
Metabolic Flux 
Analysis in 
Eukaryotic Cells

Deepak Nagrath Editor

Methods and Protocols

Methods in 
Molecular Biology   2088



ME T H O D S I N MO L E C U L A R B I O L O G Y

Series Editor
John M. Walker

School of Life and Medical Sciences
University of Hertfordshire
Hatfield, Hertfordshire, UK

For further volumes:
http://www.springer.com/series/7651

http://www.springer.com/series/7651
http://www.springer.com/series/7651


For over 35 years, biological scientists have come to rely on the research protocols and
methodologies in the critically acclaimedMethods in Molecular Biology series. The series was
the first to introduce the step-by-step protocols approach that has become the standard in all
biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-
step fashion, opening with an introductory overview, a list of the materials and reagents
needed to complete the experiment, and followed by a detailed procedure that is supported
with a helpful notes section offering tips and tricks of the trade as well as troubleshooting
advice. These hallmark features were introduced by series editor Dr. John Walker and
constitute the key ingredient in each and every volume of the Methods in Molecular Biology
series. Tested and trusted, comprehensive and reliable, all protocols from the series are
indexed in PubMed.



Metabolic Flux Analysis
in Eukaryotic Cells

Methods and Protocols

Edited by

Deepak Nagrath

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA



Editor
Deepak Nagrath
Department of Biomedical Engineering
University of Michigan
Ann Arbor, MI, USA

ISSN 1064-3745 ISSN 1940-6029 (electronic)
Methods in Molecular Biology
ISBN 978-1-0716-0158-7 ISBN 978-1-0716-0159-4 (eBook)
https://doi.org/10.1007/978-1-0716-0159-4

© Springer Science+Business Media, LLC, part of Springer Nature 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to
be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty,
express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Humana imprint is published by the registered company Springer Science+Business Media, LLC, part of Springer
Nature.
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.

https://doi.org/10.1007/978-1-0716-0159-4


Preface

Recent advancements in metabolic flux analysis (MFA) are instrumental in revealing mecha-
nistic underpinnings of cellular metabolism. Especially in the identification of metabolically
vulnerable targets and the dissection of crosstalk between diseased cells and their microen-
vironment, MFA has been the backbone of new advancements in targeting several diseases.
The chapters in this special issue feature state-of-the-art metabolic flux techniques that span
analyses of cellular, organ-level, and whole-body metabolism.

Stable isotopes are commonly used as labels for analysis of metabolism of living cells.
The uptake and utilization of isotopically enriched nutrients leads to the formation of
enriched intracellular metabolites and lipids. The enrichment data obtained from mass
spectrometry (MS) techniques is incorporated in metabolic models for metabolic flux
estimation. Mairinger and Hann present the accurate and precise analysis of isotopologue
and tandem mass isotopologue ratios in heavy stable isotope labeling experiments in the
presence of measurement uncertainty. Dudek et al. describe a data processing workflow in
non-targeted stable isotope labeling experiments to generate metabolite levels, mass iso-
topomer distribution, and similarity and variability analysis of metabolites. Damini et al.
provide a detailed overview of methods for polar metabolite analysis in reverse phase ion
pairing and hydrophilic interaction chromatography for 13C MFA. To interrogate intracel-
lular compartments, 2H (deuterium) tracing approaches have gained popularity. Here, Lim
et al. provide a detailed description of 2H tracing applications for the interrogation of
mitochondrial versus cytosolic NAD(P)H metabolism in mammalian cells. To broaden the
scope of MFA from cells to whole body, 13C-based in vivo flux analysis can be used.
However, the complexity of handling mice in disease models had discouraged early in vivo
tracing analysis. Recent advances in MS techniques and increased instrument sensitivity have
however encouraged development of these methodologies. Altea-Manzano et al. fill an
important gap by presenting a methodology for understanding the metabolism of metas-
tases in vivo.

Biomass evaluation is an important component in MFA, and in the past generic data has
been used to model this important flux. Széliová et al. present a detailed method for the
determination of biomass flux from Chinese hamster ovary cells. Nitric oxide involvement in
cancer and several other diseases has recently been uncovered. Still, there is a lack of
methodologies for the measurement of NO flux. Sivaloganathan presents a detailed
protocol, which includes experimental measurements and computational modeling, to
estimate the NO flux distributions. To increase the accuracy and quantification of
low-abundance metabolites, an accurate modeling workflow is needed. Jaiswal and Wangi-
kar present a methodology called sequential windowed acquisition of all theoretical frag-
ment ion mass spectra, which allows quantification of isotopic 13C enrichment in a large
number of cellular metabolites and fragments. To increase the scope of flux analysis to
heterogeneous cellular systems, a methodology which can capture metabolic communica-
tion between different cell types is required. Achreja et al. present an integrated empirical
and computational platform to quantify metabolic crosstalk between source and recipient
cells. Their platform allows the estimation of contribution of source cell-derived extracellu-
lar vesicles to recipient cells. Garrity et al. describe a method to combine mRNA and
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metabolomics data in a genome-scale metabolic model to curate a biologically feasible
model for constrained MFA. Selivanov et al. present a software supporting a workflow of
analysis of stable isotope-resolved metabolomics data obtained with MS and their use in a
kinetic model based on ordinary differential equations for isotopomers of metabolites of the
corresponding biochemical network to estimate a dynamic flux map. Campit and Chandra-
sekaran present a genome-scale modeling approach that uses time-course metabolomics to
predict dynamic flux rewiring during transitions between metabolic states.

Metabolic flux approaches have also been garnering attention as a cost-effective plat-
form to develop and test drugs for their efficacy toward specific metabolic targets. Rawls
et al. present the application of metabolic flux approaches for drug development. Unraveling
heterogeneity is difficult with respect to metabolic changes in living cells. Filippo et al.
present a new computational framework called single-cell Flux Balance Analysis that aims to
set up digital metabolic twins that also use laboratory patient cell models to unravel changes
in heterogeneous populations. Toit et al. present an interesting application of MFA in
autophagy, which is a cellular homeostasis process that maintains cellular nutrients. Peres
and Fromion present a protocol for the integration of thermodynamic constraints in
metabolic models to eliminate non-physical fluxes or inconsistencies in the metabolic
system.

The chapters in this book will be of great interest to both experts inMFA techniques and
researchers getting initiated in the role of quantitative studies to unravel the secrets of
dysregulated pathways in human diseases. I would like to thank all the contributing authors
for their valuable support in presenting their work and advancements toward making MFA
an incisive and decisive technique to dissect metabolic states in diseases. Furthermore, this
issue would not have been possible without support from my lab members, precious
colleagues, and budding scientists, Dr. Abhinav Achreja, Anjali Mittal, Olamide Animasa-
hun, and Noah Meurs. They dedicatedly helped me with editorial corrections and provided
their input many times on short notice, and they are themselves looking forward to
advancing the field of MFA. I would also like to thank Dr. John Walker and Anna Rakovsky
(Springer Nature) for their editorial inputs and assistance.

Ann Arbor, MI, USA Deepak Nagrath
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André du Toit, Ben Loos, and Jan Hendrik S. Hofmeyr

17 Thermodynamic Approaches in Flux Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Sabine Peres and Vincent Fromion

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

viii Contents



Contributors

ABHINAV ACHREJA • Department of Biomedical Engineering, University of Michigan, Ann
Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA

ROBERT AHRENDS • Leibniz Institut für Analytische Wissenschaften—e.V., Dortmund,
Germany

LILIA ALBERGHINA • SYSBIO Centre of Systems Biology, Milan, Italy
PATRICIA ALTEA-MANZANO • Laboratory of Cellular Metabolism and Metabolic Regulation,

VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular
Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven
Cancer Institute (LKI), Leuven, Belgium

NICOLE BORTH • Austrian Centre of Industrial Biotechnology, Vienna, Austria; University
of Natural Resources and Life Sciences, Vienna, Austria

DORIEN BROEKAERT • Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-
KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory of Cellular
Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven
Cancer Institute (LKI), Leuven, Belgium

MARK P. BRYNILDSEN • Department of Chemical and Biological Engineering, Princeton
University, Princeton, NJ, USA

SCOTT CAMPIT • Program in Chemical Biology, University of Michigan, Ann Arbor, MI,
USA

MARTA CASCANTE • Department of Biochemistry and Molecular Biomedicine, Faculty of
Biology, Universitat de Barcelona, Barcelona, Spain; Institute of Biomedicine of
Universitat de Barcelona (IBUB), Barcelona, Spain; Centro de Investigaci�on Biomédica en
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Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III
(ISCIII), Madrid, Spain; INB-Bioinformatics Platform Metabolomics Node, Instituto de
Salud Carlos III (ISCIII), Madrid, Spain

MARZIA DI FILIPPO • SYSBIO Centre of Systems Biology, Milan, Italy; Department of
Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy

ix



BONNIE V. DOUGHERTY • Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA
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Chapter 1

Determination of Isotopologue and Tandem Mass
Isotopologue Ratios Using Gas Chromatography Chemical
Ionization Time of Flight Mass Spectrometry - Methodology
and Uncertainty of Measurement

Teresa Mairinger and Stephen Hann

Abstract

The accurate and precise analysis of isotopologue and tandem mass isotopologue ratios in heavy stable
isotope labeling experiments is a critical part of assessing absolute intracellular metabolic fluxes. Resulting
from feeding the organism of interest with a specifically isotope-labeled substrate, the principal character-
istics of these labeling experiments are the metabolites’ non-naturally distributed isotopologue patterns.
For the purpose of inferring metabolic rates by maximizing the fit between a priori simulated and
experimentally obtained labeling patterns, 13C is the preferred stable isotope of use.
The analysis of the obtained labeling patterns can be approached by different mass spectrometric

approaches. Gas chromatography (GC) features broad metabolite coverage and excellent separation effi-
ciency of biologically relevant isomers. These advantages compensate for laborious derivatization steps and
the resulting need for interference correction for natural abundant isotopes.
Here, we describe a workflow based on GC-high resolution mass spectrometry with chemical ionization

for the analysis of carbon-isotopologue distributions and some positional labeling information of primary
metabolites. To study the associated measurement uncertainty of the resulting 13C labeling patterns,
guidance to uncertainty estimation according to the EURACHEM guidelines with Monte-Carlo simula-
tion is provided.

Key words Gas chromatography, Chemical ionization, Isotopologue distribution, Tandem mass
isotopologue distribution, Primary carbon metabolism, 13C based metabolic flux analysis, Measure-
ment uncertainty

1 Introduction

Information on time-dependent motions within a metabolic net-
work, that is, metabolic fluxes, has become a key in understanding
condition-dependent regulation hierarchies that govern the meta-
bolic phenotype of a biological system [1–4]. Stable isotope label-
ing experiments render the estimation of these in vivo intracellular
metabolic rates possible. In brief, a specifically heavy stable

Deepak Nagrath (ed.),Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols, Methods in Molecular Biology, vol. 2088,
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isotope-labeled substrate, mostly with 13C, is fed to the organism of
interest. This isotope label is incorporated into the downstream
metabolite pool, leading to a non-naturally distributed labeling
pattern [1]. Together with data on growth, biomass composition,
etc., experimentally obtained information on isotopic enrichment
can be then implemented into a metabolic network. Maximizing
the fit between a-priori simulated and experimental labeling data,
allows to infer absolute metabolic fluxes [5]. Since 13C is most
frequently used, this chapter focuses on the analysis of labeling
experiments involving this specific isotope tracer.

Labeling patterns are commonly analyzed using mass spectro-
metric (MS) detection coupled with chromatographic separation
techniques. Different types of mass analyzers are suitable for the
analysis of isotopic enrichments within intracellular metabolites.
Depending on the MS instrumentation employed, two types of
information can be assessed: either on isotopologue distributions
(ID), that is, molecular entities that differ in their isotopic compo-
sition [6] (as depicted in Fig. 1) or additional information on the
position of the incorporated isotope label within the molecule can
be obtained (as indicated in Fig. 2). The latter can be achieved by
making use of fragmentation capability in MS/MS instruments
(e.g., quadrupole tandem MS systems, quadrupole-time of flight
(Q-TOF) systems, or fragmenting ion traps (3D ion traps, linear
ion traps or orbitraps)). The general challenge of acquiring posi-
tional information via MS is a matter of time. This time problem
concerns the mass spectrometer, as for the measurement of each
mass transition a certain dwell time is needed (mainly to get high
ion counts) and thereby affecting the cycle time, which will deter-
mine the achievable number of points describing a chro-
matographic peak. Especially for narrow chromatographic peaks
and metabolites with a higher number of carbons in the backbone,
achieving a reasonable cycle time (resulting from the number of
transitions as well as the set dwell time) is quite challenging. Apart
from its acquisition speed, here, the dual-stage MS hybrid of Q and
TOFMS is regarded advantageous due to its high resolution,
thereby facilitating the unambiguous identification of (non)selec-
tive fragments and its recording of all fragments of a given labelling
state without restriction of time [7–9].

Applying MS/MS, so-called tandem mass isotopologue distri-
butions (TMID) can be calculated. Each tandem mass isotopolo-
gue is characterized using a two number code X.Y, where X is
indicating the number of 13C atoms in the precursor ion and Y is
indicating the number of 13C atoms in the product ion. The exact
masses of the precursor and product ions can be calculated by
substituting each 12C-atom from the carbon backbone with a
13C-atom. When positional information is of interest to the study,
selective fragmentation of an intact carbon backbone facilitates
mass spectral interpretation. Hence, soft ionization techniques,
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Fig. 1 Schematic overview assessing isotopologue distribution via mass spectrometric detection coupled to
chromatographic separation

Fig. 2 Schematic overview assessing tandem mass isotopologues, including the definition and the matrix used
for evaluating all possible transitions
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where a high abundant intact analyte ion is attainable, are ideal. The
type of ionization technique employed depends on the front-end
separation and here, either liquid (LC) or gas chromatographic
(GC) approaches are mainly used for the analysis of metabolites.
For LC approaches, most frequently electrospray ionization is
employed, whereas in GC based analysis the standard ionization
source is electron ionization (EI). Since EI is a harsh ionization
technique with extensive in-source fragmentation, it is only under
certain circumstances [10] suitable for the analysis of 13C labeling
patterns. Chemical ionization (CI) with methane as reaction gas has
proven to be a highly suitable; therefore, we regard this approach as
fit for purpose [11, 12].

To make polar analytes GC-amenable, a derivatization step and
consequently also an extensive natural isotope interference correc-
tion [13–15] is required. And yet GC analysis compensates these
drawbacks with excellent separation efficiency, including the sepa-
ration of biologically relevant constitutional isomers, and a wide
metabolite coverage within a single analytical run. Besides, it is
noteworthy that if a sample preparation robot is available, the
derivatization can be easily automated.

Thermal stability and volatility of polar analytes is increased by
replacing active hydrogen atoms in various functional groups either
with trimethylsilyl (TMS) or with ter-butyldimethylsilyl (TBDMS)
groups. Since the TBDMS moiety is bulkier, derivatization of vici-
nal active hydrogen is often not possible [16], hence often TMS is
the derivatization reagent of choice in metabolomics experiments
[11, 17–19]. In metabolomics experiments, a two-step derivatiza-
tion is typically performed, since direct silylation of certain com-
pound classes (e.g., sugars and their analogues), leads to a large
number of different isomers due to cyclic and open-chain structures
[20] and would hence complicate the chromatogram and data
evaluation process. By alkoximation prior to silylation, the carbonyl
group is protected and thereby locks sugars and their analogues in
the open-chain structure and prevents decarboxylation [17, 20].

Notably, the measured labeling patterns do not reflect the true
13C-isotope distributions and are masked by naturally abundant
heavy stable isotopes, either already present in the native molecule
itself (e.g., 34S), or introduced by the aforementioned derivatiza-
tion procedures [13–15, 21]. Only when correcting for these nat-
ural abundant isotope interferences, an unbiased ID and TMID is
achievable [12, 15, 22]. Depending on the data type, ID or TMID,
several (open-source) software packages are available (e.g., [13–15,
23–25]).

Elucidating the method’s capability to provide analytical results
in the required quality is also here for 13C-based metabolic flux
analysis experiments of key importance. Apart from assessing the
overall method performance parameters [26], including, for exam-
ple, precision under repeatability or reproducibility conditions of
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measurement, trueness (error) and sensitivity, the theoretical con-
cept of measurement uncertainty budgeting can be implemented
[27]. The evaluation of measurement uncertainty gives a measure
of confidence being subjected to the result and allows to identify
and quantify major uncertainty components.

In the following, GC-CI-QTOFMS based method for the
analysis of 13C labeling patterns of free intracellular metabolites is
presented.

2 Materials

2.1 Chemicals

for Metabolite

Standard Preparation

and Derivatization

Metabolite standards of interest (e.g., metabolites covering the
central carbon metabolism, including glycolysis, pentose phosphate
pathway, and citric acid cycle, as well as proteinogenic amino acids)
should be purchased analytical grade (e.g., 6-Phosphogluconic acid
(6PGA), 2-phosphoglyceric acid (2PG), 3-phosphoglyceric acid
(3PG), dihydroxyacetone phosphate (DHAP), erythrose-4-phos-
phate (E4P), fructose-6-phosphate (F6P), glucose-6-phosphate
(G6P), glyceraldehyde-3-phosphate (GAP), manose-6-phosphate
(M6P), ribulose-5-phosphate (Rul5P), ribose-5-phosphate (R5P),
sedoheptulose-7-phosphate (S7P); cis-aconitic acid (Aco),
α-ketoglutaric acid (AKG), citric acid (Cit), isocitric acid (I-Cit),
fumaric acid (Fum), malic acid (Mal), succinic acid (Suc); L-alanine
(Ala), L-asparagine (Asn), L-aspartic acid (Asp), L-homoserine
(H-Ser), L-glutamine (Gln), L-glutamic acid (Glu), L-isoleucine
(Ile), L-glycine (Gly), L-leucine (Leu), L-lysine (Lys), L-phenylala-
nine (Phe), L-proline (Pro), L-serine (Ser), L-threonine (Thr), L-
tyrosine(Tyr), L-valine (Val)).

For quality control, in addition to metabolite standards, it is
highly recommended to use a cell extract with a defined
non-naturally distributed C-isotope pattern, as it was proposed by
Millard et al. [28] or if not available at least a representative cell
extract from a cultivation with non-isotopically labeled substrate.

Solvents (LC-MS grade water, water-free pyridine for derivati-
zation and pyridine for syringe cleaning) are purchased analytical
grade. For the two-step derivatization procedure, ethoxyamine
hydrochloride (EtOx) and N-methyl-N-(trimethylsilyl) trifluoroa-
cetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) are
used. Please consult material safety data sheets before starting to
work with the derivatization reagents.

2.2 Equipment

for Derivatization

and GC-HR-MS/MS

Analysis

Samples are dried and subsequently derivatized in 2 mL crimp-top
vials with flat-bottom glass inserts. For evaporation of the sample
and metabolite standard solutions to complete dryness prior deriv-
atization a centrifugal solvent evaporator, operating at low pressure
(�2 mbar) is employed.
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Analysis is conducted on a high-resolution quadrupole-time of
flight (Q-TOF) mass spectrometer coupled to a gas chromatograph
(GC). For sample injection and to automate derivatization, the GC
should be equipped with a dual head sample preparation robot with
two quasi-independently operating towers (syringe volumes: 10 μL
for sample injection and 100 μL for adding derivatization reagents,
both towers are also used for transportation of vials), and a
temperature-controlled agitator for sample incubation. For sample
vaporization either a programmable temperature vaporization
(PTV), or a standard split/splitless inlet can be employed. Depend-
ing on the inlet, a deactivated single tapered splitless liner, or a
deactivated baffled liner, in both cases without glass wool, is used.
Helium (purity 5.0) is used as carrier gas. Derivatives are separated
on a 60 m nonpolar 100% dimethylpolysiloxane stationary phase
analytical column (Macherey-Nagel, Germany, Optima 1MS
Accent 60 m � 0.25 mm i.d., 0.25 μm film thickness, is recom-
mended). For protection of the analytical column a deactivated
nonpolar guard column is employed. Ionization is performed
using chemical ionization, with methane (purity 5.0) as reaction
gas. Nitrogen (purity 5.0) is used for collision induced dissociation
(CID) when employing MS2 functionality of the instrument.

3 Methods

3.1 Metabolite

Standard and Sample

Preparation

1. Stock standard solutions of all metabolites are prepared by
dissolving an appropriate amount of solid standard in LC-
MS-grade water or 0.1 M HCl. A standard mixture solution
of all single analytes with a concentration of 50 μM is prepared
in LC-MS-grade water by appropriate dilution. Single stock
standards and analyte mixture solutions kept at �80 �C and
are stable for a minimum of 4 weeks.

2. For 13C based MFA of Pichia pastoris, quenching and metabo-
lite extraction procedure is applied according to [29]: In brief,
cells are rapidly sampled into 60:40methanol–water at�30 �C,
filtered through cellulose acetate filters (0.45 μm) using a
vacuum pump. The cell pellet on the filter is washed once
with cold quenching solvent before it is transferred to a pre-
cooled tube and stored at �80 �C until extraction. The intra-
cellular metabolites are extracted by adding 4 mL of 75%
ethanol (v/v) at 85 �C to the frozen cell pellets, vortexing
and incubating it for 3 min at 85 �C in a water bath. After
rapid cooling-down on dry-ice, the cell extract is separated by
centrifugation (4000 � g for 10 min at �20 �C). The superna-
tant, that is, ethanolic cell extract, is decanted into precooled
tube and stored at �80 �C. For P. pastoris, a cell dry weight of
approximately 20 mg was found to be a suitable amount to be
extracted [12].
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3. The final sample injection volume, that is, the fraction of
initially extracted cell dry weight injected on column, was
approximately 1/1600. It is worth mentioning that depending
on the scope on analytes preconcentration can be easily
achieved by adjusting the volume of ethanolic cell extract to
be evaporated.

Even though analyzing labeling patterns in 13C based MFA is
not performed in an absolute quantitative manner, special care
needs to be taken during the quenching step [30], since the isoto-
pic enrichment must remain unaltered during sample preparation.
Hence, for sampling of intracellular metabolites of eukaryotic
organisms other than Pichia pastoris, it is of utmost importance to
adapt especially quenching, but also extraction conditions (e.g.,
[31]). Moreover, reproducibility of the experiment has to be
assured via accurate control and documentation of fermentation
conditions and sampling time. See Notes Sect. 4.1 for further
information.

3.2 Derivatization For automated just-in-time online derivatization, a two-step reac-
tion was performed, using EtOx in the first step and MSTFA with
1% TMCS in the second step. The procedure is in line with a
variation of that described by Koek et al. [32]. See Notes Sect. 4.2
for further information.

1. As a prerequisite of the employed derivatization procedure, the
samples have to be completely dry. To protect the ketogroups
already during this evaporation step [33], 10 μL of freshly
prepared ethoxyamine hydrochloride solution (c
(EtOx) ¼ 19 mg mL�1 in water-free pyridine) is added to all
samples (including metabolite standards).

2. The dried samples will be reconstituted in 60 μL of derivatiza-
tion reagent; hence, if a preconcentration step is required, the
sample volume can be adjusted accordingly.

3. After, evaporation to complete dryness in a vacuum centrifuge,
the sample vials are crimped, and stored at �80 �C until analy-
sis. Dried samples are stable for a minimum of 8 weeks. To
ensure complete dryness, the samples are dried again for 0.5 h
before analysis.

4. For ethoximation, the dried sample is reconstituted in 18 μL
EtOx (c(EtOx) ¼ 19 mg mL�1 in water-free pyridine) and
incubated at 40 �C for 90 min.

5. In the second step, the sample is silylated by adding 42 μL of
MSTFA with 1% TMCS and incubation for 50 min at 40 �C.

6. For sample cool down, the derivatized samples are then put at
4 �C for approximately 4 min and are then injected in the
GC-inlet.
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3.3 GC-HR-MS/MS

Analysis

1. Injection of 1.0 μL aliquots of derivatized sample is performed
by either applying PTV (70 �C for 0.6 min, 12 �C min�1 to
260 �C, (hold 1 min), 12 �C min�1 to 280 �C, 5 min hold)
[12] or using a standard split/splitless inlet, set at 250 �C .

The 10-μL syringe used for injection is washed with pyri-
dine before and after injection, each time twice.

2. The ethoximated and trimethylsilylated samples are separated
on a 60 m � 0.25 mm i.d analytical column with 100%
dimethylpolysiloxane as stationary phase (0.25 μm film thick-
ness) and a 5 m nonpolar guard column. The carrier gas
Helium is set to constant flow, 1.3 mL min�1.GC temperature
programmed followed the conditions optimized by Troyer
et al. [11]: 70 �C for 1min, 20 �Cmin�1 to 190 �C, 5 �Cmin�1

to 225 �C, 3 �C min�1 to 260 �C, and 20 �C min�1 to 310 �C
(hold for 1 min).

3. Positive chemical ionization was performed according to the
optimized parameters described in [11] using methane as
reagent gas. The parameters are as following: the ion source
temperature is set to 150 �C, for the electron energy the tuned
value is taken, the emission current is kept at 10 μA. 40%
methane gas flow (equal to 2 mL min�1) was employed. (It is
noteworthy that parameters were optimized on an Agilent 7200B
GC-QTOFMS system; hence, parameters might change depend-
ing on the manufacturer.)

4. The scan speed, that is, the number for TOF spectra per
second, was set to 3.3 Hz. In order to extend the linear
dynamic range, the detector was operated in 2 GHz-extended
dynamic range mode.

5. For assessment of tandem mass isotopologue distributions, the
MS2 functionality using CID is employed—optimized para-
meters for the analysis of over 40 metabolites covering the
central carbon metabolism can be found in [12]. For three
exemplary compounds, namely, the amino acid alanine (Ala),
the organic acid malic acid (Mal) and the sugar phosphate
ribulose-5-phosphate (Rul5P), collision energies, acquisition
times, proposed chemical structure of precursor and product
ions, and the respective retention time, are shown in Table 1.

Chromatographic separation of over 40 metabolites, covering
the central carbon metabolism, including glycolysis, pentose phos-
phate pathway and citric acid cycle, as well as proteinogenic amino
acids is depicted in Fig. 3. See Notes Sect. 4.3 for further
information.

3.4 Data Evaluation The isotopologue distribution (ID), representing the metabolite’s
labeling pattern, that is, incorporation of the stable isotope label,
consists of the respective isotopologue fractions (IF) and is calcu-
lated according to Eq. 1:
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Table 1
GC-CI-QTOFMS method: acquisition parameters, structural information as well as exact masses for
exemplary metabolites [12]

Compound
name/
derivative

RT
(min) CE

Acquisition
time (ms
/spectrum)

Precursor
ion structure
and sum
formula

Product ion
structure
and sum formula Transitions

Alanine

2TMS

7.65 15 50

Si
N

O
Si

O H
+

C9H24NO2Si2+

Si
N

C+

C5H14NSi+

Ala_M0.0:
234.1340 ! 116.0890

Ala_M1.0:
235.1374 ! 116.0890

Ala_M1.1:
235.1374 ! 117.0924

Ala_M2.1:
236.1407 ! 117.0924

Ala_M2.2:
236.1407 ! 118.0957

Ala_M3.2:
237.1441 ! 118.0957

Malate

3TMS

10.50 10 50
H

+

Si
O

O

O

O
Si

O
Si

C13 H31 O5 Si3+

C+

O

O
Si

O
Si

C9H21O3Si2 +

Mal_M0.0:
351.1474 ! 233.1024

Mal_M1.0:
352.1507 ! 233.1024

Mal_M1.1:
352.1507 ! 234.1057

Mal_M2.1:
353.1541 ! 234.1057

Mal_M2.2:
353.1541 ! 235.1091

Mal_M3.2:
354.1574 ! 235.1091

Mal_M3.3:
354.1574 ! 236.1124

Mal_M4.3:
355.1608 ! 236.1124

Ribulose-5-

phosphate

5TMS 1EtOx

20.20 25 50 Rul5P_M0.0:
618.235 ! 394.1086

Rul5P_M1.0:
619.2383 ! 394.1086

Rul5P_M1.1:
619.2383 ! 395.1119

Rul5P_M2.1:
620.2417 ! 395.1119

Rul5P_M2.2:
620.2417 ! 396.1153

Rul5P_M3.2:
621.2450 ! 396.1153

Rul5P_M3.3:
621.2450 ! 397.1186

Rul5P_M4.3:
622.2484 ! 397.1186

Rul5P_M4.4:
622.2484 ! 398.122

Rul5P_M5.4:
623.2517 ! 398.122
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IFi ¼ AiPn
i¼0Ai

ð1Þ

where IFi represents the measured isotopologue fraction i and n is
the number of carbon atoms in the metabolite backbone. Ai is the
peak area of the respective isotopologue i, obtained by peak area
integration of the extracted ion chromatograms.

Similarly, the distribution of tandem mass isotopologues
(TMID) can be assessed, by calculating the tandem mass isotopo-
logue fractions (TMIF), according to Eq. 2:

TMIFi ¼ aiPn
i¼0ai

ð2Þ

where TMIFi is the measured tandem mass isotopologue (TMI)
fraction i and n is the number of the remaining carbon atoms in the
metabolite fragment, and ai corresponds to the peak area of the
respective TMI obtained by isotopologue selective fragmentation
and subsequent integration of the extracted ion chromatograms.

1. After manual inspection and reintegration if necessary, the ID
and TMID of naturally distributed samples are calculated for
reasons of quality control.

2. The trueness in terms of error, can be determined by compar-
ing the IDs to the theoretical fraction of the naturally abundant
isotope distribution of the molecule with the experimental
value. In case of TMID, the peak areas of transitions leading
to the same product ion, though having different precursor
ions (isotopologues) are summed up and compared with the
natural isotope distribution of the fragment.

3. Data is subsequently corrected for interferences stemming from
the contributions of naturally distributed heavy stable isotopes
(29Si, 30Si, 13C, 2H, 15N, 18O, 34S) using the open-source
software tool ICT (isotope correction tool box) [15]. ICT is
written in the multiplatform programming language Perl and is
capable of correcting isotopologue as well as tandem mass iso-
topologue distributions for natural isotope interferences.
A screenshot how to operate ICT is shown in Fig. 4.

Fig. 3 Representative chromatogram using the described GC-CI-TOFMS method [12], analyzing a standard
mixture in a concentration of 50 μM. For better visibility a multiplication factor (0.5–20) was applied to the low
and very high abundant signals
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Apart from the natural isotope abundances [34] (“�i”)
used for the interference correction, information on the num-
ber of carbons in the backbone as well as elements and number
of atoms to be corrected for needs to be defined per metabolite
(“�c”). Finally, data of the measured IDs following the com-
pound’s abbreviation, defined in “�c” and “_M0�n; or TMID,
following the compounds abbreviation and previously men-
tioned notation of “Mx.y” is used as input. After installing
Perl, the “ict.pl” script can be run by simply using, for example,
the command line interface [15]. After heavy stable isotope
interference correction, the labeling pattern of the carbon
backbone is calculated. Together with data on growth, biomass

Fig. 4 Screenshot of isotope correction toolbox [15] and the three necessary input files, namely definition of
the compounds’ elemental composition, including information on the carbon backbone (“�c”), natural isotope
abundances (“�i”) and the measured labeling patterns to be interference corrected (“�m”). Additionally, a
file name for the output needs to be defined
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composition as well as uptake and secretion rates, these
C-isotopologue and/or tandem mass isotopologue distribu-
tions can be then implemented, into biochemical network
[5]. See Notes Sect. 4.4 for further information.

3.5 Accuracy

and Uncertainty

of Measurement

of Isotopologue

Fractions

3.5.1 Accuracy

The assessment of the accuracy of measured isotopologue fractions
can be directly performed using quality control data obtained
within the experiment. It is recommended to determine the mea-
surement error, that is, the difference between the measured value
and a reference value using either natural material or material with a
defined isotopologue distribution (see above). The obtained error
is usually expressed as the relative difference between the two
values.

3.5.2 Precision Precision of isotopologue fractions can be obtained under repeat-
ability or reproducibility conditions of measurement utilizing pro-
cedural replicates.

Precision under repeatability conditions can be obtained from
one single fermentation using replicate samples from a very short
sampling interval, or several aliquots from one single sampling
event. At least 3, but better 6, replicates should be available. Preci-
sion is then reported as the (relative) standard deviation of
n independently measured replicates.

Procedural precision obtained under repeatability conditions
should always be compared with instrumental precision under
repeatability conditions. Instrumental precision is obtained via the
repeated injection of one and the same sample from the same
sample vial. (Typically, no absolute quantification but rather analysis
of (TM)ID is performed in isotope labeling experiments and hence
potential quantitative changes in concentration (due to stability of
the derivative) can be neglected over these 6 repeated injections.)
Evidently, the difference between instrumental and procedural pre-
cision gives information on the impact of the sampling, quenching
and extraction process.

Precision obtained under reproducibility conditions of mea-
surement can be considered as the (relative) standard deviation
obtained for isotopologue fractions of samples from replicate fer-
mentations. As already mentioned, in this case precision is strongly
depending on the reproducibility of the fermentation process and
the timing of sampling.

3.5.3 Uncertainty

of Measurement

The measurement of isotopologue fraction can be affected by
numerous sources of uncertainty, which are not covered by the
above-mentioned precision data. For both better understanding
and effective optimization of an experiment and the metrological
process we strongly suggest assessing the uncertainty of measure-
ment following the relevant documentation and the principles out-
lined in state-of-the-art documents as the ISO Guide for the
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Expression of Uncertainty in Measurement and QUAM
[26, 27]. In brief, uncertainty of measurement is estimated by
(1) specification of the measurand (e.g., the isotopologue fractions
of alanine in cell extracts), (2) identification of uncertainty sources
(see Fig. 5), (3) setup of a model equation containing all uncertainty
components with their uncertainty distribution, (4) propagation of
the uncertainties for calculation of the standard uncertainty and
expanded uncertainty. It is noteworthy that an important benefit of
this procedure lies in the fact that the relative contribution of each
uncertainty component is quantified and can be used for further
process optimization. The described procedure and calculations are
available in Mairinger et al. where uncertainty estimation has been
performed for a 13C labeling experiment studying glycolysis and
the pentose phosphate pathway in a yeast cell factory [22]. See
Notes Sect. 4.5 for further information.

4 Notes

4.1. Metabolite standard and sample preparation:

l For reasons of quality control, it is recommended to analyze also
metabolite standard mixture within the measurement sequence.

Fig. 5 Ishikawa diagram (also known as a “cause-and-effect-diagram”) for identification of possible sources
of measurement uncertainty of absolute flux values showing the most critical contributors to the uncertainty of
absolute fluxes [22]
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4.2. Derivatization:

l During the incubation steps of the derivatization procedure, the
samples are shaken (approx. 250 rpm in a temperature-
controlled agitator on the sample preparation robot).

l For automated just-in-time derivatization: after each addition
step, the syringe is washed twice, first with pyridine and then
with water-free pyridine.

4.3. GC-HR-MS/MS analysis:

l Prior to analysis and every approximately 4–5 h within a mea-
surement sequence, the mass axis of the high resolution mass
spectrometer is calibrated automatically with an internal cali-
brant solution applying the mass calibration protocol of the
instrument.

l The septa and liner are exchanged after approximately
100 injections.

l The system is conditioned by injecting MSTFA and derivatized
samples.

4.4. Data evaluation:

l Since the exact mass in an isotope labeling experiment is
unknown and the mass resolution of the employed TOFMS
instrument does not allow for resolving isotopic fine structure,
a mass extraction window of either �50 ppm or �100 ppm, is
recommended for isotopologue analysis. This depends on the
number of derivatized groups and possible chromatographic
coelution/interferences. In case of tandem mass isotopologues
a mass extraction window of�50 ppm is used, as generally lower
sensitivity and as expectedly lower mass accuracy in QTOFMS
mode is observed.

4.5. Accuracy and uncertainty of measurement of isotopologue
fractions:

l For uncertainty propagation we recommend the use of either
the spread sheet approach outlined by Kragten [35], or Monte
Carlo simulation utilizing fit-for-purpose tools such as the free
tool from NIST (NIST Uncertainty Machine, uncertainty.nist.
gov) or commercial software (e.g., @RISK, Palisade). We would
like to emphasize that, in our opinion, the Monte-Carlo
approach is advantageous as it facilitates operating with asym-
metric uncertainty distributions as well as correlated uncertainty
components.
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Chapter 2

Non-Targeted Mass Isotopolome Analysis Using Stable
Isotope Patterns to Identify Metabolic Changes

Christian-Alexander Dudek, Lisa Schlicker, and Karsten Hiller

Abstract

Gas chromatography coupled with mass spectrometry can provide an extensive overview of the metabolic
state of a biological system. Analysis of raw mass spectrometry data requires powerful data processing
software to generate interpretable results. Here we describe a data processing workflow to generate
metabolite levels, mass isotopomer distribution, similarity and variability analysis of metabolites in a
nontargeted manner, using stable isotope labeling. Using our data analysis software, no bioinformatic or
programming background is needed to generate results from raw mass spectrometry data.

Key words Gas chromatography, Mass spectrometry, GCMS, Data analysis, Metabolism, Mass iso-
topomer distribution, Stable isotope labeling, Nontargeted metabolomics

1 Introduction

Gas chromatography (GC) or liquid chromatography (LC) coupled
to mass spectrometry (MS) is widely used to measure metabolites in
biological samples [1]. While classic metabolomics approaches only
provide a static view of metabolite concentrations, metabolic flux
analysis investigates dynamic metabolite conversion rates [2]. In
this regard, flux balance analysis (FBA) relies on stoichiometric
reaction models and predicts a solution space of feasible combina-
tions of metabolic fluxes within the modeled network. This solu-
tion space can be reduced by thermodynamic constraints and by
measured extracellular metabolic fluxes. On the other hand, 13C
metabolic flux analysis (MFA) provides exact metabolic fluxes for
specific experimental conditions. It employs a combination of
experimental data from stable-isotope labeling experiments and
mathematical modeling of atom transitions. Both methods have
in common that they rely on extensive prior knowledge of the
metabolic reaction network and underlying stoichiometries [3]
and often such a detailed information is not available a priori.
Due to limitations of our biochemical knowledge, many
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metabolites have not yet been connected to a metabolic network or
cannot even been identified after mass spectrometry. To overcome
some of these limitations, we established a non-targeted mass iso-
topolome analysis, which allows for the identification of metabolic
fluxes without a priori knowledge of the underlying metabolic
network [4–7].

The initial part of such a study is a stable-isotope labeling
experiment. For this purpose, a 13C, 15N or any other stable-
isotope tracer is applied to the biological system and tracer derived
isotopes are incorporated into downstream metabolites. After
metabolite extraction and mass-spectrometry driven measurement,
all detectable known and unknown isotopically enriched metabo-
lites can be identified with algorithms such as nontargeted tracer
fate detection (NTFD), MetExtract or X13 CMS [8–11]. In a next
step, mass isotopomer distributions (MIDs) for all detected and
thus labeled metabolites are determined based solely on the mass-
spectrometric data of the nonlabeled counterparts as no structural
information is available at this point [7, 8, 12]. All these MIDs are
determined by metabolic fluxes through the underlying biochemi-
cal reaction network and can be applied to reveal both, the network
structure and metabolic flux changes [7, 9].

In the following we will describe in detail two options for a
nontargeted mass isotopolome analysis (Fig. 1).

2 Materials

The following software packages are required to perform the
described nontargeted analysis of GC-MS data recorded in the
context of a stable-isotope labeling experiment.

Fig. 1 The presented workflow of a nontargeted experiment and data analysis. The workflow starts with the
cell culture experiment and the preparation of metabolite extracts followed by gas chromatography and mass
spectrometry (GCMS) measurement. The raw data in netCDF format needs to be imported, calibrated and
deconvoluted in MetaboliteDetector. The similarity and variability analysis to create a network based on MID
similarity is performed with MIA. For the subsequent targeted data analysis, MetaboliteDetector can be used to
obtain more sensitive MID determination and quantification data
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2.1 Metabolite-

Detector

MetaboliteDetector is a software designed for the semiautomatic
analysis of GC-MS raw data. The software provides a graphical user
interface and can be applied for targeted and nontargeted
approaches. For that, MetaboliteDetector implements an extensive
set of different GC-MS data analysis algorithms, including reten-
tion time correction, ion-chromatographic deconvolution, metab-
olite detection, metabolite identification, metabolite
quantification, and first statistical analyses. Moreover, this program
can be applied to determine MIDs for target compounds and
correct these for natural occurring isotopes. Finally, a wide variety
of data visualization options are available, like single- and total ion
chromatograms, box plots and MID bar plots [13].

MetaboliteDetector is freely available for Linux operating sys-
tems at http://metabolitedetector.tu-bs.de.

2.2 Mass

Isotopolome Analyzer

TheMass Isotopolome Analyzer (MIA) is a tool to visualize labeled
metabolites in a MID similarity-based network. Additionally, a
variability analysis of the different experimental conditions can
reveal metabolic flux changes. MIA first detects all isotopically
enriched metabolites present in a GC-MS data set [8] and then
contextualizes MIDs of labeled compounds in a network visualiza-
tion. A graph is created which connects metabolites with similar
MID patterns based on dynamic programming and distance calcu-
lation. Different cutoffs for distance measurement and inter-
experiment MID variability can be applied to analyze the datasets
[7]. If a reference compound library is supplied, detected metabo-
lites can be identified.

MIA is freely available for Windows and Linux operating sys-
tems at http://mia.bioinfo.nat.tu-bs.de.

2.3 Optional:

Metabolite Spectra

Reference Libraries

While the approaches described below are all of a nontargeted
manner, the biological interpretation needs an incorporation of
the nontargeted data into a known metabolic context. Therefore,
identification of as many metabolites as possible is of advantage.

Both, MetaboliteDetector and MIA can import and export
reference libraries in MSL format and as such the Golm Metabo-
lome Database (GMD) can be applied for compound identification.
It is freely available [14] and currently contains 26,590 spectra of
3568 derivatized analytes of 2222 different metabolites and addi-
tionally 3488 spectra of purchased reference substances from
GC-MS measurements. See Note 1 on how to convert a library in
MSL format into MetaboliteDetector format.

3 Methods

3.1 Experimental

Prerequisites

Any nontargeted detection of isotopic labeled metabolites starts
with an experimental setup applying a stable isotope labeled
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metabolite as a tracer. In general, any stable isotope, for example
carbon (13C) or nitrogen (15N), can be employed. For every con-
dition, two experiments are needed, one using the isotopic tracer
and the other using the same substrate, but without enrichment.
To get the best results, both experiments should be performed
simultaneously under identical experimental conditions. It is also
advised to perform biological replicates to validate the results of
mass isotopomer calculations [7, 8].

As the retention time of analytes varies between instruments
and different GC-MS columns, it is recommended tomeasure a mix
of n-alkanes (usually 1 μL of a mixture of C10 to C40, splitless
injection) along with the samples. This enables the calculation of
retention indices for improved metabolite identification in addition
to spectrum similarity alone.

The detailed experimental procedure for cultivation and
metabolite extraction highly depends on the metabolites and
organism of interest. Different experimental protocols are
described elsewhere [9, 15–20]. After GCMS measurement, the
raw data need to be exported into the common netCDF format,
which can usually be done with the instrument software.

3.2 Data Import The protocol starts with the raw data in netCDF format. If not
otherwise stated, the default settings are a good starting point.
First, all netCDF files are imported with MetaboliteDetector’s
netCDF import function (Fig. 2). Depending on the computa-
tional power, data import can take some time. During the import
process, files with extension .bin and .idx are created in the same
directory as the netCDF files, if no other output directory was
selected.

3.3 RI Calibration

and Deconvolution

As mentioned before, the retention index calibration is a highly
recommended step because the retention time of metabolites can
shift slightly, especially when measuring many samples.

MetaboliteDetector provides the RI-Calibration Wizard,
which guides through the calculation of retention indices and
ion-chromatographic deconvolution. Measured n-alkanes need to
be selected from the reference spectra library (Fig. 3, left) and after
detection of the alkanes, the calibration table lists the detected
compounds, detected retention time and the corresponding reten-
tion index provided with the library (Fig. 3, right). At this point it is
crucial to validate that the peak-alkane assignment is correct and
needs to be corrected otherwise. In the next step, deconvolution
settings for compound detection need to be defined and should be
applied according to your experimental setup (see Note 2).

After deconvolution and retention index calculation, the data is
ready to be further analyzed in MetaboliteDetector or MIA. Since
this step is crucial for all downstream analyses, it is highly recom-
mended to verify the quality of the results of the deconvolution and
RI calibration process (see Note 4).
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Fig. 2 The netCDF import dialog. Files for import can be selected directly (1) or
searched for recursively in a folder (2). The selected files will appear on the left
(3). Optionally, a different output directory can be selected (4)

Fig. 3 RI-Calibration Wizard configuration. Left: Selection of alkanes from the library. Right: Calibration table
with alkanes, detected retention times and corresponding retention index from the library
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3.4 Similarity

Analysis

For the interpretation of nontargeted metabolomics data, it is of
advantage to first set (known) parts of the obtained results into a
biological context and map unidentified labeled metabolites based
on MID similarity to this established frame. In this regard, MIA
provides networks based on MID similarities and can highlight
variability of MIDs and thus underlying metabolic fluxes between
different conditions (e.g., control and treatment) within this
network.

A MIA analysis starts with the import of labeled and unlabeled
chromatograms preprocessed by MetaboliteDetector (see previous
paragraph) for every experiment (Fig. 4a). Next, some settings
need to be defined: For the compound identification settings, the
RI Tolerance setting is the maximum retention index tolerance for

Fig. 4 MIA option tabs. Left: In the datasets tab new experiments can be added
(a), removed or saved (b). Additionally, all experiments are listed with the
corresponding color and number of labeled and unlabeled metabolites. Right:
In the graph options the layout engine (e), distance metric (c), and normalization
(d) can be selected. Using the distance cutoff slider (f) the minimum MID
similarity distance for node connection can be adjusted. The variability slider
(g) can be used to only show connections for nodes with MID variation between
experiments. If Hide others is checked (h), all other nodes will not be shown
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library matching (smaller values require stricter matching), the
Compound identification cutoff score is the minimum score needed
for compound identification (1 � perfect match, 0 � no match)
and Show top n hits is the number of library matches for potential
compound identification and name assignment. In the label detec-
tion section, Maximum fragment deviation is the maximum devia-
tion of the summed MIs from 1.0. The summed fractions of all
mass isotopomers should be 1.0 because each MI is typically given
in percental values, Minimum number of labeled fragments is the
minimum number of fragments per compound which need to be
detected as labeled in order to get recognized as labeled com-
pound, Required amount of isotopic enrichment is the minimum
amount of labeling needed, Minimum R2 is the minimum coeffi-
cient of determination (R2) from MID determination, Minimum
M0 abd. is the minimum abundance of the unlabeled mass isoto-
pomer (M0) needed and Ignore compounds with M_n|with n > . . . is
the number of mass isotopomers from which a compound gets
excluded. Additionally the Gap penalty for the Needleman-
Wunsch-Scoring for MID alignment and the initial Distance cutoff
for graph edges can be defined. It is highly advisable to select the
same settings for every experiment to achieve better comparability
across experiments. The settings for every experiment can be saved
in XML format for future runs of the program (Fig. 4b). After
starting the isotope detection and MID profiling, every labeled
metabolite will be represented by a node depicting the MID in
the main window of MIA. In addition, all labeled metabolites will
be listed in the left side of the window. Up till now the complete
procedure is nontargeted and does not require any structural infor-
mation on the detected metabolites. However, a compound library
for identification can be applied at this stage to bring parts of the
data into a biochemical context.

With the experiments and identifications in place, various
options for graph layout, distance calculation (Fig. 4c) and normal-
ization (Fig. 4d) can be applied. In most cases the default values
(Canberra distance and normalization by sum) should be sufficient.
The layout engine defines the way the nodes will be arranged in the
network and should be selected based on the amount of nodes.
While the “dot” layout is a general purpose engine, “circo” of
“twopi” are suitable for fewer connected nodes and small clusters
(Fig. 4e). The distance cutoff sets the minimum similarity that two
nodes need to have to get connected (Fig. 4f). While increasing this
cutoff, the nodes will start to rearrange and connect to each other
based on their MID similarities. The edge color indicates the
corresponding experiment. Unconnected metabolites can be
hidden from the visualization through the options menu.
Connected metabolites are similar based on their MIDs and in
many cases be metabolically related.
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3.5 Variability

Analysis

Metabolism is a highly dynamic but regulated system and can
switch to different states depending on the environmental condi-
tions. In many cases, changes in metabolic fluxes are not directly
linked to changes of the metabolome or metabolite levels and are
thus hidden in metabolomics analyses. However, stable isotope
labeling has the power to reveal changes in underlying fluxes and
for this purpose, MIA provides an MID variability analysis to detect
flux changes between experiments. Using the previously created
graph of metabolites with similar MIDs, the variation cutoff slider
can be increased slowly (Fig. 4g). While increasing the cutoff,
nodes will start to disconnect, if the variability between experiments
does not match the given cutoff. Additionally, if Hide others
(Fig. 4h) is enabled, the nodes will not only disconnect, but also
disappear from the graph. All remaining connected nodes will have
at least the given MID variation between experiments as defined by
the cutoff slider.

3.6 Library Export All detected MIDs can be exported in CSV format for further
processing with other programs. Additionally, MIA can generate
and export a MetaboliteDetector library containing all detected
labeled metabolites. This library can then be opened in Metaboli-
teDetector to perform additional sensitive profiling such as quanti-
fication or a more sensitive MID determination in a targeted
manner (Subheadings 3.7 and 3.8).

3.7 Targeted Search

for Quantification

While MIA is a powerful tool to detect labeling in metabolites and
create networks based on MID similarity, it lacks features for
metabolite quantification and statistical analysis. Furthermore,
MIAs sensitivity for MID determination is lower due to the non-
targeted approach. To overcome these shortcomings, it is possible
to apply MetaboliteDetector and perform a targeted search for all
metabolites detected by MIA. Because MIA provides exact mass
spectra and retention times for all revealed known and unknown
labeled compounds, these metabolites can be further profiled in
MetaboliteDetector even if their structure is not known.

To obtain semiquantitative metabolite levels for MIA com-
pounds with MetaboliteDetector, the metabolite library exported
by MIA can be used (Tools—Batch quantification. . .). The batch
quantification wizard will guide through the settings (Fig. 5). First,
the files need to be selected as replicate groups (see Note 3). Next,
as analysis type, Targeted Analysis needs to be selected, because only
the previously detected metabolites from MIA are of interest for
this analysis. The last panel of the quantification wizard contains
different settings:

l Ref. library refers, in this case, to the library of labeled com-
pound spectra supplied by MIA.

l The retention index difference (ΔRI) is the maximum difference
of retention indices of two compounds to get matched. A small

24 Christian-Alexander Dudek et al.



value like 5.0 should be appropriate, but highly depends on the
calibration quality (see Note 4).

l The identification score (Req. Score) defines the strictness of
mapping to compounds together. Higher values require higher
similarities in terms of spectrum and retention time to be
matched. To avoid matching of compound with different struc-
tures, this value should be set to a higher value (e.g., 0.9).

After finalization of calculation, a new tab (Batch Quantifica-
tion) appears in the bottom of the window and contains the quan-
tification results. Each row represents one of the metabolites
previously detected with MIA and is named accordingly. The data

can be normalized by the summed sample signal ð 1PÞ or by the peak
integral of a selected metabolite, in most cases an internal standard

ð1AÞ. The statistics subtab presents the mean (and normalized if

selected previously) intensities of the replicates. Additionally, the
p-value (ANOVA) is calculated as a measurement for the statistical
difference between the groups. Selected rows of the statistics sub-
tab can also be displayed as a box plot. From the quantification
subtab and the statistics subtab, the data can be exported in CSV
format.

3.8 Targeted Search

for MIDs

Another option is to determineMIDs for all MIA compounds. This
can be useful if MIDs could not be detected for some conditions
within MIA or if additional chromatograms should be processed.
However, for classical MID determination the sum formula needs

Fig. 5 Batch quantification wizard. The files for replicates (left) can either be select manually, using the plus
button, or alternatively using the lightbulb button (see Note 3) for regular expression based replicate selection.
The settings window (right) contains the settings for metabolite identification and additional compound
filtering
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to be supplied for each target compound to correct for natural
occurring isotopes. Since this information is not available due to
the nontargeted character of the MIA analysis, MetaboliteDetector
implements an algorithm to correct MIDs for natural isotopes just
based on the unlabeled compound spectrum that was provided at
the beginning of the MIA analysis [12].

To perform such an analysis, the library exported byMIA needs
to be loaded first (Tools—Settings...—Identification—Compound
Lib). Then, the MID wizard (Tools—MID Wizard...) has to be
opened, which will guide through all required settings (Fig. 6). In
the analysis & method panel, Corrected using library needs to be
selected, because sum formulas for compounds are not available in
this case (see above). Next, all files from the tracer experiment need
to be selected as replicate groups. The last section of the MID
wizard contains the same settings as described in Subheading 3.7.
Here it is important to select the previously created library contain-
ing the unlabeled spectra from MIA.

The MIDs tab will appear in the bottom of the window when
the analysis is finished. In the MIDs sub-tab, selected metabolite
MIDs can be visualized as bar-plots. Additionally, the confidence
interval (CI) and R2 of the MID determination for every file is
shown for quality control. The MID results should be revised
carefully, as the nontargeted approach may return wrong ions, (see
Note 5). The statistics subtab shows the means and standard error
of the replicates. The MIDs can be exported in CSV format from
the MID sub-tab. The data from both tabs will be exported in one
file with different formats. This should be kept in mind for further
automatic data processing.

Fig. 6 The MID wizard. The files for replicates (left) can either be select manually, using the plus button, or
alternatively using the lightbulb button (see Note 3) for regular expression based replicate selection. In the
analysis and methods section (right) it is important to select “Corrected using library” to correct for natural
isotopes abundance using unlabeled reference spectra
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3.9 Biological

Interpretation

In the previous sections, different data have been created, that
represent different aspects of the metabolic state of the analyzed
sample. On one hand, the metabolite levels represent the total
abundances of all (nontargeted) detected metabolites. On the
other hand, the MID data represent the flux changes between
metabolites, which can either correlate with the metabolite levels,
or can even reveal flux changes, which are not visible in the meta-
bolome dataset alone. Additionally, MIA provides tools to create
metabolic connections based on MID similarity and variability
analysis between different experiments. MID similarity based net-
works can reveal metabolite connections between known and
unknown metabolites. The variability analysis can highlight con-
nections where metabolic fluxes change between experiments or on
the other side, show parts of a metabolic network which do not
change between different experiments. Bringing these data into
known metabolic context can reveal new metabolic interconnec-
tions and thus provide a better understanding of the observed
phenotype.

4 Notes

1. MSL library import and manipulation.
The MSL file format is a text format for mass spectrometric

data, which can be imported into MetaboliteDetector using
the library import function. The selected library in MSL will
get scanned and the number of metabolites in the file will be
displayed prior conversion. After the import, a library file in
LBR format will be created. After conversion the new library
can be automatically loaded or opened later through the set-
tings dialog.

Libraries in MetaboliteDetector format can be opened
within MetaboliteDetector using the Library Editor. All library
compound data, like spectrum, meta data, ions for quantifica-
tion and MID determination can be reviewed and revised if
needed (Fig. 7).

2. Deconvolution settings.
Ion-chromatographic deconvolution is essential for the

detection and separation of mass spectra of coeluting metabo-
lites. Therefore, the adjustment of the deconvolution settings is
of high importance. The specific value depends on the GCMS
instrument used for measurement. Below is a brief description
of the parameters.

(a) Peak threshold must be exceeded by the first derivative of
the peak function. Peaks below the threshold will be dis-
carded. A lower value increases the sensitivity.
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(b) Minimum peak height above the baseline. Peaks below this
value will be discarded. A lower value increases the
sensitivity.

(c) Bins/scan: The number of bins created for every scan
before deconvolution. A lower value decreases the ability
to separate coeluting compounds, a too high value falsely
splits compounds. Normally a value of 10 should be opti-
mal. For detailed description see Stein et al. 1999 [21].

(d) Deconvolution width is the maximum number of scans by
which a chromatographic peak can differ to still be con-
sidered to belong to the same mass spectrum. If the value
is too low, coeluting compounds will not be separated, if
the value is too high, peaks belonging to one compound
will be falsely split in two or more.

(e) Required intensity (% of base peak) for peak detection.
Peaks assigned to a compound below this value will be
discarded. Should be 0 in most cases.

Fig. 7 The library editor window of MetaboliteDetector. All library compounds are
listed on the left. On the right, the stored data, including name, retention time,
retention index, ions for quantification and MID determination and the compound
spectrum, can be reviewed and revised
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(f) Required number of peaks for a metabolite to get detected.
Deconvoluted metabolite spectra with less ions will not be
displayed as detected metabolite.

Table 1 lists different settings for some GCMS instru-
ments as reference. Additional fine tuning of the para-
meters is needed depending of the measured samples.
However, the settings are fairly robust when using the
same instrument and sample type.

3. Replicate file grouping.
Defining replicate groups in MetaboliteDetector can be

tedious especially for large datasets. MetaboliteDetector pro-
vides a smart replicate group function (lightbulb symbol in
Batch quantification or MID wizard) which is based on regular
expressions. If replicate file names were consecutively num-
bered, the smart selection function automatically defines repli-
cate groups for further processing and subsequent statistical
analysis. For example, if the replicates were named like
“expA_1”, “expA_2”, . . .and “expB_1”, “expB_2”, the regular
expression “(.∗)_”, will group all corresponding files in group
“expA” and “expB,” respectively.

4. Spectrum quality verification.
The deconvolution and retention index calibration have a

high impact on quality of the extracted chromatograms and
matching of metabolites across samples. Therefore, it is impor-
tant to revise the results of Subheading 3.3 before proceeding.
The first step is to evaluate the quality of the total ion chro-
matogram. Overloaded peaks that exceed the detector limit
have a negative impact on the retention time of following
compounds and will not be deconvoluted correctly. If too
many peaks are overloaded, it may be advisable to repeat the
measurement with diluted extracts or a higher split.

Retention indices of the same metabolite should not differ
too much between different samples. In some cases the ΔRI can
be adjusted to allow more RI deviation, but a small RI differ-
ence is preferable. If the retention indices differ between sam-
ples, the retention index calibration should be repeated.

Table 1
Deconvolution settings for different GCMS instruments

Instrument Peak threshold Min. peak height Bin/Scan Deconvolution width

Agilent 6890 GC 2–10 2–10 10 7.0–8.0

Jeol AccuTOF 5–20 5–20 10 1.0

Trace 5–100 5–20 10 3.0

LECO GC/TOF 20–50 20–50 1 40.0
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Especially the automatic detection of the alkanes should be
revised carefully.

The single ion chromatogram in MetaboliteDetector can
be used to quality control the results of the deconvolution. The
different fragments (ions) of a detected metabolite should
show the characteristic pattern with decreasing intensities for
the mass isotopomers (Fig. 8), which depend on the natural
abundance of isotopes (mainly 13C) and the number of atoms.
Peaks which do differ from this decreasing pattern may origi-
nate from overlapping signals which have not been correctly
deconvoluted. While these artifacts cannot be excluded
completely, the deconvolution settings should be adjusted to
minimize those errors, especially for identified metabolites and
metabolites of interest.

5. MID quality verification.
The nontargeted approach will calculate MIDs for every

ion which has been previously detected as labeled. This may
lead to many different ions for one metabolite with different
MID results. Due to fragmentation during the ionization pro-
cess, the number of detected isotopomers can vary between the
different ions. Here it is important to evaluate if the number of
mass isotopomers matches with the detected metabolite. For
example, with 13C tracer, a metabolite with six detected mass
isotopomers, which was been identified as lactic acid (maxi-
mum 3 labeled carbon atoms) does not match. Here it is

Fig. 8 Spectrum of two fragments with mass 128 (upper spectrum) and 246 (lower spectrum) of an unlabeled
metabolite. The upper spectrum has an unexpected high peak at M + 5 (133) isotopomer, which suggests an
artifact from insufficient deconvolution. In contrast, the lower spectrum has decreasing intensities for the
mass isotopomers, as expected from an unlabeled sample
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possible, that only one particular ion was detected with the
wrong amount of mass isotopomers. In this case it would be
possible to exclude that ion from the generated library using
MetaboliteDetectors library editor. If all ions are consistent and
do not match the expected number of mass isotopomers, the
identification may be wrong.

Another critical point is to evaluate the MID pattern based
on knowledge of biochemical pathways. Using a specifically
labeled tracer, one would expect a specific pattern for metabo-
lites downstream of the tracer. These expectations should be
evaluated with corresponding metabolites which have been
identified.
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Chapter 3

Liquid Chromatography Methods for Separation of Polar
and Charged Intracellular Metabolites for 13C Metabolic
Flux Analysis

Damini Jaiswal, Anjali Mittal, Deepak Nagrath, and Pramod P. Wangikar

Abstract

Accurate quantification of mass isotopolog distribution (MID) of intracellular metabolites is a key require-
ment for 13C metabolic flux analysis (13C–MFA). Liquid chromatography coupled with mass spectrometry
(LC/MS) has emerged as a frontrunner technique that combines two orthogonal separation strategies.
While metabolomics requires separation of monoisotopic peaks, 13C-MFA imposes additional demands for
chromatographic separation as isotopologs of metabolites significantly add to the number of analytes. In
this protocol chapter, we discuss two liquid chromatography methods, namely, reverse phase ion-pairing
and hydrophilic interaction chromatography (HILIC) that together can separate a wide variety of meta-
bolites that are typically used for 13C metabolic flux analysis.

Key words Sugar phosphates, Nucleotides, Reverse phase ion-pairing, HILIC, Metabolic flux analysis

1 Introduction

Metabolomics is an emerging area of omics that focuses on analysis
of all the known and unknown metabolites in a biological sample
[1]. Metabolome being the closest to the observed phenotype,
studying the metabolome-wide alterations give a comprehensive
overview of cellular metabolism under different physiological con-
ditions. Unlike DNA, RNA, and proteins that are comprised of
relatively smaller number of building blocks, the metabolites are
much more diverse in their structure. With 18,505 small molecules
in KEGG compound database presently and over 0.2 million meta-
bolites in the plant kingdom, it is great challenge to develop analyt-
ical methods for identification and quantification of all of the
metabolites [2]. From a biotechnological perspective, a targeted
set of metabolites involved in central carbon metabolism are rou-
tinely studied, which serve as important precursors for the produc-
tion of biofuel(s) or biochemical(s). Studies on the alteration in
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intracellular levels of these central metabolites or the carbon fluxes
for the associated reactions pave the path for the rational design
of microbial strains for the production of compounds of interest
[3–5].

The key metabolites and cofactors involved in central carbon
metabolism include sugar phosphates, phosphocarboxylic acid, car-
boxylic acids, ketoacids, amino acids, nucleotides, and nucleotide
sugars. The intracellular concentrations of these metabolites lie in
micromolar range [6]. Further, polarity and hydrophobicity of
these compounds vary over a wide range, which necessitates devel-
opment of different chromatographic methods for their separation.
Due to the low in vivo concentrations and polar nature of these
metabolites, liquid chromatography coupled to mass spectrometry
(LC/MS) is the technique of choice for their detection
[7, 8]. LC/MS provides sufficient chromatographic separation of
metabolites and the necessary mass resolution to detect and quan-
tify isotopologs of metabolites labeled with 13C or 15N tracers used
for metabolic flux analysis.

In this chapter, we provide detailed protocol of the two widely
used liquid chromatography methods, namely, reverse phase ion–
paring and hydrophilic interaction chromatography (HILIC) cou-
pled to ESI-MS, for separation of the polar and charged intracellu-
lar metabolites that are central to 13C metabolic flux analysis (13C-
MFA) [9, 10]. We do not aim to provide a comprehensive survey of
the various liquid chromatography methods used in metabolomics
for which some exhaustive reports are already available [7, 8,
11]. Based on the available literature and drawing from our own
experience, we discuss the suitability of these two methods in terms
of detection, separation, and quantitation of different categories of
central metabolites and cofactors and their isotopologs. While each
of the two methods allows quantification a number of cellular
metabolites, there are some shortcomings of each method that
are overcome by the other. Therefore, we propose that analysis of
each sample with two different chromatographic methods will
provide sufficient coverage of metabolites desirable for 13C-MFA
[8]. The chromatographic run time adds significantly to the overall
cost of LC/MS analysis and hence a shorter chromatographic
method that provides sufficient peak resolution between analytes
is preferred. In some cases, the chromatographic separation of
certain analytes cannot be achieved using single method even
after making a longer run time. In this chapter, we describe the
reverse phase ion-pairing and HILIC methods adapted from litera-
ture [7, 12] and optimized in-house for chromatographic run times
of 25–30 min. Thus, these two chromatographic runs occupy lesser
LC/MS instrument time yet allow quantification of greater num-
ber of metabolites than a single method that may have a longer run
time. Further, we provide examples of coeluting peaks of con-
founding masses for samples labeled with 13C where no mass
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conflict is observed for monoisotopic peaks. We advise that users
should watch out for such mass conflicts while quantifiying MIDs
for 13C-MFA.

2 Materials

2.1 Metabolism

Quenching

and Metabolite

Extraction

1. The cell culture of cyanobacteria Synechococcus sp. PCC 7002
and Synechococcus elongatus PCC 11801 at metabolic steady
state.

2. Fast filtration apparatus equipped with a vacuum pump and
nylon membrane filters (0.8 μm, Whatman).

3. Metabolite extraction solvents: 80:20, v/v methanol–water,
0.2 M ammonium hydroxide solution in deionized water and
chloroform. Metabolite extraction protocol was adapted from
our previous study [13–15].

4. Vortexer.

5. Centrifuge tubes (5 mL and 15 mL).

6. Benchtop cooling centrifuge.

7. Speed vacuum concentrator or lyophilizer with a cold trap for
drying the metabolite extract.

8. �80 �C deep freezer to store the metabolite extraction until
LC-MS analysis.

2.2 13C Labeled

Dataset

Our previously reported data from the 13C labeling experiment
performed Synechococcus sp. PCC 7002 is used in the study as a
case study [14]. A sample from Synechococcus elongatus PCC 11801
with 10 min 13C label incorporation is also used.

2.3 LCMS Analysis 1. A Triple TOF 5600+ mass spectrometer (Sciex, Framingham,
MA) interfaced with Shimadzu ultrahigh-performance-liquid
chromatography (UPLC) system (Shimadzu, Nexera
LC-30 AD, Singapore) and an electrospray ionization (ESI)
source.

2. Synergi Hydro-RP LC column 150 � 2 mm, 4 μm particle size
(Phenomenex Inc., Torrance, CA).

3. SeQuant® ZIC®-pHILIC 100 � 2.1 mm, 5 μm particle size
(EMD Millipore, Billerica, MA, USA).

4. XBridge BEH Amide column (150 mm � 2.1 mm, 2.5 mm
particle size, Waters, Milford, MA, USA).

5. Buffers and Additives: LCMS grade water, ethanol, acetoni-
trile, tributylamine, acetic acid, ammonium carbonate, ammo-
nium bicarbonate, ammonium hydroxide, and formic acid.
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6. LCMS grade metabolite standards of amino acids, nucleotides,
sugar phosphates, organic acids, nucleotide sugars were pur-
chased from Sigma-Aldrich (St. Louis, MO). The equal
amount of standard solutions was injected to compare the
reverse phase ion-pairing and HILIC method.

7. Vials, gases, guard columns, 4 mm nylon syringe filters (Phe-
nomenex Inc., Torrance, CA), and other consumables asso-
ciated with LCMS.

2.4 LCMS Data

Analysis

1. PeakView 2.0 and MasterView 1.0 software (Sciex, Framing-
ham, MA) for manual examination of the chromatographic
peak quality and baseline separation.

3 Methods

3.1 Sample

Preparation

The analysis of metabolites from cells involves four key steps:

1. Quenching of cellular metabolism.
The intracellular metabolites turn over at fast rates. To

capture a snapshot of cellular metabolism, it is important to
quench the metabolism effectively. This is especially important
while performing a dynamic 13C labeling experiment. Centri-
fugation followed by quenching takes up a significant amount
of time to pellet cells and is not advisable in the context of
nonstationary 13C-MFA. Among the various methods
employed to quench the metabolism, fast filtration followed
by quenching in cold solvent (e.g., methanol) is the most
effective method in our experience [16]. Rapid mixing of the
cell culture with the cold extraction solvent has also been
widely used [17], although we find leaching of metabolites to
be a key challenge with this technique. Further, acid or heat
denaturation has been reported for the analysis of the metabo-
lites that are heat/acid stable [18].

2. Extraction or release of metabolites from cells.
The release of metabolites from the cells requires the break-

ing of cells and extraction into solvents. Single phase solvent
mixtures of acetonitrile, methanol and water or methanol and
water have been widely reported for extraction of polar meta-
bolites [8]. For photosynthetic organisms, we find a biphasic
solvent system to be quite effective [13]. In the solvent mixture
comprising of chloroform, methanol and water, the polar and
charged metabolites get extracted into the aqueous-rich phase,
while the hydrophobic compounds including the pigments
partition into the chloroform-rich phase. This offers partial
sample cleanup during extraction itself. Obtaining colorless
aqueous phase and cell debris with greenish chloroform phase
is a hallmark of effective metabolite extraction [13]. Upon

36 Damini Jaiswal et al.



centrifugation, the cell debris typically floats at the interface of
the two solvents. Extraction of negatively charged metabolites
such as sugar phosphates can be further improved by adding a
weak base such as ammonium hydroxide [13].

3. Storage of metabolites to prevent degradation before analysis.
Appropriate care should be taken to prevent degradation of

polar metabolites. The aqueous phase containing the extracted
metabolites should be lyophilized and stored at �80 �C deep
freezer until ready for LC/MS analysis. We find that storage of
up to 2 months does not adversely affect the peak quality.
However, the compounds that are redox active should be
analyzed quickly [8].

4. Resuspension of metabolite extract in the appropriate buffer
before analysis.

Reconstitution of the metabolite extract into a suitable
buffer is important for two reasons, that is, to completely
dissolve the metabolites before LCMS analysis and to obtain
reliable retention times for each injection. For the chro-
matographic methods described here, reverse phase ion pairing
and HILIC we recommend reconstitution of the metabolite
extract in 50:50 methanol–water and 80:20 acetonitrile–water,
respectively. In case of HILIC method, the sample is typically
reconstituted in the solvent mixture that is used at t ¼ 0 min in
the gradient program for elution. As separation on HILIC
column involves different kinds of interaction a minor change
in the buffer composition can result in dramatic effects on
reproducibility [11].

3.2 Reverse Phase

Ion-Pairing

Chromatography

Reverse phase (RP) chromatography involves a hydrophobic sta-
tionary phase and a polar mobile phase. The hydrophobic analytes
are adsorbed on the stationary phase through hydrophobic interac-
tion. In a gradient program of chromatography, concentration of
the organic solvent is gradually increased resulting in the elution of
bound analytes. Polar analytes are eluted first followed by the
nonpolar ones. Reverse phase chromatography has been success-
fully applied for the separation of nonpolar metabolites in positive
ion mode [8, 19]. However, this chromatography technique is not
effective in retaining highly polar metabolites like sugar phos-
phates, and nucleotides as these metabolites tend to elute in the
void volume of the column [7, 8]. Therefore, taking into consider-
ation the anionic nature of these analytes, anion exchange chroma-
tography (AEC) has been reported for the separation of these polar
and negatively charged metabolites [7]. The utilization of solvents
with high ionic strength to elute the analytes from the anion
exchange column results in the deposition of these nonvolatile
salts at the electrospray ionization (ESI) source [7]. Moreover,
the multiple isomeric forms of the phosphorylated sugars that are
key for isotopic nonstationary 13C-MFA were not resolved using
the AEC.
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The use of ion-pairing pairing reagents led to significant
improvement in the retention and separation of these anionic
metabolites on a reverse phase column [20]. Tetraalkylammonium
salts were initially tested to separate the anionic compounds. How-
ever, these salts are nonvolatile and incompatible with ESI-MS.
Subsequently, a volatile ion-pairing reagent, tributylamine, was
deployed to separate a wide variety of negatively charged com-
pounds of interest [7, 8, 21–23]. Since then, the reverse phase
ion-pair chromatography chromatographic technique has been
widely used for separation of negatively charged metabolites
under negative ion mode. The use of tributylamine is not recom-
mended under positive ion mode due to strong ion suppression.

In this work, we discuss separation of a number of intracellular
metabolites from the extracts of cyanobacteria Synechococcus sp.
PCC 7002 and Synechococcus elongatus PCC 11801 [24] on a
C18 reverse phase column using tributylamine as an ion-pairing
reagent. We used Synergi™ 4 μm Hydro-RP LC column
150 � 2 mm (Phenomenex Inc., Torrance, CA) for chro-
matographic separation of intracellular metabolites using a gradient
elution method consisting of eluents 10 mM tributylamine
+15 mM acetic acid in water (pH ¼ 4.95) [7] (buffer A) and
100%Methanol (buffer B). The gradient method used is as follows:
0% B (0.01 min), 0% B (2 min), 35% B (8 min), 35% B (10.5 min),
90% B (15.50 min), 90% B (20.5 min), 0% B (22 min), and 0% B
(30 min). The column temperature and flow rates were 25 �C and
0.3 mL/min, respectively. A Triple TOF 5600+ mass spectrometer
(SCIEX, Framingham, MA) interfaced with Shimadzu Ultra Per-
formance- Liquid Chromatography (UPLC) system (Shimadzu,
Nexera LC-30 AD, Singapore) equipped with a binary pump,
degasser, column oven, and autosampler was used for the analysis.
The curtain gas, gas 1, and gas 2 were kept at 35 psi, 40 psi, and
40 psi respectively. The ion source temperature was 450 �C and the
voltage was �4500 V. The data was acquired using information
dependent acquisition (IDA) method with MS2 scan triggered for
the 10 most abundant precursors in each cycle, cycle time 1 s.

3.3 Hydrophilic

Interaction

Chromatography

(HILIC)

HILIC involves a polar stationary phase and a low polarity water-
miscible organic solvent and water as the eluents [25]. The polar
analytes are retained on the column and are eluted by a gradual
increase in the concentration of water. Although the nature of
stationary and mobile phases used in HILIC is similar to normal
phase chromatography, the separation mechanism in HILIC is
much more complex and may include partitioning, adsorption,
hydrogen donor interaction, or electrostatic interaction
[11]. It combines the characteristics of normal phase, reverse
phase and ion-exchange chromatography [11]. There are already
some good reports describing the separation mechanism in HILIC
[8, 11, 25, 26].
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HILIC uses organic solvents that improve the ionization pro-
cess in ESI and does not require the use of expensive ion-pairing
reagents. The selectivity of separation using HILIC can be dramat-
ically changed by the selection of different stationary and mobile
phases [11, 27]. Here, we discuss the separation of metabolites
from cyanobacterial extracts using a zwitterionic column,
SeQuant® ZIC®-pHILIC (EMD Millipore, Billerica, MA, USA)
with sulfobetaine functional group. Unlike traditional silica sup-
port, ZIC-pHILIC has polymeric support. Because of its zwitter-
ionic nature, it can separate a wide variety of compounds like acids,
bases, anions, cations, carbohydrates, metabolites, peptides, and
protein digests [11, 27, 28]. The mobile phase consisted of
20 mM ammonium carbonate in water adjusted to pH ¼ 8.0 with
formic acid (solvent A) and acetonitrile (solvent B). The gradient
program is as follows: 80% B (0.01 min), 80% B (1.5 min), 15% B
(14 min), 5% B (17 min), 5% B (21 min), 80% B (23 min), 80% B
(29 min). The pH of buffer A plays an important role in ionization
and separation of analytes in this method. The flow rate was main-
tained at 0.15 mL/min. The other instrument parameters and data
acquisition method were as described above.

3.4 Comparison

Between Reverse

Phase Ion-Pairing

Chromatography

and HILIC

Chromatography

1. Sugar phosphates and isomers.
The phosphorylated sugar compounds exist in multiple

isomeric forms inside the cells. For example, glucose-6-phos-
phate (G6P) and fructose-6-phosphate (F6P) are important
intermediates in cellular metabolism. These two isomers appear
as separate peaks when ion-pairing chromatography is used but
do not get resolved using HILIC method (Fig. 1a and
Table 1). A similar trend is observed for ribose-5-phosphate
(R5P) and ribulose-5-phosphate that are separated using the
ion-pairing method but not the HILIC method (Fig. 1b and
Table 1).

2. Nucleotide, nucleotide sugars, and Acyl CoA.
The nucleotide, nucleotide sugars, and acyl CoAs are well

retained and elute as well-defined peaks in both ion-pairing and
HILIC methods. For example, ADP, ATP, UMP, NADPH,
UDP-glucose, and NADPH are compared for their retention
in ion-pairing and HILIC method as shown in Fig. 2. How-
ever, we observe that the peaks for these compounds are in
general sharper in the ion-pairing method compared to the
HILIC method.

3. Amino acids.
Amino acids are a class of compounds with varying polarity,

hydrophobicity, and hydrophilicity. We compared the
ion-pairing and HILIC method for their retention and separa-
tion capability of amino acids (Table 2 and Fig. 3). We observed
that the negatively charged amino acids like glutamate and
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aspartate are well retained both the methods, although the
retention of these amino acids was greater in the HILIC
method (Table 2 and Fig. 3). The polar-positively charged
amino acids like arginine, histidine, lysine and polar-uncharged
amino acids like serine, threonine, asparagine, and glutamine
elute early on reverse phase column but are well retained on the
HILIC column (Table 2 and Fig. 3). For nonpolar and
uncharged amino acids we observed differential retention
behavior. The amino acids like glycine, alanine, proline, and
valine elute early in the reverse phase method but elute as a
well-defined peak in the HILIC method (Table 2). However,
other nonpolar amino acids like leucine, isoleucine, and methi-
onine with larger carbon backbone (and thus more hydropho-
bic) show slightly better retention on the reverse phase column,
although the retention of these in HILIC column was far better
(Table 2). The aromatic amino acids like phenylalanine, tryp-
tophan, and tyrosine showed much better retention in the
reverse phase column compared to other nonpolar uncharged
amino acids (Table 2). This might be due to their heavier ring

Fig. 1 Comparison between the reverse phase ion-pairing and HILIC methods for peak resolving ability of
isomeric compounds like glucose-6-phosphate and fructose-6-phosphate (a) and ribose-5-phosphate and
ribulose-5-phosphate (b)
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structure allowing strong hydrophobic interaction even
though the net charge on them in zero. These amino acids
are also well retained in the HILIC column.

4. Carboxylic acids, phosphocarboxylic acids, and keto acids.
The carboxylic acids like succinic, citric, fumaric, and malic

acid, the phosphocarboxylic acids like 3-phosphoglycerate and
phosphoenolpyruvate as well as keto acids like alpha ketoglu-
taric and oxaloacetic acid all are well retained and elute as good
peak in both the methods (Table 1).

To summarize, we observed that compounds like sugar phos-
phates, nucleotides, nucleotide sugars, carboxylic acids, keto acids,
and acyl CoAs are well retained and separated by both ion-pairing
and HILIC methods. However, the reverse phase ion-pairing
method shows noticeable advantage in resolving the isomers of
sugar phosphates [7]. The polar and negatively charged amino

Fig. 2 Comparison between reverse phase ion-pairing and HILIC methods for retention and separation of
nucleotides (ADP, ATP, UMP, and NADPH), nucleotide sugar (UDP-glucose) and acyl CoA (acetyl CoA) from the
metabolite extract of the cyanobacterium, Synechococcus elongatus PCC 11801
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Table 2
Comparison between reverse phase ion pairing and HILIC chromatographic methods for retention and
separation of different groups of amino acids

Metabolite

Reverse phase ion pairing HILIC

RT
(min)

Max.
intensity

PW50

(min) S/N
RT
(min)

Max.
intensity

PW50

(min) S/N

Polar, positively charged

Arginine 1.02 3.06 � 103 0.07 3.13 � 102 12.1 5.90 � 104 0.32 1.10 � 104

Histidine 1.03 8.53 � 103 0.07 1.57 � 103 8.8 1.18 � 105 0.15 1.50 � 104

Lysine 1.24 4.97 � 104 0.08 8.04 � 103 11.8 4.01 � 104 0.32 7.30 � 103

Polar, negatively charged

Aspartate 4.21 3.71 � 104 0.14 6.94 � 103 9.77 7.60 � 104 0.24 1.64E+04

Glutamate 4.02 4.31 � 104 0.085 7.38 � 103 9.66 1.18 � 105 0.24 2.15 � 104

Polar, uncharged

Serine 1.18 9.82 � 103 0.07 2.15 � 103 9.47 1.37 � 104 0.23 4.06 � 103

Threonine 1.25 1.13 � 104 0.09 2.32 � 103 8.83 2.20 � 104 0.25 4.64 � 103

Asparagine 1.2 4.87 � 104 0.08 8.04 � 103 9.36 4.53 � 104 0.31 8.37 � 103

Glutamine 1.24 4.98 � 104 0.08 7.85 � 103 9.11 7.33 � 104 0.29 1.34 � 104

Nonpolar, uncharged

Glycine 1.18 3.01 � 103 0.09 6.73 � 102 9.25 2.99 � 103 0.19 8.12 � 102

Alanine 1.2 2.30 � 103 0.09 9.75 � 102 9.77 7.64 � 103 0.23 2.12 � 103

Proline 1.41 4.27 � 104 0.07 6.77 � 103 6.86 4.05 � 104 0.08 7.27 � 103

Valine 1.59 5.89 � 104 0.09 1.03 � 104 6.74 6.33 � 104 0.4 1.05 � 104

Leucine 2.8 7.67 � 104 0.13 1.25 � 104 5.05 9.40 � 104 0.2 1.69 � 104

Isoleucine 2.6 6.83 � 104 0.12 1.26 � 104 4.59 9.68 � 104 0.16 1.78 � 104

Methionine 2.19 4.01 � 104 0.10 7.97 � 103 5.72 5.11 � 104 0.59 8.64 � 103

Phenylalanine 7.2 1.98 � 105 0.10 3.35 � 104 4.11 2.55 � 105 0.24 3.93 � 104

Tyrosine 4.43 5.76 � 104 0.14 1.05 � 104 7.34 1.59 � 105 0.43 2.18 � 104

Tryptophan 9.6 1.09 � 105 0.12 1.67 � 104 5.23 2.57 � 105 0.36 4.00 � 104

The major differences in RT between the two methods are highlighted in bold. The m/z corresponds to the molecular

mass of the compound minus 1 (negative ion mode)
RT retention time

PW50 peak width at half height

S/N signal to noise ratio
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acids are retained in both the methods. The polar-positively
charged and uncharged amino acids are too polar to be retained
on the reverse phase column and are separated well in HILIC
method. The separation of nonpolar amino acids using the reverse
phase ion-pairing method depends on the size of the amino acids.
The peak width was generally greater in HILIC method compared
to the ion-pairing method (Tables 1 and 2). We suggest the use of
these two chromatographic methods as they complement each
other very well. The data missed using ion-pairing method can be
easily obtained by HILIC method and vice versa.

3.5 HILIC for NAD(+)

Metabolome

The NAD(+) metabolome is diverse and comprises metabolites
from different classes, including dinucleotides (NAD, nicotinic
acid adenine dinucleotide), nucleotides (nicotinamide mono
mononucleotide, nicotinic acid mononucleotide), nucleosides (nic-
otinamide, riboside, nicotinic acid riboside), and nucleobases (nic-
otinamide, nicotinic acid) [29]. The analysis of these highly
hydrophilic compounds by reverse-phase ion-chromatography has
low sensitivity. HILIC is a good option for the separation of the
metabolites from the NAD(+) metabolome. Amide columns can
retain highly polar compounds and provide good retention for
these metabolites [30].

Fig. 3 Comparison between the reverse phase ion-pairing and HILIC methods for retention and separation of
amino acids
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Here, we discuss the measurement of the NAD(+) metabolome
on an Agilent 1290 Infinity LC system couple to Agilent 6520
accurate-mass Q-TOF mass spectrometer. The chromatography is
performed on an XBridge BEH Amide column. Solvent A is 95:5
water–acetonitrile with 20 mM ammonium bicarbonate, pH
adjusted to 9.5 with ammonium hydroxide. Solvent B is 90:10
acetonitrile–water with 10 mM ammonium bicarbonate, pH
adjusted to 9.5 with ammonium hydroxide. The flow rate is
0.15 mL/min and the column temperature is adjusted to 25 �C.
The gradient is 0 min, 85% B; 2 min, 85% B; 3 min, 80% B; 5 min,
80% B; 6 min, 75% B; 7 min, 75% B; 8 min, 70% B; 9 min, 70% B;
10 min, 50% B; 12 min, 50% B; 13 min, 25% B; 16 min, 25% B;
18 min, 0% B; 23 min, 0% B; 24 min, 85% B; 25 min, 85% B, flow
rate increased to 0.6 mL/min; 33 min, 85% B, flow rate 0.6 mL/
min; 34 min, flow rate decreased to 0.15 mL/min, 35 min, flow
rate 0.15 mL/min [30]. The flow rate is increased after 25 min to
equilibrate the column in-between runs. The mass spectrometer is
set to positive ion mode. The retention time of the metabolites is
verified by running standards. Accurate mass and retention time are
used to identify the metabolites. The samples are prepared in 85:15
acetonitrile: water, 10 mM ammonium bicarbonate, pH adjusted to
9.5 with ammonium hydroxide. The fraction of water can be
increased if the dried sample has low solubility in 80% acetonitrile,
but the effect of changing the sample composition on the retention
time should be assessed by running standards.

3.6 Identification

of Chromatographic

Peak in the Sample

from LCMS Data

A given sample can have thousands of features representing the
metabolites, adducts, contaminants or ghost peaks coming from
the plastic wares used during the metabolite extraction. Therefore,
it is very necessary to identify the compounds of biological origin
that is desirable for a particular study. A simple way to identify
targeted set of metabolites in biological samples is to correlate the
m/z, RT and fragmentation pattern of pure standards injected with
the exactly same chromatographic method. Figure 4a shows the
example of the correlation ofm/z, RTand fragmentation pattern of
pure UDP-glucose standard and that present in the metabolite
extract of Synechococcus elongatus PCC 11801. Thus, reliable quan-
titation of UDP-glucose can be done from the sample. Figure 4b
shows another contrasting example where the m/z and the RT of
pure alpha ketoglutarate match to a feature in the sample. However,
the fragmentation pattern of the feature resembling alpha ketoglu-
tarate does not match with that of the standard. This implies it
could either an entirely different metabolite or coelution of alpha-
ketoglutarate and some other compound in the sample. Thus, as a
thumb rule, before quantifying the data of a particular metabolite
from the sample, we should make sure that them/z, RT as well the
fragmentation pattern are matching with that of the pure standard
analyte.
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The metabolites can also be putatively identified by matching
the m/z and fragmentation pattern in mass spectral databases like
METLIN [31], YMDM [32], HMDB [33], Chemspider [34], etc.
Metabolite identification tools like MS-DIAL [35] and MetDIA
[36] are also helpful. However, for 13C-MFA purpose, it is recom-
mended to confirm the identity of identified metabolites in samples
with at least two orthogonal methods.

3.7 Quality Check

for Mass Isotopolog

Quantitation

The reliable quantitation of the metabolites from any biological
sample can be performed by matching the m/z, RT, and fragmen-
tation pattern as exemplified in the earlier section. In case of 13C-
labeled sample the isotopologs of the metabolites are also identified
as distinct features or analytes. Thus, for reliable quantitation of
MID of metabolites, an additional criterion should be satisfied (see
Note 1). There should no mass conflict of another metabolite or its
isotopologs with any of the isotopologs of a particular metabolite,

Fig. 4 The XICs of UDP-glucose and alpha ketoglutarate obtained from pure standard injections overlaid with
that present in a sample of Synechococcus elongatus PCC 11801 (a) and (b) respectively. The m/z, RT and
fragmentation pattern of pure standard matches well with that of the sample for UDP-glucose (a) but not for
alpha-ketoglutarate, where the fragmentation pattern of the sample does not correlate with the pure standard
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the data for which is desirable for a study. Figure 5a, for example,
shows the XICs of all the isotopologs of 3-phosphoglycerate
(3C) in an unlabeled sample of Synechococcus sp. PCC 7002.
There is no mass conflict between 3-phosphoglycerate and its iso-
topologs with any other peak and follows a suggested natural
distribution of 13C carbon. Thus, the isotopologs of
3-phosphoglycerate in a 13C-labeled sample can be reliably quanti-
fied (Fig. 5b). We show another example where there are mass and
RT conflicts between the isotopologs of GDP-mannose (a C16
compound, m/z 604) and UDP-N-acetylglucosamine (a C17
compound, m/z 606) metabolites in S. elongatus PCC 11801.
Thus, the M + 0 of UDP-N-acetylglucosamine has a conflict with
the m/z of M + 2 isotopolog of GDP-Mannose (Fig. 5c). In a
10 min 13C-labeled sample of S. elongatus PCC 11801, significant
labeling is expected in mannose part of GDP-mannose forming
M + 6 (m/z 610) as the highest isotopolog. But the labeling
GDP-mannose is masked by the 13C-labeling of UDP-N-

Fig. 5 The mass isotopolog distribution (MID) of 3-phosphoglycerate in an unlabeled sample (a) and 10 min
after addition of NaH13CO3- (partially labeled sample) (b) of Synechococcus sp. PCC 7002 showing no mass
conflicts in isotopologs. The MID of GDP-mannose in an unlabeled sample (c) and a partially labeled sample
(d) of Synechococcus elongatus PCC 11801. The UDP-N-acetylglucosamine with m/z equal to M + 2
isotopolog of GDP-mannose and its other mass isotopologs shows RT and mass conflict with isotopologs of
GDP-mannose
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acetylglucosamine, the peak of which is more abundant than
GDP-mannose (Fig. 5c, d). Therefore, we see the dominant iso-
topologs as M + 4 (m/z 608) and M + 10 (m/z 614) of
GDP-mannose that corresponds to the labeling in the acetyl
(M + 2, m/z 608) and the N-acetyl glucosamine (M + 8, m/z
614) parts of UDP-N-acetylglucosamine (Fig. 5d). The above-
mentioned example signifies effect of mass and RT conflict in
quantitation of MIDs.

Even after the development of liquid chromatography techni-
ques that suitably resolves some 100 s of metabolites in a biological
sample, there could be conflict at isotopolog level as the 13C
labeling introduces mass shifts in the metabolites. Therefore, we
recommend that mass conflicts arising out of isotopologs need to
be checked before quantifying the 13C enrichment. This shows the
additional demands imposed on the chromatographic separation
for 13C MFA studies.

4 Note

1. The mass isotopolog distribution (MID) is a relative fractional
measurement of different isotopologs a metabolite can form
upon labeling with a 13C tracer. The number of isotopologs of
a metabolite depends on the number of carbons present in
it. For example, 3-phosphoglyceric acid that has three carbons
and monoisotopic m/z of 184.98 (M) can have three isotopo-
logs, 185.98 (M + 1), 186.98 (M + 2), and 187.98 (M + 3).
The number of isotopologs in a particular metabolite (M) with
n carbons will be n + 1.
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Chapter 4

Deuterium Tracing to Interrogate Compartment-Specific
NAD(P)H Metabolism in Cultured Mammalian Cells

Esther W. Lim, Seth J. Parker, and Christian M. Metallo

Abstract

Oxidation–reduction (redox) reactions are ubiquitous in biology and typically occur in specific subcellular
compartments. In cells, the electron transfer between molecules and organelles is commonly facilitated by
pyridine nucleotides such as nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide
adenine dinucleotide (NADH). While often taken for granted, these metabolic reactions are critically
important for maintaining redox homeostasis and biochemical potentials across membranes. While 13C
tracing and metabolic flux analysis (MFA) have emerged as powerful tools to study intracellular metabo-
lism, this approach is limited when applied to pathways catalyzed in multiple cellular compartments. To
address this issue, we and others have applied 2H (deuterium) tracers to observe transfer of labeled hydride
anions, which accompanies electron transfer. Furthermore, we have developed a reporter system for
indirectly quantifying NADPH enrichment in specific subcellular compartments. Here, we provide a
detailed description of 2H tracing applications and the interrogation of mitochondrial versus cytosolic
NAD(P)Hmetabolism in cultured mammalian cells. Specifically, we describe the generation of reporter cell
lines that express epitope-tagged R132H-IDH1 or R172K-IDH2 and produce (D)2-hydroxyglutarate in a
doxycycline-dependent manner. These tools and methods allow for quantitation of reducing equivalent
turnover rates, the directionality of pathways present in multiple compartments, and the estimation of
pathway contributions to NADPH pools.

Key words Deuterium, Redox metabolism, Stable isotope tracing, NADH, NADPH, Metabolite
extraction, Metabolic flux analysis, Mammalian cell culture, Isotopomer spectral analysis

1 Introduction

Oxidation–reduction (redox) reactions are central to the metabo-
lism of living organisms. In biological systems, most redox reac-
tions utilize cofactors to transfer electrons between metabolites and
across membranes. In turn, these reactions play critical roles in
supporting reductive biosynthesis, ATP regeneration, signal trans-
duction, and redox homeostasis (i.e., the maintenance of an appro-
priately reduced environment) [1].

Two important cofactors that facilitate these processes are the
pyridine nucleotides nicotinamide adenine dinucleotide (NAD)
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and nicotinamide adenine dinucleotide phosphate (NADP), which
can exist in oxidized (NAD+ or NADP+) or reduced (NADH or
NADPH) forms. The ratio of oxidized and reduced forms of these
cofactors (NAD+/NADH or NADP+/NADPH) is highly regu-
lated and varies within distinct cellular compartments [2, 3]. In
general, the NADH/NAD+ ratio is kept low in the mitochondria
(where respiration occurs) and high in the cytoplasm (where gly-
colysis is catalyzed). The abundance of NAD+ in the mitochondria
is consistent with its function as an electron acceptor in catabolic
pathways in the mitochondria. In contrast, the NADPH/NADP+
ratio is kept high in the cytosol to facilitate redox buffering by
glutathione and maintain a reduced environment beneficial for
cell growth [4–8]. Indeed, compartmentalization of cellular reac-
tions is an important feature of eukaryotes and cell metabolism in
general.

While 13C tracing and associated MFA studies have greatly
improved our understanding of metabolism in higher organisms
[9–13], including the de novo synthesis of pyridine nucleotides
[14, 15], several recent studies have leveraged the use of 2H tracers
to quantify NAD(P)H regeneration and turnover [16–20]. Since
electron transfer is accompanied by hydride (H�) ion transfer in
redox reactions, 2H (deuterium) tracers can be used to trace elec-
tron flows associated with NAD(P)H-dependent reactions
[21, 22]. Furthermore, the segregation of NAD(P)H pools and
isozymes within subcellular compartments adds an additional layer
of complexity to studying these pathways. Here we describe a
protocol that is effective for exploring the metabolic pathways
which fuel these compartment-specific redox reactions. Generally,
these approaches can be effectively applied to cultured mammalian
cells, including cancer cell lines and more functional, differentiated
cell types. We first provide an overview of some increasingly used
2H tracers and then describe the generation of reporter cell lines
and application of the approach in cancer cells.

1.1 Metabolic

Pathways

and Deuterium Tracing

1.1.1 Cytosolic NADH

Metabolism

[4-2H]glucose effectively traces NADH metabolism through deu-
terium atom transfer to NAD+ by glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) during glycolysis (Fig. 1a). Exchange
with water in the aldolase and triose phosphate isomerase reactions,
however, decreases the labeling from [4-2H]glucose on glyceralde-
hyde 3-phosphate (GAP) [16, 19]. Cells maintain glycolysis by
regenerating cytosolic NAD+, which is accomplished primarily via
lactate dehydrogenase (LDH), malate dehydrogenase (MDH), and
glycerol-3-phosphate dehydrogenase (G3PDH). As such, [4-2H]
glucose labeling is robustly detected on reduced cytosolic dehydro-
genase products such as lactate, glycerol-3-phosphate, and malate
(Fig. 1a).
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1.1.2 Oxidative Pentose

Phosphate Pathway (PPP)-

Dependent NADPH

Metabolism

NADPH metabolism can be traced with [1-2H]glucose or [3-2H]
glucose. Deuterium isotopes are transferred from glucose to
NADPH by glucose-6-phosphate dehydrogenase (G6PD) and
6-phosphogluconate dehydrogenase (6PGD) (Fig. 1a). Although
both [1-2H]glucose and [3-2H]glucose tracers label NADPH,
[3-2H]glucose is preferable for tracing NADPH produced by the
oxidative pentose phosphate pathway because the isotope is lost to
water in other pathways. In contrast, the deuterium from [1-2H]
glucose can label metabolites downstream of glycolysis, including
lipogenic acetyl-CoA [16, 17]. Notably, labeling on NADPH is
often underestimated due to H-D exchange reactions catalyzed by
flavin enzymes [23]. As fatty acid and cholesterol synthesis require
NADPH, label is also transferred from [3-2H]glucose to newly
synthesized lipids [16, 17].

1.1.3 Folate-Dependent

NADPH Metabolism

One carbon metabolism is important for nucleotide synthesis,
methylation, and mitochondrial function [24, 25]. Serine contri-
butes significantly to the one carbon pool, and [2,3,3-2H]serine
and [3,3-2H]serine will generate 2H-labeled one carbon
(1C) folates downstream of serine hydroxymethyltransferases
(SHMTs). Oxidation of 2H-labeled 1C-folates by methylenetetra-
hydrofolate dehydrogenases (MTHFD) can label NAD(P)H
metabolism in the mitochondria and cytosol (Fig. 1b) [16, 26,
27]. These serine tracers will also label glycine and formate, which
are further metabolized by the glycine cleavage system or recycled
to one carbon units, respectively. As folate-mediated one-carbon
metabolism reactions occur in both the cytosol and mitochondria
[28], these deuterium serine tracers can be coupled to cell reporter
systems to characterize the directionality of these reactions (e.g.,
SHMT1/2, MTHFD1/2) [16, 26].

�

Fig. 1 (continued) metabolism with [4-2H]glucose (c), production of
compartment-specific 2-HG and label incorporation from deuterated NADPH
(d). G6P Glucose-6-phosphate, FBP Fructose-1,6-bisphosphate, DHAP Dihy-
droxyacetone phosphate, GAP Glyceraldehyde-3-phosphate, Gly3P Glycerol-3-
phosphate, Lac Lactate, Pyr Pyruvate, Oac Oxaloacetate, Mal, Malate, Cit Citrate,
AcCoA Acetyl-CoA, G6PD Glucose-6-phosphate dehydrogenase, PGD Phospho-
gluconate dehydrogenase, ALDO Fructose-bisphosphate aldolase, TPI Triose-
phosphate isomerase, Gly3PDH Glycerol-3-phosphate dehydrogenase, GAPDH
Glyceraldehyde-3-phosphate dehydrogenase, LDH Lactate dehydrogenase,MDH
malate dehydrogenase, SHMT Serine hydroxymethyltransferase, MTHFD Methy-
lenetetrahydrofolate Dehydrogenase, GCS Glycine cleavage system, THF tetra-
hydrofolate, 5,10-MEETHF 5,10-methylenetetrahydrofolate, 5,10-METHF 5,10-
methenyltetrahydrofolate, ME Malic enzyme, 2-HG (D)2-hydroxyglutarate, aKG
alpha-ketoglutarate, IDH isocitrate dehydrogenase
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1.1.4 Glycine Cleavage-

Dependent NADPH

Metabolism

Exogenous glycine or glycine produced from serine via SHMT2
can enter the cleavage system in the mitochondria and then be
converted to 5,10-methenyltetrahydrofolate from 5,10-
methylenetetrahydrofolate by NAD+-dependent MTHFD2
(Fig. 1b).

1.1.5 Malic Enzyme-

Dependent NADPH

Metabolism

The cytosolic NADP+-dependent isoform of malic enzyme (ME1)
catalyzes the decarboxylation of malate to pyruvate [29, 30]. As
such, this isozyme regenerates cytosolic NADPH, which contri-
butes to lipogenesis and maintenance of reduced glutathione
pools. While the hydride transfer mediated by malic enzyme can
be observed by using [2,2,3,3-2H]dimethyl succinate, [4-2H]glu-
cose is preferred because dimethyl succinate is an atypical metabo-
lite and requires additional enzyme reactions and transport before it
can be utilized by malic enzyme in the cytosol [16, 18]. As noted in
Fig. 1a, [4-2H]glucose labels cytosolic NADH and subsequently
[2-2H] malate (Fig. 1c). In turn, ME1-mediated generation of
NADPH can be assessed by quantifying label on cytosolic 2-HG
reporters or lipids.

1.1.6 Reductive

Carboxylation

IDH1 and IDH2 are reversible, NADP+-dependent enzymes.
Under conditions of mitochondrial dysfunction (e.g., hypoxia,
complex I deficiency), the reductive reaction or exchange flux
becomes significant relative to the oxidative decarboxylation reac-
tion while the specific contributions of IDH1 and IDH2 to reduc-
tive carboxylation has remained unclear [31–33]. Since the
oxidative pentose phosphate pathway generates 2H-labeled
NADPH specifically in the cytosol, [3-2H] glucose allows for inter-
rogation of IDH1-catalyzed reductive carboxylation. While the
specific wiring of cytosolic and mitochondrial IDH metabolism is
likely to be cell-type specific, we have used this approach to confirm
that IDH1 contributes to reductive carboxylation flux [19]. Fur-
thermore, anchorage-independent cultures use this pathway to
transfer reducing equivalents into the mitochondrial matrix [34].

1.2 Compartment-

Specific Reporter

System

Since the time required to separate organelles (several minutes to
hours) is much longer than the turnover rates of NAD(P)H (sec-
onds to minutes), it is difficult if not impossible to reliably quantify
isotope enrichment in compartment-specific metabolite pools. To
address this issue, we developed a reporter system which exploits
the neomorphic activity of oncogenic IDH1 and IDH2 enzymes
[35, 36]. We generated cell lines that express IDH1-R132H
(mtIDH1-C) or IDH2-R172K (mtIDH2-M) in a doxycycline-
dependent manner, such that cells produce (D)2-hydroxyglutarate
(2-HG) in the cytosol or mitochondria upon induction [16]. When
combined with deuterium tracers that label NADPH pools, 2-HG
labeling serves as an effective readout of compartment-specific
NADPH labeling (Fig. 1d).
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The impact of reporter-driven IDH1 or IDH2 expression was
measured by quantifying NAD(P)+ and NADPH pools after doxy-
cycline treatment. We observed minimal alterations in these meta-
bolites [16]. Although the ectopic expression of IDH enzymes
could also affect TCA metabolism, measurement of 2-HG produc-
tion flux relative to other α-ketoglutarate dependent reaction fluxes
is small, suggesting that the expression of mutant IDH has minimal
impact on α-ketoglutarate pools [37].

In the cell lines tested (A549, H1299), the doxycycline-
induced production of 2-HG by FLAG-tagged mutant IDH
enzymes was verified by quantifying 2-HG after 24 h of doxycycline
addition [16]. Importantly, 2-HG levels in the reporter system
were far (10- to 100-fold) lower than that observed in tumor cell
lines expressing endogenous (heterozygous) IDH1 mutations.
Furthermore, doxycycline (at 0.1 μg/mL) and mutant IDH
expression did not affect proliferation rates or pool sizes of central
carbon metabolites, NAD+, NADH, NADP+, and NADPH in
these cells [16]. However, the doxycycline concentration may
need to be optimized for specific cell lines and applications to
yield low but sufficient 2-HG production.

1.3 Experiment

Setup

The experimental conditions, culture format, and extraction time
points need to be planned in advance of the experiment. A typical
experiment timeline can be found in Fig. 2. The type of deuterium
tracer will be dictated by the hypothesis of the study.

For most cells, including reporter lines, culture in 6-well plates
should be sufficient for analysis, but this may vary depending on cell
type. In general, 0.5–1 million cells provide enough material for
detection of relevant metabolites. If necessary, samples can be
pooled to obtain adequate cells for analysis. Cell seeding density
may also need to be adjusted, as cells should be semiconfluent at the
time of extraction. In general, three replicate wells per condition is
typical, but the number of replicates should be dictated by the
experimental design. Additionally, plan for parallel plates for quan-
tification of biomass via cell count or protein measurement.

The turnover for NADPH and NADH is rapid and this allows
for the deuterium labeling from the tracer to reach isotopic steady-
state within 30 min of incubation [16]. As such, the incubation
duration of cells with the tracer does not typically need to be more
than 24 h. Tracing with cells expressing mtIDH1-C and mtIDH2-
M, however, requires the addition of doxycycline and expression of
reporters for 2-HG production. To ensure that NADPH is labeled
to steady state prior to initiating 2-HG production, cells are typi-
cally incubated with the deuterium tracer for about 24 h before
addition of doxycycline. Performing the metabolite extraction
24–48 h post-doxycycline addition allows for detectable 2-HG to
be produced for quantitation of labeling. To measure the contribu-
tion of NADPH for fatty acid or cholesterol synthesis, the

56 Esther W. Lim et al.



incubation duration needs to be longer to allow for sufficient fatty
acid or cholesterol turnover/synthesis. As is the case for any tracing
or flux study, the appropriate length of incubation will depend on
cell type and growth (metabolic) rate. For example, for H1299 and
A549 cell lines, a 48–72 h incubation with the tracer post-
doxycycline addition is sufficient.

2 Materials

2.1 Chemicals 1. Basal medium without deuterium tracer (see Note 2).

2. Chloroform Chromasolv® for HPLC (Sigma-Aldrich,
366927).

3. Deuterium tracers:
(a) [3-2H]glucose (Omicron Biochemicals, GLC-034).

(b) [4-2H]glucose (Omicron Biochemicals, GLC-035).

Generate compartment-specific reporter system
- Produce lentivirus containing the epitope-tagged IDH1-R132H or IDH2-R172K

- Infect cells of interest with lentivirus
- Select for cells with hygromycin 

Seed cells into 6-well plates and allow cells to attach

Replace growth medium with tracer-containing medium

Add doxycycline (0.1µg/mL) to induce mutant IDH expression

Perform metabolite extraction and cell counts 

Derivatize metabolites if needed
(depends on type of MS)

Analyze samples on Mass Spectrometry instrument
(e.g. GC-MS)

Perform data analysis
- Isotopologue distribution
- Isotopomer spectral analysis (ISA)

6-24 hr depending on cell type

24 hr

24-72 hr depending on metabolite of interest

Fig. 2 Experiment outline for tracing studies using inducible expression of
epitope-tagged R132H-IDH1 or R172K-IDH2 to study compartment-specific
redox metabolism
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(c) [2,2-2H]glycine (Cambridge Isotope Laboratories,
DLM-1674-5).

(d) [2,3,3-2H]serine (Cambridge Isotope Laboratories,
DLM-582-0.5).

(e) [3,3-2H]serine (Cambridge Isotope Laboratories,
DLM-161-PK).

4. Doxycycline hydrochloride (Sigma-Aldrich, D3447).

5. Fetal bovine serum or serum of choice for HEK293T cells.

6. Hexane Chromasolv® for HPLC (Sigma-Aldrich, 34859).

7. Hygromycin B (Gibco, 10687010).

8. Internal standard (e.g., norvaline (Sigma-Aldrich, N7502),
[U-2H31]palmitate (D31) (Cambridge Isotope Laboratories,
DLM-215-1)).

9. Lentiviral packaging and envelope expressing plasmids:
pMDLg/pRRE (Addgene plasmid #12251), pRSV-Rev
(Addgene #12253), pMD2.G (Addgene, #12259).

10. Methanol Chromasolv® for HPLC (Sigma–Aldrich, 34860),
equilibrated to �80 �C.

11. Methoxyamine hydrochloride (MOX) (Supelco, 33045-U).

12. Milli-Q-purified water or equivalently pure water.

13. N-Tertbutyldimethylsilyl-N-methyltrifluoroacetamide
(MTBSTFA) with 1% tert-butyldimethylchlorosilane (Regis
Technologies, 1-270143-200).

14. Opti-MEM (Gibco) or medium of choice for HEK293T cells.

15. Phosphate-buffered saline (PBS) (e.g., Corning, 21-031-CM).

16. Polybrene (Milipore, TR-1003) or similar transfection reagent
(optional).

17. pSLIK-IDH1-R132H-FLAG (Addgene, plasmid #66803).

18. pSLIK-IDH2-R172K-FLAG (Addgene, plasmid #66807).

19. Pyridine (Sigma-Aldrich, 270407).

20. Medium buffering agent (e.g., sodium bicarbonate
(NaHCO3) and/or HEPES).

21. Saline solution (NaCl 0.9% (w/v)).

22. Sulfuric acid (H2SO4) (Sigma-Aldrich, 339741).

23. Tetracycline-free (or tetracycline-negative) FBS (see Note 3).

2.2 Consumables

and Equipment

1. 0.22 μm polyethersulfone (PES) filter.

2. 0.45 μm polyethersulfone (PES) filter.

3. 1.5 mL microcentrifuge tubes (e.g., Eppendorf interlocking
caps (Cat. No. 22363204)).
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4. Amicon Ultra-15 Centrifugal Filter Unit (Millipore Sigma,
UFC910024) (optional).

5. Analytical glass sample vials (e.g., Agilent 5182-7616) with
glass inserts (Agilent 5183-2088) for fatty acid methyl esters
(FAMEs).

6. Analytical platform (e.g., gas chromatograph coupled to mass
spectrometry).

7. Analytical sample vials with inserts (e.g., Thermo Scientific,
C4000-11) for media samples and metabolites.

8. Freeze dryer or rotary vacuum evaporator (e.g., CentriVap
Concentrator (Labconco)), precooled to 4 �C.

9. Heating block for microcentrifuge tubes.

10. Humidified incubator for cell culture.

11. Microcentrifuge tube shaker, precooled to 4 �C.

12. Nitrogen/air flow evaporator for microcentrifuge tubes.

13. Refrigerated table centrifuge for microcentrifuge tubes, pre-
cooled to 4 �C.

14. Sterile filter unit to sterilize 500 mL medium (e.g., Nalgene
Nunc, 156-4020).

15. Syringe filter (e.g., Pall Laboratories, 4612) with sterile syringe
(e.g., 20 mL, AIR-TITE, 5200-X00V0) for small volumes of
medium.

16. Tissue culture plates (e.g., 6-well plate).

3 Methods

3.1 Generation

of Stably Expressing

Inducible Forms

of FLAG-Tagged

Mutant IDH Cell Lines

1. Generate lentiviruses by transfecting HEK293T cells with the
pSLIK-hygro-IDH1-R132H or pSLIK-hygro-IDH2-R172K
plasmids along with the lentiviral packaging plasmids
pMDLg/pRRE and pRSV-Rev and the envelope plasmid
pMD2.G (see Note 4).

2. Collect supernatant containing lentiviral particles 48 h after
transfection. Filter supernatant through 0.45 μm filter and
add polybrene and/or concentrate if desired (see Note 5).
Freeze virus at �80 �C for storage.

3. Infect subconfluent cell of choice with harvested virus at opti-
mized multiplicity of infection (MOI) (see Note 6).

4. Allow infected cells to recover for 24 h before placing cells
under selection with 350 μg/mL hygromycin for 10 days.

5. Freeze or bank cells if desired.
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3.2 Media

Preparation

For tracing experiments, use basal medium that does not contain
the deuterium component such as basal media that does not con-
tain glucose, glutamine, and/or amino acids (see Note 2). The
tracer medium can be formulated with serum (see Note 3) and/or
appropriate antibiotics, if applicable.

1. Preparation of basal medium (if necessary).
(a) Dissolve medium powder in Milli-Q-purified water

according to manufacturer instructions.

(b) Add appropriate amount of buffering component (e.g.,
sodium bicarbonate, HEPES).

(c) Adjust pH to optimal value for cell of interest (typically
7.3–7.4).

(d) Filter-sterilize medium through 0.22 μm filter and store at
4 �C until use.

2. Preparation of deuterium tracer-containing medium.
(a) Calculate volume of tracer medium required for experi-

ment. Include a contingency factor since some medium
may be lost during transfer and filtration.

(b) Weigh out required amount of tracer for experiment and
add to basal medium (see Note 7).

(c) Add appropriate amount of serum, antibiotics and/or
other medium supplements (see Note 8).

(d) Adjust pH to optimal value for cell of interest (typically
7.3–7.4), if necessary.

(e) Filter-sterilize medium through 0.22 μm filter and store at
4 �C until use.

3. Preparation of regular growth medium for quantification of
biomass via cell count or protein measurement.
(a) Repeat steps in Subheading 3.2, step 2 but use nondeu-

terium tracer components.

3.3 Cell Culture

Setup

1. Determine experimental conditions and plate layout. Plan for
two sets of replicate wells: one set for metabolite extraction and
another set for biomass quantification (see Note 9).

2. Seed cells in 6-well plates with appropriate volume of regular
growth medium (see Notes 10 and 11).

3. Incubate cells in humidified cell culture incubator and allow
cells to attach (typically 6–24 h depending on cell type) and
reach target cell density or confluence.

4. When cells are ready, remove the regular growth medium by
aspiration and wash cells once with PBS.

5. Add prewarmed tracer or growth medium.
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6. Return cells to humidified cell culture incubator and incubate
for 24 h (see Note 12).

7. Add doxycycline to medium (final concentration of 0.1 μg/
mL) and return cells to incubator until metabolite extraction
(see Note 13).

3.4 Quenching, Cell

Lysis and Metabolite

Extraction

This protocol employs a modified Bligh and Dyer method using
methanol–water–chloroform for a 6-well plate. Volumes can be
adjusted if using different culture formats (e.g., reduce volumes
by half for 12-well plate). Rapid quenching is important to halt
metabolism and preserve the native metabolites for analysis. As
such, extract only one plate at a time to minimize waiting times
between samples. A blank extraction from wells without cells can be
performed in parallel to account for potential non–cell derived
metabolites if using nonstandard tissue culture plates. Perform
the following steps on ice. The following steps were adapted from
Cordes and Metallo [38].

1. Aspirate medium from each well.

2. Add 1 mL saline solution to each well to rinse well (see Note
14). Aspirate solution from well.

3. Add 500 μL cold MeOH to each well and swirl plate around to
ensure coverage of all cells.

4. Add 200 μL Milli-Q-purified water containing internal stan-
dard norvaline (e.g., 0.005 μg/μL) to each well. Swirl plate
to mix.

5. Scrape cells off from each well.

6. Transfer cell extract from wells into precooled (�20 �C)
1.5 mL microcentrifuge tubes.

7. Add 500 μL chloroform with internal standard [U-2H31]pal-
mitate (D31) solution (e.g., 0.002 μg/μL) to each vial (see
Note 15).

8. Cap each tube and invert three times.

9. Vortex tubes for 5–10 min.

10. Centrifuge tubes at 21,000 � g at 4 �C for 10 min. Upon
completion of centrifugation, 2 distinct phases will form:
(a) Upper MeOH–H2O layer containing polar metabolites

(“aqueous phase”).

(b) Lower CHCl3 layer containing nonpolar metabolites
(e.g., fatty acids, triglycerides, cholesterol) (“organic
phase”).

(c) The middle contains a thin layer of protein which can be
utilized if desired (not analyzed here).
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11. Transfer the upper aqueous layer into a new tube. Do not
disturb the protein interphase. Evaporate the sample in a freeze
dryer or rotary vacuum evaporator at 4 �C (see Note 16).

12. Transfer the bottom layer into a new tube but avoid collecting
proteins or upper layer into the same pipette (see Note 17).
Evaporate the sample under air flow at room temperature in a
fume hood (see Note 18).

13. Cap and store dry samples at �80 �C until ready for further
processing (see Note 19).

14. Perform biomass quantification (e.g., cell counts or protein
measurement). This step can also be performed just prior to
extraction.

3.5 Metabolite

Derivatization for Gas

Chromatography–

Mass Spectrometry

(GC-MS) Measurement

Samples should be derivatized prior to measurement on the
GC-MS. A detailed protocol for derivatizing with N-tertbutyldi-
methylsilyl-N-methyltrifluoroacetamide (MTBSTFA) and/or
methoxyamine hydrochloride (MOX) for polar metabolites can be
found in Cordes and Metallo [38] (see Note 20). Similarly, a
protocol describing the transesterification of fatty acids with sulfu-
ric acid–methanol–hexane solution to prepare fatty acid methyl
esters is described in Cordes and Metallo [38].

3.6 Metabolite

Measurement on Mass

Spectrometry (MS)-

Based Platform

A variety of MS-based platforms exists to measure metabolite
abundance and labeling. Refer to Cordes and Metallo [38] for
details on GC-MS setup and setting parameters.

3.7 Metabolite

Identification

and Analysis

A variety of commercially available and academic software algo-
rithms can be used to identify and quantify metabolite abundances
and isotopolog distributions [39, 40].

1. Metabolite identification.
Metabolites are identified by their characteristic fragmen-

tation pattern and retention time (see Note 21). Coelution of
closely related metabolites such as enantiomers is common on
most MS-based platforms such as the GC-MS and may not be
able to be distinguished readily (see Note 22). Libraries with
the mass spectral and retention time are widely available (see
Note 23).

2. Isotopolog distribution.
Isotopolog (or mass isotopomer) distributions depict the

fractional abundance of each isotopolog normalized to the sum
of all possible isotopologs (total pool). The isotopolog distri-
butions should be corrected for natural isotope abundances.
Figure 3 shows some examples of the isotopolog distribution of
select metabolites when traced with the specified deuterium
tracers.
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3. Isotopomer spectral analysis (ISA).
ISA is a method for evaluating biosynthesis using stable

isotopes. The goal of ISA is to estimate the fractional contribu-
tion of the labeled metabolite to the precursor pool (known as
D) and the fraction of newly synthesized product (known as g
(t)). For example, when tracing with [3-2H]glucose, D repre-
sents the fractional contribution of the deuterium to cytosolic
(lipogenic) NADPH and g(t) represents the newly synthesized
fatty acid (e.g., palmitate) (Fig. 4). We used ISA as well as TCA
metabolite and 2HG reporter isotope enrichment to validate
that kinetic isotope effects do not impact results when tracing
through NADH (i.e., [4-2H]glucose) or NADPH (i.e., [3-2H]
glucose), respectively (see Note 24) [16].

4 Notes

1. MTHFD2 and MTHFD2L have been shown to use either
NAD+ or NADP+ under different physiological conditions
[41]. When the 2H serine tracer is combined with the reporter
cell line, it is also possible to get some label from deuterium
tracers that label the NADH pool because nicotinamide nucle-
otide transhydrogenase (NNT) catalyzes the transfer of deute-
rium from NADH to NADPH which may label 2-HG in the
mitochondria.

2. Use your typical basal medium without the deuterium tracer.
For example, if you usually culture cells in DMEM and will
trace with [3-2H]glucose, use glucose-free DMEM. Similarly, if
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tracing with [3,3-2H]serine, use amino acid- or serine-free
DMEM. Performing the tracing experiment without removing
the component will result in dilution of isotopic labeling of
metabolite of interest.

3. Tetracycline-free (or tetracycline-negative) FBS should be used
in reporter cell line experiments to limit production of “back-
ground” 2-HG prior to label incorporation. For nonreporter
tracing experiments, dialyzed serum (e.g., dialyzed FBS) is
preferred because regular serum contains various small mole-
cules such as hormones, cytokines, and amino acids which may
result in dilution of isotopic labeling of metabolites. As the
dialysis process removes vitamins, cofactors [42], and signaling
lipids [43] that may be important for some cells, it is important
to validate the growth phenotype of these cells in dialyzed
serum prior to the tracing experiment.

4. Prior to working with lentiviral vectors, ensure all safety speci-
fications provided by your institution or governing body are
met. Protocols for lentivirus production are widely available
[13, 44, 45]. Briefly, we plate 2.5–4.5 million HEK293T cells
with standard DMEM (high glucose) + 10% FBS in a 10 cm
dish. After 24 h, the transfection cocktail containing Lipofec-
tamine 3000 and plasmids (listed in Subheading 3.1, step 1) is
prepared in Opti-MEM and added in a drop-wise manner to
the cells.

5. The protocol for harvesting and concentrating the lentivirus
you use will be dictated by the cell line as some cells are sensitive
to the components that are typically added to the harvested
virus solution (e.g., polybrene). In this case, skip the polybrene
addition or substitute with other reagents (e.g., protamine
sulfate). Concentrating the virus stock can be advantageous
to minimize the volume of virus stock that needs to be added
to the cells. Briefly, filter the supernatant containing the lenti-
viral particles through a 0.45 μm filter, transfer to Amicon
Ultra-15 Centrifugal filters (or other similar filters), centrifuge
at 3000 � g for 30 min at room temperature, aliquot the
concentrated virus to sterile microcentrifuge tubes or vials,
freeze virus stocks in �80 �C freezer.

6. The MOI is dependent on the type of cells. It is common to
titrate the virus stock before use. The volume of virus stock
added depends on theMOI and virus titer. If there is significant
cell death postinfection, you may want to decrease the amount
of virus stock added to the cells.

7. In most cases, target the same concentration of the component
in the regular medium. For example, if tracing with DMEM
and the media usually contains 0.4 mM serine, add 0.4 mM
[2,3,3-2H]serine. Since glucose is usually in excess in
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commercially available media, you can reduce the amount of
deuterium glucose tracer to 10 mM or 15 mM instead of the
typical 25 mM if desired. The exact concentration of these
components will depend on the cell type and experiment
design. Also, note that the molecular weight of deuterium
tracer is higher than the nondeuterium component.

8. Add the necessary components to the medium for cells to grow
normally. For example, if cells are routinely grown in 10%
serum, use the same concentration in the tracer-containing
medium (see Note 2). Similarly, it is acceptable to add antibio-
tics such as penicillin–streptomycin or gentamicin to the tracer-
containing medium. If working with cells that require cofactors
or additional supplements, those components should be added
to the tracer-containing medium as long as they do not impact
the isotopic labeling of metabolites. For example, if tracing
with [2,3,3-2H]serine and your growth medium is routinely
supplemented with 1� nonessential amino acid solution which
contains serine, you may want to supplement the tracing
medium with a custom nonessential amino acid stock that
does not contain serine.

9. If running the experiment for the first time, you may want to
run control cultures in parallel that lack any labeled substrates
to gauge background (which is typically minimal). Overloaded
metabolites can generate “false” signal upon integration of MS
data, which can be significant in low labeling experiments. It is
recommended to monitor MS signal or ideally run extracted
sample with unlabeled substrates.

10. 6-Well plates are typically used in the reporter system to ensure
adequate signal is obtained for all metabolites. In our experi-
ence, more material is required to reliably quantify labeling on
intermediates such as glyceraldehyde phosphate (GAP) and
glycerol-3-phosphate (Gly3P).

11. It is important to plate equal amounts of cells per well to
minimize variability across replicates and experimental condi-
tions. It is not advised to seed cells for varying experimental
conditions differently (i.e., seeding double the amount of cells
for a condition that is known to slow growth). If needed,
additional wells may be plated and pooled at time of extraction.
The actual cell number will be dictated by the cell type and
duration of tracing. Performing the experiment in a 6-well
plate is preferred to obtain sufficient material for metabolite
detection on the GC-MS. In some cases, a 12-well plate exper-
iment may also be acceptable.

12. This incubation step allows for 2H label from the deuterium
tracer to label NAD(P)H prior to doxycycline addition.
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Doxycycline-induced cells will use the labeled NADPH which
results in generation of labeled 2-HG.

13. Doxycycline is added to induce production of 2-HG.
Performing the metabolite extraction 24–48 h post-
doxycycline addition allows for detectable 2-HG to be pro-
duced for quantitation of labeling. The doxycycline concentra-
tion may need to be optimized for specific cell lines and
applications.

14. Saline solution instead of PBS solution is used to prevent the
contamination of phosphate during GC-MS measurement.
The large phosphate amount in PBS can interfere with the
metabolite derivatization and/or MS analysis.

15. Do not add chloroform directly into the culture dishes as the
chloroform will dissolve the plastic culture plates. Using the
chloroform containing the internal standard [U-2H31]palmi-
tate (D31) is important when quantifying fatty acids. If the
experiment analysis only requires polar metabolites or isotopic
labeling of fatty acids, you may use chloroform without the
internal standard.

16. If your lab does not have a freeze dryer or rotary vacuum
evaporator, you may dry the upper aqueous phase under air
or nitrogen flow in a fumehood. Be careful to start with low
airflow to prevent loss of material since high airflow can force
the sample out of the tube.

17. To avoid collecting proteins or upper layer into the same
pipette, you can gently aspirate bubbles as you go through
the interphase to avoid collecting the interphase or upper
aqueous layer.

18. It is important to dry the sample completely because water can
hinder the derivatization reaction. If sample tubes were kept in
the cold (e.g., fridge or freezer) after the initial drying step, we
recommended drying them again prior to derivatizing the
samples.

19. Nondried aqueous phase extracts can be stored at �20 �C or
preferably �80 �C overnight, though dry storage is preferable.
Nondried organic phase extracts cannot be stored for extended
periods due to the potential for extraction from the plastic.

20. While there are other derivatizing reagents and/or methods,
we have not validated the 2H label detection on metabolites
with other derivatizing reagents.

21. 2H labeling causes (sometimes significant) retention shifts in
compounds, such that 2H-labeled species elute earlier than
unlabeled compounds. As an example, [U-2H31] palmitate
elutes much earlier than unlabeled palmitate. For compounds
labeled metabolically with NADP2H described here, retention
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time shifts are not significant enough to require changes to MS
data integration and analysis.

22. (L)2-HG and (D)2-HG elute together on typical GC-MS and
LC-MS/MS platforms. (L)2-HG is produced endogenously by
MDH and LDH, so it is labeled by NAD2H rather than
NADP2H [19]. As such, endogenously produced (L)2-HG
can dilute signal in the reporter system and/or confound
results. Baseline and doxycycline-induced 2-HG levels should
be compared to gauge the impact from (L)2-HG dilution in
specific cell lines/applications, as some cells produce apprecia-
ble (L)2-HG that could impact results.

23. Libraries with the mass spectral and retention time can be
found online. For MTBSTFA derivatives measured on the
GC-MS, refer to Table 1 in Cordes and Metallo [38] and
Supplementary Table 1 in [16].

24. Given the ~2-fold increase in molecular weight compared
to H, reactions involving 2H can exhibit lower rate constants
or “kinetic isotope effects.” While this is true for in vitro
enzyme assays, such kinetic effects will only be relevant when
the reaction in question is rate limiting. In the context of
cellular physiology (e.g. the numerous reactions involved in
NAD(P)H metabolism or lipogenesis) this issue is more com-
plex. To determine whether kinetic isotope effects impact
downstream isotopic labeling from [3-2H]glucose or [4-2H]
glucose we titrated enrichment and compared substrate enrich-
ment to downstream labeling. We observed a linear relation-
ship, indicating that 2H-labeled substrates are not “competed
away” from reactions by unlabeled species [16].
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Chapter 5

Large-Scale Profiling of Cellular Metabolic Activities Using
Deep 13C Labeling Medium

Nina Grankvist, Jeramie D. Watrous, Mohit Jain, and Roland Nilsson

Abstract

The recently developed deep labeling method allows for large-scale profiling of metabolic activities in
human cells or tissues using isotope tracing with a highly 13C enriched culture medium in combination with
liquid chromatography–high resolution mass spectrometry. This method generates mass spectrometry data
sets where endogenous cellular products can be identified, and active pathways can be determined from
observed 13C mass isotopomers of the various metabolites measured. Here we describe in detail the
experimental procedures for deep labeling experiments in cultured mammalian cells, including synthesis
of the deep labeling medium, experimental considerations for cell culture, metabolite extractions and
sample preparation, and liquid chromatography–mass spectrometry. We also outline a workflow for the
downstream data analysis using publicly available software.

Key words Cell culture, Stable isotope tracing experiments, Metabolism, Metabolomics, LC-HRMS

1 Introduction

Cellular metabolism is central to a range of human disorders,
including hundreds of rare inborn errors of metabolism, the “met-
abolic syndrome” cluster comprising diabetes, obesity and cardio-
vascular disease, and disorders of cell proliferation such as cancer
[1] and immunological disease [2]. Yet the metabolic phenotypes
of human cells are still largely unexplored: the set of metabolites
synthesized by human cells is still only partially known [3], and the
specific metabolic activities of most human cell types remain to be
investigated [4–6]. This scarcity of information on human metabo-
lism is at least in part due to lack of unbiased experimental methods
for “profiling” metabolic activities in living cells and tissues.

To address this shortcoming, we recently introduced the deep
labeling technique for profiling metabolic activities in cultured
mammalian cells [7], an isotope tracing method where a highly
13C-enriched, custom designed culture medium is used to label
virtually every molecule synthesized by the cells. Here, we describe
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in depth how to perform deep labeling experiments, including
synthesis of the required 13C deep labeling medium, experimental
considerations for cell culture and metabolite extraction, use of
modern, liquid chromatography–high resolution mass spectrome-
try (LC-HRMS) to analyze samples, and data processing using
computational methods for unbiased LC-HRMS peak detection.
The most demanding experimental step is to synthesize the deep
labeling medium; with this medium in hand, the isotope tracing
experiments are straightforward, and can easily be tailored to vari-
ous cell types and experimental conditions of interest, for example
to explore metabolic effects of drugs, RNAi knockdown, or
CRISPR gene editing. Deep labeling experiments with modern
LC-HRMS systems yields rich data sets, typically covering
hundreds or even thousands of endogenous molecules, whose
isotopic state allows identifying a variety of active and inactive
metabolic pathways.

2 Materials

Here we describe the materials required for the RPMI-1640
medium formulation [8]. For other medium formulations, the
concentrations must naturally be altered, but the general procedure
is the same. To provide the closest possible control culture, we
describe synthesis of both a 12C “unlabeled” RPMI-1640 medium
where all components have natural isotope distribution, and one
deep labeling medium where all major nutrients are fully 13C. Both
media have the same final concentrations of all components, speci-
fied in Table 1. All solutions should be prepared with deionized
water, using a water purifier such as the Milli-Q® Advantage A10
System (Millipore, Bedford, MA).

2.1 Preparations of

Stock Solutions

Except where noted, stock solutions will be made at 50 times the
final medium concentration (“50� stocks”). This makes it easy to
synthesize fresh medium whenever needed, since equal volumes of
all stocks are pipetted into the final solution.

1. Prepare 50� stocks of all components listed in Tables 2 and 3
(glucose, amino acids, and various salts), with the exception of
tyrosine (see below). We recommend preparing 40 mL stock
solutions of the 12C components, sufficient for 2 L of medium,
and storing in 50 mL tubes. For the 13C tracers, we recom-
mend preparing 3 mL stocks. The excel tables provided can be
used to adjust these volumes as needed.

2. Since tyrosine is difficult to dissolve in water (the solubility is
0.45 g/L at 25 �C), prepare a 25� stock of this amino acid. To
fully dissolve tyrosine, add�100 μL of 1MHCl (without HCl,
the solution is usually a bit cloudy).
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Table 1
RPMI-1640 specification concentrations according to Moore et al. (1967) [8]

Compound according
to original formulation

Molecular
weight (g/mol)

Medium
conc. (mg/L)

Medium
conc. (mM)

Nutrients D-Glucose 180.156 2000 11.10
Glycine 75.067 10 0.133
L-Arginine 174.204 200 1.148
L-Asparagine 132.119 50 0.378
L-Aspartate 133.103 20 0.150
L-Cysteinea 121.154 50.4 0.416
L-Glutamate 147.130 20 0.136
L-Glutamine 146.146 300 2.053
L-Histidine 155.157 15 0.097
L-Isoleucine 131.175 50 0.381
L-Leucine 131.175 50 0.381
L-Lysine–HCl 182.648 40 0.219
L-Methionine 149.208 15 0.101
L-Phenylalanine 165.192 15 0.091
L-Proline 115.132 20 0.174
L-Serine 105.093 30 0.285
L-Threonine 119.120 20 0.168
L-Tryptophan 204.229 5 0.024
L-Tyrosine 181.191 20 0.110
L-Valine 117.148 20 0.171
Glutathione, reduced 307.321 1 0.003
L-Hydroxyproline 131.131 20 0.153
Myoinositol 180.156 35 0.1943
Choline chloride 139.623 3 0.0215

Salts Ca(NO3)2
a·4H2O 236.146 100 0.423

Na2HPO4
a·7H2O 268.062 1512 5.640

MgSO4
a·7H2O 246.466 100 0.406

KCl 74.5483 400 5.366
NaHCO3 84.0058 2000 23.81
NaCl 58.4398 6000 102.7

Vitamins Biotin 244.309 0.2 0.0008
Folate 441.404 1 0.0023
Niacinamide 122.127 1 0.0082
2-Pantothenatea Ca 257.299 0.25 0.0010
Pyridoxinea–HCl 206.646 1 0.0048
Riboflavin 376.369 0.2 0.0005
Thiaminea–HCl 338.263 1 0.0030
Cyanocobalamin (B12) 1355.39 0.005 0.000004
4-Aminobenzoic acid 137.138 1 0.0073

aCysteine concentration was recalculated from the original description of the RPMI-1640 in terms of cystine (the cys–cys
dimer), whose mass differs slightly due to the loss of two hydrogens in the S–S bond formation
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3. Sterile filter all stocks with Filtropur S 0.2 μm syringe filters
into new labeled tubes.

4. Store all 12C stocks at 4 �C, with the following exceptions:
(1) sodium bicarbonate and disodium phosphate solutions
should be stored at room temperature, as they crystallize
easily when stored at 4 �C, and are then problematic to
redissolve; (2) glutamine and asparagine should be aliquoted
into suitable volumes and stored at �20 �C, since these amino
acids are somewhat unstable in water solution for long term
storage (aliquoting avoids repeated freeze–thaw cycles). The
13C tracer stocks, which are very precious chemicals, should
be aliquoted into smaller volumes (0.5–1 mL) and stored at
�20 �C.

2.2 Dialyzed Serum Always use heat-inactivated fetal bovine serum (FBS) to minimize
enzyme activities present in serum (see Note 1).

1. Dialyze FBS in dialysis tubing with a 10 kDa molecular weight
cutoff (SnakeSkin 10K MWCO, Thermo Fisher Scientific
#88245) against deionized water during 1–2 h at room tem-
perature, to remove proteins and other large macromolecules
(see Note 2). During this time, replace the water at least twice.
Then allow the dialysis to proceed over night at 4 �C.

2.3 Preparations of

Unlabeled and Deep

Labeled Custom Made

Media

1. Medium should be prepared immediately before usage to min-
imize loss of nutrients due to serum activities. Before preparing
medium, carefully consider the design of your cell culture
experiments to determine the volume needed; see
Subheading 3.

2. When preparing for example 100 mL of 12C medium, start
with adding 41 mL deionized water, 1 mL 100� vitamin stock
solution, followed by 2 mL of all 50� stocks and 4 mL of the
25� tyrosine stock, for a total volume of 100 mL; see Table 4.

3. Add the desired amount of dialyzed FBS, antibiotics and
optionally a pH indicator.

4. Adjust pH to 7.4 using 1 M HCl and 1 M NaOH as needed.

5. Repeat steps 2–4 for the preparation of the deep labeling
medium (Table 4).

6. Sterile filter the media with either Filtropur S 0.2 μm syringe
filter, Filtropur V25 (250 mL) or Filtropur V50 (500 mL)
depending on volume. Store media at 4 �C.
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3 Methods

3.1 Cell Culture

Condition and Stable

Isotope Tracing

Experiment

The deep labeling method described previously [7] requires cultur-
ing cells in deep labeling medium for six population doublings to
obtain a virtually complete renewal of biomass (see Note 3). This
ensures isotopic steady-state in all components of the cell, and
therefore allows estimating the fractional contribution of biosyn-
thesis of various compounds.

1. Make a scheme for the cell culture experiment, taking into
account the doubling time and recommended seeding den-
sity/split ratio of the cell line used to achieve six population

Table 4
Medium synthesis

Components
Stock conc.
Factor

Volume for 1 L
medium (mL)

Vitamins MQ water 410
Vitamin solution 100� 100 10

Nutrients D-Glucose 50 20
Glycine 50 20
L-Arginine–HCl 50 20
L-Asparagine:H2O 50 20
L-Aspartic acid 50 20
L-Cysteine 50 20
L-Glutamic acid 50 20
L-Glutamine 50 20
L-Histidine–HCl–H2O 50 20
L-Isoleucine 50 20
L-Leucine 50 20
L-Lysine–2HCl 50 20
L-Methionine 50 20
L-Phenylalanine 50 20
L-Proline 50 20
L-Serine 50 20
L-Threonine 50 20
L-Tryptophan 50 20
L-Tyrosine 25 40
L-Valine 50 20
Trans-4-hydroxy-L-proline 50 20
Glutathione (reduced) 50 20

Salts Calcium nitrate (Ca(NO3)2) 50 20
Disodium phosphate (Na2HPO4) 50 20
Magnesium sulfate (MgSO4) 50 20
Potassium chloride (KCl) 50 20
Sodium bicarbonate (NaHCO3) 50 20
Sodium chloride (NaCl) 50 20
Total volume 1000
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doublings without reaching confluence. An example for a cell
line with a doubling time of 24 h is given in Fig. 1a. In this case,
6 days of culture is needed, and the culture is split twice. Slowly
growing cell lines may require medium changes as well, just as
during regular maintenance of the cell culture (medium should
typically be changed every 48 h). The final subculture should
be done in 6-well plates, seeded at a density to achieve �85%
confluence at 48 h; this usually yields extracts of 0.5–1 million

Po
pu

la
tio

n 
do

ub
lin

gs

A

B

time (h)

extraction13C
12C

12C

cultures
6-well control
resuspending pellets, 1 ml / split 2 ml
medium for LCMS 1 ml

8 + 8 + 3*2 = 22 ml
2 ml

27 ml

seed

6

1

0

2

3

4

5

extraction
cell counts

split 1:4

0 48 96 120

T-25
8 ml

T-25
8 ml

3x
6-well
2 ml

Required 13C medium volume

Fig. 1 Design of deep labeling experiments. (a) Deep labeling requires a total of
six population doublings (dashed line), usually divided into three or more
subcultures (solid lines) to conserve 13C medium. For most cell lines, T-25
cultures are suitable for the initial subcultures, followed by expansion to three
6-wells, as indicated. This culture scheme is carried out for both 13C and 12C
media. One additional well is seeded and cultured in 12C medium to be used for
cell counting (see text). (b) Calculation of required 13C medium volume for the
experiment shown in (a), including control wells, extra medium for resuspending
cell pellets when splitting cells, and 1 mL of medium for LCMS profiling
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cells per well for LCMS profiling. We recommend three inde-
pendent cultures at the last step to obtain reliable results. This
entire scheme is performed in parallel for 13C deep labeling
cultures and for 12C control cultures.

2. Calculate the required amount of 12C and 13C medium
required, as in Fig. 1b. Freeze an aliquot of 1 mL of each
medium for LC-HRMS profiling.

3. Seed the initial cell cultures in appropriate cell culture plastic, in
13C deep labeling medium and in 12C control medium, respec-
tively. Typically, T25 flasks with�8mLmedium are suitable for
this step. Subculture and/or change medium as needed.

4. In the final subculture, split the 13C cultures to three 6-wells
(each�2 mLmedium), and the 12C cultures to four 6-wells, of
which one is used for cell number estimation; see Subheading
3.2. At this time, also fill one 6-well with fresh medium only
(no cells), and incubate for 48 h in the same conditions.

3.2 Cell Number

Estimation

An estimate of cell number in the final cultures is important during
preparation of samples for LC-HRMS, so that a suitable amount of
cell extract is used for analysis.

1. Use one of the 12C culture wells seeded as described in Sub-
heading 3.1, step 4 for the cell number estimation.

2. After 48 h (at the time of extraction of the other wells), remove
the medium and wash the cells twice with PBS.

3. Add 0.5 mL Trypsin-EDTA (0.05%) and allow trypsinization
for a few minutes (depending on cell lines characteristics).

4. To neutralize, add 0.5 mL 12C medium (containing serum).

5. Measure or count the cell numbers in the cell suspension.

3.3 Metabolite

Extraction

For best results, we recommend performing metabolite extraction
from cells directly in the culture dish; this protocol is given below.
We describe extraction of polar metabolites using cold methanol, a
simple protocol that we have found to yield reproducible results (see
also Note 4).

1. At the end of the last stage of the cell culture experiment,
carefully remove 1 mL of medium from each well, taking care
not to disturb cells (see Note 5). Remove the rest of the
medium and rapidly wash the cells twice with 1 mL cool
(+4 �C) PBS (see Note 6).

2. Remove the PBS and transfer the microplate to a bed of dry ice.
Working quickly, add 1 mL (for 6-well plates) of �80 �C pre-
cooled HPLC grade methanol, to quench metabolic enzymes
and extract polar metabolites. Scrape the cells (see Note 7) in
the cold methanol with a cell scraper so that all cell material
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detaches from the plastic, and collect the extract in 1.5 mL
tubes.

3. Vortex the collected cell extract for 1 min.

4. Store in �80 �C until analysis (see Note 8).

5. To obtain a suitable blank sample, “extract” (rinse) an empty
6-well with cold methanol, and handle this solution in same
way as cell extracts (steps 2–4). This ensures that compounds
present in the microplate plastic, cell scrapers, tubes, and so on
are included in the blank and discounted during data analysis
(see Subheading 3.5, step 4).

3.4 Sample

Preparation and Mass

Spectrometry

To take full advantage of the deep labeling method, cell extracts
should be analyzed with high resolution full-scan mass spectrome-
try to capture a wide variety of cellular products and metabolic
intermediates. Below, we describe typical steps for analysis using
liquid chromatography coupled to a high-resolution Orbitrap mass
spectrometer, as previously described [7].

1. While the methanol used to quench metabolic reactions will
have partially lysed the cells, complete cell lysis can be ensured
by performing three freeze–thaw cycles where samples are
alternated between 37 �C and �80 �C (methanol and dry ice)
liquid baths in 60 s intervals.

2. To ensure complete metabolite extraction, vortex the samples
for 30 s at high speed and sonicate for 2 min using a bath
sonicator.

3. Dry down samples in vacuo using a vacuum concentrator, and
resuspend in 25 μL of 80:20 methanol–water (HPLC grade).

4. Mix the resuspended samples by initial aspiration followed by
2 min of sonication and 30 s of hard vortex. Centrifuge the
samples at 14,000 � g for 10 min at 4 �C and transfer super-
natants to glass HPLC vials containing a 100 μL glass conical
insert for injection into the LC-HRMS instrument. We recom-
mend using a Thermo QExactive Orbitrap mass spectrometer
coupled to a Thermo Vanquish UPLC system, or similar.

5. Perform chromatographic separation of polar metabolites
using a Millipore (Sequant) Zic-pHILIC 2.1 � 150 mm
5 μm column maintained at 25 �C and flowing at 300 μL/
min. Compounds are eluted via a 19 min linear gradient, start-
ing from 90:10 acetonitrile–20 mM ammonium bicarbonate
pH 9.6, to 45:55 acetonitrile–20 mM ammonium bicarbonate
pH 9.6. We recommend an injection volume of 5 μL (one-fifth
of the prepared sample volume), which corresponds to extract
from �80,000 cells. Note that higher injection volumes will
result in poor peak shape on this column.
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6. Operate the mass spectrometer at 35,000 resolution, 100 ms
ion trap time, 1 � 106 AGC target, and a mass range fromm/z
65–1000 for MS1 collection. For data-dependent (DDA) MS2
collection, use 17,500 resolution, 50 ms ion trap time, 2� 105

AGC target, and a TopX of 8. Operate the heated electrospray
ionization (HESI) source at 3.5 kV (�3.5 kV) spray voltage,
sheath gas flow rate of 40 arbitrary units, auxiliary gas flow rate
of 20 arbitrary units, sweep gas flow rate of 2 arbitrary units,
capillary temperature of 275 �C, auxiliary gas heater tempera-
ture of 350 �C, and an S-lens RF of 45. Inject each sample in
positive and negative ionization modes separately; do not use
polarity switching between scans, as this tends to complicate
downstream data analysis.

3.5 LC-HRMS Data

Processing

The downstream data analysis of deep labeling experiments is diffi-
cult to describe for a general case, as software details change over
time, and depend on the configuration of computer systems used.
Here, we describe a series of steps used in our laboratory to process
Thermo .raw instrument data files from deep labeling experiments
and extract information on isotope-labeled peaks, using the Iso-
track software to capture all LC-HRMS peaks above a predefined
intensity threshold. An overview of the analysis process is shown in
Fig. 2.

1. Perform an unbiased analysis of a set of replicated unlabeled
cell extracts using the Isotrack software, available at https://
github.com/Yaroslav-Lyutvinskiy/Isotrack (see Note 9). For
the LC-HRMS method described (see Subheading 3.4), we
recommend setting an LCMS peak apex intensity of at least
50,000, a minimum LC peak length of 6 s, and retaining only
peaks that are detected in all replicates. This generates a list P1

of all detectable LC-HRMS peaks satisfying these constraints,
excluding natural isotopomers due to 13C and 15N (see Note
10).

2. Perform a manual inspection of at least 100 randomly chosen
examples from P1 to ensure that detected peaks are true chro-
matographic peaks, and that peaks are not misidentified across
individual analyses due to retention time drift. Identified peaks
can be visualized using a scientific computing platform such
as R, python, or Mathematica, coupled with the mzAccess
service [9] to directly access LC-HRMS data. We typically
observe that >95% of all peaks detected by Isotrack that repro-
duce across three replicates are true peaks; if your error rate is
substantially higher, repeat step 1 with higher apex intensity
threshold and/or a longer minimum trace length.

3. Use the m/z and retention time coordinates from the peak list
P1 to integrate base isotopomer peak areas from unlabeled
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samples and blanks. We recommend performing peak integra-
tion using a scientific computing platform such as R, python, or
Mathematica, to allow customizing the workflow as needed
and retaining scripts that can be used to reproduce the analysis.

4. Discard peaks from P1 whose peak areas in unlabeled cell
extracts are less than five times the peak area observed in blanks;
call the resulting peak list P2. This step removes compounds
that derive from the environment, such as substances released
from culture plastic or present in the atmosphere during
analysis.

5. Identify putative metabolites from P2 by matching estimated
m/z of peaks against a database of known human compounds,
such as the HumanMetabolome Database (HMDB) [1]. Typi-
cally, matching peaks by m/z with a tolerance of �5 ppm and
considering common adducts (such as H+, H�) captures the
majority of commonly observed small (roughly, 50—300 Da)
metabolites, and most peaks in this range will be associated
with a single sum formula, although many peaks will have more
than one possible identity. Let P3 denote the list of peaks that

blanks

12C cultures

13C cultures

Peak integration
3.5.3

Peak integration
and filtering
3.5.6-7

Blank filtering
3.5.4

Peak detection
3.5.1-2

Peaks P1

Base isotopomer
peak areas for P1

All isotopomer
peak areas for P3

Downstream analysis

Peaks P2

Identify putative
metabolites
3.5.5

Peaks P3

Calculate enrichment
Confirm identities
3.5.8-9

Fig. 2 Outline of deep labeling LCMS data analysis. The text sections
corresponding to each step are indicated
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successfully matched at least one metabolite, and associate each
peak in P3 with the number of carbons in the matched metab-
olite(s).

6. Perform peak integration as in step [3] above for each peak in
P3, and all its possible mass isotopomers 13C0 through

13Cn in
all samples analyzed, based on the estimated number of carbons
n obtained for each peak. This typically yields data for 10—
20,000 mass isotopomers total on a full-scan high resolution
instrument.

7. To avoid false isotopic peaks due to contamination by other
ions of similar m/z, calculate for each peak the ratio of 13Ck

/13C0 peak areas, k ¼ 1, . . ., n, in the 12C cultures, and discard
mass isotopomers where this ratio exceeds the expected ratio.

pk

1� pð Þk
n

k

� �

Student’s t-test may be used to determine if the observed
ratio exceeds the expected by a reasonable statistical margin,
given the observed variation in mass isotopomers (MI) fraction
across replicates. However, since this variation is often very
small, an additional arbitrary cutoff may be required to avoid
removing isotopes with minor imperfections; we have used a
value of 0.03 above the expected ratio.

8. To confirm effective 13C labeling of cells, calculate for each
peak the 13C enrichment E, defined for a compound with
n carbons and MI fractions x0, x1, . . .xn as

E ¼ 1
n

Xn
k¼0

kxk

You should observe E > 95% for glucose, amino acids and
their immediate products. Central carbon metabolites such as
intermediates of the TCA cycle commonly have E values
around 85% (due to exchange with 12CO2), while lipids and
compounds containing choline or vitamin moieties (such as the
pantothenate moiety of coenzyme A) exhibit lower E values.

9. Confirm identities for metabolites of interest by (1) matching
against observed retention time of pure standards, (2)matching
MS/MS data, if collected, or (3) confirming appearance
expected mass isotopomers in deep labeling samples. For exam-
ple, de novo synthesized purines (C10) will exhibit a prominent
13C9 mass isotopomer since all carbons except one derive from
the deep labeling medium 13C nutrients (the remaining carbon
derives from CO2).
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3.6 Identifying

Synthesized

Metabolites and Active

Pathways

Once metabolites identity has been established and their MI distri-
bution is determined (as above), biosynthesized metabolites are
easily identified as any metabolite with higher 13C enrichment
than the natural 13C abundance (E ¼ 0.01 approximately). With
the described protocol, many biosynthesized compounds will typi-
cally be only partially 13C labeled. This is due to incorporation of
12C atoms from choline and the vitamins; from atmospheric 12CO2

which is readily incorporated into central carbon metabolism by
carboxylases/decarboxylases [7]; and from lipoprotein-derived
lipids, which are quite abundant in serum and are not removed by
dialysis.

Active metabolic enzymes can be identified by comparing
observed MIs of enzyme substrates and products. An enzyme can
be considered active if (1) the observed MIs of its product p are
compatible with the corresponding MIs of its substrate(s); and
(2) there is no other enzymatic reaction producing p from sub-
strate(s) with compatible MIs. An example of this type of inference
for NADmetabolism based on data from deep labeling experiments
with HCT116 cells is given in Fig. 3. For active reactions that do
not alter the carbon skeleton, we should observe the same MIs in
substrates and products, as for example in the hydroxylation of
13C11 tryptophan to 13C11 5-OH-tryptophan (Fig. 3a, b, g). For
reactions or pathways that remove carbons from the substrate, the
MIs will decrease accordingly, as in the conversion of 13C11 trypto-
phan to 13C10 kynurenine (Fig. 3c, g); while for reactions that
condense smaller molecules into larger ones, the MIs will be
added, as for example in the formation of 13C14 NAD from 13C0

nicotinamide, 13C9 ATP and 13C5 ribose (Fig. 3d–g). Generally,
this type of inference works well for more “peripheral” metabolic
systems, where there is usually one single enzyme producing each
product p; however, for highly interconnected reaction networks in
“central” metabolism, condition (2) often fails. To resolve such
cases, additional isotope tracing experiments with specific tracers
are needed. For “linear” pathways, consisting of many enzymes in
sequence, each having a single substrate and product, presence of a
labeled end product leads to the conclusion that all enzymes in the
pathway must be active. In this way, a single identified metabolite
can be informative for multiple reactions. For example, purine
biosynthesis consists of several enzymes in such a linear arrange-
ment, and all of these must be active in order to generate 13C9 ATP
(Fig. 3e). Conversely, inactive pathways are often identified by lack
of 13C atoms in products whose precursors are labeled. For exam-
ple, the pathway of de novo synthesis of NAD from kynurenine is
inactive in HCT116 cells, since activity of this pathway would
generate 13C20 NAD, which was not observed (Fig. 3f, g).
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4 Notes

1. Note that heat inactivation does not eliminate all enzyme activ-
ities from serum. Commercial FBS is typically heat-inactivated
for 30 min at 56 �C, which does inactivate some enzymes,
including asparaginase [10], but not all. Notably, both gluta-
minase [11] and arginase [12] are resistant to heat inactivation.

2. In some cases, a lower molecular weight cutoff can be needed
to retain smaller proteins that are required by certain cell lines,
such as peptide hormones and growth factors. Commercially
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available dialyzed serum can also be used, but make sure to
verify the molecular weight cutoff.

3. The fraction of newly synthesized biomass after N population
doublings is 1 � 2�N, so after N ¼ 6 doublings. 98% of the
biomass must be been labeled from the medium.

4. The described protocol will extract polar metabolites only; this
includes sugars, carboxylic acids, amino acids and various
amine-containing compounds, nucleobases and nucleotides,
and certain polar or amphipathic lipids such as phospholipids,
and some fatty acids. However, nonpolar species such as trigly-
cerides and sterols are not captured by this method. For a
straightforward extraction method for nonpolar metabolites,
see [13].

5. We do not describe further analysis of the medium samples in
this chapter, but they are useful to preserve as controls and for
troubleshooting. The samples of medium taken from cell cul-
tures can be used for estimating what metabolites the cells have
released into the medium. The fresh medium sample (directly
from the flask) is a good control to verify 13C enrichment of
tracers in the medium, while the medium incubated 48 h with-
out cells can be used to detect potential degradation of meta-
bolites during this incubation time.

6. Washing with PBS is critical to remove residual medium meta-
bolites that otherwise can contaminate the cell extracts. The
most serious contaminant is glucose, which is on the order of
1–5 mM in spent RPMI-1640 medium, and similar in cytosol;
since in a typical 6-well culture with �106 cells, there is �2 μL
of cytosol total, compared to 2 mL medium. Hence, medium
glucose outnumbers cytosolic glucose by at least 1000 to
1. After two rounds of washing with 1 mL PBS followed by
extraction with 1 mL methanol, medium metabolites are
expected to be reduced by at least a factor 106, removing
glucose and other contaminants. However, one should be
wary that prolonged washing also causes loss of membrane-
permeable metabolites from cells.

7. Be careful when scraping the cells in methanol, since it is
volatile and drips and splashes easily. To make this procedure
easier, tilt the plate when scraping, allowing the suspension to
accumulate at the bottom of the plate. Pipet up and down to
ensure homogenous solution. During scraping, denatured pro-
tein may form fiber-like structures; this can safely be included in
the extracts, as protein is removed later during LCMS sample
preparation.

8. Methanol will not freeze when stored in�80 �C. If the samples
will be shipped for analysis elsewhere, a tip is to add water to
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bring the samples up to 50% water by volume the day of
shipping to ensure sending frozen samples and reduce the risk
of leakage.

9. For untargeted analysis of LCMS data, XCMS [14] and
mzMine [15] are commonly used alternatives. However, we
have noted that both of these software suites rely heavily on
wavelet LCMS peak detection methods, which in our experi-
ence tend to give high false positive and false negative rates.
The IsoTrack software avoids this problem to a large extent by
taking advantage of the fact that chromatographic peaks on
Orbitrap systems usually appear as isolated “traces” over time
at a specific mass/charge ratio.

10. At the time of writing, the Isotrack software does not exclude
34S mass isotopomers, and does not account for multiply
charged species (such as a +2 charged 13C1 mass isotopomer,
which would differ in m/z from its base isotopomers by
0.5017). Therefore, candidate ions obtained from the
described procedure may still contain a small fraction of such
mass isotopomers.
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Chapter 6

Analyzing the Metabolism of Metastases in Mice

Patricia Altea-Manzano, Dorien Broekaert, João A. G. Duarte,
Juan Fernández-Garcı́a, Mélanie Planque, and Sarah-Maria Fendt

Abstract

Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer
cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently,
measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment
strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and
how their metabolism can be analyzed with metabolomics and 13C tracer analysis.

Key words Metastasis, Metabolism, In vivo metabolism, 13C tracer analysis, Metabolomics, Mouse
infusions

1 Introduction

Metabolic alterations in cancer enable malignant transformation,
uncontrolled cell proliferation [1, 2] and promote tumor progres-
sion toward metastasis outgrowth [3–5]. The combination of cell
intrinsic factors, such as genetic landscape and cell origin, and cell
extrinsic factors, such as local nutrient concentrations and cell–cell
interactions, regulate this reprogrammed tumor metabolism [4, 6–
9]. Understanding the interplay between these cell intrinsic and
extrinsic factors in shaping in vivo metastasis progression is highly
relevant to develop new therapeutic strategies against metastasis
formation. The analysis of metabolism during metastasis formation
requires specific methods such as in vivo metabolomics and 13C
tracer analysis.

Infusing tumor-bearing mice and cancer patients with isotope-
labeled nutrients (in vivo 13C tracer analysis) is emerging as a
powerful technique for analyzing tumor metabolism
[10, 11]. Examination of label-enriched tumor metabolites after
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intravenous infusion with nutrients labeled with stable isotopes,
such as 13C, 2H or 15N, can provide the first direct assessment of
the activity of metabolic pathways in tissues [11, 12]. Using this
cutting-edge technique, several studies have shown inter- and intra-
tumor heterogeneity of nutrient preferences and pathway activity of
intact tumors in mice and humans (Table 1). Based on such in vivo
data, it emerges that cancer progression toward metastases forma-
tion is inherently linked to changes in the microenvironment [4, 9,
13–15]. However, the complete metabolic rewiring in secondary
tumors still remains poorly studied, even thoughmetabolic changes
have an essential role in the metastatic outgrowth [4]. Therefore, it
is highly relevant to measure and analyze the in vivo metabolism of
cancer cells during the metastatic progression.

Here, we describe a protocol for determining the metabolism
of mouse primary tumors (breast cancer) and metastases (lung)
using stable isotope-labeled nutrients. In particular, we provide a
protocol for the establishment of two different lung metastasis
mouse models, catheterization, tracer administration by infusion,
harvest of (cancer) tissue from mice for subsequent mass spectrom-
etry (MS) analysis, and MS data interpretation.

2 Materials

Prepare and store all reagents at room temperature (unless indi-
cated otherwise). Diligently follow all waste disposal regulations.
Use a lab coat, gloves, and, if required, safety glasses at all times.
Work, if necessary, under the chemical fume hood. Familiarize
yourself with chemical/biological safety and ethical regulations
before conducting the experiment.

2.1 Establishing

a Lung Metastasis

Mouse Model

2.1.1 Cell Preparation

1. Culture medium (see Note 1) containing 10% fetal bovine
serum and 50 U/ml penicillin/streptomycin.

2. Cultured 4T1, B16F10, or EMT6.5 cells.

3. Trypsin–EDTA (0.25%).

4. Dulbecco’s phosphate-buffered saline (DPBS).

5. 1.5 ml tube.

6. Ice.

7. Dry ice.

8. 37 �C water bath.

9. Cell culture flask.

10. 70% ethanol.

11. Falcon tube.
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Table 1
Isotopic tracers used for measuring metabolic pathways in rodents and humans

Rodent Human

13C6-glucose

Healthy C57BL/6 mice [25]
Normal tissues from mouse lung [26, 27]

Clear cell renal cell carcinoma [28]

Subcutaneous xenografts non-small cell lung
carcinoma [27]

Lung cancer [27, 29–31]

Primary orthotopic human glioblastoma xenografts
in mice [32, 33]

Glioblastoma [32, 34]

Lung cancer in genetically engineered
mice [25, 26, 30, 35]

Adjacent lung tissue [27, 30, 31]

Pancreatic cancer in genetically engineered mice [25]

Primary breast cancers and the corresponding
lung metastases [13, 14]

1,6-13C2-glucose

Primary orthotopic human glioblastoma
xenografts in mice [33]

1,2-13C2-glucose

Lung cancer in genetically engineered mice [26]

3,4-13C2-glucose

Genetically engineered mice and rats [36–38]

13C2-acetate, 1-
13C1-acetate

Glioblastoma and brain metastases in mice [39] Clear cell renal cell carcinoma [28]

Fatty acid synthesis in healthy subjects [40]

13C3-lactate, 2-
13C1-lactate

Lung adenocarcinoma
in Ncr nude mice [31]

Subcutaneous xenografts non-small cell lung
carcinoma and normal lung in mice [27]

Non-small cell lung cancer and
adjacent lung tissue [27]

Lung cancer in genetically engineered mice [25]

Pancreatic cancer in genetically engineered mice [25]

Mammary carcinoma in rats [41]

Genetically engineered mice (hepatocyte-specific) [42]

Healthy C57BL/6 mice [25]

13C3-pyruvate, 1-
13C1-pyruvate

Subcutaneous xenografts non-small cell lung
carcinoma and normal lung in mice [27]

(continued)
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Table 1
(continued)

Rodent Human

Lung cancer in genetically engineered mice [26]

Genetically engineered mice (hepatocyte-specific) [42]

13C3-alanine

Subcutaneous xenografts non-small cell lung carcinoma
and normal lung in mice [27]

13C5-glutamine

Primary orthotopic human glioblastoma
xenografts [32, 33]

Lung cancer in genetically engineered mice [25, 35]

Healthy and pancreatic cancer in genetically
engineered mice [25]

3,4-13C2-acetoacetate

Genetically engineered mice and rats [36–38]

13C4-sodium β-hydroxybutyrate

Genetically engineered mice and rats [36–38]

13C3-propionate

Genetically engineered mice and rats [36–38]

13C-labeled fatty acids

Healthy and high fat-fed insulin-resistant
Sprague–Dawley rats [43]

Healthy [44, 45] and type 2
diabetes subjects [46]

Normoinsulinemic and
hyperinsulinemic subjects [47]

2, 3-2H2-serine

Colon cancer xenografts in
CD1/nude mice [48]

13C-branched-chain amino acids

Healthy C57BL/6 and insulin-resistant mice [49]

13C-bicarbonate/13CO2

Lymphocytic leukemia in CDF1 mice [50]

2H2O

Healthy Sprague–Dawley rats and C57Bl/6 J
male mice [51]

Healthy volunteers [51, 52]
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2.1.2 Intravenous

Injection of Cancer Cells

1. Balb/c mice 6 weeks old or C57BL/6 mice 8 weeks old (see
Note 2).

2. Infrared lamp (see Note 3).

3. Insulin syringe with needle 29G, 0.5 ml, 12 mm length.

4. Single cell solution on ice prepared in Subheading 2.1.1.

5. Clean mouse cage.

6. Mouse tail vein restrainer.

2.1.3 Injection of Cancer

Cells in the Mammary

Fat Pad

1. Mouse shaver.

2. Hair removal cream.

3. Cotton swab.

4. Insulin syringe with needle 29G, 0.5 ml, 12 mm length.

5. Single cell solution on ice prepared in Subheading 3.1.1.

2.2 Mouse Surgery

and 13C Glucose

Infusion

This technique can be performed as described by Broekaert and
Fendt [10].

2.3 Collection

of Frozen Tissue

Samples

1. Liquid nitrogen.

2. Dry ice.

3. Ice.

4. Labeled polyzip bags.

5. Biosqueezer.

6. 0.9% blood bank saline.

7. 1 ml Single-use tuberculin syringe with ml graduation,
Luer tip.

8. Microvette for capillary blood collection.

2.4 Metabolite

Extraction

Work under the chemical fume hood when preparing extraction
solutions.

1. Labeled 2 ml Eppendorf tubes (3 tubes per sample).

2. Grinding balls, stainless steel, 5 mm.

3. Grinding balls, stainless steel, 3 mm.

4. Analytical balance (range: 0.0001–50 g).

5. Forceps.

6. Liquid nitrogen.

7. Dry ice.

8. Ice.

9. MS grade chloroform.
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10. Chromasolv grade methanol.

11. Cryomill.

12. Milli-Q water.

13. 400� norvaline–glutarate internal standard stock solution for
analysis of polar metabolites: Dissolve 1 mg each of both
norvaline and glutarate in 1 ml Milli-Q water (see Note 4).
Aliquots can be stored for up to 1 year at �20 �C.

14. Extraction solution 1 (water + norvaline–glutarate + metha-
nol): Prepare per sample 0.75 μl of 400� norvaline–glutarate
stock (i.e., 0.75 μg of each norvaline and glutarate per sample)
in 300 μl Milli-Q water. Add 500 μl methanol per sample and
mix (final ratio water–methanol ¼ 3:5). Store extraction solu-
tion 1 at �20 �C until extraction (see Notes 4–6).

15. 100� internal standard stock solution for analysis of fatty acids:
Dissolve 1 mg of heptadecanoic acid (C17) in 1 ml chloroform
(see Notes 4 and 5). The C17 internal standard stock can be
stored at �80 �C for 3–4 weeks.

16. Extraction solution 2: Prepare per sample 5 μl of 100� C17

stock (i.e., 5 μg C17 per sample) in 500 μl chloroform. Store
this solution at �80 �C until extraction.

17. Chemical fume hood.

18. Refrigerated acid resistant vacuum centrifuge.

2.5 Derivatization

of Polar Metabolites

for Gas

Chromatography-

Mass Spectrometry

(GC-MS) Analysis

Work under the chemical fume hood when preparing derivatization
solutions

1. Methoxyamine derivatization solution: 20 mg/ml solution of
O-Methoxyamine-HCl in anhydrous pyridine, counting for at
least 20 μl of solution per sample. Weigh 20 mg methoxyamine
in a safe lock Eppendorf tube. Wash a needle with pyridine
using a syringe and discard the waste appropriately. Aliquot
more than 1 ml of pyridine in a safe-lock Eppendorf tube
using the washed needle. Add 1 ml of pyridine to the methox-
yamine. Vortex until methoxyamine is entirely dissolved (see
Note 7).

2. Glass GC-MS vials with insert and magnetic caps with septum.

3. Crimper.

4. N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide with
1% tert-butyldimethylchlorosilane (TBDMS) derivatization
agent (see Note 8).

5. Heating block.

6. Safe-Lock Eppendorf tubes.

7. Analytical scale (range: 0.0001–50 g).
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8. Syringe with needle.

9. Chemical fume hood.

10. Refrigerated acid resistant vacuum centrifuge.

2.6 Derivatization

of Nonpolar

Metabolites (Fatty

Acids) for GC-MS

Analysis

Work under the chemical fume hood when preparing derivatization
solutions

1. 2% sulfuric acid in MS-grade methanol (see Note 9).

2. Hexane (�97.0%, GC grade).

3. Saturated NaCl: Dissolve sodium chloride in autoclaved Milli-
Q water until solution is saturated. From then on, work only
with the saturated (top) fraction.

4. Glass GC-MS vials with insert and nonmagnetic caps with
septum.

5. Crimper.

6. Heating block.

7. Safe-Lock Eppendorf tubes.

8. Chemical fume hood.

9. Refrigerated acid resistant vacuum centrifuge.

2.7 Preparation

of Polar Metabolite

Samples for LC-MS

Analysis

1. 60% acetonitrile (LC-MS grade): prepare under the chemical
fume hood.

2. Plastic vials with insert and plastic caps with septum.

3. Safe-Lock Eppendorf tubes.

4. Chemical fume hood.

5. Refrigerated acid resistant vacuum centrifuge.

2.8 Protein

Quantification

1. BCA protein assay kit.

2. 0.2 M NaOH: Weigh 0.8 g NaOH and transfer to a glass
recipient. Add autoclaved Milli-Q water to a volume of
100 ml and mix (see Note 10).

3. Autoclaved phosphate-buffered saline (PBS).

4. Heating block.

5. Multichannel pipette.

6. Pipetting reservoir.

7. 96-Well plate.

8. 37 �C incubator.

2.9 Collection

of Lungs

for Hematoxylin

and Eosin (H&E)

Staining

1. Formalin solution, neutral buffered, 10% (see Note 11).

2. 27 G needle.

3. 1 ml syringe without needle.
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4. Mouse dissection tools: needle holder, scissors, standard
forceps.

5. Closed container.

6. PBS.

7. Histology embedding cassettes.

3 Methods

Perform all procedures at room temperature unless otherwise
specified.

3.1 Establishing

a Lung Metastasis

Mouse Model

3.1.1 Cell Preparation

1. Thaw one vial of 4T1, B16F10, or EMT6.5 cells by removing it
rapidly from liquid nitrogen and immediately placing it into a
37 �C water bath (see Note 12).

2. Wash the vial with 70% ethanol before opening. Resuspend the
contents of the vial in a falcon tube containing ten times the
volume in the vial of the appropriate cell culture medium
(RPMI for 4T1 and B16F10 cells, or MEM alpha for
EMT6.5 cells). Spin down at 300 � g for 5 min. Aspirate the
cell culture medium, and resuspend the cell pellet in the desired
volume of the appropriate cell culture medium. Transfer the
cell suspension to a cell culture flask.

3. When the cell culture flask reaches 80–90% confluency, “split”
the cells in an appropriate ratio depending on growth rates.
4T1, B16F10 and EMT6.5 cells are fast growing cells and can
be split using trypsin-EDTA (0.25%) in a 1/10 ratio to reach
confluency again after 3 days. Expand the cells up to the desired
amount (seeNote 13). For intravenous injection, 100,000 cells
per mouse will be needed. For injection in the mammary fat
pad, 1 million cells per mouse will be needed (see Note 14).

4. When the desired amount of cells has been reached, dissociate
the cells with trypsin-EDTA (0.25%) and wash three times with
PBS to remove all Fetal Bovine Serum and penicillin/strepto-
mycin. To wash the cells, spin down at 300 � g for 5 min.
Count the cells and resuspend in the desired amount of PBS
(see Note 15).

5. For intravenous injection, resuspend 100,000 cells in 100 μl.
For injection in the mammary fat pad, resuspend 1 million cells
in 50 μl (see Note 16). Transfer the cell suspension into an
Eppendorf tube and put on ice.

3.1.2 Intravenous

Injection of Cancer Cells

(Lung Metastasis W/O

Primary Tumor)

Before you start, take a clean cage and direct an infrared (IR) lamp
toward the cage to be able to dilate the blood vessels in the tail of
the mice (Fig. 1a) (see Note 3). Put a tail vein restrainer in front of
you. Transfer the first 5 mice to the clean cage with direct IR light.
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1. Resuspend the cells in the Eppendorf tube by pipetting up and
down (see Note 17). Fill the insulin syringe (29G) with 100 μl
cell suspension and remove all bubbles from the syringe (see
Note 18).

2. Move the IR lamp further away from the clean cage, but keep
the cage warm (see Note 19).

3. Take the first mouse and put it in a tail vein restrainer (Fig. 1b)
(see Note 20). Hold the tail in your left hand (when right
handed), identify the lateral tail vein and slightly bend the tail
in between the index finger and thumb (Fig. 1c). To define the
lateral tail vein you can place the mouse in front of you. The
vein facing upward is the dorsal tail vein, the vein facing down-
ward is the ventral artery (Fig. 1d red line) and the veins left
and right from the dorsal tail vein are the lateral tail veins
(Fig. 1d green lines). Insert the needle almost parallel to the
tail, with the needle opening upward, and inject the cell sus-
pension in one of the two lateral tail veins (Fig. 1d, e). The vein
should change color when injecting correctly (see Note 21).

4. Put the mouse slowly back in its nonheated cage.

3.1.3 Injection of Cancer

Cells in the Mammary Fat

Pad (Spontaneous

Metastasis from Primary

Tumor)

1. Shave the mice 2 days before injection around the nipple
(Fig. 2) (see Note 22). To remove every single hair, you can
evenly spread a drop of hair removal cream on the nipple area
using a cotton swab. Wait approximately 2 min so the skin can
absorb the cream and remove the cream using wet tissues.

Fig. 1 Generation of lung metastasis mouse model without primary tumor by intravenous injection of cancer
cells in the mouse tail vein. (a) Infrared lamp is directed toward the mice in the cage. (b) Position the mouse in
a tail vein restrainer. (c) The tail is bent between the index finger and thumb. (d) Identify the lateral tail veins
(indicated by the green lines) left and right from the ventral artery (indicated by the red line). (e) Insert the
needle almost parallel to the tail

Metastasis Metabolism 101



2. Resuspend the cells in the Eppendorf tube by pipetting up and
down (see Note 17). Fill the insulin syringe (29G) with 50 μl
cell suspension and remove the bubbles.

3. Inject the cells subcutaneously under the nipple, by inserting
the needle about 10 mm distally from the nipple horizontally
under the skin. Move the needle horizontally and subcutane-
ously toward the nipple, and inject when the needle tip is right
under the nipple, with the needle opening upward (see Note
23) (Fig. 3a, b). A small bubble under the nipple indicates a
good injection (Fig. 3c) (see Note 24).

Fig. 2 Area around the mouse nipple that needs to be shaved. Cells will be
injected in the mammary fat pad under the nipple indicated by the arrow

Fig. 3 Generation of spontaneous metastasis mouse model (with primary tumor) through injection of cancer
cells in the mammary fat pad. (a) Pick up the mouse with your left hand and locate the nipple. (b) The needle
was inserted about 10 mm distally from the nipple horizontally under the skin and moved to the nipple. (c)
Inject when the needle tip is right under the nipple. A small bubble under the nipple is an indication of a good
injection
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3.2 Mouse Surgery

and Infusion

of Labeled Metabolites

The duration of the model and moment of infusion differs for each
mouse model, based on the humane endpoints to sacrifice the mice
defined by the ethics regulations where the experiment is con-
ducted (see Note 25) (Table 2).

Mouse surgery needs to be performed approximately 1 week
before infusion.

3.3 Collection

of Snap-Frozen Tissue

Samples

1. Sacrifice the mouse with an overdose of Dolethal (140 mg/kg,
2.8 μl per gram of animal weight of a 50 mg/ml solution) (see
Notes 27 and 40).

2. Open the mouse and collect the blood by heart puncture. Put
the blood on ice in a microvette for capillary blood collection,
and spin down right after for 10 min at 10,000 � g. Transfer
the plasma to an Eppendorf tube and store at �80 �C.

3. Collect the organs of interest as fast as possible. Wash the tissue
in ice cold blood bank saline, remove the saline with a sterile
compress, put the tissue in a labeled polyzip bag, squeeze it
with the precooled biosqueezer, and put it into liquid nitrogen
(see Note 28). Store the tissues at �80 �C.

4. When collecting tumor tissue, it is important to separate tumor
and healthy tissue immediately during collection, as frozen
tissue is not malleable enough to allow for a correct separation
of tumor tissue. However, keep in mind to limit the collection
time to prevent any potential tissue degradation (seeNote 29).

3.4 Metabolite

Extraction

Work under the chemical fume hood when handling the extraction
solutions.

1. Weigh a piece of tissue (approximately 10 mg) while keeping it
as cold as possible (see Note 30).

Table 2
Duration of described mouse models to generate lung metastases

Mouse
strain Cell line Type of injection

Number of
cells
injected

Injection
volume

Model
duration

Balb/c 4T1 Mammary fat pad 1 million 50 μl ~3 weeks

Balb/c 4 T1 IV 100,000 100 μl ~2 weeks

Balb/c EMT6.5 Mammary fat pad 1 million 50 μl ~3.5 weeks

Balb/c EMT6.5 IV 100,000 100 μl ~2.5 weeks

C57BL/6 J B16F10 IV 150,000 100 μl ~3 weeks

Mouse surgery and infusions can be performed as described before [10] (see Note 26)
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2. For grinding the tissue, add one 5 mm precooled grinding ball
and one 3 mm precooled grinding ball to every tube with
tissue. Cool down the Cryomill machine by opening the con-
nection to the liquid nitrogen tank and grind the tissue for
30–40 s (frequency: 25 Hz). Place the sample tubes on dry ice
immediately after grinding (seeNote 28). Grounded tissue can
be stored at �80 �C (see Note 31).

3. Transfer the tubes to a mixture of dry ice and ice. Add to each
tube 800 μl of ice cold extraction solution 1, and 500 μl of
ice-cold extraction solution 2. Vortex the samples for 10 min at
4 �C, and then centrifuge them for 10 min at 4 �C maximum
speed. The contents of the tube will now have separated into
3 layers (Fig. 4).

4. Pipet the polar top phase (consisting of extraction solution 1)
into a new Eppendorf tube, and place the tube on dry ice. This
layer will contain polar metabolites such as amino acids and
organic acids. The middle layer consists of protein, DNA, and
RNA. With a new pipette, cross through the middle layer while
releasing some air, so that proteins, DNA, and RNA do not
enter the pipette tip. Then, collect the nonpolar bottom phase
(consisting of extraction solution 2), transfer into a new
Eppendorf tube (trying not to disturb the middle layer while
removing the pipette tip), and place the tube on dry ice (see
Note 32). This lower phase will contain fatty acids and other
nonpolar metabolites (Fig. 4). Bring also the tube with the
remaining protein/DNA/RNA into dry ice.

Fig. 4 Eppendorf tube with the three layers after metabolite extraction. The top
layer consists of extraction solution 1 containing polar metabolites. The middle
layer consists of protein, DNA and RNA. The lower layer consists of extraction
solution 2 containing fatty acids and nonpolar metabolites

104 Patricia Altea-Manzano et al.



5. Dry down the collected samples in a vacuum centrifuge. The
samples containing polar metabolites should be dried at 4 �C
for 8 h, while the protein and fatty acid containing samples can
be dried down at 20 �C for 1 h in an acid resistant vacuum
centrifuge. When dry, store the samples at �80 �C.

6. Perform this extraction process one additional time in triplicate
in identical Eppendorf tubes but without any sample. These
samples are “mock” extractions and will serve to assess the
presence of impurities at a later point.

3.5 Derivatization

of Polar Metabolites

for GC-MS Analysis

Work under the chemical fume hood when handling the derivatiza-
tion solutions.

1. Add 20 μl of 20 mg/ml O-methoxyamine–HCl dissolved in
pyridine to each sample, vortex briefly, and incubate for 90 min
in a heating block at 37 �C. Subsequently, centrifuge the sam-
ples for 3–5 min at maximum speed, transfer 7.5 μl of the
supernatant into a glass GC-MS vial with insert, and seal with
a magnetic cap using a crimper (see Note 33).

2. Fill a glass vial with insert with N-(tert-butyldimethylsilyl)-N-
methyl-trifluoroacetamide (TBDMS, 15 μl/sample + 25 μl
extra per vial) and seal with a nonmagnetic cap (see Note 34).
Fill a 2 ml glass vial without insert with pyridine, and seal with a
nonmagnetic cap. Program the GC-MS autosampler to add
15 μl TBDMS to each sample, incubate for 1 h at 60 �C, and
resuspend the sample prior to injection. Program also the
autosampler to wash the injection needle with pyridine in
between loading different samples (see Notes 35 and 36).

3. Measure the samples using a GC-MS instrument. In our case,
as described before [13, 16], samples are measured on an
Agilent 7890A GC system coupled to an Agilent 5975C Inert
MS system. In brief, 1 μl of sample is injected into a DB35MS
column in splitless mode, using an inlet temperature of 270 �C,
and with helium at a flow rate of 1 ml/min as the carrier gas.
Upon injection, the GC oven is first held at 100 �C for 1 min,
then ramped up to 105 �C with a gradient of 2.5 �C/min, after
that ramped up to 240 �C with a gradient of 3.5 �C/min, and
finally ramped up to 320 �C with a gradient of 22 �C/min,
followed by a 4 min post-run at 320 �C. The MS system is
operated under electron impact ionization at 70 eV, and a mass
range of 100–650 amu is scanned.

3.6 Derivatization

of Nonpolar

Metabolites (Fatty

Acids) for GC-MS

Analysis

Work under the chemical fume hood when handling the derivatiza-
tion solutions.

1. Add 500 μl of 2% sulfuric acid in methanol to each sample and
incubate for 3 h at 60 �C or overnight at 50 �C (see Notes 28
and 33).
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2. Add 600 μl hexane and 100 μl saturated NaCl to each sample,
vortex 10 min, and centrifuge 5 min at maximum speed.
Transfer the upper hexane phase to a new Eppendorf tube,
and dry the samples for 10 min at 20 �C in an acid resistant
vacuum centrifuge (see Note 37).

3. Resuspend in a defined amount of hexane, depending on the
amount and type of tissue (e.g., a sample containing 5 mg
normal liver was resuspended in 440 μl hexane), vortex
10 min, transfer to a glass vial with insert, and seal with a
nonmagnetic cap using a crimper.

4. Measure the samples using a GC-MS instrument. In our case,
the approach is analogous to the one described above for polar
metabolites, but using a higher helium carrier-gas flow rate
(1.3 ml/min) and a different temperature gradient: upon injec-
tion of nonpolar metabolite samples, the GC oven is first held
at 140 �C for 2 min, then ramped up to 185 �C with a gradient
of 1 �C/min, and after that ramped up to 300 �C with a
gradient of 20 �C/min, followed by a 2 min post-run at
300 �C. The MS instrument is operated in dual (positive +
negative) polarity, with the following ion source parameters:
gas (N2) temperature ¼ 270 �C; gas flow ¼ 10 l/min; neb-
ulizer pressure¼ 35 psi; sheath gas (N2) temperature¼ 300 �C;
sheath gas flow ¼ 12 l/min; capillary voltage ¼ 3500/
�3000 V (positive/negative polarity); nozzle voltage¼ 500 V.
Ion detection is performed in multiple reaction monitoring
(MRM) mode, with a total cycle time of 1500 ms.

3.7 Protein

Quantification

1. Resuspend the dried protein pellet in 200 μl 0.2 M NaOH and
incubate for 20 min in a heating block 95 �C (see Note 28).

2. For the quantification continue as described in the manual of
the BCA protein assay kit.

3. Use the protein amount to normalize the measured metabolite
levels to the starting material used.

3.8 Collection

of Lungs for H&E

Staining

1. Sacrifice the mouse with an overdose of Dolethal (140 mg/kg,
2.8 μl per gram of animal weight of a 50 mg/ml solution) (see
Notes 27 and 38).

2. Sanitize the mouse by spraying 70% ethanol on the fur along
the abdominal region, so that any loose/dry hairs will not enter
the region (Fig. 5a).

3. Carefully open the mouse thorax with a midline incision, cut
away the diaphragm, and cut open the lateral chest walls with-
out touching the lungs (Fig. 5b) (see Note 38).

4. Open the skin at the tracheal area and remove all the glands in
that area until you can easily see and reach the trachea. Remove
the connective tissue around the trachea using scissors.
(Fig. 5c, d) (see Note 39).
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5. Take a 1 ml syringe with 27G needle and fill with 1 ml 10%
neutral buffered formalin solution. Clamp the cranial part of
the trachea using a needle holder (Fig. 5e). Hold the trachea
with the needle holder while you insert slowly the needle in the
caudal part of the trachea parallel to the trachea with the needle
opening toward you. Inject 1 ml 10% neutral buffered formalin
solution (Fig. 5f) (see Note 11).

6. Collect the lung, wash for 1 min in PBS and store for 24 h at
4 �C in a closed container filled with 10% neutral buffered
formalin solution. Ensure that the fixative is at least 10� the
volume of tissue (Fig. 5g, h) (see Note 40).

7. After 24 h, wash the samples with 70% ethanol and proceed
with embedding the lung in paraffin using an automated
machine routinely used for tissue embedding in paraffin wax.
When embedded, samples can be stored at room temperature
[17, 18].

Fig. 5 Collection of lungs for H&E staining. (a) The mouse has been sanitized using 70% ethanol. (b) Open the
mouse thorax with a midline incision. (c) Open the skin at the tracheal area and remove all the glands. (d) All
glands and connective tissue have been removed around the trachea. (e) Clamp the cranial part of the trachea
using a needle holder. (f) Insert the needle in the caudal part of the trachea parallel to the trachea. (g) Collect
the lung. (h) Wash the lung in PBS, remove the blood and store in 10% neutral buffered formalin solution
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3.9 Analysis of MS

Data—Technical

Considerations

1. Mass spectrometry is a highly specific and sensitive technique
allowing the simultaneous detection of hundreds of metabo-
lites. However, the complexity of biological samples can lead to
difficulties when interpreting MS data. One important param-
eter for the interpretation of MS data is the retention time, that
is, the time at which the metabolites of interest are eluted from
the chromatographic column and detected. The same metabo-
lite can elute at different times and positions depending on
many technical differences (type of column, elution gradients,
buffers, etc.), so it is best to, prior to analysis of biological
samples, establish an internal library of retention times. To do
this, standards for each metabolite of interest, must be pro-
cessed individually as described above.

The necessary amount to be used for this purpose can be
different from metabolite to metabolite, but a good starting
point is 1–10 μg total amount. It is also important to perform
calibration curves with increasing amounts of the metabolite of
interest (for example 0, 1, 5, 10, and 15 μg). This way, com-
paring between each chromatogram, the peak arising from the
metabolite of interest should increase with increasing starting
amounts, making peak assignment easier. Moreover, the sensi-
tivity and the linear range of concentration for each metabolite
can be determined. The sensitivity (limit of detection) is
defined as the lowest amount of metabolite that can be
detected, and must be determined for each metabolite consid-
ering the slope of the calibration curve or a signal-to-noise ratio
above 3 [19]. Once a retention time library has been estab-
lished, it is possible to mix all metabolites of interest (provided
that they do not coelute) in a single set of samples and perform
standard curves for all metabolites in one go. Due to factors
such as detector and derivatization efficiency, it is possible that
the calibration curves from a specific run might not apply to a
future run and, therefore, a new calibration curve should be
performed each time.

2. The total amount of a metabolite present in the sample is
directly proportional to its peak area. Thus, if information
about the absolute amount of a metabolite (i.e., a metabolite
concentration) in biological samples is necessary, it is important
to create a standard curve. It is important to extract the samples
used to generate the standard curve in the same way as the
biological sample. Consequently, the peak area of the standard
curve samples also need to be normalized to the internal stan-
dard (see Subheading 3.10.1). Due to the complexity of
biological samples there is the possibility that metabolites will
interact with each other, leading to shifts in retention times
and/or peak intensity. This is known as the matrix effect.

To correct for this effect, perform an additional 3 extrac-
tions for each of your biological samples using a similar amount
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of starting material to that of the biological samples, and pool
them together (to prevent any possible metabolite differences
between extraction). Afterward, split the samples into 3 ali-
quots and perform standard addition of 0�, 2� and 5� of the
initial quantity of the metabolite of interest, as determined by
the standard curves mentioned in Subheading 3.9, step 1.

If there are no matrix effects, this new calibration curve,
performed in the presence of the biological matrix, should have
the same slope as that of the pure metabolite, any deviation will
be due to the matrix effect and the new standard curve should
be used to quantify the metabolite.

Since the matrix effect is dependent on the metabolites
present in the samples and these can vary wildly from tissue to
tissue, it is recommended to performmatrix correction for each
of the different biological origins of the samples. For example, a
matrix effect present in a liver sample might not be present in a
kidney sample; the same is true for liquid samples: a urine
sample and plasma sample can possess different matrix effects
that should be corrected separately.

3.10 Interpretation

of MS-Derived

Biological Data

3.10.1 Calculation

of Total Metabolite Levels

1. For each sample and metabolite of interest, identify all possible
mass isotopologs potentially contributing to that metabolite’s
total signal. We will designate these as M + i, where M is the
mass of the unlabeled metabolite, and i (i ¼ 0, 1, . . ., N)
denotes a specific isotopolog, based on the number of tracer
atoms incorporated into the metabolite backbone (with
N being the maximum number of tracer atoms that the metab-
olite can incorporate). For instance, if a 13C tracer (such as
13C6-glucose) is fed to the animal, there are 4 possible mass
isotopologs potentially arising for pyruvate (C3H4O3), namely,
those due to the incorporation of 0, 1, 2, or 3 13C atoms into
its carbon backbone (i.e., M + 0, M + 1, M + 2, and M + 3,
respectively).

2. Determine the ion counts measured for each of those isotopo-
logs (ICM + i), by appropriately integrating the area under the
corresponding spectral peaks using any commercially available
peak integration software.

3. Add up the ion counts for all isotopologs corresponding to
every given metabolite, to obtain total ion counts for each

metabolite, TC ¼ PN

i¼0

ICMþi. Furthermore, since some meta-

bolites may be present as impurities arising from the extraction
buffers or the tubes where the derivatization was performed,
“mock” samples, as defined in Subheading 3.4, step 6 can be
used identify these impurities. Since these “mock” samples did
not have any contact with any biological material, any metabo-
lite present in these samples is considered an impurity. Conse-
quently, metabolite abundances below or at the level of the
mock should not be used for biological interpretation.
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4. Standardize the total ion counts for each metabolite relative to
those of the appropriate internal standard (e.g., norvaline,
glutarate, or heptadecanoic acid for amino acids, organic acids
and fatty acids, respectively) in the same sample. This removes
the influence of any potential loss of material during the extrac-
tion process (see Note 41).

5. Using the previously mentioned calibration curves (standar-
dized in an analogous manner), transform these standardized
ion counts into absolute levels (concentrations, or amounts).
This step can be skipped if all that is sought from the experi-
ment is a comparison between the relative levels of the same
metabolites among different samples (e.g., when comparing
pyruvate levels between primary tumor and metastasis tissues).

6. Finally, normalize the above levels (absolute or relative) by the
starting amount of biological sample (i.e., fluid volume, tissue
weight, or cell number). These values can then be compared
between different groups.

3.10.2 Analysis

of Fractional Nutrient

Contributions and Pathway

Activities

1. For each sample and metabolite of interest, determine a
(measured) fractional mass isotopolog distribution, or mass
distribution vector (MDV), Y ¼ {YM + 0, YM + 1, . . ., YM + N},
based on the isotopologue counts ICM + i and total ion counts
TC defined in Subheading 3.10.1, according to

YMþi ¼ ICMþi

TC
i ¼ 0, 1, . . . ,Nð Þ ð1Þ

2. For appropriate interpretation, the measured MDV must first
be corrected to account for the natural abundance of heavier
isotopes. This is because, for every metabolite, and indepen-
dently of the presence of tracer atoms, there is a probability for
each of the atoms in it to naturally appear in the form of a
heavier isotope. Thus, these natural abundances must be cor-
rected to avoid overestimating the label incorporation into the
metabolites of interest. The theory underlying natural abun-
dance correction and its practical implementation have been
widely covered in the literature [20, 21]. Readers are thus
encouraged to use one of the several programmatic tools
already developed and tested to perform these corrections
(see for instance https://pypi.org/project/IsoCor). For the
purpose of this manuscript, it is sufficient to state that the latter
all involve solving a linear system of equations of the form

Y ¼ LñX ð2Þ
Where Y is the measured MDV, X ¼ {XM + 0, XM + 1, . . .,

XM + N} is the actual (natural abundance-corrected)
MDV, and L is a correction matrix, whose components depend
both on the full atomic composition of the metabolite of
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interest upon measurement (including all atoms, not only
those susceptible of tracer incorporation) and on the nature
and number of tracer atoms that can be incorporated by the
latter. Consequently, it is important to keep in mind that, if
there is a chemical derivatization process (such as the afore-
mentioned TBDMS derivatization), the atomic compositions
of the whole derivatives (and not just those of the bare meta-
bolites) must be taken into consideration when correcting for
natural abundance. Conversely, the number of potentially
labeled atoms considered for the correction will stem from
the bare metabolite backbone, since the chemical derivatization
process will not add labeled atoms to the metabolite. For
instance, in the case of the TBDMS derivative of pyruvate,
the formula to be used for natural abundance correction is
C6H12O3NSi (corresponding to the full derivative ion), and
not C3H4O3 (corresponding to pyruvate only). However, the
correction must consider that only up to 3 carbon atoms (and
not 6) may be labeled. The same principle applies whenever any
atoms are added to/removed from the metabolite as a result of
an ionization process (e.g., H+ removal upon negative electro-
spray ionization in LC-MS measurements).

3. After correcting for natural abundance, it is possible to calcu-
late the fractional contribution (FC) of the tracer to each
metabolite of interest, by using the equation

FC ¼
PN

i¼0iñXMþi

N
ð3Þ

where N is the number of atoms in the metabolite suscep-
tible of tracer incorporation, and the XM + i are the corrected
fractional abundances of each of its different isotopologues. In
isotope-labeling experiments with uniformly labeled tracers,
FC represents the fraction of a given metabolite pool that
originates from those labeled tracers, and thus can be used to
infer the relative contributions of labeled and unlabeled nutri-
ents toward the production of a given metabolite [12]. For a
faithful comparison between FCs for different samples, the FC
of each metabolite of interest must be standardized toward the
actual FC of the original tracer in the same sample. For exam-
ple, if 13C6-glucose is infused, the FC of plasma glucose in each
sample should be used to standardize the FC values for all other
metabolites in that sample. This standardization corrects for
any possible dilutions of the initial tracer in the bloodstream,
which will significantly alter the distribution of label across the
metabolic network. Following the example of 13C6-glucose
and pyruvate, let the FC values determined for each metabolite
be 0.90 and 0.72, respectively. This would indicate that 0.72/
0.9 ¼ 80% of the measured pyruvate originated from glucose.
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As an exception to this, it is possible to directly compare the
FC of the same metabolite in two different tissues of the same
mouse (for example, hepatic and renal pyruvate FC) as the
enrichment of the tracer in the blood stream of the mouse is
the same measure for both tissues.

4. In addition to obtaining information about differential nutri-
ent contributions (by comparing the FCs for given metabolites
between samples), it is also possible to infer conclusions about
differential pathway activities by comparing the underlying
MDVs. Indeed, since each isotopolog can only arise from a
subset of specific metabolic pathways, comparing the relative
abundances of specific isotopologs of a given metabolite can
provide information on the relative activities of the metabolic
pathways converging into that metabolite. For instance, when
analyzing citrate labeling from a uniformly labeled 13C6-glu-
cose tracer, multiple isotopologs can be detected, including
M + 2 (if doubly labeled acetyl-CoA is incorporated into citrate
via citrate synthase), M + 3 (if uniformly labeled pyruvate is
incorporated into oxaloacetate via pyruvate carboxylase, and
from there further into citrate), or M + 5 (if both pathways are
active). Thus, comparing the fractional abundances of the cit-
rate M + 2, M + 3, and M + 5 isotopologues will provide
information about the relative activities of those pathways.

It is important to keep in mind that, unlike FC, individual
isotopologs should never be corrected for the enrichment of
the initial tracer in the blood stream.

4 Notes

1. Culture media needs to be adapted to the individual cell lines
(e.g. RPMI 1640 Medium for 4T1 and B16F10 cells and
MEM Alpha Medium for EMT6.5 cells).

2. Mouse strains need to be syngeneic with the injected cell line
(e.g., murine 4T1 or EMT6.5 cell lines can be injected in Balb/
c mice without any rejection response). The B16F10 cell line
can be injected in C57BL/6 mice without any rejection
response.

3. Alternative: heating chamber. You can heat the tail by putting it
in warm water or in a heating chamber.

4. Use glass bottles and glass pipettes or “inert plastics” if possi-
ble. Normal plastic will get dissolved.

5. Work under the chemical fume hood.

6. When performing LC-MS measurements without infusion of
labeled metabolites, add 13C yeast internal standard solution to
extraction solution 1, instead of norvaline–glutarate for
normalization [10].
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7. Work under the chemical fume hood. Seal both the methox-
yamine and pyridine bottles with Parafilm and store in a desic-
cator, since humidification impairs the derivatization efficiency.

8. Store bottle at �20 �C, warm up to room temperature and dry
immediately before use, since humidification impairs the deriv-
atization efficiency.

9. Sulfuric acid needs to be of 99.999% purity, since water will
inhibit the derivatization reaction. Add sulfuric acid dropwise
to the methanol. Work under the chemical fume hood, wear
safety glasses, use clean glassware and clean glass pipettes.
Buffer can be stored up to 14 days at room temperature. If
you would like to reuse the glass pipette for H2SO4, rinse the
glass pipette three times with water and three times with
isopropanol.

10. Work with safety glasses.

11. Work in a chemical fume hood or beneath a strong exhaust to
not breathe the formalin damps.

12. Transport the vials in dry ice. Care should be taken on thawing,
as liquid nitrogen may cause vials to explode. Liquid nitrogen is
hazardous. Use gloves and protective face equipment during
handling. DMSO can penetrate skin and carry dissolved pro-
ducts across the skin barrier. Handle DMSO with caution.

13. Keep the cells at least 1 week and maximum 4 weeks in culture
before using them for the mouse model.

14. Culture more cells than needed in case the cells did not grow as
fast as expected. It is better to have more flasks that are less
confluent than flasks that are more than 90% confluent. Never
use cells that were grown too confluent.

15. If the effect of culture medium is not important in your tumor
model, the survival of cells is better when resuspended and
injected in culture medium without Fetal Bovine Serum and
penicillin/streptomycin instead of PBS.

16. Always take into account the dead volume of your syringes.
Make the cell suspension for 5 extra mice.

17. The best results are obtained by resuspending the cells every
time before filling a syringe.

18. Injecting bubbles can cause air embolisms. To easily remove all
bubbles, take more than 100 μl, tap the syringe to relocate the
bubbles to the needle tip and push out the air and extra cell
suspension.

19. The mice should not suffer because of the heat. Make sure the
cage is not too hot by holding your hand in the cage for a
couple of seconds.
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20. Put the mouse very tight with its nose positioned in a way it can
breathe.

21. Start injecting distally so you can move proximally when cor-
rect insertion in the vein fails. When you feel pressure and the
injection site thickens you are not injecting in the vein. Do not
waste any cell suspension and try again more proximally. When
the injection goes smoothly, you are in the vein. Inject slowly
but smoothly. Inject the cell suspension every time in the same
way to increase the reproducibility of your results.

22. Wounds that can have been caused by shaving will be healed at
the time of injection.

23. Inject every mouse in the same way to have reproducible
results.

24. The organ where the metastases will manifest first is cell type
specific. For example, 4T1 and EMT6.5 metastatic cancer cells
seed first into the lungs.

25. Humane endpoints need to be in accordance with the local
regulations. Here, we determined them as follows: The size of
the primary tumor cannot exceed 1.8 cm3, loss of ability to
ambulate, labored respiration, surgical infection or weight loss
over 10% of initial body weight.

26. Upon detection of one of these symptoms the animal was
euthanized: loss of ability to ambulate, labored respiration,
surgical infection or weight loss over 10% of initial body
weight.

27. Each method of anesthesia or euthanasia induces specific
changes in the metabolome, which need to be considered
when interpreting results. The procedure used for anesthesia,
euthanasia, and tissue collection should be fully documented in
all publications [22–24].

28. Work with safety glasses.

29. When collecting tumors or metastases, limit the amount of
normal adjacent tissue that is collected along. It can be useful
to split the tumor section into two parts lengthwise, and use
one of the halves for histological determination of actual tumor
area, and the other for metabolic extractions. Performing this
extra analysis allows researchers to confirm the purity of the
collected tumor tissue. However, this determination cannot be
used to correct the metabolite abundances detected. As an
example, if a specific collected tumor piece contains 90%
tumor and 10% nontransformed tissue, this does not mean
that, for each metabolite, 90% of its total amount arose from
the tumor tissue.

30. Label the Eppendorf tube on the cap and on the side to avoid
losing the label. Keep the tissues in plastic bags in a box with
liquid nitrogen. Precool the Eppendorf tube in liquid nitrogen,
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place the empty Eppendorf tube on the balance and tare the
balance. Quickly break off a piece of tissue with a liquid nitro-
gen cooled tweezers. Place the tissue into the Eppendorf tube
as fast as possible, write down the weight, and transfer the
closed Eppendorf tube with the tissue into a tube holder
floating in liquid nitrogen.

31. Wear face protection when using the Cryomill, as tubes could
break if liquid nitrogen enters the tube. In a case where liquid
nitrogen has entered a tube, open the tube as fast as possible
and let the liquid nitrogen evaporate. Regrind the tissue if it is
not completely ground after one round in the Cryomill. Beads
can stay in the tube for the whole extraction process.

32. Work under a fume hood. Release air when going through the
middle layer (protein phase) by depressing the pipette by 80%
and press the rest out as bubbles while crossing the middle
layer. Do not take the complete liquid from each phase to not
disturb the middle (protein containing) layer, as the loss of
some volume from each phase can later be corrected by the
internal standards.

33. Work under the chemical fume hood. Samples must be
completely dry before addition of the derivatization solution.
If the samples were stored at�80 �C, redry them for 10 min in
an acid resistant vacuum centrifuge at 20 �C.

34. While adding 20 μl O-methoxyamine–HCl dissolved in pyri-
dine solution to your sample, wash the walls of the Eppendorf
tubes by pipetting up and down.

35. Work under the chemical fume hood. The 25 μl extra volume
of TBDMS is needed to correct for evaporation of TBDMS.

36. The derivatization of polar metabolites for GC-MS analysis can
also be performed by hand. Add 20 μl 20 mg/ml methoxya-
mine dissolved in pyridine to each sample, vortex briefly and
incubate for 90 min in a heating block at 37 �C. Subsequently,
add 40 μl TBDMS, vortex briefly and incubate for 60 min in a
heating block at 60 �C. Centrifuge the samples for 2 min at
maximum speed, transfer the supernatant to a glass GC-MS
vial with insert and seal with a nonmagnetic cap using a
crimper.

37. Work under the chemical fume hood. Make sure to only collect
the upper phase. Any addition of the lower phase will destroy
the GC-MS column. Bubbles detected when flicking the vials
are indicative of liquid from the lower phase in your sample.
When using hexane, prepare an aliquot in a cleaned glass
bottle, the aliquot should not be older than 2 weeks.

38. Wait until the mouse does not respond anymore when you
pinch the toe.

39. Be careful to not rupture the trachea.
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40. For the collection of lungs for H&E staining you will have to
fix the complete lung. If you want to collect lung tissue for
histology and metabolite analysis you will need 2 mice.

41. If no infusion or injection with stable isotopic tracers are
performed, also stable and heavy labeled metabolites can be
used as internal standard to calculate metabolite
concentrations.
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Chapter 7

Robust Analytical Methods for the Accurate Quantification
of the Total Biomass Composition of Mammalian Cells

Diana Széliová, Harald Schoeny, Špela Knez, Christina Troyer,
Cristina Coman, Evelyn Rampler, Gunda Koellensperger,
Robert Ahrends, Stephen Hann, Nicole Borth, Jürgen Zanghellini,
and David E. Ruckerbauer

Abstract

Biomass composition is an important input for genome-scale metabolic models and has a big impact on
their predictive capabilities. However, researchers often rely on generic data for biomass composition,
e.g. collected from similar organisms. This leads to inaccurate predictions, because biomass composition
varies between different cell lines, conditions, and growth phases. In this chapter we present protocols for
the determination of the biomass composition of Chinese Hamster Ovary (CHO) cells. These methods can
easily be adapted to other types of mammalian cells. The protocols include the quantification of cell dry
mass and of the main biomass components, namely protein, lipid, DNA, RNA, and carbohydrates. Cell dry
mass is determined gravimetrically by weighing a defined number of cells. Amino acid composition and
protein content are measured by gas chromatography mass spectrometry. Lipids are quantified by shotgun
mass spectrometry, which provides quantities for the different lipid classes and also the distribution of fatty
acids. RNA is purified and then quantified spectrophotometrically. The methods for DNA and carbohy-
drates are simple fluorometric and colorimetric assays adapted to a 96-well plate format. To ensure
quantitative results, internal standards or spike-in controls are used in all methods, e.g. to account for
possible matrix effects or loss of material. Finally, the last section provides a guide on how to convert the
measured data into biomass equations, which can then be integrated into a metabolic model.

Key words Biomass composition, DNA, RNA, Amino acids, Lipids, Carbohydrates, Chinese Ham-
ster Ovary cells

1 Introduction

Chinese Hamster Ovary (CHO) cells are one of the most widely
used organisms for the production of biopharmaceuticals, espe-
cially monoclonal antibodies and glycoproteins such as
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erythropoietin [1]. The advantages of CHO cells include the ability
to perform human-like post-translational modifications, their safety
and ease of cultivation in suspension culture. However, the genera-
tion of new producer cell lines is still a time-consuming and labori-
ous process, which relies on screening a high number of clones until
a suitable producer is found. It is not yet clear what attributes are
important to ensure high productivity and product quality and
which limitations hinder further improvements [2].

Constraint-based modeling is a toolset that promises not only
to help understand CHO cells better, but also to help improve their
performance [3]. Specifically, it can be used to identify metabolic
bottlenecks, to optimize medium and feed composition, and to
predict targets for metabolic engineering. The latter comprise
gene deletions, knock-downs, and overexpressions predicted to
increase productivity and final titers [4, 5]. However, the applica-
tion of constraint-based modeling to CHO cells, as well as to
mammalian cells in general, is still limited.

The recent publication of a community-built genome-scale
metabolic model (GSMM) of CHO cells [6] brings us closer to a
successful application of constraint-based modeling to CHO cells.
A GSMM is a computable reconstruction of the biochemical cap-
abilities of an organism [7]. However, the accuracy of the predic-
tions made using GSMMs depends not only on the correct
reconstruction of metabolic pathways, but also on an accurate
representation of the biomass composition in the model. Biomass
composition can vary between different organisms, cell lines, con-
ditions, and growth phases and these variations have a significant
impact on model predictions [8]. The main biomass components
that need to be represented in the model are proteins, lipids, DNA,
RNA, and carbohydrates. This includes the total amounts of the
components per cell and, for macromolecules, also their
composition.

However, the experimental data for CHO cell biomass compo-
sition are still limited. The CHO GSMM contains two biomass
reactions [6], which are partly based on literature data for CHO
cells, but also other cell lines, such as hybridoma cells. Predictions
are markedly different using one or the other biomass reaction
[9]. Currently, there are only few data sets available for CHO cell
biomass composition [10–12], the majority of them being incom-
plete. Amino acid composition was measured for five different
CHO cell lines [10] and revealed no significant differences among
them. However, the total protein content, which is also an impor-
tant parameter for modeling, was estimated rather than measured.
Pan et al. [11] found large changes in biomass composition for one
CHO cell line (amino acid and lipid composition, total protein,
lipid and carbohydrate content) during fed-batch culture, but DNA
and RNA content were not measured. Lipid composition was
measured by Zhang et al. [12] for CHO, SP2/0, and HEK cell
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lines in exponential and stationary phase, revealing big differences
between the different mammalian cell lines.

The limited amount of available data and the importance of the
biomass composition for model predictions motivated the develop-
ment of the methods presented in this chapter. It contains detailed
protocols for the quantification of dry mass, proteins, lipids, DNA,
RNA, and carbohydrates as well as for the determination of protein
amino acid and lipid species composition. Although these methods
were developed for CHO cells, they can be easily adapted to other
mammalian cell lines. Additionally we provide, as an example, a
dataset of CHO-K1 biomass composition in mid-exponential phase
of a batch culture, which can be downloaded from GitHub
(https://github.com/diana-sz/MiMB_biomass.git). The
measured macromolecular composition is shown in Fig. 1.

2 Materials

2.1 Sampling for

Biomass Components

1. Phosphate-buffered saline (PBS).

2. Pluronic-F68 Non-ionic Surfactant.

3. Pipettes.

4. ViCell XR or other cell counting device.

5. Centrifuge for 200�g, the size depends on the volume of
sampled cell culture.

6. Freezer for storage at �80∘C.

2.2 Quantification of

Cell Dry Mass

1. PBS or 0.9% (weight per volume (w/v)) sodium chloride
(NaCl).

2. Pluronic-F68 Non-ionic Surfactant.

Fig. 1 Biomass composition of CHO-K1 in mid-exponential phase grown in
HyClone ActiPro medium (GE Healthcare) supplemented with 8 mM glutamine
and 0.2% Anti-Clumping Agent (GIBCO). The error bars are standard deviations
from three biological replicates
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3. 50 mL tubes.

4. Pipettes.

5. Glass beakers (50 mL).

6. Tweezers.

7. Silica gel beads.

8. Vacuum desiccator.

9. ViCell XR or other cell counting device.

10. Centrifuge for 50 mL tubes at 170�g.

11. Oven for incubation at 90∘C.

12. Precision balance (readability 0.0001�g, standard deviation
��0.0001).

2.3 Quantification of

Proteinogenic Amino

Acids

To avoid interferences, all chemicals should be of high purity (e.g.,
LC-MS grade). The presence of blanks should be tested by
performing procedural blanks in parallel to sample preparation for
each sample batch.

2.3.1 Chemicals All solvents and reagents are diluted with LC-MS grade water.

1. Formic acid.

2. Hydrogen peroxide solution � 30%.

3. Phenol.

4. 0.1 M hydrochloric acid (HCl).

5. 6 M HCl.

6. 0.1 M methanesulfonic acid (MSA).

7. 4 M MSA with 0.2% (w/v) tryptamine (3-(2-aminoethyl)
indole).

8. 7 or 14 M sodium hydroxide (NaOH).

9. N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide
(MTBSTFA) with 1% tert-butyldimethylchlorosilane
(TBDMSCl).

10. Pyridine anhydrous in airtight bottles.

11. Pyridine for syringe washing, not necessarily water free.

12. Water LC-MS grade.

13. Internal standard (ISTD): isotopically labeled “Cell Free”
Amino Acid Mix (solid mix containing 20 amino acid (AA)s),
(U-13C, 97–99% + U-15N, 97–99%), Cambridge Isotope
Laboratories.

14. Solid standards for each amino acid which is quantified.

15. Certified amino acid standard for quality control.
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2.3.2 Preparation of

Stock and Standard

Solutions

Single standard stock solutions are prepared for the amino acids
listed in Table 1 by weighing each solid standard substance in
separate 1.5 mL brown glass chromatography vials.

For Gln, Asn, Met, and Cys no standards need to be prepared
due to the decomposition, respectively, oxidation of these amino
acids. Instead, Gln is quantified as Glu (sum parameter), Asn as Asp
(sum parameter), Met as MetS, and Cys as CysA. Arginine is
decomposed to Orn during derivatization. Hence Arg is detected
and quantified as Orn, although the standard is prepared with Arg
(see Note 1).

The solid standard substances are dissolved in 0.1 M HCl
resulting in the standard stock concentrations listed in Table 1. In
the next step, a standard mix is prepared at concentrations ranging
from 2 to 8 mM (see Table 1 and Note 2).

The 1:4 dilution of the ISTD is used for standard preparation.
Six standard solutions are prepared at the concentrations stated in
Table 1, each standard containing 100 μL of the 1:4 diluted ISTD
per 1 mL of standard solution. Following this procedure, the

Table 1
Preparation of calibration standards for protein amino acid analysis via GC-EI-MS/MS

Amino acid c Stock solution c Standard mix Concentration of the calibration solutions

(mmol L�1) (μmol L�1) (μmol L�1)

Ala 100.0 6000 15/45/150/450/1500/4500

Arg 100.0 2000 5/15/50/150/500/1500

Asp 50.0 6000 15/45/150/450/1500/4500

CysA 100.0 2000 5/15/50/150/500/1500

Glu 50.0 8000 20/60/200/600/2000/6000

Gly 100.0 6000 15/45/150/450/1500/4500

His 100.0 2000 5/15/50/150/500/1500

Ile 100.0 4000 10/30/100/300/1000/3000

Leu 100.0 6000 15/45/150/450/1500/4500

Lys 100.0 5000 12.5/37.5/125/375/1250/3750

MetS 100.0 2000 5/15/50/150/500/1500

Phe 100.0 4000 10/30/100/300/1000/3000

Pro 100.0 4000 10/30/100/300/1000/3000

Ser 100.0 4000 10/30/100/300/1000/3000

Thr 100.0 4000 10/30/100/300/1000/3000

Tyr 30.0 2000 5/15/50/150/500/1500

Val 100.0 4000 10/30/100/300/1000/3000
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standards contain an equivalent of 25 μL of ISTD per mL standard,
which corresponds to 25 μL of ISTD per mL hydrolysate. Conse-
quently, no correction factor has to be applied for internal standar-
dization. 40 μL aliquots of these standards are then dried in a
vacuum centrifuge or at 40∘C under a constant flow of nitrogen
prior to derivatization and analysis. Dried standards can be stored at
�80∘C and need to be redried before derivatization.

2.3.3 Preparation of

Internal Standard Solutions

for HCl and MSA Hydrolysis

The isotopically labeled internal standard is an algal “cell free” 13C,
15N labeled amino acid mix, which contains all amino acids listed in
Table 1 with the exception of methionine sulfone and cysteic acid.
It additionally contains methionine, cystine, glutamine, and aspar-
agine. Consequently, the internal standard has to be oxidized (for
HCl analysis) and hydrolyzed (for HCl and MSA analysis) prior to
its use in order to convert Gln and Asn to Glu and Asp, respectively,
as well as Cys to CysA andMet to MetS. If this preparation step was
omitted, the internal standard would change its composition dur-
ing sample preparation and would hence fail as internal reference.
For the preparation of the ISTD solutions for HCl and MSA
analysis, the cell free amino acid standard therefore needs to be
pretreated according to the (oxidation)/hydrolysis protocols for
the samples.

2.3.4 Pretreatment of the

Algal Amino Acid Mix for

Internal Standard

Preparation

1. Prepare two microcentrifuge screw cap tubes, each containing
approximately 50 mg of solid internal standard.

2. Oxidize and hydrolyze the internal standards according to the
procedures for HCl (Subheading 3.3.1, steps 3 to 12 and 14
to 19) and MSA (Subheading 3.3.2, steps 4 to 10). Duration
of hydrolysis can be shortened to 20 h.

3. Reconstitute in 1.5 mL 0.1 M HCl or MSA, respectively, by
vortexing for 15 min.

4. Dilute the internal standard 1:4 with LC-MS grade water
before spiking calibration solutions, reference standards or
samples.

5. The internal standard can be stored at �80∘C.

2.3.5 Disposables 1. 2 mL screw cap micro tube (polypropylene (PP),
e.g. Sarstedt—these tubes are tested for blanks and tightness
at elevated temperatures).

2. 0.2 mL microinserts, 31 � 6 mm, clear glass, flat bottom.

3. Chromatography vials for screw caps (1.5 mL, 11 mm diame-
ter, brown glass).

4. 11 mm screw caps with inert septum material (e.g.: polytetra-
fluoroethylene (PTFE)/silicone/PTFE).
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5. Gas chromatography (GC) crimp vials for reagents and solvents
(1.5 mL, 11 mm diameter, clear glass, wide opening).

6. For automated derivatization: 11 mm magnetic crimp caps
with septum material, which is inert against pyridine and silyla-
tion agents (e.g.: PTFE/silicone/PTFE).

7. 11 mm nonmagnetic crimp caps with septummaterial, which is
inert against pyridine and silylation agents (e.g.: PTFE/sili-
cone/PTFE).

8. Single-use spatulas for preparation of stock solutions.

2.3.6 Laboratory

Equipment,

Instrumentation, and

Software

1. Pipettes.

2. Vortex mixer/shaker.

3. Evaporator system (thermoblock for 40-85∘C with N2

dispenser).

4. Fume hood.

5. Centrifuge for 2 mL microcentrifuge tubes with cooling func-
tion for the rotors (4∘C) for 10,000�g.

6. Acid resistant vacuum centrifuge.

7. Oven (110–115∘C).

8. Freezer (�80∘C).

9. GC-triple quadrupole mass spectrometer (MS/MS) (7890B
GC with 7010B triple quadrupole GC/MS, Agilent Technol-
ogies, or equivalent system).

10. Programmed Temperature Vaporizer (CIS6 or PTV, Gerstel,
or equivalent cooled injection system).

11. GC-column, 5% diphenyl 95% dimethyl polysiloxane as sta-
tionary phase (30 m, 0.25 mm inner diameter, 0.25 mm film
thickness).

12. Non-polar GC-guard column, 3 m� 0.25 mm inner diameter.

13. T-Piece Purged Ultimate Union Assembly (inert) with
corresponding metal ferrules (Agilent Technologies, or other
column connectors).

14. Micro Balance (minimum readability 10 μg, maximum stan-
dard deviation 10 μg).

15. MPS2 Multi-Purpose Sampler (Gerstel) or equivalent auto-
sampler for automated derivatization, equipped with heated
shaker, syringes for sample, reagent and solvent handling,
cooled trays, reservoirs for reagents, solvents and washing
solutions.

16. 10 μL glass syringe for GC autosampler (injection).
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17. 50 or 100 μL glass syringe for reagent handling for manual
derivatization or for automated derivatization on the sample
preparation robot.

18. MassHunter (Agilent Technologies) or equivalent software for
quantitative selected reaction monitoring (SRM) evaluation.

19. Maestro (Gerstel) or equivalent software for automated
derivatization.

2.4 Lipid

Quantification

To avoid background contamination all solvents have to be LC-MS
grade, the glassware should be heated up to 450∘C in a muffle
furnace for 3 h and all plasticware should be of high quality.

2.4.1 Chemicals 1. PBS.

2. Methyl tert-butyl ether (MTBE).

3. Methanol (MeOH).

4. 2-propanol.

5. 2-propanol/methanol/chloroform (4:2:1, v/v/v) with
7.5 mM ammonium formate (AF) (see Notes 3 and 4).

6. SPLASH® LIPIDOMIX® Mass Spec Standard (Avanti Polar
Lipids) (see Note 5).

7. Cardiolipin Mix I (Avanti Polar Lipids).

8. 0.1% (w/v) AF in ultrapure water.

2.4.2 Disposables 1. 2 and 5 mL microcentrifuge tubes, PP (e.g., Eppendorf, Safe-
Lock Tubes).

2. Screw neck vials, brown, flat bottom, small opening, 1.5 mL.

3. Lids, PP with PTFE septum, not sliced.

4. Inserts for small opening, clear, conical, 0.15 mL.

5. 96 well plate (e.g., Eppendorf twin.tec® PCR Plate 96, skirted,
150 μL, PCR clean, colorless).

6. Adhesive aluminum foils.

7. Chips with spraying nozzles of 5 μm (Advion, HD_A_384).

8. Rack of 384 spray pipette tips (Advion).

2.4.3 Laboratory

Equipment,

Instrumentation, and

Software

1. Pipettes.

2. Vortex mixer.

3. Waterbath sonicator cooled to 4∘C.

4. Muffle furnace for 450∘C.

5. Thermomixer (see Note 6).

6. Evaporator system N2.
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7. Centrifuge for 2 mL and 5 mL microcentrifuge tubes
(3000�g) (see Note 7).

8. Freezer (�80∘C).

9. Triversa NanoMate® (Advion) for direct sample infusion.

10. Q Exactive HF (Thermo Fisher Scientific) or alternative high
resolution mass spectrometer.

11. ProteoWizard (v3 or higher).

12. ChipSoft (Advion, v8 or higher).

13. Nanoware (Advion, installation for polarity switching).

14. Xcalibur (Thermo Fisher Scientific, v4 or higher).

15. LipidXplorer (v1.2.7 or higher).

2.5 RNA

Quantification

1. RNase-free water.

2. TRIzol or TRI reagent.

3. Chloroform.

4. 70% (volume per volume (v/v)) ethanol (EtOH) prepared with
nuclease-free water.

5. Purified RNA (700–1000 ng/μL, see Note 8).

6. Isopropanol.

7. Nuclease-free tubes 1.5 mL (e.g., Sarstedt 72.692.005).

8. RNaseZap wipes (Sigma-Aldrich R2020) or similar product for
removal of RNases.

9. Pipettes.

10. Fume hood.

11. Vortex.

12. A centrifuge for 1.5 mL tubes and 12,000�g with a cooling
function (4∘C).

13. NanoDrop or similar device for spectrophotometric
measurements.

14. Thermoblock for incubation at 55∘C.

2.6 DNA

Quantification

1. PBS.

2. Quant-iTTM PicoGreenTM dsDNA Assay Kit (ThermoFisher
Scientific P7589)—contains 20� TE buffer, PicoGreenTM

dsDNA reagent and λ DNA standard.

3. Proteinase K (QIAGEN 19131).

4. Lysis buffer AL (QIAGEN 19075).

5. RNase A 100 mg/mL (QIAGEN 19101).
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6. 1� TE: dilute 20� stock solution from the PicoGreen kit with
nuclease-free water (e.g., 38 mL water + 2 mL 20� TE, see
Note 9).

7. 2 μg/mL λ DNA: Dilute 100 μg/mL stock solution 50� with
1� TE (e.g., 637 μL 1� TE + 13 μL 100 μg/mL λ DNA (see
Note 10)).

8. Lysis buffer for preparation of DNA standards (to have the
same matrix as in the samples): mix 100 μL PBS, 10 μL
proteinase K, 2 μL RNase A, 100 μL AL, and 848 μL 1� TE.

9. DNA standards: prepare according to Table 2.

10. 1� PicoGreen dye: dilute the stock solution 200� with 1�
TE. Wrap the tube in aluminum foil to protect it from light.
This reagent always has to be prepared fresh before performing
the assay (see Notes 11 and 12).

11. 1.5 mL tubes.

12. Black 96-well plate with a flat bottom.

13. Aluminum foil.

14. Multichannel pipette reservoir.

15. Pipettes.

16. Vortex.

17. Microplate shaker.

18. Thermoblock for 56∘C.

19. Centrifuge for 1.5 mL tubes for short spin.

20. Fluorescence microplate reader.

Table 2
Preparation of DNA standards

Concentration (ng/mL) 1� TE (μL)
2 μg/mL λ
DNA (μL) Lysis buffer (μL)

1000 162 180 18

800 198 144 18

600 234 108 18

400 270 72 18

300 288 54 18

200 306 36 18

100 324 18 18

50 333 9 18

0 (blank) 342 0 18
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2.7 Carbohydrate

Quantification

Use plastics resistant to sulfuric acid (e.g., PP). Test them before-
hand and make sure that the sulfuric acid does not dissolve them or
cause discoloration, which might affect the results of the assay.

1. PBS.

2. Concentrated sulfuric acid.

3. 200 μg/mL glucose solution in PBS. Store at 4∘C.

4. Glucose standards: prepare according to Table 3 (seeNote 13).
The standards can be stored at 4∘C.

5. 2 mg/mL anthrone in concentrated sulfuric acid. This reagent
always has to be made fresh before performing the assay and
kept on ice/in a fridge (see Note 14).

6. 15 or 50 mL PP tubes.

7. 1.5 mL tubes.

8. 0.2 mL PCR strips.

9. 96-well microplate with a flat bottom (e.g., NuncTM Micro-
WellTM 96-Well Microplates, ThermoFisher Scientific
269620).

10. Multichannel pipette reservoir.

11. Pipettes.

12. Vortex.

13. Centrifuge for short spin of PCR tubes.

14. Thermoblock or PCR thermal cycler for 92∘C.

15. Absorbance microplate reader.

Table 3
Preparation of glucose standards

Concentration (μg/mL) 200 μg/mL glucose (μL) PBS (μL)

0 (blank) 0 1000

10 50 950

20 100 900

40 200 800

70 350 650

100 500 500

130 650 350

160 800 200

Quantifying Mammalian Biomass Composition 129



3 Methods

For all quantification methods, at least three biological replicates
should be used. Run test samples before you apply a method to
important samples in order to get familiar with the procedure and
to ensure you have everything prepared. We recommend doing a
run with 10 technical replicates, i.e. splitting a batch of cells into
10 aliquots and applying the whole procedure to these samples.
This way you can estimate whether the handling of the samples and
the procedure in general are repeatable. Note that all protocols
require precise sampling (see Subheading 3.1), a step which is
prone to “operator-effects”. Lastly, randomize samples as much as
possible, e.g. avoid batch-wise analysis of samples.

3.1 Sampling for

Biomass Components

Taking an accurate number of cells is a crucial step for all biomass
quantification methods. For most protocols, the cells need to be
centrifuged, washed with PBS, and centrifuged again. It is advisable
to remeasure the cell concentration after the washing step to
account for possible cell loss during centrifugation. However, it
was observed that cells become more shear sensitive after washing
them with PBS, because protective compounds from the culture
medium are removed. If an automated cell counter such as ViCell
XR (Beckman Coulter) is used, the increased shear sensitivity of the
cells can lead to underestimation of the cell number concentration
or viability because of cell death during the measurement. To
protect the cells from shear stress, samples should be supplemented
with a shear protectant, such as 2% Pluronic F-68 [13]. This might
not be applicable to other counting methods and can be tested by
comparing the cell counts in samples with or without the shear
protectant.

This section describes a general protocol for sampling, which
should be adapted based on the required amount of cells.

1. Measure cell concentration and calculate the required number
of cells. Always take more cells than needed, because an aliquot
of the cell suspension will be used for cell counting and some
cells might be lost during the centrifugation/resuspension
steps.

2. Centrifuge samples for 8 min at 200�g, room temperature,
discard supernatant.

3. Resuspend pellet in PBS by gently pipetting up and down. The
amount of PBS should be such that the resulting cell concen-
tration is within the range of the cell counting method.

4. Take a sample for cell counting, add Pluronic F-68 to a final
concentration of 2% (v/v) and measure the cell concentration
(see Notes 15 and 16).
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5. Aliquot the cell suspension for the required assays (see Note
17).

6. Centrifuge again for 8 min, 200�g, room temperature. Discard
supernatant and store the pellets at �80∘C or proceed directly
with analysis.

3.2 Quantification of

Cell Dry Mass

Cell dry mass is determined by drying and weighing a defined
number of cells. Cell number determination is a crucial step in the
protocols presented here. Before drying, cells are washed twice and
the cell count is determined again to account for possible loss of
cells during the washing and centrifugation steps. Typical dry mass
values for CHO cells range from 200 to 300 pg per cell.

3.2.1 Quantification 1. Place empty pre-labeled beakers and silica gel beads (e.g., on a
Petri dish) into the incubator at 90∘C overnight. You need one
beaker per sample plus at least three additional ones as controls.

2. Transfer the hot beakers and silica beads into a vacuum desic-
cator and evacuate. Leave for at least 20 min.

Important: Do not touch the beakers with bare hands or gloves
(only with tweezers) and do not label them after the incubation
at 90∘C, because this can change their mass. Wear safety googles
while evacuating and repressurizing the desiccator due to the
risk of implosion. Do not move the evacuated desiccator and
wear goggles when working near it.

3. Centrifuge 0.5–1 � 108 cells for 10 min at 170�g, room
temperature. Discard supernatant.

4. Wash the pellet with 15 mL PBS or 0.9% NaCl, centrifuge
again at the same conditions, discard supernatant.

5. Resuspend pellet in 15 mL PBS or 0.9% NaCl.

6. Remeasure the cell concentration on ViCell XR in the presence
of 2% (v/v) Pluronic F-68 to protect the cells against shear
stress during measurement (e.g., mix 480 μL cell suspension
with 120 μL 10% Pluronic F-68). See Subheading 3.1 for details
on ViCell XR measurements.

7. Take out the beakers from the desiccator and weigh them
immediately.

8. Transfer the entire cell suspension into the beakers and weigh
immediately. Put the same volume of PBS or 0.9% NaCl with-
out cells into three additional beakers each, as controls.

9. Place beakers at 90∘C overnight (see Note 18).
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10. On the next day, put the silica beads and the beakers in a
vacuum desiccator. Evacuate and leave for 20 min. Weigh
them immediately after taking them out (see Note 19).

11. Repeat steps 9 and 10 until the weight is constant.

3.2.2 Data Evaluation 1. Calculate the average cell concentration after washing
(if Pluronic F-68 was used for the cell counting, multiply by
the dilution factor).

2. Calculate the total number of cells per beaker from the cell
concentration and the volume of cell suspension that was trans-
ferred to the beaker.

3. Calculate the precise salt concentration from the control
beakers.

4. Use the value for the salt concentration to calculate the mass of
salt per each beaker. Subtract the mass of the salt from the mass
of the dry cell suspension.

5. Divide the mass of cells by the number of cells per beaker.

3.3 Quantification of

Proteinogenic Amino

Acids

For the quantification of proteinogenic AAs, two independent
thermal hydrolysis methods are employed using (1) HCl combined
with prior oxidation with performic acid and (2)MSA [14–17]. For
a schematic workflow, see Fig. 2. HCl analysis with prior oxidation is
used for the quantification of the sulfur containing amino acids
(cysteine/cystine and methionine), for the quantification of stable
amino acids (e.g. proline and alanine) as well as for amino acids
which need harsh conditions for hydrolysis (valine, leucine and
isoleucine in certain structural arrangements) [16]. In contrast to
this, MSA hydrolysis is used for less stable amino acids (e.g. serine,
threonine, tyrosine). After hydrolysis the amino acids are quantified
in either the HCl or MSA hydrolysate using GC—electron ioniza-
tion (EI)—triple quadrupole mass spectrometry (MS/MS) as their
tert-butyldimethylsilyl derivatives [18]. Quantification is based on
internal standardization with isotopically labeled internal amino
acid standards and external calibration with authentic AA standards
of certified purity and stablility. Internal standards are added to the
samples before hydrolysis (which is after oxidation for HCl hydro-
lysis) to compensate for errors during sample preparation.

During acidic hydrolysis, asparagine and glutamine are con-
verted into aspartate and glutamate, respectively, resulting in a
sum parameter for these two amino acids [14, 16]. Arginine is
degraded to ornithine during derivatization and is hence quantified
using arginine and isotopically labeled arginine as internal standard
for calibration, but ornithine detection in GC-MS/MS. Serine,
threonine and tyrosine are partially degraded during oxidation
and hydrolysis with 6 M HCl. Since this degradation cannot be
fully compensated by the use of the isotopically labeled internal
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standards, these three amino acids are quantified in the MSA
hydrolysates. For stabilization cysteine/cystine and methionine
are oxidized with performic acid prior to HCl hydrolysis, forming
cysteic acid and methionine sulfone, respectively [19]. It is known
that hydrolysis of valine is incomplete when paired with isoleucine
or valine, hydrolysis of leucine is incomplete when multiple mole-
cules of leucine occur in sequence and hydrolysis of isoleucine is
incomplete when paired with isoleucine or valine [16]. The con-
centrations of these amino acids are evaluated using the HCl hydro-
lysates, since the efficiency of HCl hydrolysis is higher than the
efficiency of MSA hydrolysis. Tryptophan is degraded during both
acidic hydrolysis methods (fully degraded in HCl hydrolysis,

Fig. 2 Workflow for the quantification of protein amino acids
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partially degraded in MSA hydrolysis) and can hence not be eval-
uated (see Note 20) [14]. Consequently, 17 amino acids can be
quantified using the presented method (see Note 21). The amino
acid composition measured for CHO-K1 is shown in Fig. 3.

3.3.1 Oxidation and

Hydrolysis with HCl

1. Take sample aliquots corresponding to 1 mg cell dry mass
(CDM) as described in Subheading 3.1. Use 2 mL screw cap
tubes for sampling (see Subheading 2.3.5, see Note 22). The
method is valid for CDM ranging from 0.2 to 3 mg per sample.

2. Store cell pellets at �80∘C until analysis.

3. Mix 9 mL formic acid with 1 mL hydrogen peroxide solution
and add 50 μL phenol.

4. Wait 45 min until the solution has turned brown.

5. Add 500 μL of the reagent mix prepared in steps 3 and 4 to
each sample in 2 mL PP screw cap tubes, close tightly.

6. Vortex for 10 min.

7. Heat the samples to 50∘C for 7 min.

8. Vortex for 1 min.

9. Heat the samples to 50∘C for 8 min.

10. Quickly cool down the samples, e.g. in a �80∘C freezer for
1 min.

Fig. 3 Amino acid composition of CHO-K1 in mid-exponential phase grown in
HyClone ActiPro medium (GE Healthcare) supplemented with 8 mM glutamine
and 0.2% Anti-Clumping Agent (GIBCO). The error bars represent standard
deviations from three biological replicates
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11. Spin down the samples by centrifugation for approximately
2 min at 10,000�g.

12. Evaporate the reagent at 40∘C under a constant flow of nitro-
gen until samples are completely dry (˜1 h). Dry samples can
be stored at �80∘C.

13. Add 100 μL of ISTD solution, which has been diluted 1:4 with
LC-MS grade water. Add ISTD to the calibration standards.

14. Add 1000 μL of 6 M HCl and vortex for 10 min.

15. Flush the tube for 20 s with nitrogen and close it rapidly.

16. Heat the samples at 110∘C for 24 h.

17. Vortex the hydrolyzed sample for 1 min.

18. Centrifuge for 2–5 min at 10,000�g.

19. Dry the hydrolysates at 85∘C under a constant flow of nitrogen
until they are completely dry.

20. Add 1000 μL of 0.1 M HCl and vortex or shake for 15 min.

21. Centrifuge for 15 min at 10,000�g, centrifuge cooled to 4∘C.

22. Transfer 40 μL aliquots of the sample to 1.5 mL chromatogra-
phy vials equipped with straight inserts. Aliquots need to be
taken immediately after centrifugation from the clear middle
layer of the hydrolysates (take care not to take the aliquot from
the lipid containing top layer or the bottom layer containing
cell debris, see Note 23).

23. Dry the samples in the vacuum centrifuge or under a constant
flow of nitrogen at 40∘C until they are completely dry.

24. Analyze samples immediately or store at �80∘C. In case of
storage samples need to be redried before analysis (see Note
24).

3.3.2 Hydrolysis with

MSA

1. Take sample aliquots corresponding to 1 mg CDM as
described in Subheading 3.1. Use 2 mL screw cap tubes for
sampling (see Subheading 2.3.5, see Note 22). The method is
valid for CDM ranging from 0.2 to 3 mg per sample.

2. Store cell pellets at �80∘C until analysis.

3. Add 100 μL of ISTD solution, which has been diluted 1:4 with
LC-MS grade water, to each screw cap tube containing approx-
imately 1 mg of dry sample.

4. Add 1000 μL of 4 M MSA containing 0.2% tryptamine and
vortex for 10 min. Add ISTD to the calibration standards.

5. Flush the tube for 20 s with nitrogen and close it rapidly.

6. Heat to 115∘C for 22 h.

7. Vortex the hydrolyzed sample.

8. Neutralize the sample with 0.5 mL 7 M NaOH (or 0.25 mL
14 M NaOH).
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9. Centrifuge for 2–5 min at 10,000�g.

10. Dry the hydrolysate at 85∘C under a constant flow of nitrogen
until samples are completely dry.

11. Add 1000 μL of 0.1 M MSA and vortex for 15 min.

12. Centrifuge for 15 min at 10,000�g, centrifuge cooled to 4∘C.

13. Transfer 40 μL aliquots of the sample to 1.5 mL chromatogra-
phy vials equipped with straight inserts. Aliquots need to be
taken immediately after centrifugation from the clear middle
layer of the hydrolysates (take care not to take the aliquot from
the lipid containing top layer or the bottom layer containing
cell debris, see Note 23).

14. Dry the samples in the vacuum centrifuge or under a constant
flow of nitrogen at 40∘C until they are completely dry.

15. Analyze samples immediately or store samples at �80∘C. In
case of storage samples need to be redried before analysis (see
Note 24).

3.3.3 Preparation of

Quality Control (QC)

Standards and quality

control (QC) Samples

Certified standards should be diluted to a concentration approxi-
mately in the middle of the calibrated range. The dilutions must
contain the same concentration of ISTD as the standards and
samples. 40 μL aliquots are used for analysis.

QC samples are advisable if samples are measured in several
batches to ensure comparability. For this purpose a number of
40 μL aliquots are taken from a CHO hydrolysate or pooled hydro-
lysates. QC samples are dried and stored at �80∘C.

3.3.4 Setup of

Measurement Sequence

At the beginning of each sequence, 1 μL of the pure derivatization
reagent (MTBSTFA + 1% TBDMSCl) is repeatedly injected in
order to condition the liner and the column. These conditioning
injections are then followed by several pyridine injections. This
procedure ensures that the column and the injector have been
heated and deactivated prior to analysis. To complete the condi-
tioning procedure at least three samples and a blank are injected.

Sequences need to be set up with calibration standards being
injected at the beginning and at the end of the sequence. After a
maximum of 10 sample injections, QC measurements (certified
amino acid standard and/or QC sample) and a blank measurement
(to ensure the absence of contaminants and carry-over) need to be
implemented (see Subheading 3.3.3 Preparation of QC standards
and QC samples). All samples need to be randomized.

3.3.5 Manual

Derivatization

1. Redry the hydrolysates immediately before derivatization.

2. Wash 50 or 100 μL glass syringe with pyridine (see Note 25).

3. Quickly add 40 μL pyridine to each sample vial.

4. Quickly add 40 μL MTBSTFA + 1% TBDMSCl.
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5. Crimp vials rapidly and check that the crimp septa are suffi-
ciently tight (crimp caps cannot be turned any more).

6. Vortex for 1 min or shake for 5 min.

7. Centrifuge for 2 min at 10,000�g to spin down reagent and
sample.

8. Heat for 1 h at 85∘C in a thermoblock under the fume hood.

9. Cool samples to 4∘C until GC-MS/MS analysis.

3.3.6 Automated

Derivatization

Precise control of derivatization conditions (time, temperature,
agitation) can be achieved by using automated derivatization. Ded-
icated sample preparation robots equipped with cooled trays, a
heated shaker or vortex, syringes for injection and reagent handling
as well as solvent and reagent reservoirs enable just-in-time injec-
tion without waiting time on the autosampler. The software of
these systems calculates the onset of the automated derivatization
such that the samples are analyzed promptly after derivatization.

Setup of an automated derivatization just-in-time online
GC-MS/MS method on a sample preparation robot (e.g. Gerstel
Multi Purpose Sampler):

1. Redry the hydrolysates immediately before derivatization.

2. Crimp dry samples with magnetic caps for automated derivati-
zation. Check that the crimp septa are sufficiently tight (crimp
caps cannot be turned anymore).

3. Place vials in a cooled tray of the sample preparation robot.

4. Set up the robot with pyridine (seeNote 25) and MTBSTFA +
1% TBDMSCl in reagent/solvent reservoirs.

5. Set up the robot with pyridine in a solvent reservoir for syringe
washing.

6. Program a sample preparation method based on the following
steps:
a. Add 40 μL of pyridine to sample, standard, QC sample/

standard or blank vial.

b. Add 40 μL of MTBSTFA + 1% TBDMSCl to the vial.

c. Transport the vial to the heated shaker (85∘C).

d. Shake the vial with 250 rpm at 85∘C for 1 h.

e. Transport the vial back to the cooled tray (4∘C).

f. Wait for 5 min.

g. Inject.

7. Start the sample preparation and GC-MS/MS sequence.
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3.3.7 Transport and

Storage of Samples

Derivatized samples should be analyzed immediately after derivati-
zation due to limited stability of the derivatives. Derivatized sam-
ples should be stored at 4∘C until analysis, hence cooling of the
autosampler tray is beneficial. If cooled at 4∘C, samples can be
analyzed up to 48 h after derivatization. However, best results in
terms of sensitivity and repeatability are achieved with just-in-time
online derivatization.

3.3.8 GC-MS/MS

Analysis

Tune and calibrate the MS/MS system according to the vendor
description. After either manual or automated just-in-time online
derivatization the amino acids are separated via GC on a non-polar
capillary column. Detection is carried out by triple quadrupole mass
spectrometry in SRM mode after electron ionization. GC-MS/MS
parameters are listed in Table 4 and SRM settings are listed in
Table 5.

3.3.9 Data Evaluation Following visual control of the chromatograms in Masshunter
Qual, the chromatograms are evaluated using Masshunter Quant
(Agilent Technologies) or an equivalent software for data analysis.
Quantification is based on internal standardization and external
calibration with 6-point calibration curves. The concentration of
the standards listed in Table 1 are chosen such that the expected
amino acid concentrations in the CHO hydrolysates are within the
calibration range for a CDM of 0.2–3 mg.

3.4 Lipid

Quantification

For lipid quantification of CHO samples, lipids are extracted by
MTBE using the SIMPLEX protocol [20] followed by direct infu-
sion into a high-resolution mass spectrometer [21]. This shotgun
lipidomics strategy enables high-throughput analysis of the most
abundant lipid species. As all lipids are simultaneously infused,
similar chemical behavior within one lipid class (same class defining
head group but different fatty acyl chain composition) can be
assumed and class-specific quantification via non-endogenous
lipid standards can be performed [22]. If lipids such as cholesterol,
cholesterol esters or cardiolipins are not detectable or quantifiable,
Reversed Phase Liquid Chromatography (RP-LC) is an alternative
method to achieve better sensitivity (not covered in this chapter).

Figure 4 shows the lipid composition measured for CHO-K1.
Next to the samples, solvent blanks (pure solvent prior analysis)

and method blanks with internal standards are required (see Note
26). It is also helpful to use a quality control over the measurement
by using a pooled sample or a standard reference material. Each
biological replicate should be measured at least twice.

3.4.1 Lipid Extraction 1. Collect 107 cells, wash once with PBS, pellet them (see Sub-
heading 3.1 for details about the sampling procedure) and
freeze at�80∘C in a 5 mLmicrocentrifuge tube until measure-
ment (see Note 27).
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Table 4
Parameters for GC-MS/MS analysis of protein amino acids

GC parameters

Oven

Equilibration time 0.5 min

Oven program

Ramp Rate (∘C/min) Temp. (∘C) Hold Time (min)

– – 160 1.00

1 20.00 250 0.00

2 5.00 270 0.00

3 30.00 310 3.50

Total run time 14.33 min

Inlet

Type PTV

Injection volume 1 μL

Mode Split

Liner Baffled siltek (Gerstel)

Split ratio 1:30

Equilibration time 0.5 min

Temperature program

Ramp Rate (∘C/s) Temp. (∘C) Hold Time (min)

– – 70 0.10

1 12.00 260 1.00

2 12.00 300 5.00

Analytical column

Type Phenomenex ZB-5MS

(30 m � 0.25 mm i.d. � 0.25 μm film thickness)

Mode Constant flow

Carrier gas Helium

Flow 1.2 mL/min

Precolumn

Type Non-polar guard column (3 m � 0.25 mm i.d.)

Mode Constant flow

(continued)
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Table 4
(continued)

GC parameters

Carrier gas Helium

Flow 1.1 mL/min

Column connector Purged ultimate union (Agilent Technologies)

MS parameters

Transfer line 280∘C

Ionization mode EI

Acquisition mode SRM

Solvent delay 3.3 min

Source temperature 230∘C

Quadrupole temperatures 150∘C

Table 5
SRM settings for quantifier and qualifier transitions in GC-EI-MS/MS analysis

Compound Type tr Precursor Product Collision Resolution

of transition (min) Ion (m/z) Ion (m/z) Energy (V) MS1, MS2

Alanine Quant 4.02 260.2 232.2 5 Wide
Quant ISTD 4.02 264.2 235.2 5 Wide
Qual 4.02 232.2 147.1 15 Wide
Qual ISTD 4.02 235.2 147.1 15 Wide

Glycine Quant 4.13 246.1 218.2 5 Wide
Quant ISTD 4.13 249.1 220.2 5 Wide
Qual 4.13 218.2 147.1 5 Wide
Qual ISTD 4.13 220.2 147.1 5 Wide

Valine Quant 4.60 260.2 147.1 20 Wide
Quant ISTD 4.60 265.2 147.1 20 Wide
Qual 4.60 288.2 260.2 15 Wide
Qual ISTD 4.60 294.2 265.2 15 Wide

Leucine Quant 4.78 302.2 274.2 10 Wide
Quant ISTD 4.78 309.2 280.3 10 Wide
Qual 4.78 274.3 147.1 15 Wide
Qual ISTD 4.78 280.3 147.1 15 Wide

Isoleucine Quant 4.78 302.2 274.2 10 Wide
Quant ISTD 4.78 309.2 280.3 10 Wide
Qual 4.78 274.3 147.1 15 Wide
Qual ISTD 4.78 280.3 147.1 15 Wide

(continued)
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Table 5
(continued)

Compound Type tr Precursor Product Collision Resolution

of transition (min) Ion (m/z) Ion (m/z) Energy (V) MS1, MS2

Proline Quant 5.20 258.3 147.1 15 Wide
Quant ISTD 5.20 263.3 147.1 15 Wide
Qual 5.20 286.2 258.2 10 Wide
Qual ISTD 5.20 292.2 263.2 10 Wide

Serine Quant 6.25 390.2 362.3 15 Wide
Quant ISTD 6.25 394.2 365.3 15 Wide
Qual 6.25 362.4 230.2 10 Wide
Qual ISTD 6.25 365.2 233.2 10 Wide

Threonine Quant 6.42 404.4 376.4 15 Wide
Quant ISTD 6.42 409.2 380.4 15 Wide
Qual 6.42 376.4 244.2 10 Wide
Qual ISTD 6.42 380.2 248.2 10 Wide

Phenylalanine Quant 6.88 336.3 308.2 10 Wide
Quant ISTD 6.88 346.2 317.2 10 Wide
Qual 6.88 308.3 147.1 20 Wide
Qual ISTD 6.88 317.2 147.1 20 Wide

Aspartate Quant 7.20 418.4 376.3 5 Wide
Quant ISTD 7.20 423.3 379.3 5 Wide
Qual 7.20 418.4 390.3 10 Wide
Qual ISTD 7.20 423.3 394.3 10 Wide

Glutamate Quant 7.95 432.4 272.2 15 Wide
Quant ISTD 7.95 438.4 277.2 15 Wide
Qual 7.95 432.4 147.1 30 Wide
Qual ISTD 7.95 438.4 147.1 30 Wide

Methionine Quant 8.10 352.2 244.2 15 Wide

sulfone Quant ISTD 8.10 358.2 248.2 15 Wide
Qual 8.10 352.2 324.2 5 Wide
Qual ISTD 8.10 358.2 329.2 5 Wide

Ornithine Quant 6.31 286.1 154.1 10 Wide
Quant ISTD 6.31 292.2 160.1 10 Wide
Qual 6.31 286.1 258.2 10 Wide
Qual ISTD 6.31 292.2 263.2 10 Wide

Cysteic acid Quant 8.75 454.3 426.3 10 Wide
Quant ISTD 8.75 458.3 429.3 10 Wide
Qual 8.75 426.3 147.1 20 Wide
Qual ISTD 8.75 429.2 147.1 20 Wide

Lysine Quant 8.76 329.3 198.0 10 Wide
Quant ISTD 8.76 336.3 204.0 10 Wide
Qual 8.76 431.3 300.3 10 Wide
Qual ISTD 8.76 439.3 307.3 10 Wide

(continued)
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Table 5
(continued)

Compound Type tr Precursor Product Collision Resolution

of transition (min) Ion (m/z) Ion (m/z) Energy (V) MS1, MS2

Histidine Quant 10.37 440.4 280.2 30 Widest
Quant ISTD 10.37 449.4 288.2 30 Widest
Qual 10.37 440.4 147.1 40 Widest
Qual ISTD 10.37 449.4 147.1 40 Widest

Tyrosine Quant 10.68 466.3 147.1 30 Widest
Quant ISTD 10.68 476.4 147.1 30 Widest
Qual 10.68 438.4 147.1 30 Widest
Qual ISTD 10.68 447.3 147.1 30 Widest

Fig. 4 Lipid composition of CHO-K1 in mid-exponential phase grown in HyClone
ActiPro medium (GE Healthcare) supplemented with 8 mM glutamine and 0.2%
Anti-Clumping Agent (GIBCO). PC ¼ phosphatidylcholine, SM ¼ sphingomyelin,
PE¼ phosphatidylethanolamine, ST¼ cholesterol, PS¼ phosphatidylserine, PG
¼ phosphatidylglycerol, PC-O ¼ phosphatidylcholine (ether-linked), PA ¼
phosphatidic acid, Other ¼ phosphatidylinositol, diacylglycerol, cardiolipin,
lysophosphatidylcholine, lysophosphatidylethanolamine, triglyceride. The error
bars represent standard deviations from three biological replicates. Please note
that cholesterol and cardiolipin were measured by RP-LC
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2. Thaw the cells and resuspend the cell pellet in 1 mLMeOH (see
Note 28).

3. Lyse the cells in a waterbath sonicator at 4∘C (example settings
for Bioruptor NGS (Diagenode): 30 s ON, 30 sOFF, 30 cycles,
high intensity).

4. Place the samples on ice and add 10 μL SPLASH® LIPIDO-
MIX® Mass Spec Standard and, if it is of interest, 5 μL Cardi-
olipin Mix I (see Note 29).

5. Add 3375 μL ice-cold MTBE (see Note 30).

6. Incubate the samples while shaking (950 rpm) at 4∘C for 1 h
(see Note 6).

7. Add 846 μL of 0.1% (w/v) AF and mix to induce phase
separation.

8. Centrifuge for 5 min at 3000�g.

9. Transfer 1 mL of the upper phase into a 2 mL Eppendorf tube
(see Notes 30 and 31).

10. Dry the lipid extracts under nitrogen flow.

11. The remaining lower aqueous phase contains metabolites and
proteins and can be used to e.g. quantify the protein content of
the sample (see SIMPLEX protocol [20]). Results from protein
quantification can be used to normalize lipid quantities. Here,
we use the cell number for normalization, so the lower phase is
simply discarded.

12. Resolubilize the lipid extracts in 500 μL 2-propanol/metha-
nol/chloroform (4:2:1, v/v/v) with 7.5 mM AF (volume can
be changed if concentration is too high or too low), vortex
briefly and centrifuge for 5 min at 10,000�g. Transfer the
supernatant into the muffled glass vials and either measure or
store the samples at �80∘C until further use. Measurements
should be performed as soon as possible after the extraction
(ideally on the same or the next day).

3.4.2 Measurement 1. Calibrate the mass spectrometry (MS) instrument according to
the vendor description.

2. Attach the Triversa NanoMate to the MS. It is constructed as
an ion source and can be installed via a dedicated rack. No spray
shield is needed. The NanoMate has to be further connected to
the input peripheral control of the MS, a computer, nitrogen
supply and power supply (see Note 32).

3. Configure Xcalibur in the Instrument Configuration.

4. Place the alignment chip into the NanoMate and align the chip
position (Interface Settings/Calibrate Device).

5. Replace the alignment chip with the nozzle chip.
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6. Under Interface settings set the plate cooler temperature to
10∘C.

7. Use the parameter settings in the ChipSoft software as indi-
cated in Table 6. Adapt if necessary.

8. Perform Spray optimization (Method Manager/Spray Optimi-
zation) with a solvent blank (see Note 4). The spray current
should be stable and above 50 nA. If necessary the tip position
can be changed. The gas pressure and voltage in the settings are

Table 6
ChipSoftManager settings for shotgun-lipidomics

Sample information Spray parameters

Sample volume 12 μL Delivery time 17 min

Vent headspace On Trigger acquisition when input signal received Off

Aspirate air after sample Off

Advanced parameters

Air gap before chip No Aspiration delay 0 s

Contact closure After Contact closure delay 2 s

Voltage timing After Voltage timing delay 0 s

Equalization delay 3 s Aspiration depth 1 mm

Pre-piercing Mandrel Pre-piercing depth 9 mm

Pre-wetting Yes Pre-wetting mix repeat 1

Temperature Spray sensing

Halt run if temp out of range Off Use spray sensing On

Cooler is turned on in Interface settings Begin Spray Sensing 30 s after

Move to next nozzle when spray 5 nA

current drops below or goes above 7000 nA

For 10 s

Only move to next nozzle 2 times

Gas pressure 0.9 psi

Voltage to apply 1.25 kV

Positive ion On

Output Contact Closure Rel3

Duration 480 s (see Note 33)
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guiding values. It is suggested to change them both and moni-
tor the spray current. With the optimal settings, it should be
possible to switch polarities back and forth without losing the
spray.

9. Save the method.

10. Make a data independent acquisition (DIA) method in
Xcalibur.

(a) Six different time events are necessary, two full mass
spectrum-selected ion monitoring (Full MS-SIM) (one
for each polarity) and four DIA (two for each polarity to
increase the number of MS2 scans to 200- one DIA event
is limited to 100). It is recommended to start the DIA
after 0.5 min for each polarity such that a representative
Full MS can be acquired for additional optical control of
the spray stability (see Note 34).

(b) Set to 0 the gas flow rates, spray voltage and current in the
tune file (MS Tune) for the Q Exactive, the Capillary
temperature should be set to 250∘C and the S-lens RF
level to 60.

(c) Use the Xcalibur settings shown in Table 7 as a starting
point to prepare the acquisition method (see Note 35).

11. Transfer a 30 μL aliquot from each sample to a 96-well plate.

12. Close the sample wells with an adhesive plate foil and place the
well plate into the NanoMate.

13. Write a sample list both in Xcalibur and ChipSoft. The acquisi-
tion times and the polarity switch must correspond in both
methods. A full sample description is only needed in Xcalibur as
this software saves the files.

14. First save and start the Xcalibur sequence, and second the
ChipSoft sequence. The start signal will be transferred via
contact closure from NanoMate to Q Exactive (see Note 36).

3.4.3 Data Evaluation 1. Convert the raw files with MSConvert into mzML, following
the description at the LipidXplorer Wiki (https://lifs.isas.de/
lipidxplorer.html) [23].

2. LipidXplorer is a fragmentation rule based lipid identification
software written in Python, which first converts the spectra in a
flat-file database termed MasterScan and further identifies the
lipids with a user-defined Molecular Fragmentation Query
Language (MFQL). Help for installation and a short tutorial
for the MFQL files are available on the LipidXplorer Wiki.
Here the configuration settings and some additional help will
be given, as these points are not always clear.
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3. Under the tab “Import Settings” different settings can be
made:

(a) Import data for each polarity separately. The time range
should be similar with the measurement settings
(e.g. 0.5–8 min for positive mode).

(b) Use 0.5 Da as selection window if 1 m/z was used in
Xcalibur (tolerance vs. tolerance range).

(c) As calibration mass use a known mass in the spectrum
e.g. an analyte or a known contamination (this setting is
optional).

(d) For resolution and resolution gradient calculation, a rep-
resentative spectrum of the sample (see Note 37) should
be opened with Xcalibur Qual Browser. In the display
options under “Labels” the peaks should be labeled with
mass and resolution. Afterwards the view is changed to
spectrum list and the data is copied into Excel or similar

Table 7
Xcalibur settings for shotgun-lipidomics

Settings for 17 min Full MS pos Full MS neg DIA pos DIA neg

Runtime (min) 0–8 9–17 0.5–8 9.5–17

Polarity Positive Negative Positive Negative

In-source CID (eV) 0 0 0 0

Default charge state – – 1 1

Microscans 1 1 1 1

Resolution 240,000 240,000 60,000 60,000

AGC target 1.00E+06 1.00E+06 2.00E+05 2.00E+05

Maximum IT (ms) 150 150 130 130

Loop count – – 100 100

MSX count – – 1 1

MSX isochronous IT – – On On

Isolation width (m/z) – – 1 1

Isolation offset – – 0 0

Fixed first mass – – – –

nCE (%) – – 25 28

Number of scan ranges 1 1 – –

Scan ranges (m/z) 250–1200 250–1200 – –

Spectrum data type Profile Profile Profile Profile
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programs. Now the m/z values vs. the resolution are
plotted and the slope of the trend line is calculated. This
is the resolution gradient. The resolution is the resolution
value of the first m/z in the spectrum.

(e) Set the tolerance higher than the instrument specification
as it can be set lower later in the Run settings.

(f) Check the noise intensity in your data for a threshold
value.

(g) If sample replicates are measured or different groups, a
min. occupation can be set to remove features that were
only present in few data files.

4. Select the files under Import source.

5. Start import (the most time consuming step).

6. Process the lipid identification under the tab “Run”
(see Note 38).

(a) Use Isotopic Correction in MS1 and MS2 for lipid
quantification.

(b) The mass tolerance can now be lower than the import
setting values and changed easily by reprocessing.

7. Run LipidXplorer.

8. Use the output file for quantification.

9. The concentration of each lipid species is calculated according
to Eq. 1.

conc ðanalyteÞ ¼ peak area ðanalyteÞ
peak area ðISTDÞ � conc ðISTDÞ ð1Þ

10. Quantification can now be done at the MS1 or MS2 level. If
fatty acyl chains are used, quantification on the fatty acyl chain
level is possible (use negative mode for phospholipids, e.g. PC
16:0_18:2 and PC 16:1_18:1 instead of sum parameter for PC
34:2). The right choice depends on the lipid class and the
sample itself.

3.5 RNA

Quantification

First, RNA is isolated with TRIzol or TRI reagent according to the
protocol suggested by the manufacturer with small adjustments.
The purified RNA is then quantified spectrophotometrically at
wavelength 260 nm. As there are losses of RNA during the isola-
tion, the samples are spiked with a defined amount of purified RNA
immediately after sampling and before they are frozen. Afterwards,
the results are corrected with a recovery factor. Typical recoveries
that we observed were 70–90%. RNA quantities in CHO range
from 13 to 23 pg per cell.

Quantifying Mammalian Biomass Composition 147



3.5.1 RNA Extraction and

Quantification
Important: Perform the isolation in the fume hood and use
nitrile gloves. Before you start working, wipe the surfaces, pip-
ettes, tip boxes etc. with RNaseZap wipes to remove RNases.

1. For each biological replicate, take two samples of 5 � 106 cells
(one will be spiked with RNA) into nuclease-free 1.5 mL tubes.
If the volume of the cell suspension it too big, use a bigger tube
and transfer the samples into 1.5 mL tubes after resuspension
in TRIzol/TRI reagent in step 3.

2. Centrifuge 8 min at 200�g, room temperature and remove
supernatant. Do not wash the cells, it might lead to degrada-
tion of mRNA (see TRIzol reagent user guide (ThermoFisher
Scientific)).

3. Add 1 mL TRIzol/TRI reagent, vortex until the pellet is
completely resuspended.

4. Add 30 μL of purified RNA (700–1000 ng/μL) to one of the
two samples taken in step 1, vortex.

5. Freeze the samples at �80∘C or continue with the isolation.

6. Add 0.2 mL chloroform, vortex for 30 s and incubate 3 min at
room temperature.

7. Centrifuge at 12,000�g for 15 min at 4∘C.

8. Transfer the upper aqueous phase to a fresh 1.5 mL RNase-free
tube (be careful not to touch the bottom phase).

9. Add 200 μL of RNase-free water to dilute the rest of the
aqueous phase that was not yet transferred to the new tubes,
mix by inverting.

10. Centrifuge at 12,000�g for 7.5 min at 4∘C.

11. Transfer the rest of the aqueous upper phase to the same tubes
as in step 8.

12. Add 0.75 mL isopropanol, vortex and incubate for 10 min at
room temperature.

13. Centrifuge at 12,000�g for 10 min at 4∘C.

14. Decant and pipette out the supernatant.

15. Wash pellets with 70% EtOH, mix by inverting the tubes
several times (until the pellets loosen).

16. Centrifuge at 12,000�g for 5 min at 4∘C.

17. Decant and pipette out as much supernatant as possible (see
Note 39).
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18. Dry the pellets for approximately 10 min (until they start
becoming transparent). Do not overdry them, as it might
become too difficult to dissolve the RNA.

19. Dissolve RNA in 60 μL RNase-free water, vortex, incubate for
10 min at 55∘C, short spin and vortex again.

20. Measure absorbance at 260 nm in triplicates (see Note 40).

3.5.2 Data Evaluation 1. If using NanoDrop, the device will calculate the RNA concen-
tration directly. If not, calculate the concentration as c ¼ A x f,
where A is the absorbance at 260 nm and f ¼ 40 ng cm/μL.

2. Calculate the recovery factor ¼ the ratio of measured:expected
difference between the spiked and non-spiked samples.

3. Correct the RNA concentrations with the recovery factor.

4. Calculate the total amount of RNA in 60 μL.
5. Divide by the number of cells.

Background Information: Several other RNA quantification
methods were tested. Quant-iTTM RNA Assay Kit (ThermoFisher
Scientific) can be used directly in cell lysates, but strong matrix
effects may lead to variation in results. RNeasy Mini Kit (QIAGEN)
and Direct-zol RNA Kit (Zymo Research) are faster and easy to use,
but the TRIzol/TRI reagent + chloroform extraction generated
the highest yields. The purified RNA can also be quantified with a
fluorescent dye instead of absorbance measurements. For instance,
the Quant-iTTM RNA Assay Kit, if applied to purified RNA, gen-
erated results comparable to NanoDrop measurements. However,
the kit requires additional reagents and thus cost.

3.6 DNA

Quantification

DNA is quantified directly in cell lysates with the fluorescent dye
PicoGreenTM (ThermoFisher Scientific), which binds specifically to
dsDNA. Typical values observed for CHO cells are 5–9 pg per cell.

3.6.1 Quantification 1. Centrifuge 7.5 � 105 cells, wash with PBS, centrifuge again
(see Subheading 3.1 for the details about sampling).

2. Store cell pellets at �80∘C until analysis.

3. Resuspend the cell pellets in 100 μL PBS (see Note 41).

4. Add 10 μL proteinase K and 2 μLRNase A, vortex and incubate
at room temperature for 2 min.

5. Add 100 μL buffer AL, vortex and incubate at 56∘C for 10 min
to lyse the cells.

6. Do a short spin and add 848 μL of 1� TE buffer, vortex.

7. Mix 20 μL of the lysate with 380 μL 1� TE, vortex.

8. Pipette 100 μL of standards and samples in triplicates into a
black 96-well plate.
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9. Add 100 μL 1� PicoGreen solution to each sample and cover
with aluminum foil to protect from light.

10. Mix for 30s on a microplate shaker, incubate for 2 min.

11. Measure fluorescence with a microplate reader (excitation
wavelength ¼ 480 nm, emission wavelength ¼ 520 nm,
automatic gain).

3.6.2 Data Evaluation 1. Calculate the average fluorescence of each sample and each
standard from the corresponding three wells.

2. Subtract the average fluorescence of the blank from all samples
and standards.

3. Plot fluorescence on x-axis, concentration of the standards on
y-axis and do a linear fit.

4. Use the equation of the fit to calculate the concentrations of
the samples.

5. Multiply the concentrations by 0.4 to get the total amount per
0.4 mL.

6. Multiply by 53 (the sample was initially resuspended in 1060
μL and 20 μL were used, 1060/20 ¼ 53).

7. Divide the values by the number of cells (7.5 � 105).

3.6.3 Optional Step:

Matrix Correction

As the assay is performed directly from a cell lysate, other cellular
components apart from DNA might interfere with the assay. To
check this, samples can be spiked with a defined amount of DNA.
The ratio of expected:measured difference between the spiked and
non-spiked samples can be used to correct the final data with this
protocol. We observed no matrix effects for our samples, therefore
this step is listed as optional. If you want to check for matrix effects,
add the following steps to the protocol:

1. Make another dilution in addition to the one described in
Subheading 3.6 step 7 as follows: Mix 20 μL of the lysate
with 280 μL 1� TE and 100 μL of 2 μg/mL λ DNA and
continue with the procedure in the same way as for the
non-spiked samples.

2. Calculate the amount of DNA in 0.4 mL as in Subheading
3.6.2, step 5 and subtract the values of the non-spiked samples
from the corresponding spiked samples.

3. Calculate the ratio of the expected vs. measured difference. In
this case, the expected difference is 200 ng. If the measured
difference is, for example, 160 ng, it means the concentrations
in the samples are most likely underestimated. To correct the
data, multiply the values of the non-spiked samples by the
correction factor 200/160 ¼ 1.25.

4. Proceed with the calculation in step 6.
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3.7 Carbohydrate

Quantification

Carbohydrates are quantified with a colorimetric assay using
anthrone and sulfuric acid. The strong acid and heat hydrolyze
glycolytic bonds in polysaccharides and convert monomeric sugars
to furfuraldehyde derivatives, which react with anthrone and pro-
duce colored compounds. The method quantifies predominantly
hexoses with only a small interference from pentoses [24, 25]. The
pentoses are assumed to be mostly part of nucleic acids, which are
quantified independently.

The assay is performed in a 96-well format, adapted from [26]
and [27]. Because the carbohydrates are quantified directly in the
cell lysates, all samples are spiked with a defined amount of glucose
to correct for possible matrix effects. Typical values for CHO cells
are 2–6 pg per cell.

3.7.1 Quantification

Important: When working with sulfuric acid, always wear
protective goggles, lab coat and appropriate gloves.

1. Take 107 cells, centrifuge, wash with PBS, centrifuge again (see
Subheading 3.1, seeNote 42) in 1.5 mL tubes. If the volume of
the cell suspension it too big, a bigger tube can be used and the
suspension can be transferred to 1.5 mL tube after resuspen-
sion in PBS in step 3.

2. Store cell pellets at �80∘C until analysis.

3. Resuspend the cell pellets in 400 μL PBS (see Notes 43 and
44).

4. Place 0.2 mL PCR tubes on ice or in a cooling block. Pipette
40 μL of the standards into the tubes in triplicates (see Note
45).

5. Mix 20 μL PBS with 20 μL of a sample (non-spiked sample)
and 20 μL of 130 μg/mL glucose with 20 μL of a sample
(spiked sample). Prepare the dilutions in technical triplicates.

6. Add 100 μL of 2 mg/mL anthrone (see Note 46), mix by
tapping or inverting the tubes and short spin.

7. Incubate 3 min at 92∘C and place on ice/cooling block or cool
the samples directly in the thermal cycler.

8. Pipette 110 μL of the samples into a transparent 96-well
microplate.

9. Measure absorbance at wavelength 630 nm.

3.7.2 Data Evaluation 1. Calculate an average absorbance from the technical replicates.

2. Subtract the average absorbance of the blanks from the average
absorbances of all samples and standards.

Quantifying Mammalian Biomass Composition 151



3. Plot absorbances of the standards on the x-axis and concentra-
tions on the y-axis, do a linear fit.

4. Use the equation from the fit to calculate the concentrations of
the samples.

5. Subtract the concentration of the non-spiked samples from the
spiked samples.

6. Calculate the ratios of the expected difference (65 μg/mL) and
measured difference to get a matrix correction factor.

7. Multiply the concentrations of the non-spiked samples with an
average correction factor.

8. Multiply by 2 (dilution factor).

9. Multiply by 0.4 (the initial sample volume).

10. Divide by the number of cells.

3.8 Data Conversion

to Biomass Equations

To integrate the measured biomass composition into the model,
the data has to be converted into the appropriate units. First,
equations and average molecular masses for the macromolecules
(proteins, lipids, DNA, RNA) are calculated. Then the final biomass
equation is calculated using the mass percent of each macromole-
cule per cell dry mass and their respective molecular masses.

3.8.1 Macromolecular

Equations

1. For each macromolecule, calculate the mole percent of each
component, based on the available composition. These will be
the stoichiometric coefficients in the equations.

(a) For proteins, use the measured AA composition. Trp is
not measured in the method presented in this chapter,
therefore a value from literature has to be used. The pairs
Glu + Gln and Asp + Asn are measured as a sum. Assume
that their ratio is 1:1, unless other values are available in
the literature. Use molecular masses of AAs as they are
found in peptides, i.e. molecular mass of AAminus molec-
ular mass of 1 H2O molecule.

(b) For lipids, use the sum for each lipid class (cardiolipin
(CL), diacylglycerol (DG), lysophosphatidylethanolamine
(LPE), phosphatidic acid (PA), phosphatidylcholine (PC),
phosphatidylcholine (ether-linked) (PC-O), phosphati-
dylethanolamine (PE), phosphatidylcholine (ether-
linked) (PE-O), phosphatidylglycerol (PG), phosphatidy-
linositol (PI), phosphatidylserine (PS), sphingomyelin
(SM), cholesterol (ST), triglyceride (TG)).

(c) RNA composition can be taken from literature or calcu-
lated from RNAseq data (but only if it includes rRNA
quantities as well, because these form the majority of
RNA).
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(d) If the genome sequence is available, DNA composition
can be simply calculated from the guanine-cytosine
content.

2. Add energy requirements for the synthesis of proteins, DNA
and RNA, for example as in [28]. For the synthesis of 1 mole of
protein, 4.306 energy bonds are hydrolyzed on average. To
represent the cellular process more accurately, this was mod-
ified to 2 GTP (hydrolyzed to GDP) and 1.306 ATP (1 is
hydrolyzed to AMP and 0.306 to ADP).

3. Make equations for the synthesis of the macromolecules, see
Table 8 for examples.

3.8.2 Average Molecular

Masses of Macromolecules

For each macromolecule, an average molecular mass,Mmacro, has to
be calculated, using molecular masses of the reactants, Mreact, and
products, Mprod, and their respective stoichiometric coefficients, s,
(see Eq. 2).

Mmacro ¼
X

i

s iM
react
i �

X

j

s jM
prod
j ð2Þ

3.8.3 Biomass Equations 1. Express the quantities of proteins, lipids, DNA, RNA and
carbohydrates as g per g of CDM (mass percent).

2. Divide the values by the average molecular masses calculated as
described in Subheading 3.8.2 to obtain mol/g. For carbohy-
drates, use the molecular mass of glucose, unless a specific
carbohydrate composition is available.

3. Multiply by 1000 to get mmol/g. See an example of a biomass
equation in Table 8.

4 Notes

1. Arginine decomposes during derivatization forming ornithine.
No arginine derivative can be detected. Hence arginine is
quantified via ornithine. This approach can only be followed
using the isotopically labeled internal standard for arginine,
which shows the same decomposition rate and derivatization
efficiency as 12C arginine.

2. Pipetting steps should not transfer volumes lower than 40 μL
to ensure precision and accuracy.

3. As AF is not easily dissolvable in the solvent mixture, it is
common practice to prepare a 1 M AF solution in water and
add the necessary amount to the final solution. Ammonium
acetate can be also used instead of AF.
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4. This solution has to be as clean as possible. Therefore, it should
be prepared in 10 mL clean glass flasks that were heated and
rinsed with 2-propanol. It is also useful to fill the solvents
themselves into 10 mL flasks to facilitate the handling. To
reassure the quality of this solvent mixture, the final solution
should be analyzed prior to use via spray parameter optimiza-
tion in ChipSoft.

5. Other LIPIDOMIX products are also available and may be
cheaper or better for specific samples. An ISTD-Mix can be
also prepared from single ISTD stocks to increase flexibility and
reduce costs. Consult literature of the sample to find the
best ISTD.

6. The Thermomixer from Eppendorf is able to mix and cool
(pre-cooling before use is suggested). If such a device is not
available a shaker or rotator can be placed in a cooling room to
enable constant temperature.

7. If the centrifuge cannot handle 5 mL tubes, the total volume of
the extraction mixture and the sample amount need to be
adapted to 2 mL.

8. The purified RNA can be prepared with the RNA extraction
protocol described in Subheading 3.5, but skipping the spiking

Table 8
Composition of the macromolecular species

Protein

0.078 Ala + 0.063 Arg + 0.086 Gly + 0.051 Val + 0.083 Leu + 0.037 Ile + 0.054 Pro + 0.067 Ser + 0.051
Thr + 0.034 Phe + 0.051 Asp + 0.063 Glu

+ 0.018MetS + 0.072 Lys + 0.02 CysA + 0.019His + 0.029 Tyr + 0.008 Trp + 0.063 Gln + 0.051 Asn
+ 1.306 ATP + 2 GTP + 2.306 H2O

! 1 Protein + 0.306 ADP + 1 AMP + 2 GDP + 2.306 Pi + 1 PPi + 3.306 H

Lipid

0.01 CL + 0.007 DG + 0.002 LPE + 0.023 PA + 0.288 PC + 0.013 PC-O + 0.167 PE + 0.035 PG +
0.019 PI + 0.045 PS + 0.275 SM + 0.107 ST + 0.009 TG ! 1 Lipid

RNA

0.264 GTP + 0.219 UTP + 0.249 CTP + 0.668 ATP + 0.4 H2O! 1 RNA + 0.4 ADP + 0.4 Pi + 1 PPi +
0.4 H

DNA

0.294 dATP + 0.294 dTTP + 0.206 dCTP + 0.206 dGTP + 1.372 ATP + 1.372 H2O! 1 DNA + 1.372
ADP+ 1.372 Pi + 1 PPi + 1.372 H

Total biomass

5.062 Protein + 0.209 Lipid + 0.281 RNA + 0.102 DNA + 0.110 Glucose ! 1 Biomass
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in step 4. Afterwards it can be diluted with nuclease-free water
if necessary.

9. You will need around 40 mL of 1� TE for one 96-well plate.

10. Prepare the 2 μg/mL λ DNA solution on precision balances.
Then recalculate the concentrations of the standards if needed.

11. If you use a multichannel pipette, prepare around 1 mL more
of the 1� PicoGreen solution than needed. This makes pipet-
ting from the multichannel pipette reservoir easier.

12. Take the PicoGreen stock solution out of the fridge when you
start the procedure, because it is solid at 4∘C and needs to
warm up to thaw. Start preparing the standards and samples
and by the time you need to add the PicoGreen reagent, it will
have thawed. It is also good to aliquot the solution into several
tubes (wrapped in aluminum to protect from light).

13. Prepare several aliquots of the 130 μg/mL standard, because it
is used as a spike-in and will be used up faster than the other
standards.

14. Prepare around 12 mL of the anthrone reagent for one 96-well
plate assay.

15. You can measure the cell concentration in duplicates or tripli-
cates to have a more accurate estimate of cell number. How-
ever, some cell lines get more shear sensitive the longer they are
suspended in PBS and thus the measured cell number concen-
tration decreases with each measurement. Hence, just one
measurement immediately after washing can be more accurate.
This is a specific property of each cell line.

16. When using a ViCell XR autosampler, do not load more than
2–3 samples at a time. The cells tend to sediment quickly and
we have observed that the mixing done by ViCell before the
measurement is not effective enough to obtain a representative
sample. If you load more samples we recommend that you
gently shake the cups before they are measured in order to
counteract sedimentation.

17. Mix the cell suspension before aliquoting by gently inverting
the tube. The cells sediment quite quickly.

18. Do not go over 90∘C. Otherwise the evaporation process can
be too violent and material may be lost. Furthermore, cell
components might oxidize and thus change the result.

19. Weigh the beakers immediately after taking them out of the
desiccator, because they start to absorb water and the mass
increases.

20. Tryptophan cannot be quantified in the acidic hydrolysates.
Base hydrolysis is recommended [29].
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21. Histidine sensitivity is low and could not be further improved
by changes in derivatization parameters. For better sensitivity
and hence repeatability of histidine, quantification samples can
be measured via HPLC-MS.

22. Quantitative transfer of cell samples into Sarstedt vials is
tedious and time consuming. Sample directly into Sarstedt
tubes.

23. Non-polar organic residues or cell debris in the aliquots for
GC-MS/MS analysis lead to severe contamination of the liner
and hence loss in sensitivity. Take care to take aliquots of the
aqueous middle layer of the reconstituted hydrolysates only.

24. In order to achieve good derivatization efficiency traces of
water must be removed from the protein hydrolysates by dry-
ing the samples directly before derivatization.

25. Handling of pyridine and silylation reagent has to be done in a
fume hood while wearing protective clothing.

26. Prepare a method blank sample by filling a tube with cultiva-
tion medium, decant, add PBS, decant and add 1 mL MeOH.
The method blank can now be treated as a sample.

27. As lipids can be oxidized and degraded, the storage time should
be as short as possible. If this is not feasible, measures should be
taken to avoid such degradation processes (e.g. low storage
temperature).

28. The protocol can be easily adapted to a different cell number or
volumes of the reagents. See [20] for an example with a lower
starting amount of cells and volumes. This is important if 5 mL
tubes cannot be centrifuged.

29. Change gloves regularly during the extraction to prevent cross-
contamination of the samples.

30. Pre-wet the tip before pipetting MTBE or other organic sol-
vents, otherwise it will drip from the pipette tip.

31. Take 2 aliquots of the upper phase as a backup. If the concen-
tration of lipids is too high or low, the amount of solvent can be
adapted, as well as the resuspension solvent.

32. For a good spray stability and signal intensity, it is important
that the Nanomate is central to the MS and in a distance of 3–5
mm. This is a crucial step and should be done with care. As a
rule of thumb, the reproducibility is increased by a bigger
distance and the intensity is increased by a smaller distance.

33. Duration of the output closure indicates the time period until
polarity switching (positive to negative mode, 8 min). Nor-
mally done at half time but an additional time for spray stabili-
zation is highly recommended (analysis in negative mode starts
at 9 min until 17 min).
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34. In DIA, each mass is fragmented in chronological order inde-
pendent of the intensity in the MS1 spectrum. The scan time
should be long enough to fragment each mass twice. The
selection of the masses is done by an inclusion list, in which
the values of the m/z masses are chosen according to the
expected mass defect at a specific mass. Empirically useful
values start at 100.000 m/z and increase 1.001 per
1 m/z. (101.001; 102.002, etc.)

35. TheMS1mass range can be split in more overlapping ranges to
increase the dynamic range and detection sensitivity by
decreasing the ion package in the Orbitrap. If this is necessary,
please follow the protocol of Southam et al. [30].

36. The NanoMate can perform polarity switching, but a software
update and an additional straight through cable is necessary.
Ask Advion for firmware and further assistance.

37. An averaged spectrum can be chosen for MS1, for MS2 a
known analyte spectrum is suggested with as many fragments
as possible. Use a medium concentrated sample. If the concen-
tration differs over the sample batch, calculate the resolution
gradient for low, medium and high concentrated samples and
split the batch for LipidXplorer.

38. The advantage of the MFQL queries is their high flexibility.
New fragmentation rules, more constraints and different
reporting styles can be easily adapted. However, this flexibility
needs some training to be used to its full potential. Example
files can be found on the LipidXplorer Wiki. In general, it is
suggested to try each lipid class one after the other and if
possible, standards should be used to avoid wrong identifica-
tion. Literature about lipid fragmentation can also help. A
consistent labeling in the REPORT section is also important
as already small typing errors will lead to a new column in the
output file. A useful tool for quantification is the report option
ISOBARIC¼pr.Lipidclass.isobaric, which indicates whether
other lipids are isobaric with this analyte.

39. Try to remove as much ethanol as possible. Decant it and
pipette it out with a 200 μL tip. Then do a short spin and
remove the rest with a 10 μL tip.

40. It might happen that if you measure the concentration three
times, you get very different results. This may indicate that the
RNA was not completely dissolved. Try vortexing the samples
and remeasure them three times again.

41. The cell pellets often contain substantial amounts of residual
PBS from washing. You can estimate it by weighing and then
adding PBS to reach the final volume of 100 μL.
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42. You can reduce the amount of cells and then adjust the volume
of PBS added, e.g. if you take 5 � 106 cells, resuspend the
pellet in 200 μL.

43. The cell pellets often contain substantial amounts of residual
PBS from washing. You can estimate this by weighing and then
adding PBS to reach the final volume of 400 μL.

44. The most effective way to resuspend the pellet is by pipetting
up and down. Mix each sample just before making the dilu-
tions, because the cells quickly sediment.

45. It is convenient to perform the assay in PCR strips, because you
can use a multichannel pipette to add the anthrone reagent and
to pipette the samples into the 96-well plate. The incubation at
92∘C and subsequent cooling down can be performed in a
PCR thermal cycler.

46. The anthrone reagent is very viscous. Pipette slowly and always
pre-wet pipette tips or use reverse pipetting.
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Chapter 8

Quantifying Nitric Oxide Flux Distributions

Darshan M. Sivaloganathan, Xuanqing Wan, and Mark P. Brynildsen

Abstract

Nitric oxide (NO) is a radical that is used as an attack molecule by immune cells. NO can interact and
damage a range of biomolecules, and the biological outcome for bacteria assaulted with NO will be
governed by how the radical distributes within their biochemical reaction networks. Measurement of
those NO fluxes is complicated by the low abundance and transience of many of its reaction products. To
overcome this challenge, we use computational modeling to translate measurements of several biochemical
species (e.g., NO, O2, NO2

�) into NO flux distributions. In this chapter, we provide a detailed protocol,
which includes experimental measurements and computational modeling, to estimate the NO flux distri-
bution in an Escherichia coli culture. Those fluxes will have uncertainty associated with them and we also
discuss how further experiments and modeling can be employed for flux refinement.

Key words Escherichia coli, Nitric oxide, Metabolic flux, Nitric oxide dioxygenase, Nitric oxide
reductase

1 Introduction

Nitric oxide (NO) is a reactive, highly diffusible, nonpolar molecule
that is used in humans as a vasodilator, neurotransmitter, and
antimicrobial [1–3]. Inducible NO synthase (iNOS) produces
NO within cells of the innate immune response to combat patho-
gens [1, 4]. Upon phagocytosis by macrophages, pathogens are
internalized in membrane-bound compartments (phagosomes)
where they are bombarded with a range of antimicrobial stressors,
which include NO [5]. To counter NO, many bacteria have evolved
defense systems, that when disrupted greatly attenuate their viru-
lence [6–9]. Those defense systems represent antiinfective targets
that if impaired would exert selective pressure only in conjunction
with immunity, since they are not essential for bacterial growth
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[9, 10]. Such focused selective pressure, within a host at an infec-
tion site, has been predicted to slow the development of resistance
to treatments [11–13]. Further, NO released from probiotic
patches, catheter coatings, topical creams, and nanoparticles have
been explored as an antibacterial treatments [14–17]. Inhibition of
the same bacterial NO defenses that would synergize with immu-
nity are also projected to potentiate the activities of these
NO-releasing materials [9]. Unfortunately, an ability to therapeu-
tically inactivate those defenses has yet to be realized, because
known inhibitors are either toxic to humans or poorly transported
into bacteria [18, 19]. Greater knowledge of how pathogens pro-
cess NO stress and how different genetic or environmental pertur-
bations modulate NO flux within bacterial reaction networks will
facilitate means to therapeutically interfere with bacterial NO
defenses [9].

NO reacts with O2 and superoxide (O2
�), directly damages

iron–sulfur clusters, and reversibly binds heme, whereas its autoxi-
dation products (e.g., N2O3, ONOO�) can damage DNA bases,
thiol groups, tyrosine, and lipid residues [20, 21]. NO is readily lost
to the gas phase, it reacts both inside and outside of cells, many of
its reaction products are transient intermediates, and its biochemi-
cal reaction network only has a few stable end products (e.g.,
NO2

�, NO3
�). These factors necessitate the use of computational

modeling to calculate NO fluxes through its multitude of reaction
pathways from experimental measurements of NO and other spe-
cies [9, 22–24]. Once a computational model can capture experi-
mental data and its predicted flux distributions have been validated
to be accurate with independent experiments, the model represents
a valuable tool to understand how variables of the system impact
NO flux distributions. For example, in a previous study a para-
metric analysis of such a model identified a kinetic regime of NO
delivery rates that rendered bacterial NO defenses dispensable [25];
or in other words, conditions were identified where cultures of
bacteria with or without the major NO detoxification system exhib-
ited similar NO flux distributions.

Here we describe a methodology to estimate NO flux distribu-
tions within a wild-type E. coli culture. Experimental measurements
of NO, O2, and NO2

� are collected in different bioreactor config-
urations (e.g., with and without cells). That data is then used to
optimize uncertain parameters within a mathematical model. The
resulting model is then used to calculate NO flux distributions. In
addition, we discuss follow-up experiments to validate model-
calculated distributions, and how uncertainty in the flux distribu-
tions can be estimated and reduced. These approaches have been
used previously to analyze NO fluxes in wild-type and mutant
cultures of E. coli under different environmental conditions [26–
28], and we have previously demonstrated that the methodology
can be translated to other bacterial species [29, 30]. We anticipate

162 Darshan M. Sivaloganathan et al.



that our approaches can be applied to higher organisms, especially
given the information yielded by previous works that adopted
reaction engineering methodologies to interrogate NO fluxes in
mammalian systems [23, 31–33].

2 Materials

Aqueous solutions should be prepared with Milli-Q water (deio-
nized water purified to achieve a resistivity of 18.2 MΩ cm at
25 �C). Autoclaved Milli-Q water is used to rinse stir bars and
submerge the ISO-NOP NO sensor before and after use.

2.1 Bacterial Strains E. coli K-12 MG1655. The method described here has been used
previously for E. coli K-12 MG1655 [25]; however, it has also been
applied to different strains and species [29, 30].

2.2 Media 1. LB media: Dissolve 25 g of LB broth powder (BD Difco™
Dehydrated Culture Media: LB Broth, Miller) in 1 L Milli-Q
water, and autoclave for 30 min at 121 �C and 100 kPa gauge
pressure.

2. MOPS minimal media: Add 100 mL of 10� MOPS Modified
Rich Buffer (in MOPS Minimal Medium Kit, Teknova, Inc.),
10 mL of 0.132 M K2HPO4, and 10 mL of 1 M glucose to
880 mL of Milli-Q water and sterilize with a 0.22 μm bottle-
top filter (Nalgene™ Rapid-Flow™ Sterile Disposable Bottle
Top Filters with PES Membrane).

2.3 Plastics,

Glassware,

and Miscellaneous

1. Tubes and glassware: Test tube (glass), 250 mL baffled flask
(glass), falcon tube (50 mL polypropylene), microcentrifuge
tubes (1.5 mL polypropylene), and 150 mL beaker (glass).
Autoclave glassware before use. Plastic disposables are bought
sterile.

2. Magnetic stirring hotplate (Fisher Scientific International,
Inc.).

3. 0.500 and 200 magnetic stir bars (Fisher Scientific International,
Inc.) (keep 0.500 suspended in 70% ethanol when not in use for
sterility).

4. Thermometer (Fisher Scientific International, Inc.).

5. Stand and clamp (Fisher Scientific International, Inc.).

2.4 SNAP Calibration

and NO Treatment

Assay

1. 0.1 M Copper (II) chloride solution: 8.5 g of CuCl2·2H2O
(Fisher Scientific International, Inc.) dissolved in 500 mL of
Milli-Q water. Store at room temperature.

2. S-Nitroso-N-acetyl-DL-penicillamine (SNAP) solution: dis-
solve 5 mg of ethylenediaminetetraacetic acid (EDTA) in
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25 mL of Milli-Q water, and then add 5.6 mg SNAP (Cayman
Chemical, Inc.) to the solution. Wrap the solution in aluminum
foil and store at 4 �C. It can be used within a month.

3. Dipropylenetriamine (DPTA) NONOate solution: On the day
of the experiment, add 726 μL of 10 mM NaOH solution to
10 mg of DPTA NONOate (Cayman Chemical, Inc.) to make
72 mMDPTANONOate stock, and keep on ice. It can be used
within 24 h.

4. Methylamine hexamethylene methylamine (MAHMA) NON-
Oate solution: On the day of the experiment, add 1 mL of
10 mM NaOH solution to 10 mg of MAHMA NONOate
(Cayman Chemical, Inc.) to make 48.9 mM MAHMA NON-
Oate stock, and keep on ice. It can be used within 2 h.

5. ISO-NOP NO sensor—2 mm (World Precision Instruments,
Inc.).

6. Four-Channel Free Radical Analyzer (TBR4100, World Preci-
sion Instruments, Inc.).

7. (Optional) Nitrate/Nitrite colorimetric assay kit (Cayman
Chemical, Inc.).

2.5 O2 Consumption

Assay

1. FireStingO2—Fiber-Optic Oxygen and Temperature meter
(PyroScience GmbH).

2. Robust Oxygen Probe (PyroScience GmbH).

3. Submersible Temperature Sensor TSUB21
(PyroScience GmbH).

2.6 Software 1. Windows OS (Windows 7 or later).

2. Microsoft Excel.

3. MATLAB (2016 or later).

4. LabScribe—a recording software that is compatible with
ISO-NOP.

5. FireStingO2 software—a recording software for O2 probe.

3 Methods

3.1 Experimental

Procedures

3.1.1 ISO-NOP

Calibration

Here, we describe the use of SNAP as an NO donor for daily
calibration of the ISO-NOP sensor. SNAP is a S-nitrosothiol that
spontaneously releases NO in an ill-defined ratio when decom-
posed by heat, light, or catalyst [34]. It is generally believed that
Cu(I) formed from Cu(II) through reduction by thiol rapidly
catalyzes this reaction [35]. SNAP is preferred over other NO
donors for the calibration process because of its stability and rapid
release of NO. In this procedure, increasing doses of SNAP are
added to a solution of CuCl2 to generate proportional amounts of
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NO. This is reflected in the signal profile generated in picoamp
(pA). This signal profile is used to generate a calibration curve that
enables the conversion between pA and [SNAP]. Ultimately, we
want to generate a conversion between pA and [NO], and thus
need a conversion of the form, [SNAP] ¼ α [NO]. The inverse of α
(α�1) can be thought of as the average number of NO molecules
released per parent molecule of SNAP. This is accomplished by
using a second NO-donating compound at varying concentrations
and incorporating α as a fitted variable in an optimization proce-
dure with a cell-free model of aqueous NO reactivity. The second
NO-donating compound in this procedure should be different
fromNO donors used later on to ensure an independent calibration
of the NO sensor. We have elected to use MAHMA NONOate, an
NO donor that releases two molecules of NO per donor molecule
with a half-life on the order of magnitude of 1 min at 37 �C and
pH 7.4, as the second NO-donating compound for the calibration.
Please note that SNAP calibration of the probe is done daily,
whereas estimation of α with MAHMA NONOate in this case
should be conducted when a new SNAP solution is used or the
pA vs. [SNAP] deviates significantly from previous calibrations (see
Note 1).

ISO-NOP Calibration Using

SNAP and CuCl2

1. Pipet 10 mL of CuCl2 solution in a 50 mL falcon tube and
prewarm it in an incubator at 37 �C.

2. Use a 200 stir bar, 150 mL beaker, heating plate, stand and
clamp to set up the bioreactor (Fig. 1). Set the temperature
of the heating plate so that the temperature of the water bath
remains at 37 �C. Set the spin rate at 450 rpm (see Note 2).

3. Use tweezers to remove a small magnetic stir bar from a micro-
centrifuge tube filled with 70% EtOH, rinse with autoclaved
Milli-Q water, and then transfer to the prewarmed CuCl2
solution. Fix the falcon tube on to the clamp and lower the
tube into the water bath.

4. Very carefully, lower the NO probe into the CuCl2 solution so
that the tip is approximately 2–4 mm below the liquid surface
(see Note 3).

5. Begin recording data from the NO probe in the LabScribe
software.

6. Once the NO probe signal has stabilized for at least 5 min, take
a 300 μL aliquot of the prepared SNAP solution from 4 �C
storage. Deliver the first volume (e.g., 32 μL) of SNAP solution
to the CuCl2 solution. The pA signal should increase immedi-
ately, and then drop to baseline within 2 min.

7. Once the signal approaches baseline and is flat, add the second
dose of SNAP solution.
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8. Repeat until at least three points are obtained to generate a
calibration curve (e.g., 32, 64, 128 μL of SNAP solution) (see
Note 4).

9. Stop recording and save the data (see Note 5).

10. Raise the NO probe and submerge it into a falcon tube with
autoclavedMilli-Q water. Remove the CuCl2 solution from the
clamp. Remove and rinse the stir bar with autoclaved Milli-Q
water using tweezers and return to a microcentrifuge tube with
70% EtOH (see Note 6).

11. Open the data file and calculate the difference between the
peak pA value and base pA value (ΔpA) for each dose of
SNAP delivered (Fig. 2a).

12. Calculate the concentration of SNAP added with each dose (see
Note 7).

13. Make a scatter plot of [SNAP] against ΔpA.
14. Use a linear regression tool to fit a line through the data that

passes through the origin and calculate the slope k andR2 value
(Fig. 2b) (see Notes 8 and 9).

Fig. 1 Bioreactor schematic. (a) Free radical analyzer and/or fiber-optic O2 and
temperature meter. (b) NO sensor and/or O2 probe. (c) Temperature sensor. (d)
50 mL falcon tube containing 10 mL of 0.1 M CuCl2 or MOPS minimal media with
a 0.500 magnetic stir bar. (e) 150 mL glass beaker containing 100 mL of water
and a 200 magnetic stir bar. (f) Hot plate stirrer

166 Darshan M. Sivaloganathan et al.



15. Divide the slope k by α (estimated in Subheading “Experiments
to Determine the Conversion Rate of SNAP to NO”) to con-
vert ΔpA to [NO]. k/α is a proportionality constant between
pA and [NO].

Experiments to Determine

the Conversion Rate

of SNAP to NO

1. Prepare two 10 mL MOPS minimal medium solutions in two
separate 50 mL falcon tubes and prewarm them in an incubator
at 37 �C.

2. Calibrate the NO probe following Subheading “ISO-NOP
Calibration Using SNAP and CuCl2”. Following calibration,
maintain the water bath temperature at 37 �C and spin rate at
450 rpm.

3. Fix one of the falcon tubes on to the clamp and lower the tube
into the water bath. Rinse the stir bar with autoclaved Milli-Q
water and place it into the media with tweezers. Lower the NO
probe into the MOPS media, so that the tip is approximately
2–4 mm below the liquid surface.

4. Begin recording data from the NO probe in the LabScribe
software.

5. Add 1 mL of 10 mM NaOH to MAHMA NONOate to make
48.9 mM MAHMA NONOate stock. Keep on ice.

6. Once the probe signal has stabilized for at least 5 min, add
5.1 μL of MAHMA NONOate stock to the media to reach a
concentration of 25 μM.

7. (Optional)After 30min, take a 300 μL sample and store at 4 �C
(this can be used to measure the terminal nitrite concentration
using a nitrate/nitrite colorimetric assay kit).

8. Stop recording and save the data.

9. Remove and rinse the probe in autoclaved Milli-Q water and
the stir bar in 70% EtOH followed by autoclavedMilli-Q water.

Fig. 2 SNAP calibration. (a) pA profile following delivery of 32, 64, and 128 μL of SNAP standard to 0.1 M
CuCl2. The green point and red point represent the base and peak pA value for each dose of SNAP delivered.
(b) The difference between each pair of points (ΔpA) can be plotted against [SNAP] and fitted to a regression
line

NO Flux Quantification 167



Replace the falcon tube with the second prepared MOPS solu-
tion. Add the stir bar into the new MOPS media. Lower the
NO probe to 2–4 mm below the liquid surface.

10. Begin recording NO probe data on LabScribe software.

11. Repeat steps 6–8 but double the volume of MAHMA NON-
Oate delivered (10.2 μL to reach a concentration of 50 μM).

12. Raise the NO probe and submerge it into a falcon tube with
autoclaved Milli-Q water. Remove the MOPS solution from
the clamp. Remove and rinse the stir bar with autoclaved Milli-
Q water using tweezers and return to microcentrifuge tube
with 70% EtOH.

13. Truncate each data set so that all data collected before
MAHMA treatment is removed.

14. Rescale the time points so that the first time point is t ¼ 0.

15. For each data set: subtract all pA values by the pA value at t¼ 0.
This generates a ΔpA value at each time point.

16. Multiply the ΔpA values by the slope k obtained from step 14
in Subheading “ISO-NOP Calibration Using SNAP and
CuCl2”. This generates a [SNAP] value at each time point.

17. Plot [SNAP] vs. time for each MAHMANONOate concentra-
tion (Fig. 3a, b).

18. Refer to Subheading 3.2.1 to estimate the conversion factor α.

3.1.2 Measuring O2
Transport in the Absence

of the Cells

O2 Probe Calibration

1. Prepare 10 mL MOPS media in a 50 mL falcon tube and
prewarm it in an incubator at 37 �C.

2. Approximately 20 min before use, attach the prewarmed falcon
tube withMOPSmedia to the clamp and lower it into the water
bath. Rinse the stir bar with autoclavedMilli-Q water and place
it into the media with tweezers.

3. Rinse and clean the O2 probe with 70% EtOH and allow it
to dry.

4. Lower the O2 probe into the bioreactor, so that the tip is
approximately 2–4 mm below the liquid surface. Place the

Fig. 3 [SNAP] profile following delivery of MAHMA NONOate. (a) 25 μM and (b) 50 μM of MAHMA NONOate was
delivered to a cell-free bioreactor containing 10 mL of MOPS minimal media. The dark purple line represents
the mean of three replicates, whereas the light purple shading represents the standard error of the mean
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temperature sensor outside the bioreactor but within the
heated water bath, submerged approximately 4–5 cm below
the liquid surface.

5. Open the FirestingO2 software and press the calibrate button.
Wait approximately 5 min before the signal reaches a steady-
state value and press the steady-state button. The O2 saturation
percentage should read 100% (see Note 10).

Oxygen Transport

Measurement

1. Following calibration, bubble 100% nitrogen (N2) gas into the
MOPS media (see Note 11).

2. Once the O2 saturation percentage drops below 2%, turn off
and remove the N2 source, and start recording data on the
FirestingO2 software.

3. After 10 min, stop recording. Remove and clean the O2 probe
with 70% EtOH. Rinse the stir bar with autoclaved Milli-Q
water using tweezers and return to a microcentrifuge tube with
70% EtOH.

4. Extract time and percentage of O2 saturation data from the
saved file.

5. Convert the time points from units of seconds to hours.

6. Multiply the percentage of O2 saturation values by 210 and
divide by 100. This converts percentage of O2 saturation to
units of micromolar (see Note 12).

7. Plot [O2] vs. time and �ln([O2]sat � [O2]) vs. time, where
[O2]sat is 210 μM (Fig. 4a, b).

8. Use a linear regression tool to fit a line through the data in
Fig. 4b and calculate the slope.

The slope obtained is the capacity coefficient for O2 trans-
port, kLaO2, where kL is the mass transfer coefficient, a is the
surface area between gas and liquid phases divided by the liquid
volume, and the O2 subscript indicates that it is for O2.

Fig. 4 Estimating the capacity coefficient for O2 mass transfer (kLaO2) (a) [O2] profile after purging a cell-free
bioreactor with 100% nitrogen. The dark green line represents the mean of three replicates, whereas the light
green shading represents the standard error of the mean. (b) Plot of �ln([O2]sat � [O2]) vs. time. The slope of
the best fit line (in red) equals kLaO2
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3.1.3 NO Delivery

and Measurement

in the Absence of Cells

1. Prepare 10 mL MOPS media in a 50 mL falcon tube and
prewarm it in an incubator at 37 �C.

2. Calibrate the NO probe following Subheading “ISO-NOP
Calibration Using SNAP and CuCl2”. Following calibration,
maintain the water bath temperature at 37 �C and spin rate at
450 rpm.

3. Fix the falcon tube on to the clamp and lower the tube into the
water bath. Rinse the stir bar with autoclaved Milli-Q water
and place it into the media with tweezers. Lower the NO probe
into MOPS media, so that the tip is approximately 2–4 mm
below the liquid surface.

4. Begin recording data from the NO probe in the LabScribe
software.

5. Once the NO probe signal has stabilized for at least 5 min, add
69.5 μL of DPTA NONOate stock to the media to reach a final
concentration of 500 μM.

6. After 2 h, stop recording and save data (see Note 13).

7. Raise the NO probe and submerge it into a falcon tube with
autoclaved Milli-Q water. Remove the MOPS solution from
the clamp. Remove and rinse the stir bar with autoclaved Milli-
Q water using tweezers and return to microcentrifuge tube
with 70% EtOH.

8. Truncate the data set so that all data collected before DPTA
treatment is removed.

9. Rescale the time points so that the first time point is t ¼ 0.

10. Subtract all pA values by the pA value at t ¼ 0. This generates a
ΔpA at each time point.

11. Multiply the ΔpA values by k/α from Subheading “ISO-NOP
Calibration Using SNAP and CuCl2”. This generates an
[NO] value at each time point.

12. Plot [NO] vs. time (Fig. 5).

3.1.4 Measuring Cellular

O2 Consumption

Cell Growth

and Preparation

1. Before the day of experiment, prepare a pregrowth culture by
inoculating cells from a 25% glycerol, �80 �C stock into 1 mL
of LB media in a test tube, and then incubate it at 37 �C with
shaking (250 rpm) for 4 h. Please note that the �80 �C perma-
nent stock should have originated from a single colony.

2. Inoculate 1 mL of fresh MOPS media in another test tube with
10 μL of the LB preculture (1% inoculum) and incubate at
37 �C with shaking (250 rpm) for 16 h.

3. On the day of experiment, measure the OD600 of overnight
culture. Add an appropriate volume of overnight culture into
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20 mL MOPS media in a 250 mL baffled flask to obtain a final
OD600 of 0.01.

4. Allow the flask culture to grow in the incubator (37 �C,
250 rpm) until it reaches an OD600 of 0.2 (see Note 14).

5. Prepare 10 mL of MOPS media in a 50 mL falcon tube and
prewarm it in an incubator at 37 �C.

6. Turn on the heating plate and set the temperature to maintain
the water bath at 37 �C and spin rate at 450 rpm.

O2 Consumption Assay 1. Before the flask culture reaches an OD600 of 0.2, calibrate the
O2 probe following Subheading “O2 Probe Calibration”.

2. Once the flask culture reaches an OD600 of 0.2, transfer 8 mL
of culture to the eight microcentrifuge tubes (1 mL per tube).

3. Centrifuge the eight tubes for 3 min at 15,000 rpm
(21130 � g).

4. Remove the supernatant from all the tubes and resuspend all
the pellets in 1 mL of prewarmed MOPS media (see Note 15).

5. Measure OD600 of the concentrated cell suspension. Calculate
the volume (V) needed to reach a final OD600 of 0.05 in 10 mL
of MOPS media.

6. Begin recording data with the FirestingO2 software.

7. Remove V of media from the 10 mL of media that is being
stirred in the falcon tube and add V of concentrated culture to
the media.

8. Allow the FirestingO2 software to record data for 10 min.

9. Stop recording. Remove and clean the O2 probe with 70%
EtOH and return the stir bar to a microcentrifuge tube with
70% EtOH.

Fig. 5 [NO] profile following delivery of DPTA NONOate to a cell-free system.
500 μM of DPTA NONOate was delivered to a cell-free bioreactor containing
10 mL of MOPS minimal media. The dark blue line represents the mean of three
replicates, whereas the light blue shading represents the standard error of the
mean
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10. Process the O2 data following steps 4–6 in Subheading “Oxy-
gen Transport Measurement”. After step 5 and preceding step
6, truncate the data set so that all data collected before the
addition of cells is removed. Rescale the time points so that the
first time point is t ¼ 0.

11. Plot [O2] vs. time (Fig. 6).

3.1.5 Measuring

[NO] in Cell Cultures

1. Before the day of the experiment, prepare E. coli MG1655
following steps in Subheading “Cell Growth and Preparation”.

2. On the day of the experiment, before the culture reaches an
OD600 of 0.2, calibrate the NO probe by following step in
Subheading “ISO-NOP Calibration Using SNAP and CuCl2”.
Following calibration, maintain the water bath temperature at
37 �C and spin rate at 450 rpm.

3. Approximately 30 min before the culture reaches an OD600 of
0.2, attach the prewarmed falcon tube with MOPS media to
the clamp and lower it into the water bath. Rinse the stir bar
with autoclaved Milli-Q water and place it into the media with
tweezers.

4. Lower the NO probe into MOPS media, so that the tip is
approximately 2–4 mm below the liquid surface.

5. Once the flask culture reaches an OD600 of 0.2, transfer 8 mL
of the culture to eight microcentrifuge tubes (1 mL per tube).

6. Centrifuge the eight tubes for 3 min at 15,000 rpm
(21130 � g).

7. Remove the supernatant from all the tubes and resuspend all
the pellets in 1 mL of prewarmed MOPS media.

Fig. 6 [O2] profile. An aerobic bioreactor was inoculated with E. coli at an OD600
of 0.05. The dark green line represents the mean of three replicates, whereas
the light green shading represents the standard error of the mean. At the initial
time point, [O2] is not at saturation (210 μM), because the [O2] in the volume of
cell suspension added, which is generally about 300 μL, was much lower than
saturation

172 Darshan M. Sivaloganathan et al.



8. Measure OD600 of the concentrated cell suspension. Calculate
the volume (V) needed to reach an OD600 of 0.05 in 10 mL of
media.

9. Begin recording data from the NO probe in LabScribe.

10. Remove V of media from the 10 mL of media that is being
stirred in the falcon tube and add V of concentrated culture to
the media (see Note 16).

11. Within 1 min, deliver 69.5 μL of DPTANONOate stock to the
culture to reach a final concentration of 500 μM. Monitor
OD600 if desired.

12. The pA signal should rise from the baseline value at the begin-
ning of the recording. Continue recording data until the signal
returns to baseline. At that point, stop recording and save the
data (see Note 17).

13. Raise the NO probe and submerge it into a falcon tube with
autoclaved Milli-Q water. Remove the MOPS solution from
the clamp. Remove the stir bar with tweezers, rinse it with
autoclaved Milli-Q water, and return it to microcentrifuge
tube with 70% EtOH.

14. Follow steps 8–12 in Subheading 3.1.3 to process and plot the
acquired data (Fig. 7).

3.2 Data Analysis

and Computational

Modeling

We note that a basic understanding of linear algebra, differential
equations, and MATLAB are helpful for the following section.
However, we have provided all the necessary code to analyze the
data generated in the previous section (see Note 18). In this sec-
tion, we will begin by estimating a value for the conversion factor α,
where [SNAP] ¼ α[NO]. Following this, we will optimize uncer-
tain parameters in a mathematical model of NO stress in E. coli

Fig. 7 [NO] profile following delivery of DPTA NONOate to cell culture. 500 μM of
DPTA NONOate was delivered to a bioreactor with E. coli at an OD600 of 0.05. The
dark blue line represents the mean of three replicates, whereas the light blue
shading represents the standard error of the mean
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cultures. The model is a system of ordinary differential equations
that simulate the biochemical reactions that are relevant to NO,
within the cell and the extracellular environment. For a deeper
understanding of the model, we refer the reader to a selection of
papers [9, 25–27, 29, 36]. Due to the compartmentalization of the
model, different sets of unknown parameters can be estimated
independently using specific experimental conditions. The uncer-
tain parameters fall into three categories: parameters relevant to
NO reactivity in the extracellular environment, parameters relevant
to cellular respiration, and parameters relevant to NO reactivity in
the cellular environment. Each parameter set will be estimated from
the relevant data acquired in Subheadings 3.1.1 and 3.1.3–3.1.5,
using a nonlinear least square optimization algorithm (see Note
19). In the supplementary materials, we have provided all the
necessary files for this section, and in Supplemental Table S1 we
provide the optimized values we used in generating the figures
portrayed here. An additional parameter relevant to the NO reac-
tion network is the capacity coefficient for O2 transport (kLaO2),
which was identified in Subheading 3.1.2. Before proceeding to
Subheading 3.2.1, open the Excel files entitled: “AlphaModel1,”
“AlphaModel2,” and “EcoliNOmodel” provided in the Supple-
mentary Materials. Locate the cells (highlighted in red) and input
the value of kLaO2 obtained in Subheading 3.1.2.

We note that the final model with optimized parameters com-
prise a computational tool to gain greater understanding of NO
flux distributions in bacterial cultures. There will be uncertainty
associated with parameters that were both estimated frommeasure-
ments and adopted from previous studies, and we will discuss how
that uncertainty can be assessed and reduced in the next section.
Because some experimental variations are unavoidable (e.g., each
probe and magnetic stirrer is a physical instrument with a finite
lifespan), we perform these measurements and estimate uncertain
parameters for each independent investigation we conduct. With
that practice we have successfully confirmed predicted flux distribu-
tions with independent measurements [25], and uncovered the
mechanisms of how genetic and environmental perturbations
impact bacterial NO stress networks.

3.2.1 Estimating α In this section, we wish to determine the conversion factor needed
for Subheading “ISO-NOP Calibration Using SNAP and CuCl2”
of the ISO-NOP calibration. In essence, using the two [SNAP]
profiles obtained for 25 and 50 μM MAHMA NONOate in Sub-
heading “Experiments to Determine the Conversion Rate of SNAP
to NO”, we will optimize four parameters in a kinetic model of the
NO reaction network in cell-free MOPS media. The four para-
meters we will train are the NO autoxidation rate, rate of NO lost
to the gas phase, MAHMA NONOate degradation rate, and the
conversion factor α, which is a proportionality constant between
NO and SNAP.
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1. Open MATLAB and set the directory to the folder entitled
“Supplementary Materials.”

2. Enter the command line: model1 ¼ LoadEcoliNOmodel(); A
search bar will appear. Select the Excel file “AlphaModel1.”
Input the command line: model2 ¼ LoadEcoliNOmodel(); and
select the file “AlphaModel2.” We have now loaded the con-
tents of AlphaModel1 and AlphaModel2 into the workspace.
(AlphaModel1 and AlphaModel2 contain the set of relevant
species, parameters, reactions and initial conditions for experi-
ments with 25 and 50 μM MAHMA NONOate respectively).
Enter the command line: model ¼ [model1, model2]; to com-
bine both model structures for simultaneous optimization of
parameters using the 25 and 50 μM MAHMA NONOate data
sets .

3. Import the data collected from Subheading “Experiments to
Determine the Conversion Rate of SNAP to NO”. Specifically,
there should be a variable labeled expX for the time points
measured, and a variable labeled expY for [SNAP] at each
time point. Each variable should have two columns, one for
each MAHMA concentration (see Note 20).

4. Enter the command line: normFlag ¼ 1; and variance ¼ ones
(length(expX),2); (see Note 21).

5. Open the folder “Alpha Conversion.” Open the subfolder
“SNAP only.” Import the file “fitParams” (which contains the
parameter names being fit), “paramBounds” (which contains
the upper and lower bound for each uncertain parameter) and
“fitSpecies” (which contains the species being fit).

6. Enter the command line: n ¼ 1000; (the number of optimiza-
tions we wish to perform).

7. Enter the command line: [fitValMat,resNorms]¼RandomInit-
ParamOpt(model,expX,expY,fitParams,paramBounds,n,fitSpe-
cies,variance,normFlag); The function will now run 1000
optimizations with each optimization selecting a random
value for each uncertain parameter within the set of parameter
bounds.

8. When the function is finished running, two new output vectors
should be present in the workspace. resNorms represents the
sum of the squared residuals for each optimization. fitValMat
represents the parameter values obtained from each
optimization.

9. Running the command line: [~,location] ¼ min(resNorms);
will give the location of the best fit parameter set. After this
run the command line: fitValMat(location,:). The parameter
set yielding the smallest residual error will be displayed.

10. The fourth entry is the conversion factor α.
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11. Locate the parameters and input the values from step 9 in the
Excel files, “AlphaModel1” and “AlphaModel2” (highlighted
in purple). Save the files.

12. Reload the newly updated model structures (step 2) and run
the command line: [t1,X1] ¼ RunEcoliNOmodel(model(1),
max(expX(:,1))); [t2,X2] ¼ RunEcoliNOmodel(model(2),
max(expX(:,2))); (see Note 22).

One way to confirm the accuracy of the conversion factor α
is to compare the simulated terminal NO2

� concentrations
with the experimental data obtained from step 10 in Subhead-
ing “Experiments to Determine the Conversion Rate of SNAP
to NO”. If the simulated NO2

� concentration is not within a
95% confidence level of the measured NO2

� concentration, we
then include the measured NO2

� data in the optimization
process (see Note 23).

13. Plot the experimentally measured NO data and simulated NO
curve for each concentration of MAHMA NONOate, making
sure to divide both sets of data by α before plotting (Fig. 8a, b).

3.2.2 Estimating

Uncertain Parameters from

Cell-Free Experiments

Parameters related to NO autoxidation rate, NO gas phase mass
transfer, and DPTANONOate degradation rate can be estimated in
the absence of cells. In these optimizations the cellular compart-
ment in our model will be removed, by eliminating all relevant
reactions, as we are only concerned with NO delivery and reactivity
in the absence of cells. In total, we will be fitting three parameters:
NO autoxidation rate, rate of NO lost to the gas phase, and DPTA
NONOate degradation rate. We note that parameters associated
with NO autoxidation and gas phase transport were also estimated
from experiments with MAHMA NONOate (Subheading 3.2.1).
Since DPTA-containing media differ chemically from MAHMA-
containing media (e.g., different decomposition products), we esti-
mate these parameters from cell-free DPTA treated media for use
with DPTA-treated cell cultures. In practice, the values obtained
from cell-free MAHMA and cell-free DPTA data are in reasonable
agreement with one another. Further, keeping the autoxidation and
gas phase transfer parameters the same (e.g., from the MAHMA
NONOate optimization) while adjusting the NONOate decompo-
sition rate will often provide good agreement between simulations
and data (e.g., from the DPTA NONOate experiments) [37].

1. Open the Excel file entitled, “EcoliNOmodel.” This file con-
tains the set of reactions, rate constants, and initial species
concentrations. In the top left corner, there is a cell
(A7) labeled culture OD600. Set the value in the adjacent cell
(B7) to 0 (doing this eliminates all reactions relevant to the
cellular compartment). Save and close the file.
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Fig. 8 Comparison between simulation and experimental results. The red line represents a model simulation
using the optimal parameter set obtained (see Supplemental Table S1 for optimized parameter values). NO
profile for (a) 25 μM and (b) 50 μM MAHMA NONOate. Parameter optimizations were performed using both
[NO] and [NO2

�] data, because optimizations performed just with [NO] data provided [NO2
�] estimates that

were outside the 95% confidence intervals of the measured levels. The insets show the measured (purple
bars) and predicted (red bars) NO2

� concentrations 0.2 h after MAHMA NONOate delivery. At that time the vast
majority of MAHMA NONOate, whose half-life is on the order of 1 min, had decomposed. Error bars represent
95% confidence intervals. (c) [NO] dynamics for addition of 500 μM DPTA NONOate into a cell free bioreactor.
(d) [O2] for cells in a bioreactor at an OD600 of 0.05. (e) [NO] dynamics for addition of 500 μM DPTA NONOate
into a bioreactor with cells at an OD600 of 0.05



2. Open MATLAB and set the directory to the folder entitled
“Supplementary Materials.” Clear the workspace.

3. Enter the command line: model ¼ LoadEcoliNOmodel(); A
search bar will appear. Select the Excel file entitled, “EcoliNO-
model,” which you just modified and saved. We have now
loaded the contents of EcoliNOmodel into our workspace.

4. Open RunEcoliNOmodel.m. Disable lines 80 and 100, by
adding a “%” character in front and enable line 103 by deleting
the “%” character in front. Save RunEcoliNOmodel.m.

5. Import the data collected from Subheading 3.1.3. Specifically,
you should have a vector labeled expX for the time points
measured, a vector labeled expY for [NO] at each time point
and a vector labeled variance for the variance in
[NO] computed at each time point (if multiple experimental
replicates were performed). (see Note 24).

6. Follow steps 5–9 in Subheading 3.2.1 but setting norm-
Flag ¼ 0; and using the files located in the folder entitled
“Cell Free” instead of “Alpha Conversion.”

We now have obtained optimized parameter values for NO
autoxidation, NO gas transport, and DPTA NONOate degrada-
tion. Please see Supplemental Table S1 for specific optimized values
used here.

7. Locate the parameters and input the values in the Excel file,
“EcoliNOmodel” (highlighted in yellow). Save the file.

8. Reload the newly updated model structure (step 3) and run the
command line: [t,X]¼RunEcoliNOmodel(model,max(expX));

9. Plot the experimentally measured NO data and simulated NO
curve (Fig. 8c).

3.2.3 Estimating

Uncertain Parameters

Related to Cellular

Respiration

Given the capacity of NO to react with O2, an estimation of O2

dynamics is important for calculating NO fluxes. In E. coli cultures,
respiration is a major O2 consumption pathway and respiratory
inhibition has been used as an indicator of NO-induced bacterio-
stasis [28, 38, 39]. To account for respiration, the model contains
four reactions: ubiquinone reduction by NADH dehydrogenase I
and II and O2 consumption by cytochrome bo and bd. With these
four reactions there are 10 uncertain parameters that are optimized.

1. Open the Excel file entitled “EcoliNOmodel.” In the top left
corner, there is a cell (A7) labeled culture OD600. Set the value
in the adjacent cell (B7) back to 0.05 (doing this sets the initial
cell density in our model to 0.05). Set the value in N126 to
0 (doing this sets the initial concentration of DPTA NONOate
to 0). Save and close the file.
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2. Open MATLAB and set the directory to the folder entitled
“Supplementary Materials.” Clear the workspace.

3. Enter the command line: model ¼ LoadEcoliNOmodel(); A
search bar will appear. Select the Excel file entitled “EcoliNO-
model.” We have now loaded the contents of EcoliNOmodel
into our workspace.

4. Import the data collected from Subheading 3.1.4. Specifically,
you should have a vector labeled expX for the time points
measured, a vector labeled expY for [O2] at each time point,
and a vector labeled variance for the variance in [O2] data
computed at each time point (if multiple experimental repli-
cates were performed).

5. Follow steps 5–9 in Subheading 3.2.1 but setting norm-
Flag ¼ 0; and using the files located in the folder entitled
“Resp Compartment” instead of “Alpha Conversion.”

We now have obtained optimized parameter values for para-
meters related to cellular respiration. Please see Supplemental
Table S1 for specific optimized values used here.

10. Locate the parameters and input the values in the Excel file,
“EcoliNOmodel” (highlighted in blue). Save the file.

11. Reload the newly updated model structure (step 3) and run
the command line: [t,X] ¼ RunEcoliNOmodel(model,max
(expX));

12. Plot the experimentally measured O2 data and simulated O2

curve (Fig. 8d).

3.2.4 Estimating

Uncertain Parameters

Related to NO

Detoxification

and Cytochrome Inhibition

The remaining parameters necessary to calculate NO fluxes are
related to the enzymatic detoxification of NO, as well as NO
cytochrome inhibition. E. coli contains two dominant enzymatic
detoxification systems where the activity of the system depends on
the availability of O2 [40, 41]. In aerobic conditions, Hmp, a
flavohemoglobin, catalyzes the reduction of NO to NO3

�

[42]. We model the catalytic activity of Hmp as a subnetwork of
reactions [9, 25]. Hmp synthesis is also induced by NO, and
therefore, modeled (transcription, translation, transcript and pro-
tein degradation). In anaerobic conditions, NO reductase (NorV)
is the dominant detoxification system where it catalyzes the conver-
sion of NO into N2O [43, 44]. Similarly, NorV synthesis is induced
by NO exposure, and we have included it in the model. Further,
NO has the ability to bind the heme centers of the terminal respi-
ratory cytochromes bo and bd inhibiting respiration and this is also
accounted for in the model. From the reactions involving Hmp,
NorV, and cytochrome inhibition, there are 23 uncertain para-
meters that will be optimized. In addition, there are a range of
other reactions in the model capturing biologically relevant NO
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targets, of which a few examples are: Fe–S cluster damage, DNA
deamination, thiol nitrosation, and their associated repair mechan-
isms. Values for those and other kinetic parameters have been
obtained from the literature and are not optimized here. Under
conditions we have studied, NO flux through those pathways com-
prises far less than 1% of the total NO delivered [25, 28], and thus
we have not delved deeper into improving the accuracy of flux
estimates for those reactions.

1. Open MATLAB and set the directory to the folder entitled
“Supplementary Materials.” Clear the workspace.

2. Open the Excel file entitled “EcoliNOmodel.” Change the
value in N126 back to 500 (doing this sets the initial concen-
tration of DPTANONOate to 500 μM). Save and close the file.

3. Enter the command line: model ¼ LoadEcoliNOmodel(); A
search bar will appear. Select the Excel file entitled, “EcoliNO-
model.” We have now loaded the contents of EcoliNOmodel
into our workspace.

4. Import the data collected from Subheading 3.1.5. Specifically,
you should have a vector labeled expX for the time points
measured, a vector labeled expY for [NO] at each time point
and a vector labeled variance for the variance in [NO] data
computed at each time point (if multiple experimental repli-
cates were performed).

5. Follow steps 5–9 in Subheading 3.2.1 but setting norm-
Flag ¼ 0; and using the files located in the folder entitled
“Cell Compartment” instead of “Alpha Conversion.”

We now have obtained optimized parameter values for para-
meters related to cellular detoxification and cytochrome inhibition.
Please see Supplemental Table S1 for specific optimized values used
here.

6. Locate the parameters and input the values in the Excel file
“EcoliNOmodel” (highlighted in green). Save the file.

7. Reload the newly updated model structure (step 3) and run the
following command line: [t,X] ¼ RunEcoliNOmodel(model,
max(expX));

8. Plot the experimentally measured NO data and simulated NO
curve (Fig. 8e).

3.2.5 Computing

and Plotting NO Flux

Distributions

With a model capable of capturing [NO] dynamics, it is now
possible to simulate and predict the distribution of NO among its
reaction pathways. This can be done by tracking the cumulative NO
flux through each consumption pathway (e.g., autoxidation, gas
phase transport, enzymatic detoxification).
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1. Open MATLAB and set the directory to the folder entitled
“Supplementary Materials.” Clear the workspace.

2. Enter the command line: model ¼ LoadEcoliNOmodel(); A
search bar will appear. Select the Excel file entitled “EcoliNO-
model.” We have now loaded the contents of EcoliNOmodel
into our workspace.

3. Enter the command line: [t,X, dX,dV] ¼ RunEcoliNOmodel
(model,a); where “a” is the length of time, in hours, of the
recorded data in Subheading 3.1.5.

4. Enter the command line: PathwayFluxEcoli(t,dV,model); The
function should output two plots. The first plot represents a
simulation of the cumulative distribution of total NO con-
sumption (Fig. 9a), whereas the second plot represents the
cumulative distribution of intracellular NO consumption
(Fig. 9b).

We have now generated an NO flux distribution profile for
E. coli cells seeded in a bioreactor at an OD600 of 0.05, upon
treatment with 500 μM DPTA NONOate.

3.3 NO Flux

Validation

and Uncertainty

Estimates

Several experimental validation methods including gene disruption
and final product measurements have been applied previously to
confirm NO flux distributions [25, 26, 29, 30]. For example, good
agreement between model simulations of NO dynamics in Δhmp or
ΔnorV cultures and experimental measurements from those strains
can lend confidence to the predictive power of the model. Another
way to validate the model is to measure the stable end products of
NO, such as NO2

� and NO3
�. We have done this previously with

Griess assays on sterile-filtered samples, though we note that any
residual nondecomposed NONOate and the capacity of cells to
consume NO2

� and NO3
� must be considered for these measure-

ments [25, 30].
Our group has also expanded on the optimization process

described in Subheading 4 by applying an out-of-equilibrium adap-
tive Metropolis Markov Chain Monte Carlo (MCMC) method to
further explore the parameter space and ensemble modeling to
more rigorously account for parametric uncertainty [26, 30, 37,
45]. Optimal and near-optimal parameter sets, as identified using
evidence ratios (ER) (see Note 25), obtained from the nonlinear
least squares algorithm are used as initial points for the MCMC
method. We often perform upward of 10,000 iterations of the
MCMC procedure [26]. Parameter sets with ER � 10 are retained
as solutions with high likelihoods. Confidence intervals (CIs) for
optimized parameters are generated from the sets with ER � 10,
and that uncertainty is carried forward with simulations and
subsequent optimizations [26, 29, 30]. Simulations are conducted
with ensembles of models, where each individual model can take on
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one set of parameters from the group obtained with ER � 10. For
certain conditions, the ensemble of simulations will agree and if an
experiment were performed, we would have high confidence that
the experimental results would confirm the model predictions. For
other conditions, the ensemble of simulations will disagree and
thus represent experiments that if performed would decrease the
uncertainty of the model. In this way parametric uncertainty can be
readily accounted for and reduced. Uncertainty in the model struc-
ture is also present (e.g., functional form for transcriptional regula-
tion for different genes) and we have dealt with that uncertainty
when we have found that parametric variation cannot recapitulate
experimental measurements [26].

Fig. 9 Predicted cumulative NO flux distribution following delivery of 500 μM of
DPTA NONOate to an E. coli culture. The colored regions represent the
cumulative NO consumed by each pathway. (a) Distribution of total NO
consumption. (b) Distribution of intracellular NO consumption. Fluxes were
calculated until the time at which the cell culture had cleared NO (reduced
[NO] to near baseline levels)
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4 Notes

1. We previously calibrated the NO probe with a solution of
0.1 M H2SO4, in which we added increasing volumes of aque-
ous nitrite standard (spontaneously generates NO in a 1:1
ratio). However, with recent ISO-NOP electrode membranes
from the manufacturer, we found that the highly acidic calibra-
tion solution was damaging the probe, which prompted us to
change calibration procedures to the one that uses SNAP.

2. Achieving a stable temperature during the assay is important, as
it affects the NO donor decomposition rate, probe signal, and
cell phenotype. Setting the spin rate at 450 rpm ensures that
the system is well mixed.

3. The ISO-NOP probe is extremely sensitive to physical pertur-
bations; make sure that the gas permeable membrane at the tip
does not touch the sides of the falcon tube.

4. The dosages of SNAP depend on the desired NO detection
range. 32 μL of the prepared SNAP solution will generate a pA
signal that is equivalent to approximately 2 μM NO. The cali-
bration points should be carefully chosen, so that any data
generated in subsequent steps lie within the calibration range.

5. We record 20 data points/s and take the mean of every 10 data
points when we save the data in order to save memory and
reduce noise. This option can be selected when saving the file in
LabScribe.

6. The membrane of ISO-NOP probe can be damaged by 70%
EtOH, we generally clean and store the probe in Milli-Q
water only.

7. We assume that when a subsequent dose of SNAP is added, the
previous dose delivered has completely decayed and does not
interfere with subsequent measurements.

8. During calibration, a twofold increase in SNAP volume deliv-
ered should approximately double the value of ΔpA. If the R2

value from this process is less than 0.95, reject the calibration
and repeat the procedure.

9. Several signs can suggest a decrease in sensitivity or damage to
an ISO-NOP sensor. Such as large changes in the value of the
calibration slope, little to no pA response when SNAP doses are
introduced, and large fluctuations in pA signal during an assay.
Depending on the cause, the issue can be fixed by a polariza-
tion, a membrane change or a replacement of the ISO-NOP.
Please refer to the manual from the manufacturer for
ISO-NOP troubleshooting.
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10. This initial 1-point calibration is recommended in order to
accurately measure O2 concentrations. This calibration relies
on a preset 0% O2 saturation value installed by the manufac-
turer. For more details on different calibration options refer to
the FiresStingO2 user manual.

11. We use a pipet or syringe tip attached to the end of a connect-
ing tube to a N2 gas source. Sealing the top of the falcon tube
while flushing with N2 will accelerate the process, but that seal
must be removed during the measurements of O2 transport.

12. 210 μM represents 100 percent of O2 saturation at 37 �C in
aqueous salt solution [46], which is the same as what we have
measured in MOPS minimal media [45].

13. The pA reading for a 500 μM DPTA NONOate cell free
experiment can take more than 5 h to reach baseline. We find
that the profile obtained over the first 2 h is sufficient for
computational modeling purposes.

14. For wild-typeMG1655 E. coli in MOPS glucose media, it takes
roughly 5 h to grow aerobically from OD600 of 0.01–0.2 in a
baffled flask.

15. Do not let cells sit in a pellet for too long, this will lead to a low
O2 levels in the cell pellet, which can alter the cellular
physiology.

16. Do not leave the cells in the bioreactor or in the microcentri-
fuge tube for too long before adding DPTA NONOate, as the
cells will consume O2 and physiological changes can result.

17. At times, we find that pA values do not return completely to
baseline and can exhibit nonzero tails. This could be an artifact
of delayed electrode response or reflect residual NO. To assess
whether the data reflect residual NO, we suggest adding an
NO scavenger such as carboxy-PTIO while monitoring the pA
signal. If there is residual NO, the pA signal should decrease.

18. Supplementary files are available on the website of the
corresponding author, and can also be accessed at the web
URL: https://github.com/BrynildsenLab/
QuantifyingNOFluxDistributions.git.

19. We apply a nonlinear least squared optimization algorithm
provided in MATLAB (lsqcurvefit). Optimized parameters
are allowed to vary between specified bounds. Optimal param-
eter sets minimize the sum of the squared residuals between
experimentally measured data and model simulations.

20. The expX variable should be in units of hours. expX and expY
should be imported as numeric arrays.

21. In this optimization, we are optimizing parameters against two
concentrations of MAHMA simultaneously. To ensure that
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both data sets are accounted for equally, we normalize both sets
by the maximum value in each data set. Furthermore, variance
can be used to weight data sets during an optimization, the
larger the variance of a measured data point, the smaller its
weight during an optimization. Adding variance can over-
weight the tails of the SNAP curves, which can diminish the
significance of the peak, which is the most prominent feature of
the experimental data. In Subheading 3.2.1, we chose not to
weight the data by variance and hence we set the variance at
each point to one.

22. RunEcoliNOmodel is a differential equation solver that simu-
lates the reaction network (specified by the first input) for a
given time (specified by the second input). The two outputs
represent a time vector and a matrix of species concentrations.
Each column represents a concentration time course for an
individual species in the model. Consult the Excel sheets
AlphaModel1, AlphaModel2, or EcoliNOModel to determine
the column number for specific species.

23. Repeat steps 3–12. However, in step 3, expX and expY should
contain two additional columns staggered between the previ-
ous two columns. For example, the first and second columns of
expY should contain [SNAP] and NO2

� data collected for
25 μM MAHMA NONOate. Similarly, the third and fourth
columns should contain [SNAP] and NO2

� data collected for
50 μM MAHMA NONOate. It is important to note that the
columns of expX and expY containing NO2

� data should only
have entries in the first row because NO2

� is only measured
once at the end point. In step 4, make sure to open and load
the contents of the subfolder “SNAP and Nitrite” as opposed
to “SNAP only.”

24. The variance variable must be a numeric array and have all
nonzero entries. If variance of any point is 0 (e.g., at the initial
time point), change it to a value that is orders of magnitude
smaller than other variance values.

25. Evidence ratio (ER) is a metric computed from the Akaike
information criterion. The ER represents the likelihood of a
given parameter set relative to the best fitting parameter set. An
ER� 10 represents a parameter set that is 10% or more as likely
as the optimal set [47].
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Chapter 9

SWATH: A Data-Independent Tandem Mass Spectrometry
Method to Quantify 13C Enrichment in Cellular Metabolites
and Fragments

Damini Jaiswal and Pramod P. Wangikar

Abstract

Recently, the sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH)
method coupled with liquid chromatography has been demonstrated for the quantification of isotopic
13C enrichment in a large number of cellular metabolites and fragments. SWATH, a data–independent
acquisition (DIA) method, alleviates the need for data deconvolution and shows greater accuracy in the
quantification of low abundance isotopologs of fragments thereby resulting in a lower systematic error.
Here we provide a detailed protocol for the design of Q1 mass isolation windows and the post–acquisition
data analysis with emphasis on the untargeted nature of SWATH.

Key words Mass isotopolog distribution, 13C metabolic flux analysis, Multiple reaction monitoring,
Parallel reaction monitoring, Liquid chromatography–mass spectrometry

1 Introduction

Studies involving isotopic 13C carbon enriched substrates as tracers
have provided useful insights into cellular metabolism in a variety of
biological systems [1]. For quantitative approaches such as 13C
metabolic flux analysis (13C-MFA), accurate measurement of mass
isotopolog distribution (henceforth MID) of metabolites is a key
requirement [2]. Among the techniques available for quantification
of MIDs, those based on liquid or gas chromatography coupled
with mass spectrometry (LC/MS or GC/MS) are being widely
used. Additionally, the MIDs of metabolite fragments obtained
via tandem MS (MS/MS) technique provide information on posi-
tional labeling and in turn yield greater precision in flux estimates
[3–5]. A tandem mass spectrometer typically comprises of three
quadrupoles or mass analyzers, Q1, Q2, and Q3 (Fig. 1). Q1 is a
quadrupole where precursor ions are scanned and depending on
the acquisition method either all or a specific set of precursors can
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be transferred to Q2, where collision-induced dissociation of pre-
cursor ions takes place resulting in fragment ions. Q3 is the third
quadrupole that scans data for fragment ions and is coupled to a
detector.

Multiple reaction monitoring (MRM) and parallel reaction
monitoring (PRM) are the commonly used narrow pass Q1 meth-
ods for acquisition of MIDs of metabolites and fragments (Fig. 2)
[4, 6]. MRM is usually configured on low-resolution triple quad-
rupole systems and was originally developed to overcome the
matrix effects of the samples. Here, MS/MS is collected for pre-
defined precursor–product ion pairs, typically referred to as transi-
tions. For example, ADP-glucose shows the fragmentation pattern
as shown in Fig. 3a. To collect the data for two fragments of m/z
241 and 346 using MRM, individual transitions need to be defined
(Fig. 3b). Further, additional transitions need to be defined to
account for the possible isotopologs of a given metabolite and the
resultant fragments [4, 5]. Quantification of MIDs then involves a
data deconvolution step [5]. In the case of PRM, MS/MS data is
collected for all product ions obtained by fragmentation of a partic-
ular precursor ion (Fig. 3c) and thus requires fewer transitions to
acquire the MIDs (Table 1). The use of wide-isolation window
PRM may further reduce the number of transitions but may not
completely eliminate data deconvolution. Although these techni-
ques are still quite popular due to their extreme specificity, there are
various limitations for their application in the quantification of
MIDs. The methods show poor sensitivity for low abundance iso-
topologs thereby adding a systematic error in the quantification of

Fig. 1 The general principle of a tandem mass spectrometer. The sample is ionized and charged precursor
ions are generated. In Q2, specific set or all precursor ions are fragmented resulting in the formation of
fragment ions that are scanned in Q3 and coupled to a detector
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Fig. 2 Methods that are commonly used to collect tandem MS Data using high
resolution LC/MS/MS. There are two broad categories, data-dependent acquisi-
tion (DDA) and data-independent acquisition (DIA). Sequential Windowed Acqui-
sition of all Theoretical Fragment Ion Mass Spectra (SWATH), a DIA method is the
focus of this book chapter

Fig. 3 The mass fragmentation pattern of ADP-glucose (a), schemes for acquisition of fragment data of
ADP-glucose using MRM (b) and PRM (c) methods
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MIDs (Table 1). Further, both MRM and PRM are targeted
approaches and do not provide an option for decoupling of data
acquisition and analysis [5] (Table 1).

The currently available high-resolution (HR) tandem MS
methods fall into two broad categories, namely, data-dependent
acquisition (DDA) and data-independent acquisition (DIA)
(Fig. 2). DDA methods collect MS/MS data only when a preset
criterion is satisfied while DIA methods allow untargeted data
acquisition. To exemplify, the DDA method can be programmed
to trigger the MS/MS scan for n most abundant ions in each cycle.
While this may work reasonably well for unlabeled samples with
monoisotopic peaks, the presence of isotopologs of each metabolite
in the 13C-enriched samples may pose a challenge. Some of the
isotopologs of a particular metabolite may not meet the preset
criteria thereby resulting in intermittent loss in the MS/MS data.
Thus, DDA methods may be unsuitable for the quantification of
fragment MIDs (Table 1).

Table 1
Comparison of data-dependent acquisition (DDA) scan, multiple reaction monitoring (MRM), parallel
reaction monitoring (PRM), and sequential windowed acquisition of all theoretical fragment ion mass
spectra (SWATH) for the acquisition of mass isotopologue distribution (MID) of metabolites and
fragments

DDA with MS2
for top n peaks MRM PRM SWATH

Approach Untargeted Targeted Targeted Untargeted

Number of transitions/windows
required to obtain MID of a
metabolite

None (n � m + 1)
(m + 1)a

(n + 1) and
<(n + 1)a

for wide-
isolation-
window PRM

1 (in most
cases) or
rarely 2

XIC of precursor Yes No Yes Yes

Fragmentation pattern of the base
mass

Yes No Yes Yes

Precursor MID Yes Yes Yes Yes

Fragment MID No Yes Yes Yes

Deconvolution needed to obtain
MIDs

No Yes Yes Needed in
rare
instancesb

Sensitivity for detection of
low-abundant isotopologs

NS Low Low High

Decoupling of data acquisition and
analysis

Yes No No Yes

NS not studied
an and m represent the number of carbons in metabolite and fragment respectively
bDeconvolution, if required, will be only from two adjacent Q1 windows
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The data-independent acquisition methods can be broadly
categorized as wide pass and medium pass Q1 isolation window
methods (Fig. 2). MSALL, an example of the former category
permits fragmentation of all the precursor ions at all times. This
method may not be suitable for the quantification of MIDs as the
relationship between precursor and its fragments is lost (seeNote 1)
[7]. The latter category methods such as SWATH (Sequential
Windowed Acquisition of all Theoretical Fragment Ion Mass Spec-
tra), the data for both the precursor as well as the fragment ions are
collected continuously in the MS1 and MS2 scans, respectively,
while maintaining the relationship between the Q1 mass window
and the fragment ions. Reconstruction of the precursor-product
relationship has been shown successfully by aligning the MS1 and
MS2 chromatograms, the latter drawn from the fragmentation of
the respective Q1 window [8, 9].

Recently, we showed that SWATH can be applied to acquire the
MIDs of metabolites and fragments [5]. The cofragmentation of all
the isotopologs of a particular metabolite in a single Q1 mass
isolation window results in sensitive detection of the isotopologs
and obviates the need for data deconvolution. Moreover, SWATH
allows untargeted analysis and potential decoupling of data acqui-
sition and analysis. The main objective of this book chapter is to
provide a detailed protocol for acquisition of MIDs of intact meta-
bolites and fragments from a 13C-labeled sample using SWATH.
We describe the design of SWATH method, both for the data
acquisition and analysis steps and some of the practical aspects of
this approach.

2 Materials

1. An extract of a biological sample that is fully or partially labeled
with a substrate enriched in 13C isotopic carbon.

2. Equipment: A HPLC/UHPLC/nano-HPLC operated with
an appropriate column and buffer system and coupled with a
mass spectrometer capable of collecting tandem MS data via
SWATH [e.g., SCIEX Triple TOF instrument, model 5600 or
6600 (Sciex, Framingham, MA)].

3. Software: PeakView 2.0 and MasterView 1.0 software (Sciex,
Framingham, MA) for manual examination of the chro-
matographic peak quality and baseline separation. MultiQuant
3.0.2 software to integrate the area under the peaks (Sciex,
Framingham, MA).

4. mol files of the metabolite of interest for fragment annotation.

5. Information on the number of carbons in the metabolites of
interest (see Note 2).

6. wiff and wiff scan files of metabolite standards (seeNotes 3 and4).
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3 Methods

3.1 13C Labeling

and Sample

Preparation

As a first step, a dynamic or steady state 13C labeling experiments
needs to be performed on the biological system of interest and
samples collected for analysis via LC/MS/MS. In this protocol
chapter, we show the results for a nonstationary 13C labeling exper-
iment with the cyanobacterium Synechococcus sp. PCC 7002. The
relevant protocols for labeling [5, 10], extraction of metabolites
[11] and chromatography [5, 12, 13] have been described in detail
elsewhere. Briefly, 1 g/l NaH13CO3 was added to an exponentially
growing culture of Synechococcus sp. PCC 7002 and at predeter-
mined intervals, 20 ml samples were filtered, quenched and
extracted as described earlier [5]. The extracted samples (hence-
forth samples) were dried and stored in a�80 �C freezer until ready
for LC/MS/MS analysis.

3.2 Liquid

Chromatography Mass

Spectrometry Method

While a number of methods have been reported for chro-
matographic separation of intracellular metabolites, we chose a
method that is based on ion pairing with tributylamine as described
in detail previously [13]. An accompanying chapter discusses the
pros and cons of the different methods that have been reported for
the analysis of intracellular metabolites. The ion pairing based
method has been shown to provide excellent chromatographic
separation and peak quality for a number of metabolite classes
such as sugar phosphates, nucleotide sugars, nucleotides organic
acids and acyl CoAs [14]. Briefly, the dried metabolite extract was
redissolved in 100 μl of 50/50, v/v methanol–water mixture,
filtered with 0.2 μm syringe filter and 4 μl injected on LC/MS/
MS. A Synergi Hydro-RP LC column 150 � 2 mm with particle
size of 4 μm (Phenomenex Inc., Torrance, CA) was used for chro-
matographic separation using a gradient elution method consisting
of mobile phases, 10 mM tributylamine +15 mM acetic acid in
water (A) and 100% Methanol (B). The gradient method is as
follows: 0% B (0.1 min), 0% B (2 min), 35% B (8 min), 35% B
(10.5 min), 90% B (15.50 min), 90% B (20.5 min), 0% B (22 min),
and 0% B (30 min). The column temperature and flow rate were
25 �C and 0.3 mL/min, respectively. A Triple TOF 5600+ mass
spectrometer (SCIEX, Framingham, MA) interfaced with Shi-
madzu Ultra Performance Liquid Chromatography (UPLC) sys-
tem (Shimadzu, Nexera LC -30 AD, Singapore) was used in
negative ion mode for analysis. Each sample was injected in two
technical replicates with each of the SWATH acquisition programs.
Description of the SWATH programs follows.

3.3 Design

of the SWATH Method

and the Parameters

SWATH data is collected in a cyclic manner throughout the chro-
matographic time to cover the desired m/z range (Fig. 4a) [5, 15,
16]. A contour plot showing theMS1 scan of all the Q1 windows of
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a SWATH program is shown in Fig. 4a. The MS2 scan of a particu-
lar window where UDP-glucose is fragmented is also shown
(Fig. 4a). The XICs (extracted ion chromatograms) of
UDP-glucose and its fragments obtained from that particular Q1
window show the precursor and fragment ions aligned at a particu-
lar RT (Fig. 4b). The following parameters need to be considered
while designing a SWATH method for MID acquisition. Some of
these parameters are interrelated:

1. Number and width of Q1 windows: In proteomics applications,
the use of variable-width Q1 windows has been demonstrated
where the windows become narrower in the analyte-dense
regions of m/z [16, 17]. This may be suitable when analyzing

Fig. 4 (a) Contour plot of the MS1 scan (panel on the left) of a representative sample of cyanobacterial
metabolite extract injected with reverse-phase, ion-pairing chromatography method and SWATH program #
1 (refer to Table 2 for the details of the program). The MS1 data from the different Q1 windows, of 20 Da width
each, is shown in a stacked manner. Contour plot of MS2 scan for the precursor ions of Q1 window # 25 (m/z
range 549–570 Da) is shown in the panel on the right. MS2 scans for each Q1 window are generated and can
be processed further for data analysis. (b) The extracted ion chromatograms (XICs) of UDP-glucose and its
fragments generated from the MS2 scans corresponding to Q1 window #25. (c) The effect of cycle time on
peak quality of phosphoenolpyruvate for a representative sample
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unlabeled samples that primarily comprise of monoisotopic
peaks. To analyze 13C labeled samples with isotopologs being
present for almost all metabolites, we recommend the use of
fixed Q1 window SWATH program. We find that Q1 windows
of 18–25 Da provide the required specificity to retain the
precursor-product ion relationship while allowing for cofrag-
mentation of all the isotopologs in a single window. Many
biologically relevant compounds that may potentially coelute
(e.g., ATP and ADP) fall in separate Q1 windows, allowing for
quantification of MIDs of a large number of precursors and
fragments. We also recommend the use of two SWATH pro-
grams whose Q1 windows have an offset of 9–12 Da with
respect to each other (Table 2) [5]. This is to ensure that
isotopologs of all compounds fall within a single window in
one of the programs. Despite this design, isotopologs of some
metabolites may span two adjacent windows. MIDs of such
metabolites and their fragments may be quantified by decon-
voluting the data from the respective windows [5]. The num-
ber of windows may need to be restricted to achieve the desired
values of the cycle time and accumulation time. This may result
in the collection of the MS2 data in a more restricted Q1 range
than what the instrument permits.

2. Cycle time: Cycle time refers to the time required to scan all the
Q1 windows and therefore is the product of accumulation time
and the number of Q1 windows (Fig. 4a). Cycle time also plays
a crucial role in obtaining a quantifiable peak, which may be
affected by the number of data points in a peak. As a rule of
thumb, 8–10 data points/peak are considered satisfactory to
quantify the area under the peak [18]. The number of data
points in a peak is inversely inversely proportional to the cycle
time and directly proportional to the peak width. Figure 4c
shows the comparison of peaks of phosphoenolpyruvate (PEP)
obtained using SWATH methods with a cycle time of 2.5 and
1.5 s resulting in 7 and 11 data points, respectively, for the
metabolite extract of Synechococcus elongatus PCC 11801 [19].

3. Accumulation time: It is also known as the MS2 scan time or
dwell time for each Q1 window (Fig. 4a). A SWATH program
with a large number of Q1 windows results in a smaller accu-
mulation time. Sufficient amount of accumulation time is
required to achieve a satisfactory signal. While the minimum
threshold for accumulation time may depend on the speed and
sensitivity of the detector, we found that accumulation time of
40–80 ms provided satisfactory results with the hardware avail-
able with us.

4. Collision Energy: In tandem MS approaches such as MRM,
collision energy is typically optimized for each precursor–prod-
uct ion pair to maximize the intensity of the desired product
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Table 2
The examples of two SWATH programs with an offset of 10 Da compared to each other

SWATH program 1 SWATH program 2

SWATH Q1
isolation window

Start mass
(Da)

Stop mass
(Da)

Collision
energy (eV)

Start mass
(Da)

Stop mass
(Da)

Collision
energy (eV)

Q1 window #1 69 90 �13.20 79 100 �13.80

Q1 window #2 89 110 �14.33 99 120 �14.90

Q1 window #3 109 130 �15.44 119 140 �16.06

Q1 window #4 129 150 �16.64 139 160 �17.27

Q1 window #5 149 170 �17.70 159 180 �18.37

Q1 window #6 169 190 �18.90 179 200 �19.52

Q1 window #7 189 210 �20.09 199 220 �20.67

Q1 window #8 209 230 �21.25 219 240 �21.80

Q1 window #9 229 250 �22.40 239 260 �22.99

Q1 window #10 249 270 �23.55 259 280 �24.12

Q1 window #11 269 290 �24.70 279 300 �25.27

Q1 window #12 289 310 �25.84 299 320 �26.43

Q1 window #13 309 330 �27.00 319 340 �27.58

Q1 window #14 329 350 �28.15 339 360 �28.73

Q1 window #15 349 370 �29.30 359 380 �29.88

Q1 window #16 369 390 �30.45 379 400 �31.03

Q1 window #17 389 410 �31.60 399 420 �32.18

Q1 window #18 409 430 �32.70 419 440 �33.33

Q1 window #19 429 450 �33.90 439 460 �34.48

Q1 window #20 449 470 �35.09 459 480 �35.63

Q1 window #21 469 490 �36.02 479 500 �36.78

Q1 window #22 489 510 �37.30 499 520 �37.93

Q1 window #23 509 530 �38.51 519 540 �39.08

Q1 window #24 529 550 �39.96 539 560 �40.23

Q1 window #25 549 570 �40.81 559 580 �41.38

Q1 window #26 569 590 �41.96 579 600 �42.53

Q1 window #27 589 610 �43.11 599 620 �43.68

Q1 window #28 609 630 �44.26 619 640 �44.83

Q1 window #29 629 650 �45.41 639 660 �45.98

This strategy allows to obtain the MIDs of metabolites, the isotopologue of which might span two adjacent windows
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ion. Optimal value of CE for one fragment may be suboptimal
for another fragment. Our objective is to be able to quantify
both the precursor and a number of fragments for each metab-
olite. SWATH can be programmed to automatically select the
collision energy based on them/z values of the Q1 window.We
find that the autoselect option provides satisfactory fragmenta-
tion pattern and permits quantification of MIDs of both the
precursor and several product ions for each metabolite.

An appropriate SWATH method is obtained with a proper
selection of Q1 windows, accumulation, and cycle times. These
parameters need to be adjusted properly to strike a balance between
sensitivity and specificity of the detection. The recommended
values of the parameters are shown in Table 3.

3.4 SWATH Data

Processing for MID

Quantitation

of Targeted Set

of Metabolites

1. While the SWATH data is acquired in an untargeted manner,
the data analysis is typically performed for a targeted list of
metabolites. MIDs of metabolites and fragments are quantified
by integrating the area under the peak for the m/z
corresponding to each of the isotopologs using the proprietary
software MultiQuant (Sciex, Farmingham, MA). We will illus-
trate this with the glucose containing fragment of ADP-glucose
of monoisotopic mass, F + 0, of 241.015 Da (Fig. 3a). Incor-
poration of one or more 13C carbons shifts the m/z of this
fragment that would result in isotopologs F + 1, F + 2, . . .,
F + 6. Area under the curve corresponding to each isotopolog
m/z at the given RT and for the given Q1 window will allow
calculation of relative abundance of each isotopolog or the
MID of a given fragment. Since metabolite identification and
knowledge of the Q1 window, RT, and m/z are prerequisites
for quantification, the data analysis will require a targeted list of
metabolites and fragments. The targeted list can be prepared

Table 3
The suggested parameters to design SWATH programs for acquisition of
mass isotopologue distribution (MID) of metabolites and fragments

Parameters Value

Number of Q1 windows 25–35

Cycle time 1.5–3.5 s

Accumulation time 40–80 ms

Collision energy Rolling collision energy
based on m/z range of Q1 window

Collision energy spread (CES) 15 eV

198 Damini Jaiswal and Pramod P. Wangikar



either prior to or post–acquisition, thereby decoupling the
steps of data acquisition and analysis.

2. The identity of a targeted set of metabolites present in the
sample can be confirmed by injecting standard solutions of
pure metabolites using the same LC/MS/MS program that is
used to inject the samples (Fig. 5). This exercise provides the
mass to charge ratio (m/z), retention time (RT) and MS2
fingerprint for the metabolites of interest. Proprietary software
such as PeakView and MasterView (SCIEX, Framingham, MA)
or open source software such as XCMS [20] can be used to
visualize the peak quality, intensity, signal-to-noise ratio, and
the XICs of the metabolites and the fragments [21]. This
exercise is to be repeated for LC/MS/MS injections of the
unlabeled samples to match the RT and m/z of the precursors
and the fragments. The fragmentation pattern of the respective
peak in the sample should be matched to that of the standard
(Fig. 5).

3. Quantification of MIDs of the precursor and product ions
begins by identifying the Q1 window that spans all the isoto-
pologs of the precursor ion (see Notes 2 and 3). Note that the
quantification of both precursor and the respective fragments
can be performed from the MS2 data for the relevant Q1

Fig. 5 The workflow for acquisition and analysis of mass isotopolog distribution of targeted metabolites and
fragments using SWATH
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window. While the fragments can be quantified only from the
MS2 scans, our general observation is that the XICs of even the
precursors tend to be cleaner in the MS2 scan from the respec-
tive Q1 window than in the MS1 scan. This may be due to the
matrix effect or fragments of confounding masses resulting
from other metabolites. To exemplify, the quantitation of pre-
cursor MID of seduheptulose-7-phosphate (S7P) from win-
dow number 10 is shown in Fig. 5, where all the isotopologs
of S7P (m/z 289–296) are present. The MIDs of other meta-
bolites and fragments can be similarly obtained from other Q1
windows (Fig. 6).

4. Positional labeling information can be extracted from the 13C
enrichment data of well-annotated fragments. Fragment anno-
tation or assignment of chemical structure to each fragment
can be performed bymatching the observedMS2 fingerprint of
a metabolite with the data in literature [4, 5]. Fragment

Fig. 6 Quantification of MIDs of three representative metabolites and their respective fragments from a time
course labeling experiment using the SWATH method. The precursor ion (PI) windows or Q1 windows from
which the respective MIDs are quantified have been indicated by arrows. The x-axis of the time profiles
indicates the time after addition of NaH13CO3 to an exponentially growing culture of cyanobacteria. Samples
are collected at the indicated time, quenched, extracted, dried, redissolved in the mobile phase, and injected
on LC/MS/MS using the SWATH program. MID of a metabolite at a given time point is obtained from the
respective SWATH injection as outlined in Fig. 5
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annotation can also be performed using mol file of the meta-
bolites and the inbuilt fitting algorithm of PeakView. A user-
defined metabolite and fragment library can be created
in-house for routine analysis of the 13C labeling data.

5. The metabolites that can be quantified from SWATH data
largely depend on the chromatographic method used and the
nature of the biological sample (seeNote 4). The fundamentals
of SWATH data collection and analysis remain unchanged
regardless of the chromatographic method.

6. The MIDs of metabolites and fragments can be corrected for
natural 13C labeling using a software tool such as IsoCor [22].

7. We found the video tutorials at SCIEX website (https://sciex.
com/support/training/course-catalog) to be very useful to
understand technical aspects of SWATH data analysis using
the proprietary software.

3.5 Post–acquisition

Metabolite

Identification and MID

Quantitation from

SWATH Data

1. As SWATH data is collected in an untargeted manner, the data
files may contain information on a number of metabolites that
the user did not intend to quantify prior to data acquisition.
Thus, theMIDs of additional metabolites and fragments can be
quantified post–acquisition provided their identity can be
established.

2. Metabolite identification can be performed by injecting stan-
dard solutions of additional metabolites. Alternatively, one can
use software tools such as MS-DIAL [8] and MetDIA [9] that
rely on matching of exact mass of the metabolite and the MS2
spectra with mass spectral databases like ChemSpider and
METLIN [23] (Fig. 7). This can result in an extended list of
metabolites and their fragments together with the information
on the Q1 window, RT, and m/z.

3. Once the metabolites are identified, the respective mol file can
be downloaded from KEGG and fragment annotation can be
performed as described above (Fig. 7).

4. The subsequent steps of quantification of MIDs of metabolites
and fragments with MultiQuant can be followed as described
above.

5. Post–acquisition metabolite identification andMID quantifica-
tion of additional metabolites can be performed again and
again, as and when additional standards become available or
when the software tools and spectral libraries get updated. This
will help analyze additional data from the same set of LC/MS/
MS injections.
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4 Notes

1. In MSE or MSALL [24], all the precursor ions within a given
m/z range are fragmented, and the data is collected for all the
product ions. The MS/MS spectrum thus generated lacks
specificity and is preferably used with a good chromatographic
separation method [7]. Various data deconvolution algorithms
have been useful to restore the link between the precursor and
product ions. MSALL has not been used to acquire MIDs of
metabolites owing to its lack of specificity but serves as a good
method for identification of unknowns.

2. The mass isotopolog distribution (MID) is a relative fractional
measurement of different isotopologs a metabolite can form.
The number of isotopologs of a metabolite or fragment that is
desirable upon labeling depends on the number of carbons
present in it. For example, 3-phosphoglyceric acid that has
three carbons and m/z of 184.98 (M) can have three isotopo-
logs, 185.98 (M + 1), 186.98 (M + 2), and 187.98 (M + 3).

Fig. 7 The workflow for identification of additional metabolite and fragments and quantitation of their MIDs in a
sample acquired using SWATH method. The software tools like MetDIA and MS-DIAL provide metabolite
identification by reestablishing the link between the precursor and fragment ions via data deconvolution. This
strategy can be used to enhance the repertoire of metabolites, the MIDs of which can be potentially
quantitated after data acquisition
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The isotopologs of a particular metabolite (M) or fragment (F)
with k and l number of carbons would range from M + 0 to
M + k and from F + 0 to F + l, respectively.

3. The SCIEX instruments generate the data files as wiff and wiff
scan files. Any sample acquired on these instruments thus has
two files (wiff and wiff scan) with the same sample names. The
software like PeakView, Master View, and MultiQuant are
required to process the wiff files and wiff scan files. It is impor-
tant to keep both wiff and wiff scan files of a particular sample
in the same folder for analysis using these commercial software.
These software at present can be installed in any Windows
7 operating system (64-bit). MasterView runs in PeakView
background, and thus installation of PeakView is a prerequisite
to analyze the data using MasterView.

4. To obtain the MID of a particular metabolite or fragment, the
m/z and retention time of that particular analyte needs to be
confirmed with standards. Although the m/z of a particular
metabolite will remain constant irrespective of the method
(s) or instrument(s) used to acquire the data, the retention
time varies drastically depending on the type and the length
of the column, chromatographic method, solvent, run time,
flow rate, and so on. Therefore, one must collect this informa-
tion by the injection of standard solutions using a respective
chromatographic method that is to be used for SWATH acqui-
sition. The injection of standards can be done using any mass
spectrometry method.
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Chapter 10

Quantifying Metabolic Transfer Mediated by Extracellular
Vesicles Using Exo-MFA: An Integrated Empirical
and Computational Platform

Abhinav Achreja, Noah Meurs, and Deepak Nagrath

Abstract

Extracellular vesicles (EVs) are ubiquitous nanoscale particles released from many different types of cells.
They have been shown to contain proteins, DNA, RNA, miRNA, and, most recently, metabolites. These
particles can travel through the intercellular space and bloodstream to have regulatory effects on distant
recipients. When an EV reaches a target cell, it is taken up and degraded to release its contents for utilization
within the cell. In addition to regulatory effects, EVs have been shown to supplement the high metabolic
demands of recipient cells in a nutrient-deprived tumor microenvironment. We developed an integrated
empirical and computational platform to quantify metabolic contribution of source cell-derived EVs to
recipient cells. The versatile Exo-MFA software tool utilizes 13C stable-isotope tracing data to quantify the
metabolic contributions of EVs from a source cell type on a recipient cell type. This is accomplished by
creating EV-depleted culture medium, producing isotope-labeled EVs from the source cells, isolating the
labeled EVs from the culture supernatant, culturing the recipient cells in the presence of the labeled EVs,
and measuring the resulting metabolite levels across several time points.

Key words Extracellular vesicles, Exosomes, Exo-MFA, Stable-isotope tracing, 13-Carbon metabolic
flux analysis, Multicellular metabolic flux analysis

1 Introduction

Among the wide range of intercellular interaction mechanisms,
microvesicles secreted by cells are an important apparatus of com-
munication between cells. Extracellular vesicles (EVs) have been
documented as part of fundamental biological machinery as well
as being involved in disease progression of aggressive cancers [1–4].
In this chapter, we focus on EVs—also referred to here as exo-
somes—which are 30–150 nm in diameter and transport proteins
and nucleic acids including miRNA intercellularly including distant
targets via the bloodstream [5, 6]. Recently, using 13C tracer
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experiments our lab provided compelling evidence that these EVs
also transport free metabolites that are directly incorporated into
recipient cells’ central carbon metabolite pools [4]. However, a
quantified insight into the contribution of metabolite cargo toward
rescuing recipient cells from nutrient deprivation was lacking at the
time. To address this, we designed a novel paradigm, exosome-
mediated metabolic flux analysis (Exo-MFA), to predict fluxes
involved in metabolite trafficking from source cells to recipient
cells [7]. The protocols described here can be applied to any type
of cells that exchange biological cargo via exosomes or any other
type of EV.

Exo-MFA integrates a novel experimental protocol using 13C-
labeled substrates with an enhanced metabolic flux analysis to
provide insight into metabolic cross talk. Exo-MFA utilizes the
fundamentals of the 13-carbon metabolic flux analysis (13C-MFA)
algorithm and tracer experiments [8, 9], traditionally used for
single cell systems that only exchange metabolites with their
medium, to provide an enhanced platform to analyze metabolite
fluxes in multicellular systems. Exo-MFA is designed to quantify
intracellular fluxes and flux of metabolites via extracellular vesicles
(EVs) from source cells to recipient cells (Fig. 1). The paradigm
described herein considers two important processes that occur in
the system; (1) packaging of metabolite cargo into EVs and secre-
tion of EVs within source cells and (2) internalization of EVs and
release of cargo within recipient cells. Source cells are cultured in
medium containing stable 13C isotope-labeled tracer substrates in
order to obtain EVs with 13C-labeled cargo. The 13C-labeled EVs
are then introduced into cell medium, which release their labeled
cargo into recipient cells. Exo-MFA describes a 13C-MFA problem
that includes packaging fluxes describing the generation of EVs and
utilizes data from (1) tracer experiments within source cells and
EVs, (2) extracellular fluxes of source cells and (3) growth rate
measurements. Source cells are cultured in medium with the
labeled tracers for 72 h to allow for sufficient production of EVs
and enrichment of glycolytic and TCA cycle intermediates along
with de novo synthesized amino acids. EVs enriched with labeled
metabolites are isolated from the spent medium and their cargo is
analyzed using GC-MS. Exo-MFA then considers the transient
nature of EV internalization and utilizes data from time-series
isotope-labeled EV experiments, measurements of extracellular
fluxes, and composition of EV metabolite cargo to estimate intra-
cellular fluxes in recipient cells that internalize EVs from the
medium. Exo-MFA for recipient cells is set up as a time-series
13C-MFA problem and solved for measurements sampled at various
times such as 3, 6, 12 and 24 h (Fig. 1).
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1.1 Modeling

Packaging Fluxes

in Source Cells

In order to obtain sufficient information for estimating metabolite
packaging fluxes into EV cargo, the rate of EV secretion along with
extracellular fluxes are empirically determined. If each source cell is
assumed to produce EVs at a constant rate of r (mg EV/mg pro-
tein/h), the total EVs secreted at the end of a tracer experiment is
described by Eq. 1, with the knowledge that exponential growth
rate of source cells is μ (h�1) and seeding density of source cells is
X0 (cells):

d Exoð Þ
dt

¼ rX ¼ rX 0e
μt ð1Þ

Integrating Eq. 1 will give the expression for total number of
EVs produced as given by Eq. 2

Fig. 1 Empirical and computational workflow for Exo-MFA. Recipient cells are cultured in stable-isotope
labeled medium to produce EVs with isotope-labeled metabolite cargo. Upon isolation EVs are isolated and a
fraction of them are introduced into culture medium for recipient cells. Metabolic analysis is performed on
intracellular extracts from source and recipient cells, EVs, and spent culture medium using GC-MS. All
empirical data is compiled as inputs to the Exo-MFA software to quantify intracellular fluxes in source and
recipients cells as well as metabolic fluxes carried by EVs from source to recipient cells
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Total exosomes mg exosome½ � ¼
Z

d Exoð Þ ¼
Z

rX 0e
μtdt

¼ rX 0e
μt

μ
þ C ð2Þ

Assuming that there are no EVs in fresh medium at the begin-
ning of the experiment, the constant of integration can be evaluated
at t ¼ 0 and therefore r can be estimated from Eq. 2 once total
amount of EVs produced at the end of the experiment is measured.
The abundance of each metabolite in EV cargo can be estimated by
analyzing EVs in the GC-MS and Eq. 3.

Total ith exosomal metabolite μmol½ �

¼ Pi
μmol

mg exosome

� �� �
Pið Þ: Total exosome mg exosome½ �ð Þ ð3Þ

However, measurements for all metabolites that are packaged
in cargo are not practical to obtain empirically. For this purpose,
Exo-MFA has the ability to predict the packaging fluxes for set of
metabolites not measured via targeted GC-MS analysis. This is
achieved by introducing Pi as unknown parameter for metabolites
that are postulated to contribute to the cargo but not measured a
priori. Furthermore, even for metabolites that are measured, con-
tribution of the same metabolite from cytosolic and mitochondrial
compartments to EV cargo cannot be inferred from Eq. 3.
Exo-MFA also includes isotopomer balances in EVs in addition to
intracellular isotopomer balances described in the 13C-MFA for-
mulation (described in detail in [7]).

Mass balance for intracellular metabolites that are packaged
into EVs within source cells is described under the steady state
assumption by Eqs. 4a and 5c, where Ci is the intracellular concen-
tration of metabolite i; Si is the stoichiometric vector
corresponding to metabolite i and the parameter introduced to
represent EV packaging flux is vexoi . For metabolites that exist in
multiple compartments, mass balances in Eqs. 5a–5c are defined for
each subcompartment the same way as they are for metabolites in
single compartments (Eqs. 4a and 4b), however the balance for EV
packaging flux is modified as in Eq. 5c to include contribution from
both compartments.

dCi

dt
¼ Si v

! � vexoi ¼ 0, i∈M 1C ð4aÞ

vexoi � rPi ¼ 0, i∈M 1C ð4bÞ
dCi,cyt

dt
¼ Si,cyt v

! � vexoi,cyt, i∈M 2C ð5aÞ
dCi,mit

dt
¼ Si,mit v

! � vexoi,mit, i∈M 2C ð5bÞ
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vexoi,cyt þ vexoi,mit � rPi ¼ 0, i∈M 2C ð5cÞ
Further, the isotopomer balance for metabolites which are

measured in source cells and EVs via GC-MS is described in a
generalized form in Eq. 6. The isotopomer distribution of metabo-
lite i in the EV is a combination of isotopomer distributions derived
from multiple compartments that is proportional to the packaging
fluxes originating from each compartment.

vexoi,cyt:

y0
⋮

y2n�1

0
B@

1
CA

i,cyt

þ vexoi,mit:

y0
⋮

y2n�1

0
B@

1
CA

i,mit

� rPi:

y0
⋮

y2n�1

0
B@

1
CA

i,exo

¼ 0

ð6Þ
Here, M1C and M2C are set of metabolites that exist in single

compartment or two compartments, respectively; vexoi,cyt, v
exo
i,mit refer

to packaging fluxes of ith metabolite from the single compartment,
cytosolic compartment or mitochondrial compartment, respec-
tively; y!i,cyt, y!i,mit, y!i,exo are isotopomer distribution vectors
(IDVs) of ith metabolite existing in the cytosol, mitochondria or
EV. Equations 4a–6 are included in the Exo-MFA algorithm along
with 13C-MFA mass balance and isotopomer balance constraints.
The objective function for Exo-MFA in is modified from the 13C-
MFA objective function to consider the error residuals of additional
measurements in source cells and EVs, that is, EV secretion rate,
metabolite levels in EVs, and mass isotopolog distributions (MID)
in EVs.

1.2 Modeling Cargo

Release in Recipient

Cells

Exo-MFA modifies the metabolic model for recipient cells to
include EV internalization and release of metabolite cargo that
contributes to the endogenous metabolite pools. The rate of inter-
nalization is considered to be u(t) (mg EV/mg protein/h). Inter-
nalization is assumed to be time-dependent due to dependence on
extracellular concentration of EVs and the transient nature of the
nutrient-deprived recipient cells. The content of EVs, however, is
assumed to be consistent throughout the process of packaging,
transport and internalization. Release of cargo into recipient cells
is slightly more complex than packaging, since (1) not all metabo-
lites are utilized in the same way, and (2) intracellular metabolic
fluxes are not at steady-state. For this purpose, the cargo is categor-
ized according to their utilization, (1) central carbon metabolites
that are incorporated directly into central carbon metabolism,
(2) essential amino acids that are incorporated only into biomass.
The mass balance for central carbon metabolites are formulated in
Eq. 7. Cargo release fluxes are proportional to rate of internaliza-
tion u(t) and the intra-EV composition Pi, therefore the flux term
becomes u(t)Pi (μmol/mg protein/h). Equation 7 describes the
mass balance of metabolite i derived from EV cargo and Si is the
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stoichiometric vector corresponding to that metabolite describing
the inracellular reactions it is involved in. Equation 8 represents the
isotopomer balance equations as described by the Isotopomer
Mapping Matrix algorithm [10, 11], but with a small modification
that includes the term u(t)Piyi, exo that represents the influx of
isotopomers of metabolites derived from EV cargo.

dCi

dt
¼ u tð ÞPi þ Si v

! ¼ 0, i∈MCCM ð7Þ

d
dt

Ci

y0

⋮

y2n�1

0
BB@

1
CCA

i,cell

0
BB@

1
CCA ¼ u tð ÞPi

y0

⋮

y2n�1

0
BB@

1
CCA

i,exo

þ
XN
j¼1

Sij :v j ∏
k,
Sij > 0

Skj < 0

IMMk!i:

y0

⋮

y2n�1

0
BB@

1
CCA

k,cell

0
BBB@

1
CCCAþ

XN
j¼1, Sij<0

Sij :

y0

⋮

y2n�1

0
BB@

1
CCA

i,cell

¼ 0,

ð8Þ
Ci is the total intracellular concentration of metabolite i. The

objective function of Exo-MFA in recipient cells, is modified to
include residuals of metabolite levels in EVs, and MID in both
recipient cells and EVs.

2 Materials

1. Fetal bovine serum (FBS).

2. Ultracentrifuge.

3. Vacuum centrifuge.

4. Gas Chromatography-Mass Spectrometer (GC-MS).

5. HP-5MS or equivalent column.

6. Nanoparticle tracking analysis (NTA) instrument.

7. 0.2 μm filter.

8. Culture medium.

9. Isotope-labeled substrates.

10. Phosphate buffered saline (PBS).

11. RIPA Buffer.

12. Bicinchoninic (BCA) Kit.

13. Wako Glucose Kit.

14. HPLC-Grade Substrate Standards.

15. Methanol.

16. Norvaline.
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17. Chloroform.

18. 0.9% saline in water

19. 2% methoxyamine hydrochloride in pyridine.

20. MBTSTFA + 1% TBDMCS.

21. Desktop computer or access to computational cluster with
MATLAB license.

22. MATLAB 2016a or later, with licenses for Optimization and
Parallel Computing Toolboxes.

23. Artelys Knitro 10 or later (or MATLAB’s in-built Optimiza-
tion Toolbox and Parallel Computing Toolbox).

24. Microsoft Office Suite (or any spreadsheet software that can
save files in the. XLS or. XLSX formats).

25. Source code and files can be downloaded from http://nagrath.
bme.umich.edu/exomfa_sourcecode/

3 Methods

3.1 Fetal Bovine

Serum Depletion

1. Load fetal bovine serum into clean, sterile ultracentrifuge
tubes. Tubes should be filled completely and balanced precisely.
Centrifuge at 100,000–120,000 � g for 19 h at 4 �C (seeNote
1) (Fig. 2a).

2. Carefully remove the light-colored upper layers into fresh
tubes, discarding the lower dark layer and pellet. The upper
layer consists of approximately 90% of the serum.

3. Sterile filter the depleted serum.

4. Use immediately or aliquot and store at �20 �C (see Notes
2 and 3).

3.2 Preliminary

Characterization

of Extracellular

Vesicles and Cell Lines

1. Seed donor cells and grow to 70% confluency in recommended
culture medium (see Note 4).

2. Aspirate culture medium and wash cells twice with PBS.

3. Add culture medium containing EV-depleted FBS.

4. After 48 h, remove the spent medium from the flasks into
centrifuge tubes for EV isolation (see Note 5).

5. Quantify donor cells via protein assay after 48 h for
normalization.

3.3 Isolation

of Extracellular

Vesicles from

Conditioned Medium

via Ultracentrifugation

1. Centrifuge spent culture medium containing EVs from step 4
of the previous section at 300� g for 10 min at 4 �C to remove
cell debris.

2. Transfer the supernatant to fresh centrifuge tubes, careful to
avoid disturbing the pellet. Centrifuge the supernatant at
10,000 � g for 30 min at 4 �C to remove larger vesicles.
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3. Transfer the supernatant into clean, sterile ultracentrifuge
tubes, careful to avoid disturbing the pellet. Tubes should be
balanced precisely. If tubes are not full to maximum volume,
dilute with PBS. Centrifuge at 100,000–120,000 � g for
90 min at 4 �C (see Notes 1 and 6) (Fig. 2b).

4. Aspirate the supernatant, careful to avoid disturbing the pellet.
Resuspend the pellet in a full volume of PBS at 4 �C and repeat
the centrifugation described in step 3with the tube in the same

Fig. 2 (a) Depleted FBA is produced by ultracentrifugation of commercial FBS.
The resulting solution can be used to supplement culture medium spiked with
13C stable-isotope tracers to produce the stable-isotope labeled medium for
production of EVs. (b) After culturing cells in EV-deprived stable-isotope tracer
medium, EVS can be isolated via differential ultracentrifugation. After a series of
increasing centrifugations, the purified EV pellet is finally collected at the bottom
of the centrifuge tube where it can be resuspended and used for further analyses
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orientation. Aspirate the supernatant again and resuspend the
pellet of EVs in an appropriate volume of solution for the
desired application (see Note 7).

5. For protein quantification, the pellet can be resuspended
directly in 100 μL RIPA buffer and quantified via BCA assay
following manufacturer instructions (see Note 8).

6. For particle number, the pellet can be resuspended in 100 μL of
PBS and diluted for counting via Nanoparticle Tracking Anal-
ysis (see Note 9).

7. For treatment of cells, the pellet can be resuspended in 100 μL
of culture medium and immediately applied to the recipient
cells. After 24 h of treatment the recipient cells should be
quantified via protein assay for normalization.

3.4 Isotopic Labeling

of Donor Cells

for Extracellular

Vesicle Production

1. Seed donor cells and grow to 70% confluency in recommended
culture medium (see Note 4).

2. Aspirate culture medium and wash cells twice with PBS.

3. Add culture medium with extracellular vesicle depleted FBS
and isotope-labeled substrates of interest replacing the unla-
beled at the original concentrations. Reserve 1 mL of medium
for metabolic analysis and store at �80 �C (Fig. 3a).

4. After 48 h, remove the spent medium from the flasks into
centrifuge tubes for EV isolation (see Note 5). Reserve 1 mL
of medium for metabolic analysis and store at �80 �C.

5. Extract intracellular metabolites immediately. Wash with cold
saline once and then quench the cells in cold methanol (see
Note 10). Add an equal volume of water with 1 μg of norvaline
and scrape cells thoroughly.

6. Pipet mixture into fresh tubes and add two volumes of chloro-
form. Vortex at 4 �C for 30 min and centrifuge at 5000 � g for
10 min at 4 �C. Remove the upper aqueous layer containing
polar metabolites into a new tube. Dry via vacuum centrifuga-
tion. Store dried samples at �80 �C.

3.5 Isolation

of 13-Carbon Labeled

Extracellular Vesicles

from Conditioned

Medium via

Ultracentrifugation

1. Centrifuge spent culture medium containing labeled EVs from
step 4 of the previous section at 300 � g for 10 min at 4 �C to
remove cell debris.

2. Transfer the supernatant to fresh centrifuge tubes, careful to
avoid disturbing the pellet. Centrifuge the supernatant at
10,000 � g for 30 min at 4 �C to remove larger vesicles.

3. Transfer the supernatant into clean, sterile ultracentrifuge
tubes, careful to avoid disturbing the pellet. A separate tube
containing 300 μg protein based on earlier quantification
should be aliquoted for direct analysis of EV samples. Tubes
should be balanced precisely. If tubes are not full to maximum
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Fig. 3 (a) Source cells are cultured with stable-isotope labeled medium (e.g., 13C-Glucose and 13C-Glutamine).
Spent medium with secreted EVs is collected and divided into two batches: the first batch is reserved for
formulating culture medium for recipient cells and the second batch is analyzed using a GC-MS. (b) EVs
carrying stable-isotope labeled metabolite cargo are introduced into culture medium for recipient cells. Cells
are incubated in this medium and sampled at multiple time points within 24 h in order to capture the dynamic
metabolic contribution of EV metabolites. Both spent culture medium and intracellular extracts are analyzed
using the GC-MS
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volume, dilute with PBS. Centrifuge at 100,000–120,000 � g
for 90 min at 4 �C (see Notes 1 and 6) (Fig. 2b).

4. Aspirate the supernatant, careful to avoid disturbing the pellet.
Resuspend the pellet in a full volume of PBS at 4 �C and repeat
the centrifugation described in step 3with the tube in the same
orientation.

5. For treatment of recipient cells, the pellet can be resuspended
in culture medium with EV depleted FBS. The EVs should be
diluted to approximately 200 μg protein/mL or 40 � 109

particles/mL for treatment based on earlier quantification.
Reserve three replicate samples of EVs equivalent to 100 μg
protein each resuspended in 150 μL water containing 1 μg
norvaline for metabolic analysis, stored at �80 �C.

3.6 Treating

Recipient Cells

with Isotopically

Labeled Extracellular

Vesicles

1. Seed recipient cells at desired confluency in a 6-well plate and
leave overnight. Then replace culture medium with fresh
medium spiked with 13C labeled EVs (Fig. 3b).

2. At 3, 6, 12, and 24 h extract intracellular metabolites. Reserve
1 mL from each well and store at�80 �C for metabolic analysis.
Aspirate remaining medium. Wash with cold saline once and
then quench the cells in cold methanol. Add an equal volume
of water with 1 μg of norvaline and scrape cells thoroughly.

3. Pipet mixture into Eppendorf tubes and add two volumes of
chloroform. Vortex at 4 �C for 30 min and centrifuge at
5000 � g for 10 min at 4 �C. Remove the upper aqueous
layer containing polar metabolites into a new tube. Dry via
vacuum centrifugation. Store dried samples at �80 �C.

3.7 Extracellular

Vesicle Sample

Preparation for

Metabolic Analysis

1. Transfer 75 μL of cold methanol to each EV sample after
thawing from �80 �C. Reserve 20 μL of the resulting solution
for protein assay.

2. Add 150 μL of cold chloroform to each sample and vortex for
30 min at 4 �C. Centrifuge at 5000 � g for 10 min at 4 �C to
separate the phases. Remove the upper aqueous layer contain-
ing polar metabolites into a new tube. Dry via vacuum centri-
fugation. Store dried samples at �80 �C.

3.8 Media Sample

Preparation

1. Transfer 200 μL of medium collected from fresh 13C tracer
medium, donor cell conditioned medium, and recipient cell
conditioned medium after thawing from �80 �C.

2. Add 10 μL of water containing 1 μg norvaline in water to each
tube as internal standard.

3. Add 800 μL of prechilled methanol to each tube and vortex for
10 min.

4. Allow samples to deproteinize for 2 h at �20 �C.
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5. Centrifuge at 14,000 � g for 10 min at 4 �C to collect protein
at the bottom of the tube and transfer the supernatant to fresh
tubes. Dry the samples via vacuum centrifugation and store the
dried metabolites at �80 �C.

6. From remaining medium, quantify glucose via Wako Glucose
Kit following manufacturer instructions.

3.9 GC-MS Analysis

of Metabolites

1. Prepare external standard curve mixture including relevant
amino acids, glycolytic intermediates, and TCA cycle metabo-
lites via serial dilution (see Note 11).

2. Retrieve polar metabolite samples from storage at �80 �C
including donor cells, EVs, recipient cells, and media samples.
Dry samples and external standards via vacuum centrifugation
briefly to remove condensation (see Note 12).

3. Derivatize samples by dissolving in 30 μL of 2% methoxyamine
hydrochloride in pyridine, sonicating for 10 min, and incubat-
ing at 37 �C for 2 h.

4. Add 45 μL of MBTSTFA+1% TBDMCS and incubate at 55 �C
for 1 h.

5. Transfer into vials containing glass inserts for GC-MS
measurement.

6. The GC-MS should be equipped with an HP-5MS column or
equivalent. The method parameters are as follows: helium car-
rier gas with flow of 1 mL/min. Injection volume of 1–2 μL at
270 �C. Oven temperature of 100 �C for 3 min raised at 5 �C/
min to 300 �C over 40 min and then held for 5 min. Solvent
delay of 6–10 min depending on when the initial saturating
signal is observed to have dropped. MS source is set to 230 �C,
and MS quadrupole is set to 150 �C. MS detector operated in
scan mode from 50 to 450 m/z.

3.10 Estimating

Extracellular Fluxes

1. Estimate the growth rate of source cells and recipient cells from
assays performed in Subheading 3.2, step 5 and Subheading
3.3, step 7. Estimate growth rate, μ, assuming exponential
growth by fitting to Eq. 9.

X ¼ X 0e
μt ð9Þ

2. For source cells, using the measurement of extracellular metab-
olite concentrations from Subheading 3.4, step 3 at the start
time (fresh medium) and Subheading 3.4, step 4 at time
T (spent medium), estimate the extracellular flux vext from the
integrated form of Eq. 10.

Z CT

C0

dC ¼ �vextX 0

Z T

0

eμtdt ð10Þ
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3. Repeat step 2 for all extracellular metabolites that you will
consider in the Exo-MFA model.

4. For recipient cells, extracellular fluxes are measured soon after
treatment with culture medium with EVs. Thus, their metabo-
lism is not at steady state and their extracellular fluxes will not
be constant over the course of the experiment. Their extracel-
lular fluxes extracellular metabolites are derived analytically and
integrated for a set of unknown parameters as in Eqs. 11a and
11b (see Note 13).

vi tð Þ ¼ a þ bt ð11aÞ
Z

dCext
i

dt
dt ¼ �

Z
vi tð ÞX 0e

μtdt ð11bÞ

3.11 Using Exo-MFA

to Quantify

Intracellular and EV-

Mediated

Metabolic Flux

1. Build and curate a model defining the metabolic network in
donor and recipient cells. A template for the model input files
can be downloaded from supplemental files.

2. The first column is ignored by the Exo-MFA program, and is
meant to help users identify reactions. The second column
defines the reaction behavior: I, irreversible; R, reversible; E,
exchange or boundary. The third column semantically defines
the stoichiometry of each reaction. The fourth column defines
the carbon atom transitions. Metabolites and compartments
are defined by the user but must follow the format: Metaboli-
te_Compartment (see Note 14).

3. The empirically measured data for source cells is compiled in an
input Excel file, for which the template can be downloaded
from supplemental files.

4. For source cells, enter the stable-isotope tracers used and their
carbon labeling pattern in the sheet “tracer” (see Note 15).
Enter measured extracellular fluxes in the first column of the
sheet “flux,” followed by the standard deviation and name of
the metabolite (as referred to in the model file). Enter the mass
isotopolog distribution data for intracellular metabolites and
intra-EV metabolites in the first column of the sheet “MID,”
followed by the standard deviation of each measurement, name
of the metabolite and the carbon chain. These are the measure-
ments obtained in Subheading 3.9 and 3.10. In the sheet
“exo,” list the metabolite names (without denoting the com-
partment) that are detected in the EV cargo in the first column,
followed by the compartments in the source cell which are
possible sources of those metabolites (see Note 16). The third
and fourth columns are the measured abundance and standard
deviations of the metabolites in the EV cargo. In the “exo_r-
ate” sheet, report the rate of secretion of EVs by dividing yield
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of EVs (in protein or particle number) by the time over which
the EVs were collected.

5. Load the “Main_ExoMFA_source.m” script in MATLAB (see
Note 17) and run until all the steps are completed.

6. Exo-MFA is based on 13-carbon metabolic flux analysis (13C-
MFA) that utilizes Isotopomer Mapping Matrices (IMM)
method to model 13-carbon atom transitions. The model is
assumed to be at isotopic steady-state and is solved for intracel-
lular fluxes, v, and mass isotopomer distributions, y.

7. Exo-MFA provides results for intracellular fluxes of source cells
as well as packaging fluxes that represent metabolites packaged
into EVs. The confidence intervals are also estimated by the
script and published in an Excel file with the flux results. The
MATLAB script also provides a file labeled “exo_IDV” that is
used as an input for estimating intracellular fluxes in recipient
cells.

8. The empirically measured data for recipient cells is compiled in
an input Excel file, for which the template can be downloaded
from supplemental files. There should be a separate input file
for each time point at which the recipient cells were sampled.

9. For recipient cells, enter measured extracellular fluxes in the
first column of the sheet “flux,” followed by the standard
deviation and name of the metabolite (as referred to in the
model file). Enter the mass isotopolog distribution data for
intracellular metabolites and intra-EV metabolites in the first
column of the sheet “MID,” followed by the standard devia-
tion of each measurement, name of the metabolite, and the
carbon chain. These are the measurements obtained in Sub-
heading 3.9. In the sheet “exo,” list the metabolite names
(without denoting the compartment) that are detected in the
EV cargo in the first column, followed by the compartments in
the recipient cells, which are possible recipients of those meta-
bolites (see Note 18). The sheet labeled “exo_IDV” should
contain the data as published in the output file in step 7.

10. Load the “Main_ExoMFA_recipient.m” script in MATLAB
and run until all the steps are completed. Repeat this step for
every time point at which recipient cells were sampled.

11. Exo-MFA provides results for intracellular fluxes of recipient
cells as well as cargo release fluxes that represent EV metabo-
lites being internalized by cells. The confidence intervals are
also estimated by the script, and an Excel file with the flux
results is published. The Exo-MFA algorithm also estimates
an additional parameter, u(t), which represents the rate of EV
internalization (see Note 18).
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4 Notes

1. The precise centrifugation speed and time required to effec-
tively precipitate a particle cannot be determined solely from
the relative centrifugal force (RCF). Instead it must be deter-
mined by the geometry of the rotor as well as the speed of
rotation expressed as the k-factor. The optimal speed for a given
rotor should therefore be determined uniquely for each appli-
cation. RCF quoted here is offered as a general guideline.

2. Depletion efficiency can be verified via Nanoparticle Tracking
Analysis.

3. Depleted FBS can also be purchased.

4. EV production rates can vary dramatically by cell type and
origin. Before beginning a new experiment, the donor cells
should be characterized to select the optimal cell number. As
a general guideline, high-production cells like cancer can be
grown in as few as five T-75 flasks while low-production cells
like fibroblasts may need as many as 15 T-160 flasks.

5. At least 48 h are necessary for EVs to accumulate in the
medium. After longer than 48 h the EVs can be taken up
again and degraded by the source cells, preventing increased
yield.

6. The EV pellet can be difficult to observe. It is helpful to mark
the centrifuge tube where the pellet is expected to assist in
maintaining the orientation and avoiding disturbances.

7. EVs should be characterized according to the standards defined
in the Minimal Information for Studies of Extracellular Vesicles
[12]. This includes a determination of particle number and
protein content as described here in addition to characteriza-
tion of typical protein markers.

8. The micro BCA kit is specifically designed for low sample
concentrations (0.5–20 μg/mL) and is particularly well suited
for measuring low EV protein concentrations.

9. For an uncharacterized EV source, several dilutions must be
tested to determine the optimal concentration for measure-
ment. Particle number can be estimated from protein concen-
tration using the ratio of 4.9 μg protein/109 particles but
should be verified independently.

10. If PBS is used to wash in place of saline, the phosphate can be
detected on the GC-MS and obscure the measurements.

11. The standard curve may need to be adapted based on the
experimental conditions. A typical curve would span
0.1–10 nmol of each metabolite.
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12. Any amount of water will prevent derivatization. It is impera-
tive to ensure samples are completely dry before continuing
with analysis.

13. For each extracellular metabolite vext(t) was assumed to be a
linear function of time. For our experimental design, the para-
meters were estimated by fitting Eq. 11a to extracellular con-
centrations measured at 0, 3, 6, 12, and 24 h of culture for
recipient cells. The vext(t) function can be a polynomial as well
if the fit for a linear model is not good. However, additional
parameters will need to be fitted for higher order polynomials,
and users should take care that the number of measurements
must be larger than the number of parameters being fitted.

14. We consider three compartments in the source cells: c, cytosol;
m, mitochondria; x, extracellular; and d, a dilution source of
unlabeled metabolites that contribute to EV cargo. The user
can add more compartments or merge cytosolic and mitochon-
drial compartments, depending on the complexity of the
model. The metabolites from compartment “d” only affect
the 13-carbon enrichment of EV cargo and do not interfere
in the estimation of packaging flux metabolites from source
cells’ cytosolic and mitochondrial compartments to EV cargo.
This is included to account for the production of EVs when
intracellular metabolites are not saturated with 13-carbon from
the stable-isotope tracers.

15. Tracer labeling pattern follows a binary pattern (e.g., U-13C6-
Glucose containing six 13-carbon atoms is represented as
“111,111” and 5-13C1-Glutamine is represented as “00001”).

16. Zhao et al. and Achreja et al. have previously shown the pres-
ence of amino acids, glycolytic intermediates, and TCA cycle
intermediates which exist in multiple compartments in source
cells. Further, the mass isotopolog distribution of metabolites
known to be present multiple compartments did not match
distributions observed in EVs, indicating that EVs can package
metabolites from mitochondrial compartments in addition to
cytosolic compartments. Given these observations, and the
incomplete knowledge of metabolite packaging in EVs,
Exo-MFA lets the user define which intracellular compart-
ments can contribute to EV cargo.

17. Exo-MFA was developed with MATLAB 2016a and Artelys
Knitro Solver 10.0. Using earlier or later versions of these
software may lead to errors due to incompatibility.

18. Internalization is assumed to be time-dependent due to depen-
dence on extracellular concentration of EVs and the transient
nature of the nutrient-deprived recipient cells. The cargo of
EVs is consistent throughout the process of packaging, trans-
port and internalization. Release of cargo into recipient cells is
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slightly more complex than packaging, since (a) not all meta-
bolites are utilized in the same way, and (b) intracellular meta-
bolic fluxes are not at steady state. Therefore, the EV cargo is
categorized according to its utilization, that is, (a) central car-
bon metabolites that are incorporated directly into central
carbon metabolism which are either in the cytosol or mito-
chondria, and (b) essential amino acids that are incorporated
only into biomass.
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Chapter 11

Comparative Metabolic Network Flux Analysis to Identify
Differences in Cellular Metabolism

Sarah McGarrity, Sigurður T. Karvelsson, Ólafur E. Sigurjónsson,
and Óttar Rolfsson

Abstract

Metabolic network flux analysis uses genome-scale metabolic reconstructions to integrate transcriptomics,
proteomics, and/or metabolomics data to allow for comprehensive interpretation of genotype to metabolic
phenotype relationships. The compilation of many Constraint-based model analysis methods into one
MATLAB package, the COBRAtoolbox, has opened the possibility of using these methods to the many
biologists with some knowledge of the commonly used statistical program, MATLAB. Here we outline the
steps required to take a published genome-scale metabolic reconstruction and interrogate its consistency
and biological feasibility. Subsequently, we demonstrate how mRNA expression data and metabolomics
data, relating to one or more cell types or biological contexts, can be applied to constrain and generate
metabolic models descriptive of metabolic flux phenotypes. Finally, we describe the comparison of the
resulting models and model outputs with the aim of identifying metabolic biomarkers and changes in
cellular metabolism.

Key words Constraint-based metabolic models, Genome-scale reconstruction, Flux balance analysis,
Transcriptomics, Metabolomics, Systems biology, Data integration

1 Introduction

Cell metabolism is an important indicator and controlling factor of
cell function in many situations. Recent advances in metabolomics
measurement techniques have provided an increasing number of
comprehensive data sets. This is in parallel with the increasing detail
of genome annotations, and transcriptomic and proteomic data sets
that provide detailed readouts of whole cell state. With the increas-
ing availability of large-scale data sets of various data types both the
need and the possibility of their integrated analysis has become
apparent. An increasingly common method for this integration is
the building of a genome-scale metabolic reconstruction (GEM), a
way of cataloguing the metabolic genes annotated to an organism
[1, 2]. This GEM may then be constrained and modeled using
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Constraint-based metabolic analysis (COBRA) methods [2–
6]. COBRA methods can use transcriptomics, proteomics, and
metabolomics data in order to recapitulate the metabolism of a
particular cell type within an organism or the metabolism of an
organism or cell type in a particular context [5, 7–13].

Reconstructions may not always have been curated to the
extent that they are biologically and chemically feasible. For exam-
ple some reactions may be listed as reversible that should in fact be
able to operate in only one direction. Also transport reactions,
especially nonenzymatic transport between organelles, may be
missing or incorrectly assumed to exist. These sorts of problems
may lead to issues for example loops of cofactors being resynthe-
sized incorrectly. There are two approaches to addressing these
problems; one is manual comparison of model reactions to the
existing literature, databases of reaction information and other
curated models, the other is to use various CobraToolbox functions
to assess the model and check for such features. These methods
should be applied in an integrated fashion and a researcher’s judg-
ment must be applied to finding a sensible reconstruction to base
the rest of their modeling on. The CobraToolbox website offers
various strategies for checking that a model is operating in a bio-
chemically sensible manner in the various reconstruction tutorials.
Below some of the key options are demonstrated using
RECON2M2 [14] as an example. We have compiled this method-
ology based on the tutorials provided on the CobraToolbox web-
site and our own experience. The following tutorials have been
particularly useful in compiling this methodology and in model
building in general and may be useful to find more background
information on the methodology described below; “Atomically
resolve a metabolic reconstruction” [15], “Proton shuttle testing
with sparse flux balance analysis” [16], “Sparse flux balance analysis
test for a minimal stoichiometrically balanced cycle involving ATP
hydrolysis” [17], “FastGapFill Tutorial” [17], “Example use of
functions listed in the Standard operating procedure for metabolic
reconstruction” [18], “Test physiologically relevant ATP yields
from different carbon sources for a metabolic model” [19], “Test-
ing chemical and biochemical fidelity” [20], “Testing basic proper-
ties of a metabolic model (aka sanity checks)” [21].

To investigate context specific metabolism more constrained
models may be built. The metabolic capacity of a cell is defined by
which enzymes it is currently expressing, a subset of all of the
enzymes encoded in its genome. It is possible to obtain a snapshot
of the enzymes expressed in a particular cell type under given
circumstances using transcriptomic and proteomic data. Both of
these data types are somewhat correlated with enzyme activity
[22, 23]. It should, however, be noted that the presence of
mRNA or even protein in a data set does not necessarily guarantee
enzymatic activity, and certainly does not necessarily give an
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absolute indication of the magnitude of enzymatic activity. Given
these caveats various methods to prune a genome-scale metabolic
reconstruction based on expression data, mostly transcriptomics,
have been developed. Opdam et al. identified three categories of
model extraction method with different characteristics [7]. The
first group, “GIMME-like,” includes only GIMME and relies on
the minimization of flux through reactions that are associated with
lowly expressed genes [5]. The group described second, “iMAT-
like,” includes iMAT, and INIT [24, 25]. This group optimizes the
compromise between removing reactions linked to poorly
expressed genes with the retention of reactions linked to highly
expressed genes. The third “MBA-like” group of MBA, Fastcore,
and mCADRE, define active core reaction sets and then remove as
many as possible noncore reactions [8, 9, 26]. Another review by
Herrgard and Machado identifies the fact that some methods
including GIMME force a minimal flux through the objective,
while others, such as iMAT, do not and that when no objective
flux is forced the model often will not “grow” [4]. Both reviews
note that the selection of parameters such as expression cutoff
greatly affects the model output [4, 7]. The CobraToolbox has
implemented six methods for the integration of expression data to
contextualize genome-scale metabolic reconstructions in a single
function createTissueSpecificModel. Others may be downloaded as
separateMATLAB packages or part of the RavenToolbox [10]. Fur-
ther background information on the use of this function is available
in a CobraToolbox tutorial [27]. It is possible to use either data
that has been produced specifically for a project or obtained from
either the supplementary data of a paper or from a public database
listed in Subheading 2.

The function createTissueSpecificModel takes a base model
(normally a genome-scale reconstruction that has had some uptake
constraints based on medium composition), and some form of
expression data, either arranged per reaction or per gene or as a
list of reactions to be listed as core, and creates a tissue specific
model using one of the methods described in Notes 25–30.

COBRA models may also be improved by the application of
constraints from metabolomics measurements. Metabotools is a set
of functions that are now implemented within the CobraToolbox
which may be used to constrain COBRA models with quantitative
or semiquantitative metabolomics data such as that obtained from
mass spectrometry experiments [11].

Metabotools offers a method for applying semiquantitative
data based on the relative uptake and secretion rates between two
different contexts (cell types or situations). This requires the rela-
tive abundances of various metabolites linked to exchange reactions
in the model with a limit of detection per metabolite, although it
does not require quantified data for each metabolite. The semi-
quantitative method relies, to a large extent, on relative differences
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between two conditions and therefore is most suitable for creating
pairs of related models for comparison. For a complete description
of the original method and its background read the Metabotools I
tutorial [28]. Metabotools may also be used to apply data from
quantitative metabolomics data this was originally described in the
Metabotools II tutorial [29].

Once accurate metabolic reconstructions have been built,
COBRA models may be analyzed with a variety of techniques to
elucidate the metabolic characteristics of the cell type or context of
interest. Perhaps the most common of these techniques is flux
balance analysis (FBA) and its variants [6]. FBA predicts the fluxes
through the reactions of a model when the flux through an objec-
tive reaction, often a reaction known as the biomass reaction mod-
eling cell growth, is optimal. This assumption of optimal growth
simplifies the computation of fluxes; however, it is unlikely to be a
biologically valid assumption for the majority of cell types from
multicellular organisms [30, 31].

Other metabolic flux analysis methods do not assume optimal-
ity in the biomass reaction but are able to assess the possible fluxes
through the system for a range of circumstances, which may or may
not require the presence of a biomass function. One of these
possible techniques is flux variability analysis (FVA). FVA produces
the minimum and maximum possible fluxes through each reaction
of the metabolic network [32, 33]. Another is the analysis of
repeated random sampling of feasible fluxes through the metabolic
network. Although the random sampling approach does not guar-
antee the finding of extreme flux values, it does provide more
information about the likely distribution of metabolic fluxes
between the extreme values [34–37]. Random sampling of the
possible flux space of a metabolic model avoids the potential biases
of FBA toward metabolic functions associated with the biomass
objective. In order to fully explore the space sufficient samples must
be made to ensure that it is uniformly covered. The CobraToolbox
provides various methods to implement this sampling [34–37]
which are discussed in a tutorial, this methodology focuses on
one we have found straightforward to use [38].

As well as analyzing single models to capture and describe
metabotypes at specific environmental or nutrient conditions, it is
possible to use COBRA techniques to compare models of two
different cell types or cells under different biological contexts. It
is possible to do this both by comparing the outputs from the
analyses described above or by applying techniques specifically
designed to compare COBRA models. One of the most widely
used of these techniques is minimization of metabolic adjustment
(MOMA) [39]. This technique reveals the minimum set of altera-
tions needed to make one model as metabolically similar to another
as possible, without necessarily producing an optimal flux through
the biomass reaction. For two given GEMs, MOMA predicts an
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affected phenotype by minimizing the adjustment of the original
phenotype. This reveals the suboptimal flux distribution of the
affected GEM which is intermediate between the original nonaf-
fected flux distribution and the optimal one. Ultimately, the analy-
sis reveals what reactions (and subsequently, pathways) need
adjustment for one model to take on a phenotype more similar to
another model. Quadratic programming is used to minimize the
Euclidean distance between the original and the affected flux dis-
tributions. MOMA analysis is available in the Cobra Toolbox [40].

All of the above methods rely on the appropriate formation of
one or more context-specific COBRA models based on a species-
specific GEM constrained with some combination of transcrip-
tomics, proteomics, and metabolomics data. This chapter will
describe the process of constraining, checking, and curating a pair
of context-specific COBRA models with transcriptomic and meta-
bolomics data primarily using the COBRAtoolbox [3, 41, 42] in
MATLAB (Mathworks). The method is accompanied by a
MATLAB script that can be followed accordingly. In order to
understand changes to metabolism between the pair of metabolic
phenotypes, comparative analysis of the metabolic reaction fluxes
within the two models is demonstrated affording deliverables simi-
lar to those shown in Fig. 1a–c. These can then be used for data
presentation, to update metabolic hypotheses and mathematically
interrogate metabolic differences in silico.

2 Materials

2.1 Constraint-

Based Modeling

Software

2.1.1 CobraToolbox

The CobraToolbox is a MATLAB based package intended to sim-
plify the implementation of Constraint-based metabolic modeling
methods [3, 41, 42]. CobraToolbox v.3 has recently been released
(2019) [41]. The CobraToolbox provides a compilation of meth-
ods for building, checking, manipulating, and integrating data with
GEMs and COBRA models.

This comprehensive package allows the user to build or input a
network reconstruction or model. Themodel can then be subjected
to a variety of data integration methods so that it includes informa-
tion on context-specific gene expression and metabolite production
and utilization. The context-specific model may then be subject to
analysis by FBA, random sampling, and other methods. The Cobra-
Toolbox also provides some functions that enable the user to
present the data in the form of figures and tables.

2.1.2 Other Software See Notes 1 and 2.

Building GEMs and COBRA models is a means of integrating data
from multiple types of large-scale experiments. This is a useful
function as it allows for a more comprehensive and contextualized
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2.2 Databases of

Publically Available

Data Sets and Models

analysis of these often seemingly overwhelming data types. How-
ever, this integrated analysis requires multiple data types that it may
well be outside the scope of a single project to collect. For this
reason, a reliable source of complementary data is necessary, as
large-scale data sets have become both richer and more common,
various repositories have been set up to allow the sharing, and
therefore better utilization, of these data sets. Increasingly the
publication of journal articles about such large-scale studies is
dependent on depositing the data in a repository and this has
meant that there has been an increasing availability and improved
curation of the data in recent years. For full details seeNotes 3–18.

2.2.1 Array Express [43] Array express is a database of publically available transcriptomic data
[44]. Processed data is downloadable in a tab-delimited format for
most experiments. Array Express data is also downloadable via a
Bioconductor package in R [45].

Fig. 1 An example of output from the analysis and comparison of two metabolic network models. (a) A flux
map showing relative reaction activity within selected reactions of central carbon metabolism. Red indicates
higher activity in model A whereas green indicates higher activity in model B. The flux values are based on
histograms of random sampling results (see Section x), where only significantly different reactions are used.
(b) Pathway activity based on results from (a). Y-axis shows the subsystems shared by the models and the X-
axis represents percentage, where +100% means that all reactions within a given subsystems are more
active in model A, and � 100% the same for model B. Size of bubbles within graph represents size of
subsystems. (c) Results from single gene deletion analysis (see Section vi and vii) which gives information
about genes exclusively essential for feasibility of model A or model B. This provides cell-type specific gene
targets which can be further validated. These analyses are based on methodology previously used by
Johannsson et al., Halldorsson et al., and McGarrity et al. [142–144]
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2.2.2 Gene Expression

Omnibus [46]

The Gene Expression Omnibus (GEO) is a repository for micro-
array and next generation sequencing data sets [47].

2.2.3 PRIDE [48] The PRIDE (Proteomics Identifications) archive is a database of
mass spectrometry proteomics data [49]. Data is available via the
website as well as a stand-alone inspection tool.

2.2.4 Peptide Atlas [50] Peptide Atlas is a database of information from high-throughput
proteomics experiments [51]. Peptide information may be accessed
via the database web page and is linked to ENSMBL identifiers [52].

2.2.5 MASSive [53] A database of mass spectrometry-based proteomic data [53]. The
website offers both analytical tools and the ability to download
data sets.

2.2.6 iProX [54] A repository for proteomics data [55]. Proteomic data sets may be
downloaded.

2.2.7 Japan ProteOme

STandard Repository [56]

A repository for proteomic mass spectrometry data in either raw or
processed format [57]. It may be accessed via an online interface.

2.2.8 The Human Protein

Atlas [58]

The human protein atlas provides information about the tissue,
cell, organelle, and pathological condition specific expression of
proteins in humans and on mouse brain protein expression [25].

2.2.9 MetaboLights [59] Metabolights is a repository for metabolomics data sets [60].

2.2.10 Genome RNAi

[61]

A repository for RNAi screens in Drosophila and human cell lines
[62]. It may be useful for confirming the outputs of gene and
reaction essentiality described below.

2.2.11 The Database of

Genotypes and

Phenotypes, The European

Genome-Phenome Archive,

and The Japanese

Genotype-Phenotype

Archive [63–65]

A repository for data sets describing genotype–phenotype interac-
tions in human derived data [66]. Other similar databases are the
European Genome-Phenome Archive [67] and The Japanese
Genotype-Phenotype Archive [62]. These databases may be useful
for confirming the results of models of human metabolism.

2.3 Species-Specific

Genome-Scale

Metabolic

Reconstructions

2.3.1 Human

There are two main efforts to build, maintain, and refine a human
genome-scale metabolic reconstruction Recon and the Human
Metabolic Reconstruction [14, 68–71]. The current version of
Recon is Recon3D [69] which attempts to account for a high
number of reactions and the multiple tissues types. It uses some
of the reactions of fatty acid metabolism from HMR2. HMR2 [72]
is the most recent version of the human GEM called HMR or
human metabolic reconstruction [73], it has been used extensively
examine cancer metabolism particularly hepatocellular carcinoma.
The details and downloadable versions of the Recon models may be
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accessed at the BIGG database website [74] and the vmh website
[75, 76]. The HMR models and details may be accessed at the
Human Metabolic Atlas website [77].

2.3.2 Other Mammalian Metabolic reconstructions have been built for Chinese Hamster
Ovary Cells mostly aimed at improving their productivity as cell
factories there has been a recently published consensus GEM pub-
lished [26]. There have also been various efforts to produce a
mouse metabolic reconstruction. One largely based on the human
reconstruction Recon1 [78] and a tissue-specific set by the group
responsible for HMR [79]. This is important, as mice are a com-
monly used experimental system.

2.3.3 Plants Metabolic reconstructions have been made for various plant species
[80]. Most extensively there are multiple models of Arabidopsis
thaliana [81, 82], rice [83], tomatoes [84], and maize
[85, 86]. Class-based reconstructions are also available [87].

2.3.4 C. elegans Several metabolic reconstructions of Caenorhabditis elegans, some
strain specific, have been created and recently there has been an
effort called WormJam to use these to produce a consensus recon-
struction [88–92].

2.3.5 Bacteria Metabolic reconstructions exist of a wide variety of bacterial spe-
cies, indeed optimization of bacterial production was one of the
original applications of COBRA techniques in biology. These have
been applied to the synthesis of valuable chemicals and assessment
of likely therapeutic targets [93–98]. Recently there has been an
increasing effort to model communities of bacteria, such as gut
microbiota, to better understand how metabolic interactions can
support differing community compositions and interactions with
hosts [99–101].

2.4 Metabolic

Knowledge Databases

2.4.1 KEGG [102]

KEGG is a database of genes and genomes, as well as metabolite,
metabolic pathways and drugs [52].

2.4.2 MetaCyc [103] MetaCyc is a database of metabolic reactions, enzymes, and related
chemicals [52]. The database can be searched online or has files
available for download.

2.4.3 BRENDA [104] BRENDA is a large collection of information on enzymes, their
activity, inhibition, and expression [105, 106].

2.4.4 Reactome [107] Reactome is an EBI maintained comprehensive database of
biological reactions including metabolic pathways [105].

230 Sarah McGarrity et al.



2.4.5 BioModels

Database [108]

The biomodels database is a repository for biological models
including COBRAmodels [109]. It allows the download of models
in the systems biology mark-up language (SBML) [110], this is
compatible with the CobraToolbox. It includes the path2models
set based on metabolic databases [111].

3 Methods

This method is based on the CobraToolbox version 3 [41] in
MATLAB 18b in Windows, with other MATLAB functions as
necessary [112].

1. MATLAB is available from the MathWorks website and
requires a licence (see Note 19) [113].

2. It is also necessary to install extra solvers (see Note 20)
[114, 115].

3. The easiest way to install CobraToolbox from Windows is to
download Gitbash from its website [116] choosing the “Use
Git Bash and optional Unix tools from the Windows Com-
mand prompt” and “Checkout as-is, commit Unix-style line
endings” options during the installation. Then in gitbash fol-
low line 3 of the accompanying script as described in the
installation instructions [117].

4. When this is completed open MATLAB, add the CobraTool-
box folder to the MATLAB path and use the function in line 5
of the accompanying script to initiate the CobraToolbox. This
function must be repeated at the beginning of each MATLAB
session when the CobraToolbox is used.

5. A base model for the appropriate species should be selected and
downloaded, see Note 21 for considerations in making the
selection.

6. Once a model has been selected and downloaded to a folder in
the current MATLAB path (and the CobraToolbox has been
initiated as above) it is necessary to load it into MATLAB. The
function used to do this depends on the file type downloaded.
For .xml files, containing models encoded in SBML use the
read SBML function as in line 11. The variable name selected
for the model may be anything but it should be distinct from
any other model loaded and versions created later. Also it may
be necessary to add a file path before the file name if it is not in
the folder currently set as the current path, as in line 12.

7. For COBRA format models in .mat files use the read Cobra
model function as described in line 15, as with the read SBML
function a folder’s path may be added as part of the file name.
By using the “varagin” options in this function other model
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formats such as correctly set up Excel files and Simpheny files
may be loaded using this function.

8. First check the model has a biomass, or growth function, and
that this is set as the objective. This is done most easily as shown
in line 22. This will save the name of the biomass function as the
variable name selected. The reaction name will also be displayed
in the workspace, as will a table showing the composition of the
objective reaction, metabolites and their stoichiometries will be
displayed. Most components of this reaction will have a nega-
tive stoichiometry indicating that they are being consumed;
however, ADP, inorganic phosphate, and possibly protons
will be produced (positive stoichiometry) indicating energy
consumption as ATP cleavage.

9. To see the reaction formula of the objective then follow line 24,
this function may also be used to display other reactions within
a model. The components and their stoichiometry should be
checked against available literature to ensure they are biologi-
cally reasonable, if not then follow the procedure below to add
a different biomass function.

10. If the reaction named as the current objective is not the bio-
mass reaction, or for other analyses than those relying on cell
growth, another objective is desired then follow line 28 to
select another existing reaction as the objective.

11. If necessary add a biomass reaction to the model, as in line 26
and then use line 28 to select this as the objective function. It
may also be desirable to remove the previous biomass reaction
to avoid confusion. This can be done simply by deleting the
relevant reaction as in line 30.

12. Further exploration of the biomass function may be desirable.
For example it may be interesting or necessary to check how
the metabolites in the biomass reaction are produced. Most
straightforwardly a function called “surfNet” allows the user to
navigate a model in the MATLAB workspace beginning at any
reaction or metabolite, including the biomass reaction, as in
line 32.

13. An alternative method would be to find all of the reactions
associated with one of the metabolites consumed by the bio-
mass reaction, for example tryptophan, as in line 34. Sort out
which of these reactions are not the biomass reactions, in line
35, then display the formulas of these reactions as in line 36.

14. Next check that all of the metabolites in the model are able to
be produced and consumed and that all reactions can carry
flux. Firstly find a list of the ID number of dead end metabo-
lites, unconsumed or unproduced metabolites, as in line 38.
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15. Then find the relevant metabolite abbreviations, shown in line
39.

16. Next identify the reactions linked to the dead end metabolites
as in line 40.

17. Following this check the reaction bounds of these reactions, as
in lines 41 and 42, as it may be that they are set to 0 or the
reaction is incorrectly reversible or irreversible. A reaction is
reversible if the lower bound is negative and the upper positive.

18. It is also possible to identify reactions that are unable to carry
flux as in line 43, gaps that leave a section of the model isolated
as in line 45.

19. Following this it may be useful to repeat lines 41 and 42 with
the blocked reactions variable from line 43.

20. To identify the areas of metabolism affected by gaps found in
line 46 use the “surfNet” function described above in line 32. If
there are unlinked metabolites and inactive reactions then this
should addressed; either by removing metabolites or reactions
that are unused, or additional reactions should be added to
ensure functionality. This may be accomplished by using the
same functions for addition and removal of reactions shown in
lines 26 and 30 using information from the literature or from the
databases described above. For alternative method see Note 22.

21. By checking that ATPsynthase is inactive when there are no
metabolites able to be taken up it is possible to identify infeasi-
ble loops of reactions created by reaction reversibility, particu-
larly of transport reactions of cofactors. ATP production
should require some metabolic input, if it does not it indicates
that some metabolites, often cofactors or protons are forming
infeasible loops. These may be elucidated by performing sparse
flux balance analysis (FBA) with ATPsynthase as the objective
function. This process is has been derived from CobraToolbox
tutorials [16, 118]. A detailed explanation of the theoretical
background to these ideas and their ideal implementation is
also available in Fleming et al. and Schellenberger et al.
[119, 120].

22. In RECON2M2 the ATPsynthase reaction is called ‘ATPS4m’.
In order to check the ability of the model to make ATP with no
input we will first identify uptake reactions in lines 52–54 then
close them in lines 56–58.

23. Then set up the parameters to perform FBA with the ATP-
synthase as the maximization target in lines 61–65.

24. SparseFBA, finding the minimum set of active reactions for an
optimal objective [121], is then performed in line 66 the
expected objective of this FBA is 0, this is displayed in the
workspace by line 67.

A Guide to Metabolic Models and COBRA Analysis 233



25. Further examination of this output, in lines 70–74, identifies
the reactions which are carrying flux above the cutoff value 1e–
6, and displays their reaction formulas.

26. It is likely that some of these are forming inappropriate loops
and should be made irreversible, as in line 76. The following
variations on the above procedure will help to identify which
reactions it is necessary to alter.

27. To gain further clues as to the location of the infeasible loops
the above sparseFBA should be repeated with varying combi-
nations of open and closed fluxes.

28. First closed exchange fluxes but all internal reactions open as in
lines 79–83.

29. It is likely some ATPsynthase flux will be present as all possible
reversible reactions are present, to see where there is flux in this
case repeat lines 70–74 but with the model created in lines 80
and 81.

30. Next repeat the process with closed exchanges but fully open
transport reactions between various compartments, the set up
for this is described in lines 86–91, and repeat lines 70–74 with
the new model.

31. In this case it is likely that there will be flux through ATP-
synthase, despite the lack of allowed uptake of metabolites.
This is due to the fully open transport reactions forming infea-
sible loops shuttling cofactors between compartments in a way
that is unlikely in biology.

32. Finally, to examine which transport reactions between com-
partments form loops that allow the formation of ATP with no
metabolites being taken up it is necessary to run sparseFBA for
ATPsynthase with exchanges closed and transport reactions
between the cytoplasm and the mitochondria, then cytoplasm
and golgi, endoplasmic reticulum, and peroxisome and finally
between the extracellular space and the cytoplasm open. Lines
94–97 set up which pair of compartments will be tested and will
need to be rerun for each pair of compartments with lines 94
and 95 altered to represent the correct compartments.

33. Then open the selected set of reactions in the closed exchange
model and run sparseFBA in lines 100–104. In the version of
the model with all fluxes open between each compartment pair
it is likely that there will be some flux through the ATPsynthase
reaction.

34. Which reactions have flux in each state can be determined by
rerunning lines 70–74 with the model of interest.

35. Once reactions that are forming active shuttles are identified by
this method change their bounds to irreversible as in line 76
but with the otherwise open model and then run the
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sparseFBA with the output, eventually a state should be found
with no ATPsynthase flux. For alternative methods seeNote 23.

36. It is also useful to check that various other impossible meta-
bolic functions either do or do not occur. For example water or
oxygen alone should not create ATP or biomass.

37. Glucose and oxygen should, however, be able to produce ATP
in the mitochondria via the electron transport chain. This is
accomplished by opening and closing uptake reactions to rep-
resent different states and assessing the productions of biomass
or ATP.

38. Begin by creating a closed version of the model that has had
infeasible loops removed created in in lines 109–118, this
model allows for secretion of metabolites but not uptake.

39. Then use this model to check if ATP is produced from water by
changing the objective to the demand reaction for cytoplasmic
ATP, line 121, allowing creation of ATP, line 122, opening only
the water uptake flux, line 123, and running FBA in line 124,
the .obj of the variable FBAatph2o should be 0.

40. The process should be repeated for ATP production from
water and oxygen as in lines 126–131. “FBAatph2oo2.obj” in
line 131 should also be 0.

41. Then check if the closed model produces protons in lines 134–
138, this should be repeated with m replaced by c in lines 135–
137 to check both cytoplasmic and mitochondrial protons.
Again “FBAhm.obj” should be 0.

42. If any of the above “FBA.objs” is positive then running lines
70–74 with the relevant FBA and model will illustrate the paths
taken and suggest where reactions may need to be made irre-
versible or removed as in line 76 or 30.

43. Whilst it is important to exclude nonrealistic reactions it is also
useful to check that desirable metabolic functions are possible.
This is straightforward to do for over 100 common human
metabolic features using the “test4HumanFctExt” functions,
in line 140. As at this stage a generic model is being built it
should be able to perform all or most of these functions. For
some of them such as aerobic glucose metabolism to produce
ATP it should also be noted what rate of production is occur-
ring, 32 ATP per mole is expected from glucose under aerobic
conditions. For an alternative method for nonhuman models see
Note 24.

44. The Metabotools section of the CobraToolbox has a function
that applies constraints on uptake exchanges in a model based
on the concentration of metabolites known to be in a given
medium [11]. Uptake of all of the listed compounds is allowed,
the maximum rate of uptake allowed is equivalent to the rate if
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all of the available metabolite in the medium was used in the
time between medium changes (t). Information about medium
composition is often obtainable from the medium distributor
or by mass spectrometry analysis; an estimate of the number of
cells used in a standard culture experiment is also needed and
will depend on the standard experimental conditions of the
user. The cell weight may be obtained from the literature, but
weights of around 1–2 ng (1e–9 g) are typical for mammalian
cells [122]. The code below is adapted from that in the Meta-
botools tutorial [11, 28].

45. Begin by loading the list of exchange reactions related to
medium components from an Excel file in which the names
of the exchanges are found in cells A1–A30 in line 144. The
variable medium composition will appear as a cell array of
30 � 1.

46. Then load the associated concentrations from column B of the
same file, line 146. These will form a 30 � 1 array of doubles
called met_Conc_mM, it is important that these values are in
mMoles per litre of medium (Fig. 2a).

47. Then various metabolites are defined as being allowed to be
taken up, although not in the medium composition, lines 147
and 148. This allows the uptake of substances such as carbon
dioxide, ammonia, and water. This list may be adapted by
removing any that are listed in the experimental medium
used, or where the uptake rate for a specific cell type is known.

48. Further specific constraints, for example oxygen uptake rate are
defined in lines 150–152.

49. The medium_compounds (lines 147 and 148) are constrained
with only a specific uptake rate while customizedConstraints
(lines 150–152) have both a defined uptake (negative) rate and
a defined secretion (positive) rate. Any estimated rates of a
more specific magnitude, for example the oxygen uptake rate
in this example should be expressed as mmol/g dry weight/h.

50. In order that the maximal allowable uptake rates of the
medium components may be applied to the model it is neces-
sary to define the number of cells per mL in the experimental
set up line 155, the cell weight in g (see above) line 156, the
time between medium changes in hours line 157, this is as the
model is defined in mmol/g dry weight/h. Then the value for
the maximum flux magnitude for the model is defined in lines
158 and 159. All of these are applied to the model in line 160.

51. It would now be wise to rerun the section on model feasibility.
Particular attention should be paid to the possibility of having
acquired blocked reactions or dead end metabolites (checked
in lines 40–48) or lost important metabolic functions (checked
in line 140 or Note 24).
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52. It may be possible to solve these problems by altering the
“mediumCompounds” in lines 147–148 or “customizedCon-
straints” lists in lines 150–152 above and rerunning the “set-
MediumConstraints” in line 160. This will have a similar effect
to making the reaction bounds larger by using “changeRxn-
Bounds” run similarly to in line 76 but with nonzero values and
the choice of “l” or “u” to indicate which bound (lower or
upper) is to be changed. It should also be noted that as the
model is now constrained to a specific culture medium it may
be reasonable that some reactions are no longer active and
some metabolic features no longer possible. It will be necessary
to examine the literature to distinguish between appropriate
and inappropriate restrictions.

53. The first step to applying transcriptomic or indeed proteomic
data (either from your own experiments or a database listed in
Notes 3–10) to a model using one of the methods described in
Notes 25–30 is to obtain expression scores related to the gene
identifiers in the base model. This maybe done using an online
conversion tool such as DAVID [123]. In this example a data

Fig. 2 Examples of data formats required for model construction. (a) Format of the Excel files named
mediumfile.xlxs (lines 144 and 146), massspec_info.xlxs (lines 240 and 241). Format for exchange IDs in
(a) and concentration values in (b). (b) Format of gentoent.xlsx (line 164). DAVID output with initial IDs in (a)
and converted IDs (Entrez) in (b). (c) Format of Array IDs (line 165). The array data downloaded from Array
Express (notes in top lines have been removed). (d) Format of SampleTr_A.xlxs (line 184). IDs in the initial
format in A and expression values in (b). (e) Format of massspec_info.xlxs sheet 2 (line 248 and 249).
Exchange IDs and concentrations. (f) Format of massspec_infoALTERNATE.xlxs (line 294). A has information
about sample times, row 1 has exchange IDs and the rest is concentrations
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set from Array express has been downloaded [44], both the
processed data relating to the cell type of interest as a .tab file
(converted to an Excel file by using save as), and a .txt file of the
array information (also converted to Excel).

54. The IDs in the array information have been converted to
EntrezIDs [124](used in RECON2M2 for gene IDs) using
DAVID [125] and the output downloaded and saved as an
Excel file (after conversion from .tab) (Fig. 2b, c).

55. The array information and the conversion to Entrez IDs are
loaded in to MATLAB in lines 164 and 165 then a “for loop” is
used to match the EntrezIDs and add them to the array infor-
mation, lines 167–182.

56. Then in lines 184–197 the data set is loaded and the EntrezIDs
matched to the expression values (Fig. 2d).

57. The “model_medium.genes” (“model_medium” created
above) provides the list of genes for “expressionData.gene”
variable in line 199. Then the final matching takes place with
gene IDs from “model_medium” set as a variable in line 203.

58. But if there are any slight format differences in format then IDs
in the format of the DAVID output are loaded from Excel in
line 202.

59. Either way then matched to the data set accounting for dupli-
cates by using the mean expression value of each occurrence, it
is also possible to ignore the extra values, in lines 204–215. The
output of this stage forms the .value section of the “expres-
sionData” variable.

60. The per gene expression values should be mapped to per
reaction values required for GIMME, iMAT, and, with an
adjustment such that expressed is positive and unexpressed
negative, INIT options in the “createContextSpecificModel”
function, as shown in line 217. Reactions that are not asso-
ciated with the genes identified in the data set are set to a value
of �1.

61. For other options in the “createContextSpecificModel” func-
tion, specifically FastCore, and as two lists (high and medium
importance) MBA, a list of core reactions is required. This may
be defined based on the expressionRxns values and a cutoff
number to define those reactions highly enough expressed to
be classed as core as in line 220.

62. Other reactions may be added based on the literature or other
experiments as in line 221.The selected cutoff is data set specific
and is a parameter that may be adjusted and will affect the final
model output. mCADRE requires a similar structure based on
occurrences in transcriptomic and literature sources separately.
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63. The next step to running the “createContextSpecificModel”
function is to create a structure called options. This contains
the expression data and any extra parameters needed for the
desired pruning method and also defines the method (see
Table 1 for details). The selection of parameters such as the
expression cutoff value (or values) and a threshold for minimal
allowable flux for a reaction to be considered to be active will
affect the completed model. An example is given in lines 223–
226. This sets up the GIMME algorithm; all the options struc-
tures for other methods are shown in Table 1. “createTissue-
SpecificModel” is run in line 228.

64. It may be that it is necessary to run the function “createTissue-
SpecificModel” multiple times with varying parameters. Once
again it would now be wise to rerun the section on model
feasibility. Particularly the loss of important metabolic func-
tions (checked in line 140 or in Note 24). It may be that
rerunning the “createContextSpecificModel” with new para-
meters or another method is necessary. It will be necessary to
examine the literature to distinguish between appropriate and
inappropriate removed reactions and lost functions. Also
checking that uptake reactions for medium metabolites are
retained is possible as in line 230–233. The lengths displayed
in line 231 and 233 should be 0 if all of the metabolites in the
medium and customized constraints are known to be critical,
otherwise examine the variables created in lines 230 and 232 to
see if the losses are acceptable.

65. In order to create a single model using semiquantitative mass
spectrometry data the following adaptation of the Metabotools
method may be used [28]. To begin use either the “model_-
medium” or “tissueModelM4” from line 160 or 229 above and
define it as “modelstart” in line 239.

66. Next define the scope of the data set and the limits of detec-
tion; this will probably be derived from mass spectrometry.
First load, from an Excel file (or as a cell array), a list of the
exchanges representing the compounds in the metabolic data
set line 240.

67. Then, either load a matching list of limits of detection in mM as
an array of doubles as in line 241 (Fig. 2a), or a list of molecular
weights and a list of limits of detection in ng/mL (not shown)
and calculate the mM values as in line 242.

68. Between lines 243 and 247 various potential lists of metabo-
lites, to be excluded or included in lists of secreted metabolites
based on prior knowledge irrespective of the data, are defined.
This includes the special case of essential amino acids. They are
defined as cell arrays of exchange reaction abbreviations.
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69. Then in lines 248 and 249 the exchange reaction names of
measured metabolites and then the measurements are loaded
(Fig. 2e). The measurements do not need to have a particular
unit; they may be peak areas from a chromatogram. The mea-
surements should be loaded in four columns. The first should
represent measurements in blank medium at time one, the
second in blank medium from time two, the third in spent
medium from time one, and the fourth from spent medium
at time two.

70. Normally the input of metabolite measurements would be
repeated for a second data set and the full procedure of Meta-
botools followed; however, the second data set may be made to
match the first as in line 250, although not all of the functions
in Metabotools will then be able to be utilized.

71. The metabolite data is used to define lists of those metabolites
that are secreted (increase between time point one and two) or
are taken up (decrease between measurements) in lines 251 and
252, the related limits of detection are found in lines 253
and 254.

72. The user may then note any metabolites where the data quality
is low and may be ignored in line 255. Metabolites which may
not be measured but which are likely to be exchanged with the
medium, for example salt ions are defined in line 256.

73. This information along with the lists of metabolites secreted
and taken up is then used to constrain the model in line 257.

74. The current method may introduce some lower bounds that
are greater than upper bounds. This problem is checked for and
then corrected, with reference to the predicted uptake or secre-
tion direction, in lines 259–276.

75. Lines 277–280 then further constrain the model according to
the growth rate of the cells, based on the increase in cell weight
over the known doubling time (defined from experience or the
literature). This forces the biomass reaction to take an optimal
value that represents known doubling time.

76. If the user has previously used an expression based pruning
method then they may wish to skip lines 282 and 283. If not,
then using the “expressionData” variable created between lines
164 and 215 define a list of unexpressed genes and then set the
flux through linked reaction to 0 in lines 282 and 283.

77. The constrained model may then be checked for blocked reac-
tions and the necessary metabolic functions (checked in lines
40–48 and line 140 or Note 24).

78. If known functions are lost the above procedure may be
repeated with a longer list of ambiguous metabolites in line
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255 or defined uptake or secretion metabolites in lines 234–237
or bounds may be relaxed as in line 76.

79. However, it may be desirable to leave only the active reactions
for the defined metabolic data (if the user is confident in the
data). In this case lines 285–287 remove all of the inactive
reactions, following this it would be wise to check that all
necessary metabolic functions for the context remain as above
and if not rerun the procedure as described above.

80. The following adaption of the Metabotools method may be
used to create a model based on quantitative metabolomics
data [29]. First an uptake rate must be defined, for example by
taking measurements in culture a few hours apart and using
linear regression to obtain uptake and secretion rates, these
must be normalized for cell weight and in units compatible
with the model.

81. The data should be loaded in a table with the time point the
first column and the exchange reactions associated with each
metabolite in the top row then measurements in nano moles
per liter in the rest of the table (Fig. 2f), as shown in line 294.

82. The cell concentration and weight are used from the medium
definition above (or may be loaded by the user) along with the
experimental volume in liters as in line 296.

83. A regression analysis is run in lines 303–319 for each metabolite
giving a table including the exchange reaction abbreviation, the
predicted flux and the 95% confidence intervals of the flux for
each metabolite.

84. In lines 321–323 this data is arranged into the input format for
the Metabotools functions, a sample name is added.

85. In line 324 the model is defined.

86. Parameters are set up to check if metabolites listed in the data
set are able to be secreted and taken up. These parameters are
the minimum and maximum, lines 325 and 326, flux to be
tested for and the output directory in which to save the results
of the tests, in this case the current path is used in line 327.

87. The test to find which of the measured uptakes and secretions is
possible for the base model is performed in line 328 and the
results are saved.

88. The data lists saved in line 328 are summarized in line 333, the
number of possible exchanges to examine is defined as the
number of uptake or secretion exchanges predicted in the
initial data in lines 330–332.

89. In lines 335 and 336 the solver “ibm_cplex” is set. Then a
minimum growth rate and various metabolites that should be
treated specially are defined, for example peroxide and carbon
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dioxide should not be taken up and oxygen should not be
secreted are defined between line 337 and 343.

90. The model to be used and minimum values for a reaction to be
considered active, and for a number to be considered 0 are set
in lines 344–347.

91. The data is then applied to the model and minimal fluxes are
allowed through other exchanges, two models are the model
outputs of line 348. Within the output structure “ResultsAll-
Cell” lines are two model structures; one is equivalent to the
output of line 280, “modelMin,” and “modelPruned” on the
other hand is equivalent to line 287.

92. Similar checks to those described above to check model func-
tionality should be performed on the models produced above.
It should also be noted that multiple data sets may be used at
once to follow the tutorial exactly as shown online, see the
Metabotools II tutorial [29].

93. FBA determines the optimal flux through a model to maximize
the flux through one reaction [6]. When FBA is performed for
a biomass reaction the maximal cell growth is tested [30]. If
FBA is repeated after a reaction has been blocked by setting
both bounds to 0 and there is no longer growth then the
reaction is considered essential. If a gene is blocked by setting
the bounds of all linked reactions to 0 and there is no longer
growth then the gene is essential. These tests are equivalent to
knocking out a gene or pharmacologically blocking a reaction
in vitro and the results may be compared to experimental data
(your own or from databases such as in Notes 12 and 13).

94. Lines 350–362 alter the bounds of each reaction in the model
to zero in turn. The maximized objective function for each
knock out model is then recorded in a list “GrowthR.”

95. The reactions that result in an objective function of 0 are listed
as “LethalR” and those that reduce the objective to less than a
tolerance defined in line 351 are listed as “SubLethalR.”

96. Lines 364 to 377 produce analogous results for each gene called
“GrowthG,” “LethalG,” and “SubLethalG,” respectively.
These may be presented in a Table such as shown in Fig. 1c.

97. It is more straightforward to compare two models if the two
models are of the same size (contain the same reactions). Two
models built from the same reconstruction will contain a
largely overlapping set of reactions and therefore this process
is fairly straightforward and this is the case described here.
Begin by establishing all of the reactions contained in the two
models, in line 383.

98. Next find the reactions in the original model which are absent
from both and may be deleted, in line 384, then delete them.
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99. Find the reactions that are not in each model, line 385 and
line 386.

100. Use these lists to alter both bounds of these reactions to 0 as
in lines 389 and 395.

101. Then use a “for loop” to change the bounds of each reaction
in turn to match those in “modelA” or “modelB” lines 390–
393 and 396–399. These models may be used for random
sampling and other analyses.

102. First parameters to set up the sampling are defined, the num-
ber of warm up points, how many starting possibilities there
are, the steps per point, how far should the sampling go and
the maximum time allowed, to stop if the sampling takes too
long. These are defined in lines 401–403. The models used are
those defined above in create intersection models.

103. Next the files for the output are defined the points per file
multiplied by the file number should be equal to the steps per
point multiplied by the number of warm up points. These are
defined in lines 405–408.

104. The file name for each model is then defined and then the
sampling is run, in lines 410 and 411 and 413 and 414.

105. The first step to comparing two sampling outputs is to load
the sampling outputs as in lines 418–457, assumed to be from
models with the same number of reactions, although many of
the functions in the CobraToolbox may be used with unequal
models.

106. The next step is to establish the basic statistics such as the
mean, median and standard deviation for each reaction. The
mean is found in line 459–461, mean may be replaced by
median, std., mode, skew, and kurt to calculate other basic
statistics.

107. The ratio between each mean flux in “model_A” and “mod-
el_B” is worked out in line 461–463.

108. Then the Kolmogorov-Smirnov statistics in line 464.

109. Between lines 467 and 476 the reaction IDs and abbreviations
of reactions which reach a significance level of 0.01 are iden-
tified as are those either up regulated in “model_A” or upre-
gulated in “model_B”.

110. In lines 478 and 479 the two sets of upregulated reactions are
subjected to enrichment analysis to find over represented
metabolic subSytems.

111. In line 481 sample histograms of significantly altered reactions
are plotted or a bubble plot showing the subsystem distribu-
tion of reactions that are different in the two models
(Fig. 1b).
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112. The output from the random sampling may be used to gen-
erate a map similar to Fig. 1a. One generates a file with
RECON 2 reaction ids, and the corresponding median flux
values for every reaction in both models.

113. This is loaded onto a previously generated flux map in
[126, 127] and the relative flux difference can be viewed in
all reactions in the map.

114. If the two models share an origin, or represent cells that are in
different stages of differentiation, it can be useful to use
MOMA. MOMA analysis is carried out in line 485, which
outputs a solution vector B, solution vector A and total flux
difference between the vectors. Solution vector B represents
the adjusted flux distribution of model A, which is closer to
the optimized flux distribution of model B.

115. Between lines 489 and 502, the adjusted reactions are being
ranked and sorted based on their “adjustment amount,” that
is, how much the reaction needs to be adjusted for A to
become more like B.

116. In lines 505 and 506, the 100 reactions that needed the most
adjustment are used for enrichment analysis, which reveals the
subsystems significantly enriched in the adjusted reactions.
These subsystems are the ones that need the highest amount
of adjustment for A to take on a phenotype closer to B
(differentiation, EMT, etc.).

4 Notes

1. CobraPy.
COBRAPy is designed as a way of better tackling the

“complexity inherent in integrated biological networks” and a
better “framework for the multiomics data used in systems
biology”; moreover, as it is based on the free Python and not
the commercial MATLAB, it is more accessible. It is also cur-
rently possible to allow interactions between COBRAPy and
the COBRAToolbox [128].

2. RavenToolbox.
RAVEN (Reconstruction, Analysis, and Visualization of

Metabolic Networks) Toolbox was originally described as “a
software suite that allows for semiautomated reconstruction of
genome-scale models. It makes use of published models
and/or the KEGG database, coupled with extensive
gap-filling and quality control features” in 2013 [129]. It has
since been updated to a second version RAVEN Toolbox 2.0
additional features include “(a) de novo reconstruction of
GEMs based on the MetaCyc pathway database; (b) a
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redesigned KEGG-based reconstruction pipeline;
(c) convergence of reconstructions from various sources;
(d) improved performance, usability, and compatibility with
the COBRA Toolbox” [97]. A particular feature of the
RAVEN Toolbox is its links to various metabolic databases to
enable the reconstruction of GEMs based on the information
contained in them.

3. Array Express.
Array express is a database of publically available transcrip-

tomic data. It is maintained by the Functional Genomics team
of EMBL-EBI and contains both sequence and microarray
data. It currently contains details of over 70,000 experiments
either directly uploaded or submitted by the NCBI Gene
Expression Omnibus [44]. Processed data is downloadable in
a tab-delimited format for most experiments. Array Express
data is also downloadable via a Bioconductor package in R
[45]. Data in the Array Express fulfils the Minimum Informa-
tion about a Microarray Experiment (MIAME) [130] or Mini-
mum Information about a Sequencing Experiment (MIASE)
[131] standard depending on the data source.

4. Gene Expression Omnibus.
The Gene Expression Omnibus (GEO) is a repository for

microarray and next generation sequencing data sets [47]. It
was established by the National Center for Biotechnology
Information (NCBI) and contains around 20,000 data sets.
Its guidelines for uploading data mirror MIAME and MIASE
standards.

5. PRIDE.
The PRIDE (Proteomics Identifications) archive is a data-

base of mass spectrometry proteomics data [49]. It provides
expression data and protein and peptide identifications. It
complies with the standards of the Proteome Exchange Con-
sortium [51] and data is available via the website as well as a
stand-alone inspection tool.

6. Peptide Atlas.
Peptide Atlas is a database maintained by the Seattle Prote-

ome Center [51]. Its aim is to provide a publically accessible
database of information from high-throughput proteomics
experiments in order to annotate eukaryotic genomes with
experimentally validated expression information. Peptides are
identified and may be accessed via the database web page and
are linked to ENSMBL identifiers [52]. It is also a member of
the Proteome Exchange.

7. MASSive.
The Center for Computational Mass Spectrometry at the

University of California, San Diego maintains a database of
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mass spectrometry-based proteomic data that contains over
9000 data sets [53]. This is another member of the Proteome
Exchange consortium and therefore the MASSive data sets
contain compatible identifiers. The website offers both analyti-
cal tools and the ability to download data sets.

8. iProX.
The integrated proteome resources center is a Chinese run

repository for proteomics data that is a member of the Prote-
ome Exchange consortium [55]. It provides a database from
which proteomic data sets may be downloaded, data sets have
proteome exchange consortium identifiers and follow prote-
ome exchange consortium guidelines. It currently contains
around 500 data sets (200 public) and about 110,000 data
files.

9. Japan ProteOme STandard Repository.
The Japan Proteome Standard Repository (JPOST) is a

data repository for proteomic mass spectrometry data in either
raw or processed format [57]. It is a member of, and assigns
identifiers for, the Proteome Exchange Consortium. It may be
accessed via an online interface. It contains over 400 projects
related to 82 species.

10. The Human Protein Atlas.
The human protein atlas provides information about the

tissue, cell, organelle, and pathological condition specific
expression of proteins in humans [25]. This is based on a
combination of antibody-based images, mass spectrometry,
and transcriptomics. A more recent addition is information
on mouse brain protein expression. The data from the human
protein atlas has been used to parameterize tissue specific met-
abolic models [25].

11. MetaboLights.
Metabolights is a repository for metabolomics data sets it is

maintained by the European Bioinformatics Institute [60]. It
provides data sets from multiple species from both mass spec-
trometry and nucleic magnetic resonance experiments. Some
of the data relates to cultured cells and some to clinical samples.
It is associated with the Metabolomics Standards Initiative.

12. Genome RNAi.
Is a repository for RNAi screens in Drosophila and human

cell lines [62]. It contains around 700 experiments detailing
the phenotypic outcome of RNAi experiments and may be
useful for confirming the outputs of gene and reaction essenti-
ality described in Section Xi below.

13. The Database of Genotypes and Phenotypes, The European
Genome-Phenome Archive, and The Japanese Genotype-
Phenotype Archive.
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The database of genotypes and phenotypes (dbGaP) is an
NCBI maintained repository for data sets describing geno-
type–phenotype interactions in human derived data [66]. Simi-
lar databases are maintained in Europe, the European
Genome-Phenome Archive [67], by the Center for Genomic
Regulation and the European Bioinformatics Institute, and
Japan, The Japanese Genotype-Phenotype Archive [62], main-
tained by the National Bioscience Database Center (NBDC) of
Japan Science and Technology Agency. These databases may be
useful for confirming the results of models of human metabo-
lism by allowing checks to be made on the clinical features of
genetic alterations predicted as important by a model.

14. KEGG.
KEGG is a database of genes and genomes, as well as

metabolite, metabolic pathways, and drugs. It is made of a
collection of 18 databases representing different aspects of
biology covering, information on how systems are connected
together, how genes function, chemical compounds important
to biology and how underlying biology causes health
problems [30].

15. MetaCyc.
MetaCyc is a database of metabolic reactions, enzymes, and

related chemicals [52]. The information is arranged in meta-
bolic pathways which are in turn collected into networks called
super-pathways. The data covers eukaryotes, prokaryotes, and
archaea. The database can be searched online or has files avail-
able for download.

16. BRENDA.
BRENDA is a large collection of information on enzymes,

their activity, inhibition and expression. Where possible
BRENDA uses enzyme commission (EC) classification num-
bers. This allows for the identification of enzymes according to
various levels of their function and allows for the identification
of similar enzymes [105, 106].

17. Reactome.
Reactome is an EBI maintained comprehensive database of

biological reactions in the broadest sense, of any change to a
biological molecule. This includes metabolic pathways. Reac-
tome may be used to identify the scope of metabolic pathways
and also to compare orthologues between humans and various
other species [105].

18. BioModels database.
The biomodels database is a repository for biological mod-

els including COBRA models [109]. It allows the download of
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models in the systems biology mark-up language (SBML)
[110], this is compatible with the CobraToolbox. Models in
the repository are generally initially uploaded uncurated and
are marked as such; however, many are curated and therefore
may be considered as a more solid base for future exploration.
There is also a set of automatically generated metabolic models
from a project called path2models based on metabolic
databases [111].

19. Installing the MATLAB license.
The MATLAB license may be free to acquire for students

and academics or your institution may have a licence, if not you
will need to purchase one.

20. Installing other solvers.
Not all have been fully compatibility tested for CobraTool-

box with Windows 10. Ensure that the version of the solver is
compatible with the version of MATLAB. The IBM Cplex and
Gurobi solvers are both available for free to academics.

21. Selecting a base model.
There are several GEMs available for commonly researched

species and many are downloadable as either .mat (MATLAB)
files or .xml (systems biology mark-up language) files from
either author maintained websites or repositories such as the
BioModels database, see above in Subheading 2 for model
databases and publications that frequently contain models as
supplementary material. The selection of a particular model
largely depends on the species chosen, and in general the
most up-to-date version would be recommended. However,
if a user has a particular interest in a specific area of metabolism
then checking that the area of interest is extensively included
and curated may result in another choice, it is best to read the
peer reviewed article describing the model to determine this.
Other considerations such as the use of identifiers or annota-
tions that are consistent with other information sources may
play a part in model selection, for example RECON3D [69] is
compatible with AGORA [99] bacterial models allowing for
easy integration into a multispecies model while Recon2m2
[14] has provided multiple versions with various labeling sys-
tems for metabolites and genes allowing easy integration with
other data sets. It is also possible to select a reduced metabolic
model reconstruction focusing on a narrower area of metabo-
lism such as MitoCore [132].

22. Fast Gap Fill.
It may also be possible to apply the automated “fastGap-

fill” function to add reactions, this is described in the
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CobraToolbox tutorial of the same name [17, 133]. However,
the user has more control of the reactions added if performed
manually. This may reduce the time needed for the steps below.

23. Thermodynamic constraint.
The above procedure checks the feasibility of producing

ATP in the mitochondria and helps to ensure thermodynamic
consistency, and biochemically sensible reversible reactions.
However, there are also functions available that apply facts
about the Gibbs free energy of metabolites found in databases
in order to apply thermodynamic constraints, one matTFA is
downloadable from github and includes a version of the Cobra-
Toolbox [134, 135]. The option available in the CobraToolbox
is not available for Windows but is, if the CobraToolbox is
installed on a linux machine there is also an alternative method
available [136–138] that uses CobraToolbox functions [139].

24. Checking metabolic functions of a model.
If you are not using a humanmodel then use the testPathway

function to achieve similar effects with other species, you will
need to apply appropriate uptake exchange constraints and
obtain theoretically correct production fluxes from the literature.
“[Flux, FBAsolution, model] ¼ testPathway(model, MetIn,
MetOut, AdditionalMetsInorOut, ObjectiveOption)” [140].

25. FastCore [9].
Fastcore is a model pruning algorithm of the MBA-like

type [7], building models based on a consistent generic model
and containing a core set of reactions, known to be expressed,
linked by other necessary reactions to create a consistent
model. It is implemented within the CobraToolbox, as part
of the createContextSpecificModel function. One of the attrac-
tions of this method is its speed, this may allow for the testing
ofmultiple cutoffs for inclusion in the core reaction set [9]. Fas-
tcore also claims to balance model compactness with the inclu-
sion of redundant pathways, provided that there are core
reactions present in both pathways.

26. GIMME [5].
Gene Inactivity Moderated by Metabolism and Expression

or GIMME algorithm is another model pruning method
implemented in the CobraToolbox within the createTissue-
SpecificModel function. According to Opdam et al. it lies
within its own group [7]. It functions by removing reactions
from a base model and then adding reactions back in until
required metabolic functions, the biomass objective function,
are feasible [5]. It is possible that the selection of the required
metabolic functions may overly influence which reactions are
included [4, 7], reactions that are lowly expressed but respon-
sible for production of biomass will be included, this
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assumption may be less appropriate in mammalian cells than in
bacteria.

27. iMAT [24].
iMAT is a method for pruning metabolic models based on

the closely related INIT method (see below), it is one of those
implemented in the CobraToolbox. iMAT operates in a similar
manner to INIT [7, 141], described below, but, in the Cobra-
Toolbox implementations, iMAT allows for more definition of
thresholds for exclusion of low expression genes and inclusion
of high expression genes and a user defined core set of reac-
tions, which may not have high expression but can be defined
based on user knowledge of the system.

28. INIT [25].
The INIT algorithm or integrative network inference for

tissues is also implemented in the createTissueSpecificModel
function of the CobraToolbox. INIT requires the input of gene
expression data and a base model, it then optimizes the exclu-
sion of the lowly expressed reactions versus inclusion of highly
expressed genes [25]. In the analysis by Opdam et al. INIT was
one of the most accurate techniques with respect to prediction
of essential genes; however, it also showed high variability
depending on the thresholds selected for gene inclusion and
exclusion [7].

29. MBA [26].
The Model Building Algorithm or MBA may be imple-

mented via the createTissueSpecificModel function in the
CobraToolbox. It requires a list of high and a list of moderately
expressed reactions and a generic model. The aim is then to
find the smallest consistent model that includes all of the highly
expressed reactions and the necessary moderately expressed
reactions [26]. According to Opdam et al. the MBA algorithm
is one of the most accurate with respect to gene essentiality
prediction [7].

30. mCADRE [8].
Metabolic Context-specificity Assessed by Deterministic

Reaction Evaluation or mCADRE is the sixth and final meta-
bolic model pruning algorithm available via the CobraTool-
box. mCADRE uses a core set of highly expressed reactions
with other reactions ranked according to their expression and
connectivity, reactions are then removed according to their
ranking until a model is obtained that is the smallest model
consistent with the required metabolic functions
[8]. mCADRE has been identified by Opdam et al. as one of
the most accurate at predicting gene essentiality but with a
tendency to remove genes with a moderately high expression
if linked to reactions of lower expression [7].
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5 Script

1 %%%%%%%%%%i. Install software

2 %%%%%%%%TO BE PERFORMED IN GITBASH NOT MATLAB

3 %%% $ git clone --depth=1 https://github.com/opencobra/cobratoolbox.git↙

cobratoolbox

4 %%%%%%%%Beginning of Matlab Code

5 initCobraToolbox %% Intitiate the cobratoolbox, this will display the avaliable↙

solvers

6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8 %%%%%%%%%%ii. Select and load genome scale metabolic reconstruction

9 %%Usage of the read SBML function to load Recon2.2

10 %%%%%model = readSBML(fileName, defaultBound) the read SBML function

11 Recon2 = readSBML(’RECON2m2.xml’,1000);

12 Recon2 = readSBML(’C:/Documents/RECON2m2.xml’,1000);

13 %%Usage of the read cobra model function to load Recon2.2

14

15 Recon2 = readCBModel(’RECON2m2.mat’);

16

17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

18 %%%%%%%%%%iii. Ensure reconstruction feasibility

19 %%%%%%%%%%iii.i Checking the biomass function

20 %%Usage of the check objective function to check that the model has the

21 %%biomass function as the objective and check it’s compostion

22 %%%%%objectiveAbbr = checkObjective(model)

23 objectiveR2 = checkObjective(Recon2)%For Recon2.2 this is ’biomass_reaction’ and↙

they could be used interchangeably below

24

25 printRxnFormula(Recon2,objectiveR2)

26

27 [R2newBiomass,~] = addReaction(Recon2,’new_biomass’,’20.6508 h2o[c] + 20.7045

atp↙

[c] + 0.385872 glu_L[c] + 0.352607 asp_L[c] + 0.036117 gtp[c] + 0.505626 ala_L[c] +↙

0.279425 asn_L[c] + 0.046571 cys_L[c] + 0.325996 gln_L[c] + 0.538891 gly[c] +

0.392525↙

ser_L[c] + 0.31269 thr_L[c] + 0.592114 lys_L[c] + 0.35926 arg_L[c] + 0.153018 met_L

[c]↙

+ 0.023315 pail_hs[c] + 0.039036 ctp[c] + 0.154463 pchol_hs[c] + 0.055374 pe_hs[c] +↙

0.020401 chsterol[c] + 0.002914 pglyc_hs[c] + 0.011658 clpn_hs[c] + 0.009898 dgtp

[n] +↙

0.009442 dctp[n] + 0.013183 datp[n] + 0.053446 utp[c] + 0.013091 dttp[n] + 0.275194↙

g6p[c] + 0.126406 his_L[c] + 0.159671 tyr_L[c] + 0.286078 ile_L[c] + 0.545544 leu_L

[c]↙

+ 0.013306 trp_L[c] + 0.259466 phe_L[c] + 0.412484 pro_L[c] + 0.005829 ps_hs[c] +↙
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0.017486 sphmyln_hs[c] + 0.352607 val_L[c] -> 20.6508 h[c] + 20.6508 adp[c] +

20.6508↙

pi[c] ’);%biomass reaction from Recon3D

28

29 R2newBiomass = changeObjective(R2newBiomass,’new_biomass’);

30

31 R2newBiomass = removeRxns(R2newBiomass,’biomass_reaction’);

32

33 surfNet(Recon2,’biomass_reaction’)%Click on a blue highlighted component in the↙

output to see more detail about that component

34

35 trprxns = findRxnsFromMets(Recon2,’trp_L[c]’);

36 trprxnsnotBM = setdiff(DNA,objectiveAbbr);%%%Ignores the biomass reaction

37 printRxnFormula(RECON2_econ2,trprxnsnotBM)

38 %%%%%%%%%%iii.ii Checking reaction activity and metabolite usage

39

40 outputMets = detectDeadEnds(Recon2);

41 DeadEnds = model.mets(outputMets);

42 [rxnList, rxnFormulaList] = findRxnsFromMets(Recon2, DeadEnds);

43 Recon2.lb(find(ismember(Recon2.rxns,rxnList)));

44 Recon2.ub(find(ismember(Recon2.rxns,rxnList)));

45

46 [allGaps, rootGaps, downstreamGaps] = gapFind(Recon2, ’true’);%%%Find gaps that↙

are not at the end of a pathway, downstream gaps

47

48 BlockedReactions = findBlockedReaction(Recon2);%%%Find reactions that are not

able↙

to carry flux under the given conditions

49

50 %%%%%%%%%%iii.iii Checking the chemical feasibility of the model

51 %%%Identify exchanges

52 if ~isfield(Recon2,’SIntRxnBool’)

53 Recon2 = findSExRxnInd(Recon2,size(Recon2.S,1),1);

54 end

55 %%%Close exchanges

56 Recon2close = Recon2;

57 Recon2close.lb(~Recon2close.SIntRxnBool)=0;

58 Recon2close.ub(~Recon2close.SIntRxnBool)=0;

59 %%%Set up optional variables for flux balance analysis so that it optimizes

60 %%%for ATPsynthase by sparse FBA

61 Recon2atp = changeObjective(Recon2close,’ATPS4m’);%change objective to ATP-

Synthase

62 osenseStr=’max’;%Maximise

63 minNorm=’zero’;

64 allowLoops=1;

65 zeroNormApprox=’all’;%test all approximations available and return the best one

66 sparseFBAsolutionBounded = optimizeCbModel(Recon2atp, osenseStr, minNorm,↙

allowLoops, zeroNormApprox);

67 sparseFBAsolutionBounded.obj
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68 %%%Find the reactions with flux above a cutoff value

69 cutoff= 1e-6;

70 for n=1:nRxn

71 if abs(sparseFBAsolutionBounded.v(n))>cutoff

72 formula=printRxnFormula(Recon2atp, Recon2atp.rxns{n}, 0);

73 end

74 end

75 %%%Alter the lower bound of some reactions to 0 making them irreversible

76 Recon2irrev1 = changeRxnBounds(Recon2,selectedRxns,0,’l’);

77 %%%Set up the above model with closed exchanges so that it has open

78 %%%reversible internal reactions

79 Recon2atpopen = Recon2atp;

80 Recon2atpopen.lb(Recon2atpopen.SIntRxnBool)=-1000;%%open bounds in negative↙

direction

81 Recon2atpopen.ub(Recon2atpopen.SIntRxnBool)=1000;%%open bounds in positive↙

direction

82 sparseFBAsolutionUnBounded = optimizeCbModel(Recon2atpopen, osenseStr, minNorm,↙

allowLoops, zeroNormApprox);

83 sparseFBAsolutionBounded.obj %Possibly non-zero

84 %%%Set up the above model with closed exchanges and all open transport

85 %%%reactions

86 allTransportRxnBool=transportReactionBool(RECON2m2atp);

87 Recon2atptr = RECON2m2atp;

88 Recon2atptr.lb(allTransportRxnBool)=-1000;

89 Recon2atptr.ub(allTransportRxnBool)=1000;

90 sparseFBAsolutionBounded = optimizeCbModel(Recon2atptr, osenseStr, minNorm,↙

allowLoops, zeroNormApprox);

91 sparseFBAsolutionBounded.obj%Is likely to be non-zero

92 %%%Set up the above model with closed exchanges and sets of open transport

93 %%%reactions between two compartments

94 originCompartment=’c’;% origin cytoplasm or e for extracellular to check plasma↙

membrane

95 destinationCompartment=’m’;% destination m (mitochondria) but also check other↙

compartments x,g,r,l or c for plasma membrane

96 unidirectionalBool=0;

97 cmTransportRxnBool=transportReactionBool(Recon2atp,originCompartment,↙

destinationCompartment,unidirectionalBool);

98 %%%%Return to the version with closed exchanges and internal reactions as

99 %%%%established RECON2m2atp

100 Recon2atptrcm = RECON2m2atp;

101 Recon2atptrcm.lb(cmTransportRxnBool)=-1000;%%%Open all selected transport↙

reactions (c to m) in negative direction

102 Recon2atptrcm.ub(cmTransportRxnBool)=1000;%%%Open all selected transport reac-

tions↙

(c to m) in positive direction

103 sparseFBAsolutionBounded = optimizeCbModel(Recon2atptrcm, osenseStr, minNorm,↙

allowLoops, zeroNormApprox);

104 sparseFBAsolutionBounded.obj
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105 %%%%Repeat for other pairs of compartments

106

107 %%%%%%%%%%iii.iv Other metabolic features to be checked

108 %%%Set up a closed version of the model

109 modelClosed = Recon2irrev1;%Use the final version of the model produced after

the↙

end of section iii.iii

110 modelexchanges1 = strmatch(’Ex_’,modelClosed.rxns);

111 modelexchanges2 = strmatch(’DM_’,modelClosed.rxns);

112 modelexchanges3 = strmatch(’sink_’,modelClosed.rxns);

113 modelexchanges4 = strmatch(’EX_’,modelClosed.rxns);

114 selExc = (find( full((sum(abs(modelClosed.S)==1,1) ==1) & (sum(modelClosed.

S~=0)↙

== 1))))’;

115 modelexchanges = unique([modelexchanges1;modelexchanges2;modelexchanges3;

modelexchanges4;selExc]);↙

116 modelClosed.lb(find(ismember(modelClosed.rxns,modelClosed.rxns(modelex-

changes))))↙

=0;

117 modelClosed.ub(find(ismember(modelClosed.rxns,modelClosed.rxns(modelex-

changes))))↙

=1000;

118 modelClosedOri = modelClosed;

119 %%%%Check if you get ATP from water (you shouldn’t)

120 modelClosed = modelClosedOri;

121 modelClosedATP = changeObjective(modelClosed,’DM_atp_c_’);

122 modelClosedATP = changeRxnBounds(modelClosedATP,’DM_atp_c_’,0,’l’);

123 modelClosedATP = changeRxnBounds(modelClosedATP,’EX_h2o[e]’,-1,’l’);

124 FBAatph2o=optimizeCbModel(modelClosedATP);

125 %%%%Check if you get ATP from water and oxygen (you shouldn’t)

126 modelClosed = modelClosedOri;

127 modelClosedATP = changeObjective(modelClosed,’DM_atp_c_’);

128 modelClosedATP = changeRxnBounds(modelClosedATP,’DM_atp_c_’,0,’l’);

129 modelClosedATP = changeRxnBounds(modelClosedATP,’EX_h2o[e]’,-1,’l’);

130 modelClosedATP = changeRxnBounds(modelClosedATP,’EX_o2[e]’,-1,’l’);

131 FBAatph2oo2=optimizeCbModel(modelClosedATP);

132 %%%Check if you make protons (m and c will need to be done separately for

133 %%%cytoplasm and mitochondria) (you don’t want it to)

134 modelClosed = modelClosedOri;

135 modelClosed = addDemandReaction(modelClosed,’h[m]’);%%switch m for c

136 modelClosed = changeObjective(modelClosed,’DM_h[m]’);%%switch m for c

137 modelClosed.ub(find(ismember(modelClosed.rxns,’DM_h[m]’))) = 1000;%%switch m for

c

138 FBAhm = optimizeCbModel(modelClosed,’max’);%%switch m for c

139 %%%Check important metabolic features in a human model

140 [TestSolution,TestSolutionName,~,~] = test4HumanFctExt(Recon2,’Recon1’);

141

142 %%%%%%%%%%iv. Apply constraints based on medium composition
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143 % Exchanges associated with medium read from an excel file

144 medium_composition = xlsread(’medium_file.xlsx’,1,’A1:A30’);%Figure 1a

145 % Medium concentrations associated with above exchanges read from an excel file

146 met_Conc_mM = xlsread(’medium_file.xlsx’,1,’B1:B30’);%Figure 1a

147 mediumCompounds = {’EX_co2(e)’;’EX_h(e)’;’EX_h2o(e)’;’EX_hco3(e)’;’EX_nh4↙

(e)’;’EX_pi(e)’;’EX_so4(e)’};

148 mediumCompounds_lb = -100;

149 %%%% Any other constraints needed

150 customizedConstraints = {’EX_o2(e)’;’EX_strch1(e)’;’EX_acetone(e)’;’EX_glc↙

(e)’;’EX_his_L(e)’;’EX_val_L(e)’;’EX_met_L(e)’};

151 customizedConstraints_lb = [-2.3460;0;0;-500;-100;-100;-100];

152 customizedConstraints_ub = [500;0;0;500;500;500;500];

153 %%%Basic experimental information such as cell number, volume and weight

154 %%%and frequency of medium changes

155 cellConc = 2.17 ∗ 1e6;

156 cellWeight = 3.645e-12;

157 t = 48;

158 current_inf = 1000;

159 set_inf = 1000;

160 [modelMedium, ~] = setMediumConstraints(RECON2m2, set_inf, current_inf,↙

medium_composition, met_Conc_mM, cellConc,t, cellWeight, mediumCompounds,↙

mediumCompounds_lb, customizedConstraints, customizedConstraints_ub,↙

customizedConstraints_lb);

161

162 %%%%%%%%%%v. Apply constraints based on expression data (transcript/proteomic)

163 %%%% Import the data set list of IDs and the conversion list

164 [~,bgentoent,cgentoent] = xlsread(’gentoent.xlsx’);%Figure 1b

165 [~,bgentoaffy,~] = xlsread(’ArrayIDs.xlsx’);%Figure 1c

166 %%%% Match the IDs in the data set to their converted equivalent

167 k = 1;

168 for i = 1:length(bgentoaffy)

169 if isempty(bgentoaffy(i,2)) == 1

170 k = k + 0;

171 else

172 a = find(ismember(bgentoent,bgentoaffy(i,2)));

173 if length(a) == 0

174 k = k + 0;

175 else

176 for j = 1:length(a)

177 IDs(k,:) = [bgentoaffy(i,:),cell2mat(cgentoent(a(j),2))];

178 k = k + 1;

179 end

180 end

181 end

182 end

183 %%%%Read in the data set

184 [~,bsampleTr_A,csampleTr_A] = xlsread(’sampleTr_A.xlsx’);%Figure 1d

185 %%%%Match the converted IDs
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186 k = 1;

187 for i = 1:length(IDs)

188 a = find(ismember(bsampleTr_A,IDs(i,1)));

189 if length(a) == 0

190 k = k + 0;

191 else

192 for j = 1:length(a)

193 Aid(k,:) = [csampleTr_A(a(j),:),IDs(i,4)];

194 k = k + 1;

195 end

196 end

197 end

198 %%%%Define expressionData.gene for use later

199 expressionDataA.gene = modelMedium.genes;

200 % %%%%Load in a gene list from excel in which the format exactly matches the

201 % %%%%DAVID output

202 % [gmatch,~,~] = xlsread(’mediumgenes.xlsx’);

203 gmatch = modelMedium.genes;

204 %%%%Match the IDs to the model genes and deal with duplicates

205 for i = 1:length(modelMedium.genes)

206 a = gmatch(i);

207 bsampleTr_A = find(cell2mat(Aid(:,3)) == a);

208 if length(bsampleTr_A) == 0

209 expressionDataA.value(i) = 0;

210 elseif length(bsampleTr_A) == 1

211 expressionDataA.value(i) = cell2mat(Aid(bsampleTr_A,2));

212 else

213 expressionDataA.value(i) = mean(cell2mat(Aid(bsampleTr_A,2)));

214 end

215 end

216 expressionDataA.value = transpose(expressionDataA.value);

217 %%%%Map genes to reactions

218 [expressionRxnsA,~] = mapExpressionToReactions(modelMedium,expressionDataA);

219 %%%%Define core reactions from expression

220 cutoff = 0.1,

221 coreA = modelMedium.rxns(find(expressionRxnsA >= cutoff));

222 coreA = vertcat(coreA,’PFK’);

223 %%%%Setup options and run create tissue specific model

224 optionsA.solver = ’GIMME’;

225 optionsA.expressionRxnsM4

226 optionsA.threshold = 0.1;

227 %%%%%optionsM4.obj_frac%optional option to allow a model to be created with

228 %%%%%less flux through the biomass reaction, the default is 0.9

229 tissueModelA = createTissueSpecificModel(model_Medium, optionsA);

230 %%%%Check medium metabolites retained

231 missing_med = setdiff(medium_composition,tissueModelA.rxns);

232 length(missing_med)

233 missing_cust = setdiff(customizedConstraints,tissueModelA.rxns);
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234 length(missing_cust)

235

236 %%%%%%%%%%vi. Apply reaction flux constraints from specific metabolomics data

237 %%%%%%vi.i Semi-quantitative

238 %%%%Read in all of the data

239 modelstart = tissueModelA;% or modelMedium

240 ex_RXNS = xlsread(’massspec_info.xlsx’,1,’A1:A30’);%Figure 1a

241 lod_mM = xlsread(’massspec_info.xlsx’,1,’B1:B30’);%Figure 1a

242 %[lod_mM] = calculateLODs(theo_mass, lod_ngmL);

243 exclude_upt = {};

244 exclude_secr = {};

245 add_upt = {};

246 add_secr = {};

247 essAA_excl = {’EX_his_L(e)’; ’EX_ile_L(e)’; ’EX_leu_L(e)’; ’EX_lys_L(e)’;↙

’EX_met_L(e)’;’EX_phe_L(e)’; ’EX_thr_L(e)’; ’EX_trp_L(e)’; ’EX_val_L(e)’};

248 data_RXNS = xlsread(’massspec_info.xlsx’,2,’A1:A25’);%Figure 1e

249 input_A = xlsread(’massspec_info.xlsx’,2,’B1:E25’);% control TP 1 control TP 2↙

Cond TP 1 Cond TP 2%Figure 1e

250 input_B = input_A;

251 tol = 0.05;

252 [cond1_uptake, ~, cond1_secretion, ~, ~] = defineUptakeSecretionProfiles(inpu-

t_A,↙

input_B, data_RXNS, tol, essAA_excl, exclude_upt, exclude_secr, add_secr, add_upt);

253 cond1_uptake_LODs(:,1) = lod_mM(find(ismember(ex_RXNS, cond1_uptake(:))));

254 cond1_secretion_LODs(:,1) = lod_mM(find(ismember(ex_RXNS, cond1_secretion(:))));

255 ambiguous_metabolites = {};

256 basisMedium = {’EX_o2(e)’; ’EX_strch1(e)’; ’EX_acetone(e)’; ’EX_glc(e)’; ’EX_-

his_L↙

(e)’; ’EX_ca2(e)’; ’EX_cl(e)’; ’EX_co(e)’;’EX_fe2(e)’; ’EX_fe3(e)’; ’EX_k(e)’;

’EX_na1↙

(e)’; ’EX_i(e)’; ’EX_sel(e)’; ’EX_co2(e)’; ’EX_h(e)’; ’EX_h2o(e)’; ’EX_hco3↙

(e)’;’EX_nh4(e)’; ’EX_o2(e)’; ’EX_pi(e)’; ’EX_so4(e)’};

257 [model_A] = setQualitativeConstraints(modelatart, cond1_uptake, cond1_uptake_-

LODs,↙

cond1_secretion, cond1_secretion_LODs,cellConc, t, cellWeight, ambiguous_metabo-

lites,↙

basisMedium);%celConc,t and cellWeight defined with medium

258 %%%%%Check that the bounds make sense

259 switched = model_A.rxns(find(model_A.lb > model_A.ub));%%%%Bounds set the wrong↙

way round

260 switcheduptk = intersect(cond1_uptake,switched);

261 switchedsecr = intersect(cond1_secretion,switched);

262 switchedidx = find(model_A.lb > model_A.ub);

263 %%%%%Put them the right way (depending on uptake or secretion

264 for i = 1:length(switched)

265

266 if ismember(switcheduptk,switched(i)) == 1

267 model_A.lb(switchedidx(i)) = mean(model_A.lb(find(ismember(model_A.
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rxns,↙

cond1_uptake))));

268 model_A.ub(switchedidx(i)) = mean(model_A.ub(find(ismember(model_A.rxns,↙

cond1_uptake))));

269 elseif ismember(switchedsecr,switched(i)) == 1

270 model_A.lb(switchedidx(i)) = mean(model_A.lb(find(ismember(model_A.rxns,↙

cond1_secretion))));

271 model_A.ub(switchedidx(i)) = mean(model_A.ub(find(ismember(model_A.rxns,↙

cond1_secretion))));

272 else

273 model_A.lb(switchedidx(i)) = mean(model_A.lb);

274 model_A.ub(switchedidx(i)) = mean(model_A.ub);

275 end

276 end

277 GrowthRxn = ’biomass_reaction’;

278 tolerance = 20;

279 doublingTimeA = 19.6; %MOLT4 cells

280 [model_A_BM] = setConstraintsOnBiomassReaction(modelA, GrowthRxn, doublingTi-

meA,↙

tolerance);

281

282 % dataGenes = expressionData.gene(find(expressionData.value < 0)); % set of

genes↙

absent

283 % [model_A_GE] = integrateGeneExpressionData(model_A_BM, dataGenes);

284

285 % theshold = 1e-6;

286 % model = model_A_GE;

287 % [model_Afinal] = extractConditionSpecificModel(model, theshold);

288

289 %%%%%vi.i Quantitative

290 %%%Perform regression to find data

291 % % Convert concentration data from MS to flux data

292 % % Use regression to fit a line through all data points and use slope as change↙

in concentration and convert it to flux.

293 % % Unit of flux: micromol/gmDryWt/hr

294 [NUM1,TXT1,RAW1] = xlsread(’massspec_infoALTERNATE.xlsx’,1,’A1:AT13’); %New data

%↙

Figure 1f

295 metNames = TXT1(1,2:end);

296 Vol = 0.001; %L New data

297 tp1 = 4;hrs

298 tp2 = 8;hrs

299 tp3 = 24;hrs

300 %%%Cell Weight and concentration as above

301 %% HUVEC

302 fluxdata = [{’Metabolites’},{’Rate’},{’LB’},{’UB’}];

303 for i = 2:length(TXT1)
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304 time0 = NUM1((find(NUM1(:,1) == 0)),i);

305 time1 = NUM1((find(NUM1(:,1) == tp1)),i);

306 time2 = NUM1((find(NUM1(:,1) == tp2)),i);

307 time3 = NUM1((find(NUM1(:,1) == tp3)),i);

308

309 y= [transpose(time0);transpose(time1);transpose(time2);transpose(time3)];

310 x = [0;tp1;tp2;tp3];

311 xreg = cat(2,[x;x;x],ones(3∗length(x),1));

312 [b,bint] = regress([y(:,1);y(:,2);y(:,3)],xreg);

313

314 flux = (Vol∗((b(1)/(cellConc∗cellWeight)))∗1000); % micromol/gmDryWT/hr

315 lb = (Vol∗((bint(1,1)/(cellConc∗cellWeight)))∗1000); % micromol/gmDryWT/

hr

316 ub = (Vol∗((bint(1,2)/(cellConc∗cellWeight)))∗1000); % micromol/gmDryWT/

hr

317 fluxdata = cat(1,fluxdata,[RAW1(1,i),flux,lb,ub]);

318

319 end

320 fluxdata = fluxdata(2:end,:);

321 samples = HUVEC;

322 exchanges = fluxdata(:,1);

323 metData = fluxdata(:,2);

324 modelstart = tissueModelA;% or modelMedium

325 test_max = 1000;

326 test_min = 1e-6;

327 outputPath = pwd;

328 prepIntegrationQuant(modelstart, metData, exchanges, samples, test_max, test_-

min,↙

outputPath);

329

330 uptL = length(find(metData < 0));

331 secrL = length(find(metData > 0));

332 nmets = max(vertcat(uptL,secrL));

333 [mapped_exchanges, minMax, mapped_uptake, mapped_secretion] =↙

checkExchangeProfiles(samples, outputPath, nmets);

334

335 solverQuant = ’ibm_cplex’;

336 changeCobraSolver(solverQuant, ’LP’);

337 minGrowth = 0.001;% lower bound to the biomass reaction obj

338 obj = ’biomass_reaction’;

339 no_secretion = {’EX_o2(e)’};

340 no_uptake = {’EX_o2s(e)’, ’EX_h2o2(e)’};

341 addExtraExch = {};% metabolite exchanges that are added to the upper and lower↙

bounds

342 addExtraExch_value = 1;% flux values that are added to the upper and lower bounds

343 medium = {};% reactions that should be excluded from minimization of exchanges

344 tol = 1e-6;

345 model = tissueModelA;% or modelMedium
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346 epsilon = 1e-6;

347 [ResultsAllCellLines, OverViewResults] = setQuantConstraints(model, samples,

tol,↙

minGrowth, obj, no_secretion,no_uptake, medium, addExtraExch, addExtraExch_value,↙

outputPath);

348

349 %%%%%%%%%%%vii. Check and gene essentiality

350 startmodel = RECON2m2;

351 tol = 1e-4;

352 GrowthR = zeros(length(startmodel.rxns),1);

353 for i = 1:length(startmodel.rxns)

354 modelt = changeRxnBounds(startmodel,startmodel.rxns(i),0,’b’);

355 FBAt = optimizeCbModel(modelt);

356 if length(FBAt.obj) == 0

357 GrowthR(i) = 0;

358 else GrowthR(i) = FBAt.obj;

359 end

360 end

361 LethalR = startmodel.rxns(find(GrowthR == 0));

362 SubLethalR = setdiff(startmodel.rxns(find(GrowthR < tol)),LethalR);

363

364 startmodel = RECON2m2;

365 tol = 1e-4;

366 GrowthG = zeros(length(startmodel.genes),1);

367 for i = 1:length(startmodel.genes)

368 [~,rxnsfromgenes] = findRxnsFromGenes(startmodel,startmodel.genes

(i),0,1);

369 modelt = changeRxnBounds(startmodel,rxnsfromgenes(:,1),0,’b’);

370 FBAt = optimizeCbModel(modelt);

371 if length(FBAt.obj) == 0

372 GrowthG(i) = 0;

373 else GrowthG(i) = FBAt.obj;

374 end

375 end

376 LethalG = RECON2m2.genes(find(GrowthG == 0));

377 SubLethalG = setdiff(RECON2m2.genes(find(GrowthG < tol)),LethalG);

378

379 %%%%%%%%%%viii. If necessary create intersection models

380 base = RECON2m2;

381 model_A = read_CbModel(’model_A.mat’)%A model derived from base

382 model_B = read_CbModel(’model_B.mat’)%A model derived from base

383 Rxns = Unique(vertcat(modelA.rxns,modelB.rxns));

384 notRxns = setdiff(base.rxns,Rxns);

385 baseDEL = deleteRxns(base,notRxns);

386 notA = setdiff(baseDEL.rxns,modelA.rxns);

387 notB = setdiff(baseDEL.rxns,modelB.rxns);

388

389 modelALL_A = changeRxnBounds(base,notA,0,’b’);
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390 for i = 1:length(model_A.rxns)

391 modelALL_A = changeRxnBounds(modelALL_A,model_A.rxns(i),model_A.lb

(i),’l’);

392 modelALL_A = changeRxnBounds(modelALL_A,model_A.rxns(i),model_A.ub

(i),’u’);

393 end

394

395 modelALL_B = changeRxnBounds(base,notB,0,’b’);

396 for i = 1:length(model_B.rxns)

397 modelALL_B = changeRxnBounds(modelALL_B,model_B.rxns(i),model_B.lb

(i),’l’);

398 modelALL_B = changeRxnBounds(modelALL_A,model_B.rxns(i),model_B.ub

(i),’u’);

399 end

400 %%%%%%%%%%ix Run Random sampling

401 warmupn = 2000;

402 stepsPerPoint = 500;

403 maxTime = 3600000;

404

405 nFiles = 10;

406 pointsPerFile = 1000;

407 fileBaseNo = 0;

408 outputPath = pwd;

409

410 fileName = ’pointsA’;

411 performSampling(modelALL_A, warmupn, fileName, nFiles, pointsPerFile,↙

stepsPerPoint, fileBaseNo, maxTime, outputPath);

412

413 fileName = ’pointsB’;

414 performSampling(modelALL_B, warmupn, fileName, nFiles, pointsPerFile,↙

stepsPerPoint, fileBaseNo, maxTime, outputPath);

415

416 %%%%%%%%%%x Compare sampling outputs

417 %%%Reload and join together all of the points from the above files

418 load(’pointsA_1.mat’)

419 pointsA = points;

420 load(’pointsA_2.mat’)

421 pointsA = horzcat(pointsA,points);

422 load(’pointsA_3.mat’)

423 pointsA = horzcat(pointsA,points);

424 load(’pointsA_4.mat’)

425 pointsA = horzcat(pointsA,points);

426 load(’pointsA_5.mat’)

427 pointsA = horzcat(pointsA,points);

428 load(’pointsA_6.mat’)

429 pointsA = horzcat(pointsA,points);

430 load(’pointsA_7.mat’)

431 pointsA = horzcat(pointsA,points);
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432 load(’pointsA_8.mat’)

433 pointsA = horzcat(pointsA,points);

434 load(’pointsA_9.mat’)

435 pointsA = horzcat(pointsA,points);

436 load(’pointsA_10.mat’)

437 pointsA = horzcat(pointsA,points);

438 load(’pointsB_1.mat’)

439 pointsB = points;

440 load(’pointsB_2.mat’)

441 pointsB = horzcat(pointsB,points);

442 load(’pointsB_3.mat’)

443 pointsB = horzcat(pointsB,points);

444 load(’pointsB_4.mat’)

445 pointsB = horzcat(pointsB,points);

446 load(’pointsB_5.mat’)

447 pointsB = horzcat(pointsB,points);

448 load(’pointsB_6.mat’)

449 pointsB = horzcat(pointsB,points);

450 load(’pointsB_7.mat’)

451 pointsB = horzcat(pointsB,points);

452 load(’pointsB_8.mat’)

453 pointsB = horzcat(pointsB,points);

454 load(’pointsB_9.mat’)

455 pointsB = horzcat(pointsB,points);

456 load(’pointsB_10.mat’)

457 pointsB = horzcat(pointsB,points);

458

459 sampleStats = calcSampleStats({pointsA,pointsB});

460 meanA = sampleStats.mean(:,1);

461 meanB = sampleStats.mean(:,2);

462 ratio = zeros length(meanA);

463 for i = 1:length(meanA)

464 ratio(i) = meanA(i)/meanB(i);

465 end

466 [~, pVals] = compareTwoSamplesStat(pointsA,pointsB,’ks’);

467 ratioSIGidx = find(pVals < 0.01);

468 ratioAupidx = find(ratio > 1);

469 ratioBupidx = find(ratio < 1);

470

471 SIGUPA = intersect(model_A.rxns(ratioSIGidx),model_A.rxns(ratioAupidx));

472 SIGUPB = intersect(model_B.rxns(ratioSIGidx),model_B.rxns(ratioBupidx));

473 SIGUPAidx = find(ismember(model_A.rxns,SIGUPA));

474 SIGUPBidx = find(ismember(model_B.rxns,SIGUPB));

475

476 SIG = model_A.rxns(ratioSIGidx);

477

478 enrichedA = FEA(model_A,SIGUPAidx, ’subSystems’);

479 enrichedB = FEA(model_B,SIGUPBidx, ’subSystems’);
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480

481 plotSampleHist(SIG,{pointsA,pointsB}, {model_A,model_B},100,9)

482

483 %%%%%%%%%%xi MOMA

484 % Perform MOMA:

485 [solutionB, solutionA, totalFluxDiff, ~] = MOMA(modelALL_A, modelALL_B,’max’);

486

487 % Identify the subsystems that need most adjustment for model A to take on

488 % a phenotype closer to B:

489 highest_rxns_adj = zeros(length(modelALL_A.rxns),1);

490 for i=1:length(modelA.rxns)

491 highest_rxns_adj(i) = abs((solutionB.x(i)-solutionA.full(i))/solutionB.x

(i));

492 end

493

494 % Take care of NaN or Inf values:

495 for i=1:length(highest_rxns_adj)

496 if isnan(highest_rxns_adj(i)) || isinf(highest_rxns_adj(i))

497 highest_rxns_adj(i) = abs(solutionA.full(i));

498 end

499 end

500 % Sort the reactions based on amount of adjustment:

501 [a_sorted, a_order] = sort(highest_rxns_adj,’descend’);

502 ranked_reactions = modelALL_A.rxns(a_order,:);

503

504 % Perform FEA analysis:

505 id_A_to_B = find(ismember(modelALL_A.rxns,ranked_reactions(1:100)));

506 subsystems_A_to_B = FEA(modelALL_A,id_A_to_B, ’subSystems’);
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38. Haraldsdóttir HS, Preciat Gonzalez GA
Uniform sampling—the COBRA Toolbox.
https://opencobra.github.io/cobratoolbox/
stable/tutorials/tutorialUniformSampling.
html

39. Segre D, Vitkup D, Church GM (2002) Anal-
ysis of optimality in natural and perturbed
metabolic networks. Proc Natl Acad Sci
99:15112–15117

40. MOMA—the COBRA Toolbox. https://
opencobra.github.io/cobratoolbox/stable/
modules/analysis/MOMA/index.html?
highlight¼moma

41. Heirendt L, Arreckx S, Pfau T et al (2019)
Creation and analysis of biochemical
constraint-based models using the COBRA
Toolbox v.3.0. Nat Protoc 14:639–702

42. Schellenberger J, Que R, Fleming R et al
(2011) Quantitative prediction of cellular
metabolism with constraint-based models:
the COBRA Toolbox v2.0. Nat Protoc
6:1290–1307

43. ArrayExpress; EMBL-EBI. https://www.ebi.
ac.uk/arrayexpress/

44. Kolesnikov NN, Hastings EE, Keays MM et al
(2015) ArrayExpress update—simplifying
data submissions. Nucleic Acids Res 43:
D1113–D1116

45. Kauffmann A, Rayner TF, Parkinson H et al
(2009) Importing ArrayExpress datasets into
R/bioconductor. 25:2092–2094

46. Home – GEO – NCBI. https://www.ncbi.
nlm.nih.gov/geo/

47. Barrett T, Troup DB, Wilhite SE et al (2011)
NCBI GEO: archive for functional genomics
data sets—10 years on. Nucleic Acids Res 39:
D1005–D1010

48. PRIDE Archive. https://www.ebi.ac.uk/
pride/archive/

49. Vizcaino JA, Cote R, Csordas A et al (2013)
The Proteomics Identifications (PRIDE)
database and associated tools: status in 2013.
Nucleic Acids Res 41:1063–1069

50. PeptideAtlas. http://www.peptideatlas.org/.
O112.026617

51. Deutsch EW, Csordas A, Sun Z et al (2017)
The ProteomeXchange consortium in 2017:
supporting the cultural change in proteomics
public data deposition. Nucleic Acids Res 45:
D1100–D1106

52. Ruffier M, K€ah€ari A, Komorowska M et al
(2017) Ensembl core software resources: stor-
age and programmatic access for DNA
sequence and genome annotation. Database
(Oxford) 2017

53. Welcome to MassIVE. https://massive.ucsd.
edu/ProteoSAFe/static/massive.jsp?
redirect¼auth

54. iProX – integrated proteome resources.
https://www.iprox.org/

55. Ma J, Chen T, Wu S et al (2019) iProX: an
integrated proteome resource. Nucleic Acids
Res 47:D1211–D1217

56. jPOST. Japan proteome standard repository/
database. https://jpostdb.org/

57. Okuda S, Watanabe Y, Moriya Y et al (2017)
jPOSTrepo: an international standard data
repository for proteomes. Nucleic Acids Res
45:D1107–D1111

58. The Human Protein Atlas. https://www.
proteinatlas.org/

59. MetaboLights – metabolomics experiments
and derived information. https://www.ebi.
ac.uk/metabolights/

60. Haug K, Salek RM, Conesa P et al (2013)
MetaboLights—an open-access general-pur-
pose repository for metabolomics studies and
associated meta-data. Nucleic Acids Res 41:
D781–D786

61. GenomeRNAi – a database for RNAi pheno-
types and reagents. http://www.genomernai.
org/

62. Schmidt EE, Pelz O, Buhlmann S et al (2013)
GenomeRNAi: a database for cell-based and
in vivo RNAi phenotypes, 2013 update.
Nucleic Acids Res 41:D1021–D1026

63. Japanese Genotype-Phenotype Archive –
home. https://www.ddbj.nig.ac.jp/jga/
index-e.html

64. Home. European Genome-Phenome
Archive. https://www.ebi.ac.uk/ega/home

65. Home – dbGaP – NCBI. https://www.ncbi.
nlm.nih.gov/gap/

66. Tryka KA, Hao L, Sturcke A et al (2014)
NCBI’s database of genotypes and pheno-
types: dbGaP. Nucleic Acids Res 42:
D975–D979

67. Lappalainen I, Almeida-King J, Kumanduri V
et al (2015) The European Genome-

266 Sarah McGarrity et al.

https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialUniformSampling.html
https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialUniformSampling.html
https://opencobra.github.io/cobratoolbox/stable/tutorials/tutorialUniformSampling.html
https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma
https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma
https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma
https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma
https://opencobra.github.io/cobratoolbox/stable/modules/analysis/MOMA/index.html?highlight=moma
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/pride/archive/
https://www.ebi.ac.uk/pride/archive/
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth
https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp?redirect=auth
https://www.iprox.org/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
http://www.genomernai.org/
http://www.genomernai.org/
https://www.ddbj.nig.ac.jp/jga/index-e.html
https://www.ddbj.nig.ac.jp/jga/index-e.html
https://www.ebi.ac.uk/ega/home
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/


Phenome Archive of human data consented
for biomedical research. Nat Genet
47:692–695

68. Thiele I, Swainston N, Fleming R et al (2013)
A community-driven global reconstruction of
human metabolism. Nat Biotechnol
31:419–425

69. Brunk E, Sahoo S, Zielinski DC et al (2018)
Recon3D enables a three-dimensional view of
gene variation in human metabolism. Nat
Biotechnol 36:272–281

70. Swainston N, Smallbone K, Hefzi H et al
(2016) Recon 2.2: from reconstruction to
model of human metabolism. Metabolomics
12:109

71. Duarte N, Becker S, Jamshidi N et al (2007)
Global reconstruction of the human meta-
bolic network based on genomic and biblio-
mic data. Proc Natl Acad Sci 104:1777–1782

72. Björnson E, Mukhopadhyay B, Asplund A
et al (2015) Stratification of hepatocellular
carcinoma patients based on acetate utiliza-
tion. Cell Rep 13:2014–2026

73. Mardinoglu A, Agren R, Kampf C et al (2013)
Integration of clinical data with a genome-
scale metabolic model of the human adipo-
cyte. Mol Syst Biol 9:649

74. BiGG models: a platform for integrating,
standardizing and sharing genome-scale mod-
els. http://bigg.ucsd.edu/

75. Virtual Metabolic Human. https://www.
vmh.life/

76. Noronha A, Modamio J, Jarosz Y et al (2018)
The Virtual Metabolic Human database: inte-
grating human and gut microbiome metabo-
lism with nutrition and disease. Nucleic Acids
Res 47:D614–D624

77. Metabolics Atlas. https://metabolicatlas.org/

78. Sigurdsson MI, Jamshidi N, Steingrimsson E
et al (2010) A detailed genome-wide recon-
struction of mouse metabolism based on
human Recon 1. BMC Syst Biol 4:140

79. Mardinoglu A, Shoaie S, Bergentall M et al
(2015) The gut microbiota modulates host
amino acid and glutathione metabolism in
mice. Mol Syst Biol 11:834–834
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Chapter 12

Software Supporting a Workflow of Quantitative Dynamic
Flux Maps Estimation in Central Metabolism from SIRM
Experimental Data

Vitaly A. Selivanov, Silvia Marin, Josep Tarragó-Celada, Andrew N. Lane,
Richard M. Higashi, Teresa W.-M. Fan, Pedro de Atauri,
and Marta Cascante

Abstract

Stable isotope-resolved metabolomics (SIRM), based on the analysis of biological samples from living cells
incubated with artificial isotope enriched substrates, enables mapping the rates of biochemical reactions
(metabolic fluxes). We developed software supporting a workflow of analysis of SIRM data obtained with
mass spectrometry (MS). The evaluation of fluxes starting from raw MS recordings requires at least three
steps of computer support: first, extraction of mass spectra of metabolites of interest, then correction of the
spectra for natural isotope abundance, and finally, evaluation of fluxes by simulation of the corrected spectra
using a corresponding mathematical model. A kinetic model based on ordinary differential equations
(ODEs) for isotopomers of metabolites of the corresponding biochemical network supports the final part
of the analysis, which provides a dynamic flux map.

Key words Mass spectrometry, Stable isotope tracing, Isotopolog distribution, Central energy metab-
olism, Metabolic fluxes, Computational analysis, Kinetic models of metabolism, Stable isotope-
resolved metabolomics
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GC-MS Gas chromatography–mass spectrometry
glc Glucose
gln Glutamine
glu Glutamate
gly Glycine
kg Alpha-ketoglutarate
mal Malate
MS Mass spectrometry
NMR Nuclear magnetic resonance
oaa Oxaloacetate
ODEs Ordinary differential equations
ppp Pentose phosphate pathways
pro Proline
pyr Pyruvate
r5p Ribose-5-phosphate
s7p Sedoheptulose-7- phosphate
ser Serine
SIM Selected ion monitoring
SIRM Stable isotope resolved metabolomics
t3p Triose-3-phosphate
UHR-FTMS Ultrahigh resolution Fourier transformed mass spectrometry

1 Introduction

Metabolism is the set of enzyme-catalyzed reactions that support all
cellular functions via two coupled processes. Catabolism comprises
those reactions resulting in the conversion of more complex,
reduced organic compounds to simpler, more oxidized com-
pounds, usually with the generation of metabolically usable energy
in the form of ATP. Anabolism is the set of reactions that assembles
complex molecules such as proteins from the simple subunits with
the expenditure of metabolic energy. The rate of energy conversion
in the metabolism determines a wide range of physiological pro-
cesses, such as fast muscle contraction or cell proliferation
[1]. Therefore, a full description of cell biochemistry also requires
an analysis of metabolic rates, or fluxes.

Intracellular metabolic fluxes are often assessed by using stable
isotope tracers (e.g., 13C), which become incorporated into inter-
mediates and products of metabolic networks [2]. By following the
fate of precursor atoms through metabolic transformations, it is
possible to reconstruct the active metabolic system and infer the
relative fluxes through different pathways. This approach has many
potential applications in biotechnology [3–5]. Moreover, changes
in metabolic fluxes are associated with both normal physiological
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function (e.g., muscle contraction, heart rate) and pathological
states. Although metabolism may be affected in a wide range of
diseases [6], in some of them it is likely to be a driver of the disease
progression, such as cancer, metabolic syndrome and diabetes [7–
9]. Indeed, altered metabolism is known as a hallmark of cancer
[10]. Quantitative changes in metabolism entail changes in meta-
bolic fluxes manifested as alterations in the rates of production and
utilization of metabolic intermediates. Stable isotope tracing can
help discriminate between cases where use, supply or both are
affected. Therefore a stable isotope-based flux analysis of primary
cells isolated from patients or in ex vivo tissue slices can evaluate the
difference in the metabolism of control and patient cells and their
response to drugs. Such knowledge of the biochemical bases of
diseases (e.g., cancer [11–18]) should lead to practical applications
in biomedicine.

Stable isotopes can be traced in both the intracellular and
extracellular metabolites using mass spectrometry (MS) or NMR
[19, 20]. MS data, in turn, can be obtained either by direct fusion
or after chromatographic separation. We present here our compu-
tational tools supporting a workflow of chromatography-based MS
data. An assessment of metabolic fluxes based on stable isotope-
resolved metabolomics (SIRM) data requires several sequential
steps: (1) identification of the spectra of interest and extraction of
the desired isotopolog distributions from raw recordings, (2) cor-
rection of the extracted data for natural isotope distribution, and
(3) simulation of the corrected data using a mathematical model
that provides a set of values of metabolic fluxes consistent with the
data. Here we present some examples of MS data curation sup-
ported by computational tools, which we have developed. The
analysis of data obtained using different MS techniques might
require some modifications of the tools presented here. Figure 1
illustrates the steps of this workflow.

There are several computer programs available that, in addition
to the applications already implemented in mass spectrometers,
help to extract mass spectra of interest from raw MS recordings
[21, 22] using a library of functions “XCMS” [23, 24], correct
them for natural isotopes abundance [25–31], and simulate the
artificial labeling of metabolites [32–36]. However, the existence
of many similar programs indicates that no universal application can
be used for all practical needs of MS data analysis. Specifically, we
are not aware of computer programs adopted for the whole process
of fluxomic analysis based on SIRM data. Our suite of applications
supports such a study. The use of our programs allows avoiding
manual transformation of the format of data between the
subsequent steps of data analysis and thus makes the complete
analysis automatic. In this way, this suite of programs can be applied
for rapid analysis of large amounts of MS datasets to evaluate
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metabolic flux maps automatically. In the same time, the programs
facilitate a visual check of data and intermediate results of the study.

The programs were checked for MS coupled with gas chroma-
tography (GC-MS) and ultrahigh resolution Fourier transform MS
(UHR-FTMS) data saved in NetCDF format, but they can be easily
adapted to the specificity of other MS methods and formats of
MS data.

2 Software

The three open source software tools support the three steps indi-
cated in Fig. 1 of workflow of MS data analysis based on stable
isotope tracing and aimed at mapping the dynamical intracellular
metabolic fluxes.

1. Ramid is an “R” program that extracts mass spectra from
NetCDF files containing the raw time course ofm/z recording
for metabolites of interest, specified by a short description in a
text file. It is freely available at https://github.com/seliv55/
ramidcor.

Fig. 1 Fluxomic workflow based on SIRM MS data. Three computational
programs support three steps of the workflow of SIRM data analysis. Ramid
extracts isotopolog distribution of the metabolites of interest from raw MS
recording; Midcor corrects these distributions for natural isotope occurrence;
Isodyn simulate these corrected data using a kinetic model of the corresponding
reaction network that provides the metabolic fluxes in their dynamics
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2. Midcor is an “R” program designed to further process isoto-
polog distribution, extracted from raw mass spectrometer
recordings, by correcting it for naturally occurring isotopes
and peaks overlapping [31]. The same above indicated reposi-
tory includes it.

3. Isodyn is one of the very few software tools designed for simu-
lation of dynamics of SIRM data under non–steady state con-
ditions based on the numerical solution of ODEs. Isodyn is a
“C++” program that implements a kinetic model to simulate
dynamics of concentrations and corrected isotopolog distribu-
tion for the metabolites of interest for evaluating
corresponding sets of metabolic fluxes. It is freely available at
https://github.com/seliv55/isodyn.

4. Workflow for dynamical flux map evaluation. Midcor can use
the output of Ramid directly for the isotopolog distribution
correction, and Isodyn can simulate the distributions corrected
by Midcor. Therefore all the three programs can be connected
in the same workflow of data analysis, thus eliminating the
time-consuming manual procedures of the data analysis. How-
ever, if necessary, the visual check and editing of the output of
each program is also possible before starting the next step of
the analysis. Such editing is often necessary, for example, to
eliminate some outliers, which sometimes appear in the mass
spectrometer recordings.

3 Methods

3.1 Using Ramid for

Extraction of

Isotopolog

Distributions from Raw

MS Data Saved in

NetCDF files

1. Create a folder and put there the NetCDF files designed for the
analysis (let us call it <cdfdir>). Each separate folder should
contain NetCDF files of the same type (here either SIM, or
scan, or UHR-FTMS, see Notes 1 and 2).

2. Create a text file containing general information (<info>)
referred to the metabolites of interest present in each NetCDF
file collected in the same directory for Ramid to process the MS
data.
(a) Table 1 shows an example of such a file for GC-MS data.

An applied ionization technique can split the derivatized
metabolite molecules into various ions, which can contain
the whole molecule of the analyzed metabolite or a frag-
ment of it. The space-separated table specifies retention
time (RT) of the analyzed fragment, which is the same for
all ions originated from a given derivatized metabolite, the
m/z value (mz0) of the lightest isotopolog of the consid-
ered ion. The column “Fragment” specifies the positions
of the first and last carbons of the considered fragment in
the carbon skeleton of the entire molecule of the
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metabolite. The RT and mz0 values are used by Ramid to
localize in the NetCDF files the distribution of isotopo-
logs for the selected ion of a given metabolite, specified in
the first column, and based on the number of carbons
indicated in the column “Fragment” it calculates the
desired number of isotopologs. The column “Formula”
gives the numbers of all atoms that by naturally occurring
isotopes affect the isotopolog distribution in the analyzed
ion. Ramid does not use it, but it is necessary for the next
step, correction for the natural isotope occurrence by
Midcor. To verify that the peak identified for a metabolite
is the correct one, the m/z value for the lightest isotopo-
log of a different “control” ion of the same derivatized
metabolite, which always accompanies the main ion, is
specified. The existence of control MS peaks with the
equal RT value proves that the peak of the main ion is
localized correctly (seeNote 3). In the case we do not have
information about a control ion, the same value mz0
should be put in the control column.

This table is preceded by a line of comments, followed
by a line indicating the maximal number of ions that can
be detected by the used mass spectrometer. If this number
is not known, “0” should be put there, then a line indicat-
ing a word/character/text that only appears in the names
of CDF files for the samples not containing tracers. In the
case of absence of such files “NA” should be indicated.

(b) Table 2 shows an example of a file with the information to
process UHR-FTMS data. Here the lower (mz0lowbd)

Table 1
An example of the format of additional information needed for the extraction of isotopolog distribution
for the substances registered in each of the NetCDF files provided by GCMS

#MAX number of detected ions, an indication of NOTRACER samples:

MAX: 8,000,000

NOTRACER: Cold

Name RT mz0 Fragment Formula Control

Pyruvate 7.9 174.1 C1C3 C6H12N1O3Si1 216.1

Lactate 11.1 261.1 C1C3 C11H25O3Si2 303.1

Alanine_C1C3 11.86 260.1 C1C3 C11H26N1O2Si2 232.1

Alanine_C2C3 11.86 232.1 C2C3 C10H26N1OSi2 260.1

Columns: RT is retention time, mz0 is the lightest isotopolog, fragment is a fragment formed from the analyzed

molecules due to electronic impact, formula is the complete formula of the derivatized fragment, control (see Note 3)
is the mz0 value for some other fragment of the same metabolite if it exists (if not, the same value as in the column mz0

can be put here)
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and upper (mz0upbd) bounds for the mz0 interval are
indicated. Ramid calculates mz0 by integrating the inten-
sities corresponding to the m/z located inside this inter-
val. The difference in mass between 13C and 12C is
1.003355 atomic mass units. Therefore Ramid sets the
m/z intervals for any isotopolog containing n 13C atoms
by adding n�1.003355 to the upper and lower bound
indicated for mz0.

3. Check that names of NetCDF files contain the information,
necessary to process each sample in subsequent steps of this
workflow. For instance, the statistics on samples (applied after
the peaks extraction and correction) requires a reference to a
biological sample and injection. The subsequent simulation of
the data requires grouping the samples by conditions, which
will be compared, like cell line or treatment conditions. Also,
the data simulation requires the characteristics of labeling of
substrates used and the duration of the incubation of a given
sample. The names of NetCDF files should contain this infor-
mation. For instance name SW620_6h_12Glc_R3_SIM_02.
CDF would indicate that the name of the cell line is SW620;
6 h is the time of the incubation with the labeled substrate;
12Glc is the labeled substrate 1,2-13C2-Glucose; and the data
are from replicate 3, injection number 02, and registered in
SIM mode. Not all the information is always necessary. For
instance, if the same labeled substrate is used in all samples, this
information can be omitted, the program will not select sepa-
rate groups by tracers used and the information for the tracer
can be introduced separately (see Note 11).

4. Check the availability of the necessary software. The computer
should have installed “R” to run Ramid, the library “ncdf4”
installed to read NetCDF files and the repository https://

Table 2
An example of the description used for an analysis of UHR-FTMS data

Name RT mz0lowbd mz0upbd Fragment Formula

13-bpg 35.21 264.951 264.953 C1C3 C3H8O10P2

2hg 15.42 147.029 147.031 C1C5 C5H8O5

3pg2pg 25.78 184.985 184.987 C1C3 C3H7O7P

a-kg 18.45 145.014 145.015 C1C5 C5H6O5

aspartate 15.08 132.03 132.031 C1C4 C4H7NO4

Cis-aconitate 29.5 173.008 173.01 C1C6 C6H6O6

Citrate 27.25 191.019 191.021 C1C6 C6H8O7
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github.com/seliv55/ramidcor downloaded as a directory (let
us call it <ramidcor>).

5. To run Ramid enter the directory <ramidcor>, enter the “R”
shell, read the source code, and run Ramid with <info> and
<cdfdir> as parameters (see Note 4).

Ramid reads one by one all the NetCDF files contained in
the <cdfdir>, and for each file checks the availability of spectra
for metabolites listed in the description file<info> (see Table 1).
It finds the desired peak using the mz0 and RT values indicated
in the table, checks for the presence of control peak, evaluates
the peaks and subtracts the baseline for the desired isotopologs,
and integrates the peak area. Ramid stores the absolute values of
intensity after subtracting the baseline for the integrated peaks
(main and control) and then finds the relative intensities to the
maximal peak in the spectrum. Ramid can detect and report
some issues concerning the data (such as saturation of signal in
MS detector) (see Notes 5–7). There are some specificities of
processing of GC-MS data recorded in SIM, or scan mode, or
UHR-FTMS data (see Note 4).

6. Check the output of Ramid. The program saves several text
files, one for each metabolite listed in the corresponding
<info> (Tables 1 and 2), if the NetCDF files contain its mass
spectra. The names of the saved files are the same as the names
of metabolites indicated in the <info>. The saved files contain
three parts. The first part of such files includes complete infor-
mation for a visual check, exemplified for the entire molecule of
alanine (“Alanine_C1C3”) in the upper part of Table 3. The
subsequent records of the same file show absolute values of
peaks height in the spectra of the given metabolite presented in
the analyzed samples (shown in the middle part of Table 3) and
the values relative to the maximal peak (shown in the bottom
part of Table 3).

Midcor uses only the middle part (absolute values of inten-
sities) of the Ramid output to correct the spectra for natural
isotope occurrence. This part is terminated by a line containing
the word “END.” The other parts serve for visual checking of
the quality of samples.

Presumably, automated extraction of isotopolog distribu-
tion for metabolites of interest can fail in some individual
experiments because of significant baseline change or spectra
overlapping. Isotopolog distribution can be extracted manu-
ally, locating the peak area and background visually. Manual
checking identifies such errors of an automated extraction.
Comparison of the spectra obtained from the same samples
(see Note 8) obtained in SIM and scan modes also is a way of
checking the correctness of automated evaluation of mass spec-
tra. We tested the performance of Ramid comparing the results
of its application for SIM and scan modes with the manual mass
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Table 4
Mass spectra of the same samples processed in SIM mode evaluated manually or with Ramid or
processed in scan mode using Ramid

M–1 M0 M1 M2 M3 M4 M5

SW620_24h_12Glc_R1_PIM_SI

M_01 0.0049 1.0000 0.2517 0.3470 0.0683 0.0254 0.0034

SW620_24h_12Glc_R1_PIM_SI

M_01 0.0051 1.0000 0.2510 0.3441 0.0675 0.0248 0.0033

SW620_24h_12Glc_R1_PIM_SC

AN_01 0.0001 1.0000 0.2452 0.3364 0.0645 0.0236 0.0030

SW620_24h_12Glc_R2_PIM_SI

M_01 0.0046 1.0000 0.2515 0.3465 0.0679 0.0247 0.0034

SW620_24h_12Glc_R2_PIM_SI

M_01 0.0049 1.0000 0.2290 0.0944 0.0141 0.0024 0.0003

SW620_24h_12Glc_R2_PIM_SC

AN_01 0.0003 1.0000 0.2240 0.0907 0.0139 0.0024 0.0002

SW620_24h_12Glc_R3_PIM_SI

M_01 0.0049 1.0000 0.2516 0.3465 0.0678 0.0249 0.0034

SW620_24h_12Glc_R3_PIM_SI

M_01 0.0051 1.0000 0.2510 0.3454 0.0679 0.0249 0.0033

SW620_24h_12Glc_R3_PIM_SC

AN_01 0.0001 1.0000 0.2482 0.3377 0.0678 0.0248 0.0033

SW620_24h_cold_R2_PIM_SIM

_01 0.0047 1.0000 0.2293 0.0947 0.0141 0.0025 0.0003

SW620_24h_cold_R2_PIM_SIM

_01 0.0049 1.0000 0.2291 0.0943 0.0141 0.0024 0.0003

SW620_24h_cold_R2_PIM_SCA

N_01 0.0011 1.0000 0.2266 0.0927 0.0136 0.0024 0.0003
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spectra extraction in SIM mode. The isotopolog distribution
obtained manually from SIM recording should be very similar
to the other two distributions.

Table 4 exemplifies the isotopolog distributions obtained
for Alanine_C1C3 using manual integration of spectra
recorded in SIM mode, and using Ramid in spectra recorded
using SIM and scan modes. This comparison proves that the
program gives practically the same isotopolog distributions as
manual peaks integration. The distributions from other injec-
tions of the same sample processed in scan mode and processed
by the program is also the same.

To check the reliability of the resulted isotopolog distribu-
tions obtained from UHR-FTMS data using Ramid, a file

SW620_6h_12Glc_R1_PIM_SI

M_01 0.0068 1.0000 0.2398 0.2548 0.0467 0.0166 0.0024

SW620_6h_12Glc_R1_PIM_SI

M_01 0.0072 1.0000 0.2413 0.2543 0.0471 0.0162 0.0025

SW620_6h_12Glc_R1_PIM_SC

AN_01 0.0117 1.0000 0.2344 0.2507 0.0462 0.0173 0.0022

SW620_6h_12Glc_R2_PIM_SI

M_01 0.0084 1.0000 0.2420 0.2557 0.0487 0.0165 0.0024

SW620_6h_12Glc_R2_PIM_SI

M_01 0.0079 1.0000 0.2404 0.2526 0.0471 0.0160 0.0025

SW620_6h_12Glc_R2_PIM_SC 0.0053 1.0000 0.2406 0.2574 0.0475 0.0168 0.0029

AN_01

SW620_6h_12Glc_R3_PIM_SI

M_01 0.0069 1.0000 0.2401 0.2542 0.0488 0.0161 0.0020

SW620_6h_12Glc_R3_PIM_SI

M_01 0.0073 1.0000 0.2413 0.2539 0.0477 0.0163 0.0024

SW620_6h_12Glc_R3_PIM_SC

AN_01 0.0089 1.0000 0.2458 0.2569 0.0502 0.0178 0.0016

Isotopolog distribution of derivatized alanine (C11H26N1O2Si26) obtained from the same injections processed in SIM
mode manually (green) or with Ramid (grey), or another injection of the same sample processed in scan mode (orange)
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corresponding to a sample with cells incubated without any
artificially labeled metabolites was tested. Table 5 shows the
actual isotopolog distribution extracted from such a file. All
isotopolog distributions, extracted by Ramid from this file,
contain practically only the lightest isotopolog (M0) and that
containing just one 13C (M1) (the content of heavier isotopo-
logs is much lower that makes them practically indetermin-
able). This result is expected when there are no artificially
labeled substrates and no derivatization is used. As the natural
abundance of the 13C is ~1.1%, then for molecules containing n
carbon atoms the probability of finding one 13C is approxi-
mately 0.011 � n. The fractions of the isotopolog M1 corre-
spond to this expectation for various metabolites listed in
Table 5.

The performance of Ramid was checked for limited formats
of MS data. However, it can be easily adapted for a wide range
of mass spectrometry data. The benefits of using Ramid reside

Table 5
Isotopolog distribution of the unlabeled metabolites extracted by Ramid from a NetCDF file registered
by UHR-FTMS

Metabolite # carbons M M 1 M 2

13-bpg 3 0.9753 0.0246 0.0001

2hg 5 0.9519 0.0478 0.0001

a-kg 5 0.9457 0.0541 0.0001

Aspartate 4 0.9672 0.0328 0

Cis-aconitate 6 0.9367 0.063 0.0002

Citrate 6 0.9408 0.0591 0.0001

Ribose-5-p 5 0.9432 0.0566 0

Sedoheptulose-7-p 7 0.9236 0.0763 0.0001

F6P 6 0.9352 0.0647 0.0001

Fructose-1-6-bp 6 0.9456 0.0534 0.0009

Fumarate 4 0.9595 0.0404 0.0001

Glucose-1-p 6 0.9396 0.0604 0

Glycerol-3-p 3 0.9657 0.0342 0.0001

Isocitrate 6 0.9325 0.0672 0.0002

Malate 4 0.9548 0.0451 0.0001

Malonate 3 0.9692 0.0308 0

Pyruvate 3 0.9602 0.034 0.0001

Succinate 4 0.955 0.0449 0.0001
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not only in saving time compared to manual integration to
extract isotopolog distributions, but also in providing a link
to the subsequent steps of data analysis: correction for natural
isotopes occurrence and subsequent simulation of the cor-
rected data aimed at evaluation of consistent metabolic fluxes.

3.2 Correction of

Ramid Output for

Natural Isotope

Abundance Using

Midcor

1. Get the necessary programs. The “R” code of Midcor (“mid-
cor.R”) is located in the subdirectory “R” of <ramidcor>, the
same where Ramid is located (downloaded from https://
github.com/seliv55/ramidcor). This tool corrects the raw
mass spectra for natural isotope abundance, which interferes
with the artificial isotope enrichment, and peaks overlapping.
Whereas there are several software tools that perform the for-
mer function [25–30], we are not aware of other programs
performing the latter function. The principles of its function-
ing are described in a previous publication of our group [31].

2. Check the availability of input data. Midcor takes the necessary
information from the same input file <info> prepared for
Ramid (Table 1) and a directory containing files with the
uncorrected isotopolog distributions saved by Ramid
(<ramid_outdir>) (Table 3). Midcor reads all the files gener-
ated by Ramid, one for each metabolite.

3. To run Midcor enter the directory <ramidcor>, enter in “R”
shell, read the source code, and run Midcor with <info> and
<ramid_outdir> as parameters (see Note 9).

4. Midcor generates a file for each metabolite listed in the<info>
in the same directory of input files. The name of generated file
has the extension “.txt” added to the name of respective input
file (see Note 10). Each file includes the corrected isotopolog
distributions, that is, containing only the distribution of 13C
propagated from artificially labeled substrates, for the given
metabolite calculated for each of available NetCDF files
(Table 6, first part). A significant deviation from the natural
isotope abundance in unlabeled samples would indicate the
existence of peaks overlapping. The difference between the
actual isotopolog distribution and the one calculated for unla-
beled sample based on natural isotopes occurrence and chemi-
cal formula of the derivatized metabolite, named here
“correction factor,” is used for the additional correction of
the labeled samples. The fully corrected isotopolog distribu-
tions are presented in the lower part of the files saved by
Midcor.

5. Midcor saves the corrected data into several separate files. Each
of these files contains the isotopolog distributions in one
metabolite evaluated for various samples (NetCDF files found
in the <ramid_outdir>) that may refer to various conditions
(e.g., different labeling of substrates used), which the model
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should simulate separately. On the other hand, mapping of
metabolic fluxes occurring in particular conditions requires
data of labeling of various metabolites coming from all these
different files. Thus, the function “isoform()”, which is
included in the source code for Midcor, reads all the files with
corrected isotopolog distribution for each metabolite and
groups in one file all the available data that should be fit
simultaneously (see Note 11). Table 7 shows an example of
its content. This file is readable by Isodyn.

3.3 Generation of a

Flux Map Simulating

the Isotopolog

Distribution with

Isodyn

1. Get the necessary software. The complete code of Isodyn can
be downloaded from https://github.com/seliv55/isodyn. It is
necessary to compile all the code using a C++ compiler. We
used the GNU g++ compiler. See Note 12 for the details of
compiling.

Table 6
Output of Midcor

Samples corrected for natural isotope occurrence onlya

Sample_file Max_int m0 m1 m2 m3

SW620_24h_12Glc_R1_PIM_SIM_01 4,203,008 0.7916 0.0169 0.1898 0.0023

SW620_24h_12Glc_R1_PIM_SIM_02 2,819,072 0.7939 0.0158 0.1884 0.0024

SW620_24h_12Glc_R2_PIM_SIM_01 7,221,760 0.7927 0.016 0.1896 0.0024

SW620_24h_12Glc_R2_PIM_SIM_02 3,654,144 0.7943 0.0158 0.188 0.0025

... ... ... ... ... ...

Additional correction for overlapping with other components of mediumb

Correction factor

CF_m0 CF_m0 CF_m0 CF_m0

0.0034 �0.0016 �0.0021 �0.0007

Sample_file Max_int m0 m1 m2 m3

SW620_24h_12Glc_R1_PIM_SIM_01 4,203,008 0.795 0.0153 0.1877 0.0016

SW620_24h_12Glc_R1_PIM_SIM_02 2,819,072 0.7973 0.0142 0.1863 0.0017

SW620_24h_12Glc_R2_PIM_SIM_01 7,221,760 0.7961 0.0144 0.1875 0.0017

SW620_24h_12Glc_R2_PIM_SIM_02 3,654,144 0.7977 0.0142 0.1859 0.0018

... ... ... ... ... ...

The distributions for each sample are preceded by the absolute value of intensity of the maximal peak in the
corresponding spectrum
aThe first part is isotopolog distribution for each sample corrected only for natural occurrence of isotopes of elements

presented in derivatized substance according to the chemical formula presented in Table 1
bThe second part is (1) the correction factor, calculated by deviation of actual isotopolog distribution from the one
calculated for unlabeled sample based on natural isotopes occurrence, and (2) additionally corrected distributions using

the correction factor
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2. Provide input data. The script “aiso.sh” situated in the working
directory specifies the input information (see Note 13).

3. Run the program. Execution of the script “iso.sh” runs the
program. As specified in the provided example, it reads the
parameters from a file <par>, and both the measured metabo-
lite concentrations in the incubation media and the isotopolog
distributions from the files <conc> and <forisodyn>, respec-
tively. Then it settles the output of calculated data to compare
with the corresponding measured concentrations of metabo-
lites and isotopologs in the relevant time points.

4. Get the output of the program. The subsequent calculation
simulates the incubation of cells in the presence of an artificially
labeled substrate until the final time point. If there are isoto-
polog distribution data measured in the intermediate time
points, Isodyn accounts for the corresponding calculations in
the χr

2. In addition to the screen output shown in Table 8,
Isodyn provides graphs that visualize the differences between
the measured and calculated labeling (Fig. 2) and concentra-
tion (Fig. 3) of metabolites. The lines in Figs. 2 and 3 are done
using the set of best fit parameters.

Table 7
An example of the content of the Isoform output file used to adjust the kinetic model for accessing the
metabolic fluxes

Time (h)a: 0 6 24 – 1

Nameb: Alanine_C1C3,0,2

tc¼ 24 mean: 0.795 0.017 0.187 0.002 sd: 0.012 0.011 0.011 0

t ¼ 6 mean: 0.859 0.01 0.13 0.001 sd: 0.011 0.011 0.011 0.011

Name: Glycine_C2,1,1

t ¼ 24 mean: 0.99 0.01 sd: 0.001 0.001

t ¼ 6 mean: 0.998 0.002 sd: 0.001 0.001

Name: Lactate,0,2

t ¼ 24 mean: 0.795 0.015 0.189 0.001 sd: 0.002 0.001 0.002 0

t ¼ 6 mean: 0.851 0.009 0.139 0.001 sd: 0.012 0.001 0.011 0

Name: Malate,0,3

t ¼ 24 mean: 0.927 0.02 0.049 0.003 0.001 sd: 0.004 0.002 0.002 0 0

t ¼ 6 mean: 0.972 0.007 0.02 0 0 sd: 0.001 0.001 0 0 0

aTimes of cell incubation when the samples were taken
bThe analyzed fragment name, first, and last carbon atoms referred to the whole molecule
cThe time of incubation, mean content and standard deviation of isotopologs relative to the whole amount of a

metabolite
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5. Isodyn applies Simulated Annealing algorithm for optimization
of the model parameters, corresponding to the maximal reac-
tion rates, by changing them to minimize the difference
between the measured isotopolog distribution, in its dynamics,
and corresponding computed data. It calculates the difference
as the reduced chi-squared function (χr

2) for each time point of
labeled and total metabolite concentrations and estimates the

Table 8
Screen output of Isodyn after a single simulation

Metabolite∗\time: 0 360 1440: exper ⟷ chisq

Alanine_C1C3_m0: 1 0.879 0.77: 0.795 ⟶ 21.3

Aspartate_C1C4_m0: 1 0.983 0.93: 0.928 ⟶ 0.466

Glycine_C1C2_m0: 1 0.999 0.988: 0.988 ⟶ 1.21

Lactate_m0: 1 0.875 0.807: 0.795 ⟶ 3.69

Malate_m0: 1 0.97 0.923: 0.927 ⟶ 0.872

Proline_C1C5_m0: 1 0.996 0.981: 0.932 ⟶ 3.56

Serine_C1C3_m0: 1 0.995 0.983: 0.967 ⟶ 10.3

Gluc_c: 8.64 7.82 5.35∗∗ 5.28 ⟶ 0.019

Glutamin_c: 2.92 2.83 2.57∗∗ 2.64 ⟶ 0.0601

Lac_c: 0.807 2.57 7.59∗∗ 7.85 ⟶ 0.113

Glutamate2-5_c: 0.101 0.0687 0.0312∗∗ 0.03 ⟶ 0.155

File saved: 250,002: xi ¼ 71.2; xm ¼ 12.7; time ¼ 3.23

* unlabeled fraction (_m0)

** total concentration (_c), calculated concentration corresponding to the end of incubation

Fig. 2 Dynamics of labeling of some selected metabolites (decrease of unlabeled fraction m0). Points are MS
measurements M0 isotopolog of intracellular alanine (Ala), aspartate (Asp), glycine (Gly), and extracellular
lactate (Lac) at 0, 6, and 24 h after starting the incubation of SW620 cells with 50% [1,2-13C]-Glucose and
50% unlabeled glucose. Lines are the respective calculations using a kinetic model that simulates the
reactions shown in Fig. 4
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confidence intervals for best-fit fluxes by Monte Carlo simula-
tions as described [37]. The best fit, if it satisfies to the criteria
of goodness of fit, gives the values of fluxes in the reaction
network implemented in the model (here the reactions shown
in Fig. 4). An example of such fluxes is shown in Table 9. There
could be some issues with data fitting that are described in
Note 14. The tools are continuously updated (Note 15).

Fig. 3 Change of total metabolite concentration during the time of cells incubation. Points are measured
extracellular concentrations of glucose, glutamine, lactate, and glutamate under conditions described in the
legend to Fig. 2. Lines obtained in the same simulation as that shown in Fig. 2

Fig. 4 Scheme of the biochemical reactions simulated using the kinetic model implemented in Isodyn in the
considered here example. It simulates the reactions of central metabolism: glycolysis, Krebs cycle, and
pentose phosphate pathways
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4 Notes

1. General structure of MS raw data. The raw data comprise many
mass spectra records (scans) obtained at sequential time points
(acquisition time) counted starting from the injection of the
sample into a chromatographic column. Each mass spectrum is
recorded at approximately equal time intervals. Each scan com-
prises a vector of detected numbers of ions corresponding to
some discrete m/z values. The amount of metabolite ions

Table 9
A set of metabolic fluxes with 0.99 confidence intervals bounds (CI bounds), found as described
in [38]

Name CI bounds Name CI bounds Name CI bounds

hk 1.85981 2.4382 akgdmc 0.13332 0.37441 akgdcm 0.28627 0.53881

pfk 2.87347 3.77688 akgdcm 0.28627 0.53881 coaout 9.6E�05 0.00021

fbpase 0.92956 1.57897 coaout 9.6E�05 0.00021 citakg1 0.0008 0.00172

t3pep 3.69917 4.84934 citakg1 0.0008 0.00172 atpase 2.8238 3.72059

pept3 1.9E�07 3.3E�07 gln_in 0.11841 0.1542 resp 0.01081 0.02248

pk 3.69917 4.84934 gluin 0.37 0.66465 aldfl 2.66906 3.52675

pyrlac 4.51879 5.99338 gluout 0.36392 0.64596 aldrev 0.63194 1.40822

lacpyr 0.00309 0.00415 t3ser 0.00056 0.00143 f6s7a 9E�05 0.00012

pyrdcm 0.12316 0.24845 serpyr 0.00082 0.00112 s7f6a 4.7E�05 6.3E�05

pyrdmc 0.15161 0.36549 asp_o 0.63787 1.21935 sergly 0.00023 0.00928

pdh 0.06384 0.11063 asp_i 1.00614 1.7305 glyser 0.00127 0.00897

citakg 0.06296 0.10008 ala_o 2.07525 2.69381 cs0 0.06385 0.10147

akgsuc 0.18425 0.27173 ala_i 2.4472 3.20778 p5s7 4.7E�08 6.8E�08

sucmal 0.18428 0.27176 r5_o 0.00997 0.01307 s7p5 6.4E�07 9.5E�07

maloa 0.00315 0.01306 glycogin 0.00026 0.00034 f6p5 1.2E�05 1.6E�05

oamal 0.00014 0.06989 glycogou 0.00022 0.00029 gln_pr 0.01444 0.18648

pc 0.0669 0.16523 cystin 0.05319 0.06972 ser_pr 0.00026 0.00041

malicm 0.07706 0.31254 proin 0.01249 0.03575 trpala 0.00024 0.00032

malicc 0.34931 0.64728 proout 0.01672 0.02715 mthf 0.00375 0.00491

ppp 0.00985 0.01291 citdmc 0.00114 0.00247 thf 1.2E�06 1.6E�06

oacd 0.01116 0.15693 citdcm 0.00025 0.00054 kgin 0.00016 0.00021

mald 0.01377 0.17873 akgdmc 0.13332 0.37441
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detected depends on the time passed from starting chromatog-
raphy (retention time, RT), ionization efficiency and ion sup-
pression effects, as well as on the MS detection mode.
Generally, the RT value for a concrete chromatographic
method as well as m/z values of the peak is characteristic of
the molecular type. The isotopolog distribution of metabolites
of interest is extracted as peak intensities, detected by number
of ions in the known m/z regions and appeared at acquisition
times close to the known retention times. The examples of
processing of GC-MS data saved in SIM (selected ion monitor-
ing) and scan modes, and UHR-FTMS (ultrahigh resolution
Fourier transformed MS) data are described here.

The GC-MS data used in the presented here example were
obtained by a 7890A mass spectrometer coupled with a 5675C
gas chromatograph (Agilent Technologies). Two modes of MS
data recording were used: SIM mode, registering only the
intensity of specific m/z values; or scan mode, registering all
mass spectra inside the whole m/z interval indicated to the
mass spectrometer.

2. The UHR-FTMS data. This data, used in the presented here
example, was obtained using Tribrid Fusion Orbitrap (Thermo
Scientific, San Jose, CA, USA), interfaced with an Advion
Triversa Nanomate (Advion Biosciences, Ithaca, NY, USA)
(provided by Dr. Higashi, University of Kentucky). The preci-
sion of ultrahigh resolution mass spectrometry data, presented
here as an example, was 10�5, which is sufficient for distin-
guishing ions that contain isotopes of different elements such
as 1 13C versus 1 15N which have the same nominal mass
increment [39, 40]. Such precision requires a narrow and
precise definition of m/z intervals for each isotopolog of the
metabolites of interest. Therefore, the fractions of the
registered 13C isotopologs should correspond to the natural
abundance of 13C and not of the other atoms.

3. A meaning of “control” peak. There is a probability that the
program erroneously takes wrong peak because, first, the reten-
tion time can vary slightly between samples and, second, the
sample may contain other compounds that elute at close reten-
tion times and with MS peaks in a close m/z region to the one
of the ion of interest. If the peak is found correctly, not only the
main ion (characteristic of the fragment to be analyzed) but
also a control ion (i.e., other ion characteristic of the ionization
of the derivatized molecule, and specified in the column “con-
trol”) would appear simultaneously. If not, then the found peak
is probably not referred to the searched metabolite. Checking
the presence of a control ion at the same retention time ensures
finding the right peak for the desired metabolite. Such a check
permits to avoid using incorrect data in the subsequent steps of
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the analysis: correction for natural isotope occurrence and the
data simulation.

4. Running Ramid. There are several ways to run Ramid (e.g.,
using R-studio, or creating a library containing all the necessary
functions). Maybe the simplest way to run it in Linux terminal
is using the following commands:

$ cd <ramidcor>

$ R

>source (‘R/lib.R’)

>source (‘R/ramid.R’)

>ramid (infile=‘path to<info>’, cdfdir=‘path

to<cdfdir>’, fiout=<output>, md=‘<mode>‘)

here ‘<mode>’ can be either ‘sim’ for GC-MS data in SIM
mode, or ‘scan’ for GC-MS data in scan mode, or ‘uhr’ for
UHR-FTMS.

In SIM mode at each acquisition time the mass spectrom-
eter registers signal intensities corresponding to separated
intervals of m/z specified for each metabolite of interest with
the fixed distance between neighbor m/z inside the intervals,
which usually is set to 1. To get the desired isotopolog distri-
bution, the program finds the specified (by mz0, Table 1)
interval in m/z vectors, determines the actual retention time
(maximum of corresponding intensities, which could slightly
differ from the RT specified a priori in the input file) and get
the values of intensities corresponding to the selectedm/zmz0
and retention time.

In scan mode, a vector of m/z at each moment of acquisi-
tion is just one large interval with variable distance between
neighbor values. To get the desired isotopolog distribution it is
necessary to integrate the intensities for an interval of m/z
values and ascribe the integrated intensity to a corresponding
isotopolog of interest.

In uhr mode Ramid accounts for the difference in mass
between 13C and 12C is 1.003355 atomic mass units. Therefore
it sets the m/z intervals for any isotopomer containing n 13C
atoms by adding n�1.003355 to the upper and lower bound
indicated for mz0. As the NetCDF files containing
UHR-FTMS data usually are very big, the algorithm is
designed to putting into the memory only a variable (e.g.,
acquisition times, m/z values, intensities values) that is cur-
rently processed and cleaning it immediately after processing.

If the measured interval of m/z (for SIM mode) is suffi-
ciently large, the Ramid accounts for the m/z interval from
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mz0–1 to mz0 + n + 5, where n is the number of carbon atoms
in the fragment of the carbon skeleton.

5. Low values of peaks in mass spectrum. Ramid indicates issue if
the ratio of maximal peak in a pattern to baseline is less than 3.

6. High values of peaks. Peaks for some isotopologs can be higher
than the upper limit of sensitivity of the MS detector. Ramid
detects such a case and prints a message.

7. High fraction of M� 1 peak. Ionization in GC-MS can result in
a proton loss and appearance of the peak of the compound
(M � 1) that is lighter than the isotopolog consisted of lightest
isotopes (M0). The ratio of intensities of (M� 1) to that ofM0
usually is less than 2–3%. A higher fraction of (M � 1) after
subtracting the baseline indicates overlapping with another
metabolite.

8. The samples. They represent cell extracts of SW620 obtained
after 6 h of incubation in the presence of media containing
glucose 50% enriched in [1,2-13C]-Glucose (12Glc) or glucose
unlabeled (cold). The samples were derivatized with 2% meth-
oxamine hydrochloride in pyridine for 90 min at 37 �C and (N-
methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide + 1%
tertbutyldimethylchlorosilate) for 60 min at 55 �C and next
were processed on an Agilent 7890A GC coupled to a 7890A
mass spectrometer either in SIM or scan mode.

9. Running Midcor. It is similar to that for Ramid (see Note 4):

$ cd <ramidcor>

$ R

>source (‘R/lib.R’)

>source (‘R/midcor.R’)

>rumidcor(infile=‘path to <info>’, dadir=‘path to

<ramid_outdir>’)

Midcor process the data presented in the indicated input
file (Table 1) row by row. It takes metabolite names (first
column), calculates the number of carbons in the fragments
of interest (from column “Fragment”), and the kind and num-
ber of atoms in the derivatized molecule (from column “For-
mula”) that can naturally contribute to forming isotopomers
heavier than mz0. Then it opens a file named as the metabolite
name. From this file, it reads only the middle part containing
the absolute values of isotopolog distribution (Table 3). It
calculates, using the provided chemical formulas, the expected
contribution of naturally occurring isotopes into the isotopo-
log distribution for given metabolites, and corrects the
measured spectra, not only for the natural isotope abundance
but also for peaks overlapping, as we described elsewhere [31].
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10. The output. Midcor corrects the isotopolog distributions for
each<file> present in<ramid_outdir> and saves the results as
<file.txt> in the same <ramid_outdir>.

11. Function isoform(). It should be called after rumidcor()
(Note 9):

>isoform(isofi=‘path to <sinfo>’, dadir=‘path to

<ramid_outdir>’)

Here dadir is the same path to the directory of Ramid
output as in the above notes. <sinfo> is a text file with short
instructions how to prepare the data needed in the same simu-
lation by Isodyn. Here is an example of such file:

Names: Lactate,0,2 Alanine_C1C3,0,2 Alanine_C2C3,1,2
Aspartate_C1C4,0,3 Serine_C2C3,1,2

time(h): 0 6 24 –1
tracers: 12Glc
Glucose 48 0.5
The first line indicates metabolites whose isotopolog dis-

tributions should be combined in the same file, and the posi-
tions of the first and the last carbons of the registered fragment
with respect to the whole molecule, starting from 0. The
second line indicates the times at which samples were collected
after beginning of the incubation with labeled substrates, with
‘�1’ indicating the end of sampling. The third line is the tracer
as it is indicated in the names of the NetCDF files. The last line
shows the specific isotopomer used as a tracer. It represented by
the binary numbers, assuming that 1 is 13C and 0 is 12C. In this
way 1,2-13C -Glucose is expressed as binary 110,000 that,
being transformed into the decimal, means 48. The last num-
ber is the fraction of the tracer in the provided substrate.

Using this information the function isoform() selects the
records corresponding to the metabolite fragments shown in
first row, incubation times and tracer used, indicated in titles of
the NetCDF files, and fraction of labeled substrates, and forms
a single file readable by Isodyn, let us call it <forisodyn>,
which content is exemplified in Table 7.

12. Download and compiling Isodyn. Create a directory for the
code of Isodyn downloaded from the repository https://
github.com/seliv55/isodyn, let it be <isodyn>. The reposi-
tory contains the necessary makefiles, therefore to compile the
whole code use the commands:

$ cd <isodyn>

$ make clean

$ make
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Isodyn provides a flux map consistent with the corrected
isotopolog distribution using simulations of isotope propaga-
tion in cellular biochemical networks by a mathematical model.
A set of simulated fluxes that fits the corrected isotopomer
distribution is a possible candidate of the actual distribution
of fluxes in the corresponding real biochemical system. Com-
monly, steady state flux models are used for flux balance analy-
sis (FBA) resulted in flux map evaluation [32–36]. FBA is a
well-established approach for constraint-based modeling,
which disregards the dynamics of intracellular metabolism
thus avoiding the complications that sometimes gives solution
of ordinary differential equations (ODEs) of a kinetic model.
However, many biological systems may not maintain a meta-
bolic or achieve isotopic steady state during the time of the
study [41, 42], especially in common experimental cell culture
designs, or in vivo. A dynamic flux analysis is more appropriate
in such cases [43]. Moreover, the dynamics of cellular response
to a perturbation is always more informative for studying
metabolism, than just steady-state flux distributions, which is
a special case of the dynamics. Dynamic flux analysis can be
applied equally well to the analysis of steady-state conditions if
they can be shown to be achieved. This requires measurement
at more than one time point.

Isodyn was the first tool that implements a kinetic model
for dynamic SIRM data analysis [44–46]. In its present imple-
mentation it can be connected with the described above two
preliminary steps of SIRM data analysis, thus concluding the
fluxomic analysis: fitting the implemented kinetic model to the
SIRM data provides consistent flux map. Isodyn simulates the
dynamics of metabolite labeling and possible dynamics of the
fluxes themselves. To this end, a kinetic model, implemented in
Isodyn, has a module that simulates the dynamics of isotopo-
mers and, thereby, isotopolog distribution [46]. It requires
neither metabolic nor even isotopic steady state for measuring
isotopolog distribution.

A kinetic model used is a set of ODEs associating the
change of metabolites concentrations with the metabolic fluxes
of their production and consumption, expressed using general
rate laws (mainly Michaelis-Menten). To analyze the isotopo-
log distribution as a result of the flux distribution in a network,
Isodyn calculates the actual splitting of metabolic fluxes into
the individual fractions contributing to the change of concen-
tration of each isotopomer, accounting for atom transitions in
each reaction [38, 44–46]. In this way, it splits the equations
for metabolite concentrations into subsets of ODEs for isoto-
pomers concentrations. After adjusting the model to the data,
it estimates the goodness of fit, performs a statistical analysis of
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selected sets of fluxes and determines the confidence intervals
for the fluxes that underlie the measured labeling [38].

Isodyn was used to reveal the metabolic fluxes in the cen-
tral energy metabolism; therefore, the current version of the
model simulates the reactions of glycolysis, Krebs cycle, pen-
tose phosphate pathways, and its variables correspond to the
concentrations of isotopomers for the metabolites of these
pathways. In the example, presented here, Isodyn implements
a kinetic model, corresponding to the metabolic network
shown in the scheme in Fig. 4. However, this model can be
easily extended or cut to simulate specific pathways according
to a manual reconstruction, for example, for cancer cells [47–
51] and macrophages. The model itself was created indepen-
dently of the data, although the data and the model should
refer to the same biochemical system. The model takes for
fitting only the data that it can simulate. Good fit of the
model to the data (according to the criteria described in detail
in [38]) evaluates the set of metabolic fluxes in the simulated
biochemical network that is compatible with the analyzed data.

13. The script “aiso.sh”. This script specifies (a) the path to
<forisodyn>, that contains the corrected by Midcor dynamics
of isotopolog distributions designed for fitting in the same
simulations; (b) the path to a file with measured concentrations
of metabolites in the incubation media, let it be <conc>. Here
is an example of data that it contains:

time_h 0 6 24 // time of sampling

Glucose 8.636 8. 5.282 //respective concentrations (mM)

(c) the path to a file containing the values of parameters
<par> that determine the calculated rates of reaction
simulated by the model.

Isodyn sets the initial values and labeling of metabolites by
the measured data provided in <conc> and <forisodyn>. It
starts a simulation of labeled atoms propagation in metabolites
by numerically solving the set of ODEs corresponding to the
set of biochemical reactions, shown in Fig. 4, for the metabo-
lites and their isotopomers. More details about the process of
ODEs solving implemented in Isodyn are described in [46].

14. Possible issues. Fitting the model to the corrected isotopolog
distributions could be related with some complications because
of many parameters that contain the kinetic models of complex
biochemical systems, and, respectively, many degrees of free-
dom in optimizing the models to obtain the flux map consis-
tent with the data.
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(a) Isodyn fails to fit the data automatically. There could be
one of the two reasons for that, either (1) the implemen-
ted algorithm fails to find a point in the multidimensional
space of parameters that is consistent with data, or (2) the
kinetic model is not compatible with the analyzed process.
In the case (1) sometimes a manual intervention can solve
the problem: manually change parameters responsible for
the reaction rates affecting the labeling of the metabolite,
whose calculated data are far from the experiment. The
case (2) indicates that the current understanding of the
mechanics of the simulated process should be corrected,
thus stimulating better understanding of the process.

(b) Isodyn finds different sets of fluxes consistent with the
data. In this case, additional data, which discriminate
between the resulted sets, should be obtained and
included in the analysis.

(c) Minimizing the deviations from the data Isodyn comes to
the area in the space of parameters where the time of each
simulation highly increases, making practically impossible
further optimization. It means that the ODE system of
the model becomes stiff. Such a behavior of the model
might not be consistent with the real action of the
biological system, and Isodyn has particular criteria of
optimization that help to avoid entering in such areas of
parameters.

(d) Similar to the above mentioned, Isodyn has particular
criteria of optimization that help to avoid entering in the
areas of parameters where the variables reflecting concen-
trations of metabolites reach too high values.

15. Please check actualization of the tools and instructions in
https://github.com/seliv55.
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Chapter 13

Inferring Metabolic Flux from Time-Course Metabolomics

Scott Campit and Sriram Chandrasekaran

Abstract

The metabolic activity of a mammalian cell changes dynamically over time and is tied to the changing
metabolic demands of cellular processes such as cell differentiation and proliferation. While experimental
tools like time-course metabolomics and flux tracing can measure the dynamics of a few pathways, they are
unable to infer fluxes at the whole network level. To address this limitation, we have developed the Dynamic
Flux Activity (DFA) algorithm, a genome-scale modeling approach that uses time-course metabolomics to
predict dynamic flux rewiring during transitions between metabolic states. This chapter provides a protocol
for applying DFA to characterize the dynamic metabolic activity of various cancer cell lines.

Key words Dynamic flux activity, Constraint-based modeling, Flux balance analysis, Genome-scale
metabolic models, Time-course metabolomics, Cancer metabolism

1 Introduction

Cancer is a complex disease associated with uncontrolled cellular
growth and proliferation. Recently, several studies suggest that the
metabolism of cancer cells contribute to tumorigenesis and cancer
aggressiveness [1]. For example, cancer cells rewire their metabo-
lism to synthesize DNA, proteins, and additional cellular compo-
nents. Understanding metabolic rewiring in tumors can identify
metabolic enzymes that are promising targets for cancer therapies.
However, it is challenging to experimentally measure the activity of
thousands of reactions in a cell and identify metabolic bottlenecks.

Computational approaches can bridge this gap and predict the
metabolic activity of a system without resorting to time- and labor-
intensive experiments. Traditional computational models imple-
ment enzyme kinetics and metabolite concentration into a system
of ordinary differential equations to infer the activity of metabolic
reactions [2]. However, analysis of thousands of metabolic
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reactions in a tumor is currently not possible using these methods
due to the lack of key biological parameters, such as the binding
constant KM or the catalytic rate kcat [3].

Flux balance analysis (FBA) is an alternative approach to infer
metabolic activity without requiring kinetic parameters. This
method assumes metabolic steady state and identifies all metabolic
flux states by optimizing a specific cellular objective, such as bio-
mass production [4]. FBA makes use of genome-scale metabolic
reconstructions (GEMs), which contain the current knowledge of
biochemical network topology of an organism [5]. FBA uses the
network topology from GEMs to estimate the metabolic flux
through each reaction [4]. High throughput -omics data such as
transcriptomics can be used with these models to obtain more
condition-relevant flux states [6].

Although FBA identifies steady state fluxes, it fails to capture
dynamic metabolic processes, such as the differentiation of stem
cells or malignant transformation of cancer cells. To address this, we
developed the Dynamic Flux Activity (DFA) approach. This algo-
rithm combines time-course metabolomics with a genome-scale
metabolic model to infer the metabolic state that best fits the
metabolomics data [7]. DFA has many advantages over unsteady-
state FBA [8], a related approach for modeling time-course meta-
bolomics. DFA can use both absolute and relative metabolomics
values, while uFBA requires absolute quantified data using internal
standards. Secondly, DFA can use as little as two time points while
uFBA requires several time points. Further, the strength of meta-
bolomics constraints can be easily tuned in DFA with a single
simple parameter Kappa, which is proportional to the relative
optimization strength of the growth objective.

This tutorial describes the DFA approach and outlines the steps
in applying this tool to construct dynamic metabolic models. We
will use time-course metabolomics data from cancer cell lines as an
example to build dynamic metabolic models using DFA. The met-
abolic fluxes obtained from DFA reveal metabolic differences
between rapid- and slow-proliferating cancer cells.

2 Materials

2.1 Dynamic Flux

Activity Algorithm

The Dynamic Flux Activity (DFA) algorithm [7] was implemented
inMATLAB (http://www.mathworks.com). It requires the Gurobi
Mathematical Programming Solver (http://www.gurobi.com/)
version 8.0.1. The latest version of the DFA MATLAB scripts and
NCI-60 cancer cell line metabolomics dataset used in this protocol
can be downloaded through the Chandrasekaran lab website
http://www.sriramlab.org/software/.
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2.2 Genome Scale

Metabolic Modeling

Tools

The Constraint-Based Reconstruction and Analysis (COBRA)
toolbox is a collection of metabolic modeling tools intended for
analyzing metabolic pathways and predicting metabolic phenotypes
[9]. Several functions provided by the COBRA toolbox were used
in this tutorial, including the deleteModelGenes function for gene
knockout analysis. The MATLAB version of the COBRA toolbox
can be cloned from https://github.com/opencobra/
cobratoolbox.

2.3 Genome-Scale

Metabolic Models

Genome scale metabolic models are available in the BiGG database
(http://bigg.ucsd.edu/) and the BioModel database (https://
www.ebi.ac.uk/biomodels-main/) in .mat, .sbml, and .json for-
mats. The core cancer genome scale metabolic network [10] was
used in this tutorial (see Note 1).

2.4 Visualizing

Metabolic Networks

Escher (https://escher.github.io/) is a web-based tool for visualiz-
ing COBRA metabolic models [11]. The growth rates obtained
from our in silico single gene knockout analysis and the metabolic
flux values predicted from the dynamic models were mapped onto
the human metabolic map in Escher. Alternative tools that visualize
metabolic pathway activity but were not used in this analysis include
the BioCyc https://biocyc.org/overviewsWeb/celOv.shtml and
iPath3 from EMBL (https://pathways.embl.de/).

2.5 NCI-60 Cancer

Cell Line

Transcriptomics Data

There are several biorepositories that carry transcriptomics datasets.
Examples include the GEO database (https://www.ncbi.nlm.nih.
gov/geo/), the NCI-60 biorepository (https://discover.nci.nih.
gov/cellminer/), and the TCGA Cancer Atlas (https://
cancergenome.nih.gov/).

The example described in Subheading 3 uses transcriptomics
data from GEO database (accession number: GSE32474). To
determine differentially expressed genes in the dataset, the tran-
scriptomics data was log2 normalized and Z-transformed. The
formula for the Z-transformation is described in Eq. 1:

mz ¼ m � μm
σm

ð1Þ

where m is the log2 concentration, μm is the mean concentration
across the NCI-60 cancer cell lines, and σm is the standard deviation
across the NCI-60 cancer cell lines. The resulting value mz tells us
how the concentration for a specific cell line is different from the
remaining distribution. To determine which genes were differen-
tially expressed, an mz value of �1.5 was used to determine up- or
down- regulation in a cell line relative to all other cell lines,
respectively.
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2.6 Time-Course

Metabolomics

for Tissue-Specific

Cancer Cells

We used the NCI-60 cancer cell line CORE time-course exometa-
bolomics data from Jain et al. [12]. This dataset contains 141 meta-
bolites from 59 cancer cell culture media. Each metabolite level was
measured for two time points: day 0 and day 4–5. This dataset was
used in our prior study to build cell-line specific models using DFA
[7]. Note that DFA can use both extracellular and intracellular
metabolomics data.

3 Methods

3.1 Flux Balance

Analysis and Flux

Variability Analysis

Flux balance analysis (FBA) is a linear optimization method to
calculate the flux solutions of a metabolic network at steady state.
FBA relies on two assumptions: (1) no accumulation of metabolites
for any given reaction and (2) the specification of a cellular objec-
tive. The stoichiometric matrix S represents an m � n array with
m metabolites and n reactions and the optimal flux solutions are
stored in a vector v based on the objective function Z. The upper
and lower flux bounds (vub and vlb) are additional constraints on the
solution space for v. FBA is mathematically summarized in Eq. 2:

Maximize Z ¼ cT v

Subject to Sv ¼ 0

and vlb � vij � vub

ð2Þ

Flux Variability Analysis (FVA) is a related method to identify
the full range of possible fluxes for a given set of reactions. The
optimal constraints for the upper and lower flux bound are based
on the stoichiometric constraints defined in Eq. 3:

vub ¼ max v

vlb ¼ min v

Maximize Z ¼ cT v

Subject to Sv ¼ 0

And vlb � vij � vub

ð3Þ

The COBRA toolbox is used to solve both FBA and FVA
problems using the optimizeCbModel() and fluxVariability()
functions, respectively (see Note 1). Additional documentation
and tutorials on each COBRA toolbox module is available at:
https://opencobra.github.io/cobratoolbox/latest/index.html.

FBA and FVA define constraints that reduce the number of
possible solutions representative of the biological system. Experi-
mental data including the substrate uptake rates and transcrip-
tomics data can be incorporated into the metabolic model as
additional constraints (see Subheading 3.4 for more details) [13].

While FBA and FVA reduce the number of feasible flux solu-
tions, it is still possible to obtain several flux solutions with the same
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objective function. In this tutorial, parsimonious enzyme usage will
be assumed to obtain a single optimal solution. This assumption
specifies that a cell aims to balance the energetic cost of enzyme
production and maximizing its fitness (i.e. growth rate). This is
achieved by minimizing the total metabolic flux while optimizing
the biomass [14].

3.2 Integrating Time-

Course Metabolomics

in Genome-Scale

Models

3.2.1 Calculating Rates

of Change in Time-Course

Metabolomics

To integrate time-course metabolomics data with a GEM, we will
describe the dfa algorithm. This algorithm identifies the metabolic
state that best fits the metabolomics data. The time-course meta-
bolomics data and a genome-scale metabolic model are used as
inputs. The output is a metabolic model containing reaction fluxes
consistent with the time-course metabolic constraints.

The formulation for dfa is similar to FBA, but includes a right-
hand side (rhs) vector, which represents the normalized metabolite
concentration rate of change. Each element in the rhs vector will be
denoted as epsilon for the ith metabolite (εi). (Eq. 4). To calculate
epsilon, the algorithm uses the MATLAB built-in polyfit function
with one degree of freedom for linearly fitting the time-course
metabolomics data for each metabolite. The function outputs the
slope and the intercept corresponding to each metabolite. The
slope represents the rate of change for each metabolite over time,
while the intercept represents the metabolite concentration at t0. εi
is the proportion of the slope and intercept for metabolite i (Eq. 6).

εi ¼ slope
intercept

ð4Þ

We normalize εi between �1 and 1 to be proportional to the
natural metabolite abundance while maintaining the relative mag-
nitude and direction of metabolite changes. To get ||εi||, εi is
divided by the maximum absolute value of εi (Eq. 5).

εi ¼ εi
max abs εð Þð Þ ð5Þ

If the maximum absolute value of εi is much larger than the
average εi value, more advanced normalization procedures are
recommended (see Note 2).

3.2.2 The Dynamic Flux

Analysis Algorithm

Similar to FBA, DFA sets Sij as the stoichiometric matrix and vj as
the flux state vector. For metabolites in the model not measured
from the metabolomics dataset, εi ¼ 0 (Eq. 6).

εi ¼
XM

i¼1
Sij v j þ α j � β j , where i ¼ 1, . . . ,M ð6Þ

To account for the noise within a given metabolomics dataset,
we impose a soft constraint using two pseudo-reaction parameters
(α, β). α and β are positive fluxes that represent the deviation from
the metabolomics data. The algorithm minimizes the sum of α and
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β, affording a flux distribution that is consistent with the
metabolomics-based model. The formulation for this constraint is
shown below (Eq. 7):

Min
XN

j¼1
α j þ β j

� �
, where j ¼ 1, . . . ,M

Subject toεi ¼
XM

i¼1
Sij v j þ α j � β j , where i ¼ 1, . . . ,M

and α j and β j � 0

ð7Þ

To maximize the objective function and minimize the sum of α
and β simultaneously, the objective function coefficients for the
metabolomic constraints are set as �kappa. kappa is the strength
of the metabolomic constraints relative to the objective. We also
minimize the sum of absolute flux values through other reactions
using the assumption of parsimonious enzyme usage. The objective
function coefficients for the metabolomic constraints are set as
�kappa2 (see Note 3).

To summarize the dfa algorithm, there are three optimization
goals that are controlled by the weights �kappa and �kappa2:

1. Maximize the objective function in the metabolic model.

2. Maximize the extent of flux distribution matches with the
metabolomics data.

3. Minimize the overall flux of other reactions.

3.2.3 Matching

Metabolites from

the Metabolomics Dataset

to the Genome-Scale

Model

The first step is to match the metabolite names between the meta-
bolomics data and the model (Table 1). As an example, L-alanine is
an exometabolite that occupies the 186th position in the core
model, and has two metabolomic time points. In contrast, alpha-
ketoglutarate is not taken up by human cells as they lack a specific
transporter. Hence this exometabolite is not present in the meta-
bolic model and is thus excluded from the construction of the
dynamic model. Data for several cell lines can be present in the
same Excel file, and are specified as an argument in the dfa func-
tion. The metabolites can be matched manually to the metabolic
model. We provide several tools below for automated matching.

MetaboAnalyst The current MetaboAnalyst version (https://www.metaboanalyst.
ca/) is available as both a web application and an R library. This tool
analyzes metabolomics data [15]. The Compound ID Conversion
tool in the Other Utilities page maps metabolite IDs to several
metabolite databases. An approximate search can be used to select
the metabolite based on some key strings in the query.

Programmatically Matching

Metabolite IDs

General use languages such as Linux and Python can parse out
metabolite annotations from the original model. For suggested
Python libraries, refer to the documentation for lxml, Element-
Tree, and BeautifulSoup for parsing .xml and .html files.
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Metabolite Compartment

Matching

Because we lose the subcellular compartment-specific information
during intracellular metabolomics measurement, we assume that
the intracellular metabolites represent the sum total of the three
compartments (cytosol, mitochondria, and nucleus). Metabolites
in the metabolic model have a suffix denoting their location in the
cytosol (c), mitochondria (m), nucleus (n), or as an extracellular
(e) metabolite. While matching metabolites from metabolomics
data to the model, we need to specify positions (c), (m), (n), and
(e) in the model. The position is used to calculate the flux coeffi-
cients (epsilon) for each species (metabolite in different
compartments).

A snapshot of the MATLAB code is shown below:

%% dfa

% The dfa algorithm outputs the rate of change for.
% time-course metabolomics data.

(cell_linemodel, geneko_grwthrt_obj, gene-
ko_grwthrt, rxn_knockout_obj, rxnko_grwthrt_obj) ¼
dfa(model, timecourse_metabolomics_file, sheet-
name, celline, kappa, kappa2)

%% Inputs

% timecourse_metabolomics_file, sheetname: Thetime-
coursemetabolomicsdatafor eachtimepointand condi-
tion needs to be formatted in an Excel file. The rows
correspond to metabolites, while columns correspond
todifferenttimepoints(Table 1).Ifdifferentcondi-
tions are within the same Excel file but in a different
sheet, the sheetname must be specified.

%% Optional Inputs

% genedelflag, rxndelflag: Thesetwo arguments takeon values
(0,1), where 0 indicates that gene or reaction

Table 1
An example of the input file format for DFA

Metabolite Position in model A498 (t0) A498 (t1) . . .

Alpha-ketoglutarate 0 �0.00218695 0.01718404 . . .

Alanine 186 �0.01105939 �0.00828399 . . .

AMP 0 �1.66230048 �1.74863463 . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
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deletions will not be performed, while 1 indicates
otherwise.
% kappa: The relative weight for the consistency of the
flux distribution compared to the weight for maximiz-
ing the biomass function. The default value ¼ 1. If
there is no growth in the predict flux distribution or
kappa is increased with low consistency in the metabo-
lomics dataset, kappa should be reduced.

% kappa2: The relative weight for minimizing the sum of
absolute flux values of other reactions. The default
value is 1E�3. The value for kappa2 should be increased
when the magnitudes of some flux values are relatively
largerthanthe expected valuesbasedon knownbiochem-
ical knowledge.

%% Outputs

% dynamicmodel: The time-course metabolomics con-
strained model.

% grate_wt: The growth rate of the dynamic model when the
objective is to maximize the growth rate of the cell.

%% Optional Outputs

% geneko_grwthrt, rxnko_grwthrt: When these flags are set
to 1, the growth rates from gene or reaction deletion
analysis are stored in these two variables
respectively.

% slope: Therateofaccumulationordepletionofmetabo-
lites from time-course metabolomics data.

% solverobj, geneko_grwthrt_obj, rxnko_grwthrt_obj: The sol-
verobj is the value of the optimal objective function,
which can be used to assess the fit to the metabolomics
data.Genesorreactionsdeletionsthatleadtoareduc-
tion in the objective function suggest they are neces-
sary for satisfying the metabolic objectives of the
cell.

3.3 Using DFA to

Infer Metabolic Flux

State Based on

Metabolomics Data

This tutorial will construct two cancer cell line models, one for a
rapidly proliferating cancer cell line (LOXIMVI) and a slowly pro-
liferating cell line (A498), using data from the CORE study
[12]. The time-course metabolomics data from the NCI-60 cancer
cell lines is available at the Chandrasekaran lab website: http://
www.sriramlab.org/software/.

%% Fitting time-course metabolomics data to create A498 and LOXIMVI

dynamic models using the dfa algorithm

% The provided MATLAB code does the following:

% 1) Initiate the Cobra Toolbox and set the Gurobi
optimization solver
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% 2) Load the core metabolic model

% 3) Specify the biomass function for DFA

% 4) Run DFA to fit the A498 metabolomics onto the meta-
bolic model

% 5) Repeat to create a LOXIMVI model

% Initialize the COBRA toolbox

initCobraToolbox(false);
changeCobraSolver(gurobi);

% Read in the cancer core models and make sure the bio-
mass objective function is optimized.

load(’cancer_core_models_palsson.mat’);
A498_core ¼ changeObjective(core_genecomb,
’biomass_NCI60’);
LOXIMVI_core ¼ changeObjective(core_genecomb,
’biomass_NCI60’);

% Run DFA for the core NCI-60 models. The input is the
Excel sheet containing the time course metabolomics

Fig. 1 Differential gene sensitivity between LOXIMVI and A498 in glycine and serine metabolism. The genes
PHGDH and PSAT (red) were among the six genes that were predicted to be differentially sensitive after
knockout between LOXIMVI and A498 (Z-score ¼ 28.44, p-value ¼ 1.73E�145, supplementary table
2, available through the Chandrasekaran lab website http://www.sriramlab.org/software/). Note that the
growth rate ratio for PSAT and ALAS1 is larger in the Escher map due to multiple gene-protein-reaction
rules

Dynamic Flux Activity 307

http://www.sriramlab.org/software/


data. The sheet name is the second argument. The last
argument is the cancer cell line.
(a498_core, a498_grate_obj, a498_grate,
a498_rxn_grate_obj, A498_rxn_grate) ¼ dfa
(A498_core, ’jainetalcore_values.xlsx’,...
’Jain et al CORE Values (Cancer)’, {’A498’});
(loximvi_core, loximvi_grate_obj, loximvi_grate,
loximvi_rxn_grate_obj, ...
loximvi_rxn_grate) ¼ dfa(LOXIMVI_core, ’jainetal-
core_values.xlsx’,... ’Jain et al
CORE Values (Cancer)’, {’LOXIMVI’});

The algorithm outputs the cell-line specific metabolic model
with metabolomics constraints. In addition, it provides the impact
of deleting metabolic genes on the biomass growth of these cell
lines. These growth rate values can be used to identify genes and
reactions that one cell line relies upon more than the other (Fig. 1).

We analyzed the ratio of LOXIMVI / A498 growth rates after
knocking out all 1496 metabolic genes. Six genes were identified by
DFA to be differentially sensitive reactions between the two cell
lines in supplementary table 1. Deletion of genes in one carbon
metabolism (glycine and serine metabolism) such as PHGDH and
PSAT resulted in greater growth reduction in the slow proliferating
cell line compared to the fast proliferating cell line. In contrast,
deleting ACLY and SLC25A1 resulted in impacting growth in fast
proliferating cells.

The next section integrates gene expression data into the
dynamic cancer cell model to obtain metabolic fluxes specific to
both transcriptomic and metabolomics constraints.

3.4 Integrating

Transcriptomics or

Proteomics Within

the Metabolic Network

In this section, we integrate the NCI-60 cancer cell line transcrip-
tomic data for A498 and LOXIMVI with the dynamic model
obtained from the dfa algorithm. This will provide metabolic
fluxes consistent with both transcriptomics and metabolomics
data. The constrain_flux_regulation algorithm [16] uses as
input a list of over- or underexpressed genes or reactions, and a
GEM. It outputs a flux solution consistent with the expression data.
We assume that overexpressed metabolic genes are highly active;
hence the corresponding reactions are likely to carry a nonzero flux.
Similarly, underexpressed genes are assumed to have lower activity,
but the reaction is not completely turned ‘OFF’ (flux ¼ 0). Rather,
we minimize metabolic flux through the underexpressed reactions.
Using these two principles, the formulation for constrain_flux_re-
gulation is shown below (Eqs. 8 and 9):
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Max
XN

i¼1

t i þ rið Þ, i ¼ 1, . . . ,N

Subject tovi � t i εi þMð Þ � �M

andvi � ri εi þMð Þ � M

where t i and=orri ¼ 0or1

ð8Þ

The algorithm maximizes the number of active reactions that
correspond to overexpressed genes. Epsilon (εi ) is a vector of
up-regulated reaction fluxes, which can be a fixed positive value or
as a unique value for each reaction. ti and ri indicate whether the
reaction is active with a value of at least εi with a positive or negative
direction. If ti ¼ 1, the reaction is active in the positive direction.
Otherwise, if ri ¼ 1, the reaction is active in the negative direction.
The variable M (default value ¼ 10,000) is a constant that is much
larger than εi (default value ¼ 1E�3).

constrain_flux_regulation does not set down-regulated reac-
tions to have a flux of 0. Instead, it minimizes the flux through
these reactions in a similar formulation to the PROM algorithm
[17]. Like Eq. 8, the underactive reaction fluxes can be a fixed value
or can be set as a unique value for each reaction. The formulation to
minimize flux through down-regulated reactions is shown below:

Max
XK

i¼1
κ αi � βið Þ,where i ¼ 1, . . . ,K

Subject tovi � lbi
0 � αi

wherevi � ubi
0 � βi

andαi andβi � 0

ð9Þ

lbi
0 and ubi

0 are constraints based on transcriptional regulation
(default value ¼ 0), minimizing the flux through down-regulated
metabolic enzymes. αi and βi are deviations from the constraints
and κ is the penalty associated with the deviation. A higher value of
κ (default value ¼ 1) results in a harder constraint. This results in
more constrained flux states based on gene expression.

To summarize the constrain_flux_regulation algorithm, there
are two optimization goals that are controlled by the weights
epsilon and kappa:

1. Maximize the number of reactions associated with overex-
pressed genes that carry flux.

2. Minimize the flux through reactions associated with under-
expressed genes (see Note 4).

A snapshot of the MATLAB code is shown below:

%% constrain_flux_regulation

% The constrain_flux_regulation algorithm will maxi-
mize the flux in.
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% reactions corresponding to upregulated genes while
minimizing the flux
% corresponding to downregulated genes

(flux, growth, objective) ¼ constrain_flux_regula-
tion(model,... onreactions, offreactions, kappa,
rho, epsilon, mode);

%% Inputs

% onreactions: a cell array containing genes that are
upregulated.

% offreactions: a cell array containing genes that are
downregulated.

%% Optional inputs

% rho, kappa: The relative weights for on- and
off-reactions respectively.
% The default value ¼ 1. The value should be reduced for
larger models or.
% optimizations with a large number of reactions
(rho ¼ 1E�3 recommended
% for 100+ reactions).

% The weights can be set to a different value for each
reaction by creating % a cell array with elements
corresponding to the number of reactions that % are up
or downregulated.

% epsilon: The minimum flux for on-reactions. The
default value ¼ 1E�3.

% Epsilon can be set to a different value for each reac-
tion by creating a
% cell array with elements corresponding to the number
of upregulated
% reactions. This value can be set proportional to the
extent of gene
% expression.

% mode: Describes the input list. If on- and
off-reactions contain gene symbols, the mode must be
set to 0. Otherwise, if set to 1, BiGG reaction IDs are
used.

%% Outputs

% flux: The value state of all reactions, using a formula-
tion similar to
% parsimonious FBA (pFBA).

% growth: Predicted cellular growth rate

% objective: The optimization solver objective
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3.5 Integrating

Transcriptomics Data

to Identify Differential

Flux States Between

Rapidly and Slowly

Proliferating Cancer

Cells

The following example uses the NCI-60 cancer cell line transcrip-
tomics data. The expression datasets used in this example are avail-
able in the GEO database (GSE32474).

Jain et al. [12] observed that rapidly proliferating cancer cells
like LOXIMVI are dependent onmitochondrial glycine metabolism.
In contrast, slowly proliferating cancer cells such as A498 do not
have this dependency. To analyze the differential metabolic activity
between these two cells, we overlay transcriptomics data from these
cells onto the dynamic model obtained from the dfa algorithm. This
is achieved using the constrain_flux_regulation algorithm. The
example datasets for this tutorial are available at the Chandrasekaran
lab website: http://www.sriramlab.org/software/.

%% Using the NCI-60 transcriptomics data

to obtain A498 and LOXIMVI metabolic flux states

% Differential expression for the NCI-60 cancer cell
lines is provided in the following files.

load(“core_model.mat”);

% Get genes that are upregulated and downregulated in
the model

a498_up ¼ intersect(a498_up, A498.genes);
a498_down ¼ intersect(a498_down, A498.genes);
loximvi_up ¼ intersect(loximvi_up, LOXIMVI.genes);
loximvi_down ¼ intersect(loximvi_down, LOXIMVI.
genes);

% Get the flux state for both cancer cell lines based on
upreg/downreg gene expression. Because the model has >

100 genes, rho ¼ 1E�3 was used.

(a498_flux, a498_grate, a498_solverobj) ¼ con-
strain_flux_regulation(A498, a498_up, a498_down,
1, 1, 1E�3, 0);
(loximvi_flux, loximvi_grate, loximvi_solverobj) ¼
constrain_flux_regulation(LOXIMVI, loximvi_up,
loximvi_down, 1, 1, 1E�3, 0);

The loximvi_flux and a498_flux variables contain the predicted
flux through all metabolic reactions in the respective cancer models.

3.6 Visualizing

Metabolic Flux

Predictions Through

Metabolic Pathways

Metabolic flux, gene expression, and metabolomic data can be
visualized on the core cancer model using Escher (https://escher.
github.io/) web-based API. Figure 2 illustrates differentially active
reactions between A498 and LOXIMVI in the glycine and serine
metabolic pathways.
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4 Notes

1. When using DFA, the metabolic model needs to have a speci-
fied objective function (e.g. biomass).

2. When the minimum absolute value of epsilon is very large
relative to other epsilon values (~100-fold), the values in epsi-
lon can be divided by percent quantile instead of the
maximum.

3. In the DFA algorithm, a large kappa2 value will result in lower
flux through all reactions while a smaller kappa2 value will lead
to larger values of metabolic flux.

4. Individual constraints can be violated to maximize the global
fit of the -omics data. For example, reactions that are “ON”
(high expression) can be predicted to be off if this maximizes
the consistency with the remaining over- or underactive
reactions.

Fig. 2 Relative metabolic flux in Glycine metabolism for fast- and slow-proliferating cancer cells using both
transcriptomics and metabolomics data. A498 cells shows higher efflux of glycine out of the mitochondria and
out of the cell, compared to LOXIMVI (shown in blue). In LOXIMVI, glycine has high flux from the cytosol toward
the peroxisome in LOXIMVI, compared to A498 (shown in red)
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(2017) Elucidating dynamic metabolic physi-
ology through network integration of quanti-
tative time-course metabolomics. Sci Rep
7:46249

9. Heirendt L, Arreckx S, Pfau T, Mendoza SN,
Richelle A, Heinken A et al (2017) Creation
and analysis of biochemical constraint-based
models: the COBRA Toolbox v3.0. http://
arxiv.org/abs/1710.04038

10. Zielinski DC, Jamshidi N, Corbett AJ,
Bordbar A, Thomas A, Palsson BO (2017)
Systems biology analysis of drivers underlying
hallmarks of cancer cell metabolism. Sci Rep
7:41241

11. King ZA, Dr€ager A, Ebrahim A,
Sonnenschein N, Lewis NE, Palsson BO
(2015) Escher: a web application for building,
sharing, and embedding data-rich visualiza-
tions of biological pathways. PLoS Comput
Biol 11(8):e1004321. https://doi.org/10.
1371/journal.pcbi.1004321

12. Jain M, Nilsson R, Sharma S, Madhusudhan N,
Kitami T, Souza AL et al (2012) Metabolite
profiling identifies a key role for glycine in
rapid cancer cell proliferation. Science 336
(6084):1040–1044. https://doi.org/10.
1126/science.1218595

13. Yizhak K, Gaude E, Le Dévédec S, Waldman
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Chapter 14

Metabolic Network Reconstructions to Predict Drug Targets
and Off-Target Effects

Kristopher Rawls, Bonnie V. Dougherty, and Jason Papin

Abstract

The drug development pipeline has stalled because of the difficulty in identifying new drug targets while
minimizing off-target effects. Computational methods, such as the use of metabolic network reconstruc-
tions, may provide a cost-effective platform to test new hypotheses for drug targets and prevent off-target
effects. Here, we summarize available methods to identify drug targets and off-target effects using either
reaction-centric, gene-centric, or metabolite-centric approaches with genome-scale metabolic network
reconstructions.

Key words Genome-scale metabolic network reconstruction (GENRE), Drug targets, Off-target
effects, Constraint-based modeling, Flux balance analysis (FBA)

1 Introduction

We are beginning to capitalize on systems biology approaches to
combine basic science knowledge with omics data to tackle several
health challenges like more efficient and effective drug develop-
ment [1]. A challenge for drug development is identifying new
targets while minimizing adverse effects. Adverse, off-target effects
can cause drugs to fail in preclinical trials or can result in a drug
being recalled, posing a serious health concern [2, 3]. In light of
this threat, there is a growing need to more accurately predict drug
effects given their interaction with intended as well as unintended
targets [4]. Computational models can be powerful tools used to
predict drug targets as well as their off-target effects and thereby
increase the yield of the drug development pipeline. GEnome-scale
metabolic Network REconstructions (GENREs) are emerging as
powerful computational tools to address these challenges [5–7].
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GENREs capture the relationships between metabolic genes,
the reactions they catalyze, and associated metabolites. Constraint-
based methods have been used to analyze GENREs to study
the metabolism of many different organisms [8–10]. More recently,
GENREs have focused on human metabolism [11–13] serving as
platforms to identify drug targets, such as in cancer metabolism
[14, 15] and to identify off-target drug effects [16–18].

In this book chapter, we describe examples of how to use
GENREs to predict drug targets and off-target effects. There are
important considerations to make using GENREs for this context
such as the applicable cell type, cellular processes represented, or
the kinds of data available. After the problem has been set up, there
are a broad range of tools available to perform analyses to identify
drug targets and off-target effects that are reaction-centric, gene-
centric, or metabolite-centric. COnstraint Based Reconstruction
and Analysis (COBRA) methods have been developed for these
different approaches [19]. We specifically describe the steps to
perform:

l Reaction-centric approaches that focus on identifying reactions
in the network that when inhibited affect the cell’s ability to
perform key functions.

l Gene-centric approaches that focus on identifying genes that
code for enzymes that are critical to maintain cellular function
in either a healthy or diseased state.

l Metabolite-centric approaches that focus on identifying meta-
bolites that are highly connected in the network and, when
targeted, affect cellular function.

2 Materials

Genome-scale network reconstructions of metabolism or GENREs
can serve as in silico platform for systematically identifying drug
targets and drug off-target effects; for example, a GENRE was used
to study cancer metabolism and identify potential drug targets
[20]. A genome-scale network reconstruction is comprised of
(a) reactions and associated metabolites specific to an organism or
cell type (summarized into a mathematical framework known as the
S matrix) and (b) the genes which code for the proteins that
catalyze each reaction (represented as gene–protein–reaction or
GPR rules) (Fig. 1a). Constraint-based reconstruction and analysis
(COBRA) methods are used to make predictions of the functional
capabilities of each reconstruction (Fig. 1b). An introduction to
COBRA methods with a simplified metabolic network and asso-
ciated code was recently published [21]. Flux balance analysis
(FBA), a well-used COBRA method, predicts fluxes through
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reactions in the network subject to a set of reaction constraints and
given a model objective. Building on FBA as a framework, predic-
tions of drug targets and off-target effects can be made using
reaction-centric, gene-centric, or metabolite-centric approaches to
determine the effect of different parts of the network on the defined
objective function. In order to use these methods, your question of
interest must first be framed by (1) choosing a network reconstruc-
tion, (2) choosing an applicable objective function, and (3) using
data to apply constraints to the network (Fig. 2).

2.1 Choosing

a Network

Reconstruction or

Model

The first step for predicting drug targets or off-target effects using
COBRA methods is to choose a network reconstruction for your
system and question of interest. There are multiple GENREs of
human metabolism available [12, 13, 22–24]. From these recon-
structions, various algorithms (summarized in [25, 26]) have been
implemented which take in either genes or reactions, collected from
various data sources, that are tissue-, cell-type-, or disease-specific
to construct a tissue-, cell-type-, or disease-specific model. A com-
monly used data source is the human protein atlas (HPA) which
contains qualitative scores for protein presence or absence in spe-
cific tissues or cancers [27]. Some algorithms have enabled the
generation of compendiums of tissue or cell-type specific models
of metabolism [24, 28, 29]. However, these individual models are
often only in draft form and are therefore incomplete and thus do
not comprehensively capture many specific tissue or cell-type func-
tions. Individual tissue-, cell type-, or disease-specific models have
been published, usually to address a specific question of interest.
Curated models exist for the liver, kidney, heart, macrophage, and

Fig. 1 Metabolic network reconstructions and their associated methods. (a) Genome-scale metabolic
reconstructions contain the reactions that are known to be catalyzed in an organism, represented with
input and output metabolites, and the genes that code for the proteins which catalyze these reactions, known
as gene–protein–reaction (GPR) rules. (b) Since these reconstructions are represented mathematically as
matrices, various optimization methods can be used to determine what reactions are used and the flux
through these reactions. Constraint-based modeling and reconstruction analysis (COBRA) methods are applied
to reconstructions to make predictions on fluxes through a reconstruction based on a set of constraints on
inputs and outputs to the system while optimizing for flux through a specific reaction in the network
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various forms of cancer [12, 16, 20, 30–35]. Finally, some authors
choose to generate their model using a manual, bottom-up
approach, such as through curation of a draft reconstruction. You
must either choose to use a general human reconstruction, a pub-
lished, curated tissue-, cell type-, or disease-specific model, or
generate your own model for your system of interest. Detailed
protocols for constructing metabolic network reconstructions
have been published [36].

2.2 Identifying

an Objective Function

After identifying the model or reconstruction that you will use, it is
necessary to identify an objective function that is valid for the
model you have chosen and the drug targets or drug effects you
want to identify. An objective function represents a hypothesis for a
metabolic functionality of the cell or tissue-type, represented math-
ematically as optimization of a specific reaction in the reconstruc-
tion. For example, an objective function for a cancer metabolic
model might be to optimize tumor growth, where tumor growth
is represented as a sum of specific metabolites in particular ratios

Fig. 2 Considerations to make when using GENREs to predict drug targets and off-target effects. To predict
drug targets and off-target effects, you first need to choose a reconstruction that fits the organism of interest.
A reconstruction or model may already exist for your organism or tissue of interest; however, you may need to
adapt the reconstruction. Next, you will need to choose an objective function which describes a key function or
phenotype that you are interested in studying. Finally, additional constraints, such as constraints on nutrient
uptake, may be incorporated to better capture your question of interest. Once the appropriate considerations
are made, constraint-based methods can be applied to your model to predict both drug targets and off-target
effects
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[20]. This objective function allows for the identification of poten-
tial therapeutic targets such as genes, reactions, or metabolites that,
when removed from or perturbed in the model, inhibit in silico
tumor growth. Objective functions can also be used to identify
drug effects. For example, to identify off-target effects of the
drug torcetrapib, an objective function was developed that captures
blood pressure through secretion and absorption of different meta-
bolites in the kidney [16]. Each metabolite was associated with
either increasing or decreasing blood pressure, allowing for the
identification of genes that, when perturbed in the model, either
increased or decreased blood pressure [16]. In most cases, an
objective function is defined for a given reconstruction or model,
but the objective function is specific to the question of interest in
the paper and may need to be adapted for your question of interest.
Some studies do not require a defined objective function but rather
rely on integrating omics data to obtain flux values for each reaction
within the network [37]. Choosing an appropriate objective func-
tion allows for the prediction of flux through the network to allow
for context-specific predictions for drug targets and drug effects.

2.3 Applying

Constraints

Finally, after choosing a GENRE and an objective function, addi-
tional constraints can be applied to the network to add further
specificity or context for identifying drug targets. Constraints can
be included as either bounds on uptake reactions, representing the
physiological medium that the tissue or cell is living in, or bounds
on individual reactions in your model through the integration of
omics data. Physiological constraints on uptake reactions represent-
ing the external media of a cell or tissue are usually published with
the model. One study imposed different constraints on their model
of choice (muscle) to study how different nutrient environments
(i.e., starved, fed, or mixed) affected predictions of reactions nec-
essary for ATP, TAG, and glycogen synthesis [38]. Many
approaches choose to integrate gene expression data through the
GPR rules in the network to provide additional constraints. For
example, the metabolic transformation algorithm (MTA) uses
another algorithm, iMAT, to integrate gene expression data to
constrain flux through each reaction in the network to identify
reactions that are differentially used in a healthy versus diseased
state [37]. Another study [17] used the significance of gene expres-
sion changes for each reaction to weight the ease of using a partic-
ular reaction, so the network will increase flux through reactions
with low p-values (significant change in expression) over reactions
with high p-values (nonsignificant change in expression). Con-
straints placed on the network, either through bounds on uptake
reactions or omics data integration, are not essential but can allow
for more physiologically relevant predictions.

Each of the steps outlined above helps to frame your question
of interest to identify relevant drug targets and drug effects. Once
you have chosen your model system, objective function, and

Metabolic Networks for Drug Targets and Off-Target Effects 319



constraints, the methods below describe reaction-centric, gene-
centric, or metabolite-centric approaches for identifying drug tar-
gets or drug effects for your question and system of interest
(Fig. 3).

Fig. 3 Approaches to identify drug targets and off-target effects using metabolic network reconstructions. (a) A
normal flux distribution through a metabolic network which requires the production of both ATP and lipids. (b)
Reaction-centric approaches focus on either inhibiting or removing reactions in the network and noting the
effect on the objective function, in this case the production of ATP and lipids. Reactions are usually removed
one at a time. In this case, the reaction knockout represents a possible drug target because it inhibits the
synthesis of ATP. (c) Gene-centric approaches focus on removing genes from the network by removing
reactions for which that gene is essential. In most cases, this involves removing more than one reaction from
the network. In some cases, this could be a linear series of reactions as shown, which inhibit the production of
lipids, but this is not always the case. (d) Metabolite-centric approaches focus on removing metabolites in the
network by removing reactions that consume that metabolite. The metabolite being removed (shown in red) is
removed by disabling the two reactions that consume that metabolite. The removal of this reaction also
inhibits the production of lipids which are necessary for the network. All three of these approaches yield
different ways to identify drug targets, through either targeting specific reactions, genes, or metabolites
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3 Methods

3.1 Reaction-Centric

Approaches to Drug

Target and Off-Target

Identification

3.1.1 Reaction

Knockouts

Reaction-centric approaches identify potential drug targets
through systematically perturbing reactions in the network and
are the most straightforward conceptual approach for identifying
drug targets using GENREs. These approaches simulate either the
removal or inhibition of reactions in the network and evaluate the
downstream effect on the objective function. Reactions that are
essential to enable nonzero flux through an objective function of
interest can serve as potential drug targets. Once a drug target is
identified, the GPR rules of the metabolic network can be used to
identify a protein or enzyme that can be targeted to inhibit that
reaction (seeNote 1). Reactions as drug targets have been identified
using a model of cancer metabolism and an objective function of
cancer cell growth using the following steps [39]:

1. Determine a threshold for the objective function that deter-
mines how you will classify your reactions, where above the
threshold indicates reactions that do not inhibit growth and
below the threshold indicates reactions that inhibit growth.

2. Systematically constrain each reaction in the network and run
FBA to determine the value of the objective function (see
Note 2).

3. If the value of the objective function is below the threshold, the
reaction is considered a possible drug target.

3.1.2 Metabolic

Transformation Algorithm

Additional data, such as gene expression data, can be integrated
with your metabolic model of choice to generate predictions for
reactions as drug targets. The metabolic transformation algorithm
(MTA) is an example of a reaction-centric approach which uses
gene expression data and reaction knockouts with a generic
human network reconstruction to predict reactions which will
shift the network from one state to another, such as from diseased
to healthy [37]. The reactions that shift the network from a dis-
eased to a healthy state are potential drug targets; this approach has
been used to identify drug targets for Alzheimer’s disease [40] and
kidney disease [31]. MTA was originally implemented with a model
of yeast metabolism by integrating young (i.e., healthy) and old
(i.e., diseased) gene expression data sets to predict drug targets to
prevent aging using the following steps:

1. Integrate gene expression data using the iMAT algorithm to
get feasible flux distributions for both the healthy and diseased
states (see Note 3).

2. After integrating the expression data, classify each reaction in
the network as either:
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(a) Unchanged, there is no difference in flux between the
healthy and diseased states.

(b) Changed, there is a difference in flux between the healthy
and diseased states.

3. Systematically remove each reaction from the original recon-
struction (i.e., before gene expression integration) while mini-
mizing the change in flux through the “unchanged” reactions
and maximizing the change in the “changed” reactions. This
step represents keeping the network the same (minimizing the
“unchanged” reactions) while pushing the network back to a
healthy state (maximizing the “changed” reactions).

4. Each reaction is then assigned a score indicating the effect the
reaction knockout had on the system, reflecting the ability of
the knockout to maintain the original metabolic state (mini-
mizing the “unchanged” reactions) while bringing the network
back to a “healthy” state (maximizing the “changed”
reactions).

5. Reactions with the lowest score, representing a minimum num-
ber of changes in unchanged reactions and a maximum change
in changed reactions, serve as drug targets for shifting the
network from the diseased to healthy state.

3.1.3 Using Flux Through

Metabolic Reactions

to Predict Drug Side Effects

Previous work leveraged metabolic modeling, data from external
drug databases, and machine learning approaches to predict drug
side effects using fluxes through reactions in a metabolic network
[18]. DrugBank [41] and the side effect resource (SIDER)
[42, 43] were mined for data to relate drugs to their gene targets
and drugs with known side effects. Using these two data sources
and a general human network reconstruction, predictions of side
effects were made with the following steps:

1. Drugs were selected from DrugBank that (a) had only meta-
bolic targets and (b) inhibited their targets. These drugs were
incorporated into a general human network reconstruction to
get flux ranges for every reaction in the network. DrugBank
connects drugs with their gene targets; using the GPR rules in a
general human reconstruction, reactions associated with genes
that were inhibited by specific drugs were removed from the
network.

2. Run flux variability analysis (FVA) to get the range of fluxes
through each reaction in the network. Repeat for every drug in
the DrugBank database.

3. The SIDER database connects drugs with known side effects.
These side effects were incorporated with the flux data above to
build a classifier to predict side effects based on flux ranges. For
each side effect, select the drugs that are associated with the
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side effect. Use the flux ranges for each reaction in the network
with a support vector machine (machine learning approach) to
predict the presence or absence of that specific side effect.

4. Once the above steps are complete, you have an array of model-
based phenotype predictors (AMPP). Given a specific drug
with known metabolic targets, FVA can be run to calculate
the range of fluxes through each reaction in the network.
Feeding these flux ranges into the AMPP will give a prediction
of the presence or absence of all side effects in the AMPP.

Initially, 89 drugs with only metabolic targets that were asso-
ciated with 286 side effects were used to demonstrate the predictive
ability of this approach. Seventy side effects could be predicted
accurately (AUC > 0.7) based on using a metabolic modeling
approach with machine learning, highlighting the potential of
using metabolic networks to predict drug side effects.

3.2 Gene-Centric

Approaches

Proteins are widely used as drug targets because they can affect
multiple cellular processes at once. Computationally, this character-
istic makes them good candidates for knockouts because they can
simulate potential inhibition by a drug. In GENREs, GPR rules use
a logic based approach to describe the relationships between genes,
proteins, and reactions. There are four types of GPR rules that exist
in GENREs to describe the relationships between genes, proteins,
and reactions shown in (Fig. 4) [21]. First, there are one-to-one
relationships, where one reaction is connected to an enzyme. Next,
there are enzymes comprised of subunits, where two or more
subunits form an enzyme to catalyze a reaction. Third, there are
isozymes, where multiple enzymes can catalyze a reaction indepen-
dently. Finally, there are complex enzyme relationships where mul-
tiple enzymes, which can have several subunits, can either jointly or
independently catalyze a reaction. Gene-centric approaches, such as
single (gene essentiality) or pairwise (synthetic lethality) gene
knockouts, leverage GPR rules to remove the downstream reac-
tions in a system to identify potential drug targets.

3.2.1 Gene Essentiality In vitro gene essentiality analysis studies the impact of individual
genes on the cell’s ability to grow. In silico gene essentiality analysis
characterizes the importance of each gene in a metabolic network
on the objective function. For example, gene essentiality was used
to identify genes necessary for tumor cell proliferation [4], thus
identifying potential drug targets. Depending on your model, you
can have a range of objective functions to model different pro-
cesses, depending on the disease in question. In models of prokar-
yotes, very frequently, the objective function is defined to represent
biomass synthesis, so gene essentiality analysis identifies the genes
that are critical for an organism to grow. For models of eukaryotes,
an objective function representing biomass synthesis is often
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explored, but other objective functions representing other complex
physiological functions like the regulation of blood pressure have
also been analyzed [16]. In models representing disease pheno-
types, gene essentiality analysis can reveal which genes are critical to
support the diseased state, such as which genes are necessary for
cancer cell survival or proliferation. This analysis provides a way to
find which genes should be targeted; here, we describe how to
conduct gene essentiality analysis.

1. Choose an objective function to represent a cellular process.

2. Run flux balance analysis (FBA) to identify the default objective
value.

3. Choose a threshold or fraction of objective value to be consid-
ered “essential.” Genes which produce an objective value
below this threshold are essential genes.

4. Identify genes of interest to target. You can choose a subset or
use all genes captured by the model.

5. Test the essentiality of each gene on the biomass function.

Fig. 4 Gene–protein–reaction (GPR) rules describe the relationship between phenotype and genotype. (a)
Example of a GPR rule representing an enzymatic reaction catalyzed by the protein product of a single gene.
(b) Example of a redundant GPR rule where either protein b1 or protein b2 can independently catalyze the
same function. In this case, these isozymes are separated by an “OR” statement in the GPR rule. (c) Example
of a complex GPR rule where both c1 and c2 are required for the catalytic reaction to occur. In this case, two
nonredundant subunits that form a protein complex are separated by an “AND” statement. (d) Example of a
complex GPR rule with redundancies where d1 can form a protein complex with either d2a or d2b. In this
case, the GPR rule can be separated by unique protein complexes or first by subunits then by redundancies as
represented in (e). (e) Table summarizing genotype–phenotype relationships from a–d as Boolean GPR rules.
(Reproduced from Rawls et al. (2019) [21])
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(a) Find reactions catalyzed by this gene. GPR rules are used
to find which reactions are affected by the loss of this
one gene.

(b) Constrain the lower and upper bounds of these reactions
to 0, for those reactions that are directly dependent on
this gene, or reactions that form an enzyme subunit with
this gene.

(c) Run FBA to calculate the value of the objective function
after applying constraints.

(d) Store this output, ensuring that you connect this value to
the gene that was deleted.

(e) Restore lower and upper bounds of reactions to original
values.

6. Repeat step 5 for each gene.

7. For the vector of objective values, divide by the default objec-
tive value to obtain fractional values representing the fractional
amount of the objective function obtained.

8. Genes whose fractional objective values are below the threshold
are labeled as essential.

Genes that produce minimal effects on healthy tissue while
disrupting diseased tissue make ideal drug targets. Therefore, it is
often necessary to use a healthy model and a diseased model to test
whether the gene targets identified are specific to the disease, or
affect both the healthy and diseased cases. When using microbial
GENREs to identify microbial drug targets, it is critical to compare
the identified essential genes with human homologs to ensure that
there is no overlap [7, 44]. Genes that are unique to a microbe
make ideal drug targets, as they are predicted to have minimal
impact on human metabolism.

3.2.2 Synthetic Lethality

Analysis

Synthetic lethality refers to the lethal combination of two nonlethal
genes [45]. Here, the nonlethal mutation of one gene can modu-
late the impact of another nonlethal gene mutation to create a
lethal combination. The computational simulation of synthetic
lethality follows that of gene essentiality with slight modifications.
Synthetic lethality explores the impact of double gene deletions of
nonessential genes to ascertain if the combination of gene muta-
tions produce an effect [46]. While the steps are consistent, we
outline them here.

1. Identify all nonessential genes in the network.

2. Perform double gene deletion simulations of each pairwise
combination of genes.
(a) Select a pair of genes from the list of nonessential genes

identified in step 1.
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(b) Delete both genes by constraining the lower and upper
bounds of reactions to 0 for those reactions whose GPR
rules depend on the function of either gene.

(c) Run FBA to calculate a value of the objective function
after applying constraints.

(d) Store this output, ensuring that you connect this value to
the genes that were deleted.

(e) Restore lower and upper bounds of reactions to original
values.

3. Repeat steps 2 for each gene pair combination from the list of
nonessential genes in the network.

4. Determine synthetic lethal pairs by identifying gene knockouts
that produce an objective value below the threshold.

In the COBRA toolbox [19], both single gene deletion and
double gene deletion analyses are built-in functions. After defining
the desired parameters for your analysis, these analyses can be run in
one line of code.

3.3 Metabolite-

Centric Approaches

3.3.1 Identification

of Antimetabolites

as Targets

Antimetabolites are metabolites that have similar structure to
another metabolite and can therefore competitively inhibit reac-
tions that their corresponding metabolite would participate in. One
appeal to using antimetabolites as drug targets is that metabolites
participate in multiple reactions, thus making it possible to inhibit
multiple reactions at once. Antimetabolites have been used as anti-
cancer drugs [47]. For example, 5-fluorouracil (5-FU), an antime-
tabolite of uracil, inhibits pyrimidine biosynthesis by binding to and
inhibiting thymidylate synthetase and thus inhibits DNA synthesis
[48, 49]. Computationally, antimetabolites that could serve as
potential drug targets were identified by simulating the inhibition
of growth using a metabolic network of cancer cell metabolism
[35]. We present a step-by-step process to predict antimetabolites
that could serve as drugs as described by Argen et al. To use this
method, the authors use a series of constraint-based approaches to
simulate the effects of antimetabolites. To create healthy and cancer
models, the authors developed the Task-Driven Integrative Net-
work Inference for Tissues (tINIT) algorithm [35]. After you have
developed your own models for a healthy and diseased state, you
can follow the steps below to identify antimetabolites as drug
targets:

1. Pick a list of metabolites that you want to test for or use the full
set of metabolites in the model.

2. Define a threshold for determining if there was a significant
effect on the value of the objective function. The baseline
objective value is determined by running FBA.

3. Choose a metabolite to test.
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4. For the metabolite chosen in step 3, constrain flux values
through reactions that consume this metabolite to 0.

5. For reversible reactions with this metabolite as a product,
constrain the lower bound to 0 so this metabolite is only
produced.

6. Run FBA to determine the value of the objective function.

7. Repeat steps 3–6 for each metabolite in list of metabolites from
step 1.

8. Find the subset of metabolites that, when removed, produce an
objective value below the threshold (determined in step 2).

Metabolites that are identified after this process are appropriate
drug targets with a few caveats. First, metabolites that are deriva-
tives of “pool” metabolites should be disregarded; these represent
abstractions of metabolites that are used to synthesize general
metabolites, such as a general phosphatidyl choline. Second, meta-
bolites that disrupt energy and oxidation-reduction based on met-
abolic tasks should also be removed from the list of possible
metabolites that can serve as drug targets. The authors remove
these metabolites under the assumption that the disruption in
energy would occur in both healthy and treatment models, making
them less ideal targets to use.

3.3.2 Using MetChange

to Identify Metabolites

and Pathways Associated

with the Pathogenesis

of Side Effects

A metabolite-centric algorithm, MetChange, was used to identify
metabolites and pathways that are associated with side effects,
providing possible hypotheses for the pathogenesis of side effects
[17]. MetChange calculates a score for each metabolite in the
network from gene expression data; this score represents how easy
it is, based on gene expression data, for flux to flow through the
pathways in the production of that metabolite. The gene expression
data used in this study was from in vitro exposure of human cells to
a variety of drugs. Significantly changed pathways, termed disease-
linked drug-changed (DISLoDGED) pathways, were identified
using a generic human network reconstruction and provide
hypotheses for the metabolic mechanisms underlying side effects.
The MetChange algorithm uses the following approach:

1. For each metabolite in the network, run FBAwith the objective
function to maximize production of that metabolite. This value
represents baseline metabolite production.

2. Summarize gene expression values as p-values for each gene in
the network. GPR rules are used to assign an overall p-value for
each reaction in the network, representing the ease of flux
through that reaction based on the gene expression data.

3. For each metabolite in the network, run a new optimization
problem with the following parameters: (a) minimize the sum
of fluxes through each reaction times the calculated p-value of
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that reaction and (b) maintain the baseline metabolite produc-
tion calculated in step 1.

4. Calculate the MetChange score for each metabolite for each
drug condition based on the matched control, representing the
ease of producing that metabolite relative to a control condi-
tion. The formula for calculating the MetChange score is simi-
lar to calculating a z-score, indicating the difference between
the drug condition and the matched control.

5. Use the SIDER database to identify side effects for each drug
for which there are MetChange scores.

6. Use a genetic algorithm to predict the presence or absence of
side effects for each drug with a MetChange score.

7. DISLoDGED pathways are pathways where a particular
metabolite production score is a predictor of the presence of a
specific side effect from the genetic algorithm.

3.4 Summary In this chapter, we present approaches to identify drug targets and
off-target effects using GENREs and their associated computa-
tional analyses. Using step-by-step descriptions of different meth-
ods, we describe reaction-centric, gene-centric, and metabolite-
centric approaches to identify either drug targets or off-target
effects (Fig. 3). The methods presented here represent the current
state of the field. However, additional methods are rapidly develop-
ing which leverage different aspects of GENREs to predict new
drug targets and predicting or minimizing potential off-target
effects. In light of the stagnation in the drug development pipeline,
these methods can be of tremendous value by identifying new drug
targets while minimizing off-target effects to enhance the number
of drugs that make it to market.

4 Notes

1. Many of the reaction-centric approaches can also be used to
identify genes that could serve as drug targets. Reactions that
are identified as potential drug targets or sources of drug effects
can be connected back to specific genes through the GPR rules.
However, genes may participate in more than one reaction so
targeting a gene may not be as specific as targeting a reaction.

2. For reaction knockouts, some studies choose to completely
remove reactions (i.e., set reaction bounds to 0) while some
studies choose to constrain reactions to a percentage of maxi-
mal flux (i.e., set reaction bounds to 50% of maximal flux).

3. iMAT is an algorithm that integrates gene expression data to
provide flux through each reaction in the network without
specific consideration of an objective function.
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47. Raškevičius V, Mikalayeva V, Antanavičiūtė I
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Chapter 15

Single-cell Digital Twins for Cancer Preclinical Investigation

Marzia Di Filippo, Chiara Damiani, Marco Vanoni, Davide Maspero,
Giancarlo Mauri, Lilia Alberghina, and Dario Pescini

Abstract

Laboratory models derived from clinical samples represent a solid platform in preclinical research for drug
testing and investigation of disease mechanisms. The integration of these laboratory models with their
digital counterparts (i.e., predictive mathematical models) allows to set up digital twins essential to fully
exploit their potential to face the enormous molecular complexity of human organisms. In particular, due to
the close integration of cell metabolism with all other cellular processes, any perturbation in cellular
physiology typically reflect on altered cells metabolic profiling. In this regard, changes in metabolism
have been shown, also in our laboratory, to drive a causal role in the emergence of cancer disease.
Nevertheless, a unique metabolic program does not describe the altered metabolic profile of all tumour
cells due to many causes from genetic variability to intratumour heterogeneous dependency on nutrients
consumption and metabolism by multiple co-existing subclones. Currently, fluxomics approaches just
match with the necessity of characterizing the overall flux distribution of cells within given samples, by
disregarding possible heterogeneous behaviors. For the purpose of stratifying cancer heterogeneous sub-
populations, quantification of fluxes at the single-cell level is needed. To this aim, we here present a new
computational framework called single-cell Flux Balance Analysis (scFBA) that aims to set up digital
metabolic twins in the perspective of being better exploited within a framework that makes also use of
laboratory patient cell models. In particular, scFBA aims at integrating single-cell RNA-seq data within
computational population models in order to depict a snapshot of the corresponding single-cell metabolic
phenotypes at a given moment, together with an unsupervised identification of metabolic subpopulations.

Key words Cancer heterogeneity, Constraint-based modelling, Single-cell RNA-seq

1 Introduction

Since 1951, when the first immortalized cancer cell line was derived
from cervical cancer cells taken fromHenrietta Lacks [1], stabilized
cell lines have long been used in cancer research. They have been
recently complemented by laboratory models derived from clinical
samples, like patient-derived xenografts (PDX) [2], organoids
(PDO) [2] and organ-on-chips (ONC) [3], which provide a renew-
able easily accessible, comprehensive representation of the architec-
ture of normal and diseased tissues, an asset of major importance

Deepak Nagrath (ed.),Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols, Methods in Molecular Biology, vol. 2088,
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for drug testing and for studies aiming to reconstruct the disease
mechanisms. The remarkable resemblance to the originating struc-
ture of these laboratory models both in cellular organization and
genomic variability has led to a strong development towards their
use in preclinical research, where they have been used for testing of
patient-specific protocols derived from experimental analysis,
allowing direct safe testing of experimentally-generated, patient-
specific clinical protocols. To fully exploit potential of these labora-
tory twins, predictive mathematical models (digital twins) are
needed, as shown in Fig. 1. The stumbling block of this approach
is the staggering molecular complexity of an organism with trillions
of cells, each containing several hundred thousands proteins, the
agents which determine biological functions. It seems necessary

Fig. 1 Overview of scFBA approach. Stratification of cancer heterogeneous subpopulations taken from
xenografts or organoids needs the quantification of fluxes at the single-cell level. scFBA integrates extracel-
lular bulk fluxes and single-cell RNA-seq data into bulk and single-cell constraints that are imposed on a
initially homogeneous population model consisting of Ncells replicas of the input template metabolic network.
The output of this analysis is a heterogeneous set of single-cell flux patterns. The translation of single-cell
transcriptomes into the corresponding single-cell fluxomes also contributes to identify metabolic clusters of
cells that are characterized by different growth rates and global metabolic profiles. In case of single-cell
RNA-seq data missing, extracellular fluxes (bulkextr constraints) and RNA-seq data depicting the average gene
expression from all the population cells (bulkintr constraints) can be exploited to generate patient-specific net
flux distributions
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therefore to find a correct way to reduce the complexity considering
both a modular, multi-level approach in which the molecular detail
(necessary for making drug action predictions) is restricted to a
manageable module. Metabolomics may offer a convenient/delim-
ited approach. Mass spectrometry (and NMR)-based methods
allow to obtain high resolution “snapshots” of metabolites present
in a given sample [4]. Using labelled compound metabolic fluxes
originating from the labelled compound have been measured using
Metabolic Flux Analysis (MFA) [5], a metabolic flux being the rate
at which a metabolite is consumed or produced by a given meta-
bolic reaction. In cell cultures, extracellular fluxes have been more
easily determined from the exo-metabolome at different time
points, that is bulk measurements of the concentration of metabo-
lites in the cell culture media.

Changes in metabolism have a causal role in many complex
multifactorial diseases, including cancer, mostly dependent on
oncogene activation [5, 6]. Changes in metabolic fluxes directly
impact on epigenetic regulation and on enzyme activities, affecting
cell functions, which emerge from the network of informational
and chemical fluxes taking place in each given cell [7]. Because of
the close integration of metabolism with practically all cellular
processes, perturbations in cellular physiology typically alter meta-
bolic profiling of cells, tissues and biological fluids [8]. The com-
plete human metabolic network has been reconstructed [9]. It
includes 5000 metabolites and about 13,000 reactions, which
have been structured in genome-wide metabolic models, whose
active metabolic fluxes have been predicted by constraint-based
metabolic models, knowing, from other omics analyses, which
pathways are expressed in any given cell or tissue [9]. Constraint-
based modelling, and in particular Flux Balance Analysis (FBA),
represents the most applied computational approach. Given specific
constraints on the flux of some relevant reactions, especially those
regarding the intake and secretion rates of metabolites, this
approach allows to compute the flux of metabolites through a
given set of reactions.

In particular, we introduced a novel computational framework
for data integration called Metabolic Reaction Enrichment Analysis
(MaREA) [10]. MaREA aims at integrating RNA-seq data into
metabolic networks by calculating for each reaction the Reaction
Activity Score (RAS) exploiting the corresponding gene-protein-
reaction (GPR) rule, without requiring any metabolic measure-
ments. The usage of RAS scores instead of the only transcripts
allows to characterize transcriptional deregulations of metabolic
reactions under different conditions. Furthermore, this strategy
offers the possibility of ranking reactions according to their activity
variation, and visualizing the most critical ones directly on meta-
bolic networks. In this way, it also provides a graphical visualization
of how deregulated paths are interconnected, by enriching the map
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of human metabolic routes with RAS variation. Finally, MaREA,
providing a new unsupervised clustering tool, allows to stratify
different tumors samples according to their metabolic activity.

MaREA revealed its ability in discriminating normal and cancer
samples, by reproducing well-known features of cancer deregula-
tion and generating new hypotheses. By applying this methodology
to two distinct datasets of The Cancer Genome Atlas database [11]
relative to lung and breast tumours, cancer patients can be, in an
unsupervised way, stratified in distinct clusters characterized by
similar metabolic activity. In this way, subgroups of patients differ-
ing in terms of survival expectancy can be identified. Therefore, the
reaction enrichment performed via MaREA allows to identify the
metabolic patterns underlying the phenotypic and functional prop-
erties observed in different sample subgroups, as in the case of
patients with distinct cancer subtypes, by visualizing the up-/
down-regulated reactions directly on the metabolic networks. In
this regard, MaREA enables to identify, rank and visualize critical
metabolic reactions that can be targeted by using metabolic drugs,
instead of targeting the expression of individual genes. Finally, the
comparison of MaREA prognostic power by using a well curated
core model focused on central carbon metabolism and a complete
genome-wide metabolic network revealed in the first case an
improvement of its prognostic power. This behavior has been
observed because of the model curation in terms of GPR rules
associated to metabolic reactions.

Cancer is catalogued as a heterogeneous and multi-factorial
disease due to the existence of multiple tumoral types and subtypes
deriving from the same or different origin primary sites that show
considerable phenotypic diversity both at the intertumour and
intratumour level [12–14]. In addition to genetic and epigenetic
factors, differential trophic supply and variations in the tumour
microenvironment (TME) plays a great role in the emergence of
intratumour metabolic heterogeneity and of a complex cancer pop-
ulation architecture [15, 16]. According to this perspective, the
outcome of the metabolic strategy adopted by a given cancer cell to
survive within the overall population is both dependent on its
approach used for growing together with the metabolic strategies
adopted by other interacting constituents of the population,
including other tumour cells, stromal cells, and the local microen-
vironment. Indeed, despite the reorganization of metabolic fluxes is
a general feature of cancer cells, a unique metabolic program does
not allow to globally describe the altered metabolic profile of all
tumour cells due to a heterogeneous dependency on nutrients
consumption and metabolism by multiple co-existing subclones,
even within the same tumour. Intratumour metabolic heterogene-
ity contributes to considerably hamper cancer classification and
pushes the need for exploring more in detail the set of interactions
and cooperation phenomena that occur within cancer ecosystem
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together with the adopted metabolic programs. Their better
knowledge could be used to develop more effective and persona-
lized therapeutic strategies to hamper and potentially reverse
tumour progression.

To this aim, the quantification of the flux through the meta-
bolic pathways for each subpopulation within the entire tumor
population by using constraint-based approaches would be ideal
for a deep characterization of the adopted metabolic programs.
Currently, fluxomics approaches just match with the necessity of
characterizing the overall flux distribution of cells in bulk samples,
disregarding possible heterogeneous behaviors. This is a relevant
question when, in view of the above, the aim is to investigate bulk
samples containing intermixed cell subpopulations. Indeed, by
using classic fluxomics approaches, the retrieved flux distribution
will portray, as a black box of the investigated population, the net of
heterogeneous flux distributions, by hiding actual intracellular
fluxes and possible cooperation phenomena.

For the purpose of stratifying cancer heterogeneous subpopu-
lations, taken, for example, from biopsies, xenografts or organoids,
quantification of fluxes at the single-cell level is needed. In this
regard, we developed a new computational framework called
single-cell Flux Balance Analysis (scFBA) [17], which will be better
explained below in Subheading 3.

In view of investigating the role of cooperation within a popu-
lation sharing a common environment, we firstly devised popFBA
[18, 19], an extension of classic FBA able to cope with the presence
of several subpopulations exchanging a defined set of metabolites
(see Note 1 for a summarized description of this methodology).
The potentialities revealed by popFBA and MaREA methodologies
effectively served as a basis for the set up of scFBA. scFBA aims at
integrating single-cell RNA-seq data (scRNA-seq) within popula-
tion models by exploiting the computation of RAS scores in order
to depict a snapshot of the corresponding single-cell metabolic
phenotypes at a given moment, and to identify metabolic subpo-
pulations without a priori knowledge. In this way, scRNA-seq data
act as further constraints on flux boundaries of distinct cells within
the population, in order to identify the possible combinations of
single-cell steady states.

Thanks to this approach, the integration of scRNA-seq data
within population models efficiently reduces the space of optimal
solutions as compared to the situation depicted by popFBA where
no information on single cell trancriptome is available with the
consequent ability of each cell to alone contribute to the 100% of
the total population biomass. Indeed, after the scRNA-seq data
integration, flux value of biomass synthesis for each cell correspond
to a certain fraction of the total population biomass, by preventing
solutions where each cell in the population can alone contribute to
total biomass of the entire tumour mass. Moreover, the conversion
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of single-cell transcriptomes into single-cell fluxomes also allows to
identify metabolic clusters of cells characterized by different growth
rates, which can be exploited to better investigate intratumour
heterogeneity. Finally, similarly to popFBA, possible interactions
among cells within the population can be identified thanks to
scFBA methodology. However, as opposed to its predecessor,
scFBA is not limited to list all the theoretical subpopulations and
their possible interactions network, but aims to capture the actual
interactions between the subpopulation of cells within a specific
population, characterized through quantitative experimental data.

2 Materials/Software

To perform a scFBA analysis three input resources are required: a
template metabolic network, a scRNA-seq dataset, and the extra-
cellular fluxes of the overall cell population corresponding to the
uptake and secretion rates of main metabolites, which can be
approximated from their concentration measurements in the
spent cell culture medium at different time points.

The scFBA suite of MATLAB functions is available at https://
github.com/BIMIB-DISCo/scFBA, whereas the “Metabolic
Enrichment Analysis” tool proposed by MaREA can be found at
https://orione.crs4.it/.

3 Methods

In this section, a detailed description of all the steps that are
necessary to perform a scFBA analysis is provided. Three input
resources need to be firstly prepared.

A template metabolic networkA is required, suitable either as
a genome-wide or a core metabolic network. The network A is
defined as A ¼ ðXA,R A, ℰAÞ, where:
l XA ¼ fX 1, . . .,XM g corresponds to the set of metabolites;

l R A ¼ fR1, . . ., RN} corresponds to the set of biochemical reac-
tions taking place within the network;

l ℰA ¼ fE1, . . ., EN ext
g corresponds to the set of Next exchange

reactions that enable a predefined set of metabolites Y ¼
fY 1, . . .,YN ext

g � XA to be consumed or secreted from the
network.

Secondly, a scRNA-seq dataset is required in the form of a
Ngenes � Ncells matrix T, where Ngenes is the number of genes and
Ncells is the number of single-cells under study. Each element Tg,c,
g ¼ 1, . . .,Ngenes, c ¼ 1, . . .,Ncells of the dataset corresponds to the
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normalized read count of gene g in cell c (e.g. the Transcripts Per
Kilobase Million or TPM).

Finally, the extracellular fluxes of the overall cell population
are required. These values correspond to the uptake and secretion
rates of main metabolites, and can be approximated from their
corresponding concentration measurements performed in the
spent cell culture medium at different time points.

Once these required input resources have been correctly
prepared, the user has to proceed by following these five steps:

1. Pre-processing of scRNA-seq dataset. Pre-processing of
scRNA-seq dataset is necessary to face the risk of having false
negatives. In this regard, the information coming from bulk
expression profile, when available, is exploited in the following
scenarios (see Note 2 for further details):

l Genes having a zero read count both in the bulk and in each
single-cell are assumed to be off in all cells. This set of genes
Goff are deleted within the template metabolic network A.
This implies that reactions for which their expression is
essential are removed from the network A, by obtaining a
subnetwork A∗.

l Genes having non-zero read count in the bulk but a zero
read count in each single-cell are assumed to be assigned to
the bulk read count.

l Genes having non-zero read count in the bulk and zero read
count in just some of the single-cells are kept unchanged in
terms of their read counts. Moreover, flux boundaries
through the associated reactions is not completely pre-
vented by setting it to a small value E.

2. Creation of the population model. The template metabolic
network map A∗, as previously described in Subheading 1, is a
subnetwork of the generic model A which integrates the tran-
scriptional information that holds for all cells in the bulk. This
network corresponds to a generic single-cell and is used as a
building block to automatically reconstruct the population
model, which consists of identical copies of the single meta-
bolic network, all having identical stoichiometry and capacity
constraints and sharing the plasma supply of nutrients.

The population model consists of Ncells replicas A
c of net-

work A∗ that can cooperate by exchanging nutrients in the
tumour microenvironment. Each replica Ac corresponds to a
single-cell c in the bulk, c ¼ 1, . . .,Ncells, whose corresponding
metabolic network Ac ¼ ðX c ,ℛc , C cÞ can be reconstructed in
the following way:

l the set of metabolites X c corresponds to the XA set of the
original template network A∗, i.e., X c � XA;
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l the set of internal reactions ℛc corresponds to the ℛA set
of the original template network A∗, i.e., ℛc � ℛA;

l a new set of cooperation reactions C c ¼ fCc
jg, with j ¼ 1,

. . .,Next, is introduced to allow the exchange of metabolites
among single cells via a shared environment that is repre-
sented by the TME compartment. In particular, each
exchange reaction E j∈ℰA

is used to build the
corresponding cooperation reaction in this way:

Cc
j : Y

c
j $ Y 0

j ð1Þ
Due to the introduction of cooperation reactions, an

additional set of metabolites Y 0 ¼ fY 0
igwith i ¼ 1, . . .,Next

must be defined in the TME compartment.

Finally, to allow a subset of metabolites K ¼
fK1, . . .,KN blood

g � Y 0 to be exchanged with the external envi-
ronment, e.g., the blood supply, a set of Nblood exchange reac-
tions ℬ ¼ fB1, . . ., BN blood

g must be defined:

B j : K j $ ; ð2Þ
Overall, the population model P consists of the union set of

the metabolites XP ¼ S
cX

c \ Y 0, the internal reactions

ℛP ¼ S
cℛ

c, the cooperation reactions CP ¼ S
cC

c , and the
population exchange reactions ℬ. A stoichiometric matrix SP is
then built for the population model, with a size of
(Ncells � M + Nblood) � (Ncells � (N + Next) + Nblood).

3. Computation of Reaction Activity Scores. Gene-Protein-
Reaction (GPR) rules are logical expression associated to met-
abolic reactions, which indicate the relationships established
among gene products involved in their catalysis by means of
AND and OR logical operators (see Note 3). In particular, AND

operator is used to join distinct genes encoding for different
subunits of the same enzyme that are necessary for the reaction
to occur, whereas OR operator join distinct genes encoding for
isoforms of the same enzyme. Acting in this way, it is possible to
associate a GPR rule to each reaction of the population
model P.

By exploiting GPR rules, a Reaction Activity Score (RAS)
can be computed for each reaction j∈ℛ in each single-cell
c ¼ 1, . . .,Ncells as a function of the expression Tg,c of the genes
encoding for the subunits or the isoforms of the associated
enzymes. In particular, two scenarios are considered:

l in case of a reaction whose GPR rule includes the AND

operator, all the genes are necessary for the reaction to
occur and therefore RAS is calculated as follows:
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RAScj ¼ min
g

ðT g ,c : g∈S j Þ ð3Þ

where Sj corresponds to the set of genes encoding for
the subunits that make up the enzyme catalyzing the
reaction j.

l in case of a reaction whose GPR rule includes the OR opera-
tor, either gene is sufficient to catalyze the reaction and the
RAS is calculated as follows:

RAScj ¼
X

g∈I j

T g,c ð4Þ

where Ij corresponds to the set of genes encoding for
the isoforms of the enzyme responsible for the catalysis of
reaction j.

Composite GPR rules including both AND and OR respect
the standard precedence of the two operators.

4. Constraining of the population model.Once the population
model P is obtained and the RAS scores are computed, two
kinds of constraints called bulk and single-cell constraints are
imposed:

l bulk constraints correspond to boundaries on the extracellu-
lar fluxes of the population model P. Accordingly, the upper
and lower bound of theNblood exchange reactions within set
ℬ are constrained according to metabolic measurements;

l single-cell constraints correspond to boundaries on internal
fluxes of each single-cell c, according to their RAS.

In order to project the information of the activity score of a
given reaction j in a given cell c, Rc

j , onto its flux “pipe
capacity”:

l The maximal flux in both the forward (Ff) and backward
direction (Fb) is estimated by just setting constraints on
extracellular fluxes (bulk constraints), by leaving unbounded
internal fluxes (single-cell constraints), and without setting
any objective function in the system. To this aim, a Flux
Variability Analysis [20] is carried out with no optimality
required, and F c

j ¼ maxðjF f j, jFb jÞ is defined.
l The RAS of reaction Rc

j in each c ¼ 1, . . ., Ncells is com-
puted with respect to the total activity of reaction j as
follows:

RAS
c

j ¼
RAScjPN cells

c¼1 RAScj
, ð5Þ

l The upper boundUc
j of reactionRc

j is then set as portion of
F c

j and proportional to the corresponding activity score
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RAS
c

j . Practically, the value RAS
c

j , j ¼ 1, . . ., N;c ¼ 1, . . .,

Ncells is remapped in the interval ½E, Fc
j �:

Uc
j ¼ Eþ ðF c

j � EÞ �RAS
c

j ð6Þ
In case of reactions havingRAS

c

j ¼ 0, the upper bound
is set to a small value E rather than to 0 to mitigate the
impact of false-negatives.

l According to the directionality of the reaction Rc
j , a zero

lower bound Lc
j ¼ 0 is assigned in case of irreversible reac-

tions, otherwise the lower bound is set as Lc
j ¼ �Uc

j to
reflect the ability of the corresponding enzyme to equally
work in either direction.

5. Simulation of the population model. Once the P model is
constrained (with both bulk and single-cell constraints), Linear
Programming [21], as well as other standard constraint-based
methods were applied. Frequently imposed objective function
is the biomass maximization of the entire population.

In addition, a single gene deletion analysis can be per-
formed. The in silico deletion of a single gene implies that the
reactions purely associated to that gene together with reactions
associated to that gene joined in the corresponding GPR rule
with other genes through the AND operator are removed from
the network. After removal of these essential reactions has been
performed, the population model is once more optimized for
total biomass production, and the growth ratio of the new
biomass flux value over the original one is computed.

Finally, scFBA allows to extract features from scRNA-seq
data for the purpose of identify metabolic clusters of cells that
may be exploited to investigate other main features of cancer
metabolic deregulation.

4 Notes

1. popFBA methodology. popFBA methodology is focused on
the reconstruction and simulation of cell population metabo-
lism, by putting emphasis on the relationships established
among their individuals. By exploiting this approach, popFBA
highlighted that, although the global purpose of tumour cells
popolation is an enhanced proliferation rate, this objective does
not constitute the common aim of all the individual compo-
nents of this system. On the contrary, this approach high-
lighted that a cooperative behaviour within the investigated
population model together with heterogeneity in terms of
adopted metabolic strategies by individual subpopulations,
are consistent with the achievement of the optimal tumour
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biomass. Through popFBA strategy, we observed plasticity of
population clones metabolism under different nutrients
exchanged with plasma, or when a dishomogeneous distribu-
tion of oxygen is provided. In particular, among the explored
scenarios, phenotypes of the most proliferative clones result
characterized by a recurrent consumption and consequent oxi-
dation of extracellular lactate that is secreted in the tumour
microenvironment by the less proliferative clones, as experi-
mentally demonstrated by the “reverse Warburg effect”
between cancer and stromal cells in [22–24].

2. Further details on scFBA data pre-processing. Despite a
totally safe solution to deal with the presence of false negatives
in scRNA-seq data does not exist, the information coming
from bulk expression profile can be exploited to manage and
mitigate this risk.

In the first presented scenario, a gene can have a zero read
count both in the bulk and in each single-cell. In this case, the
possibility of a false-negative in the bulk cannot be excluded.
Nevertheless, false-negative can be excluded in the single-cells
due to the low concentrations of scRNA-seq.

In the second scenario, a considerable inconsistency
between bulk and scRNA-seq data can emerge when a gene
has non-zero read count in the bulk and a zero read count in
each single-cell. This situation suggests that scRNA-seq data
for this gene cannot be trusted and losing information on
single-cell heterogeneity by just relying on the bulk value is
preferred.

In the third and last scenario, a gene can have a non-zero
read count in the bulk and zero read count just in some of the
single-cells. In this situation, a problem related to the detection
of this specific gene can be excluded by hypothesizing to have a
gene that is poorly expressed as compared to other cells. In this
situation, the single-cell read count for this genes is retained
avoiding, at the same time, to completely prevent flux passing
through the associated reactions. In particular, the related flux
boundaries are set to a very small value E instead of leaving them
to be null.

Despite this first approximation to deal with the presence
of false-negatives in scRNA-seq data, the combination with
more sophisticated data pre-preprocessing techniques might
help to further refine the presented methodology.

3. Curation of gene-protein-reaction (GPR) rules. GPR rules
need to be associated to the cohort of reactions constituting
the investigated metabolic model in order to connect reactions
to one or multiple enzymes and every protein to the responsi-
ble genes. To ensure high quality of the reconstructed GPR
rules, manual curation is required, representing the safest,
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while simultaneously time consuming, way. In this regard,
useful and specific information can be retrieved from reaction
databases (e.g. KEGG [25, 26], Uniprot [27] and Reactome
[28]), organism-specific databases, literature data as well as
well-curated and up-to-date genome-wide metabolic networks
in order to infer the monomeric or heteromeric state of the
enzymes catalyzing given reactions [29, 30]. Curation of GPR
rules represents a critical factor able to significantly affect the
analyses outputs. Indeed, as shown in [10], by using the GPR
rules coming from the genome-wide network of humanmetab-
olism Recon 2.2 [31], the rules for Complex I to V belonging
to the human respiratory chain needed a significant manual
curation from their original too strict formulation. In particu-
lar, after the manual investigation, many genes in the original
rule of Complex IV resulted to be isoforms instead of subunits.
The subsequent substitution of the related AND with OR
operators allowed to avoid null RAS for the Complex IV reac-
tion and the consequent empty set of optimal solutions from
constraint-based simulations of the adopted core human meta-
bolic model. Additionally, the usage of a well curated model in
terms of the GPR rules associated to included metabolic reac-
tions also allowed to improve the prognostic power of MaREA,
as shown in [10].
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Chapter 16

Supply and Demand Analysis of Autophagy

André du Toit, Ben Loos, and Jan Hendrik S. Hofmeyr

Abstract

Autophagy is an intracellular protein degradation pathway that plays a vital role in cellular homeostasis. It
maintains cellular function through proteostasis and the removal of unused and harmful proteins and
organelles. Moreover, it also serves as an adaptive response to metabolic perturbations. Deviation in
autophagy activity has been linked to the progression of several pathologies, including neurodegenerative
diseases. Preclinical trials have shown that modulating autophagy holds great promise in treating neurode-
generative diseases by clearing toxic protein aggregates. The success of autophagy modulating therapies
requires extensive knowledge of the molecular machinery and, importantly, an in-depth understanding of
the underlying systems properties of the autophagy system. A computational approach provides a powerful
platform to interrogate and analyze the regulation, control, and behavior of reaction networks. However,
the complexity of interactions involved in the autophagy pathway makes it challenging to isolate and
characterize individual components. By reducing the autophagy process to a supply-demand system in
which autophagosome synthesis (supply) and autophagosome degradation (demand) are linked by the
autophagosomes, it is possible to determine the control of the supply and demand over the steady-state
autophagosome flux and autophagosome concentration. In this chapter, we describe a methodology to
perform supply and demand analysis of the autophagy system, the experimental procedure to measure the
autophagy variables, and the use of the supply-demand framework to determine the distribution of flux and
concentration control.

Key words Autophagy, Autophagosome flux, Supply-demand analysis, Elasticity coefficient, Control
coefficient, Autophagosomes, Fluorescence microscopy

1 Introduction

Macroautophagy (hereafter referred to as autophagy) is an evolu-
tionary conserved metabolic process through which intracellular
components are degraded. The autophagy pathway involves
sequestration of cytoplasm in a double membrane vesicle, termed
an autophagosome, which then fuses with and delivers its cargo to
lysosomes where degradation occurs. The continuous removal of
bulk cytoplasmic proteins, primarily long-lived proteins, and the
ensuing de novo synthesis ensure homeostatic maintenance of func-
tional proteins and organelles while preventing the build-up of

Deepak Nagrath (ed.),Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols, Methods in Molecular Biology, vol. 2088,
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dysfunctional and potentially harmful proteins and organelles [11].
Autophagy also serves as an adaptive response mechanism to meta-
bolic stress; for instance, during periods of starvation autophagy is
enhanced to supply amino acids for energy production. Although
autophagy is vital for normal physiological development and cell
function, its dysregulation can have deleterious effects. It has been
implicated in the progression of several diseases: loss of autophagy
function leads to the build-up of toxic compounds, such as those in
neurodegenerative pathologies [18], while enhanced autophagy
activity contributes to the resistance of cancer cells against chemo-
therapeutic drugs [15]. Pre-clinical trials aimed at modulating
autophagy have shown promising results for treating neurodegen-
erative diseases by clearing toxic protein aggregates [17]. There is
therefore an ever-increasing need to develop novel autophagy-
targeting therapies to modulate and control autophagy in an effec-
tive and precise manner.

The success of autophagy-modulating therapies depends on
identifying and characterizing targets, so as to allow for the safe
and effective pharmacological regulation of autophagy activity;
computational models have proved to be extremely useful in such
endeavors. Computational modeling is a powerful technique for
studying complex cellular processes such as autophagy in order to
understand their regulation, control, and behaviour of the under-
lying reaction networks. Several computational models that model
unique aspects of the autophagy process, such autophagosome
vesicle dynamics [14], spatiotemporal autophagy trafficking behav-
ior [1], autophagy cargo dynamics [5–7], and crosstalk between
autophagy and apoptosis pathways [10, 19] have been described in
the literature. While these models provide valuable insight into
particular aspects of the autophagy system, they do not shed light
on the degree to which the different steps of the autophagic system
control the autophagosome flux, knowledge that is crucial for
developing autophagy targeting therapies. This is in part due to
the complexity of the autophagy process: autophagy involves the
recruitment of numerous proteins in a highly organized manner to
produce functional units within the autophagy pathway, which in
turn are regulated by metabolic and stress sensing networks [12].
Creating a comprehensive computational model of autophagy
would require the isolation of all enzymes and proteins involved
in the pathway to study their kinetic properties separately. How-
ever, this approach would be impractical due to the complexity of
interactions involved in regulating and assembling autophago-
somes, and subsequent events such as their fusion with lysosomes
to form autolysosomes.

The supply-demand analysis framework of Hofmeyr and
Cornish-Bowden [9] does not require information on the kinetics
or activity of all the enzymes and proteins involved in the pathway.
All that is required is the ability to measure the response of steady-

346 André du Toit et al.

https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4


state variables to perturbations in the activities of the metabolic
processes that synthesize and degrade a chosen intermediate in the
pathway. By reducing the autophagy process to a supply-demand
system in which autophagosome synthesis (supply) and autophago-
some degradation (demand) are linked by the autophagosome
pool, it is possible to determine the distribution of control of the
supply and demand blocks over the steady-state autophagosome
flux and concentration of autophagosomes. Why is this important
given that the control distribution can only be determined for the
supply and demand block (instead of a specific protein)? It allows us
to experimentally determine the flux and concentration control
distribution (with respect to the supply and demand) for any cell
type and, importantly, under any condition such as disease states
without the need to characterize individual components of the
autophagy pathway. With ever-increasing drug libraries, there is
no shortage of available drugs (and molecular targets); using the
knowledge gained from supply and demand analysis, drug screen-
ing can be performed in a more cost and time-effective manner to
identify suitable autophagy modulation drugs.

A recently developed fluorescence-based microscopy approach
[4] allows the quantitative measurement of the autophagosome
flux and the size of the autophagic vesicle pools that is necessary
for performing a supply and demand analysis of the autophagy
system. Here we will first introduce the supply and demand analysis
framework, second, describe the methodology to determine the
response of autophagy steady-state variables and, third, perform
using hypothetical data a supply and demand analysis of the autop-
hagy system.

2 Supply-Demand Framework

The living cell is intrinsically a molecular economy in which one
metabolic network, the supply, produces intermediate(s) that are
consumed by another, the demand. The supply-demand framework
of Hofmeyr and Cornish-Bowden [9] is a powerful tool for quanti-
tative analysis of how the behavior and control of the steady-state
flux, J, and concentration of the intermediate that links supply and
demand is determined by the properties of the so-called supply and
demand rate characteristics (Fig. 1).

The supply and demand elasticity coefficients determine the
behavior of the steady-state flux and concentration of the linking
intermediate, and are equal to the slopes of the tangents to the
supply and demand rate characteristics where they intersect at the
steady state (Fig. 1b). An elasticity coefficient quantifies the sensi-
tivity of a rate v with respect to a perturbation in a metabolic
intermediate p that directly affects this rate, and is mathematically
defined as:

Supply and Demand Analysis of Autophagy 347

https://doi.org/10.1007/978-1-0716-0159-4
https://doi.org/10.1007/978-1-0716-0159-4


εvp ¼
∂lnv
∂lnp

ð1Þ

The flux- and concentration-control coefficients can be calcu-
lated from the values of the supply and demand elasticities [9].
A control coefficient quantifies the sensitivity of a steady-state vari-
able to a perturbation in the activity of the supply or demand step in
the system, and is defined as

CX
vi
¼ ∂lnX

∂lnvi
ð2Þ

where X is a flux J or a concentration, and vi is the supply or
demand rate.

When considering the autophagy process as the formation and
maturation of autophagosomes and their fusion with lysosomes to
form autolysosomes (Fig. 2a), the autophagy system reduces to a

ε
vsupply
p

ε
vsupply
p

=
∂ ln vsupply

∂ ln p

εvdemand
p

εvdemand
p

=
∂ ln vdemand

demand

∂ ln p

Steady state

Supply

Supply P

Demand

ln p̄

ln J

ln p

ln
v

Fig. 1 Analysis of supply-demand systems. (a) A metabolic supply-demand
system where the supply block produces an intermediate, p, which is
consumed by the demand block; (b) Log-Log rate characteristic plots of the
supply and demand rates as a function of p. The two rate characteristics
intersect at the steady state, which is characterized by the flux, J, and the
concentration p. The behavior and control of J and p is determined by the
sensitivities of the supply and demand rate to perturbations in p at steady state,
respectively quantified by the elasticity coefficients ε

v supply
p and εv demandp .

Figure adopted from Hofmeyr and Cornish-Bowden [9]
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simple supply and demand system where the synthesis of autopha-
gosomes represents the supply block and the degradation of autop-
hagosomes represents the demand block (Fig. 2b). By measuring
the response of the autophagosome flux and the steady-state con-
centration of autophagosomes to perturbations of the supply and
demand, the flux and concentration control of autophagy can be
quantified using the supply-demand framework.

3 Materials

The fluorescence-based single cell microscopy method described by
du Toit et al. [4] allows the characterization of the autophagy

Phagophore Autophagosome

Lysosome

Autolysosome Amino Acids

AA

Supply DemandAutophagosome

ε
vsupply
nA

εvdemand
nA

Fig. 2 The autophagy process. (a) Schematic representation of the autophagy process, which starts with the
formation of a phagophore, that, once matured into an autophagosome, fuses with lysosomes to form
autolysosomes where the autophagy cargo is degraded and recycled. The autophagosome flux is the rate
of flow along the vesicular pathway which is measured as the turnover rate of autophagosomes at steady state
[13]. The autophagy process can be reduced to (b) a supply-demand system where the supply block
(autophagosome synthesis) and the demand block (autophagosome degradation) are linked by the autopha-
gosome pool. The distribution of control over the autophagosome flux and the concentration of autophago-
somes can be determined from the expressions of the control coefficients in terms of the supply and demand
elasticity coefficients (see text). Figure adopted from du Toit et al. [4]
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system in a single cell in terms of the steady-state pool size of the
various autophagy intermediates and the autophagosome flux (J).
In short, the experimental procedure is based on quantitative mea-
surement of the total number of autophagosomes (nA), autolyso-
somes (nAL), and lysosomes (nL) over time in single cells. The
transient time-dependent profiles of the autophagy intermediates
(nA, nAL and nL) are used to (1) verify whether or not the autop-
hagy system is in steady state, (2) quantify the steady-state pool
sizes of the autophagy intermediates, and (3) calculate the autop-
hagosome flux J from the initial rate of accumulation in nA after the
complete inhibition of fusion between autophagosomes and lyso-
some with bafilomycin A1 when the autophagy system is in steady
state. Here we will describe the experimental setup (Subheading
3.1) for measuring the autophagy vesicles over time and character-
izing the autophagy variables (Subheading 4.1), so as to perform a
supply and demand analysis of autophagy (Subheading 4.2).

3.1 Materials

3.1.1 Cell Culture

Mouse Embryonic Fibroblast (MEF) cells that stably express green
fluorescent protein light chain 3 (GFP-LC3) were maintained in
Dulbecco’s modified Eagle’s medium (DMEM) (Life Technolo-
gies, #41-965-039), supplemented with 10% fetal bovine serum
(Biochrom, #S-0615) and penicillin-streptomycin (Life Technolo-
gies, #15-140-122), at 37 ∘C in a 5% CO2 atmosphere.

3.1.2 Chemicals The fusion between autophagosomes and lysosomes was inhibited
using 400 nM bafilomycin A1 (LKT Laboratories Inc., #B-0025),
and 25 nM rapamycin (Sigma-Aldrich, #R-0395) was used as an
autophagy inducer. Culture medium was supplemented with Lyso-
Tracker red (Thermo Fisher Scientific, #L-7528) fluorescence
probe according to the manufacturer’s instructions to distinguish
between autophagy vesicles (See Note 1).

3.1.3 Microscopy and

Image Analysis

Cells were seeded onto CYTOO micro-patterned slides (See Note
2) with large fibronectin disc shapes (CYTOO, #10-003-10) and
maintained for 6 h before imaging. Fluorescence microscopy was
performed on an Olympus IX81 wide-field microscope, equipped
with a stage incubator, using a 60 � oil immersion objective. Image
stacks were acquired using an automated z-stack and stage control
to measure the complete pool size of autophagy vesicles (nA, nAL,
nL) over time. An average of four images with a 0.5 μm step-width
between layers were used. Images were processed and deconvolved
using CellR, and analyzed with ImageJ/Fiji (http://rsbweb.nih.
gov/ij/download.html).
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4 Methods

4.1 Measuring

Autophagy Variables

The experimental procedure to characterize the autophagy vari-
ables involves three steps: first, verifying that the autophagy system
is at steady state (measuring the autophagy steady state intermedi-
ate concentration); second, to completely inhibit the fusion
between autophagosomes and lysosomes; third, to calculate the
autophagosome flux as the rate of accumulation of autophago-
somes after the inhibition of fusion. Here we briefly describe each
step.

1. Verifying that the autophagy system is in steady state. Cells are
imaged 1 h apart and the nA, nAL, and nL quantified per cell.
When nA remains constant over a period of time of at least 3 h,
it signifies that the autophagy system is in a steady state where
the rate of autophagosome synthesis equals the rate of autop-
hagosome degradation. The steady-state intermediate concen-
trations are the averages of nA, nAL, and nL over the steady-
state period. Where there are significant changes in the nA over
time the autophagy system is in a transition state, and nA
should then be continuously monitored until a steady state
has been established before proceeding to the next step.

2. Complete inhibition of fusion between autophagosomes and lyso-
somes. It is important that the fusion of autophagosomes and
lysosomes is completely inhibited, as incomplete fusion inhibi-
tion will result in inaccurate measurement of flux. The concen-
tration of fusion inhibitor required for the complete inhibition
of fusion is the concentration when there is no further increase
in the initial rate of nA accumulation per cell with increasing
fusion inhibitor concentration. The concentration of fusion
inhibitor required should be determined for each cell and
inhibitor type used.

3. Measuring autophagosome flux. Once the autophagy system is
in a steady state, the fusion between autophagosomes and
lysosomes is completely inhibited to determine autophago-
some flux, J, which is calculated from the initial slope of the
increase in nA at the point of inhibition of fusion. The smaller
the intervals used for calculating J, the greater the accuracy as it
limits possible feedback effects of downstream metabolites.

Figure 3 shows the transient time-dependent behavior of
autophagosomes, autolysosomes, and lysosomes under basal and
25 nM rapamycin induced conditions, and the quantified autop-
hagy variables are shown in Table 1.
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4.2 Supply-Demand

Analysis: Perturbing

the Supply and the

Demand for

Autophagosomes

Above we described how to measure the steady-state response to
25 nM rapamycin induction of autophagy. In order to perform
supply-demand analysis we need to determine how the autophagy
steady-state variables respond to incremental perturbations of both
the supply and demand blocks.
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Fig. 3 The transient time-dependent profiles of autophagosomes (green filled circle), autolysosomes (yellow
filled circle) and lysosomes (red filled circle). Pool sizes of the autophagy intermediates under (a) basal
conditions (0–2 h) and after inhibition of fusion with 400 nM bafilomycin A1 at 2 h, and (b) enhanced autophagy
conditions after 25 nM rapamycin treatment at 2 h and after inhibition of fusion with 400 nM bafilomycin A1 at
6 h. (c) Control: autophagy intermediates under basal conditions without bafilomycin A1 treatment (0–8 h).
(n ¼ 10). Figure adopted from du Toit et al. [4]
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1. Incrementally perturb the supply/demand blocks and measure the
response of the autophagy steady-state variables. This can be
achieved by incrementally increasing the concentration of rapa-
mycin to characterize the supply rate characteristic, while the
demand rate characteristic can be determined by partially inhi-
biting the fusion of autophagosomes with lysosomes with
increasing concentrations of bafilomycin A1, followed by the
complete inhibition of fusion. Figure 4 shows an example of
how the transient time-dependent behavior of autophago-
somes could look like over time in response to incremental
perturbations of the supply and demand of autophagosomes.
We illustrate a hypothetical situation where the control over the
autophagosome flux is associated with the supply.

2. Determine the supply and demand elasticities. Plot the
co-responses [8] of the steady-state autophagosome flux and
autophagosome pool size in response to perturbation of the
supply and demand of autophagosomes (Fig. 4c, d). The slopes
of the tangents to the supply and demand rate characteristics at
the steady-state point are equal to the supply and demand
elasticity coefficients. The perturbation of the supply of autop-
hagosomes by rapamycin allows the calculation of the demand
elasticity (Fig. 4c), while the perturbation of the demand of
autophagosome using bafilomycin A1 allows the calculation of
the supply elasticity (Fig. 4d).

3. Calculate the flux- and concentration-control coefficients using
the supply and demand elasticity coefficients.

The flux-control coefficients can be expressed in terms of
supply and demand elasticity coefficients [9]:

CJ
vsupply

¼ εvdemand
nA

εvdemand
nA � ε

vsupply
nA

CJ
vdemand

¼ �ε
vsupply
nA

εvdemand
nA � ε

vsupply
nA

and, similarly, the concentration-control coefficients [9]:

Table 1
Functional variables of autophagy for basal and rapamycin (25 nM) induced autophagy in MEF cells
(A: autophagosomes; AL: autolysosomes; L: lysosomes)

Variable Unit Basal Induced

Autophagosome flux, J A/h/cell 25.4 105.4

Number of autophagosomes, nA A/cell 13 17

Number of autolysosomes, nAL AL/cell 165 251

Number of lysosomes, nL L/cell 1 1

Table adapted form du Toit et al. [4]
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CnA
vsupply

¼ 1

εvdemand
nA � ε

vsupply
nA

CnA
vdemand

¼ �1

εvdemand
nA � ε

vsupply
nA

4. Visualizing the distribution of flux and concentration control
around the steady state. The distribution of flux and concentra-
tion control around the steady state can be visualized by plot-
ting the supply and demand co-responses in Fig. 4c, d in
logarithmic space. Comparing equal fold-changes in the supply
and demand rate characteristics shows in this example that flux
control resides in the supply of autophagosomes, while the
regulation of the number of autophagosomes resides in the
demand (Fig. 5). The steepness of the slope of the demand
rate characteristic determines the degree of homeostatic main-
tenance of autophagosome number; the steeper the slope of
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Fig. 4 Hypothetical transient time-dependent behavior in autophagosomes. (a) Perturbing the supply of
autophagosomes by inducing autophagy with increasing concentrations of rapamycin (e.g. 1–100 nM) at
2 h and inhibiting fusion with 400 nM bafilomycin A1 at 6 h; (b) Perturbing the demand of autophagosomes by
partial inhibition of autophagosome/lysosome fusion with increasing concentrations of bafilomycin A1
(e.g. 1–20 nM) at 2 h and complete inhibition of fusion with 400 nM bafilomycin A1 at 6 h; Co-responses of
J and nA to perturbation of the (c) supply and (d) demand of autophagosomes. The supply and demand
elasticity coefficients are the slopes of the tangents to the supply and demand rate characteristics at the
steady-state
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the demand rate characteristic, the narrower the magnitude of
variation in autophagosome number, and the better the
homeostatic maintenance of autophagosome number.

5 Notes

1. Labeling of autophagy vesicles. It is important to distinguish
accurately between the autophagy pathway intermediates (nA,
nAL, nL) to generate precise and reliable data of the autophagy
system. There are a number of alternative probes that could be
used to label autophagy vesicles. One of these methods is to use
tagged autophagy pathway proteins using fluorescence con-
structs. They can be either co-transfected such as with
GFP-LC3 and red fluorescent protein tagged to lysosome-
associated membrane glycoproteins (RFP-LAMP), or tandem
constructs such as mRFP-GFP-LC3 [16] (this would allow for
quantification of autophagosome flux, autophagosomes and
autolysosomes, but not lysosomes). However, such an
approach is not without its challenges; heterogeneous expres-
sion levels in the cell population as well as varying signal/noise
ratio increase variability and limits the size of batch analysis.
Another approach is to use fluorescent dyes with inherent
binding properties, such as LysoTracker, which offers the
advantage of homogeneous staining with optimal signal/
noise ratio. It can also be used in combination with fluores-
cence constructs as presented here. Note that LysoTracker is an
acidotrophic dye that accumulates and fluoresces in acidic

ln(n̄A)

ln(J)

ln(n̄A)

ln(J)

Fig. 5 The combined rate characteristics of the autophagic supply–demand system. The rate characteristics of
the supply (green solid line) and demand (red solid line) plotted in log-log space, showing the intersection
between the supply and demand rate characteristics; J is the steady-state autophagosome flux, and nA is the
steady-state autophagosome concentration. The dotted lines show a fixed percentage increase/decrease in
supply (a) and demand (b) of autophagosomes. The shaded regions show the magnitude of the responses in
J and nA
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organelles such as lysosomes; inhibiting vacuolar-type H+-
ATPase with bafilomycin A1 will therefore disrupt the mainte-
nance of a low pH environment in lysosomes and consequently
result in the loss of fluorescent signal of LysoTracker. However,
du Toit et al. [4] have shown that the LysoTracker fluorescent
signal is maintained for at least 2 h after bafilomycin A1 treat-
ment, allowing for a reliable measurement of autophagosome
flux. It is advisable to verify that the concentration of Lyso-
Tracker used for the respective cell lines is suitable.

2. Enchaining data quality through micro-patterning. There are a
number of factors that contribute to the observed variability in
any given cell-specific population such as cell size, migration,
and proliferation. While standard microscopy slides suitable for
live cell imaging can be used for assessing autophagy in single
cells, micro-patterned slides can be used to control cell size and
position. This reduces cell variability, thereby improving data
quality. It is also suitable for high-throughput analysis. Micro-
patterned coverslips can also be self fabricated as described by
Carpi et al. [2] and mounted to chamber slides for live cell
imaging [3].
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Chapter 17

Thermodynamic Approaches in Flux Analysis

Sabine Peres and Vincent Fromion

Abstract

Networks of reactions inside the cell are constrained by the laws of mass and energy balance. Constrained-
based modelling (CBM) is the most used method to describe the mass balance of metabolic network. The
main key concepts in CBM are stoichiometric analysis such as elementary flux mode analysis or flux balance
analysis. Some of these methods have focused on adding thermodynamics constraints to eliminate
non-physical fluxes or inconsistencies in the metabolic system. Here, we review the main different
approaches and how they tackle the different class of problems.

Key words Thermodynamic in constraint-based modelling, Metabolic networks, Gibbs free energy,
Equilibrium constant of reactions

1 Introduction

The number of applications of thermodynamics-based network
analysis methods has been increasing in the last 10 years [1]. The
important use of thermodynamics-based analysis is the determina-
tion of reaction directionality, whereby the feasibility of reaction
fluxes or flux distributions can be checked based on calculation of
changes in Gibbs free energy (ΔG) using metabolite concentra-
tions. Most of the proposed approaches belong to the
constrained-based modelling (CBM) framework which is powerful
to analyze and predict the properties of metabolic networks. The
idea behind CBM approach is quite simple: it involves defining a set
of constraints that the system being studied has to respect and the
set of system configurations, i.e. the fluxes, that are compatible with
these constraints. Since the set of configurations is generally not
reduced to a singleton, it is common to consider among these
configurations, the one possessing some suitable properties or
achieving the value of a given optimal criterion. For the metabolic
network analysis, a first constraint is associated with the mass con-
servation that has to be satisfied in a steady-state regime by each
elementary metabolic reaction of the metabolic network. This

Deepak Nagrath (ed.),Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols, Methods in Molecular Biology, vol. 2088,
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leads, after their integration through the whole metabolic network,
to the definition of the so-called stoichiometric constraints which
connotes that the fluxes through the metabolic network have to
satisfy a system of linear equalities. Although the stoichiometric
constraints are essential, they only define a part of constraints acting
on the “real metabolic network.” It is, for example, well-established
that the constraints related to the irreversibility of some metabolic
reactions also add essential constraints. Indeed, this new set of
constraints, expressed as a sign constraint on some fluxes generally
reduces the set of feasible fluxes and dramatically increases the
predictive power of computational tools integrating all these con-
straints. Behind the addition of the constraints induced by the
irreversible reactions, it is more generally the question of taking
into account thermodynamic constraints that are raised. Actually,
the difficulty to manage stoichiometric and thermodynamic con-
straints together is related to the second essential issues attached to
CBM approaches: how can all the defined constraints contribute to
quantitative predictions about the possible behavior of the meta-
bolic network? The relevant concept for this second question is
whether or not the set of fluxes compatible with the set of con-
straints defines a convex set. It is clear that in the case of stoichio-
metric constraints, the set of possible fluxes defined a convex set
(it can be empty). On the other hand, verifying if a flux configura-
tion satisfying stoichiometric constraints is thermodynamically fea-
sible is a problem that can be formulated as a convex optimization
problem. Unfortunately, when stoichiometric and thermodynamic
constraints are considered together, the set of possible flux config-
urations does not generally define a convex set (a simple adaptation
of the example provided in [2] allows to prove this statement). In
general, the fact that the set of constraints does not define a convex
set makes its numerical exploration much more difficult or even
impossible. This also means, for example, that it is particularly
difficult to maximize biomass production that respects both stoi-
chiometric and thermodynamic constraints. Indeed, in this specific
case [2], its non-convexity implies that the problem has multiple
local maxima. However, despite the lack of convexity, different
methods have been proposed in the literature and the main goal
of this overview is to present some of the methods dealing with the
stoichiometric and thermodynamic constraints.

2 Materials

2.1 Metabolic Model Let S ∈ IRn×r
be the stoichiometric matrix of a metabolic network

of r reactions and n metabolites. The time course of the vector of
metabolites x ¼ (x1, . . ., xi, . . ., xn)

t can be described by differential
equations dxðtÞ

dt ¼ S � νðxðtÞÞ where v(t) = ν(x(t)) ∈ IRr
is the

vector of fluxes. A steady-state regime of the metabolic network
corresponds to an equilibrium of the differential system where the
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metabolite concentrations and the fluxes are now two constant
vectors such that S � ve ¼ 0 and ve ¼ ν(xe). Actually, it is common
to define the space of flux vectors compatible with the stoichiomet-
ric matrix constraint, i.e., v ∈ IRr

such that S � v ¼ 0. When some
reactions νi(x) are known to be irreversible, the space of feasible flux
vectors compatible with the stoichiometric matrix and irreversible
reactions is now defined by this convex polyhedral cone

C = {v ∈ IRr
. An elementary flux mode (EFM) e ∈ IRr

is a

steady-state flux (S � e ¼ 0) that fulfills the irreversibility constraints
(e � 0), and has minimal support, which means that supp(e) (those
reactions i such that ei 6¼ 0) is not a proper superset of the support
of any other EFM [3]. Geometrically, if the reversible reactions are
split in two irreversible ones, EFMs are so-called extreme rays of a
pointed polyhedral (flux) cone C. They fully characterize the solu-
tion space but their computation leads to combinatorial explosion
of their number when the networks are large. In the Flux Balance
Analysis (FBA) [4], an objective function of fluxes, like the biomass
flux vbiomass is maximized under the set of constraints acting on flux
vectors defined by the stoichiometric constraint S � v ¼ 0 and
bounds on the flux vectors, i.e. li � vi � ui.

2.2 Gibbs Free

Energy

Assuming constant pressure and a closed system, according to the
second law of thermodynamics, a reaction j proceeds spontaneously
only in the direction of its negative Gibbs free energy ΔrGj [5]:

ΔrG j < 0 ð1Þ
For example, for this following biochemical reaction

A þ B⇌C þD

where A, B, C, and D are given molecules, the Gibbs free energy
associated to the previous reaction is defined by

ΔrG ¼ ΔrG
0 þRT ln

xCxD
xAxB

ð2Þ

with xX denotes the concentration of molecule X and where ΔrG
0

corresponds to the standard-state free energy of the reaction. ΔG0

is related to the equilibrium constant of the reaction Keq, by this
simple relation: ΔG0 ¼ �RT lnðKeqÞ. In order that the previous
reaction in a steady-state regime has a net flux of C and
D production, i.e., the net flux is in the forward direction, it is
necessary that ΔrG < 0. Figure 1 illustrates the influence of the
metabolite concentrations on the Gibbs free energy.

Gibbs free energies of formation can be obtained from experi-
mental values such as NIST databases [6], National Bureau of
Standards Database [7] or estimated with contribution of molecu-
lar groups from experimental energies data such as eQuilibrator
[8], Group Contribution Methods [9, 10].
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2.3 Non-convexity of

the General Problem

As indicated in the introduction, the set of fluxes and internal
metabolite concentrations respecting the stoichiometric and ther-
modynamic constraints is generally not a convex set. This means in
particular that the maximization of a linear objective function of
fluxes, like the biomass flux vbiomass, respecting both constraints is
generally not a convex optimization problem, and thus it is gener-
ally difficult to solve exactly. Nevertheless, despite the lack of con-
vexity, there exist two main approaches allowing to solve exactly or
approximately this non-convex optimal problem. In the first family
of approaches, the problem is embedded in a given class of
non-convex problems and it is solved by calling general algorithms
allowing to tackle this specific class of non-convex problems, as,
e.g., in [11, 12]. The second approach finds its roots in a result
presented in [13, 14]. Indeed, it can be shown that if an optimal
solution exists then it is reached in an EFM. In addition, in order to
solve the optimal problem, it is enough to check the thermody-
namic feasibility of each EFM. Then, the value of cost function for
this specific EFM can be computed. The solution is then given by the
best feasible EFM, see, e.g., [15–17]. Obviously and with no

Fig. 1 Influence of concentrations and spontaneity. (a) Possible distribution of concentrations at equilibrium
and non-equilibrium reaction. (b) Possible distribution of concentrations making the metabolic pathway A! B
! C possible for different ΔG0
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surprises, the exact resolution of this non-convex problem has a
(high) computational cost that is paid here by the fact that the
number of EFMs associated to the metabolic network could be
huge (see, e.g., [3]). Such an approach has been developed in
[15, 18, 19], in [20] and the efmTOOL and also Peres et al. [16]
where the approach proposed in [21] based on the equilibrium
constant (Keq) has been revisited.

3 Methods

3.1 Energy Balance

Analysis (EBA)

The energy balance analysis (EBA), defined by Beard et al. [11], is
based on chemical potentials. The authors define sign patterns of
fluxes and analyze which of them are thermodynamically feasible
[22]. They analyze the internal cycles space and use the theory of
oriented matroids. Internal cycles do not perform a net transfor-
mation of external metabolites and should, thus, be excluded from
the set of relevant EFMs. Moreover, the authors show that the
thermodynamic constraints (based on chemical potential) which
arise from the sign patterns of the internal cycle space can be
obtained directly from the stoichiometric matrix S. EBA eliminates
the infeasible fluxes computed with FBA or EFMA but does not
compute feasible flux distribution as the problem is not convex.

To be more formal, let us define μ ∈ IRn
, the vector of chemi-

cal potential of metabolites with μi ¼ μ0i þR:T :lnðxi=x0Þ where μ0i
is the chemical potential of pure species i, xi the concentration of
metabolite i, x0 ¼ 1 mole/L is the unit concentration,R the molar
gas constant, T the absolute temperature. The vector of potential
difference is defined by Δμi and corresponds to the difference of
chemical potential of the i-th reaction. A chemical potential differ-
ence satisfies a law similar to the Kirchoff’s law in electrical circuit:

KΔμ ¼ 0 ð3Þ
where the row of the matrix K corresponds to a complete basis of
the null-space vectors of the stoichiometric matrix S. Moreover, the
second law of thermodynamics ensures that the entropy increases in
each internal reaction i and hence the direction of flux vi is from
metabolites of higher chemical potential to one of lower chemical
potential, i.e.

viΔμi < 0 ð4Þ
where vi and μi represent the i-th entries of v and Δμ. For a flux
vector v to be thermodynamically feasible, there must exist a vector
Δμ for which we have 3 and 4 for all i ∈{1, . . ., r}. These constraints
remove all cycles which are thermodynamically infeasible.
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3.2 Network

Embedded

Thermodynamics

Analysis (NET)

In [23], the authors introduced Network Embedded thermody-
namics (NET) analysis where the Gibbs free energies of reactions
are constrained by the mutual thermodynamic interdependencies
of the reactions in a network (i.e., the reactions’ simultaneous
action in the network). The metabolite concentrations have to be
feasible in the entire network. The NET analysis requires a prede-
termination of the directionality of the fluxes and the thermody-
namic constraints determine if the fluxes is feasible and the feasible
concentration ranges. NET analysis couples metabolite concentra-
tions to an operating metabolic network via the second law of
thermodynamics and the metabolites’ Gibbs free energies of for-
mation ΔfGi. The following optimization problem determines the
feasible range of the Gibbs free energy ΔrGj of a particular reaction
j with its directionality dj (+ in forward direction and � in back-
ward direction) for metabolite concentrations xi constrained by
lower and upper bounds x�i and xþi (concentrations are assumed
to be positive and dimensionless quantities after division by the unit
concentration x0, in order to be able to consider their logarithm):

min=max ΔrG j

subjectto

d jΔrG j < 0

ΔrG j ¼
Pm

i¼1Si jΔ f Gi

Δ f Gi ¼ Δ f G
00
i þRT lnðxi=x0Þ

x�i � xi � xþi

ð5Þ

The NET analysis algorithm is implemented in the anNET software
[24] which checks quantitative data sets for thermodynamic con-
sistency. NET analysis has been used in [25] to characterize the flux
solution space by determining EFMs that are subsequently classified
as thermodynamically feasible or infeasible on the basis of experi-
mental metabolome data. This was done by incorporating quanti-
tative metabolite concentrations into the analysis of all
stoichiometrically feasible flux distributions, then computing all
EFMs and using quantitative metabolite data to test the activities
of each EFM for thermodynamic feasibility.

3.3 Thermo-

dynamics-Based Flux

Analysis (TFA)

Henry et al. [12] presented the thermodynamics-based flux analysis
(TFA) which uses mixed-integer linear programming formulation
and computes the flux directionality based on the thermodynami-
cally feasible concentration profiles. In this context, a reversible
reaction has to be split as the difference between two
non-negative terms, i.e., v ¼ v+ � v�. By definition, the thermo-
dynamic constraint acting on the reaction leads to have only one of
these terms (v+ or� v�) different of 0. These alternatives for the set
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of reversible reactions is handled in [12] by introducing a supple-
mentary decision variable for each reversible reaction, taking only
two possible values. Following the introduction of this new deci-
sion variable, the constraint related to vþi is formulated through this
inequality 0 � vþi � vi,maxzi and the one on v�i by 0 � v�i �
jvi,minjð1� ziÞ where zi is an integer taking only two possible values
in {0, 1}. Furthermore, zi satisfies two inequality constraints asso-
ciated with the thermodynamic constraint acting on the i-th reac-
tion: (1) ΔrGi � K + Kzi < 0 and (2) � ΔrGi � K + K
(1 � zi) < 0. Indeed, when ΔrGi > 0 then Inequality (2) is always
satisfied and Inequality (i) implies thatK(1 � zi) > 0 and thus that
zi ¼ 0, vþi ¼ 0 and 0 � v�i � jvi,minj. In the same vein, when ΔrGi

< 0 then Inequality (i) is always satisfied and Inequality (2) implies
that Kzi > � ΔrGi and thus that zi ¼ 1, v�i ¼ 0 and
0 � vþi � vi,max . From these preliminary elements, it is then possi-

ble to formulate the problem by combining the stoichiometric
constraint given by S � v ¼ 0 with the set of inequalities associated
to each reversible reaction. This formulation leads to define a
so-called mixed integer linear programming formulation which is
generally difficult to solve even if there exist some efficient ways to
handle such a problem (see, e.g., [26] for a review). This means that
the strategy used by the authors to tackle the problem is to refor-
mulate their non-convex problem into a standard optimization
problem, which is itself difficult to solve, but where many computer
science researchers have developed approaches (and powerful heur-
istics) to solve in an exact or approximate way. TFA has been
implemented in python package and MATLAB toolbox [27]
which integrate quantitative metabolomics data to study the flux
directionality but also estimate how far each reaction operates from
their thermodynamic equilibrium.

3.4 Dealing

Thermodynamics in

EFMA

3.4.1 Linear

Programming to Deal

with Thermodynamics

in EFMs

An obvious necessary condition for an EFMe to be thermodynami-
cally feasible is that the system of inequalities ΔrGj < 0, for j ∈
supp(e), is consistent, i.e. has a solution in the unknown variables
xi’s. Notice that this system is linear in those unknown variables
lnðxiÞ. So a linear programming tool can easily check this condition
for each EFMe. In [25], the authors showed that a flux distribution
containing an infeasible EFM is always infeasible. The thermody-
namic EFMs analysis (tEFMA) [15] used this property to filter the
infeasible extreme ray in construction during the incremental pro-
cess of the double description (DD) algorithm [28]. They have
interfaced efmTOOL [20] with the solver CPLEX to compute
them. Müller et al. [29] presented direct method for computing
modules of the thermodynamically constrained optimal flux space
of a metabolic network. This method can be used to decompose the
set of optimal-yield elementary flux modes in a modular way and to
speed up their computation. In the presence of lower and upper
bounds on internal metabolite concentration, they have suppressed
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80% of infeasible EFMs [18]. If these bounds are unknown, it
suppresses at most 50% of infeasible EFMs. The knowledge of
thermodynamics can reduce drastically the solution space. The
decomposition in feasible subspaces, the Largest Thermodynami-
cally Consistent Sets (LTCSs) proposed by Gerstl et al. [19], have
suppressed 90% of the EFMs. The authors then proposed flux tope
analysis [30] which is a maximal set of reactions with fixed direc-
tions. The flux tope allows one to study the coordination of reac-
tion directions and opens a new way for EFMs computation.

3.4.2 Equilibrium

Constants of Reaction

It is possible to compute all the possible thermodynamically feasible
EFMs only with equilibrium constant (without knowing the con-
centrations of the internal metabolites). In [16], the thermody-
namic constraint 1 is rewritten as:

∏
i
x
Sij
i < K j

eq ð6Þ

It has been shown in [21] and revisited in [16] by using the
Kuhn and Fourier theorem (a consequence of Farkas duality) that
this condition is equivalent to the following: a necessary condition
of thermodynamic feasibility for any EFMe is

et lnðK̂ eqÞ > 0 ð7Þ

where K̂
j

eq ¼ K
j
eq

∏ixi
Si j

is the apparent equilibrium constant of reaction

j and xi are the external metabolite. The formula 7 is a linear
inequality defining a half space and can thus be directly added as a
new constraint in the DD algorithm, which will be processed
exactly as the irreversibility constraints. This is done by just adding
at initialization to the representation matrix representing the irre-
versibility constraints a new row whose coefficients are the lnðK̂ j

eqÞ’s
[31]. As the inequality in 7 is strict, solutions have then to be
checked for equality and those belonging to the boundary hyper-
plane have to be discarded. If all reactions are reversible, it sup-
presses at most 50% of infeasible EFMs. Checking the
thermodynamic in EFMs allows a better characterization of the
solution space but it is limited by the combinatorial explosion of
their number in large systems.
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