

a l a n c o o p e r

A Division of Pearson Education
800 East 96th Street, Indianapolis, Indiana 46240

The Inmates Are Running the Asylum

Copyright © 2004 by Sams Publishing

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, with-
out written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepa-
ration of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained
herein.

International Standard Book Number: 0-672-32614-0

Library of Congress Catalog Card Number: 2003116997

Printed in the United States of America

First Printing: March 2004

07 06 05 4 3

Trademarks

All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized.
Sams Publishing cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affect-
ing the validity of any trademark or service mark.

Goal-Directed design is a trademark of Cooper Interaction Design.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book.

Bulk Sales

Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Publisher
Paul Boger

Executive Editor
Candace Hall

Managing Editor
Charlotte Clapp

Project Editor
Dan Knott

Copy Editor
Eileen Cohen

Indexer
Ken Johnson

Proofreader
Juli Cook

Publishing Coordinator
Cindy Teeters

Interior Designer
Karen Ruggles

Cover Designer
Alan Clements

Page Layout
Eric S. Miller

Dedication

For Sue, Scott and Marty, with love.

Acknowledgments

I could not have written this book without the care and help of many wonderful
friends and colleagues. In particular, several people performed the demanding
and difficult job of reading and commenting on the manuscript, sometimes
more than once. Their comments made me answer tough questions, introduce
my topics, sum up my points, quench my flames, and corral my wild fits of
indignation. The book is far better because of the contributions of Kim
Goodwin, Lane Halley, Kelly Bowman, Scott McGregor, David West, Mike
Nelson, Mark Dziersk, Alan Karp, Terry Swack, Louie Weitzman, Wayne
Greenwood, Ryan Olshavsky, John Meyer, Lisa Saunders, Winnie Shows, Kevin
Wandryk, Glenn Halstead, Bryan O’Sullivan, Chuck Owen, Mike Swaine, and
Skip Walter. I really appreciate your time, care, and wisdom. In particular,
Jonathan Korman’s comments and counsel were invaluable in helping me to
distill my themes. I must also thank all the talented and hard-working people at
Cooper Interaction Design who did my job for me while I was busy writing.
Deserving of special thanks is Design Director Wayne Greenwood, who did a
great job under pressure keeping our design quality and morale high.

Getting the illustrations done turned out to be one of the more interesting pro-
duction challenges. Chad Kubo, the masterful creator of the images, did a
remarkable job of interpreting my vague ideas into crisp and memorable
images. They add a lot to the book. The illustrations could not have been done
at all without the tireless art direction work of Penny Bayless and David Hale.
Still others helped with the many production tasks. Thanks to Brit Katzen for
fact checking and research and Mike Henry for copy editing.

Writing a book is a business, and for making it a successful one I also owe sin-
cere thanks to my team of technology-savvy businesspersons, headed by my
agent Jim Levine, and including Glenn Halstead, Lynne Bowman, Kelly
Bowman, and Sue Cooper. At Pearson, Brad Jones supported this project
throughout, but the most credit goes to Chris Webb, whose tenacity, focus, and
hard work really made The Inmates happen.

I really appreciate the many people who provided moral support, anecdotes,
advice, and time. Thanks very much to Daniel Appleman, Todd Basche, Chris
Bauer, Jeff Bezos, Alice Blair, Michel Bourque, Po Bronson, Steve Calde, David
Carlick, Jeff Carlick, Carol Christie, Clay Collier, Kendall Cosby, Dan Crane,
Robert X. Cringely, Troy Daniels, Lisa Powers, Philip Englehardt, Karen Evensen,
Ridgely Evers, Royal Farros, Pat Fleck, David Fore, Ed Forman, Ed Fredkin, Jean-
Louis Gassee, Jim Gay, Russ Goldin, Vlad Gorelik, Marcia Gregory, Garrett
Gruener, Chuck Hartledge, Ted Harwood, Will Hearst, Tamra Heathershaw-
Hart, J.D. Hildebrand, Laurie Hills, Peter Hirshberg, Larry Keeley, Gary Kratkin,
Deborah Kurata, Tom Lafleur, Paul Laughton, Ellen Levy, Steven List, T.C.
Mangan, David Maister, Robert May, Don McKinney, Kathryn Meadows, Lisa
Mitchell, Geoffrey Moore, Bruce Mowery, Nate Myers, Ed Niehaus, Constance
Petersen, Keith Pleas, Robert Reimann, John Rivlin, Howard Rheingold, Heidi
Roizen, Neil Rubenking, Paul Saffo, Josh Seiden, Russ Siegelman, Donna Slote,
Linda Stone, Toni Walker, Kevin Weeks, Kevin Welch, Dan Willis, Heather
Winkle, Stephen Wildstrom, Terry Winograd, John Zicker, and Pierluigi
Zappacosta.

This “year long” project took 20 months, and my family showed great patience
with me. I owe the greatest debt of love and thanks to my wife, Sue Cooper, and
to my handsome young sons, Scott and Marty. I love you with all of my heart.

Table of Contents

Foreword..xvii

Part I Computer Obliteracy

Chapter 1 Riddles for the Information Age ..3

What Do You Get When You Cross a Computer

with an Airplane? ..3

What Do You Get When You Cross a Computer

with a Camera?..4

What Do You Get When You Cross a Computer

with an Alarm Clock?..6

What Do You Get When You Cross a Computer with a Car?8

What Do You Get When You Cross a Computer with a Bank?8

Computers Make It Easy to Get into Trouble9

Commercial Software Suffers, Too ..11

What Do You Get When You Cross a Computer

with a Warship? ..13

Techno-Rage..13

An Industry in Denial ..14

The Origins of This Book..15

Chapter 2 Cognitive Friction ..19

Behavior Unconnected to Physical Forces19

Design Is a Big Word ..21

The Relationship Between Programmers and Designers..............22

Most Software Is Designed by Accident..22

“Interaction” Versus “Interface” Design ..23

Why Software-Based Products Are Different..................................24

The Dancing Bear ..26

The Cost of Features ..27

Apologists and Survivors..29

How We React to Cognitive Friction..33

The Democratization of Consumer Power34

Blaming the User ..34

Software Apartheid ..36

Part II It Costs You Big Time

Chapter 3 Wasting Money..41

Deadline Management ..41

What Does “Done” Look Like? ..42

Parkinson’s Law ..43

The Product That Never Ships ..44

Shipping Late Doesn’t Hurt..45

Feature-List Bargaining..46

Programmers Are in Control ..47

Features Are Not Necessarily Good ..47

Iteration and the Myth of the Unpredictable Market48

The Hidden Costs of Bad Software..52

The Only Thing More Expensive Than Writing Software

Is Writing Bad Software..53

Opportunity Cost ..54

The Cost of Prototyping ..54

Chapter 4 The Dancing Bear ..59

If It Were a Problem, Wouldn’t It Have Been Solved

by Now?..59

Consumer Electronics Victim ..59

How Email Programs Fail ..61

How Scheduling Programs Fail..62

How Calendar Software Fails ..63

Mass Web Hysteria..64

What’s Wrong with Software? ..65

Software Forgets ..65

Software Is Lazy..65

Software Is Parsimonious with Information..............................66

Software Is Inflexible..66

Software Blames Users ..67

Software Won’t Take Responsibility ..67

Chapter 5 Customer Disloyalty ..71

Desirability ..71

A Comparison ..74

Time to Market..77

Table of Contents / vii

Part III Eating Soup with a Fork

Chapter 6 The Inmates Are Running the Asylum ..81

Driving from the Backseat ..81

Hatching a Catastrophe ..83

Computers Versus Humans ..87

Teaching Dogs to Be Cats ..88

Chapter 7 Homo Logicus ..93

The Jetway Test..93

The Psychology of Computer Programmers95

Programmers Trade Simplicity for Control96

Programmers Exchange Success for Understanding97

Programmers Focus on What Is Possible to the Exclusion

of What Is Probable ..99

Programmers Act Like Jocks ..101

Chapter 8 An Obsolete Culture ..105

The Culture of Programming ..105

Reusing Code ..106

The Common Culture ..109

Programming Culture at Microsoft ..110

Cultural Isolation ..115

Skin in the Game ..116

Scarcity Thinking ..119

The Process Is Dehumanizing, Not the Technology120

Part IV Interaction Design Is Good Business

Chapter 9 Designing for Pleasure ..123

Personas ..123

Design for Just One Person ..124

The Roll-Aboard Suitcase and Sticky Notes126

The Elastic User ..127

Be Specific ..128

Hypothetical..129

Precision, Not Accuracy ..129

A Realistic Look at Skill Levels ..131

Personas End Feature Debates ..132

Both Designers and Programmers Need Personas134

It’s a User Persona, Not a Buyer Persona135

The Cast of Characters ..135

Primary Personas ..137

viii / Table of Contents

Case Study: Sony Trans Com’s P@ssport138

The Conventional Solution ..139

Personas..142

Designing for Clevis ..144

Chapter 10 Designing for Power ..149

Goals Are the Reason Why We Perform Tasks149

Tasks Are Not Goals ..150

Programmers Do Task-Directed Design151

Goal-Directed Design ..151

Goal-Directed Television News ..152

Goal-Directed Classroom Management153

Personal and Practical Goals ..154

The Principle of Commensurate Effort155

Personal Goals ..156

Corporate Goals ..156

Practical Goals ..157

False Goals ..158

Computers Are Human, Too ..159

Designing for Politeness ..160

What Is Polite? ..161

What Makes Software Polite? ..162

Polite Software Is Interested in Me ..162

Polite Software Is Deferential to Me ..163

Polite Software Is Forthcoming ..164

Polite Software Has Common Sense ..164

Polite Software Anticipates My Needs......................................165

Polite Software Is Responsive..165

Polite Software Is Taciturn About Its Personal Problems165

Polite Software Is Well Informed ..166

Polite Software Is Perceptive ..166

Polite Software Is Self-Confident ..167

Polite Software Stays Focused ..167

Polite Software Is Fudgable ..168

Polite Software Gives Instant Gratification..............................170

Polite Software Is Trustworthy ..170

Case Study: Elemental Drumbeat ..171

The Investigation ..172

Who Serves Whom ..173

Table of Contents / ix

The Design..174

Pushback ..175

Other Issues ..176

Chapter 11 Designing for People ..179

Scenarios ..179

Daily-Use Scenarios..180

Necessary-Use Scenarios ..180

Edge-Case Scenario ..181

Inflecting the Interface ..181

Perpetual Intermediates ..182

“Pretend It’s Magic” ..185

Vocabulary ..185

Breaking Through with Language ..186

Reality Bats Last ..187

Case Study: Logitech ScanMan ..188

Malcolm, the Web-Warrior..189

Chad Marchetti, Boy ..189

Magnum, DPI ..190

Playing “Pretend It’s Magic” ..191

World-Class Cropping ..193

World-Class Image Resize ..194

World-Class Image Reorient ..195

World-Class Results ..197

Bridging Hardware and Software ..197

Less Is More ..198

Part V Getting Back into the Driver’s Seat

Chapter 12 Desperately Seeking Usability ..203

The Timing ..203

User Testing ..205

User Testing Before Programming..206

Fitting Usability Testing into the Process206

Multidisciplinary Teams ..207

Programmers Designing ..207

How Do You Know? ..208

Style Guides ..209

Conflict of Interest ..210

x / Table of Contents

Focus Groups ..210

Visual Design ..211

Industrial Design ..212

Cool New Technology ..213

Iteration ..213

Chapter 13 A Managed Process ..217

Who Really Has the Most Influence? ..217

The Customer-Driven Death Spiral..218

Conceptual Integrity Is a Core Competence219

A Faustian Bargain ..220

Taking a Longer View ..221

Taking Responsibility ..221

Taking Time ..222

Taking Control ..222

Finding Bedrock..222

Knowing Where to Cut ..222

Making Movies ..223

The Deal ..225

Document Design to Get It Built ..226

Design Affects the Code ..227

Design Documents Benefit Programmers228

Design Documents Benefit Marketing229

Design Documents Help Documenters and Tech Support....230

Design Documents Help Managers ..230

Design Documents Benefit the Whole Company231

Who Owns Product Quality?..231

Creating a Design-Friendly Process ..232

Where Interaction Designers Come From233

Building Design Teams ..234

Chapter 14 Power and Pleasure ..235

An Example of a Well-Run Project ..236

A Companywide Awareness of Design..238

Benefits of Change..239

Let Them Eat Cake..240

Changing the Process ..242

Index ..245

Table of Contents / xi

Introduction

Run for your lives—the computers are invading. Awesomely powerful comput-
ers tackling ever more important tasks with awkward, old-fashioned interfaces.
As these machines leak into every corner of our lives, they will annoy us, infuri-
ate us, and even kill a few of us. In turn, we will be tempted to kill our comput-
ers, but we won’t dare because we are already utterly, irreversibly dependent on
these hopeful monsters that make modern life possible.

Fortunately, we have another option. We need to fundamentally rethink how
humans and machines interact. And rethink the relationship in deep and novel
ways, for the fault for our burgeoning problems lies not with our machines, but
with us. Humans designed the interfaces we hate; humans continue to use dys-
functional machines even as the awkward interfaces strain their eyes, ache
their backs, and ruin their wrist tendons. We all are, as the title of this book sug-
gests, the inmates running the techno-asylum of our own creation.

This book is a guide to our escape. Or rather, Alan Cooper reveals that the door
to the asylum lies wide open. We are free to leave any time we want, but mad as
we have all become, we never noticed until now. The secret lies in redefining
the way we interact with our computers in a larger context.

Alan Cooper is not merely a fellow inmate; he is also a heretic whose ideas will
likely infuriate those who would want to keep us locked up. These are the engi-
neers who built the systems we hate and who still believe the way out of this
mess is to build better interfaces. But the very notion of interface is itself an
artifact of an age when computers were scarce and puny, and barely able to
interact with their human masters. Interface made sense when the entire inter-
action took place across the glass-thin no-man land of a computer screen. Now
it is an utterly dangerous notion in a world where computers are slipping into
every corner of our lives. Computers no longer interface with humans—they
interact, and the interaction will become steadily deeper, more subtle, and
more crucial to our collective sanity and ultimate survival.

Alan Cooper understands the shift from interface to interaction better than
anyone I know. His ideas come from years of experience in helping design
products that slip elegantly and unobtrusively into our lives. He has walked his
talk for years, and now he has finally found the time to turn his practice into a
lucid description of the challenge we face, and a methodology for escaping the
asylum we have so lovingly built. Read on and you will find your freedom.

Paul Saffo
Director
Institute for the Future

Foreword to the Original Edition

The Business-Case Book

I intended to write a very different book from this one: a how-to book about the
interaction-design process. Instead, in May 1997 on a family visit to Tuscany,
my friends Don McKinney and Dave Carlick talked me into this one. They con-
vinced me that I needed to address a business audience first.

They knew I wanted to write a how-to design book, and—although they were
encouraging—they expressed their doubts about the need for interaction
design, and they wanted me to write a book to convince them of its value. Their
argument was intriguing, but I was unsure that I could write the book they
wanted.

Late one night on the veranda of our shared ochre villa overlooking Firenze, I
was having an earnest conversation with Dave and Don. Several empty bottles
of Chianti stood on the table, along with the remains of some bread, cheese,
and olives. The stars shone brightly, the fireflies danced over the lawn, and the
lights on the ancient domes of the Tuscan capital twinkled in the distance.
Once again, Dave suggested that I postpone the idea of a how-to book on
design and instead “make the business case for interaction design.”

I protested vigorously, “But Dave, I don’t know how to write that book.” I ticked
off the reasons on my fingertips. “It means that I’d have to explain things like
how the current development process is messed up, how companies waste
money on inefficient software construction, how unsatisfied customers are
fickle, and how a better design process can solve that.”

Dave interrupted me to say simply, “They’re called chapters, Alan.”

His remark stopped me dead in my tracks. I realized that I was reciting an old
script, and that Dave was right. A book that made “the business case” was
necessary—and more timely—than a book that explained “how to.” And both
Dave and Don convinced me that I really could write such a book.

Business-Savvy Technologist/Technology-Savvy
Businessperson

The successful professional for the twenty-first century is either a business-
savvy technologist or a technology-savvy businessperson, and I am writing for
this person.

The technology-savvy businessperson knows that his success is dependent on
the quality of the information available to him and the sophistication with
which he uses it. The business-savvy technologist, on the other hand, is an
entrepreneurial engineer or scientist trained for technology, but possessing a
keen business sense and an awareness of the power of information. Both of
these new archetypes are coming to dominate contemporary business.

You can divide all businesspeople into two categories: those who will master
high technology and those who will soon be going out of business. No longer
can an executive delegate information processing to specialists. Business is
information processing. You differentiate yourself today with the quality of your
information-handling systems, not your manufacturing systems. If you manu-
facture anything, chances are it has a microchip in it. If you offer a service, odds
are that you offer it with computerized tools. Attempting to identify businesses
that depend on high technology is as futile as trying to identify businesses that
depend on the telephone. The high-tech revolution has invaded every business,
and digital information is the beating heart of your workday.

It’s been said, “To err is human; to really screw up, you need a computer.”
Inefficient mechanical systems can waste a couple of cents on every widget you
build, but you can lose your entire company to bad information processes. The
leverage that software-based products—and the engineers that build them—
have on your company is enormous.

Sadly, our digital tools are extremely hard to learn, use, and understand, and
they often cause us to fall short of our goals. This wastes money, time, and

opportunity. As a business-savvy technologist/technology-savvy businessper-
son, you produce software-based products or consume them—probably both.
Having better, easier-to-learn, easier-to-use high-tech products is in your per-
sonal and professional best interest. Better products don’t take longer to create,
nor do they cost more to build. The irony is that they don’t have to be difficult,
but are so only because our process for making them is old-fashioned and
needs fixing. Only long-standing traditions rooted in misconceptions keep us
from having better products today. This book will show you how you can
demand—and get—the better products that you deserve.

The point of this book is uncomplicated: We can create powerful and pleasura-
ble software-based products by the simple expedient of designing our computer-
based products before we build them. Contrary to the popular belief, we are not
already doing so. Designing interactive, software-based products is a specialty as
demanding as constructing them.

x

Having made my choice to write the business-case book rather than the how-to
design book, I beg forgiveness from any interaction designers reading this
book. In deference to the business audience, it has only the briefest treatment
of the actual nuts and bolts of interaction-design methodology (found primari-
ly in Part IV, “Interaction Design Is Good Business”). I included only enough to
show that such methodology exists, that it is applicable to any subject matter,
and that its benefits are readily apparent to anyone, regardless of their techni-
cal expertise.

Alan Cooper
Palo Alto, California
http://www.cooper.com

inmates@cooper.com

../../../../../www.cooper.com/default.htm

Foreword

I recently met with a senior executive at one of the world’s largest technology
companies. His official title is Vice President for Ease of Use, and he is responsi-
ble for a great number of software products, large and small. He is a brilliant and
accomplished fellow with roots in the formal Human-Computer Interaction
community. He is steeped in the ways of “usability”—of testing and observing
behind one-way mirrors—as is his company. But he came to talk about design,
not testing, and about personas, not users. He said that his company has com-
pletely ceased all postdevelopment usability testing and has instead committed
to predevelopment design efforts. He further asserted that all of his staffers
trained in the art of in vitro user observation were being retrained to do in situ
ethnographic research.

This executive and his company are emblematic of the sea of change that has
occurred in the industry in the five short years since The Inmates was first pub-
lished. The book has served as both a manifesto for a revolution and a handbook
for a discipline. Countless midlevel product managers have sent me email
describing why—after reading The Inmates—they purchased a copy of the book
for each of their departments’ senior executives. Meanwhile, software builders
and universities alike have used the three chapters in Part IV, “Interaction Design
Is Good Business,” as a rudimentary how-to manual for implementing Goal-
Directed® design using personas.

I am deeply grateful to all of the managers, programmers, executives, and usabil-
ity practitioners who have used the ideas in this book to help bring usability out
of the laboratory and into the field and changed its focus from testing to design.
Because of their efforts, the entire landscape of the usability profession has
changed. Today, most of the organizations I have contact with have one or more
interaction-design professionals on their payrolls, who have an ever-increasing
influence over the quality and behavior of the software products and services
being created. It’s gratifying to know that this book has contributed to their
success.

I recall giving a keynote presentation at a programmer’s conference in 1999,
shortly after this book was first published. That talk had the same title as the
book, and I opened by asserting that “inmates are running the asylum, and you
are the inmates.” You could hear a pin drop as the more than 2,500 engineers in
the audience grappled with that accusation. In the silence that engulfed the
auditorium, I went on to present the basic premise of this book, and an hour
later, that crowd of Homo logicus was so sufficiently convinced that they honored
me with a standing ovation. Surprisingly, most programmers have become
enthusiastic supporters of design and designers. They know that they need help
on the human side of software construction, and they are very happy to be final-
ly receiving some useful guidance. They recognize that any practice that
improves the quality and acceptance of their programs doesn’t threaten them.

In the past, executives assumed that interaction design was a programming
problem and delegated it to programmers, who diligently tried to solve the prob-
lem even though their skills, training, mindset, and work schedule prevented
them from succeeding. In the spirit of problem diagnosis, this book takes pains
to describe this failure, which is necessarily a story of the programmer’s failure.
Some of them took offense at my descriptions, imagining that I was maligning or
blaming programmers for bad software. They are certainly the agents by which
bad software is created, but they are by no means culpable. I do not blame pro-
grammers for hard-to-use software, and I’m very sorry to have given any pro-
grammer a contrary impression. With few exceptions, the programmers I know
are diligent and conscientious in their desire to please end users and are unceas-
ing in their efforts to improve their programs’ quality. Just like users, program-
mers are simply another victim of a flawed process that leaves them too little
time, too many conflicting orders, and utterly insufficient guidance. I am very
sorry to have given any programmers the impression that I fault them.

The intractability of the software-construction process—particularly the high
cost of programming and the low quality of interaction—is simply not a techni-
cal problem. It is the result of business practices imposed on a discipline—
software programming—for which they are obsolete. With pure hearts, the best
of intentions, and the blessing of upper management, programmers attempt to
fix this problem by engineering even harder. But more or better engineering can-
not solve these problems. Programmers sense the growing futility of their efforts,
and their frustration mounts.

In my recent travels I have noticed a growing malaise in the community of pro-
grammers. Sadly, it is the best and most experienced of them who are afflicted
the worst. They reflect cynicism and ennui about their efforts because they know
that their skills are being wasted. They may not know exactly how they are mis-
applied, but they cannot overlook the evidence. Many of the best programmers

xviii / The Inmates Are Running the Asylum

have actually stopped programming because they find the work frustrating. They
have retreated into training, evangelism, writing, and consulting because it does-
n’t feel so wasteful and counterproductive. This is a tragic and entirely avoidable
loss. (The open-source movement is arguably a haven for these frustrated
programmers—a place where they can write code according to their own stan-
dards and be judged solely by their peers, without the advice or intervention of
marketers or managers.)

Programmers are not given sufficient time, clear enough direction, or adequate
designs to enable them to succeed. These three things are the responsibility of
business executives, and they fail to deliver them for preventable reasons, not
because they are stupid or evil. They are simply not armed with adequate tools
for solving the complex and unique problems that confront them in the infor-
mation age. Now here I am sounding like I’m slamming people again, only this
time businesspeople are in my sights instead of programmers. Once again, to
solve the problem one must deconstruct it. I’m questing after solutions, not
scapegoats.

Management sage Peter Drucker can see the problem from his unique view-
point, having both observed and guided executives for the majority of his 92
years. In a recent interview in CIO magazine, he commented on the wide-eyed
optimism of executives in the 1950s and 1960s as digital computers first nudged
their way into their businesses. Those executives imagined that computers
“would have an enormous impact on how the business was run,” but Drucker
exclaims, “This isn’t what happened. Very few senior executives have asked the
question, ‘What information do I need to do my job?’” Although digital comput-
ers have given executives unprecedented quantities of data, few have asked
whether this data is appropriate for guiding the corporation. Operations have
changed dramatically, but management has not followed suit. Drucker accuses
our obsolete accounting systems, born in mercantilism, come of age in an era of
steam and iron, and doddering into senility in the dawning twenty-first century
information age. Drucker asserts, “The information you need the most is about
the outside world, and there is absolutely none.”

During the last few years of the twentieth century, as the dot-com bubble inflat-
ed, truckloads of ink were used to sell the idea that there was a “new economy”
on the Internet. The pundits said that selling things on the World Wide Web,
where stores were made of clicks instead of bricks, was a fundamentally different
way of doing business, and that the “old economy” was as good as dead. Of
course, almost all of those new-economy companies are dead and gone, the ven-
ture capitalists who backed them are in shock, and the pundits who pitched the
new economy have now recanted, claiming it was all a hopeless dream. The new,
new thinking says we must still be in the old, old economy.

Foreword / xix

Actually, I believe that we really are in a new economy. What’s more, I think that
the dot-coms never even participated in it. Instead, the dot-coms were the last
gasp of the old economy: the economy of manufacturing.

In the industrial age, before software, products were manufactured from solid
material—from atoms. The money it took to mine, smelt, purchase, transport,
heat, form, weld, paint, and transport dominated all other expenditures.
Accountants call these “variable costs” because that expense varies directly with
each product built. “Fixed costs,” as you might expect, don’t vary directly and
include things such as corporate administration and the initial cost of the factory.

The classic rules of business management are rooted in the manufacturing tra-
ditions of the industrial age. Unfortunately, they have yet to address the new real-
ities of the information age, in which products are no longer made from atoms
but are mostly software, made only from the arrangements of bits. And bits don’t
follow the same economic rules that atoms do.

Some fundamental truths hold for both the old and the new economies. The goal
of all business is to make a sustainable profit, and there is only one legal way to
do so: Sell some goods or services for more money than it costs you to make or
acquire them. It follows that there are two ways to increase your profitability:
Either reduce your costs or increase your revenues. In the old economy, reducing
your costs worked best. In the new economy, increasing your revenue works
much, much better.

Today’s most vital and expensive products are made largely or completely of soft-
ware. They consume no raw materials. They have no manufacturing cost. They
have no transportation cost. There is no welding, hammering, or painting. This
is the real difference between the industrial-age economy and the information-
age economy: In the information age, there is little or no variable cost, whereas
in the late industrial age, variable cost was the dominant factor. Indeed, the
absence of variable cost is what makes this a new economy.

Is the salary you pay the programmers on your staff a fixed cost or a variable cost?
One hour of programming is definitely not directly related to one product sale;
you can sell that same code over and over again. An investment in programming
can be leveraged across millions of salable items, just as an investment in a fac-
tory is leveraged across all the products built within it.

Writing software is not a variable cost, but it’s not really a fixed cost either.
Writing software is an ongoing, revenue-generating operation of the company,
and it is not the same as constructing a factory. The expensive craftsmen who
build the factory leave and go to work on some other job after the building is
erected. Programmers are far more expensive than carpenters or ironworkers,
and they never go away because their work is apparently never completed. Some

xx / The Inmates Are Running the Asylum

might suggest that programming is research and development, and there are
similarities. However, R & D is the thinking and experimenting done to establish
the theoretical viability of a product and is not performed the same way that
products are built in a production environment. Fittingly, traditional accounting
separates R & D expenditures from the daily operations that generate revenue.
Writing software doesn’t work well in any of those old business-accounting cate-
gories.

Now, you might discount this little terminology mismatch as a minor quibble for
bean-counters with green eyeshades to debate over beers, but it actually has a
huge effect on how software is funded, managed, and—most significantly—
regarded by senior executives.

Programmers create software, and business executives create revenue streams
and profit centers. Programmers measure their success by the quality of the
product, and business executives measure their success by the profitability of
their investments. They measure this profitability by applying the language of
business mathematics, which recognizes fixed costs, variable costs, corporate
overhead, and research and development, but, unfortunately, it has no model
appropriate for software or programming. Accounting is the basic language of
business, and these categories are so fundamental to all business measurement
and communication that contemporary executives have completely internalized
them. They see programming as simply another corporate expense to be fitted
into an already existing category. In practice, most executives simply treat pro-
gramming as a manufacturing effort—a variable cost. (For tax purposes, most
software companies account for programming as R & D, but it is regarded as a
variable cost in every other respect.) This is the worst possible choice because it
hopelessly prejudices their business decision making.

The key advantage of the industrial age was that products could be mass-pro-
duced, which means they could be made available to the masses at affordable
prices. The advantage to customers was the availability of functions that were
previously unavailable or only expensively hand built for the wealthy.
Companies competed on the basis of their sales prices, which were directly relat-
ed to their variable costs: the cost of manufacturing and shipping. In the infor-
mation age, it is taken for granted that products are available at affordable prices
to everyone. After all, software can be downloaded and distributed to any num-
ber of customers for essentially no cost and with little or no human effort.

Remember, businesses can grow profits by increasing revenue or reducing costs.
That is, a business can increase its fixed-cost investment, improving its product’s
quality, which increases its pricing strength, or it can reduce its variable cost,
which means decreasing the cost of manufacturing. In the old manufacturing
economy of atoms, reducing costs was simple and effective, and it was the

Foreword / xxi

preferred tactic. When today’s executives regard programming the same as man-
ufacturing, they imagine that reducing the cost of programming is similarly sim-
ple and effective. Unfortunately, those rules don’t apply anymore.

Because software has relatively insignificant variable costs, there is little business
advantage to be had in reducing them. Programmers’ salaries appear to be a vari-
able cost from an accountant’s point of view, but they are much more like a long-
term investment—a fixed cost. Reducing the cost of programming is not the
same as reducing the cost of manufacturing. It’s more like giving cheap tools to
your workers than it is like giving the workers smaller paychecks. The companies
that are shipping programming jobs overseas in order to pay reduced salaries are
missing the point entirely.

What’s more, the only available economic upside comes from making your prod-
uct or service more desirable by improving its quality, and you can’t do that by
reducing the money you spend designing or programming it. In fact, you need to
invest more time and money on the research, thinking, planning, and designing
phase to make your results better suited to your customers’ needs.

Of course, this requires a mode of thinking that is quite unfamiliar to twenty-first
century businesspeople. Instead of reducing what they spend to build each object,
they need to increase what they spend to build all objects. This is the essence of
the real new economy and precisely what Peter Drucker was talking about.

Modern pharmaceutical companies inventing high-tech drugs share some simi-
larities to the new software economy. The actual manufacturing cost of a single
pill is miniscule, but the development costs can run to billions of dollars over a
decade or more. The upside of shipping a new miracle drug can be boundless,
but there is only a catastrophic downside in shipping that drug before it has been
developed completely. Pharmaceuticals know that reducing development costs
is not a viable business strategy.

Like inventing medicine, building software isn’t the same as building a factory. The
factory is a physical asset that a company owns, and the factory workers are large-
ly interchangeable. The intangible but extremely complicated patterns of thought
that is software has value only when accompanied by the programmers who wrote
it. No company can treat programmers the same as a factory. Programmers
demand continuous attention and support well above that of any factory.

Architecture—the human design part of programming, in which users are studied,
use scenarios are defined, interaction is designed, form is determined, and behav-
ior is described—is the part of the software-construction process that is most fre-
quently dispensed with as a cost-saving measure. It is certainly possible to do too
much design, but there is no advantage in reducing it. Every dollar or hour spent
on architecture will yield tenfold savings during programming. Additionally, when

xxii / The Inmates Are Running the Asylum

you invest a sufficient amount of competent design, your product becomes very
desirable, which means that it will make more money for you. Its desirability will
establish your brand, increase your ability to raise prices, generate customer loyal-
ty, and give your product a longer, stronger lifespan. Although there’s no advantage
in cost reduction, there is big advantage in quality enhancement. Ironically, the
best way to increase profitability in the information age is to spend more.

Unfortunately, most executives have an almost irresistible desire to reduce the
time and money invested in programming. They see, incorrectly, the obsolete
advantage in reducing costs. What they don’t see is that reduction in investment
in programming has strong negative effects on a product’s long-term quality,
desirability, and therefore profitability. Of course, simply spending more money
doesn’t guarantee improvement, and it can often make things worse when addi-
tional money is unaccompanied by wisdom, analysis, and guidance. My first
mentor, Dan Joaquin, used to say that the old maxim “You get what you pay for”
should properly be inverted to “You don’t get what you don’t pay for.” Proceeding
without proper planning risks spending way too much. The trick is to spend
the correct amount, and that demands significant expertise in software-
construction management. It also demands process tools that provide managers
with the insight and information they need to make the correct decisions.
Providing those tools is this book’s goal.

The dot-com boom was populated with companies whose entire business model
consisted of the reduction of variable costs. Although many dot-coms claimed
various online advantages, their Web sites were sufficiently ponderous and
unhelpful to be far less satisfying than simply driving to the mall. Dot-com
founders swooned with ecstasy (as did the press) because they could establish a
retail enterprise for a remarkably lower variable cost. Their complete and spec-
tacular failure demonstrated beyond doubt that the economic rules of the infor-
mation age are different from those of the industrial age.

In the old economy, lower variable costs meant wider distribution and lower
retail costs. Those twin advantages directly benefited the consumer, and they are
the foundation for the economic success of the industrial revolution. In the new
economy, business success depends on adding something new and better for the
consumer. The actual quality of every part of the transaction, from browsing to
comparison shopping to comprehensiveness, must be noticeably better for the
end user. Wading through 11 screens only to have to telephone the company
anyway is far less satisfying than making the purchase conventionally. Entering
your name, address, and credit card information three or four times, only to find
that the site can’t sell you everything you need and a trip to the atom-based store
is necessary anyway, has the unfortunate effect of making the entire online sale
completely unnecessary and undesirable. Today, simply lowering costs for the
vendor doesn’t guarantee success.

Foreword / xxiii

When Pets.com sold dog food over the Internet, it didn’t offer better dog food,
and it didn’t offer a customer experience better than you could get at the local
brick-and-mortar pet store; it didn’t offer any better information, intelligence, or
confidence. All it offered was cheaper shipping, stocking, and selling—variable
costs all—for Pets.com. It was a classic industrial-age-economy tactic of cost
reduction that ignored the fundamental principles of the new economy. Far from
being the first breath of a new economy, it was the last gasp of the old.

I am absolutely convinced that you can sell anything on the Internet profitably
and successfully. The trick is that your online store must offer a measurably
greater degree of shopper satisfaction than any competing retail medium, and
price is only one small component of satisfaction. There is only one way to
accomplish this: You must architect your system to deliver the highest possible
end-user satisfaction. Treating any aspect of software design and construction as
if it were a manufacturing process courts failure. The design and programming
of software is simply not a viable target for conventional cost-reduction meth-
ods. It’s certainly possible to spend too much time and money on building soft-
ware, but the danger of spending too little is far greater.

Such danger is probably not shocking or unfamiliar to you, but it is nearly incon-
ceivable to most senior business executives who are responsible for running big
companies. Those execs are still using accounting models popular in the age of
steam, yet every aspect of their companies is fully dependent on software for
operations, decision making, communications, and finance. The terms and con-
cepts those executives use are simply not cognizant of the unique nature of
doing business in an era when the tools and products of commerce are intangi-
ble arrangements of bits instead of railroad carloads of iron. The sock puppets
were cool, though.

Even though corporations are hiring interaction designers and applying goal-
directed methods, the quality of our software products hasn’t actually improved
that much. What’s more, the high cost of programming and the basic intractabil-
ity of the software-construction process remain ever-present. Why?

Change is impossible until senior business executives realize that software prob-
lems are not technical issues, but are significant business issues. Our problems will
remain unsolved until we change our process and our organization.

Not only do companies follow obsolete financial models, but they also follow an
inappropriate organizational model. This model is copied directly from acade-
mia, where the act of creating software is entangled with the planning and
engineering of that software. Such is the nature of research. Tragically, and
apparently without notice, this paradigm has been carried over intact into the
world of business, where it does not belong.

xxiv / The Inmates Are Running the Asylum

All modern manufacturing disciplines have roots in preindustry except software,
whose unique medium appeared well after industrialization was a fait accompli.
Only programming comes directly from academia, where there are no time lim-
its on research, student power is dirt cheap, profit is against the rules, and a fail-
ing program can be considered a very successful experiment. It’s not a
coincidence that Microsoft, IBM, Oracle, and other leading software companies
reside in “campuses.” Universities never have to make money, hit deadlines, or
build desirable, useful products.

All nonsoftware businesses begin with research and end with mass production
and distribution of their products or services. They plan carefully in between,
cognizant of the dangers to both bank account and reputation if they attempt
premature production of an ill-conceived product. They know that time,
thought, and money invested in planning will pay big dividends in the smooth-
ness and speed of manufacturing and the popularity and profitability of their
end products.

In all other construction disciplines, engineers plan a construction strategy that
craftsmen execute. Engineers don’t build bridges; ironworkers do. Only in software
is the engineer tasked with actually building the product. Only in software is the
“ironworker” tasked with determining how the product will be constructed. Only
in software are these two tasks performed concurrently instead of sequentially. But
companies that build software seem totally unaware of the anomaly. Engineering
and construction are so crossbred as to be inseparable and apparently indistin-
guishable by practitioners or executives. Planning of all sorts is either omitted or
delayed until far too late. Profoundly complex technical engineering problems are
habitually left unsolved until construction of code intended for public release is
well underway, when it is too economically embarrassing to back up.

Architecture must be integrated into early-stage engineering planning. In fact, it
should drive early-stage engineering, but because such engineering is typically
deferred until construction has begun and is corrupted by intermingling with
production coding, the architectural design lacks an entry point into the con-
struction process. Despite the fact that companies are hiring interaction design-
ers and retraining their usability testers to create personas, their work has little
effect on either the cost of construction or the quality of the finished product.

The solution lies in the hands of corporate presidents and chief executive offi-
cers. When these execs delegate the solution to their chief technology officers or
vice presidents of engineering they miss the point. Those worthy officers are
technicians, and the problem is not a technical one. As Drucker pointed out, the
accounting tools CEOs depend on simply do not represent the true state of their
organizations. It’s like saying that because the speedometer is accurate the car is
headed in the right direction. In a business world dominated by digital technol-
ogy, that is simply no longer true.

Foreword / xxv

One of the biggest problems of applying incorrect accounting and organization-
al methods to software construction is that executives don’t realize how much of
their programming dollar is wasted. An accurate system would show that at least
one half of every dollar is misspent and that it takes another two or three dollars
to fix the problems caused by the initial bad investment. In any other business,
such statistics would be cause for revolution, but in software we remain in a state
of blissful ignorance.

Over the past 13 years my company, Cooper, has consulted with hundreds of
companies. My talented designers have provided most of them with blueprints
for products that would help them enormously, yet only a handful have been
able to take full advantage of them. Most of them treat interaction design and
software architecture as advice, and their programmers and engineers always
have the last word. None of those companies’ CEOs has any clue as to what is
really going on in the engineers’ cubicles, so they squeeze the schedule without
reason. The programmers are always working in an environment of scarcity, pri-
marily lacking time to program well, but also lacking the time to determine what
should be programmed at all. They are forced to protect themselves by rejecting
advice and prevaricating to their managers.

I believe that there are two kinds of executives: those who are engineers, and those
who are terrified of engineers. The former propagate the familiar problems
because their viewpoint is hopelessly blinkered by a conflict of interest. The latter
propagate them because they cannot speak the language of programmers. I don’t
mean Java or C#. I mean that business people and programmers lack common
tools and common goals. Homo sapiens delegate human problems to Homo logi-
cus and are unaware that the solution could be so much better if they applied—at
the executive level—appropriate financial and organizational models instead.

There is a colossal opportunity for companies to break this logjam and organize
around customer satisfaction instead of around software, around personas instead
of around technology, around profit instead of around programmers. I eagerly
await the enlightened executive who seizes this chance and forever alters the way
software is built by providing the industry with a bold and successful example.

xxvi / The Inmates Are Running the Asylum

Alan Cooper
Menlo Park, California
October 2003
http://www.cooper.com

inmates@cooper.com

../../../../../www.cooper.com/default.htm

Part I
Computer Obliteracy

Chapter 1 Riddles for the Information Age

Chapter 2 Cognitive Friction

This page intentionally left blank

1
Riddles for the Information Age

What Do You Get When You Cross a Computer with an
Airplane?

In December 1995, American Airlines Flight 965 departed from Miami on a regu-
larly scheduled trip to Cali, Columbia. On the landing approach, the pilot of the
757 needed to select the next radio-navigation fix, named “ROZO.” He entered an
“R” into his navigation computer. The computer returned a list of nearby naviga-
tion fixes starting with “R,” and the pilot selected the first of these, whose latitude
and longitude appeared to be correct. Unfortunately, instead of “ROZO,” the pilot
selected “ROMEO,” 132 miles to the northeast. The jet was southbound, descend-
ing into a valley that runs north–south, and any lateral deviation was dangerous.
Following indications on the flight computer, the pilot began an easterly turn and
slammed into a granite peak at 10,000 feet. One hundred and fifty-two passengers
and all eight crewmembers aboard perished. Four passengers survived with seri-
ous injuries. The National Transportation Safety Board investigated, and—as
usual—declared the problem human error. The navigational aid the pilot was fol-
lowing was valid, but not for the landing procedure at Cali. In the literal definition
of the phrase, this was indeed human error, because the pilot selected the wrong
fix. However, in the larger picture, it wasn’t the pilot’s fault at all.

The front panel of the airplane’s navigation computer showed the currently
selected navigation fix and a course-deviation indicator. When the plane is on
course, the needle is centered, but the needle gives no indication whatsoever
about the correctness of the selected radio beacon. The gauge looks pretty much
the same just before landing as it does just before crashing. The computer told

the pilot he was tracking precisely to the beacon he had selected. Unfortunately,
it neglected to tell him the beacon he selected was a fatal choice.

x

Communications can be precise and exacting while still being tragically wrong.
This happens all too frequently when we communicate with computers, and
computers are invading every aspect of our modern lives. From the planes we fly
to just about every consumer product and service, computers are ubiquitous,
and so is their characteristically poor way of communicating and behaving.

There is a widely told joke in the computer industry that goes like this: A man is
flying in a small airplane and is lost in the clouds. He descends until he spots an
office building and yells to a man in an open window, “Where am I?” The man
replies, “You are in an airplane about 100 feet above the ground.” The pilot
immediately turns to the proper course, spots the airport, and lands. His aston-
ished passenger asks how the pilot figured out which way to go. The pilot replies,
“The answer the man gave me was completely correct and factual, yet it was no
help whatsoever, so I knew immediately he was a software engineer who worked
for Microsoft, and I know where Microsoft’s building is in relation to the airport.”

When seen in the light of the tragedy of Flight 965, the humor of the joke is
macabre, yet professionals in the digital world tell it gleefully and frequently
because it highlights a fundamental truth about computers: They may tell us
facts, but they don’t inform us. They may guide us with precision, but they don’t
guide us where we want to go. The flight computer on Flight 965 could easily
have told the pilots that “ROMEO” was not an appropriate fix for their approach
to Cali. Even a simple hint that it was “unusual” or “unfamiliar” could have saved
the airplane. Instead, it seemed as though the computer was utterly uncon-
cerned with the actual flight and its passengers. It cared only about its own inter-
nal computations.

Hard-to-use computers affect us all, sometimes fatally. Software-based products
are not inherently hard to use; they are that way because we use the wrong
process for creating them. In this book, I intend to reveal this bad process by
showing its effect and describing its cause. I’ll then show how to change the
process so that our software-based products become friendly, powerful, and
desirable. First, I’ll use this chapter to show how serious this problem really is.

What Do You Get When You Cross a Computer with a Camera?

Here is a riddle for the information age: What do you get when you cross a comput-
er with a camera? Answer: A computer! Thirty years ago, my first camera, a 35mm
Pentax Model H, had a small battery in it that powered the light meter. I merely
swapped in a new one every couple of years, as I would a wristwatch battery.

4 / Part I: Computer Obliteracy

Fifteen years ago, my first electronic camera, a 35mm Canon T70, used two AA
batteries to power its rather simple exposure computer and its automatic film
drive. It had a simple on/off switch so that the batteries wouldn’t wear down
needlessly.

Chapter 1: Riddles for the Information Age / 5

Five years ago, my filmless Logitech, a first-generation digital camera, had a sim-
ilar on/off switch, but it also had the smarts of a rudimentary computer inside it.
If I forgot to turn it off, it automatically shut down after one minute of inactivity.
Neat.

One year ago, my second-generation digital camera, a Panasonic PalmCam, had
an even smarter computer chip inside it. It was so smart that its on/off switch had
evolved into an “Off/Rec/Play” switch. It had modes: I had to put it into Rec mode
to take pictures and Play mode to view them on its small video display.

My newest camera, a Nikon COOLPIX 900, is a third-generation digital camera
and the smartest yet. In fact, it has a full-blown computer that displays a
Windows-like hourglass while it “boots up.” Like some mutant fish with extra
heads, its on/off switch has four settings: Off/ARec/MRec/Play. “ARec” means
“automatic record” and “MRec” means “manual record.” As far as I can tell, there
is no difference. There is no “On” setting, and none of my friends can figure out
how to turn it on without a lengthy explanation.

The new camera is very power-hungry, and its engineers thoughtfully provided it
with a sophisticated computer program that manages the consumption of bat-
tery power. A typical scenario goes like this: I turn the evil Off/etc. switch to
“MRec,” wait about seven long seconds for the camera to boot up, then point it at
my subject. I aim the camera and zoom in to properly frame the image. Just as I’m
about to press the shutter button, the camera suddenly realizes that simultane-
ously running the zoom, charging the flash, and energizing the display has
caused it to run out of power. In self-defense, it suspends its capability to actual-
ly take pictures. But I don’t know that because I’m looking through the viewfind-
er, waving my arms, saying “smile,” and pressing the shutter button. The
computer detects the button press, but it simply cannot obey. In a misguided
effort to help out, the power-management program instantly takes over and
makes an executive decision: Shed load. It shuts down the power-greedy LCD
video display. I look at the camera quizzically, wondering why it didn’t take the

picture, shrug my shoulders, and let my arm holding the camera drop to my side.
But as soon as the LCD is turned off, more battery power is available for other
systems. The power-management program senses this increase and realizes that
it now has enough electricity to take pictures. It returns control to the camera
program, which is waiting patiently to process the command it received when I
pressed the shutter button, and it takes a nicely auto-focused, well-exposed,
high-resolution digital picture of my kneecap.

That old mechanical Pentax had manual focusing, manual exposure, and manu-
al shutter speed, yet it was far less frustrating to use than the fully computerized,
modern Nikon COOLPIX 900, which has automatic focusing, exposure, and shut-
ter speed. The camera may still take pictures, but it behaves like a computer
instead of a camera.

x

A frog that’s slipped into a pot of cold water never recognizes the deadly rising
temperature as the stove heats the pot. Instead, the heat anesthetizes the frog’s
senses. I was unaware, like the frog, of my cameras’ slow march from easy to hard
to use as they slowly became computerized. We are all experiencing this same,
slow, anesthetizing encroachment of computer behavior in our everyday lives.

What Do You Get When You Cross a Computer with an Alarm
Clock?

A computer! I just purchased an expensive new clock-radio for my bedroom, a JVC
FS-2000. It has a very sophisticated computer brain and offers high fidelity, digital
sound, and lots of features. It wakes me up at a preset time by playing a CD, and it
has the delicacy and intelligence to slowly fade up the volume when it begins to
play at 6:00 a.m. This feature is really pleasant and quite unique, and it compen-
sates for the fact that I want to hurl the infuriating machine out the window.

It’s very hard to tell when the alarm is armed, so it occasionally fails to wake me
up on a Monday and rousts me out of bed early on a Saturday. Sure, it has an indi-
cator to show the alarm is set, but that doesn’t mean it’s useful. The clock has a
sophisticated alphanumeric LCD that displays all of its many functions. The
presence of a small clock symbol in the upper-left corner of the LCD indicates
the alarm is armed, but in a dimly lit bedroom the clock symbol cannot be seen.
The LCD has a built-in backlight that makes the clock symbol visible, but the
backlight only comes on when the CD or radio is explicitly turned on. There’s a
gotcha, however: The alarm simply won’t ever sound while the CD is explicitly
left on, regardless of the setting of the alarm. It is this paradoxical operation that
frequently catches me unawares.

6 / Part I: Computer Obliteracy

It is simple to disarm the alarm: Simply press the “Alarm” button once, and the
clock symbol disappears from the display. However, to arm it, I must press the
“Alarm” button exactly five times. The first time I press it, the display shows me
the time of the alarm. On press two, it shows the time when it will turn the sound
off. On press three, it shows me whether it will play the radio or the CD. On press
four, it shows me the preset volume. On press five, it returns to the normal view,
but with the alarm now armed. But with just one additional press, it disarms the
alarm. Sleepy, in a dark bedroom, I find it difficult to perform this little digital
ballet correctly.

Being a nerdy gizmologist, I continue to fiddle with the device in the hope that I
will master it. My wife, however, long ago gave up on the diabolical machine. She
loves the look of the sleek, modern design and the fidelity of the sound it pro-
duces, but it failed to pass the alarm-clock test weeks ago because it is simply too
hard to make work. The alarm clock may still wake me up, but it behaves like a
computer.

By contrast, my old $11 noncomputerized alarm clock woke me up with a sud-
den, unholy buzzing. When it was armed, a single red light glowed. When it was
not armed, the red light was dark. I didn’t like this old alarm clock for many rea-
sons, but at least I could tell when it was going to wake me up.

x

Because it is far cheaper for manufacturers to use computers to control the inter-
nal functioning of devices than it is to use older, mechanical methods, it is eco-
nomically inevitable that computers will insinuate themselves into every
product and service in our lives. This means all of our products will soon behave
the same as most obnoxious computers, unless we try something different.

x

This phenomenon is not restricted to consumer products. Just about every com-
puterized device or service has more features and options than its manual coun-
terpart. Yet, in practice, we often wield the manual devices with more flexibility,
subtlety, and awareness than we do the modern versions driven by silicon-chip
technology.

Chapter 1: Riddles for the Information Age / 7

High-tech companies—in an effort to improve their products—are merely
adding complicating and unwanted features to them. Because the broken
process cannot solve the problem of bad products, but can only add new func-
tions, that is what vendors do. Later in this book I’ll show how a better develop-
ment process makes users happier without the extra work of adding unwanted
features.

What Do You Get When You Cross a Computer with a Car?

A computer! Porsche’s beautiful high-tech sports car, the Boxster, has seven com-
puters in it to help manage its complex systems. One of them is dedicated to
managing the engine. It has special procedures built into it to deal with abnor-
mal situations. Unfortunately, these sometimes backfire. In some early models, if
the fuel level in the gas tank got very low—only a gallon or so remaining—the
centrifugal force of a sharp turn could cause the fuel to collect in the side of the
tank, allowing air to enter the fuel lines. The computer sensed this as a dramatic
change in the incoming fuel mixture and interpreted it as a catastrophic failure
of the injection system. To prevent damage, the computer would shut down the
ignition and stop the car. Also to prevent damage, the computer wouldn’t let the
driver restart the engine until the car had been towed to a shop and serviced.

When owners of early Boxsters first discovered this problem, the only solution
Porsche could devise was to tell them to open the engine compartment and dis-
connect the battery for at least five minutes, giving the computer time to forget
all knowledge of the hiccup. The sports car may still speed down those two-lane
blacktop roads, but now, in those tight turns, it behaves like a computer.

x

In a laudable effort to protect Boxster owners, the programmers turned them
into humiliated victims. Every performance-car aficionado knows that the
Porsche company is dedicated to lavishing respect and privilege on its clientele.
That something like this slipped through shows that the software inside the car
is not coming from the same Porsche that makes the rest of the car. It comes from
a company within a company: the programmers, not the legendary German
automobile engineers. Somehow, the introduction of a new technology surprised
an older, well-established company into letting some of its core values slip away.
Acceptable levels of quality for software engineers are far lower than those for
more traditional engineering disciplines.

What Do You Get When You Cross a Computer with a Bank?

A computer! Whenever I withdraw cash from an automatic teller machine (ATM),
I encounter the same sullen and difficult behavior so universal with computers.
If I make the slightest mistake, it rejects the entire transaction and kicks me out

8 / Part I: Computer Obliteracy

of the process. I have to pull my card out, reinsert it, reenter my PIN code, and
then reassert my request. Typically, it wasn’t my mistake, either, but the ATM
computer finesses me into a misstep. It always asks me whether I want to with-
draw money from my checking, savings, or money-market account, even though
I have only a checking account. Subsequently, I always forget which type it is,
and the question confuses me. About once a month I inadvertently select “sav-
ings,” and the infernal machine summarily boots me out of the entire transaction
to start over from the beginning. To reject “savings,” the machine has to know
that I don’t have a savings account, yet it still offers it to me as a choice. The only
difference between me selecting “savings” and the pilot of Flight 965 selecting
“ROMEO” is the magnitude of the penalty.

The ATM also restricts me to a $200 “daily withdrawal limit.” If I go through all of
the steps—identifying myself, choosing the account, selecting the amount—and
then ask for $220, the computer unceremoniously rejects the entire transaction,
informing me rudely that I have exceeded my daily withdrawal limit. It doesn’t
tell me what that amount is, inform me how much money is in my account, or
give me the opportunity to key in a new, lower amount. Instead, it spits out my
card and leaves me to try the whole process again from scratch, no wiser than I
was a moment ago, as the line of people growing behind me shifts, shuffles, and
sighs. The ATM is correct and factual, but it is no help whatsoever.

The ATM has rules that must be followed, and I am quite willing to follow them,
but it is unreasonably computer-like to fail to inform me of them, give me con-
tradictory indications, and then summarily punish me for innocently transgress-
ing them. This behavior—so typical of computers—is not intrinsic to them.
Actually, nothing is intrinsic to computers: They merely act on behalf of their
software, the program. And programs are as malleable as human speech. A per-
son can speak rudely or politely, helpfully or sullenly. It is as simple for a com-
puter to behave with respect and courtesy as it is for a human to speak that way.
All it takes is for someone to describe how. Unfortunately, programmers aren’t
very good at teaching that to computers.

Computers Make It Easy to Get into Trouble

Computers that sit on a desk simply behave in the same, irritating way comput-
ers always have, and they don’t have to be crossed with anything. My friend Jane
used to work in public relations as an account coordinator. She ran Windows 95
on her desktop PC, using Microsoft Word to write memos and contracts. The core
of Windows 95 is the hierarchical file system. All of Jane’s documents were stored
in little folders, which were stored in other little folders. Jane didn’t understand
this or see the advantage to storing things that way. Actually, Jane didn’t give it a
lot of thought but merely took the path of least resistance.

Chapter 1: Riddles for the Information Age / 9

Jane had just finished drafting the new PR contract for a Silicon Valley startup
company. She selected Close from the File menu. Instead of simply doing as she
directed and closing the document, Word popped up a dialog box. It was, of
course, the all-too-familiar Do You Want to Save the Changes? confirmation box.
She responded—as always—by pressing the Enter key. She responded this way so
consistently and often that she no longer even looked at the dialog box.

10 / Part I: Computer Obliteracy

The first dialog box was followed immediately by another one, the equally famil-
iar Save As box. It presented Jane with lots of confusing buttons, icons, and text
fields. The only one that Jane understood and used was the text-entry field for File
Name. She typed in a likely name and then clicked the Save button. The program
then saved the PR contract in the My Documents folder. Jane was so used to this
unnecessary drill that she gave it no thought.

At lunchtime, while Jane was out of her office, Sunil, the company’s computer
tech, installed a new version of VirusKiller 2.1 on her computer. While working on
Jane’s PC, Sunil used Word to view a VirusKiller Readme file. After viewing the file,
Sunil closed it and returned Jane’s computer to exactly the way it was before
lunch. At least, he thought he did.

After lunch, Jane needed to reopen the PR contract and get a printout to show to
her boss. Jane selected Open from the File menu, and the Open dialog box
appeared. Jane expected the Open dialog box to show her, in neat alphabetic
order, all of her contracts and documents. Instead, it showed her a bunch of file-
names that she had never seen before and didn’t recognize. One of them was
named Readme.doc.

Of course, when Sunil used Word to view the Readme file, he instructed Jane’s
copy of Word to look in an obscure folder six levels deep and inadvertently
steered it away from Jane’s normal setting of My Documents.

Jane was now quite bewildered. Her first, unavoidable thought was that all of her
hard work had somehow been erased, and she got very worried. She called over
René, her friend and co-worker, but René was just as confused as Jane was.
Finally, in a state approaching panic, Jane telephoned Sunil to ask for his help.
Sunil was not at his desk, and it wasn’t until Monday morning that he had a
chance to stop by and set things right. Jane, René, Sunil—and the PR company—
each lost a half-day’s productivity.

Although computer operating systems need hierarchical file systems, the people
who use them don’t. It’s not surprising that computer programmers like to see
the underlying hierarchical file systems, but it is equally unremarkable that nor-
mal users like Jane don’t. Unremarkable to everyone, that is, except the pro-
grammers who create the software that we all use. They create the behavior and
information presentation that they like best, which is very different from the
behavior and information presentation that is best for Jane. Jane’s frustration and
inefficiency is blamed on Jane, and not on the programmers who torpedoed her.

At least Jane has a job. Many people are considered insufficiently “computer lit-
erate” and are thus not employable. As more and more jobs demand interaction
with computers, the rift between the employable and the unemployable
becomes wider and more difficult to cross. Politicians may demand jobs for the
underprivileged, but if the underprivileged don’t know how to use computers, no
company can afford to let them put their untrained hands on the company’s
computers. There is too much training involved, and too much exposure to the
destruction of data and the bollixing up of priceless databases.

The obnoxious behavior and obscure interaction that software-based products
exhibit is institutionalizing what I call “software apartheid”: Otherwise-normal
people are forbidden from entering the job market and participating in society
because they cannot use computers effectively. In our enlightened society, social
activists are working hard to break down race and class barriers while technolo-
gists are hard at work inadvertently erecting new, bigger ones. By purposefully
designing our software-based products to be more human and forgiving, we can
automatically make them more inclusive, more class- and color-blind.

Commercial Software Suffers, Too

Not only are computers taking over the cockpits of jet airliners, but they are also
taking over the passenger cabin, behaving in that same obstinate, perverse way
that is so easy to recognize and so hard to use. Modern jet planes have in-flight

Chapter 1: Riddles for the Information Age / 11

entertainment (IFE) systems that deliver movies and music to passengers. IFE
systems are merely computers connected with LANs, just like the computers in
your office. Advanced IFE systems are generally installed only on larger airplanes
flying transoceanic routes.

One airline’s IFE system was so frustrating for the flight attendants to use that
many of them were bidding to fly shorter, local routes to avoid having to learn
and use the difficult systems. This is remarkable, considering that the time-
honored airline route-bidding process is based on seniority, and that those same
long-distance routes have always been considered the most desirable plums
because of their lengthy layovers in exotic locales such as Singapore or Paris. For
flight attendants to bid for unglamorous, unromantic yo-yo flights from Denver
to Dallas or from Los Angeles to San Francisco just to avoid the IFE system indi-
cated a serious morale problem. Any airline that inflicted bad tools on its most
prized employees—the ones who spent the most time with the customer—was
making a foolish decision and profligately discarding money, customer loyalty,
and staff loyalty.

The computer IFE system that another large airline created was even worse. It
linked movie delivery with the cash-collection function. In a sealed jet airplane
flying at 37,000 feet, cash-collection procedures had typically been quite laissez-
faire; after all, nobody was going to sneak out the back door. Flight attendants
delivered goods and services when it was convenient and collected later when
their hands weren’t full and other passengers weren’t waiting for something. This
kept them from running unnecessarily up and down the narrow aisles. Sure,
there were occasional errors, but never more than a few dollars were involved,
and the system was quite human and forgiving; everyone was happy and the
work was not oppressive.

With cash collection connected to content delivery by computer, the flight atten-
dant had to first get the cash from the passenger, then walk all the way to the
head end of the cabin, where the attendant’s console was, enter an attendant
password, then perform a cash-register-like transaction. Only when that trans-
action was completed could the passenger actually view a movie or listen to
music. This inane product design forced the flight attendants to walk up and
down those narrow aisles hundreds of extra times during a typical trip. Out of
sheer frustration, the flight attendants would trip the circuit breaker on the IFE
system at the beginning of each long flight, shortly after departure. They would
then blandly announce to the passengers that, sorry, the system was broken and
there would be no movie on this flight.

The airline had spent millions of dollars constructing a system so obnoxious that
its users deliberately turned it off to avoid interacting with it. The thousands of
bored passengers were merely innocent victims. And this happened on long,

12 / Part I: Computer Obliteracy

overseas trips typically packed with much-sought-after frequent flyers. I cannot
put a dollar figure on the expense this caused the airline, but I can say with con-
viction that it was catastrophically expensive.

The software inside the IFE systems worked with flawless precision but was a
resounding failure because it misbehaved with its human keepers. How could a
company fail to predict this sad result? How could it fail to see the connection?
The goal of this book is to answer these questions and to show you how to avoid
such high-tech debacles.

What Do You Get When You Cross a Computer with a Warship?

In September 1997, while conducting fleet maneuvers in the Atlantic, the USS
Yorktown, one of the Navy’s new Aegis guided-missile cruisers, stopped dead in
the water. A Navy technician, while calibrating an on-board fuel valve, entered a
zero into one of the shipboard management computers, a Pentium Pro running
Windows NT. The program attempted to divide another number by that zero—a
mathematically undefined operation—which resulted in a complete crash of the
entire shipboard control system. Without the computers, the engine halted and
the ship sat wallowing in the swells for two hours and 45 minutes until it could
be towed into port. Good thing it wasn’t in a war zone.

Chapter 1: Riddles for the Information Age / 13

What do you get when you cross a computer with a warship? Admiral Nimitz is
rolling in his grave! Despite this setback, the Navy is committed to computerizing
all of its ships because of the manpower cost savings. To deflect criticism of this
plan, it blamed the “incident” on human error. Because the software-creation
process is out of control, the high-tech industry must bring its process to heel, or
else it will continue to put the blame on ordinary users while ever-bigger
machines sit dead in the water.

Techno-Rage

An article in the Wall Street Journal once described an anonymous video clip cir-
culated widely by email that showed a “[m]ustachioed Everyman in a short-
sleeved shirt hunched over a computer terminal, looking puzzled. Suddenly, he
strikes the side of his monitor in frustration. As a curious co-worker peers over his
cubicle, the man slams the keyboard into the monitor, knocking it to the floor.
Rising from his chair, he goes after the fallen monitor with a final, ferocious kick.”

The article went on to say that reaction to the clip had been “intense” and that it
had apparently tapped into “a powerful undercurrent of techno-rage.”

14 / Part I: Computer Obliteracy

It’s ironic that one needs to be moderately computer savvy to even send or view this
video clip. The man in the video may well be an actor, but he touches a widespread,
sympathetic chord in our business world. The frustration that difficult and
unpleasant software-based products are bringing to our lives is rising rapidly.

Joke emails circulate on private email lists about “Computer Tourette’s.” This is a
play on the disorder known as Tourette’s syndrome, some of whose sufferers
engage in uncontrollable bouts of swearing. The joke is that you can walk down
the halls of most modern office buildings and hear otherwise-normal people sit-
ting in front of their monitors, jaws clenched, swearing repeatedly in a rictus of
tense fury. Who knows what triggered such an outburst: a misplaced file, an inac-
cessible image, or a frustrating interaction. Or maybe the program just blandly
erased the user’s only copy of a 500-page manuscript because he responded with
a Yes to a confirmation dialog box, assuming that it had asked if he wanted to “save
your changes” when it actually asked him if he wanted to “discard your work.”

An Industry in Denial

We are a world awash in high-tech tools. Computers dominate the workplace and
our homes, and vehicles are filling up with silicon-powered gadgets. All of these
computerized devices are wildly sophisticated and powerful, but every one of
them is dauntingly difficult and confusing to use.

The high-tech industry is in denial of a simple fact that every person with a cell
phone or a word processor can clearly see: Our computerized tools are too hard to
use. The technologists who create software and high-tech gadgets are satisfied
with their efforts. The software engineers1 who create them have tried as hard as
they can to make them easy to use, and they have made some minor progress.
They believe that their products are as easy to use as it is technically possible to
make them. As engineers, their belief is in technology, and they have faith that

1 Throughout the computer industry, the term “software engineer” is used synonymously with the
term “programmer”; throughout this book, I have done the same.

only some new technology, such as voice recognition or artificial intelligence,
will improve the user’s experience.

Ironically, the thing that will likely make the least improvement in the ease of use
of software-based products is new technology. There is little difference techni-
cally between a complicated, confusing program and a simple, fun, and power-
ful product. The problem is one of culture, training, and attitude of the people
who make them, more than it is one of chips and programming languages. We
are deficient in our development process, not in our development tools.

The high-tech industry has inadvertently put programmers and engineers in
charge, so their hard-to-use engineering culture dominates. Despite appear-
ances, business executives are simply not the ones in control of the high-tech
industry. It is the engineers who are running the show. In our rush to accept the
many benefits of the silicon chip, we have abdicated our responsibilities. We
have let the inmates run the asylum.

When the inmates run the asylum, it is hard for them to see clearly the nature of
the problems that bedevil them. When you look in the mirror, it is all too easy to
single out your best features and overlook the warts. When the creators of soft-
ware-based products examine their handiwork, they overlook how bad it is.
Instead, they see its awesome power and flexibility. They see how rich the prod-
uct is in features and functions. They ignore how excruciatingly difficult it is to
use, how many mind-numbing hours it takes to learn, or how it diminishes and
degrades the people who must use it in their everyday lives.

The Origins of This Book

I have been inventing and developing software-based products for 25 years. This
problem of hard-to-use software has puzzled and confounded me for years.
Finally, in 1992, I ceased all programming to devote 100% of my time to helping
other development firms make their products easier to use. And a wonderful
thing happened! I immediately discovered that after I freed myself from the
demands of programming, I saw for the first time how powerful and compelling
those demands were. Programming is such a difficult and absorbing task that it
dominates all other considerations, including the concerns of the user. I could
only see this after I had extricated myself from its grip.

Upon making this discovery, I began to see what influences drove software-based
products to be so bad from the user’s point of view. In 1995 I wrote a book2 about
what I had learned, and it has had a significant effect on the way some software
is designed today.

Chapter 1: Riddles for the Information Age / 15

2 About Face: The Essentials of User Interface Design, IDG Books, Foster City CA, 1995, ISBN
1-56884-322-4, http://www.cooper.com. In March 2003, my coauthor Robert Reimann and I
released a revised second edition of the book. It was completely rewritten, including updated
examples and seven brand new chapters. It is called About Face 2.0: The Essentials of
Interaction Design, John Wiley & Sons, ISBN 0-76452-641-3.

../../../../../www.cooper.com/default.htm

To be a good programmer, one must be sympathetic to the nature and needs of
the computer. But the nature and needs of the computer are utterly alien from
the nature and needs of the human being who will eventually use it. The creation
of software is so intellectually demanding, so all-consuming, that programmers
must completely immerse themselves in an equally alien thought process. In the
programmer’s mind, the demands of the programming process not only super-
sede any demands from the outside world of users, but the very languages of the
two worlds are at odds with each other.

The process of programming subverts the process of making easy-to-use prod-
ucts for the simple reason that the goals of the programmer and the goals of the
user are dramatically different. The programmer wants the construction process
to be smooth and easy. The user wants the interaction with the program to be
smooth and easy. These two objectives almost never result in the same program.
In the computer industry today, the programmers are given the responsibility for
creating interaction that makes the user happy, but in the unrelenting grip of this
conflict of interest, they simply cannot do so.

In software, typically nothing is visible until it is done, meaning that any second-
guessing by nonprogrammers is too late to be effective. Desktop-computer soft-
ware is infamously hard to use because it is purely the product of programmers;
nobody comes between them and the user. Objects such as phones and cameras
have always had a hefty mechanical component that forces them into the open
for review. But as we’ve established, when you cross a computer with just about
any product, the behavior of the computer dominates completely.

The key to solving the problem is interaction design before programming. We need
a new class of professional interaction designers who design the way software
behaves. Today, programmers consciously design the code inside programs but
only inadvertently design the interaction with humans. They design what a pro-
gram does but not how it behaves, communicates, or informs. Conversely, inter-
action designers focus directly on the way users see and interact with
software-based products. This craft of interaction design is new and unfamiliar
to programmers, so—when they admit it at all—they let it in only after their pro-
gramming is already completed. At that point, it is too late.

The people who manage the creation of software-based products are typically
either hostage to programmers because they are insufficiently technical, or they
are all too sympathetic to programmers because they are programmers them-
selves. The people who use software-based products are simply unaware that
those products can be as pleasurable to use and as powerful as any other well-
designed tool.

16 / Part I: Computer Obliteracy

Programmers aren’t evil. They work hard to make their software easy to use.
Unfortunately, their frame of reference is themselves, so they only make it easy
to use for other software engineers, not for normal human beings

The costs of badly designed software are incalculable. The cost of Jane’s and
Sunil’s time, the cost of offended air travelers, and the cost of the lives of passen-
gers on Flight 965 cannot easily be quantified. The greatest cost, though, is the
opportunity we are squandering. While we let our products frustrate, cost, con-
fuse, irritate, and kill us, we are not taking advantage of the real promise of soft-
ware-based products: to be the most human, powerful, and pleasurable
creations ever imagined. Because software truly is malleable far beyond any
other medium, it has the potential to go well beyond the expectations of even the
wildest dreamer. All it requires is the judicious partnering of interaction design
with programming.

Chapter 1: Riddles for the Information Age / 17

This page intentionally left blank

2
Cognitive Friction

It’s one thing to see that a problem exists, but it’s quite another to devise a solu-
tion. One key part of problem solving is the language we use. Over the years, I’ve
developed many useful terms and mental models. They have proven vital to
framing the problem presented by hard-to-use software-based products. In this
chapter I will introduce those terms and ideas, showing how they can help bring
the benefits of interaction design to our troubled process.

Behavior Unconnected to Physical Forces

Having just left the industrial age behind, we are standing at the threshold of the
information age with an obsolete set of tools. In the industrial age, engineers
were able to solve each new problem placed before them. Working in steel and
concrete, they made bridges, cars, skyscrapers, and moon rockets that worked
well and satisfied their human users. As we tiptoe into the information age, we
are working increasingly in software, and we have once again brought our best
engineers to the task. But unlike in the past, things haven’t turned out so well.
The computer boxes are fast and powerful, and the programs are generally reli-
able, but we have encountered a previously unseen dimension of frustrated, dis-
satisfied, unhappy, and unproductive users.

Today’s engineers are no less capable than ever, so I must deduce from this that,
for the first time, they have encountered a problem qualitatively different from
any they confronted in the industrial age. Otherwise, their old tools would work
as well as they ever did. For lack of a better term, I have labeled this new problem
substance cognitive friction. It is the resistance encountered by a human intellect
when it engages with a complex system of rules that change as the problem
changes. Software interaction is very high in cognitive friction. Interaction with

physical devices, however complex, tends to be low in cognitive friction because
mechanical devices tend to stay in a narrow range of states comparable to their
inputs.

Playing a violin is extremely difficult but low in cognitive friction because—
although a violinist manipulates it in very complex and sophisticated ways—the
violin never enters a “meta” state in which various inputs make it sound like a
tuba or a bell. The violin’s behavior is always predictable—though complex—and
obeys physical laws, even while being quite difficult to control. In contrast, a
microwave oven has a lot of cognitive friction, because the 10 number keys on
the control panel can be put into one of two contexts, or modes. In one mode
they control the intensity of the radiation, and in the other they control the dura-
tion. This dramatic change, along with the lack of sensory feedback about the
oven’s changed state, results in high cognitive friction.

The QWERTY keys on a typewriter, for example, don’t have metafunctions. When
you press the E key, the letter E appears on the page. When you press the key
sequence ERASE ALL, the words ERASE ALL appear on the paper. On a computer—
depending on the context—you may also get a metafunction. A higher-level oper-
ation occurs, and the computer actually erases things. The behavior of the machine
no longer has a one-to-one correspondence to your manipulation.

Cognitive friction—like friction in the physical world—is not necessarily a bad
thing in small quantities, but as it builds up, its negative effects grow exponen-
tially. Of course, friction is a physical force and can be detected and measured,
whereas cognitive friction is a forensic tool and cannot be taken literally. Don’t
forget, though, that such things as love, ambition, courage, fear, and truth—
though real—cannot be detected and measured. They can’t be addressed by
engineering methods, either.

The skilled engineers who manufacture microwave ovens typically consult with
human-factors experts to design the buttons so they are easy to see and press.
But the human-factors experts are merely adapting the buttons to the user’s eyes
and fingers, not to their minds. Consequently, microwave ovens don’t have much
“friction” but have a lot of cognitive friction. It is easy to open and close the door
and physically press the buttons but, compared to the simplicity of the task, set-
ting the controls to achieve your goals is very difficult. Getting the microwave to
perform the work you intend for it is quite difficult, though our general familiar-
ity with it makes us forget how hard it really is. How many of us have cooked
something for one second or one hour instead of for one minute? How many of
us have cooked something at a strength of 5 for 10 minutes instead of a strength
of 10 for 5 minutes?

On the computer screen, everything is filled with cognitive friction. Even an
interface as simple as the World Wide Web presents the user with a more intense

20 / Part I: Computer Obliteracy

mental engagement than any physical machine. This happens because the
meaning of each blue hyperlink is a doorway to some other place on the Web. All
you can do is click on a hyperlink, but what the link points to can change inde-
pendently of the pointer without any outward indication. Its sole function is pure
metafunction. The very “hyper”ness is what gives it cognitive friction.

Design Is a Big Word

The theme of this book is that interactive products need to be designed by inter-
action designers instead of by software engineers. This assertion often generates
instant antagonism from programmers who have been doing design all along.
Furthermore, these programmers fear that by taking design away from them, I’m
taking away the best and most creative aspect of their work, leaving them con-
demned to coding drudgery unleavened with fun. This is absolutely untrue.
Their worry stems only from the imprecise nature of the term design.

Chapter 2: Cognitive Friction / 21

The entire software-creation process includes design, all the way from selecting
the programming language to choosing the color of the delivery truck. No aspect
of this lengthy and involved process is more design-filled than the programming
itself. Programmers make design decisions at every step of their process. The pro-
grammer must decide how each procedure will call each other procedure, how
information and status will be shared, stored, and changed, and how the code’s
validity will be guaranteed. All of these decisions—and the millions more like
them—are design decisions, and the success of each one depends on the pro-
grammer’s ability to bring her experience and judgment to bear.

I draw a simple dividing line through this sea of design. I put the part of the design
that will directly affect the ultimate end user of the product on one side. On the

other side is all other design. In this book, when I speak of “interaction design,” I
am referring only to the former. I call the remaining design that doesn’t affect the
end user program design.

It is not possible to base the dividing line on purely technical criteria. It cannot
be expressed in terms that are familiar to engineers because the differentiating
factor is human, not technical, and engineering rules aren’t applicable to people.
For example, the interaction designer typically is agnostic about issues such as
which programming language is to be used. However, occasionally the choice of
language affects response time, which most assuredly is an interaction issue, and
the designer will have something to say.

Almost all interaction design refers to the selection of behavior, function, and
information and their presentation to users. End-product interaction design is
the only part of the design that I want to take away from programmers and put
into the hands of dedicated interaction designers.

The Relationship Between Programmers and Designers

In a technical world dominated by engineers, internal program design has held
sway, and interaction design for the end user’s benefit has been incorporated
only on an after-the-fact, spare-time basis. One of the goals of this book is to
reveal the benefits of inverting this priority and making interaction design the
first consideration in the creation of software-based products.

Most Software Is Designed by Accident

Mud huts and subterranean burrows are designed—albeit without much con-
scious thought—by the demands of rock and thatch. Similarly, all software is
designed by the arcane demands of programming languages and databases.
Tradition is the strongest influence in the design of all of these media. The
biggest difference is that the builder-designer of the hut will also be its primary
occupant, whereas programmers typically don’t use the software they design.

What really happens in most programming shops is that there is no one on staff
who has a clue about designing for end users. However, these same clueless peo-
ple are far from clueless about program design, and they have strong opinions
about what they like, personally. So they do what they do, designing the interac-
tion for themselves, subject to what is easiest and most enjoyable to code, and
imagine that they are actually designing for users. While it seems to the pro-
grammer that lots of design is getting done, it is only lots of program design, and
very little end-user design.

Because the lack of design is a form of design, whenever anyone makes decisions
about program behavior, he is assuming the role of interaction designer. When a

22 / Part I: Computer Obliteracy

marketing executive insists that a favorite feature be included in the product, she
is designing. When a programmer implements a pet behavior in the product, he
is designing.

The difference between good design and this kind of inadvertent, mud-hut
design isn’t so much the tools used or the type of gizmos, but the motivation. The
real interaction designer’s decisions are based on what the user is trying to
achieve. Ersatz designers’ decisions are based on any number of other random
rationales. Personal preferences, familiarity, fear of the unknown, directives from
Microsoft, and miscues from colleagues all play a surprisingly large role. Most
often, though, their decisions are based on what is easiest for them to create.

“Interaction”Versus “Interface” Design

I prefer the term interaction design to the term interface design because “inter-
face” suggests that you have code over here, people over there, and an interface
in between that passes messages between them. It implies that only the interface
is answerable to the users’ needs. The consequence of isolating design at the
interface level is that it licenses programmers to reason like this: “I can code as I
please because an ‘interface’ will be slapped on after I’m done.” It postpones
design until after programming, when it is too late.

Like putting an Armani suit on Attila the Hun, interface design only tells how to
dress up an existing behavior. For example, in a data-reporting tool, interface
design would eliminate unnecessary borders and other visual clutter from a
table of figures, color code important points, provide rich visual feedback when
the user clicks on data elements, and so on. This is better than nothing, but far
from sufficient. Microsoft invests many millions of dollars on interface design,
but its products remain universally unloved.

Behavioral design tells how the elements of the software should act and commu-
nicate. In our example, behavioral design tells us what tools you could apply to
that table of figures, how you might include averages or totals. Interaction
designers also work from the outside in, starting from the goals the user is trying
to achieve, with an eye toward the broader goals of the business, the capabilities
of the technology, and the component tasks.

You can go still deeper to what we call conceptual design, which considers what
is valuable for the users in the first place. In our example, conceptual design
might tell you that examining a table of figures is only an incidental task; the
users’ real goal is spotting trends, which means that you don’t want to create a
reporting tool at all, but a trend-spotting tool. To deliver both power and pleas-
ure to users, interaction designers think first conceptually, then in terms of
behavior, and last in terms of interface.

Chapter 2: Cognitive Friction / 23

Why Software-Based Products Are Different

Cognitive friction creeps into all software-based products, regardless of their sim-
plicity, and cognitive friction makes them much more difficult to use than equiv-
alent mechanical-age products. As an example, here are the contents of my pants
pocket: some coins, my Swiss Army knife, and my car keys. The knife is pure
industrial age: You can see how it is built, how it works, and how to work it just by
a cursory inspection—by manipulation. When you flip open the knife blade, you
can see that it is sharp, and you can imagine the power it has for cutting.

24 / Part I: Computer Obliteracy

The knife has a grand total of six blades, plus a toothpick and tweezers. The use
of all of them is readily apparent. I can easily and intuitively discern how to
manipulate the knife because of the way it fits my hand and fingers. The knife is
a pleasure to use.

The keyless entry system accompanying my car keys is a different beast altogeth-
er. It only has two push buttons on it, so—from a manipulation point of view—it
is much simpler than the knife. As soon as my hand grips the smooth, black-
plastic case, my fingers naturally and intuitively discover the two push buttons,
and their use is obvious: Press to activate. Ah, but there is silicon, not steel,
behind those buttons, and they are far harder to work than they seem.

The large button locks the car and simultaneously arms the alarm. Pressing the
button a second time disarms the alarm and unlocks the car. There is also a sec-
ond, smaller button labeled Panic. When you press it, the car emits a quiet war-
ble for a few seconds. If you hold it down longer, the quiet warble is replaced by
the full 100-decibel blasting of the car alarm, whooping, tweeting, yowling, and
declaring to everyone within a half-mile that some dolt—me—has just done
something execrably stupid. What’s worse, after the alarm has been triggered, the

little plastic device becomes functionally inert, and further pressing of either
button does nothing. The only way to stop that honking announcement of my
palpable stupidity is to walk to my frighteningly loud car, enduring withering
stares from passersby, unlock the driver’s door with the key, then insert the key
into the ignition and twist it. It really makes me feel like an idiot. If my car mere-
ly got robbed it would make me feel violated and sad, but it wouldn’t make me
feel stupid.

In my previous book, I stated that the number-one goal of all computer users is
to not feel stupid. I further asserted that good interfaces should avoid presenting
users with ejection-seat levers intermingled with the controls for common,
everyday functions. Here is a classic example of a device that really makes users
feel stupid by putting an ejector-seat lever right up front. Accidentally setting off
the ejector-seat lever initiates a personally embarrassing episode tantamount to
showing up at the office having forgotten your pants. My Swiss Army knife just
doesn’t have the capability of doing that.

Not only can I not imagine a reason why any person would want to use either of
the functions on the second button, but I question why the makers of the control
didn’t take advantage of the golden opportunity to provide me with functions
that are desirable and useful.1

As much as I appreciate that my car comes with an alarm, there are many times
when I want to lock the car without arming the alarm. When I pop into the local
Starbucks for some coffee, I don’t need the level of protection that I need at, say,
the airport. I would really like to have the ability to lock and unlock my car from
the remote without involving the alarm system. This would be quite useful when
I’m just driving to local shops or dropping my kids off at school.

Another quite useful and desirable feature would be an option to support an
even more secure locking system. Occasionally, when I return to my previously
locked car, I find that it has become unlocked in my absence. This happens when
someone with a similar car made by the same manufacturer parks near my car.
When that person presses the button to lock his car, it also gives the signal to
unlock mine, disarming the alarm, and opening up my car to the depredations of
any passing sociopath. This scenario is most disturbing in precisely the situation
where it is most likely to occur: in large, urban parking lots, such as at airports,
where my car is likely to spend several hours, or even days, exposed to the ran-
dom distribution of keyless entry systems. It sure would be a useful application

Chapter 2: Cognitive Friction / 25

1 I have repeatedly been told that women actually desire this function as a deterrent to criminal
activity in dark parking lots, but every one of the tellers has been a technically trained male who
would never use it himself. Much to my surprise, I recently read in the Wall Street Journal about a
bona fide use for the Panic button. A family was camping in Yosemite National Park, and a wild
bear began trashing their car in an attempt to get at the food locked within. The mother pressed
the Panic button, and the alarm eventually discouraged the bear. Maybe that little button should
be labeled “Bear Repellent.”

of the technology if I could lock and arm my car in such a way that I could unlock
and disarm it only by personal application of the metal key in the door.
Obviously, I know that the technology exists to do this because that is how the
alarm itself is turned off after it is triggered. Unfortunately, the designers of the
system made certain that regardless of how I lock the car, anyone’s big button can
unlock it.

The Swiss Army knife is complex and packed with features, some hidden quite
cleverly, yet learning and using it is simple, predictable, and intuitive. Using the
keyless entry system is difficult, problematic, and capable of instantly embar-
rassing me. It doesn’t do what I want, and it doesn’t give me the level of control
over my car and its alarm that I consider normal and acceptable. In short, the
interaction with the system sucks. It is plain old bad, and I hate it.

The Dancing Bear

On the other hand, if you made me choose between my knife and my keyless sys-
tem, I’d toss away the knife in a New York minute. Immediately after first using
my keyless entry system, I couldn’t imagine ever not owning one. It is the single
most convenient feature of my car, and I use it more often than any other one. I
use it 10 times to every 1 time I use the knife. In spite of its weak and clumsy
design, it is still a wonderful thing. It’s like the fellow who leads a huge bear on a
chain into the town square and, for a small donation, will make the bear dance.
The townspeople gather to see the wondrous sight as the massive, lumbering
beast shambles and shuffles from paw to paw. The bear is really a terrible dancer,
and the wonder isn’t that the bear dances well but that the bear dances at all.

The wonder isn’t that the keyless entry system works well, but that the keyless
entry system works at all. I am very willing to put up with interaction problems
in order to gain the benefit of remote entry to my vehicle.

26 / Part I: Computer Obliteracy

The prodigious gifts of silicon are so overwhelming that we find it easy to ignore
the collateral costs. If you are stranded on a deserted island, you don’t care much
that your rescue ship is a leaky, rat-infested hulk. The difference between having
a software solution for your problem and not having any solution is so great that
we accept any hardship or difficulty that the solution might force on us.

The difficulty of devising a better interaction isn’t what makes the problem so
intractable. Instead, it is our almost universal willingness to accept bad interac-
tion as an unavoidable cost. When we see that rusty rescue ship, we don’t ques-
tion its accommodations but just jump on and are glad for what we get.

Software experts are—of necessity—comfortable with high-cognitive-friction
interaction. They pride themselves on their ability to work in spite of its adversi-
ty. Normal humans, who are the new users of these products, lack the expertise
to judge whether this cognitive friction is avoidable. Instead, they rely on the
cues offered by the nerds, who simply shrug and say that to use software-based
products you have to be “computer literate.” Software engineers blame the tech-
nology, telling users that difficult interaction simply comes with the territory,
that it is unavoidable.

This is not true. Difficult interaction is very avoidable.

Cognitive friction doesn’t come from technology, but from the people who con-
trol technology. They are masters because they know how to think in ways that
are sympathetic to silicon, and they imagine that everyone thinks in the same
way. They create technological artifacts whose interaction is expressed in the
terms in which they are constructed. Instead of creating an automobile that is all
leather and burl wood, they would create one that is all hot steel and grinding
gears. As engineers, they think more about gears than about leather, so the inter-
face to the human user is expressed in those “implementation” terms, which is
why I call products designed this way as having an implementation model.

The Cost of Features

Most software vendors don’t know how to make their programs easy to use, but
they sure know how to add features, so that is what they do.

Physical objects, such as my Swiss Army knife, are subject to a natural brake on
the proliferation of marginal features. Each new blade or accessory costs money
for the manufacturer to build into the knife. The maker of the knife knows this,
and each proposed new feature must pass a gauntlet of justification before it
makes it into a shipping product. In engineering terms, this is called a negative
feedback loop, in which intrinsic forces trend toward stability and equilibrium. For
example, tire friction in your car creates a negative feedback loop in the steering
system, so that when you release the wheel it tends to return to straight ahead.

Chapter 2: Cognitive Friction / 27

In the business of software-based products, a different system prevails. Because
functions and features are added in intangible software code and not in tangible
steel, copper, or plastic, it appears to traditional manufacturing executives that
additional features are nearly cost free. It seems to them that software is easy to
add, change, and “improve.”

Right now I’m listening to Jimmy Buffett on my computer’s CD-ROM drive. The
small program that plays the disc offers me a plethora of functions: I can move
to the previous track or the next track, skip to random tracks, create a custom
play list, play for a predetermined time, repeat play, view information about
Buffett on the Web, put the album into my “collection,” take notes on the various
tracks, gather song names from a database on the Internet, examine information
about the disc, create a list of favorite tracks, and more. All of these features are
really nice, and I wouldn’t necessarily delete them, but they all conspire to make
the program extremely difficult to understand and use. What’s more, when the
phone rings and I need to quickly pause the disc, I can’t find the pause function
because it’s buried among all of those other—free—functions. Those functions
are not “free” to me. Some hapless engineer thought that he was doing me a favor
by adding all of those free features, but I’d rather have a simple player with a
quick and easy pause button.

Regarding my car’s remote keyless entry system, I seriously doubt that any
designer asked himself, “Which and how many functions are appropriate?”
Instead, I’m certain that some junior engineer chose an off-the-shelf chip that
coincidentally came with two channels. After using one of them to lock and
unlock, he found himself with a free surplus channel. The engineer—possibly
under the influence of an enthusiastic but ill-informed marketing manager—
concocted the rationale that manually setting off the alarm would serve some
purpose. He was proud of his ability to provide additional functionality for no
apparent cost.

It’s cheaper to put an entire microprocessor in your car key, microwave, or cell
phone than it is to put in discrete chips and electronic components. Thus, a new
technical economy drives the design of the product. Adding physical controls to
devices is still governed by the negative feedback loop of manufacturing costs,
but the process of adding functions and features in software is not. To software
makers, it seems virtually free to add features, so any proposed feature is
assumed to be a good investment until proven otherwise. Without a governor, the
product rapidly fills up with unwanted features, which means complexity and
confusion for the user. All of these features are touted as indispensable advan-
tages and, of course, the main function that really is needed still remains. That
bear is in there dancing away.

28 / Part I: Computer Obliteracy

For desktop computers, the implications of the missing feedback loop are just as
debilitating. The software maker imagines that it can add all of the features it
wants, and they will be “free” as long as they are controlled through the standard
mouse and keyboard. They can crowd the screen with hundreds of obscure
icons, buttons, or menu items, all of which must ultimately be controlled by a key
press or a mouse click. How is the user supposed to tell the difference between
small, insignificant functions and those that have large, negative effects?

Virtually every commercially available software product has grown in complexi-
ty with each subsequent release. More features and functions are added as the
product evolves, so more controls are added to the interface. The industry press
calls it “bloatware.” Products such as Lotus Notes, Adobe Photoshop, Intuit
Quicken, and Microsoft Word are so encrusted with a bewildering array of fea-
tures that users are confounded and use few of them effectively, if at all.
Meanwhile, the myriad of marginal features crowd out the few really useful ones.

This problem is even more evident in enterprise software than in consumer
products. Vendors such as Oracle, PeopleSoft, ADP, SAP, and Siebel all make com-
plex, back-office software that’s necessary for corporate operations. These prod-
ucts are very complex, obscure, and feature-laden. Each annual revision adds
many new features but fails to make the existing features understandable or con-
trollable except by users who receive months of rigorous training.

Apologists and Survivors

Dancing bearware is becoming omnipresent. The incredible power of computers
means that few people can afford to ignore them. Even if you don’t have a desk-
top computer, you probably own a cell phone and an ATM card, which are
software-based products. It is unrealistic to simply say you won’t use computers.
They aren’t just getting cheaper; they are getting ridiculously cheaper, to the
point of ubiquity and disposability. Many familiar products that we imagine as
mechanical (or electronic) are no longer made without computers. Cars, wash-
ing machines, televisions, vacuum cleaners, thermostats, and elevators are all
good examples.

Although the usefulness of an industrial-age device was proportional to the dif-
ficulty of manipulating it, this relationship is missing in the information age, and
the difficulty of operation increases more rapidly than the usefulness increases.
An old-fashioned mechanical alarm clock has always been considered easy to
operate. A contemporary, software-based alarm clock can be harder to work than
a car.

High cognitive friction polarizes people into two groups. It either makes them
feel frustrated and stupid for failing, or giddy with power at overcoming the

Chapter 2: Cognitive Friction / 29

extreme difficulty. These powerful emotions force people into being either an
“apologist” or a “survivor.” They either adopt cognitive friction as a lifestyle, or
they go underground and accept it as a necessary evil. The polarization is grow-
ing acute.

x

I call the first group apologists, because its members take pains to justify their
obeisance to the dancing bear. Like political-party sycophants wearing silly hats
and carrying goofy signs, they tout the benefits while downplaying the disadvan-
tages with unabashed partisanship. Virtually all programmers fall into this cate-
gory, and their vested interest makes their motivation obvious, but it is surprising
how many nontechnical users who are abused daily by bad interaction will
excuse their oppressors by saying things like, “Oh, it’s easy. I just have to remem-
ber to press these two keys, then give the system a valid name. If I forget what I
called it, the system will let me look for it.” They don’t see how ludicrous it is for
the system to “let them look for it.” Why doesn’t the computer do the looking, or
the remembering? The apologists are the ones who defend the computer
because it can accomplish a task that was heretofore impossibly difficult. They
point to the bear and exclaim, “Look, it’s dancing!”

30 / Part I: Computer Obliteracy

Apologists remind me of the victims of the “Stockholm Syndrome.” These are
hostages who fall in love with their captors, declaring without irony or any ves-
tige of rational perspective, “He’s really a wonderful person. He even let us use
the bathroom.”

“Power user” is a code name for an apologist. Regardless of how hard an interac-
tion is, or how uselessly obscure a feature is, the apologist will unerringly point
to the power and functionality of the gadget, blithely ignoring the difficulty of
actually using it.

One of my colleagues in the cellular-telephone business was complaining about
how the engineers had made cell phones hard to use by packing in so many
rarely used features. She said that cell phones were ”wet dogs.” When I inquired
about her metaphor, she explained, “You have to really love a wet dog a lot to
want to carry it around.”

It is fascinating how computers seem to attract an inordinate number of highly
intelligent, self-motivated people. These same people seem to also be attracted
to dangerous and demanding sports such as heli-skiing, piloting, scuba diving,
stock speculation, and technical rock climbing. Each activity demands rigorous
training, and the slightest inattention can bring disaster. But if these avocations
didn’t have some huge appeal—some compelling attraction—wouldn’t their
adherents just watch TV instead? The common appeal is precisely what makes
them so hard. It is the mental challenge of the very difficult, very unforgiving
task. It is easy to picture the sweaty, exhausted, trekker chugging Gatorade, grin-
ning, and saying, “Yeah, that last pitch was completely vertical and my quads
were cramping as I worked the layback. Almost fell off a couple of times.” He likes
it tough! The tougher the better! That’s why he does it!

Computers inspire people in the same way because they offer the same tough,
ruthless challenges. If you aren’t utterly on top of your game, computers will
leave you whimpering in the dust. It is easy to picture the exhausted programmer
chugging Coca-Cola, grinning, and saying, “Yeah, the fetch logic caused the
crash, but only when the main heap grew beyond 64 meg; otherwise the cache
wasn’t activated. Almost couldn’t find it!” He’s having fun!

This is where apologists come from. They enjoy the tough challenge, the unfor-
giving nature. They like to work in an environment where their special abilities
can make a difference, where they can stand out. The climber is apologizing for
the steepness and difficulty of the cliff. The computer enthusiast apologizes for
the obscurity and difficulty of the software interaction.

x

At the other pole are the survivors. They know that something is radically wrong,
but they don’t know what. They don’t know much about computers or interaction,

Chapter 2: Cognitive Friction / 31

but they can see that there is a problem. They know what hard is, and they know
what easy is, and they know full well that computers are hard.

32 / Part I: Computer Obliteracy

However, just like everybody else, they cannot simply abandon the computer;
they need it to do their jobs. They grit their teeth and put up with the abuse
inflicted on them by the dancing bearware. They don’t know there is a better way
for the computer to behave, but they know that every time they use it, they feel a
little smaller. Like a feudal peasant in the Middle Ages, they are powerless to
change their status—or to even see the depth of their deprivation—but they are
certain that they are oppressed.

The apologists say, “Look what the computer lets me do!” The survivors say, “I
guess I’m just too stupid to understand these newfangled machines.” The apolo-
gists say, “Look at this! A dancing bear!” The survivors say, “I need something that
dances, so I guess a bear is the best I’m gonna get.” The survivors are the vast
majority of people who are not impressed by the newfound power, but who are
mighty impressed by how stupid the interaction makes them feel.

Of course, virtually everyone in the computer industry, including everyone in
allied industries that make products and services based on computers, falls firm-
ly into the apologist camp. Their behavior reflects their point of view. They always
defend their products on the basis of their power and capability. When attacked
on human issues, they tend—like politicians—not to answer the proffered ques-
tion, but instead to wax eloquently about the newly added features and capabili-
ties of the product and the number of people using them. They ignore the poor
quality of the dance to tout the mere fact of dancing.

The extremely rapid growth of the Internet and popular access to it via the World
Wide Web has brought a whole invasion of new apologists and survivors to the
computer world. The apologists point enthusiastically to all of the information
and services that are now available online. Meanwhile, the survivors sit staring at

their computer screens wondering how to find anything that might be of use to
them. They wait endlessly for Web sites to download unnecessary pictures while
still letting them get lost in complex hierarchies of unwanted information. The
Web is probably the biggest dancing bear we’ve ever faced.

How We React to Cognitive Friction

Most people, even apologists, react to cognitive friction in the same way. They
take the minimum they need from it and ignore the rest. Each user learns the
smallest set of features that he needs to get his work done, and he abandons the
rest. The apologists proudly point out that their wristwatches can synchronize
with their desktop calendar systems, but they conveniently neglect to mention
that it has been six months since they used that feature. They will get defensive
about it if you press them on the point, but that is what makes them apologists.

My home-entertainment system has literally thousands of features. I’m not an
apologist, but I certainly qualify as a gadget freak. I have learned how to use some
of its gratuitous features, but they are too hard to use effectively. For example, my
television has a feature called “picture-in-picture” (PIP). It superimposes a sec-
ond, smaller screen showing another channel in the lower-right corner of the
main screen. It is all done in software and can be completely controlled by but-
tons on the remote control. In theory, it is useful for such circumstances as keep-
ing an eye on the football game in the PIP screen while I’m watching a movie on
the main screen. When the salesperson demonstrated it to me in the electronics
showroom, it seemed quite useful.

The problem is that it is just too difficult to control; there is too much cognitive
friction involved in using it, and I cannot master it sufficiently well to make it
worth the effort. It’s just more enjoyable to watch one channel, as in the old days
when one channel was all that the technology could deliver. Nobody else in my
family has bothered to use the PIP facility even once, except by accident, and I
occasionally come home to find someone watching TV with a PIP screen up. As
soon as I walk in the room, he or she asks me to turn it off.

My TV has a 55'' screen and a Dolby sound system, and it receives a digital signal
from an orbiting satellite, but otherwise my family members and I use it in exact-
ly the same way we used our snowy, tinny, 19'' Motorola in 1975. All of those fea-
tures go unused.

You can predict which features in any new technology will be used and which
won’t. The use of a feature is inversely proportional to the amount of interaction
needed to control it. In other words, the bigger, brighter, sharper screen on my
new TV demands no interaction on my part, so it is used 100% of the time my TV
is on, and I’m quite happy with it. The satellite system is a very desirable dancing
bear of a feature, so I put up with the complexity of source-signal switching to

Chapter 2: Cognitive Friction / 33

watch the satellite broadcast once a week or so. Nobody else in my family was
able to figure out how to view the satellite until I created a plastic-laminated
cheat sheet that sits on the coffee table with a checklist of switches, buttons, and
settings that must be made to connect up. The PIP system not only uses a com-
plex system of over a dozen buttons, but its interaction is very obscure and its
behavior is unpleasant. After the first couple of tries, I abandoned it completely,
as has everyone else.

This pattern of cognitive friction abandonment can be found in every office or
household with every software-based product.

The Democratization of Consumer Power

Traditionally, the more complex a mechanical device was, the more highly
trained its operators were. Big machinery was always isolated from the public
and was operated by trained professionals in uniform. The information age
changed everything, and we now expect amateurs to manage technology far
more complex than our parents ever faced.

As more and more of our tools and systems get silicon brains, they are placed
into the hands of untrained amateurs. Twenty-five years ago, trained human
operators handled long-distance phone calls at our verbal request. Today, the
most complex international calls are handled directly by any untrained amateur
pushing buttons.

Just a couple of decades ago, even gas pumps were operated only by trained
service-station attendants. Today, every individual is expected to be able to per-
form the gas-pumping transaction, as well as the associated financial transac-
tion, using a credit or debit card. Twenty years ago, only trained tellers operated
banks. Today, you operate your bank by using a gas pump or ATM.

The engineering process doesn’t discern between the creation of a complex sys-
tem that will be operated by a trained, paid professional and the creation of one
that is to be operated by an indifferent amateur. The process of engineering
doesn’t have concepts to deal with that human stuff. It concentrates on the
implementation issues: What is it made of? How will it be constructed? What con-
trols will be needed to give input to all possible variables?

Blaming the User

Most software is used in a business context, so most victims of bad interaction
are paid for their suffering. Their job forces them to use software, so they cannot
choose not to use it—they can only tolerate it as well as they can. They are forced
to submerge their frustration and to ignore the embarrassment they feel when
the software makes them feel stupid.

34 / Part I: Computer Obliteracy

For years, I’ve watched as dozens of software-industry executives have drawn on
their whiteboards for me essentially the same diagram showing their view of the
high-tech marketplace. It shows a pyramid—some draw it inverted—that is
divided into three horizontal layers, each with an innocent-sounding phrase as a
label. Each executive superimposes an amorphous blob on it showing the por-
tion of the market they are aiming to conquer. But each label is a euphemism—
really a veiled slur, like a code phrase you’d hear a bigot use to keep someone out
of the country club. The three euphemisms are “naïve user,” “computer-literate
user,” and “power user.”

“Naïve user” is industry code for “stupid, incompetent user.” And certainly these
people are made to feel stupid, but they are not. It is the bad design of the inter-
action that is at fault. The apologists in the computer industry dismiss naïve
users as insignificant, but that flies in the face of good sense. Why would a ven-
dor write off the lion’s share of the market? Because it removes the blame for fail-
ure from the executives and software engineers and places it squarely onto the
shoulders of the innocent users.

The phrase “computer-literate user” really means the person has been hurt so
many times that the scar tissue is thick enough that he no longer feels the pain.
Computer literacy means that when your program loses your document, you
have learned enough not to panic like Jane in Chapter 1, “Riddles for the
Information Age,” but to begin the slow, manual, utterly unnecessary search for
it in the hierarchical file system without complaint. One characteristic of com-
puter literacy is that it is like anesthesia: The patient drifts slowly and gently into
unconsciousness. There is little point in constantly whining and complaining

Chapter 2: Cognitive Friction / 35

about a piece of software that is a fixed and permanent part of your job. Most
people don’t even realize how hard they are working to compensate for the short-
comings of a software-based tool.

Most apologists consider computer literacy to be a badge of accomplishment,
like a Sharpshooter’s Medal. Actually, it is more akin to a Purple Heart, an official
recognition of having suffered a wound in battle.

36 / Part I: Computer Obliteracy

Power users are simply apologists. They are techno-enthusiasts who have suffi-
ciently overcome their better instincts to be useful consumers of high-cognitive-
friction products. They take pride in the challenge, as they might in the challenge
of scaling a rock wall in Yosemite.

Software Apartheid

There’s an old joke in Hollywood that you can bump into a stranger in the grocery
store and ask how his screenplay is doing. The stranger—without hesitation—will
reply, “Great! I’ve just restructured the second act to tighten up the action!” The
same joke is now true in Silicon Valley. You can buttonhole a stranger in line at
Starbucks and ask how her Web site is doing. The stranger—without skipping a
beat—will reply, “Great! I’ve just restructured the frames to tighten up the navi-
gation!”

Here in Silicon Valley, we forget how skewed our population is, and we should fre-
quently remind ourselves how abnormal we really are. The average person who
uses a software-based product around here isn’t really very average.

Programmers generally work in high-tech environments, surrounded by their
technical peers in enclaves such as Silicon Valley; Route 128 outside Boston;

Research Triangle in North Carolina; Redmond, Washington; and Austin, Texas.
Software engineers constantly encounter their peers when they shop, dine out,
take their kids to school, and relax, and their contact with frustrated computer
users is limited. What’s more, the occasional unfocused gripes of the users are
offset by the frequent enthusiasm of the knowledgeable elite. We forget how far
removed we and our peers are from the inability of the rest of the country (not to
mention the world) to use interactive tools without frustration.

We industry insiders toss around the term “computer literacy,” assuming that in
order to use computers, people must acquire some fundamental level of train-
ing. We see this as a simple demand that isn’t hard and is only right and proper.
We imagine that it isn’t much to ask of users that they grasp the rudiments of how
the machines work in order to enjoy their benefits. But it is too much to ask.
Having a computer-literate customer base makes the development process
much easier—of that there can be no doubt—but it hampers the growth and suc-
cess of the industry and of society. Apologists counter with the argument that
you must have training and a license to drive a car, but they overlook the fact that
a mistake with a car frequently kills people, but a mistake with software general-
ly doesn’t. If cars weren’t so deadly, people would train themselves to drive the
same way they learn Excel.

The concept of computer literacy has another, more insidious, effect. It creates a
demarcation line between the haves and have-nots in society. If you must mas-
ter a computer in order to succeed in America’s job market beyond a burger-
flipper’s career, then mastering the interactive system’s difficulty prevents many
people from moving into more productive, respected, and better-paying jobs.

Users should not have to acquire computer literacy to use computers for com-
mon, rudimentary tasks in everyday life. Users should not have to possess a dig-
ital sensitivity to work their VCR or microwave oven, or to get email. What’s more,
users should not have to acquire computer literacy to use computers for enter-
prise applications, when the user is already trained in the application domain.
An accountant, for example, who is trained in the general principles of account-
ing, shouldn’t have to be computer literate to use a computer in her accounting
practice. Her domain knowledge should be enough to see her through.

As our economy shifts more and more onto an information basis, we are inad-
vertently creating a divided society. The upper class is composed of those who
have mastered the nuances of differentiating between “RAM” and “hard disk.”
The lower class consists of those who treat the difference as inconsequential. The
irony is that the difference really is inconsequential to anyone except a few hard-
core engineers. Yet virtually all contemporary software forces its users to con-
front a file system, where your success is fully dependent on knowing the
difference between RAM and disk.

Chapter 2: Cognitive Friction / 37

Thus the term “computer literacy” becomes a euphemism for social and eco-
nomic apartheid. Computer literacy is a key phrase that brutally bifurcates our
society.

But what about people who are not inclined to pander to technocrats and who
cannot or will not become computer literate? These people, many by choice, but
most by circumstance, are falling behind in the information revolution. Many
high-tech companies, for example, won’t even consider for employment any
applicant who does not have an email address or whose resume isn’t online. I’m
sure that there are many otherwise-qualified candidates out there who can’t get
hired because they are not yet wired. Despite the claims of the apologists, using
email effectively is difficult and involves a significant level of computer literacy.
Therefore, it artificially segregates the workforce. It is the moral equivalent of the
banking technique of “redlining.” In this illegal procedure, all houses in a given
neighborhood are declared unacceptable as collateral for a housing loan.
Although the red lines on the map are ostensibly drawn around economic con-
tours, they tend to follow racial lines all too closely. Bankers protest that they are
not racists, but the effect is the same.

When programmers speak of “computer literacy,” they are drawing red lines
around ethnic groups, too, yet few have pointed this out. It is too hard to see what
is really happening because the issue is obscured by technical mythology. It is
easy to see—regardless of how true—that a banker can make a loan on one house
as easily as on another. However, it is not easy to see that a programmer can
make interactive products easy enough for people from lower socioeconomic
backgrounds to use.

As an industry, we are largely in denial about the problem of usable interactive
products. There are too many apologists shouting about dancing bears. Their
histrionics drown out our doubts about the efficacy of our software-based prod-
ucts. Before we begin to look for solutions, we must collectively come to our
senses about the scope and severity of the problem. This is the goal of the next
section.

38 / Part I: Computer Obliteracy

Part II
It Costs You Big Time

Chapter 3 Wasting Money

Chapter 4 The Dancing Bear

Chapter 5 Customer Disloyalty

This page intentionally left blank

3
Wasting Money

It’s harder than you might think to squander millions of dollars, but a flawed
software-development process is a tool well suited to the job. That’s because soft-
ware development lacks one key element: an understanding of what it means to
be “done.” Lacking this vital knowledge, we blindly bet on an arbitrary deadline.
We waste millions to cross the finish line soonest, only to discover that the finish
line was a mirage. In this chapter I’ll try to untangle the expensive confusion of
deadline management.

Deadline Management

There is a lot of obsessive behavior in Silicon Valley about time to market. It is fre-
quently asserted that shipping a product right now is far better than shipping it
later. This imperative is used as a justification for setting impossibly ambitious
ship dates and for burning out employees, but this is a smoke screen that hides
bigger, deeper fears—a red herring. Shipping a product that angers and frus-
trates users in three months is not better than shipping a product that pleases
users in six months, as any businessperson knows full well.

Managers are haunted by two closely related fears. They worry about when their
programmers will be done building, and they doubt whether the product will be
good enough to ultimately succeed in the marketplace. Both of these fears stem
from the typical manager’s lack of a clear vision of what the finished product
actually will consist of, aside from mother-and-apple-pie statements such as
“runs on the target computer” and “doesn’t crash.” And lacking this vision, they
cannot assess a product’s progress towards completion.

The implication of these two fears is that as long as it “doesn’t crash,” there isn’t
much difference between a program that takes three months to code and one
that takes six months to code, except for the prodigious cost of three months of
unnecessary programming. After the programmers have begun work, money
drains swiftly. Therefore, logic tells the development manager that the most
important thing to do is to get the coding started as soon as possible and to end
it as soon as possible.

The conscientious development manager quickly hires programmers and sets
them coding immediately. She boldly establishes a completion date just a few
months off, and the team careens madly toward the finish line. But without prod-
uct design, our manager’s two fears remain unquelled. She has not established
whether the users will like the product, which indeed leaves its success a mys-
tery. Nor has she established what a “complete” product looks like, which leaves
its completion a mystery. Later in the book, I’ll show how interaction design can
ease these problems. Right now, I’ll show how thoroughly the deadline subverts
the development process, turning all the manager’s insecurities into self-
fulfilling prophecies.

What Does “Done” Look Like?

After we have a specific description of what the finished software will be, we can
compare our creation with it and really know when the product is done.

There are two types of descriptions. We can create a very complete and detailed
physical description of the actual product, or we can describe the reaction we’d
like the end user to have. In building architecture, for example, blueprints fill the
first requirement. When planning a movie or creating a new restaurant, however,
we focus our description on the feelings we’d like our clients to experience. For
software-based products, we must necessarily use a blend of the two.

Unfortunately, most software products never have a description. Instead, all they
have is a shopping list of features. A shopping bag filled with flour, sugar, milk,
and eggs is not the same thing as a cake. It’s only a cake when all the steps of the
recipe have been followed, and the result looks, smells, and tastes substantially
like the known characteristics of a cake.

Having the proper ingredients but lacking any knowledge of cakes or how to
bake, the ersatz cook will putter endlessly in the kitchen with only indeterminate
results. If we demand that the cake be ready by 6 o’clock, the conscientious cook
will certainly bring us a platter at the appointed hour. But will the concoction be
a cake? All we know is that it is on time, but its success will be a mystery.

42 / Part II: It Costs You Big Time

In most conventional construction jobs, we know we’re done because we have a
clear understanding of what a “done” job looks like. We know that the building is
completed because it looks and works just like the blueprints say it should look
and work. If the deadline for construction is June 1, the arrival of June doesn’t
necessarily mean that the building is done. The relative completeness of the
building can only be measured by examining the actual building in comparison
to the plans.

Without blueprints, software builders don’t really have a firm grasp on what
makes the product “done,” so they pick a likely date for completion, and when
that day arrives they declare it done. It is June 1; therefore, the product is com-
pleted. “Ship it!” they say, and the deadline becomes the sole definition of proj-
ect completion.

The programmers and businesspeople are neither stupid nor foolish, so the prod-
uct won’t be in complete denial of reality. It will have a robust set of features, it will
run well, and it won’t crash. The product will work reasonably well when operated
by people who care deeply that it works well. It might even have been subjected to
usability testing, in which strangers are asked to operate it under the scrutiny of
usability professionals1. But, although these precautions are only reasonable, they
are insufficient to answer the fundamental question: Will it succeed?

Parkinson’s Law

Managers know that software development follows Parkinson’s Law: Work will
expand to fill the time allotted to it. If you are in the software business, perhaps
you are familiar with a corollary to Parkinson called the Ninety-Ninety Rule,
attributed to Tom Cargill of Bell Labs: “The first 90% of the code accounts for the
first 90% of the development time. The remaining 10% of the code accounts for
the other 90% of the development time.” This self-deprecating rule says that when

Chapter 3: Wasting Money / 43

1 Usability professionals are not interaction designers. I discuss this difference in detail in
Chapter 12, “Desperately Seeking Usability.”

the engineers have written 90% of the code, they still don’t know where they are!
Management knows full well that the programmers won’t hit their stated ship
dates, regardless of what dates it specifies. The developers work best under pres-
sure, and management uses the delivery date as the pressure-delivery vehicle.

In the 1980s and 1990s, Royal Farros was the vice president of development for
T/Maker, a small but influential software company. He says, “A lot of us set dead-
lines that we knew were impossible, enough so to qualify for one of those
Parkinson’s Law corollaries. ‘The time it will take to finish a programming project
is twice as long as the time you’ve allotted for it.’ I had a strong belief that if you
set a deadline for, say, six months, it would take a year. So, if you had to have
something in two years, set the deadline for one year. Bonehead sandbagging,
but it always worked.”

When software entrepreneur Ridgely Evers was with Intuit, working on the cre-
ation of QuickBooks, he experienced the same problem. “The first release of
QuickBooks was supposed to be a nine-month project. We were correct in esti-
mating that the development period would be the same as a gestation period,
but we picked the wrong species: It took almost two-and-a-half years, the gesta-
tion period for the elephant.”

Software architect Scott McGregor points out that Gresham’s Law—that bad cur-
rency drives out good—is also relevant here. If there are two currencies, people
will hoard the good one and try to spend the bad one. Eventually, only the bad
currency circulates. Similarly, bad schedule estimates drive out good ones. If
everybody makes bogus but rosy predictions, the one manager giving realistic
but longer estimates will appear to be a heel-dragger and will be pressured to
revise his estimates downward.

Some development projects have deadlines that are unreasonable by virtue of
their arbitrariness. Most rational managers still choose deadlines that, while
reachable, are only reachable by virtue of extreme sacrifice. Sort of like the pilot
saying, “We’re gonna make Chicago on time, but only if we jettison all our bag-
gage!” I’ve seen product managers sacrifice not only design, but testing, func-
tion, features, integration, documentation, and reality. Most product managers
that I have worked with would rather ship a failure on time than risk going late.

The Product That Never Ships

This preference is often due to every software development manager’s deepest
fear: that after having become late, the product will never ship at all. Stories of
products never shipping are not apocryphal. The project goes late, first by one
year, then two years, then is euthanized in its third year by a vengeful upper man-
agement or board of directors. This explains the rabid adherence to deadlines,
even at the expense of a viable product.

44 / Part II: It Costs You Big Time

For example, in the late 1990s, at the much-publicized start-up company Worlds,
Inc., many intelligent, capable people worked on the creation of a virtual, online
world where people’s avatars could wander about and engage other avatars in
real-time conversation. The product was never fully defined or described, and
after tens of millions of investment capital was spent, the directors mercifully
pulled the plug.

In the early 1990s, another start-up company, Nomadic Computing, spent about
$15 million creating a new product for mobile businesspeople. Unfortunately, no
one at the company was quite sure what its product was. They knew their mar-
ket, and most of the program’s functions, but weren’t clear on their users’ goals.
Like mad sculptors chipping away at a huge block of marble hoping to discover
a statue inside, the developers wrote immense quantities of useless code that
was all eventually thrown away, along with money, time, reputations, and
careers. The saddest waste, though, was the lost opportunity for creating soft-
ware that really was wanted.

Even Microsoft isn’t immune from such wild goose chases. Its first attempt at cre-
ating a database product in the late 1980s consumed many person-years of effort
before Bill Gates mercifully shut it down. Its premature death sent a shock wave
through the development community. Its successor, Access, was a completely
new effort, staffed and managed by all new people.

Shipping Late Doesn’t Hurt

Ironically, shipping late generally isn’t fatal to a product. A third-rate product that
ships late often fails, but if your product delivers value to its users, arriving
behind schedule won’t necessarily have lasting bad effects. If a product is a hit,
it’s not a big deal that it ships a month—or even a year—late. Microsoft Access
shipped several years late, yet it has enjoyed formidable success in the market.
Conversely, if a product stinks, who cares that it shipped on time?

Certainly, some consumer products that depend on the Christmas season for the
bulk of their sales have frighteningly important due dates. But most software-based
products, even consumer products, aren’t that sensitive to any particular date.

For example, in 1990 the PenPoint computer from GO was supposed to be the
progenitor of a handheld-computer revolution. In 1992, when the PenPoint
crashed and burned, the Apple Newton inherited the promise of the handheld
revolution. When the Newton failed to excite people, General Magic’s Magic Link
computer became the new hope for handhelds. That was in 1994. When the
Magic Link failed to sell, the handheld market appeared dead. Venture capitalists
declared it a dry hole. Then, out of nowhere, in 1996, the PalmPilot arrived to uni-
versal acclaim. It seized the handheld no-man’s-land six years late. Markets are
always ready for good products that deliver value and satisfy users.

Chapter 3: Wasting Money / 45

Of course, companies with a long history of making hardware-only products now
make hybrid versions containing chips and software. They tend to underesti-
mate the influence of software and subordinate it to the already-established
completion cycles of hardware. This is wrong because as Chapter 1, “Riddles for
the Information Age,” showed, these companies are now in the software busi-
ness, whether or not they know it.

Feature-List Bargaining

One consequence of deadline management is a phenomenon that I call “feature-
list bargaining.”

Years ago programmers got burned by the vague product-definition process con-
sisting of cocktail-napkin sketches, because they were blamed for the unsuccess-
ful software that so often resulted. In self-defense, programmers demanded that
managers and marketers be more precise. Computer programs are procedural,
and procedures map closely to features, so it was only natural that programmers
would define “precision” as a list of features. These feature lists allowed program-
mers to shift the blame to management when the product failed to live up to
expectations. They could say, “It wasn’t my fault. I put in all the features manage-
ment wanted.”

Thus, most products begin life with a document variably called a “marketing
specification,” “technical specification,” or “marketing requirements document.”
It is really just a list of desired features, like the list of ingredients in the recipe for
cake. It is usually the result of several long brainstorming sessions in which man-
agers, marketers, and developers imagine what features would be cool and jot
them down. Spreadsheet programs are a favorite tool for creating these lists, and
a typical one can be dozens of pages long. (Invariably, at least one of the line
items will specify a “good user interface.”) Feature suggestions can also come
from focus groups, market research, and competitive analysis.

The managers then hand the feature list to the programmers and say, “The prod-
uct must ship by June 1.” The programmers—of course—agree, but they have
some stipulations. There are far too many features to create in the time allotted,
they claim, and many of them will have to be cut to meet the deadline. Thus
begins the time-honored bargaining.

The programmers draw a dividing line midway through the list. Items above it
will be implemented, they declare, while those below the “line of death” are
postponed or eliminated. Management then has two choices: to allow more time
or to cut features. Although the project will inevitably take more time, manage-
ment is loath to play that trump so early in the round, so it negotiates over fea-
tures. Considerable arguing and histrionics occur. Features are traded for time;
time is traded for features. This primitive capitalist negotiation is so human and

46 / Part II: It Costs You Big Time

natural that both parties are instantly comfortable with it. Sophisticated parallel
strategies develop. As T/Maker’s Royal Farros points out, when one “critical-path
feature was blamed for delaying a deadline, it would let a dozen other tardy fea-
tures sneak onto the list without repercussion.” Lost in the battle is the perspec-
tive needed for success.

Farros described T/Maker’s flagship product, a word processor named WriteNow,
as “a perfect product for the university marketplace. In 1987, we actually shipped
more copies of WriteNow to the university market than Microsoft shipped Word.
However, we couldn’t hold our lead because we angered our very loyal, core fans
in this market by not delivering the one word-processor feature needed in a uni-
versity setting: endnotes. Because of trying to make the deadline, we could never
slip this feature into the specification. We met our deadline but lost an entire
market segment.”

Programmers Are in Control

Despite appearances, programmers are completely in control of this bottom-up
decision-making process. They are the ones who establish how long it will take
to implement each item, so they can force things to the bottom of the list mere-
ly by estimating them long. The programmers will—in self-defense—assign
longer duration to the more nebulously defined items, typically those concerned
with substantive user-interface issues. This inevitably causes them to migrate to
the bottom of the list. More familiar idioms and easy-to-code items, such as
menus, wizards, and dialog boxes, bubble to the top of the list. All of the analysis
and careful thinking done by high-powered and high-priced executives is made
moot by the unilateral cherry picking of a programmer following his own muse
or defending his turf.

Like someone only able to set the volume of a speaker that isn’t within hearing
distance, managers find themselves in the unenviable position of only having
tools that control ineffective parameters of the development process. It is cer-
tainly true that management needs to control the process of creating and ship-
ping successful software, but, unfortunately, our cult of deadline ignores the
“successful” part to concentrate only on the “creating” part. We give the creators
of the product the reins to the process, thus relegating management to the role
of passenger and observer.

Features Are Not Necessarily Good

Appearances to the contrary, users aren’t really compelled by features. Product
successes and failures have shown repeatedly that users don’t care that much
about features. Users only care about achieving their goals. Sometimes features
are needed to reach goals, but more often than not, they merely confuse users

Chapter 3: Wasting Money / 47

and get in the way of allowing them to get their work done. Ineffective features
make users feel stupid. Borrowing from a previous example, the successful
PalmPilot has far fewer features than did General Magic’s failed Magic Link com-
puter, Apple’s failed Newton, or the failed PenPoint computer. The PalmPilot
owes its success to its designers’ single-minded focus on its target user and the
objectives that user wanted to achieve.

About the only good thing I can say about features is that they are quantifiable.
And that quality of being countable imbues them with an aura of value that they
simply don’t have. Features have negative qualities every bit as strong as their
positive ones. The biggest design problem they cause is that every well-meant
feature that might possibly be useful obfuscates the few features that will proba-
bly be useful. Of course, features cost money to implement. They add complexi-
ty to the product. They require an increase in the size and complexity of the
documentation and online help system. Above all, cost-wise, they require addi-
tional trained telephone tech-support personnel to answer users’ questions
about them.

It might be counterintuitive in our feature-conscious world, but you simply can-
not achieve your goals by using feature lists as a problem-solving tool. It’s quite
possible to satisfy every feature item on the list and still hatch a catastrophe.
Interaction designer Scott McGregor uses a delightful test in his classes to prove
this point. He describes a product with a list of its features, asking his class to
write down what the product is as soon as they can guess. He begins with 1)
internal combustion engine; 2) four wheels with rubber tires; 3) a transmission
connecting the engine to the drive wheels; 4) engine and transmission mounted
on metal chassis; 5) a steering wheel. By this time, every student will have writ-
ten down his or her positive identification of the product as an automobile,
whereupon Scott ceases using features to describe the product and instead men-
tions a couple of user goals: 6) cuts grass quickly and easily; 7) comfortable to sit
on. From the five feature clues, not one student will have written down “riding
lawnmower.” You can see how much more descriptive goals are than features.

Iteration and the Myth of the Unpredictable Market

In an industry that is so filled with money and opportunities to earn it, it is often
just easier to move right along to another venture and chalk up a previous failure
to happenstance, rather than to any real reason.

I was a party to one of these failures in the early 1990s. I helped to start a venture-
funded company whose stated goal was to make it absurdly simple to network
PCs together.2 The product worked well and was easy to use, but a tragic series of

48 / Part II: It Costs You Big Time

2 Actually, we said that we wanted to make it “as easy to network Intel/Windows computers as it
was to network Macintosh computers.” At the time, it was ridiculously simple to network Macs
together with AppleTalk. Then, as now, it was quite difficult to network Wintel PCs together.

self-inflicted marketing blunders caused it to fail dismally. I recently attended a
conference where I ran into one of the investors who sat on the doomed compa-
ny’s board of directors. We hadn’t talked since the failure of the company, and—
like veterans of a battlefield defeat meeting years later—we consoled each other
as sadder but wiser men. To my unbridled surprise, however, this otherwise
extremely successful and intelligent man claimed that in hindsight he had
learned a fundamental lesson: Although the marketing, management, and tech-
nical efforts had been flawless, the buying public “just wasn’t interested in easy-
to-install local area networks.” I was flabbergasted that he would make such an
obviously ridiculous claim and countered that surely it wasn’t lack of desire, but
rather our failure to satisfy the desire properly. He restated his position, arguing
forcefully that we had demonstrated that easy networking just wasn’t something
that people wanted.

Later that evening, as I related this story to my wife, I realized that his rationali-
zation of the failure was certainly convenient for all the parties involved in the
effort. By blaming the failure on the random fickleness of the market, my col-
league had exonerated the investors, the managers, the marketers, and the
developers of any blame. And, in fact, each of the members of that start-up has
gone on to other successful endeavors in Silicon Valley. The venture capitalist has
a robust portfolio of other successful companies.

During development, the company had all the features itemized on the feature
list. It stayed within budget. It shipped on schedule. (Well, actually, we kept
extending the schedule, but it shipped on a schedule.) All the quantitatively
measurable aspects of the product-development effort were within acceptable
parameters. The only conclusion this management-savvy investor could make
was the existence of an unexpected discontinuity in the marketplace. How could
we have failed when all the meters were in the green?

The fact that these measures are objective is reassuring to everyone. Objective
and quantitative measure is highly respected by both programmers and busi-
nesspeople. The fact that these measures are usually ineffective in producing
successful products tends to get lost in the shuffle. If the product succeeds, its
progenitors will take the credit, attributing the victory to their savvy understand-
ing of technology and marketing.

On the other hand, if the product fails, nobody will have the slightest motivation
to exhume the carcass and analyze the failure. Almost any excuse will do, as long
as the players—both management and technical—can move along to the next
high-tech opportunity, of which there is an embarrassment of riches. Thus, there
is no reason to weep over the occasional failure. The unfortunate side effect of not
understanding failure is the silent admission that success is not predictable—that
luck and happenstance rule the high-tech world. In turn, this gives rise to what

Chapter 3: Wasting Money / 49

the venture capitalists call the “spray and pray” method of funding: Put a little bit
of money into a lot of investments and then hope that one of them gets lucky.

x

Rapid-development environments such as the World Wide Web—and Visual
Basic before it—have also promoted this idea of simply iterating until something
works. Because the Web is a new advertising medium, it has attracted a multi-
tude of marketing experts who are particularly receptive to the myth of the
unpredictable market and its imperative to iterate. Marketers are familiar with
the harsh and arbitrary world of advertising and media. After all, much of adver-
tising really is random guesswork. For example, in advertising, “new” is the sin-
gle most effective marketing concept, yet when Coca-Cola introduced “New
Coke” in the mid-1980s, it failed utterly. Nobody could have predicted this result.
People’s tastes and styles change randomly, and the effectiveness of marketing
can appear to be random.

On the Web, the problem arises when a Web site matures from the online-
catalog stage into the online-store stage. It changes from a one-way presentation
of data to an interactive software application. The advertising and media people
who had such great success with the first-generation site now try their same iter-
ation methods on the interactive site and run into trouble, often without realiz-
ing it. Marketing results may be random, but interaction is not. The cognitive
friction generated by the software’s interactivity is what gives the impression of
randomness to those untrained in interaction design.

The remarkably easy-to-change nature of the World Wide Web plays into this
because an advertisement or marketing campaign can be aired for a tiny fraction
of the cost (and time) of print or TV advertising. The savvy Web marketer can get
almost instantaneous feedback on the effectiveness of an ad, so the speed of the
iteration increases dramatically, and things are hacked together overnight. In
practice, it boils down to “throw it against the wall and see what sticks.” Many
managers of Web start-ups use this embarrassingly simple doctrine of design by
guesswork. They write any old program that can be built in the least time and
then put it before their users. They then listen to the complaints and feedback,
measure the patterns of the user’s navigation clicks, change the weak parts, and
then ship it again.

Generally, programmers aren’t thrilled about the iterative method because it
means extra work for them. Typically, it’s managers new to technology who like
the iterative process because it relieves them of having to perform rigorous plan-
ning, thinking, and product due diligence (in other words, interaction design). Of
course, it’s the users who pay the dearest price. They have to suffer through one
halfhearted attempt after another before they get a program that isn’t too painful.

50 / Part II: It Costs You Big Time

Just because customer feedback improves your understanding of your product
or service, you cannot then deduce that it is efficient, cheap, or even effective to
toss random features at your customers and see which ones are liked and which
are disliked. In a world of dancing bears, this can be a marginally viable strategy,
but in any market in which there is the least hint of competition, it is suicidal.
Even when you are all alone in a market, it is a very wasteful method.

Many otherwise sensitive and skilled managers are unashamedly proud of this
method. One mature, experienced executive (a former marketing man) asked
me, in self-effacing rhetoric, “How could anyone presume to know what the
users want?” This is a staggering question. Every businessperson presumes. The
value that most businesspeople bring to their market is precisely their “pre-
sumption” of what the customer wants. Yes, that presumption will miss the mark
with some users, but not to presume at all means that every user won’t like it. This
foolish man believed that his customers didn’t mind plowing through his guess-
es to do his design work for him. Today, in Silicon Valley, there might be lots of
enthusiastic Web-surfing apologists who are willing to help this lazy executive
figure out his business, but how many struggling survivors did he alienate with
that haughty attitude? As he posted sketchy version after sketchy version of his
site, reacting only to those people with the stamina to return to it, how many cus-
tomers did he lose permanently? What did they want? It has been said that the
way Stalin cleared a minefield was to march a regiment through it. Effective? Yes.
Efficient, humanitarian, viable, desirable? No.

Chapter 3: Wasting Money / 51

The biggest drawback, of course, is that you immediately scare away all survivors,
and your only remaining users will be apologists. This seriously skews the nature
and quality of your feedback, condemning you to a clientele of technoid apolo-
gists, which is a relatively small segment. This is one reason why so few personal-
computer software-product makers have successfully crossed over into mass
markets.

I am not saying that you cannot learn from trial and error, but those trials should
be informed by something more than random chance and should begin from a
well-thought-out solution, not an overnight hack. Otherwise, it’s just giving lazy
or ignorant businesspeople license to abuse consumers.

The Hidden Costs of Bad Software

When software is frustrating and difficult to use, people will avoid using it. That is
unremarkable until you realize that many people’s jobs are dependent on using
software. The corporate cost of software avoided is impossible to quantify, but it
is real. Generally, the costs are not monetary ones, anyway, but are exacted in far
more expensive currencies, such as time, order, reputation, and customer loyalty.

People who use business software might despise it, but they are paid to tolerate
it. This changes the way people think about software. Getting paid for using soft-
ware makes users far more tolerant of its shortcomings because they have no
choice, but it doesn’t make it any less expensive. Instead—while the costs remain
high—they become very difficult to see and account for.

Badly designed business software makes people dislike their jobs. Their produc-
tivity suffers, errors creep into their work, they try to cheat the software, and they
don’t stay in the job very long. Losing employees is very expensive, not just in
money but in disruption to the business, and the time lost can never be made up.
Most people who are paid to use a tool feel constrained not to complain about
that tool, but it doesn’t stop them from feeling frustrated and unhappy about it.

One of the most expensive items associated with hard-to-use software is techni-
cal support. Microsoft spends $800 million annually on technical support. And
this is a company that spends many hundreds of millions of dollars on usability
testing and research, too. Microsoft is apparently convinced that support of this
magnitude is just an unavoidable cost of doing business. I am not. Imagine the
advantage it would give your company if you didn’t make the same assumption
that Microsoft did. Imagine how much more effective your development efforts
would be if you could avoid spending over five percent of your net revenue on
technical support.

Ask any person who has ever worked at any desktop-software company in tech-
nical support, and he will tell you that the one thing he spends most of his time
and effort on is the file system. Just like Jane in Chapter 1, users don’t understand
the recursive hierarchy of the file system—the Finder or Explorer—on Windows,
the Mac, or Unix. Surprisingly, very few companies will spend the money to
design and implement a more human-friendly alternative to the file system.
Instead, they accept the far more expensive option of answering phone calls
about it in perpetuity.

52 / Part II: It Costs You Big Time

You can blame the “stupid user” all you want, but you still have to staff those
phones with expensive tech-support people if you want to sell or distribute with-
in your company software that hasn’t been designed.

The Only Thing More Expensive Than Writing Software Is
Writing Bad Software

Programmers cost a lot, and programmers sitting on their hands waiting for
design to be completed gall managers in the extreme. It seems foolish to have
programmers sit and wait, when they could be programming, thinks the manag-
er. It is false economy, though, to put programmers to work before the design is
completed. After the coding process begins, the momentum of programming
becomes unstoppable, and the design process must now respond to the needs of
programmers, instead of vice versa. Indeed, it is foolish to have programmers
wait, and by the simple expedient of having interaction designers plan your next
product or release concurrently with the construction of this product or release,
your programmers will never have to idly wait.

It is more costly in the long run to have programmers write the wrong thing than
to write nothing at all. This truth is so counterintuitive that most managers balk
at the very idea. After code is written, it is very difficult to throw it out. Like writ-
ers in love with their prose, programmers tend to have emotional attachments to
their algorithms. Altering programs in midstride upsets the development process
and wounds the code, too. It’s hard on the manager to discard code because she
is the one who paid dearly for it, and she knows she will have to spend even more
to replace it.

If design isn’t done before programming starts, it will never have much effect.
One manager told me, “We’ve already got people writing code and I’m not gonna
stop.” The attitude of these cowboys is, “By the time you are ready to hit the
ground, I’ll have stitched together a parachute.” It’s a bold sentiment, but I’ve
never seen it work.

Lacking a solid design, programmers continually experiment with their pro-
grams to find the best solutions. Like a carpenter cutting boards by eye until he
gets one that fits the gap in the wall, this method causes abundant waste.

The immeasurability and intangibility of software conspires to make it nearly
impossible to estimate its size and assess its state of completion. Add in the pro-
grammer’s joy in her craft, and you can see that software development always
grows in scope and time and never shrinks. We will always be surprised during its
construction, unless we can accurately establish milestones and reliably meas-
ure our progress against them.

Chapter 3: Wasting Money / 53

Opportunity Cost

In the information age, the most expensive commodity is not the cost of building
something, but the lost opportunity of what you are not building. Building a failure
means that you didn’t build a success. Taking three annual releases to get a good
product means that you didn’t create three good products in one release each.

Novell’s core business is networking, but it attempted to fight Microsoft toe-to-
toe in the office-applications arena. Although its failed efforts in the new market
were expensive, the true cost was its loss of leadership in the networking market.
The money is nothing compared to the singular potential of the moment.
Netscape lost its leadership in the browser market in the same way when it
decided to compete against Microsoft in the operating-system business.

Any developer of silicon-based products has to evaluate what the most impor-
tant goals of its users are and steadfastly focus on achieving them. It is far too
easy to be beguiled by the myriad of opportunities in high tech and to gamble
away the main chance. Programmers—regardless of their intelligence, business
acumen, loyalty, and good intentions—march to a slightly different drummer
and can easily drag a business away from its proper area of focus.

The Cost of Prototyping

Prototyping is programming, and it has the momentum and cost of program-
ming, but the result lacks the resiliency of real code. Software prototypes are
scaffolds and have little relation to permanent, maintainable, expandable
code—the equivalent of stone walls. Managers, in particular, are loath to discard
code that works, even if it is just a prototype. They can’t tell the difference
between scaffolding and stone walls.

You can write a prototype much faster than a real program. This makes it attrac-
tive because it seems so inexpensive, but real programming gives you a reliable
program, and prototyping gives you a shaky foundation. Prototypes are experi-
ments made to be thrown out, but few of them ever are. Managers look at the run-
ning prototype and ask, “Why can’t we just use this?” The answer is too technically
complex and too fraught with uncertainty to have sufficient force to dissuade the
manager who sees what looks like a way to avoid months of expensive effort.

The essence of good programming is deferred gratification. You put in all of the
work up front, and then you reap the rewards later. There are very few tasks that
aren’t cheaper to do manually. Once written, however, programs can be run a
million times with no extra cost. The most expensive program is one that runs
once. The cheapest program is the one that runs ten billion times. However, any
inappropriate behavior will also be magnified ten billion times. Once out of the
realm of little programs, such as the ones you wrote in school, the economics of

54 / Part II: It Costs You Big Time

software take on a strange reversal in which the cheapest programs to own are
the ones that are most expensive to write, and the most expensive programs to
own are the cheapest to write.

Writing a big program is like making a pile of bricks. The pile is one brick wide
and 1,000 bricks tall, with each brick laid right on top of the one preceding it. The
tower can reach its full height only if the bricks are placed with great precision on
top of one another. Any deviation will cause the bricks above to wobble, topple,
and fall. If the 998th brick deviates by a quarter of an inch, the tower can still
probably achieve 1,000 bricks, but if the deviation is in the fifth brick, the tower
will never get above a couple dozen.

This is very characteristic of software, whose foundations are more sensitive to
hacking than the upper levels of code. As any program is constructed, the pro-
grammer makes false starts and changes as she goes. Consequently, the program
is filled with the scar tissue of changed code. Every program has vestigial func-
tions and stubbed-out facilities. Every program has features and tools whose
need was discovered sometime after construction began grafted onto it as after-
thoughts. Each one of these scars is like a small deviation in the stack of bricks.
Moving a button from one side of a dialog box to the other is like joggling the
998th brick, but changing the code that draws all button-like objects is like jog-
gling the 5th brick. Object-oriented programming and the principles of encap-
sulation are defensive techniques whose sole purpose is to immunize the
program from the effects of scar tissue. In essence, object orientation divides the
1,000-brick tower into 10 100-brick towers.

Chapter 3: Wasting Money / 55

Good programmers spend enormous amounts of time and energy setting up to
write a big program. It can take days just to set up the programming environ-
ment, before a line of product code is written. The proper libraries must be
selected. The data must be defined. The storage and retrieval subsystems must
be analyzed, defined, coded, and tested.

As the programmers proceed into the meat of the construction, they invariably
discover mistakes in their planning and flaws in their assumptions. They are then
faced with Hobson’s choice of whether to spend the time and effort to back up
and fix things from the start, or to patch over the problem wherever they are and
accept the burden of the new scar tissue—the deviation. Backing up is always
very expensive, but that scar tissue ultimately limits the size of the program—the
height of the bricks.

Each time a program is modified for a new revision to fix bugs or to add features,
scar tissue is added. This is why software must be thrown out and completely
rewritten every couple of decades. After a while, the scar tissue becomes too
thick to work well anymore.

Prototypes—by their very nature—are programs that are slapped together in a
hurry so that the results can be assayed. What the programmer exchanges in
order to build the prototype so speedily is the perfect squaring of the bricks.
Instead of using the “right” data structures, information is thrown in helter-
skelter. Instead of using the “right” algorithms, whatever code fragments happen
to be lying around are drafted for service. Prototypes begin life as masses of scar
tissue. They can never grow very large.

Some software developers have arrived at the unfortunate conclusion that mod-
ern rapid-prototyping tools—such as Visual Basic—are effective design tools.
Rather than designing the product, they just whip out an extremely anemic ver-
sion of it with a visual programming tool. This prototype typically becomes the
foundation for the product. This trades away the robustness and life span of the
product for an illusory benefit. You can get a better design with pencil and paper
and a good methodology than you can with any amount of prototyping.

For those who are not designers, visualizing the form and behavior of software
that doesn’t yet exist is difficult, if not impossible. Prototypes have been drafted
into the role of a visualization tool for these businesspeople. Because a prototype
is a rough model created with whatever prebuilt facilities are most readily avail-
able, prototypes are by nature filled with expedient compromises. But software
that actually works—regardless of how badly—exerts a powerful pull on those
who must pay for its development. A running—limping—prototype has an
uncanny momentum out of proportion to its real value.

56 / Part II: It Costs You Big Time

It is all too compelling for the manager to say, “Don’t throw out the prototype. Let’s
use it as the foundation for the real product.” This decision can often lead to a sit-
uation in which the product never ships. The programmers are condemned to a
role of perpetually resuscitating the program from life-threatening failures as it
grows. Like the stack in which the first 25 bricks were placed haphazardly, no mat-
ter how precisely the bricks above them are placed, no matter how diligently the
mason works, no matter how sticky and smooth the mortar, the force of gravity
inevitably pulls it down somewhere around the 50th level of bricks.

The value of a prototype is in the education it gives you, not in the code itself.
Developer sage Frederick Brooks says, “Plan to throw one away.” You will anyway,
so you might as well do it under controlled circumstances.

In 1988, I sold a program called Ruby to Bill Gates. Ruby was a visual program-
ming language that, when combined with Bill’s QuickBasic product, became
Visual Basic. What Gates saw was just a prototype, but it demonstrated some sig-
nificant advances both in design and technology. (When he first saw it, he asked,
“How did you do that?”) The Microsoft executive in charge of then-under-
construction Windows 3.0, Russ Werner, was also assigned to Ruby. The
subsequent deal we struck included having me write the actual program to com-
pletion. The first thing I did was to throw Ruby-the-prototype away and start over
from scratch with nothing but the wisdom and experience. When Russ found
out, he was astonished, angry, and indignant. He had never heard of such an out-
rageous thing, and was convinced that discarding the prototype would delay the
product’s release. It was a fait accompli, though, and despite Russ’s fears we
delivered the completed program on schedule. After Basic was grafted on, VB was
one of Microsoft’s more successful initial releases. In contrast, Windows 3.0
shipped more than a year late, and ever since it has been notoriously handi-
capped by its profuse quantities of vestigial prototype code.

In general, nontechnical managers erroneously value completed code—
regardless of its robustness—much higher than design, or even the advice of
those who wrote the code. A colleague, Clay Collier, who creates software for in-
car navigation systems, told me this story about one system that he worked on
for a large Japanese automotive electronics company. Clay developed—at his
client’s behest—a prototype of a consumer navigation system. As a good proto-
type should, it proved that the system would work, but beyond that the program
barely functioned. One day the president of the Japanese electronics company
came to the United States and wanted to see the program demonstrated. Clay’s
colleague—we’ll call him Ralph—knew that he could not deny the Japanese pres-
ident; he would have to put on a demo. So Ralph picked the president up at LAX
in a car specially equipped with the prototype navigation system. Ralph knew
that the prototype would give them directions to their offices in Los Angeles, but

Chapter 3: Wasting Money / 57

nothing else had been tested. To Ralph’s chagrin, the president asked instead to
go to a specific restaurant for lunch. Ralph was unfamiliar with the restaurant
and wasn’t at all confident that the prototype could get them there. He crossed
his fingers and entered the restaurant’s name, and to his surprise, the computer
began to issue driving instructions: “Turn right on Lincoln,” “Move into the left
lane,” and so on. Ralph dutifully followed as the president ruminated silently, but
Ralph began to grow more uneasy as the instructions took them into increasing-
ly unsavory parts of town. Ralph’s anxiety peaked when he stopped the car on the
computer’s command and the passenger door was yanked open. To Ralph’s eter-
nal relief, the valet at the desired restaurant had opened it. A smile broke across
the president’s face.

However, the very success of this prototype demonstration backfired on Ralph.
The president was so impressed by the system’s functioning that he commanded
that Ralph turn it into a product. Ralph protested that it was just a feasibility
proof and not robust enough to use as the foundation for millions of consumer
products. The president wouldn’t hear of it. He had seen it work. Ralph did as he
was told, and eight long years later his company finally shipped the first working
version of the product. It was slow and buggy, and it fell short of newer, younger
competitors. The New York Times called it “clearly inferior.”

The expertise and knowledge that Ralph and his team gained by building the
prototype incorrectly was far more valuable than the code itself. The president
misunderstood that and, by putting greater value on the code, made the entire
company suffer for it.

x

If you define the boundaries of a development project only in terms of deadlines
and feature lists, the product might be delivered on time, but it won’t be desired.
If, instead, you define the project in terms of quality and user satisfaction, you
will get a product that users want, and it won’t take any longer. There’s an old
Silicon Valley joke that asks, “How do you make a small fortune in software?” The
answer, of course, is, “Start with a large fortune!” The hidden costs of even well-
managed software-development projects are large enough to give Donald Trump
pause. Yacht racing and drug habits are cheaper in the long run than writing soft-
ware without the proper controls.

58 / Part II: It Costs You Big Time

4
The Dancing Bear

Even when survivors know that an interactive product makes them feel stupid,
they cannot generally point this fact out without appearing to whine and com-
plain, because they are surrounded by apologists. Nobody likes to complain, so
survivors feel strong social pressure to join the apologists, make excuses, and
blame themselves for their bad performance. But the instincts of the survivors
are better than their conscious efforts to compensate. The software does make
them feel stupid, and it doesn’t have to. If you are one of these people, you might
be asking yourself, “Just what does he mean by bad software? It gets the job done,
doesn’t it?” In the rest of this chapter, I’ll describe what I mean by bad.

If It Were a Problem,Wouldn’t It Have Been Solved by Now?

The sad thing about dancing bearware is that most people are quite satisfied
with the lumbering beast. Only when they see some real dancing do they begin
to suspect that there is a world beyond ursine shuffling. So few software-based
products have exhibited any real dancing ability that most people are honestly
unaware that things could be better—a lot better. Most people using spread-
sheets and word processors on modern computers imagine that all the problems
that a computer can solve have been solved, and solved adequately if not well.
But this is far from the truth. An infinity of information-handling jobs remains
unsolved and, in many cases, not addressed at all.

Consumer Electronics Victim

As consumers of software-based products, we are so used to accepting what we are
given that we cannot see what could so easily be ours. Engineers make products

that perform the tasks comprising the job but, lacking design, the collection of
tasks still doesn’t achieve the user’s goals.

I have owned various videocassette recorders for over 20 years. All of them have
had built-in facilities for delayed recording of shows, but none of these
machines—even the $1,500, top-of-the-line model—gives me confidence that I
will succeed. The interface the product presents to me is so hard to control, so
hard to read, so unclear about terminology and settings, and so filled with hid-
den switches and modes that my success ratio has been a consistent 40%. More
than half of the time, I find that I have recorded three hours of Brazilian soccer
instead of the PBS special that I wanted. After years of struggling, I have merely
conceded defeat and don’t even try to record TV shows anymore. So has every-
one in my family. So have all of my friends. We are survivors of dancing bearware.

In frustration, I go to the local Circuit City, my Visa card burning a hole in my
pocket. “Here’s a grand! Two grand,” I shout, “for the salesperson who can bring
me a VCR that I can use to record TV shows!” The shiny-suit set gather round and
proffer their wares. From bargain-basement VCR to most expensive, there is no
difference in interaction. Sure, there is a continuum of available features, but the
actual way that I control the device is the same across the board. In other words,
after 20 years of product maturation, I am no closer to being able to use the prod-
uct than before. This is dancing bearware at its worst.

When I point this out to the salesman, he defends the device by saying that it is
as good as it gets. He shows me where the brochure claims that it is “easy to use.”
Bill Gates once observed, with uncharacteristic cynicism, that the way you made
software user friendly was by making a rubber stamp and stamping each box
with the legend “USER FRIENDLY.” Unintentionally, his method has become the
computer industry’s real method.

60 / Part II: It Costs You Big Time

Pushbuttons don’t map well to a continuum such as time, but a rotating knob
does. If that VCR just had a simple rotating knob like my $11 Baby Ben alarm
clock, I could set the time and banish the blinking “12:00” forever. If the device
had a second knob to set the future record time, I could manage recording easi-
ly, too. As it is, by providing the flexibility to record 10 future shows, the device
becomes unusable for recording any one show.

Products that are dancing bearware surround us. They have sufficient features to
cover their cardboard boxes with callouts. They have enough options to fill the
magazine reviewer’s matrix of options with the word “Yes.” But they don’t make
users happy or more effective. Most users can’t make use of most of the options
and features. Those who do are apologists who joyfully change their work habits
to accommodate the idiosyncrasies of the software. They revel in the opportuni-
ty to tinker. They laboriously learn how to control new features that they will
never actually use.

How Email Programs Fail

While vendors wage pitched battles in the software markets, users cower in their
cubicles, fearful of wandering into no-man’s-land. Email vendors, for example,
add feature after feature to their checklists while still failing to address the fun-
damental needs of electronic communications.

New users of email are entranced by their novel ability to communicate directly,
simply, and asynchronously with anyone else. But solving the tasks doesn’t nec-
essarily solve the user’s goals, and that is why emailing remains in its primitive
state. The problem lies in the misunderstanding of what email is really used for.
Twenty years ago, getting any email was an important event. Because the medi-
um made it clear that the message was important, the message itself wasn’t any-
thing special. In fact, it was just a simple, discrete file of plain ASCII characters
with no special characteristics or relationships.

Today, we get a broad mixture of important and worthless emails. Any person
who uses email discovers quickly what a powerful and useful medium it is, and
her use of it rapidly escalates until she is running a significant part of her life and
business on it. Many email users get dozens or hundreds of email messages every
day. Most communications are sent either in response to some message, or in
expectation of a reply. These sequences of messages, called threads, bounce back
and forth between two or more people. On my computer, the ratio of threaded
messages to singletons is about 50 to 1. And yet not a single email program avail-
able today treats email messages as part of a sequence.1 They act as though
threads either don’t exist or are an insignificant attribute of only a few emails.

Chapter 4: The Dancing Bear / 61

1 Some email programs let the user manually construct and manage a thread, but the cure is
worse than the disease. Managing the feature is difficult, and threaded conversations are still
treated as exceptional.

It is easy to understand that viewing threads instead of messages lets the user
clearly see the connections and flow between individual messages and how they
form coherent conversations. When examined from a task or feature point of
view, all you can see is that you need to either send or reply.

It is not a particularly difficult programming problem to handle email as a series
of threaded conversations; it is just that it has never been done that way, and pro-
grammers are reluctant to innovate on the user’s behalf and managers are fear-
ful of forcing them down that unproven path.

Because the programmers view the software from the point of view of imple-
mentation, they see that messages are flowing back and forth and that users can
put messages into folders, so the programmers don’t see a problem. After they
get the bear moving, they declare it a dance and cease any further instruction.

Email is only one example of software products that don’t achieve the simple and
obvious goals that they should. We are so impressed by the dancing bears that we
fail to see the inadequacy of these products. Here are a few other examples.

How Scheduling Programs Fail

In a lawyer’s office, advertising agency, accountant’s office, or any other consulting
business, there is a large and unfilled need for a program that manages the alloca-
tion of people to projects over time. This three-sided structure is common to all
consulting companies, yet—amazingly—no program exists to provide this service.

From the programmer’s point of view, project management is a scheduling issue,
with the possible added twist of critical-path analysis, in which the start of one task
is dependent on the completion of a preceding task. All project-management pro-
grams available today are based on this academically pure assumption.2 The prob-
lem is that this vision of project management has very little to do with reality.

One fundamental assumption of project-management programs—that people
need help understanding how to perform their projects—is wrong. Most people
are pretty good at accomplishing their projects; after all, it’s their job. What they
really need help with is dovetailing multiple projects into the calendar.
Resources—generally meaning people—work on multiple projects simultane-
ously. They start and finish projects in an unbroken, often overlapping,
sequence, while other projects are temporarily waiting for their chance. It is not
good enough to allocate people to projects one at a time. They have to be
assigned to multiple projects at the same time.

To be useful, such resource-management programs must integrate the three
dimensions of the problem: time, projects, and resources. Instead, we get programs
that handle only two dimensions—time and resources—and their vendors insist

62 / Part II: It Costs You Big Time

2 I’m as guilty as the next programmer. In 1984 I wrote Computer Associates’ SuperProject, one of
the first project-management programs. It ignored the interaction of multiple projects just as all
of its successors have.

that this is all we really need. Variously called “traffic,” “project management,” or
“resource allocation,” this critical application segment simply does not exist.

What’s more, projects are constantly changing with respect to the plan. Any use-
ful project-management program must be able to flow and adapt to changes as
they spring up. A project-management system that doesn’t incorporate robust
and useful feedback mechanisms—so that the actual people doing the work can
tell the system the truth about what is happening now—isn’t very useful for real-
world management.

How Calendar Software Fails

Virtually everyone uses a calendar for business planning. Many calendar pro-
grams are available for sale, yet every one of them ignores the most simple and
obvious ways that people want to use calendars. Simply put, a calendar should
reflect how people use time to manage their lives. In general, we can divide our
time concerns into two types: deadlines and ongoing processes. A deadline is an
instant in time when something is due, such as a project milestone. An example
of an ongoing process is an overnight business trip. While I’m visiting Chicago for
two days, for example, I’ll have three meetings with various clients.

Every contemporary calendar program ignores deadlines and ongoing processes,
but instead is based on the establishment of appointments. An appointment is a dis-
crete meeting that begins at a certain time. Appointments are an important compo-
nent of time management, but they are by no means the only one. Not only are other
types of calendar entries ignored, but even appointments are misrepresented.

Tracking the start time of meetings is far more important than tracking the end
times, yet calendar programs don’t differentiate between the two. In the last 30
years, I’ve initiated and attended thousands of meetings. The starting time of
these meetings is extremely important. For most of the meetings, however, the
end time is not important, not needed, not specified, and not knowable in
advance. Yet in every calendar program I’ve ever seen, appointments have an end
time that must be specified in advance with the same precision, accuracy, and
diligence with which the meeting’s start time must be specified. The end time is
used in precise calculations of availability that cannot possibly be accurate and
are a significant distortion of reality. For example, if—using a typical calendar
program—you invite me to a meeting at 3:00 p.m., the program will reject your
invitation if I have a 35-minute meeting scheduled at 2:30 p.m. In the real world,
I can easily duck out of my previous meeting five minutes early.

Also, none of these programs factor in the time it takes me to get to a meeting. If
I need to be across town at 2:00 p.m., I have to head out the door at 1:30 p.m.
Should I set the appointment in the program for 1:30 or for 2:00? A well-designed
program should figure that out and help guide me to get going on time.

Chapter 4: The Dancing Bear / 63

There are quite a few other forms of common time-related entries that are not
accommodated. On any given day, I can have a dozen or more projects that are
current, while at any given instant I will actually work on only one. The typical
calendar program refuses to acknowledge this normal behavior and won’t let me
enter project-level items. I can’t get around the dancing bear.

Mass Web Hysteria

The World Wide Web has opened the awesome resource of the Internet to just
about anybody with a computer and a modem. The Web is a great tool, and it
offers fantastic value. Surprisingly, the most important change the Web has made
is to demonstrate just how easy it can be to use software. Many former apologists
find the Web so simple to use that they are demanding that all software be that
easy. In particular, they like the way browsers don’t make them go through the
annoying installation process.

Software executives, particularly corporate IT vendors, are eagerly leaping onto
this bandwagon. They, too, are swooning in love with browser-based software
because they can field their products without inflicting a nasty installation
process on the users. Before the Web, all software products required a complex
installation process; products that run in a browser do not. This seems to be—for
most software executives—a technological leap surpassing the invention of the
zipper.

But it is just a sham! There is no reason that any non-Web program—regardless
of its technical details—can’t have a completely invisible installation process. If
your computer required software installation, it would require it with or without
the browser. The only reason why nonbrowser programs require installation is
that this is the way programmers have always done things. Putting a bunch of
questions in the install program made their programming job easier. Early
browsers didn’t have facilities for asking those questions, so programmers mere-
ly shrugged their shoulders and stopped asking them. If further proof were need-
ed, programmers hardly even noticed the setback, while for many users it made
the Web the easiest platform they had ever used.

Installation aside, browsers are weak as kittens. Their interaction idioms are pre-
historic. Their technical structure is a primitive joke. They are as flexible as an ici-
cle. Any program running inside a browser must necessarily sacrifice enormous
power and capability. It infuriates me that software managers are eager to carve
the heart out of their applications by porting them to the Web to get the advan-
tage of no installation, when they could have the same installation-free product
merely by saying to their developers, “Get rid of the installation process, please!”

Users are demanding browser-based software because they don’t know any bet-
ter. Software developers, however, are going along with it for all of the wrong

64 / Part II: It Costs You Big Time

reasons. The Web is organized like the old Soviet Union, with central computers
dictating the actions of powerless desktop machines. Programmers—particular-
ly those in corporate IT departments—own the central computers, so, like the
Soviet commissars, they stand to benefit by this move. Instead of getting the no-
installation benefit for free, users are paying a huge cost in loss of long-term con-
trol over their information infrastructure.

What’s Wrong with Software?

Much of my first book was devoted to answering this question in detail. However,
I’d like to take a few pages to provide you with a glimpse of some interaction-
design principles that are effective in designing better software-based products.

Software Forgets

Every time you use a program, you learn a bit more about it, but the program
doesn’t remember a thing. Troy Daniels is our media producer. He practically
lives in Adobe Photoshop. Yet, every time he opens Photoshop, it has forgotten
everything and anything he has ever done with it. It doesn’t remember where he
keeps his image files, nor does it remember the typical work that he does with
them. Controls and functions that he uses constantly are given the same empha-
sis in the interface as controls that he has never used and likely never will.

Software Is Lazy

Most application programs just don’t work very hard for users. This is not to say
that they don’t work hard, but they often waste enormous effort trying to please
users by treating them the way programmers wish to be treated. It’s like giving
your wife an electric drill for her birthday. Just because you like electric drills
doesn’t mean that she does. If we could only get the programmers to put their
efforts behind something that the user really desires, we could make the user
much happier without working the programmer any harder.

Chapter 4: The Dancing Bear / 65

Software Is Parsimonious with Information

Just like the ATM that doesn’t tell me how much money is in my account, most
interactive products are very stingy with information. They also tend to camou-
flage the process—what is happening—as well as the information relevant to that
process. The typical user of an interactive system cannot tell the state of the sys-
tem until it blurts out a message indicating total failure. For instance, my new
clock-radio I described in Chapter 1, “Riddles for the Information Age,” fools me
by inadvertently concealing its state. The system seems to be working just fine,
but it isn’t, and there is simply no way of knowing.

If you ever find yourself with a pad of paper taking marginal notes as you work in
some program, you know that you are a victim of an information-stingy pro-
gram. It would be so easy for any program to put lots more helpful information
on the screen, but few programmers think about it. For example, when my email
program receives an incoming message, it displays a tiny envelope icon. The
same little envelope is visible whether I have one new message or a thousand. It
doesn’t give me any clue about the depth of my digital inbox. That parsimony
doesn’t let me see the big picture.

Software Is Inflexible

When people can see the big picture, they often tailor their actions to it, but soft-
ware rarely is so flexible. When a person sees that the stack of forms in his inbox
has grown to a depth of six inches, he knows that he must take some drastic
action to keep from getting swamped. The way almost all software programs are
written, they can only see the single form on the very top of the stack—never
beyond it. If a computer program’s inbox is stacked six inches or six feet deep—
metaphorically speaking—the computer still behaves as though it has only a sin-
gle form awaiting its ministrations. The converse is true, too. When there is only
one form in the human’s inbox, he might take advantage of the lull to help his
colleague with a taller pile. The computer would never do that.

When a manual, human process is computerized, the programmers (or analysts)
study the current behavior of users performing the manual job, and they distill
the tasks or functions out of it. These tasks are then programmed into the com-
puter. Typically, all of the nontask aspects of the job are simply lost.

In a manual, human system, the person in charge can pull her brother-in-law’s
form off the bottom of the stack and expedite its handling. Alternatively, the
annoying caller who behaves rudely gets his form moved way to the bottom of
the stack. This system flexibility is a key to maintaining social order. In comput-
erized systems, an inhuman rationality is imposed that wears away at the fabric
of civilization.

66 / Part II: It Costs You Big Time

Human users prefer systems that let them fudge things a little. They want to be
able to bump the pinball machine just a little bit—not enough to tilt the game,
but enough to have some positive influence on the outcome. This fudgability is
what makes our manual systems work so much better—albeit more slowly—
than our computerized ones.

Software Blames Users

When a program does have a problem, it invariably dumps it in the user’s lap,
and it typically blames the user for the problem, too. If a human being has an
accident, he will usually work to make up for it. For example, if I’m at a friend’s
house for dinner, and I spill someone’s glass of wine, I’ll use my napkin to stop
the wine from spreading, and then I’ll pour the person a new glass. Because I
show concern and helpfulness, no offense is taken, and the accident is clearly
seen for what it is.

Recently I used a vendor’s program to access the vendor’s own support site. For
some unknown reason, the program failed to make a connection. It issued an
error message telling me, erroneously, offensively, and entirely unhelpfully, that
I was not connected to the Internet. It was as if the program spilled my wine,
refused to clean it up, and then blamed me for it.

When an interactive product has a small problem, it often drops everything and
collapses into a useless, inert heap. When it collapses, it tends to cause a lot of
collateral damage. For example, an installation program will ask the user several
questions before it begins loading the new program onto the hard disk. In the old
days, if it ran out of disk space, it would just crash. Modern install programs are
hardly better. If they run out of room, they might issue an error message, but
then would stop running, forgetting all the settings you have meticulously keyed
in. If you clear out some space on your hard disk and run the install again, the
first thing it does is ask you all those questions again, instead of remembering
what you keyed in.

Software Won’t Take Responsibility

Confirmation dialog boxes are one of the most ubiquitous examples of bad
design—the ones that ask us if we’re sure that we want to take some action. In the
early days of desktop computing, programs would take irreversible actions the
instant the user entered a command. Typing in “erase all” would do just that,
immediately, irreversibly. As soon as the first user inadvertently erased his entire
disk, he no doubt complained to the programmer, and the programmer added
what he considered to be an adequate level of protection. After the user gives the
“erase all” command, but before the computer executes it, the program displays
a dialog box asking the user to confirm the erase instruction.

Chapter 4: The Dancing Bear / 67

It is all so logical, yet it is all so wrong.

A confirmation dialog box is a convenient solution for the programmer because
it absolves him from the responsibility of being the agent of an inadvertent era-
sure. But that is a misunderstanding of the real issues. The erasure is the user’s
responsibility, and she has already given the command. Now is not time for the
program to waver. It should go ahead and perform the requested task. The
responsibility that is actually being dodged is the program’s responsibility to be
prepared to undo its actions, even though the user requested them.

Humans generally don’t make decisions in the same way that computers do, and
it is quite normal and typical for a person to change his mind or to want to undo
a decision he made earlier. In the real world outside of computers, most actions
can be deferred, changed, or reversed. There is no reason that this can’t also be
true for software-based products, except that the programmers who create them
don’t think that way.

The ATM in Chapter 1 abdicates responsibility with confirmations, just as desk-
top software does. When I insert my card, the ATM demands that I acknowledge
that I have inserted my card. When I request a withdrawal, it demands that I
acknowledge that I wish to withdraw money. When I enter an amount, it
demands that I acknowledge that I have entered an amount. Why doesn’t the
machine just trust me? Why doesn’t it just proceed with the transaction?

It can give me the opportunity to extricate myself from the transaction at any
time in a much easier way. If the ATM merely offered a big red CANCEL button
that I could press at any time, it could assume that I am intelligent and capable,
and that I know what I want and what I am doing, instead of assuming that I am
stupid, incompetent, and confused about what I want.

I’m sure that some of the people who use the ATM are stupid and incompetent,
but nobody—not even a stupid and incompetent person—likes to be treated as
if he is stupid and incompetent. Besides, it never generates customer loyalty and
good feelings to treat your clients that way.

Fixing the problem isn’t difficult. The program should put the word “Withdraw”
at the top of the screen and leave it there throughout the transaction. Then it
should put the $1.50 charge up on the screen, and leave it there, too. Then it
should add the word “Checking,” along with my account number, balance, and
withdrawal limit, and leave them visible. Then, when I come to the amount ques-
tion, I am a fully informed consumer, instead of a confused victim of an interro-
gation. I can make the crucial decision: the amount, from a position of knowing
what is legal, available, ready, and appropriate.

A system that is forthcoming with useful information such as I have described is
very typical of how human systems work because humans need to see the big

68 / Part II: It Costs You Big Time

picture. Computers, on the other hand, need to see only a small bit of informa-
tion to take the next step in the process, and that is exactly how this interaction
is modeled: It assumes that the person standing there in the cold, punching but-
tons while her friends impatiently stamp their feet, is another computer, not a
warm-blooded human being with feelings.

x

Many newcomers to the world of computing imagine that software behaves the
way it does for some good reason. On the contrary, its behavior is often the result
of some whim or accident that is thoughtlessly propagated for years. By bringing
timely interaction design to the creation of software-based products, we can
change its behavior to something more pleasant and productive for humans.

Chapter 4: The Dancing Bear / 69

This page intentionally left blank

5
Customer Disloyalty

The real benefit of offering a well-designed product or service is the fierce loyalty
it generates in your clientele. In this chapter, I’ll show how that loyalty can buoy
your company through the more difficult passages of business evolution and arm
you against your competitors. I’ll also show how vulnerable you are without it.

Desirability

Larry Keeley of the Doblin Group has created an intriguing conceptual model of
three primary qualities in high-technology business. Keeley calls the first quality
capability, and it is what technologists bring to the party. They ask, “What are we
capable of? What is possible?” Engineers must know what can and can’t be built.
A product can’t be a success unless it can be built and made to work.

Keeley calls the second quality viability, and it is the contribution of business-
people. They ask, “What is viable? What can we sell?” Business executives must
know what can and can’t be created and sold at a profit. A product can’t be a suc-
cess unless it can support a growing company.

Because all successful high-technology businesses need a balance of both of
these qualities, the tension between their constituents is strong. Businesspeople
are totally dependent on technologists for their ability to create things that work.
And technologists are totally dependent on businesspeople to provide them with
the tools for their efforts. This makes for an uneasy symbiosis.

Programmers like to add features and functions to their products. They find a cre-
ative challenge in making the program’s inner workings run at a high level of effi-
ciency. It is an expression of capability, and some technologists can be happy without
ever shipping a viable product. If their employing company fails, they merely switch
jobs. Their individual success is independent of the success of the business.

On the other hand, businesspeople like to own market share and sell lots of prod-
uct. They find a challenge in motivating people to buy their product. It is an
expression of viability, and some businesspeople can be happy without ever
shipping a technically sophisticated product. Most businesspeople would be
quite satisfied to sell pet rocks, as long as they sold lots of them.

Although the two sides depend on each other, their divergent goals create a struc-
tural weakness in their relationship. It is as unstable as a two-legged stool, and this
is where Keeley’s third quality comes in, as a balancing third leg for the stool.

Keeley calls the third quality desirability, and it is what designers supply. They must
ask, “What is desired? What do people want?” Designers determine product behav-
ior that will make people happy and satisfied. A product can’t be a long-term suc-
cess unless it delivers power and pleasure to the people who must actually use it.

Design takes a product that can be built and performs well, and that can be dis-
tributed and sold profitably, and makes it a success by making it into something
that people really want. This third leg brings stability and converts an interesting
technological achievement into a long-term success.

Although it’s possible to draw out something desirable in an existing product,
Keeley believes—and I agree—that it is more sensible to first decide what cus-
tomers will find desirable, and then challenge the engineers and businesspeople
to build and sell it. This approach can yield significant advantages to the savvy
player. It pulls you out in front of the competition. While they are back in the
pack, reacting to each other’s competitive moves, wrestling with “possible?” and
“viable?” questions, you are out in clear air focusing on your customer’s as-yet-
unmet needs. Let your competitors fight among one another while you leap
directly to providing your customers what they desire most.

For example, in the early 1990s, Borland International was a serious player in the
Windows software market, and I had the opportunity to learn about its business
while I did some consulting there. The company was a remarkable marriage of
highly skilled businesspeople and razor-sharp software engineers. Seemingly every
day I was introduced to another impressive skunk-works project. A top-notch
businessperson and an equally bright software engineer headed each such project.

Each project had similar qualities: cool technology, clearly demonstrated market
need, obvious commercial potential, and bright people. At first, the effect of see-
ing so many talented people at work on such cool stuff was impressive. But after
a while, the true nature of these projects became apparent: Very few of these
awesome projects ever actually shipped. None had envisioned their customers.
Little revenue was generated and lots of money was squandered, and after five
years of this tug-of-war between capability and viability, Borland unsurprisingly
fell on hard times and was forced to lay off the majority of its people.

72 / Part II: It Costs You Big Time

Borland, like most contemporary high-tech companies, had no significant
design talent on its staff, and there was little understanding of the role of design
in either its business or its technical culture. Consequently, it was very difficult
for Borland to convert any of its capable, viable projects into desirable products.

Desirability is easy to confuse with need, but they are dramatically different. I
desire a six-week vacation in Bermuda, but I don’t need it. If I have gallstones, I
need gall bladder surgery, but it is not something that I desire. As a real-estate
agent, Sally needs to sell four houses this year. But Sally desires to make four fam-
ilies happy and comfortable. She needs to use the multiple-listing-service (MLS)
software to sell property, but she desires that the MLS program not make her feel
stupid.

In the short term, a person can be powerfully influenced by needs, but over the
long term, what a person desires can have a greater and more-profound effect.
People’s desires always have a way of emerging after their needs are satisfied.
When a person needs something, she will do what is needed to get it, but when
she desires something, she is loyal to it. She knows that it is a discretionary pur-
chase, and she will buy what makes her happy and will not necessarily judge
rationally. When a consumer desires a product or a brand, his loyalty is one of the
strongest forces in business.

Keeley’s tripod model shows us how to generate customer loyalty. A software
company can be viable by meeting real-estate agent Sally’s needs. But it shows us

Chapter 5: Customer Disloyalty / 73

that it can grow stronger, last longer, and lead an industry by satisfying Sally’s
desires. If the product merely meets Sally’s needs, it forces her to become either
an apologist or a survivor. Either way, although she needs to learn how to use it,
she won’t be happy with it, and she won’t recommend it to her colleagues.
However, if the product meets Sally’s desires, it becomes her friend and helpmate
in her everyday work. Sally becomes a fan, an enthusiast. Sally tells her col-
leagues and friends about the product. She is happy at her job and takes pride in
her work. If the MLS software gives Sally power and pleasure, it generates strong
customer loyalty within her.

A product that doesn’t have desirability designed into it might address a robust
market need, but any success it enjoys will be the success of the dancing bear.
The single greatest weakness of dancing bearware is that it never generates cus-
tomer loyalty. Without the long-term brand loyalty of satisfied customers, your
entire company is highly vulnerable to competition.

A Comparison

Three well-known high-tech companies illustrate the dynamics of Keeley’s tri-
pod model with their varied strengths and weaknesses: Novell, Microsoft, and
Apple.

A lack of customer loyalty is what typically brings a company to its knees over the
long term, despite the strength of any market need it fulfills. Novell is an excel-
lent example of this. In the early 1990s, the only practical way to network your
office’s desktop computers together was with Novell NetWare. NetWare—the
product—passed the capability test, and Novell—the company—passed the via-
bility test. The need for local area networks (LANs) was enormous, and no other
vendor had been able to satisfy it. Some companies, such as Banyan and Corvus,
had also solved the technical problem; they, too, met the capability test, but they
failed the viability test—their business structures failed. None of these compa-
nies made a desirable product, so although Novell prospered, only those cus-
tomers driven by a powerful immediate need installed a NetWare LAN, and it
remained an unloved dancing bear.

Novell grew fat and happy, but NetWare was egregiously designed, and installing,
changing, and maintaining it required an expensive, trained specialist. What’s
more, the network behaved rudely and inappropriately, frustrating users. Novell
failed to realize this, probably because millions bought NetWare, but its cus-
tomer base was motivated by need, not by desire.

In the early 1990s, Microsoft, 3Com Corporation, and even Apple began to ship
LAN products that were as capable as NetWare but that didn’t force customers
to depend so heavily on third-party experts for installation and—especially—
maintenance. Novell watched in mute horror while its leadership position

74 / Part II: It Costs You Big Time

evaporated. As soon as there was competition, Novell’s customers’ lack of loyal-
ty told. Novell’s business today consists largely of maintaining those customers
who were already technologically committed to the company. New customers
went elsewhere.

Novell was a company that was viable and extremely capable. It had powerful
technology and adequate business, but suffered from a complete lack of design.

x

Microsoft’s story is easy to tell. Its products are technically competent but rarely
innovative. Microsoft prefers to follow in the R & D footsteps of others.1 But Bill
Gates is arguably the most talented businessman of his generation, if not of the
twentieth century. He has a remarkable ability to extract success from nearly
every venture he makes, despite the obstacles.

Microsoft does little or no design, and its products are famous for making people
feel stupid. They are also famous for giving people good value with a robust fea-
ture set.

Many businesses and professionals are committed to using Microsoft products,
but most of them are driven to that point by economic imperatives and the lack
of alternatives. Few other companies can provide a full solution, as Microsoft
can. However, don’t confuse economic necessity with customer loyalty. Few
users are loyal to Microsoft.

Microsoft is a company that is somewhat capable but astonishingly viable.
Microsoft has adequate technology and superb business, which makes up for its
lack of design in the short term.

x

Customer loyalty can be an asset of fabulous value to a shrewd company, and
Apple is justly famous for its inclusion of design at all levels of the company.
Every aspect of Apple’s corporate identity, products, and marketing is infused
with a remarkable sense of design. The awards and honors that have been
heaped on Apple are far too numerous to count, but one look at its software,
hardware, packaging, documentation, or just the parties the company throws at
MacWorld, and you can see that design is close to its heart.

Devotion to design and attention to the details of interaction have created for
Apple a customer loyalty that borders on—and frequently transgresses into—
fanaticism. Macintosh users are the most loyal product owners in the entire
world of software-based products. No other product or manufacturer inspires
personal loyalty to the degree that Apple does. Consumers drive around with

Chapter 5: Customer Disloyalty / 75

1 An old industry joke says that Microsoft’s R & D department is in Cupertino, referring to the
Silicon Valley location of Apple’s Advanced Technology Group.

Apple bumper stickers and Apple license-plate frames on their cars, wear Apple
T-shirts, and sport Apple attitudes everywhere. They extol the virtues of Macs to
anyone who will listen. Even though in most situations a Wintel computer will
satisfy the person’s every need better, more cheaply, and faster than a Mac, the
Macintosh always seems to be the one chosen. At a recent design conference, the
only speaker who used a Wintel box instead of a Mac apologized profusely to the
audience for her disloyalty, as though she had sold out the one true computer of
anyone with the slightest sense of design.

Apple’s technological prowess is good but not great. From a capability point of
view, Apple is no better than Microsoft in innovation.

It took Apple a dozen years to lose the market leadership that Novell lost in one.
Few of Apple’s problems were attacks from outside. Instead, it suffered from a
staggering variety of self-imposed problems. For example, in the mid-1980s,
Steve Jobs, the company’s founder and visionary, was ousted and replaced by a
non-computer-using soft-drink executive who made an unending series of bad
business decisions. Products were overpriced and badly marketed. Third-party
software vendors were viciously snubbed, and the Mac was kept a closed sys-
tem—a strategy widely blamed for the dethroning of other market-leading plat-
forms, such as VMS, MVS, and OS/2.

All of these blunders would easily kill any normal company, but Apple’s use of
design to make the Macintosh desirable earned it unheard-of customer loyalty.
The Mac fulfilled the user’s needs only as well as Windows ever did, and in many
cases less well, but the fulfilling of needs isn’t the vital ingredient in market success.

After continued management thrashing, after spectacular financial losses, after
creating lackluster products, after squandering billions of dollars on wasted R &
D, after losing two-thirds of its market share, the company still has the most
fanatically loyal customer base of any computer company. This bestows many
formidable business advantages on Apple. Many of these advantages are difficult
to quantify, and none of them is tallied on the company’s financial statements,
but they are as real and as valuable to stockholders as a dividend check.

Apple’s design-inspired customer loyalty drives Mac fans to shut their eyes to the
many advantages available from other manufacturers. This reluctance to leap to
other vendors gives Apple time to react to the competition’s innovations.
Customer loyalty gives Apple the support to weather surprises brought about by
advances in technology. Novell’s slide began the moment a competitor—
Microsoft—offered a viable networking product. Novell’s huge market share
utterly failed to insulate it against the market forces. On the other hand, Apple—
which never owned more than 15% of the computer market—has steadfastly
resisted the onslaught of numerous powerful and cheap competing computers.

76 / Part II: It Costs You Big Time

Apple is a company whose products are desirable. Its commitment to design has
allowed it to overcome lackluster technology and survive calamitously self-
destructive behavior.

Had Novell added design to its mix, it could have overcome its weak business
moves. If Microsoft ever awakens to the value of interaction design, the compe-
tition might as well hang up its gloves and go home. Apple was as self-
destructive as a grunge-rock star, but if it can continue to clean up its act, it might
become viable again.

Business students at Harvard and Stanford are not usually taught the value of
design in their case studies. Although design is essential to the success even of
industrial-age products, its application is easier. Also, those industrial-age prod-
ucts are older, and their problems and solutions are well known. In the informa-
tion age—in the age of rapid innovation and extreme cognitive friction—design
is a primary necessity.

Time to Market

After a vendor has claimed a market by being the first to offer needed function-
ality, there is little advantage to hurrying to market with something equivalent.
You have already lost the time-to-market race, so no amount of raw speed can
ever gain that position for you. However, it is quite possible to take leadership
from the market pioneer with better design. Design makes your product desir-
able, and that will make your customers actively seek out your product instead of
the competitor’s, regardless of who got there first.

The company that first claimed the market had to make certain sacrifices to get
there. Chances are that design was an early casualty. This makes that company
quite vulnerable to design, even if it is not vulnerable to speed.

Being the first to add extra features, however, is not the same thing. Features do
not benefit users the way that good behavior and primary problem-solving abil-
ities do, and adding features won’t have the same beneficial effect that better
behavior will. In a marketplace of equally poorly designed products, added fea-
tures will not influence a broad segment of the market.2

Many markets consist of multiple vendors selling similar products, none of
which are designed, but all of which compete on features. Every time one vendor
introduces a new feature, all of the other vendors add that feature in their next
version. These markets are characteristically balkanized into many tiny seg-
ments. There is no dominant product or manufacturer. For example, the market
for personal information managers (PIMs) is fought over by more than a dozen
vendors. The same is true for cellular telephones.

Chapter 5: Customer Disloyalty / 77

2 As Geoffrey Moore points out in his excellent book, Crossing the Chasm, the additional features
have appeal only to the early adopters, not to the larger marketplace.

The battle between capability and viability can go on unabated for years with
users getting no relief. The only force that can convert a fragmented, feature-
dominated market into a more stable, design-dominated market is the imposi-
tion of some outside force. The outside force can be the Brobdingnagian
business acumen of Bill Gates, or it can be the studied application of design.

But all of Bill Gates’s hard work is still not making his products lovable. What’s
more, the average level of desirability of almost all high-tech products remains
about on a par with Microsoft’s, despite all of the intelligence, sincerity, and hard
work invested in them by their makers. In the next section, I’ll show that simple
but almost universal flaws in our process for creating software-based products
are causing this proliferation of unpleasant, undesirable, dancing-bearware
products.

78 / Part II: It Costs You Big Time

Part III
Eating Soup with a Fork

Chapter 6 The Inmates Are Running the Asylum

Chapter 7 Homo Logicus

Chapter 8 An Obsolete Culture

This page intentionally left blank

6
The Inmates Are Running the Asylum

Despite the widely varied nature of the products described in Chapter 1, “Riddles
for the Information Age,” they all share a common frustration-inducing unpleas-
antness. In this chapter, I’ll show that this recurrent pattern is due to the inad-
vertent hijacking of the industry by technical experts. Despite all of the
marketing rhetoric, the form of our products is really determined by the people
least equipped to determine it.

Driving from the Backseat

An article1 about the spectacular failure of high-tech startup company General
Magic is revealing. The author innocently touches on the root cause of the prod-
uct’s lack of success when she says that Marc Porat, the president, “launched his
engineering team to design the device of their dreams.” There is no irony in her
statement. It seems perfectly natural for the engineering team to do the design-
ing, yet that is precisely the cause of the problem. Later in the article, she quotes
one of the engineers as saying, “We never knew what we were building. We did-
n’t write specifications until 8 to 12 weeks before we finished.” Again, neither the
engineer nor the author notes the irony. The article seems to suggest that things
would have worked out better for General Magic if only the engineers had draft-
ed those specifications a month earlier.

No matter how early in the development process specifications are drafted, they
cannot substitute for interaction design. And no matter how hard they try, pro-
grammers cannot consistently arrive at a successful design. Not only are their
methods, training, and aptitude wrong for the job, but they are caught in a strong

1 Michelle Quinn, “Vanishing Act,” San Jose Mercury News West Magazine, March 15, 1998.

conflict of interest between serving the user’s needs and making their program-
ming job easier. Yet, in company after company, software engineers are allowed
to control the development process, often from start to finish. Sometimes their
control is overt, but more typically it is indirect.

I witnessed this subtle control at a very successful, midsized Silicon Valley com-
pany. At the meeting was the president, a very savvy, veteran businessman who
founded the company, along with the senior programmer responsible for build-
ing the product. The president showed us the product and demonstrated its
power, which we could clearly see, but we could also see that its power was hard
to use and its interface was overly complex. Our design team and I instantly rec-
ognized that the programmers had “designed” the product while they construct-
ed it in the way a beaver “designs” his dam while he builds it.

The president complained that a competitor with a weaker product was stealing
away market share. He was at a loss to explain why because he knew that his
product was more powerful. Although the president had called us in to help him
fight off the competition, he had given his senior programmer the authority to
take whatever action he deemed appropriate. It was clear to us that the product
badly needed some behavioral changes, and we presented our case to them
both. To us, it was a simple and straightforward redesign project that would take
a few months of effort and would make their product enormously more useful,
practical, powerful, and pleasurable—more competitive. However, the senior
programmer astonished us by asking that we not actually make any changes to
the product’s interaction. He considered it just fine the way it was. He felt that the
product’s market difficulties stemmed only from the company’s sales force not
being sufficiently well trained in the product’s use. He wanted us to prepare some
in-house promotional materials so their salespeople could be more effective. He
was in complete denial about his product’s shortcomings, despite the incontro-
vertible evidence that an “inferior” product was beating it.

Programmers devote so much of their time and energy to learning about soft-
ware that it was inconceivable to him that his users would not want to take the
time to understand his work. He was willing to accept that the problem lay with
his own company, but not with his role within it. He blamed the sales force for
not helping the customers learn about the product. He was willing to do the work
to solve the problem by accepting the task of developing the new training aids,
yet he was utterly oblivious to any hint of his own culpability in the product’s fall
from grace.

The high-handedness of this engineer was breathtaking. Not only was he blind-
ed by his own pride in his demonstrated ability to build a powerful product, but
he was blinding his boss—the president—to his obvious inability to design it in
such a way as to make their users happy.

82 / Part III: Eating Soup with a Fork

The company’s product was the first of its kind, pioneering a new method of
tracking manufacturing systems. The company was a fast-growing darling of
Wall Street with a spectacularly successful initial public offering of stock two
years before. The company had been praised in the business press and lavished
with awards from civic and business groups. It seemed that it was doing every-
thing right, and its market capitalization certainly attested to its success.

But success like that is watched just as closely by competitors as it is by its
investors, partners, and other supporters. The company’s competitors clearly
saw the strength of the market, and just as clearly saw the weakness of this com-
pany’s product. They could see how powerful and feature-packed it was, but they
could also see that it was a dancing bear. It delivered new functionality, but it did-
n’t make its users happy. It danced, but it didn’t dance well. It didn’t take a rock-
et scientist to spot the vulnerability of this company, so the competition copied
many of the features of the product but made its product easier to use. Its man-
agement reports could be understood and manipulated by managers, while the
older company’s reports were obscure and static. The upstart competitor had
stolen 60% of market share away from the older company with a product that
was less powerful!

The president’s own engineering background hampered him. It had helped him
to create his powerful product, but it now stood in his way, making it difficult for
him to see what an obstacle his senior programmer was. Deeply ingrained in the
software-nerd ethic, he saw his senior programmer’s attitude as perfectly nor-
mal, while our team was flabbergasted. The president was not in charge. His sen-
ior programmer was driving the entire business from the back seat.

Hatching a Catastrophe

My colleague Scott McGregor sent me the following story when I asked him if he
knew of any cases where development projects got out of control because of a
lack of design. His story is a tragic one, made ever more so by the fact that it is so
typical of our industry.

Scott is a very talented man, as his well-written story attests. He is also a skilled
designer with a fine pedigree—academic and practical—in both software engi-
neering and design. He joined a small, venture-funded start-up company in
Silicon Valley. The original founders of the company also had well-established
credentials, including several successful years at Apple. Scott invited me over one
afternoon to meet the founders and to pitch my company. The CEO and the vice
president of engineering showed our team what they were working on, and we
were impressed. The product idea was excellent. It exploited an aspect of pro-
ductivity software in a very clever way. The product was based on an appropri-
ately small amount of good technology that served a very real marketplace need.

Chapter 6: The Inmates Are Running the Asylum / 83

They had everything they needed to succeed—except for design. Here is Scott’s
story in his own well-crafted words:

Our CEO said we would beat others because we were so fast and spry,
and he went on to recommend with pride that we were following a
“ready, fire, aim” strategy to reach success before other companies were
even done aiming. Of course when we fired, it was obvious that we had
shot ourselves in the foot!

Although we met our schedule of delivering our 1.2 release on
December 31, we did it by saying that Release 1.2 is whatever is done at
5:00 p.m. on December 31. There was no fixed spec that engineers were
building from. Substantial new changes showed up for the first time
without any prior warning on December 29.

Earlier, I had suggested that we needed to follow a design method. I said
that we should begin by identifying who all the key users and other
stakeholders were and write up profiles on them, and then develop
statements of their goals and the tasks they would go through to accom-
plish those goals. Then, from those tasks, I suggested we could come up
with proposed visual representations of key objects and interaction
behaviors. Once we had done this, we could start building it.

Unfortunately, our management felt all that was a luxury we couldn’t
afford. We didn’t have the time for that. Instead, we visited many cus-
tomer prospects, and the CEO would relate our grand vision. People
loved it, but they wanted to know specifics. But each prospect had a dif-
ferent axe to grind in the specifics. One wanted a product for their sales
people, another for independent resellers, a third for customers. One
had many documents they wanted to manage, another was interested in
Web pages, etc. With each customer contact the definition for 1.2 grew,
becoming the union of all imagined product features.

Even more unfortunately, prospects would talk about some new thing
they wanted, but didn’t talk about features they already had in their
existing software or their browsers and which they took for granted.
Since these weren’t talked about they were never added to the product
spec, and they were never built.

Our newly hired vice presidents of sales and marketing could not get the
product to install on their systems for weeks. When they did get it to
work, it corrupted or lost all their data several times a day. Performance
continued to degrade. In a demonstration with no more than 100 data
views, performance was acceptable but slow, and that is all the develop-
ers ever tested. But real-world use called for over a thousand views, and
performance was downright snail-paced.

84 / Part III: Eating Soup with a Fork

There were three major screens in the product, but to simply edit a doc-
ument required jumping between each of the three screens several
times. Many single tasks required the user to make a dozen mouse clicks
with windows coming and going, and lots of switching between the
mouse and the keyboard.

In the end the product was impossible to learn, was unusable from a
cognitive and performance standpoint, had poor reliability and
destroyed data regularly. Although it was full of lots of “differentiating”
features, it was missing necessary basic features that were standard in all
other competing products.

As might be expected, by the end of February, the board took action, and
the CEO and VP of engineering were forced to step down.

This is of course just a single anecdote. It might appear to be an isolated
incident, except for the fact that this has happened repeatedly at compa-
nies where I have worked over the last 20-plus years.

One thing I’ve noticed is that you get what you measure and reward.
Prior to January, the only measures that our board had were dates and
the features promised. They never set out measures for minimum quali-
ty (e.g., mean time between data corruption, crashes, etc.) so quality was
sacrificed. There were never any measures for performance (e.g., num-
ber of seconds between the key press and something happening) so
these got arbitrarily long. There were never any measures about how
long it would take to learn something, or how often a user could work
without an error, so learnability and usability were sacrificed. But the
things that were measured—the schedule and the list of features—were
achieved, and because there wasn’t a full description of the features,
many of them were achieved in name only.

Scott is highlighting a fundamental truth: You can “expect what you inspect.” If you
repeatedly point to the calendar, your project will be on time, and if you ignore user
satisfaction, your users will be trod upon. Scott continues his narrative:

Investors repeatedly say, “We don’t have enough money to spend on
building a product we can’t sell, so we have to know our customers
before we start.” Yet engineering managers seem to constantly believe
that “We don’t have enough time and money to spend designing—we
could design forever and run out of money before we had a product to
build.” So in the end, they keep building new products rather than
improving the design—until the money runs out.

Chapter 6: The Inmates Are Running the Asylum / 85

Looked at with some detachment, the past few months seems sort of
like an old screwball comedy movie, or a soap opera without the
romance. And I can appreciate it all as such. Of course, if I only looked at
it that way, I wouldn’t have bothered to go into it in such detail.
However, I am passionate about this. I feel there is a moral imperative to
stop wasting people’s lives in useless activities.

In About Face you wrote how important it is to stop wasting users’ time. I
wholeheartedly agree. But that is just the tip of the iceberg. That only
happens when products actually get to market and are purchased. But
there are many more projects that are canceled before they get to market
or which fail to be purchased. Every engineer I’ve ever met cared deeply
that the products she worked on might never be used. But when the
resulting product was canceled or failed due to lack of design it meant
that their effort was wasted. And the world doesn’t have so much of
these skills that it can afford to waste them. That’s the moral imperative
that I see, not just “stop wasting users’ time,” but stop wasting every-
one’s, including programmers, time and lives.

It was very painful to watch in a Cassandra-like role—foretelling the
impending doom, but unheeded, and watching opportunities to avoid
the doom pass. I’ve come to the conclusion that operant conditioning is
so powerful that it allows a person properly conditioned to be impervi-
ous to reasoning based upon facts and figures.

I want to emphasize that Scott’s experience is not atypical. Here is a story from
another industry colleague, John Rivlin. John runs a small but very successful
software design and development firm in Palo Alto, California. He sent me this
story:

We always do detailed product designs prior to beginning any software
project. This particular case is no exception. We started the project by
creating a 15-page spec outlining the user interaction of the software we
were proposing to write. It included the overall assumptions of the proj-
ect so that we could move beyond the initial one-sentence description.
This is important because we work on a fixed cost estimate where we
assume the risk.

The client’s development manager running the project concurred with
the notion of writing a specification, and we agreed on a fixed cost to do
so. The specification was then completed and submitted to the develop-
ment manager’s boss, the chief technology officer. The response we got
was “Why have you spent so much time writing a spec? You have used
up a major piece of the budget. We don’t write specs here. We just go off

86 / Part III: Eating Soup with a Fork

and get the job done.” Upon further examination, it also became clear
that his assumptions about functionality were significantly different
than those of his development manager. This discrepancy was only
made visible by the “wasted” specification, but not even this persuaded
him that designing software is a good thing. This is the CTO of a publicly
traded technology company with annual revenues exceeding
$100,000,000. The inmates are truly running the asylum.

Although the fear that many development managers hold for design is irrational,
it is often based on very real personal experience. Previously, in the quest for bet-
ter products, managers have asked programmers to design interaction, and the
results have been painfully unproductive. Anyone untrained in interaction-
design methods tends toward self-referential design, in which one imagines him-
self as the user, and programmers naturally fall into this trap. Any group of
people designing self-referentially will have a devilish time getting to closure on
issues because they have no firm, common ground about users, and the process
drags on interminably.

Computers Versus Humans

Software is more like a bridge than an edifice. Although it runs on high-technol-
ogy microprocessors, it must be operated and used by mere mortals. Amid all the
attention and excitement about new technology, we overlook the incredible dif-
ferences between computers and the humans who have to use them.

For example, because computers have memories, we imagine that they must be
something like our human memories, but that is simply not true. Computer
memories work in a manner alien to human memories. My memory lets me eas-
ily recognize the faces of my friends, whereas my own computer never even rec-
ognizes me. My computer’s memory stores a million phone numbers with
perfect accuracy, but I have to stop and think to recall my own.

For software to be robust and strong, it must be written in perfect harmony with
the demands of silicon. For programmers to be professional, they must also work
in this same harmony.

For users to be happy and effective with software, it must be written in harmony
with the demands of human nature. The problem, of course, is that those human
demands are so radically different from the demands of silicon.

Clearly, one side of software—the inside—must be written with technical expert-
ise and sensitivity to the needs of computers. But equally clear, the other side of
software—the outside—must be written with social expertise and sensitivity to
the needs of people. It is my contention that programmers can do the former, but
it takes interaction designers to do the latter.

Chapter 6: The Inmates Are Running the Asylum / 87

Computer industry guru Jerry Weinberg says, “Once you eliminate your number
one problem, you promote number two.”2 For decades, the computer industry’s
number-one problem has been efficiency. Computers were—relatively speak-
ing—small, expensive, slow, and weak. We lionized the hacker-gods who could
make programs that operated as efficiently as possible so as to maximize the pro-
ductivity of the expensive mainframe computer. Essentially, it was far cheaper to
train people to deal with obscure—but efficient—software than it was to buy
more computers. The driving inevitability of plummeting computer costs has
utterly obliterated that problem. Today, it is far more expensive to pay for the
human costs of adapting to “efficient” software than it is to make the software
conform to the expectations of the humans.

The solution is obvious: Make the software serve the users. But standing in the
way is the culture we’ve so carefully built over the last 50 years that puts the hack-
er-gods in the driver’s seat. The community of software engineers is generally
willing to accept interaction design into the process. They say, “Sure, wait until
we’re done, and then do all the design you want.” Unfortunately, design has to
come before construction, so the programmer’s openness to design is largely
ineffectual. It’s like a cement-truck operator telling the carpenters they can build
all the forms they want as soon as he is done pouring the concrete.

Teaching Dogs to Be Cats

As a fallback position, software engineers are always willing to learn how to
design. I’m constantly asked to “teach me to design.” I applaud their open-
mindedness, but I despair for its effectiveness. Any software engineer good

88 / Part III: Eating Soup with a Fork

2 Gerald Weinberg, The Secrets of Consulting: A Guide to Giving & Getting Advice Successfully,
Dorset House, 1985, ISBN 0-932633-01-3.

enough to call herself a professional is well steeped in that literal/determinis-
tic/sequential way that silicon behaves—far too steeped to have much simulta-
neous effectiveness in the irrational/unpredictable/emotional world of humans.
I’m not saying that a programmer cannot become a designer; I’m just saying that
it is nearly impossible to do either task well while attempting both simultane-
ously.

Every software engineer thinks that he is different, that he is the one who can do
both. This is simply not true, as the failure of General Magic showed. Bill
Atkinson and Andy Hertzfeld headed General Magic’s development effort. These
two men were the lead software engineers on the Apple Macintosh and are
arguably the two most talented, creative, and inventive programmers ever. Their
simultaneous design and programming on the Macintosh was a success in 1984
(although Jef Raskin, who did no programming, contributed much of the design).
However, things changed quite a bit in the ensuing 14 years, and their methods
were no longer viable. In early 1993, I interviewed Andy Hertzfeld at General
Magic’s engineering headquarters—Andy’s living room in Palo Alto—and he
described his design/programming philosophy to me. I listened in amazement,
knowing that the odds would be severely stacked against him. Who but history
could second-guess an engineering talent as towering as Andy’s?

There is no doubt that the product General Magic had in mind was, and still is,
extremely desirable. There is no doubt that its technology was superb. There is no
doubt that Marc Porat’s ability to establish strategic partnerships and make busi-
ness deals was second to none. There is no doubt that the company was well
sired and well funded. So what caused its demise? I offer interaction design, or a
lack of it, as the smoking gun. Despite its stellar pedigree and awesome talent,
General Magic’s product was engineered and not designed.

The current thinking in the industry ignores this obvious deduction, as Michelle
Quinn’s article shows. The balance of the article seems to lay the product’s failure
on Porat’s hubris and ego, but there’s not a CEO in Silicon Valley who doesn’t have
hubris and ego in abundant quantities. They surely cannot be the reason for the
company’s failure.

Our high-tech culture is so inbred that we have little perspective on our own fail-
ures and foibles. You cannot be a successful reporter of high technology unless
you are a computer-savvy nerd—an apologist—yourself, so the reporters blame
our failures on personal demons, bad luck, and acts of God.

x

Software programming is not a true profession, like law, architecture, or medi-
cine, so titles in our industry are very unreliable. Several of my friends who are

Chapter 6: The Inmates Are Running the Asylum / 89

top-notch computer programmers call themselves “software designers,” a title
that is not truly correct. If you ask Andy Hertzfeld, he will willingly accept the
sobriquet “designer.”

Many programmers believe themselves to be talented designers. In fact, this is
often true, but there is a tremendous difference between designing for function
and designing for humans.

Even if programmers haven’t acquitted themselves well of the design task, they
have at least kept many projects from unraveling completely. When a usurper
approaches, they are careful not to let control get into the hands of irresponsible
people. Most programmers are extremely responsible, and they often view out-
side consultants, marketers, and managers as flighty and incompetent.

Programmers have sensitive bull detectors, and all it takes to inure them to out-
side interference is a couple of episodes in which marketers or managers
demand changes “to make the interface better” that turn out to be ineffective.
Whether these changes are good or bad, they force the programmer into extra
work. Each change also degrades the quality of the code because each change
leaves behind inevitable splices and scars in the code. When someone declares
that the program will be easier to use if all of the OK buttons are placed in the
upper-right corner of each dialog box, the programmer’s experience and wisdom
tells him that it is just a waste of time—his time. And he is correct in his fear.

After a few of these wild-goose chases, they begin to treat all outside design
direction merely as advice. It’s as though the builders have had to rip out too
many ill-conceived walls, so now they look at the blueprints with a jaundiced eye
and resolve that they won’t take them too literally.

x

Software engineers draw diagrams on the whiteboard showing the back-end
data-handling code and the front-end user-interface code as two separate boxes.
But there is really no difference in the code. It’s not like one wall is made of gran-
ite blocks, mortared in place by a journeyman mason, while the adjoining wall is
made of wooden lumber nailed in place by carpenters and covered with
Sheetrock screwed in place by union drywallers. The assignments, pointers, and
function calls are all pretty much the same, whether the software is responding
to a user’s mouse movement or reorganizing a database deep inside the pro-
gram’s guts. The same programmer often writes the system internals and the
user-interaction code. She uses the same language, libraries, tools, and tech-
niques to code it. Who is to say where the dividing line is between software for
computers and software for users?

Programmers are used to apportioning the programming tasks on functional
lines, and it is not at all clear to them why taking one slice out of the whole

90 / Part III: Eating Soup with a Fork

program, crossing many functional boundaries, and turning it over to an out-
sider is a good thing. It is hard for engineers to see that the C code used to inter-
act with a database is hugely different from the C code used to interact with a
human.

x

My colleague Jim Gay told me the following story. It illustrates how easy it is for
smart engineers to pick the problems that amuse and interest them, rather than
choosing to solve the problems that really need solving.

TransPhone was a start-up company in the e-commerce arena. Our
basic idea was to build a simple-to-operate consumer screen phone to
enable Internet commerce. Critical to the success of our model was a
simple, easy-to-use interface with which noncomputer people would be
comfortable. TransPhone turned to an interaction-design firm for help
in defining this interface.

Our attitude was that we had the user interface almost done, but it could
use a little tweaking. However, in the very first meeting, the designers
repeatedly stated that they had no idea what it was that we were actually
trying to do, or who we were trying to do it for. We believed that they
were trying to oversimplify a problem that was, in reality, quite compli-
cated. The meeting ended with the designers assigning us the task of
more concisely defining our objectives. We, on the other hand, were
beginning to feel that the designers did not have a clue what it was we
were trying to do.

We proceeded to build an improved prototype to show to prospective
partners, but the TransPhone device just didn’t click with our prospects.
We continued to assume that it was just our demo that was not com-
pelling enough. TransPhone ceased operations a few weeks after the sec-
ond prototype was completed.

Recalling that original meeting with the interaction designers, it is now
clear that they homed in on the critical problem facing us in the first few
minutes of our initial meeting: What was our objective, and who were we
doing it for? This question was never adequately answered. Had we
addressed it at the beginning, perhaps one of two things would have
happened: Either we would have come up with an answer (and with it a
chance for success), or we would have been unable to come up with the
answer (in which case we could have minimized our investor’s losses).

The lesson in this experience is that product design is a critical part of
the business cycle. Our failure to address fundamental design issues in

Chapter 6: The Inmates Are Running the Asylum / 91

favor of pressing forward with engineering and sales ultimately doomed
our company. In hindsight, when we couldn’t find prospects that truly
understood what we were trying to do, we should have revisited the
basic assumptions of our business. I believe that this would have most
likely led to a different, and simpler, product. Instead, we added more
bells and whistles that probably made our value proposition more
obscure than it already was.

Just like the General Magic guys, Jim found out the hard way that cool technolo-
gy and a red-hot market can’t overcome the dead weight of ill-conceived code. It’s
not enough to bridge the gap between technology and need. Somebody needs to
make humans want to cross that bridge.

Most of our technological history is an industrial one, and both the problems and
the solutions that define it are on a human scale. There is friction between
humans and mechanical devices, but there is also a balance between them. In
the information age, as computers invade our lives, and more and more products
contain a chip of silicon, we find that what lies between us humans and our
devices is cognitive friction, which is something new and something that we are
ill prepared to deal with. Our engineering skills are highly refined, but when we
apply them to a cognitive-friction problem, they fail to solve it. Over the years,
our software engineers have gotten better and more skilled, yet their track record
in making software powerful and pleasurable remains about the same as it has
always been.

I believe that our failure to solve the problem with engineering methods is proof
that engineering methods cannot solve the problem. I’ll go further and state that
engineering methods are one of the root causes of the problem. Asking engineers
to fix the problem is like asking the fox to solve the henhouse security problem.

92 / Part III: Eating Soup with a Fork

7
Homo Logicus

With my tongue firmly planted in my cheek, I call programmers Homo logicus: a
species slightly—but distinctly—different from Homo sapiens. From my own
observations, I have isolated four fundamental ways in which software engineers
think and behave differently from normal humans, and I will discuss them in
detail in this chapter. Programmers trade simplicity for control. They exchange
success for understanding. They focus on what is possible to the exclusion of
what is probable. And they act like jocks.

The Jetway Test

I use a humorous litmus test that I call the Jetway Test to highlight the difference.
To perform this test, all you have to do is visualize yourself walking down the

corridor of a Jetway as you board an airliner. As you step onto the aircraft, you
have a choice of going left into the cockpit or right into the cabin.

To the left, the cockpit is a kaleidoscope of complex controls and gauges, with
every surface covered with instruments, knobs, and levers. To the right, in stark
contrast, lies the cabin, where everything is gently rounded, smooth, and a calm-
inducing shade of beige.

To turn left into the cockpit means that you must learn and master all the com-
plicated technical stuff. You must know what every one of those instruments
means. In exchange for understanding all that complexity is the certain knowl-
edge that you are in control and that you are responsible for landing the aircraft
at the right place.

To turn right into the cabin means that you relinquish all authority over the
flight. In exchange for abdication of control, you get to relax, knowing that you
will arrive at the proper destination without dealing with anything more complex
than turning the reading light on and off.

94 / Part III: Eating Soup with a Fork

The Jetway Test neatly divides the human race into two categories: Those who
turn left strongly desire to be in control and to understand how the technology
works, and those who turn right strongly desire to simplify their thinking and to
have confidence in the success of the flight. Programmers—Homo logicus—
always want to turn left. Users—Homo sapiens—always want to turn right.

The Psychology of Computer Programmers

Because our goal is to create software-based products that are both powerful and
pleasurable for human users, understanding the psychology of the user might
seem a natural prerequisite. This is, of course, true, but it obscures another more
important, but far less obvious, point. Determining the solution and getting that
solution implemented are two very different actions. I’d rather have a partial
design actually built than have a better design sit in useless, dusty majesty on the
shelf. To get our designed products actually created and into the hands of users,
a far more important prerequisite is to understand the psychology of the
builders—the programmers.

Nothing will change unless we can influence the software developers. Even if the
programmers agree that the user should be better treated—and they usually
do—that doesn’t necessarily mean that they will do what is necessary to actually
accomplish this goal. You are not going to get them to change just by asking
them. In order to effect a real solution, we need insight into their thinking so that
we can figure out how to motivate them to create interaction that is good for
users. For the interaction designer, understanding psychology is very important,
but it must include the psychology of the software engineer as well as the psy-
chology of the user.

The implication of this is clear: Programmers are somehow different from ordi-
nary people. Their stereotypical behavioral differences have been the subject of
jokes for years: the social awkwardness, the pocket protectors, the bookish man-
ner. Those are just the easily noticeable—and easily ridiculed—surface differ-
ences. The really substantive differences are not only far subtler, but they have a
more profound effect on the cognitive friction–rich interactive products that
programmers build.

Many observers of the computer industry have taken pains to point out these dif-
ferences. Robert Cringely calls programmers “stinking gods among men,”
referring simultaneously to their superior attitudes and their hygiene habits.

Po Bronson is another shrewd observer and talented writer. He has cast his sharp
eye and sharper wit onto the high-tech world. In a parody of Steven Covey, he has
developed what he calls the Seven Habits of Highly Engineered People. They are
remarkably revealing in their hyperbole:

1. They will be generous in their selfishness.
2. Blindness improves their vision.
3. They’ll not only bite the hand that feeds them, but they’ll bite their

own hand.
4. They will try very hard to maintain the image that they care very little

about their image.

Chapter 7: Homo Logicus / 95

5. They’ll keep fixing what’s not broken until it’s broken.
6. “I didn’t answer incorrectly, you just asked the wrong question.”
7. They consider absence of criticism a compliment.

Programmers Trade Simplicity for Control

Homo logicus desire to have control over things that interest them, and the things
that interest them are complex, deterministic systems. People are complex, but
they don’t behave in a logical and predictable way, like machinery. The best
machinery is digital, because it can be the most complex, sophisticated, and can
be easily changed by the programmer.

Controlling humans is less appealing from the programmer’s point of view. In the
novel The First $20 Million Is Always the Hardest,1 author Po Bronson has his pro-
grammers play practical jokes on humans to demonstrate that they can control
them, but the programmers take more satisfaction in making the computers
jump to their bidding.

The price of control is always more effort and increased complexity. Most people
are willing to make a moderate effort, but what differentiates programmers from
most people is their willingness and ability to master extreme complexity. It is a
satisfying part of the programmer’s job to know and manage systems composed
of many interacting forces. Flying airplanes is the archetypal programmer’s
avocation.2 The cockpit control panel of an airplane is packed with gauges,
knobs, and levers, but programmers thrive on these daunting complexities.
Homo logicus finds it fun and engaging, despite (because of!) the months of rig-
orous study required. Homo sapiens would rather ride along as passengers.

For Homo logicus, control is the goal and complexity is the price they will pay for
it. For normal humans, simplicity is the goal, and relinquishing control is the
price they will pay. In software-based products, control translates into features.
For example, in Windows 95, the Find File function gives me lots of control over
the procedure. I can specify which area of my disk to search, the type of file to
search for, whether to search by filename or by file contents, and several other
parameters. From a programmer’s point of view, this is very cool. For some extra
up-front effort and understanding, he gets to make the search faster and more
efficient. Conversely, the user’s point of view is less rosy because he has to spec-
ify the area of the search, the type of file to search for, and whether to search by
name or contents.

96 / Part III: Eating Soup with a Fork

1 Po Bronson, The First $20 Million Is Always the Hardest, Avon Books, New York, New York,
1997, ISBN: 0-380-73155-X.

2 All right, I confess: I’m a private pilot. Quintessential programmer-nerd Gary Kildall took me
flying for the first time in his Piper Archer in 1979, and in that short flight I became hooked. The
computer programmer in me loves all of that pointless complexity.

Homo sapiens would gladly sacrifice the odd extra minute of compute time if
they didn’t have to know how the search function works. To them, each search
parameter is just another opportunity to enter something incorrectly. The prob-
ability of making a mistake that causes the search function to fail is higher, not
lower, with the added flexibility. They would gladly sacrifice all that unnecessary
complexity, control, and understanding in order to make their job simpler.

Programmers Exchange Success for Understanding

Homo logicus are driven by an irresistible desire to understand how things work.
By contrast, Homo sapiens have a strong desire for success. Programmers also
want to succeed, but they will frequently accept failure as the price to pay for
understanding.

An old joke about engineers gives some insight into this need to understand:

Three people are scheduled for execution: a priest, an attorney, and an
engineer. First, the priest steps up to the gallows. The executioner pulls
the lever to drop the hatch, but nothing happens. The priest claims
divine intervention and demands his release, so he is set free. Next, the
attorney takes a stand at the gallows. The executioner pulls the lever, but
again nothing happens. The attorney claims another attempt would be
double jeopardy and demands release, so he is set free. Finally, the engi-
neer steps up to the gallows and begins a careful examination of the
scaffold. Before the executioner can pull the lever, he looks up and
declares, “Aha, here’s your problem.”

Chapter 7: Homo Logicus / 97

Understanding the problem with the scaffold was more compelling than staying
alive.

When I lecture to groups of computer programmers, I ask for a show of hands of
how many in the audience, when they were a child, took a clock apart to see how
it worked. Typically, two-thirds of the audience will raise their hands. I then ask
how many of them ever got that clock back together again, and all but a few
hands will drop. I then ask how many considered this experiment to be a failure,
and most of the audience will laugh as they realize that they got full satisfaction
out of breaking their clocks. Homo logicus want to understand how that clock
works—that is their goal—and they are quite willing to sacrifice a working clock
to achieve that goal. Homo sapiens, on the other hand, like to have clocks that
work. Their goal is to be able to know what time it is, and in exchange, they will
forego knowing what makes the clock tick.

98 / Part III: Eating Soup with a Fork

Interaction designer Jonathan Korman points out:

Most people cannot understand the degree to which computers fascinate
programmers. The difficulties of learning about computers only
strengthen the programmer’s sense of satisfaction. Their interest runs so
deep that it never occurs to them that others might not feel the same
way, so they interpret others’ frustration as stemming from inability
rather than from disinterest.

Programmers’ drive to understand makes them instinctively create interaction
that closely follows the internal functioning of the product. Instead of making the
program mirror the end user’s goals, it reflects the working of the mechanism

within. Programmers are naturally comfortable with it because when they
understand how the software works, they understand how to use it. We call this
common interaction style implementation model. For example, computer docu-
ments are permanently stored on disk drives, but programs can only modify
documents while they are temporarily stored in RAM. Programmers are very
comfortable with this technical distinction, so the interface to their programs
reflects the two storage types. Exposing the two types to the user is as unneces-
sary as putting a switch on the dashboard of your car to force you to select
between radial and bias-ply tires.

Normal humans are quite content not to know how something works, even
though they use it and depend on it in their everyday lives. They see implemen-
tation-model interfaces as imposing an unnecessary burden of understanding
on them. Programmers find such attitudes inscrutable.

Programmers Focus on What Is Possible to the Exclusion of
What Is Probable

Programmers share the mathematician’s abstract view of complex systems, so it
is not surprising that they look at things differently from most people. Here’s
what I mean: Imagine that you flipped a coin 1,000,000 times, and 999,999 times
the coin landed heads up. To a mathematician, the assertion that “the coin
always lands heads up” is false. That single tails-up result disproves the assertion.
In mathematical terms, a proposition is true only if it is always true, and this way
of thinking is very familiar and reasonable to Homo logicus because, not surpris-
ingly, it’s the way computers behave.

On the other hand, most normal people will declare the proposition true because
of the preponderance of heads to tails. They also will claim that not only is the
proposition true, but it is overwhelmingly, convincingly, indisputably true. The
odds are a million to one! In the context of human behavior, million-to-one odds
are definitive. They are odds beyond consideration. There’s a better chance that
I will get hit by lightning, accidentally fall off a bridge, or win the lottery than that
the coin will land tails up.

The probability that the proposition is true is enormous, and Homo sapiens live
in a world of probabilities. However, there is always that possibility that the
proposition is false, and programmers live in the world of possibilities. If it might
happen, it is something that must be considered. In the world of software—the
world of precisely articulated propositions—enormously remote possibilities are
issues that cannot be ignored.

Chapter 7: Homo Logicus / 99

Programmers call these one-in-a-million possibilities edge cases.3 Although these
oddball situations are unlikely to occur, the program will crash whenever they do
if preparations are not made. Although the likelihood of edge cases is small, the
cost for lack of preparedness is immense. Therefore, these remote possibilities
are very real to the programmer. The fact that an edge case will crop up only once
every 79 years of daily use is no consolation to the programmer. What if that one
time is tomorrow?

Arguably, the single most important difference between amateur programmers
and experienced professionals is the journeyman’s obsessive emphasis on prepar-
ing for edge cases. This fanatic preparation for the possible has the inevitable con-
sequence of obscuring the probable. This results in products whose interaction is
encrusted with little-used or never-used controls that obscure the frequently used
ones. Users’ most common complaint is that software is hard to use because it has
too many options all jumbled into the interface without any discrimination.

The profusion of unneeded and unwanted features brought about by the pro-
grammer’s possibility thinking is an excellent example of what Po Bronson
means by programmers being “generous in their selfishness.” They give us lots of
what they want.

x

A common joke among programmers is that there are only three numbers: 0, 1,
and infinity. In the world of computer processing, this makes a lot of sense. In the

100 / Part III: Eating Soup with a Fork

3 They are also variously called corner cases, special cases, and boundary conditions.

binary world inside a computer, a process either happens or it doesn’t—1 or 0. If
any process can happen more than once, that means it can happen an infinite
number of times.

Setup and shut-down code is written so that it can be executed only once. If the
program tries to execute it a second time, the computer will probably crash, or at
least provoke some major errors. Other parts of programs are designed for more
than one execution. Almost any part of any program that can be executed a sec-
ond time without crashing can also be executed as many times as desired. For
the code—for the programmer’s Homo logicus point of view—there is little dif-
ference between two executions and two million or two billion executions.

Humans are different. They understand 0 and 1, but they also have a firm grasp
on 2, 7, and 31. Most humans have a harder time visualizing a million things than
they do visualizing 300 things. A typical human does things in quantities that are
in a programmer’s no-man’s-land. Enthusiastic amateur skiers, for example,
might go skiing a dozen weekends each season. Over a span of 40 years of active
skiing, that is fewer than 500 times in a lifetime! Modern digital computers can
process 500 things in the blink of an eye. An enthusiastic user of any program will
still only use it a few thousand times, yet programmers still think in terms of an
infinite number of occurrences.

Good programmers purposefully turn a blind eye to practical numbers such as
500 because doing so ensures that their programs will be better able to handle a
possible 501st occurrence. This is what Po Bronson means when he says,
“Blindness improves their vision.”

Programmers Act Like Jocks

Probably the most surprising thing about good programmers is that they act like
jocks. I use the term very consciously because it is freighted with overtones of
immaturity, egotism, and competitiveness, as well as physical strength and coor-
dination.

The term jock reminds me of high-school physical-education classes. Some
teenaged boys are gifted with bigger, stronger musculature and well-coordinated
bodies. These boys excel in organized athletics, but they also find that they can
dominate the smaller, weaker kids in unofficial contests of strength and agility.
These jocks not only dominate on the diamond or gridiron, but they dominate
the weaker boys in the locker room and on the school playground, outside of
sanctioned competition.

A 6-foot-tall, 17-year-old boy has the strength of a man but lacks the man’s matu-
rity. This man-boy is unsympathetic to those who are weaker than he is. He is in the
throes of adolescence and is as yet untempered by the strictures of adult society.

Chapter 7: Homo Logicus / 101

His attitude is brutish and simple: Keep up or die. His actions say: “If you can’t do
what I do, then you are a worthless loser.” Any kid on the playground who can’t
compete physically is rejected and is not considered acceptable. Because the jock
has the physical strength to dominate, he does.

An interesting thing happens to this jock dynamic, however. Once out of school
and into the real world, the ability to physically dominate another person quickly
loses its power and usefulness. In high school, if the jock felt threatened by a
chubby kid with glasses, a couple of well-placed fists and the haughty laughter of
the varsity team served to put the kid in his place. In the world of business, fists
and taunts can no longer be used. It is not acceptable behavior to administer wed-
gies or snap towels in the conference room, nor is it effective. Although the jock
might still have the physical power to dominate another, weaker, person, doing so
can only backfire if the weaker person is his peer, supervisor, or manager.

The jocks, who were so immature in high school, find themselves learning a very
humbling lesson. When they emerge into the wider world, they find their wings
are clipped by society, and they learn to coexist successfully with people of less-
er physical ability. Jocks are well represented in business, and they tend to do
well in it, overall. They make the transition successfully, if not willingly or happi-
ly. They retain their natural sense of competition, but they have now earned a
level of maturity and selflessness that makes them good citizens.

102 / Part III: Eating Soup with a Fork

Programmers are just like jocks. When programmers were in high school, many
of them lacked the physical coordination of the jocks, but they were gifted with

quicker, stronger minds and well-coordinated mental abilities. They excelled in
some organized activities, such as forensics, lit club, and the chess team.

In the throes of adolescence, their gifts aren’t worth as much as muscle. They are
easily dominated on the school playground by stronger boys. A skinny 17-year-
old boy who has a man’s mastery of calculus, physics, and computer science
might still be a physically weak boy ignored on the gridiron and rejected in the
dating game. We call this kid a nerd.

This nerd-boy is unsympathetic to those who are weaker than he is. Privately—
for he doesn’t have the physical strength to do so publicly—he laughs and makes
fun of bigger boys who lack his wit and brainpower. His attitude is brutish and
simple: Keep up or die. Any kid on the playground who isn’t competitive is reject-
ed and is not considered acceptable. He gives no thought to these weaker peo-
ple’s feelings or their other talents. His value system is expressed in a simple
pecking order based on inner development of his mental acuity. Within the con-
fines of his nonjock peers, his attitude is: If I can beat you in a mental contest,
then I am your master and I am better than you.

Like jocks gifted with athletic talent, good programmers are also gifted with a
natural talent, and they are just as competitive as any young athlete is. It can be
harder to see this competitive drive because programming is essentially an invis-
ible, solo sport. But don’t let their quiet demeanor fool you; programmers are
zealous competitors, and really good programmers are as cutthroat as any
Olympic hopeful.

An interesting thing happens to this nerd dynamic, however. Once out of school
and into the real world of adulthood, the ability to mentally dominate another
person is not lost in the transition to a mature, civil, adult society. The nerd is
protected by social strictures and can no longer be beaten up on the playing
field. Physical bullying ceases to be acceptable behavior as adolescents mature
into adulthood, but mental bullying becomes a stronger and stronger weapon in
adulthood.

This mental-jock dynamic—the ability to mentally dominate another person—
gains tremendous power in the adult world of the information age. In civil soci-
ety, it has become perfectly acceptable behavior to administer mental wedgies
with inscrutable software, or to snap emotional towels at long-suffering humans
just trying to get some cash from their ATMs.

The jocks, who were so powerful in high school, find themselves utterly at the
mercy of their former victims. The humbling process of becoming an adult
makes most jocks become decent humans, and many of them have confessed to
me no small embarrassment over their adolescent behavior.

Chapter 7: Homo Logicus / 103

The 6-foot-4-inch-tall former All-State point guard finds his physical prowess is
useless in the boardroom, whereas the 5-foot-7-inch-tall former astronomy-club
treasurer finds his mental prowess allows him to weave and jab and punch with
unmatched agility. The endlessly adolescent nerd-boy lawyer can dominate in
court with his keen tongue and keener mind. The nerd-boy doctor now has the
power of life or death over his former-jock patients. And—surprise—the pasty-
faced nerd-boy computer programmer turns out to have the most astonishing
amount of power ever before wielded because he now controls everyone’s access
to vital information.

There is no maturation process to temper their exercise of that power. They dom-
inate others with their mental ability because they can, and they see nothing
wrong with humiliating users with dauntingly complex products. They sneer,
joke, and laugh about the “lusers” who simply are not smart enough to use com-
puters. Their work habits, too, of isolation, pressure, and long, odd hours offer lit-
tle civilizing influence.

Not until my late 20s did I realize what a bully I was. The only difference was that
I used my programming skills as my fists, and my mastery of complex systems as
my height and reach. And I swinishly hooted at those who could not keep up
with the complexities of using computers.

104 / Part III: Eating Soup with a Fork

8
An Obsolete Culture

Programming is a somewhat alien activity, but it is emotionally very powerful.
This power is what makes the job of programming into something more akin to
a calling, its jargon more like a distinct language, and the brotherhood of soft-
ware engineers into a cohesive culture. In this chapter, I will show how the cul-
ture of programming influences the nature of software-based products.

The Culture of Programming

I read an interesting story in a Sunday supplement about an American couple
who retired to Mexico. They purchased a lot on the outskirts of a large city and
hired an American architect to design their dream home. They then hired a
Mexican building contractor and turned the blueprints over to him. As construc-
tion proceeded, they were flabbergasted to find that the building wasn’t turning
out the way the architect had specified.

The blueprints showed the front wall of the house containing four windows
whose manufacturer and part number were precisely specified. The owners dis-
covered that the actual wall contained three windows from another maker with
quite different appearance and size. When they queried the Mexican builder, he
shrugged and said, “They’re windows. The plan says windows go in this wall.
What is the problem?”

The owners and architect were from one culture, sharing one set of values, and
the builder came from another culture and valued aspects of the problem differ-
ently. No doubt he was able to procure the windows for much less money and
effort, and—in his world—these considerations took precedence. The American
owners and architect believed that the blueprints implied full and exact compli-
ance. The Mexican builder believed that the blueprints were a suggestion, not a

Reusing Code

Just as the Mexican builder put construction cost ahead of design considera-
tions, engineers, left to their own devices, will value programming efficiencies
more than user needs. The strongest evidence of this is the reuse of code that has
been written for some previous project or that can be purchased for some nom-
inal sum from outside vendors. Prewritten code not only saves time, but it has
already been proven to be usable by other programmers and to be bug free in
operation. One of software’s unique properties is that any procedure can be
invoked with a single command, but there is no limit to the magnitude of the
invoked procedure. In other words, as long as the procedure is already written,
all it takes is a single command to employ it. Therefore, any prewritten module
of code is a significant boon to programmers. They can plug it into their program
as a black box whose inner workings need never be plumbed. The programmer
is spared not only lots of coding, but lots of thinking and testing, too. To most
programmers, code reuse is more important than almost any other technical
consideration. Famous open-source guru Eric Raymond says, “Good program-
mers know what to write. Great ones know what to reuse.”

The primary side effect of code reuse is that large portions of most programs
exist not because some interaction designer wanted them to exist, but because
some other programmer already did the work on someone else’s budget. Much of
the software that we interact with exists for the sole reason that it existed before.

106 / Part III: Eating Soup with a Fork

requirement. He believed that his imperatives of thrift and acquisition ease natu-
rally outranked any exactitude in the specifications. He was sincerely trying to ful-
fill the architect’s vision but was applying his own cultural filters—his own
values—to the problem.

For example, our desktop software has so many menus and text-based dialog
boxes because all windowing systems—Microsoft Windows, Mac OS, OS/2,
Linux—provide prewritten code modules for these functions. Conversely, none
of those systems provides much prewritten code for dragging and dropping,
which is why you see so few direct-manipulation idioms in software interaction.
A dialog box can be constructed in about 6 or 8 lines of easy, declarative code. A
drag-and-drop idiom must be constructed with about 100 lines of very intricate
procedural code. The choice—for the programmer—is obvious. The benefit for
the end user is generally overlooked in this economy.

I see the Mexican-builder story played out in software development all of the
time, mostly because of the programmer’s compulsion to reuse code. Ed Forman,
the head of development at Elemental Software, creates a detailed and accurate
sketch of exactly what he wants the screen to look like before assigning it to his
programmers. And yet, Ed says, the program that comes back to him is always
just a pale shadow of what he drew.

It works like this: Ed’s sketch shows dark-gray buttons on a light-gray back-
ground. The programmer will begin construction by copying the source code
from some other—already working—part of the program. This is a good way to
save programming time and effort, apparently benefiting everyone—except that
the existing code has an extra dark-gray border around the buttons. The dark-
gray border also comes with a text legend. Instead of removing the text and the
border to comply with Ed’s sketch, the programmer will just leave it there, thus
saving lots of code. The code requires some text for the legend, so he just puts
something appropriate—from his technical point of view—there.

When Ed finally sees the program, complete with the unwanted border and con-
fusing text legend, he shakes his head in amazement. When he points out the dif-
ferences to the programmer, the programmer doesn’t see a problem. Just like the
Mexican builder, programmers believe that their own imperatives of construc-
tion simplicity and ease of acquisition—of prewritten source code in their case—
take precedence over any suggestions made by others.

Ed is amused as well as frustrated by this, but he is at a loss to explain the phe-
nomenon. His programmers are uniformly intelligent, capable, and deeply con-
cerned about the quality of their products and the success of their company, but
they simply cannot resist the siren’s song. Sure, they will try to build Ed’s vision,
but not at the expense of their own implementation priorities.

x

A fascinating aspect of the imperative to reuse code is the willingness with which
programmers will adopt code with a questionable pedigree. Some inexperienced
programmer will hack out the first interaction idea that pops into his head, but

Chapter 8: An Obsolete Culture / 107

once it is written, that piece of code becomes the basis for all subsequent efforts
because it is so aggressively reused.

In Windows, for example, the really experienced programmers built the internal
processing of the operating system, but the first sample applications that showed
third-party developers how to communicate with the user were written by a suc-
cession of summer interns and junior coders at Microsoft. The Windows internal
code has been upgraded and rewritten over six major releases, and it has steadi-
ly improved. However, an embarrassingly large number of popular applications
have in their hearts long passages of program code written by 21-year-old under-
graduates spending a summer in Redmond. The same is true for the Web.
Amateur experimenters hacked out the first Web sites, but those who followed
cloned those first sites, and their sites were cloned in turn.

As you can see, there is a clear conflict of interest between what the user needs and
what the programmer needs. We anticipate conflict of interest in countless activi-
ties and professions, and we have built-in safeguards to curb its influence. Judges
and lawyers have skills in common, but we never let lawyers adjudicate their own
cases. We never let basketball players referee their own basketball games. The con-
flicting interests are clearly visible, yet we consistently let programmers make
design decisions based on personal implementation considerations.

It is a widely held view, in both the software-product industry and in corporate
IT departments, that programmers are the people best equipped to design soft-
ware because they are the local experts with the most thorough knowledge of the
pertinent issues. Although it seems innocent and natural to let programmers
determine the form and behavior of the software they will build, the trap of con-
flicting interests is unavoidable. The trap is insidious not because of the differ-
ences between the programmer and the user, but because of the similarities. The
user wants to achieve his goals, and the programmer wants to achieve hers. The
problem comes from the subtle differences between those goals.

x

Programmers become so familiar with code reuse that they often copy existing
techniques even when they aren’t actually copying code. This comes naturally,
coupled with programmers’ tendency towards conservatism. For example, most
programs have lots of confirmation screens, virtually all of which are unneces-
sary. Many of them exist because they existed in reused code, but many of them
exist because programmers are simply habituated to putting them in.

For example, I ran into Jeff Bezos, the founder of Amazon.com, at a conference
and told him how much I like the “1-Click” interface on his Web site. This inter-
face allows you to purchase a product with—big surprise—one click. The inter-
face is really well designed, because it pushes all of the annoying details out of

108 / Part III: Eating Soup with a Fork

the interface and lets the user merely click one button without reentering ship-
ping and billing information.

Jeff was pleased to hear that I liked 1-Click, and he told me that when he and his
designers had cooked up the idea, they presented it to the programmers, who duly
nodded and agreed that they could do such a thing. The programmers went off and
coded for a while, then brought the finished work to Jeff for him to try. He found a
book he wanted and pressed the 1-Click button, whereupon the program asked
him a confirming question! The programmers had converted his one-click inter-
face into a two-click interface. To the programmers, this was simply an additional
click—what’s the big deal? To Jeff—and to every user—it is a 100% inflation rate! Jeff
had to wheedle and cajole before the programmers really made the 1-Click inter-
face have only one click. Jeff won’t tell me how much 1-Click has increased sales,
but I can tell you that it has doubled my personal book-buying rate.

I have seen this behavior countless times, even from the most conscientious and
capable programmers. They take our precisely rendered screen shots and treat
them as vague suggestions for the interface. They take our list of functions and
features and cherry-pick those items from it that they personally agree with or
that are particularly easy for them to build.

The Common Culture

The nature of war and the demands of military training are common in every
country. This gives rise to the strong cultural similarity shared by soldiers every-
where, regardless of which ideology they might choose to defend. The same is
true in programming shops.

The collective psychology of Homo logicus engenders a common culture of soft-
ware development. The accepted way that software-based products are built is
astonishingly similar, from camera company to auto company to bank to navy,
which is why products as diverse as cameras, Porsches, ATMs, and Aegis cruisers
all behave in a similar, recognizable, computer-like way.

One aspect of this culture is a reverence for technical skill. This reverence has the
effect of elevating the importance of programming skill into areas in which it is
no longer relevant, such as interaction design. Thirty years ago, when computers
lived in glass houses and were used only by trained programmers, the self-
referential design work of programmers was adequate and appropriate. As com-
puters edged out into the consumer market, programmers still did the design, by
historical default. Development managers ask, “Why should I pay interaction
designers for what I get free from my programmers today?” This is a good ques-
tion, except that the underlying assumption is incorrect. He is not getting inter-
action design, free or otherwise, from his programmers. Rather, the interface he

Chapter 8: An Obsolete Culture / 109

gets is one designed to please only the authors: people with atypical training,
personality, and aptitude.

This highlights another key point regarding the culture of software development.
Although it is founded on the particular nature of programmers, it is propagated
by their managers, many of whom—it must be said—are former programmers.
Jeff Bezos says that the most vociferous defense of the two-click interface came
from the product manager!

The reverence for technical skill has another effect. Most people assume that
programming is more technical than design. I won’t dispute that, but I strongly
disagree with the conclusion typically drawn from it that programming should
therefore come before design in the development process. This has the effect of
making the user conform to the technology. If the interaction design came before
the programming, the technology would conform to the user’s goals instead. I
have heard high-tech executives say, “We’ll bring designers in after the program-
mers build the functionality.” This has the effect of making moot most of the
interaction designer’s opportunities to contribute.

Programming Culture at Microsoft

It is hard to overestimate the depth and power of the software-development cul-
ture. Fred Moody’s 1995 book about Microsoft, I Sing the Body Electronic,1 gives
an indication of how deeply entrenched the nerd culture is through an examina-
tion of this most archetypal software-development shop. The journeyman
author and computer-industry-beat reporter spent a year inside Microsoft,
observing the creation of a new multimedia product that came to be called
Explorapedia. Moody was given unfettered access to Microsoft, and his book
paints a revealing portrait of life and culture inside the industry-leading compa-
ny. As you can tell from its products, Microsoft reveres programming, but has lit-
tle or no awareness of interaction design. The book provides a fascinating study
of what happens in a programming culture.

In his introduction, Moody sets the stage:

The Microsoft approach to corporate organization is to form small
teams around specific products and leave them alone to organize and
work as they wish. It is a risky approach, for these crews are left unsu-
pervised to a degree unthinkable in standard American corporations.

Microsoft is famous for hiring extremely bright, highly aggressive, young people
right out of school. Moody says, “I felt like I was watching a gang of adolescents
who had sneaked into some corporate headquarters after hours, taken over its
boardrooms, and were playing at being businesspeople.” Microsoft is also

110 / Part III: Eating Soup with a Fork

1 Fred Moody, I Sing the Body Electronic, 1995, Viking, New York, New York, ISBN 0-670-84875-1.

famous for pushing these youngsters very hard to get the most and best out of
them. Moody says, “The atmosphere on the campus is one of unrelenting anxi-
ety and constant improvisation.”

The book is a remarkable chronicle of how arbitrary, demoralizing, and unpro-
fessional Microsoft’s development methods often are. Moody himself was—quite
admittedly—baffled by what he saw, although he was convinced that he had seen
something important. What he saw right away is that programmers run the show.
Even when they don’t do so explicitly, they do so implicitly by the force of their
will. Moody never once questions his and everyone else’s assumption that pro-
grammers should be in the driver’s seat, yet he constantly remarks on the fric-
tion, dissension, unpleasantness, and sense of failure that it brings about:

This is not to say that I understand what exactly is going on at Microsoft.
For the sad fact of the matter is that I left the company’s campus more
confused than I was when I entered. And looking back over these pages
now leaves me even more perplexed, as I still cannot manage to tell
whether they contain a story of success, of failure, of success disguised
as failure, or of failure disguised as success.

What he was witnessing, of course, was the creation of a dancing bear: a drearily
hard-to-use product whose sole virtue is delivering features unavailable any-
where else.

The development of Explorapedia was a classic example of how screwed up our
typical development process has become. There is no doubt in my mind that the
product was a failure. What confused Moody was that the product shipped on
time and made money. In the final pages of his book, which Moody calls a
“Postmortem,” he says:

It never occurred to me when I first approached Microsoft that I might
end up chronicling a failed project. Yet from almost the beginning until
near the end of my stay there, I believed that I was indeed observing an
object lesson in how not to develop a product. Since everyone connect-
ed with [Explorapedia] was so miserable, so angry, and talked so inces-
santly about frustration and disappointment, I could only assume that
chance had hooked me up with a catastrophe. But in fact the
[Explorapedia] project was an unqualified success.

In the next sentence, Moody all but calls it a dancing bear: “While each particu-
lar feature in Explorapedia is a pale version of the feature first envisioned…the
encyclopedia nevertheless entered the marketplace as the sole product of its
kind.” It’s easy to win when you have no competition and you are backed with
Microsoft’s awesome brand, vendor leverage, and prodigious bank account.

Chapter 8: An Obsolete Culture / 111

By far the most damning thing is the weakness of the product. Near the end of
the book, he quotes Sara Fox, one of the designers, as she looked at

…the Dorling Kindersley book upon which [Explorapedia] was based,
and had been shocked to see that the book allowed browsers more free-
dom to explore at random than did the computer. Yet the computer was
supposed to be this grand force of liberation from the strictures of the
printed book. In the book, she pointed out, the text flowed freely around
pictures, and readers could browse through it at their leisure, taking in
volumes of content at a glance. In [Explorapedia], they would be fun-
neled through the pop-ups in numerical order, allowed only a few sen-
tences of content at a time. It was a hideous paradox: the computer
actually would be more restrictive than the book. “Dorling Kindersley
did the opposite of what we’re doing, and we turned into gatekeepers.”

At Microsoft, the most important projects are conceived, managed, and coded by
programmers. The multimedia CD-ROM project that Moody observed was
something of an exception in that “designers” were involved at every step of the
way. But they in no way exhibited the skill set that I consider mandatory for the
role of interaction designer. They seemed to be ignorant of all of the things
important for an interaction designer: a strong understanding of what program-
mers actually do, an understanding of interaction-design principles and meth-
ods, and a taxonomy and tools for understanding their users. Moody makes clear
that the only skills the Microsoft designers brought were a quick wit, boundless
energy, and a sense of aesthetics.

Thus, it was inevitable that he would observe a very dysfunctional model. “It was
a designer’s assignment to try to pile on features, a developer’s role to resist for
the sake of meeting a deadline, and a program manager’s job to mediate and ren-
der verdicts.” Any adversarial relationship such as this is bound to take a heavy
toll. The people, product, or company will suffer.

The Microsoft employees who worked on the project remain as unenlightened as
Moody. Kevin Gammill, the lead programmer, says:

“Carolyn keeps calling it the Project From Hell, and Craig’s always talk-
ing about how he’s never been through anything like this. But Craig’s
also always talking about how we made this mistake and this mistake
and this mistake on Encarta and now here we are making it again. And
Sara always says, ‘A product cycle is so…cyclic.’ Every project here is like
this! We keep saying that we learn from our mistakes…but we keep
going through the same [expletive] over and over again.”

Reading the intimate portraits of Gammill is as fascinating as watching a train
wreck. A reader not familiar with the software industry might be tempted to write

112 / Part III: Eating Soup with a Fork

off the descriptions as hyperbole or accuse Moody of picking an unrepresenta-
tive example of the breed. But Gammill is an archetype whose behavior is very
typical. I’ve met hundreds of men—and a few women—just like him.

Even under relatively normal conditions, it was hard for his teammates
to talk to Gammill. An enormous cultural chasm stretched between
developers and designers at Microsoft. Often it was impossible for a
developer to make a designer understand even the simplest elements of
a programming problem. Just as often, designers would work for weeks
on some aspect of a product only to be rudely told, when they finally
showed it to a developer, that it was impossible to implement.

Although conditions had improved in recent years, the two camps liter-
ally spoke different languages and came to the world of computing from
opposite intellectual, cultural, psychological, and aesthetic poles.
Designers came to Microsoft from the arts; developers from the world of
math and science. Developers looked down on designers because their
thinking seemed fuzzy and unstructured, their tastes arbitrary.
Designers felt that developers were unimaginative, conservative, and
given to rejecting their designs out of hand without trying to find a way
to make them work. Because programming was inexplicable to design-
ers, they had no way of assessing a developer’s insistence that their
designs were unprogrammable. “Designers,” Tom Corddry liked to say,
“are invariably female, are talkative, live in lofts, have vegetarian diets,
and wear found objects in their ears. Developers are invariably male, eat
fast food, and don’t talk except to say, ‘Not true.’” He might have added
that designers and developers deal with conflict in markedly different
ways. When developers, who are given to bursts of mischievous play,
begin peppering a designer’s door with firings from a Nerf-ball gun, their
victim calls the supervisor to complain. A developer would fire back.

I want to make perfectly clear that what Microsoft and Moody call a “designer” is
what I call a visual designer. Visual designers have a well-developed aesthetic
sense, think visually, can draw or paint, and are a part of every one of my com-
pany’s design projects. However, they add their magic to our designs only after
the heavy lifting of conceptual and behavioral design work has been completed
by trained interaction designers.

By the way, Corddry’s snappish “Not true” is a good example of Po Bronson’s “I
didn’t answer incorrectly, you just asked the wrong question.”

Moody was very aware of the unique cultural quirks of programmers and devot-
ed many colorful paragraphs to describing their abrasive, arrogant, demanding
attitude, yet he never really fathomed their values. In his description of an

Chapter 8: An Obsolete Culture / 113

encounter between burger-eating programmer Gammill and a female, “vegetar-
ian,” visual designer named Carolyn Bjerke, Moody makes a fundamental misin-
terpretation:

While Gammill’s replies to Bjerke’s questions tended toward playful ban-
ter, his demeanor and posture were undeniably hostile. He sat with his
back ramrod-straight, tapping one foot frenetically on the floor while he
drummed the table with his fingers. He gave the impression that he
would rather be anywhere else in the world. You could gauge his reac-
tion to Bjerke’s question by the increase in the rate of his finger- and
foot-taps; they accelerated in direct proportion to the difficulty of the
feature in question.

Moody attributes Gammill’s irritation to the “difficulty” of the undertaking.
Nothing could be further from the truth. Programmers love difficult tasks. The
more difficult the problem is, the more satisfaction there is in solving it.
Difficulty is often the prime motivator for good programmers. Gammill’s irrita-
tion is based on the prospect of having to write uninspiring code, and on his loss
of control to a person he does not respect: Bjerke, the nontechnical person
whose design decisions seem arbitrary to Gammill. Of course, Gammill would
never state this—he is probably unaware of it himself—but would use the red
herring of “difficulty” to lay off the blame.

If someone is to lead a development team, he or she must own the respect of the
programmers. The work that programmers do is frighteningly complex and
demanding, and they defend their turf ferociously. Anyone who attempts to
guide programmers will fail unless he knows and respects the programmer’s job
inside and out. At Microsoft—as in most shops—there are programmers and
there are “lesser” people, and those lesser people cannot possibly hope to influ-
ence the product-development cycle.

But Microsoft is undeniably successful, and this has one unfortunate side effect.
Many companies are motivated to copy Microsoft’s culture as a means of copy-
ing its success. It is a common mistake to copy the trappings of success, rather
than the root cause of it. It’s like seeing General George Patton’s pearl-handled
revolvers and drawing the erroneous conclusion that to be a good strategist one
must wear ornate sidearms.

Moody unintentionally makes another interesting point about our software-
development culture. Many executives with lots of experience in creating and
marketing software products have never applied interaction design. Lacking
design, some of their previous products were successes and some were failures,
but the process they used to create them was the same. From this they deduced
that the success or failure of a software product is due only to chance; software

114 / Part III: Eating Soup with a Fork

success is simply a crapshoot. In Moody’s story, all the signs pointed to failure,
yet the product was a success. For General Magic, discussed in Chapter 6, “The
Inmates Are Running the Asylum,” all the signs pointed to success, yet the prod-
uct was a failure. Looking in the wrong places, they fail to discern a pattern, so
they simply assume that results are random. The problem is reminiscent of
physicians in the nineteenth century, before it was discovered that the anophe-
les mosquito carried malaria, who were unsure of the disease’s source. It was
thought to float on the evening air, striking randomly, and one’s only defense
against the often-deadly fever was luck. After the cause-and-effect relationship
was discovered, the disease was quickly brought to heel.

Cultural Isolation

In most development shops, the most-experienced programmers take responsi-
bility for the most-demanding parts of the program. In return for this effort, they
are given some modicum of immunity from having to field annoying technical-
support calls. When users of the program call from the field, they are routed to
technical-support personnel or to more junior programmers. On the rare occa-
sion that a user gets through to the senior coder, it is because that user has
already demonstrated her expertise to the junior programmer or the tech-
support person. The result of this filtering process is that the more senior pro-
grammers are, the less contact they have with typical, run-of-the-mill users. By
extension, they mistakenly assume that “their” users are representative.

For example, at Sagent Technology—a vendor of datamart-management soft-
ware in the enterprise-computing market—Vlad Gorelik is the database guru,
and his programming expertise is legendary. The only customers he speaks with
directly are those who can palaver about “query segmentation,” “task partition-
ing,” and “data cubing” at Vlad’s exalted level. It is not surprising, then, that Vlad
imagines the typical user of Sagent’s Information Studio product to be a sea-
soned database expert.

Conversely, Alice Blair, the Information Studio product manager, spends the
lion’s share of her time speaking with prospective buyers of the product. She
counsels these people on what the product does and explains its basic functions.
Consequently, Alice’s view of her customer base is skewed toward first-time users
and those with only very basic computer skills. It is no surprise that she imagines
that most customers need hand-holding.

Kendall Cosby works in tech support at Sagent. He speaks with neither experts
nor first timers. Mostly, he works with intermediate end users. Because the prod-
uct is used as a decision-support tool, he is in constant contact with financial
and marketing analysts who know little about computers and databases, yet
whose jobs depend on their ability to probe into their datamarts to understand

Chapter 8: An Obsolete Culture / 115

sales trends. Because Kendall’s customer isn’t very computer savvy, he wants the
product to hide or eliminate complex functionality. Of the three, Kendall’s cus-
tomer view is the most accurate, yet because of their roles, Vlad and Alice have
greater influence on the product’s design.

There’s an old story about several blind men encountering an elephant for the
first time. One grasps its leg and proclaims that the elephant is “very like a tree.”
Another touches its side and states that it is “very like a wall.” Another grasps its
trunk and declares it to be “very like a snake.” Like the blind men and the ele-
phant, Alice, Kendall, and Vlad have very different opinions of what their clients
are like because they are each confronting a different subset of their users.
What’s more, they all have clear, empirical evidence to back their deductions. In
order to get an accurate portrayal, someone divorced from the day-to-day imper-
atives of both development and sales is needed.

Skin in the Game

One strong cultural determinant of software engineering is that it is done alone.
Programmers sit alone. Only one programmer can type in code at one time. Code
is largely invisible inside a computer, and it is almost never read. Reading some-
one else’s code is less like reading a book than it is like reading someone’s lecture
notes, written in a private, inscrutable shorthand. Programming is so complex
that it takes single-minded focus and lots of uninterrupted time. Programmers
have a strong sense of this insularity and of what it implies. Nobody can have sig-
nificant control over what a programmer does inside his own program.
Programmers know that the quality of their code is largely a matter of their own
conscientiousness. The boss can demand quality, but the boss isn’t going to
invest the time and effort required to verify that such quality exists. It can take
more time to decipher a programmer’s code than it took to write it. Programmers
know this, and they know that their personal decisions and actions have more
leverage on the final product and the user’s satisfaction than any other consider-
ation. Ultimately, they will personally hold the bag for the product’s success.
They know that they have a lot of skin in the game.

The lonely work of the programmer gives him a strong sense of his power. Some
programmers are uncomfortable with the sense of power, but they are even more
uncomfortable delegating authority to others with less skin in the game. When
marketers, managers, or designers give advice to them, programmers regard the
suggestions with a healthy dose of skepticism. If they take the advice and it turns
out to be bad, they know the advisor will be long gone and that the blame will fall
squarely on the programmer.

Letting programmers do their own design results in bad design, but it also has a
collateral effect: The programmers lose respect for the design process.

116 / Part III: Eating Soup with a Fork

Programmers have been successfully bluffing their way through the design
process for so long that they are conditioned to disregard its value. When a
trained interaction designer is finally hired, the programmer naturally treats the
designer’s work dismissively.

This leads to a general lack of respect for the interaction designer, the design
process, and sadly, the design itself. This disrespect reinforces the cultural valu-
ation of the design as opinion and vague advice, rather than as a clear, specific,
and unequivocal statement. Because the programmer rightly assumes that his
fancy carries equal weight to mere opinion, he feels free to cherry-pick elements
of the design from the specification. Instead of seeing the written design specifi-
cation as a blueprint, he sees it as the op-ed page of the newspaper. Some items
are interesting but untrue; others are true but irrelevant. Unfortunately, the pro-
grammer is making these decisions on the basis of implementation considera-
tions or on a self-referential basis, so they are frequently wrong.

On the other hand, every programmer has horror stories to tell of good products
that failed because of dunderheaded design imperatives from managers who
were equally confused about what users might be looking for. I remember one
senior executive who hated to type, demanding that all of his company’s pro-
grams be controllable only by the mouse. I also remember another senior exec-
utive who was clumsy with a mouse, declaring that all of his company’s programs
must be controllable only with the keyboard. These destructive, self-referential
designs caused despair to ripple through both companies.

x

Certainly some programmers are consciously malicious and destructive, but—
judging from the many programmers I have met—they as are rare as hen’s teeth.
Their training and discipline are so tough that it is inevitable, as they reach the
peak of their abilities, that they see nonprogrammers as less competent.
Software engineers respect others in their own areas, but when a nonprogram-
mer ventures into the world of programming, as Moody describes, programmers
become condescending or even elitist.

The programmer has every right to sneer at the amateur who pokes his nose into
the highly technical world of software development. Likewise, if the programmer
knocked on the controller’s door and began recalculating business ratios, the
controller would be justified in sneering at the presumption and arrogance of the
interloping programmer.

The difficulty arises because designing interaction and implementing interac-
tion are so thoroughly mixed in the typical development process. Although a
manager might request a change in the program’s behavior, she wouldn’t pre-
sume to ask the programmer to use different construction methods. But because

Chapter 8: An Obsolete Culture / 117

the behavior and its implementation are so tightly bound, it is impossible to
assail one without appearing to assail the other. This is part of the difficulty
Moody observed at Microsoft.

Most people involved in the creation of software-based products want theirs to
be easy to use. Consequently, they are constantly encroaching on the program-
mers. The developers never have a surplus of time, so this poaching can make
them testy. Many retreat into solitude and communicate only reluctantly with
other, nonprogramming team members. Tamra Heathershaw-Hart related this
story to me about getting information from programmers when she worked as a
technical writer:

I discovered that bribery worked a lot better than begging. I used choco-
late most of the time. The bribery method worked so well that I once
had an engineering manager apologize on his knees in public for forget-
ting to tell me about a product change. (Yes, he got his treat anyway.)
At one company I had a chocolate-craving engineer tell me all his
co-workers’ changes, just so he could get their chocolate. Before the
bribery method I spent a lot of overtime hours trying to figure out what
stuff in the product had changed. Afterwards, I managed to cut my over-
time by more than half.

This anecdote is amusing because—if we have any experience at all in the
software-development business—we recognize its truth. If you heard a story
about a company’s controller having to bribe an accounts-receivable clerk with
chocolate to get information on today’s deposits, you’d be astonished, indignant,
and incredulous.

x

Many executives are accustomed to having their subordinates respond immedi-
ately to any directive—or even mild suggestion—that they might offer. They
imagine that programmers—being technical—are not very high up the totem
pole of authority and will obediently follow direction from their higher-ups.
From the programmer’s point of view, the executive doesn’t have any skin in the
game, so obedience is problematic. The independent-minded software engineer
won’t change his code just because someone tells him to, regardless of the mag-
nitude of that person’s title.

If you want to change some existing code, you have to first change the program-
mer’s mind. He will have a vested interest both in the existing code and in avoid-
ing the seemingly unnecessary effort of changing it. You cannot merely demand,
let alone ask, but you must present a rational, defensible reason for making the
change. It must be presented in terms the engineer can understand, and it has to
be presented by someone with skin in the game.

118 / Part III: Eating Soup with a Fork

Paul Glen’s book Leading Geeks2 is a remarkably accurate and revealing analysis
of how programmers think and behave. If you wish to learn more about pro-
grammers and programming culture, I strongly recommend Glen’s book.

Scarcity Thinking

One of the strongest influences on software design is what I call scarcity thinking.
This comes from two forces working in concert. The newness of the computer
software industry is well known, but our very youth conspires to make us a very
nonintrospective industry. We are too busy assimilating new technologies to
reflect on the misconceptions surrounding the older ones. Consequently, the
software industry resounds with myths and misunderstandings that go quite
unquestioned.

Astonishingly, the simple and obvious fact that computers are vastly more pow-
erful, cheaper, and faster than they were just a few years ago hasn’t really pene-
trated the practice of software construction. Consequently, most software
products don’t work very hard to serve the user. Instead, they are protective of the
central processing unit (CPU) in the mistaken impression that it is overworked.
The result is that software-based products tend to overwork the human user.
Design guru Bill Moggridge calls this attitude “be kind to chips and cruel to
users.”

In the last decade, the incredible advances in computer construction have put
awesome power on the average desktop for bargain prices. Any student or home-
maker can have power that General Motors’ corporate data-processing center
would have lusted after in 1974. Yet most software is still built today with tools,
technologies, methods, and mind-sets that come directly from that world of
scarcity thinking. Developers are conditioned to ask themselves, “Can we fit it in?
Will it respond fast enough? What nonessentials can we discard to make it more
efficient?” It forces out of consideration more-relevant questions, such as, “Will
the user understand it? Can we present this information in a way that makes
sense? Is the sequence of instructions appropriate for what the user wants? What
information does the user need most?”

With few exceptions, most CPUs are spending the overwhelming majority of
their time idling—doing nothing. Yes, some processes are compute-bound, but
they are much fewer and rarer than we are led to believe by hardware vendors
who want to sell us the latest and greatest and most-powerful electronic won-
ders. It would not be in their best interest to let consumers know that their CPUs
work hard only in very brief spurts and sit idling for 75%–80% percent of the time.

Chapter 8: An Obsolete Culture / 119

2 Paul Glen Leading Geeks: How to Manage and Lead the People Who Deliver Technology, 2003,
John Wiley & Sons, New York, New York, ISBN: 0-7879-6148-5.

Just two or three decades ago, computers were so weak and precious that any
good idea was likely to be restrained by the feebleness of the host computer. The
main thrust of computer science back then was to develop technologies that
relieved the strain on the scarce computing resource. Such widely used tech-
nologies as the relational database, ASCII code, file systems, and the BASIC lan-
guage were designed primarily to ease the load on the computer. Software
written during that time gave priority to performance at the expense of other
considerations, such as ease of use. But don’t forget that prewritten code is like a
force of nature, and much of that old code, written for weak computers, is run-
ning on modern, abundantly powerful systems.

The Process Is Dehumanizing, Not the Technology

Since Charlie Chaplin in Modern Times, the popular thinking has been that tech-
nology dehumanizes us. I disagree with this notion. Before technology, tyrants,
barbarians, and warriors dehumanized their victims with fists and stones. It
doesn’t require sophisticated tools to dehumanize your fellow human—a glance
or a kick does it as well. It is not technology that is dehumanizing. It is the tech-
nologists, or rather the processes that technologists use, that create dehumaniz-
ing products.

Of course, the more powerful the technology, the more damage a bad process
can inflict. Conversely, designed properly, that same technology can be a great
gift to humanity. High technology can go either way. It’s the people who admin-
ister it who dictate the effect.

Interactive systems do not have to be dehumanizing, but for this to occur, we
have to revamp our development methodology so that the humans who ulti-
mately use them are the primary focus. The single most important process
change we can make is to design our interactive products completely before any
programming begins. The second most important change is to turn the respon-
sibility for design over to trained interaction designers. In the next few chapters,
I will show what can be accomplished by taking these steps.

120 / Part III: Eating Soup with a Fork

Part IV
Interaction Design Is Good Business

Chapter 9 Designing for Pleasure

Chapter 10 Designing for Power

Chapter 11 Designing for People

This page intentionally left blank

9
Designing for Pleasure

As Albert Einstein said, “You can’t solve a problem with the same thinking that
created it.” I’ve just devoted many pages to identifying that old thinking and
showing how it doesn’t work. Now it’s time to talk about a new method that will
work. I’ve been developing this method, called Goal-Directed design, since 1992,
and the designers in my consulting firm use it for all of our projects. It consists of
some novel ways of looking at problems, some powerful guiding axioms, and
some remarkably effective mental tools. In the next few chapters, I’ll present an
overview of three of the most powerful of these tools, along with some case stud-
ies of how they are applied and the kind of results you can expect.

Personas

The most powerful tools are always simple in concept, but they often must be
applied with some sophistication. That is certainly true of interaction design
tools. Our most effective tool is profoundly simple: Develop a precise description
of our user and what he wishes to accomplish. The sophistication comes from
how we determine and use that precise description.

The most obvious approach—to find the actual user and ask him—doesn’t work
for a number of reasons, but the main one is that merely being the victim of a
particular problem doesn’t automatically bestow on one the power to see its
solution. The actual user is still a valuable resource, and we devote considerable
attention to him or her, but we never let the user directly affect the solution.

The actual method that works sounds trivial, but it is tremendously powerful and
effective in every case: We make up pretend users and design for them. We call

these pretend users personas,1 and they are the necessary foundation of good
interaction design.

Personas are not real people, but they represent them throughout the design
process. They are hypothetical archetypes of actual users. Although they are imag-
inary, they are defined with significant rigor and precision. Actually, we don’t so
much “make up” our personas as discover them as a byproduct of the investiga-
tion process. We do, however, make up their names and personal details.

Personas are defined by their goals. Goals, of course, are defined by their per-
sonas. This may sound tautological, but it is not. Personas reveal themselves
through our research and analysis in much the same way that the sequence of
tectonic events reveal themselves to geologists through the study of sedimenta-
ry layers: The presence of a fossil defines a stratum, and a stratum defines the
presence of a fossil. I’ll talk a lot about goals in the next chapter, but we discover
them in the same way we discover personas. We determine the relevant personas
and their goals in a process of successive refinement during our initial investiga-
tion of the problem domain.

Typically, we start with a reasonable approximation and quickly converge on a
believable population of personas. Although this iterative process is similar to
the iterative process used by software engineers during the implementation
process, it is significantly different in one major respect. Iterating the design and
its premises is quick and easy because we are working in paper and words.
Iterating the implementation is slow and difficult because it requires code.

Design for Just One Person

If you want to create a product that satisfies a broad audience of users, logic will
tell you to make it as broad in its functionality as possible to accommodate the
most people. Logic is wrong. You will have far greater success by designing for a
single person.

Imagine that you are designing an automobile to please a wide spectrum of peo-
ple. You could easily identify at least three subgroups: the soccer mom, the car-
penter, and the junior executive. Mom wants a safe, stable vehicle with lots of
space and big doors for hauling the kids, dogs, groceries, and other stuff. Joe, the
carpenter, wants a rugged vehicle with all-wheel drive and abundant room for
ladders, lumber, bags of cement, and tools. Seth, the young executive, wants a

124 / Part IV: Interaction Design Is Good Business

1 For all of you Latin scholars and typographers out there, you will be happy to know that the
battle between “personas” and “personæ” rages hotly and daily at Cooper Interaction Design.
Designers on the “personas” side argue that pronunciation is less ambiguous, gratuitous ligatures
can be eliminated, and the word appears conventional and unthreatening to our clients.
Designers on the “personæ” side argue that the pronunciation is easy once you hear it, the oppor-
tunity for a gratuitous ligature is like manna from heaven, and that our clients are bright
enough to deal with arcane and obsolete phraseology. It sounds to me a lot like programmers
arguing about algorithms, so, in this book, I’ll stick to “personas.”

sporty car with a powerful engine, stiff suspension, convertible top, and only
enough room for two.

The logical solution is shown in the illustration. It’s a combination vehicle with a
little bit of what each driver wants: a convertible van with room for kids and lum-
ber. What a goofy, impossible car! Even if it could be built, no one would want it.
The correct solution is to build a minivan for Mom, a pickup truck for Joe, and a
sports car for Seth.

Chapter 9: Designing for Pleasure / 125

Making three different products in software is a lot easier than making them in
steel. Whereas there really must be three vehicles, one software product can usu-
ally be configured to behave like three different ones (with the caveat that the job
of configuring it must not be dumped in the user’s lap).

Every time you extend the functionality to include another constituency, you put
another speed bump of features and controls across every other user’s road. You
will find that the facilities that please some users will interfere with the enjoy-
ment and satisfaction of others. Trying to please too many different points of view
can kill an otherwise good product. However, when you narrow the design target
to a single persona, nothing stands between that persona and complete happi-
ness.

Robert Lutz, the chairman of Chrysler, says that 80% of people in focus groups
hated the new Dodge Ram pickup. He went ahead with production and made it
into a best-seller because the other 20% loved it. Having people love your prod-
uct, even if it is only a minority, is how you succeed.

The broader a target you aim for, the more certainty you have of missing the
bull’s-eye. If you want to achieve a product-satisfaction level of 50%, you cannot
do it by making a large population 50% happy with your product. You can only
accomplish it by singling out 50% of the people and striving to make them 100%
happy. It goes further than that. You can create an even bigger success by target-
ing 10% of your market and working to make them 100% ecstatic. It might seem
counterintuitive, but designing for a single user is the most effective way to satis-
fy a broad population.

The Roll-Aboard Suitcase and Sticky Notes

The roll-aboard suitcase is a good example of how powerful designing for one
person can be. This small suitcase with the built-in wheels and retractable han-
dle revolutionized the entire luggage industry, yet it wasn’t designed for the gen-
eral public. It was originally designed just for airline flight crews, a very narrowly
defined target user. However, the product’s design purity pleased this group
enormously. The rest of the traveling public soon saw that it solved their luggage
problem, too. Carrying it through crowded airports was as easy as maneuvering
it down airliner aisles or stowing it aboard planes.

After the roll-aboard succeeded in its target segment, it was launched into other
markets. Now you can buy double-sized roll-aboards, designer roll-aboards,
armored-equipment roll-aboards, and kids’ roll-aboards. Today, purchasing lug-
gage without built-in wheels and a retractable handle is difficult.

As another example, an adhesive engineer at 3M named Art Fry used his own
very specific requirements as a basis for creating what is arguably the most wide-
ly used and widely appreciated office tool. When he sang in the church choir,
paper bookmarks always fell out of his hymnal, making him lose his place.
Unwilling to damage the church’s property with sticky tape, he looked for a bet-
ter solution. He remembered an adhesive that he had worked on a few years ear-
lier that was discarded because it didn’t stick well enough. He used that failed
adhesive to coat some small squares of yellow paper for bookmarks. This is how
the 3M Post-it Note was born.

Happy users make remarkably effective and valuable assets. By narrowing your
focus, you can generate fanatical customer loyalty in your target market. As dis-
cussed in Chapter 5, “Customer Disloyalty,” customer loyalty can sustain you in
difficult times. Not only will loyal users climb mountains and wade rivers to pur-
chase and use your product, but they are the most powerful marketing tool
known. Loyal users will personally recommend you to their friends. After you get
buzz going about your product, you can build on it and extend your product into
other segments of the market.

126 / Part IV: Interaction Design Is Good Business

The Elastic User

Although satisfying the user is our goal, the term “user” causes trouble. Its impre-
cision makes it as unusable as a chainsaw is for removing someone’s appendix.
We need a more precise design tool.

Whenever I hear the phrase “the user,” it sounds to me like “the elastic user.” The
elastic user must bend and stretch and adapt to the needs of the moment.
However, our goal is to design software that will bend and stretch and adapt to
the user’s needs. Programmers have written countless programs for this mythical
elastic consumer, but he simply doesn’t exist. When the programmer finds it con-
venient to dump the user into the Windows file system to find the information
she needs, he defines the elastic user as an accommodating, computer-literate
power user. Other times, when the programmer finds it convenient to step the
user through a difficult process with a mindless wizard, he defines the elastic
user as an obliging, naïve, first-time user. Designing for the elastic user gives the
developer license to code as he pleases while paying lip service to “the user.” Real
users are not elastic.

Chapter 9: Designing for Pleasure / 127

Programmers have an expressive taxonomy for describing the construction of
software. Good programmers don’t toss around gross generalizations about dif-
ferent computers and systems. A programmer would never say, “This will run well
on a computer.” Which computer? Which model? What operating system? What
peripherals? Similarly, designers must never be so vague as to say their program
“is designed for the user,” or that “it will be user friendly.” If you hear someone
speaking like that, it is likely a way to justify the imposition of his own self-
interest instead.

In our design process, we never refer to “the user.” Instead, we refer to a very spe-
cific individual: a persona.

Be Specific

The more specific we make our personas, the more effective they are as design
tools. That’s because personas lose elasticity as they become specific. For exam-
ple, we don’t just say that Emilee uses business software. We say that Emilee uses
WordPerfect version 5.1 to write letters to Gramma. We don’t just let Emilee drive
to work. We give her a dark-blue 1991 Toyota Camry, with a gray plastic kid’s seat
strapped into the back and an ugly scrape on the rear bumper. We don’t just let
Emilee go to work. We give her a job as a new-accounts clerk in a beige cubicle at
Global Airways in Memphis, Tennessee. This distinctive specificity is very power-
ful as a design and communications tool. Consequently, all of our personas are
articulated with singular detail and precision.

As we isolate Emilee with specific, idiosyncratic detail, a remarkable thing hap-
pens: She becomes a real person in the minds of the designers and programmers.
We can refer to her by name, and she assumes a tangible solidity that puts all of
our design assumptions in perspective. As she loses her elasticity, we can identi-
fy her skills, her motivations, and what she wants to achieve. Armed with this
knowledge, we can then examine her in light of the software’s subject area to see
whether she is really an archetypal user. After a designer has some experience, he
can usually synthesize a valid persona on the first try.

Giving the persona a name is one of the most important parts of successfully
defining one. A persona without a name is simply not useful. Without a name, a
persona will never be a concrete individual in anyone’s mind.

All things being equal, I will use people of different races, genders, nationalities,
and colors as personas. However, I try not to play against type because this can
confuse everyone. Stereotypical personas are more effective if the stereotyping
lends more credence to the persona. My goal here is not to be politically correct
but to get everyone to believe that my personas are real. If my persona is a nurse,
I will use a woman rather than a man, not because there are no male nurses, but
because the overwhelming majority of nurses are female. If the user is a com-
puter technician, our persona will be Nick, a pimply faced 23-year-old former
member of the high-school audio-visual club, rather than Hellene, a statuesque,
5-foot-11-inch beauty who went to Beverly Hills High. I am shooting for believ-
ability, not diversity.

To make each persona more real to everyone involved in the product creation, I
like to put faces to the names and give each persona an image. I usually pur-
chase, for a small fee, faces from stock photo libraries on the Web. Occasionally,
I’ve used sketched caricatures. You can cut them out of magazines if you want.

128 / Part IV: Interaction Design Is Good Business

A fully realized, thoroughly defined user persona is a powerful tool. Until the user
is precisely defined, the programmer can always imagine himself as the user or
allow the user to become elastic. A completely defined user persona is key to the
suppression of any tendency for the developer to usurp or distort the user per-
sona’s role. Long before a single line of code is written, a well-defined user per-
sona becomes a remarkably effective tool for interaction design.

Hypothetical

It is important not to confuse a precise user taxonomy with a real person. Real
people are of great interest as raw data, but they are frequently useless—and
often detrimental—to the design process. A fine wine helps a successful dinner;
raw Cabernet Sauvignon grapes—tiny, tough-skinned, and seed-filled—would
ruin it. Many scientists, with a reverence for the empirical, confuse real users
with imaginary—but more valuable—design personas.

The other major problem with real users is that, being real, they have funny
quirks and behavioral anomalies that interfere with the design process. These
idiosyncrasies are not extensible across a population. Just because one user has
a distaste for direct manipulation doesn’t mean that all—or even a plurality of—
users do. The same works in reverse, too. Our real user might be fully capable of
getting over some cognitive bump in the interaction road, whereas the majority
of other users cannot. The temptation to attribute such capabilities to all users
because one very real human exhibits them is strong but must be avoided.

In particular, we see this from company presidents. For example, one president we
have worked with hates typing and wants to do all of his work without a keyboard.
He has issued a directive that all of his company’s software will be controlled only
from the mouse. It is reasonable to want to use just the mouse to control the soft-
ware, but it is not reasonable to shut out all those users who are more comfortable
with the keyboard. The president is not a very representative persona.

Precision, Not Accuracy

As a design tool, it is more important that a persona be precise than accurate.
That is, it is more important to define the persona in great and specific detail
than that the persona be the precisely correct one. This truth is surprising
because it is the antithesis of the goal of interaction design, in which accuracy is
always more important than precision. The end result is to have a program that
does the right thing, and we are willing to accept some friction in the system to
obtain it.

In mechanical devices, moving linkages must be without slack. That is, a piston
must move with minimal tolerances in its cylinder. If there were play in the link-
age, the piston would quickly slap itself into self-destruction. It matters less that

Chapter 9: Designing for Pleasure / 129

the piston is too short or too long for the cylinder than that it fits without loose-
ness. The same is true of personas. It matters more that the persona is expressed
with sufficient precision that it cannot wiggle under the pressure of development
than it does that it be the right one.

For example, if we were designing the roll-aboard suitcase, for our persona we
could use Gerd, a senior captain flying 747s from Vancouver to Frankfurt for
Lufthansa.

On the other hand, we can’t extend our persona to include any commercial flyer.
Sonia, for example, attends classes at Embry-Riddle Aeronautical University in
Daytona Beach and will be a professional pilot when she graduates. She flies
every day, but only in small, single-engine propeller planes, and never stays
overnight away from home. From a luggage point of view, Sonia is an edge-case
pilot. As soon as you blur the definition of Gerd to include Sonia, you make him
approximate instead of exact. You get into endless, unproductive discussions
about whether Sonia is or is not an airline pilot and what special features her
baggage needs.

On the other hand, we could certainly design a roll-aboard by using Francine, a
newly minted flight attendant on Reno Air, as a persona. She flies the length of
California three times a day, serving drinks and handing out peanuts. Gerd and
Francine are dramatically different personas, but their suitcase goals and needs
are equivalent.

Programmers live and die by edge cases, and they will bring that awareness to the
persona-selection process. They will argue that Sonia has a valid claim on
persona-hood because she occupies a pilot seat. But whereas programming is
defined by cases at the edge of the paradigm, design is defined at the center. If
there is any doubt at all about a persona being very close to the center, that per-
sona should be shunted out of consideration.

In the interest of being precise in the definition of personas, averages have to be
ruled out. An average user is never actually average. The average person in my
community has 2.3 children, but not a single person in my community actually
has 2.3 children. A more useful representative would be Samuel, who has 2 chil-
dren, or Wells, who has 3. Samuel is useful because he is a person. Yes, he is hypo-
thetical, but he is specific. Our parent of 2.3 children cannot possibly be specific,
because if he were, he wouldn’t have that impossible average.

Average personas drain away the advantages of the specificity of precise per-
sonas. The great power of personas is their precision and specificity. To deal in
aggregates saps that power.

Personas are the single most powerful design tool that we use. They are the foun-
dation for all subsequent Goal-Directed design. Personas allow us to see the

130 / Part IV: Interaction Design Is Good Business

scope and nature of the design problem. They make it clear exactly what the
user’s goals are, so we can see what the product must do—and can get away with
not doing. The precisely defined persona tells us exactly what the user’s level of
computer skill will be, so we don’t get lost in wondering whether to design for
amateurs or experts.

The personas we invent are unique for each project. Occasionally, we can borrow
from previous projects, but because precision is the vital key, it is rare to find two
personas exactly alike.

A Realistic Look at Skill Levels

One of the really valuable contributions of personas is that they give discussions
of skill levels a refreshing breath of realism. The scope of variation of users’ skill
levels is huge, and personas make that fact easy to see. The widely held, more-
traditional model of user skill levels was shown as the euphemism pyramid in
Chapter 2, “Cognitive Friction.” At the top of the pyramid are “power users,”
assumed to be perfectly knowledgeable about computers, but lacking the train-
ing to program. The central trapezoid is “computer-literate users,” who are imag-
ined to have a fundamental understanding of how computers work, but who
don’t avail themselves of all its coolest features. “Naïve users” fill the bottom of
the pyramid, and they are estimated to be as dumb as a brick and completely
clue free.

Here are some examples of personas that shatter the pyramid’s false assump-
tions:

Rupak works as a network installer in Los Angeles. He works with com-
puters all day every day and is very adept at getting them to function,
but he doesn’t really understand how they work. He survives through his
reservoir of superstition and lore, his capacity for rote learning, and his
endless patience.

Shannon is an accountant at a health spa in Tempe, Arizona. She is clue-
less about the Web, email, networks, the file system, and most every-
thing else about computers, but she is an astonishing whiz with the
Microsoft Excel spreadsheet program. She can whip out a new spread-
sheet—complete with charts and graphs—that shows sales trends in no
time at all.

Dexter is the vice president of business development at Steinhammer
Video Productions in Hollywood. Dexter has a pager, two cell phones, a
pocket computer, and a wireless modem stashed in the pockets of his
double-breasted suit as he walks between sound stages. He is a master
of technology, and he can solve any problem. His colleagues are always

Chapter 9: Designing for Pleasure / 131

calling him over to help find lost files for them, but he is really too busy
for those time-wasting exercises. Clint is holding on line three!

Roberto is a telemarketing representative for J. P. Stone, the mail-order
merchant of rugged outdoor clothing. He sits in a carrel in a suburb of
Madison, Wisconsin, wearing a telephone headset and using a PC to
process phoned-in orders. Roberto doesn’t know a thing about high
technology or computers, but he is a steady, conscientious worker and
has a wonderful ability to follow complex procedures without difficulty.
After a few days of training, he has become one of J. P. Stone’s most pro-
ductive and efficient reps. He says, “I like the computer!”

Interestingly, neither Rupak, Shannon, Dexter, nor Roberto comes close to fitting
into any of the slices of the pyramid. Even aside from its oppressive stereotyping
power, the pyramid is remarkably unrepresentative of the population.
Oversimplified models of markets don’t help with design problems.

Personas End Feature Debates

Surprisingly, another extremely important contribution of personas is their value
as a communications tool. The cast of characters becomes a design taxonomy
with great power to explain our design decisions. Even more, they become a
spotlight, showing the programmers, marketers, and managers that our design
decisions are obviously correct.

It is vitally important that everyone on the design team not only become famil-
iar with the cast of characters, but that each persona become like a real person—
like a fellow member of the development team. Programmers—with their
mathematical nature—have a natural reluctance to think about specific user
cases, preferring instead to think about general cases. This spills over into their
thinking about users, and they are always imagining users in the aggregate, the
average, or the generic. They much prefer to speak of “the user” than of Judy,
Crandall, Luis, Estelle, Rajiv, and Fran.

Before personas are put to use, a typical conversation between a programmer
and a manager engaged in interaction design would go something like this:

Programmer: “What if the user wants to print this out?”

Manager: “I don’t think we really need to add printing in version one.”

Programmer: “But someone might want to print it.”

Manager: “Well, yes, but can’t we delay putting printing in?”

The manager cannot win this discussion because she has not advanced an argu-
ment with the force of reason. Regardless of its truth, it is stated merely as her

132 / Part IV: Interaction Design Is Good Business

amorphous desire to do things differently, and the programmer’s logic of what
“might” happen is irresistible.

After the cast of characters is developed, we have our taxonomy for expressing pre-
cisely who needs what in the program. But programmers are hard to move, and a
typical discussion with a client programmer early in the relationship goes like this:

Programmer: “What if the user wants to print this out?”

Interaction designer: “Rosemary isn’t interested in printing things out.”

Programmer: “But someone might want to print it.”

Interaction designer: “But we are designing for Rosemary, not for ‘some-
one.’”

At this point, we are at a standoff. The programmer is still using the term “user”
and is still stuck in the world of possibility thinking. However, our invocation of
the persona Rosemary is not an amorphous, unformed desire. Instead, it is a spe-
cific person with a demonstrated skill set and objectives. We finally have an argu-
ment that is compelling.

However, because programmers have possession of the code, they can—and
will—still do what they want, regardless of the strength of our arguments. The
key to success is getting the programming staff to buy into the existence and real-
ity of the cast of characters. Every one of our designers resolutely insists on
expressing all design issues in terms of named personas. We never fall back into
the “user” construct. We never let the programmer—or anyone else—get away
with assertions about “the user.” After a while, this consistency pays off, and the
programmers begin to adopt personas and refer to them by name. Although this
seems like a subtle change, when the programmers begin to speak of personas by
name of their own volition, it is really a dramatic, watershed event that changes
the nature of the collaboration between designers and developers.

This watershed occurs in every one of our successful design projects. When it
happens, the entire process shifts into high gear. The conversations now sound
more like this:

Enlightened programmer: “Would Rosemary want to print this out?”

Happy interaction designer: “No. Although Jacob will want some printed
reports on a quarterly basis.”

Enlightened programmer: “Well, if they are so rarely needed, we should
save ourselves time and effort by not writing a fancy, proprietary report-
writing feature, but instead license a commercially available tool.”

Happy manager: “And that shaves two weeks off of the shipping schedule!”

Chapter 9: Designing for Pleasure / 133

I have seen dramatic changes come over our client companies after the water-
shed. Before, they were stuck in endless feature wrangling, and issues once
thought resolved would reappear for further discussion every couple of weeks.
Afterwards, design issues are raised, answered, and put away once and for all.

Some of our client companies have printed T-shirts with a picture of an important
persona on it for each of the developers. We have had other clients print posters
with personas to put on the walls of the programming shop. These efforts help to
unite the programmers in a mutual understanding of their ultimate customer.

Both Designers and Programmers Need Personas

On the other hand, we have worked with companies where the programmers are
simply too embarrassed to actually call users by their names, and they would not
buy in to the idea of precise personas. They would continually backslide into
“user-speak,” and their products suffered enormously.

I know a programmer who simply doesn’t understand how personas work. Under
the pressure of arguments from my colleagues and myself, he has admitted that
personas are important. However, he misses the central point of specificity, so he
tends to use the term “persona” as a synonym for “user.” He says, “We have to ful-
fill the needs of the personas.” Although he uses the term, he rejects the speci-
ficity, which is the active ingredient, so he loses any value.

Another client gave us just a few days to make some recommendations. We cre-
ated a persona named Edgar, who was not defined with much detail. We then
entered some protracted discussions with the client on issues that extended
beyond the original project scope. We quickly found that Edgar began to multi-
ply. Different teams within the client adopted different Edgars, each with differ-
ent qualities.

Marketing professionals will be instantly familiar with the process of persona
development because it is very similar to what they do in the market-definition
phase. The main difference between marketing personas and design personas is
that the former are based on demographics and distribution channels, whereas
the latter are based purely on users. The two are not the same and don’t serve the
same purpose. The marketing personas shed light on the sales process, whereas
the design personas shed light on the development process.

As we begin to develop ideas for design solutions, we can constantly hold them
up against our personas to see how well we have done. We become character
actors, inhabiting the minds of our personas. This is easy to do because they are
so narrowly defined. When you try on a persona and examine a product or a task,
you can tell right away whether or not the design has succeeded in making that
persona happy.

134 / Part IV: Interaction Design Is Good Business

It’s a User Persona, Not a Buyer Persona

A frequent mistake is to design for someone who is close to the product but is not
the actual user. Many products are designed for the writer who will review the
product in consumer publications. In the information-technology business, the
IT manager who purchases the product will rarely be the one to actually use it.
Designing for the purchaser is a frequent mistake in the computer business.

While you cannot ignore the IT manager’s needs, the IT manager will ultimately
be happier if the product makes the real end user happy. After all, if the end user
is happy and productive, it is a success for the IT manager. We have seen a recur-
ring pattern in which clients ignore this advice and pander to these gatekeepers
of technology. After these IT managers deploy the software to the real end users,
they are besieged with complaints and discover that the users are disinclined to
use the product that so beguiled the IT manager. They then turn on the software
vendor, demanding that the interaction be made more satisfactory for the end
user.

The Cast of Characters

We give every project its own cast of characters, which consists of anywhere from
3 to 12 unique personas. We don’t design for all of them, but they are all useful for
articulating the user population. Some are defined only to make it clear that we
are not designing for them. In one project, for example, our project concerned a
technical help-desk management system. We defined three people, two of them
in-house help-desk technicians. Leo Pierce was a marketing assistant in the
company’s product division. He used a computer in his daily work and was occa-
sionally a consumer of help-desk services. Alison Harding was a company tech-
nician whose job entailed going from office to office with her aluminum tool
case, fixing technical problems for the likes of Leo. Ted van Buren was a help-
desk representative who spent his day answering phone calls from people like
Leo and dispatching Alison to Leo’s office to fix his computer.

Our client, Remedy Inc, was revising its flagship product, Action Request System
(ARS), and wanted to make it “easier to use.” By developing these three personas
(and a few others), we could clearly articulate what the goals of the project real-
ly were.

Chapter 9: Designing for Pleasure / 135

Ted was the main user of the current version of ARS, but he wasn’t our primary
persona. Although we would make operating the program easier for Ted, we
would have failed in our job if that was all we accomplished. Instead, we were
making the help-desk system directly accessible to Leo. Formerly, if Leo needed
help, he had to telephone Ted, who would dispatch Alison. The full cast of char-
acters articulated very clearly who the players were. This let us communicate to
all the engineers that our goal could only be achieved if Leo, the low-tech mar-
keting wonk, could use the ARS system on his own computer to summon tech-
nical help without Ted’s intervention.

136 / Part IV: Interaction Design Is Good Business

As soon as we could explain this situation in terms of personas, the team mem-
bers immediately understood that they needed to deemphasize Ted and concen-
trate all of their efforts on Leo. Ted occupies a role we call a negative persona. His
existence helps us to understand whom we are not designing for.

x

We know that we have isolated a persona when we have discovered a person
whose goals are unique. It isn’t necessary that all of the persona’s goals be differ-
ent, but that its set of objectives is clearly different from everyone else’s. Raul,
who assembles lawnmowers on an assembly line, has different goals from Cicely,
his production supervisor. Cicely wants to improve overall productivity and
avoid accidents. Raul wants to get a reasonable quantity of work done without
making any embarrassing mistakes. Although they share practical goals, their
motivations are quite different. Raul wants stability. Cicely wants a promotion.
Clearly, their goals are sufficiently different to demand the establishment of two
separate personas.

Primary Personas

Every cast of characters has at least one primary persona. The primary persona
is the individual who is the main focus of the design. To be primary, a persona is
someone who must be satisfied but who cannot be satisfied with an interface
designed for any other persona. An interface always exists for a primary persona.
In the Remedy ARS example, Leo Pierce was the primary persona.

Identifying the primary persona or personas is a vital step in the development of
a cast of characters. In my experience, each primary persona requires a separate
and unique interface. If we identify two primary personas, we will end up design-
ing two interfaces. If we identify three primary personas, we will end up design-
ing three interfaces. If we identify four primary personas, we know that we have
a big problem.

If we find more than three primary personas, it means that our problem set is too
large and that we are trying to accomplish too much at one time. We create per-
sonas to narrow down the spectrum of users for whom we design. It follows that

Chapter 9: Designing for Pleasure / 137

if the number of personas grows too much, we are defeating the purpose of cre-
ating personas in the first place.

The cast of characters is not just a convenient phrase; it becomes a physical—as
well as logical—design tool. After winnowing down the population, we typically
end up with anywhere from three to seven useful personas. We assemble all of
them on a single sheet of paper containing their names, pictures, job descrip-
tions, goals, and often telltale quotes. This one-page document becomes a ubi-
quitous part of our process. We print out copies of the cast of characters and
distribute it at every meeting, whether or not the client is present. Every design-
er at all of our brainstorming meetings and all of our detailed design meetings
has a cast-of-characters document in front of him at all times. When clients
attend these meetings, extra copies are printed and presented to them. Every
deliverable document that we create and give to our clients has a cast-of-
characters page in it. Our goal is to make the personas unavoidable. They are so
important that we cram them down everyone’s throat.

It does no good to have good design and not express it in terms of the user per-
sonas. It is simply too easy to slip back into speaking about “the user” and lose
the hard-won focus on specific archetypal users.

Case Study: Sony Trans Com’s P@ssport

In 1997, Sony Trans Com approached us with a remarkable design problem. Sony
Trans Com is Sony Corporation’s Irvine, California, division, responsible for the
design and manufacture of in-flight entertainment (IFE) systems. In-flight enter-
tainment—movies, TV shows, and video games in commercial aircraft—is a large
and lucrative business. Sony Trans Com had developed a new generation of tech-
nology that brought a new level of capability to airline passengers. The most
impressive capability of the new system, called P@ssport, was true video-on-
demand (VOD). VOD lets Tricia in seat 23A begin watching When Harry Met Sally
10 minutes after takeoff, and it lets Anna in seat 16C start the same movie 45 min-
utes later—and either passenger can pause or rewind the show without affecting
the other.

P@ssport pushed the envelope of IFE well beyond the current technical state of
the art. Each seat back contained a video screen and a Pentium computer run-
ning Windows 95. In the front of the plane was a powerful array of computers
with copious memory for content. A fiber-optic cable connected each seat to the
array, with connector boxes placed every few rows throughout the plane, making
the system blindingly fast and breathtakingly powerful.

138 / Part IV: Interaction Design Is Good Business

Sony had worked on this system for months before it asked us to help design the
interaction. Although the engineers were making good progress, their designers
were at an impasse. Just about anybody could occupy an airline seat, so they
were trying to accommodate everyone from the total computer novice to the
computer expert. They had no idea how to please all those constituencies.
Neither did we, but we had our powerful design techniques, including personas,
and were confident that we could solve the problem.

The Conventional Solution

Sony Trans Com had already designed and built a prototype of the P@ssport sys-
tem with a conventional interface. It was very consistent with the program’s
internal structure—that is, it was very implementation model. Basically, it con-
sisted of a deep hierarchical tree of screens through which the user had to navi-
gate, making decisions at each screen. The evident shortcomings of this
prototype are what prompted Sony to approach me.

Each screen represented another layer in the hierarchy, and it required six of
them to examine each movie selection.

Chapter 9: Designing for Pleasure / 139

It was a classic example of what I call uninformed consent. At each step, the user
is required to make a choice, the scope and consequences of which are unknown.
At the first screen the user must choose an entertainment type: music, movies,
games, shopping, and so on. Selecting “Video” makes all the other choices dis-
appear, and the next screen demands that the user choose the category of film.
The screens keep coming until, at the sixth level down, the user can see a brief
preview of the movie and then choose to watch it or not. If she decides to pass,
it’s six clicks and six screens back up to the top, and then six clicks back down to
view the next one. Whew!

140 / Part IV: Interaction Design Is Good Business

Because P@ssport runs on a screen in each seat back, every user is within arm’s
length of the screen. It was instantly obvious that a touch screen was a great, nat-
ural solution, rather than using a handheld remote controller. But Sony rejected
the idea anyway. Sony realized that—with six levels down and six levels up for
each selection—it would take several dozen taps for the typical user to select
entertainment. It realized that the person sitting in front would be enraged by all
the tapping on the back of his or her head. In a classic example of what Po
Bronson means when he says engineers will keep fixing what’s not broken until
it is broken, Sony discarded the touch-screen idea and reverted to a handheld
controller tied to the seat with a short wire. It threw the baby out with the bath-
water. The engineers regretted the decision but saw it as inevitable in light of
their schedule constraints.

Chapter 9: Designing for Pleasure / 141

The six-screen interface was a classic example of implementation-model design,
accurately reflecting the internal choices of the software. Each decision screen
offered up very little context or supporting information, so the user never felt ori-
ented, which made navigation a big problem. Each time the user drilled down
into another layer, she lost the current context. After she committed to “Video”
she was no longer able to select—or even see—the “Games” option. At each step
of the way, the program was ignorant of the bigger picture, so it kept the user sim-
ilarly ignorant. The user had to choose “Video” without knowing which or how
many movies were available. She then had to choose a single category of movie,
again without knowing what those categories meant. Is True Lies an adventure, a
romance, or a comedy? When she is finally shown movie titles, she is bereft of
information. Hmmm, Eraser, wasn’t that an art film about a mild-mannered
schoolteacher?

But even while still in the prototype stage, the interface had beautiful 3D graph-
ics, very artistic icons, and a map-and-globe metaphoric theme—all the trap-
pings of a good interface without the substance. It’s what we call “painting the
corpse.”

Personas

As always, our design process began with a thorough investigation phase, con-
sisting mostly of interviews, beginning inside Sony. We listened to most of the
people working on the product, including the project manager, the development
manager, a couple of the engineers, the product marketing manager, and the
content manager. These interviews gave us a good idea of what Sony Trans Com
wanted to accomplish with the product. It also gave us some historical perspec-
tive on past IFE business and technology. Armed with this knowledge, we shifted
our interviewing process to the field. We listened to lots of airline personnel, par-
ticularly flight attendants from several airlines.

During the interview process, our design team kept inventing new personas. Every
time a flight attendant would tell us a new story, we’d add another persona, until we
had about 30. The more we listened, the more we learned, and eventually the simi-
larities among the personas became apparent. As we found personas with common
goals, we could collapse them into one. Eventually we narrowed the persona popu-
lation down to 10; four passengers and six airline employees. As you might imagine,
the airline employees with formally described jobs and responsibilities were pretty
easy to understand and design for. The tough nut was the passenger persona. Each
of the four passenger personas was an archetype in its own way, representing a
broad segment of users, but you can’t design an interface for four personas. You
have to find the one common denominator. Here are the final four:

Chuck Burgermeister, business traveler. A 100,000-mile-club member
who flew somewhere practically every week. Chuck’s vast experience
with flying meant that he had little tolerance for complex, time-
consuming interfaces, or interfaces that condescend to novices.

Ethan Scott, 9-year-old boy. He was travelling unescorted for the first
time. Ethan wanted to play games, games, and more games.

Marie Dubois, bilingual business traveler. English was her second lan-
guage. She liked to browse the shopping, as well as the entertainment
selections.

Clevis McCloud, crotchety septuagenarian. An aging but still spry Texan,
slightly embarrassed about the touch of arthritis in his hands. He was
the only one of the four passenger personas who didn’t own a computer
or know how to use one.

142 / Part IV: Interaction Design Is Good Business

PASSENGERS ODYSSEY AIRLINES CREW

Clevis McCloud Brent Covington
Age: 65, World Odyssey Age: 37, Purser
Class

Marie Dubois Amanda Kent
Age: 31, Odyssey Club Age: 28, Flight attendant
Class

Chuck Burgermeister Jean-Paul Duroc
Age: 54, Odyssey Gold Age: 33, Interpreter
Class

Ethan Scott Molly Springer
Age: 9, World Odyssey Age: 41, Content renewal
Class specialist

Mel “Hoppy” Hopper
Age: 51, Mechanic

James A. Tattersall
Age: 47, Pilot

Our interface had to satisfy Chuck, Ethan, Marie, and Clevis while not making
any one of them unhappy. But that didn’t mean that we had to make all four of
them exceptionally happy. Ethan knows that wanting to play games, games,
games is something special, so he doesn’t mind pressing an extra few buttons to
obtain exactly what he wants, as long as he can obtain it. Chuck knows that his
vast experience has earned him some shortcuts, but he is willing to put a little
extra effort into learning and remembering those special commands.

Clevis turned out to be our common denominator. Clevis didn’t have or want a
computer. His motto was, “You can’t teach an old dog new tricks.” He wasn’t stu-
pid or lazy, just not an apologist for the antics of high technology. We knew that

Chapter 9: Designing for Pleasure / 143

if we put a caption bar and close box on the screen, we would instantly lose
Clevis. This meant that all computer-like interfaces were out of the question. We
also knew that with his arthritis, no complex manipulation would be acceptable.
He should be able to operate the system with the ball of his hand.

Any solution that focused on Chuck, Marie, or Ethan would be unacceptable to
Clevis. Clevis would be scared and confused by Chuck’s shortcuts and Marie’s
language-selection options. Ethan’s twitch games would just get in Clevis’s way.
Yet a solution that made Clevis, the crotchety old Luddite, happy would be per-
fectly acceptable to Chuck, Ethan, and Marie, as long as their special needs were
accommodated somewhere in the interface.

Chuck and Marie were old hands at flying, so they could find their way around
any system, as long as it didn’t involve a lot of time-consuming training screens
for new users. We knew that if we made the system very simple and visual, it
wouldn’t involve a lot of interaction overhead, and Chuck and Marie wouldn’t be
offended. Ethan was easier, because we knew that he would quickly and aggres-
sively explore the system to find out where everything was. As long as his games
weren’t hidden away somewhere, he’d be happy.

Throughout the entire design project, Clevis was our touchstone. His image
became our battle standard. We knew that to make Clevis happy would mean
that we would make any and every airplane customer happy. He was our primary
persona, and we designed the system for him and him alone.

Designing for Clevis

Clevis had no experience with computers and no patience for the typical attitude
of delayed gratification that most programs have. The solution to Clevis’s naviga-
tion problem was simple: He could not and would not “navigate,” so there could
be only one screen. The solution to Clevis’s reluctance to explore the interface
meant that the product had to be very generous with information. We were par-
simonious with choices but copious with information.

We turned the screen into a horizontally scrolling panoply of movie posters and
album covers. We created a large, rotating knob—which we call a “data wheel”—
that Clevis could spin like a station selector on a radio. This was an actual knob
on the bezel of the screen, not an image of a knob drawn in pixels. As Clevis spins
the data wheel, the posters scroll smoothly by, moving right if the knob is turned
clockwise and left if it’s turned counterclockwise.

Clevis views the posters going by, like strolling down Broadway peering into store
windows. He never has to choose—or even think about—what category a movie
is in. Because there was no tree of choices to traverse, we reinstated the touch
screen without requiring woodpecker-like tapping. When Clevis sees a movie

144 / Part IV: Interaction Design Is Good Business

poster that interests him, he taps it once and immediately sees and hears a brief
preview, along with written reviews, cast, crew, and pricing information. Clevis
can then tap to watch the movie or tap to resume his leisurely stroll down Movie
Street.

Chapter 9: Designing for Pleasure / 145

The scrolling movie posters are arranged in a manner we call a monocline
grouping—a single layer of information organized into groups. We often replace
interface hierarchies with them. The top of your desk is likely organized in a mon-
ocline grouping, as are your bookshelves and your bedroom drawers. People,
including Clevis, Marie, Ethan, and Chuck, very quickly and easily grasp mono-
cline groupings. Monocline grouping changes the “category” of movie from a nec-
essary choice that must be made in advance into a helpful attribute. Clevis can
peruse movie posters and see what category any given movie belongs to without
committing to it. It also neatly solves the problem of selecting which category
something is in. The movie True Lies, for example, is an action film, a star vehicle,
an adventure, an effects showcase, a romance, and a comedy. A hierarchy would
force it into just one of those categories, but in a monocline grouping, it can eas-
ily have all of them as attributes.

After Clevis scrolls through the movie posters, the images seamlessly change, first
to album covers and then to game posters. There are few enough selections that
Clevis can merely spin the knob and bring everything into view. The knob is large
enough, and its motion coarse enough, that even Clevis, with his large, hard, oil-
field hands with their touch of arthritis can still rotate it with ease. A navigation
bar across the bottom of the screen informs Clevis that there are several broad
categories of entertainment, and a small indicator on the bar moves to point to
his place in the spectrum of choices.

The Sony programmers fell into the three-number trap of 0, 1, and infinity. The
P@ssport system can handle, in practical terms, about three dozen movies. From
a programmer’s point of view, 36—being greater than either 0 or 1—is the same
as infinity, and the idea of presenting an infinity of movies seemed problematic,
so they divided them up into categories. But Clevis enjoys scrolling through the
three dozen choices. Even if there were a few hundred movies, he’d still enjoy the
leisurely browsing, remembering movies he had seen and anticipating seeing
those he hadn’t.

A lot of the value of the solution was in the posters, which convey significant
information about each movie: the stars, the plot, the attitude. The engineers
saw this but were concerned that offering up movie posters would create extra
work for the content providers. When we broached the idea to some movie ven-
dors, they reacted in just the opposite way. They were ecstatic at having the
opportunity to get their posters into the interface. After all, they had spent hun-
dreds of thousands of dollars to have experts produce a poster that conveyed,
most informatively and concisely, as much information as possible about a film
and appealed to the broadest audience. Why not put that to use on the airplane?
They considered it a great new opportunity to produce bitmaps for the product.

Although we designed the passenger interface for our one primary passenger
persona, we made certain to provide for the needs of the secondary passenger
personas. Chuck Burgermeister, the frequent flyer, will want some shortcuts, and
those are built into the interface so that Clevis won’t even notice them. If Chuck
wants to move between categories of entertainment more quickly than the data

146 / Part IV: Interaction Design Is Good Business

wheel allows, all he has to do is touch the navigation bar at the bottom of the
screen. The program immediately jump-scrolls to that part of the monocline
grouping without forcing Chuck to scroll there. Clevis never even needs to know
about this ever-present idiom, yet it is very easy to discover and learn, and more-
experienced travelers like Chuck and Marie will quickly pick up the trick, either
from their own exploring or from watching others.

Unlike images on a screen, physical knobs and controls invite manipulation.
When Clevis first sees the data wheel, he can easily intuit from its shape and ori-
entation how to work it. Although Clevis cannot intuit its behavior, all it takes is
a single, small turning, and its behavior and effects are instantly clear because an
equal motion of the movie posters on the screen instantly echoes any motion of
the wheel. More probably, Clevis will see some other passenger spin the wheel
and see the image scroll in direct proportion. The one-to-one relationship
between wheel and screen is instantly understood, and Clevis has learned how to
use the system in an instant.

x

I’ve only described the interface we designed for Clevis McCloud, the passenger.
We also designed two other large interfaces, one each for the other two primary
personas: Amanda Kent, the flight attendant, and Mel “Hoppy” Hopper, the
mechanic. Their goals are quite different from Clevis’s.

After safety, Amanda must focus on ensuring that each passenger has the best
experience possible. Her interface must provide control over all in-flight opera-
tions. For example, if Chuck in seat 24C wants to move because Clevis in 24B has
fallen asleep and is snoring loudly, Amanda must be able to transfer Chuck’s
account and his half-viewed movie to 19D, the empty seat that he moves to.

Hoppy’s main requirement is to assess rapidly the state of the system. He deter-
mines what is malfunctioning, how serious it is, and what he can do to fix it.

Both Amanda and Hoppy use the same screen at the flight attendant’s station,
but their interfaces are dramatically different because their goals are different.

x

If you want to design software-based products that make people happy, you have
to know who those people are with some precision. That is the role that personas
play. The next step is designing the product to be as powerful as possible, and for
that, you need to know more about the user’s goals.

Chapter 9: Designing for Pleasure / 147

This page intentionally left blank

10
Designing for Power

Goal-Directed design starts with the definition of user personas and their goals.
In the last chapter, I described personas at length. In this chapter, I will give sim-
ilar treatment to goals, showing how they can be identified and put to use as a
potent design tool. The two are inseparable, like the obverse sides of a coin. A
persona exists to achieve his goals, and the goals exist to give meaning to a per-
sona.

Goals Are the Reason Why We Perform Tasks

Before the digital age confronted us with cognitive friction, design was mostly an
aesthetic thing, and one person’s opinion on the quality of a given design was as
good as anyone else’s. Cognitive friction comes with interaction, and interaction
is only necessary if there is a purpose, a goal. In this new light, the nature of
design changes. The aesthetic component isn’t lessened in any way. It is merely
diluted by the larger demands of achieving the user’s goals. This means that,
unlike in earlier times, the quality of design isn’t so much a matter of opinion and
is much more amenable to systematic analysis. In other words, in the bright light
of a user’s goals, we can learn quite directly what design would suit the purpose,
regardless of anyone’s opinion or, for that matter, of aesthetic quality.

“Good interaction design” has meaning only in the context of a person actually
using it for some purpose. You cannot have purposes without people. The two are
inseparable. That is why the two key elements of our design process are goals and
personas—purposes and people.

What’s more, the most important goals are personal ones, held only by the indi-
vidual. Some real person is interacting with your product, not some abstract

corporation, so you must regard people’s personal goals as higher than the cor-
poration’s. Your users will do their best to achieve the business’s goals, but only
after their own personal ones are achieved. The most important personal goal is
to retain one’s dignity: to not feel stupid.

The essence of good interaction design is to devise interactions that let users
achieve their practical goals without violating their personal goals.

Tasks Are Not Goals

Goals are not the same things as tasks. A goal is an end condition, whereas a task
is an intermediate process needed to achieve the goal. It is very important not to
confuse tasks with goals, but it is easy to mix them up.

If my goal is to laze in the hammock reading the Sunday paper, I first have to
mow the lawn. My task is mowing; my goal is resting. If I could recruit someone
else to mow the lawn, I could achieve my goal without having to do the mowing.

There is an easy way to tell the difference between tasks and goals. Tasks change
as technology changes, but goals have the pleasant property of remaining very
stable. For example, to travel from St. Louis to San Francisco, my goals are speed,
comfort, and safety. Heading for the California gold fields in 1850, I would have
made the journey in my new, high-tech Conestoga wagon. In the interest of safe-
ty, I would have brought my Winchester rifle. Heading from St. Louis to the Silicon
Valley in 1999, I would make the journey in a new, high-tech Boeing 777. In the
interest of safety, I would leave my Winchester rifle at home. My goals remain
unchanged, but the tasks have so changed with the technology that they are in
direct opposition.

150 / Part IV: Interaction Design Is Good Business

This same pattern of directly opposing goals and tasks is easy to find. When the
president desires peace overseas, he sends troops armed with guns, planes, and
bombs. His task is war. His goal is peace. When a corporate lawyer wants to avoid
conflict with a colleague, she argues with him over clauses in the contract. Her
goal is accord, but her task is argument.

The goal is a steady thing. The tasks are transient. That is one reason why design-
ing for tasks doesn’t always suit, but designing for goals always does.

Programmers Do Task-Directed Design

Too many developers approach design by asking, “What are the tasks?” This may
get the job done, but it won’t come close to producing the best solution possible,
and it won’t satisfy the user at all. Designing from tasks instead of goals is one of
the main causes of frustrating and ineffective interaction. Asking, “What are the
user’s goals?” lets us see through the confusion and create more appropriate and
satisfactory designs.

Boiled down to its essence, computer programming is the creation of a detailed,
step-by-step description of procedures. A procedure, of course, is a recipe for
accomplishing a task. Good programmers, of necessity, see things procedurally,
or task-wise. Ultimately, the tasks must get done to achieve the business goals,
but there are different emphases and different sequences of doing them. Only
some sequences satisfy the user’s personal goals.

Goal-Directed Design

When interaction designers analyze goals to solve problems, they typically find
very different—and much better—solutions.

Imagine Jennifer, an office manager in a small company. Her goal is to make her
office run smoothly. Of course, she doesn’t want to feel stupid or make mistakes,
either. Toward those ends, she must make her computer network run smoothly.
She must set it up properly, monitor its performance, and modify its configura-
tion periodically to maintain its peak performance. In Jennifer’s mind, her job is
a seamless blending of these three tasks, contributing to her one goal of smooth
running. From Jennifer’s point of view, there is really no difference among the
three tasks. She doesn’t sense a big difference between initial setup and subse-
quent reconfiguration of the network.

Imagine Clancy, a software engineer, who must write the software that Jennifer
uses. In Clancy’s Homo logicus mind, Jennifer’s software performs three tasks—
three functions—and each will be implemented in a different chunk of software.
It seems natural to Clancy that each function also has its own chunk of interface.
It’s only logical. Clancy is considering an interface with a hierarchical list of sys-
tem components in the left-side pane, and—when a component in that list is

Chapter 10: Designing for Power / 151

selected—its details are shown in the right-side pane. This interface has the
advantage of being approved by Microsoft, and it makes sense to programmers.
The user will have to click on lots of system components to find out what is hap-
pening in the system, but all the necessary information is there for the asking.

Imagine Wayne, an interaction designer, who is charged with making both
Jennifer and Clancy happy. In Wayne’s designing mind, he knows that the soft-
ware must represent itself to Jennifer in a way that most closely approximates her
goals while ensuring that all of the necessary functions are present. (Jennifer is a
primary persona.) Wayne also knows that he cannot specify anything that would
create unreasonable or impossible effort for Clancy.

Wayne sees that Jennifer has only a single goal—smooth running—so he designs
the interface so Jennifer can see at a glance that things are running smoothly. If
some bottleneck occurs, Jennifer’s interface clearly shows that one trouble spot
in a prominent, visual way and lets her investigate and fix the problem by direct-
ly interacting with the onscreen representation of the troubled area. Wayne
knows that—to Jennifer—there is no difference between monitoring the system
and modifying it, and the interface reflects that perception. The only time that
Jennifer ever has to ask about a component in her system is when she has already
learned that there is a good reason for her to do so.

From Clancy’s point of view, the code to show the performance of a component
and the code to configure that component are two separate procedures. They
have no connection in task-think. But in goal-think, they are intimately bound.
Jennifer would never choose to reconfigure a component unless she were first
apprised of a reason to reconfigure it by seeing a reduction in its performance.
Further, Jennifer would always want to carefully monitor that component’s per-
formance level while she reconfigured it.

Designing for the user persona’s goals clearly shows us an alternative way to
think about delivering functionality. It frequently provides dramatically better
ways to solve prosaic design problems. Here are some examples.

Goal-Directed Television News

On one of our projects, a client was working on an ensemble of applications that
supported the creation of a television news show. From the engineer’s task view-
point, news shows are built the way bridges are built: one piece at a time. But we
determined that the newscaster’s goal wasn’t to “build” a news show over time,
but rather, it was to always have a news show that got better over time. Each news
show is really a fluid and organic beast that begins and ends life fully grown.

In the news business, anything can happen, so the newscaster wants to always
have a fallback position. His goal is to always have a reasonable, broadcastable

152 / Part IV: Interaction Design Is Good Business

show. The evening news show begins in the morning as a complete, ready-to-
broadcast entity—22 full minutes (not including commercials)—and it always
exists in a state of completion. Each story segment has a time allowance, and the
segments always combine to total 22 minutes. Like a blurry image slowly coming
into focus, the boundaries of the show never change, but the contents become
sharper and more precise. From 10:00 a.m. on, the news show could be broad-
cast if need be, but it will be at its best sometime around 5:00 p.m.

Each news show consists of 20 to 30 news stories blocked out with cues, video
clips, remotes, and studio presentations. As the morning progresses, the priority
of each story shifts, and the presentation order and allotted time change to
reflect the judgment of the news director. During the early afternoon, a breaking
story might demand attention, altering the order of the other stories and proba-
bly even bumping some of them off the program entirely. The reporters and news
director will be tweaking and changing the script up until the last second—
sometimes into the broadcast itself.

The software engineers, looking at the problem from a task and procedure point
of view, had created an application that allowed a news show to be built story
segment by story segment. It was very logical, very reasonable, but very wrong.
The news show wasn’t a complete thing until immediately before broadcast, and
a change to a single segment disrupted all of the other segments, leaving the
show unbroadcastable until it was patched together again.

For our design work, we sketched an application that began with a ready-for-
prime-time news show and allowed the reporters and news director to constant-
ly tweak it, just as they worked in a manual world. But unlike the manual
method, our design brought the power of the computer to bear. For example, if a
segment were pulled at the last minute, the time allotted to it would be auto-
matically distributed to the remaining stories in a weighted allocation scheme.

Goal-Directed Classroom Management

In another design project, we were asked to design a classroom-management
system for elementary-school teachers. The engineers had provided facilities for
testing students, tracking performance, and accessing a database of lesson plans.
From a task point of view, things seemed adequate. We looked—metaphorically
speaking—deep into the teacher’s eyes to determine what the typical primary-
school teacher really wanted and came up with a surprising answer.

We learned that teachers feel isolated in their classrooms and crave feedback on
how they are doing. In order to improve, a teacher needs a way to measure her
own performance. This simple need is not obvious when you decompose the
teaching process into its component tasks. That human need is easily visible
when you examine goals. In our design, we provided a facility that tracked the

Chapter 10: Designing for Power / 153

teacher’s achievements from semester to semester and also from room to room.
With this tool, the teachers had a better sense of continuity and progress, and
their confidence in their work grew.

Personal and Practical Goals

Earlier in this chapter, I stated that the essence of good interaction design is to let
users achieve their practical goals without violating their personal goals. Homo
logicus, and their apologists, usually find it embarrassing to look too closely at
personal goals, so they avoid it. However, the distinction between personal goals
and practical goals is critical to success.

I’ll use my colleague Ted as an example. He just sent me email complaining
about his new television set. He spent an unpleasant hour reading the manual so
he could properly set all of the TV’s various parameters. He suggested to me that
the TV should have provided an on-screen dialog box to step him through the
procedure instead of forcing him to read the manual. His solution is fine as far as
it goes, but—he is not a designer—he naturally tackled the problem the old
mechanical-age way: by focusing on tasks. The on-screen dialogs would simpli-
fy the task of setting parameters, but—by examining his goals instead—we use a
different approach, which gives us a remarkably better solution.

We start by assessing Ted’s goals, and it’s always best to start at the top. Obviously,
we know that Ted wants to watch TV. He just paid lots of money for a new set, so
just as obviously, he wants to be able to take advantage of all of the set’s nifty new
features. These practical goals are directly related to the task of setting up a new
TV set.

But we must never forget that Ted is a person and, as such, he has strong per-
sonal feelings that can also be expressed as goals. Ted does not want his new pos-
session to humiliate him; he does not want to be made to feel stupid. Ted does
not want to make mistakes. He wants to have a feeling of accomplishment, the
sooner the better. He wants to have some fun. These personal goals are vital.
From an interaction designer’s point of view, they are more important than Ted’s
practical goals.

Ted’s complaint wasn’t that he couldn’t watch his new TV, or that he paid too
much for it, or that he couldn’t take advantage of all of those nifty new features.
He complained because the TV set made him feel stupid. He didn’t say it using
those exact words because just saying “It made me feel stupid” makes one feel
stupid, but that was clearly his meaning. While interacting with it, he accidental-
ly made mistakes. It took him more than an hour after he plugged it in to have
any sense of accomplishment. The parameter-setting process wasn’t fun.

While meeting Ted’s practical goals, the product’s interaction violated Ted’s most
important personal goals. The specific qualities that make Ted’s new TV set a

154 / Part IV: Interaction Design Is Good Business

classic example of a new, high-tech, dancing bearware product are not the way it
achieves his practical goals, but the way it fails to achieve his personal goals.

Armed with the knowledge that Ted’s personal goals are sacred, here’s how we
would design a very different interface for the TV. First, to quickly give him a
sense of accomplishment, we must make certain that the TV works well the
instant it is plugged in. It doesn’t have to do everything, but it has to do something
and do it well. Clearly, putting Ted through the parameter-setting process first
fails this instant-gratification test. The software engineers see all parameters as
equal, so they lump them together. But we can easily assume some parameter
settings, letting the TV do the basic stuff, and delay the need for other, advanced
feature parameters until later. We have to unlump the parameters. This is not a
technical problem, just a simple reshuffling of interaction priorities.

Our design now fits the definition of a success: Ted could take the TV out of its
box, plug it into the wall, and immediately relax in his easy chair to channel surf
contentedly, having achieved most of his practical goals without violating any of
his personal goals.

Notice that although he doesn’t have to achieve all of his practical goals at once,
he must never find any of his personal goals violated. This difference also illus-
trates the complementary notions of designing for and providing for. The
interaction-design solution must provide ways for Ted to achieve all of his prac-
tical goals, but the design must strongly emphasize ways for Ted to achieve his
personal goals.

The Principle of Commensurate Effort

Of course, after a while, Ted’s desire to fully achieve the practical goal of taking
advantage of all those nifty new features would begin to assert itself. But by then
he would have spent many happy hours with his new set, would be familiar with
it, and would be willing to invest more effort. It would now be harder for the set
to humiliate him, his tolerance for its interaction would be greater, and he would
have a more precise understanding of exactly what he wants it to do.

It is a proven human trait that people react emotionally to computers (more on
this later in the chapter). Because people interact with computers, they natural-
ly regard them as somewhat human. Ted is willing to put more effort into config-
uring his TV because he feels that the TV has put effort into making him feel
good.

I call this phenomenon the Principle of Commensurate Effort. People are willing
to put effort into tasks because they feel that it is a fair exchange between equals.
In other words, users are willing to invest extra effort because they know they will
get extra rewards for it.

Chapter 10: Designing for Power / 155

Personal Goals

Let’s look at goals in more detail. I’ve already introduced two types of goals—
personal and practical—but there are also corporate and false goals. Personal
goals are simple, universal and, well, personal. Paradoxically, this makes them
difficult for many people to talk about, especially in the context of impersonal
business.

PERSONAL GOALS

Not feel stupid
Not make mistakes
Get an adequate amount of work done
Have fun (or at least not be too bored)

Apologists, in general, are very troubled with “not feel stupid.” They are proud,
intelligent people, and they thrive on confronting complex situations and mas-
tering them. Hmm, sounds a lot like high-tech, Silicon Valley entrepreneurs to me.
For example, as a courtesy, after writing down Ted’s new-TV story, I sent it to him
(he’s an accomplished, independent, high-tech entrepreneur), and he replied:

I wouldn’t say I’m made to feel stupid grappling with the 40-page manu-
al. It’s more a situation of wanting to be spared the aggravation of
spending time on unwanted tasks—indeed, on learning things that
might have to be relearned again later. (Will a power outage, for exam-
ple, require reprogramming, with reference to the manual again?)

Ted is an apologist. To even say the S-word impugns his ability to master the TV
set in spite of its difficulty. He’ll admit to aggravation, time wasting, or needless
redundancy, but not to even the appearance of stupidity, which is why I am
reluctant to substitute another word. I use “stupid” precisely because it is so dif-
ficult for competent, intelligent, hard-charging, type-A, Silicon Valley software
gurus to say it. As they do say, the first step to fixing the problem is admitting that
one exists.

Personal goals are always true and operate to varying extents for everyone.
Personal goals always take precedence over any other goals, although—
precisely because they are personal—they are rarely discussed. When software
makes users feel stupid, their self-esteem droops and their effectiveness plum-
mets, regardless of their other goals. Any system that violates personal goals will
ultimately fail, regardless of how well it achieves other goals.

Corporate Goals

Businesses have their own requirements for software, and they are as high level
as the personal goals of the individual. “To increase our profit” is pretty funda-

156 / Part IV: Interaction Design Is Good Business

mental to the board of directors or the stockholders. The designer uses these
goals to stay focused on the bigger issues and to avoid getting distracted by tasks
or other false goals.

CORPORATE GOALS

Increase our profit
Increase our market share
Defeat our competition
Hire more people
Offer more products or services
Go public

Psychologists who study the workplace have a term, hygienic factors, which Saul
Gellerman1 defines as “prerequisites for effective motivation but powerless to
motivate by themselves.” The lights in your office, for example, are hygienic fac-
tors. You don’t go to work because the lights are nice, but if there were no lights
at all, you wouldn’t bother showing up.

I have adapted this term as hygienic goals, which I define as goals prerequisite for
effective functioning but powerless to motivate by themselves. All of the corpo-
rate and practical goals shown in the list are hygienic. From the corporation’s
point of view they are important goals, but the corporation isn’t doing the work;
people are, and their personal goals are dominant.

There is a close parallel between corporate and personal goals: Both are the high-
est expressions of goals for their respective owners. Neither can be slighted.
Software that fails to achieve either one will fail.

Practical Goals

Practical goals bridge the gap between the objectives of the company and the
objectives of the individual user. The corporation wants everyone working hard
to maximize the corporate bottom line. The practical goal of handling the client’s
demands connects the corporate goal of higher profits with the user’s personal
goal of being productive.

PRACTICAL GOALS

Avoid meetings
Handle the client’s demands
Record the client’s order
Create a numerical model of the business

Practical goals have more appeal than the touchy-feely personal goals, especial-
ly to sober businesspeople and nerdy programmers. True to their nature, they

Chapter 10: Designing for Power / 157

1 Saul W. Gellerman, Motivation and Productivity; Amacom, New York, 1963, ISBN
0-8144-5084-9.

create software that—although it admirably fulfills the practical goals—fails
utterly to satisfy the individual user. A task-based interface can provoke users to
make mistakes and obstruct their ability to be personally productive, making
them feel bad about themselves and the software.

Of course your software has to have the features built into it to accomplish the
goals of the business. The user must perform the tasks necessary to handle
clients’ demands and process orders, but these are only hygienic, because offer-
ing these features without addressing the user’s personal goals will fail. If the user
fails to achieve her own personal goals, she cannot effectively achieve the com-
pany’s. It is a simple fact of human nature that happy, satisfied workers are more
effective ones. This is truer than ever in the modern information economy, in
which the true assets of a company are human and not mechanical. On the other
hand, if your software ignores practical goals and serves only the user’s goals, you
will have just designed a computer game.

False Goals

Most of the software-based products we use every day are created with false
goals in mind. Many of these goals ease the task of software creation, which is a
programmer’s goal, and this is why they get promoted at the expense of the soft-
ware’s user. Other false goals have to do with tasks, features, and tools. They are
means to ends, but not ends in themselves, and goals are always ends.

FALSE GOALS

Save memory
Save keystrokes
Run in a browser
Be easy to learn
Safeguard data integrity
Speed up data entry
Increase program-execution efficiency
Use cool technology or features
Increase graphic beauty
Maintain consistency across platforms

A target like “safeguarding data integrity” isn’t a goal for a personal mailing-list pro-
gram the same way it might be for a program that calculates shuttle orbits. A target
like “saving memory” isn’t very important for personal-computer database-query
programs because downloads are small and computers are big. Even a target like
“being easy to learn” isn’t always a primary goal. For example, a fighter pilot who
found it easy to learn to use her weapons systems, but then found them slow and
cumbersome to operate, would be at a distinct disadvantage in an aerial dogfight.

158 / Part IV: Interaction Design Is Good Business

Her goal is to emerge from combat victorious, not to have an easy time in flight
instruction.

Since the invention of the microprocessor, the computer revolution has surfed a
wave of new technology. Any company that ignores new technical ideas is
doomed. But don’t confuse these techniques with goals. It might be a software
company’s task to use new technology, but it is never a user’s goal to do so. As a
user, I don’t care if I get my job done with hierarchical databases, relational data-
bases, object-oriented databases, flat-file systems, or black magic. All I care
about is getting my job done swiftly with a modicum of ease and dignity.

For example, in 1996 the Visioneer Company carved out a big share of the
desktop-scanner market from well-entrenched competitors. Visioneer accom-
plished this remarkable feat with an old-fashioned black-and-white scanner,
while its competition could scan either gray-scale or full color. But Visioneer’s
product included Goal-Directed software that allowed users to easily view and
manage their scanned images, while the others’ software merely dumped the
scans into the complicated file system.

Computers Are Human, Too

Clifford Nass and Byron Reeves, two professors at Stanford University, study peo-
ple’s responses to computers. By cleverly repurposing classic experiments in
social psychology, they observed some remarkable behavior. They have pub-
lished their findings in a book entitled The Media Equation.2 They have demon-
strated conclusively that humans react to computers in the same way that they
react to other humans.

Nass and Reeves say that “people are not evolved to twentieth-century technol-
ogy,” and that “modern media now engage old brains…. Consequently, any
medium that is close enough will get human treatment, even though people
know it’s foolish and even though they likely will deny it afterward.” To our
human minds, computers behave less like rocks and trees than they do like
humans, so we unconsciously treat them like people, even when we “believe it is
not reasonable to do so.”

In other words, humans have special instincts that tell them how to behave
around other sentient beings, and as soon as any object exhibits sufficient cog-
nitive friction, those instincts kick in and we react as though we were interacting
with another sentient human being. This reaction is unconscious and unavoid-
able, and it applies to everyone. With deep and amusing irony, Nass and Reeves
used as test subjects many computer-science grad students skilled enough to

Chapter 10: Designing for Power / 159

2 Byron Reeves and Clifford Nass, The Media Equation; How People Treat Computers, Television,
and New Media Like Real People and Places, Cambridge University Press, 1996, ISBN
1-57586-052-X.

have coded up the test programs themselves. These subjects were highly educat-
ed, mature, and rational individuals, and they all strongly denied being emo-
tionally affected by cognitive friction, even though the objective evidence was
incontrovertible.

Harvard cognitive neuroscientist Steven Pinker corroborates this thesis in his
remarkable book, How the Mind Works. He says, “People hold many beliefs that
are at odds with their experience but were true in the environment in which we
evolved, and they pursue goals that subvert their own well-being but were adap-
tive in that environment.”3

Designing for Politeness

One important implication of the research is remarkably profound: If we want
users to like our software, we should design it to behave like a likeable person. If
we want users to be productive with our software, we should design it to behave
like a good human work mate. Simple, huh?

Nass and Reeves say that software should be “polite” because this is a universal
human behavioral trait. (Which actions are considered polite might vary from
culture to culture, but the trait is present in all cultures.) Our high-cognitive-
friction products should follow this simple lead and also be polite. Many high-
tech products interpret politeness to mean that it’s okay to behave rudely as long
as they say “please” and “thank you,” but that is emphatically not what politeness
is all about.

160 / Part IV: Interaction Design Is Good Business

3 Steven Pinker, How the Mind Works, W.W. Norton & Company, 1997, ISBN 0-393-04535-8.
I absolutely love this wonderful, eye-opening, literate, amusing, readable book.

If the software is stingy with information, obscures its process, forces the user to
hunt around for common functions, and is quick to blame the user for its own
failings, the user will dislike the software and have an unpleasant experience.
This will happen regardless of “please” and “thank you”—regardless, too, of how
cute, representational, visually metaphoric, content-filled, or anthropomorphic
the software is.

On the other hand, if the interaction is respectful, generous, and helpful, the user
will like the software and have a pleasant experience. Again, this will happen
regardless of the composition of the interface; a green-screen command-line
interface will be well liked if it can deliver on these other points.

What Is Polite?

What exactly does it mean for software to be friendly or polite? What does it
mean for software to behave more like humans? Used-car salesmen wear hand-
some clothes, smile broadly, and are filled with impressive information, but does
that make them likeable? Humans are error prone, slow, and impulsive, but it
doesn’t follow that software with those traits is good. Human beings have many
other qualities that are present only conditionally but that make them well suit-
ed to the service role. Software is always in the service role.4

Most good software engineers are at a disadvantage in the politeness realm.
Robert X. Cringely says that programmers

…are expressive and precise in the extreme but only when they feel like
it. They look the way they do as a deliberate statement about personal
priorities, not because they’re lazy. Their mode of communication is so
precise that they can seem almost unable to communicate. Call a nerd
Mike when he calls himself Michael and he likely won’t answer, since
you couldn’t possibly be referring to him.5

You can see how the concept of “politeness” or even “humanness” can be a stum-
bling block when we ask programmers to be the interpreters of such fuzzy con-
cepts. They struggle with the idea of making computers behave more like
humans, because they see humans as weak and imperfect computing devices.

I asked my friend Keith Pleas, who is well known in the engineering community
as an articulate, expert programmer sensitive to user-interface issues, about
making software more human. Keith interpreted adding “humanness” as adding
imprecision to the interaction. He replied:

Chapter 10: Designing for Power / 161

4 Games are a notable exception to this rule. Many games just wouldn’t be fun unless facts were
hidden, processes were obscured, and goals were unclear.

5 Robert X. Cringely, Accidental Empires, How the Boys of Silicon Valley Make Their Millions,
Battle Foreign Competition, and Still Can’t Get a Date, Addison-Wesley, 1992, ISBN:
0-201-57032-7.

Would a computer “lie” to you? Would a computer say you have “about
$500” in your checking account? Would a computer give you a different
answer than it just gave someone else? If we enhance the humanness,
some of the computer-ness will be reduced, at least in comparison.

Keith’s response is natural from the programmer’s point of view. True, the com-
puter would never give you an approximate bank balance, but then the comput-
er wouldn’t differentiate between taking one tenth of a second to say you have
“about $500” in your account, versus taking 17 minutes to say you have “exactly
$503.47.” A really polite, more-human program would immediately say you have
“about $500” and then inform you it will give you a more precise figure in a few
additional minutes. Now it would be your choice whether to invest more time for
additional precision. This is an application of the principle of commensurate
effort; if you want more information you will sympathize with the need to spend
more time.

What Makes Software Polite?

Humans have many wonderful characteristics that make them “polite” but
whose definitions are fuzzy and imprecise. Nass and Reeves say that the “four
basic principles that constitute the rules for polite interaction [are] quality, quan-
tity, relevance, and clarity.” Those are good but a little too vague to be helpful.
Here is my list of what improves the quality of interaction, either with a human
or a high-tech, software-based product rich in cognitive friction.

Polite software is interested in me
Polite software is deferential to me
Polite software is forthcoming
Polite software has common sense
Polite software anticipates my needs
Polite software is responsive
Polite software is taciturn about its personal problems
Polite software is well informed
Polite software is perceptive
Polite software is self-confident
Polite software stays focused
Polite software is fudgable
Polite software gives instant gratification
Polite software is trustworthy

Polite Software Is Interested in Me

A friend would ask about me and be interested in who I am and what I like. He
would remember my likes and dislikes so he could please me in the future. Any

162 / Part IV: Interaction Design Is Good Business

supportive service provider would make an effort to learn to recognize the face
and name of her customers. Some people appreciate being greeted by name and
some don’t, but everyone appreciates being treated according to his own per-
sonal tastes.

Most software doesn’t know or care who is using it. In fact, none of the personal
software on my personal computer seems to remember either me or anything
about me. This is true in spite of the fact that it is constantly, repetitively, and
exclusively used by me. Larry Keeley jokes that the automatic-flush urinal in an
airport bathroom is more aware of his presence than his desktop computer is.

Every bit of my PC’s personal software should work hard to remember my work
habits, and particularly, everything that I say to it. To the programmer writing the
program, it’s a just-in-time information world, so whenever the program needs
some tidbit of information, it simply demands that the user provide it. But the
thoughtless program then discards that tidbit, assuming that it can merely ask
for it again if it ever needs it. Not only is the computer better suited to doing the
remembering, but it is impolite for it to forget.

For example, there are 11 people named Dave in my email program’s name-and-
address directory. I rarely communicate with most of them, but they include my
best friend Dave Carlick, to whom I send email all of the time. When I create a
new email and type an ambiguous “Dave” in the TO: block, I expect the program
to have learned from my past behavior that I mean Dave Carlick. If I want to send
something to another Dave—David Fore, for example—I’ll type in “Dave F,” “D4,”
“David Fore” or something else to indicate my out-of-the-ordinary choice.
Instead, the program behaves stupidly, always putting up a dialog box and mak-
ing me choose which of the 11 Daves I mean. The program just doesn’t care
about me and treats me like a stranger even though I’m the only human it knows.

Polite Software Is Deferential to Me

Any good service person defers to her client. She understands the person she is
serving is the boss, and whatever the boss wants, the boss should get. When a
restaurant host shows me to a table in a restaurant, I consider his choice of table
to be a suggestion, not an order. If I politely demur and choose another table in
an otherwise empty restaurant, I expect to be accommodated immediately. If the
host refuses, I am likely to walk out and choose another restaurant where my
desires take precedence over the host’s.

Impolite software supervises the assumed-to-be-incompetent human’s actions.
It’s okay for the software to express its opinion that I’m making a mistake, but it
is not okay for it to judge my actions. Likewise, it is all right for software to sug-
gest that I cannot “submit” my entry until I’ve entered my Social Security num-
ber, but if I go ahead and “submit” without it anyway, I expect the software to do

Chapter 10: Designing for Power / 163

as it is told. (The very word submit and the concept it stands for are a reversal of
the deferential role. The software should submit to the user, and any program
that proffers a Submit button is, ipso facto, impolite. Take notice, most every
active site on the World Wide Web.)

Polite Software Is Forthcoming

At the airport, if I ask an airline employee at which gate I can find Flight 79, I
would expect him not only to answer my question, but also to volunteer the
extremely useful collateral information that Flight 79 is 20 minutes late.

If I order food at a restaurant, it should be obvious that I also want a knife, fork,
and spoon, a glass of water, salt, pepper, and a napkin.

Most software won’t do this. Instead, it only narrowly answers the precise ques-
tions we ask it, and it is typically not very forthcoming about other information
even if it is clearly related to my goals. When I tell my word processor to print my
document, it never tells me that the paper supply is low or that 40 other docu-
ments are queued up before me, but a helpful human would.

Polite Software Has Common Sense

Although any good restaurant will happily let you tour its kitchen, the hostess’s
simple common sense directs you to the dining room instead when you first walk
in the front door. Most software-based products don’t seem to differentiate
between kitchen and dining room, putting controls for constantly used functions
adjacent to never-used controls. You can commonly find menus offering simple,
harmless functions along with deadly, irreversible ejector-seat-lever functions
that should only be used by trained professionals. It’s like seating you at a dining
table right next to the grill.

Offering inappropriate functions in inappropriate places is a hallmark of soft-
ware-based products. The panic button on my car’s remote keyless entry is a fine
example of this lack of common sense. The earlier “about $500” example is a
good illustration of putting common sense to work in an interface.

There are numerous horror stories of customers permanently offended by irra-
tionally rational computer systems that repeatedly sent them checks for $0.00 or
bills for $8,943,702,624.23. Most of the customer-service nightmares have gone
away through the judicious isolation of customers from computer systems, but
most employees still have to interact with computers. The employees are paid for
doing so, so they tend not to complain too loudly, and they typically have no one
to complain to—the customer-service department is normally not for them.

164 / Part IV: Interaction Design Is Good Business

Polite Software Anticipates My Needs

My assistant knows that I will require a hotel room when I travel to another city
to a conference. She knows this even though I don’t explicitly tell her so. She
knows that I like a quiet, nonsmoking room, too, and will request one for me
without any mention on my part. She anticipates my needs.

My Web browser spends most of its time idling while I peruse various Web sites.
It could so easily anticipate my needs and prepare for them instead of just wast-
ing time and effort. Why can’t it use that idle time to preload links that are visi-
ble? Chances are good that I will soon ask the browser to examine one or more of
those links. It is easy to abort an unwanted request, but always time consuming
to wait for a request to be filled. If the program were to anticipate my desires by
getting prepared for my requests during the time it would otherwise be idling,
waiting for my commands, it could be much more responsive without needing a
faster Internet connection.

Polite Software Is Responsive

When I am dining in a restaurant, I expect the waiter to respond appropriately to
my nonverbal cues. When I am deeply engaged in intense conversation with my
tablemates, I expect the waiter to attend to other duties. It would be highly inap-
propriate for the waiter to interrupt our discussion to say, “Hello, my name is
Raul, and I’ll be your waitperson for the evening.” On the other hand, when our
table conversation has ended and I am swiveling my head and trying to make eye
contact with Raul, I expect him to hustle over to my table to see what I want.

My computer normally runs in a video mode that gives me 1024×768 pixels
onscreen. When I do presentations, I am required to change temporarily to
800×600-pixel mode to accommodate the lower resolution of my video projector.
Many of the programs that I run, including Windows 2000, react to the lowered
resolution by changing their window size, shape, and placement on the screen.
However, I invariably and quickly change my computer back to 1024×768-pixel
mode. But the windows that changed to accommodate the lower resolution don’t
automatically change back to their previous settings for the higher-resolution
screen. The information is there, but the program just doesn’t care about
responding to my obvious needs.

Polite Software Is Taciturn About Its Personal Problems

In saloons, salons, and psychiatrists’ offices, the barkeep, hairdresser, and doctor
are expected to keep mum about their problems and to show a reasonable inter-
est in yours. It might be unfair to be so one-sided, but that’s the nature of the
service business. Software, too, should keep quiet about its problems and show

Chapter 10: Designing for Power / 165

interest in mine. Because computers don’t have egos or tender sensibilities, they
should be perfect for the role of confidant—but they typically behave the oppo-
site way.

Software is always whining at me with confirmation dialog boxes and bragging to
me with unnecessary little status bars. I don’t want or need to know how hard the
computer is working. I am not interested in the program’s crisis of confidence
about whether to purge its recycle bin. I don’t want to hear its whining about not
being sure where to put a file on disk. I don’t need to hear the modem whistling
or see information about the computer’s data-transfer rates and its loading
sequence, any more than I need information about the bartender’s divorce, the
hairdresser’s broken-down car, or the doctor’s alimony payments.

Two issues are lurking here. Not only should the software keep quiet about its
problems, but it should also have the intelligence, confidence, and authority to
fix its problems on its own.

Polite Software Is Well Informed

On the other hand, we all need more information about what is going on. That
same barkeep helps me out by posting his prices in plain sight on the wall and
also writing on the chalkboard what time the pregame party begins on Saturday
morning, along with who’s playing and the current Vegas spread.

Shopkeepers need to keep their customers informed of issues that might affect
them. I don’t want my butcher to tell me on November 21 that he is out of
Thanksgiving turkeys. I want to know well in advance that the supply is limited
and that I need to place my order early.

When I search a topic on the Web using a typical search engine, I never know
when link rot will make the engine’s findings useless. I’ll click on the URL of
something I’d like to see, only to get a nasty “404 Link Not Found” error message.
Why can’t the engine periodically check each link to see if it still exists? If it has
rotted away, the useless entry can be purged from the index so I won’t waste my
time waiting for it.

Programs constantly offer me choices that, for some reason, are not currently
available. The program should know this and not put them in front of me.

Polite Software Is Perceptive

The concierge at a hotel I frequent in New York noticed my interest in Broadway
shows. Now, whenever I visit, the concierge—without my asking—puts a handy
listing of the current Broadway shows in my room. She was perceptive enough to
notice my interest, and this allows her to anticipate my desires and provide me
with information I want before I even think about it. It takes very little effort for

166 / Part IV: Interaction Design Is Good Business

the concierge to exploit the value of her acute perceptions, yet it draws me back
to this hotel again and again.

Whenever I use an application, I always maximize it to use the entire available
screen. I then use the Windows taskbar to change from one program to another.
But the applications I run don’t seem to notice this fact, especially new ones. I
frequently have to tell them to maximize themselves even though they should be
able to see that my preference is clear and unequivocal. Other users keep their
applications in smaller windows so they can see icons on their desktop. This is
just as easy for software to spot and anticipate.

Polite Software Is Self-Confident

I expect the service people with whom I interact to have courage and confidence.
If they see me emerge from the men’s room with my fly unzipped, I want some-
one to tell me quickly, clearly, and unobtrusively before I walk into the ballroom
to give my speech. It takes some courage to do this, but it is courage appreciat-
ed. Likewise, if my assistant can’t book me the flight I want, I expect him to con-
fidently book something very close to the one I want without bothering me with
details.

If I tell the computer to discard a file, I don’t want it to come back to me and ask,
“Are you sure?” Of course I’m sure, otherwise I wouldn’t have asked. I want it to
have the courage of its convictions and go ahead and delete the file.

On the other hand, if the computer has any suspicion that I might be wrong
(which, of course, is always), it should anticipate my changing my mind and be
fully prepared to undelete the file. In either case, the product should have confi-
dence in its own actions and not weasel, whine, and pass the responsibility off
onto me.

I have often worked on a document for a long time, clicked the Print button, and
then gone to get a cup of coffee while it prints out. Then I return to find a mind-
less and fearful dialog box quivering in the middle of the screen asking me, “Are
you sure you want to print?” This insecurity is infuriating and the antithesis of
polite human behavior.

Polite Software Stays Focused

When I order salad in a good restaurant, they bring me a good salad. In a bad
restaurant, I get the third degree along with it: “Spinach, Caesar, or mixed greens?
Onions? Croutons? Grated cheese? Parmesan or Romano? Full serving or dinner
size? French, Italian, oil and vinegar, or Thousand Island? Dressing on the side?
Served before or after the main course?” Even the most demanding gourmet just
doesn’t care that much about the salad to be subjected to such a grilling, but

Chapter 10: Designing for Power / 167

interactive systems behave this way all of the time. Adobe’s Photoshop program
is notorious for peppering the user with lots of obnoxious and unnecessary little
questions, each one in a separate dialog box.

Impolite software asks lots of annoying questions. Choices are generally not all
that desirable, and being offered them is not a benefit but an ordeal.

Choices can be offered in different ways, too. They can be offered in the way that
we window-shop. We peer in the window at our leisure, considering, choosing, or
ignoring the goods offered to us. Alternatively, choices can be forced on us like a
hostile interrogation by a customs officer at a border crossing—“Do you have
anything to declare?”—with the full knowledge that we can dissemble as much as
we like, but the consequences for getting caught can be more than just embar-
rassing. We don’t know the consequences of the question. Will we be searched or
not? If we know that a search is unavoidable, we would never lie. If we know there
will be no search, we would be tempted to smuggle in that extra carton of
Marlboros.

Polite Software Is Fudgable

When manual information-processing systems are translated into computerized
systems, something is always lost in the process. Manual systems are typically
computerized to increase their capacity, not to change their functionality. But
manual systems are typically very flexible, which is not a function that can easi-
ly be isolated. An automated order-entry system can handle millions more
orders than a human clerk can, but the human clerk has the ability to work the
system.

In an automated system, the ability to work the system disappears. There is
almost never a way to jigger the functioning to give or take slight advantages.

In a manual system, when the clerk’s friend from the sales force calls on the
phone and explains that getting the order processed speedily means additional
business, the clerk can expedite that one order. When another order comes in
with some critical information missing, the clerk can go ahead and process it,
remembering to acquire and record the information later. Typically, this flexibil-
ity is absent in computerized systems.

In computerized systems, there are only two states—nonexistence and full
compliance—and no intermediate states are recognized or accepted. In any
manual system, there is an important but paradoxical state—unspoken, undoc-
umented, but widely relied upon—of suspense, wherein a transaction can be
accepted while still not being fully processed. The human operator creates that
state in his head, on his desk, or in his back pocket.

168 / Part IV: Interaction Design Is Good Business

For example, a digital system needs both customer and order information before
it can post an invoice. The human clerk can go ahead and post an order in
advance of detailed customer information, but the computerized system will
reject the transaction, unwilling to allow the invoice to be entered without it.

I call this human ability to take actions out of sequence or before prerequisites are
satisfied fudgability. It is typically one of the first casualties when systems are
computerized, and its absence is a key contributor to the inhumanity of digital
systems. It is a natural result of implementation model. The programmers don’t
see any reason to create intermediate states because the computer has no need
for them. Yet there are strong human needs to be able to bend the system slightly.

One of the big benefits of a fudgable system is the reduction of mistakes. Much
bigger, more-permanent mistakes are avoided by allowing many small, tempo-
rary mistakes into the system and entrusting and helping the human to correct
them before they cause problems downstream. Paradoxically, most of the hard-
edged rules enforced by computer systems are imposed to prevent just such mis-
takes. These inflexible rules cast the human and the software as adversaries, and
because the human is prevented from fudging to prevent big mistakes, he soon
stops caring about protecting the software from really colossal problems. When
inflexible rules are imposed on flexible humans, both sides lose. It is invariably
bad for business to prevent humans from doing what they want, and the com-
puter system usually ends up having to digest invalid data anyway.

x

Fudgability is one of the few human-politeness traits that can be difficult to build
into a computer system. Fudgability demands a much more capable interface. In
order to be fudgable, systems have to reveal their process to the moderately
skilled observer. The clerk cannot move a form to the top of the queue unless the
queue, its size, its ends, the form, and its position can be easily seen. Then the
tools for pulling a form out of the electronic stack and placing it on the top must
be present. These have to be made as visible as they are in a manual system,
where it can be as simple as moving a sheet of paper. Physically, fudgability
requires extra facilities to hold records in suspense, but an undo facility has very
similar requirements. The real problem is that it admits the potential for fraud
and abuse.

Fudging the system can be construed as fraud. It is technically a violation of the
rules. In the manual world, fudging is tacit and winked at. It is assumed to be a
very temporary, very special case, and the fudger will tidy up all such accounts
before leaving for the night, vacation, or another job. Certainly, all such examples
are cleaned up before the auditors are allowed in. If this process of temporary
rule suspension were well known, it might encourage people to use the tech-
nique to the point of abuse.

Chapter 10: Designing for Power / 169

Especially if the fudging has been documented in detail in the company manu-
al, investing it with respectability, those with weaker characters might see in it a
way to avoid doing accurate and complete work, or they might see in it a way to
defraud the company of money. It is not fiscally responsible for the company to
support fudging.

But fudgability has a powerful effect on the way users regard the system. All of
the reasons for not having a fudgable system are very rational and logically
defensible (probably legally defensible, too). Unfortunately, the idealized state of
affairs that they describe is simply not an accurate description of the way the
world works. Everyone in all areas of business uses the fudgability of manual sys-
tems to keep the wheels of business—of life—greased and turning easily. It is
vital that automated systems be imbued with this quality despite the obstacles.

The saving grace with respect to abuse is that the computer also has the power
to audit all of the user’s actions easily, recording them in detail for any outside
observer. The principle is a simple one: Let the user do whatever he wants, but
keep very detailed records of those actions so that full accountability is easy.

Polite Software Gives Instant Gratification

Computer programming is all about deferred gratification. Computers do noth-
ing until you’ve put enormous effort into first writing a program. Software engi-
neers slowly internalize this principle of deferred gratification, and they tend to
write programs that behave in the same way. Programs make users enter all pos-
sible information before they do even the tiniest bit of work. If another human
behaved that way, you’d actively dislike him.

We can make our software significantly more polite by ensuring that it works for,
and provides information to, the user without demanding a lot of up-front effort.
Ted’s TV should let him watch programs before it makes him configure parameters.

Polite Software Is Trustworthy

Friends establish trust with one another by being dependable and by a willing-
ness to give of themselves. When computers behave erratically and are reluctant
to work for users, no trust is generated. Whereas I trust the bank teller because
she smiles at me and knows my name, I always count my cash at the ATM
because I simply don’t trust the obtuse machine.

x

Our software-based products irritate us because they aren’t polite, not because
they lack features. As the preceding list of polite-software characteristics shows,
polite software is usually no harder to build than impolite software. It simply
means that someone has to envision interaction that emulates the qualities of a

170 / Part IV: Interaction Design Is Good Business

sensitive and caring friend. None of these characteristics is at odds with the
other, more obviously pragmatic goals of business computing. Behaving more
human can be the most pragmatic of all.

Case Study: Elemental Drumbeat

One of our more interesting design projects was for a small start-up company in
San Diego named Elemental Software. Its product, Drumbeat, is an authoring
tool for creating dynamic, database-backed Web sites.

The cast of characters we developed for Elemental was indispensable, even
though it consisted of only two very simply defined personas lacking even last
names.6 By creating these two personas and understanding their goals, we
gained radical insight that changed the entire design philosophy of the product.

Chapter 10: Designing for Power / 171

6 Actually, the full cast of characters had more than two personas, but Betsy and Ernie stole the
show.

From the beginning, Elemental had set its sights high. Elemental wanted to cre-
ate a program that was far more powerful than any other competitor’s. It also
wanted to make its program easier to use than any other. These goals were not at
all incompatible. Most of the trouble we had arose because Elemental had
acquired an existing product from another company, and we had to build on top
of an existing code base. There was constant confusion between what we wanted
and what we already had.

The existing product had some powerful features, but it had been constructed
with a muddy user vision. None of the features was easy to use, and the effect was

a not-very-powerful product. Ed Forman, the new VP of development, took a
gamble by bringing in Cooper Interaction Design. He was himself new enough
that he hadn’t fully earned the trust of his new programming staff, and our pres-
ence could have ignited revolution. Ed was an excellent champion, however, and
he gave us considerable time with his team to get to know them and to let them
hear about our methods.

The Investigation

For our investigation, we interviewed several people, primarily Webmasters. As
we proceeded, we saw a clear pattern emerge. The world of Web authoring was
neatly divided into two camps. Of course, we defined a representative persona
for each camp, and these two became the keys that unlocked the entire
Drumbeat puzzle, though not in the way we anticipated.

Within just a few days of starting, we were able to name and roughly describe our
two Web builders, named Betsy and Ernie.

Betsy is an artist. She wears black and drinks espresso. She used to be a graphic
artist but got bitten by the Web bug, and now she creates screen layouts instead
of page layouts. She has read enough books to teach herself how to build nice-
looking—but simple and static—Web pages. She has mastered the basics of
HTML, but she knows—and cares—nothing of programming. Betsy’s own Web
site is a model of cool hipness, with subdued typography, swathes of asymmetri-
cal pastels, and quotes from Patti Smith and Esther Dyson.

Every time Betsy needs some advanced processing, she must appeal to Ernie.
Ernie is a new-age programmer geek. He loves computers, computer games,
computer languages, and computer equipment. Compared to older program-
mers, he’s still kind of lightweight: He doesn’t know C, C++, or assembler lan-
guage, but he is an incredibly facile user of hacker tools such as CGI, Perl,
JavaScript, and Visual Basic. He knows hundreds of ActiveX controls and
JavaBeans. He can assemble a significant amount of functionality from complex
components in just a few days that would have taken a C programmer four years
to build back in the 1980s. Ernie’s own Web site is a random collection of Star
Trekiana and Simpsons quotations. It uses garish red text on a black background,
eight different typefaces, blinking text, streaming audio, jitterbugging icons,
Submit buttons, and links to the coolest Quake sites.

It was quickly apparent to us that the Elemental team had, without a clear vision
of Betsy and Ernie, been developing a program that tried to make them both
happy. The result was a fuzzy concoction of powerful and complex features in a
graphic presentation. They’d say, “Look what new cool thing the user can do
now!” Their “user” was elastic, and they didn’t have any idea of his goals. The
programmers at Elemental were generally sympathetic to Betsy but, being

172 / Part IV: Interaction Design Is Good Business

temperamentally more akin to Ernie, their product had naturally tended toward
Ernie’s needs.

After we introduced them, the entire company immediately recognized both
personas as extremely familiar archetypes and seized on them as useful user def-
initions.

Who Serves Whom

Visual tools for constructing Web sites was (and still is) a hot marketplace, so
there were plenty of competing products, but for the first time our client could
assess itself and its competitors relative to Betsy and Ernie.

The competitive market had also split along the Betsy/Ernie division. On one
hand, several other Web-authoring-tool companies were writing cool new tools
for Ernie. They were all complex and hard to use but let Ernie create powerful,
dynamic, and sophisticated Web sites for corporate clients.

On the other hand, some other Web-authoring-tool companies were writing cool
new tools for Betsy. They were all simple, visual, and easy to use, but they were
all weak as kittens. They could only be used to build static sites with weak func-
tionality, completely disconnected from any outside databases.

After we could see the landscape through the Betsy/Ernie lens, it was clear to
everyone that the big opportunity was to provide Betsy with a tool giving her far
more power than she was used to. This would give Elemental a desirable product
in an uncrowded part of the marketplace. The programmers soon adopted
“Betsy” as their rallying cry and focused their efforts on helping her.

This was a good starting point, but as we proceeded with our design efforts, we
looked more closely at Betsy’s goals and discovered an interesting thing.

In the old world of simple, static, first-generation Web sites, Betsy was inde-
pendent. She could design and build a Web site for a client without any help from
Ernie. Because it was just Betsy doing what she was experienced with, she could
tell a prospective client how much work was involved, what it would cost, and
when it would be done. She could confidently expect to deliver on her promises.
That independence and self-determination was what attracted her to the Web in
the first place and what convinced her to give up her day job and become an
entrepreneur.

As the Web evolved, it rapidly became more powerful, but it also became much
harder to build sites. Web sites were now increasingly dynamic, had more func-
tionality, and directly accessed databases. Betsy couldn’t do this level of geeky,
programmer stuff. Besides, it wasn’t that much fun for her, and she didn’t want to
learn. That’s when she met Ernie, who could solve all of these technical problems
for her. He loved all of this geeky stuff.

Chapter 10: Designing for Power / 173

But Betsy found that she was now dependent on Ernie to deliver a finished prod-
uct to her client. For every new Web site she created, at some unavoidable point
during the process she had to find Ernie and get him to install the database
access and the dynamic page-composition code. She could no longer deliver a
finished Web site without using Ernie, and he wasn’t anywhere near as punctual
as she was. She could no longer give her clients a due date and have confidence
that she would deliver. Ernie’s randomness upset her business. A somewhat dif-
ferent picture of Betsy’s goals began to emerge.

Although Betsy still wanted to build a cool, powerful, dynamic Web site, that was
not her most important goal. What had been a hygienic goal, and one that she
had taken for granted, was her independence, but as soon as it was gone, it
became dominant. Her most important goal was to be independent again, liber-
ated from Ernie. She wanted to be able to strike up a relationship with a client,
and then design, create, and deliver a beautiful, powerful, dynamic, database-
backed Web site without ever having to wait while Ernie puzzled out some tech-
nical problem.

Our original vision had been to make Betsy’s Web-building tool even more pow-
erful while remaining easy to use. Although this was still very desirable, it mere-
ly delayed the time when Betsy would have to seek Ernie’s help and wouldn’t
meet her most important goal. To succeed with Betsy, we had to design
Drumbeat so that it would allow her to complete projects all alone.

Ernie wasn’t all that happy working with Betsy, either. He needed to get all of his
work approved by Betsy, and she was always nagging him about a pixel here and
a pixel there—stuff he considered immaterial. She demanded that he rework
things five or six times, making irrelevant (to him) changes before she was satis-
fied. He wanted to be independent of Betsy as much as she wanted to be free of
him.

The Design

We were now able to make a very clear and simple case. Instead of delaying
Betsy’s need for Ernie, we had to put up an impenetrable wall between them,
granting independence to both of them. Betsy still needed the functions that
Ernie created, and, after all, Betsy was a great source of work and revenue for
Ernie, so there still needed to be commerce between them, but their jobs had to
be fully disentangled.

This meant that the wall between them had to be a common standard—an inter-
face—for creating and using functional modules. It had to give Ernie a program-
mer’s interface, so his code could be connected to, and it had to give Betsy a
Webmaster’s interface, so she could create her sites. The Drumbeat program
would be the common, neutral ground for both of them. Ernie would write

174 / Part IV: Interaction Design Is Good Business

powerful, flexible modules and publish them by using Drumbeat’s functional
interface. Betsy would use those modules by using Drumbeat’s visual program-
ming interface.

Betsy could now create dynamic, database-backed Web sites using published
modules, yet never meet their author. Ernie could write, publish, and sell func-
tional code, without ever having to change background colors. By freeing them
from each other, we leveraged Betsy’s design-and-production skills and also
leveraged Ernie’s programming skill.

Ernie now finds himself in the role of tool builder instead of custom programmer.
He creates plug-compatible code modules that can dynamically become part of
Betsy’s toolkit. His modules have a wider audience because he can sell them to
many other Betsies, who can in turn use them in a variety of other sites.

This is an interesting case in which the interaction design had significant effect
on both the internal structures of the program and the way it was marketed. It is
a good example of how design affects the inside while specifying only the out-
side.

Chapter 10: Designing for Power / 175

Pushback

The Elemental software engineers were reluctant at first. They thought our solu-
tion wouldn’t work because they imagined several edge cases in which Betsy
would still need Ernie’s special talents. “You can’t take Ernie totally out of the
loop,” they said, because Betsy might want to do something very special or diffi-
cult.

Well, we thought, that is true, but only in a few cases. In most cases, she would
be independent, whereas currently she was never independent. For those few
edge cases, she would merely be back to the status quo ante of depending on
Ernie. This would certainly not make things worse, and in most cases things
would be a lot better.

Because Betsy’s independence is important to her, she will be willing to make
commensurate sacrifices to get it. Because Drumbeat allows her to build Web
sites from start to finish completely without Ernie, she is very willing to make
minor compromises in her design to take advantage of Ernie’s canned routines.7

This is not a big sacrifice because not that many clients have demands that are
out of the ordinary. If she ever gets the commission to build the intranet for Wal-
Mart or the online reservation system for Hilton Hotels, she will certainly need to
bring in sophisticated programming talent to help her with those gargantuan
tasks, but not for most of her clients.

Other Issues

The original program had many small floating palettes containing various draw-
ing tools. Each palette covered up a portion of the Web site under construction.
Everyone at Elemental had somehow acquired the idea that users really liked to
move these palette windows to and fro on their screens as they worked. In every
demonstration of the product, they proudly showed them off.

Every one on our design team found the floating palettes intrusive, complicated,
and completely unnecessary. Sure, the tools were needed, but we knew there
were better ways to present them. Every time we said anything negative about
them, though, the programmers—and product managers—would tell us how
everyone used them a lot.

As we began to watch real Betsies use the product, we soon understood why
floating palettes were so popular. The original design made palettes indispensa-
ble. Most of the tools on each palette were rarely used, but each palette had at
least a couple very useful, very frequently used tools. This meant that Betsy need-
ed all of the palettes to do even a very simple task. Each palette was unnecessar-
ily large because of its extra tools, and the palettes floated over the visual image
of the Web site under construction, so, as she worked on the site, she continual-
ly had to move the palettes out of her way. An alternative option let her lock the
palettes to one side of the screen, but that just meant that Betsy had to repeat-
edly scroll her work to bring the current part into view. Betsy was stuck between
a rock and a hard interaction. She could either spend lots of time unnecessarily
scrolling the Web site, or she could spend equal time unnecessarily repositioning
the palettes. We call forced, unnecessary actions such as this one excise, and the
original program was filled with it.

176 / Part IV: Interaction Design Is Good Business

7 Creating Web sites is programming, and Betsy finds herself under the irresistible influence of
code reuse.

To solve the problem, we knew that the only tools that should be kept around
were those that were used very frequently, and any tools kept around were better
off if they stayed in one place. Betsy would be confused if they moved around.

By a simple process of reorganizing the palettes so that they contained only fre-
quently used functions, we made them much smaller. We then fixed them onto
the screen in static locations. They now became an almost unnoticed part of the
interface. This is a good example of how Goal-Directed design actually reduces
the amount of interface code needed.

x

Both the product and the design have been successful. As the implementation of
the version based on our design neared completion, Elemental was able to raise
a significant amount of venture capital thanks, at least in part, to the innovations
in its interaction. Since its release, Drumbeat has been widely hailed by the
industry press. This quote from PC Magazine is representative:

Drumbeat is a unique and impressive product that automates more
advanced Web site features than anything else on the market. It lets non-
programmers get the job done with drag-and-drop ease. You can build
gigantic, professional-level Web sites, optionally using Active Server
Pages, without writing a line of code.

The product has been successful, despite the fact that many other Web-site-
building programs preceded it to market.

x

As you have seen, looking at things through the lens of the user’s goals can give
us a unique and powerful perspective that opens up new opportunities for cre-
ative design. This is the core of Goal-Directed design.

Chapter 10: Designing for Power / 177

This page intentionally left blank

11
Designing for People

In previous chapters, I described personas and emphasized the importance of
goals over tasks. Only after we know our user personas and their goals can we
begin to examine tasks with confidence that they won’t distort the design
process. We call our tool for incorporating tasks scenarios. A scenario is a concise
description of a persona using a software-based product to achieve a goal. In this
chapter, I’ll describe scenarios in more detail, along with a few other useful
design tools. I’ll follow with a case study of how some of these tools, particularly
scenarios, work in the real world.

Scenarios

As the design work becomes more detailed, scenarios become more and more
effective. We play our personas through these scenarios, like actors reading a
script, to test the validity of our design and our assumptions. Not surprisingly,
our scenario process has been described as very like method acting, in which the
actor must inhabit the character, knowing what he knows and feeling his feel-
ings. We try to think the way our persona thinks. We forget our own education,
ability, training, and tools, and imagine ourselves as having his background
instead. Because we are designers and not actors, this can be difficult without
some specific context and detail, so scenarios are very useful. Knowing that Betsy
is trying to create a Web site for an insurance company, for example, we can more
easily inhabit her character. This is not as strange as it might sound. After all, pro-
grammers inhabit the personalities of their computers. It is common for a pro-
grammer to describe the actions of the computer in the first person—to say, “I
access the database, then I store the records in my cache.” Although she says “I,”

she is not doing a thing: The computer is doing the work, but by assuming the
character of the computer, she can more easily sympathize with the system’s
needs as she codes.

Scenarios are constructed from the information gathered during our initial
investigation phase. Typically, in both interviews and direct observation of users,
we learn a lot about their tasks. Goals are stable and permanent, but tasks are
fluid, changeable, and often unnecessary in computerized systems. As we devel-
op scenarios, we need to seek out and eliminate tasks whose only justification is
historical.

Effective scenarios need to be complete in breadth more than in depth. In other
words, it is more important that the scenario is described from start to finish
than that it cover each step in exhaustive detail.

It is important to develop only those scenarios that will further the design effort
and not to get lost in edge cases. We develop only two types of scenarios,
although there might be more than one of each kind. The scenario types are daily
use and necessary use.

Daily-Use Scenarios

Daily-use scenarios are the most useful and important. These are the main
actions that the user will perform, typically with the greatest frequency. In a bug-
tracking application, for example, looking up bugs and filling out newly reported
bug forms are typical daily-use scenarios. Any tech-support person performs
these two tasks numerous times each day.

In general, most users only have a very limited repertoire of daily-use scenarios.
One or two is typical. More than three is rare.

Daily-use scenarios need the most robust interaction support. New users must
master them quickly, so they need to be supported by good, built-in pedagogy.
That is, instructions for use should be written right on the program. However,
because the programs are used so often, no users will remain dependent on that
pedagogy for long. They will rapidly demand shortcuts. In addition, as users
become very experienced, they will want to customize daily-use interaction so
that it conforms to their individual work styles and preferences.

Necessary-Use Scenarios

Necessary-use scenarios include all actions that must be performed, but that are
not performed frequently. Purging databases and making exceptional requests
might fall into this category. Necessary-use interactions also demand robust
pedagogy. However, the user won’t ever graduate from them to parallel interac-
tion idioms such as keyboard equivalents. Because of the infrequent use, any

180 / Part IV: Interaction Design Is Good Business

user will be willing to conform to the program’s way of doing things and won’t
require customization. This excuses the development team from providing the
same level of finish that a daily-use scenario would require. It is like the differ-
ence between the luxurious finish on the inside of your new Jaguar and the rough
metal finish of the car’s engine compartment.

Although most products have a small repertoire of necessary-use scenarios, it
will typically be larger than the set of daily-use scenarios.

Edge-Case Scenario

Of course, there is a third type of scenario: the edge case. Programmers will nat-
urally emphasize edge cases, but they can largely be ignored during the product’s
design. This doesn’t mean that the function can be omitted from the program,
but it does mean that the interaction needed for them can be designed roughly
and pushed way into the background of the interface. Although the code may
succeed or fail in its ability to handle edge cases, the product will succeed or fail
in its ability to handle daily use and necessary cases.

If a user performs a task frequently, its interaction must be well crafted. Likewise,
if a task is necessary but performed infrequently, its interaction, although
designed with different objectives, must still be well designed. Tasks that are nei-
ther necessary nor frequent simply don’t require careful design. Time and money
are never available in unlimited quantities, so this is the place to conserve our
resources safely and concentrate them where they do the most good. We must
provide for all scenarios, but we need to design only for those that are important
or that will occur frequently.

x

Personas, goals, and scenarios are the heavy hitters in our design corner. Before
moving on to a scenario case study, I’d like to mention a few other useful design
concepts: inflecting the interface, perpetual intermediates, vocabulary, brain-
storming, and lateral thinking.

Inflecting the Interface

You can always make an interaction easier, simply by removing functions and
making the product less powerful. Occasionally that is an appropriate tactic, but
not usually. The more-difficult design problem demands ease of use without sac-
rificing functions and power. This is difficult to achieve, but by no means impos-
sible. All it requires is a technique I call inflecting the interface.

Even though a program must deliver lots of functions, not all of them are need-
ed everywhere, by all users, or at all times. For any given use scenario, the user
persona will need to use only a small subset of controls and data, although that

Chapter 11: Designing for People / 181

set might change over time or with the particular problem under study. The
interface can be simplified dramatically by placing the controls and data needed
for the daily-use scenarios prominently in the interface and moving all others to
secondary locations, out of normal sight.

The interfaces of most big programs are offered up like a Chinese-restaurant
menu in which hundreds of choices cover page after page. This may be desirable
for choosing dinner, but it just gets in the way in high-tech products.

In Microsoft Word, for example, the default toolbar has icons for opening, clos-
ing, and printing the current document. These tasks are performed with reason-
able frequency, and their presence is appropriate. However, adjacent to them are
icons for generating a schematic map of the document and for inserting spread-
sheets. Microsoft put those icons in the prime space so we will appreciate how
powerful Word is. Unfortunately, most users never need those functions, and if
they do, they don’t need them on a regular basis. They simply do not belong on
the toolbar, an interface idiom primarily for frequently used functions.

Perpetual Intermediates

Typically, our most powerful tools help us to understand, visualize, and inhabit
the personalities of our users. One mental model that we use routinely is called
perpetual intermediates. Most users are neither beginners nor experts; instead
they are perpetual intermediates. Remember Rupak, Shannon, Dexter, and
Roberto from the discussion of skill levels in Chapter 9? Although their back-
grounds vary widely, all four of them are perpetual intermediates.

The experience of people using interactive systems—as in most things—tends to
follow the classic bell curve of statistical distribution. For any silicon-based prod-
uct, if we graph the number of users against their particular skill levels, there will
be a few beginners on the left side, a few experts on the right, and a preponder-
ance of intermediate users in the center.

182 / Part IV: Interaction Design Is Good Business

But statistics don’t tell the whole story. This is a snapshot frozen in time, and
although most people—the intermediates—tend to stay in that category for a
long time, the people on the extreme ends of the curve—the beginners and
experts—are always changing. The difficulty of maintaining a high level of
expertise means that experts come and go rapidly. Beginners, on the left side of
the curve, change even more rapidly.

Although everybody spends some minimum time as a beginner, nobody remains
in that state for long. That’s because nobody likes to be a beginner, and it is never
a goal. People don’t like to be incompetent, and beginners—by definition—are
incompetent. Conversely, learning and improving is natural, rewarding, and lots
of fun, so beginners become intermediates very quickly. For example, it’s fun to
learn tennis, but those first few hours or days, when you can’t return shots and
are hitting balls over the fence, are frustrating. After you have learned basic rack-
et control and aren’t spending all of your time chasing lost balls, you really move
forward. That state of beginnerhood is plainly not fun to be in, and everybody
quickly passes through it to some semblance of intermediate adequacy. If, after
a few days, you still find yourself whacking balls around the tennis court at ran-
dom, you will abandon tennis and take up fly-fishing or stamp collecting.

The occupants of the beginner end of the curve will either migrate into the center
bulge of intermediates, or they will drop off the graph altogether and find some
activity in which they can migrate into intermediacy. However, the population of the
graph’s center is very stable. When people achieve an adequate level of experience
and ability, they generally stay there forever. Particularly with high-cognitive-
friction products, users take no joy in learning them, so they learn just the mini-
mum and then stop. Only Homo logicus find learning complex systems to be fun.

Now let’s contrast our bell curve with the way that software is written. All pro-
grammers qualify as experts because they have to explore every obscure case and
unlikely situation to create program code to handle them. Their natural tenden-
cy to design self-referentially means that they write implementation-model code
that gives every possible option equal emphasis in the interaction. If you graph
the suitability of use of the typical implementation-model product, it rises high
on the right side for experts. The intermediate users don’t get much attention.

Chapter 11: Designing for People / 183

Inside a company, sales, marketing, and management are always showing off the
product to customers, reporters, partners, and investors who are unfamiliar with
the product. Of necessity, these professionals are constantly exposed to begin-
ners, and their view of the user community is strongly biased toward this prob-
lematic group. All of these influential players naturally lobby for bending the
interface to serve beginners. They want to see training wheels attached to the
product to help out the struggling beginner. Our graph of the product’s interac-
tion suitability now rises high on the left side for beginners.

184 / Part IV: Interaction Design Is Good Business

Superimposing the two graphs makes it clear that not only are the two strongest
influences on interaction design antipodal, but they are both largely beside the
point. The programmers demand interaction suitable only for experts, and the
marketers demand interaction suitable only for beginners, but the largest, most
stable, and most important group of users is the perpetual intermediates, who
are ignored.

This discontinuity between developers’ perception of users and of their true
nature results in added cognitive friction. You can easily see this in most internal
corporate software and most mass-marketed software-based products. To use
them successfully, you need to be a computer programmer, while simultaneously

they have a profusion of such artifacts as wizards and on-line help for beginners.
These features are merely welded-on training wheels. Wizards and help tend to
get users out of scrapes without actually enlightening them as to how to avoid
such scrapes in the future. Experts never use them, and beginners quickly desire
to discard these embarrassing reminders of their ignorance. But the perpetual
intermediates are perpetually stuck with them.

x

Armed with the Goal-Directed design tools of personas, goals, scenarios, perpet-
ual intermediates, interface inflecting, and others, we can assault a client’s
design problem with confidence. We know that even the most intractable issues
will eventually yield to our process.

“Pretend It’s Magic”

Each engineer views his product in different terms, but—because he programs—
he rarely views it in terms of a specific user (at least not to the level of specificity
that I find useful). In our brainstorming sessions, we cut through all of the con-
straints and expectations. We begin our design from a blank slate, but with care-
ful attention to our personas and their goals. We often use a creative-thinking
exercise we call “pretend it’s magic,” in which we act through a scenario with a
“magic computer” that has no constraints at all.

This exercise increases the contrast between tasks and goals. When technology
changes, tasks usually change, but goals remain constant. By imagining a magic
technology, we force all tasks to change, thus highlighting the goals. Although we
imagine things to be magic, the process is a very straightforward mental exercise.
Sometimes the correct answer appears to the designers in a flash of insight, but
just as often it comes as a result of long discussion and study.

Vocabulary

During the design process, and particularly during brainstorming, I place a
unique emphasis on creating and using a detailed and precise vocabulary. I
believe that the technical nuance of designing interactive products is so impor-
tant that a single misconstrued word can derail an entire project. I have seen dif-
ferent members of a client team use common words such as button or dialog for
dramatically different things. I recall a client meeting in which 10 highly paid
professionals wrangled for two hours over a disagreement that existed only
because the various parties knew different definitions for the same words.

If you don’t have words to express an idea, it is nearly impossible to communi-
cate it. Certainly it is impossible to analyze and decompose the idea at a level of
technical detail sufficient to implement it in C# or Java.

Chapter 11: Designing for People / 185

When the words are fuzzy, the programmers reflexively retreat to the most pre-
cise method of articulation available: source code. Although there is nothing
more precise than code, there is also nothing more permanent or resistant to
change. So the situation frequently crops up in which nomenclature confusion
drives programmers to begin coding prematurely, and that code becomes the de
facto design, regardless of its appropriateness or correctness.

When there are insufficient or imprecisely defined terms, people’s thinking
grows more conservative. Without a robust and precise set of terms, new ideas
can’t be defended well, so they are discarded prematurely.

The terms we select are not those that will be plastered on the outside of the box.
We use our vocabulary internally, so we don’t care about the marketing palata-
bility of the words. They need only to be precise. Later on, the marketing depart-
ment will come up with appropriate words that can be used on the buying
public. The Logitech ScanBank, for example, was originally called the “shuffler,”
which was perfectly adequate for us to use in the design process and was never
intended for public consumption.

During one project, our own design staff was deadlocked on a problem. As we
argued back and forth, it became evident that some of us were using terms dif-
ferently from others. Our discussion lacked effectiveness because we didn’t have
a common vocabulary. I insisted that we break down the components of our
design into their atomic pieces—which we could all agree upon—and assign
them completely new, unrelated names. For no particular reason, I chose the
names of Alaskan mountain ranges. We named the four primary chunks of the
product St. Elias, Brooks, Alaska, and Wrangell. We all had a good laugh at the
incongruity of our new terms, but then we proceeded to achieve instant consen-
sus and move our design process forward very quickly.

Breaking Through with Language

Primarily, using a robust vocabulary makes our communications more effective.
However, developing a strong nomenclature sometimes has another—very
important—use. Occasionally we find that certain terms have become ossified in
a client team’s culture. A phrase like Microsoft’s “Embrace the Internet” is a good
example. It can attain an almost religious significance and be treated with a kind
of awe. This awe leads to an inability to deconstruct its meaning and reexamine it
in light of new design imperatives. Does it mean embrace browsers, or HTML, or
just TCP/IP? The sacred words are the fence around the shrine. It doesn’t further
our design effort much if we trample our client’s sacred beliefs in the process. So
we break processes, tasks, and software down into well-defined, discrete chunks
and assign them new names that are utterly nonmnemonic. These new names are
also typically humorous, too, and the levity helps to break through everyone’s seri-
ous mien.

186 / Part IV: Interaction Design Is Good Business

Reality Bats Last

The typical engineering process begins with a recitation of the constraints and
limitations. The catechism of things “we cannot do” is stated often and forceful-
ly enough to become doctrine, regardless of its truth. Interaction designers must
keep a healthy suspicion of all assumptions about what cannot be done. Time
and again, we find ways around such assumed limitations merely because we
refuse to accept them at face value.

Of course, sometimes those limits are real, and we cannot get around them, but
there is great value in trying anyway. Even if we cannot finesse a constraint, our
journey down the dead-end path might shed light on some previously hidden
opportunity. This process is based on the “lateral thinking” work of Edward de
Bono.1

Programmers are princes of the practical. Their pragmatism leaves them little
patience for improbable thinking. However, this strength can also be a weakness
because sometimes a practical process can’t solve the problem. When engineers
invent, they arrive at their solution through a succession of practical, possible
steps. Because of this, their solution will always be a derivative of the old, begin-
ning solution, which is often not good enough.

Instead, we merely assume that all things are possible and design from there. By
sidestepping all those assumed restrictions, we can see goals and personas with
more clarity, and we can imagine solutions that could not have been arrived at
conventionally.

Chapter 11: Designing for People / 187

1 Edward de Bono, Lateral Thinking, Creativity Step by Step, 1970, Harper & Row, New York, New
York, ISBN: 0-06-090325-2.

Engineers are uncomfortable stepping away from their firm foundation of
rationality and prefer to cling to their assumed limitations. Because they know
that we will eventually confront those constraints, they feel responsible to
defend them. They call this “playing devil’s advocate.” Although I appreciate their
concern, the constraints of reality are the one thing that needs no help. Reality
never needs an advocate, because it can never be denied. It is always true that
reality bats last. Knowing that reality will always get its turn at bat, we know that
regardless of what we imagine or design, it will never become real if it is not pos-
sible. Only someone without skin in the game would design something unbuild-
able. What’s more, we very often find that constraints are illusory and
self-imposed. You cannot see that until you step around them.

Case Study: Logitech ScanMan

Our “pretend it’s magic” design tool was particularly effective in one large design
project. The scanner division of the Logitech Corporation in Fremont, California,
retained us to help design the software for a whole new generation of desktop
scanners for the home and small-office markets.

188 / Part IV: Interaction Design Is Good Business

Logitech’s new scanner device, code-named “Peacock,” uses a new generation of
scanning technology and connects to the computer with the USB port. About the
size of a rolled-up newspaper, this inexpensive product is small and unobtrusive
enough to sit handily on your desktop. You can insert any one-page document
into its slot, and a small motor pulls it through to the other side, scanning the
image as it goes.

Logitech’s company philosophy has long centered on small, auxiliary hardware
components given a premium value by the software that accompanies them. This
certainly sounds good when viewed from Logitech’s engineering point of view.
But it’s not such a good approach for the user. It isn’t goal directed.

Logitech assumed that numerous software features added value to the hardware
device. After all—went the thinking—adding features in software is a lot cheaper
than adding features in hardware. This reasoning examines the cost-benefit
equation from the manufacturer’s point of view rather than from the user’s.

The predecessor to the Peacock product overflowed with features, and each
member of the Peacock team—marketers, product managers, programmers, and
senior managers—had pet features that he advocated aggressively at strategy
meetings. But if there was ever a product that called out for a featurectomy, it was
Peacock.

We rarely find it necessary to eliminate features to smooth out a product’s inter-
action. However, in the case of Peacock, the widely held idea that Logitech added
value with lots of software features was erroneous. Our personas and scenarios
made it very clear the product’s interface was overburdened with unneeded,
unwanted, and unused features.

As usual, we began our process by creating our cast of characters. Here’s how we
arrived at them.

The scanner had a street price of around $150. For a consumer product, it was
quite powerful, with a high resolution and color, but still not in the league of pro-
fessional, flatbed scanners that typically sold for $800 to $1,000.2 It was clear to
everyone that the main marketplace for this product was the user in a small
office or home office, called SOHO by demographers.

Malcolm, the Web-Warrior

We created the persona of Malcolm, the Web-warrior, to represent the SOHO
user. He is a young man who has started a small consulting business at home cre-
ating Web sites. He isn’t very technical, nor is he a graphic artist, but he is famil-
iar with computers and knows that fast-loading, simple images are better than
lush—but slow-to-download—graphics. The Peacock scanner allows him to get
medium-resolution images into his Web sites easily without unreasonable
expense or complication.

Chad Marchetti, Boy

The Peacock scanner also had significant appeal to people with home comput-
ers who scanned in pictures and documents for personal, rather than business,
use. To represent the home user, we invented the persona of Chad Marchetti, a
10-year-old boy who uses the scanner to make his homework projects look bet-
ter with color images.

Chapter 11: Designing for People / 189

2 As usual, time and the plummeting prices of silicon have changed the scanner landscape con-
siderably. This was all true in January 1997.

Magnum, DPI

We knew that professional graphic artists would demand thousand-dollar
flatbed scanners, so we deemphasized that market segment. However, we also
knew we couldn’t ignore that market altogether because “from tiny acorns
mighty oaks grow.” A young, freelance graphic artist just breaking into the busi-
ness wouldn’t have any cash to spare, and Peacock would get him through his
first year or two until he could afford an industrial-strength product, but only if
he could squeeze sufficient performance from Peacock.

To represent our acorn, we defined a persona named Magnum, DPI. (His name
is a play on words using the old Tom Selleck TV show Magnum, P.I. and the
acronym for dots-per-inch, the common measure of the resolution of a digitized
image.) Magnum might not represent a large user segment, but he is certainly an
influential one. All of his home-computer-user friends ask his advice when it
comes to graphics software and peripherals. In another year, he’ll be able to buy
a flatbed scanner, but until then, he’ll make do with his Peacock.

Neither Malcolm nor Chad knows much about image manipulation. Malcolm is
too focused on other things, such as building Web sites and making money. Chad
is too focused on other things, such as not losing his pictures in the file system.
Neither sees much reason to twiddle with pixels. They both want to scan images
in, crop them to size, and then place them in documents they are using. The doc-
uments, not the images, are the end result. We found that they shared three sig-
nificant goals:

They don’t want to manage scanners, resolutions, or settings.
They want to find their scanned images quickly and easily.
They want to get their scanned images into other documents in other
programs quickly and easily.

Magnum, DPI is a different breed of cat: He does know about resolutions and he
is comfortable with various image-manipulation settings. Knowing this, you
might assume that adding such features would benefit Magnum. However,
Magnum already owns Adobe Photoshop. This powerful, complicated, and
expensive image-manipulation program is his primary tool, and he knows it
inside and out.3 Whenever he has any task to do, regardless of how small, he uses
Photoshop. Any attempt that Peacock might make to duplicate the functionality
and power of Photoshop would be feeble. Like Pee Wee Herman stepping into the
ring with George Foreman, Peacock wouldn’t last a round with the champ. We
shouldn’t even bother putting effort into something that won’t be used and can
only embarrass us.

190 / Part IV: Interaction Design Is Good Business

3 I would love to give this powerful, complicated program an interaction redesign! Note: At least a
half-dozen people who previewed this manuscript underlined this footnote and added a com-
ment like “You and me both!” or “Please do!”

However, two out of three of Magnum’s goals are identical to Chad’s and
Malcolm’s: He wants to find his images easily, and he wants to get his images into
another program (Photoshop) easily.

The only setting that Magnum might make during the actual scan is specifying
the physical resolution of the scan in dots per inch. In older, slower scanners,
there was always some speed advantage to be had by scanning at a faster, lower
resolution, so Magnum saved time with the setting. The new Peacock scanner is
much faster, and its maximum density is a healthy 200 DPI. In full color, this
takes only about 20 seconds for an 8 1/2- by 11-inch sheet of paper. There just
isn’t any advantage to having Magnum spend 10 seconds changing a setting that
only saves him 5 seconds of scan time, yielding a lower-quality scan for his trou-
ble. Why would anyone—even Magnum—want to lower the DPI setting if the
scan speed was sufficiently brisk at maximum resolution? This insight allowed us
to see that the goals of all three users were happily in accord, and we could make
our users happy and still dispense with almost all of the features.

Playing “Pretend It’s Magic”

During brainstorming, we played “pretend it’s magic.” We found that Chad was
quite content getting images into his computer without even using a scanner.
This exercise showed that the one thing that Chad—and Malcolm and
Magnum—didn’t want was to manage scanner hardware. From this perspective,
it was easy to see that the only thing he wanted to manage was the scanned
image after it has been entered into his computer. He doesn’t care if the image is
scanned in with black magic, but after it’s inside the computer, he needs to be
able to find it, crop it, and put it into his other programs.

Most competing scanner products—and Peacock’s predecessor—just dump the
images—and the user—into the Windows file system, letting them use the con-
ventional hierarchical display to store, manage, and retrieve their scanned
images. That file system is really very hard to use and unhelpful.

The file system requires Chad to create a name for his new scanned image and
then choose a place in the file system hierarchy for storing it. When Chad wants
to find that image again, he has to remember what he named it and where he put
it. It just so happens that remembering such trivia is something that Chad, being
human, isn’t very good at. The computer, having a hard disk, happens to be
superbly well suited to remembering such trivia, but it doesn’t bother. Instead, it
forces Chad to do the work of remembering the name and place.

In our design, the scanner software never forces Chad to name and place his
incoming images. Instead, it quietly takes the image in and manages its storage
for Chad. When he comes back at some future date looking for the image, in
addition to simply recognizing it in a thumbnail, he can recall it by any one of a

Chapter 11: Designing for People / 191

number of its attributes, such as when it was scanned, how big it is, whether it
includes text, or whether he exported the image into some other program.

Instead of letting Chad and Magnum control the hardware by fiddling with vari-
ous scanner settings, we concentrated instead on three more-important things:

We eliminated all scanner-management interface idioms.
We made it impossible to lose scanned images in the file system.
We made it trivially easy to put scanned images into documents in other
programs.

We looked at all the available image-manipulation functions and decided that
there were only three indispensable ones. The rest could be omitted or would be
performed later in other, better-suited programs, such as Photoshop. The three
functions were:

Crop: Clipping the sides of the image
Resize: Changing the size of the image
Reorient: Turning the image onto its side or back

192 / Part IV: Interaction Design Is Good Business

Our suite of functions was very small, but they were necessary and would be used
frequently, so we decided to make them of an extremely high quality and very
easy to use. The net savings in coding many fewer functions gave the program-
ming team the necessary time to put more effort into these three.

World-Class Cropping

All computerized cropping tools I’ve ever seen work in the same inappropriate
way. The user clicks and drags a rectangle with the mouse. The point where the
click occurs is the upper-left corner of the cropping rectangle, and the point
where the drag ends is the lower-right corner of the rectangle. Everything outside
this rectangle is permanently discarded, and what is left inside it becomes the
new image. This method is quick, simple, and easy to program and to explain.
Heavyweight graphics program Photoshop uses it, for example. Nevertheless, it
has severe drawbacks. Mainly, the drag-rectangle method is hard to control, and
it has to be done perfectly in one smooth motion. It’s all too easy to get three
sides of the crop rectangle correct, and then to find it nearly impossible to cor-
rect the fourth side without disturbing one or more of the other three. Also, the
permanent nature of the crop means the program cannot accommodate two dif-
ferent crops of the same image.

Our crop-tool solution solved both of these significant problems in simple, easy-
to-learn, and easy-to-understand ways. Each of the four sides of the scanned
image has its own permanently visible crop handle. This handle offers clear
affordances for direct manipulation. All Chad needs to do is click and drag on a
handle to receive immediate and proportional visual feedback of the conse-
quences of his action. As the crop handle moves in, the outside part of the image
is shown in a ghostly gray. This makes it clear that the image is being cropped but
also hints that the cropping is not permanent. Chad can just as easily drag the
crop handle back out, once again revealing the original image in full color.

Chapter 11: Designing for People / 193

As Chad moves one crop handle, he instantly sees that the four sides are inde-
pendent and that moving one doesn’t affect the others. He can adjust and fine-
tune the cropping as many times as he likes. This is a very different sensation
from using more traditional cropping tools, in which the act of cropping is modal
and permanent, and must be done perfectly in a single motion. Very few com-
puter users have the manual dexterity to perform this action well. Chad certain-
ly doesn’t. What’s more, the nature of cropping is visual and typically iterative.
Even fine artists will take a few tries before they settle on a final crop. Older tools
simply didn’t support this behavior. The crop tool we provided for Logitech did it
quite admirably.

Even after Chad settled on a crop setting, the crop function was not permanent.
The current crop settings were merely considered attributes of the image, which
was always stored as a complete image. (There was a menu item for making the
crop permanent if disk space was at an unusual premium.) This meant that Chad
could scan in a photo of his family, crop down to an image of his mother for a
homework assignment, and then—three months later—return to that same
image and recrop to show only his father for a letter he was writing. Any other
scanner program would have forced Chad to scan in the image a second time.

World-Class Image Resize

Resizing an image in most graphics programs entails entering dimensions into a
dialog box. The dialog offers great precision and the ability to stretch an image
disproportionately, but the precision is rarely needed and out-of-proportionali-
ty is rarely wanted. Although the dialog box offers what is not wanted, it doesn’t
offer what is wanted: the ability to see how big or small to make the new image.
A resize control should be visual.

Our resize-tool solution is a small, red angle positioned on the bottom-right cor-
ner of the scanned image. When the cursor rolls over it, it visually changes very
slightly, growing in size by a couple of pixels. This is what I call the pliant
response, and it hints to Malcolm that the object can be directly manipulated.
When Malcolm clicks and drags on the red angle, the image resizes in real time
either larger or smaller, depending on the direction that he drags the angle. The
image always stays in correct proportion. Disproportional resizing is Magnum’s
job, and he uses Photoshop for it.

Adding to the utility of the resize control are the dimension lines extending from
the sides of the image. These change in real time as Malcolm drags the angle, giv-
ing him immediate quantitative feedback about the exact size of the image. A
function on the menu allows Malcolm to set the dimensions to show in units of
pixels or metric measure, instead of English measure.

194 / Part IV: Interaction Design Is Good Business

World-Class Image Reorient

The capability to rotate a scanned image is a function typically found in graph-
ics programs. There are three general uses for a rotation function.

x Rotating portions of images to change the composition
x Straightening a picture that was scanned very slightly off the vertical
x Reorienting a sideways or upside-down image to right side up

Most scanner products—including Peacock’s predecessor—have a rotation tool
that allows its user to perform all three functions. We looked at this power and
complexity from Chad’s, Malcolm’s, and Magnum’s points of view and decided to
take a very different approach.

We immediately discarded rotate use number one. Only an artist needed it, and
none of our users was an artist. Magnum was closest, and he would use
Photoshop’s powerful rotate function.

Rotate use number two, called alignment, cannot work well because of limita-
tions of the technology. Virtually all rastering devices, such as video screens,
scanners, and printers, render straight lines that are just one or two degrees off
the vertical or horizontal with ugly zigzags called “aliasing” or “the jaggies.” After
a line has been scanned in with the jaggies, no amount of computer processing
can straighten it, and using the typical rotate function to force the line to the ver-
tical creates a dizzying optical illusion that makes for a cure far worse than the
disease. As if that weren’t bad enough, the software needed to rotate an image

Chapter 11: Designing for People / 195

just a couple of degrees is extremely complex and sophisticated. Most other scan-
ner products proudly include this less-than-useless function as a fine example of
what Po Bronson meant about engineers when he said, “Blindness improves their
vision.”

If an image is scanned in a degree or two off, it’s much faster, better, and easier
just to line it up better and scan it in again. The scanner hardware not only facil-
itates this solution with its precisely aligned rollers and high speed, but it also
makes it very hard to align the scan incorrectly in the first place.

Rotate use number three is reorientation. It is easy to inadvertently scan an
image in sideways or upside down. It is easy and effective to use software to flip
an image 90°, 180°, or 270°, orienting it correctly.

Thus we designed a “reorient” tool instead of a “rotate” tool, and once again we
took pains to make it the best of breed. In the upper-left corner of the scanned
image is a blue circle, similar to the red resize angle. When the cursor flies over the
circle, it visually changes into a slightly larger circle, once again hinting at pliancy.

196 / Part IV: Interaction Design Is Good Business

When Malcolm clicks and drags the circle, a bright-green rectangle appears
around the edges of the image. This rectangle, called a bombsight, indicates
where the image will land when Malcolm releases the mouse button. As the cir-
cle is dragged past the corner of the image, the green bombsight snaps to the next
cardinal alignment: 90°, 180°, or 270°. Malcolm can easily see in advance the

effect his actions will have on the image. He clearly sees that alignment is only
allowed on cardinal directions and that free rotation or alignment correction is
not available here. All of our personas understand the feature instantly.

World-Class Results

At our client’s request, we did some user testing on this product and discovered
a remarkable thing. We expected that all the test subjects would be very pleased
with our interface and would be able to understand it and use it easily. In this we
were not disappointed. What surprised us was that every one of the test subjects
expressed the opinion that Peacock was the “most powerful.” In literal terms of
the number of features, this was far from true. In terms of effective power real-
ized by the user, we had increased it significantly.

When the ScanMan product finally shipped, it generated a stir in Logitech’s tech-
support department because it received remarkably fewer calls about using it
than was normal for a new product.

Bridging Hardware and Software

From an interaction designer’s point of view, the divisions between hardware
and software are inconsequential because they are inconsequential to a user. The
user doesn’t care which is more expensive to build. Thus, interaction designers
can resolve problems that arise during development of hybrid products.

In the world of engineering, there are hardware engineers who create circuit
boards and microchips, and there are software engineers who create program
code. Although the fruits of their labor are sold in a common—or hybrid—
product, the two factions typically don’t work cooperatively. Sometimes they
don’t even communicate, but instead merely throw completed modules over the
fence into the other’s backyard.

For historical reasons, hardware engineers dominate most hybrid-product com-
panies, but as the availability of hardware increases to the point of ubiquity,
hardware and its engineers assume a less critical role. Conversely, the true value
to the user of most products is increasingly due to the unique contributions of
the software. This makes for an uneasy truce in most hybrid-product companies.

Hewlett-Packard is a good example of a hybrid-product company dominated by
hardware engineers. Its printers are fabulous products with exemplary engineer-
ing, but after two decades of refinement, none of my HP printers yet cooperates
fully with my computer. They don’t bother to tell my computer how much paper
is in their feed bins, how much ink is left in their cartridges, or how many print
jobs are currently queued up and ready to go. This kind of thoughtless disdain for
the human’s need for information is the telltale smoking gun of companies dom-
inated by hardware engineers.

Chapter 11: Designing for People / 197

Ironically, hardware companies are more experienced at seeking outside help
from industrial-design firms to help them make their products more desirable
and useful to their users. Software companies tend to go it alone. In any compa-
ny making hybrid products, when hardware and software engineers don’t have
designers to mediate between them, the result will be products that fail to please.
Most of the examples in Chapter 1, “Riddles for the Information Age,” make this
clear.

As more and more products are hybrids of hardware and software, the need for a
Goal-Directed design increases, because it is agnostic regarding the implemen-
tation medium.

3Com Corporation—original maker of the PalmPilot—is a good example of a
hybrid-product company where design created a smooth integration between
hardware and software. A single tap of the screen and the machine awakens
instantly in the exact state it was in when it was last shut down. When hardware
is instantaneously responsive to users’ actions, it is a clear indicator that the
hardware design incorporated the needs of the software. Conversely, my Nikon
CoolPix 900 takes seven long seconds to boot up every time I turn it on, and it
doesn’t even have a disk drive. When hardware is this sluggish, it is clear that the
hardware engineers ran the show.

Of course, in the real world of product design, most software companies quite
rightly stay out of the hardware world. Designers respect this, even when dedi-
cated hardware would confer significant advantage.

However, if the cost structure of the design problem allows for it, designers
should not hesitate to make recommendations about hardware. The Sony
P@ssport IFE system in Chapter 9, “Designing for Pleasure,” ran on dedicated
computers, and the vendor had complete control over all hardware and all soft-
ware. My designers made several hardware recommendations.

In the Elemental Drumbeat design in Chapter 10, “Designing for Power,” the
product was destined to run on any vanilla, Wintel desktop computer. My
designers stayed well away from any hardware recommendations.

For several client projects, including Logitech’s Peacock, my designers were lucky
enough to find opportunities to add value with hardware design. Each company
had the option of venturing into the world of hybrid solutions, with all of the
danger and opportunity that that entails.

Less Is More

Those gadget-obsessed, control-freak programmers love to fill products with giz-
mos and features, but that tendency is contrary to a fundamental insight about
good design. Less is more.

198 / Part IV: Interaction Design Is Good Business

When an interaction designer has done a particularly good job, the user will be
quite unaware of the designer’s presence. Like service in a world-class restaurant,
it should be inconspicuous. When the interaction designer has accomplished
something really good, users won’t even notice it. In an industry that promotes
“coolness” as a design objective, it really gets tiresome to find my way so often
obscured by interaction artifacts that have obviously taken some poor program-
mer lots of time and work. Too bad his efforts didn’t go into something effective.
Many visual designers think that good design is cool, and occasionally it is, but
no matter how cool your interface is, less of it would be better.4 Again, the point is
that the less the user sees, the better a job the designer has done. Imagine watch-
ing a movie and seeing klieg lights in the corners of the frame or hearing the
director yell “Cut!” at the end of a scene. Imagine how intrusive that would be
and how it would break the viewer’s spell.

Super programmer and software designer Kai Krause is famous for his unique
interfaces. Kai has created some of the most powerful and interesting graphical-
manipulation software. His products always have breathtakingly beautiful inter-
faces. They also tend to be inscrutable, kind of like a game. In addition to his
programming ability, Kai is a visual designer, and his products reflect the visual
designer’s willingness to make things obscure—like modern art—for the sake of
effect. This works because his user base is other visual designers and hobbyists.
It doesn’t go over very well outside that world.

x

In programming, there is always an infinite variety of ways to solve any given
problem. Experienced programmers, as they explore their options searching for
the optimum solution, occasionally stumble on a technique that allows them to
throw out hundreds—or even thousands—of lines of code. This only happens
when the programmer has made a valuable conceptual leap forward. When she
can toss out lots of code, her program is getting better. Less code means less
complexity, fewer bugs, fewer opportunities for invalid interactions, and easier
maintainability.

Interaction designers share this sensation. As they explore their options, they
discover places where they can dispense with entire screens or discard large and
complex dialog boxes. The designer knows that each element of the user inter-
face is a burden on the user. Each button and icon is one more thing that the user
must know about, and must work around, to get to what she really wants. Doing
more with less is always better.

If the designer is doing well, she is removing interface from a product. She is not
designing screen after screen of buttons and gizmos. A product manager from a
large software company visited us one day, inquiring about having us redesign a

Chapter 11: Designing for People / 199

4 In my book, About Face, I introduce over 50 powerful design axioms. This is one of them.

product for them. He told us that he expected the interface to have about a dozen
dialog boxes. We explained to him our process and then quoted a price for their
design. It was about $60,000, if I remember correctly. The manager then
exclaimed, “But that’s outrageous! It’s $5,000 per screen!” I didn’t have the heart
to tell him that we would probably reduce the dialog box count down to one or
two and that the price—when calculated on a per-screen basis—would be a lot
higher. He just didn’t get it. Paying for design on a per-screen basis is like paying
a waiter by the number of trips he makes to each table. A better waiter makes
fewer trips, and a better designer always creates lots less interface.

Sometimes being an interaction designer can be so frustrating! If, as a designer,
you do something really, fundamentally, blockbuster correct, everybody looks at
it and says, “Of course! What other way would there be?” This is true even if the
client has been staring, empty-handed and idea-free, at the problem for months
or even years without a clue about solving it. It’s also true even if our solution
generates millions of dollars for the company. Most really breakthrough concep-
tual advances are opaque in foresight and transparent in hindsight. It is incredi-
bly hard to see breakthroughs in design. You can be trained and prepared, spend
hours studying the problem, and still not see the answer. Then someone else
comes along and points out a key insight, and the vision clicks into place with the
natural obviousness of the wheel. If you shout the solution from the rooftops,
others will say, “Of course the wheel is round! What other shape could it possibly
be?” This makes it frustratingly hard to show off good design work.

Computer scientist Alan Karp says, “Almost every patent application I have sub-
mitted has been rejected as ‘obvious.’”

When I say less interface, I don’t mean less functionality—although that can
sometimes be the case. I mean that the user doesn’t have to interact with the
program any more than is absolutely necessary to get any particular task accom-
plished.

x

In this chapter and in Chapters 9 and 10, I presented a brief look at our most
widely used design tools. They have proven to be very effective in designing
products and services ranging from industrial control to enterprise planning to
consumer products. In the next chapter, I will examine some other available
tools that claim to help create better-designed products.

200 / Part IV: Interaction Design Is Good Business

Part V
Getting Back into the Driver’s Seat

Chapter 12 Desperately Seeking Usability

Chapter 13 A Managed Process

Chapter 14 Power and Pleasure

This page intentionally left blank

12
Desperately Seeking Usability

The explosion of software-based products into the mass market, in either general-
purpose computers or appliances, has transformed the user population. Formerly
it was a small group of forgiving, technology-loving implementers. Today it is a
teeming multitude of impatient, unhappy, nontechnical consumers. Everyone,
both inside and outside of the software industry, has heard the users cry in painful
frustration and has felt the pressure to do something. Many specialties have
stepped forward, eager and willing to fill the vacuum. All of them have a good story,
most of them have bright credentials, and many of them have stellar client lists.
Collectively, though, they have produced more heat than light, and their solutions
lack for nothing except desirable software-based products. The result has been
widespread confusion about how to really solve the problem of unhappy users. In
this chapter, I’ll try to dispel some of the confusion, showing where each special-
ization can be most effective and how it can dovetail with Goal-Directed interac-
tion design.

The Timing

Probably the single most important aspect of design is the sequence of events in
the software-construction process. Since the earliest days of software develop-
ment, the sequence of events has been program, bug test, tweak. First, the pro-
grammer writes the program. He then puts it through its paces, looking for any
inadvertent errors in its construction. Next, he tweaks the code to correct those
errors. Finally, the program is ready to be deployed.

It is only natural that the engineers will accept any new discipline more readily if
it does not disturb the established order of activities. One method, called user
testing, that has grown to significant proportions in the industry examines
empirically how actual users interact with the product. The main reason why
empirical user testing has been widely accepted in the high-tech business is that
it fits easily into the existing sequence. Most user testing depends on having a
working program to test with, so necessarily it must wait until the program is up
and running. This places user testing in the sequence conveniently in parallel to
bug testing. The programmers are comfortable with this piggybacking of a new
form of testing because it doesn’t upset their established sequence.

204 / Part V: Getting Back into the Driver’s Seat

As I’ve pointed out, writing code is to interaction design as pouring concrete is to
building architecture. No matter who does the designing, regardless of the
method she might apply, the effect of design will be negligible if the coding
is underway. A fundamental premise of bringing design to the software-
development process is that it must occur before the programming begins.
Obviously, I’m an advocate for Goal-Directed design, but any systematic design
process performed in advance of programming will be much more effective than
any process that comes afterward.

Putting design before programming means fundamental change in the software-
development process. Programmers, who are naturally affected by this, see it in
vaguely threatening terms. They have heretofore been first and, by implication,
most important. If some other discipline comes first, does that mean the other
practitioners are more important? This is not true, and I will discuss it in more
detail in the next chapter.

In the software world, I have programmed, invented, tested, documented,
designed, sold, shipped, and supported, and I can say without doubt that pro-
gramming is by far the most difficult and demanding task of them all. (I’m refer-
ring to professional programming of software suitable for commercial release. As
a general rule, the complexity of a program increases exponentially relative to its
size in lines of code. Although most people write small, 100-line programs in col-
lege, and many people write similar-sized programs for their work, the sheer size
of commercial applications, which can easily exceed 50,000 lines, pushes their
complexity beyond the comprehension of most mortals.) Even if other practices
are unclear on this point, the programmers are not, and they know that they, by
far, have more skin in the game than anyone else.

The myth of the unpredictable market that I presented in Chapter 3, “Wasting
Money,” is another reason why the “program, test, tweak” sequence is so well
established in the industry. If we can’t know what the market will want, why
bother wasting time designing up front? Just code it and ship it, and the market
will tell us. It will also absolve us from any responsibility for the failure.

These issues notwithstanding, it is absolutely vital that cooler heads implement
this change in sequence, putting design in front of programming.

User Testing

Any process based on observation must take the back seat to acts of creation.
Programmers create. The usability discipline tacitly hands the reins to the pro-
grammers, saying, “You build it, and then I’ll test to see how well you have done.”
But in this fast-moving, high-tech world, after it is built, it ships. Post-facto test-
ing cannot have much influence on the product.

Chapter 12: Desperately Seeking Usability / 205

To me, usability methods seem like sandpaper. If you are making a chair, the
sandpaper can make it smoother. If you are making a table, the sandpaper can
also make it smoother. But no amount of sanding will turn a table into a chair. Yet
I see thousands of well-intentioned people diligently sanding away at their tables
with usability methods, trying to make chairs.

User Testing Before Programming

It is certainly possible to perform user testing before programming begins, but
the nature and value of the process changes dramatically. This kind of testing is
similar to the pure research that one would expect to find in a university setting.
A colleague at a major software company performed a classic user test that
simultaneously demonstrates the strength and weakness of this pre-facto user
testing. He wanted to determine the effectiveness of the status bar at the bottom
of the screen. He had people use a spreadsheet program to perform some
innocuous task, and about every five minutes a message would flash across the
status bar saying, “There is a $50 bill taped to the bottom of your chair. Take it!”
In a full day of testing with more than a dozen people, nobody claimed the cash.

The insight that users don’t pay much attention to what is displayed on the pop-
ular-among-programmers status bar is certainly valuable. It doesn’t shed much
light on the underlying problems, though: What constitutes “status” worth dis-
playing? Should it be displayed at all? Where should it be displayed? Those design
problems remain as open as they ever were.

Fitting Usability Testing into the Process

The professional literature is filled with detailed advice on how to perform tests,
but it says little about inventing something to test if the product doesn’t already
exist. In practice, some simulacrum must be created and tested. These generally
take the form of either a quickly written prototype program or a “puppet-show”
made from paper cutouts or some equivalent, low-tech material.

You can learn a lot about users’ reactions from paper puppet-shows, but what
gets tested can still be quite inappropriate unless design is done first. Also, the
personal presence of the tester inevitably looms large in this form of test, and a
word, nod, or glance can easily skew the test’s results.

For the most meaningful results, you have to do prohibitively expensive com-
parison testing by creating two programs to test against each other. Even then, all
you learn is that one of the candidates is better than the other. You don’t know
what is the best you can achieve.

Thoughtful user testing can uncover a designer’s incorrect assumptions.
Exposing your design work to users and then redesigning iteratively is always

206 / Part V: Getting Back into the Driver’s Seat

better than not doing so. Some new technologies, such as voice recognition, are
so untried that the insights provided by basic user testing can be of great value.

Arguably, the most valuable contribution of usability testing is made when pro-
grammers are forced to sit behind the one-way mirrors to view typical users
struggling with their programs. The programmers are shocked and incredulous,
shouting sentiments like, “You are testing mental retards!” Usability testing is a
useful whack on the side of the head for recalcitrant software engineers, showing
them that there is indeed a problem. It can serve the same purpose for manage-
ment, too.

To paraphrase the toothpaste people, user testing has been shown to be an effec-
tive, decay-preventive technique when used in a conscientiously applied pro-
gram of Goal-Directed design and regular professional care. The key here is to
remember that other factors can have an even greater effect.

Multidisciplinary Teams

The software engineer’s resistance to letting anything upset the familiar
sequence of events in the development process has led to a lot of tortuous logic
on the part of the design community. One widely proposed solution has interac-
tion designed by teams with representatives from many different disciplines.

The hypothesis is that better results can be obtained by working in a team with
equal representation from users, programmers, managers, marketers, and
usability professionals. In my experience, this “seat at the table” doesn’t work.
The goals and concerns of the members diverge, and the one constituent whose
goals are most relevant—the user—is often the poorest equipped to articulate his
concern. What’s worse, the programmers—who always have ultimate control
over the software-based artifact anyway—inevitably drive the team, usually from
the back seat.

The seat-at-the-table solution still fails to put design in front of programming. It
is a buzzword-compliant, polycultural, inclusive, multidisciplinary, and demo-
cratic approach, but it still fails to address the flawed sequence, which remains
as a virulent cause of bad interaction.

Programmers Designing

The first “volunteers” to address the problems of the new nontechnical users
were the programmers themselves. That their culture and tools were wholly
inadequate to the task was less relevant than that they were the only available
candidates for the job. Like the bystander unlucky enough to be near the scene
of an accident, programmers were called upon to deliver first aid to interfaces by
the simple virtue of their propinquity. Programmers are nothing if not game, and

Chapter 12: Desperately Seeking Usability / 207

prideful in their competence, so the difficult challenge of designing interaction
appealed to them, and they invested considerable effort. This gave rise to the sar-
donic joke in the industry that says, “Design is what the programmers do in the
20 minutes before they begin coding.”

I’ve shown throughout this book that the programmers’ efforts were ill-fated
from the beginning. As Po Bronson says, they consider the absence of criticism a
compliment, so their assessment of their own performance is unrealistically pos-
itive, and many of them insist on continued ownership of the design role. Like
mad kings, programmers are unwilling to relinquish territory after it is occupied,
even if the occupation is unpleasant, unprofitable, undesired, and untenable.

Regardless of how much you might teach, test, or design, you are a programmer
if you program professionally. In the same way that there is no such thing as
being a little bit pregnant, there is no such thing as doing a little bit of program-
ming.

Even though many developers remain unconvinced that a significant problem
exists (“the users just need to learn more”), others clearly see the frustration and
expense caused by wholesale dancing bearware. The good news is that this latter
group is gaining strength, and the willingness of most development organiza-
tions to seek outside help is growing.

Most programmers are actually pretty good at design, and many of those who are
not are humbly aware of their shortcomings and avoid practicing it. The giant
caveat is that when programmers design, their effort is almost always based on
the unique personality of Homo logicus. The end result is a difficult-to-use and
inappropriate product that other programmers tend to really like.

How Do You Know?

Many usability professionals believe that you cannot know whether an interac-
tion is good unless you test it. That’s why they are constantly asking, “How do you
know?” But I have noticed something very curious. When they ask, they are not
playing devil’s advocate. They are asking for the simple reason that they really
don’t know good design when they see it.

At least four large companies that I work with have a long history with usability
professionals. The companies decided to invest in usability. They hired profes-
sionals who built their labs, performed their studies, identified likely problem
areas, and made a series of guesses about how to improve things. The program-
mers diligently made changes to their programs, and not much happened, except
that the programmers had worked a lot harder. After a few cycles of this, the pro-
grammers simply gave up, and so did most of the managers. They could see that
it was very expensive and time consuming, yet it wasn’t solving the fundamental
problem.

208 / Part V: Getting Back into the Driver’s Seat

Interaction designers rely on their experience, training, and judgment to make
an accurate evaluation. They have principles, idioms, and tools for every situa-
tion, and they triangulate these tools with other sources of information. How
does a radiologist know that someone needs surgery from examining an X-ray?
X-rays are so difficult to read that it is hard for a layperson to imagine reading
one, but trained doctors do it all the time. How does a judge know whether a
defendant is guilty? How does an investor know that now is the time to buy?
These professionals might not be right all of the time, but they don’t guess.

I have seen well-respected usability professionals blandly take potshots into the
dark. They developed sophisticated tests to isolate users’ reactions to existing
software, and then they studied the tabulated results to find interactive rough
spots. When their rigorous, scientific method uncovered a problem area, they
would lapse into the most amateurish babbling about solutions: “Well, I guess we
could move this control over to this dialog box,” or “I suppose that if we added a
button here the user could have better control.”

It is fine to say, “I don’t know” but very self-defeating to guess at answers. What’s
worst is that any gazing off into space and guessing will cause programmers—the
ones with skin in the game—to quietly write you off as a quack.

Style Guides

The partnership of designer Shelley Evenson and scientist John Rheinfrank at
Xerox’s Palo Alto Research Center in the 1980s yielded some important ideas
about visual communications. They created a consistent visual vocabulary,
called a “visual design language,” for all Xerox photocopiers: green for originals,
blue for supplies, red for service areas. Similar nontextual cues are very useful in
high-cognitive-friction interfaces, and they are communicated in a “style guide,”
a book of examples and use suggestions.

Many software engineers and development managers who are frustrated by
user-interaction problems would love to have a style guide that tells them what
interface their product needs. Many corporations have developed interface style
guides for all of their internal software, and several software vendors have them
for independent vendors who write compatible software.

Although style guides can help, they really don’t address Goal-Directed interac-
tion design problems. These need to be treated on a case-by-case basis. Users
with different goals use the various applications, and each product’s interaction
must address the appropriate goals. A common visual language and consistent
controls can help, but they alone don’t solve the problem.

Chapter 12: Desperately Seeking Usability / 209

Conflict of Interest

If Bill Gates publicly demanded that all vendors other than Microsoft stop inno-
vating in interaction design, those vendors would hoot him from the stage. Yet,
Microsoft’s interface style guide does just that, and it is one of the company’s
most potent competitive levers in the industry.

Both Microsoft and Apple sell interface style guides and promote their power
and usefulness, and—at first glance—those companies would seem to be the
most authoritative sources. However, the platform vendor is in a vicious conflict
of interest, and its motivations cannot really be trusted.

Both platform makers use a quiet form of coercion to ensure compliance. If an
independent software developer doesn’t follow the style guide’s recommenda-
tions, the vendor won’t let the developer claim to be “platform compliant,” an
important marketing position. Thus, most makers of desktop software are eager
to follow their vendors’ recommendations.

By insisting that their independent developer communities follow the stated
guidelines, however, these companies surreptitiously suppress innovation from
the application community.

Meanwhile the platform vendors are free to experiment, evolve, and innovate as
much as they desire. They are under no compulsion to follow their own style
guides. Of course, no company more flagrantly and frequently violates those
guidebooks than Microsoft and Apple.

I’m not advocating that we ignore style guides and give in to interface chaos. I’m
merely saying that we should regard the style guide in the way a senator regards
a lobbyist, not in the way a motorist obeys a state trooper. The legislator knows
that the lobbyist has an axe to grind—that the lobbyist is not a disinterested third
party.

Focus Groups

Many industries have discovered the value of focus groups for learning what cus-
tomers like and don’t like about various products. However useful focus groups
are for gaining insight into what customers think about most consumer goods,
they are troublesome when used in the software business. The biggest problem
is simply that most people, even professional software users, are ignorant of
what software is and what it can and cannot do. So when a focus group partici-
pant asks for a feature, the request is made from a shortsighted point of view. The
user is asking for what he or she thinks is likely, possible, and reasonable. To con-
sciously ask for something unlikely, impossible, or unreasonable would be to vol-
untarily seem stupid, and people don’t willingly do that.

210 / Part V: Getting Back into the Driver’s Seat

Stanford University scientists Nass and Reeves have studied people’s reactions to
computers, and they see conclusive evidence that people’s own evaluation of
their reactions to computers is unreliable. They say, “Many popular methods,
especially focus group techniques, rely heavily on the assumption that people
can be introspective about [interactive] experiences. This is an assumption that
we think is frequently wrong.”

Larry Keeley says that “users will reject new ideas if you ask them.” This makes
focus-group techniques suspect for any significantly innovative products. Today,
most software-based products are sufficiently innovative to be un-focus-
groupable.

Focus groups can be effective for some product categories, but it is a mistake to
trust them for a reliable evaluation of high-cognitive-friction products.

Visual Design

In About Face, I showed why it wasn’t the graphical nature of the graphical user
interface (GUI) that made it the dominant form of computer interaction. Rather,
it was the tightly restricted interaction vocabulary of the new interfaces that
made them so much better than their green-screen predecessors. Good visual
design can be an important contributor to the quality of any interface, but many
people in the industry still credit it with value that it simply doesn’t have.

I was a judge one year in a contest for the design and construction of in-house
application software.1 One of the top prize winners was a program that managed
ticket sales at an annual aviation-enthusiast’s convention in Wisconsin. The
point-of-sale terminal—the beating-heart of the system—was decidedly non-
graphic, showing only a simple textual display that was singularly stiff, rectilin-
ear, and aesthetically primitive. Yet the program was a clear winner because the
design paid close attention to the peculiar needs of the all-volunteer sales staff at
the convention. These volunteers had a mission-critical but simple job to do, and
they had to do it rapidly and with minimal training. GUIs are superb tools for
showing managers the big picture of how their business is doing, but the users of
this point-of-sale system had no such need because each successive customer
who appeared at the head of the line was different and disassociated from every
other customer in line. Seeing the big picture wasn’t part of the requirement. A
simple textual screen was entirely sufficient to make the product an award win-
ner. This lesson is lost on many practitioners.

One of the characteristics of GUIs is their ability to display rich bitmapped
graphics. It is feasible to have program interfaces that are as visually lush as the
game Myst. Consequently, there are numerous visual designers and graphic

Chapter 12: Desperately Seeking Usability / 211

1 The seven-year-old contest, held at COMDEX industry conferences, was called Windows World
Open and was sponsored by Microsoft, Computerworld, and Ziff-Davis Events.

artists out there who will gladly put attractive bitmapped graphics on the face of
your program. But graphic artists rarely address the underlying interaction.

212 / Part V: Getting Back into the Driver’s Seat

This interface is one of those useless eye-candy programs given away free with
new computers and worth every penny you pay for it. Its purpose has something
to do with running the phone or the CD-ROM, I’m not exactly sure which. The
interface is undeniably beautiful, particularly if you are a gadget-loving
technophile, but its use is inscrutable. It is an example of what we call “painting
the corpse.” The programmers took an interface that was unusable because of
deep behavioral design flaws and put a sexy visual cover on it.

Hardware vendors seem to be particularly enamored of this approach—remember,
this came free with my new computer. I suspect it is because the interface is so
metaphorically faithful to a vision of cool hardware.

We often see products that look really good—whose aesthetics are superb—but
whose functionality or whose interactivity isn’t adequate. That is not because the
product wasn’t designed, but because it was designed by an aesthetic, visual
designer rather than by an interaction designer with the tools to master cognitive
friction.

Industrial Design

Another profession whose expertise is sought for help is industrial design. This
older, well-established profession is skilled at creating objects in three dimen-
sions that fit your vision, your body, and—especially—your hands. In general,
industrial designers do excellent work, and their sins are those of omission rather
than commission. Industrial designers are trained to create buttons, knobs, and
controls that are easy to feel, manipulate, and see. However, they are not specifi-
cally trained to satisfy the demands of cognitive friction, or to work with software

engineers. Like the buttons in the remote keyless entry system described in
Chapter 2, “Cognitive Friction,” the buttons are instantaneously recognizable as
buttons, even by feel. Their physical use is intuitive, but their logical use—their
metause—remains as unclear as ever.

The five remote-control devices on my coffee table, taken individually, are nice
enough, but collectively they make my home-entertainment system largely
unusable. Although they are sensuously curved and attractive to look at, you are
hopelessly lost when you need to change the channel or mute the audio in the
dark. The industrial designers who designed them satisfied the demands placed
on them by the equipment vendors, but they did not satisfy the interaction needs
of the user.

It is easy to see why product managers can mistake industrial design for interac-
tion design. Industrial designers also deal with the interface between people and
high-technology artifacts. They also make it easy for people to use these high-
tech contraptions. The fact that the buttons are easy to find and press doesn’t
mean that the user will know which button is the right one to press. That is a
problem of cognitive friction, not of industrial design.

Cool New Technology

There is one final pretender to the throne of interaction design, and that is tech-
nology itself. Microsoft, in particular, is touting this false panacea. Microsoft says
that interfaces will be easy to use as soon as it can perfect voice recognition and
handwriting recognition. I think this is silly. Each new technology merely makes
it possible to frustrate users with faster and more-powerful systems.

A key to better interaction is to reduce the uncertainty between computers and
users. Natural-language processing can never do that because meanings are so
vague in human conversation. So much of our communication is based on
nuance, gesture, and inflection that although it might be a year or two before
computers can recognize our words, it might be decades—if ever—before com-
puters can effectively interpret our meaning.

Voice-recognition technology will certainly prove to be useful for many products.
I think it is foolishly optimistic to think that a new technology will be any better at
rescuing us than any of the others were. Technology requires design to be a com-
plete solution for real users, regardless of the combination of technologies we use.

Iteration

It is a commonly accepted truth about software development that the way to get
good interaction is to iterate. The devotion to usability testing at most universi-
ties and many large software-development companies—particularly Microsoft—
led to the spread of this idea. And, yes, iteration is an important element of good

Chapter 12: Desperately Seeking Usability / 213

design: Keep working on it until it’s right. However, many product developers
have interpreted this to mean that you can dispense with design and merely iter-
ate across random thrusts in the dark.

In 1986, Microsoft rushed version one of Windows to market, and it was so
pathetic, it deservedly became the laughingstock of the industry. Six months
later, Microsoft shipped version 1.03, which fixed some bugs. A year later,
Microsoft shipped 1.1, and then version 2.0.2 Each iteration of the product tried
to solve the problems created by the previous version. Finally, four years after the
first version shipped, Microsoft shipped Windows 3.0, and the industry stopped
laughing. Few companies in the industry have pockets deep enough, or the
tenacity, to ignore public humiliation for four years to finally get it right. One side
effect of this is that the industry sees its de facto leader staggering blindly about
until it does get it right, and the industry makes the obvious assumption that that
is the correct way to do things.

But shipping all of those interim versions was very expensive. If Microsoft could
have arrived at the quality of Windows 3.0 without shipping a couple of those
intermediate releases, it could have saved millions in development and support
dollars, earning additional millions in sales much earlier in the product’s life (not
to mention saving their customers billions of dollars and many headaches).
Accepting as true that multiple versions are inevitable is an extremely expensive
capitulation of good sense.

Microsoft’s strategy is based on simple attrition. In military terms, attrition
means that you might be evenly matched with your enemy in quality—or even
somewhat inferior—but you have so many soldiers and guns that you merely
trade down until your opponent cannot field any more regiments. In software
terms, it means shipping a bad product—a real dancing bear—then listening to
your clients moan and complain. You tweak what they dislike and ship an updat-
ed version. After three or four versions, the overt pain suffered by the users sub-
sides and the quality of the product reaches some acceptable minimum, aided
by broad functionality, and does not improve thereafter. Iteration never creates
great products.

The attrition strategy is not only expensive and time-consuming, but it is a hate-
ful one because it is abusive of people who use computer technology. Unfor-
tunately, it is working pretty well for Microsoft. Time after time, it has shipped
half-baked, ill-conceived, poorly built, undesigned products to the sneers and
derision of industry observers, both partial and impartial. But while the industry

214 / Part V: Getting Back into the Driver’s Seat

2 Microsoft’s version-numbering logic is nonexistent. There were at least four major releases of
Windows before Windows 3.0. Windows 3.1 was a dramatically different and improved version,
with many major changes, and it clearly should have been called Windows 4.0. I’m sure that
Microsoft marketing people called it 3.1 instead because they didn’t want to squander the market
equity already earned by “version three.”

pundits jeer, Microsoft continues to support its first efforts with 2nd, 3rd, 4th, 5th,
and 11th versions. Such products as Windows, ActiveX, Word, Access, Windows NT,
and many others have eventually emerged as Goliaths in their respective markets.

The attrition strategy only works if you have a rock-solid brand name, lots of
time, the nerves of a poker player, and vast quantities of money. So far, no other
players in the computer industry have exhibited those qualities in equal measure
to Microsoft.

The real problem with Microsoft’s spectacular commercial success is that many
smaller companies attempt to emulate its success by emulating its attrition strat-
egy. This is often quite unsuccessful in the long term, as Web browser maker
Netscape has shown, but it continues the legacy of abusing end users.

It is quite possible to beat the attrition player, but not by using a matching strat-
egy. After all, regardless of who you are, Microsoft has more money than you do.
Instead, you must strike Microsoft hard where it is weakest—in its development
process, which puts programming in front of interaction design. Microsoft is
doubly handicapped in that it has many people at the company with the title of
“designer” who do design-related things. As shown by the excerpts from Fred
Moody’s book in Chapter 8, “An Obsolete Culture,” the Microsoft culture has
already made a place at the table for ineffective, after-the-fact design. Any com-
pany willing to do real interaction design can beat Microsoft.

Chapter 12: Desperately Seeking Usability / 215

This page intentionally left blank

13
A Managed Process

I believe that most managers in the business of creating software-based products
don’t really have a clear understanding of how to identify the best, most success-
ful products or how to make them. Lacking this awareness, managers take coun-
sel of their fears, but after they do so, they are riding a tiger. Although they are
moving rapidly, they are not in control, and if they let go they will only be eaten.
In this chapter, I will examine the technical manager’s dilemma and show how
design can be just the tool for taming the tiger.

Who Really Has the Most Influence?

How can you know whose advice to follow and whose to ignore? I see executives
behaving like car-chasing dogs in the middle of a busy intersection, barking furi-
ously and trying to run in all directions at once. Top management says, “Make it
look like Outlook 98.” Marketing says, “Match the competition.” Sales says, “This
customer wants that feature.” The programmers say, “Stay consistent with our
last version.” Who are you to believe?

Product-development managers try their best to say yes to all of these con-
stituents. Programmers have disproportional influence because of their owner-
ship of the code, so their goals tend to be met regardless. However, the one group
whose needs always seem to take precedence over others’ is the customers. After
all, although each constituency is standing there demanding action, the cus-
tomer is the only one who is also holding a check. No businessperson can fail to
be influenced by that!

The Customer-Driven Death Spiral

If you take that check, you begin the transformation into a “customer-driven”
company. Although this has a nice ring to it and is widely used, it is a mistake. It
puts you squarely on the back of the tiger. Throughout the 1980s, IBM prided
itself on being a customer-driven company, and it let its customers drive it right
off the top of the mountain. IBM virtually owned the computer business back
then—to a much greater extent than Microsoft does now—yet it is just one of the
pack today—still large, but a follower and not a leader.

Usually, a new company bases its first product on some technological advance.
That first product is designed according to the inside vision of how things should
be done. At this stage, what customers the company might have are only loosely
committed and will offer only desultory guidance. After the new product is final-
ly delivered, though, the customers become more self-interested because they
are investing time and energy into the product. Inevitably, they have requests for
changes and additions.

There is a big difference between listening to and following your customers.
Listening is good. It means applying your own filter to what you have heard.
Following is bad. It means merely doing what your customers tell you to do. This
lets the tiger decide where you will go.

After the vendor begins to let its customers dictate what features the product will
have, a very serious, but almost unnoticeable, change transforms the vendor. The
vendor ceases to be a product company, inventing things to sell to its customers,
and becomes a service company, performing jobs on demand for its customers.
Everyone inside the company is sensitive to this subtle shift in power, and they
correctly respond to it by promoting the demands of the client above all others.

Today, many enterprise-software companies, such as Oracle and SAP—which
experienced explosive growth in the early 1990s as their modern, client-server
architecture replaced the older, mainframe software—are reliving IBM’s
customer-driven nightmare. After introducing their new technology, these so-
called enterprise resource planning (ERP) companies started listening to their
customers. They began to add features that their customers requested, without
fitting them into a larger, longer-term plan.

I have heard managers tell me that no change whatsoever is made to their prod-
uct unless a customer demands it. Each customer does business in a slightly dif-
ferent way, and each one asks the ERP company to make changes and add
features to accommodate its particular methods. In a misguided effort to be
helpful, the eagerly listening, blindly following, customer-driven vendor com-
plies.

218 / Part V: Getting Back into the Driver’s Seat

You are a single vendor, but you will have dozens or hundreds of customers. If
you respond to them all (or to the biggest ones), who is reconciling their con-
flicting demands?

Many of the high-tech managers I know have backgrounds in engineering and
are often former programmers. At the least, they have acquired their positions
because they are very knowledgeable about and sympathetic to programmers. As
I showed in Chapters 7, “Homo Logicus,” and 8, “An Obsolete Culture,” program-
mers look to functions and features for answers. When customers bring requests
for features in one hand and a check in the other, technical managers find the
combination irresistible. This is one more reason why so many product-
development organizations use feature-list negotiation to manage themselves.
They are riding the tiger, and deadline management assures that they will ride at
a dizzying pace.

Conceptual Integrity Is a Core Competence

After you take that check, you are handing over the reins of your product-
development shop. The customer might have money, but it lacks two vital things:
It doesn’t have your best, long-term interests at heart, and it doesn’t know how to
design your product.

Customer-driven products don’t have a coherent design. They lack what software
guru Frederick Brooks calls “conceptual integrity,” a single-minded vision of a
program which, he goes on to say, is the most important ingredient for success.
Lacking conceptual integrity, two things happen: The customers take control of
your product’s design, and you abdicate control of your product’s design. The
customers, no matter how well meaning they might be, don’t have the ability to
think of your product as a single, conceptual whole. Having a clear vision is a
core competence, and most companies are hard pressed to focus sufficiently on
their own business, let alone yours. Even while they are shouting conflicting
orders at you, they are expecting you to select the right ones to obey.

When you are customer driven, your product mutates from one release to the
next, instead of growing in an orderly manner. The product ends up filled with
mismatched parts and random features and becomes what product developer
John Zicker calls a “dog’s breakfast.” Each customer has to pick its way through
your product, finding the features it likes and avoiding the features it doesn’t, but
all of them find the going gets tougher with each new release. Some well-known
companies have products that are so incredibly complicated that it takes months
of training to do even the simplest tasks. Entire businesses spring up to train,
install, configure, and maintain these monsters. Although customers might pur-
chase a dog’s breakfast, there is little love for the product. It has no desirability,

Chapter 13: A Managed Process / 219

which, as I showed in Chapter 5, “Customer Disloyalty,” makes it—and you—very
vulnerable to competition.

A Faustian Bargain

One way to look at this shift from a vision-driven company to a customer-driven
company is as a shift from a product company to a service company. David
Maister’s remarkable book, Managing the Professional Service Firm,1 talks about
the problem of being customer driven in the different context of a service
provider: a consultant. Of course, because the service business is very different,
he uses very different terms. He speaks of selling his problem-solving expertise
versus selling his past experience. He refers to them as “brains” and “gray hair,”
respectively.

Selling brains is difficult. Anyone who will hire you for your brains must trust you
to a high degree, because they are expecting you to do something that you have
not yet demonstrated competence in. Selling gray hair is easier. A potential client
can see that since you have solved this same problem before, you can solve it
again for them.

Most consultants start out selling brains to their colleagues—that is, people who
already have an established trust. When the consultant solves the client’s prob-
lem, she begins building a reputation, and more clients appear at the door. These
clients will be progressively more removed and will have progressively less trust
in the consultant at the outset. So they will ask the consultant to do gray-hair
jobs. After all, your experience attracted the new client, and it is the kind of
assignment that a client will give to an unproven vendor.

After a consultant establishes her reputation, her gray-hair clientele grows, and
she finds herself making more and easier money by applying her experience.
After all, she is doing the kind of work that she has already done many times.

As your business gradually shifts from a brains business to a gray-hair business,
the very qualities that make you valuable as a consultant begin to wane. You fall
off the cutting edge. The service you offer is not one of brilliant problem solving,
but one of pedestrian task execution. Your desirability as a consultant shrinks,
and your own clients begin assigning you ever-more-demeaning, low-level tasks.
They begin to court other consultants who are farther out on the cutting edge—
those who use their brains more.

It’s the customer-driven death spiral all over again, but this time from a service
perspective.

220 / Part V: Getting Back into the Driver’s Seat

1 David Maister, Managing the Professional Service Firm, 1997, Free Press, New York, New York,
ISBN 0-684-83431-6.

The lesson is that if you become customer driven, you accept easy money in the
short term, but you cease to grow, and you resign any hold on the future. You give
up your role as a leader.

Everyone colludes in this game. Customers are very comfortable with it. The new
ones approach you and say, “Put this one feature into your product, and then I’ll
buy it.” This is a test to see whether you are a compliant service organization. The
sales force puts a lot of effort into such a big sale, and adding one little feature
seems like such a small price to pay for establishing a relationship with a new
customer. Revenue beckons.

The solution that Maister proposes is obvious: Do more brains projects. In the
service context, you have to convince your current gray-hair clients to give you
brains work, and he goes on at length on how to do that. He says it means turn-
ing down the easy money of gray-hair projects to get harder and less-profitable
brains projects from existing clients. Translating Maister’s solution into the prod-
uct business, we find that whereas all customer requests are gray-hair jobs, the
brains jobs are all internally driven assignments. In other words, it’s your respon-
sibility as a product manager to keep yourself on the cutting edge and avoid the
customer-driven death spiral. You have to look inside yourself for answers, the
same way you did when you first started.

It means taking a longer view, taking responsibility, taking time, and taking control.

Taking a Longer View

In order to maintain your competitive edge, you have to put short-term gain into
perspective. You must ensure that your people understand that when you focus
exclusively on short-term gains, you start a time bomb ticking. You must avoid
doing this despite the short-term expense.

Taking the longer view means walking away from some very lucrative deals. This
is hard to do but necessary for your survival in the long term. In my experience,
you rarely actually lose those deals. If you have the confidence to walk away from
a client proffering money, that client will likely gain increased trust in you and
reevaluate what they are asking of you. Still, you must be willing to walk.

Taking Responsibility

You have to establish the balance early on. You can’t say, “I’ll just use short-term
tactics for two years and then switch to long term.” You have to balance both
from day one. You can always postpone short-term thinking, but you can never
postpone long-term thinking.

This is all about corporate culture, and it is hard to introduce the long view to an
established short-view culture. It is risky to step back from the lucrative precipice

Chapter 13: A Managed Process / 221

of being customer driven. You will draw fire. Take heart that you are doing the
right thing.

Taking Time

Many high-tech companies have a policy of shipping a new release of their soft-
ware every year. Some ship even more frequently than that. This means that their
main body of programmers is working on an annual cycle, and that any work
must go from conception to design to programming to testing to market within
that year. This is too fast to do really innovative design, so most companies try to
overlap design with programming. As I’ve described at length already, when you
overlap design and programming, what you get is programming.

Taking Control

Above all, high-tech development managers have to seize control of their devel-
opment process away from the rampant tiger. You have to get off of the beast and
take the inevitable thrashing. If you survive it, you can then begin to rebuild your
process so that you balance brains and gray-hair work and keep your edge for the
future.

Finding Bedrock

Most companies do very careful planning and thinking on the financial and
operational side of the business. On the product side, they imagine that using
feature lists is equally rigorous planning, but it is emphatically not. Software
development is simply too hard, too expensive, and too difficult to do without
careful planning and thinking. In the context of software development, “careful
planning” can only mean interaction design, which, as has been established, is
quite neglected.

One of the collateral benefits of Goal-Directed design is the cast of characters:
the list of specific types of users. This document offers significant help in deter-
mining how you should react to your customer’s demands for features. You first
assess which user persona the new feature would service, and then decide
whether or not it is one of your primary personas. If it is, you can seriously con-
sider it. If it is not, you will drop another step farther back from the leading edge,
regardless how much money you will get. If a customer walked into your office
and offered you $100,000 to throw out your accounting system or set fire to your
filing cabinets, would you do it?

Knowing Where to Cut

When a company is customer driven, this is a clear symptom that the product
managers believe in the myth of the unpredictable market. They really don’t know

222 / Part V: Getting Back into the Driver’s Seat

whether or not a feature is good or bad, necessary or unnecessary. They turn con-
trol over to the customer because, well, why not? They certainly don’t know. If the
customer says, “Add a left-handed monkey-wrench feature,” the product manag-
er figures the customer must know something. The manager believes that it might
be the magic feature that will make the product a big success.

The flip side of this is that the product manager doesn’t have a clue about what
features to cut either. When external forces constrict the schedule, the manager
has to cut features, but he has no idea which features are vital and which are
mere gravy.

Letting nondesigners cut features is like letting anyone cut wires in an airplane.
The cutting is random, or based on some unrelated quality such as the color of
the insulation or the distance from your seat—you might or might not cut impor-
tant wires. One moment you are disabling the reading light in seat 22A, and the
next moment the engines quit. But letting designers cut features is like letting the
airplane’s designer cut wires: He will avoid the ones that are needed for flight and
disable all of the nonessential equipment first.

Making Movies

Making movies is exorbitantly expensive, just like writing software. Moviemakers
have been making films in Hollywood longer than we’ve been creating software
in Silicon Valley, and we can learn something from them. The actual filming of a
movie is the really expensive part. All of those cameras, sets, technicians, and
actors can cost many thousands of dollars every day. Good moviemakers keep
tight controls on this production phase by investing in detailed advance plan-
ning. By putting time and money into creating detailed storyboards and shoot-
ing schedules, they save orders of magnitude more money and time during
filming.

The process of getting a film made can be broken into three major phases: pre-
production, production, and postproduction. In the preproduction phase, the
producers have the script written and polished, design sets and costumes, hire
the cast and crew, and raise funds. During the production phase, the lights glare,
the cameras roll, the directors shout orders, and the actors emote. During the
postproduction phase, the film is edited, the soundtrack is recorded, and the
marketing campaign is assembled. These phases correspond quite closely to the
software-construction process.

During the preproduction phase, the managers do the interaction design for the
product, hire the programmers, and raise funds. During the production phase,
the CRTs glow, the compilers roll, the managers shout directives, and the pro-
grammers emit code. During the postproduction phase, the code is debugged,
the documentation is written, and the marketing campaign is assembled.

Chapter 13: A Managed Process / 223

The significant aspect of this tripartite structure is that the purpose of the pre-
production phase is to minimize the duration of the production phase. It is excru-
ciatingly expensive to put a film crew to work, and shaving just a few days off a
long shooting schedule can pay for weeks of additional pre- or postproduction
work. A contemporary film will spend a year or more in preproduction, and then
a couple of months in intense filming, and then many more months in postpro-
duction.

What’s more, as our films get increasingly technical (what do you get when you
cross a film with a computer?), more and more of the production work simply
cannot be done without meticulous advance planning. If your leading actor
must have a light-saber duel with a computer-generated alien, he must have an
imaginary fight with just a blue-screen background, so his every action must be
first choreographed down to the slightest step and glance.

Moviemakers know that they only get one chance to do it right, so they never skip
the preproduction effort. In the world of software engineering, many managers
believe that they can just fix it in the next release, so the pressure for advance
planning is reduced. That’s an awfully expensive assumption.

It is just as complicated to make modern software as it is to make modern films,
yet most development processes seem to ignore that fact. Most development
teams that I have seen spend a few days or weeks (at most) in planning and
design, and then anywhere between 6 and 18 months programming, and then just
a couple more months of debugging, testing, and documentation. I suspect that
we have a lot to learn from filmmakers. If we spent more time in preproduction—
in design—we could cut our expensive programming time considerably.

The moviemaking preproduction phase is the one in which the least money is
spent. It doesn’t cost much to create a detailed storyboard of an expensive chase
scene filled with explosions and special effects. To make dramatic changes all it
takes is an eraser, a pencil, and some time. Getting all of the details right on
paper will save millions when the camera is rolling and the cars are filled with

224 / Part V: Getting Back into the Driver’s Seat

stuntmen and explosives. Preproduction is an investment in time that saves cash
and increases the likelihood of eventual success.

If the director changes his mind and wants to blow up a helicopter instead of a
railroad train, it is simple, cheap, and easy to do in preproduction. To make that
kind of change during filming would be ridiculous. Filmmakers know this, so
they take their time to get it right during preproduction and then proceed as
planned during production.

Why do we approach software construction with such a different mindset? We
put so little time and effort into advance planning. Instead, we fill up the white-
board, create the spreadsheet of one-line feature names, and then send those
incredibly expensive programmers out into no-man’s-land to code. Just like film-
makers, we know how expensive it is to make changes during coding, yet we
don’t bother to invest the time and effort in the planning process. Instead we hire
the programmers, let them start coding, and then plead that we can’t make
changes now because the expensive coding is underway.

For existing products, the cycle is even more skewed. An annual feature upgrade
to an already shipping product might have no calendar time allocated to it for
preproduction design work. Instead, the product manager simply maintains a
list of features requested by customers, and it is just annually, unceremoniously
handed to the programmers for coding.

Just as in the preproduction phase in filmmaking, adding a thorough product-
design phase to the software-development process will yield enormous benefits.
By creating a detailed paper plan for the product, we eliminate the vast uncer-
tainties of programming, along with significantly reducing the risks normally
attributed to releasing software-based products.

The Deal

Management must make a commitment to bringing design in before program-
ming begins. Analogously speaking, interaction design is architecture, not inte-
rior design. Interaction design determines where the concrete for the foundation
will be poured as much as it determines which fabric will be most appropriate for
the window treatments. This commitment must extend to giving the interaction
designers the moral authority to dictate the shape and constitution of the prod-
uct to the programmers. This will involve significant cultural upheaval, but the
programmers will be happier after the change, and you will benefit from short-
ened programming time and an immensely superior product.

In exchange for this power, the interaction-design community must make two
commitments of its own. First, interaction designers need to get some skin in the
game. They need to stop standing on the sidelines giving advice to the program-
mers, while passively letting them take full responsibility for the success of the

Chapter 13: A Managed Process / 225

products. It is not good enough merely to have the right ideas. You have got to get
those right ideas applied to practice, and the only time that is going to happen is
when the interaction designers put themselves in harm’s way. The programmers
do it every time they write a line of code.

The second commitment that interaction designers must make is to put their
design in writing.

Document Design to Get It Built

One of the really tough lessons that I have learned over the years is that good,
even great, design is meaningless unless it gets built. And it will never get built
unless it is described at length, with precision and detail, in terms that make
sense to the programmers who must build it. It has to be in writing, in exhaustive
detail, with supporting evidence and examples. It has to be printed and bound in
multiple copies. It must be presented personally to the development team, with
the VP of development standing there nodding his head and smiling. Better if it’s
the CEO.

The designers need to write, storyboard, animate, and sketch their solutions with
sufficient completeness and detail that programmers can treat the solutions like
blueprints and actually write code from them. Enough situations must be
described in detail to give the developers confidence that the solution is robust
enough to survive implementation.

The written design is like a written battle plan. Everyone knows his part and what
the critical and timely issues are. Everyone can move in synchrony and harmony
to create a product that is targeted at a specific user.

Programmers rely on a persuasive technique called “passive-aggressive.” Instead
of forcing a confrontation that must decide an issue, they avoid attention and
quietly take—or don’t take—action. It’s like a passenger steering a canoe by sur-
reptitiously leaning to one side or another. One of my favorite business axioms,
“If it isn’t on paper it doesn’t exist,” is truer than ever in the world of software
design. Anything left unwritten is more than likely to be misconstrued or ignored
because the motivations of the programmers are so divergent from the motiva-
tions of the users. It’s not enough not to specify a dialog box, but the designer
must explicitly state where the programmer is not to voluntarily insert an extra
dialog box. To a programmer, dialog boxes are good things, and he feels like he is
doing the user a favor to toss in a couple of extra ones in his spare time. To users,
dialog boxes are hateful things that sap their energy and derail productivity.

Interaction designers, like architects, deliver a set of blueprints that describe the
product to be built. But although the similarity between blueprints and software
design documents is very close, they have great differences, too. Blueprints have

226 / Part V: Getting Back into the Driver’s Seat

a lot of leverage. A single line on paper can indicate a wall of 100,000 bricks.
When interaction is involved, most of the leverage shrinks away. It might take a
100-page document to describe the behavior of 100 pages of code. With only a
small dose of facetiousness, I say that a sufficiently detailed specification is indis-
tinguishable from the code that implements it. In a perfect world, developers will
grant designers a year to design and then give the programmers three months to
code. In this world, the numbers are reversed.

What this means is that the design document must, of necessity, omit some
things. As well as knowing what is good design, the designer must know what is
important. The interaction designer must decide which parts of the program
must be designed, and which parts can be left to the indigenous solutions of the
programmers.

All of my design documents are organized in the “spiral” method of a newspaper.
The headline of a news story tells the entire tale. Then the first paragraph tells the
story again with a bit more detail. Then the next three paragraphs tell the story
once again, this time with more information. Then the remainder of the article,
which might take several columns, tells the entire story in complete detail. This
allows the reader to take what she wants without drowning in unnecessary detail.

Design Affects the Code

Many people have the mistaken assumption that what interaction designers do,
and that what needs to be done, is user-interface design. Interface design is cer-
tainly part of what needs to be done, but it holds only a secondary role in the
process of design, much like packaging does in retail sales. Interface design is
what is done after both the purpose and behavior of the interactive product are
already established. But a bad product in beautiful and imaginative wrappings is
still a bad product.

When experts are called in to do interface design, they are often summoned only
after the product is already substantially built. The opportunity for significant
design has passed, and the designer’s efforts—no matter how heroic—have rela-
tively limited impact.

Interaction design can have a dramatic effect on the actual implementation
process, although this does not mean that the design is explicit about imple-
mentation issues. For example, the programmers might be expecting the design-
ers to specify how an important dialog box should look to the user. However,
interaction designers might wish to replace that dialog box with another idiom,
such as a toolbar. But the designers are not concerned with how either dialogs or
toolbars are actually coded.

Chapter 13: A Managed Process / 227

Because the interaction designer might have a large effect on what does and does
not get built, while studiously avoiding details of how things get built, we think
of design as a product-definition process. Essentially, interaction designers
determine the inside of the product by describing the outside of it. The interac-
tion with the user is specified with great detail and precision, and the imple-
mentation issues are left to the programmer.

Design Documents Benefit Programmers

In Chapter 3, “Wasting Money,” I asked the question, “What does ‘done’ look
like?” The central purpose of the documents produced by the interaction design-
er is to answer that question. In general terms, a written design document is a
robust mechanism for controlling the actual coding. It acts like the script and
storyboard of a movie, making it clear to everyone how it will work, what is
involved to build it and to use it, and when construction on it is done. The cod-
ing portion of development is typically the most uncontrollable and most
fraught with risk, so not knowing when it is done is quite costly.

A clear, written design helps upper management understand precisely what it is
building so it can create a more tightly focused business. Management will have
a stronger message to deliver to investors, partners, employees, and colleagues.
This ensures that all of the company’s efforts work toward the same objective.

Programmers want strong and intelligent leadership. After all, they are strong
and intelligent, and would obviously wish to be led by their equals, not their infe-
riors. Jerry Weinberg claims that everyone knows that “bad managers are easier
to find than good programmers.” This gives the good programmer more leverage
over the manager than the manager has over the programmer, despite his nom-
inal authority in the corporate hierarchy.

Product managers are weak if they cannot articulate with precision and convic-
tion exactly what it is they are building. Typically, management expresses what it
wants only in the vague terms of deadline management and too-specific feature-
list negotiation. Only the programmers know with any precision what the actual
product will look like, so they have more control over the project than the man-
ager has.

I’ve worked with programmers who loathed the presence of an outside design
firm. They know that my job is to “design,” and they know that design is the cre-
ative, fun part of their job. After they have the opportunity to work with us, how-
ever, they realize that not only do we not detract from their job, but we also
enhance it.

Recently, I attended an acrimonious meeting where some client programmers
were invited without being briefed on our role. One gray-bearded programmer,

228 / Part V: Getting Back into the Driver’s Seat

named Fred, was particularly conspicuous. Throughout the meeting, whenever
we presented some new idea or different way of offering up information to the
user, he would attack us. He was highly intelligent and articulate, and he had a
particularly stentorian voice. Every time we revealed another slide showing how
the interaction would change, he would roll his eyes, smile condescendingly, and
then make some remark about how we “didn’t realize what large feats of magic”
we were demanding from him and his team. At each step, he indicated that our
design decisions made his job harder rather than easier.

Finally, at the conclusion of the meeting, as everyone streamed out of the room,
our team was able to speak with Fred privately. We explained to him that our
charter was to make the program easier and more powerful for end users, and
that we were fully aware that our design decisions would entail significant addi-
tional thinking at the program level. We insisted that our concerns were only for
the end user. All of a sudden a look of astonishment burst onto Fred’s face. He
exclaimed, “You are providing me with a significant technical challenge!” His
entire attitude changed as he realized that we brought to him the grail of all pro-
grammers: a difficult problem worth solving.

Far from threatening him, we were bringing to him that which he most coveted:
a chance to prove himself yet again as the cleverest, smartest, most skilled pro-
grammer around. His attitude changed when he realized that we took away only
the messy human side of the program that he disliked, leaving him master of the
clean, algorithmic internal part of the software. We became his benefactors
instead of his nemeses.

Design Documents Benefit Marketing

In most noncomputerized businesses, marketing professionals own the product-
definition step. In the software business, the marketers have been shunted out of
the process. All they have to work with are requests for features. If they demand
fixes, the programmers will merely fling the restrictive schedule back in their
faces, asking, “How can I fix it if you won’t give me time?” The marketing manag-
er dares not give up precious time because not only will the schedule slip, but
then everyone will see that the schedule is really just a sham, and the program-
mers will then proceed to abuse it with impunity in the future. Marketers know
that a feature list is a very weak mechanism, and they often agitate for more
involvement in the definition process. Unfortunately, marketers seem unable to
provide direction that the developers find meaningful or useful.

One of the most important benefits of a strong design process—and the rigorous
documentation that is part of it—is the power it makes available to marketers.
The marketers describe to the designers the unfilled need or desire they hope to
satisfy. The interaction designers then study potential users to determine their

Chapter 13: A Managed Process / 229

goals and to create a cast of characters. The crisply defined user personas are an
important part of the written design documentation, and they become a focal
point for marketing efforts. Even though the programmer works only with code,
the design personas inform that code. Even though the marketer works with
channels, target markets, media, and resellers, the design personas inform them.
At last, the programmer and the marketer have a common ground.

In effect, interaction designers act as a go-between for marketing professionals.
A designer is a person who can translate from marketese to programese. When
marketers have a vague concern, they can describe it to the designers, who will
work with them to develop the thought in terms of a persona. From there, the
designer can translate it into a specification for interaction. What’s more, the
marketer can now see his input is being addressed and can be confident that he
won’t be handed raw technology and instructed to find a buyer for it.

The development of user personas is typically very familiar to marketing profes-
sionals. They often do a similar exercise, determining the product’s buyer per-
sonas. These personas are determined by examining distribution channels and
demographics rather than user goals and scenarios, so they are usually different
from the designers’ personas, but the user personas are always very helpful to the
marketing experts in developing their own plans. Marketers can clearly express
to the buyer how the product will help her users.

Design Documents Help Documenters and Tech Support

Any technical writer will tell you that good design eliminates the need for prodi-
gious quantities of documentation. Fewer complex interactions mean fewer long
explanations. The documentation writers can invest more time in writing at a
higher level. Instead of devoting their efforts to leading users by the hand
through the swamps of confusing interface, they can elevate their aspirations
and put their efforts into taking users into more-beneficial areas of solving the
problems of the application domain. Instead of discussing where files are stored
in an inventory system, for example, the documentation can more profitably dis-
cuss inventory-leveling processes.

The same applies to technical support. The better the design is, the fewer calls
come from the field. As the Peacock design described in the last chapter showed,
a written design will cause a dramatic reduction in the need for technical support.

Design Documents Help Managers

Of all the constituencies, development management is the one interaction
design helps the most. By describing what will be created well in advance of any
programming, the entire process of development becomes faster, better
informed, less risky, and less expensive. The entire process of development
becomes more effective and is cut loose from being customer-driven.

230 / Part V: Getting Back into the Driver’s Seat

Above all, design means more predictability. A designed product means that the
programming phase will be more predictable. It also means that the success of
the product can be more easily predicted and measured. These are the two most
risky and expensive aspects of software-based product development. They
reduce the cost of production, and they vanquish the myth of the unpredictable
market. Ed Forman, the development VP of Elemental’s Drumbeat product says,
“I measure the value of design services in months of burn rate saved.”

Design Documents Benefit the Whole Company

The essence of creating a successful business is to ensure that everyone involved
is working to achieve the same goals. Any confusion or discord in objectives dis-
sipates energy twofold. First, you lose the effort of those who are not going in the
right direction, and second, their effort is applied against those who are striving
in the correct direction. Like one person in a boat rowing in a direction opposite
to everyone else, the boat is simply not competitive. In order to succeed, every-
one must be rowing in the same direction, and any force that diverts the atten-
tion of one incurs a cost by all.

What’s more, knowing with precision what you are doing helps you avoid wast-
ing effort on things that you are not doing. No company has cycles to waste on
efforts that are not right on point.

By vanquishing deadline management and feature-list negotiation, a written
product description turns the company’s attention to product quality, which has
the inevitable result of its dramatic improvement. This in turn generates more of
that priceless commodity: customer loyalty.

Who Owns Product Quality?

When everyone has responsibility for product quality, nobody is responsible for
product quality. It is far too easy to assume that your colleague will solve the qual-
ity problem while you work on something else. The programmers are solely
responsible for eliminating all bugs from the code. The sales staff is solely respon-
sible for closing deals. The marketers are solely responsible for packaging and
positioning. At the present time, though, no one is responsible solely for the qual-
ity and appropriateness of the product. Sometimes they lack the tools to locate
and solve the problem. Sometimes they lack the skills to communicate the solu-
tion. Sometimes they lack the authority to have their solutions implemented.

As we have seen in the previous chapters, coding compromises the program-
mers’ ability to address users’ goals. Product managers already have plenty of
work to do, and they cannot focus on the details of a product’s behavior.
Marketers’ lack of a technical background weakens their ability to communicate
technically, which undermines their credibility with the programmers. Without a

Chapter 13: A Managed Process / 231

thoroughly documented design, there is little hope of getting it implemented
properly and effectively.

The central recommendation of this book is that the interaction designer should
be the ultimate owner of product quality. He must be allowed to determine the
content and behavior of the program. He must own the feature list and, in large
part, the schedule. This person is the advocate for the user and should have the
authority to control all external aspects of the product.

In return for all of this authority, the interaction designers have some very signif-
icant responsibilities. Unless designers have a combination of authority and
responsibility, programmers will not respect the designers and will retake control
of the product. Designers must have skin in the game. The interaction-design
team’s mandate includes designing a feasible-to-build, easy-to-use, attractive
product that allows the user to achieve her practical goals without violating her
personal goals. What’s more, the interaction designers must describe in exhaus-
tive detail, in writing, a narrative description from which the programmers can
reasonably be expected to build the design. The interaction designers must pro-
vide marketing with a clear, written description of the users and how the product
will satisfy their needs. Most important, the designers accept responsibility for
the quality of the final product.

Creating a Design-Friendly Process

In the last chapter, we saw how many of the professionals who have offered to
help with interaction design have not succeeded. We have examined usability
testers, industrial designers, and others who have tried and failed to solve this
problem. Currently, there is no group of any size in the industry that can solve it.

As the ranks of interaction designers slowly grow, keep in mind that fostering a
design-friendly process is more important than hiring the most talented design-
er. The most important thing is to make a commitment to take time out for
design before you code. Finding the most brilliant designer in the world will do
no good if the product is going into beta next week.

For example, many software dynasties have been established on the backs of
very young, very inexperienced programmers. They were likely given a free hand
with programming issues, and the pairing of immense responsibility with
immense authority can often be a crucible for creating greatness. The same
forces apply in interaction design. If someone is given the responsibility for
product quality, and she is given authority equal to it, she will often rise to the
challenge regardless of her experience. If you take a suitable person and give her
full control over the quality and behavior of a product, you will have a much,
much better product than if you don’t. The problem is with the process, not with
the people. Of course, all things being equal, it is always better to get an expert

232 / Part V: Getting Back into the Driver’s Seat

with relevant experience. However, if experts are in short supply or not in the
budget, using less-skilled practitioners is better than just letting the program-
mers run loose.

What does it mean to be a “suitable person?” The most suitable would be some-
one without an interest in the construction of the product and with the detach-
ment to put himself in the user’s place. This could easily be a programmer, but
certainly not one of the programmers who will have to build this particular pro-
gram. That imposes too great of a conflict of interest.

Where Interaction Designers Come From

Still, you have to choose someone to do your interaction design. After you start
to look for them, you will find frustrated interaction designers already present in
almost every high-tech company: technical writers who have programmers
coming to them for help thinking things through, product managers with book-
shelves full of interface-design books, usability testers who talk about getting
involved in development earlier in the process, marketing managers who point
out that they purchased the stereo with the fewest buttons, programmers who do
very little coding but whom other programmers ask to work with. In fact, after it
becomes known within a company that a project will start with a design phase
before the coding begins, someone is sure to step forward and ask for the assign-
ment, saying that she wants to be the person held responsible for the quality of
product.

When you hire full-time designers, good applicants might or might not bill them-
selves as interaction designers. You need people with a general understanding of
technical constraints and a passion for design, but you can find people like that
working in many different environments and with widely varied backgrounds. In
hiring people for my design studio, I ask people to respond to a design problem
as a test because I know that their resumes can vary dramatically. At my studio, I
have several designers with backgrounds in technical writing, software project
management, tech support, and graphic design. Many of my designers have
degrees in the humanities, but I also have designers with degrees in physics,
architecture, computer science, and industrial design.

Experience in tech support or documentation provides designers with perspec-
tive in thinking about typical users’ needs. Software product managers know
about the needs and concerns of programmers in the development process.
Graphic and industrial designers have a passion for design elegance and skills to
produce it. Designers with a humanities education who have worked in high tech
combine a knowledge of technology with an ability to articulate their thinking.

Chapter 13: A Managed Process / 233

Building Design Teams

A discussion of how one organizes and runs a design team could easily fill a book
of its own. In this book, I have touched on some design methods in order to make
clear what I mean by “design,” but I have not attempted to lay out an entire
design methodology. However, my experience running teams of designers at my
studio suggests a few key principles.

Keep the teams small. In order to progress, the designers need to share the same
vision. I assign a team of two or three designers to each product, supported by
occasional help and contributions from a few other specialists. In complex proj-
ects, the design might reach a point at which the product has a few distinct inter-
faces. At that point, you can split up the problem and put it into the hands of a
few different teams. Before that point, too many cooks spoil the broth.

Insulate the team from managers and programmers. Early in a project, the
designers need to talk to the other people working on the product to formulate a
clear statement of the problem and define their personas. After that point, they
need independence to follow some blind alleys before they reach their best solu-
tion, and they need privacy to do that effectively.

Assign a design communicator responsible for documenting the team’s work. All
team members will contribute to the documentation, but someone needs to own
it in order to make it most effective.

Allow the team time to compose its thoughts. Late in the project, when the fun-
damental problems have already been solved, it is wise to go to your design team
for answers to specific questions. Early in the project, the team needs to think
things through carefully and present its reasoning as a coherent whole. When my
studio does a full framework for a client, we provide a document and present our
designs with informal checkpoints as needed. In the first presentation, we frame
the problem, present the personas, and articulate the problems that the design
must solve. In each successive presentation, we describe the design of the prod-
uct in greater detail.

With a managed process, centered on design instead of on programming, com-
panies can avoid riding a high-tech tiger. They can know in advance what their
users will like and how to provide it to them. They will know when the develop-
ment process is done, and the various disciplines will have a common, and spe-
cific, vision to rally around.

234 / Part V: Getting Back into the Driver’s Seat

14
Power and Pleasure

For you to realize the full measure of benefit from using interaction design in
your business, it has to be baked into the software-development process as an
integral part. It cannot be tacked on afterwards, added as an afterthought.

In the last chapter, I wrote that design needs to be written down before the cod-
ing begins. However, in the steaming cauldron of product development, the pro-
grammers can still simply ignore the design document, regardless of its quality.
This is quite likely in the passive-aggressive culture of software engineering, in
which the developer treats any design input as advice, to be complied with when
possible and as workload permits.

It must be made emphatically clear to everyone on the project that the design is
a blueprint that must be followed and is not merely a suggestion. Unless the
commitment to design is demonstrated vigorously and publicly, the developers
will assume that they alone have the real responsibility for creating a successful
product.

There is only one way to communicate this effectively. The company’s top man-
agement must state unequivocally to all other managers of both design and
development that programmers are off the hook. They must make plain that the
design team is now responsible for product quality and that the designers have
the authority to make the call, subject—of course—to management oversight.

The programmers are welcome to improvise below the surface of the program,
but every aspect of the defined user interaction must be assumed to be firm. This
is not to say that it cannot be questioned, but it cannot be unilaterally ignored or
changed. It cannot be treated as advice that can be selected from or edited.

The design team must have responsibility for everything that comes in contact
with the user. This includes all hardware as well as all software. Collateral soft-
ware such as install programs and supporting products must be considered, too.

This is probably the most radical requirement of successful design and the one
that will demand the most cultural adaptation. Later in the chapter, I will discuss
the cultural-change issue in more depth. Right now, let’s look at an example of a
company that smoothly integrated design into its process.

An Example of a Well-Run Project

My design studio completed work on one of our most successful design projects
for a small company in the Pacific Northwest called Shared Healthcare Systems
Inc. (SHS). It was building software to manage every aspect of long-term health-
care facilities.

During our initial meetings, I took pains to explain to SHS the importance of per-
sonas and how we use them throughout our design process. To our great pleas-
ure and surprise, the SHS team really embraced the concept. When they showed
up for the project kickoff meeting, they brought with them their own cast of char-
acters, with about a dozen personas already defined. We still had to go through
our process of investigation and learning about the product domain in order to
verify and refine the personas, but the whole issue of communicating the per-
sona tool to the developers and product marketers was completely eliminated.

SHS’s business takes it into what Michel Bourque, of Clinidata in Montreal, calls
the “clinical vortex.” Although doctors’ offices were some of the first small busi-
nesses to be computerized, it was only the billing part that converted. The facet
involving doctor interactions with patients has steadfastly resisted the encroach-
ment of the digital age and is one of the last bastions of the fully noncomputer-
ized world.

Although much of SHS’s efforts would be administrative, a large portion of its
work would step right into that vortex. We had done some small design projects
for other clients in this area but had yet to be given full charge of the entire vor-
tex. We were very excited about working on this big, challenging project.

SHS was excited, too, and it initially told us that the scope of its business was so
wide that it really didn’t believe that we could ever wrap our heads around it. SHS
believed that its business was simply too big to be understood. We took that as a
challenge and accepted it willingly.

The project was big. We identified five primary personas, two more than we had
ever found in any previous project. At first we were suspicious of this count, but
upon review, we realized that SHS was really tackling a huge segment of the
health-care business. Of course, creating software for five primary personas is a

236 / Part V: Getting Back into the Driver’s Seat

project too large to build all at once. SHS realized this, and the product was
designed and built in successive phases, one persona at a time.

David West, the VP of development and our contact at SHS, also has the trust and
respect of the others in his growing organization. The product-marketing people
know that he has their best interests at heart, as do the programmers. They know
that he is fair but firm. He is a rock in the middle of the swirling white water of
development. His visible commitment to the design process made it possible for
the other developers to trust our design work and take it seriously as a specifica-
tion.

When SHS came to Cooper Interaction Design, its software-development
department was arranged along the same functional lines as its legacy product,
which was divided into two parts: clinical and financial.

After we conducted our investigation and developed our personas, we quickly
realized why the current system was failing to satisfy the caregivers. Apart from
significant interaction problems, there was an artificial dividing line between the
clinical and financial information subsystems. This necessitated extra paper-
work on the user’s part to circumvent the data-processing system’s shortcom-
ings. Each user was stuck on his own island of data, unable to communicate
because of the lack of communication between the two sides of the system.

We recommended a unified resident (patient) record that maintains both clini-
cal and financial resident information in one consolidated database, and a mod-
ular user interface that allows each persona to see the specific view of the
information that is necessary for his tasks. As a result of this insight, SHS
redesigned the database underlying the product. Even more remarkable, it reor-
ganized its software-development staff to conform to the new design! The devel-
opers formed into two new groups, one that works with the architecture of the
resident record and database, and a second group that works with the persona-
specific interfaces. All further software specifications and documents at SHS will
use the names of the personas to clearly articulate their function.

The programmers at SHS were wisely delaying the programming process to
await the completion of the design. David and the team at SHS know full well the
cost of idle programmers, but they also know how much more expensive it is to
have the programmers go off and pour the concrete of code in the wrong places.

The programmers worked on some processing in the back end of the system that
did not affect the user interaction. They also divided their project up into multi-
ple phases that included a short-term, crash project to get an existing, legacy ver-
sion of the product functioning at a higher level. This kept the programmers busy
without impacting the larger, longer-term strategic project.

Chapter 14: Power and Pleasure / 237

As part of the strategy to move forward while waiting, we subdivided the process
into several big chunks.

We mutually decided to address only two of the five primary personas in our ini-
tial design and to put efforts into the other three later. Again, this allowed us to get
in our design licks in advance of programming without idling their developers.

A Companywide Awareness of Design

In most companies, designing the primary product or service is assumed to be a
core competence. In the world of high-tech software-based products, it is
assumed—wrongly—that product design is a core competence of the engineer-
ing staff. Actually, there are two parts to the act of creation: design and program-
ming. It demands a significant cultural change to willingly allow interaction
designers to work on the business’s essential core alongside the engineers.

At any company, regardless of the business it is in, the employees know that they
have certain obligations. For example, in a company that manufactures wire
coils for loudspeakers, the production manager knows that, although her job is
buying wire from the best and cheapest supplier, she cannot sign a supplier’s
contract until the company’s legal counsel has reviewed it. The production man-
ager doesn’t know very much about contract legalities, but she knows that
encumbering her company without first bringing in the professionals with spe-
cialized skills in the area of contract writing and negotiation is wrong. Even
though she is not skilled with contracts—or because of her lack of skill in this
area—she knows that the lawyers must be involved.

The receiving clerk at the freight dock—despite being the most junior person on
the staff—knows that he is empowered only to sign for prearranged deliveries but
that he cannot sign for anything else.

The founder and president of the coil-manufacturing company is also quite
aware of the need for legal review at all levels. She isn’t formally trained in law,
either, and she consults with her counsel before signing any formal documents.

Even though none of these people, from the president down, is skilled in legal
issues, they are all fully aware of the importance of legal review. Nobody in the
company will make any commitments until the lawyers have had their say. There
is a companywide awareness of the need for legal oversight and, when appropri-
ate, intervention.

This companywide awareness is true in other areas as well.

When the coil-winding company needed a new manufacturing building, it hired
an outside professional, an architect. Even though the production manager and
the president were both well versed in the needs of the production floor, they

238 / Part V: Getting Back into the Driver’s Seat

knew that their understanding of the nuances of worker flow and building con-
struction was sketchy. Nobody in the company would imagine expanding their
physical plant without first consulting an architect. The architect translated the
needs of the user into terms that could be understood by the builder.

The same is true for advertising. The marketing manager wouldn’t think of ask-
ing a coil-winder to describe the benefits of the product for the company’s
brochure or for an acoustic-industry magazine. Everyone in the company,
regardless of his or her sophistication, understands that advertising is the
purview of professionals and that advertising experts must craft the company’s
public presence. Of course, those experts can be employees of the company or
they can be hired from an outside advertising agency. Either way works just fine.

The analogy isn’t perfect because neither architecture nor legal advice is a core
competence of a product company. Programming, however, is the creation of a
product, and that is typically assumed to be a core competence. Given the direct
effect on the business, you would expect any company to be even more circum-
spect about turning the reins over to the wrong people than with advertising,
architecture, or purchasing.

We have to build awareness across the entire company that interaction design is
a realm that requires professional skills and that interactive products cannot be
just engineered, but must also be designed in order to succeed in the open
market.

Benefits of Change

In the software world, the apologists are so numerous and influential that their
rule is waning only slowly. But wane it will. What it takes is a widespread under-
standing that technology doesn’t have to be so dehumanizing. As more and more
users of software-based products have interactive experiences that are not
humiliating, they will come to lose patience with those that continue to harass
and embarrass them. They will boot the dancing bears out of town.

When the users of software-based products were few, they were also the insiders,
who knew how difficult software’s feats were. As the technology explodes into the
mainstream, those who partake of its power are less aware of the greatness of the
accomplishment. They are not willing to forgive a product with bad interaction
just because building it was difficult.

Following technology seems like a good plan, but it usually brings only boring
products that are more-complex derivatives of products that came before them.
Interaction design lets you break out of that pattern and create products that do
things that have never been done before.

Chapter 14: Power and Pleasure / 239

Interaction design makes your product desirable, conferring on it the singular
advantage of customer loyalty. After you make a customer happy with your prod-
uct, he will stick with your company and your brand for a long time. If your prod-
uct is merely dancing bearware, your customers will be quietly casting their eyes
around, looking for easier, friendlier alternatives.

Interaction design can shorten the amount of time that you spend developing
your product. Knowing what to do in advance means that you will spend less
time blundering about trying to discover by accident the right thing to do.

Getting to the right product is always a matter of iterating. It always takes sever-
al tries to get the details right. With interaction design done in advance, the num-
ber of iterations it takes can be reduced significantly. There is enormous cost in
each new version of a product, so if you can reduce the version count from, say,
four to two, there is a lot of time and money to be saved.

Having to make fewer versions and having to throw away less code will make the
development process cheaper. Programmers often complain that our designs
involve more-complex code, and sometimes this is true. However, there is typi-
cally a lot less of it in total. The cost of code doesn’t increase much as its difficul-
ty increases, but it becomes a lot more expensive as the quantity of it increases.
Each extra line of code must be tested, debugged, and supported.

Let Them Eat Cake

I live and work in Silicon Valley, California. Virtually everybody I know is involved
in the high-tech industry. We are all affluent, highly educated, and geographical-
ly and socially mobile, and we are all very comfortable with computers, cell
phones, DVDs, ATMs, and every other software-based product in the middle-
class menagerie. When I eat lunch at the Crescent Park Grill or Spago, the people
at the next table are always discussing “client/server this” and “Web-based that.”
It’s an exciting place to live, but it isn’t representative of the majority of people in
this country, let alone around the world. Here in Silicon Valley, it is easy for our
estimation of the suitability of high-tech products to be terribly skewed. We for-
get how hard these products really are to use.

Ten years ago, retail consultant Seymour Merrin said that we have found it easi-
er to convince consumers that software is easy to use than it is to actually make
it easier to use. Merrin was being cynical, but he was also expressing surprise that
we were getting away with such a bold lie. His assertion is as true now as it was
then, but with the growth of high tech, we cannot continue on mere cynicism—
we need a real solution.

People know that using computers is very hard, but they assume that there are
good reasons for the difficulty. Most people assume that things work as well as
they possibly can.

240 / Part V: Getting Back into the Driver’s Seat

Although most users of software-based products outside of the computer indus-
try are extremely frustrated with hard-to-use products, most of the people creat-
ing them are satisfied with the status quo. Programmers don’t find using
computers particularly hard, so they are willing to tolerate things while they play
with technology and have fun creating cool new dancing bearware.

For the rest of us, we get the software that we demand, and so far, we have
demanded little. Software vendors give us geegaws, gadgets, and features we
don’t want and never use, yet we buy them anyway. We demand that our pro-
grams don’t crash, so our programs are exhaustively tested, and they are reason-
ably reliable. We demand the newest versions right away, so they ship at
breakneck speed. But unaware that things could be better, we don’t demand that
they be powerful and pleasurable, so they are weak and oppressive instead.

Occasionally, consumers hold out the vague and quixotic hope that the next
wave of high technology—such as voice recognition—will make software-based
products easy to use. This hope is naïve and foolish, and it saddens me how the
apologists cruelly fan it.

Computer software is precisely that—soft—and it can be molded into anything
that its makers want it to be. They don’t make it easy to use because they don’t
know how, not because it can’t be. Rather than admit that embarrassing fact, they
claim that it cannot be done for “technical reasons.” Computer users, who are
not programmers, are forced to agree with the experts and suffer, or to disagree
with the experts and—what?—suffer anyway. Not being experts, they are unable
to proffer solutions of their own, so they are just regarded as unproductive com-
plainers.

Detroit used to make huge, chrome-encrusted, gas-guzzling cars and proclaim
self-righteously that it “only gave the consumer what they wanted.” In the gas cri-
sis of the mid-1970s, the Japanese stepped in with conservative, fuel-efficient
small cars and dealt Detroit a blow it will never forget. Today, American auto
makers show a much greater respect for the consumer’s desires, and they will
never again make the claim that they know best.

The Japanese seized the high ground of the auto market by giving users some-
thing that they didn’t even know they wanted. But they knew a good thing when
they saw it. In the same way, the high ground of software interaction is currently
unoccupied and up for grabs. Microsoft is as vulnerable today as General Motors
was in 1974.

The mass market of low-tech consumers will quickly leap on easy-to-use prod-
ucts, as the explosion of the Web attests. The same people who were attracted to
the Web because it does a simple thing simply will be attracted to well-designed
products that do complex things simply.

Chapter 14: Power and Pleasure / 241

Those low-tech consumers outside of enclaves like Silicon Valley won’t demand
change because they simply cannot become a cohesive group. Sure, they know
good stuff when they see it, but they only see it after it has already been built and
put on store shelves.

Change will occur only when the people inside business who have influence
early in the product life cycle become interested in fixing this problem.
Programmers have a conflict of interest, so my appeal is to the ranks of apologists
in the heart of the high-technology industry. And if you are in business today, you
are in the high-technology industry whether you want to be or not. There is hard-
ly any business left in the world that is not in the process of becoming depend-
ent on information technology or that has not already become so.

None of our current crop of software-based products is capable of delivering
power and pleasure to people outside of the techno-smitten minority. The engi-
neering community says merely that users will have to become “computer liter-
ate.” I believe history will view that phrase in the same way we treat Marie
Antoinette’s famously condescending “Let them eat cake.” The French
Revolution gave food to the masses, and the coming design revolution will give
technology to the masses.

Changing the Process

The majority of software engineers and technical managers do what they do now
because they believe in the process, but they are not dogmatic about it. They are
pragmatic enough to change when they see how effective interaction design is.
After they see its value, in my experience, they are very willing to integrate it into
their development process.

Software engineers have a long history of changing their spots. Sure, they are
engineers and will always think like engineers, but they will adopt new—even
radical—techniques if they can see their effectiveness clearly demonstrated.

Twenty years ago, it was normal in the programming business for software engi-
neers to test their own code. In fact, it was normal for a programmer to assert that
he was the only person who could reliably test his own code, that he was the only
person who could know all of its weak spots and its dusty corners that needed
probing.

Surprisingly, it was also true that—although they had to do it—programmers
almost universally hated testing and begrudged the time and effort it demanded.
But programmers did the test work required of them because they conscientious-
ly believed in their role in the process as well as the need for aggressive testing.

Slowly, over the last couple of decades, the idea that a corps of professional
testers could separate out this part of the programming job and relieve

242 / Part V: Getting Back into the Driver’s Seat

programmers of its responsibility took root in the industry. After initial skepti-
cism, programmers saw the value. The testers—to the enduring astonishment of
most programmers—actually liked testing. They enjoyed crafting new, ever more
diabolical tools for exercising the product, looking for weaknesses and omis-
sions, probing edge cases, and pounding on probable cases. Of course, having
products stretched by a trained corps of professional testers was far better than
having programmers do it. And the programmers found that a large, unpleasant
part of their job not only went away but was now accomplished more reliably,
more timely, and with better organization and thoroughness. Contemporary
doctrine in software-development circles says that a one-to-one ratio of testers
to coders is correct. There isn’t a programmer working today who still insists that
he is the best person to test his own code.

We will see a similar gradual change occur when design becomes part of the
development process. Because of the benefits of adding design, early adopters in
this effort will reap those benefits the most.

Software engineers share the goals of the interaction designers: They want the
product to be successful. It’s just that their tools and terms for measuring that
success are dramatically different from those of the designers.

In the absence of any convincing evidence, the programmer will always fall back
on her own training, experience, and gut sensibilities. Her guts tell her to provide
as many functions as possible. Her experience tells her to not let amateurs dis-
turb the sensitive, difficult, and delicate development process with whims and
guesswork. Her training tells her to construct interfaces in her own image.

The interaction designer cannot attack these motivations directly. Developers
are too rational to abandon their experience for the opinions of others. The
designer must show them a new way of looking at the problem, and he must
show them two additional things: that it is effective and that it is compatible with
their existing ideas.

Regardless of the strength of the interaction designer’s position, it is extremely
unlikely that he possesses better knowledge of the program’s internals than the
programmer. In other words, he cannot possibly take a more accurate look at the
problem than from the programmer’s point of view. In order to succeed, he must
approach the problem from another point of view.

Where interaction designers can approach programmers on an equal basis is in
the precision and completeness of the interaction specification. When designers
deliver solutions that are compellingly correct, programmers come to trust and
depend on them.

x

Chapter 14: Power and Pleasure / 243

In a 1998 article in Business Week,1 columnist Stephen Wildstrom broached the
topic of frustrated computer users. The response from his readership over-
whelmed him with its polarized point of view, its quantity, and its vehemence. It
caused him to conclude:

The computer industry has a lot of baffled, frustrated, and unhappy cus-
tomers. That is a much graver threat to the long-term health of the high-
tech sector than the Asian crisis, the Year 2000 bug, or just about
anything else.

He reprinted the all-too-familiar cries of pain from the survivors—“My machine
makes me think I’m an idiot!”—along with the equally familiar cries of the apol-
ogists—“Users don’t know what they want, and when they do, they all want
something different. And they won’t read manuals or learn about programs.” He
concluded with this interesting observation:

There’s one thing missing from this outpouring. I’ve heard from engi-
neers, programmers, and usability gurus. But the product planners and
marketers who make the key hardware and software design decisions
have been conspicuously silent. You folks have a lot of angry customers
out there. How are you going to respond?

Indeed, how are you going to respond?

244 / Part V: Getting Back into the Driver’s Seat

1 Business Week, October 19, 1998, “They’re Mad as Hell Out There,” Stephen H. Wildstrom.

Numbers
1-Click interface (Amazon.com),

108-109
3Com’s PalmPilot, 198
3M Post-It Notes, 126

A
About Face, 199, 211
Access, 45
Accidental Empires, 161
Action Request System project, 135
Adobe Photoshop, 65
aesthetics versus functionality, 212
airplanes

IFEs, 11-13
navigation computers, 3-4
programmers as pilots, 96

alarm clocks, design problems, 6-7
aliasing, 195
Amazon.com 1-Click interface, 108-109
American Airlines flight 965, 3-4
anticipation of needs, 165
apologists, 30-33, 36
Apple, 75-77, 210
Apple Newton, 45
Atkinson, Bill, 89
ATMs

confirmation messages, 68
design problems, 8-9

attrition strategy, 214-215
audience, narrowing, 124-126
automated systems, 168
automobile market, 241

B
bad design. See also cognitive friction

acceptance of, 59
ATMs, confirmation messages, 68
blaming users, 34-36
calendar software, 63
causes, 14-16
confirmation dialog boxes, 67-68

costs, 17, 27-29
business software, 52-53
loss of market share, 82-83
narratives about, 83-87
opportunity cost, 54
prototyping, 54-55

effects
alarm clock, 6-7
ATMs, 8-9
digital cameras, 4-6
employability, 11
IFEs, 11-13
navigational computers (air-

planes), 3-4
Porsche Boxster, 8
productivity loss, 9-11
techno-rage, 13-14
USS Yorktown, 13

email, 61-62
file systems, 9-11
reaction to, 33-34
scheduling programs, 62-63
technology as solution for, 213
VCRs, 60-61

bargaining. See feature list bargaining
behavioral design, 23
bell curve of skill levels, 182-185
“Betsy” (Elemental Drumbeat persona),

172
Bezos, Jeff, 108-109
Bjerke, Carolyn, 114
Blair, Alice, 115
“blaming the user”, 34-36, 67
bloatware, 29
blueprints

as product descriptions, 42-43
design documentation as, 226, 235-

236
Borland International, 72-73
Borque, Michel, 236
boundary conditions, 100
“brains” versus “gray hair” (consulting),

220
brick towers, programs as, 55-56
Bronson, Po, 95-96, 100-101, 208

Index

Brooks, Frederick, 57, 219
browser-based software, 64-65
building design teams, 234
business people, role of, 71-72
business software, 52-53
buyer personas, 135

C
calendar software, usability problems,

63
cancellation of products, 44-45
capability, 71, 78
case studies

Elemental Drumbeat, 171
competition, 173
design, 174-176
floating palettes, 176-177
goals, 173-174
personas, 172-173
product success, 177

Logitech ScanMan
cropping tools, 193-194
personas, 188-191
“pretend it’s magic” exercise,

191-192
reorienting images, 195-197
resizing images, 194
results, 197

Sony Trans Com’s P@ssport, 138
designing interface, 144-147
original interface, 139, 142
personas, 142-144

cast of characters, 135-138. See also per-
sonas

CD-ROM player, cognitive friction of, 28
“Chad Marchetti, Boy” (Logitech

ScanMan persona), 189
choices, presenting, 167-168
classroom management system, 153
“Clevis McCloud” (P@ssport persona),

142-147
“clinical vortex”, 236
cognitive friction, 19. See also bad

design
apologists, 30-33, 36
CD-ROM player, 28
computers, 20
costs of, 27-29
engineering skills and, 92
microwaves, 20
picture-in-picture television, 33

246 / Brooks, Frederick

reaction to, 33-34
remote keyless entry, 24-26
source of, 27
survivors, 31-33
Swiss Army knife, 24
typewriters, 20
versus industrial design problems,

212-213
violins, 20
WWW, 20

common sense in software, 164
common vocabulary, specifying, 185-186
competing against attrition strategies,

215
completion, determining, 42-43
“computer literacy”, 11, 35-38, 242
Computer Tourette’s, 14
computerized devices versus manual

devices, 7
computerized systems, 168
computers

ATMs, 8-9
cognitive friction of, 20
democratization of, 34
emotional response to, 159-160
employee training, 11
handheld, 45
IFEs, 11-13
in alarm clocks, 6-7
in cameras, 4-6
navigational (airplanes), 3-4
Porsche Boxster, 8
problems, displaying to user,

165-166
technological advances, 119
versus humans, 87-88

conceptual design, 23
conceptual integrity, 219-220
confirmation dialog boxes, 67-68
conflicts of interest

interface style guides, 210
programmers 16, 108
users, 108

consultants, 220-221
consumer electronics as dancing bear-

ware, 60-61
control, programmers’ need for, 96-97
core competence, design as, 238-239
corner cases, 100
corporate goals, 156-157
Cosby, Kendall, 115
CPUs, sparing, 119

design / 247

Cringely, Robert X., 95, 161
cropping tools, Logitech ScanMan,

193-194
Crossing the Chasm, 77
culture of programming, 105. See also

psychology of programmers
authority figures and, 118
isolation, 115-116
Microsoft, 110-114
military culture comparison, 109
propagation of, 110
reusing code, 106-109
reverence for technical skill,

109-110
“scarcity thinking”, 119-120
sense of responsibility, 116-118
sense of superiority, 117

customer demands, personas and, 222
customer loyalty

advantages, 76-77
Apple, 75-77
generating, 73

by narrowing user audience,
124-126

through interaction design,
240-241

Microsoft, 75
Novell, 74-75

customer-driven companies, 218
as service companies, 220-221
conceptual integrity, 219-220

cutting features, 222-223

D
daily use scenarios, 180
dancing bears, 26-27

calendar software as, 63
email as, 61-62
Explorapedia as, 111
NetWare, 74
satisfaction with, 59
scheduling programs as, 62-63
VCRs as, 60-61
WWW as, 32

de Bono, Edward, 187
deadline management, 41

determining completion, 42-43
fear of cancellation, 44-45
“feature list bargaining”, 46-47
Gresham’s Law, 44
late shipment, 45-46

Ninety-Ninety Rule, 43
Parkinson’s Law, 43
Product Managers, 44

debugging, 242-243
deferential role of software, 163-164
dehumanizing processes, 120
design

advantages versus time to market
advantages, 77, 84-85

after programming, 53, 110
as core competence, 238-239
as “pre-production” phase, 223-225
before programming, 204
behavioral, 23
company-wide awareness, 238-239
conceptual, 23
conceptual integrity, 219-220
disrespect for, 117
documenting, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers,

228-229
benefit to tech support, 230
benefit to technical writers,

230
effect on code, 227-228
evaluating, 149, 208-209
for narrow audiences, 124-126
free features, 28
generating customer loyalty with

(Apple), 75-77
Goal-Directed

classroom management sys-
tem example, 153

defined, 151-152
television news show exam-

ple, 152-153
implementation model, 27
industrial, 212-213
interaction design, 21, 87
interface

disadvantages, 23
versus interaction design,

227-228
iteration in, 213-214
politeness, 160

“polite” software characteris-
tics, 162-171

politeness versus humanness,
161-162

processes, 21
program design, 21
scheduling time for, 222
self-referential, 87
task-directed, 151
timing, 203-205
versus iteration, 50-52
versus product specifications, 81
versus prototyping, 56
visual, 211-212

design personas. See personas
design teams, 207, 234
design-dominated markets, 78
design-friendly processes, 232-233
designers

building teams, 234
disrespect for, 117
hiring, 233
programmers as, 22-23, 207-208

conflicts of interest, 108
General Magic, 81
shortcomings, 82-83, 87-92
training, 88

responsibility for quality, 231-232
role of, 72

desirability versus need, 72-74
development processes

changing, 242-243
dehumanizing effects of, 120
sequence of events, 203-205
usability testing, 206-207

“devil’s advocate”, 188
digital cameras, design problems, 4-6
discrimination, 37
Doblin Group, 71
documenting design, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers, 228-229
benefit to tech support, 230
benefit to technical writers, 230

“dog’s breakfast”, 219
Drumbeat. See Elemental Drumbeat

case study

E
edge case scenarios, 181
edge cases, 100
Einstein, Albert, 123
“elastic users”, 127-128

248 / design

Elemental Drumbeat case study, 171
competition, 173
design, 174-176
floating palettes, 176-177
goals, 173-174
personas, 172-173
product success, 177

Elemental Software, 107
email

threads, 61
usability problems, 61-62

emotional response to computers,
159-160

employability, 11
encapsulation, 55
end-user design. See interaction design
enterprise resource planning (ERP) com-

panies, 218
“Ernie” (Elemental Drumbeat persona),

172
ERP (enterprise resource planning) com-

panies, 218
“euphemism pyramid”, 35. See also skill

levels
evaluating design, 149, 208-209
Evenson, Shelley, 209
Evers, Ridgely, 44
excise, 176
“expect what you inspect”, 85
experience versus expertise (consulting),

220
expertise versus experience (consulting),

220
Explorapedia, 110

as dancing bear, 111
development of, 111
programmers’ views on, 112
success of, 111
weaknesses of, 112

F
facts versus information, 4
false goals, 158-159
Farros, Royal, 44, 47
“feature list bargaining”. See also product

descriptions
“line of death”, 46
personas as solution for, 132-134
programmer’s role in, 47

feature-dominated markets, 78

inflexibility of software / 249

features
advantages/disadvantages, 47
cost of, 27-29
customer demands, personas and,

222
cutting, 222-223
influence on marketplace, 77
“less is more” philosophy, 198-200
list of, versus product description,

42
lists, 46
usage/interaction relationship, 33
versus goals, 48

feedback loops
negative, 27
software design, 28-29

file systems
hierarchical, 9-11
technical support costs, 52

filmmaking (compared to software
development), 223-225

focus groups, 210-211
forgetfulness of software, 65
Forman, Ed, 107
Fox, Sara, 112
free features, 28
Fry, Art, 126
“fudgability” of software, 168-170
functionality versus aesthetics, 212

G
Gammill, Kevin, 112-114
Gates, Bill, 45
Gay, Jim, 91-92
Gellerman, Saul, 157
General Magic, 81, 89
Glen, Paul, 119
Goal-Directed design. See also interac-

tion design
defined, 151-152
examples, 152-153

goals, 124, 149. See also personas
corporate, 156-157
Elemental Drumbeat case study,

173-174
false, 158-159
hygienic, 157
personal, 154-156
practical, 154, 157
versus features, 48
versus tasks, 150-151

Gorelik, Vlad, 115
graphical user interfaces (GUIs), 211
“gray hair” versus “brains” (consulting),

220
Gresham’s Law, 44
GUIs (graphical user interfaces), 211

H
handheld computers, 45
hardware, bridging software to, 197-198
haves and have-nots, 37
Heathershaw-Hart, Tamra, 118
Hertzfeld, Andy, 89
Hewlett-Packard, 197
hierarchical file systems, 9-11
high-technology businesses

capability, 71
desirability, 72
viability, 71

hiring designers, 233
“Homo logicus”, 93-101
How the Mind Works, 160
humanness in software, 161-162. See

also “polite” software
humans versus computers, 87-88
hybrid products, 197-198
hygienic factors, 157
hygienic goals, 157
hypothetical archetypes. See personas

I
I Sing the Body Electronic, 110-114
IBM as customer-driven company, 218
IFEs (in-flight entertainment systems),

11-13. See also Sony Trans Com’s
P@ssport case study

images (Logitech ScanMan)
reorientation, 195-197
resizing, 194

implementation model, 27
in-car navigation system prototype,

57-58
in-flight entertainment systems (IFEs),

11-13. See also Sony Trans Com’s
P@ssport case study

industrial age, 19
industrial design, 212-213
“inflecting the interface”, 181-182
inflexibility of software, 66-67

information
software’s providing of, 164
versus facts, 4

information age, 19
installation, 64-65
instant gratification in software, 170
interaction design

as Goal-Directed, 151-152
assumptions of limitations, 187
benefits, 239-240
cast of characters, 135-137
commitment to, 225-226
defined, 21
documenting, 226-227, 235-236

benefit to companies, 231
benefit to managers, 230-231
benefit to marketing, 229-230
benefit to programmers,

228-229
benefit to tech support, 230
benefit to technical writers,

230
effect on code, 227-228
frustrations of, 200
generating customer loyalty with,

240-241
goals, 149

corporate, 156-157
false, 158-159
hygienic, 157
personal, 154-156
practical, 154, 157
versus tasks, 150-151

hiring designers, 233
“inflecting the interface”, 181-182
interaction implementation and,

117
“less is more” philosophy, 198-200
perpetual intermediates, 182-185
personas, 123-124

as communications tools,
132-134

buyer personas, 135
customer demands and, 222
designers’ need for, 134
Logitech ScanMan case study,

188-191
naming, 128
negative personas, 136
precision versus accuracy,

129-131

250 / information

primary personas, 137-138
skill levels, 131-132
Sony Trans Com’s P@ssport

case study, 142-147
specifying, 128-129
stereotyping, 128
versus users, 127-129

politeness, 160
“polite” software characteris-

tics, 162-171
politeness versus humanness,

161-162
“pretend it’s magic” exercise, 185,

191-192
priority of, 22
scenarios, 179-181
separating from program design, 22
versus industrial design, 212-213
versus interface design, 23, 227-228
versus new technology, 213
versus self-referential design, 87
vocabulary, 185-186

interaction designers, responsibility for
quality, 231-232

interaction implementation, interaction
design and, 117

interactive design versus product speci-
fications, 81

interface design
disadvantages, 23
versus interaction design, 227-228

interface style guides, 209-210
Internet. See WWW
iteration

in design, 213-214
personas, 124
reducing, 240
versus design, 50-52

J - K
“jaggies”, 195
“Jetway Test”, 93-94
“jocks,” programmers as, 101-104

Karp, Alan, 200
Keeley, Larry, 211

tripod model, 71-73
Apple, 75-77
Microsoft, 75
Novell, 74-75

Novell / 251

Korman, Jonathan, 98
Krause, Kai, 199

L
late product shipment, 45-46
lateral thinking, 187
Lateral Thinking, 187
laziness of software, 65
Leading Geeks, 119
“less is more” philosophy, 198-200
limitations, assumptions of, 187
“line of death” (“feature list bargain-

ing”), 46
Logitech ScanMan case study

cropping tools, 193-194
personas, 188

Chad Marchetti, Boy, 189
Magnum, DPI, 190-191
Malcom, the Web-warrior,

189
“pretend it’s magic” exercise,

191-192
reorienting images, 195-197
resizing images, 194
results, 197

long-term versus short-term thinking
(managers), 221-222

M
Magic Link computer, 45
“Magnum, DPI” (Logitech ScanMan

persona), 190-191
Maister, David, 220-221
making movies (compared to software

development), 223-225
“Malcom, the Web-Warrior” (Logitech

ScanMan persona), 189
managers

commitment to design, 225-226
cutting features, 222-223
design documents and, 230-231
influences on, 217
moviemaker comparison, 223-225
short-term versus long-term think-

ing, 221-222
taking control, 222

Managing the Professional Service Firm,
220-221

manual devices versus computerized
devices, 7

manual systems, 168
market unpredictability, myth of, 48-49
marketing, design documents and,

229-230
marketing personas, 134
marketing requirements documents, 46
marketing specifications, 46
McGregor, Scott, 44, 83-86
measures

importance of, 85
objective, 49
quantitative, 49

memory, human versus computer, 87
Merrin, Seymour, 240
metafunctions, 20-21
method acting, scenarios as, 179
Microsoft, 45, 75

attrition strategy, 214-215
competing against, 215, 241
interface style guides, 210
programming culture, 110-114
technical support costs, 52
Windows, design interaction, 214

microwaves, cognitive friction of, 20
monocline groupings, 145
Moody, Fred, 110-114
Moore, Geoffrey, 77
Motivation and Productivity, 157
moviemaker, manager comparison,

223-225
mud-hut design, 22-23
multidisciplinary design teams, 207

N
naive users, 35
naming personas, 128
narrowing user audience, 124-126
Nass, Clifford, 159
navigational computers (airplanes), 3-4
necessary use scenarios, 180
need versus desirability, 73-74
negative feedback loops, 27-29
negative personas, 136
NetWare, 74
new technology versus interaction

design, 213
Newton computer, 45
Ninety-Ninety Rule, 43
Nomadic Computing, 45
Novell, 74-75

O - P
object-oriented programming, 55
objective measures, 49
opportunity cost, 54
options, presenting, 167-168
Oracle, as customer-driven company,

218

“painting the corpse”, 142, 212
PalmPilot, 45, 48, 198
Parkinson’s Law, 43
Peacock. See Logitech ScanMan case

study
PenPoint computer, 45
perceptiveness in software, 166
performance measures, 85
perpetual intermediates, 182-185
personal goals, 154-156
personalization of software, 162-163
personas, 123. See also goals

as communications tools, 132-134
buyer personas, 135
cast of characters, 135-137
customer demands and, 222
defining, 124
designers’ need for, 134
Elemental Drumbeat case study,

172-173
Logitech ScanMan case study,

188-191
marketing personas, 134
naming, 128
negative personas, 136
precision versus accuracy, 129-131
primary personas, 137-138
Shared Healthcare Systems project,

236
skill levels, 131-132
Sony Trans Com’s P@ssport case

study, 142-147
specifying, 128-129
stereotyping, 128
versus users, 127-129

picture-in-picture television, cognitive
friction of, 33

pilots, programmers as, 96
Pinker, Steven, 160
planning

financial/operational, 222
product, 222

252 / object-oriented programming

“playing devil’s advocate”, 188
Pleas, Keith, 161
“polite” design, 161
“polite” software, 160

characteristics of
anticipation of needs, 165
common sense, 164
deferential role, 163-164
“fudgability”, 168-170
instant gratification, 170
perceptiveness, 166
personalization, 162-163
presentation of choices,

167-168
providers of information, 164
responsiveness, 165
self-confidence, 167
taciturn about problems,

165-166
trustworthiness, 170
well-informed, 166

politeness versus humanness,
161-162

Porsche Boxster, design problems, 8
Post-It Notes, 126
power user. See apologist
practical goals, 154, 157
“pre-production” phase, design as,

223-225
precision versus accuracy (in personas),

129-131
presentation of choices, 167-168
“pretend it’s magic” exercise, 185,

191-192
primary personas, 137-138
“Principle of Commensurate Effort”, 155
problems (of computer), displaying to

users, 165-166
processes

changing, 242-243
dehumanizing effects of, 120
design-friendly, 232-233

product completion, determining, 42-43
product descriptions. See also “feature

list bargaining”
blueprints as, 42-43
versus feature lists, 42

product development
customer-driven, 218

as service provider, 220-221
conceptual integrity, 219-220

Ruby / 253

filmmaking comparisons, 223-225
influences on, 217

product development managers. See
managers

Product Managers
deadline creation, 44
fear of product cancellation, 44-45

productivity loss, 9-11, 52
products

cancellations, 44-45
late shipment, 45-46
quality, responsibility for, 231-232
specifications versus design, 81

program design
defined, 21
priority of, 22
traditional practices, 22-23

programmers
”feature list bargaining”, 47
as “Homo logicus”, 93-98
as apologists, 30
as designers, 22-23, 207-208

conflicts of interest, 108
General Magic, 81
shortcomings, 82-83, 87-92
training, 88

conflict of interest, 16
control over products, 82-83, 228
cost of, 53
design documents and, 228-229
psychology of, 95

desire for control, 96-97
desire for understanding,

97-99
focus on possibilities, 99-101
programmers as “jocks”,

101-104
programmers as pilots, 96

role of, 71-72
shortcomings, 14-16
willingness to change, 242-243

programming
before design, 53, 110
complexity of, 205
culture of, 105

authority figures and, 118
isolation, 115-116
Microsoft, 110-114
military culture comparison,

109

propagation of, 110
reusing code, 106-109
reverence for technical skill,

109-110
“scarcity thinking”, 119-120
sense of responsibility,

116-118
sense of superiority, 117

designing before, 204
usability testing and, 206

prototypes, 54-55
as product foundations, 57
in-car navigation system example,

57-58
Ruby, 57
value, 57-58
versus design, 56

psychology of programmers, 95. See also
culture of programming

desire for control, 96-97
desire for understanding, 97-99
focus on possibilities, 99-101
programmers as “jocks”, 101-104

Q - R
quality, responsibility for, 231-232
quality measures, 85
quantitative measures, 49
QuickBooks, development time, 44

Raymond, Eric, 106
recognizing good design, 208-209
“redlining”, 38
Reeves, Byron, 159
Remedy Inc, 135
remote keyless entry, cognitive friction

of, 24-26
reorienting images, Logitech ScanMan,

195-197
resizing images, Logitech ScanMan, 194
response to computers, 159-160
responsibility of software, 67-69
responsiveness in software, 165
reusing code, 106-109
Rheinfrank, John, 209
“riding the tiger”, 217
Rivlin, John, 86-87
roll-aboard suitcases, 126, 130
Ruby (programming language), 57

S
Sagent Technology, 115
SAP, as customer-driven company, 218
ScanMan. See Logitech ScanMan case

study
“scar tissue” in programs, 55-56
“scarcity thinking”, 119-120
scenarios, 179

breadth versus depth, 180
constructing, 180
daily use, 180
necessary use, 180-181

scheduling programs, usability prob-
lems, 62-63

“seat at the table” design teams, 207
self-confidence in software, 167
self-referential design versus interaction

design, 87
service companies, 220-221
“Seven Habits of Highly Engineered

People”, 95-96
Shared Healthcare Systems project

“clinical vortex”, 236-237
personas, 236
programmers, 237
unification of system, 237

shipping products late, 45-46
“shopping lists” of features, 42
short-term versus long-term thinking

(managers), 221-222
Silicon Valley, California, 240
skill levels, 131-132, 182-185. See also

euphemism pyramid
“skin in the game”, 116-118, 225
software

bridging hardware to, 197-198
browser-based, 64-65
forgetfulness, 65
inflexibility, 66-67
installation, 64-65
lack of responsibility, 67-69
laziness, 65
user blame, 67
witholding information, 66

“software apartheid”, 11, 36-38
software design, usability problems. See

also design
alarm clock, 6-7
ATMs, 8-9
causes, 14-16

254 / Sagent Technology

costs, 17
digital cameras, 4-6
file systems, 9-11
IFEs, 11-13
navigational computers (airlines),

3-4
Porsche Boxster, 8
Windows NT (USS Yorktown), 13

software development process, chang-
ing, 242-243

software engineers. See programmers
Sony Trans Com’s P@ssport case study,

138
original interface, 139, 142
personas, 142-147

source code versus vocabulary, 186
special cases, 100
specifying personas, 128-129
stereotyping personas, 128
sticky notes, 126
“stinking gods among men”, 95
style guides, 209-210
survivors, 31-33
Swiss Army knife, cognitive friction of,

24

T
T/Maker software company, 44, 47
task-directed design, 151
tasks versus goals, 150-151
“teaching dogs to be cats”, 88
teams, 207
tech support, design documents and,

230
technical managers. See managers
technical specifications, 46
technical support, 52
technical writers, design documents

and, 230
techno-rage, 13-14
technology

democratization of, 34
versus interaction design, 213

television news show application,
152-153

testing code, 242-243
testing. See usability testing
The First $20 Million Is Always the

Hardest, 96
The Media Equation, 159

Zicker, John / 255

The Secrets of Consulting “A Guide to
Giving & Getting Advice Successfully”,
88

They’re Mad as Hell Out There, 244
threads (email), 61
time to market advantage versus design

advantage, 77, 84-85
timing of design, 203-205
training, 11
TransPhone, 91-92
trustworthiness of software, 170
typewriters, cognitive friction of, 20

U
U.S. Navy warships, 13
understanding, programmers’ need for,

97-99
“uninformed consent”, 140
unpredictable markets, myth of, 48-49
usability problems

acceptance of, 59
alarm clock, 6-7
ATMs, 8-9, 68
blaming users, 34-36
calendar software, 63
causes, 14-16
costs, 17, 27-29

business software, 52-53
loss of market share, 82-83
narratives about, 83-87

digital cameras, 4-6
email, 61-62
engineering skills and, 92
file systems, 9-11
IFEs, 11-13
navigational computers (airlines),

3-4
Porsche Boxster, 8
reaction to, 33-34
scheduling programs, 62-63
technology as solution for, 213
VCRs, 60-61
Windows NT (USS Yorktown), 13

usability testing, 205
before programming, 206
evaluating design, 208-209
focus groups, 210-211
iteration, 213-214
timing, 206-207

“user friendly”, 60
users versus personas, 127-129
USS Yorktown, 13

V - W
VCRs, as dancing bearware, 60-61
viability, 71, 78
violins, cognitive friction of, 20
visual design, 211-212
“visual design language” (Xerox), 209
vocabulary

specifying, 185-186
versus source code, 186

warships, 13
Web. See WWW
Weinberg, Jerry, 88
well-informed software, 166
West, David, 237
“wet dogs”, 31
Wildstrom, Stephen, 244
Windows, design iteration, 214
Windows 95 file system, 9-11
Windows NT, USS Yorktown problems,

13
Worlds, Inc., 45
WriteNow, 47
WWW (World Wide Web)

as dancing bear, 32
cognitive friction of, 20
ease of use, 241

X - Y - Z
Xerox, “visual design language”, 209

Zicker, John, 219

Alan Cooper

As a software inventor in the mid-70s, Alan got it into his head that there must be
a better approach to software construction. This new approach would free users
from annoying, difficult, and inappropriate software behavior by applying a
design and engineering process that focuses on the user first, and silicon second.
Using this process, engineering teams could build better products faster by doing
it right the first time.

His determination paid off. In 1990 he founded Cooper, a technology product
design firm. Today, Cooper’s innovative approach to software design is recognized
as an industry standard. Over a decade after Cooper opened its doors for busi-
ness, the San Francisco firm has provided innovative, user-focused solutions for
companies such as Abbott Laboratories, Align Technologies, Discover Financial
Services, Dolby, Ericsson, Fujitsu, Fujitsu Softek, Hewlett Packard, Informatica,
IBM, Logitech, Merck-Medco, Microsoft, Overture, SAP, SHS Healthcare, Sony,
Sun Microsystems, the Toro Company, Varian, and VISA. The Cooper team offers
training courses for the Goal-Directed® interaction design tools they have invent-
ed and perfected over the years, including the revolutionary technique for mod-
eling and simulating users called personas, first introduced to the public in 1999
via the first edition of The Inmates.

In 1994, Bill Gates presented Alan with a Windows Pioneer Award for his inven-
tion of the visual programming concept behind Visual Basic, and in 1998 Alan
received the prestigious Software Visionary Award from the Software Developer’s
Forum. Alan introduced a taxonomy for software design in 1995 with his best-
selling first book, About Face: The Essentials of User Interface Design. Alan and co-
author Robert Reimann published a significantly revised edition, About Face: The
Essentials of Interaction Design, in 2003.

Alan’s wife, Susan Cooper, is President and CEO of Cooper. They have two teenage
sons, Scott and Marty, neither of whom is a nerd. In addition to software design,
Alan is passionate about general aviation, urban planning, architecture, motor
scooters, cooking, model trains, and disc golf, among other things. Please send
him email at inmates@cooper.com or visit Cooper’s Web site at www.cooper.com.

../../../../../www.cooper.com/default.htm

	Table of Contents
	Foreword
	Part I: Computer Obliteracy
	Chapter 1 Riddles for the Information Age
	What Do You Get When You Cross a Computer with an Airplane?
	What Do You Get When You Cross a Computer with a Camera?
	What Do You Get When You Cross a Computer with an Alarm Clock?
	What Do You Get When You Cross a Computer with a Car?
	What Do You Get When You Cross a Computer with a Bank?
	Computers Make It Easy to Get into Trouble
	Commercial Software Suffers, Too
	What Do You Get When You Cross a Computer with a Warship?
	Techno-Rage
	An Industry in Denial
	The Origins of This Book

	Chapter 2 Cognitive Friction
	Behavior Unconnected to Physical Forces
	Design Is a Big Word
	The Relationship Between Programmers and Designers
	Most Software Is Designed by Accident
	“Interaction” Versus “Interface” Design
	Why Software-Based Products Are Different
	The Dancing Bear
	The Cost of Features
	Apologists and Survivors
	How We React to Cognitive Friction
	The Democratization of Consumer Power
	Blaming the User
	Software Apartheid

	Part II: It Costs You Big Time
	Chapter 3 Wasting Money
	Deadline Management
	What Does “Done” Look Like?
	Shipping Late Doesn’t Hurt
	Feature-List Bargaining
	Features Are Not Necessarily Good
	Iteration and the Myth of the Unpredictable Market
	The Hidden Costs of Bad Software
	The Cost of Prototyping

	Chapter 4 The Dancing Bear
	If It Were a Problem, Wouldn’t It Have Been Solved by Now?
	Consumer Electronics Victim
	How Email Programs Fail
	How Scheduling Programs Fail
	How Calendar Software Fails
	Mass Web Hysteria
	What’s Wrong with Software?

	Chapter 5 Customer Disloyalty
	Desirability
	A Comparison
	Time to Market

	Part III: Eating Soup with a Fork
	Chapter 6 The Inmates Are Running the Asylum
	Driving from the Backseat
	Hatching a Catastrophe
	Computers Versus Humans
	Teaching Dogs to Be Cats

	Chapter 7 Homo Logicus
	The Jetway Test
	The Psychology of Computer Programmers
	Programmers Trade Simplicity for Control
	Programmers Exchange Success for Understanding
	Programmers Focus on What Is Possible to the Exclusion of What Is Probable
	Programmers Act Like Jocks

	Chapter 8 An Obsolete Culture
	The Culture of Programming
	Reusing Code
	The Common Culture
	Cultural Isolation
	Skin in the Game
	The Process Is Dehumanizing, Not the Technology

	Part IV: Interaction Design Is Good Business
	Chapter 9 Designing for Pleasure
	Personas
	Design for Just One Person
	The Elastic User
	Be Specific
	Hypothetical
	Precision, Not Accuracy
	A Realistic Look at Skill Levels
	Personas End Feature Debates
	It’s a User Persona, Not a Buyer Persona
	The Cast of Characters
	Primary Personas
	Case Study: Sony Trans Com’s P@ssport

	Chapter 10 Designing for Power
	Goals Are the Reason Why We Perform Tasks
	Tasks Are Not Goals
	Goal-Directed Design
	Personal and Practical Goals
	Personal Goals
	Corporate Goals
	Practical Goals
	False Goals
	Computers Are Human, Too
	Designing for Politeness
	What Makes Software Polite?
	Case Study: Elemental Drumbeat

	Chapter 11 Designing for People
	Scenarios
	Daily-Use Scenarios
	Necessary-Use Scenarios
	Edge-Case Scenario
	Inflecting the Interface
	Perpetual Intermediates
	Vocabulary
	Reality Bats Last
	Case Study: Logitech ScanMan
	Bridging Hardware and Software
	Less Is More

	Part V: Getting Back into the Driver’s Seat
	Chapter 12 Desperately Seeking Usability
	The Timing
	User Testing
	Multidisciplinary Teams
	Programmers Designing
	How Do You Know?
	Style Guides
	Focus Groups
	Visual Design
	Industrial Design
	Cool New Technology
	Iteration

	Chapter 13 A Managed Process
	Who Really Has the Most Influence?
	Finding Bedrock
	Making Movies
	The Deal
	Who Owns Product Quality?
	Creating a Design-Friendly Process

	Chapter 14 Power and Pleasure
	An Example of a Well-Run Project
	A Companywide Awareness of Design
	Benefits of Change
	Let Them Eat Cake

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K
	L
	M
	N
	O - P
	Q - R
	S
	T
	U
	V - W
	X - Y - Z

