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Preface to Sixth Edition

It is somewhat sobering to realise that the sixth edition of Volume 1 appears 45 years
after the publication of the first edition in 1954. Over the intervening period, there have
been considerable advances in both the underlying theory and the practical applications
of Chemical Engineering; all of which are reflected in parallel developments in under-
graduate courses. In successive editions, we have attempted to adapt the scope and depth
of treatment in the text to meet the changes in the needs of both students and practitioners
of the subject.

Volume 1 continues to concentrate on the basic processes of Momentum Transfer (as
in fluid flow), Heat Transfer, and Mass Transfer, and it is also includes examples of prac-
tical applications of these topics in areas of commercial interest such as the pumping of
fluids, the design of shell and tube heat exchangers and the operation and performance
of cooling towers. In response to the many requests from readers (and the occasional
note of encouragement from our reviewers), additional examples and their solutions have
now been included in the main text. The principal areas of application, particularly of the
theories of Mass Transfer across a phase boundary, form the core material of Volume 2
however, whilst in Volume 6, material presented in other volumes is utilised in the prac-
tical design of process plant.

The more important additions and modifications which have been introduced into this
sixth edition of Volume 1 are:

Dimensionless Analysis. The idea and advantages of treating length as a vector quantity
and of distinguishing between the separate role of mass in representing a quantity of matter
as opposed to its inertia are introduced.

Fluid Flow. The treatment of the behaviour of non-Newtonian fluids is extended and
the methods used for pumping and metering of such fluids are updated.

Heat Transfer. A more detailed discussion of the problem of unsteady-state heat transfer
by conduction where bodies of various shapes are heated or cooled is offered together
with a more complete treatment of heat transfer by radiation and a re-orientation of the
introduction to the design of shell and tube heat exchangers.

Mass Transfer. The section on mass transfer accompanied by chemical reaction has
been considerably expanded and it is hoped that this will provide a good basis for the
understanding of the operation of both homogeneous and heterogeneous catalytic reac-
tions.

As ever, we are grateful for a great deal of help in the preparation of this new edition
from a number of people. In particular, we should like to thank Dr. D.G. Peacock for the
great enthusiasm and dedication he has shown in the production of the Index, a task he has
undertaken for us over many years. We would also mention especially Dr. R.P. Chhabra
of the Indian Institute of Technology at Kanpur for his contribution on unsteady-state
heat transfer by conduction, those commercial organisations which have so generously
contributed new figures and diagrams of equipment, our publishers who cope with our

XV
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perhaps overwhelming number of suggestions and alterations with a never-failing patience
and, most of all, our readers who with great kindness, make so many extremely useful
and helpful suggestions all of which, are incorporated wherever practicable. With their
continued help and support, the signs are that this present work will continue to be of
real value as we move into the new Millenium.

Swansea, 1999 J.F. RICHARDSON
Newcastle upon Tyne, 1999. J.R. BACKHURST
J.H. HARKER
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CHAPTER 1

Units and Dimensions

1.1. INTRODUCTION

Students of chemical engineering soon discover that the data used are expressed in a great
variety of different units, so that quantities must be converted into a common system
before proceeding with calculations. Standardisation has been largely achieved with the
introduction of the Systéme International d’Unités (SI)1?) to be discussed later, which is
used throughout all the Volumes of this series of books. This system is now in general use
in Europe and is rapidly being adopted throughout the rest of the world, including the USA
where the initial inertia is now being overcome. Most of the physical properties determined
in the laboratory will originally have been expressed in the cgs system, whereas the
dimensions of the full-scale plant, its throughput, design, and operating characteristics
appear either in some form of general engineering units or in special units which have
their origin in the history of the particular industry. This inconsistency is quite unavoidable
and is a reflection of the fact that chemical engineering has in many cases developed as
a synthesis of scientific knowledge and practical experience. Familiarity with the various
systems of units and an ability to convert from one to another are therefore essential,
as it will frequently be necessary to access literature in which the SI system has not
been used. In this chapter the main systems of units are discussed, and the importance of
understanding dimensions emphasised. It is shown how dimensions can be used to help
very considerably in the formulation of relationships between large numbers of parameters.

The magnitude of any physical quantity is expressed as the product of two quantities;
one is the magnitude of the unit and the other is the number of those units. Thus the
distance between two points may be expressed as 1 m or as 100 cm or as 3.28 ft. The
metre, centimetre, and foot are respectively the size of the units, and 1, 100, and 3.28 are
the corresponding numbers of units.

Since the physical properties of a system are interconnected by a series of mechanical
and physical laws, it is convenient to regard certain quantities as basic and other quantities
as derived. The choice of basic dimensions varies from one system to another although
it is usual to take length and time as fundamental. These quantities are denoted by L and
T. The dimensions of velocity, which is a rate of increase of distance with time, may be
written as LT~!, and those of acceleration, the rate of increase of velocity, are LT~2, An
area has dimensions L? and a volume has the dimensions L.

The volume of a body does not completely define the amount of material which it
contains, and therefore it is usual to define a third basic quantity, the amount of matter in
the body, that is its mass M. Thus the density of the material, its mass per unit volume,
has the dimensions ML 3, However, in the British Engineering System (Section 1.2.4)
force F is used as the third fundamental and mass then becomes a derived dimension.

1



2 CHEMICAL ENGINEERING

Physical and mechanical laws provide a further set of relations between dimensions.
The most important of these is that the force required to produce a given acceleration of
a body is proportional to its mass and, similarly, the acceleration imparted to a body is
proportional to the applied force.

Thus force is proportional to the product of mass and acceleration (Newton’s law),

or: F = const M(LT~?) (1.1)
The proportionality constant therefore has the dimensions:
—F—2 =FM~'L™'T? (1.2)
M(LT™)

In any set of consistent or coherent units the proportionality constant in equation 1.1 is
put equal to unity, and unit force is that force which will impart unit acceleration to unit
mass. Provided that no other relationship between force and mass is used, the constant
may be arbitrarily regarded as dimensionless and the dimensional relationship:

F = MLT2 (1.3)

is obtained.

If, however, some other physical law were to be introduced so that, for instance, the
attractive force between two bodies would be proportional to the product of their masses,
then this relation between F and M would no longer hold. It should be noted that mass has
essentially two connotations. First, it is a measure of the amount of material and appears
in this role when the density of a fluid or solid is considered. Second, it is a measure of
the inertia of the material when used, for example, in equations 1.1-1.3. Although mass
is taken normally taken as the third fundamental quantity, as already mentioned, in some
engineering systems force is used in place of mass which then becomes a derived unit.

1.2. SYSTEMS OF UNITS

Although in scientific work mass is taken as the third fundamental quantity and in engi-
neering force is sometimes used as mentioned above, the fundamental quantities L, M, F,
T may be used interchangeably. A summary of the various systems of units, and the quan-
tities associated with them, is given in Table 1.1. In the cgs system which has historically
been used for scientific work, metric units are employed. From this has been developed
the mks system which employs larger units of mass and length (kilogram in place of gram,
and metre in place of centimetre); this system has been favoured by electrical engineers
because the fundamental and the practical electrical units (volt, ampere and ohm) are then
identical. The SI system is essentially based on the mks system of units.

1.2.1. The centimetre-gram-second (cgs) system
In this system the basic units are of length L, mass M, and time T with the nomenclature:

Length:  Dimension L: Unit 1 centimetre (1 cm)
Mass: Dimension M:  Unit 1 gram g
Time: Dimension T: Unit 1 second (15s)



Table 1.1

Units

Dimensions Dimensions Dimensions in
Quantity cgs SI fps inM,L,T,@ Engineering system F,L, T, @0 F,M,L, T,¢6
Mass gram kilogram pound M slug FL!712 M
Length centimetre metre foot L foot L L
Time second second second T second T T
Force dyne Newton poundal MLT2 pound force F F
Energy erg (= 1077 joules) Joule foot-pounda ML2T2 foot-pound FL FL
Pressure dyne/square centimetre Newton/sq metre  poundal/square foot ML~IT-2 pound force/square foot FL™2 FL2
Power erg/second Watt foot-poundal/second ML2T-3 foot-pound/second FLT"! FLT™!
Entropy per

unit mass  erg/gram °C Joule/kilogram K foot-poundal/pound °C L?T-2¢"! foot-pound/slug °F LT 267! FM Lo !
Universal gas  8.314 x 107 erg/mole °C 8314 J/kmol K 8.94 fi-poundallb mol °C  MN7IL2T-2¢~!  4.96 x 10* foot-pound/
constant slig mol °F MN-L2T20"! FN-IL 6!
Heat units
British/American Dimensions Dimensions in
Quantity cgs S engineering system inML,T, ¢ HMLTé
Temperature degree centigrade degree Kelvin degree Fahrenheit 9 9
Thermal energy or heat calorie joule British thermal unit (Btu) M6 H
Entropy per unit mass, specific heat calorie/gram °C joule/kilogram K Bww/pound °F — HM 197!
Mechanical equivalent of heat, J 4.18 x 107 erg/gram-°C 1 J (heatenergy) =13  2.50 x 10° foot-poundal/pound °F  L2T-26"! H'ML2 T2
(mechanical energy)

Universal gas constant R 1.986 calorie/mole °C 8314 J/kmol K 1.986 Bu/lb-mol °F MN-!L2T1-29-!  HN-lg!

SNOISNIWIQ ANV SL1INN
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The unit of force is that force which will give a mass of 1 g an acceleration of 1 cm/s?
and is known as the dyne:

Force: Dimension F = MLT"2:  Unit 1 dyne (1 dyn)
Energy: Dimensions ML2T 2 Unit 1erg
Power:  Dimensions ML2T™3 Unit 1 erg/s

1.2.2. The metre-kilogram-second (mks system and the Systéme
International d’Unités (Sl)

These systems are in essence modifications of the cgs system but employ larger units.
The basic dimensions are again of L, M, and T.

Length: Dimension L: Unit 1 metre (1 m)
Mass: Dimension M:  Unit 1 kilogram (1 kg)
Time: Dimension T: Unit 1 second (15s)

The unit of force, known as the Newton, is that force which will give an acceleration
of 1 m/s? to a mass of one kilogram. Thus 1 N = 1 kg m/s®> with dimensions MLT 2,
and one Newton equals 10° dynes. The energy unit, the Newton-metre, is 107 ergs and is
called the Joule; and the power unit, equal to one Joule per second, is known as the Watt.

Thus:  Force: Dimensions MLT~2: Unit 1 Newton (1 N)  or 1 kg m/s?
Energy: Dimensions ML2T-2;  Unit 1 Joule (1 J) or 1 kg m?/s?
Power:  Dimensions ML?T=3:  Unit 1 Watt (1 W) or 1 kg m%/s®

For many purposes, the chosen unit in the SI system will be either too large or too
small for practical purposes, and the following prefixes are adopted as standard. Multiples
or sub-multiples in powers of 10° are preferred and thus, for example, millimetre should
always be used in preference to centimetre.

1018 exa (E) 10! deci ()
1015 peta P) 102 centi (©)
1012 tera Y] 1073 milli (m)
10° giga (G) 10-¢ micro ()
106 mega M) 10~° nano (n)
10° kilo k) 10-12 pico )
102 hecto (h) 10-15 femto ®
10! deca (da) 10-18 alto (a)

These prefixes should be used with great care and be written immediately adjacent to
the unit to be qualified; furthermore only one prefix should be used at a time to precede
a given unit. Thus, for example, 10~3 metre, which is one millimetre, is written 1 mm.
10% kg is written as 1 Mg, not as 1 kkg. This shows immediately that the name kilogram
is an unsuitable one for the basic unit of mass and a new name may well be given to it
in the future.
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Some special terms are acceptable, and commonly used in the SI system and, for
example, a mass of 10° kg (1 Mg) is called a ronne (t); and a pressure of 100 kN/m? is
called a bar.

The most important practical difference between the mks and the SI systems lies in the
units used for thermal energy (heat), and this topic is discussed in Secton 1.2.7.

A detailed account of the structure and implementation of the SI system is given in
a publi20ations of the British Standards Institution”), and of Her Majesty’s Stationery
Office®,

1.2.3. The foot-pound-second (fps) system
The basic units in this system are:

Length: Dimension L: Unit 1 foot (1 fv)
Mass: Dimension M:  Unit 1 pound (11b)
Time: Dimension T: Unit 1 second (1 s)

The unit of force gives that which a mass of 1 1b an acceleration of 1 ft/s? is known
as the poundal (pdl).

The unit of energy (or work) is the foot-poundal, and the unit of power is the foot-
poundal per second.

Thus:  Force Dimensions MLT 2 Unit 1 poundal (1 pdl)
Energy Dimensions ML?T-2  Unit 1 ft-poundal
Power  Dimensions ML?T~3  Unit 1 foot-poundal/s

1.2.4. The British engineering system

In an alternative form of the fps system (Engineering system) the units of length (ft) and
time (s) are unchanged, but the third fundamental is a unit of force (F) instead of mass
and is known as the pound force (lbg). This is defined as the force which gives a mass
of 1 1b an acceleration of 32.1740 ft/s?, the “standard” value of the acceleration due to
gravity. It is therefore a fixed quantity and must not be confused with the pound weight
which is the force exerted by the earth’s gravitational field on a mass of one pound and
which varies from place to place as g varies. It will be noted therefore that the pound
force and the pound weight have the same value only when g is 32.1740 ft%/s.

The unit of mass in this system is known as the slug, and is the mass which is given
an acceleration of 1 ft/s? by a one pound force:

1 slug = 1 Ibg ft~s?

Misunderstanding often arises from the fact that the pound which is the unit of mass
in the fps system has the same name as the unit of force in the engineering system. To
avoid confusion the pound mass should be written as 1b or even lb,, and the unit of force
always as lby.

It will be noted that:

1 slug = 32.1740 Ib mass and 1 Ibf = 32.1740 pdl
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To summarise:

The basic units are:

Length Dimension L Unit 1 foot (1 ft)
Force Dimension F Unit 1 pound-force (1 1by)
Time Dimension T Unit 1 second (1 s)

The derived units are:

Mass Dimensions FL~!T-2 Unit 1 slug (= 32.1740 pounds)
Energy Dimensions FL Unit 1 foot pound-force (1 ft 1by)
Power Dimensions FLT-! Unit 1 foot-pound force/s (1 ft-1bs/s)

Note: 1 horsepower is defined as 550 ft-1bg/s.

1.2.5. Non-coherent system employing pound mass and pound force
simultaneously

Two units which have never been popular in the last two systems of units (Sections 1.2.3
and 1.2.4) are the poundal (for force) and the slug (for mass). As a result, many writers,
patticularly in America, use both the pound mass and pound force as basic units in the
same equation because they are the units in common use. This is an essentially incoherent
system and requires great care in its use. In this system a proportionality factor between
force and mass is defined as g. given by:

Force (in pounds force) =(mass in pounds) (acceleration in ft/s?)/g,
Thus in terms of dimensions: F= (M)(LT‘Z)/gC (1.4)

From equation 1.4, it is seen that g, has the dimensions F~'MLT 2 or, putting F = MLT 2,
it is seen to be dimensionless. Thus:

8c = 32.1740 1b¢/(bpft s72)

or _ 321740 ft 52
' = T hs?

i.e. g is a dimensionless quantity whose numerical value corresponds to the acceleration
due to gravity expressed in the appropriate units.

(It should be noted that a force in the cgs system is sometimes expressed as a gram
Jorce and in the mks system as kilogram force, although this is not good practice. It should
also be noted that the gram force = 980.665 dyne and the kilogram force = 9.80665 N)

= 32.1740

1.2.6. Derived units

The three fundamental units of the SI and of the cgs systems are length, mass, and time. It

has been shown that force can be regarded as having the dimensions of MLT 2, and the

dimensions of many other parameters may be worked out in terms of the basic MLT system.
For example:

energy is given by the product of force and distance with dimensions ML2T~2, and
pressure is the force per unit area with dimensions ML~!T-2,
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viscosity is defined as the shear stress per unit velocity gradient with dimensions
(MLT2/L?)/(LT~!/L) = ML™IT"!,
and kinematic viscosity is the viscosity divided by the density with dimensions
ML™'T-!/ML™3 = L2T-!,
The units, dimensions, and normal form of expression for these quantities in the SI
system are:

Quantity Unit Dimensions Units in kg, m, s

Force Newton MLT-2 1 kg m/s?

Energy or work Joule ML2T-2 1 kg m?s2(=1 Nm=11J)
Power Watt ML2T-3 1 kg m%/s® (=1 Js)

Pressure Pascal ML-IT-2 1kg/m s (=1 N/m?)
Viscosity Pascal-second ML-I1-! 1kg/ms(=1N s/m?)
Frequency Hertz T-! 157!

1.2.7. Thermal (heat) units

Heat is a form of energy and therefore its dimensions are ML?T~2. In many cases,
however, no account is taken of interconversion of heat and “mechanical” energy (for
example, kinetic, potential and kinetic energy), and heat can treated as a quantity which
is conserved. It may then be regarded as having its own independent dimension H which
can be used as an additional fundamental. It will be seen in Section 1.4 on dimensional
analysis that increasing the number of fundamentals by one leads to an additional relation
and consequently to one less dimensionless group. v

Wherever heat is involved temperature also fulfils an important role: firstly because the
heat content of a body is a function of its temperature and, secondly, because tempera-
ture difference or temperature gradient determines the rate at which heat is transferred.
Temperature has the dimension 6 which is independent of M,L and T, provided that no
resort is made to the kinetic. theory of gases in which temperature is shown to be directly
proportional to the square of the velocity of the molecules.

It is not incorrect to express heat and temperature in terms of the M,L,T dimensions,
although it is unhelpful in that it prevents the maximum of information being extracted
from the process of dimensional analysis and reduces the insight that it affords into the
physical nature of the process under consideration.

Dimensionally, the relation between H, M and 6 can be expressed in the form:

H « M6 = C,M9 (1.5)

where C, the specific heat capacity has dimensions H M~16-!.

Equation 1.5 is similar in nature to the relationship between force mass and accelara-
tion given by equation 1.1 with one important exception. The proportionality constant in
equation 1.1 is not a function of the material concerned and it has been possible arbitrarily
to put it equal to unity. The constant in equation 1.5, the specific heat capacity C, differs
from one material to another.

In the SI system, the unit of heat is taken as the same as that of mechanical energy
and is therefore the Joule. For water at 298 K (the datum used for many definitions), the
specific heat capacity C, is 4186.8 J/kg K.
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Prior to the now almost universal adoption of the SI system of units, the unit of heat
was defined as the quantity of heat required to raise the temperature of unit mass of
water by one degree. This heat quantity is designated the calorie in the cgs system and
the kilocalorie in the mks system, and in both cases temperature is expressed in degrees
Celsius (Centigrade). As the specific heat capacity is a function of temperature, it has
been necessary to set a datum temperature which is chosen as 298 K or 25°C.

In the British systems of units, the pound, but never the slug, is taken as the unit
of mass and temperature may be expressed either in degrees Centigrade or in degrees
Fahrenheit. The units of heat are then, respectively, the pound-calorie and the British
thermal unit (Btu). Where the Btu is too small for a given application, the therm (= 10°
Btu) is normally used.

Thus the following definitions of heat quantities therefore apply:

System  Mass unit  Temperature Unit of Heat
scale (degrees)
cgs gram Celsius calorie
mks kilogram  Celsius kilocalorie
fps pound Celsius pound calorie or
Centigrade heat unit (CHU)
fps pound Fahrenheit British thermal unit (Btu)
1 CHU = 1.8 Btu

In all of these systems, by definition, the specific heat capacity of water is unity. It may
be noted that, by comparing the definitions used in the SI and the mks systems, the
kilocalorie is equivalent to 4186.8 J/kg K. This quantity has often been referred to as the
mechanical equivalent of heat J.

1.2.8. Molar units

When working with ideal gases and systems in which a chemical reaction is taking place, it
is usual to work in terms of molar units rather than mass. The mole (mol) is defined in the
SI system as the quantity of material which contains as many entities (atoms, molecules or
formula units) as there are in 12 g of carbon 12. It is more convenient, however, to work
in terms of the kilomole (kmol) which relates to 12 kg of carbon 12, and the kilomole
is used exclusively in this book. The number of molar units is denoted by dimensional
symbol N. The number of kilomoles of a substance A is obtained by dividing its mass in
kilograms (M) by its molecular weight M 4. M 4 thus has the dimensions MN~!. The Royal
Society recommends the use of the term relative molecular mass in place of molecular
weight, but molecular weight is normally used here because of its general adoption in the
processing industries.

1.2.9. Electrical units

Electrical current (I) has been chosen as the basic SI unit in terms of which all other
electrical quantities are defined. Unit current, the ampere (A, or amp), is defined in
terms of the force exerted between two parallel conductors in which a current of 1 amp is
flowing. Since the unit of power, the watt, is the product of current and potential difference,
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the volt (V) is defined as watts per amp and therefore has dimensions of ML2T3I"!.
From Ohm’s law the unit of resistance, the ohm, is given by the ratio volts/amps and
therefore has dimensions of ML2T—31-2, A similar procedure may be followed for the
evaluation of the dimensions of other electrical units.

1.3. CONVERSION OF UNITS

Conversion of units from one system to another is simply carried out if the quantities are
expressed in terms of the fundamental units of mass, length, time, temperature. Typical
conversion factors for the British and metric systems are:

1
Ib=|-——)slug=453.6g=0.
Mass 11b <32.2>sug 53.6 g = 0.4536 kg

Length 1 ft =30.48 cm = 0.3048 m

1
. =L \p
Time 1s < 3 600)
o 1Y, 1
Temperature 1°F = (——) C= (—) K (or deg.K)
. 1.8 1.8
difference

Force 1 pound force = 32.2 poundal = 4.44 x 10° dyne = 4.44 N

Other conversions are now illustrated.

Example 1.1

Convert 1 poise to British Engineering units and SI units.

Solution

lg
lemx1s
__(1/4536) b
T (1/3048) ftx 1's

1 Poise = 1 glcm s =

= 0.0672 lb/ft s
= 242 lb/ft h

lg
lemx1ls
_(1/1000) kg
T (1/100)mx1s

1 Poise =1glms=

=0.1kg/m s

= 0.1 N s/m? [(kg m/s?)s/m?]
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Example 1.2
Convert 1 kW to h.p.

Solution
1kW=10° W = 10* ¥/s
1kg x 1 m?
_ 10° x (1/0.4536) Ib x (1/0.3048)* ft?
- 183
= 23,730 Ib fi?/s?
_(BT30N _ 23
= ( 332 ) = 737 slug ft*/s
= 737 Ib¢ ft/s
737
= (ﬁ) =134 hp.
or: 1 hp. =0.746 kW.

Conversion factors to SI units from other units are given in Table 1.2 which is based
on a publication by MULLIN®,

Table 1.2. Conversion factors for some common SI units®
(An asterisk * denotes an exact relationship.)

Length *1 in. : 254 mm

*1 ft : 03048 m

*1 yd : 09144 m

1 mile : 1.609,3 km

*1 A (angstrom) 110710 m
Time *1 min :60 s

*1 h :3.6 ks

*1 day : 86.4 ks

1 year 1315 Ms
Area *1 in2 : 645.16 mm?

1 fi2 : 0,092,903 m?

1 yd? : 0.836,13 m?

1 acre : 4046.9 m?

1 mile? : 2,590 km?
Volume 1 in3 : 16,387 cm?

16 :0.028,32 m®

1 yd? : 0.764,53 m?

1 UK gal : 4546.1 cm®

1 US gal : 37854 cm?
Mass 1 oz 128352 g

*1 1b : 0.453,592,37 kg

1 cwt : 50.802,3 kg

1 ton : 1016.06 kg
Force 1 pdl :0.138,26 N

1 Ibf 144482 N

1 kgf : 9.806,7 N

1 tonf 1 9.964,0 kN

*1 dyn :107° N

(Continued on facing page)
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Table 1.2. (continued)

11

Temperature
difference
Energy (work, heat)

Calorific value
(volumetric)
Velocity

Volumetric flow

Mass flow

Mass per unit area

Density

Pressure

Power (heat flow)

Moment of inertia
Momentum
Angular momentum
Viscosity, dynamic

Viscosity, kinematic

*1 deg F (deg R)
1 ft Ibf
[ ft pdl

*1 cal (international table)

1l erg

1 Btu

1hph
*1 kW h

1 therm

1 thermie

Bruw/ft?
ft/s

mile/h
ft3/s

ft3/h
UK galh
US galh
Ib/h

ton/h
1b/in.2
Ib/ft2
ton/sq mile
1b/in3
1b/ft
Ib/UK gal
1b/US gal
Ibf/in.?
tonf/in.2
1bf/it?
*1 standard atm
*1 atm

(1 kgf/em?)
*1 bar

1 ft water
in. water
in. Hg

mm Hg (1 torr)
hp (British)
hp (metric)
ergfs

ft 1bf/s
Btw/h

ton of
refrigeration
1 Ib fi2

1 1b ft/s

1 1b fr/s
*1 P (Poise)

1 Ib/ft h

1 Ib/ft s
*1 S (Stokes)
1 f2/h

el S e el e

Pt b b et bt e et

: % deg C (deg K)
: 1.3558 J
:0.042,14 J

14.186,8 J
$10~7 )

: 1.055,06 kJ
:2.684,5 MJ
: 3.6 MJ

: 105.51 MJ
: 4.185,5 MJ

: 37.259 kJ/m3
: 0.304,8 m/s
: 0.447,04 m/s

: 0.028,316 md/s

: 7.865,8 cm3/s
: 1.262,8 cmd/s
: 1.051,5 cm3/s

: 0.126,00 g/s
: 0.282,24 kg/s
: 703.07 kg/m?

: 4,882,4 kg/m?
:392.30 kg/km?

: 27.680 glem®
: 16.019 kg/m?
: 99.776 kg/m3
: 119.83 kg/m?
: 6.894,8 kN/m?

: 15.444 MN/m?
: 47.880 N/m?
: 101.325 kN/m?

: 98.066,5 kN/m?
: 10° N/m?

: 2.989,1 kN/m?
: 249.09 N/m?

: 3.386,4 kN/m?
: 133.32 N/m?
174570 W
173550 W

: 1077 W

: 13558 W
:0.293,01 W

135169 W

: 0.042,140 kg m?
: 0.138,26 kg m/s

: 0.042,140 kg m?/s
: 0.1 N s/m?

: 0.413,38 mN s/m?
: 1.488,2 Ns/m?
:10™% m?/s

: 0.258,06 cm?/s

(continued overleaf )
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Table 1.2. (continued)

Surface energy 1 erg/om? 11073 J/m?
(surface tension) (1 dyn/cm) : (1073 N/m)
Mass flux density 1 Ib/h ft? : 1.356,2 g/s m?
Heat flux density 1 Btwh ft2 : 3.154,6 W/m?

*1 kcalh m? : 1.163 Wim?

Heat transfer

coefficient 1 Bwh ft2°F : 5.678,3 W/im?K
Specific enthalpy

(latent heat, etc.) *1 Btwlb :2.326 kl/kg
Specific heat capacity *1 Bw/1b°F : 4.186,8 kl/kgK
Thermal 1 Btwh ft°F : 1.730,7 W/mK

conductivity 1 kcal/h m°C : 1.163 W/mK

1.4. DIMENSIONAL ANALYSIS

Dimensional analysis depends upon the fundamental principle that any equation or relation
between variables must be dimensionally consistent; that is, each term in the relationship
must have the same dimensions. Thus, in the simple application of the principle, an
equation may consist of a number of terms, each representing, and therefore having,
the dimensions of length. It is not permissible to add, say, lengths and velocities in an
algebraic equation because they are quantities of different characters. The corollary of this
principle is that if the whole equation is divided through by any one of the terms, each
remaining term in the equation must be dimensionless. The use of these dimensionless
groups, or dimensionless numbers as they are called, is of considerable value in developing
relationships in chemical engineering.

The requirement of dimensional consistency places a number of constraints on the
form of the functional relation between variables in a problem and forms the basis of
the technique of dimensional analysis which enables the variables in a problem to be
grouped into the form of dimensionless groups. Since the dimensions of the physical
quantities may be expressed in terms of a number of fundamentals, usually mass, length,
and time, and sometimes temperature and thermal energy, the requirement of dimensional
consistency must be satisfied in respect of each of the fundamentals. Dimensional analysis
gives no information about the form of the functions, nor does it provide any means of
evaluating numerical proportionality constants.

The study of problems in fluid dynamics and in heat transfer is made difficult by the
many parameters which appear to affect them. In most instances further study shows that
the variables may be grouped together in dimensionless groups, thus reducing the effective
number of variables. It is rarely possible, and certainly time consuming, to try to vary
these many variables separately, and the method of dimensional analysis in providing a
smaller number of independent groups is most helpful to the investigated.

The application of the principles of dimensional analysis may best be understood by
considering an example.

It is found, as a result of experiment, that the pressure difference (AP) between two
ends of a pipe in which a fluid is flowing is a function of the pipe diameter d, the pipe
length I, the fluid velocity u, the fluid density p, and the fluid viscosity u.

The relationship between these variables may be written as:

AP =f,(d,l,u, p, 1) (1.6)



UNITS AND DIMENSIONS 13

The form of the function is unknown, though since any function can be expanded as
a power series, the function may be regarded as the sum of a number of terms each
consisting of products of powers of the variables. The simplest form of relation will be
where the function consists simply of a single term, or:

AP = const d"11"2u"3 p"4 s 1.7

The requirement of dimensional consistency is that the combined term on the right-hand
side will have the same dimensions as that on the left; that is, it must have the dimensions
of pressure.

Each of the variables in equation 1.7 may be expressed in terms of mass, length, and
time. Thus, dimensionally:

AP= ML™T2 u =LT!

d=L p =ML™3
I=L u =MLIT!
and: ML™!T-2= LmL2 (LT~ )" (ML 3)" (ML~ T-1)"s

The conditions of dimensional consistency must be met for each of the fundamentals
of M, L, and T and the indices of each of these variables may be equated. Thus:

M 1=n4+ns
L —-l1=n+ny+n3—3ns—n;s
T —2=—n3—n5

Thus three equations and five unknowns result and the equations may be solved in
terms of any two unknowns. Solving in terms of n, and ns:

ng = 1 — ns (from the equation in M)
n3 = 2 — ns (from the equation in T)
Substituting in the equation for L:
-1l=n;1+ny+@—ns)—3(1 —ns) —ns
or; O=ny+ny+ns
and: ny=—ny—ns
Thus, substituting into equation 1.7:

AP = const d"27"5 22" plmns s

AP IN"2 / u \™8
or: Eli = const (2) (m) (1.8)

Since n, and ns are arbitrary constants, this equation can only be satisfied if each of
the terms AP/pu?, 1/d, and u/dup is dimensionless. Evaluating the dimensions of each
group shows that this is, in fact, the case.
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The group udp/u, known as the Reynolds number, is one which frequently arises in
the study of fluid flow and affords a criterion by which the type of flow in a given
geometry may be characterised. Equation 1.8 involves the reciprocal of the Reynolds
number, although this may be rewritten as:

IN™ (udp\™"
AP const (—) (5—”) (1.9)
pu? d ©
The right-hand side of equation 1.9 is a typical term in the function for AP/pu?. More
generally:
A d
AP g (L v p) (1.10)
pu? d

Comparing equations 1.6 and 1.10, it is seen that a relationship between six variables has
been reduced to a relationship between three dimensionless groups. In subsequent sections
of this chapter, this statement will be generalised to show that the number of dimensionless
groups is normally the number of variables less the number of fundamentals (but see the
note in Section 1.5).

A number of important points emerge from a consideration of the preceding example:

1 If the index of a particular variable is found to be zero, this indicates that this variable
is of no significance in the problem.

2 If two of the fundamentals always appear in the same combination, such as L and
T always occuring as powers of LT}, for example, then the same equation for the
indices will be obtained for both L and T and the number of effective fundamentals
is thus reduced by one.

3 The form of the final solution will depend upon the method of solution of the
simultaneous equations. If the equations had been solved, say, in terms of n3; and n4
instead of n, and ns, the resulting dimensionless groups would have been different,
although these new groups would simply have been products of powers of the original
groups. Any number of fresh groups can be formed in this way.

Clearly, the maximum degree of simplification of the problem is achieved by using the
greatest possible number of fundamentals since each yields a simultaneous equation of its
own. In certain problems, force may be used as a fundamental in addition to mass, length,
and time, provided that at no stage in the problem is force defined in terms of mass and
acceleration. In heat transfer problems, temperature is usually an additional fundamental,
and heat can also be used as a fundamental provided it is not defined in terms of mass
and temperature and provided that the equivalence of mechanical and thermal energy is
not utilised. Considerable experience is needed in the proper use of dimensional analysis,
and its application in a number of areas of fluid flow and heat transfer is seen in the
relevant chapters of this Volume.

The choice of physical variables to be included in the dimensional analysis must be
based on an understanding of the nature of the phenomenon being studied although, on
occasions there may be some doubt as to whether a particular quantity is relevant or not.

If a variable is included which does not exert a significant influence on the problem,
the value of the dimensionless group in which it appears will have little effect on the final
numerical solution of the problem, and therefore the exponent of that group must approach
zero. This presupposes that the dimensionless groups are so constituted that the variable in
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question appears in only one of them. On the other hand if an important variable is omitted,
it may be found that there is no unique relationship between the dimensionless groups.

Chemical engineering analysis requires the formulation of relationships which will
apply over a wide range of size of the individual items of a plant. This problem of scale
up is vital and it is much helped by dimensional analysis.

Since linear size is included among the variables, the influence of scale, which may be
regarded as the influence of linear size without change of shape or other variables, has
been introduced. Thus in viscous flow past an object, a change in linear dimension L will
alter the Reynolds number and therefore the flow pattern around the solid, though if the
change in scale is accompanied by a change in any other variable in such a way that the
Reynolds number remains unchanged, then the flow pattern around the solid will not be
altered. This ability to change scale and still maintain a design relationship is one of the
many attractions of dimensional analysis.

It should be noted that it is permissible to take a function only of a dimensionless
quantity, It is easy to appreciate this argument when account is taken of the fact that
any function may be expanded as a power series, each term of which must have the
same dimensions, and the requirement of dimensional consistency can be met only if
these terms and the function are dimensionless. Where this principle appears to have
been invalidated, it is generally because the equation includes a further term, such as an
integration constant, which will restore the requirements of dimensional consistency. For

X

example, / <= Inx — Inx,, and if x is not dimensionless, it appears at first sight that
Xo

the principle has been infringed. Combining the two logarithmic terms, however, yields

x X, . . . .

In (x—> , and = is clearly dimensionless. In the case of the indefinte integral, In x, would,
0 0

in effect, have been the integration constant.

1.5. BUCKINGHAM’S IT THEOREM

The need for dimensional consistency imposes a restraint in respect of each of the funda-
mentals involved in the dimensions of the variables. This is apparent from the previous
discussion in which a series of simultaneous equations was solved, one equation for each
of the fundamentals. A generalisation of this statement is provided in Buckingham’s Il
theorem™® which states that the number of dimensionless groups is equal to the number
of variables minus the number of fundamental dimensions. In mathematical terms, this
can be expressed as follows:

If there are n variables, Q|, @3, ..., @, the functional relationship between them may
be written as:

£3(Q1, 92, ..., Qu) =0 1.11)

If there are m fundamental dimensions, there will be (n — m) dimensionless groups
(,, My, ..., M,_,) and the functional relationship between them may be written as:

(I, M2, ..., Ty ) =0 (1.12)

The groups IT;, I, and so on must be independent of one another, and no one group
should be capable of being formed by multiplying together powers of the other groups.
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By making use of this theorem it is possible to obtain the dimensionless groups more
simply than by solving the simultaneous equations for the indices. Furthermore, the func-
tional relationship can often be obtained in a form which is of more immediate use.

The method involves choosing m of the original variables to form what is called a
recurring set. Any set m of the variables may be chosen with the following two provisions:

(1) Each of the fundamentals must appear in at least one of the m variables.

(2) It must not be possible to form a dimensionless group from some or all of the
variables within the recurring set. If it were so possible, this dimensionless group
would, of course, be one of the [T terms. Thus, the number of dimensionless groups
is increased by one for each of the independent groups that can be so formed.

The procedure is then to take each of the remaining (n — m) variables on its own and
to form it into a dimensionless group by combining it with one or more members of the
recurring set. In this way the (n — m) I1 groups are formed, the only variables appearing
in more than one group being those that constitute the recurring set. Thus, if it is desired
to obtain an explicit functional relation for one particular variable, that variable should
not be included in the recurring set.

In some cases, the number of dimensionless groups will be greater than predicted
by the IT theorem. For instance, if two of the fundamentals always occur in the same
combination, length and time always as LT~!, for example, they will constitute a single
fundamental instead of two fundamentals. By referring back to the method of equating
indices, it is seen that each of the two fundamentals gives the same equation, and therefore
only a single constraint is placed on the relationship by considering the two variables.
Thus, although m is normally the number of fundamentals, it is more strictly defined as
the maximum number of variables from which a dimensionless group cannot be formed.

The procedure is more readily understood by consideration of the illustration given
previously. The relationship between the variables affecting the pressure drop for flow of
fluid in a pipe may be written as:

fs(AP,d, 1, p,u,u)=0 (1.13)

Equation 1.13 includes six variables, and three fundamental quantities (mass, length, and
time) are involved. Thus:

Number of groups = (6 —3) =3

The recurring set must contain three variables that cannot themselves be formed into a
dimensionless group. This imposes the following two restrictions:

(1) Both !/ and d cannot be chosen as they can be formed into the dimensionless group
l/d.
(2) AP, p and u cannot be used since AP/pu? is dimensionless.

Outside these constraints, any three variables can be chosen. It should be remembered,
however, that the variables forming the recurring set are liable to appear in all the dimen-
sionless groups. As this problem deals with the effect of conditions on the pressure
difference AP, it is convenient if AP appears in only one group, and therefore it is
preferable not to include it in the recurring set.
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If the variables d, u, p are chosen as the recurring set, this fulfils all the above condi-
tions. Dimensionally:

d=L
u=LT"!
p=ML"3

Each of the dimensions M, L, T may then be obtained explicitly in terms of the variables
d, u, p, to give:

L=d
M= pd®
T=du!

The three dimensionless groups are thus obtained by taking each of the remaining
variables AP, [, and u in turn.

AP has dimensions ML~!T~2, and APM~!LT? is therefore dimensionless.
Group I1; is, therefore, AP(pd®)~'(d)(du~!)?* = ;)ATE
! has dimensions L, and IL~! is therefore dimensionless.

Group I, is therefore: l@hH = 2

u has dimensions ML~!T~!, and uM™!LT is therefore dimensionless.

Group T3 is, therefore:  wu(od?)~'(d)(du™!) = 2%;

AP | o AP ! ud p)
Th . f —y Ty T =0 —=f — —
. ¢ (pu2 d udp) = <d “
w/udp is arbitrarily inverted because the Reynolds number is usually expressed in
the form udp/u.

Some of the important dimensionless groups used in Chemical Engineering are listed
in Table 1.3.

Example 1.3

A glass particle settles under the action of gravity in a liquid. Obtain a dimensionless grouping of the variables
involved. The falling velocity is found to be proportional to the square of the particle diameter when the other
variables are constant. What will be the effect of doubling the viscosity of the liquid?

Solution

It may be expected that the variables expected to influence the terminal velocity of a glass particle settling in
a liquid, ug, are: :
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Table 1.3. Some important dimensionless groups

Symbol Name of group In terms of Definition  Application
other groups
_ 3
Ar Archimedes Ga Muzpi Gravitational settling of particle in fluid
Db Deborah :—P Flow of viscoelastic fluid
F
P
Eu Euler ;‘7 Pressure and momentum in fluid
Dyt D
Fo Fourier l—g’ -ﬁt Unsteady state heat transfer/mass transfer
2
Fr Froude :_I Fluid flow with free surface
- d3
Ga Galileo Ar &s_;ng_ Gravitational settling of particle in fluid
Pp’pgAT
Gr Grashof T— Heat transfer by natural convection
GCp o
Gz Graetz e Heat transfer to fluid in tube
. Rypd? . o
He Hedstrom 2 Flow of fluid exhibiting yield stress
P
. —~1 k DH .
Le Lewis Sc-Pr = —— Simultaneous heat and mass transfer
CppD D
Ma Mach ;u- Gas flow at high velocity
w
hl
Nu Nusselt -I? Heat transfer in fluid
Pe Peclet Re - Pr l‘;—l Fluid flow and heat transfer
H
/
Re - Sc % Fluid flow and mass transfer
Cou . . :
Pr Prandtl - Heat transfer in flowing fluid
I
Re Reynolds % Fluid flow involving viscous and inertial forces
Sc Schmidt p—"ﬁ Mass transfer in flowing fluid
hpl . .
Sh Sherwood ) Mass transfer in fluid
h
St Stanton Nu.Pr-!.Re™! Coon Heat transfer in flowing fluid
{4
2]
We Weber -e-';— Fluid flow with intertacial forces
R
@ Friction factor p_ui Fluid drag at surface
N, Power number Power consumption for mixers

pN3d5
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particle diameter d; particle density, p; liquid density, p; liquid viscosity, u and the acceleration due to
gravity, g.

Particle density oy is important because it determines the gravitational (accelerating) force on the particle.
However when immersed in a liquid the particle receives an upthrust which is proportional to the liquid density
0. The effective density of the particles (p; — p) is therefore used in this analysis. Then:

up = f(d, (ps — p), o, 14, 8)
The dimensions of each variable are:
u=LT"', d=L, o ~p=ML"3, p=ML"3,
p=ML"!T"! and g=LT"2

With six variables and three fundamental dimensions, (6 — 3) = 3 dimensionless groups are expected. Choosing
d, p and p as the recurring set:

d=L L=d
p=ML3 M = pL3 = pd?
p=ML"'T! T = M/uL = pd*/(ud) = pd*/u
Thus:
dimensionless group 1: upTL™! = ugpd?/(ud) = uppd/n
dimensionless group 2: (os — pL’M™! = psd® / (pd®) = (o5 — P/ p
dimensionless group 3: gL = gp2d4/(p,2d) = gpzd3 /u?
and: (uopd/p) o< ((ps — p)/ p)(gp*d> /u?)
or: (uopd/u) = k((ps — p)/ P (g0°d> /u?y™
when up  d2, when 3n2 — 1) =2 and ny = 1.
Thus: (opd/p) = k((ps = p)/P)" (20°d> /%)
or: uo = &((0s = p)/p)" (& pg/ 1)
and: up o (1/p)

In this case, doubling the viscosity of the liquid will halve the terminal velocity of the particle, suggesting that
the flow is in the Stokes’ law regime.

Example 1.4

A drop of liquid spreads over a horizontal surface. Obtain dimensionless groups of the variables which will
influence the rate at which the liquid spreads.

Solution
The rate at which a drop spreads, say ug m/s, will be influenced by:
viscosity of the liquid, u-dimensions = ML~'T~!
volume of the drop, V-dimensions = L?
density of the liquid, p-dimensions = ML™3
acceleration due to gravity, g-dimensions = LT~2,

and possibly, surface tension of the liquid, o-dimensions = MT 2,

Noting the dimensions of ug as LT, there are six variables and hence (6 — 3) = 3 dimensionless groups.
Taking V, p and g as the recurring set:

V=13 and L= V03
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p=ML" and M = pL? = pV
g=LT2and T =L/g or T = V*16/g05

Thus:
dimensionless group 1: ugTL™! = ygv916/ (VO33g05y = yyp (V033 5y05
dimensionless group 2: uLTM™! = ,aVo'”(V‘""S/,go's)(pV)"1 = ;4/(30'5 Vo)
dimensionless group 3: oM~ = (V033 /g)/(0V) = o/ (gpV"®)

and: ur/(VO3)03 o« (u/ (8 pV0%))/(a/(8oV°S"))

or: ug/ V03¢ = k(U2 /gp? V)" (o/gpVO Ty

1.6. REDEFINITION OF THE LENGTH AND MASS DIMENSIONS
1.6.1. Vector and scalar quantities

It is important to recognise the differences between scalar quantities which have a magni-
tude but no direction, and vector quantities which have both magnitude and direction. Most
length terms are vectors in the Cartesian system and may have components in the X, ¥
and Z directions which may be expressed as Ly, Ly and Lz. There must be dimensional
consistency in all equations and relationships between physical quantities, and there is
therefore the possibility of using all three length dimensions as fundamentals in dimen-
sional analysis. This means that the number of dimensionless groups which are formed
will be less.

Combinations of length dimensions in areas, such as LxLy, and velocities, accelerations
and forces are all vector quantities. On the other hand, mass, volume and heat are all
scalar quantities with no directional significance. The power of dimensional analysis is
thus increased as a result of the larger number of fundamentals which are available for
use. Furthermore, by expressing the length dimension as a vector quantity, it is possible
to obviate the difficulty of two quite different quantities having the same dimensions.
For example, the units of work or energy may be obtained by multiplying a force in
the X-direction (say) by a distance also in the X-direction. The dimensions of energy are
therefore:

(MLxT2)(Lx) = ML:T2

It should be noted in this respect that a torgue is obtained as a product of a force in the
X-direction and an arm of length Ly, say, in a direction at right-angles to the Y-direction.
Thus, the dimensions of torque are MLxLyT~2, which distinguish it from energy.

Another benefit arising from the use of vector lengths is the ability to differentiate
between the dimensions of frequency and angular velocity, both of which are T-! if
length is treated as a scalar quantity. Although an angle is dimensionless in the sense that
it can be defined by the ratio of two lengths, its dimensions become Lx/Ly if these two
lengths are treated as vectors. Thus angular velocity then has the dimensions LyLy T~
compared with T~! for frequency.

Of particular interest in fluid flow is the distinction between shear stress and pressure
(or pressure difference), both of which are defined as force per unit area. For steady-state
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flow of a fluid in a pipe, the forces attributable to the pressure difference and the shear
stress must balance. The pressure difference acts in the axial X-direction, say, and the area
A on which it acts lies in the Y-Z plane and its dimensions can therefore be expressed
as LyLz. On the other hand, the shear stress R which is also exerted in the X-direction
acts on the curved surface of the walls whose area S has the dimensions LxLgr where Lg
is length in the radial direction. Because there is axial symetry, Lg can be expressed as
L{(/ ZLIZ/ 2 and the dimensions of § are then LxL{/ 2le/ 2,

The force F acting on the fiuid in the X (axial)-direction has dimensions MLxT 2,
and hence:

AP = F /A has dimensions MLxT2/LyLz = MLxLy'L; T2
and R = F/S has dimensions MLxT~2/LxLy/’L}/* = ML;I/ZLEUzT_z

giving dimensions of AP/R as LxLy Y 2L2V 2 or LxLg! (which would have been dimen-
sionless had lengths not been treated as vectors).

For a pipe of radius r and length /, the dimensions of r/! are L,'(ILR and hence (AP/R)
(r/1) is a dimensionless quantity. The role of the ratio /! would not have been established
had the lengths not been treated as vectors. It is seen in Chapter 3 that this conclusion is
consistent with the results obtained there by taking a force balance on the fluid.

1.6.2 Quantity mass and inertia mass

The term mass M is used to denote two distinct and different properties:

1 The quantity of matter M,,, and
2 The inertial property of the matter M;.

These two quantities are proportional to one another and may be numerically equal,
although they are essentially different in kind and are therefore not identical. The distinc-
tion is particularly useful when considering the energy of a body or of a fluid.

Because inertial mass is involved in mechanical energy, the dimensions of all energy
terms are M;L2T~2. Inertial mass, however, is not involved in thermal energy (heat) and
therefore specific heat capacity C, has the dimensions MiL?T2/M,.6 = MiM;;'L?T~%6""
or I“IM,;’G‘l according to whether energy is expressed in, joules or kilocalories, for
example.

In practical terms, this can lead to the possibility of using both mass dimensions as
fundamentals, thereby achieving similar advantages to those arising from taking length
as a vector quantity. This subject is discussed in more detail by HUNTLEY®.

WARNING

Dimensional analysis is a very powerful tool in the analysis of problems involving a large
number of variables. However, there are many pitfalls for the unwary, and the technique
should never be used without a thorough understanding of the underlying basic principles
of the physical problem which is being analysed.
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1.9. NOMENCLATURE

Units in SI Dimensions in
system M,N,L T 6 HI
(o8 Specific heat capacity at constant Jkg K L2T-2~! (HM~'e~1)
pressure :
Diffusion coefficient, molecular m/s L2T-!
diffusivity
Dy Thermal diffusivity k/Cpp m?/s L2T-!
d Diameter m L
f A function — —
G Mass rate of flow ke/s MT-!
g Acceleration due to gravity m/s? LT2
8 Numerical constant equal to standard
value of “g” — —
h Heat transfer coefficient W/m?K MT-39-!
hp Mass transfer coefficient m/s LT!
I Electric current A I
J Mechanical equivalent of heat —_ —
k Thermal conductivity W/m K MLT-39-!
l Characteristic length or length of pipe m L
My Molecular weight (relative molecular
mass) of A kg/kmol MN-!
m Number of fundamental dimensions — —
N Rotational speed s~! T-!
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Dimensions

UNITS AND DIMENSIONS
Units in SI
system
Number of variables —_
Power w
Pressure N/m?
Pressure difference N/m?
Physical quantity -
Shear stress N/m?
Yield stress N/m?
Universal gas constant 8314 J/kmoil K
Pipe radius m
Temperature difference K
Time s

Characteristic time for fluid
Characteristic time for process
Velocity

Velocity of a pressure wave
Potential difference
Coefficient of cubical expansion of fluid
A dimensionless group
Viscosity

Plastic viscosity

Density of fluid

Density of solid

Surface or interfacial tension
Electrical resistance

Heat

Electric current

Length

Length vectors in X-Y-Z directions
Mass

Inertial mass

Quantity mass

Moles

Time

Temperature

s
s

m/s
m/s

\'%

K- 1

N s/m?
N s/m?
kg/m®
kg/m?
N/m
Ohm

Amp
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Dimensions in
M,NLT0HI

2T

ML-iT-2

ML-IT-2

ML-IT-2

ML-!T-2

MN-IL2T-29-! (HN—19~!)

-

LT-!

LT-!
ML2T~31-!
- 1

ML-'T-!
ML-!T-!
ML-3
ML-3
MT-?
ML2T-31-2
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PART 1

Fluid Flow




CHAPTER 2

Flow of Fluids— Energy and
Momentum Relationships

2.1. INTRODUCTION

Chemical engineers are interested in many aspects of the problems involved in the flow of
fluids. In the first place, in common with many other engineers, they are concerned with
the transport of fluids from one location to another through pipes or open ducts, which
requires the determination of the pressure drops in the system, and hence of the power
required for pumping, selection of the most suitable type of pump, and measurement of
the flow rates. In many cases, the fluid contains solid particles in suspension and it is
necessary to determine the effect of these particles on the flow characteristics of the fluid
or, alternatively, the drag force exerted by the fluid on the particles. In some cases, such
as filtration, the particles are in the form of a fairly stable bed and the fluid has to pass
through the tortuous channels formed by the pore spaces. In other cases the shape of
the boundary surfaces must be so arranged that a particular flow pattern is obtained: for
example, when solids are maintained in suspension in a liquid by means of agitation,
the desired effect can be obtained with the minimum expenditure of energy as the most
suitable flow pattern is produced in the fluid. Further, in those processes where heat
transfer or mass transfer to a flowing fluid occurs, the nature of the flow may have a
profound effect on the transfer coefficient for the process.

It is necessary to be able to calculate the energy and momentum of a fluid at various
positions in a flow system. It will be seen that energy occurs in a number of forms and
that some of these are influenced by the motion of the fluid. In the first part of this chapter
the thermodynamic properties of fluids will be discussed. It will then be seen how the
thermodynamic relations are modified if the fluid is in motion. In later chapters, the effects
of frictional forces will be considered, and the principal methods of measuring flow will
be described.

2.2, INTERNAL ENERGY

When a fluid flows from one location to another, energy will, in general, be converted
from one form to another. The energy which is attributable to the physical state of the fluid
is known as internal energy; it is arbitrarily taken as zero at some reference state, such
as the absolute zero of temperature or the melting point of ice at atmospheric pressure.
A change in the physical state of a fluid will, in general, cause an alteration in the
internal energy. An elementary reversible change results from an infinitesimal change in

27
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one of the intensive factors acting on the system; the change proceeds at an infinitesimal
rate and a small change in the intensive factor in the opposite direction would have
caused the process to take place in the reverse direction. Truly reversible changes never
occur in practice but they provide a useful standard with which actual processes can be
compared. In an irreversible process, changes are caused by a finite difference in the
intensive factor and take place at a finite rate. In general the process will be accompanied
by the conversion of electrical or mechanical energy into heat, or by the reduction of the
temperature difference between different parts of the system.

For a stationary material the change in the internal energy is equal to the difference
between the net amount of heat added to the system and the net amount of work done by
the system on its surroundings. For an infinitesimal change:

dU =8q — W 2.1

where dU is the small change in the internal energy, 8¢ the small amount of heat added,
and §W the net amount of work done on the surroundings.

In this expression consistent units must be used. In the SI system each of the terms
in equation 2.1 is expressed in Joules per kilogram (J/kg). In other systems either heat
units (e.g. cal/g) or mechanical energy units (e.g. erg/g) may be used. dU is a small
change in the internal energy which is a property of the system; it is therefore a perfect
differential. On the other hand, 8¢ and W are small quantities of heat and work; they are
not properties of the system and their values depend on the manner in which the change
is effected; they are, therefore, not perfect differentials. For a reversible process, however,
both g and 8W can be expressed in terms of properties of the system. For convenience,
reference will be made to systems of unit mass and the effects on the surroundings will
be disregarded.

A property called entropy is defined by the relation:

_%

T
where dS is the small change in entropy resulting from the addition of a small quantity
of heat g, at a temperature T, under reversible conditions. From the definition of the
thermodynamic scale of temperature, § /T = 0 for a reversible cyclic process, and the
net change in the entropy is also zero. Thus, for a particular condition of the system, the
entropy has a definite value and must be a property of the system; dS is, therefore, a
perfect differential.

For an irreversible process:

2.2)

3q _8q  OF
T <dS = T + T (say) 2.3)

8F is then a measure of the degree of irreversibility of the process. It represents the
amount of mechanical energy converted into heat or the conversion of heat energy at one
temperature to heat energy at another temperature. For a finite process:

52
/ TdS =X8g+ Z8F =g+ F (say) 2.4)
s

1

When a process is isentropic, ¢ = —F; a reversible process is isentropic when g = 0, that
is a reversible adiabatic process is isentropic.
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The increase in the entropy of an irreversible process may be illustrated in the following
manner. Considering the spontaneous transfer of a quantity of heat g from one part of
a system at a temperature 7' to another part at a temperature T, then the net change in
the entropy of the system as a whole is then:

T must be greater than T, and dS is therefore positive. If the process had been carried
out reversibly, there would have been an infinitesimal difference between T, and T, and
the change in entropy would have been zero.

The change in the internal energy may be expressed in terms of properties of the system
itself. For a reversible process:

8q =TdS (from equation 2.2) and W =Pdv

if the only work done is that resulting from a change in volume, dv.
Thus, from equation 2.1:

dU=TdS—-Pdv 2.5)

Since this relation is in terms of properties of the system, it must also apply to a system
in motion and to irreversible changes where the only work done is the result of change
of volume.

Thus, in an irreversible process, for a stationary system:

from equations 2.1 and 2.2: dU =8q — W =TdS — Pdv
and from equation 2.3: 8qg+68F =TdS
' W = Pdv — 6F 2.6)

that is, the useful work performed by the system is less than P dv by an amount 8F, which
represents the amount of mechanical energy converted into heat energy.

The relation between the internal energy and the temperature of a fluid will now be
considered. In a system consisting of unit mass of material and where the only work done
is that resulting from volume change, the change in internal energy after a reversible
change is given by:

dU = §qg — Pdv (from equation 2.1)

If there is no volume change:
dU =489 =C,dT Q.7

where C, is the specific heat at constant volume.

As this relation is in terms of properties of the system, it must be applicable to all
changes at constant volume.

In an irreversible process:

dU =ég — (Pdv— 8F) (from equations 2.1 and 2.6) 2.8)

= 6q + 8F (under conditions of constant volume)
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This quantity 8F thus represents the mechanical energy which has been converted into
heat and which is therefore available for increasing the temperature.

Thus: dq + 8F = C,dT =dU. (2.9)

For changes that take place under conditions of constant pressure, it is more satisfactory
to consider variations in the enthalpy H. The enthalpy is defined by the relation:

H = U + Pv. (2.10)
Thus: dH =dU + Pdv+vdP
=8q — Pdv+8F + Pdv+vdP (from equation 2.8)

for an irreversible process: (For a reversible process 8F = 0)

dH = 8q + 6F + vdP (2.11)
= 8q + 8F (at constant pressure)
=C,dT (2.12)

where C,, is the specific heat at constant pressure.
No assumptions have been made concerning the properties of the system and, therefore,
the following relations apply to all fluids.

aUu

From equation 2.7: — | =C, (2.13)
T/,
oH

From equation 2.12: (—) =Cp (2.14)
T /p

2.3. TYPES OF FLUID

Fluids may be classified in two different ways; either according to their behaviour under
the action of externally applied pressure, or according to the effects produced by the
action of a shear stress.

If the volume of an element of fluid is independent of its pressure and temperature,
the fluid is said to be incompressible; if its volume changes it is said to be compressible.
No real fluid is completely incompressible though liquids may generally be regarded as
such when their flow is considered. Gases have a very much higher compressibility than
liquids, and appreciable changes in volume may occur if the pressure or temperature is
altered. However, if the percentage change in the pressure or in the absolute temperature
is small, for practical purposes a gas may also be regarded as incompressible. Thus, in
practice, volume changes are likely to be important only when the pressure or temperature
of a gas changes by a large proportion. The relation between pressure, temperature, and
volume of a real gas is generally complex though, except at very high pressures the
behaviour of gases approximates to that of the ideal gas for which the volume of a given
mass is inversely proportional to the pressure and directly proportional to the absolute
temperature. At high pressures and when pressure changes are large, however, there may
be appreciable deviations from this law and an approximate equation of state must then
be used.
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The behaviour of a fluid under the action of a shear stress is important in that it
determines the way in which it will flow. The most important physical property affecting
the stress distribution within the fluid is its viscosity. For a gas, the viscosity is low and
even at high rates of shear, the viscous stresses are small. Under such conditions the gas
approximates in its behaviour to an inviscid fluid. In many problems involving the flow of
a gas or a liquid, the viscous stresses are important and give rise to appreciable velocity
gradients within the fluid, and dissipation of energy occurs as a result of the frictional
forces set up. In gases and in most pure liquids the ratio of the shear stress to the rate
of shear is constant and equal to the viscosity of the fluid. These fluids are said to be
Newtonian in their behaviour. However, in some liquids, particularly those containing a
second phase in suspension, the ratio is not constant and the apparent viscosity of the
fluid is a function of the rate of shear. The fiuid is then said to be non-Newtonian and to
exhibit rheological properties. The importance of the viscosity of the fluid in determining
velocity profiles and friction losses is discussed in Chapter 3.

The effect of pressure on the properties of an incompressible fluid, an ideal gas, and a
non-ideal gas is now considered.

2.3.1. The incompressible fluid (liquid)

By definition, v is independent of P, so that (3v/dP)r = 0. The internal energy will be a
function of temperature but not a function of pressure.

2.3.2. The ideal gas

An ideal gas is defined as a gas whose properties obey the law:
PV = nRT (2.15)

where V is the volume occupied by n molar units of the gas, R the universal gas constant,
and T the absolute temperature. Here n is expressed in kmol when using the SI system.

This law is closely obeyed by real gases under conditions where the actual volume of
the molecules is small compared with the total volume, and where the molecules exert
only a very small attractive force on one another. These conditions are met at very low
pressures when the distance apart of the individual molecules is large. The value of R is
then the same for all gases and in SI units has the value of 8314 J/kmol K.

When the only external force on a gas is the fluid pressure, the equation of state is:

fP,V,T,n) =0

Any property may be expressed in terms of any three other properties. Considering the
dependence of the internal energy on temperature and volume, then:

U=1(T,V,n)

For unit mass of gas:
U=1{T,v)
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and: RT
Pv= 2.16
M 2.16)

where M is the molecular weight of the gas and v is the volume per unit mass.

Thus: dU = (3—;{>UdT + (%)Tdv (2.17)
and: TdS =dU + Pdv (from equation 2.5)

TdS = <2—¥)vdT+ [P+ (%)T] dv
and: ds = (%)v d—TZ + 31: [P + <%_l:)r] dv (2.18)
Thus: (3_5),, = % (%)v (2.19)
and: (%)T = % [P + (%)T] (2.20)

Then differentiating equation 2.19 by v and equation 2.20 by T and equating:
1 3*U 1 {/oP F*U 1 U
— = — - G+ — | —= P+ =
TaTov T [\dT/, vdT T? v /r

oU oP
or (E)—)T=T<ﬁ)v—P (2.21)

This relation applies to any fluid. For the particular case of an ideal gas, since Pv = RT/M
(equation 2.16):

9P R
T{=) =T— =P
(ar)v Mv

so that: (&) =0 (2.22)
v /r

oU oU dv
wn (#),= (). (&)= >

Thus the internal energy of an ideal gas is a function of temperature only. The variation
of internal energy and enthalpy with temperature will now be calculated.

oU oU

dU=|—) dT — ion 2.1
<8T)v + <8U>Tdv (equation 2.17)

= C,dT (from equations 2.13 and 2.22) (2.24)
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Thus for an ideal gas under all conditions:
auv
ar

In general, this relation applies only to changes at constant volume. For the particular

case of the ideal gas, however, it applies under all circumstances.
Again, since H = f(T', P):

oH oH
=(— ) dT — dP
aH (ar),, + (aP)T

a(P
= C,dT + (811) dP + ( ( ”)) dP (from equations 2.12 and 2.10)
oP ), P ),

Gy (2.25)

= C,dT
since (3U/dP)r = 0 and [9(Pv)/dP]r = O for an ideal gas.

Thus under all conditions for an ideal gas:

—=C, (2.26)
Cp_cv':'__—:——:_ (227)

Isothermal processes

In fluid flow it is important to know how the volume of a gas will vary as the pressure
changes. Two important idealised conditions which are rarely obtained in practice are
changes at constant temperature and changes at constant entropy. Although not actually
reached, these conditions are approached in many flow problems.

For an isothermal change in an ideal gas, the product of pressure and volume is a
constant. For unit mass of gas:

RT
Pv= o = constant (equation 2.16)

Isentropic processes

For an isentropic process the enthalpy may be expressed as a function of the pressure and
volume:

H=f{(P,v)

oH oH
dH = — ) dpP — ] d

).+ (50),
oH aT oH aT
(ﬁ-)v (—ﬁ)vd})—*—(ﬁ)P (E}-)Pdv

oH
Since: (———) =C, (equation 2.14)
aT /) p
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. OHY _ (3U a(Pv)
and: (ar>v"<ar>u+( oT )

P
=C,+v (6_) (from equation 2.13)
v

aT
Further: dH =dU + Pdv+vdP (from equation 2.10)
=TdS — Pdv+ Pdv+vdP (from equation 2.5)
=TdS+vdP (2.28)
=vdP (for an isentropic process) (2.29)

Thus, for an isentropic process:

oP oT oT
= =) {5 Z) 4
vdp [C””(ar)v] <aP>vdP+C”(av>p v

oT C oT
: — ) dP+22 (=) dv=0
or (3P>,, *e (av>p v

From the equation of state for an ideal gas (equation 2.15):

<ar> T <3T> T
Z) =2 and (=) ==
ap), P w)p v

(7)+(3)-

In P 4+ yInv = constant

where y = C,/C,.
Integration gives:

or: PvY = constant (2.30)

This relation holds only approximately, even for an ideal gas, since y has been taken
as a constant in the integration. It does, however, vary somewhat with pressure.

2.3.3. The non-ideal gas

For a non-ideal gas, equation 2.15 is modified by including a compressibility factor Z
which is a function of both temperature and pressure:

PV =ZnRT (2.31)

At very low pressures, deviations from the ideal gas law are caused mainly by the
attractive forces between the molecules and the compressibility factor has a value less
than unity. At higher pressures, deviations are caused mainly by the fact that the volume of
the molecules themselves, which can be regarded as incompressible, becomes significant
compared with the total volume of the gas.

Many equations have been given to denote the approximate relation between the prop-
erties of a non-ideal gas. Of these the simplest, and probably the most commonly used,
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is van der Waals’ equation:
n?
(P + aﬁ> (V —nb) =nRT (2.32)

where b is a quantity which is a function of the incompressible volume of the molecules
themselves, and a/ V2 is a function of the attractive forces between the molecules. Values
of a and b can be expressed in terms of the critical pressure P, and the critical temperature

R?T? RT, _ .
———and b = . It is seen that as P approaches zero and V approaches
64P 8P,

infinity, this equf«ltion reduces to the equation of state for the ideal gas.

A chart which correlates experimental P — V — T data for all gases is included as
Figure 2.1 and this is known as the generalised compressibility-factor chart.®*) Use is
made of reduced coordinates where the reduced temperature Tg, the reduced pressure Pg,
and the reduced volume Vg are defined as the ratio of the actual temperature, pressure, and
volume of the gas to the corresponding values of these properties at the critical state. It is
found that, at a given value of T» and Pg, nearly all gases have the same molar volume,
compressibility factor, and other thermodynamic properties. This empirical relationship
applies to within about 2 per cent for most gases; the most important exception to the
rule is ammonia.

T.asa=

3 ,[. TTTT T 11 O R L, L L L L L LB O "2:[
11 50 A I 2 I Reduced temperature, Tg = 1.0, —1.4
5 T RE| ]. 1' | | S 2016
BTN E 57 B S ) ) e WL I W D ) I T A -3 1
2 ] 1 . N w7 27 ,’Lg[_t N
=T 1 - e
‘N._ .  — i 4 1.:' T = TI{. ‘0 -;—o—
5 1.0z ey S
o 1 T 1 |
& T ey : = — 1
> 06 11197519 80 NSE i
= | [T T T 17 088N 4 “‘--—-.l___
= I T o N | 1 T2
@ 0.4ttt 9N IS I=fA i s Y s
@ L1 1 __l 1] ] ..\,51.1.05 i | ~ |1
5 03 R - : .03 e | T, 4
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s 1171 | | 08I
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* | Click here to view Figure 2.1. Compressibility factors of gases and vapours

The generalised compressibility-factor chart is not to be regarded as a substitute for
experimental P — V — T data. If accurate data are available, as they are for some of the
more common gases, they should be used.

It will be noted from Figure 2.1 that Z approaches unity for all temperatures as the
pressure approaches zero. This serves to confirm the statement made previously that all
gases approach ideality as the pressure is reduced to zero. For most gases the critical
pressure is 3 MN/m? or greater. Thus at atmospheric pressure (101.3 kN/m?), Pg is 0.033
or less. At this pressure, for any temperature above the critical temperature (Tx = 1), it
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will be seen that Z deviates from unity by no more than 1 per cent. Thus at atmospheric
pressure for temperatures greater than the critical temperature, the assumption that the
ideal gas law is valid usually leads to errors of less than 1 per cent. It should also be
noted that for reduced temperatures between 3 and 10 the compressibility factor is nearly
unity for reduced pressures up to a value of 6. For very high temperatures the isotherms
approach a horizontal line at Z = 1 for all pressures. Thus all gases tend towards ideality
as the temperature approaches infinity.

Example 2.1

It is required to store 1 kmol of methane at 320 K and 60 MN/m?. Using the following methods, estimate the
volume of the vessel which must be provided:

(a) ideal gas law;
(b) van der Waals' equation;
(c) generalised compressibility-factor chart;

Solution

For 1 kmol of methane,
(a) PV =1 x RT, where R = 8314 J/kmol K.

In this case: P =60x 10° N/m?; T =320 K
320
V=8314x ——— =0. 3
31 x(60><106) 0.0443 m

(b) In van der Waals’ equation (2.32), the constants may be taken as:

27R*T? RT.
a= y b=
64P, 8P,

where the critical temperature T, = 191 K and the critical pressure P, = 4.64 x 106 N/m? for methane as
shown in the Appendix tables.

L, 1 x 83147 x 1912
T (64 x 4.64 x 105)

191
d: = 14 - =0. 3
an b= 8314 x B X464 x 105 0.0427 m” /kmol

= 229,300 (N/m?)(m?)?/(kmol)?

Thus in equation 2.32:

(60 x 108 4 229,300 x %) <V -(1x 0.0427)) =1x 8314 x 320

or: V3 —0.0427V? + 0.000382 = 0.0445
Solving by trial and error: V = 0.066 m’
T 32
ITfy=—=—=1.
© PSS o = 18
3
p,=f _0X10 0
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Thus from Figure 2.1, Z = 1.33

and: = -Z—":—T (from equation 2.31)

_ 1.33 x 1.0 x 8314 x 320
n (60 x 106)

= 0.0589 m?

Example 2.2
Obtain expressions for the variation of:

(a) internal energy with change of volume,
(b) internal energy with change of pressure, and
(c) enthalpy with change of pressure,

all at constant temperature, for a gas whose equation of state is given by van der Waals’ Law.

Solution

van der Waals’ equation (2.32) may be written for n kmol of gas as:
[P+ (a/VD))(V — b) = nRT (equation 2.32)
or: P = [nRT/(V — b)] — (@V?)

(a) Internal energy and temperature are related by:

3
(%)T=T(g—;)V—P (equation 2.21)
From van der Waals’ equation:
apP nR aP
=) =—— — } =nRT/(V -
(7), =7 = 7(5),=mRrv -0

10 nRT a
H N —_ = — = —
ence (6V)T ) P 72

(For an ideal gas: b =0 and (3U/3V)r = (nRT/V)—-P =0)

au U\ [V
) (ﬁ)r=(a_l’)7<§)r and (3V/9P) = 1/(3P/3V)

H : - =
ence WoW-bE TV VIV — b
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<%> _ nRT p
v/y  (V-b)

. aU nRT V3(V = b)?
and thus: (ﬁ)r— ((VTb)—P) (Za(V—b)Z_nRTVa

_ [nRT = P(V = B))[V3(V - b)?)
- [2a(V — b)? — nRTV3]

(For an ideal gas, a = b = 0 and (3U/3P)r = 0)

(¢) Since H is a function of T and P:
oH oH
=|—] dT — ) dP
o (ar)p +(aP)T
U aPV)
Cpd +(8P)po+( - )T

For a constant temperature process:

Cpir a0 ms o (), (200)
T T

&P~ \oP P
, V) _ 38 - 2)) =
Thus: o7 = 7 PRI +bP = (a/V) + (@b/V)) = b
and: dH _ [nRT —P(V - D)J[V3(V = b)*] - b
‘ dr 2a(V — b)? — nRTV3

Joule- Thomson effect

It has already been shown that the change of internal energy of unit mass of fluid with
volume at constant temperature is given by the relation:

3 oP
(3‘;’)1 s (5?) _P (equation 2.21)

For a non-ideal gas: T <E> # P
aT /,,
and therefore (3U/dv)r and (3U/9P)r are not equal to zero.

Thus the internal energy of the non-ideal gas is a function of pressure as well as
temperature. As the gas is expanded, the molecules are separated from each other against
the action of the attractive forces between them. Energy is therefore stored in the gas;
this is released when the gas is compressed and the molecules are allowed to approach
one another again.

A characteristic of the non-ideal gas is that it has a finite Joule-Thomson effect. This
relates to the amount of heat which must be added during an expansion of a gas from a
pressure P to a pressure P, in order to maintain isothermal conditions. Imagine a gas
flowing from a cylinder, fitted with a piston at a pressure P; to a second cylinder at a
pressure P, (Figure 2.2).
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Figure 2.2. Joule-Thomson effect

The net work done by unit mass of gas on the surroundings in expanding from P; to
P, is given by:
W= szz - Plvl (2.33)

A quantity of heat (g, say) is added during the expansion so as to maintain isothermal
conditions. The change in the internal energy is therefore given by:

AU =q - W (from equation 2.1)
q= AU =~ Pyv; + Pv; (2.34)

For an ideal gas, under isothermal conditions, AU = 0 and P,v; = Pyv;. Thus ¢ =0
and the ideal gas is said to have a zero Joule-Thomson effect. A non-ideal gas has a
Joule-Thomson effect which may be either positive or negative.

2.4. THE FLUID IN MOTION

When a fluid flows through a duct or over a surface, the velocity over a plane at right
angles to the stream is not normally uniform. The variation of velocity can be shown by
the use of streamlines which are lines so drawn that the velocity vector is always tangential
to them. The flowrate between any two streamlines is always the same. Constant velocity
over a cross-section is shown by equidistant streamlines and an increase in velocity by
closer spacing of the streamlines. There are two principal types of flow which are discussed
in detail later, namely streamline and turbulent flow. In streamline flow, movement across
streamlines occurs solely as the result of diffusion on a molecular scale and the flowrate is
steady. In turbulent flow the presence of circulating current results in transference of fluid
on a larger scale, and cyclic fluctuations occur in the flowrate, though the time-average
rate remains constant.

A group of streamlines can be taken together to form a streamtube, and thus the whole
area for flow can be regarded as being composed of bundles of streamtubes.

Figures 2.3, 2.4, and 2.5 show the flow patterns in a straight tube, through a constriction
and past an immersed object. In the first case, the streamlines are all parallel to one
another, whereas in the other two cases the streamlines approach one another as the
passage becomes constricted, indicating that the velocity is increasing.

2.4.1. Continuity

Considering the flow of a fluid through a streamtube, as shown in Figure 2.6, then equating
the mass rates of flow at sections 1 and 2:
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dG = p1i¢1 dAl = pzflz dAz (2.35)

where p;, p; are the densities; i, i; the velocities in the streamtube; and dA;, dA; the
flow areas at sections 1 and 2 respectively.

Figure 2.3. Streamlines in a straight tube

———
————

Figure 2.4. Streamlines in a constriction

=
N =

Figure 2.5. Streamlines for flow past an immersed object

1 dA,

3

Figure 2.6. Flow through a streamtube
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On integration:

G= /,01111 dA; = /szlz dA; = puA; = prurAs (2.36)

where u;, u, are the average velocities (defined by the previous equations) at the two
sections. In many problems, the mass flowrate per unit area G’ is the important quantity.

G = g = pu 2.37)

For an incompressible fluid, such as a liquid or a gas where the pressure changes are
small:
u1A1 = u2A2 (238)

It is seen that it is important to be able to determine the velocity profile so that the
flowrate can be calculated, and this is done in Chapter 3. For streamline flow in a pipe
the mean velocity is 0.5 times the maximum stream velocity which occurs at the axis. For
turbulent flow, the profile is flatter and the ratio of the mean velocity to the maximum
velocity is about 0.82.

2.4.2. Momentum changes in a fluid

As a fluid flows through a duct its momentum and pressure may change. The magnitude
of the changes can be considered by applying the momentum equation (force equals
rate of change of momentum) to the fiuid in a streamtube and then integrating over
the cross-section of the duct. The effect of frictional forces will be neglected at first
and the relations thus obtained will strictly apply only to an inviscid (frictionless) fluid.
Considering an element of length d! of a streamtube of cross-sectional area dA, increasing
to dA + (d(dA)/dl)d!l, as shown in Figure 2.7, then the upstream pressure = P and force
attributable to upstream pressure = P dA.

dP d(dA)
o N [P+ S aloa+=5 ]

" dz

l og dt [aa+ 172 B d(dA) d

PdA

Figure 2.7. Forces on fluid in a streamtube

dp
The downstream pressure = P + ( i ) d

This pressure acts over an area dA + (d(dA)/d/)d! and gives rise to a total force of
—{P + (dP/di)dl}{dA + [d(dA)/dl]dl}.

In addition, the mean pressure of P + %(dP/dl )d! acting on the sides of the streamtube
will give rise to a force having a component [P + %(dP/dl )di}{d(dA)/dI]d! along the
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streamtube. Thus, the net force along the streamtube due to the pressure gradient is:

PdA - (P+ -d—Pidl) (dA+ wdl) + (P+ -l-gdl) wdl A —%’lidldA

di d 2dl dl
The other force acting is the weight of the fluid
1d(dA)
= ' ——-d
pgdl (dA + 27 dl l)

The component of this force along the streamtube is

~pgdl (dA + l%)-dl> sin @

2 dl
Neglecting second order terms and noting that siné = dz/dl:
Total force on fluid = —%’;—dldA - %pgdl dA (2.39)

The rate of change of momentum of the fluid along the streamtube

. . du :

du
= pi— 2.4
pit; didA (2.40)
Equating equations 2.39 and 2.40:
) dit dpr dz
pudldAFl- = —dldAa' - pgdl dAa—l'
dpP
icdit+—;+gdz=0 2.41)
On integration:
¥)
5+ / i:i + gz = constant (2.42)

For the simple case of the incompressible fluid, p is independent of pressure, and:

"42

— + f + gz = constant (2.43)
2 »p

Equation 2.43 is known as Bernoulli’s equation, which relates the pressure at a point in
the fluid to its position and velocity. Each term in equation 2.43 represents energy per
unit mass of fluid. Thus, if all the fluid is moving with a velocity u, the total energy per
unit mass ¥ is given by:

[

y="+

2 + 82 (2.44)

© |

Dividing equation 2.44 by g:

2

P
% L 47 =constant (2.45)
28 g
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In equation 2.45 each term represents energy per unit weight of fluid and has the
dimensions of length and can be regarded as representing a contribution to the total
fluid head.

2
Thus: gg is the velocity head

P
— is the pressure head

and: z is the potential head

Equation 2.42 can also be obtained from consideration of the energy changes in the
fluid.

Example 2.3

Water leaves the 25 mm diameter nozzle of a fire hose at a velocity of 25 m/s. What will be the reaction force
at the nozzle which the fireman will need to counterbalance?

Solution

Mass rate of discharge of water, G = puA
=mmx%x§mmw
= 12.27 kg/s

Momentum of fluid per second = Gu
=1227x25
=307 N
Reaction force = Rate of change of momentum = 307 N

Example 2.4

Water is flowing at 5 m/s in a 50 mm diameter pipe which incorporates a 90° bend, as shown in Figure 2.8.
What is the additional force to which a retaining bracket will be subjected, as a result of the momentum changes
in the liquid, if it is arranged symmetrically in the pipe bend?

Solution

Momentum per second of approaching liquid in Y-direction
= puzA
= 1000 x 25 x %(0.050)’-
=49.1N

The pipe bracket must therefore exert a reaction force of —49.1 N in the Y-direction, that is in the direction
in which the fluid is accelerating. Similarly, the force in the X-direction = 49.1 N

The resultant force in direction of arm of bracket = 49.1cos 45° + 49.1 sin 45°

1 ]

=491 — + —=
V22

=69.4 N




44 CHEMICAL ENGINEERING

Figure 2.8. Force on support for pipe bend

Water hammer

If the flowrate of a liquid in a pipeline is suddenly reduced, such as by rapid closure
of a valve for example, its rate of change of momentum can be sufficiently high for
very large forces to be set up which may cause damage to the installation. In a pipeline
carrying water, the resulting pressure wave may have a velocity as high as 1200 m/s. The
behaviour of the pipe network will be influenced by a large number of factors, including
the density and the bulk modulus of elasticity of the liquid, Young’s modulus for the
material of the pipe, and the design and layout of the installation. The phenomenon is
complex® and reference should be made to one of the specialised texts, such as those by
PARMAKIAN® and SHARP® for a detailed analysis. The situation can arise with the flow
of any liquid, but it is usually referred to as water hammer on account of the characteristic
sound arising from water distribution systems.

2.4.3. Energy of a fluid in motion

The total energy of a fluid in motion is made up of a number of components. For unit
mass of fluid and neglecting changes in magnetic and electrical energy, the magnitutes of
the various forms of energy are as follows.

Internal energy U
This has already been discussed in Section 2.2.

Pressure energy

This represents the work which must be done in order to introduce the fluid, without
change in volume, into the system. It is therefore given by the product Pv, where P is
the pressure of the system and v is the volume of unit mass of fluid.

Potential energy

The potential energy of the fluid, due to its position in the earth’s gravitational field, is
equal to the work which must be done on it in order to raise it to that position from some
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arbitrarily chosen datum level at which the potential energy is taken as zero. Thus, if the
fluid is situated at a height z above the datum level, the potential energy is zg, where g
is the acceleration due to gravity which is taken as constant unless otherwise stated.

Kinetic energy

The fluid possesses kinetic energy by virtue of its motion with reference to some arbitrarily
fixed body, normally taken as the earth. If the fluid is moving with a velocity i, the kinetic
energy is u?/2.

The total energy of unit mass of fluid is, therefore:

u2

2

If the fluid flows from section 1 to section 2 (where the values of the various quantities
are denoted by suffixes 1 and 2 respectively) and g is the net heat absorbed from the
surroundings and W; is the net work done by the fluid on the surroundings, other than
that done by the fluid in entering or leaving the section under consideration, then:

U+ Pv+gz+ (2.46)

2 i?
U2+P202+822+72=U1+P1U1+821+?1+q—ws (2.47)

2
AU+A(Pv)+gAz+A5‘2— —g-W, (2.48)

where A denotes a finite change in the quantities.

Thus: AH +gAz + ATuz =q-W; (2.49)
It should be noted that the shaft work W is related to the total work W by the relation:
W=W;+ A(Pv) (2.50)

For a small change in the system:
dH + gdz + udu = 8q — W, (2.51)

For many purposes it is convenient to eliminate A by using equation 2.11:
dH = 8q + 6F +vdP (equation 2.11)
Here 8F represents the amount of mechanical energy irreversibly converted into heat.
Thus: udi+gdz+vdP+8W;+6F =0 (2.52)

When no work is done by the fluid on the surroundings and when friction can be
neglected, it will be noted that equation 2.52 is identical to equation 2.41 derived from
consideration of a momentum balance, since:

1
v=—
P
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Integrating this equation for flow from section 1 to section 2 and summing the terms W
and 8F:
1'42 Py
A?+gAz+/P vdP+ W, +F =0 (2.53)
1

Equations 2.41 to 2.53 are quite general and apply therefore to any type of fluid.

With incompressible fluids the energy F is either lost to the surroundings or causes a
very small rise in temperature. If the fluid is compressible, however, the rise in temperature
may result in an increase in the pressure energy and part of it may be available for doing
useful work.

If the fluid is flowing through a channel or pipe, a frictional drag arises in the region of
the boundaries and gives rise to a velocity distribution across any section perpendicular
to the direction of flow. For the unidirectional fiow of fluid, the mean velocity of flow
has been defined by equation 2.36 as the ratio of the volumetric flowrate to the cross-
sectional area of the channel. When equation 2.52 is applied over the whole cross-section,
therefore, allowance must be made for the fact that the mean square velocity is not equal
to the square of the mean velocity, and a correction factor & must therefore be introduced
into the kinetic energy term. Thus, considering the fluid over the whole cross-section, for
small changes:

d
%+gdz+vdP+8Ws+8F=0 (2.54)
and for finite changes:
u2 Py
A(—) +gAz+ vdP+W,;+F=0 (2.55)
2a P

Before equation 2.55 may be applied to any particular flow problem, the term |, :l 2ydP
must be evaluated.
Equation 2.50 becomes:

2
A (;—a) +gAz+ AH =g — W, (2.56)

For flow in a pipe of circular cross-section a will be shown to be exactly 0.5 for
streamline flow and to approximate to unity for turbulent flow.
For turbulent flow, and where no external work is done, equation 2.54 becomes:

udu+gdz+vdP =0 (2.57)

if frictional effects can be neglected.
For horizontal flow, or where the effects of change of height may be neglected, as
normally with gases, equation 2.57 simplifies to:

udu+vdP =0 (2.58)

2.4.4. Pressure and fluid head

In equation 2.54 each term represents energy per unit mass of fluid. If the equation
is multiplied throughout by density p, each term has the dimensions of pressure and
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represents energy per unit volume of fluid:

d
ﬂf+%&+w+mm+wp=o (2.59)

If equation 2.54 is divided throughout by g, each term has the dimensions of length,
and, as already noted, may be regarded as a component of the total head of the fluid and
represents energy per unit weight:

dP W F
1 udu + s+%=0 (2.60)

For an incompressible fluid flowing in a horizontal pipe of constant cross-section, in the
absence of work being done by the fluid on the surroundings, the pressure change due to
frictional effects is given by:

dP 8F
L 4+Z =0
g g
3F
or: —dPf = — = pgdhy (2.61)
v

where dh is the loss in head corresponding to a change in pressure due to friction of dPy.

2.4.5. Constant flow per unit area

When the flow rate of the fluid per unit area G’ is constant, equation 2.37 can be written:

G
Y _g=_n_*4 (2.62)
A U1 (%) v
or: G =up) = up; = up (2.63)
Equation 2.58 is the momentum balance for horizontal turbulent flow:
udu+vdP =0 (equation 2.58)
d
or: u +dP=0
v
Because u/v is constant, on integration this gives:
uy (U — uy) 4 Py—P =0
v
2 2
or: Syp=24p (2.64)
” (%))

2.4.6. Separation

It may be noted that the energy and mass balance equations assume that the fluid is
continuous. This is so in the case of a liquid, provided that the pressure does not fall to
such a low value that boiling, or the evolution of dissolved gases, takes place. For water
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at normal temperatures the pressure should not be allowed to fall below the equivalent of
a head of 1.2 m of liquid. With gases, there is no lower limit to the pressures at which the
fluid remains continuous, but the various equations which are derived need modification
if the pressures are so low that the linear dimensions of the channels become comparable
with the mean free path of the molecules, that is when the so-called molecular flow sets in.

2.5. PRESSURE-VOLUME RELATIONSHIPS
2.5.1. Incompressible fluids

For incompressible fluids v is independent of pressure so that

£y
/ vdP = (P, — P\)v (2.65)
P
Therefore equation 2.55 becomes:
ui us
—+gu+Piv==+gu+Pv+W;+F (2.66)
2(11 2(12
W2
or: AZ_& +gAz4+vAP+ W, + F =0 (2.67)

In a frictionless system in which the fluid does not work on the surroundings and a;

and «; are taken as unity (turbulent flow), then:
u? u3
> +gu+Pv= ?+822+P2U (2.68)

Example 2.5

Water flows from a tap at a pressure of 250 kN/m? above atmospheric. What is the velocity of the jet if
frictional effects are neglected?

Solution
From equation 2.68:

Py —P
0.5(u% - uf) =glo —n)+ (-—-I—p—Z)-

Using suffix 1 to denote conditions in the pipe and suffix 2 to denote conditions in the jet and neglecting
the velocity of approach in the pipe:

250 x 10°

0.5(3 —0) =9.81 x 0+ 500

uy = 22.4 mfs

2.5.2. Compressible fluids

For a gas, the appropriate relation between specific volume and pressure must be used
although, for small changes in pressure or temperature, little error is introduced by using
a mean value of the specific volume.
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The term [, :1 2 vdP will now be evaluated for the ideal gas under various conditions. In
most cases the results so obtained may be applied to the non-ideal gas without introducing
an error greater than is involved in estimating the other factors concerned in the process.
The only common exception to this occurs in the flow of gases at very high pressures and
for the flow of steam, when it is necessary to employ one of the approximate equations
for the state of a non-ideal gas, in place of the equation for the ideal gas. Alternatively,
equation 2.56 may be used and work expressed in terms -of changes in enthalpy. For a
gas, the potential energy term is usually small compared with the other energy terms.

The relation between the pressure and the volume of an ideal gas depends on the rate
of transfer of heat to the surroundings and the degree of irreversibility of the process. The
following conditions will be considered.

(a) an isothermal process;

(b) an isentropic process;

(c) a reversible process which is neither isothermal nor adiabatic;
(d) an irreversible process which is not isothermal.

Isothermal process

For an isothermal process, Pv = RT /M = P v, where the subscript 1 denotes the initial
values and M is the molecular weight.

Py P> 1 P2
Thus / vdP = Plvl / —dP = Plvl In — (269)
P p P Py

Isentropic process
From equation 2.30, for an isentropic process:

Py’ = P v} = constant

Py Py s p o\ VY
/ vdP = / (_11;1_) dP
Py Py P

P
=P:/Vv1/ P~Y/7dp
P

1

1 1

= Pl/y — (P -\/v) _Pl—(l/)’)
CUT = F)
P =Dy
B )’z ph [(1_’%) ! @7
P\ YD/ s p N1y
-G () e
y

= - 1(1"2112 - Pyyy) .71
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Further, from equations 2.29 and 2.26, taking C, as constant:

Py Ha
/ vdP = [ dH = C,AT @.72)
Py H,

The above relations apply for an ideal gas to a reversible adiabatic process which, as
already shown, is isentropic.

Reversible process— neither isothermal nor adiabatic

In general the conditions under which a change in state of a gas takes place are neither
isothermal nor adiabatic and the relation between pressure and volume is approximately
of the form Pv* = constant for a reversible process, where k is a numerical quantity
whose value depends on the heat transfer between the gas and its surroundings. k usually
lies between 1 and y though it may, under certain circumstances, lie outside these limits;
it will have the same value for a reversible compression as for a reversible expansion
under similar conditions. Under these conditions therefore, equation 2.70 becomes:

P, k NG
— P 2 -1 2.73
/Pl vdP T F [(Pl) (2.73)

Irreversible process

For an irreversible process it may not be possible to express the relation between pressure
and volume as a continuous mathematical function though, by choosing a suitable value
for the constant k, an equation of the form Pv¥ = constant may be used over a limited
range of conditions. Equation 2.73 may then be used for the evaluation of |, :l 2 ydP. It may
be noted that, for an irreversible process, k will have different values for compression
and expansion under otherwise similar conditions. Thus, for the irreversible adiabatic
compression of a gas, k will be greater than y, and for the corresponding expansion
k will be less than y. This means that more energy has to be put into an irreversible
compression than will be received back when the gas expands to its original condition.

2.6. ROTATIONAL OR VORTEX MOTION IN A FLUID

In many chemical engineering applications a liquid undergoes rotational motion, such as
for example, in a centrifugal pump, in a stirred vessel, in the basket of a centrifuge or in a
cyclone-type separator. In the first instance, the effects of friction may be disregarded and
consideration will be given to how the forces acting on the liquid determine the pressure
distribution. If the liquid may be considered to be rotating about a vertical axis, it will then
be subjected to vertical forces due to gravity and centrifugal forces in a horizontal plane.
The total force on the liquid and the pressure distribution is then obtained by summing
the two components. The vertical pressure gradient attributed to the force of gravity is
given by:

oP

% (2.74)

< |0y
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The centrifugal force acts in a horizontal plane and the resulting pressure gradient may
be obtained by taking a force balance on a small element of liquid as shown in Figure 2.9.

JP
P+ o dr

dr

\
T
oP

P+ 12 —dr
ar

Figure 2.9. Forces acting on element of fluid in a vortex

At radius r, the pressure is P.

At radius r 4 dr, the pressure is P + (3P/dr)dr.

For small values of dr, the pressure on the “cut” faces may be taken as P + %(BP/ ar)dr.

Then, a force balance in the radial direction on an element of inner radius r, outer
radius r -+ dr, depth dz and subtending a small angle d9 at the centre gives:

aP 1 0

P+ —dr ) (r +dr)dddz — Prdodz — 2 P+—§dr) drdz sin 4

or 2 ar 2
—rdodrdzpre® =0

Simplifying and neglecting smali quantities of second order and putting sin(d6/2) equal
to d9/2 for a small angle:
oP 2 pu}

— = pw°r (2.75)
or
where u; is the tangential component of the liquid velocity at radius r.
Now: 8P 9P
dP = —dz+ —dr
0z or
Substituting for dP/3z and dP/dr from equations 2.74 and 2.75:
dP = (—pg)dz + (rpw?) dr (2.76)

Equation 2.76 may be integrated provided that the relation between w and r is specified.
Two important cases are considered:
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(a) The forced vortex in which w is constant and independent of r, and
(b) The free vortex in which the energy per unit mass of the liquid is constant.

2.6.1. The forced vortex

In a forced vortex the angular velocity of the liquid is maintained constant by mechanical
means, such as by an agitator rotating in the liquid or by rotation in the basket of a

centrifuge, and:
L w = constant Q.77
,

Thus, on integration of equation 2.76, for a constant value of w:

w2 r2

P=—pgz+ + constant

If the z-coordinate is z, at the point on the axis of rotation which coincides with the
free surface of the liquid (or the extension of the free surface), then the corresponding
pressure Py must be that of the atmosphere in contact with the liquid.

That is, when r =0, z = z, and P = Py, as shown in Figure 2.10.

Then, on evaluation of the constant:
2,2

P-py=2"

— 08z — 24) (2.78)

For any constant pressure P, equation 2.78 is the equation of a parabola, and therefore
all surfaces of constant pressure are paraboloids of revolution. The free surface of the
liquid is everywhere at the pressure Py of the surrounding atmosphere and therefore is
itself a paraboloid of revolution. Putting P = Py in equation 2.78 for the free surface

(r =ro,z=2z0): ,

1)
(20— 2a) = Z’g (2.79)
Differentiating equation 2.79:
d 2
S _ vt (2.80)
dr'o 8

Thus the greater the speed of rotation w, the steeper is the slope. If row? > g, dzo/dro —
oo and the surface is nearly vertical, and if row?® < g, dzo/dro — 0 and the surface is
almost horizontal.
The total energy i per unit mass of fluid is given by equation 2.44:
2
P
Y= %’ + P + gz (equation 2.44)

where u, denotes the tangential velocity of the liquid.
Substituting ¥, = wr and for P/p from equation 2.78:

2.2 2,2

w’r P
=2 (248 —ge-)) ez
2 p 2

P
s D @81
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Thus, the energy per unit mass increases with radius r and is independent of depth z. In
the absence of an agitator or mechanical means of rotation energy transfer will take place
to equalise v between all elements of fluid. Thus the forced vortex tends to decay into a
free vortex (where energy per unit mass is independent of radius).

™ Free surface

P=P,

\ r

L4
Z=0 "~~~
\\\ ///\Surface of
Sl -7 constant

pressure P

L

Figure 2.10. Forced vortex

Application of the forced vortex— the centrifuge

Some of the important cases of forced vortexes are:

(a) The movement of liquid within the impeller of a centrifugal pump when there is
no flow as, for example, when the outlet valve is closed.

(b) The rotation of liquid within the confines of a stirrer in an agitated tank.

(c) The rotation of liquid in the basket of a centrifuge. This application will now
be considered. The operation of centrifuges is considered in detail in Volume 2,
Chapter 9.

If liquid is contained in a cylindrical basket which is rotated about a vertical axis, the
surfaces of constant pressure, including the free surface are paraboloids of revolution.
Thus, in general, the pressure at the walls of the basket is not constant, but varies with
height. However, at normal operating speeds the centrifugal force will greatly exceed the
gravitational force, and the inner surface of the liquid will be approximately vertical and
the wall pressure will be nearly constant. At high operating speeds, where the gravitational
force is relatively small, the functioning of the centrifuge is independent of the orientation
of the axis of rotation. If mixtures of liquids or suspensions are to be separated in a
centrifuge it is necessary to calculate the pressure at the walls arising from the rotation
of the basket.

From equation 2.75:

—_—= pwzr (equation 2.75)
or

If it is assumed that there is no slip between the liquid and the basket, @ is constant and
a forced vortex is created.

For a basket of radius R and with the radius of the inner surface of the liquid equal to
ro, the pressure Py at the walls of the centrifuge is given by integration of equation 2.75
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for a given value of z:

2
Pr—Py= p“’T(RZ - (2.82)
that is the pressure difference across the liquid at any horizontal level is

2
i";—(RZ ~ ). (2.824)

Example 2.6

Water is contained in the basket of a centrifuge of 0.5 m internal diameter, rotating at 50 revolutions per second.
If the inner radius of the liquid is 0.15 m, what is the pressure at the walls of the basket?

Solution

Angular speed of rotation = (27 x 50) = 314 rad/s
The wall pressure is given by equation 2.82 as:

(1000 x 3142)
2

= 1.97 x 10° N/m?

(0.25% - 0.15%)

2.6.2. The free vortex

In a free vortex the energy per unit mass of fluid is constant, and thus a free vortex
is inherently stable. The variation of pressure with radius is obtained by differentiating
equation 2.44 with respect to radius at constant depth z to give:

a 1 9P
Uy =0

—_— - = 2.83
“ ar por ( )

2
But: -(?E =P (equation 2.75)

or r
ou, u,

or + r

and: u,r = constant = « (2.84)

Hence the angular momentum of the liquid is everywhere constant.

P 2
Thus: 8_ =P (2.85)
or r3
Substituting from equations 2.74 and 2.85 into equation 2.76 and integrating:
2
K
P— Py = (200 — 2)pg — ~ (2.86)

2r?

where P and z, are the values of P and z at r = o0.
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Putting P = P, = atmospheric pressure:

2

K
2= Zoo — e 2.87)
Substituting into equation 2.44 gives:
P
¥ = j” + 8200 (2.88)

¥ is constant by definition and equal to the value at r = oc where u = 0.
A free vortex (Figure 2.11) exists:

(a) outside the impeller of a centrifugal pump;

(b) outside the region of the agitator in a stirred tank;

(c) in a cyclone separator or hydrocyclone;

(d) in the flow of liquid into a drain, as in a sink or bath;
(e) in liquid flowing round a bend in a pipe.

In all of these cases the free vortex may be modified by the frictional effect exerted by
the external walls.

Free Surface

Figure 2.11. Free vortex
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2.9. NOMENCLATURE

Area perpendicular to direction of flow

Coefficient in van der Waals’ equation

Coefficient in van der Waals’ equation

Specific heat at constant pressure per unit mass

Specific heat at constant volume per unit mass

Energy per unit mass degraded because of
irreversibility of process

Mass rate of flow

Mass rate of flow per unit area

Acceleration due to gravity

Enthalpy per unit mass

Head lost due to friction

Numerical constant used as index for compression

Length of streamtube

Molecular weight

Number of molar units of fluid

Pressure

Pressure at wall of centrifuge basket

Reduced pressure

Net heat flow into system

Radius of centrifuge basket

Universal gas constant

Radius

Entropy per unit mass

Absolute temperature

Reduced temperature

Time

Internal energy per unit mass

Mean velocity

Tangential velocity

Velocity in streamtube

Volume of fluid

Reduced volume

Volume per unit mass of fluid

Net work per unit mass done by system on
surroundings

Shaft work per unit mass

Compressibility factor for non-ideal gas

Distance in vertical direction

Value of zg at rg =0

Constant in expression for kinetic energy of fluid

Ratio of specific heats C,/C,

Angle

Units in
SI system

m?

(KN/m?)(m?)2/(kmol)?

m3/kmol
Jkg K
Ikg K

Jkg

kg/s
kg/m2s
9.81 m/s?
J/kg

m

m
kg/kmol
kmol
N/m?
N/m?
Jikg

m

(8314)J/kmol K
m

J/kg K
K

s

Jkg
m/s
m/s
m/s
m>

m3/kg

Jkg

1188 ]3%
oQ

Dimensions in
M,N,L T8
LZ
MN-2L5T-2
N-I1L3
L*T%~!
L2T-29-!

L212
MT"!
ML-2T7-!
LT2
L2T-?

L

L

MN—I

N
ML-IT-2
ML-IT-2

L1~

L
MN-'L2T-%"!
L

L2T-29~!

8

T
L2T-2
LT-!
LT-!
LT!
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Density of fluid
Total mechanical energy per unit mass of fluid
Angular velocity of rotation

Value at critical condition
Value at free surface
Value at r = &

Units in
SI system
kg/m?
Jkg

rad/s
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Dimensions in
M,N, L, T,#6
ML-3
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CHAPTER 3

Flow of liquids in Pipes and Open
Channels

3.1. INTRODUCTION

In the processing industries it is often necessary to pump fluids over long distances,
and there may be a substantial drop in pressure in both the pipeline and in individual
units. Intermediate products are often pumped from one factory site to another, and raw
materials such as natural gas and petroleum products may be pumped very long distances
to domestic or industrial consumers. It is necessary, therefore, to consider the problems
concerned with calculating the power requirements for pumping, with designing the most
suitable flow system, with estimating the most economical sizes of pipes, with measuring
the rate of flow, and frequently with controlling this flow at a steady rate. Fluid flow may
take place at high pressures, when process streams are fed to a reactor, for instance, or at
low pressures when, for example, vapour leaves the top of a vacuum distillation column.

Fluids may be conveniently categorised in a number of different ways. First, the
response of the fluid to change of pressure needs to be considered. In general, liquids
may be regarded as incompressible in the sense that their densities are substantially inde-
pendent of the pressure to which they are subjected, and volume changes are insufficient
to affect their flow behaviour in most applications of practical interest. On the other
hand, gases are highly compressible, and their isothermal densities are approximately
directly proportional to the pressure-exactly so when their behaviour follows the ideal
gas law. Again, compressibility is of only minor importance if the pressure changes by
only a small proportion of the total pressure; it is then satisfactory to regard the gas as an
incompressible fluid whose properties may be taken as those at the mean pressure. When
pressure ratios differ markedly from unity, the effects of compressibility may give rise to
fundamental changes in flow behaviour.

All gases and most liquids of simple molecular structure exhibit what is termed Newto-
nian behaviour, and their viscosities are independent of the way in which they are flowing.
Temperature may, however, exert a strong influence on viscosity which, for highly viscous
liquids, will show a rapid decrease as the temperature is increased. Gases, show the
reverse tendency, however, with viscosity rising with increasing temperature, and also
with increase of pressure.

Liquids of complex structure, such a polymer solutions and melts, and pseudo-homoge-
neous suspensions of fine particles, will generally exhibit non-Newtonian behaviour, with
their apparent viscosities depending on the rate at which they are sheared, and the time
for which they have been subjected to shear. They may also exhibit significant elastic

58
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properties—similar to those normally associated with solids. The flow behaviour of such
fluids is therefore very much more complicated than that of Newtonian fluids.

The fluids discussed so far consist essentially of a single phase and the composition
does not vary from place to place within the flow field. Many of the fluids encountered in
processing operations consist of more than one phase, however, and the flow behaviour
depends on how the phases are distributed. Important cases which will be considered
include the flow of gas-liquid mixtures, where the flow pattern will be influenced by
the properties of the two phases, their relative proportions and the flow velocity, and
by the geometry of the flow passages. Liquids, both Newtonian and non-Newtonian,
are frequently used for the transport of particulate solids both in pipelines and in open
channels, and it is important to be able to design such systems effectively so that they
will operate both reliably and economically. Gases are also used for the transportation of
suspended solids in pipelines and, in this case, there is the added complication that the
transporting fluid is compressible and the flow velocity will increase along the length of
the pipeline.

The treatment of fluid flow in this Volume is structured as follows.

Chapter 3 Flow of Newtonian and non-Newtonian Liquids

Chapter 4 Flow of Compressible Fluids (Gases)

Chapter 5 Flow of Multiphase Systems (gas-liquid, liquid-solids, gas-solids)
Chapter 6 Flow Measurement

Chapter 7 Mixing of Liquids

Chapter 8 Pumping of Liquids and Gases

3.2. THE NATURE OF FLUID FLOW

When a fluid flows through a tube or over a surface, the pattern of the flow varies with the
velocity, the physical properties of the fluid, and the geometry of the surface. This problem
was first examined by REYNOLDS(" in 1883 using an apparatus shown in Figure 3.1. A
glass tube with a flared entrance was immersed in a glass tank fed with water and, by
means of the valve, the rate of flow from the tank through the glass tube was controlled.
By introducing a fine filament of coloured water from a small reservoir centrally into
the flared entrance of the glass tube, the nature of the flow was observed. At low rates
of flow the coloured filament remained at the axis of the tube indicating that the flow
was in the form of parallel streams which did not interact with each other. Such flow is
called laminar or streamline and is characterised by the absence of bulk movement at
right angles to the main stream direction, though a small amount of radial dispersion will

Supply of
coloured
water

Control
valve

Figure 3.1. Reynolds’ method of for tracing flow patterns
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occur as a result of diffusion. As the flowrate was increased, oscillations appeared in the
coloured filament which broke up into eddies causing dispersion across the tube section.
This type of flow, known as turbulent flow, is characterised by the rapid movement of
fluid as eddies in random directions across the tube. The general pattern is as shown in
Figure 3.2. These experiments clearly showed the nature of the transition from streamline
to turbulent flow. Below the critical velocity, oscillations in the flow were unstable and
any disturbance quickly disappeared. At higher velocities, however, the oscillations were
stable and increased in amplitude, causing a high degree of radial mixing. It was found,
however, that even when the main flow was turbulent there was a region near the wall
(the laminar sub-layer) in which streamline flow persisted.

— —Streamline flow

=Turbulent flow

Figure 3.2. Break-up of laminar thread in Reynolds’ experiment

In the present discussion only the problem of steady flow will be considered in which
the time average velocity in the main stream direction X is constant and equal to u,. In
laminar flow, the instantaneous velocity at any point then has a steady value of u, and
does not fluctuate. In turbulent flow the instantaneous velocity at a point will vary about
the mean value of u,. It is convenient to consider the components of the eddy velocities
in two directions —one along the main stream direction X and the other at right angles
to the stream flow Y. Since the net flow in the X-direction is steady, the instantaneous
velocity #; may be imagined as being made up of a steady velocity u, and a fluctuating
velocity ug,, so that:

Ui = Uy + UEy 3.1

Since the average value of the main stream velocity is u,, the average value of ug,,
is zero, although the fluctuating component may at any instant amount to a significant
proportion of the stream velocity. The fluctuating velocity in the Y-direction also varies
but, again, this must have an average value of zero since there is no net flow at right angles
to the stream flow. Turbulent flow is of great importance in fluids processing because it
causes rapid mixing of the fluid elements and is therefore responsible for promoting high
rates of heat and mass transfer.

3.2.1. Flow over a surface

When a fluid flows over a surface the elements in contact with the surface will be brought
to rest and the adjacent layers retarded by the viscous drag of the fluid. Thus the velocity in
the neighbourhood of the surface will change with distance at right angles to the stream
flow. It is important to realise that this change in velocity originates at the walls or
surface. If a fluid flowing with uniform velocity approaches a plane surface, as shown in
Figure 3.3, a velocity gradient is set up at right angles to the surface because of the viscous
forces acting within the fluid. The fluid in contact with the surface must be brought to rest



FLOW OF LIQUIDS IN PIPES AND OPEN CHANNELS 61

as otherwise there would be an infinite velocity gradient at the wall, and a corresponding
infinite stress. If u, is the velocity in the X-direction at distance y from the surface, u, will
increase from zero at the surface (y = 0) and will gradually approach the stream velocity
u; at some distance from the surface. Thus, if the values of u, are measured, the velocity
profile will be as shown in Figure 3.3. The velocity distributions are shown for three
different distances downstream, and it is seen that in each case there is a rapid change
in velocity near the wall and that the thickness of the layer in which the fluid is retarded
becomes greater with distance in the direction of flow. The line AB divides the stream into
two sections; in the lower part the velocity is increasing with distance from the surface,
whilst in the upper portion the velocity is approximately equal to u,. This line indicates the
limits of the zone of retarded fluid which was termed the boundary layer by PRANDTL.?
As shown in Chapter 11, the main stream velocity is approached asymptotically, and
therefore the boundary layer strictly has no precise outer limit. However, it is convenient
to define the boundary layer thickness such that the velocity at its outer edge equals 99
per cent of the stream velocity. Other definitions are given later. Thus, by making certain
assumptions concerning the velocity profile, it is shown in Chapter 11 that the boundary
layer thickness & at a distance x from the leading edge of a surface is dependent on the
Reynolds number.

Boundary
layer

Figure 3.3. Development of boundary layer

Near the leading edge of the surface, the flow in the boundary layer is laminar, and
then at a critical distance eddies start to form giving a turbulent boundary layer. In the
turbulent layer there is a thin region near the surface where the flow remains laminar,
and this is known as the laminar sub-layer. The change from laminar to turbulent flow in
the boundary layer occurs at different distances downstream depending on the roughness
of the surface and the physical properties of the fluid. This is discussed at length in
Chapter 11.

3.2.2. Flow in a pipe

When a fluid flowing at a uniform velocity enters a pipe, the layers of fluid adjacent to
the walls are slowed down as they are on a plane surface and a boundary layer forms
at the entrance. This builds up in thickness as the fluid passes into the pipe. At some
distance downstream from the entrance, the boundary layer thickness equals the pipe
radius, after which conditions remain constant and fully developed flow exists. If the flow
in the boundary layers is streamline where they meet, laminar flow exists in the pipe. If
the transition has already taken place before they meet, turbulent flow will persist in the



62 CHEMICAL ENGINEERING

region of fully developed flow. The region before the boundary layers join is known as
the entry length and this is discussed in greater detail in Chapter 11.

3.3. NEWTONIAN FLUIDS
3.3.1. Shearing characteristics of a Newtonian fluid

As a fluid is deformed because of flow and applied external forces, frictional effects are
exhibited by the motion of molecules relative to each other. The effects are encountered
in all fluids and are due to their viscosities. Considering a thin layer of fluid between two
parallel planes, distance y apart as shown in Figure 3.4 with the lower plane fixed and
a shearing force F applied to the other, since fluids deform continuously under shear,
the upper plane moves at a steady velocity u, relative to the fixed lower plane. When
conditions are steady, the force F is balanced by an internal force in the fluid due to its
viscosity and the shear force per unit area is proportional to the velocity gradient in the
fluid, or:

—=Ryx — x — 3.2)

F o WA MinG ] — Velosity ug
f
i Velocity profile
V2 /StationaryZ/ ;

Area of plate = A

Figure 3.4. Shear stress and velocity gradient in a fluid

R is the shear stress in the fluid and du,/dy is the velocity gradient or the rate of shear.
It may be noted that R corresponds to T used by many authors to denote shear stress;
similarly, shear rate may be denoted by either du,/dy or y. The proportionality sign may
be replaced by the introduction of the proportionality factor x4, which is the coefficient of
viscosity, to give:
du

Ry, = iug)—}’f (3.3)
A Newtonian fluid is one in which, provided that the temperature and pressure remain
constant, the shear rate increases linearly with shear stress over a wide range of shear
rates. As the shear stress tends to retard the fluid near the centre of the pipe and accelerate
the slow moving fluid towards the walls, at any radius within the pipe it is acting simulta-
neously in a negative direction on the fast moving fluid and in the positive direction on the
slow moving fluid. In strict terms equation 3.3 should be written with the incorporation
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of modulus signs to give:
IRy

H= {diee/dy|

The viscosity strongly influences the shear stresses and hence the pressure drop for the
flow. Viscosities for liquids are generally two orders of magnitude greater than for gases
at atmospheric pressure. For example, at 294 K, iyaer = 1.0 x 1073 N s/m? and pa; =
1.8 x 10~5 N s/m?. Thus for a given shear rate, the shear stresses are considerably greater
for liquids. It may be noted that with increase in temperature, the viscosity of a liquid
decreases and that of a gas increases. At high pressures, especially near the critical point,
the viscosity of a gas increases with increase in pressure.

34

3.3.2. Pressure drop for flow of Newtonian liquids through a pipe

Experimental work by REYNOLDS,!) NIKURADSE,® STANTON and PANNELL, MooDY,®
and others on the drop in pressure for flow through a pipe is most conveniently repre-
sented by plotting the head loss per unit length against the average velocity through the
pipe. In this way, the curve shown in Figure 3.5 is obtained in which i = hf /I is known
as the hydraulic gradient. At low velocities the plot is linear showing that i is directly
proportional to the velocity, but at higher velocities the pressure drop increases more
rapidly. If logarithmic axes are used, as in Figure 3.6, the results fall into three sections.
Over the region of low velocity the line PB has a slope of unity although beyond this
region, over section BC, there is instability with poorly defined data. At higher velocities,
the line CQ has a slope of about 1.8. If QC is produced, it cuts PB at the point A,
corresponding in Reynolds’ earlier experiments to the change from laminar to turbulent

(i=h/)

Hydraulic gradient

Velocity (u)

Figure 3.5. Hydraulic gradient versus velocity
Q
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Figure 3.6. Critical velocities
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flow and representing the critical velocity. Thus for streamline flow the pressure gradient
is directly proportional to the velocity, and for turbulent flow the pressure gradient is
proportional to the velocity raised to the power of approximately 1.8.

The velocity corresponding to point A is taken as the lower critical velocity and that
corresponding to B as the higher critical velocity. Experiments with pipes of various sizes
showed that the critical velocity was inversely proportional to the diameter, and that it was
less at higher temperatures where the viscosity was lower. This led Reynolds to develop
a criterion based on the velocity of the fluid, the diameter of the tube, and the viscosity
and density of the fluid. The dimensionless group dup/u is termed the Reynolds number
(Re) and this is of vital importance in the study of fluid flow. It has been found that for
values of Re less than about 2000 the flow is usually laminar and for values above 4000
the flow is usually turbulent. The precise velocity at which the transition occurs depends
on the geometry and on the pipe roughness. It is important to realise that there is no such
thing as stable transitional flow.

If a turbulent fluid passes into a pipe so that the Reynolds number there is less than
2000, the flow pattern will change and the fluid will become streamline at some distance
from the point of entry. On the other hand, if the fluid is initially streamline (Re < 2000),
the diameter of the pipe can be gradually increased so that the Reynolds number exceeds
2000 and yet streamline flow will persist in the absence of any disturbance. Unstable
streamline flow has been obtained in this manner at Reynolds numbers as high as 40,000.
The initiation of turbulence requires a small force at right angles to the flow to promote
the formation of eddies.

The property of the fluid which appears in the Reynolds number is the kinematic
viscosity p/p. The kinematic viscosity of water at 294 K and atmospheric pressure is
1078 m?/s compared with 15.5 x 1076 m?/s for air. Thus, gases typically have higher
kinematic viscosities than liquids at atmospheric pressure.

Shear stress in fluid

It is now convenient to relate the pressure drop due to fluid friction —AP; to the shear
stress Ry, at the walls of a pipe. If R, is the shear stress at a distance y from the wall of
the pipe, the corresponding value at the wall Ry is given by:

Ry=—u (d—uf> (from equation 3.4)
dy y=0

In this equation the negative sign is introduced in order to maintain a consistency of sign
convention when shear stress is related to momentum transfer as in Chapter 11. Since
(du,/dy),=0 must be positive (velocity increases towards the pipe centre), Ry is negative.
It is therefore more convenient to work in terms of R, the shear stress exerted by the fluid
on the surface (= —Rp) when calculating friction data.

If a fluid is flowing through a length / of pipe, and of radius r (diameter d) over, which
the change in pressure due to friction is APy, then a force balance on the fluid in the
direction of flow in the pipe gives:

—APsrt = 2arl(—Rg) = 27riR

or: R=—Ry= —APfE'Z 3.5)
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d
or: ~Ry=R= —AP,E’7 = -AP o (3.6)

If a force balance is taken over the central core of fluid of radius s:
—APss® = 2msl(—R,)
s
: ~R, = —AP;— 3.7
or y le ( )
Thus from equations 3.5 and 3.7:

-R, s y
—_—— = =-=]1-= 3.8
—Ry -—-Ry r r (3-8)
Thus the shear stress increases linearly from zero at the centre of the pipe to a maximum
at the walls, and: R

y Y

——=1-= 3.9

R r (3:9)
It may be noted that at the pipe walls, the shear stress acting on the walls R (positive)
is equal and opposite to the shear stress acting on the fluid in contact with the walls R
(negative)

Thus: R =-Rg (3.10)

Resistance to flow in pipes

STANTON and PANNELL® measured the drop in pressure due to friction for a number of
fluids flowing in pipes of various diameters and surface roughnesses. The results were
expressed by using the concept of a friction factor, defined as the dimensionless group
R/pu?, which is plotted as a function of the Reynolds number, where here R(= —Rp)
represents the resistance to flow per unit area of pipe surface. For a given pipe surface a
singie curve was found to express the results for all fluids, pipe diameters, and velocities.
As with the results of Reynolds the curve was in three parts, as shown in Figure 3.7.
At low values of Reynolds number (Re < 2000), R/ou® was independent of the surface
roughness, but at high values (Re > 2500), R/pu® varied with the surface roughness. At
very high Reynolds numbers the friction factor became independent of Re and a function
of the surface roughness only. Over the transition region of Re, from 2000 to 2500, R/ pu®
increased very rapidly, showing the great increase in friction as soon as turbulent motion
commenced. This general relationship is one of the most widely used in all problems
associated with fluid motion, heat transfer, and mass transfer. MOODY®) worked in terms
of a friction factor (here denoted by f’) equal to 8R/pu? and expressed this factor as a
function of the two dimensionless terms Re and e/d where e is a length representing the
magnitude of the surface roughness. This relationship may be obtained from