin (GM), 8-24 to 8-25, 8-39 to 8-40, 8-46, 9-9,
9-10. See also Open-loop transfer function

frequency, 9-46
negative, 9-46
positive, 9-47

Gain-scheduling, 19-20, 19-30
gain-scheduled command, 19-31
LPV system, 19-32 to 19-33
motivation, 19-30
nonlinear systems control design,

19-30 to 19-31
smooth scheduling, 19-32
switched scheduling, 19-32

Γ contour, 8-9, 8-10, 8-11
Gauss’ mean value theorem, 4-17
General envelope specification

closed-loop frequency response, 9-9
on step response, 9-6, 9-8

General piecewise linear, 18-7
General quantizer, 18-7
Genji’s formula, 4-7
Gershgorin discs, 3-24
GM. See Gain margin (GM)
Gram matrix, 3-20, 3-21, 3-24
Gram–Schmidt orthogonalization, 3-18
Graphical user interface (GUI), 16-17
GUI. See Graphical user interface (GUI)

H

H∞-control problem, 5-79
H∞-norm, 9-117, 9-121
Hadamard’s formula, 4-11
Hard nonlinearities, 19-27
HC. See High-speed CMOS (HC)
Heaviside’s expansion formula, 4-9
Hermitian symmetric matrix, 3-6
Hidden oscillations, 13-23, 13-24
Hierarchical supervisory control, 5-97
High-frequency gain, 19-17, 19-19
High-speed CMOS (HC), 17-12
Hirschorn inverse, 9-115, 9-121
Hold device, 5-33
Homogeneous equation, 1-2, 1-3

nontrivial solution, 3-19
solution of, 1-4, 1-15

Hurwitz matrix, 3-24, 5-60
Hybrid system models, 5-82
Hysteresis, 18-6

Nyquist plot, 18-11
relay with, 18-5

I

IAE. See Integral absolute error (IAE)
IC. See Integrated circuit (IC)
Ideal case, 9-126, 9-128

DT elimination, 9-142
transfer function, 9-127

Ideal relay, 18-1, 18-7
Ideal saturation, 18-7
Identity matrix, 3-3
IDF. See Incremental describing function (IDF)
Idle controller. See Latent controller
IDTFT. See Inverse Discrete-Time Fourier

Transform (IDTFT)
IEC. See International Electrotechnical

Commission (IEC)
IFT. See Inverse Fourier Transform (IFT)
IL. See Instruction list (IL)
IMC. See Internal model control (IMC)
IMC applications, 9-107

minimum phase process models, 9-109 to 9-110
nonminimum phase integrating process,

9-107 to 9-109
PID tuning rules, 9-112
processes with common stochastic

disturbances, 9-110
processes with single dominant lag, 9-113
processes with time delay, 9-110 to 9-111

IMC linear infinite-dimensional systems, 9-117
diffusion equation, 9-119
method 1, 9-117 to 9-118
method 2, 9-118 to 9-119
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Index-10 Index

IMC nonlinear processes, 9-114 to 9-116
chemical reactor, 9-116
Hirschorn inverse, 9-115
lie derivative, 9-115

Implementability, 5-65
controlled behavior, 5-65 to 5-66
hidden behavior, 5-66
regular, 5-66 to 5-69
Sandwich theorem, 5-66

Implementable behavior, 5-59
Impulse response, 5-6

causal, 5-7 to 5-8
discrete-time LTI system, 5-6 to 5-7,

5-8 to 5-10
unit impulse, 5-6
uses, 5-7

Impulse-invariant approximation, 12-22 to 12-23
Incremental algorithms. See Velocity algorithm
Incremental describing function (IDF), 18-10
Incremental models, 5-38

asymptotic sampling zeros for, 5-39 to 5-41
delta operator, 5-39
pleasing by-product, 5-39

Inner product, 3-16
for functions, 3-17
properties, 3-16

Inner product space, 3-17
generalization of Pythagorean theorem, 3-17
orthonormal basis, 3-17

Input cardinality, 5-63
Input sensitivity, 9-147
Input-output models, 5-2

continuous-time system, 5-3
discrete-time LTI system, 5-6 to 5-7
generalization of RC circuit, 5-4
impulse response, 5-6
ODE, 5-2
transfer functions, 5-10

Inputs. See Actuators
Instruction list (IL), 17-19
Instrument Society of America (ISA), 9-74
Integral absolute error (IAE), 9-105
Integral of the square of the error (ISE), 9-21, 9-26
Integral of time multiplied by the absolute error

(ITAE), 9-22, 9-26
index, 9-26
system step response, 9-23
transfer function, 9-22, 9-23

Integral squared error (ISE), 9-105, 9-121
specification to minimize, 9-107
theorem, 9-106

Integral windup, 19-2 to 19-3. See also Anti-integral
windup

Integrated circuit (IC), 17-12
FPLA, 17-13
LSI, 17-12
MSI, 17-12

PAL, 17-13
PROM, 17-13

Integrator, 6-3
Integrator windup, 9-76, 9-77

integral action, 9-76
tracking, 9-77

Integro-differential equation, 5-16
Intelligent control, 5-58 to 5-59
Internal model control (IMC), 9-100,

9-101, 9-121, 19-10, 19-19
applications, 9-107
classical control structure, 9-101 to 9-103
design procedure, 9-104
IMC filter forms, 9-106 to 9-107
implementation with actuator constraints, 9-104
ISE-optimal performance, 9-106
linear infinite-dimensional systems, 9-117
nonlinear processes, 9-114 to 9-116
performance measure, 9-105
structure, 9-103 to 9-104

Internal stability, 9-102, 9-121
International Electrotechnical Commission

(IEC), 17-10
International Standards Organization (ISO), 17-6
Intertask communication, 16-14

data integrity, 16-14 to 16-15
exchange mechanisms, 16-15
mutual exclusion, 16-15
task1 class, 16-17
task2 class, 16-17

Invariant polynomials, 3-8
Inverse Discrete-Time Fourier Transform

(IDTFT), 11-2
Inverse Fourier Transform (IFT), 11-2
Inverse polar plot, 9-38. See also Nyquist plots
Inverse-based control, 9-121
Irrational

function, 2-9, 2-26
transforms, 2-9 to 2-10

ISA. See Instrument Society of America (ISA)
ISE. See Integral of the square of the error (ISE)
ISO. See International Standards Organization (ISO)
Isocline method, 18-19
ITAE. See Integral of time multiplied by the absolute

error (ITAE)

J

Jacobian matrices, 19-22
rotational link, 19-23

K

K.E. See Kinetic energy (K.E.)
Karnaugh map, 17-10
Kinetic energy (K.E.), 5-31
Kronecker delta, 5-48
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Index Index-11

L

l’Hôpital’s rule, 2-15
Ladder diagram (LD), 17-2, 17-14

combinatorial circuit, 17-15
flip-flop, 17-15
framework of, 17-14

Lag compensator, 9-67, 9-68
Lagrange’s interpolation formula, 4-8
LAN. See Local Area Network (LAN)
Language representation, 5-83
Laplace transform, 1-2, 2-2, 5-11 to 5-12

common functions, 2-7
differential equations solution, 2-21 to 2-23
evaluation, 7-2
inverse, 7-4
one-sided, 2-5
properties, 2-6
resolvant matrix, 7-4
two-sided, 2-4
unit-step function, 2-5
in vector form, 7-3
z-transform, 2-2

Large-scale IC (LSI), 17-12
Latency error, 16-11
Latent control signal, 19-16
Latent controller, 19-14, 19-15, 19-19

alternative, 19-18
Laurent expansion, 4-17
Laurent series, 4-18
LD. See Ladder diagram (LD); Loaded (LD)
LDI. See Loaded or inverted (LDI)
Lead compensator, 9-66, 9-68
Least significant bit (LSB), 14-2
Left half-plane (LHP), 8-40, 9-135
Left inverse, 9-121, 9-122
Left-half s-plane (LH s-plane), 9-35
LH s-plane. See Left-half s-plane (LH s-plane)
LHP. See Left half-plane (LHP)
Lie

algebras, 3-13 to 3-14
derivative, 9-116, 9-121 to 9-122

Limit cycle, 14-27 to 14-28
autotuning, 18-10
critical frequency, 18-10
critical gain, 18-10
IDF, 18-10
isocline method, 18-19
Loeb criterion, 18-10
Nyquist plot, 18-9
in relay systems, 18-16
two limit cycles, 18-12

Limit switches, 17-3 to 17-4
bounces, 17-3
settling time, 17-4
symbols, 17-4

Limited field of view, 18-8

Linear combination, 6-25
Linear differential equations, 1-1, 18-21, 18-22

auxiliary conditions role, 1-2 to 1-3
classical solution, 1-3 to 1-9
convolution method, 1-2, 1-11 to 1-12
form in engineering applications, 1-2 to 1-3
input value example, 1-9 to 1-10
solving methods, 1-2

Linear differential systems, 5-62
autonomous behaviors, 5-63 to 5-64
behavior, 5-62
controllability, 5-64
detectability, 5-64 to 5-65
input and output cardinality, 5-63
input–output partition, 5-63
kernel representation, 5-63
observability, 5-64
rational representations, 5-77
stabilizability, 5-64

Linear equations, 3-19
nontrivial solution, 3-19
numerical conditioning, 3-20 to 3-21
overdetermined, 3-19
pseudoinverse matrix, 3-21
rank, 3-20
solving, 3-20
sparse solutions, 3-21 to 3-22
underdetermined, 3-19
unique solution, 3-21

Linear fractional transformations, 4-20, 4-21
Linear functions, 3-11

composition, 3-11
dual basis, 3-12
Gram-Schmidt orthogonalization, 3-18
inner product, 3-16 to 3-17
lie algebras, 3-13 to 3-14
linear functionals, 3-13
linear least-squares approximation, 3-18
matrix representations, 3-12 to 3-13
metric spaces, 3-16
norms, 3-15 to 3-16
orthogonal matrices, 3-18
orthogonal projection matrices, 3-19
orthogonal projections, 3-17
orthogonal transformation, 3-18
QR factorization, 3-18
vector norms, 3-14 to 3-15

Linear independence, 3-10
Linear matrix equations, 3-30 to 3-31
Linear parameter varying system (LPV system), 19-32

LPV controller, 19-33
rotational link, 19-33
time-varying oscillator, 19-34

Linear system, 6-25, 7-3
Routh–Hurwitz stability criterion, 8-1, 8-2, 8-3
stability criteria, 8-30
stability of, 8-1, 8-3
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Index-12 Index

Linear time-invariant systems (LTI systems),
1-1, 5-2, 7-1, 9-2, 9-101, 9-124

inverse Laplace transform approach, 7-4
MATLAB, 7-5 to 7-6
scalar differential equation, 7-1 to 7-3
state transition matrix approach, 7-5
state variables, 7-3 to 7-4
transfer function

Linearization, 5-31, 19-20
asymptotical stability, 19-28
consequences of, 19-21
about equilibrium, 19-23
exponentially stable equation, 5-28, 5-29
failures, 5-30 to 5-31
of functions, 19-22
hard nonlinearities, 19-27
Jacobian matrices, 19-23
limitations, 19-27 to 19-28
local nature of, 19-28
Lyapunov functions, 5-28
Lyapunov’s linearization method, 5-29
non-differentiable feedback, 19-28
nonlinear damping, 19-24
of nonlinear dynamics, 19-23
parametric resonance, 5-29
remarks, 5-31 to 5-32
rotational link, 19-21, 19-24
simple pendulum, 5-30
stability, 19-24
stabilizability, 19-28
stabilization, 19-25 to 19-27
Taylor expansion, 5-28
about trajectory, 19-29

Liouville’s theorem, 4-17
Lm. See Log magnitude (Lm)
Lm and phase diagram, 9-46, 9-47. See also Bode plots
Lm–angle diagram, 9-47 to 9-48

constant M and α curves, 9-56 to 9-57
Load disturbance, 9-122
Loaded (LD), 17-19
Loaded or inverted (LDI), 17-19
Local Area Network (LAN), 17-30
Loeb criterion, 18-10
Log magnitude (Lm), 9-29

angle diagram, 9-47, 9-49, 9-57
correction, 9-33
and phase diagram, 9-32, 9-34, 9-47
plot, 9-35, 9-36, 9-37
system type and gain, 9-35 to 9-37

Log magnitude–angle diagram, 9-30, 9-48 to 9-49, 9-57
Logarithm, 9-29
Logarithmic plots. See Bode plots
Logical gates, 17-6

AND gate, symbol, truth table, 17-6
combinatorial circuits, 17-6
masking, 17-6, 17-7
n.c. gate, 17-8

NAND gate, 17-8
NOR gate, 17-8
NOT gate, 17-8
NOT truth table, symbol, 17-6
OR gate, symbol, truth table, 17-7
static system, 10, 17-6
symbols, 17-11
XOR, 17-9

Loop gain, 6-18, 6-25
nontouching, 6-19
transfer function, 8-8, 8-28
types, 6-19

Loop nominal sensitivities, 9-147
achieved sensitivity, 9-150
control limitations, 9-148 to 9-149
disturbance rejection, 9-148
noise immunity, 9-148
reference tracking, 9-148
robustness to modeling errors, 9-149

Loop shaping method, 9-14
Low-power Schottky TTL

(LS-TTL), 17-12
LPV system. See Linear parameter varying system

(LPV system)
LSB. See Least significant bit (LSB)
LSI. See Large-scale IC (LSI)
LS-TTL. See Low-power Schottky TTL (LS-TTL)
LTI systems. See Linear time-invariant systems

(LTI systems)
Lucas’ formula, 4-10, 4-11, 4-16
Lyapunov

functions, 5-28
linearization method, 5-29

M

M-curve, 8-18 to 8-19
magnitude plot, 8-27

Magnitude spectrum, 2-3, 2-19, 2-26
exponential function, 2-17
signal with transform, 2-18, 2-19
T-second rectangular pulse, 2-16

Make-before-break (MBB), 17-4
Marginally stable, 7-8, 8-2, 8-4, 10-4, 10-7
Markov stability criterion, 8-36
Masking, 17-6

two bytes with AND operation, 17-7
two bytes with OR operation, 17-7
two bytes with XOR operation, 17-9

Mason’s rule, 6-18, 6-19, 6-25
forward-path gain, 6-19, 6-20
loop gain, 6-18, 6-19
nontouching loops, 6-19, 6-20
signal-flow graph, 6-19, 6-20
transfer function, 6-21

Matching step response, 12-18
continuous-time controller, 12-22
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Index Index-13

MAThematical LABoratory (MATLAB), 7-10, 8-46
code for unit step response simulation, 12-33
GM and PM, 8-45 to 8-46
magnitude spectrum computation, 2-20 to 2-21
root locus plot generation, 9-66
uses, 7-5 to 7-6

Mathematical preliminaries, 11-1
DTFT, 11-2
FT, 11-2
IDTFT, 11-2
IFT, 11-2

MATLAB. See MAThematical LABoratory (MATLAB)
Matrix, 3-2

addition, 3-2
invariant factors, 3-26
inverse, 3-4, 3-5
Jordan form, 3-25
matrix-valued functions, 3-28 to 3-31
positive definite symmetric, 8-35
positive definiteness characterization, 3-28
quadratic forms, 3-27 to 3-28
rational canonical form, 3-26
shapes, 3-2
transposition, 3-6, 3-13, 10-21
unimodular, 3-8

Matrix algebra, 3-2
block matrices, 3-7
Cayley–Hamilton theorem, 3-8
Cramer’s rule, 3-5
determinant, 3-4 to 3-5
identity matrix, 3-3
matrix addition, 3-2
matrix inverse, 3-4
matrix multiplication, 3-3
matrix polynomials, 3-7, 3-8
matrix transposition, 3-6
PLU factorization, 3-6
scalar multiplication, 3-2
zero matrix, 3-3

Matrix functions, 3-28
Cayley–Hamilton theorem, 3-28
Hurwitz matrices characterization, 3-31
Kronecker product formulation, 3-30
linear matrix equations, 3-30
from matrix equations solution, 3-30
parametric functions, 3-29
resolvent matrix, 3-29
Schur matrices characterization, 3-31
similarity transformations, 3-28

Matrix multiplication, 3-3. See also Matrix—inverse
left factor’s column partition, 3-7
quadratic form, 3-27

Matrix polynomials, 3-7
equivalence, 3-8
real, 5-60
right coprime, 7-15
two-variable, 5-80

Maximum modulus theorem, 4-17
Max-plus algebra, 5-98
MBB. See Make-before-break (MBB)
Mean time before failure (MTBF), 9-16
Medium-scale IC (MSI), 17-12
Meromorphic function, 4-11
Metric spaces, 3-16
MIMO. See Multi-input/multi-output (MIMO)
Minimal polynomial, 3-7
Minimum modulus theorem, 4-17
Minimum-phase system, 9-37
Miscellanea, 5-20

cascaded transfer functions, 5-21
guises, 5-21
similarity transformation, 5-21
state-space system action, 5-21, 5-22
transfer function manipulation, 5-22

MME. See Multiplicative modeling error (MME)
Model error quantification, 5-41

ASZ model, 5-42
Bode magnitude of relative errors, 5-45
CSZ model, 5-42
ESD model, 5-41
relative error comparison, 5-42 to 5-44
sampling zeros, 5-41
SDR model, 5-42
for stochastic systems, 5-52

Model inverse-based control. See Inverse-based
control

Modeling physical systems
closed-loop frequency response, 18-15 to 18-16
compensator design, 18-15
dilemma in, 19-20
Euler approximation accuracy, 12-13
gain-scheduling, 19-20
limit cycles and stability, 18-8 to 18-13
limit cycles in relay systems, 18-16
stability and accuracy, 18-14 to 18-15

Modes. See Characteristic modes
Modular supervisory control, 5-96 to 5-97
Modulus, 4-2, 4-3
Monic polynomial, 3-8, 4-6, 5-64
Most significant bit (MSB), 14-2
MSB. See Most significant bit (MSB)
MSI. See Medium-scale IC (MSI)
MTBF. See Mean time before failure (MTBF)
Multi-input/multi-output (MIMO), 5-19,

6-1, 9-16, 9-27, 9-124
constraint on loop gain, 9-19
controllability and observability, 7-11, 7-17
decoupling specification, 9-16 to 9-17
diagonal matrix in, 19-18
differential operator system, 7-24
performance specifications, 9-16 to 9-18
plant transfer matrix, 9-18 to 9-19
robustness specifications, 9-18 to 9-20
step response envelope specifications, 9-7
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Index-14 Index

Multi-input/multi-output (MIMO), (Continued)
transfer function matrices, 9-17
transfer functions, 5-24 to 5-25
uncertainty, 9-19

Multiplicative modeling error (MME), 9-149

N

n.c. See normally closed (n.c.)
n.o. See normally opened (n.o.)
NAND gate, 17-8

operations, 17-8
symbol and truth table, 17-9

Natural modes. See Characteristic modes
Natural projection operator, 5-84
Natural response, 7-2, 7-10. See also

Complementary solution
Negation (NOT), 17-6
Newton’s equations, 5-14

state-space description, 5-15
Nichols chart, 9-56, 9-57
Nichols diagram. See Log magnitude–angle diagram
Node, 6-15, 6-25, 18-19
Noise shaping filter. See Noise transfer function (NTF)
Noise transfer function (NTF), 14-18

magnitude response, 14-20
Nominal plant, 5-78

linear differential system, 5-79
multiplicative perturbations, 9-130, 9-151
optimal robust stabilization, 5-80

Nonlinear characteristics, 18-3
Nonlinear system, 5-5, 5-57 to 5-58

block diagram, 18-2
double-valued nonlinearity, 18-3
extensions to, 5-57
feedback loop with polynomial, 18-13
gain-scheduled control design, 19-30 to 19-31
linearization, 5-28, 19-25
nonlinear characteristics, 18-3
phase plane method, 18-18
second-order differential equation, 18-18
single-valued nonlinearities, 18-7 to 18-8
symmetrical odd, 18-2

Nonlinearity loop, 18-33
Nonminimum-phase system, 9-37
Nontouching loops, 6-19, 6-20, 6-25
NOR gate, 17-8

acting as AND gate, 17-9
symbol, and truth table, 17-8

normally closed (n.c.), 17-3
n.c. gate, 17-8

normally opened (n.o.), 17-3
NOT. See Negation (NOT)
NOT gate, 17-8

truth table and symbol, 17-6
Notch filter, 9-68, 15-6n

continuous-time, 14-10

magnitude response, 14-11
phase response, 14-11

N-point DFT. See N-point discrete Fourier
transform (N-point DFT)

N-point discrete Fourier transform
(N-point DFT), 2-1, 2-10

NTF. See Noise transfer function (NTF)
Numerical integration, 12-8
Nyquist criterion, 8-8, 8-17

G(s) plots comparison, 8-12
loop gain, 8-8
Nyquist D contour, 8-10, 8-11, 8-12, 8-13
Nyquist theorem, 8-8
pole–zero plot, 8-9
principle of argument, 8-10
requirement, 9-43
s-plane determination, 8-12

Nyquist diagram, 8-13, 8-14 to 8-15, 8-16, 8-17
closed-loop frequency response, 8-26, 8-27
closed-loop transient response, 8-28
constant M-circles, 8-19
gain margin, 8-24
loop gain, 26, 27, 8-25
M-curve, 8-18 to 8-19
phase lag impact, 8-26
phase margin impact, 8-26
relative stability, 8-18

Nyquist frequency, 5-56, 12-18, 15-5
Nyquist plot, 8-13, 8-17, 9-10, 9-27, 18-9, 18-11

feedback control system, 9-38 to 9-39
gain margin determination, 8-24, 8-25, 8-40 to 8-43
lag–lead compensator, 9-38
loop gain, 8-26, 8-27, 8-28
partial, 8-44
steps, 9-40 to 9-41

Nyquist plots, 5-11, 9-27, 9-128
by hand, 8-13
partial, 8-44

Nyquist stability criterion, 4-10, 8-13, 9-41
B(s) plot, 9-42 to 9-43
generalized, 9-42
limitations, 9-41
Nyquist stability test, 8-8
path Q analysis, 9-43
polar-plot, 9-45
poles effect on B(s) rotation, 9-43 to 9-44
systems having dead time, 9-44

Nyquist theorem, 8-8, 8-13
Bode diagrams, 8-17, 8-18, 8-25
closed-loop transfer function, 8-14
loop transfer function, 8-15, 8-17
Nyquist diagram, 8-14 to 8-15, 8-16, 8-17, 8-18
phase plots, 8-17, 8-25
pole–zero plot, 8-16
simple first-order system, 8-13, 8-14,
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Index Index-15

O

Observability, 5-64, 5-70, 7-11, 7-14. See also
Multi-input/multi-output (MIMO);
State-space system

component, 7-15 to 7-17
controllability and, 7-15, 10-19
differential operator, 7-17, 7-20, 7-23
index, 10-20
loss due to sampling, 13-24
matrix, 7-14, 7-15, 7-16
MIMO, 7-17
property of, 5-90, 5-93
rank, 7-14
state-space, 7-11 to 7-12

Observable canonical form, 5-20
state-space system in, 7-20

Observer automaton, 5-95, 5-96
Observer polynomial, 19-13
Observer-based controller, 19-10, 19-19
Observer-based technique, 19-17
Observer–predictor (OP), 9-140 to 9-143

augmented state vector, 9-141
control signal, 9-142
observer, 9-142
predictor, 9-142
properties, 9-142
sinusoidal input disturbance response, 9-143
structure, 9-141
unstable plants, 9-144

Octave, 9-29
ODE. See Ordinary differential and

difference equation (ODE)
ODOF. See One degree of freedom (ODOF)
ODOF controller, 19-19
OLHP. See Open left half-plane (OLHP)
One degree of freedom (ODOF), 9-147
One-sided transform, 2-26
OP. See Observer–predictor (OP)
Open left half-plane (OLHP), 2-9
Open right half-plane (ORHP), 2-19
Open unit disk, 2-26
Open-loop frequency response, 9-14
Open-loop poles, 9-62

and relative errors, 5-44
response to input disturbances, 9-134

Open-loop system, 19-8
with bumpless transfer, 19-10
without bumpless transfer, 19-9
control signal, 19-9
PI controller, 19-9

Open-loop transfer function, 6-6, 9-14
for discrete-time system, 13-3
evaluation, 8-40
GM and PM, 9-10
Nyquist criterion, 8-8
Nyquist plot, 8-41, 8-44

stability of system, 8-42 to 8-43
unity feedback system with, 9-6

Operational notation, 1-14 to 1-15
Optimum control system, 9-21
Ordinary differential and difference

equation (ODE), 5-2
discrete-time models, 5-6
electronic amplifier representation, 5-2 to 5-3
features, 5-4 to 5-5
input–output representation, 5-3
linear systems, 5-4
LTI models, 5-2
RC circuit generalization, 5-4
resistor current–voltage relationship, 5-5 to 5-6
series RC circuit, 5-3, 5-4

OR gate, 17-7, 17-8. See also Exclusive
OR (XOR)

FPLA circuit, 17-13
symbol and truth table, 17-7

ORHP. See Open right half-plane (ORHP)
OR operations, 17-7. See also Masking
Orthogonal

matrix, 3-6, 3-18
projection matrices, 3-19
projections, 3-17, 3-19
transformation, 3-18

Orthonormal basis, 3-17, 3-18
OSR. See Oversampling rate (OSR)
Output cardinality, 5-63
Outputs. See Sensors
Oversampling A/D converters, 14-16

ΔΣM, 14-18
oversampling process, 14-16
oversampling system, 14-17
SNR, 14-18

Oversampling rate (OSR), 14-16

P

P.E. See Potential energy (P.E.)
Padè approximation of delay, 5-25

coefficients calculation, 5-26, 5-27
delay comparison, 5-26
nonrational transfer functions, 5-27
property, 5-27
remarks, 5-28

PAL. See Programmable array
logic (PAL)

Parallel composition operator. See Synchronous
composition operator

Parallel form, 6-25, 9-74. See also Series form
coefficient sensitivity avoidance, 14-8
complex zeros, 9-75
with signal filtering, 9-74

Parallel subsystems, 6-16
Parameter-varying instability, 19-34. See also

Time-varying oscillator



�

�

�

�

� �

Index-16 Index

Parametric resonance, 5-29
Parametrization

of stabilizing controllers, 5-72
Youla, 5-74

Partial fraction expansion, 4-9
coefficient sensitivity avoidance, 14-8
coefficients of, 7-6
inverse transform computation, 2-12
residues, 2-26

Partial interconnection, 5-61, 5-65, 5-70 to 5-72, 5-75
to 5-77. See also Full interconnection

Particular solution, 1-5, 1-17 to 1-18. See also Forced
response

characteristic mode, 1-6
constant input, 1-19
for exponential input, 1-8
expression, 1-5
for input, 1-6, 1-17
sinusoidal input, 1-19 to 1-20
undetermined coefficients method, 1-17

Passive vibration-control systems, 5-59
Peak time, 9-3
Percent overshoot (PO), 7-8, 7-10, 9-3

and damping ratio, 7-9
as specifications for transient response, 9-7
in step response, 8-27

Performance index, 9-21, 9-25
deadbeat response, 9-23
ISE index, 9-21
ITAE index, 9-22
normalized time, 9-22 to 9-23

Petri nets, 5-85
advantages, 5-86, 5-87
control, 5-94 to 5-95
evolution, 5-87
machines operation, 5-86
node types, 5-85
timed Petri net, 5-98

Phase crossover, 9-46
frequency, 8-40, 8-46

Phase margin (PM), 8-21 to 8-22, 8-40, 8-44,
8-46. See also Gain margin (GM)

angle in Nyquist plot, 8-42, 8-44
from Bode plots, 8-28
to establish peak magnitude, 8-26, 8-27
gain crossover frequency, 8-44
to measure relative stability, 9-9
Nyquist diagram, 8-20
open-loop phase shift, 9-10
small, 8-24
for standard-form second-order system, 8-45
underdamped second-order system, 9-11

Phase plane method, 18-18, 18-22
motion differential equation, 18-21
motion state equations, 18-20
piecewise linear characteristics, 18-19
relay system phase plane, 18-21

second-order model equation, 18-18
servomechanism, 18-21
slope of trajectory, 18-18
trajectory slope in, 18-19

Phase plots, 8-14, 8-18, 8-21, 8-23
Phase spectrum, 2-3, 2-26
Phase-margin angle, 9-46

stability measurement, 9-59
Phase-margin frequency, 9-46
Phase-variable form, 6-25
PI. See Proportional-integral (PI)
Pick-off point, 6-11 to 6-12

closed-loop transfer function, 3-11, 3-12
moving, 6-12

PID. See Proportional-integral-derivative (PID)
PID controller, 9-70, 9-122

actuator saturation and windup, 9-76
antiwindup, 9-78 to 9-80
automatic reset, 9-71
autotuning, 18-10
bottom-up approach, 9-87
cascade control, 9-87 to 9-88
computer code, 9-83 to 9-84
conditional integration, 9-76
in control algorithms, 17-27
control law, 9-70
critical frequency, 18-10
critical gain, 18-10
derivative control, 9-72
different approximations, 9-83
digital implementation, 9-81
discretization, 9-81
feedforward control, 9-88
integral control, 9-71
mode switches, 9-80
nonlinear behavior, 9-76
parallel form with signal filtering, 9-74 to 9-75
parameter changes, 9-80 to 9-81
poorly damped oscillatory modes, 9-86 to 9-87
positional algorithms, 9-76
process variable filtering, 9-72
processes with long time delays, 9-85 to 9-86
proportional band, 9-78 to 9-80
proportional control, 9-71
ramp equivalence, 9-82
selector control, 9-89
series form, 9-75
set point weighting, 9-73
standard form, 9-74
textbook transfer functions, 9-135
tracking, 9-77
tuning the, 18-10
unification, 9-82
uses, 9-84
velocity algorithm, 9-76, 9-84

PLC. See Programmable logic controller (PLC)
PLDs. See Programmable logic devices (PLDs)
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Index Index-17

PLU factorization, 3-6
PM. See Phase margin (PM)
PO. See Percent overshoot (PO)
Point sensors, 17-4
Polar coordinates, 4-3
Polar representation, 4-3
Pole, 2-6, 4-8 to 4-9

of closed-loop transfer function, 6-8
complex, 2-7, 2-8, 2-20, 6-9
continuous, 5-42
distinct, 2-8
intrinsic, 5-41
placement and stabilization, 5-69
pole–zero plot, 8-9, 8-16, 10-7, 10-14
of rational function, 2-26
real, 2-8, 2-20
unmodeled high-frequency, 5-56
zeros and, 4-8

Pole assignment technique. See Pole placement
Pole placement, 5-69, 9-90

Ackermann’s formula, 9-96 to 9-98
characteristic equation, 9-94
characteristic polynomial, 9-96
condition for arbitrary, 9-92 to 9-95
control signal, 9-90
controllability matrix, 9-93
design steps, 9-95
disturbances, 5-72
equivalent conditions, 5-72
feedback gain matrix, 9-98 to 9-100
full interconnection, 5-69
open and closed-loop control system, 9-91
partial interconnection, 5-70
regular interconnection, 5-72
SISO control system design, 9-90
state feedback, 9-91
state vector, 9-93
system equation, 9-94
transformation matrix, 9-93

Pole–zero diagram
control ratios, 9-57
frequency and time responses, 9-57 to 9-59
frequency and time responses comparison, 9-58

Pole–zero matching, 12-23
Pole–zero plot, 8-9
Pole–zero specifications, 9-4

allowable region in s-plane, 9-4
dominant poles, 9-5
second-order system, 9-5

Polling method, 17-18
Polynomials, 2-5, 2-13, 4-6. See also Coprime

Bernoulli’s method, 4-6 to 4-7
denominato, 10-17
Euler–Fröbenius, 5-37
fundamental theorem of algebra, 4-1, 4-6
Genji’s formula, 4-7
invariant, 3-26

Lagrange’s interpolation formula, 4-8
matrix, 3-7
monic, 3-8
multiplication, 3-9
numerator, 10-17
rational function, 2-26, 3-2, 4-9
ring of, 3-5, 5-60
in Smith canonical form, 3-8
stability conditions of low-order, 8-37 to 8-38

Positional algorithm, 9-76
Potential energy (P.E.), 5-31
Power series expansions, 4-11

exponential function, 4-12
Hadamard’s formula, 4-11
Taylor’s series, 4-11 to 4-12
trigonometric functions, 4-13

Power spectral density (PSD), 5-48, 14-17
of sampled signal, 5-46

Practically unstable system, 9-128 to 9-129
Prefilters. See Antialiasing filters
Preload, 18-7
Principle of argument, 8-10
Process algebras, 5-87
Programmable array logic (PAL), 17-13
Programmable Controllers. See Programmable

logic controller (PLC)
Programmable logic controller (PLC), 5-82,

16-5, 17-1, 17-17, 19-14
in automation, 17-18, 17-28
basic operation of, 17-7
development, 17-17
event-driven controllers, 17-1
fieldbus, 17-28
IL, 17-19
instructions and execution, 17-18
LD, 17-19
LD to machine code, 17-19, 17-20
logical circuit, 17-20
operation, 17-17
plant network. structure, 17-29
PLC rack, 17-27
PLS, 17-20
polling, 17-18
programming, 17-18, 17-21
read-execute-write cycle, 17-18
sensor bus, 17-28
SFCs, 17-21 to 17-27
stack memory, 17-19 to 17-20
standard, 17-21 to 17-22
structure, 17-7 to 17-18
time-driven continuous controllers, 17-1

Programmable logic devices (PLDs),
17-12, 17-13, 17-17

Programmable read-only memory (PROM), 17-13
PROM. See Programmable read-only

memory (PROM)
Proper rational function, 2-26
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Index-18 Index

Proportional-integral (PI), 19-8
Proportional-integral-derivative (PID),

9-101, 9-124, 17-27
Prototyping platform, 16-15

compilers, 16-17
control hardware, 16-17
operator interface, 16-17
time-keeping, 16-17

PSD. See Power spectral density (PSD)
Pulse-width modulation (PWM), 16-7

state-transition logic, 16-8
task implementation, 16-10

PWM. See Pulse-width modulation (PWM)

Q

QR factorization, 3-18
Quadratic factors, 9-33, 9-34
Quantization, 14-13
Quantization effects, 14-1

in A/D conversion, 14-13
A/D converter SNR, 14-15, 14-16
coefficient, 14-6 to 14-9
delta sigma modulator SNR, 14-18
error sources, 14-1

Quantization error, 14-13
finite number of bits, 12-2
first-order subsystems, 14-25 to 14-26
fixed-point arithmetic, 14-22 to 14-25
fixed-point quantization noise model, 14-25
in floating-point arithmetic, 14-4, 14-27
in multiplication, 14-3
multiplier model, 14-22
range of, 14-4
sampling rate effect on, 15-12 to 15-14
second-order subsystems, 14-27
sources, 14-1
stochastic analysis of, 14-22 to 14-27

Quantization noise, 9-146, 14-19. See also
Quantization error

model of first-order subsystems, 14-25 to 14-26
model of second-order subsystems, 14-27

Quine–McCluskey, 17-10
Quotient spaces, 3-10

R

Ramp equivalence, 9-82, 9-83
Rational function, 2-26, 4-9

Heaviside’s expansion formula, 4-9
Lucas’ formula, 4-10
partial fraction expansion, 4-9
poles of, 2-26
ratios of polynomials, 3-2
strictly proper, 4-9, 4-10
zeros of, 2-26

Rational Laplace transforms, 2-5
finite limit, 2-9
generalized properties, 2-20
inverse, 2-7, 2-8, 2-17, 2-18
loci of poles, 2-19
magnitude spectrum, 2-18, 2-17, 2-19
OLHP, 2-9
order of rational function, 2-6
partial fractions, 2-17
poles and form, 2-8
proper rational function, 2-6
residues, 2-6, 2-7 to 2-8
spectrum of signal, 2-16

Rational z-transforms, 2-12
finite limit, 2-15
inverse, 2-14
open unit disk, 2-14
poles and form, 2-15
polynomials, 2-13
power series expansion coefficients, 2-14

Read-execute-write cycle, 17-18
Real polynomial matrices, 5-60
Real rational matrices, 5-60
Reciprocal polynomials. See Euler–Fröbenius

polynomials
Reconstruction, 12-3, 15-1

first-order hold, 12-5
step, 10-2, 12-3

Rectangular methods. See Euler’s backward method;
Euler’s forward method

Reference
conditioner, 19-5
input filter, 13-20

Reference gain functions, 11-5, 11-6
complementary sensitivity and, 11-9, 11-11, 11-14
relative changes, 11-7

Region of convergence, 2-5, 2-26
Regular interconnection, 5-67, 5-72
Regulator, 13-2

poles, 9-91
Relative degree, 9-122
Relative error, 5-41

Bode magnitude of, 5-45
Euler model, 5-44
functions, 5-42
small, 5-56

Relay, 17-5
contact, 17-5
with dead zone, 18-7
symbols, 17-14

Reset windup, 19-3
Residue theorem, 4-17, 4-19

Laurent expansion, 4-17
Laurent series, 4-18

Residues, 2-26
Resolvant matrix, 7-10

Laplace transform of, 7-4
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Index Index-19

Resolvent matrix, 3-29
Resonant frequency, 9-7, 9-49

damping ratio, 9-8
value of, 9-5, 9-7

Resonant peak, 9-8, 11-12
RH s-plane. See Right-half s-plane (RH s-plane)
RHP. See Right half-plane (RHP)
Right half-plane (RHP), 8-39

boundary, 8-41
Nyquist theorem, 8-13

Right inverse, 9-122
Right-half s-plane (RH s-plane), 9-35
Ring, 3-2

combinatorial circuit, 17-15
theoretic terminology, 3-5

Rise time, 7-8, 7-9, 9-3
and percent overshoot, 7-10

RMS. See Root-mean-square (RMS)
Robot, 16-29, 16-32

point-to-point moves, 16-31
Robust

performance, 9-122
robustness issues, 5-56 to 5-57
stability, 9-122, 9-149

Robust stabilization, 5-78
full interconnection, 5-78
H∞-control problem, 5-79
nominal plant, 5-78
small gain theorem, 5-79 to 5-80
stability radius computation, 5-80

Root locus, 13-3
compensator with zero, 13-7, 13-8
computers in plotting, 9-65
constant-gain compensator, 13-6
construction, 9-61, 9-62 to 9-65
lag compensation design, 9-67
lead and lag compensation, 9-68
lead compensation design,

9-66 to 9-67
nonunity feedback control systems,

9-62
notch filter design, 9-68
open-loop transfer function, 13-5
plot, 13-9, 9-60
position error signal, 13-5
positioning system, 13-5
proportional feedback gain design,

9-65 to 9-66
uses, 9-65, 9-68 to 9-69

Root-mean-square (RMS), 15-10n
Rotational link, 19-21

gain-scheduled design, 19-31
linearization, 19-24
LPV system, 19-33 to 19-34
stability, 19-25
stabilization, 19-26 to 19-27
along trajectory, 19-29

Rouché theorem, 4-17
Routh array, 8-5
Routh–Hurwitz stability criterion, 8-1 to 8-5, 8-7

characteristic equation, 8-2, 8-3

S

S/H. See Sample and hold (S/H)
Sample, 10-3
Sample and hold (S/H), 10-2, 12-3
Sampled data control system, 11-1

configuration, 11-2
reference gain functions, 11-5, 11-6, 11-7 to 11-16
sensitivity functions, 11-3
with uniform type of signals, 11-3

Sampled process spectrum, 5-45
discrete-time spectrum, 5-46
using DTFT, 5-46
power spectral density, 5-46

Sampled-data system, 5-33, 8-28, 8-29
asymptotic sampling zeros, 5-36 to 5-38
CTWN, 5-47 to 5-58
discrete-time transfer function representation, 5-35
extensions to nonlinear systems, 5-57
incremental models, 5-38 to 5-41
model error quantification, 5-41 to 5-42
robustness issues, 5-56 to 5-57
sampled process spectrum, 5-45 to 5-46
sampled-data transfer function, 5-35
sampling zeros, 5-36
state-space form, 5-34
stochastic sampled-data models, 5-48 to 5-51
stochastic systems, 5-44, 5-45, 5-51 to 5-56
transfer function, 5-34, 5-35
ZOH, 5-34 to 5-35

Sample-rate selection, 15-1
continuous-time signals, 15-2
control system response, 15-5, 15-7 to 15-10
effect on quantization error, 15-12 to 15-14
measurement noise and prefiltering, 15-11
sampling period, 15-6
sampling theorem, 15-1 to 15-5

Sampling, 12-2, 14-13, 15-1
ASZ, 5-36
ASZ incremental models, 5-39
ASZ model, 5-42
device, 5-34
loss of observability, 13-24
theorem, 15-1 to 15-5
zeros for stochastic systems, 5-51

Sandwich theorem, 5-66, 5-68
Saturation, 19-1 to 19-2

actuator, 9-15, 9-76, 19-1 to 19-5
controller, 19-4
curve, 19-17
with dead zone, 18-8
DF for ideal, 18-5
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Index-20 Index

Saturation, (Continued)
feedback, 19-5, 19-8
ideal, 18-7
nonlinearity, 18-4 to 18-5, 18-21
torque, 18-21

Scalar multiplication, 3-2, 3-22
and vector addition, 3-16
of vectors, 3-9

Scan cycle. See Read-execute-write cycle
Scheduled controllers, 19-13
Scheduling, 16-10

cooperative, 16-11
interrupt, 16-11 to 16-12
performance specification, 16-11
preemptive, 16-12
time slice, 16-12

Schur matrix, 3-24
characterization, 3-31

Schur–Cohn criterion, 8-33. See also Rouché theorem
SDR model. See Simple derivative replacement model

(SDR model)
Selector control, 9-89
Sensitivity, 9-11, 9-122, 9-147

closed-loop transfer function, 9-12
complementary functions, 9-15
consideration, 11-6
desirable shape, 9-15
functions in sampled-data control systems, 11-3
functions of closed-loop, 9-14, 9-15, 9-102

Sensor bus, 17-28
Sensors, 10-3

binary, 17-3
digital, 17-4
and fieldbuses, 17-29
function, 17-2, 17-3
point, 17-4

Sequencing circuits, 17-6, 17-16
Sequential control, 17-3
Sequential function charts (SFCs), 17-2, 17-21 to 17-22,

17-23
for alternative parallel paths, 17-24
analog controllers, 17-27
computer implementation, 17-25 to 17-26
control sequences description, 17-22
function diagram, 17-22
if-then-else condition, 17-23
in industrial control, 17-26 to 17-27
possible combinations, 17-23
for simultaneous parallel paths, 17-25
states and transitions description, 17-22

Series form, 9-75
antiwindup, 9-80

Series RC circuit, 5-3, 5-4
Set point weighting, 9-71, 9-72 to 9-73

computer code, 9-83
excitation avoidance, 9-86

Set-Reset (SR), 17-10

Settling time, 7-9, 7-10, 9-3
SFCs. See Sequential function charts (SFCs)
σ-plot. See Singular value plot (σ-plot)
Signal transfer function (STF), 14-19

magnitude response, 14-20
Signal-flow graph, 6-15, 6-20, 6-25

and block diagram, 6-16, 6-17 to 6-18
block diagram, 6-17
building, 6-17
cascaded subsystems, 6-16
component parts, 6-15, 6-16
development, 6-18
differential equation, 6-21
feedback control system, 6-17, 6-23
first-order subsystem, 6-23
Mason’s rule, 6-19
parallel subsystems, 6-16
in phase-variable form, 6-21, 6-22
state-space representation, 6-21
transfer functions, 6-22

Signal-to-noise ratio (SNR), 12-3, 14-15
Similarity transformation, 3-13, 5-21, 10-19

eigenvalues, 3-26, 3-28
Simple derivative replacement model (SDR model),

5-42
Simple pendulum, 5-30, 5-31
Single-input single-output (SISO), 9-122

closed-loop poles, 9-90
control scheme for, 9-124
models, 5-3
root locus plot, 9-65
in state-space control, 13-1
transfer function, 9-60, 19-15
vehicle heading feedback control system, 8-5

Single-loop feedback system, 6-7 to 6-8
Single-pole, double-throw (SPDT), 17-4
Single-pole, single-throw (SPST), 17-3, 17-4
Singular value decomposition (SVD), 3-21, 3-26

computing pseudoinverse, 3-27
matrices form, 3-27
in MIMO controlled systems, 9-17
used in applications, 3-27

Singular value plot (σ-plot), 9-17
Sinusoidal DF, 18-1 to 18-3
Sinusoidal input, 1-9, 1-19

closed-loop system, 18-15
discrete-time system, 10-12
disturbance response, 9-143
stable LTI system, 9-7

SISO. See Single-input single-output (SISO)
SISO LTI systems, 9-2

control effort, 9-15
disturbance rejection and noise suppression, 9-13
frequency-domain performance specifications, 9-7

to 9-9
gain and phase margins, 9-9
performance characteristics, 9-2
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pole–zero specifications, 9-4
robustness specifications, 9-9
sensitivity to parameters, 9-11
steady-state accuracy, 9-6
step response envelope specifications, 9-6
transient response, 9-2 to 9-6
unit step signal, 9-2

Skew-symmetric matrix, 3-6
Small gain theorem, 5-79 to 5-80
Smith canonical form, 3-8
Smith predictor (SP), 9-122, 9-124

asymptotically stable, 9-129 to 9-131
in IMC form, 9-127
modified predictors, 9-136
overall transfer function, 9-126
performance, 9-131 to 9-135
practically stable, 9-129
primary controller, 9-126
relative stability, 9-128
system configuration, 9-125
tuning considerations, 9-135 to 9-136

Smooth control signal. See Bumpless control signal
SNR. See Signal-to-noise ratio (SNR)
Software

availability, 5-93, 9-65, 9-124
bare motor, 16-28, 16-30
computational structure, 16-6
control software design, 16-5 to 16-6
design cycle, 16-3
design formalisms, 16-6 to 16-10
execution shell, 16-4
ground rules, 16-2 to 16-3
hierarchy, 16-2
intertask communication, 16-14 to 16-15
language, 16-4
life cycle, 16-3
MATLAB, 7-5 to 7-6, 7-10
nonblocking code, 16-5
parallelism, 16-4 to 16-5
portability, 16-3 to 16-4
program structure, 16-17
prototyping platform, 16-15 to 16-17
real-time, 16-2
robot, 16-29, 16-32
scheduling, 16-10 to 16-12
structure, 16-4 to 16-5
system engineering structure, 16-5
task type preferences, 16-12 to 16-14

SP. See Smith predictor (SP)
SP modified predictors, 9-136

approximate inverse of DT, 9-139
M(s) parameters, 9-140
model poles internal cancellation, 9-137 to 9-139
nominal model, 9-137
OP, 9-140 to 9-143
sinusoidal input disturbance response, 9-143

Spanning set, 3-10

SPDT. See Single-pole, double-throw (SPDT)
Spectral

density, 5-48, 5-49
radius, 3-24, 3-27

SPST. See Single-pole, single-throw (SPST)
SR. See Set-Reset (SR)
ST. See Structured Text (ST)
Stability, 8-7, 8-28, 8-30

delta-operator polynomials, 8-37 to 8-38
of discrete-time system, 8-36
low-order polynomials, 8-37
Markov stability criterion, 8-36
open-loop transfer function, 8-42 to 8-44

Stabilizability, 5-64
Stabilization, 5-69

disturbances, 5-72
equivalent conditions, 5-72
full interconnection, 5-69, 5-75
long time delays, 9-86
oscillatory modes, 9-86 to 9-9-87
partial interconnection, 5-71 to 5-72, 5-75 to 5-77
with priori input–output structure, 5-74
regular interconnection, 5-72

Stable control system, conditionally, 19-4n
Stable matrix, 5-60
State, 5-14, 5-17, 16-6

feedback, 9-91
finite state 17-2 to 17-3
transition matrix, 7-10
variables, 7-3, 7-4

State space representation, 5-14, 5-15, 5-16,
5-19, 12-31

ARMA, 5-17
controllable canonical form, 5-19
equivalent, 7-18, 7-21
integro-differential equation, 5-16
linearization, 5-31 to 5-32
MIMO transfer functions, 5-24 to 5-28
Miscellanea, 5-20 to 5-24
Newton’s equations, 5-15
nonsingular, 7-19
observable canonical form, 5-20
ordinary differential equation, 5-18
Padè approximation of delay, 5-25
reduction to first order, 5-15 to 5-5-16
RLC circuit, 5-16
structure, 5-15
transfer function, 5-18 to 5-19

Statecharts, 5-87
State-feedback law, 5-88
State-space system, 7-12

controllability, 7-12, 7-13 to 7-14, 7-20 to 7-21
controllability matrix, 7-13
controllability rank, 7-13
controllable canonical forms, 7-21 to 7-22
equation, 7-11 to 7-12
observability, 7-14, 7-15
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Index-22 Index

State-space system, (Continued)
observability matrix, 7-14
observability rank, 7-14
in observable canonical form, 7-19, 7-20
transformation of state, 7-20

Static error constants, 9-7
Static system, 17-6, 17-10
Steady-state error

closed-loop system, 9-35, 9-67
closed-loop transfer function, 9-22
compensation, 9-159
to eliminate, 9-71
factors in, 9-6
measure of accuracy, 9-6
to power-of-time input, 13-3, 13-4
proportional controller, 9-71
for ramp command, 8-5
to ramp input, 8-6, 13-7
to step input, 13-7
in unit-step response, 9-3
zero, 9-22, 9-23, 9-67, 9-84, 9-120, 13-5, 19-32
zero-state performance, 13-3

Step index, 10-3
Step invariant, 10-13

approximation, 12-20
continuous-time controller, 12-21
difference equations, 10-6
discrete-time system, 10-1, 10-12
state determination, 10-20
transfer function, 10-7

Step-invariant discrete-time observer design,
13-15

eigenvalue placement with observer feedback, 13-18
to 13-19

full-order observers, 13-16 to 13-17
reduced-order state observers, 13-17 to 13-18
separation theorem, 13-18

STF. See Signal transfer function (STF)
Stochastic performance measure, 9-121
Stochastic sampled-data models, 5-48

covariance structure, 5-49
instantaneous sampling of output, 5-48
Kronecker delta, 5-48
output spectrum, 5-49 to 5-51
spectral density of noise vector, 5-48, 5-49

Stochastic system, 5-44, 5-45
asymptotic sampling zero, 5-51 to 5-52
model error quantification, 5-52

Stochastic timed automaton, 5-98
Strictly proper, 2-6

rational function, 2-27, 4-9, 4-10
system stability, 9-129
transfer function, 4-9, 5-19, 5-48, 19-19

Structured Text (ST), 17-21
Subspaces, 3-9

finite dimensional, 3-10
Summer, 6-2- See Summing junction

Summing junction, 6-12 to 6-14
closed-loop transfer function, 6-12,

6-13 to 6-14
feedback signal at, 6-6
moving, 6-12
parallel combination, 6-4

Supervisor existence, 5-88 to 5-89
controllability, 5-89
nonblocking behavior, 5-89 to 5-90
observability property, 5-90 to 5-91

Supervisor synthesis, 5-91
controllability property, 5-91
under partial observation, 5-93 to 5-94
software tools, 5-93
supremal controllable sublanguage

construction, 5-92, 5-93
Supervisory control, 5-82, 5-87

architecture, 5-88
dynamic event feedback law, 5-88
hierarchical supervisory control, 5-97
modular supervisory control, 5-96 to 5-97
state-feedback law, 5-88
supervisor existence, 5-88 to 5-91
supervisor synthesis, 5-91 to 5-94

SVD. See Singular value decomposition (SVD)
Switch, 17-5. See also Switching

bounce, 17-3 to 17-4
electric, 17-5
electromechanical relay, 17-5
limit, 17-3, 17-4
mechanical, 17-3
outputs, 17-3
settling time, 17-4
statement, 16-9

Switching
algorithm, 19-11
lines, 18-19, 18-21
networks, 17-6, 17-10
notations, 17-5 to 17-6
operation symbols, 17-2
realization, 17-12
relay systems, 18-16
scheme, 19-10
theory, 17-1, 17-5
time, 19-9, 19-10
transients, 9-80

Symmetric matrix, 3-6, 3-24 to 3-25
Synchronous composition operator, 5-84 to 5-85

of automata, 5-84
of languages, 5-84, 5-85
natural projection operator, 5-84

T

Task, 16-5 to 16-6
continuous, 16-13
intermittent, 16-13
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Index Index-23

type assignment, 16-13
type preferences, 16-12

Taylor expansion, 5-28
power series expansion, 4-15
SDR model, 5-42

Taylor’s series, 4-11 to 4-12
Tentative controller. See Latent controller
Threads, 16-6, 16-12, 16-15
Time delays. See Dead time (DT)
Timed automaton, 5-97, 5-98
Timed Petri net, 5-98
Time-domain methods, 1-2, 12-1
Time-varying oscillator, 19-34
Total response, 1-12, 1-18, 7-2
Tracking, 9-77

error, 9-13
error reduction, 9-18
signal, 9-77
time constant, 9-77

Tracking loop, 19-14, 19-15 to 19-16
two-degree-of-freedom, 19-16

Tracking system, 13-2, 13-19
ideal design, 13-20 to 13-21
methods, 13-20
reference model, 13-21
reference signal model observing, 13-22
response model design, 13-21

Transfer contact, 17-3
Transfer function, 5-9, 6-2 to 6-3, 6-25, 9-11

See also Sensitivity
in classical control theory, 5-2
desirable shape, 9-15
discrete-time LTI system, 5-12
experimental determination, 9-37
field-controlled servomotor, 9-38
input and output equation, 5-10
inverse of Fourier transform, 5-11
Laplace transform, 5-11 to 5-12
linear systems, 4-9
properties, 5-11
second-order, 7-8
type 2 system, 9-39

Transistor, 17-5, 17-6
Transistor–transistor logic (TTL), 17-6
Transition test functions, 16-10
Transitions, 17-2, 17-3

audit trail, 16-13
finite set of, 5-85
SFCs, 17-22
state, 16-13
triggered by, 5-83

Translational system, 6-9 to 6-11
Trapezoidal method, 12-9, 12-10

second-order filter frequency response, 12-19
transfer function of digital controller, 12-13

Triangle inequality, 3-14, 3-16, 4-3
Trigonometric functions, 4-13

Truncation and roundoff, 14-4
error, 14-6
transfer characteristics, 14-5

T-second rectangular pulse, 2-15
3-dB bandwidth, 2-16
magnitude spectrum, 2-16

TTL. See Transistor–transistor logic (TTL)
Turning control design, 8-5

ramp response, 8-7
stability region, 8-6
two-track vehicle, 8-5

Tustin transformation. See Bilinear
transformation

Tustin’s method. See Trapezoidal method
Two-degree-of-freedom controller,

19-17, 19-19
Two-sided transform, 2-26

U

Uncertainty, 9-12
cause of, 9-12
controller, 19-16
effect of, 9-12
feedback signal, 9-104
high-frequency unmodeled, 9-12
model, 9-19, 9-101, 9-103, 9-105, 9-119
setpoint trajectory and closed-loop output

responses, 9-121
sources of, 9-18
structured, 9-19
unstructured, 9-18, 9-19

Uniform quantizer, 18-7
Unilateral transform. See

One-sided transform
Unimodular matrices, 3-8, 3-26
Unit impulse, 5-6

continuous-time, 5-8
discrete-time unit impulse function, 1-20
solution, 1-21

Unitary matrix, 3-6, 3-24. See also
Orthogonal—matrix

real, 3-6
Unity-feedback system, 6-7, 9-50

cascade compensation, 13-2
Universal gate, 17-8. See also NAND gate;

NOR gate
Unstable system

characteristic equation, 8-2
controller saturation, 19-4
controller structure, 19-7
open-loop, 19-4
phase diagram and polar plots, 9-47
practically, 9-128
responses, 19-7
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Index-24 Index

V

Van der Pol equation phase portraits, 18-20
Vector norms, 3-14 to 3-15
Vector space, 3-9

attributes, 3-9
basis, 3-10
coordinates, 3-10 to 3-11
dimension, 3-10
direct product space, 3-9
linear independence, 3-10
quotient spaces, 3-10
spanning set, 3-10
subspaces, 3-9

Velocity algorithm, 9-76, 9-84
antiwindup in, 9-80

W

Windup, 19-16. See also Antiwindup
actuator amplitude and rate limitations, 9-70
actuator saturation, 9-15
anti-integral, 19-5
avoiding, 9-80
integral, 19-2
integrator, 9-76, 9-77, 16-30
overshoot, 9-79

Word length, 14-2
finite, 12-30, 14-1
in general-purpose machines, 9-84
in incremental algorithm, 9-84
for integral part, 9-84
register, 14-3

X

XOR. See Exclusive OR (XOR)

Y

Youla parametrization, 5-59, 5-74

Z

Zero, 2-6, 2-13, 4-6, 4-8. See also Pole
closed-loop, 13-14
complex, 3-22, 9-74
continuous-time, 5-36
discrete, 5-41
in discrete-time model, 5-36, 5-38
distinct, 4-9
extra, 5-41

finite, 9-64
loop gain transfer function, 8-12
minimum-phase system, 9-37
nonminimum phase, 9-111
open-loop, 11-4
open-loop continuous-time, 11-6
open-loop poles, 11-4
in polynomial, 3-22, 3-23, 7-23, 7-26
of rational function, 2-26
sampling, 5-36, 5-51, 5-57
unmodeled, 9-103
unstable, 9-123

Zero matrix, 3-3
Zero order hold (ZOH), 5-34, 5-35, 11-3, 12-4, 12-5
Zero-input response, 7-2, 7-4, 7-10

components, 10-15
superposition, 13-3

Zero-state response, 7-1, 7-2, 7-10, 10-15
convolution integral, 7-5
in tracking system design, 13-5
unit step responses, 7-9
in unit-step input, 7-7, 7-8

ZOH. See Zero order hold (ZOH)
z-Transfer function, 10-6

angle, 10-13
block diagram algebra, 10-11
discrete-frequency response, 10-12
feedback system, 13-7
frequency response periodicity, 10-14
logarithmic frequency response plots, 10-15
magnitude, 10-13
matrix, 10-19
open-loop, 13-9
pole–zero plot, 10-7
response model matrix, 13-21
stability and response terms, 10-7
unit pulse response, 10-7
z-transform pole locations sequences, 10-8 to 10-11

z-Transform, 2-2, 2-11, 5-12
difference equations solution, 2-24 to 2-25
discrete-time system response, 10-16
DTFT, 2-11
inverse operation, 2-12
one-sided, 2-11, 10-3
pairs, 2-13, 10-4, 12-3
pole locations for sequences, 10-8
properties, 2-12, 10-4
region of convergence, 2-11
two-sided or bilateral, 2-11
unit-step function, 2-12
variable, 5-35
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