

Applied User Data
Collection and
Analysis Using

JavaScript and PHP

http://taylorandfrancis.com

Applied User Data
Collection and
Analysis Using

JavaScript and PHP

Kyle Goslin
Markus Hofmann

First edition published 2021
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2021 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

The right of Kyle Goslin and Markus Hofmann to be identified as authors of this work has been as-
serted by them in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

Responsibility for the validity of all materials or the consequences of their use. The authors and pub-
lishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged, please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC, please contact mpkbookspermis-
sions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-0-367-75682-6 (hbk)
ISBN: 978-0-367-75680-2 (pbk)
ISBN: 978-1-003-16354-1 (ebk)

Typeset in Computer Modern font
by KnowledgeWorks Global Ltd.

http://www.copyright.com
http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk

For Amanda and Noah.
For when distraction was needed, and for when it was

not. — Kyle

In memory of Johann Trautwein, who, as an early
adopter of computing, not only paved my path to the

world of informatics but also instilled many other
values I cherish. A true gentleman - missed but never

forgotten by all who knew him. — Markus

http://taylorandfrancis.com

Contents

Preface xi

Authors xiii

Acknowledgments xv

List of Figures xvii

List of Tables xxiii

Chapter 1 � Introduction 1

1.1 INTRODUCTION 1

1.2 WHO THIS BOOK IS AIMED AT 2

1.3 TECHNOLOGIES USED 2

1.4 VARIATIONS OF DATA 3

1.4.1 Active Data 4
1.4.2 Passive Data 4

1.5 WHAT YOU NEED 5

1.6 DEVELOPMENT ENVIRONMENT 6

1.7 CODE EXAMPLES 8

1.8 BOOK OUTLINE 9

1.9 SUMMARY 10

vii

viii � Contents

Chapter 2 � Active Data Collection 11

2.1 INTRODUCTION 11

2.2 BINARY DATA COLLECTION 11

2.3 TEXT-BASED DATA COLLECTION 16

2.4 STAR RATINGS 21

2.5 CUSTOM RESPONSE FORM 29

2.6 SUMMARY 38

Chapter 3 � Passive Data Collection 39

3.1 INTRODUCTION 39

3.2 COOKIES AND SESSIONS 40

3.3 READING FROM FILES 49

3.4 USER IP ADDRESS 58

3.5 FINDING THE USER AGENT 64

3.6 USER GEOGRAPHIC LOCATION 67

3.7 TIME SPENT ON PAGES 71

3.8 TRACKING INDIVIDUAL DIV TAGS 73

3.9 LOGGING TIMES 75

3.10 WHERE A USER CAME FROM 80

3.11 SOCIAL MEDIA CONTENT HARVESTING 81

3.12 SUMMARY 86

Chapter 4 � Custom Dashboards 87

4.1 INTRODUCTION 87

4.2 USER LOGIN 88

4.3 USER REGISTRATION 95

4.4 MULTI-COLUMN BAR CHART 104

4.5 BINARY BAR CHART 110

4.6 DYNAMIC DASHBOARD 115

4.7 SUMMARY 150

Contents � ix

Chapter 5 � Working with Text 151

5.1 INTRODUCTION 151

5.2 NATURAL-LANGUAGE PROCESSING 151

5.3 STOP WORDS 152

5.4 RED-FLAG MONITORING 158

5.5 N-GRAMS 167

5.6 SENTENCE COMPLETION 170

5.7 WORD STEMMING 173

5.8 SYNONYMS 174

5.9 TERM WEIGHTING 178

5.10 SENTIMENT ANALYSIS 184

5.11 SUMMARY 188

Chapter 6 � Text Visualization 189

6.1 INTRODUCTION 189

6.2 WORD CLOUD 189

6.3 COLLAPSIBLE TREE LAYOUT 195

6.4 TERMS OF INTEREST NODE GRAPH 200

6.5 TIME-SERIES ANALYSIS WITH POSITIVE AND NEGA-
TIVE REVIEW CHART 211

6.6 SUMMARY 219

Chapter 7 � Time-Based Feedback Analysis 221

7.1 INTRODUCTION 221

7.2 GATHERING TIMELINES AND DATABASE DATA TYPES 221

7.3 TIME-SEGMENT ANALYSIS AND VISUALIZATION 223

7.4 REAL-TIME FEEDBACK ANALYSIS 237

7.5 POSITIVE VS. NEGATIVE FEEDBACK CALENDARS 244

7.6 FEEDBACK HEAT MAP 252

7.7 SUMMARY 265

x � Contents

Chapter 8 � Feedback Statistics and Overviews 267

8.1 INTRODUCTION 267

8.2 BASIC STATISTICS 267

8.3 WORKING WITH SAMPLES 273

8.4 PERCENTAGE DIFFERENCE 275

8.5 SUMMARY 283

Chapter 9 � Hosting, Reporting, and Distribution 285

9.1 INTRODUCTION 285

9.2 REPORT GENERATION 285

9.3 CRON AND TASK SCHEDULING 291

9.4 CLOUD E-MAIL SERVICE INTEGRATION 295

9.5 HOSTING A PHP/JAVASCRIPT APPLICATION 300

9.6 SUMMARY 308

Index 309

Preface

The driving force behind any web application is the users of the appli-
cation and the developers creating the application. During development,
however, the interests and needs of the user can often fall behind, in
favor of what the developer thinks they need. This development style of-
ten leads to complicated user interfaces, poor design choices, and content
overload.

To mitigate against this, the daily interaction a user can have with
an application and their overall opinion should be considered paramount
during development. This book aims to provide the tools and knowledge
required for the collection and analysis of data, irrespective of the format
or source.

This book places a dividing line between the types of data that can
be collected from users. Active data is defined as data that is collected
by providing the user with the means to enter their opinion, and sen-
timent, toward a feature or topic. These solutions can often be seen on
websites in the form of rating systems, feedback boxes, and user surveys.
In contrast to this, passive data is defined as the data that is collected
in the background without any direct user interactions. This data takes
the form of browser fingerprinting, IP addresses, geolocation data, time
spent on pages, and the location of the mouse during interactions with
an application.

With the advent of cloud storage solutions, more data is being re-
tained than before. Sales data, transaction logs, and user surveys all
become sources for data analysis. Data can come from a number of dif-
ferent sources, some of which may have existed before an application has
been developed. Emphasis is placed on collecting this data and placing
it in a usable format for analysis.

After this data has been collected, the analysis process can begin.

sualizations can be generated. This book provides the foundations for
creating meaningful insights and visualizations from the data that are
relevant to both business and developer needs.

xi

For each different data type—e.g., numeric or text—statistics and vi-

xii � Preface

As with any new technologies, a common issue with any new solu-
tion is integrating it into an existing system or implementation. To aid
development, each of the examples in this book has been developed in
isolation to allow for easy integration. An emphasis is placed on the di-
versity of technologies to provide a well-rounded understanding of what
is available.

The complete development life-cycle is described in this book, out-
lining how data can be collected, analyzed, and reported to the key
stakeholders in a project.

Authors

Kyle Goslin
TU Dublin
Dublin, Ireland

Markus Hofmann
TU Dublin
Dublin, Ireland

xiii

http://taylorandfrancis.com

Acknowledgments

I would like to thank Amanda for her continued support allowing me
to hide away in my office to write and review no matter the weather
inside or outside the house. Your opinions and sentiment mean more
to me than any other. I would also like to thank my parents, Ted and
Claire, for their unwavering support of all things academic. The pursuit
of knowledge and taking risks were always encouraged, as the reward
was always better once failure had, many times, been achieved. I would
also like to thank my brother, Darragh, for being the ears of patience
when frustration or writer’s block dawned.

I would also like to thank Daniel McSweeney, head of the Department
of Informatics at TU Dublin Blanchardstown campus, for his support
and encouragement. Ideas were always met with guidance and reflection.
I cannot forget my co-workers in Peter Alexander, Tara Cambell, Jane
Hanratty, and all others in office A57 for their ongoing support and
encouragement. The experience is always better when shared. I would
also like to thank Philip Kavanagh for his technical review of this book.

This book was the combination of many ideas and concepts derived
from teaching at TU Dublin, Blanchardstown campus. I would like to
thank my students, who are the lifeblood of academia.

— Kyle Goslin

xv

http://taylorandfrancis.com

List of Figures

1.1 Viewing the developer console in Google Chrome. 7
1.2 Disabling the cache in the developer console. 8

2.1 Yes and No binary options. 16
2.2 Alert box showing the selected radio button value. 16
2.3 No option expanding allowing the user to expand their

response in text format. 21
2.4 Star-rating example. 23
2.5 Star rating with preset rating. 28
2.6 Completed response form. 37
2.7 Bootstrap modal shown to the user after the form has

been submitted. 38

3.1 Value being retrieved from a cookie. 41
3.2 Set and get JSON value. 43
3.3 Iterating over JSON values. 45
3.4 JSON added using custom JavaScript function. 47
3.5 Unique session ID echoed to the web browser. 48
3.6 Text output to the browser from an array stored in the

session. 49
3.7 Folder structure of the jQuery File Upload plug-in. 51
3.8 Default layout of the jQuery File Upload plug-in. 51
3.9 Google Form sample. 54
3.10 Google Form export options. 54
3.11 Google Form download CSV responses. 55
3.12 Sample Google Form CSV file. 55

xvii

xviii � LIST OF FIGURES

3.13 CSV file contents output to a browser. 57
3.14 Three individual lines that are read in from a text file

are output to the browser. 58
3.15 IP address in JSON format. 59
3.16 Yes/No option presented to the user. 63
3.17 Message displayed to the user after selecting Yes or No. 64
3.18 User agent printed to the console. 66
3.19 user agent.php — User agent retrieved using PHP. 66
3.20 Example geographical information. 69
3.21 Geographical information shown in JSON format in a

browser. 70
3.22 Current location associated to the IP address is printed

to the console. 71
3.23 Output to the console after four seconds. 72
3.24 Number of seconds a user has spent on a div tag. 74
3.25 Message printed to the console when the user navigates

away from the current page. 76
3.26 Sample timings logged to the database table. 80
3.27 Output from calling the PHP REFERRER variable. 81
3.28 Sample composer.json contents for a new project. 83
3.29 Composer library installation console output. 83
3.30 Twitter API search results. 86

4.1 Custom dashboard for the login page. 93
4.2 Completed dashboard register page. 103
4.3 Bootstrap modal shown when the registration was suc-

cessful. 104
4.4 List of download options for Charts.js. 105
4.5 Contents of Chart.js zip file. 105
4.6 Contents of Chart.js folder. 106
4.7 index.html containing a list of working samples. 106
4.8 Bar chart showing the count of each score. 111
4.9 Two-column bar chart for binary data. 116

LIST OF FIGURES � xix

4.10 Database table with sample data sources and configura-
tion options. 119

4.11 Sample Bootstrap dashboard. 119
4.12 Bootstrap default dashboard with a nav bar. 123
4.13 Select campaign modal with two available campaigns. 129
4.14 Viewing a list of campaigns with a single campaign ele-

ment selected. 130
4.15 Example dashboard with two visualizations added. 139
4.16 Two text fields allowing the user to create a new campaign. 143
4.17 The process of adding a new campaign element and se-

lecting the data source. 150

5.1 Before and after stop-word removal with JavaScript. 156
5.2 stopwords.php — Before and after stop-word removal

with PHP. 158
5.3 Sample comment records. 160
5.4 View red-flags menu option. 163
5.5 Select date and CID modal. 163
5.6 jQuery datepicker. 164
5.7 Each comment is output with the red flag terms high-

lighted. 167
5.8 Sample n-gram output with N =2. 170
5.9 Result of searching for the word staff inside a feedback

records. 173
5.10 Result after calling the stemming algorithm. 174
5.11 BigHugeLabs.com API key creation process. 175
5.12 BigHugeLabs.com sample REST URLs. 176
5.13 Example synonyms returned from the Big Huge Labs

API called via a GET request. 178
5.14 Example TF-IDF output for each term in a single docu-

ment. 185
5.15 Result of the sentiment-analysis process. 187

6.1 Sample word cloud without stop words removed. 191

xx � LIST OF FIGURES

6.2 Output from the dynamic generation of a word cloud
using term frequency. 194

6.3 Completed tree-based structure with the root of the sen-
tence as the parent node. 201

6.4 Vis.js graph output for two keywords and a single date. 212
6.5 Time graph showing seven days of positive and negative

feedback for a week. 219

7.1 Time-segment analysis controls. 227
7.2 Selecting the start time for the analysis process. 227
7.3 Selecting the start time of interest. 228
7.4 Time-segment analysis for positive and negative feedback

238
7.5 Real-time feedback score-report line graph. 244
7.6 Calendar view of positive and negative feedback. The

shading of the cells indicates the number of records. 252
7.7 Mouse hovering shows the number of records for a given

day. 253
7.8 Calendar day picking using the jQueryUI date picker. 263
7.9 Heat map showing 24 hours in a single calendar day. 264
7.10 Tooltip showing the number of feedback records for a

given time slot. 265

8.1 Output showing the mode and total count of records for
the mode. 269

8.2 Average result for a given column. 271
8.3 Example standard deviation result. 273
8.4 Calculating the percentage difference. 283

9.1 Statistics rendered in a PDF file. 291
9.2 cron-job.org website. 294
9.3 Creating a sample cron on cron-job.org. 295
9.4 Creating a sample schedule for a cron job. 296
9.5 The SendGrid API being installed by composer. 297
9.6 Amazon Lightsail dashboard. 301

for a two-hour window.

LIST OF FIGURES � xxi

9.7 Selecting Lightsail image type and blueprint. 301
9.8 Selecting the Lightsail instance type. 302
9.9 Providing a name to a Lightsail instance. 303
9.10 Lightsail instance in a pending state. 303
9.11 Running Lightsail instance. 303
9.12 Lightsail-integrated console. 304
9.13 Options to create or download existing keys. 305
9.14 FileZilla homepage. 305
9.15 FileZilla new connection window. 306
9.16 List of files and folders on the Amazon Lightsail instance. 307
9.17 Selecting files in FileZilla to upload to the instance. 307
9.18 Sample application viewed in a web browser. 308

http://taylorandfrancis.com

List of Tables

5.1 Sample n-grams with N =2 168
5.2 Sample n-grams with N =3 168
5.3 Sample Records for Term Frequency 179
5.4 Sample Term Frequency Scores 181
5.5 Sample Records for Term Frequency—Inverse Document

Frequency 181

7.1 MySQL Database Data Types for Time and Dates 222

xxiii

http://taylorandfrancis.com

C H A P T E R 1

Introduction

1.1 INTRODUCTION

Understanding a user’s needs and requirements is one of the main driving
forces for any business. Collected data provides insights into how users
feel about a given feature or topic and how they work on a day to day
basis. This data can be gathered directly from users by providing simple
questions and allowing the user to select an option from a predefined
list, or to enter their own text-based responses.

Although asking a user for their opinion is possible, other methods
can be used to gather data. Data can be collected indirectly through
a web application by monitoring the interactions and behaviors a user
has with it. The collected data can be processed to generate meaningful
statistics and visualizations, providing both overviews and a deep-dive
analysis of user interests and needs.

Each different data type, such as numerical data and text data, comes
with methods of identifying importance and relevance. Both quantita-
tive and qualitative analysis approaches can be used to extract these
insights. In this book, we explore the different methods available for
data collection, extraction, and analysis. This book aims to describe the
many different approaches that can be taken with the aim to capture as
much data as possible for analysis.

To provide a complete solution, the process of developing and de-
ploying the developed solutions on a cloud-based server is explored with
additional features such as report generation and delivery. An emphasis
in this book is placed on the diversity of technologies exposing you to
many different alternatives for data collection and analysis, providing
you with the tools needed to develop a well-rounded solution.

1

2 � Applied User Data Collection and Analysis Using JavaScript and PHP

1.2 WHO THIS BOOK IS AIMED AT

This book is aimed at web application developers who have some knowl-
edge with the basics of JavaScript and PHP. This book builds on this
basic knowledge and provides complete working examples that can easily
be deployed into existing web applications.

This book is not directed toward people who do not have these skills,
however, the knowledge about gathering data and generating insights are
still valuable to gain an understanding of what tools and approaches are
available if you do have developers to implement these solutions.

1.3 TECHNOLOGIES USED

In this book, a clear line between the technologies used throughout the
chapters can be seen. On the client-side, e.g., in the web browser of
the user, HTML and JavaScript will be used. On the server-side, PHP
version 7.41 running on an Apache version 2.4 web server2 is used to do
the bulk of the processing of the data, e.g., storing the information in a
database and calculating statistics.

JavaScript is used as it provides the ability to manipulate and present
data to the user without the need to redirect the user to multiple differ-
ent pages. Using the collected data, visualizations will be created using
JavaScript and HTML/CSS libraries. As JavaScript is a browser-based
programming language implemented by individual web browser vendors,
each of the browsers can have slight variations as to how it is interpreted.
To side-step the problem of cross-browser compatibility issues, we will
utilize JavaScript libraries wherever possible. The main JavaScript li-
brary that is used in this book is jQuery version 3.5.3

jQuery offers all the features that plain JavaScript has to offer, but all
of the cross-browser issues have been thoroughly tested. Any new user to
JavaScript often searches for code and finds browser-specific JavaScript
code, considering this the correct solution. But code that may work
correctly in one browser may not work on a different browser. Much to
the developer’s frustration, even a different version of the same browser
may also cause issues when the sample code is run. For this reason, we
will use libraries extensively to fast track the development process.

To aid the visualization process, JavaScript-based libraries such as
1https://www.php.net
2https://www.apache.org
3https://www.jquery.com

https://www.php.net
https://www.apache.org
https://www.jquery.com

Introduction � 3

D3.js, Charts.js, and Google Charts are explored as they offer high-
quality interactive visualizations. A focus is placed on the diversity of the
libraries used in this book to provide a learning experience with different
code bases.

As all data collected needs to be retrieved for analysis, different
data sources will be explored. Examples of this include utilizing comma-
separated value (CSV) files, simple text files, JSON files, and database
tables. In this book, the core database we will be using is the MySQL
8 community edition4 database as it is free, widely used, and integrates
with PHP.

Although many different web browsers exist, Google Chrome5 version
80 was used during the development of the examples in this book.

1.4 VARIATIONS OF DATA

In this section, we will begin the process of breaking down the two ap-
proaches that can be taken to gather data from users. The first approach
is active data collection, whereby the user is directly polled to provide
answers or judgments. The second approach is passive data collection,
whereby all of the data is gathered in the background without the need
for user intervention. Examples of this include gathering data by listen-
ing to the browser environment. As a user navigates a web application,
data can be recorded and saved for future retrieval.

Data can come in both structured and unstructured formats. An
example of structured data is a database table that contains the user level
of interest graded by the user between one and ten. The only possible
variations of this data are the numbers between the ranges provided
to the user. An additional component of this structured data is the
processing speed, as little to no processing is required since the data is
already in the desired format. To gain insights from this data, simple
metrics such as the total, sum, and average can be used.

Structured data is in contrast to unstructured data that may be held
in any number of different storage locations such as a text file, CSV file,
or a database table. This form of data inherently has no structure to it.
This adds complexity to processing the data as it is not just a simple
calculation or predefined column in a table. To extract meaning from this

4https://dev.mysql.com/downloads/mysql
5https://www.google.com/chrome

https://dev.mysql.com/
https://www.google.com/

4 � Applied User Data Collection and Analysis Using JavaScript and PHP

data, additional processing such as identifying relevance and importance
must be performed.

After processing, additional steps can be performed to identify the
relationships between individual pieces of data. Examples of this include
the use of charts to visualize these relationships. As the quantity of data
grows during the interactions with an application, methods of filtering
the data to provide focus on the crucial trends can be performed.

1.4.1 Active Data

Active data is any data that has been directly provided by a user. This
data can be collected by asking a user their opinion about a topic to a
brief “yes” or “no” answer to a question. Often users do not have the
time to give a wealth of information outlining how they feel about a
particular page or subject. This often leads developers to consider the
best time or approach to take to pose questions to the user.

The disadvantage of active data is that there is a cost associated with
interacting with users. At the end of any process, many users simply
do not want to leave any form of data and consider the process an
annoyance. Example of active data include:

• Number of times a user has shared or “liked” a particular page on
a website through a social media interface.

• Leaving a rating for a product on a website.

• Answering the questions in a survey.

• Setting custom options on a website.

1.4.2 Passive Data

Passive data is data collected in the background of an application with-
out any user intervention. Although the user is navigating through con-
tent and selecting different articles of interest, at no time is the user
ever formally requested to provide input about what they are currently
viewing or their opinions. Passive data collection approaches include:

• Length of time a user remains on a section of web application or
viewing a page.

• Statistics about popular pages that a user is viewing.

Introduction � 5

• Amount of time a user has spent inside of a particular collection
of pages that are all directly related to each other.

• Demographic of a user.

• Click times when users are interacting with an application.

• Log files generated by an application.

• Geographic location/IP address of a user.

• Application usage patterns.

1.5 WHAT YOU NEED

As the focus of this book is the development of web applications, a
complete server stack is required. The three main technologies that are
used throughout this book include an Apache web server with the PHP
module and a MySQL database. For new developers, consider using a
pre-packaged solution such as XAMPP6 that is a preconfigured solution
for web developers offering all of these services without the need for
any effort installing and configuring each of the individual components.
XAMPP is currently available for Microsoft Windows, Apple Mac, and
Linux distributions.

Alternatives to XAMPP include tools such as MAMP7, EasyPHP8,
and AMPPS.9

To aid the development process, JavaScript libraries are used
throughout this book. Instead of downloading the JavaScript files re-
quired for each different example, and to ensure the latest available
codebase is used, Content Delivery Networks (CDN) are used where
possible. These can be seen in the opening lines of each example.

As most PHP libraries are available pre-packaged, we will use
the command line application composer. This is a dependency
management tool for PHP. Composer can be downloaded from
https://getcomposer.org/download. During the installation process of
composer, it will ask to point to the location of the php.exe file. If you
are using a local web server, this is typically installed inside of the php/
folder that is detected automatically. Once composer has been installed,

6https://www.apachefriends.org
7https://www.mamp.info/en
8https://www.easyphp.org
9https://www.ampps.com

https://getcomposer.org/
https://www.apachefriends.org
https://www.mamp.info/
https://www.easyphp.org
https://www.ampps.com

6 � Applied User Data Collection and Analysis Using JavaScript and PHP

open a command prompt and navigate to the root folder of your project.
After this, issue the composer init command to begin the creation pro-
cess of the composer.json file.

Composer is different from other tools as it does not work on a per-
system basis, it is focused on a per-project basis. Each individual project
will have a collection of libraries specified that are defined inside of the
composer.json file. This is a human-readable file that contains a list of
different requirements for a given PHP project in JSON format.

An example of this is a composer file that defines a reference to
the PHPinsight package along with the version number of the pack-
age. Additional PHP packages to add to a project can be found at
https://packagist.org. Below is a sample of the JSON in a composer.json
file.

{
"require" : {

"jwhennessey/phpinsight": ">=2.0.9"
}

}

After the composer.json has been added to the project folder, com-
poser can be used to manage additional packages. By opening up a
command prompt and navigating into the root of the project where
composer.json is located, the install command can be issued to com-
poser. By doing this, the contents of the JSON file are parsed, and all
specified dependencies are downloaded and installed into the project.

composer install

In cases where we want to add a new dependency to the project we
can use the require command:

composer require jwhennessey/phpinsight

This process greatly improves the manual installation process of dif-
ferent packages that make up a project.

1.6 DEVELOPMENT ENVIRONMENT

Through the course of this book, a heavy focus is placed on the client-
side programming language JavaScript. When working with JavaScript,
a very small issue with one section of code can quickly bump into other

https://packagist.org

Introduction � 7

sections, causing a cascade of errors. To help during the debugging pro-
cess of JavaScript, the console.log() function should be used frequently.
This function can be called from any location inside of a web page as
long as it is placed inside a JavaScript script tag. Sample Code 1 shows
a simple example of a web page with a call to this function.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <meta charset="utf-8">
5 <title>Hello World</title>
6 </head>
7 <body>
8 <p>Hello World!</p>
9

10 <script>
11 console.log("Hello world!");
12 </script>
13 </body>
14 </html>

SAMPLE CODE 1: Sample HTML document with embedded
JavaScript.

To access this console log in Google Chrome, the Ctrl+Shift+I keys
can be pressed together to view the developer tools, as shown in Figure
1.1.

FIGURE 1.1: Viewing the developer console in Google Chrome.

This console provides information about the errors that are encoun-
tered in JavaScript code and also information about which line the error
has occurred on. Individual JavaScript variables, objects and strings can

8 � Applied User Data Collection and Analysis Using JavaScript and PHP

be passed to the console.log() function. To aid the debugging process,
calls can be made to the function to print before and after a piece of
JavaScript code has run. This allows us to easily see if the code has run
as expected.

As working with a local web server is designed to mimic the behavior
of a commercial server for development purposes, sometimes unwanted
features are implemented. One example of this is the browser-based web-
site caching that is performed when a local web page is opened. As
changes are being made to an application during the course of develop-
ment, the browser will often not render the latest version of the code,
opting to return a cached version. To prevent this, the developer tools
allow us to disable this caching feature.

By entering into the Network tab in Google Chrome developer tools,
the option to disable cache can be ticked during development, as shown
in Figure 1.2.

FIGURE 1.2: Disabling the cache in the developer console.

1.7 CODE EXAMPLES

This book contains a number of JavaScript/HTML and PHP code ex-
amples that can be run on your local Apache/PHP/MySQL server. To
aid development, complete examples can be downloaded from the official
website for this book at https://www.kylegoslin.ie/applied. For samples
that require the use of a database, the SQL create and insert state-
ments are also available. These should be added to your database prior
to running the examples locally.

These examples can be run with very minimal modifications. Typi-
cally, the access details for your database may be the only modification
that is needed to the original code. A focus has been placed on the de-
velopment of code examples that will run in isolation rather than part
of a larger framework. This provides the opportunity for these examples
to be placed into an existing application.

Although security is a significant component of web application de-
velopment, it is not the focus of this book. For this reason, if any
examples are used in a live environment, additional care should be taken
to implement correct security mechanisms.

https://www.kylegoslin.ie

Introduction � 9

1.8 BOOK OUTLINE

In this section, a brief outline of the structure of this book is presented.
Chapter 1: Introduction, provided an outline of the core types of data

that can be gathered for analysis and the tools required to get started.
Chapter 2: Active data collection explores the various approaches that
can be used to collect data from a user directly, such as rating stars, bi-
nary feedback, and custom response forms. The foundation of JavaScript
tools that are used through this book is explored.

Chapter 3:Passive Data Collection, provides an outline of the pas-
sive data collection processes. Common data sources such as cookies,
server-side sessions, and files are explored as possible data sources. The
interactions that a user has with an application are explored, detailing
how data can be gathered using additional JavaScript tools and third-
party resources. As social media is a common source of data, the process
of gathering data from a social media website is explored using authen-
ticated API calls.

Once data has been gathered, a method of viewing the results can be
implemented. In Chapter 4: Custom Dashboards, the process of creating
a custom visualization dashboard with login and registration pages is
described. To aid the visualization of data, the process of adding simple
bar charts in both single and multi-column form are described. This
provides a data analyst with the means to dynamically add visualizations
based on data from any source dynamically.

In addition to numeric data, text forms the basis of many data
sources. In Chapter 5: Working with Text, the processing of text is de-
scribed. The identification of stop words is first described along with the
process of identifying red-flag terms that help identify terms of interest.
To gain a deeper insight into the context of text, n-grams are described.
To further aid this, the process of sentence completion, word stemming,
and synonym detection is described to provide the data analyst with a
method of identifying other relevant text of interest. To add a numeric
component to text, a focus is placed on term weighting approaches. Fi-
nally, when working with text-based feedback records, an approach for
sentiment analysis is described.

For gathered data, visualizations can easily be applied. In Chapter 6:
Text Visualization, the process of generating visualizations is described.
Word clouds are described to view the frequency of individual terms.
The relationships between data are outlined using a tree-based graph
format. To identify the relationships between custom terms of interest

10 � Applied User Data Collection and Analysis Using JavaScript and PHP

on any given day, a linked graph is described. As data is often collected at
different times, a time-series analysis approach is described for positive
and negative feedback records.

Chapter 7: Time-based Feedback Analysis outlines the time-based
component of data and how it can be used for the segmentation of data.
As time is an ongoing entity, an approach based on time segment analysis
and visualization is described, allowing for individual time windows to be
viewed. The area of real-time feedback analysis is described for situations
where the data collection process is actively happening. To view larger
data sets in a single visualization, the process of creating positive and
negative feedback calendars for a given year is described. To view large
data sets on a smaller scale, the process of viewing custom color-coded
feedback heat map is described.

For any type of data, statistics can be derived. In Chapter 8: Feedback
Statistics and Overviews, the basics of statistics is described with com-
plete examples. As working on large data sets is often time-consuming,
the process of working with representative samples is described. The pro-
cess of calculating the percentage difference is then described as most of
the statistics generated can be represented as a percentage.

Finally, Chapter 9: Hosting, Reporting, and Distributing, the process
of PDF report generation based on PHP is described. As many of the
tasks that are performed on data are performed on a daily basis, the
process of task scheduling is described for both local and external ser-
vices. To provide the key stakeholders with the generated reports, the
process of integrating a cloud-based e-mail service is described. Finally,
once a complete application has been developed, the process of hosting
a PHP/JavaScript application on the Amazon Lightsail is described.

1.9 SUMMARY

This chapter introduced the tools and environment needed for running
the examples in this book. The concept of passive and active data was
described, outlining that data does not directly need to be harvested
from a user. Indirect methods, such as logging interactions with an ap-
plication and identifying relevant data sources, e.g., existing files and
social media streams, can be used to gather data for analysis. In Chap-
ter 2, the process of collecting data through active methods is described
to begin the cycle of data collection for analysis and visualization.

C H A P T E R 2

Active Data Collection

2.1 INTRODUCTION

In this chapter, we will describe the process of collecting data from users
directly. This is done through the use of simple binary choices, text-based
content, and star ratings. The data is categorized as active data, as the
user is required to participate in the data collection process. However,
gathering data directly from users can be difficult, as users are often
unwilling to put time into the process. We attempt to make the process
of gathering data as simple and unobtrusive as possible for the user.

2.2 BINARY DATA COLLECTION

Many modern web applications provide the user with a simple data
collection mechanism in the form of a binary choice. Typically, this is
the result of answering a question. A simple Yes or No input field can
quickly gather a user’s opinion with minimal effort. These mechanisms
purposely limit the number of options and interactions a user can have.
The submission process for this data can also be automatic to prevent
the user from selecting a choice and then unintentionally forgetting to
press the submit button.

To aid the process of future analysis, each page in this sample appli-
cation is considered an individual article. Each article has a unique ID
to differentiate articles from one another.

Example 1: Binary data collection
This example consists of three core files and one library:

1. create.sql — This file is used to create the yesno database table.

11

12 � Applied User Data Collection and Analysis Using JavaScript and PHP

2. binary.html — The main HTML/JavaScript binary data collection
interface.

3. ajax.php — Used to receive data and store it in a MySQL database.

4. jQuery — Used to perform a JavaScript POST to the ajax.php
page.

Example code: create.sql
Before creating the user interface, a new MySQL database table is first
required to be titled yesno, as shown in Sample Code 2. The table con-
sists of four different attributes, where two of these are automatically
generated when a new record is inserted. The first of these is the ID
column that is auto-incremented and a primary key. Every time a new
record is created in the database, the ID will increment by 1. This is
useful for uniquely identifying the record in the future. The second col-
umn is titled mytime. Every time a new record is created, the current
time stamp on the server will be logged with the record. The third and
fourth columns are the two that will vary depending on what article is
being viewed by the user, and the choice selected.

As the articleid is numeric, the data type for this will be set to int.
The result column, however, contains the string Yes or No. To hold this,
the result column data type is set to varchar.

1 CREATE TABLE `yesno` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
4 `articleid` INT,
5 `result` VARCHAR (10),
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 2: create.sql — yesno database table SQL.

Example code: binary.html
In Sample Code 3, on line 1, a reference to the jQuery1 Content Delivery
Network (CDN) is first added. Two radio buttons are added along with
a simple div tag to make the form uniquely identifiable on lines 4 and 6.

1https://code.jquery.com

https://code.jquery.com

Active Data Collection � 13

JavaScript will be responsible for listening to the changes that have been
made to the form, and also for passing the data off to the web server
to be saved in a database table. In the example code, both of the radio
buttons have the same name attribute. This is done as both are part of
the same group, preventing both from being selected at the same time.

On line 10, a jQuery click() listener is added. This listens to clicks
that are made on the radio buttons. When identifying the radio buttons,
the input:radio value is passed to the jQuery selector specifying that we
are interested in the radio buttons that have the name attribute defined
as answer. When either of the radio buttons is clicked, the JavaScript
inside of the click function will trigger. Inside this function on line 11, we
can use the keyword this, which represents the radio button that has just
been clicked. Using this, we can call the val() function that will return
the value from the radio button that has been selected.

After this on line 12, a custom JavaScript function titled saveAn-
swer() is called. When called, the current value the user has selected
will be passed to this function. The saveAnswer() function on line 15
takes a single parameter in the form of the value the user selected. In-
side this function, a jQuery POST is added on line 16 to send the an-
swer variable to a server-side page titled ajax.php to save the data to
the database table. Inside the jQuery POST the first parameter that
is passed is ajax.php. This is a reference to the page that will handle
the database interactions. A custom type parameter is added so we can
reuse the same ajax.php page for multiple different purposes by uniquely
identifying the different types of requests we are sending to the page.

The type variable is set to yesno. Next, we will pass the articleid that
is used to identify the page where the data has come from. The articleid
is set to 1221. The final parameter that is passed is titled result. The
value for this variable comes from the user selection that was passed to
the saveAnswer() function titled answer. On line 18, a done() function
is added. This function is called when all of the processing has been
completed, and the data has been sent to the database. A simple alert()
function is added on line 19 to tell the user Thank you! after they have
submitted the data.

14 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js"
2 crossorigin="anonymous">
3 </script>
4 <div id="binaryfeedback">
5 Are you happy with this service?
6 <input type="radio" name="answer" value="Yes"> Yes
7 <input type="radio" name="answer" value="No"> No
8 </div>
9 <script>

10 $("input:radio[name=answer]").click(function() {
11 var val = $(this).val();
12 saveAnswer(val);
13 });
14

15 function saveAnswer(answer){
16 $.post("ajax.php", { type: "yesno", articleid: "1221",
17 result: answer })
18 .done(function(data) {
19 alert('Thank you!'+data);
20 });
21 }
22 </script>

SAMPLE CODE 3: binary.html — Yes/No options being presented to
the user.

Example code: ajax.php

In Sample Code 4, a new PHP page is created titled ajax.php. This
additional page is never directly opened by the user; it is called dynami-
cally through the jQuery POST function. When this page is called every
time the data will be saved to a database table using a PHP Data Object
(PDO). On line 2, the POST variable is referenced to extract the value
that was passed across from the JavaScript request. On line 3, a simple if
statement is used to check what value the type variable contained. If the
type was set to yesno, a call is made to the yesNoLog() PHP function on
line 4. After the if statement, the function definition for the yesNoLog()
function is added on line 6.

In the body of the PHP function on lines 7 and 8, two variables
are created to catch the values that have been sent across from the
jQuery POST request. It is important to ensure that the variable names
inside the POST match to the variables that were sent across using the
JavaScript POST earlier. In this example the articleid and the result
are extracted from the POST. Once the variables have been gathered,
a connection to the database can be made. The database interactions

https://code.jquery.com/

Active Data Collection � 15

is performed inside of a try-catch statement that begins on line 9. The
host, dbname, user, and pass variables are defined on lines 10 to 13.

These variables reflect the MySQL database that is being used. On
line 14, a new PHP PDO is created. On line 16, a simple SQL INSERT
statement is created. Two question marks are inserted at the end of the
statement. These are unnamed placeholders that hold the place for the
variables that will be appended.

The two variables that we caught from the POST are passed to
the SQL statement using the bindParam() function on lines 19 and 20.
This is a safe method of passing variables to a database without caus-
ing any security issues as sanitization is performed on the variables. As
the articleid is an integer, the type of parameter being added is set to
PARAM INT. The type of result being added is set as a PARAM STR.
The final step in this process is to run the SQL statement. On line 21,
the execute() function is called. A catch is added on line 22 to com-
plete the try-catch block. If any errors are presented when connecting
to the database or running the code, the catch block will run, and the
getMessage() function will be called to retrieve the error message.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'yesno'){
4 yesNoLog();
5 }
6 function yesNoLog(){
7 $articleid = $_POST['articleid'];
8 $result = $_POST['result'];
9 try {

10 $host = 'localhost';
11 $dbname = 'bookexamples';
12 $user = 'sampleuser';
13 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
14 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
15 $user, $pass);
16 $sql = "INSERT INTO `yesno` (`articleid`, `result`) VALUES
17 (?, ?);";
18 $sth = $DBH->prepare($sql);
19 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
20 $sth->bindParam(2, $result, PDO::PARAM_STR);
21 $sth->execute();
22 } catch(PDOException $e) {echo $e->getMessage();}
23 }

SAMPLE CODE 4: ajax.php — PHP logging binary choice to the
yesno database table.

16 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 2.1, shows the output of these radio buttons with a small
question such as Are you happy with this service?

FIGURE 2.1: Yes and No binary options.

In Figure 2.2 the alert box that is shown to the user after the data
has been recorded in the database table is shown.

FIGURE 2.2: Alert box showing the selected radio button value.

2.3 TEXT-BASED DATA COLLECTION

A further adaptation to a basic binary data collection process can be
added to include an additional text field that only appears if a user
selects the No option. Although text requires additional processing to
quantify and gather insights from, it nonetheless is useful as a number
of derivative statistics can be drawn from this data.

Example 2: Providing an option to gather text

This example consists of three core files and one library:

1. create.sql — This file is used to create the whyanswerlog database
table. This table has an additional column to store text.

2. binary.html — The main HTML/JavaScript binary data collection
interface with an additional text field.

Active Data Collection � 17

3. ajax.php — Used to receive data and store it in a MySQL database
table.

4. jQuery — Used to add a click handler and to perform a JavaScript
POST to the ajax.php page.

Example code: create.sql

To store text, an additional database table is required. In Sample
Code 5, the result column is set to 500 characters to allow for the text-
based answer.

1 CREATE TABLE `whyanswerlog` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
4 `articleid` INT,
5 `result` VARCHAR (500),
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 5: whyanswer log database table SQL.

Example code: binary.html
In Sample Code 6, on line 5, a div tag is added to hold the text area for
the user to elaborate on why they chose No. On line 11, a simple submit
button is added to trigger the saving process. The submit button has an
onclick set to call the saveWhyAnswer() JavaScript function.

On line 14, a click() handler for the radio button is added. On line 19,
a simple if statement that will check to see if the user clicked No is added.
If they did, we will call the findOutWhy() function that will trigger the
input field for user input to open on line 20. On line 31, a function
titled findOutWhy() is added. Inside this on line 32, the jQuery show()
function is called on the jQuery selector that references the explainwhy
div tag.

When the user clicks the submit button, a call is made to the save-
WhyAnswer() function as shown on line 34. In this function on line 35,
the text entered by the user is gathered using the getElementById() func-
tion that takes a reference to the whyanswer text area. On line 36, the
POST function is called that is similar to the previous example. On line

18 � Applied User Data Collection and Analysis Using JavaScript and PHP

39 a simple alert() statement is used to present the user with the text
thank you for your comments!.

On line 42, when the page is finished loading, a shorthand version
of the document ready function is used. This ensures that the page is
loaded, and all the different elements on the page are ready. Once the
page has fully loaded, jQuery is used to hide the div that we have just
created using the hide() function on line 43 until the user selects the No
option.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js"
2 crossorigin="anonymous"></script>
3 <input type="radio" name="answer" value="Yes"> Yes

4 <input type="radio" name="answer" value="No"> No

5 <div id="explainwhy">
6 Sorry to hear you were not happy,

7 Would you like to say why?

8 <textarea id="whyanswer" rows="5" cols="50">
9 </textarea>

10

11 <button onclick="saveWhyAnswer()">Submit</button>
12 </div>
13 <script>
14 $("input:radio[name=answer]").click(function() {
15

16 var val = $(this).val();
17 saveAnswer(val)
18

19 if(val == 'No'){
20 findOutWhy();
21 }
22 });
23

24 function saveAnswer(answer){
25 $.post("ajax.php", { type: "yesno", articleid: "1221",
26 result: answer })
27 .done(function(data) {
28 alert('Thank you!');
29 });
30 }
31 function findOutWhy(){
32 $("#explainwhy").show();
33 }
34 function saveWhyAnswer(){
35 var answer = document.getElementById('whyanswer').value;

https://code.jquery.com/

Active Data Collection � 19

36 $.post("ajax.php", { type: "whyanswer", articleid: "1221",
37 result: answer })
38 .done(function(data) {
39 alert('Thank you for your comments!');
40 });
41 }
42 $(function() {
43 $("#explainwhy").hide();
44 });
45

46 </script>

SAMPLE CODE 6: binary.html — HTML form with additional div tag
allowing the user to enter comments.

Example code: ajax.php
Instead of using the ajax.php page for one purpose, it was set up in
the previous example to use the type variable that allows us to perform
multiple different functions with the same page. In Sample Code 7, we
will add an else if statement on line 6 that will be used to redirect the
flow of execution to the whyAnswer() function if the type variable is set
to whyanswer. In the whyAnswer() function on lines 28 and 29, the two
variables articleid and result are first extracted from the POST variable.

A connection to the database is created on line 39 inside the try-catch
statement. A simple INSERT statement is used on line 37 to put the
record in the database table. The values for both columns are represented
with question marks that are later replaced by values when a call is
made to the bindParam() function on lines 40 and 41. As the result
contains text, the data type in the second bindParam() call is set to
PARAM STR.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'yesno'){
4 yesNoLog();
5 }
6 else if($type == 'whyanswer'){
7 whyAnswer();
8 }
9 function yesNoLog(){

10 $articleid = $_POST['articleid'];
11 $result = $_POST['result'];

20 � Applied User Data Collection and Analysis Using JavaScript and PHP

12 try {
13 $host = 'localhost';
14 $dbname = 'bookexamples';
15 $user = 'sampleuser';
16 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
17 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
18 $pass);
19 $sql = "INSERT INTO `yesnolog` (`articleid`, `result`)
20 VALUES (?, ?);";
21 $sth = $DBH->prepare($sql);
22 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
23 $sth->bindParam(2, $result, PDO::PARAM_STR);
24 $sth->execute();
25 } catch(PDOException $e) {echo $e;}
26 }
27 function whyAnswer(){
28 $articleid = $_POST['articleid'];
29 $result = $_POST['result'];
30 try {
31 $host = 'localhost';
32 $dbname = 'bookexamples';
33 $user = 'sampleuser';
34 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
35 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
36 $pass);
37 $sql = "INSERT INTO `whyanswerlog` (`articleid`, `result`)
38 VALUES (?, ?);";
39 $sth = $DBH->prepare($sql);
40 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
41 $sth->bindParam(2, $result, PDO::PARAM_STR);
42 $sth->execute();
43 } catch(PDOException $e) {echo $e;}
44 }
45 ?>

SAMPLE CODE 7: ajax.php — Additional PHP function to insert
text a user has entered into a database table.

Output
Figure 2.3 shows the result of selecting No on the Yes/No radio buttons.
A question is prompted to the user along with a text area where they
can describe their issue.

Active Data Collection � 21

FIGURE 2.3: No option expanding allowing the user to expand their
response in text format.

2.4 STAR RATINGS

The star rating allows us to gather opinions on a defined scale from a
user with the least amount of user interaction. Star ratings allow the user
to rate typically on a range between one and five. This method proves
to be very unobtrusive, as the user does not need to click an additional
submit button to send the result to the server.

The rating system comes in two main varieties, one that allow the
user to provide responses in the form of a star rating, while the other
show previous user ratings. The process of gathering statistics and pre-
senting them to the user in star form will be discussed at the end of this
chapter. As star ratings are commonplace on websites such as Amazon
and eBay, many vendors offer free and open-source star rating solutions.
Each of these implementations come with a varying degree of abilities
and handlers to respond to the input entered by the user. The overall
look and feel of the rating approach are the main factors in deciding
which implementation to use. In this example, we will be looking at the
RateYo!2 star rating package.

Example 3: Star rating

This example consists of one file and two libraries:

1. rating.html — This provides the star rating interface to the user.

2. jQuery — This library is used to access the jQuery selector.

3. RateYo! — Used to provide a star rating interface.
2https://rateyo.fundoocode.ninja

https://rateyo.fundoocode.ninja

22 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: rating.html
In Sample Code 8, three references are included. The first of these is the
reference to jQuery on line 1, the second is the reference to the CSS file
on line 3, and the last is a reference to the RateYo JavaScript file on line
6. After the files have been included, a div tag is included on line 9 that
will be converted into the star rating system. The ID of the div tag is
set to rateYo. On line 11, a shorthand for the document ready function
is added.

The jQuery selector is used to select the rateYo div tag on line 12.
On this div the rateYo() function is called. Inside of this, the onSet on
line 13 takes a reference to the function that is called when a star is
clicked. In this example, a simple alert statement is added on line 14 to
indicate to the user the rating they selected. The rating made by the
user is available through the rating variable.

1 <script src="https://code.jquery.com/jquery-3.1.0.min.js"
2 crossorigin="anonymous"></script>
3 <link rel="stylesheet"
4 href="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
5 jquery.rateyo.min.css">
6 <script src="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
7 jquery.rateyo.min.js">
8 </script>
9 <div id="rateYo"></div>

10 <script>
11 $(function () {
12 $("#rateYo").rateYo({
13 onSet: function (rating, rateYoInstance) {
14 alert("Rating is set to: " + rating);
15 }
16 });
17 });
18 </script>

SAMPLE CODE 8: rating.html — Star rating interface.

Output
Figure 2.4 shows an example of what the star rating looks like when
loaded.

https://code.jquery.com/
https://cdnjs.cloudflare.com/
https://cdnjs.cloudflare.com/

Active Data Collection � 23

FIGURE 2.4: Star-rating example.

Example 4: Saving a star rating
After a user has clicked on a star, the only thing that is changing is the
star on the page. No data is being stored in a database table that can
be retrieved later.

This example consists of three files and two libraries:

1. create.sql — Used to create the starratinglog database table.

2. rating.html — This provides the rating stars to the user that can
be selected.

3. ajax.php — This page receives the rating and stores it in a
database table.

4. jQuery — Added to perform a JavaScript POST to the ajax.php
page.

5. RateYo! — Used to provide a star rating interface.

Example code: create.sql
To store the data, a new database table is required, as shown in Sam-
ple Code 9. This table contains an ID field that is unique and auto-
incremented. This is followed by the mytime that holds the time stamp
when the record was created. The articleid column is used to hold a
reference to the article being viewed by the user. The result entered by
the user is placed inside the result column. As the user cannot select half
stars, the data type for this is set to int.

1 CREATE TABLE starratinglog(
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ,
4 `articleid` INT,
5 `result` int,
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 9: Sample starratinglog table SQL.

24 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: rating.html
In Sample Code 10 on line 14 the saveRating() function is called that
takes in a single parameter titled rating that contains the rating the user
selected. On line 18, the function is defined. In this function, on line 19
a call to the jQuery POST function is performed. The type of request
being performed is titled starrating. The articleid being viewed is set to
1221 and the userrating is set to rating that is dynamically set when a
star is selected. On line 22, an alert() call is added to present the user
with the text Thank you for your rating! when a rating is selected.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js"
2 crossorigin="anonymous"></script>
3 <link rel="stylesheet"
4 href="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
5 jquery.rateyo.min.css">
6 <script src="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
7 jquery.rateyo.min.js">
8 </script>
9 <div id="rateYo"></div>

10 <script>
11 $(function () {
12 $("#rateYo").rateYo({
13 onSet: function (rating, rateYoInstance) {
14 saveRating(rating);
15 }
16 });
17 });
18 function saveRating(rating){
19 $.post("ajax.php", { type: "starrating", articleid: "1221",
20 userrating: rating })
21 .done(function(data) {
22 alert('Thank you for your rating!');
23 });
24 }
25 </script>

SAMPLE CODE 10: rating.html — Star rating with saveRating()
function.

Example code: ajax.php
A second page titled ajax.php is added that is responsible for processing

https://code.jquery.com/
https://cdnjs.cloudflare.com/
https://cdnjs.cloudflare.com/

Active Data Collection � 25

the request. In Sample Code 11, on line 2, the type variable is first
gathered from the POST. A check is performed on line 3 to see if the
type of request that was sent is equal to a starrating. If it is, then a
call is made to the PHP function starRatingLog() on line 4. Inside of the
starRatingLog() function on line 7 and 8, the articleid and the userrating
are extracted from the PHP POST and placed inside local variables.

On line 14, a connection is made to the database to insert the record
into the starratinglog database table. As the first two columns of this
table are auto-generated, only the articleid and the result are required for
the insert statement. Inside the statement on line 16, two question marks
hold the position where the values will be placed. The bindParam()
function is used on lines 19 and 20 to place the value into the statement
before it is executed.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'starrating'){
4 starRatingLog();
5 }
6 function starRatingLog(){
7 $articleid = $_POST['articleid'];
8 $result = $_POST['userrating'];
9 try {

10 $host = 'localhost';
11 $dbname = 'bookexamples';
12 $user = 'sampleuser';
13 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
14 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
15 $pass);
16 $sql = "INSERT INTO `starratinglog` (`articleid`, `result`)
17 VALUES (?, ?);";
18 $sth = $DBH->prepare($sql);
19 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
20 $sth->bindParam(2, $result, PDO::PARAM_INT);
21 $sth->execute();
22 } catch(PDOException $e) {echo $e;}
23 }
24 ?>

SAMPLE CODE 11: ajax.php — Saving a star rating to the
starratinglog database table.

26 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example 5: Retrieving star ratings

As the star rating can be used to gather opinions from a user, the
opposite to this is to display the average star rating. This is done by
gathering the ratings that have previously been saved by users. Although
the database table will hold lots of data from different star ratings across
a website, we must ensure that we get only the ratings for the current
article under consideration.

This example consists of two files and one library:

1. star.php — This provides the rating stars to the user that can be
selected and also shows a preset rating.

2. ajax.php — This page receives a new rating and stores it in a
database table.

3. jQuery — This is used to perform a JavaScript GET request.

When the rating process was first set-up, we provided a unique ID
for each of the different star rating implementations on the website. In
this example, the articleid is the variable that held all the information
about a single instance of the star rating.

To begin, we will look at the SQL query that will be used to retrieve
the average. In this example, we will use the SQL function titled avg()
that will return the average across all of the records for the given arti-
cleid. To the right-hand side of this SQL query, an additional WHERE
clause is added to narrow down the collection of records to only return
the average rating of the article we are currently interested in.

SELECT AVG(result) FROM starratinglog WHERE articleid ='1221';

Example code: star.php

In Sample Code 12 on line 13, jQuery is used to perform a GET
request to the ajax.php page. The type of request being sent is set to
getrating. To ensure the results for a single star rating are returned, the
articleid variable is passed that contains the ID of the article we are
interested in. On line 14, when the jQuery function has returned a call
is made to the done() function that returns a variable titled data that
contains the average star rating that will be retrieved from the ajax.php

Active Data Collection � 27

page. On line 16, this data variable is set to be the value of the rating
variable that dictates the number of stars that will be highlighted.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js"
2 crossorigin="anonymous">
3 </script>
4 <link rel="stylesheet"
5 href="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
6 jquery.rateyo.min.css">
7 <script src="https://cdnjs.cloudflare.com/ajax/libs/rateYo/2.2.0/
8 jquery.rateyo.min.js">
9 </script>

10 <link rel="stylesheet" href="jquery.rateyo.css"/>
11 <div id="rateYo"></div>
12 <script>
13 $.get("ajax.php", { type: "getrating", articleid: 1221})
14 .done(function(data) {
15 $("#rateYo").rateYo({
16 rating:data,
17 onSet: function (rating, rateYoInstance) {
18 }
19 });
20 });
21 </script>

SAMPLE CODE 12: star.php — Using a GET request to retrieve the
average star rating.

Example code: ajax.php
Sample Code 13 shows the ajax.php page. On line 2 the type variable is
first received from the PHP GET request. On line 3, an if statement is
used to check if the type is equal to getrating. If it is, then a call is made
to the getRating() function on line 4.

On line 6, the getRating() function is defined. Inside this function on
line 13, a connection to the database is created. On line 15, the SQL to
retrieve the average rating is added. The article ID is left as a question
mark. The bindParam() is used to pass in the articleid that was passed
via the jQuery GET request to this page on line 18. After this query
has run, on line 21, a single result will be returned. This result is placed
in the res variable at position 0 of the returned array. The PHP round()

https://code.jquery.com/
https://cdnjs.cloudflare.com/
https://cdnjs.cloudflare.com/

28 � Applied User Data Collection and Analysis Using JavaScript and PHP

function is used to remove any trailing decimal numbers and return only
an integer.

1 <?php
2 $type = $_GET['type'];
3 if($type == 'getrating'){
4 getRating();
5 }
6 function getRating(){
7 $articleid = $_GET['articleid'];
8 try {
9 $host = 'localhost';

10 $dbname = 'bookexamples';
11 $user = 'sampleuser';
12 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
13 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
14 $pass);
15 $sql = "SELECT AVG(result) FROM starratinglog WHERE
16 articleid=?";
17 $sth = $DBH->prepare($sql);
18 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
19 $sth->execute();
20 $res = $sth->fetch();
21 echo round($res[0]);
22 } catch(PDOException $e) {echo $e;}
23 }
24 ?>

SAMPLE CODE 13: ajax.php — Retrieving the average star rating
and printing it as a page.

Output
Figure 2.5 shows an example with a preset rating. Although a number
of records exist in the database table, the average star rating achieved
was 3.

FIGURE 2.5: Star rating with preset rating.

Active Data Collection � 29

2.5 CUSTOM RESPONSE FORM

In this section, we will review the process of creating a complete response
form. This form can be used to prompt users to enter longer pieces of
data in different formats. Although it is possible to present the options
to the user, it does not guarantee that the user will fill them all out.
Custom validation is added to the form that prompts the user to enter
values for each field before the form can be submitted.

To aid the layout of the form, Bootstrap is used. Bootstrap provides
a default look and feel for the form. In addition to this, the Bootstrap
modal will be used to present a message to the user once the form has
been submitted.

Example 6: Custom response form with JavaScript
validation

This example consists of three files and two libraries:

1. create.sql — This file is used to create the servicerating database
table.

2. form.html — This contains the main HTML and JavaScript to
create the form along with references to jQuery and Bootstrap.

3. saveForm.php — Receives data from the form and saves it to the
database table using PHP PDOs.

4. Bootstrap — This is used to style the custom form and to add the
ability to create modals.

5. jQuery – This is used to perform a JavaScript POST to the
ajax.php page.

Example code: create.sql
To allow this data to be stored in the database, a new table is created
titled servicerating. This contains an attribute for each of the form fields
entered by the user. The varchar data type is used for text-based data
and the int data type is used for numeric data. To uniquely identify each
individual record, an ID column is added that is auto-incremented and
set as a primary key.

30 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 CREATE TABLE `servicerating` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `email` VARCHAR(100),
4 `fullName` VARCHAR(100),
5 `serviceRating` INT,
6 `foodRating` INT,
7 `atmosRating` INT,
8 `comments` VARCHAR(500),
9 PRIMARY KEY (`id`)

10);

SAMPLE CODE 14: servicerating database table SQL.

Example code: form.html

Sample Code 15 outlines the HTML for a complete feedback collec-
tion form. On line 1, a reference to jQuery is first added. On line 4,
the CSS for Bootstrap is included, followed by additional JavaScript re-
quired by Bootstrap on line 8. On line 12, a div tag is created that is
used for a placeholder for error messages that will be generated if any
of the form fields are left blank. On line 14, a form tag is added with
the class attribute set to w-25 that tells the browser to use 25% of the
available space to display the components. p-2 is used to set the padding
for the form.

Inside of the form tag, the individual form elements can be added.
It is important during this process to provide unique IDs to individual
form elements. To aid the user during the process of filling out the form,
individual label tags are added on line 16. The for attribute allows us to
specify which form element the label is for. aria-describedby is used to
specify a piece of text that will be displayed below the form elements.

To provide the user with a range of options to choose from, an HTML
select is added on line 35 to 42. The user has the options between one
and five. The default value for the select element is the first option in
the list. In this example, the first option is left blank. This is useful as
during the validation process, if no value was selected, an error can be
thrown. This also prevents the form from being submitted with a default
value.

Active Data Collection � 31

1 <script
2 src="https://code.jquery.com/jquery-3.5.1.min.js"
3 crossorigin="anonymous"></script>
4 <link rel="stylesheet"
5 href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/
6 bootstrap.min.css"
7 crossorigin="anonymous">
8 <script
9 src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/

10 bootstrap.min.js" crossorigin="anonymous"></script>
11

12 <div id="error_message">
13 </div>
14 <form class="w-25 p-2">
15 <div class="form-group">
16 <label for="emailAddress">E-mail address</label>
17 <input type="text" class="form-control" id="emailAddress"
18 aria-describedby="emailHelp"
19 placeholder="Enter email">
20 <small id="emailHelp"
21 class="form-text text-muted">We'll never share your email
22 with anyone else.
23 </small>
24 </div>
25 <div class="form-group">
26 <label for="fullName">Full name</label>
27 <input type="text" class="form-control" id="fullName"
28 aria-describedby="nameHelp" placeholder="Enter full name">
29 <small id="nameHelp"
30 class="form-text text-muted">Please enter your full name.
31 </small>
32 </div>
33 <div class="form-group">
34 <label for="serviceRating">How would you rate our service?</label>
35 <select class="form-control" id="serviceRating">
36 <option></option>
37 <option value="1">1</option>
38 <option value="2">2</option>
39 <option value="3">3</option>
40 <option value="4">4</option>
41 <option value="5">5</option>
42 </select>
43 </div>
44 <div class="form-group">
45 <label for="foodRating">How would you rate our food?

https://code.jquery.com/
https://maxcdn.bootstrapcdn.com/
https://maxcdn.bootstrapcdn.com/

32 � Applied User Data Collection and Analysis Using JavaScript and PHP

46 </label>
47 <select class="form-control" id="foodRating">
48 <option></option>
49 <option value="1">1</option>
50 <option value="2">2</option>
51 <option value="3">3</option>
52 <option value="4">4</option>
53 <option value="5">5</option>
54 </select>
55 </div>

SAMPLE CODE 15: form.html — Complete Bootstrap feedback form
part 1.

In Sample Code 16, on line 74, a submit button is added to the
form. To make the form more interactive, when the form is submitted, a
Bootstrap modal will be opened. On line 77, the modal begins with the
ID set to success. The role of the div tag is set to dialog. This will be
used later during the form submission to open this modal. A single close
button is added to the modal allowing the user to dismiss the message
on line 91.

56 <div class="form-group">
57 <label for="atmosRating">How was the atmosphere in the
58 restaurant?</label>
59 <select class="form-control" id="atmosRating">
60 <option></option>
61 <option value="1">1</option>
62 <option value="2">2</option>
63 <option value="3">3</option>
64 <option value="4">4</option>
65 <option value="5">5</option>
66 </select>
67 </div>
68 <div class="form-group">
69 <label for="comments">Please tell us about your experience
70 </label>
71 <textarea class="form-control" id="comments" rows="3">
72 </textarea>
73 </div>
74 <button type="submit" id="submit" class="btn btn-primary">Submit
75 </button>
76 </form>
77 <div class="modal" id="success" tabindex="-1" role="dialog">

Active Data Collection � 33

78 <div class="modal-dialog" role="document">
79 <div class="modal-content">
80 <div class="modal-header">
81 <h5 class="modal-title">Success!</h5>
82 <button type="button" class="close" data-dismiss=
83 "modal" aria-label="Close">
84 ×
85 </button>
86 </div>
87 <div class="modal-body">
88 <p>Thank you for the feedback.</p>
89 </div>
90 <div class="modal-footer">
91 <button type="button" class="btn btn-secondary"
92 data-dismiss="modal">Close</button>
93 </div>
94 </div>
95 </div>
96 </div>

SAMPLE CODE 16: form.html — Complete Bootstrap feedback form
part 2.

Older web forms utilised the form tag by appending an action and
method attributes. As we are working in pure JavaScript, we will use
jQuery to handle the form submission process. In Sample Code 17 on
line 3, when the submit button is clicked the preventDefault() function
is called. This function is used to suppress the default nature of the form
tag that is to redirect to a different page. After this, a new variable titled
error is added to store the error messages for the form, if any are present
on line 4.

On lines 6—29, The jQuery selector is used to select each individual
form element. The val() function is used to extract the value from the
element. A simple if statement can be used to check if the value in the
form field is left blank. If it is left blank, an error message is appended
to the error variable using the += syntax.

On line 31, after the error checking has been completed, an if state-
ment can be used to check if the error variable contains error messages
or not. If an error message is present, the html() function is used to add
the error messages gathered in the error variable into the error message
div. If the form is valid, a jQuery POST is performed to save the input
to the database on line 33.

34 � Applied User Data Collection and Analysis Using JavaScript and PHP

The post() function takes key-value pairs where the first variable e.g.,
email, is passed and the value is set to the value of the variable email.
The name given to this variable has a direct link to the variable name
that will be caught on the saveForm.php page. When the form POST is
performed, the done() will be triggered on line 37. Inside of this function,
the jQuery selector is used to select the success modal on line 39. The
modal() function is called to make it visible to the user.

If the form is not valid, on line 43, the error message div tag is
selected using the jQuery selector. The HTML of the div tag is set to be
the content of the error variable.

1 <script>
2 $("#submit").click(function(event) {
3 event.preventDefault();
4 var error = '';
5

6 var email = $("#emailAddress").val();
7 if(email == ""){
8 error += 'Please enter your e-mail address
';
9 }

10 var fullName = $("#fullName").val();
11 if(fullName == ""){
12 error += 'Please enter your full name
';
13 }
14 var serviceRating = $("#serviceRating").val();
15 if(serviceRating == ""){
16 error += 'Please rate the service
';
17 }
18 var foodRating = $("#foodRating").val();
19 if(foodRating == ""){
20 error += 'Please rate the food
';
21 }
22 var atmosRating = $("#atmosRating").val();
23 if(atmosRating == ""){
24 error += 'Please rate the atmosphere
';
25 }
26 var comments = $("#comments").val();
27 if(atmosRating == ""){
28 error += 'Please add a comment
';
29 }
30

31 if(error === ""){
32 // if the form if valid
33 $.post("saveForm.php", { type: "register", email:email,

Active Data Collection � 35

34 fullName:fullName, serviceRating:serviceRating,
35 foodRating:foodRating, atmosRating:atmosRating,
36 comments:comments })
37 .done(function(data) {
38 alert(data); // for debugging
39 $("#success").modal();
40 });
41 } else {
42 // if the form is not valid
43 $("#error_message").html(error);
44 }
45 });
46 </script>

SAMPLE CODE 17: form.html — Custom JavaScript form validation
part 3

Example code: saveForm.php
Sample Code 18 outlines the PHP to save the form data to a database
table. This page is titled saveForm.php. On line 2, the type variable is
first extracted from the POST variable. If the POST contains the term
register then a call is made to the registerNewUser() function on line
4. Inside of this function, each of the variables that were POST using
the JavaScript POST is extracted from the PHP POST and placed into
local variables on lines 7–12.

Once each of the variables has been gathered a try-catch is added
starting on line 13. Inside of this, a call to the database is made on line
18. The PHP variable sql on line 21 contains the raw SQL to be inserted
into the servicerating table. This contains a reference to each individual
column in the database followed by six question marks that are used as
placeholders for the variables that will be bound using the bindParam()
function on lines 26—31.

After the SQL has been prepared and the variables have been ap-
pended, a call to the execute() function can be performed to insert the
record into the database on line 32.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'register'){
4 registerNewUser();
5 }
6 function registerNewUser(){

36 � Applied User Data Collection and Analysis Using JavaScript and PHP

7 $email = $_POST['email'];
8 $fullName = $_POST['fullName'];
9 $serviceRating = $_POST['serviceRating'];

10 $foodRating = $_POST['foodRating'];
11 $atmosRating = $_POST['atmosRating'];
12 $comments = $_POST['comments'];
13 try {
14 $host = 'localhost';
15 $dbname = 'bookexamples';
16 $user = 'sampleuser';
17 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
18 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
19 $user, $pass);
20

21 $sql = "INSERT INTO `servicerating` (`email`, `fullName`,
22 `serviceRating`, `foodRating`,
23 `atmosRating`, `comments`)
24 VALUES (?,?,?,?,?,?);";
25 $sth = $DBH->prepare($sql);
26 $sth->bindParam(1, $email, PDO::PARAM_STR);
27 $sth->bindParam(2, $fullName, PDO::PARAM_STR);
28 $sth->bindParam(3, $serviceRating, PDO::PARAM_INT);
29 $sth->bindParam(4, $foodRating, PDO::PARAM_INT);
30 $sth->bindParam(5, $atmosRating, PDO::PARAM_INT);
31 $sth->bindParam(6, $comments, PDO::PARAM_STR);
32 $sth->execute();
33 } catch(PDOException $e) {echo $e;}
34 }

SAMPLE CODE 18: saveForm.php — PHP used to save the form data
to a database table.

Output
In Figure 2.6, the completed form layout can be seen. Figure 2.7 outlines
the modal that is shown to the user after the form has been submitted.

Active Data Collection � 37

FIGURE 2.6: Completed response form.

38 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 2.7: Bootstrap modal shown to the user after the form has
been submitted.

2.6 SUMMARY

This chapter provided examples of gathering active data from a user
directly by prompting them using binary selections, star ratings, and
custom forms with client-side validation. Although the data received
from the user directly can be of high quality, it can be a difficult process
to gather in larger quantities.

To gather more data about a user without the need for direct inter-
actions, passive collections mechanisms can be used. Chapter 3, outlines
these approaches.

C H A P T E R 3

Passive Data Collection

Passive data is the data that is gathered in the background without any
need to interact with a user. This is useful as a wide range of insights can
be gathered from the user, such as: where they are from, their interests,
and what environment they are currently using to access an application.

In this chapter, we explore the process of identifying different data
sources and data formats. The process of extracting meaningful insights
from the user is explored using both custom solutions and third-party
tools.

3.1 INTRODUCTION

Although it is possible to store all the interactions a user has with a web
application, not all may be useful for analysis. To reduce the duplication
that can occur, a simple approach is to store data only as a result of
a predefined action. Actions that can be a trigger to store data may
include:

• viewing a particular product numerous times;

• viewing products that are in a similar category;

• purchasing a particular product.

When assessing what data to store, consideration should be made as
to how concrete the connection is between the user and a given product
or categorization. An example of this is a user who is searching through a
collection of books and then decides to buy a toy. As buying a book would
be considered a concrete connection, e.g., they performed the action that
we want, a greater emphasis should be put on this connection.

39

40 � Applied User Data Collection and Analysis Using JavaScript and PHP

In contrast to this, the user may be browsing books that are all
of a similar topic. An analysis based on this information could prove
fruitful for future sales if possible candidate books of the same topic are
presented to the user. How these decisions are inferred is explored in
later chapters.

Irrespective of the source of data, one common component that most
data has is a temporal element, e.g., when the data was recorded. The
length of time that the data is stored for can be considered relevant to
the analysis process that is being performed.

3.2 COOKIES AND SESSIONS

In the early days of web development, cookies were used as a de facto
method of storing small pieces of information in a user’s web browser.
As the web grew, this method of using cookies to store information was
quickly outdated in favor of using server-side sessions that can hold larger
amounts of data. Although sessions are commonplace in web application
development, cookies have not been replaced. An example of this can
be seen when a new server-side session is created in PHP. During this
process, a cookie is stored in the user’s web browser to identify the
session they are currently associated with. A typical server-side session
may only last 30 to 60 minutes, but a cookie stored in the user’s web
browser can persist much longer.

The reliability of cookies can be questioned, however, as users who
are focused on privacy will often prevent an application from leaving
cookies in their web browser. When a user deletes their browser internet
history, this often includes the cookies left by websites. The association
between a user and a particular collection of data on the server is now
broken.

Example 1: Client-side cookies — simple set and
get

Cookies are a simple method of storing data in a user’s web browser.
This data is stored on the client-side with no overhead to the server. To
aid the process of interacting with cookies, the js-cookie1 library is used.
To include this functionality, a Content Delivery Network (CDN) is used

1https://github.com/js-cookie/js-cookie

https://github.com/

Passive Data Collection � 41

to deliver a current version of the JavaScript file. The Cookies class can
be used to set and retrieve information from cookies.

Example code: cookies.html

In Sample Code 1, on line 4, the set() function takes in two param-
eters. The first one is titled name, which is the key we use to access the
value. This is followed by a second parameter titled John that represents
the value. After the cookie has been created, the get() function on line
5 can be used to retrieve the value for a given cookie name. This value
is placed into a local variable titled name. On line 6, the name variable
is printed to the browser’s developer console.

1 <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/
2 js.cookie.min.js"></script>
3 <script>
4 Cookies.set('name', 'john');
5 var name = Cookies.get('name');
6 console.log(name);
7 </script>

SAMPLE CODE 1: cookies.html — Set and get for a single cookie
value.

Output

To access the developer console in Google Chrome, the Ctrl+Shift+J
keys can be pressed together. The output in Figure 3.1 shows a single
variable retrieved from a cookie being printed to the console.

FIGURE 3.1: Value being retrieved from a cookie.

https://cdn.jsdelivr.net/

42 � Applied User Data Collection and Analysis Using JavaScript and PHP

A modification can be made to the set() function to include the
number of days after which the cookie will expire. In this example, the
cookie will last for seven days.

Cookies.set('name', 'value', { expires: 7 });

The set() function can also be passed the domain where the cookie
will be visible.

Cookies.set('name', 'value', { domain: 'site.com' });

To delete this cookie, the cookie name and domain are required.
This approach prevents the process of accidentally deleting the incorrect
cookie.

Cookies.remove('name', { domain: 'site.com' });

Example 2: Client-side cookies — JSON content

Although it is possible to create different cookies for each different
piece of information that needs to be stored, the Cookies library provides
the ability to store JSON content. This is particularly useful when more
than one variable needs to be stored.

Example code: cookies json.html
In Sample Code 2, online 6, a JSON object titled info is created that
contains a single variable titled pageOfInterest with the value set to
homeware.

Once the JSON content has been set in the cookie, on line 7, the
getJSON() function is called to return the JSON object by name. The
result from calling the getJSON() is stored inside of a local variable title
json. Standard dot object notation can be used to extract the attribute
of interest from the object. On line 8, the pageOfInterest attribute is
selected from the json object and printed to the console using standard
dot notation, e.g., json followed by the attribute name.

Passive Data Collection � 43

1 <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/
2 js.cookie.min.js">
3 </script>
4

5 <script>
6 Cookies.set('info', { pageOfInterest: 'homeware' });
7 var json = Cookies.getJSON('info');
8 console.log(json.pageOfInterest);
9 </script>

SAMPLE CODE 2: cookies json.html — Set and get JSON content.

Output

Figure 3.2 shows JSON content being retrieved and printed to the
developer console.

FIGURE 3.2: Set and get JSON value.

Example 3: Client-side cookies — Iterating over
JSON

The previous example stored one single attribute in a JSON string.
In the example JSON below, it contains two pageOfInterest attributes
that store a reference to the type of content the user has been viewing.

1 [{
2 "pageOfInterest": "homeware"
3 },
4 {
5 "pageOfInterest": "cooking"
6 }
7]

https://cdn.jsdelivr.net/

44 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: iterate.html

This example contains one file and two libraries:

1. iterate.html — This file sets JSON content and then iterates over
it.

2. Cookies library — This is used to interact with the cookies.

3. jQuery — Used to iterate over the JSON content.

In Sample Code 3, on line 1, the cookie library is included. On line 3,
to process this JSON, the JavaScript jQuery2 library is included in the
form of a CDN reference. On line 7 the Cookies set() function is used to
store the JSON content. After the JSON has been stored, on line 9, it
can be retrieved using the getJSON() function that takes a single value
identifying the name of the cookie to retrieve. This JSON is passed to
the jQuery each() function on line 10. This allows us to iterate over the
JSON content.

During each iteration of the function, a reference titled this can be
used to point to the object currently being processed. The dot notation
can be used to access the pageOfInterest attributes one at a time that
can be printed to the browser console.

1 <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/
2 js.cookie.min.js"></script>
3 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
4 </script>
5 <script>
6 // Storing and retrieving JSON
7 Cookies.set('info', [{"pageOfInterest": "homeware"},
8 {"pageOfInterest": "cooking"}]);
9 var json = Cookies.getJSON('info');

10 jQuery.each(json, function() {
11 console.log(this.pageOfInterest);
12 });
13 </script>

SAMPLE CODE 3: iterate.html — Set and get JSON content that is
iterated over.

2https://jquery.com

https://cdn.jsdelivr.net/
https://code.jquery.com/
https://jquery.com

Passive Data Collection � 45

Output

Figure 3.3 shows values retrieved from JSON being iterated over and
being printed to the browser console.

FIGURE 3.3: Iterating over JSON values.

Example 4: Client-side cookies — custom ap-
pending function

After the JSON has been read in from the cookie it is converted
to JavaScript objects. At any stage in the application, if we want to
update this JSON with additional JavaScript data, we can use the push()
function and append to the JSON.

This example contains one file and two libraries:

1. appending.html — This file sets JSON content using a custom
function.

2. Cookies library — This is used to interact with the cookies.

3. jQuery – Used to iterate over the JSON content.

Example code: appending.html

In Sample Code 4, the JSON is set in the info variable on line 8 and
then read from the cookie with the the same name on line 10. The json
variable can be used as a storage place for future additions.

On line 12, a function titled addItem() is added. The push() function
on line 13 is added to the function allowing new objects to be appended to
the JSON through calls to the function. This approach helps modularise

46 � Applied User Data Collection and Analysis Using JavaScript and PHP

the push process, allowing additional security checks to be performed on
the data before it is stored if required. To append data to the JSON, a
call is made to the addItem() function on line 16 that is passed a single
string to store. In this example, the word baking is appended.

On line 18, the jQuery each() function is used to iterate over the
complete JSON objects printing three values to the browser console.

1 <script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/
2 js.cookie.min.js">
3 </script>
4 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
5 </script>
6 <script>
7 // Storing and retrieving JSON
8 Cookies.set('info', [{"pageOfInterest": "homeware"},
9 {"pageOfInterest": "cooking"}]);

10 var json = Cookies.getJSON('info');
11 // Using a function to add to JSON
12 function addItem(item){
13 json.push({"pageOfInterest": item});
14 }
15 // call the function
16 addItem("baking");
17 // view all
18 jQuery.each(json, function() {
19 console.log(this.pageOfInterest);
20 });
21 </script>

SAMPLE CODE 4: iterate.html — Custom function to add JSON
content to existing JSON object.

Output

Figure 3.4 shows the output after the custom addItem() function has
been called.

When working with JavaScript, all modifications that are made to
a variable will be lost when the page refreshes or if the user navigates
to a different page. For this reason, a regular saving process should be
implemented to not only add to the object in the browser but also to a
cookie for persistence.

https://cdn.jsdelivr.net/
https://code.jquery.com/

Passive Data Collection � 47

FIGURE 3.4: JSON added using custom JavaScript function.

Example 5: Server-side sessions — storing vari-
ables

As a successor to storing information in a user’s web browser, server-
side PHP sessions can be used. This session consists of two elements,
a small cookie that is left in the user’s web browser containing the ID
number of the PHP session being used and the data stored on the server
corresponding to that ID. At the beginning of each web page a simple
call to the session start() function is made. If a session exists, it will be
resumed, or if no session exists, a new session will be started. After a
session is created, we can simply store data in the session by creating
new session variables.

Example code: session.php

In Sample Code 5, the title of the variable stored in the session is
samplevariable as shown on line 3. The value attached to this variable
is set as Sample Value. The unique session ID is retrieved on line 4 and
placed in a local variable. This variable is printed to the browser on line 5.

1 <?php
2 session_start();
3 $_SESSION['samplevariable'] = 'Sample Value';
4 $id = session_id();
5 echo $id;
6 ?>

SAMPLE CODE 5: session.php — Single string variable being set in a
PHP session.

48 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 3.5 shows the unique session ID that has been generated and
output to the web browser.

FIGURE 3.5: Unique session ID echoed to the web browser.

Example 6: Server-side sessions — storing ar-
rays

Sessions can also be used to hold larger quantities of data. An exam-
ple of this is a simple array that contains three values. The values that
are stored in the array do not need to be the same data type.

Example code: session arrays.php

In Sample Code 6 an array titled myArray is created on line 3 that
contains three values. On line 4, the data is placed in a session variable
titled contactinfo by setting the session variable to the myArray refer-
ence. On line 5, the contactinfo variable is retrieved from the session. As
this reference contains an array, the position number for the element of
interest must be supplied when retrieving the value. The first element
in the contactinfo session array is stored at position [0].

1 <?php
2 session_start();
3 $myArray = array("John Smith", 18, "8222555");
4 $_SESSION['contactinfo'] = $myArray;
5 echo $_SESSION['contactinfo'][0];
6 ?>

SAMPLE CODE 6: session arrays.php — Array being set in a PHP
session.

Passive Data Collection � 49

Output

In Figure 3.6 below, the name John Smith will be printed in the web
browser as position [0] of the array was accessed.

FIGURE 3.6: Text output to the browser from an array stored in the
session.

All of the data that is stored in a PHP session will only exist for
a period of time defined by the server administrator, e.g., 30, 60, 90
minutes, etc. For this reason, if we wish to make this data persistent for
a longer period of time, a database or static files must be used. Sessions
are commonly used to store information about a user that has logged in
to a system. When the user logs out of the system, the corresponding
session will be destroyed. This can be done by making a call to the
session destroy() function as shown in Sample Code 7 on line 6.

1 <?php
2 session_start();
3 $myArray = array("John Smith", 18, "8222555");
4 $_SESSION['contactinfo'] = $myArray;
5 echo $_SESSION['contactinfo'][0];
6 session_destory();
7 ?>

SAMPLE CODE 7: session destroy.php — Destorying a PHP session
after use.

3.3 READING FROM FILES

Each of the data gathering solutions we previously described centered
around online applications. There are often many cases when data has
been collected using an alternative tool that is not integrated into an
existing application. An example of this is data that may have been
manually collected using a text file, spreadsheet, or application that
allows the data to be exported in a common format such as the Comma
Separated Value (CSV) file. In the following section, we will explore
each of these different formats and describe how data can be extracted
for utilization.

50 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example 7: Uploading files to a web server

This example uses one library:

1. jQuery File Upload plug-in — This library is used to provide a
modern look and feel to the file upload process.

When uploading files to a web server, two components are needed.
The first component is the user interface uploading facility, and the
second is the server-side code to receive and place the file in the desired
location on the server. The process of uploading files to a web server can
be done using very minimal HTML and a small amount of server-side
PHP code. This process, however, does not offer the user any additional
information with respect to the status of the upload or a look and feel
to the uploader that would be expected in modern web applications.

In this example, we will use one of the many HTML/JavaScript file
uploading libraries along with server-side PHP code. The jQuery File
Upload plug-in3 is used in this example. After downloading the source
zip file from the website and extracting the contents, the folder structure
shown in Figure 3.7 can be seen.

A file titled index.html can be seen in the root of this folder that is
shown in Figure 3.8. This provides a minimal example of the capabilities
of the upload tool.

Although additional functionality is shown, modifications can be
made to this demo to remove elements that are not needed for this
example. As the index.html page is responsible for the process of provid-
ing the user with the file upload experience, all additional processing is
performed on the server-side using PHP. Inside of the /server/php folder
a file titled UploadHandeler.php can be found. This file contains all of
the configurations for the file uploading process, allowing us to specify
where files will be stored and restrictions that are placed on the file up-
loading process. As this file is large, for brevity, it is not included here
in complete form.

Example code: UploadHandeler.php
The complete code described in this example can be seen in the sample
code. In the UploadHandeler.php file, on line 104, a reference can be seen
to the original file formats that are allowed during the upload process.
These are originally set to allow image formats to be uploaded.

3https://blueimp.github.io/jQuery-File-Upload

https://blueimp.github.io/

Passive Data Collection � 51

FIGURE 3.7: Folder structure of the jQuery File Upload plug-in.

FIGURE 3.8: Default layout of the jQuery File Upload plug-in.

52 � Applied User Data Collection and Analysis Using JavaScript and PHP

'accept_file_types' => '/\.(gif|jpe?g|png)$/i',

As we are working with text files and CSV files, we will replace these
with the desired file extensions.

'accept_file_types' => '/\.(txt|csv)$/i',

When a file is uploaded to the server successfully, it is placed inside
of the /server/php/files folder. For security reasons, inside of this folder
a .htaccess file is used to prevent users from executing the files in the
web browser, e.g., when a user uploads a PHP file, they will not be able
to run the PHP file on the server-side. By manually entering in the name
of the file, e.g., server/php/test.csv in a web browser, the file will not be
retrieved.

In this file, we can see the path to where the files are uploaded by
default. This is pointing to the SCRIPT FILENAME that is used to
reference the current file upload directory, followed by the files folder.
The upload url references the URL to the file.

'upload_dir' => dirname($this->get_server_var('SCRIPT_
FILENAME')).'/files/',
'upload_url' => $this->get_full_url().'/files/',

For an extra level of security, it is recommended to place the files
are uploaded to a non-web accessible directory. To place the file inside
of the E:/sample/ folder of the web server, we can simply make this
modification to the upload dir variable.

'upload_dir' => 'E:/sample/',

If the file already exists on the server, the file will automatically be
given a different name. However, to provide unique file names, a slight
modification can be made to the handle file upload() function located in
the same file on line 1143. In Sample Code 8, the MD5 hash function is
passed a reference to retrieve the current date.

This is retrieved by calling the date() function. The Y-m-d H:i:s:u
references the format that the date will be in. This is followed by a full
stop and a reference to the extension variable. This extension variable
retrieves original file extension using the PHP pathinfo() function.

Passive Data Collection � 53

$extension = pathinfo($name , PATHINFO_EXTENSION);
$file->name= md5(date('Y-m-d H:i:s:u')) . '.'.$extension;

SAMPLE CODE 8: Modifying the UploadHandler.php file to provide
unique names based on the MD5 algorithm.

When uploading files to a web server, folder permissions can often
cause issues. The folder where the files are uploaded to, e.g., /files/
needs to have permissions allowing PHP to write to the folder. When
working in a shared hosting environment, a review of the permissions
may be required if errors relating to permissions can be seen. Adding
folder permissions such as 777 is always considered bad practice. The
least amount of permissions should be set on the folder to allow the file
to be uploaded, but not left wide open for abuse by malicious users.

Example 8: CSV files from Google Forms
CSV files are commonly used as they allow data to be stored in a simple
format, e.g., one line in the file will correspond to an individual record,
and each different column in the file corresponds to a different piece of
data for that record. A comma is used to separate the columns. CSV
files are stored in plain text and do not require any special libraries or
tools to read the content. As a result of this, they have become a widely
used format for data storage.

An example of this is seen in online data collection tools such as
Google Forms4 and SurveyMonkey5. Both of these tools offer the ability
to download all the collected data as a simple CSV file. In Figure 3.9 a
simple Google Form is shown that contains one field allowing a user to
enter in their e-mail address and another field that allows the user to
select the option Yes or No. Although this is a simple example, this can
easily be scaled to incorporate additional custom fields.

Under the Responses tab in Google Forms, three dots are shown in
the top right hand corner as shown in Figure 3.10 which provide a list
of actions that can be performed on the form data.

In Figure 3.11, the Download responses option is selected to export
the data that has been collected using the current form. In this example,
one single response was added to the form. The file that is exported from
this interface is not a simple CSV file, but a compressed Zip file that

4https://www.google.com/forms/about
5https://www.surveymonkey.com

https://www.google.com/
https://www.surveymonkey.com

54 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 3.9: Google Form sample.

FIGURE 3.10: Google Form export options.

contains the CSV file. This adds an additional level of processing during
the extraction of data as the file must first be unzipped.

Output
Figure 3.12 shows an example of a CSV file that was generated using
Google Forms to collect data. This file contains two individual records.
The very first line in this file is the names of the columns. In this case,
the names of the columns are the text for each individual question in the
form. Below this are two individual rows of data. Each column in the
file is separated using a comma, leading to the file format being called a
comma-separated value. To aid the user during analysis, the first column
of the row contains a unique date/time stamp followed by the individual
pieces of data for each question.

Passive Data Collection � 55

FIGURE 3.11: Google Form download CSV responses.

FIGURE 3.12: Sample Google Form CSV file.

Example 9: Reading from a CSV file

Although this is a very small sample of a CSV file, the process is the
same regardless of the records utilized. As commas are used to separate
each row, and quotation marks are used for each value, it can easily be
processed by a PHP script.

Example code: read csv.php
Sample Code 9 begins processing the CSV file by making a call to the
fopen() function on line 2. The PHP file assumes that the CSV file being
read in is beside the PHP script on the web server. Otherwise, a complete
path to the CSV file must be entered. The r flag indicates that we wish to
read from the file. The fopen() call is placed inside a simple if statement
to ensure that a connection can be made to the file. This is done by
checking the file reference does not equal false.

On line 3, after a connection has been made a while loop is used
to iterate over each of the individual lines in the file. A call is made to

56 � Applied User Data Collection and Analysis Using JavaScript and PHP

the fgetcsv() function. This function accepts a reference to the file we
wish to read the CSV contents from, followed by 1000 that indicates the
max length of a line in the file. This is followed by the delimiter for the
file. The delimiter is the name given to the token that is used to split
individual columns in the file. As we are working with CSV files, we will
use a simple comma as the delimiter.

Similar to the if statement in the previous example, the while loop
has a guard to ensure that it will stop reading in from the file when a
value returned equals FALSE.

For each iteration of the while loop, on line 4, an echo statement is
used to print the contents of the data variable that contains one complete
row. A key is passed to identify the individual column on the line we
wish to display. A full stop is used in PHP to concatenate each individual
string together as one complete string that is echoed to the browser. As
we are printing to a web page, HTML tags must be used to break to the
next line. On line 7, after the file has been processed, the reference to
the file is closed.

1 <?php
2 if (($file = fopen("data.csv", "r")) !== FALSE) {
3 while (($data = fgetcsv($file, 1000, ",")) !== FALSE) {
4 echo $data[0] . " --- " . $data[1] . " --- " . $data[2] .
5 '
';
6 }
7 fclose($file);
8 }
9 ?>

SAMPLE CODE 9: read csv.php — Reading a CSV file using PHP.

Output

Figure 3.13 shows the result of the PHP reading from the CSV file
and outputting the content to the browser. In this output, the first col-
umn that is stored at position 0 is printed. This is followed by position
1 and position 2 of the row.

Example 10: Reading from a text file

Reading from a text file is very similar to reading in from a CSV
file. The main difference between a CSV file and a plain text file is

Passive Data Collection � 57

FIGURE 3.13: CSV file contents output to a browser.

the possible lack of formatting. Each individual line in the text file is
treated as one individual record. The record is not further subdivided
into individual columns.

Example code: read text.php
In Sample Code 10, an if statement is first created on line 2. This is
used to ensure that a connection can be made to the text file. If the file
cannot be found, then it will return FALSE. Otherwise, the process of
reading the individual lines from the file can begin.

On line 3, a while loop is used to iterate over each individual line in
the file. The feof() function is used to check for an end of file character.
If this is not found, then the loop will continue to iterate over each
individual line. The ! at the beginning of this is used to state that while
not the end of file then continue looping. Inside of this while loop, an
individual line variable is created. The contents for this variable are read
in using the fgets() function on line 4. This function is used to get a line
from a file pointer. This function is passed a reference to the file that was
opened. On line 5, a simple echo statement is used to print the line to
the browser. This is followed by a br tag to break to the next line in the
browser. On line 7, the fclose() function is called to close the reference
to the file.

1 <?php
2 if (($file = fopen("textfile.txt", "r")) !== FALSE) {
3 while (!feof($file)) {
4 $line = fgets($file);
5 echo $line . '
';
6 }
7 fclose($file);
8 }

SAMPLE CODE 10: read text.php — Reading from a plain text file
using PHP and printing to a web browser.

58 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 3.14 shows the three lines that have been read in from the
text file and output to the browser. As the br tag was used to break the
lines, each individual line in the text file is output in the same format in
the browser.

FIGURE 3.14: Three individual lines that are read in from a text file
are output to the browser.

3.4 USER IP ADDRESS

The IP address of a user can provide a wealth of knowledge about a user
and the environment they are using to get to your application. An IP
address can also be considered a unique way of identifying an individual
user.

Although it is possible to use IP addresses to pin down what user
has been frequenting on your website, it is also important to remember
that most Internet Service Providers (ISPs) do not provide a fixed IP
address for all users. Often as a user reconnects to the Internet, they are
provided with a new IP address. This is also the case for large companies
where a number of different users in the company are all working from
the same network. Internally they all may have different IP addresses,
but externally they are all given the same IP address.

Although a useful method for identifying general user groups, they
should not be used as the sole method of differentiating between users
of a website. The IP address of a user is still useful to a developer to
gather some basic information about the user or collection of users.

Getting the IP address of the user can be done using two main meth-
ods, the first of these is by using a server-side programming language to
access the IP and the second is by using a service that implements this
feature. The benefit of using a service is that all work is automatically
performed, and the IP address can easily be accessed using JavaScript.

Passive Data Collection � 59

Example 11: User IP address — Web browser
URL call

In this example, we will use IPify6. This is one of the many third-
party services that offer developers the ability to retrieve a user’s IP
address.

Example code
This approach is based on a single GET request to a URL. When this
URL is called, the IP address of the user is displayed. When the URL
https://api.ipify.org?format=json is opened using a web browser, a sim-
ple JSON document is returned.

Output
Figure 3.15 shows the JSON document returned when the URL is entered
in a web browser. This document contains a simple key-value pair where
ip is the key, and the value is the user’s IP address.

FIGURE 3.15: IP address in JSON format.

Example 12: User IP address — JavaScript GET
request
In the previous example, the IP address was returned via a GET request
that was performed when the URL is entered in to a web browser. To
perform this same process automatically, a JavaScript GET request can
be used.

This example contains one file and one library:

1. jQuery — This is used to perform the GET request to the service.

2. ipify.org — This service accepts a GET request and returns the
IP address of the user.

Example code: get ip.php

Sample Code 11 describes the process of integrating this function-
ality into an application. On line 1, jQuery is included. On line 4, a

6https://www.ipify.org

https://api.ipify.org
https://www.ipify.org

60 � Applied User Data Collection and Analysis Using JavaScript and PHP

short-hand method of the document ready function is added to surround
a getJSON() request to the web service. An additional parameter titled
format is passed via the URL. This parameter is used to tell the web
service which format we would like to get our response in. In this exam-
ple, we are passing the format parameter and setting it to JSON. This
call will return a JSON structured document containing the IP address
of the visitor.

On line 5, once a call is made to the service, the IP address will be
stored in a local variable titled ip. One simple use for this is variable is
during the process of collecting data from a user, an additional column
can be placed inside of the database to store the IP address of the user
along with collected data.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
2 </script>
3 <script>
4 $(function() {
5 $.getJSON("https://api.ipify.org?format=json",
6 function(json) {
7 var ip = json.ip;
8 console.log(ip);
9 }

10);
11 });
12 </script>

SAMPLE CODE 11: get ip.php — Getting the user’s IP address using
a third-party service.

Example 13: User IP address — User Yes/No
selection and IP address

This example contains three files and one library:

1. create.sql — To create the yesnolog database table.

2. yesno ip.html — This file presents the user with a Yes/No option
and also gathers their IP address.

3. ajax.php — This file receives the result along with the IP address
and saves the data to a database table.

https://code.jquery.com/
https://api.ipify.org

Passive Data Collection � 61

4. jQuery — This is used to retrieve the JSON and access elements
using the jQuery selector.

Example code: create.sql

1 CREATE TABLE `yesnolog` (
2 `id` INT(11) NOT NULL AUTO_INCREMENT,
3 `articleid` INT(11) NOT NULL DEFAULT '0',
4 `result` INT(11) NOT NULL DEFAULT '0',
5 `ipadd` VARCHAR(50) NOT NULL DEFAULT '0',
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 12: create.sql — Create the yesnolog table.

Example code: yesno ip.html
In Sample Code 13, a Yes/No option is presented to the user using
a HTML radio button. On line 1, a reference to the jQuery CDN is
included. This is followed by two input fields, one for Yes and one for
No on lines 3 and 4, respectively.

To trigger the IP gathering process, when the user clicks either of
the radio buttons, a click handler is attached to the radio button with
the name set to answer on line 6. Inside of this handler on line 7, the
jQuery selector is used to select the value from the radio button using
the val() function. This value is passed to the saveAnswer() function on
line 8.

An additional variable is added to the page titled ip on line 10 that
will be treated as a global variable to store the user’s IP address. We
will use this later when storing the data that has been entered by the
user. Inside of the document, a document ready function is added on line
11 that will run only when the document has completed loading. Once
loading has finished, the jQuery function to collect the IP address will
run.

After a radio button is clicked a call is made to the saveAnswer()
function on line 20. This function makes a POST request to the ajax.php
page. In request takes four variables. The first is titled type that is used to
define the type of POST we are about to perform, the second is articleid
that is used for storing the ID of the article the user is viewing, and

62 � Applied User Data Collection and Analysis Using JavaScript and PHP

the third is result that is used to store the result of the user selecting
the option Yes or No. The last variable passed is the ip variable that
contains the value from the global variable containing the IP address
that was gathered through the initial call to the web service. After the
POST has been performed a call is made to the .done() function on line
23 that contains a simple alert statement to notify the user.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
2 </script>
3 <input type="radio" name="answer" value="Yes"> Yes

4 <input type="radio" name="answer" value="No"> No

5 <script>
6 $("input:radio[name=answer]").click(function() {
7 var val = $(this).val();
8 saveAnswer(val);
9 });

10 var ip = '';
11 $(function() {
12 $.getJSON("https://api.ipify.org?format=json",
13 function(json) {
14 ip = json.ip;
15 }
16);
17

18 });
19 var ip = 0;
20 function saveAnswer(answer){
21 $.post("ajax.php", { type: "yesno", articleid: "1221",
22 result: answer, ip:ip })
23 .done(function(data) {
24 alert('Thank you!');
25 });
26 }
27 </script>

SAMPLE CODE 13: yesno ip.html — Yes/No option presented to the
user that gathers the user’s IP address.

https://code.jquery.com/
https://api.ipify.org

Passive Data Collection � 63

Output

Figure 3.16 shows the Yes/No radio buttons being presented to the
user.

FIGURE 3.16: Yes/No option presented to the user.

Example code: ajax.php

To handle the data, a second page titled ajax.php is added. At the
top of this page on line 2, the type variable is first caught. A simple
if statement is used to direct the request that was made to the correct
function on line 3. A call is made to the PHP function titled yesNoLog()
on line 4. Inside of this function on lines 7–9, the three variables are
extracted from the PHP POST that has been sent using JavaScript.
Each of these is placed in local PHP variables.

After gathering the data, a try-catch statement is added on line 10.
Inside this, a connection to the database is created on line 15. Using the
connection, a new INSERT statement is created with question marks for
the associated values on line 16. To match values to the question marks
that are added, on lines 20, 21 and 22 bindParam() function calls are
made. Finally a call to the execute() function is performed on line 23. In
the event of an error occurring during the database INSERT, on line 24,
a catch is added to catch any error messages and display them to the
browser.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'yesno'){
4 yesNoLog();
5 }
6 function yesNoLog(){
7 $articleid = $_POST['articleid'];
8 $result = $_POST['result'];
9 $ip = $_POST['ip'];

10 try {
11 $host = 'localhost';

64 � Applied User Data Collection and Analysis Using JavaScript and PHP

12 $dbname = 'bookexamples';
13 $user = 'sampleuser';
14 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
15 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
16 $user, $pass);
17 $sql = "INSERT INTO `yesnolog` (`articleid`,
18 `result`, `ipadd`) VALUES (?, ?, ?);";
19 $sth = $DBH->prepare($sql);
20 $sth->bindParam(1, $articleid, PDO::PARAM_INT);
21 $sth->bindParam(2, $result, PDO::PARAM_STR);
22 $sth->bindParam(3, $ip, PDO::PARAM_STR);
23 $sth->execute();
24 } catch(PDOException $e) {echo $e;}
25 }
26 ?>

SAMPLE CODE 14: ajax.php — Saving radio button selection and IP
address to a database table.

Output

Figure 3.17 shows the resulting message displayed to the user after
clicking Yes or No. As the process of inserting the record to the database
is done via JavaScript, no output is visible to the user.

FIGURE 3.17: Message displayed to the user after selecting Yes or No.

3.5 FINDING THE USER AGENT

With the advent of smartphones and other devices, many different web
browsers are available. During the development of a website, it is im-
portant to ensure that a site has been thoroughly tested using different

Passive Data Collection � 65

versions of browsers. Although a website may be viewable in one envi-
ronment does not mean that it is perfect for all environments. Typically
many of the tools that are used to enhance the experience of a user
such as JavaScript, can often perform uncharacteristically in a different
browser.

Example 14: Finding the user agent

This example consists of two files and one library:

1. user agent.html — This file is used to get the user’s IP address
with JavaScript

2. user agent.php — This file is used to get the user’s IP address with
PHP.

3. jQuery — This is used to get the IP address of the user using
JavaScript.

One method of finding more information is through the use of the
user agent. A number of different libraries currently exist that allow de-
velopers to integrate user agent identification in their application. The
jQuery library comes with useful functions to aid this development pro-
cess.

Example code: user agent.html

In Sample Code 15, on line 1, the jQuery library is first included in
the PHP script using the script tag. On line 4, the user agent is retrieved.
On line 5, a simple console.log() can be used to view the UserAgent
variable.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
2 </script>
3 <script>
4 var agent = navigator.userAgent;
5 console.log(agent);
6 </script>

SAMPLE CODE 15: user agent.html — User agent retrieved using
jQuery.

https://code.jquery.com/

66 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 3.18 provides an example of a user agent being printed to the
browser console.

FIGURE 3.18: User agent printed to the console.

Example code: user agent.php

An alternative method to JavaScript is using the PHP code to check
the user agent. Sample Code 16 shows a simple call being made to the
$ SERVER array that contains a reference to the HTTP USER AGENT.

1 <?php
2 echo $_SERVER['HTTP_USER_AGENT'];
3 ?>

SAMPLE CODE 16: user agent.php — Retrieving the user agent using
PHP.

Output

Figure 3.19 shows an example of the PHP user agent variable.

FIGURE 3.19: user agent.php — User agent retrieved using PHP.

Passive Data Collection � 67

3.6 USER GEOGRAPHIC LOCATION

Any application that is built and served on the Internet is often not just
used by a small collection of users. The global nature of the Internet
opens opportunities for future business that may have been an oversight
during the initial development of a website. Identifying who the target
audience are for an application can often be very interesting, as although
you are serving one audience, you may find traffic appearing to your
application from another geographic audience.

A number of different services exist on the web that gather infor-
mation about the user currently viewing the page. When a check is
performed by dropping the latitude and longitude in a Google Map7, it
will show that we are not getting the pin-point location of the user. We
are generally getting an approximate idea of where the user is. Although
people consider the IP address a unique identifier, there is no physical
address attached to the IP address that can be looked up by third-party
services.

Example 15: geolocation-db.com

To aid the process of development, the geolocation-db.com API can
be used. This API allows a single IP address to be passed to the service
via a GET request. Information about the geographic location associated
with the IP address is returned in a JSON structured document.

This example contains one file and two libraries:

1. geo.html — This file is used to place a call to the service.

2. jQuery — This is used to select individual span tags and to update
their values.

3. geolocation-db.com — This service provides geographical informa-
tion based on a single IP address.

Example code: geo.html

In Sample Code 17 a call is first made to include jQuery on line 1. On
lines 3–8, individual span tags are used as placeholders for the variables
that will be retrieved from the API. No value is needed when the span

7https://www.google.com/maps

https://www.google.com/

68 � Applied User Data Collection and Analysis Using JavaScript and PHP

tags are first created. An important element is the unique ID for each
span tag.

Once the span tags have been added, the next step is to make an
AJAX call to the geolocation-db.com URL on line 10. Instead of using
JSON, JSONP is used. This is JSON but with padding. This differs
from a traditional request as cross-domain calls are not an issue. When
the call is made, on success, an object titled location is available. This
object contains the country name, state, city, latitude, and longitude
of the user. In addition to this, the IP address of the user is available.
These attributes are available by adding the object location followed by
a period, followed by the variable name of interest. On lines 15–20, the
jQuery selector is used to select each individual span tag that was created
earlier. The .html() function is called on the selector to update the value
of the span tag to be the value from the current variable selected in the
location object, e.g., country name.

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
2 </script>
3 <div>Country: </div>
4 <div>State: </div>
5 <div>City: </div>
6 <div>Latitude: </div>
7 <div>Longitude: </div>
8 <div>IP: </div>
9 <script>

10 $.ajax({
11 url: "http://geolocation-db.com/jsonp",
12 jsonpCallback: "callback",
13 dataType: "jsonp",
14 success: function(location) {
15 $('#country').html(location.country_name);
16 $('#state').html(location.state);
17 $('#city').html(location.city);
18 $('#latitude').html(location.latitude);
19 $('#longitude').html(location.longitude);
20 $('#ipv4').html(location.IPv4);
21 }
22 });
23 </script>

SAMPLE CODE 17: geo.html — Retrieving information about a user’s
location.

https://code.jquery.com/
http://geolocation-db.com/

Passive Data Collection � 69

Output

Figure 3.20 shows an example of geographical information that is
gathered and displayed in span tags.

FIGURE 3.20: Example geographical information.

Example 16: ipstack.com

Another service that offers the ability to gather information from a
user’s IP address is IpStack.8 Unlike the previous service that allowed
for anonymous API calls, for this service a user must provide a valid
API key. This key is used as the unique identifier for your project and
is typically associated with billing when the number of requests exceeds
that of the basic free package.

This example consists of one file and two libraries:

1. geo.html — This page is used to make a request to the ipstack.com
web service.

2. jQuery — This library is used to make an AJAX request to ip-
stack.com

3. ipstack.com — The web service that provides information about
the provided IP address.

When a free API key is received from the service, it can be
added to the URL, e.g., http://api.ipstack.com/193.1.39.1?access key=
XXXXXXXXXXXXXXX where the Xs are replaced with the unique
API key. The IP address that is added to this can be any IP address
that we wish to explore. If this URL is opened in a web browser, a JSON
document will be output.

8https://ipstack.com

http://api.ipstack.com/
https://ipstack.com

70 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output
Figure 3.21 shows the output after a call is made to the ipstack.com web
service. Although it is difficult to read, it is a valid JSON document.

FIGURE 3.21: Geographical information shown in JSON format in a
browser.

Example code: geo.html

In Sample Code 18, a reference to the jQuery CDN is included on
line 1. Two variables are created on lines 4 and 5, one that contains the
IP address we are interested in finding more information about and the
other contains the unique API key for our ipstack.com account.

A jQuery AJAX call is performed on line 6 to the API URL. The
IP address and access key variables are added to create the complete
URL that will be called. JSONP is used as the method for the call that
allows for cross-origin requests. When the request has been completed,
the function beside the success attribute is called. This contains a single
object reference titled json that contains the response from the server.
Inside of this object on line 11, the location is referenced. Inside of this
location object, individual attributes can be called, such as the capital.
A complete listing of these along with error codes can be found in the
official documentation.9

1 <script src="https://code.jquery.com/jquery-3.5.1.min.js">
2 </script>
3 <script>
4 var ip = '193.1.39.1'
5 var access_key = '34dd357a733f2142f58b1bada9f9f394';
6 $.ajax({
7 url: 'http://api.ipstack.com/' + ip + '?access_key=' +
8 access_key,
9 dataType: 'jsonp',

9https://ipstack.com/documentation

https://code.jquery.com/
http://api.ipstack.com/
https://ipstack.com/

Passive Data Collection � 71

10 success: function(json) {
11 console.log(json.location.capital);
12 }
13 });
14 </script>

SAMPLE CODE 18: geo.html — Making an AJAX request to the
ipstack.com web service.

Output

FIGURE 3.22: Current location associated to the IP address is printed
to the console.

3.7 TIME SPENT ON PAGES

A simple but effective measure to identify the interactions a user
has with a web application is by recording the amount of time a
user has spent on a page or sections of a page. For this exam-
ple, the TimeMe.js10 library is used. This can be downloaded from
https://github.com/jasonzissman/TimeMe.js. The zip file should then
be extracted providing access to the timeme.js JavaScript file.

Example 17: TimeMe.js implementation
The TimeMe.Js API provides a collection of tools that allow a devel-
oper to identify how much time is being spent on a web page. If the
user changes to a different tab, minimizes the window, or stops having
keyboard or mouse interactions, the timer will stop.

This example consists of one library and one file:

1. time.php — This page contains an instance of the TimeMe.js li-
brary.

2. TimeMe.js — This library provides the ability to record the inter-
actions a user has with the webpage. Available from their website.11

10http://timemejs.com
11https://github.com/jasonzissman/TimeMe.js/

https://github.com/
http://timemejs.com
https://github.com/

72 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: time.php

In Sample Code 19, on line 1, a reference to the timeme.js file that
contains the main library is added. On line 3, the initialization of the
timer is performed. Inside the initialization code on line 4, a simple
reference name is added to uniquely identify the page where the timer
is used. On line 5, the time out period, e.g., when the timer should stop
after a period of idleness is added.

To aid future analysis of data, on line 7, a trigger is added to execute
after a period of time has elapsed. In this example, the trigger is set to
4 seconds.

1 <script src="timeme.js"></script>
2 <script type="text/javascript">
3 TimeMe.initialize({
4 currentPageName: "my-home-page", // current page
5 idleTimeoutInSeconds: 3 // seconds
6 });
7 TimeMe.callAfterTimeElapsedInSeconds(4, function(){
8 console.log("The user has been using the page for
9 4 seconds!");

10 });
11 </script>

SAMPLE CODE 19: time.php — Example timer with elapsed time.

Output

In Figure 3.23 the output is printed to the console when 4 seconds
has elapsed.

FIGURE 3.23: Output to the console after four seconds.

By identifying when the elapsed time has occurred, data from the
current page, such as input field values can be retrieved and stored in
a database at a specific time interval if required. This is often a useful
process as users can fill out a form or search field but not complete the
process of pressing the submit button. In this case, without the timer to
trigger a logging process, the data would be lost.

Passive Data Collection � 73

3.8 TRACKING INDIVIDUAL DIV TAGS

Each individual area of a web application is typically broken down into
individual div tags. Each different region of an application may denote
one key feature, e.g., a specific div tag may be dedicated to content,
where another div tag is designated as a search function.

Example 18: Tracking a div tag with TimeMe.js

This example consists of one library and one file:

1. time.php — This page contains an instance of the TimeMe.js li-
brary.

2. TimeMe.js — This library records the interactions a user has with
the webpage.

Similar to the previous example, for the TimeMe.js to be used, a
the TimeMe.js JavaScript file must be downloaded and place beside the
current script.

Example code: time.php

In the Sample Code 20, on line 8, a derivative of the main time
tracking tool can be used to focus on the time spent on a single area of
interest. In this example the trackTimeOnElement function is used and
is focused on the area-of-interest-1 div tag. On line 9, the setInterval()
function is used to repeat the code inside every 100 miliseconds.

On line 10, a new variable is created titled timeSpentOnElement that
has the value set to be the time spent on the textitarea-of-interest-time-1
span tag. On line 12, the document.getElementById() function is used
to retrieve the area-of-interest-time-1 and set the content to be the time
spent on the element. The timeSpentOnElement.toFixed() function is
called and the value 5 is passed. This indicates how many decimal points
should be included when the time is printed.

74 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 <script src="timeme.js"></script>
2 <script type="text/javascript">
3 TimeMe.initialize({
4 currentPageName: "my-home-page", // current page
5 idleTimeoutInSeconds: 5, // stop recording time due to

inactivity↪→

6 });
7 window.onload = function(){
8 TimeMe.trackTimeOnElement('area-of-interest-1');
9 setInterval(function(){

10 var timeSpentOnElement =
TimeMe.getTimeOnElementInSeconds↪→

11 ('area-of-interest-1');
12 document.getElementById('area-of-interest-time-1').
13 textContent = timeSpentOnElement.toFixed(5);
14 }, 100);
15 }
16 </script>
17 <div class="area-of-interest" id="area-of-interest-1">
18 Interact with this element

19 Interaction:

seconds.↪→

20 </div>

SAMPLE CODE 20: time.php — Recording the amount of time spent
on a single div tag.

Output
Figure 3.24 shows the output in the web browser describing the amount
of time a user has spent on an individual div tag.

FIGURE 3.24: Number of seconds a user has spent on a div tag.

Passive Data Collection � 75

3.9 LOGGING TIMES

Although it is useful to see in real-time the amount of time a user is
spending on a particular part of a page, for future analysis, it is useful to
store this information in a database. Before this is done, to modularize
the code, a custom function is first created that triggers when a user
navigates away from the current page.

Example 19: Calling a custom function on un-
load

To do this, we will make a custom function that will get called once
the user has navigated away from the current page. All of the timers that
were active on the page will be stopped, and the values will be gathered
and stored in a database table. If the user moves to an internal page
in the application or manually types in the URL for a different website,
this function will trigger.

Example code: time.php

In Sample Code 21, a JavaScript addEventListener is first bound to
the window on line 2. The event type that is added is titled beforeunload.
This event is triggered whenever the user attempts to navigate to a
different page. In this function on line 3, a custom function is called
titled timingDataStore(). The function definition is included on line 8.
In the event listener on line 4, the return type is set to undefined. This
ensures the user will not be prompted when the page is redirecting.

1 <script>
2 window.addEventListener('beforeunload', function (e) {
3 timingDataStore();
4 return undefined
5 });
6

7 // Customer logging function
8 function timingDataStore(){
9 console.log("goodbye...")

10 }
11 </script>

SAMPLE CODE 21: time.php — Calling a JavaScript function when a
user leaves a page.

76 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 3.25 shows the output that is printed to the console when the
user navigates away from the current page. To see this message, in the
Google developer console, click the cog on the right-hand side, and then
click the option to Preserve log.

FIGURE 3.25: Message printed to the console when the user navigates
away from the current page.

Example 20: Saving to a database table
In the previous example, although we can find out when the user has
navigated away, no timing is recorded in a database table. In this exam-
ple, the process of saving the records to a database table is described.

This example consists of three files and two libraries:

1. timinglog.sql — timinglog create table SQL.

2. timing.php — Gathers the timing logs from the browser.

3. ajax.php — Used to receive the timing data and store it in a
database table.

4. jQuery — This is used to perform a JavaScript POST request to
the ajax.php page.

5. TimeMe.js — This is used to record the timings between the user
and the application.

Example code: timinglog.sql
Sample Code 22 outlines the SQL for a database table titled timinglog
that is required. This contains an ID column to identify each record along
with an automatically added time stamp column titled timelogged. The
user field can contain any additional information to identify a user in
the form of a username, ID or IP address. The pageID column is used
to hold the unique ID for any given page in our application.

To aid future retrieval, two sample key-value pair attributes were
added. In the case of this example, att1 would be the overall time spent
on a page and att2 can be used for an additional variable if required.

Passive Data Collection � 77

The timing1 and timing2 columns are used to store the values recorded
for each.

1 CREATE TABLE `timinglog` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `timelogged` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `user` VARCHAR(50),
5 `pageID` VARCHAR(50),
6 `att1` VARCHAR(50),
7 `timing1` VARCHAR(50),
8 `att2` VARCHAR(50),
9 `timing2` VARCHAR(50),

10 PRIMARY KEY (`id`)
11);

SAMPLE CODE 22: timinglog Database table.

Example code: timing.php

In Sample Code 23, on line 1, a reference to the jQuery CDN is in-
cluded. On line 5, a reference to the local TimeMe.js library is added.
On line 9, a unique name is given to the current page where the code is
running. This will be used later to identify where the records have come
from. On line 12, the event listener is added that will trigger when the
user navigates away from the current page. On line 13, the core call to
the timingDataStore() function is included. On line 17, the definition for
the timingDataStore() function is added. To find out how long the user
has been on the current page, a call is made to the getTimeOnCurrent-
PageInSeconds() function on line 18.

Before any further progress is made on this function, a call is made
to the console.log() on line 20 to output the information to the developer
console in the web browser. This ensures we correctly gather the time
and can, therefore, exclude any issues with the TimeMe.js library. After
the data is gathered and an event has been triggered, it indicates the
user has navigated away from the current page. An AJAX request is
performed on line 23 to the ajax.php page to store the data in a database
table. In this, we first gather the time, and then we perform an AJAX
POST request to the data handling page.

The name of this page is ajax.php. The POST consists of first the
type of request we are sending. In this case we are sending timelog as the
value, followed by the key-pair attributes. The first of these is pageTitle
that has the value set to the TimeMe.js page ID. This is followed by

78 � Applied User Data Collection and Analysis Using JavaScript and PHP

two attributes, the first will be the total time spend on the page and the
second is a placeholder for an additional key-value pair if required in the
future. Although this example just shows two attributes, it is possible
to extend this to send multiple attributes and values at the same time.

On line 28, when the POST has been performed, a callback to the
.done() function is performed, presenting the text Bye! to the user.

1 <script
2 src="https://code.jquery.com/jquery-3.5.1.min.js"
3 integrity="sha256-9/aliU8dGd2tb6OSsuzixeV4y/faTqgFtohetphbbj0="
4 crossorigin="anonymous"></script>
5 <script src="timeme.js"></script>
6 <script type="text/javascript">
7 // Initialize library and start tracking time
8 TimeMe.initialize({
9 currentPageName: "my-home-page", // current page

10 idleTimeoutInSeconds: 3 // seconds
11 });
12 window.addEventListener('beforeunload', function (e) {
13 timingDataStore();
14 return undefined;
15 });
16 // Custome logging function
17 function timingDataStore(){
18 var timeSpentOnPage = TimeMe.getTimeOnCurrentPageInSeconds();
19

20 console.log('Time on Page:' + timeSpentOnPage);
21

22 // Send data to the server here
23 $.post("ajax.php", { type: "timelog", pageTitle:
24 TimeMe.currentPageName,
25 att1name: 'totaltime', att1:
26 timeSpentOnPage,
27 att2name: 'interest', att2: '0' })
28 .done(function(data) {
29 alert("Bye!");
30 });
31 }
32 </script>

SAMPLE CODE 23: timing.php — Calling the timingDataStore()
function to make a AJAX POST to the database.

https://code.jquery.com/

Passive Data Collection � 79

Example code: ajax.php

On the server-side, we have a page titled ajax.php. The first step
in this page is to decipher the type of request that we are sending by
retrieving the type variable on line 2. In this example the JavaScript
is sending the value timelog, so we will then use a simple if statement
on line 3 to check the type variable and call the PHP timeRecordLog()
function on line 4. Inside the timeRecordLog() function on line 6, we
will first extract each piece of data from the POST that was performed.
These include the pageTitle, attribute 1 — name and value and attribute
2 — name and value as shown on lines 7–11.

A connection to the MySQL database using the PDO object is per-
formed on line 19. The INSERT statement is added on line 21. For
each parameter, a question mark is placed on the right-hand side of the
statement. These are filled in using the bindParam() functions on lines
25–29. The final step in this process is to execute() the SQL statement
to INSERT in the database on line 30. A try catch statement always
surrounds the database connection as if something goes wrong during
the connection process or the INSERT statement, the catch will handle
the error preventing the script from crashing.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'timelog'){
4 timeRecordLog();
5 }
6 function timeRecordLog(){
7 $pageID = $_POST['pageTitle'];
8 $att1name = $_POST['att1name'];
9 $att1time = $_POST['att1'];

10 $att2name = $_POST['att2name'];
11 $att2time = $_POST['att2'];
12

13 try {
14

15 $host = 'localhost:3306';
16 $dbname = 'bookexamples';
17 $user = 'sampleuser';
18 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
19 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
20 $user, $pass);
21 $sql = "INSERT INTO `timinglog` (`pageID`, `att1`, `timing1`,
22 `att2`, `timing2`)

80 � Applied User Data Collection and Analysis Using JavaScript and PHP

23 VALUES (?,?,?,?,?);";
24 $sth = $DBH->prepare($sql);
25 $sth->bindParam(1, $pageID, PDO::PARAM_STR);
26 $sth->bindParam(2, $att1name, PDO::PARAM_STR);
27 $sth->bindParam(3, $att1time, PDO::PARAM_STR);
28 $sth->bindParam(4, $att2name, PDO::PARAM_STR);
29 $sth->bindParam(5, $att2time, PDO::PARAM_STR);
30 $sth->execute();
31

32 } catch(PDOException $e) {echo $e;}
33 }

SAMPLE CODE 24: ajax.php — Recording timer values to the
timinglog database table.

Output
Figure 3.26 shows the output of five timings that have been recorded to
the database when the user navigated away from the current page. We
can see that the timing1 column contains the total time spent on the
page.

FIGURE 3.26: Sample timings logged to the database table.

3.10 WHERE A USER CAME FROM

Example 21: Using the HTTP REFERER vari-
able
Another method that exists to gather data is from the functions
that exist in the PHP library. The most notable of these is the
HTTP REFERER variable. This variable allows you to find out what
page in an application a user came from to get to the current page.

Example code: ref.php
To gather the data, a PHP start tag is added, followed by the

Passive Data Collection � 81

HTTP REFERER variable on line 2. A simple echo statement is added
to print the value to the browser. Sometimes, however, this variable may
not be set, causing the script to provide a warning message. To prevent
this, the sample code can be wrapped up in a PHP isset() function to
see if it exists before it is printed.

1 <?php
2 if(isset($_SERVER['HTTP_REFERER'])){
3 echo $_SERVER['HTTP_REFERER'];
4 }
5 ?>

SAMPLE CODE 25: ref.php — PHP HTTP REFERER being printed
to the web browser.

Output

Figure 3.27 shows the output after navigating from one page to an-
other. The page listed is the previous page viewed by the user.

FIGURE 3.27: Output from calling the PHP REFERRER variable.

3.11 SOCIAL MEDIA CONTENT HARVESTING

Social media offers a data analyst an additional insight into the real-
time changes in user opinions. Social media platforms such as Facebook
and Twitter allow users to enter their thoughts and add additional key
identifiers such as hashtags and @ mentions that can be used to identify
what company they are addressing and their sentiment towards them.
In this section, we will look at the process of creating a tool to allow us
to scrape the content of specific Twitter pages.

When selecting a social media data source for analysis, the first hur-
dle that must be addressed is if authentication is required to view the
content. Many different components of a social media site are publicly
available without requiring the need to log in. Other sources, such as
Facebook groups, may be set to private, requiring a user account to be

82 � Applied User Data Collection and Analysis Using JavaScript and PHP

logged in and also to be accepted to the group before the extraction
process can begin.

Example 23: Twitter library-based feed extrac-
tion

This example requires one file and one library:

1. twitteroauth — This is the main library that is used to interface
with the Twitter API.

2. twitter auth.php — This is the sample application that will use
the library to perfrom the API requests.

In this section the process of integrating with the Twitter API using
one of the many available libraries is described. In this section, we will
review the twitteroauth12 library.

To install this library on our local server, we will use composer.13

From the command prompt, use the cd command to enter the folder
where the project is located.

Once inside of the folder, we can begin the process of initializing
composer. This is done by running the composer init command. After
running this command, the name of the project, a description for the
project, the type of project, the license, and the author of the project
must be entered. The stability of the project must be defined. In this
example, we have set it to dev.

Finally, the development dependencies are defined. In this example,
we can choose no. At the end of this process, we will be asked to confirm
the composer.json file content that will be created in the project folder.
Figure 3.28 shows a sample composer.json file.

Once the composer.json file has been created, we can begin the pro-
cess of adding in the additional library that we require. To do this, the
following command is entered into the command prompt at the root of
our project folder.

composer require abraham/twitteroauth

This process will begin the download and installation of the library
to the project as shown in Figure 3.29.

12https://github.com/abraham/twitteroauth
13https://getcomposer.org

https://github.com/
https://getcomposer.org

Passive Data Collection � 83

FIGURE 3.28: Sample composer.json contents for a new project.

FIGURE 3.29: Composer library installation console output.

To access the Twitter API, a number of different web endpoints are
created. Each different endpoint is an individual URL that takes in a
variety of different parameters. As the Twitter API is a commercial tool,
different plans such as the Standard and Premium plans are available. In
this example, we will be using the Standard plan. The API component
that we will be focusing on is the Search API that can be found in the
API documentation.14

Before we can begin with this process of interacting with the API, a
Twitter account is required. In addition to this, a new application must
be registered with Twitter outlining the intent of the application. To
register this application, the app console on the Twitter web page can
be used.15. On this page, an option can be seen to Create an app.

14https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-
tweets

15https://developer.twitter.com/en/apps

https://developer.twitter.com/
https://developer.twitter.com/
https://developer.twitter.com/

84 � Applied User Data Collection and Analysis Using JavaScript and PHP

During this process, basic information about the application is added.
The essential element that is added during this process is the callback
URL. The purpose of this callback URL is to allow the Twitter OAuth
process to send validation information back to a page on our server.

After the application has been registered, the unique keys and tokens
that have been created for the application can be seen. These are unique
to the application and serve as an identifier to the Twitter server for the
project. These tokens will be added to the code aiding the authentication
process.

The standard search API has a number of limits imposed on it. These
include only allowing 180 requests to be performed in a 15-minute win-
dow by a user and 450 by an application.16

Example code: twitter auth.php
After the library has been installed, we can begin the process of creating
a new PHP file that will interact with the library. The first line that is
added to this file is the autoload for the PHP libraries we are using, as
shown in Sample Code 26 line 2.

After the library is imported into the project, we can add the con-
sumer key, consumer secret key and the callback URL for the appli-
cation on lines 4–7. This provides our authentication with the server.
The callback is called once the authentication is completed and provides
validation status information to us.

We can create a new instance of the library, along with our unique
credentials. After this has been performed, we will make a call to the
Twitter API using the oauth() function on line 8 to receive a unique
request token that will be sent with all of the requests we make to the
API in the future.

Once the unique access token has been generated, we can begin the
process of making requests to the server. In this example, we will make
requests to the search API on line 12. A GET request is performed to
the server, passing the name of the API feature that we would like to use.
Each different component of the API will have a different collection of
available parameters. These parameters allow us to fine-tune the results
that are returned to us. In the example below, we are searching for tweets
by passing the query parameter q with a value set to Dublin.

16https://developer.twitter.com/en/docs/tweets/search/api-reference/get-search-
tweets.html

https://developer.twitter.com/
https://developer.twitter.com/

Passive Data Collection � 85

One of the more interesting parameters that are available is the re-
sult type. This allows us to specify what type of results should be re-
turned. These include mixed which provides popular and real-time re-
sponses, recent showing only recent results and popular that returns only
the most popular results. To add in this parameter, a simple comma is
added.

The results variable will contain the complete response from the
server. On line 15, to iterate over the results, a for each statement can
be used. This is passed the results object, followed by a reference to
the statuses. We can iterate over each individual tweet and extract the
desired attributes. In the example, we are extracting the time the tweet
was created and the text that is contained inside the tweet.

1 <?php
2 require_once 'vendor/autoload.php';
3 use Abraham\TwitterOAuth\TwitterOAuth;
4 define('CONSUMER_KEY', '1wUmYQ6c2GQFh7j7CIYhyaJ6R');
5 define('CONSUMER_SECRET', 'yPHBqqT9o1lppggiscju0yAjutRclS6s
6 OVysh0rFXKTgFE20F3');
7 define('OAUTH_CALLBACK', 'https://www.kylegoslin.ie/test.php');
8 $connection = new TwitterOAuth(CONSUMER_KEY, CONSUMER_SECRET);
9 $request_token = $connection->oauth('oauth/request_token',

10 array('oauth_callback' =>
11 OAUTH_CALLBACK));
12 $results = $connection->get("search/tweets",
13 ["q" => "Dublin",
14 "result_type"=> "popular"]);
15 foreach($results->statuses as $tweet){
16 echo $tweet->created_at . '-'. $tweet->text . '
';
17 }

SAMPLE CODE 26: twitter auth.php — Twitter library accessing and
iterating over Tweets

Output

Figure 3.30 shows a sample output from calling the Twitter search
API. In this results the date is first printed followed by a single dash
and then the text from the individual tweet.

https://www.kylegoslin.ie/

86 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 3.30: Twitter API search results.

3.12 SUMMARY

This chapter introduced the concept of using passive data gathered from
the user’s areas of interest and their local browser environment without
the need for direct user intervention. Simplistic data sources in the form
of cookies and sessions were explored that contain short term data left by
the user and application. To further extract insights, additional services
were used to find the geographic location and IP address of the user.
Server-side PHP was then explored to identify where a user came from.
The time spent on areas of interest in an application was then described.
To persist the data, the process of saving data to a database table was
then explored.

Alternative sources of data were explored in the format of gathering
data using authenticated API calls, as many users provide a wealth of
knowledge to services such as Twitter. Chapter 4, next, describes the
process of creating custom dashboards to aid the process of discovering
insights and monitoring responses.

C H A P T E R 4

Custom Dashboards

Chapter 3 previously outlined mechanisms that can be implemented to
collect passive data. In this chapter, both passive and active data sources
become the core focus of the data analysis process. Campaigns are in-
troduced as the primary method of differentiating between collections of
data. These steps are performed using a custom dashboard, providing
easy access to visualization tools and data sources of interest.

4.1 INTRODUCTION

When working with data, a key component is the ability to gather data
from any device or environment and provide this data in a meaningful
way to the data analyst. This chapter will review the process of creating
a custom dashboard that provides a workspace for data to be collected
and analyzed. This dashboard can be considered the primary portal for
the analyst to review data and initiate new data collection processes.

This dashboard consists of a user login portal, allowing users to iden-
tify to the system and a register page that allows new users to become
active. After a user has logged into the system, a core dashboard allows
the user to select the analysis tools and visualizations that have been
implemented. To aid the development process Bootstrap1 is used as the
core library during the layout of visual components.

1https://getBootstrap.com

87

https://getBootstrap.com

88 � Applied User Data Collection and Analysis Using JavaScript and PHP

4.2 USER LOGIN

Example 1: User login page

This example consists of six files:

1. create dashboard.sql — This file is used to create the database
table that is used during the login and registration.

2. bootstrap.js — The core Bootstrap JavaScript file. Available from
their website2.

3. bootstap.min.css — The core Bootstrap CSS file. Available on the
Bootstrap website.

4. jquery.min.js — The minified version of the jQuery library. Avail-
able on their website3.

5. index.php — This file is the main user interface for the login pro-
cess. Bootstrap is used to theme this page.

6. login.php — This page is dynamically called using jQuery. The
username and password hash are passed to this page and verified
against the credentials stored in the database.

Example code: create dashboard.sql
To begin the login process, a database table that contains the accounts is
created titled dashboard accounts, as shown in Sample Code 1. This table
contains an ID column that is an auto-incremented primary key. The two
core columns in this table are they username and the password columns.
When working with passwords, it is always important to remember that
the password should never be stored in the database in plain text. In
the case where unauthorized access to the database is made, the same
username and password combinations could be used on other systems.
It is a common practice to store the password in a hash based format.
Hashing is the process of passing a password through a hashing algorithm
that will return a fixed-length string of symbols and letters. However, it

2https://getbootstrap.com/docs/4.0/getting-started/download/
3https://jquery.com/download/

https://getbootstrap.com/
https://jquery.com/

Custom Dashboards � 89

is possible to take the hash and work backward to retrieve the password
if no additional security measures are implemented, such as adding salt.

1 CREATE TABLE `dashboard_accounts` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `username` VARCHAR(100),
4 `password` VARCHAR(100),
5 `email` VARCHAR(100),
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 1: Main dashboard accounts table for the system.

Example code: index.php

The user login page is the first page seen by a user before they
can access the dashboard. In this section, the complete login page is
described. The overall layout for this page is based on Bootstrap. Sample
Code 2 begins with a reference to the jQuery4 library on line 4. This is
included as it will be used to gather the username and password that
have been entered by the user for validation later. Popper5 is included on
line 5. This is a tooltip positioning engine for pop-overs and drop-down
menus available from the Bootstrap library. To utilize this functionality,
the core Bootstrap library is included on line 8.

The style for the login page is kept very minimal. On lines 10–16,
the input fields are styled to stretch to the width of the available space.
Padding is added to move the text from the left-hand side of the input
field. The margin is set to 8px and the display is set to inline-block. A
small 1px border is added to the input fields that is solid light-gray. On
lines 17–25, the style for the main login button is added. The color is set
to white and the padding and margin is set. As this is a button, when
the user places the mouse pointer over the button, the cursor will change
to a pointer. On line 27, when a mouse is placed over the button, the
opacity of the button will change to 0.8 from the initial 1.0.

On line 30, the viewport is added as the main visible area for the
user. This helps scale the content the user will see with the initial scale
set to 1.

4https://www.jquery.com
5https://popper.js.org

https://www.jquery.com
https://popper.js.org

90 � Applied User Data Collection and Analysis Using JavaScript and PHP

The main body of HTML contains a div tag with the class set to
container on line 34. Inside this the nav bar is added on line 35. This
nav bar has the bg-light colour with rounded edges. More of these colors
are are available on the Bootstrap website.6 On line 36, a single link is
added with the class set to navbar-brand. This is the main focus for the
title. The href points to the index.php page with the visible text set to
Feedback Dashboard.

On line 38, the main tag is added with the role set to main. Inside
this main, a single div tag is added with the class set to jumbotron on line
39. This provides a space for the main content to be displayed. Inside
the jumbotron, a div tag is added with the class set to mx-auto on line
40, allowing us to center the component.

On line 42, a simple piece of text is added to instruct the user to
enter their username and password. A form tag is wrapped around two
input fields with the ID set to login on line 43. This is followed by two
HTML input fields on lines 45 and 47 that were styled earlier using CSS.
This ID will be used later to attach a listener for the form submission
process. A single span tag is added with the ID set to message on line
49 that is used as a default display location for error messages that can
occur when the form values are incorrect, e.g., the wrong username or
password.

1 <head>
2 <link rel="stylesheet" href="Bootstrap.min.css" crossorigin=
3 "anonymous">
4 <script src="jquery.min.js"></script>
5 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/
6 1.12.3/umd/popper.min.js"
7 crossorigin="anonymous"></script>
8 <script src="Bootstrap.js" crossorigin="anonymous"></script>
9 <style>

10 input[type=text], input[type=password] {
11 width: 100%;
12 padding: 12px 20px;
13 margin: 8px 0;
14 display: inline-block;
15 border: 1px solid #ccc;
16 }
17 button {
18 background-color: grey;
19 color: white;
20 padding: 14px 20px;

6https://getBootstrap.com/docs/4.3/utilities/colors

https://cdnjs.cloudflare.com/
https://getBootstrap.com/

Custom Dashboards � 91

21 margin: 8px 0;
22 border: none;
23 cursor: pointer;
24 width: 100%;
25 }
26 button:hover {
27 opacity: 0.8;
28 }
29 </style>
30 <meta name="viewport" content="width=device-width,
31 initial-scale=1, shrink-to-fit=no">
32 </head>
33 <body>
34 <div class="container">
35 <nav class="navbar navbar-expand-lg navbar-light bg-light rounded">
36 Feedback Dashboard
37 </nav>
38 <main role="main">
39 <div class="jumbotron">
40 <div class="mx-auto" style="width:300px">
41 <h1>Login</h1>
42 <p> Please enter your username and password to login.</p>
43 <form id="login">
44 <label>Username</label>
45 <input type="text" id="username"/>
46 <label>Password</label>
47 <input type="password" id="password"/>
48 <button type="submit">Login</button>
49
50 </form>
51

52 </div>
53 </div>
54 </main>
55 </div>
56 </body>

SAMPLE CODE 2: index.html — Login page for the dashboard
created using Bootstrap.

In Sample Code 3, the core functionality of the login page is per-
formed using JavaScript. The first component is a form submit listener
that is appended to the login form on line 58. Instead of a traditional
form POST that requires the page to be refreshed, the form POST is
performed using JavaScript. The preventDefault() function is called on

92 � Applied User Data Collection and Analysis Using JavaScript and PHP

line 59, during the form submission to prevent any redirection of the
page. After this has been performed the jQuery selector is used to select
the username on line 60 and password on line 61. The val() function is
used to extract the values from the fields. These values are placed into
two local variables, un and pw.

To validate the details that have been entered are correct, a call is
made to the jQuery POST function to send the username and password
variables to a second PHP page titled login.php on line 62. The type of
request being sent to this page is described as a login. This allows the
single PHP page to be re-purposed for other tasks in the future. Once
the call has been made to the PHP page the data variable is returned
on line 64. The variable will contain a flag titled success if the login
credentials were correct. The location of the web browser is redirected
to the dashboard.php page on line 67.

In the case where the username or password was incorrect, on line
70, the message span tag is used to hold the error message. This is done
by passing a string to the text() function that can be called on the span
tag. To aid debugging, two console.log() functions are added on lines 68
and 72.

57 <script>
58 $("#login").submit(function(event) {
59 event.preventDefault();
60 var un = $("#username").val();
61 var pw = $("#password").val();
62 $.post("login.php", { type:"login", username: un, password:
63 pw })
64 .done(function(data) {
65 alert(data);
66 if(data == 'success'){
67 $(location).attr("href", "dashboard.php");
68 console.log('success');
69 } else {
70 $('#message').text('Login failed, please check
71 your username and password.');
72 console.log('failed');
73 }
74 });
75 });
76 </script>

SAMPLE CODE 3: index.html — JavaScript form listener with
redirection to the correct page on successful login.

Custom Dashboards � 93

Output
Figure 4.1 shows the completed dashboard login page.

FIGURE 4.1: Custom dashboard for the login page.

Example code: login.php

To validate the login details, the login.php page is used. When the
JavaScript form submission is performed on the login page, the username
and password are sent across via a POST. In Sample Code 4, before
beginning the login process, the type parameter is first checked on line
3 to see what type of request was being made. When the type is set to
login, the login() function is called.

Inside the login() function on lines 7 and 8, the username and pass-
word are first extracted from the POST and placed into local variables.
A simple connection is made to the local database to get the record for
the username that was provided. In the SQL, a LIMIT 1 clause is ap-
pended to only return a single record from the database. This is shown
on line 16, where the username is left as a question mark, on line 19
the username is added using the bindParam() function. The statement
is executed on line 20.

94 � Applied User Data Collection and Analysis Using JavaScript and PHP

In the returned record, the password is hashed using the bcrypt algo-
rithm.7 During the registration process of the user, the password that is
gathered from the user is passed to the password hashing function that
will return a 60 character hash string that is stored in the database.
An example of a string for the password MySamplePassword would
be $2y$10$tLUrTdYnlSI3B/dsYBtga.1JtDXxEKn.Dyqux5LmRvjwHCS
ArNpEO. Salt can be added, which is a small additional piece of text
added to the user’s password during registration. This salt will prevent
a direct match ever being found between two passwords on different sys-
tems as the salt is different. The hash generated, therefore, will not be
the same each time.

As we are using a hashing algorithm on the password, a direct com-
parison can not be performed between the password hash and a hash that
is stored in the database. A call must be made to the password verify()
function on line 22 that takes in two parameters. The first is the raw
password entered by the user, and the second is the hash that is stored
in the record returned from the database at position 2 of the returned
row.

When the login is successful, a session is started on line 25, and the
ID from the user’s record is stored in the session variable ID on line 26,
followed by the username in the username variable on line 27. When the
login is successful, the word success is returned back to the JavaScript
function that performed the POST. This triggers the original JavaScript
that called the login.php page to redirect to the main dashboard.php
page. In the case where the password is not valid, the else statement is
triggered, and the text Password is not valid is returned to the user.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'login'){
4 login();
5 }
6 function login(){
7 $username = $_POST['username'];
8 $password = $_POST['password'];
9 try {

10 $host = 'localhost';
11 $dbname = 'bookexamples';
12 $user = 'sampleuser';
13 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';

7https://www.php.net/manual/en/function.password-hash.php

https://www.php.net/

Custom Dashboards � 95

14 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
15 $pass);
16 $sql = "SELECT * FROM dashboard_accounts WHERE username
17 =? LIMIT 1";
18 $sth = $DBH->prepare($sql);
19 $sth->bindParam(1, $username, PDO::PARAM_STR);
20 $sth->execute();
21 $res = $sth->fetch();
22 $result = password_verify ($password,$res[2]);
23 if($result){
24 echo 'success';
25 session_start();
26 $_SESSION['id'] = $res[0];
27 $_SESSION['username'] = $res[1];
28 $_SESSION['valid'] = True;
29 } else {
30 echo 'Password is not valid';
31 }
32 } catch(PDOException $e) {echo $e;}
33 }
34 ?>

SAMPLE CODE 4: login.php — Accepts the username and password
entered by the user for validation.

4.3 USER REGISTRATION

In this section, we will review the process of creating a new user account
in the system. The interface for this is similar to that of the login process.

Example 2: User registration page
First, a new file titled register.php is created. This file will provide the
user with input fields to enter their username, email, and password. This
example contains two files and three libraries:

1. bootstrap.js — The core Bootstrap JavaScript file. Available from
their website8.

2. bootstap.min.css — The core Bootstrap CSS file. Available on the
Bootstrap website.

8https://getbootstrap.com/docs/4.0/getting-started/download/

https://getbootstrap.com/

96 � Applied User Data Collection and Analysis Using JavaScript and PHP

3. jquery.min.js — The minified version of the jQuery library. Avail-
able on their website9.

4. register.php — This is the main registration page for the dash-
board.

5. ajax.php — This is used to receive the registration details via a
jQuery POST and save them to the database.

Example code: register.php
Sample Code 5 shows the HTML for the registration page titled regis-
ter.php. This page will contain the Bootstrap HTML to layout the page
along with the JavaScript to trigger the registration process.

At the top of this file on line 2, a reference to the Bootstrap CSS file
is included. This is followed on line 3 by a reference to the jQuery library.
On line 5, a reference to Popper.js is included as it is a dependency for
Bootstrap. On line 9, the core Bootstrap JavaScript file is included. On
line 10, the meta tag is added as the main view port for the registration
page.

The main style for the registration page is added. The input fields
take the most styling, on lines 13–19, setting the width to be 100% of
the available space. Padding and a margin are added to align the text
horizontally across the input field. The method of display is set to inline-
block on line 17. A simple border is added of 1px with a light gray color
on line 18. The registration button also has a small amount of styling.
The main change visible is the cursor on line 26. This is changed to a
pointer when the mouse is placed over the register button. The opacity
of the button is also changed on line 30, by setting it to 0.8 from the
initial 1.0 when a mouse hovers over it. On line 35, a div tag is added
with the class set to container. Inside of this, a nav bar tag is added
with the theme set to bg-light with rounded edges on line 36.

After the navigation bar has been added, the next step is to add the
main content for the page to allow the user to enter their details. The
main tag is added on line 40 as a wrapper around all the content. Inside
of this, on line 41, a div tag is added with the class set to jumbotron.
This component allows for easy scaling. Inside of this, on line 42, another
div tag is added with the class set to mx-auto that will automatically
stretch horizontally. Inside of this, two simple pieces of text are added.

9https://jquery.com/download/

https://jquery.com/

Custom Dashboards � 97

A form tag is added on line 45 as a unique method of identifying this
form.

Four input fields are added to gather the username, e-mail address
and password from the user on lines 46–53. A second input field is added,
allowing the user to verify their password. The IDs for the password are
password1 and password2 for simple reference later during comparison.
An important element is the ID attribute associated with each element,
as these will be used later when processing the form with JavaScript.
Label tags are added that allow a simple piece of text to be specified
before each of the input fields. To allow the registration to begin, a
submit button is added on line 54. A simple span tag is added titled
message on line 55, which is used as a placeholder for error messages
that may occur during validation. When the page first loads, this span
tag will not have any value.

1 <head>
2 <link rel="stylesheet" href="Bootstrap.min.css" crossorigin=
3 "anonymous">
4 <script src="jquery.min.js"></script>
5 <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/
6 1.12.3/umd/popper.min.js"
7 crossorigin="anonymous">
8 </script>
9 <script src="Bootstrap.js" crossorigin="anonymous"></script>

10 <meta name="viewport" content="width=device-width,
11 initial-scale=1, shrink-to-fit=no">
12 <style>
13 input[type=text], input[type=password] {
14 width: 100%;
15 padding: 12px 20px;
16 margin: 8px 0;
17 display: inline-block;
18 border: 1px solid #ccc;
19 }
20 button {
21 background-color: grey;
22 color: white;
23 padding: 14px 20px;
24 margin: 8px 0;
25 border: none;
26 cursor: pointer;
27 width: 100%;
28 }
29 button:hover {

https://cdnjs.cloudflare.com/

98 � Applied User Data Collection and Analysis Using JavaScript and PHP

30 opacity: 0.8;
31 }
32 </style>
33 </head>
34 <body>
35 <div class="container">
36 <nav class="navbar navbar-expand-lg navbar-light bg-light
37 rounded">
38 Feedback Dashboard
39 </nav>
40 <main role="main">
41 <div class="jumbotron">
42 <div class="mx-auto" style="width:300px">
43 <h1>Register</h1>
44 <p> Register for a new account</p>
45 <form id="register">
46 <label>Username</label>
47 <input type="text" id="username"/>
48 <label>E-mail Address</label>
49 <input type="text" id="email"/>
50 <label>Password</label>
51 <input type="password" id="password1"/>
52 <label>Repeat Password</label>
53 <input type="password" id="password2"/>
54 <button type="submit">Register</button>
55
56 </form>
57 </div>
58 </div>
59 </main>
60 </div>

SAMPLE CODE 5: register.html — User registration page HTML part
1.

In Sample Code 6, a custom modal is shown. This modal is hidden
when the application is launched and only becomes visible when a new
user record has successfully been inserted in the database. On line 61,
the unique ID provided to the modal is set to nowRegistered. On line
66, the title of the modal is set to Success. On lines 74-75, the main text
visible to the user can be seen. On line 79, a href is added with a link
to the index.php page that contained the original login page.

Custom Dashboards � 99

61 <div class="modal" id="nowRegistered" tabindex="-1" role=
62 "dialog">
63 <div class="modal-dialog" role="document">
64 <div class="modal-content">
65 <div class="modal-header">
66 <h5 class="modal-title" style="width:100%">Success</h5>
67 <button type="button" class="close" data-dismiss="modal"
68 aria-label="Close"
69 style="width:100px">
70 ×
71 </button>
72 </div>
73 <div class="modal-body">
74 <p>You are now registered.</p>
75 <p>Click to login!</p>
76 </div>
77 <div class="modal-footer">
78

79 <a href="index.php" class="btn btn-primary"
80 role="button">Login!
81 </div>
82 </div>
83 </div>
84 </div>

SAMPLE CODE 6: register.html — User registration page HTML part
2.

After the HTML components have been added, form validation is re-
quired. Sample Code 7 outlines this validation. To provide the best user
experience when the form is submitted, the natural redirection process
of the page will be suppressed. To do this, we will first use the jQuery se-
lector on line 86 to select the register form and append a submit handler
function. Whenever the form is submitted, this function will be called.

Inside this function, a variable is added titled valid on line 87. This
is used as a flag to show if the form fields are valid or not before any
further processing, e.g., sending the data to the database. The second
component is the call to the event.preventDefault() on line 88. This will
prevent the default redirection process of the page.

The jQuery selector is used to select the username field on line 90.
The value is extracted using the val() function. On line 91, a check is
performed to see if the un variable is blank. In the case where nothing was

100 � Applied User Data Collection and Analysis Using JavaScript and PHP

typed into the username field, the input field would be blank, allowing
the if statement to run. Inside this if statement, the jQuery selector is
used again on line 109 to select the message span tag that was created
earlier and append the message Username blank followed by a HTML br
tag. This is added as the message span tag contains a long string that
will be printed directly to the user’s browser when an error occurs. By
adding in the line break, each error message will be visible on a separate
line.

In addition to these basic checks, the values of password1 on line 102
and password2 on line 103 are compared with each other and they must
match. This is to prevent human error when entering passwords. On line
108, a simple if statement can be used with a != between the two values
identifying that if they are not equal to each other to show the error
message.

85 <script>
86 $("#register").submit(function(event) {
87 var valid = true;
88 event.preventDefault();
89 // Username
90 var un = $("#username").val();
91 if(un == ""){
92 $('#message').append('Username blank.
');
93 valid = false;
94 }
95 // Email
96 var email = $("#email").val();
97 if(email == ""){
98 $('#message').append('E-mail blank.
');
99 valid = false;

100 }
101 // Password
102 var pw1 = $("#password1").val();
103 var pw2 = $("#password2").val();
104 if(pw1 == "" || pw2 == ""){
105 $('#message').append('Password blank.
');
106 valid = false;
107 }
108 if(pw1 != pw2){
109 $('#message').append('Sorry your passwords do not match.
110
');
111 valid = false;
112 }
113 // If valid, then perform the post request

Custom Dashboards � 101

114 if(valid == true){
115 $.post("ajax.php", { type:"register", username: un,
116 password: pw1, email: email })
117 .done(function(data) {
118 if(data == 'registered'){
119 // Show modal
120 $("#nowRegistered").modal();
121

122 } else {
123 $('#message').text('Sorry registration failed.');
124 }
125 });
126 }
127

128 });
129 </script>

SAMPLE CODE 7: register.html — JavaScript registration page
validation part 3.

At any stage during the registration process, if any of the fields are
not correct the valid variable will be set to false. This is used to keep
track of the form fields and see if the submission process can continue
on to the next section. Before we perform the POST operation, an if
statement on line 114 is used to ensure that the valid variable is equal to
true. After this, on line 115, a jQuery POST is performed to the ajax.php
page. The username, password, and email are sent to the second page.
On successful INSERT on the second page, the Bootstrap modal will be
shown by calling the modal() function on line 120, otherwise the message
span tag will be used again to show this error message on line 123.

Example code: ajax.php

In Sample Code 8, the page titled ajax.php that is responsible for
inserting new records in the database can be seen. At the top of this
page on line 2 the type variable is received. On line 3, if the type variable
is equal to register then a call is made to the custom registerNewUser()
function.

Inside the registerNewUser() function on line 7, the three variables
that were sent across via the POST are set into local variables username,
password, and email on lines 7–9. The password variable is passed into

102 � Applied User Data Collection and Analysis Using JavaScript and PHP

the PHP password hash() function on line 10. This function takes two
parameters. The first one is the password the user has provided, and
the second is the type of hash that we would like to produce. In this
example, we are working with the bcrypt algorithm. It is important to
remember that the user’s password should never be stored in plain-text
in a database.

On line 18, a simple SQL INSERT statement is built up to insert into
the database that contains the table titled dashboard accounts. The three
columns we are inserting into are specified, followed by the VALUES
keyword and three question marks. These three question marks are used
as unnamed placeholders. The values are not put directly into the SQL
as this is unsafe. The three values are bound onto the statement using
the bindParam() function on lines 22–24. The number at the start of
each denotes the position to insert. This is followed by the value we
want to add, and the data type that is roughly associated with it. As
the username, password, and email are all strings, PARAM STR is used
as the data type for each.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'register'){
4 registerNewUser();
5 }
6 function registerNewUser(){
7 $username = $_POST['username'];
8 $password = $_POST['password'];
9 $email = $_POST['email'];

10 $hashed_password = password_hash($password, PASSWORD_BCRYPT);
11 try {
12 $host = 'localhost:3306';
13 $dbname = 'bookexamples';
14 $user = 'sampleuser';
15 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
16 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
17 $pass);
18 $sql = "INSERT INTO `dashboard_accounts` (`username`,
19 `password`, `email`)
20 VALUES (?,?,?);";
21 $sth = $DBH->prepare($sql);
22 $sth->bindParam(1, $username, PDO::PARAM_STR);
23 $sth->bindParam(2, $hashed_password, PDO::PARAM_STR);
24 $sth->bindParam(3, $email, PDO::PARAM_STR);
25 $sth->execute();

Custom Dashboards � 103

26 echo 'registered';
27 } catch(PDOException $e) {echo 'failed' . $e;}
28 }
29 ?>

SAMPLE CODE 8: ajax.php — Register new user function.

When the INSERT runs successfully, the term registered will be re-
turned to the browser. This result will be returned to the JavaScript
caller on the register.php page triggering a Bootstrap modal to open. A
PDOException is fired if any errors occur during the registration. The
error message will be suppressed, and the word failed will be returned.

Output

Figure 4.2 shows the completed register page. Figure 4.3 describes the
modal that is presented to the user once they have successfully registered.
This modal provides the user with a link to bring them back to the login
page.

FIGURE 4.2: Completed dashboard register page.

104 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 4.3: Bootstrap modal shown when the registration was
successful.

4.4 MULTI-COLUMN BAR CHART

In the previous examples, a focus was placed on creating the dashboard
to allow for the registration and login of users. Once logged into the
system, data that has been collected will be presented to the user in
chart format. In these examples, Charts.js is used as the main client-
side library for chart rendering.

Example 3: Multi-column bar chart

This example contains two files and two libraries:

1. feedbackformrecords.sql — This creates the database table for the
sample data to be held for visualization.

2. chart1.php — This is the main visualization page.

3. Chart.bundle.js — Used to render the bar chart.

4. utils.js — A component of Chart.js

To begin, we first need to download a copy of Chart.js from the of-
ficial repository.10 In the GitHub repository for the project, there are a
number of variations to choose from. These are available as sometimes
a developer may only want the source code while other times, they may

10https://github.com/chartjs/Chart.js/releases/tag/v3.0.0-alpha

https://github.com/

Custom Dashboards � 105

want the minified (or shrunk) version of the code for a deployed applica-
tion in other times. In our case, we want the code and also the collection
of examples to showcase the functionality. This will allow us to view
the existing chart samples in context. For this example we download the
Chart.js.zip file as shown in Figure 4.4.

FIGURE 4.4: List of download options for Charts.js.

After the zip file has downloaded, unzip the contents of the zip file
and place the entire Chart.js folder into the htdocs of the web server
for convenience. When accessing the examples, this can be done by typ-
ing http://localhost into our web browser and then navigating into the
Chart.js folder. Inside the Chart.js folder, there is a number of differ-
ent JavaScript files with an additional folder titled samples, as shown in
Figure 4.5. The JavaScript files will be kept beside the charts that we
will create to make the chart functionality available to us.

FIGURE 4.5: Contents of Chart.js zip file.

Inside of this samples folder as shown in Figure 4.6, there is a file
titled index.html. When this is opened through a web browser, as shown
in Figure 4.7, complete running examples can be chosen. Unlike work-
ing on smaller pieces of code, when generating charts, there are many
different elements that are required for the chart to function correctly.
When creating a custom chart, it is best practice to begin with a sam-

106 � Applied User Data Collection and Analysis Using JavaScript and PHP

ple chart that utilizes sample data. This ensures minimal modifications
need to be made for the sample chart to be used with alternative data
or parameters.

FIGURE 4.6: Contents of Chart.js folder.

FIGURE 4.7: index.html containing a list of working samples.

Custom Dashboards � 107

Example code: feedbackformrecords.sql
Before generating a chart, a new database table is set up. In Sample Code
9, a sample database table can be seen. The FeedbackFormId contains
an integer used to identify what form the data has come from. The
FeedbackElementID is a second attribute used to further narrow down
exactly what component a user has used, e.g., input field or clicked a
button. To record a user’s rating between one and ten, an attribute titled
Score is added. This will contain the numeric rating a user has given.

1 CREATE TABLE `feedbackformrecords` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `FeedbackFormId` INT,
4 `FeedbackElementID` INT,
5 `Score` INT,
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 9: Sample feedback records with score attribute.

Example code: chart1.php

Sample Code 10 begins on line 5 with reference to the Chart.bundle.js
file that contains the core JavaScript to render the graph. After this on
line 6, a reference is made to the utils.js file that contains additional utili-
ties for drawing the graph. This graph is a Chart.js demo with additional
PHP to gather the data to be rendered.

On line 16 and 17 a div with the ID set to container is added and
a canvas with the ID set to canvas. The canvas is where the drawing
operations will take place, and the container is the single identifiable div
tag for the entire bar chart. The width of the container div tag can be
changed to suit the application needs. In the code below, the container
div is taking up 50% of the page width.

Following this code, on line 20, the color helper is included. On line
21, the main object used to hold the data for the chart is created. Inside
this on line 22, the labels attribute is created. This is an array of different
names that will appear across the horizontal axis of the bar chart.

On line 24, the datasets array is created. This array contains the
values that will appear for each label. This bar chart expects a comma-
separated values inside the array. A sample data point array would be:

108 � Applied User Data Collection and Analysis Using JavaScript and PHP

data [6, 40, 10, 11, 12, 1, 90, 9, 3, 10]. The first element inside of this
array, 6, would be the value then associated with the Score 1 label on
the bar chart.

As hard-coding the values into the bar chart would not be dynamic,
we will instead replace the values inside the data[] array with a call to
a PHP function on line 31 that will dynamically call the database to
return the values. This PHP function that takes a single parameter in
the form of the ID of the records we are interested in plotting. In this
example, 1 is passed.

1 <!doctype html>
2 <html>
3 <head>
4 <title>Bar Chart</title>
5 <script src="Chart.bundle.js"></script>
6 <script src="utils.js"></script>
7 <style>
8 canvas {
9 -moz-user-select: none;

10 -webkit-user-select: none;
11 -ms-user-select: none;
12 }
13 </style>
14 </head>
15 <body>
16 <div id="container" style="width: 50%;">
17 <canvas id="canvas"></canvas>
18 </div>
19 <script>
20 var color = Chart.helpers.color;
21 var barChartData = {
22 labels: ["Score 1", "Score 2", "Score 3", "Score 4", "Score 5",
23 "Score 6", "Score 7", "Score 8", "Score 9", "Score 10"],
24 datasets: [{
25 label: 'Customer Satisfaction',
26 backgroundColor: color(window.chartColors.blue).alpha(0.5).
27 rgbString(),
28 borderColor: window.chartColors.blue,
29 borderWidth: 1,
30 data: [
31 <?php getSatisfactionScores(1); ?>
32]
33 }]
34 };

Custom Dashboards � 109

35 window.onload = function() {
36 var ctx = document.getElementById("canvas").getContext("2d");
37 window.myBar = new Chart(ctx, {
38 type: 'bar',
39 data: barChartData,
40 options: {
41 responsive: true,
42 legend: {
43 position: 'top',
44 },
45 title: {
46 display: true,
47 text: 'Customer Satisfaction'
48 }
49 }
50 });
51

52 };
53 </script>
54 </body>
55 </html>

SAMPLE CODE 10: chart1.php — Simple Chart.js bar chart part 1.

Inside of the getSatisfactionScores() function shown in Sample Code
11, on line 57, we are taking in the formID and then passing this to
the database query in the form of an unnamed placeholder. On line 65,
the SELECT statement will gather the unique score labels, e.g., 1–10
followed by the count for each score. This is done by making a call to
the SQL count() function and passing the score column.

A question mark is used to mark where the formID value will be
placed. The value is passed to this position using the bindParam() func-
tion on line 69. Once the query has run, ten results will be returned.
The foreach() statement on line 73 is used to loop over these results and
print out the score label and the associated count number. This is done
by running a echo statement on the current row at position 1 as shown
on line 74.

56 <?php
57 function getSatisfactionScores($formID){
58 try {
59 $host = 'localhost:3306';
60 $dbname = 'bookexamples';

110 � Applied User Data Collection and Analysis Using JavaScript and PHP

61 $user = 'sampleuser';
62 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
63 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
64 $pass);
65 $sql = "SELECT score, count(score) FROM
66 feedbackformrecords
67 WHERE FeedbackFormId = ? GROUP BY score";
68 $sth = $DBH->prepare($sql);
69 $sth->bindParam(1, $formID, PDO::PARAM_INT);
70 $sth->execute();
71 $res = $sth->fetchAll();
72

73 foreach ($res as $row){
74 echo $row[1] . ', ';
75 }
76 } catch(PDOException $e) {echo $e;}
77 }
78 ?>

SAMPLE CODE 11: chart1.php — Simple Chart.js bar chart part 2.

Output
The final resulting bar chart can be seen in Figure 4.8. As this bar chart
is pulling data directly from the database, and not dependent on a static
file, so whenever a user submits data into the database the result data
will be visible when the chart is reloaded.

4.5 BINARY BAR CHART

A simple form of data is binary feedback, whereby, a question is asked,
and the answer is stored in the form of 1 for a yes and 0 for a no. Typically
a user will be asked questions, and they will respond by ticking a box
or clicking a radio button. Unlike the previous example that showed
data on a range between one and ten, this data has only two variations.
Although it may seem limited, it is the only way of accurately gathering
information about specific questions such as:

• Do you earn over 50k?

• Are you married?

• Do you have kids?

Custom Dashboards � 111

FIGURE 4.8: Bar chart showing the count of each score.

These questions can have a definitive yes or no answer attached to
them. When graphing this type of data, both data collections for the yes
and the no are shown. This helps derive quick insights from the data
such as checking whether three-quarters of the people said yes, then
there would likely be one quarter who said no.

Example 4: Binary bar chart

This example contains two files:

1. survey.sql — This file contains the SQL to create the survey
database table.

2. chart2.php — This file contains the main visualization.

3. Chart.bundle.js — This provides the ability to create the bar chart.

4. utils.js — An additional file that is used by Chart.js.

Example code: survey.sql
Sample Code 12 shows a sample database table titled survey. Like pre-
vious examples, an ID is added which is the primary key and also auto-
incremented. Every time a new survey has been completed, the data
will be entered into this table. However, it is possible to have additional

112 � Applied User Data Collection and Analysis Using JavaScript and PHP

descriptive data about who took the survey and when, it will be left out
of this example.

The FeedbackFormId column references the feedback campaign at-
tached to this data and four additional data columns: married, haskids,
ownscar, and makesover50k.

1 CREATE TABLE `survey` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `FeedbackFormId` INT,
4 `married` INT,
5 `haskids` INT,
6 `ownscar` INT,
7 `makesover50k` INT,
8 PRIMARY KEY (`id`)
9);

SAMPLE CODE 12: Example survey database table SQL.

Example code: chart2.php

In Sample Code 13, on lines 5 and 6, the additional JavaScript files
that allow us to create the bar chart are imported. On lines 8–12, the
browser is set not to allow selections. On line 16, the container div tag
is added to hold the new chart.

Three different arrays are set up to hold the data for the chart. On
line 21, The first of these titled lab array is to be used to hold each of the
labels which will be added to the chart. On line 22, the Data1 is added,
which is responsible for holding all of the 0 data, e.g., no. On line 23,
the Data2 is added which is responsible for holding all the 1 data, e.g.,
yes.

After the arrays have been set up in JavaScript, they next have to be
populated with data. To do this a custom PHP function titled getData()
is called on line 24. This function takes in the name of the column we
would like to add to the chart. On line 29, the color of the No bar which
will be added is set to red. This is followed by the Yes bar being set to
blue on line 35. On line 46, the graph is initialized by passing a reference
to the canvas in the form of a reference titled ctx. On line 48, the data
is passed into the graph.

Custom Dashboards � 113

1 <!doctype html>
2 <html>
3 <head>
4 <title>Bar Chart</title>
5 <script src="Chart.bundle.js"></script>
6 <script src="utils.js"></script>
7 <style>
8 canvas {
9 -moz-user-select: none;

10 -webkit-user-select: none;
11 -ms-user-select: none;
12 }
13 </style>
14 </head>
15 <body>
16 <div id="container" style="width: 75%;">
17 <canvas id="canvas"></canvas>
18 </div>
19 <script>
20 var color = Chart.helpers.color;
21 var lab = new Array();
22 var data1 = [];
23 var data2= [];
24 <?php getData('married'); ?>
25 var barChartData = {
26 labels: lab,
27 datasets: [{
28 label: 'No',
29 backgroundColor: color(window.chartColors.red).
30 alpha(0.5).rgbString(),
31 borderColor: window.chartColors.red,
32 borderWidth: 1,
33 data: data1,
34 }, {
35 label: 'Yes',
36 backgroundColor: color(window.chartColors.blue).
37 alpha(0.5).rgbString(),
38 borderColor: window.chartColors.blue,
39 borderWidth: 1,
40 data: data2,
41 }]
42 };
43 window.onload = function() {
44 var ctx = document.getElementById("canvas").
45 getContext("2d");

114 � Applied User Data Collection and Analysis Using JavaScript and PHP

46 window.myBar = new Chart(ctx, {
47 type: 'bar',
48 data: barChartData,
49 options: {
50 responsive: true,
51 legend: {
52 position: 'top',
53 },
54 title: {
55 display: true,
56 text: 'Chart.js Bar Chart'
57 }
58 }
59 }); };
60 </script>
61 </body>
62 </html>

SAMPLE CODE 13: chart2.php — Sample binary data bar chart.

In Sample Code 14, the core of this bar chart generation process is
the custom PHP function that is used to gather the data. This function
begins on line 64 as a simple function definition with one variable being
passed into it titled column. This is the name of the database column
that we wish to gather the data from.

Inside of this function, on line 70, a connection to the database is first
made, and the SQL statement is created on line 72. In this query, the
SELECT statement selects the column that was passed to the function.
The SQL count() function is then used to count the number of records
for the defined column. This allows the one function to be used to return
information about any column in the database table.

A for each statement on line 80 is used to iterate through each of the
rows returned from the database. Once the query has run, a collection of
counted records will be returned. Before the data is used by the chart, on
line 83 and 86, a PHP echo is used to place modified JavaScript code on
the page for both the count of Yes records if we are viewing 1 records and
0 if we are working with the count of No records. These echo statements
generate JavaScript array values that are read in by the chart.

63 <?php
64 function getData($column){
65 try {

Custom Dashboards � 115

66 $host = 'localhost:3306';
67 $dbname = 'bookexamples';
68 $user = 'sampleuser';
69 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
70 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
71 $user, $pass);
72 $sql = "SELECT $column, count($column) FROM survey WHERE
73 FeedbackFormId = 1
74 GROUP BY $column";
75 $sth = $DBH->prepare($sql);
76 $sth->execute();
77 $res = $sth->fetchAll();
78 // add the label
79 echo 'lab.push("'.$column.'");';
80 foreach ($res as $row){
81 // its is 0 add to first column
82 if($row[0] == 0){
83 echo " data1.push('".$row[1]."');";
84 } //if it is 1 add to the second column
85 else if($row[0] == 1){
86 echo "data2.push('".$row[1]."');";
87 }
88 }
89 } catch(PDOException $e) {echo $e;}
90 }
91 ?>

SAMPLE CODE 14: chart2.php — Example PHP to retrieve the
records for a single column by name.

Output

In Figure 4.9 we can see the result of calling the getData() function
to gather the values for the married column. Both have a count of Yes
and a count for No.

4.6 DYNAMIC DASHBOARD

Although we looked at gathering data and placing results into individ-
ual database tables, there was no complete solution. In the following
sections, we will introduce the concept of campaigns. Each campaign is

116 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 4.9: Two-column bar chart for binary data.

considered one complete data gathering and analysis solution that will
be presented on a dashboard.

Example 5: Basic dashboard

To view data, a dashboard is designed to allow users to dynamically
select different data sources and render visualizations. This example in-
cludes Bootstrap, Popper.js, jQuery, and jQueryUI.

1. camps.sql — This contains the dashboard camps table and the
dashboard camp elements table that are used for storing data
about an individual campaigns.

Custom Dashboards � 117

2. dashboard1.php — A sample dashboard that is styled using Boot-
strap.

3. Bootstrap — The JavaScript and CSS is used to provide a layout
to the dashboard.

4. dashboard.css — This contains additional CSS for the dashboard
layout.

5. Popper.js — This is used as a tooltip positioning engine for Boot-
strap.

6. jQuery/jQueryUI — This library is used to provide modals and
for selecting individual tags using the jQuery selector.

Example code: camps.sql

Before beginning with the process of editing the HTML for the dash-
board, a new database table is created titled dashboard camps, as shown
in Sample Code 15. This will be used as the main location for storing
an individual campaign in the system. Each campaign will contain a
date when it was first created and a brief description that is used as the
method of describing the campaign to the user. The core identifier used
for an individual campaign is the campid. Unlike other fields, the campid
is not auto-incremented as legacy labels and IDs may have already been
created. In the case where they are not, a simple integer can be used for
each unique campaign.

1 CREATE TABLE `dashboard_camps` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `datemade` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `campname` VARCHAR(100),
5 `campid` INT,
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 15: Example dashboard camps database table.

Each individual campaign can contain a number of different cam-
paign elements, e.g., total sales data that is an integer that is stored
in a database table X with column name Y. As the data may not be

118 � Applied User Data Collection and Analysis Using JavaScript and PHP

stored in a database, the method used to store these data sources should
remain flexible. To achieve this a second database table titled dash-
board camp elements is created. This table will contain all the data about
the individual data sources a single campaign may have. The table con-
sists of a unique primary key titled ID, followed by the campID that is
linked to the campID in the previous table. The description column is
used to provide a brief description to the user as to what the element is
used for.

The datatype column is used to define the data type, e.g., int, string,
boolean, etc. This is used as a flag for the developer in future steps
when this data is going to be used. The final column titled datasource
contains a reference to where the element being visualized is stored, e.g.,
in a MySQL database table or a CSV file that was uploaded to the server.
The options column is used to hold specific data about the columns that
should be retrieved from the data source. The final column is the chart
that contains a description of the type of chart that the data source
is associated with, e.g., a bar chart or line chart. Although these two
examples are used for the dashboard, additional chart types can easily
be added.

1 CREATE TABLE `dashboard_camp_elements` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `campID` INT,
4 `desc` VARCHAR(500),
5 `datatype` VARCHAR(100),
6 `datasource` VARCHAR(100),
7 `options` VARCHAR(500),
8 `chart` VARCHAR(50),
9 PRIMARY KEY (`id`)

10);

Output

Figure 4.10 describes a sample database table containing values for
each of the attributes.

To create a dashboard, Bootstrap offers a sample dashboard lay-
out that can be used for the basic configuration. Figure 4.11 shows an
example of the Bootstrap theme with very minimal modifications to
remove unnecessary links and data. This sample can be seen live at
https://getBootstrap.com/docs/4.0/examples.

https://getBootstrap.com/

Custom Dashboards � 119

FIGURE 4.10: Database table with sample data sources and
configuration options.

FIGURE 4.11: Sample Bootstrap dashboard.

Example code: dashboard1.php
In Sample Code 16, a new file titled dashboard1.php is created. This will
be the main portal when a user has logged into the system. At the top
of this page inside the head tag on lines 4–8, the default tags are added,
including the viewport, description, author, and title for the page. This
is followed by the CSS that is used for the core Bootstrap theme on line
9. A custom CSS file titled dashboard.css is also added on line 12 that
can be modified to suit any application theme. On lines 12–15, jQuery,
Popper.js, Bootstrap, and jQueryUI are included.

Once the libraries have been imported, the header for the dashboard
is included on line 20. This header contains a nav tag that has the class
set to navbar including the navbar-dark theme that is fixed to the top
of the page.

On line 22, a link is included with the class set to navbar-brand which
is a reference to the main text focused on the page. In this example, the
word Dashboard is used as the title. A div tag is added with the class
set to collapse navbar-collapse on line 23. This adds an additional item
to the nav bar that can be used as a drop-down menu. In this example
it is used to display the word Home. On line 26, a link to the homepage
or the start page of the dashboard is placed in the href tag.

120 � Applied User Data Collection and Analysis Using JavaScript and PHP

On line 28, a navbar item titled Campaign is added that will be
used as the root of the campaign. This contains three options on lines
32–34, Add New Visualization, Build New Campaign and Add Campaign
Elements. As each of these items are children of the Campaign navbar
item, the class of each is set to dropdown-item. Three separate modals
will open when each item is clicked. To trigger this process a unique href
value is given to each.

On line 38 and 41, two additional links are added for the custom
Text Analysis feature and the View Red Flags feature that will be added
in a later chapter.

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="utf-8">
5 <meta name="viewport" content="width=device-width,

initial-scale=1, shrink-to-fit=no">↪→

6 <meta name="description" content="">
7 <meta name="author" content="">
8 <title>Dashboard</title>
9 <link rel="stylesheet" href="Bootstrap.min.css">

10 <link rel="stylesheet"
href="https://code.jquery.com/ui/1.12.1/themes/base/↪→

11 jquery-ui.css">
12 <link href="dashboard.css" rel="stylesheet">
13 <script src="jquery-3.1.0.min.js"></script>
14 <script src="popper.min.js"></script>
15 <script src="Bootstrap.min.js"></script>
16 <script

src="https://code.jquery.com/ui/1.12.1/jquery-ui.js">↪→

17 </script>
18 </head>
19 <body>
20 <header>
21 <nav class="navbar navbar-expand-md navbar-dark

fixed-top bg-dark">↪→

22 Dashboard
23 <div class="collapse navbar-collapse"

id="navbarsExampleDefault">↪→

24 <ul class="navbar-nav mr-auto">
25 <li class="nav-item active">
26 Home <span

class="sr-only">(current)↪→

27

https://code.jquery.com/
https://code.jquery.com/

Custom Dashboards � 121

28 <li class="nav-item dropdown">
29 <a class="nav-link dropdown-toggle"

href="#" id="dropdown01"
data-toggle="dropdown"

↪→

↪→

30 aria-haspopup="true"
aria-expanded="false">Campaign↪→

31 <div class="dropdown-menu"
aria-labelledby="dropdown01">↪→

32 <a class="dropdown-item" id="addViz"
href="#addAtt" data-toggle="modal"
>Add New Visualisation

↪→

↪→

33 <a class="dropdown-item"
href="#buildCamp"
data-toggle="modal" >Build New
Campaign

↪→

↪→

↪→

34 <a class="dropdown-item"
href="#addElements"
data-toggle="modal" >Add Campaign
Elements

↪→

↪→

↪→

35 </div>
36
37 <li class="nav-item dropdown">
38 <a class="nav-link dropdown-toggle"

href="#" id="dropdown01"
data-toggle="dropdown"

↪→

↪→

39 aria-haspopup="true"
aria-expanded="false">Text
Analysis

↪→

↪→

40 <div class="dropdown-menu"
aria-labelledby="dropdown02">↪→

41 <a class="dropdown-item"
href="#selectRanges"
data-toggle="modal" >View Red
Flags

↪→

↪→

↪→

42 </div>
43
44
45 </div>
46 </nav>
47 </header>

SAMPLE CODE 16: dashboard1.php — Simple Bootstrap dashboard
— part 1.

122 � Applied User Data Collection and Analysis Using JavaScript and PHP

To add extra options, on line 48, an additional div is added with the
class set to container-fluid. Inside this, a nav tag is added with the class
set to small, with a light theme. Two options are added on lines 53 and
58 in the form of two li tags with the class set to nav-item. Although
currently unused, a href can be set here.

In Sample Code 17, a tag titled main is added that represents the
center of the dashboard. Inside of this tag a div tag is added with the
ID set to output on line 66. As visualizations are created, they will be
appended into this div tag.

48 <div class="container-fluid">
49 <div class="row">
50 <nav class="col-sm-3 col-md-2 d-none d-sm-block bg-light
51 sidebar">
52 <ul class="nav nav-pills flex-column">
53 <li class="nav-item">
54 Overview
55 (current)
56
57
58 <li class="nav-item">
59 Export
60
61
62 </nav>
63 <main role="main" class="col-sm-9 ml-sm-auto col-md-10
64 pt-3">
65 <h1>Dashboard</h1>
66 <div id="output">
67 </div>
68 <section class="row text-center placeholders">
69 </section>
70 </div>
71 </div>

SAMPLE CODE 17: dashboard1.php — Simple Bootstrap dashboard
— part 2.

Custom Dashboards � 123

Output
Figure 4.12 shows the dashboard with a custom navigation bar.

FIGURE 4.12: Bootstrap default dashboard with a nav bar.

Example 6: Select campaign elements
When the Campaign menu on the dashboard is clicked, followed by the
Add New Visualization, a modal is required to present the user with a
list of campaigns and campaign attributes.

This example includes Bootstrap, Popper.js, jQuery, and jQueryUI.

1. dashboard2.php — This is a modification to the original dashboard
to present the user with campaign options.

2. ajax.php — This file is used to retrieve campaign elements and
data from the database.

3. Bootstrap — The JavaScript and CSS is used to provide a layout
to the dashboard.

4. dashboard.css — This contains additional CSS for the dashboard
layout.

5. Popper.js — This is used as a tooltip positioning engine for Boot-
strap.

6. jQuery/jQueryUI — This library is used to provide modals and
for selecting individual tags using the jQuery selector.

124 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: dashboard2.php
In Sample Code 18, to create the modal, a div tag is added with the
class set to modal fade on line 2. This modal is uniquely identified by
the ID that is set to addAtt. By default, the modal is hidden on the page
until it has been opened by the user. The role of the tag is set to dialog.
The aria-labelledby is set to addAtt, that is similar to creating a name
to link a label to the div. Inside this div, a second div on line 4 is added
with the class set to modal-dialog. This contains a div tag on line 6 with
the class set to modal-header that is displayed at the top of the modal.
In this header, on line 7, a title is added with the text Select Campign.
On line 8, a button tag is used on the right-hand side of the modal to
provide the user an option to close the modal if required.

In the body of the modal, a row is added on line 14 that contains
a div tag with the class set to col-4 on line 15. Inside this, a list-group
is added for structure on line 16. After this, on line 19, a second div is
added with the class set to col-8 that provides a wider window for the
content to be displayed. A list-group is again added for structure on line
20. On lines 27 and 28, two buttons are added to the end of the modal.
The first of these is the Close button, allowing the user to dismiss the
modal followed by the Add Vizualization button. When this button is
clicked, the selected element is used as the starting point for the call
that is made to the addViz() JavaScript function that is responsible for
adding the visualization to the dashboard. The modal does not have
any content specified in this list. The list of campaigns and campaign
attributes is added later using JavaScript.

1 <!-- Select Campaign Modal -->
2 <div class="modal fade" id="addAtt" tabindex="-1" role="dialog"
3 aria-labelledby="addAtt" aria-hidden="true">
4 <div class="modal-dialog" role="document">
5 <div class="modal-content">
6 <div class="modal-header">
7 <h5 class="modal-title" id="addAtt">Select Campaign</h5>
8 <button type="button" class="close" data-dismiss="modal"

aria-label="Close">↪→

9 ×
10 </button>
11 </div>
12 <div class="modal-body">
13 <!--- List of camps-->
14 <div class="row">
15 <div class="col-4">

Custom Dashboards � 125

16 <div class="list-group" id="list-tab-camp"
role="tablist">↪→

17 </div>
18 </div>
19 <div class="col-8">
20 <div class="list-group" id="list-tab-att"

role="tablist">↪→

21 Click on a campaign for attributes
22 </div>
23 </div>
24 </div>
25 </div>
26 <div class="modal-footer">
27 <button type="button" class="btn btn-secondary"

data-dismiss="modal">Close</button>↪→

28 <button onclick="addViz()" type="button" class="btn
btn-primary">Add Visualisation</button>↪→

29 </div>
30 </div>
31 </div>
32 </div>

SAMPLE CODE 18: dashboard2.php — List of campaigns modal.

In Sample Code 19, on line 35, the jQuery selector is used to select
the menu item with the ID set to addViz. When this is clicked, on line 36,
a jQuery POST is performed to the ajax.php page. The type being sent
to the page is set to getcamp. This function returns a variable titled data
on line 37 that contains the list of campaigns marked up in HTML. On
line 37 the list-tab-camp element is selected and the HTML is set using
the html() function and passing in the data variable that was returned.

When each campaign is clicked, a list of elements is available for
visualization. On line 41 to perform this action, a listener is bound to
the div tag with the ID set to list-tab-camp. On shown.bs.tab, e.g., a
person clicking on one of the campaigns, this function will then trigger.
On line 42, a variable title data is added that will contain the HTML for
the selected tab element. On line 43, the campaign ID is extracted from
the data variable using the attr() function and passing in the name of
the element of interest. In this case, the cid.

To retrieve a list of elements that make up the individual campaign,
on line 45, a POST is made to the ajax.php passing the type of request
as the getformfields. The cid for the individual campaign is also passed

126 � Applied User Data Collection and Analysis Using JavaScript and PHP

to return only the relevant elements. On line 46, when the function is
complete, the result will be returned inside a function with a variable
titled data that is appended to the list=tab-att using the html() function
on line 47.

33 <script>
34 // Add list of camp elements to the modal
35 $("#addViz").click(function() { console.log("Called add viz");
36 $.post("ajax.php", { type: "getcamp"})
37 .done(function(data) {
38 $('#list-tab-camp').html(data);
39 });
40 });
41 $('div[id="list-tab-camp"]').on('shown.bs.tab', function (e) {
42 var data = e.target; // HTML of just selected tab
43 var cid = $(data).attr('cid'); // get the ID
44 // get list of attributes for campaign
45 $.post("ajax.php", { type:"getformfields", cid: cid})
46 .done(function(data) {
47 $('#list-tab-att').html(data);
48 });
49 })
50 </script>

SAMPLE CODE 19: dashboard2.php — JavaScript for listing
campaigns on the dashboard modal.

Example code: ajax.php
To retrieve a list of campaigns and campaign elements, the ajax.php page
is modified. In Sample Code 20, on line 3, if the type is set to getcamp
a list of campaigns are returned by calling the getCamp() PHP function
on line 4. A second type attribute titled getformfields is added on line 6,
for retrieving a campaign elements based on the cid.

When the campaign modal first opens, a list of campaigns is retrieved
from the dashboard camps table. The two pieces of information of interest
are the campid and the campname. During each iteration of the foreach
statement on line 22, a new href link is created. The class is set to
list-group-item ist-group-item-action. Custom attributes are added into
the link to aid the movement of basic campaign data such as the cid
attribute. The list-camp is set to be the ID of the campaign. The data-
toggle attribute is set as a list on line 24. For the user, the text shown is

Custom Dashboards � 127

the campid followed by a single dash followed by the campname that is
extracted from the row.

For each campaign in the modal that has been selected, an AJAX
request is made to the ajax.php page making a call to the getFormFields()
function.

1 <?php
2 $type = $_POST['type'];
3 if($type == 'getcamp'){
4 getCamp();
5 }
6 else if($type == 'getformfields'){
7 getFormFields();
8 }
9 function getCamp(){

10 try {
11 $host = 'localhost:3306';
12 $dbname = 'bookexamples';
13 $user = 'sampleuser';
14 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
15 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
16 $user, $pass);
17 $sql = "select campid, campname from dashboard_camps;";
18 $sth = $DBH->prepare($sql);
19 $sth->execute();
20 $res = $sth->fetchAll();
21

22 foreach($res as $row){
23 $id = $row['campid'];
24 echo '<a class="list-group-item list-group-item-action"
25 cid="'.$id.'"
26 id="list-camp-'.$id.'" data-toggle="list" href=
27 "#list-camp-'.$id.'"
28 role="tab" aria-controls="camp-'.$id.'">CID:' .
29 $row['campid'] . '-
30 '.$row['campname'].'';
31 }
32

33 } catch(PDOException $e) {echo $e;}
34 }

SAMPLE CODE 20: ajax.php — Retrieving a list of campaigns —
part 1

128 � Applied User Data Collection and Analysis Using JavaScript and PHP

In Sample Code 21, on line 37, the function is defined. This function
is responsible for returning a list of data about the elements that make
up a single campaign. These Include the text-based description that was
given to the element, the dataType that was being processed, information
about the data source, e.g., if it was a CSV file or SQL and the type of
chart that will be used to render the data on the dashboard.

On line 38, the cid that has been passed is stored in a local variable.
On line 46, the SQL to select the campaign elements is added. A question
mark is used for the campID attribute as it is dynamically passed to the
function and then appended using the bindParam() function on line 49.
On line 53, a for each statement is added that iterates over the results.
On lines 54–58, for each record, the ID, description, data type, data
source, and chart type are gathered and placed into local variables. On
line 61, for each record a complete HTML link is created. Each of the
attributes is placed into the link to aid future retrieval during the graph
generation process.

35 // return a list of form fields
36 // for a given cid
37 function getFormFields(){
38 $cid = $_POST['cid'];
39 try {
40 $host = 'localhost:3306';
41 $dbname = 'bookexamples';
42 $user = 'sampleuser';
43 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
44 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
45 $user, $pass);
46 $sql = "select * from dashboard_camp_elements where
47 campID=?;";
48 $sth = $DBH->prepare($sql);
49 $sth->bindParam(1, $cid, PDO::PARAM_STR);
50 $sth->execute();
51 $res = $sth->fetchAll();
52

53 foreach($res as $row){
54 $elementID = $row['id'];
55 $desc = $row['desc'];
56 $dataType = $row['datatype'];
57 $src = $row['datasource'];
58 $chart = $row['chart'];
59 // print out each individual attribute as a new button
60 // inside of the tab panel.

Custom Dashboards � 129

61 echo'<a chart="'.$chart.'" datasource="'.$src.'"
62 elementid="'.$elementID.'"
63 elementtitle="'.$desc.'" cid="'.$cid.'"
64 class="list-group-item list-group-item-action"
65 id="list-camp-e" data-toggle="list" href="#"
66 role="tab"
67 aria-controls="camp">'.$desc.' - ('.$dataType.') -
68 '.$src.'';
69 }
70 } catch(PDOException $e) {echo $e;}
71 }
72 ?>

SAMPLE CODE 21: ajax.php - Retrieving a list of form fields - part 2

Output
Figure 4.13 shows the Select Campaign modal. This modal has a list
of the active campaigns on the left. When the campaign is selected, a
list of the associated elements is shown on the right of the modal. This
contains information about the element description, the format of the
data, and the source of the data.

FIGURE 4.13: Select campaign modal with two available campaigns.

130 � Applied User Data Collection and Analysis Using JavaScript and PHP

Figure 4.14 describes a list of campaigns on the left followed by a list
of campaign elements that can be visualized on the right. Once an item
has been selected in the right menu, the Add Visualization option can
be selected.

FIGURE 4.14: Viewing a list of campaigns with a single campaign
element selected.

Example 7: Adding a visualization
When any of the campaign elements are clicked on the campaign modal
they will become blue, indicating they have been selected. To add a
visualization based on this selected campaign element, a call is made to
the addViz() function when the Add Visualization button is clicked.

This example contains four files:

1. dashboard3.php — This file contains the original dashboard HTM-
L/JavaScript with an additional function to add visualizations.

2. data processor.php — This file contains the PHP to access the
database or file depending on the data source chosen.

3. line.php — This contains the HTML/JavaScript to generate a
Charts.js line chart.

4. barchart.php — This contains the HTML/JavaScript to generate
a Chart.js bar chart.

Custom Dashboards � 131

Example code: dashboard3.php
In Sample Code 22, the addViz() function is described that is added
inside the script tag at the bottom of the dashboard3.php file. On line 2,
a simple console.log() is performed to indicate to us that the function has
correctly been called. On lines 3–6, the list-tab-att items are searched for
where the status is set to a.active indicating that it has been selected.
For the selected campaign item, the elementID, chart, datasource, and
elementtitle are extracted. These were placed in the individual items
earlier during generation.

On line 11, a check is performed to see what type of chart is required.
On line 11, if the type is equal to barchart, the jQuery selector is used
to select the output div tag and append a new div tag. The contents of
this div tag are gathered by dynamically calling the barchart.php page
via the load() function and passing in the source, ID, and title variables.
On line 16, the same process is repeated for the line chart.

1 function addViz(){
2 console.log('add viz called');
3 var elementid = $("#list-tab-att a.active").
4 attr('elementid');
5 var chartType = $("#list-tab-att a.active").
6 attr('chart');
7 var dataSource = $("#list-tab-att a.active").
8 attr('datasource');
9 var vizTitle = $("#list-tab-att a.active").

10 attr('elementtitle');
11 if(chartType == 'barchart'){
12 $('#output').append(($('<div>').load("bar.php?source="
13 +dataSource+"&id="
14 +elementid + "&title="+escape(vizTitle))));
15 }
16 else if(chartType =='linechart'){
17 $('#output').append(($('<div>').load("line.php?source="
18 +dataSource+"&id="
19 +elementid + "&title="+escape(vizTitle))));
20 }
21 }

SAMPLE CODE 22: dashboard3.php — addViz() function to add a
new visualization based on the current selected campaign element.

132 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: data processor.php
Both the barchart.php and line.php file require use of a file titled
data processer.php. This file is used as the main method of gathering
data from different data sources.

In Sample Code 23, on line 2, the getData() function is defined that
takes in the ID of the element to chart along with the sourceType that
references where the data is currently stored. On line 3, if the source type
is a MySQL database, then a query to the database is made. The query
is gathered by making a call to the getDataSourceOptions() function on
line 11 and passing the ID of the element to be visualized. For each
row that is returned the row[0] that contains the X value is added to
the JavaScript lab array by calling the push() function on line 16 and
passing the term. On line 17, the Y value to be displayed to modify the
height of the bar is gathered from the row[1] and pushed to the data1
JavaScript array.

On line 23, if the sourceType variable is set to csv, then a call to
the getDataSourceOptions is made on line 24. This function takes in the
ID of the elements to be graphed. The data that will be plotted must
follow the same structure of X and Y. Where X is the label and Y is the
value to be plotted. During the process of adding a CSV to the system,
the two columns are defined, and then the file name is described. In the
database table, these values take the form of filename.csv, 1, 2 where 1
is the X column and 2 is the Y column of the CSV file to be plotted.

To break the values apart for processing, a call is made to the ex-
plode() function on line 25 that takes in a delimiter followed by the
string to process. In this example, the delimiter is a comma. A call to
fgetcsv() is made on line 27 to open a connection to the file and gather
the contents. As the file is a CSV, the delimiter is once again specified
as a comma here. The label for the chart is stored in the lab JavaScript
array.

The values for this are extracted from the data variable that contains
the individual columns in the CSV file. On lines 30 and 31, a reference
to col1 and col2 is provided to identify the two columns of interest and
extract their values. The first of these is the label and the second is the
value associated to the label. These are printed using an echo statement
that contains the javaScript to add to the lab and data1 JavaScript
arrays. The JavaScript push() function is used to add the values to the
associated arrays.

Custom Dashboards � 133

1 <?php
2 function getData($id, $sourceType){
3 if($sourceType =='mysql'){
4 try {
5 $host = 'localhost:3306';
6 $dbname = 'bookexamples';
7 $user = 'sampleuser';
8 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
9 $DBH = new PDO("mysql:host=$host;dbname=$dbname",

10 $user, $pass);
11 $sql = getDataSourceOptions($id);
12 $sth = $DBH->prepare($sql);
13 $sth->execute();
14 $res = $sth->fetchAll();
15 foreach ($res as $row){
16 echo " lab.push('".$row[0]."');";
17 echo " data1.push('".$row[1]."');";
18 }
19

20 } catch(PDOException $e) {echo $e;}
21

22 }
23 else if($sourceType =='csv'){
24 $dataSourceOptions = getDataSourceOptions($id);
25 $op = explode(',',$dataSourceOptions);
26 if (($file = fopen('samplefiles/'.$op[0], "r")) !== FALSE)
27 {while (($data = fgetcsv($file, 1000, ",")) !== FALSE)
28 {$col1 = $op[1];
29 $col2 = $op[2];
30 echo " lab.push('".$data[$col1]."');";
31 echo " data1.push('".$data[$col2]."');";
32 }
33 fclose($file);
34 }
35 }
36

37

38 }
39 function getDataSourceOptions($id){
40 try {
41 $host = 'localhost:3306';
42 $dbname = 'bookexamples';
43 $user = 'sampleuser';
44 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
45 $DBH = new PDO("mysql:host=$host;dbname=$dbname",

134 � Applied User Data Collection and Analysis Using JavaScript and PHP

46 $user, $pass);
47 $sql = "SELECT options FROM dashboard_camp_elements
48 WHERE id = ?";
49 $sth = $DBH->prepare($sql);
50 $sth->bindParam(1, $id, PDO::PARAM_INT);
51 $sth->execute();
52 $res = $sth->fetch();
53 return $res[0];
54 } catch(PDOException $e) {echo $e;}
55 }

SAMPLE CODE 23: data processor.php — Get data from a data
source depending on the data source type.

Example code: line.php
A file titled line.php is created to visualize line charts. On line 2, the
data processor.php file is included that will provide access to the data
source as described earlier. On lines 11 and 12, the two JavaScript files
required by Charts.js are included. Both these files must be in the current
directory. On lines 14–18, the canvas is set to not allow selections. On
line 22, a div is added that will be used for holding the visualization. On
line 27, a random number is generated and placed into a local variable
titled uniqueID. This is used as the ID for the graph. On lines 38 and
30, the ID is set into the container and the canvas. On line 36 a call is
made to the PHP function titled getData() that was described earlier.
The ID and the sourceType are passed to this function.

On line 38, the config variable is added that contains the type of graph
to be rendered. the labels is set to be the lab array that was generated.
Inside the datasets array on line 43, the data for the graph is set to be
the data1 array that was generated.

1 <?php
2 include('data_processor.php');
3 $id = $_GET['id'];
4 $title = $_GET['title'];
5 $sourceType = $_GET['source'];
6 ?>
7 <!doctype html>
8 <html>
9 <head>

10 <title>Line Chart</title>
11 <script src="Chart.bundle.js"></script>

Custom Dashboards � 135

12 <script src="utils.js"></script>
13 <style>
14 canvas{
15 -moz-user-select: none;
16 -webkit-user-select: none;
17 -ms-user-select: none;
18 }
19 </style>
20 </head>
21 <body>
22 <div id="container" style="width:50%"; class="ui-widget-
23 content">
24 <canvas id="canvas"></canvas>
25 </div>
26 <script>
27 var uniqueID = Math.floor((Math.random() * 1000) + 1);
28 document.getElementById("container").setAttribute("id",
29 "container"+uniqueID);
30 document.getElementById("canvas").setAttribute("id",
31 "canvas"+uniqueID);
32 var lab = new Array();
33 var data1 = new Array();
34 <?php
35 // Get the data for the graph
36 getData($id,$sourceType);
37 ?>
38 var config = {
39 type: 'line',
40 data: {
41 labels: lab,
42 datasets: [{
43 label: "",
44 backgroundColor: window.chartColors.red,
45 borderColor: window.chartColors.red,
46 data: data1,
47 fill: false,
48 }]
49 },

SAMPLE CODE 24: line.php — Used when adding a visualization —
part 1.

In Sample Code 25, on line 84, the chart reference ctx and the config
are passed to to create a new chart object. On lines 85 and 86, the drag-
gable() and the resizable() functions are called on the container allowing

136 � Applied User Data Collection and Analysis Using JavaScript and PHP

it to be moved on the screen. These functions are components of the
jQueryUI library that is added as part of the original dashboard.

50 options: {
51 responsive: true,
52 title:{
53 display:true,
54 text: unescape('<?php echo $title;?>')
55 },
56 tooltips: {
57 mode: 'index',
58 intersect: false,
59 },
60 hover: {
61 mode: 'nearest',
62 intersect: true
63 },
64 scales: {
65 xAxes: [{
66 display: true,
67 scaleLabel: {
68 display: true,
69 labelString: 'Month'
70 }
71 }],
72 yAxes: [{
73 display: true,
74 scaleLabel: {
75 display: true,
76 labelString: 'Value'
77 }
78 }]
79 }
80 }
81 };
82 var ctx = document.getElementById("canvas"+uniqueID).
83 getContext("2d");
84 window.myLine = new Chart(ctx, config);
85 $("#container"+uniqueID).resizable();
86 $("#container"+uniqueID).draggable();
87 </script>
88 </body>
89 </html>

SAMPLE CODE 25: line.php — Used when adding a visualization —
part 2.

Custom Dashboards � 137

Example code: bar.php

In Sample Code 26 and 27, the bar.php file can be seen. This file
has the exact same JavaScript as the line.php file. The only modification
that needs to be made is on line 52, the type is set to bar.

1 <?php
2 include('data_processor.php');
3 $id = $_GET['id'];
4 $title = $_GET['title'];
5 $sourceType = $_GET['source'];
6 ?>
7 <!doctype html>
8 <html>
9 <head>

10 <script src="Chart.bundle.js"></script>
11 <script src="utils.js"></script>
12 <style>
13 canvas {
14 -moz-user-select: none;
15 -webkit-user-select: none;
16 -ms-user-select: none;
17 }
18 </style>
19 </head>
20 <body>
21 <div id="container" style="width:50%"; class="ui-widget-content">
22 <canvas id="canvas"></canvas>
23 </div>
24 <script>
25 var uniqueID = Math.floor((Math.random() * 1000) + 1);
26 document.getElementById("container").setAttribute("id",
27 "container"+uniqueID);
28 document.getElementById("canvas").setAttribute("id",
29 "canvas"+uniqueID);
30 var color = Chart.helpers.color;
31 var lab = new Array();
32 var data1 = new Array();
33 <?php
34 // Get the data for the graph
35 getData($id, $sourceType);
36 ?>
37 var barChartData = {
38 labels: lab,
39 datasets: [{

138 � Applied User Data Collection and Analysis Using JavaScript and PHP

40 label: '',
41 backgroundColor: color(window.chartColors.red).
42 alpha(0.5).rgbString(),
43 borderColor: window.chartColors.red,
44 borderWidth: 1,
45 data: data1
46 }]
47

48 };
49 var ctx = document.getElementById("canvas"+uniqueID).
50 getContext("2d");
51 window.myBar = new Chart(ctx, {
52 type: 'bar',
53 data: barChartData,

SAMPLE CODE 26: bar.php — Used when adding a visualization —
part 1.

54 options: {
55 responsive: true,
56 scales: {
57 yAxes: [{
58 ticks: {
59 beginAtZero: true
60 }
61 }]
62 },
63 legend: {
64 display:false,
65 },
66 title: {
67 display: true,
68 text: unescape('<?php echo $title;?>')
69 }
70 }
71 });
72 $("#container"+uniqueID).resizable();
73 $("#container"+uniqueID).draggable();
74 </script>
75 </body>
76 </html>

SAMPLE CODE 27: bar.php — Used when adding a visualization —
part 2.

Custom Dashboards � 139

Output
Figure 4.15 outlines the final dashboard that contains two different vi-
sualizations. The first of these is a bar chart and the second is a line
chart. As the setup of the chart was dynamic, to add in further chart
types requires minimal modification.

FIGURE 4.15: Example dashboard with two visualizations added.

Example 8: Adding a new campaign

The backbone of each visualization is the campaign. To add new
campaigns into the system, a menu item titled Build New Campaign is
available in the Campaign drop-down menu. When this is selected, a
new modal is created that allows the user to enter the unique ID for
the campaign, followed by a description. To do this, a new modal is first
created.

This example consists of two files:

1. dashboard4.php — This is the original dashboard with an addi-
tional Bootstrap modal.

2. ajax.php — This file is used to dynamically insert a new campaign
into the database.

140 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: dashboard4.php
In Sample Code 28, on line 2, a div tag is added with the ID set to
buildCamp. On line 9, the title for the modal is set to Create new cam-
paign. On lines 21 and 22, two input fields are added with the IDs set to
newcid and newdesc, respectively. On line 28, a close button is added,
followed by another button on line 30 that is responsible for triggering
the campaign to be added to the database. The ID of this button is set
to addNewCamp.

1 <!-- Build new camp modal -->
2 <div class="modal fade" id="buildCamp" tabindex="-1"
3 role="dialog"
4 aria-labelledby="buildCamp"
5 aria-hidden="true">
6 <div class="modal-dialog" role="document">
7 <div class="modal-content">
8 <div class="modal-header">
9 <h5 class="modal-title" id="buildCamp">Create new

10 Campaign</h5>
11 <button type="button" class="close" data-dismiss="modal"
12 aria-label="Close">
13 ×
14 </button>
15 </div>
16 <div class="modal-body">
17 <!--- List of camps-->
18 <div class="row">
19 <div class="col-5">
20 <div class="list-group" id="list-tab-camp" role="tablist">
21 Campaign ID <input type="text" id="newcid">

22 Description <input type="text" id="newdesc">

23 </div>
24 </div>
25 </div>
26 </div>
27 <div class="modal-footer">
28 <button type="button" class="btn btn-secondary"
29 data-dismiss="modal">Close</button>
30 <button id="addNewCamp" type="button" class=
31 "btn btn-primary"
32 data-dismiss="modal">Add New Campaign</button>
33 </div>
34 </div>
35 </div>

Custom Dashboards � 141

36 </div>
37 <!---- END NEW CAMP MODAL -->

SAMPLE CODE 28: dashboard4.php — Additional add new campaign
modal.

In Sample Code 29, on line 3, a jQuery listener is bound to the
addNewCamp button. On line 5 and 6, when the button is clicked, the
jQuery selector is used to grab the newcid and the newdesc values from
the modal. On line 7, these variables are POST to the ajax.php page
under the type titled addnewcamp. A simple alert() is used to output
the response after calling the ajax.php page.

1 <script>
2 // example 3 changes
3 $("#addNewCamp").click(function() {
4 alert("called");
5 var newcid = $("#newcid").val();
6 var newdesc = $("#newdesc").val();
7 $.post("ajax.php", { type: "addnewcamp", newcid:newcid,
8 newdesc:newdesc})
9 .done(function(data) {

10 alert(data);
11 });
12

13 });
14 </script>

SAMPLE CODE 29: dashboard4.php — Add new campaign button
click listener.

Example code: ajax.php
Sample Code 30 outlines the ajax.php page. On line 1, the type is first
caught. On line 2, if the type is equal to addnewcamp, a call is made to the
addNewCamp() function. On lines 6 and 7, the new ID and description
are first extracted from the POST and placed in local variables. On line
13, a new connection to the database is created. On line 15, the SQL
INSERT statement is created placing two question marks for the values.
The values are bound by calling the bindParam() function on lines 18
and 19. On line 20, the INSERT statement is executed.

142 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 $type = $_POST['type'];
2 if($type == 'addnewcamp'){
3 addNewCamp();
4 }
5 function addNewCamp(){
6 $newcid = $_POST['newcid'];
7 $newdesc = $_POST['newdesc'];
8 try {
9 $host = 'localhost:3306';

10 $dbname = 'bookexamples';
11 $user = 'sampleuser';
12 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
13 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
14 $user, $pass);
15 $sql = "INSERT INTO `dashboard_camps` (`campname`,
16 `campid`) VALUES (?,?);";
17 $sth = $DBH->prepare($sql);
18 $sth->bindParam(1, $newdesc, PDO::PARAM_STR);
19 $sth->bindParam(2, $newcid, PDO::PARAM_INT);
20 $sth->execute();
21 echo 'Added';
22 } catch(PDOException $e) {echo 'failed' . $e;}
23 }

SAMPLE CODE 30: ajax.php — Add a new campaign PHP.

Output
Figure 4.16 shows the output after clicking Add New Campaign.

Example 9: Add new campaign element

The most complicated modal that is shown to the user is the modal
that is designed to allow the user to specify a new campaign element. A
campaign element is a single field in a campaign. This example consists
of three files:

1. dashboard5.php — The original dashboard with a new modal for
adding campaign elements.

2. ajax.php — This file is responsible for inserting a new campaign
element record into the database.

Custom Dashboards � 143

FIGURE 4.16: Two text fields allowing the user to create a new
campaign.

3. listOfFiles.php — This file is used to retrieve a list of files that can
be used as a data source.

Example code: dashboard.php
In Sample Code 31, on line 2 a new div tag is created. The ID for this
div is set to addElements. The role is set to dialog.

On line 19, an input field is added, allowing the user to enter the
campaign ID. On line 21, another input field is added, allowing the user
to enter a column name. As data can come in any format, on line 24,
a select field is added, allowing the user to specify if the content is int,
text, or decimal. On line 30, another field is added, allowing the user to
determine if the content is coming from a CSV file or a MySQL database.

On line 35, a select is added, allowing the user to select if they want
a bar chart or a line chart to appear on the dashboard. A div titled
dataSourceOptions is added. When this modal loads, no content is shown
in this div tag. When the user selects MySQL, a text area will be shown
in this div. When the user selects CSV, then a list of files will be shown
to select from.

144 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 <!-- ADD NEW CAMP ELEMENT -->
2 <div class="modal fade" id="addElements" tabindex="1"
3 role="dialog"
4 aria-labelledby="addElements" aria-hidden="true">
5 <div class="modal-dialog">
6 <div class="modal-content" style="width:900px">
7 <div class="modal-header">
8 <h5 class="modal-title" id="addElements">Create New
9 Campaign Element</h5>

10 <button type="button" class="close" data-dismiss="modal"
11 aria-label="Close">
12 ×
13 </button>
14 </div>
15 <div class="modal-body">
16 <div class="container">
17 <div class="row">
18 <div class="col-sm">
19 Campaign ID
 <input type="text"
20 id="addElementCid">

21 Custom Column Name
<input type="text"
22 id="addElementCol">

23 Data type

24 <select id="addElementDataType">
25 <option>int</option>
26 <option>text</option>
27 <option>decimal</option>
28 </select>

29 Data Source

30 <select id="addElementSource">
31 <option value="csv">CSV File</option>
32 <option value="mysql">MySQL Column</option>
33 </select>

34 Chart Type

35 <select id="chartType">
36 <option value="barchart">Bar Chart (X and y)
37 </option>
38 <option value="linechart">Line Chart (X and Y)
39 </option>
40 </select>

41 </div>
42 <div class="col-sm">
43 Select data source

44 <div id="dataSourceOptions" style="width:300px;
45 height:200px; overflow: auto">

Custom Dashboards � 145

46 </div>
47 <div id="dataSourceAdditional">
48 </div>
49 </div>
50

51 </div>
52 <div class="modal-footer">
53 <button type="button" class="btn btn-secondary"
54 data-dismiss="modal">Close</button>
55 <button id="addNewCampElement" type="button"
56 class="btn btn-primary"
57 data-dismiss="modal">Add New Element
58 </button>
59 </div>
60 </div>
61 </div>
62 </div>
63 </div>
64 </div>

SAMPLE CODE 31: dashboard5.php — Add new campaign element
modal.

Sample Code 32 describes the Javascript that is used to track the
data source the user is adding. On line 65, when the source, e.g., CSV or
MySQL is selected on the form, the on() function will trigger. On line 66,
if the selected source is equal to mysql, on line 67, the dataSourceOptions
div tag is selected, and the content is updated to be a sample SQL
query. On line, 71, if a CSV is selected, then the dataSourceOptions div
tag is selected and the contents are set to be the output of loading the
listOfFiles.php file. This PHP file is used for listing the contents of a
directory.

65 $('#addElementSource').on('change', function() {
66 if(this.value == 'mysql'){
67 $('#dataSourceOptions').html('<textarea rows="6"

cols="35" id="querybox">select Score, count(Score)
from feedbackformrecords where FeedbackFormId=1 and
FeedbackElementID = 1 group by Score;</textarea>');

↪→

↪→

↪→

68 $('#dataSourceAdditional').html('');
69 }
70 else if(this.value =='csv'){
71 $('#dataSourceOptions').load('listOfFiles.php');

146 � Applied User Data Collection and Analysis Using JavaScript and PHP

72

73 $('#dataSourceAdditional').html('Column X: <input
type="text" id="selectedColX" size="2"/>'↪→

74 +'Column Y: <input type="text"
id="selectedColY"
size="2"/>
');

↪→

↪→

75 }
76 else if(this.value == 'textfile'){
77 $('#dataSourceOptions').load('listOfFiles.php');
78 $('#dataSourceAdditional').html('');
79 }
80

81

82 });

SAMPLE CODE 32: dashboard5.php — JavaScript to update the
dataSourceOptions div tag.

In Sample Code 33, on line 83, if a button with the ID set to addNew-
CampElement is clicked, the following code will run. On lines 84–87, the
values from the input fields and select boxes are gathered. On line 91,
the data source type that is selected is gathered.

As each different data source has a different combination of fields, a
string titled optionString is added. This is used to hold the configuration
for accessing the specified data source. For the data source of type CSV,
on lines 96–99, the defined columns are gathered. These are set into the
optionsString variable separated by commas. For the data type MySQL,
on line 104 the querybox value is gathered and placed directly into the
optionsString.

After the values have been gathered, on line 109, a POST is per-
formed to the ajax.php page. The type of request being sent is set to
addElementToCamp. Each of the attributes gathered is sent. When this
function completes, an alert() statement with the content output of the
ajax.php page is shown on line 116.

83 $("#addNewCampElement").click(function() {
84 var addElementCid = $("#addElementCid").val();
85 var addElementCol = $("#addElementCol").val();
86 var dataType = $('#addElementDataType').val();
87 var chartType = $('#chartType').val();
88 var optionsString = '';
89

Custom Dashboards � 147

90 // get the data source type
91 var dataSourceType = $('#addElementSource :selected').val();
92

93 if(dataSourceType == 'csv'){
94 // Select CSV specific options
95 // filename
96 var selectedFile = $("#file:checked").val();
97 // column of interest
98 var selColX = $("#selectedColX").val();
99 var selColY = $("#selectedColY").val()

100 optionsString = selectedFile + ',' + selColX +','+
101 selColY;
102 }
103 else if(dataSourceType == 'mysql'){
104 var queryBoxContent = $('#querybox').val();
105 optionsString = queryBoxContent;
106 }
107

108

109 $.post("ajax.php", { type: "addElementToCamp",
110 cid:addElementCid,
111 customName: addElementCol,
112 dataType:dataType,
113 dataSourceType:dataSourceType,
114 options:optionsString, chart:chartType})
115 .done(function(data) {
116 alert(data);
117 });
118 });

SAMPLE CODE 33: dashboard5.php — JavaScript click triggering the
saving of a new campaign.

Example code: listOfFiles.php

To list available CSV files to the user, an AJAX call was made to a
page titled listOfFiles.php. Inside this, file a reference to the opendir()
function was used to open the samplefiles folder that was placed beside
the PHP script. In reality, this folder can be placed anywhere as long as
the path to the folder is correct. To find out what the current working
directory is, a simple called to echo getcwd(); will print out the exact
directory path aiding the debugging process.

148 � Applied User Data Collection and Analysis Using JavaScript and PHP

While in the folder, a while loop is used to loop over each individual
file. A simple if statement is added to ensure that the entry or a single
file does not contain a full stop or two full stops that would indicate a
parent folder. For each individual file, an input field is added with the
type set to radio. The ID of the field is set to file. The most essential
element is the value that stores the internal reference to the file name.
In this case, the value is set to be the value from the entry variable. The
entry variable is printed again for the user to see, followed by a simple
br tag to break onto the next line. After listing all the files, it is essential
to close the connection to the directory using the closedir() function. In
Sample Code 34, the complete code for listofFiles.php can be seen.

1 <?php
2 if ($handle = opendir('samplefiles')) {
3 while (false !== ($entry = readdir($handle))) {
4 if ($entry != "." && $entry != "..") {
5 echo '<input type="radio" id="file" name="file"

value="'.$entry.'">' . $entry .'
';↪→

6 }
7 }
8 closedir($handle);
9 }

10 ?>

SAMPLE CODE 34: listOfFiles.php — Retrieving a list of files from
the samplefiles folder.

Example code: ajax.php

Sample Code 35 outlines the ajax.php page. On line 2, the type vari-
able is first accessed and placed in a local variable. On line 3, if the
variable is equal to addElementToCamp, on line 4 a call is made to
the addElementToCamp() function. From lines 7–12 each variable in
the POST is extracted and placed in local variables. On line 20 a new
database connection is made. On line 23, the INSERT statement is cre-
ated, with question marks for the values. On lines 28–33 each value is
added to the statement using the bindParam() function. On line 34, the
statement is finally executed.

Custom Dashboards � 149

1 <?php
2 $type = $_POST['type'];
3 if($type =='addElementToCamp'){
4 addElementToCamp();
5 }
6 function addElementToCamp(){
7 $cid = $_POST['cid'];
8 $customName = $_POST['customName'];
9 $dataType = $_POST['dataType'];

10 $dataSourceType = $_POST['dataSourceType'];
11 $options = $_POST['options'];
12 $chart = $_POST['chart'];
13

14 try {
15 $host = 'localhost:3306';
16 $dbname = 'bookexamples';
17 $user = 'sampleuser';
18 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
19

20 $DBH = new PDO("mysql:host=$host;dbname=$dbname",
21 $user, $pass);
22

23 $sql = "INSERT INTO `dashboard_camp_elements` (`campID`,
24 `desc`, `datatype`, `datasource`,
25 `options`, `chart`)
26 VALUES (?,?,?,?,?,?);";
27 $sth = $DBH->prepare($sql);
28 $sth->bindParam(1, $cid, PDO::PARAM_STR);
29 $sth->bindParam(2, $customName, PDO::PARAM_STR);
30 $sth->bindParam(3, $dataType, PDO::PARAM_STR);
31 $sth->bindParam(4, $dataSourceType, PDO::PARAM_STR);
32 $sth->bindParam(5, $options, PDO::PARAM_STR);
33 $sth->bindParam(6, $chart, PDO::PARAM_STR);
34 $sth->execute();
35 echo 'New Element Added';
36 } catch(PDOException $e) {echo 'failed' . $e;}
37 }
38

39 ?>

SAMPLE CODE 35: ajax.php — Add elements to existing campaign.

150 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 4.17 outlines the data source selection process. On the right-
hand side of this, the data source options become visible when either
MySQL or CSV is selected. In this example, CSV has been selected, and
a list of files is returned on the right of the modal. The campaign ID
will then be entered, followed by a name for the unique element. The
X column is entered to indicate the row of interest and Y is entered to
indicate the column of interest from the selected CSV file. The data type
for the column of interest can be set, along with the type of chart we
wish to create.

FIGURE 4.17: The process of adding a new campaign element and
selecting the data source.

4.7 SUMMARY

This chapter described the process of creating a login page, register
page, and dashboard. This dashboard served as the starting point for
adding data visualizations in the form of charts. As data comes in various
formats, the process of creating dynamic charts was explored. Although
visualizations are useful for exploring data, additional processing is often
required to gain a deeper insight into the data.

In Chapter 5, the process of working with text is explored, outlining
methods of removing irrelevant terms and processing those of interest.

C H A P T E R 5

Working with Text

5.1 INTRODUCTION

When gathering data from users, there are times when a predefined
collection of answers does not suit the user’s need to express themselves.
When this happens, providing the user with a text field where they can
enter their text feedback can be useful. However, text-based feedback
comes with constraints as typical metrics for analysis, such as calculating
the sum of a database column, can not be performed.

To gather insights from text, additional processing is required to
identify the relevance and importance of the text or terms. This chapter
will review the processing methods that can be performed on the text
and the metrics for identifying value and relevance.

5.2 NATURAL-LANGUAGE PROCESSING

The area of natural-language processing (NLP) goes back to the early
1950s. As text is one of our primary forms of communication, software
that utilizes text became a natural area of interest for researchers. Text
in raw form often needs to be further processed to condense and extract
meaningful insights.

In a business setting, analysts would like a user to be as specific as
possible when describing what issues they are having. However, users
often use the wrong keywords or terminology when describing problems.
In addition to this, unlike numeric data, text-based data can come in
different forms. Examples of this include:

• a single word or a single sentence;

• large paragraphs of text out of context;

151

152 � Applied User Data Collection and Analysis Using JavaScript and PHP

• unfavourable feedback that has no true reflection on the service or
product.

Unlike other data formats, the punctuation and order in a sentence
can impact the meaning. An example of this is seen in the following
sentence: I really hated how well the people at the front desk treated me.
I am shocked! When a simple analysis is performed on this sentence, for
negative terms such as hate, the words surrounding this sentence I really
hated may appear to be negative content directed toward the staff at the
front desk. However, when the full context of the sentence is retained,
we can see that it was a genuine compliment.

In each of the following sections, we will be working with text that
may contain a single word, a single sentence, or a number of different
sentences together. As this text has been entered by different users, no
assumptions can be made about the format, content, or quality of the
data. Some users may choose to use correct punctuation, while others
may just create long sentences. These uncertainties are what add to the
difficulty in processing text.

5.3 STOP WORDS

A single piece of text entered by a user contains two main varieties of
terms: (1) terms that are useful to understand what the user is saying,
or (2) terms that are used to join a sentence together.

Stop words are terms that are considered the glue in a sentence,
example of stop words include: as, the, it, on, which, and that. Each of
these terms does not describe anything particular to us. If these terms
were removed from a piece of text, a person reading the text would
still understand what the user is trying to say. Another example is the
sentence to be or not to be, each term could be considered a stop word.

During analysis, these terms are often removed from the text before
any further processing is performed. However, there is no official list of
stop words. The length of the word does not necessarily mean that it is
a stop word. However, stop words are frequently one and two characters
long.

Issues often arise with stop words when the terms are essential. An
example of this is the band name The Who. When stop words are re-
moved, e.g., the term The, we would be left with the band titled Who.
This can equally be seen with the band name Take That, both terms

Working with Text � 153

could be considered stop words. This further reinforces the reason as to
why no official lists of stop words exist.

The InnoDB1 storage engine for MySQL has a default collection of
36 different terms that it considers to be stop words. The Python NLTK
library English stop word list contains 127 terms.2

The great variety in terms and the requirement of application-specific
stop words often causes the need to have our own collection of stop words.
This collection of terms can be appended to, or have terms removed, as
tasks change.

When looking at a collection of terms, we often need to consider
what case our text is in. An example of this is when our stop word list
contains the term the, but the word in our sentence contains the word
The with a capital T, we often find the need to take our text and convert
it into a lower case during text processing to avoid missing the term.

Another consideration that needs to be made during the text pro-
cessing stage is where the processing should be performed. We have a
choice to perform these actions on the server-side using a language such
as PHP that places the burden on the server, or we can choose to use
a client-side language such as JavaScript and place the burden on the
user’s web browser.

Another interesting element of feedback is the use of swear words
inside of text. Often swear words do not add any great taste to data,
but we often have a choice of removing these swear words from the text
(for the sake of the analyst). As we all know, there are many common
swear words, but often the list of swear words expands as people become
more creative with methods or slurs to add to their text. Like stop words,
there is no official list of swear words, but there are a number of different
locations where lists of swear words can be obtained. Such as:

• https://www.cs.cmu.edu/ biglou/resources/bad-words.txt

• https://en.wiktionary.org/wiki/Category:English swear words

As swear words can often be portrayed in a positive or negative sense,
it may or may not be relevant to the task to remove them from the text.
If they do appear, they may be an attempt of a person to convey a severe
dissatisfaction with a service or experience.

1https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
2https://www.nltk.org

https://www.cs.cmu.edu/
https://en.wiktionary.org/
https://dev.mysql.com/
https://www.nltk.org

154 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example 1: JavaScript stop word function
As stop words can be removed on both the client-side and the server-side,
in this section we describe a JavaScript-based approach.

Example code: stopwords.html

In Sample Code 1, on line 3, a reference to the jQuery content de-
livery network (CDN) is first included. This will be used for selecting
div tags on the page later. On line 7, a variable is created titled sample-
Sentence that contains a sentence with stop words included. On line 8,
a new function is created titled stripStopWords(). This function takes a
single variable titled input. This variable is in a unprocessed state.

Inside of this function on line 9, a placeholder variable is added that
will be used as the location where the cleaned data will be placed as stop
words are removed from the original input. On line 10, a JavaScript array
is created that contains each of the MySQL stop words as individual
elements of the array. After this on line 15, the input variable that was
passed into the function is split based on the spaces between the words
and placed into an array titled termArray.

Once we have each individual term inside of the termArray, we then
begin the process of detecting if the stop words are present inside of the
input. This is done by using a for loop to iterate over each term inside
of the term array. For each iteration of the for loop on line 17, a term is
pulled from the termArray at position i. This variable i references the
current position in the array. The term is taken and placed inside of a
temporary variable titled currentTerm.

On line 18, a simple if statement is used to check if the term we are
currently processing can be found inside of the stop word list. This is
done by using the indexOf() function that is part of the JavaScript array.
If a positive number is returned, this identifies the word was present, if
a negative is returned, that means the word was not present.

In the case that the term was not present, on line 20, the currentTerm
is appended on to the cleaned variable. It is important to remember to
add a space before the current term is appended. Otherwise, all terms
would appear together. At the very end of this function, on line 24, a
simple return statement is added to return the cleaned string to the
function caller.

On lines 27–32, at the bottom of the page, to provide an output
in the web browser, two div tags are created, one that contains the ID
output1 and another with the ID output2. To test the function on line

Working with Text � 155

33, first we will use the jQuery selector to select the div tag with the
ID output1 and append variable sampleSentence in its original form.
After we have done this on line 35, we will then create a variable titled
cleaned, that will be used to store the results after making a call to the
stripStopWords() function that is passed the sampleSentence variable.
Once the cleaned variable has a result, the output is appended to the
second div tag with the ID set to output2 on line 36.

1 <head>
2 <script
3 src="http://code.jquery.com/jquery-3.5.1.min.js"
4 crossorigin="anonymous"></script>
5 </head>
6 <script>
7 var sampleSentence = "what a great night I loved the food";
8 function stripStopWords(input){
9 var cleaned = '';

10 var stopwords = ["a","about","an","are","as","at","be","by",
11 "com","de","en",
12 "for","from","how","i","in","is","it","la","of","on","or",
13 "that","the","this","to","was","what","when","where","who",
14 "will","with","und","the","www"];
15 var termArray = input.split(" ");
16 for (i = 0; i < termArray.length; i++) {
17 var currentTerm = termArray[i];
18 if(stopwords.indexOf(currentTerm) >= 0){
19 } else {
20 cleaned += " " + currentTerm;
21 }
22

23 }
24 return cleaned;
25 }
26 </script>
27 <div id = "output1">
28 Before Filter:
29 </div>
30 <div id = "output2">
31 After Filter:
32 </div>
33 <script>
34 $('#output1').append(sampleSentence);
35 var cleaned = stripStopWords(sampleSentence);

http://code.jquery.com/

156 � Applied User Data Collection and Analysis Using JavaScript and PHP

36 $ ('# o u t p u t 2') .a p p e n d (c l e a n e d) ;
37 </s c r i p t >

SAMPLE CODE 1: stopwords.html — JavaScript stop word function.

Output
Once this has been performed, inside of the web browser we can see the
original string and the string after it has been processed shown in Figure
5.1.

FIGURE 5.1: Before and after stop-word removal with JavaScript.

In the After Filter result, we still retain the original descriptive terms
that are core to the feedback, but the terms that do not add any value
to the description have been removed. At any stage, if there were terms
that we do not want to see as part of the output, we can simply add
these custom stop words into the original stop word array.

Example 2: PHP stop-word function
In place of this client-side based filter, we can perform the same action
on the server-side using PHP. As records are often retrieved from the
database using PHP, it provides us with a good opportunity to perform
this sanitization.

Example code: stopwords.php
In Sample Code 2, a new PHP page is created. On line 2, a new function
is created titled stripStopWords(). This function takes a single parameter
titled input, that contains the text to be processed.

On line 3, a variable title cleaned is added as a place holder for the
final cleaned string after processing. On line 4, a PHP array is created
that contains each of the individual stop words we wish to remove if
present.

On line 8, the string input is broken into array format using the
explode() function that takes in two parameters. The first is the delimiter
used to break the string. As we are working with a string, this will be a
single space. The second parameter is the input variable that has been

Working with Text � 157

sent to the function. This input is converted into lower case before the
stop word detection process is started.

Two loops are used to begin processing. On line 9, the first loop that
is placed on the outside and is used to iterate over each individual item
inside the inputArray. Each term is placed into the inputword variable
temporarily. A flag titled isStopWord is first set to False on line 10. As
at the time of processing the term has not been identified as a stop word.

On line 11, a second internal loop is started that takes each individual
term inside of the stopwords array and compares it to the inputword
being processed. At any stage if the term is equal to a stop word then
the isStopWord flag is set to True on line 13.

After the stop word loop has finished a simple if statement is used
on line 16 to check if the isStopWord variable is set to False. If it still
remains False then the input term is appended to the cleaned variable
on line 17. After both loops have finished processing the cleaned string
is returned back to the function caller on line 20.

To run this example a variable title input is created that contains a
string on line 23. The input is printed to the web browser using an echo
statement. On line 25, a call is made to the stripStopWords() function
and the input variable is passed. The result variable is used to hold the
cleaned string that is returned. On line 26, this string is printed to the
console with the stop words removed.

1 <?php
2 function stripStopWords($input){
3 $cleaned = '';
4 $stopwords = array("a","about","an","are","as","at","be",
5 "by","com","de","en", "for","from","how","I","in","is","it",
6 "la","of","on","or", "that","the","this","to","was","what",
7 "when","where","who", "will","with","und","the","www");
8 $inputArray = explode(' ', strtolower($input));
9 foreach ($inputArray as $inputword) {

10 $isStopWord = False;
11 foreach ($stopwords as $word) {
12 if($inputword == $word){
13 $isStopWord = True;
14 }
15 }
16 if($isStopWord == False){
17 $cleaned .= ' ' . $inputword;
18 }
19 }

158 � Applied User Data Collection and Analysis Using JavaScript and PHP

20 return $cleaned;
21 }
22

23 $input = 'I am really happy with the service';
24 echo 'Input:' . $input . '
';
25 $result = stripStopWords($input);
26 echo 'Result: '. $result;

SAMPLE CODE 2: stopwords.php — PHP stop word function.

Output
Figure 5.2 shows the input and output after stop word removal using
PHP.

FIGURE 5.2: stopwords.php — Before and after stop-word removal
with PHP.

5.4 RED-FLAG MONITORING

Similar to stop words, red flags can be considered terms of interest in
a piece of text. A red flag may be a term that is rarely mentioned, but
when it is, it should be identified. This can be useful when working with
larger collections of text as the size can make reading individual pieces
of text a difficult process.

Example 3: Red-flag dashboard option
This example consists of four files and two libraries:

1. redflag comments.sql — This is the create code for the database
table that contains sample comments.

2. redflagterms.sql — This is the database table that contains the list
of terms that are identified as red flags.

3. dashboard.php — The original dashboard with additional red flag
modal.

4. redFlags.php — Additional file that is dynamically called using
jQuery to render the selected records with highlighted red flag
terms.

Working with Text � 159

5. jQuery — This is used to select elements on the page and perform
AJAX POST requests

6. jQueryUI — This is used to provide an interactive date picker.

A red flag may be a term that can be a cause of concern for a business.
Before the process begins, we will create a sample collection of words that
we consider red flags. The terms used in this example include staff and
breakfast.

Example code: redflag comments.sql
To begin, we will create a simple table titled redflags comments that will
contain our test data as shown in Sample Code 3. This table contains a
ID column that is unique, and a column titled mytime that has a record
of when the comment was left. A comment column is added to store
the text gathered from users during the feedback process. An additional
column titled cid is added. This will contain the ID number for this
individual campaign.

1 CREATE TABLE `redflag_comments` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `comments` TEXT,
5 `cid` INT,
6 PRIMARY KEY (`id`)
7);

SAMPLE CODE 3: redflag comments table SQL.

As each different campaign may have a different collection of terms
that are considered red flags, a table titled redflagterms is created as
shown in Sample Code 6. Each individual term is stored as a row in this
table along with the the campaign ID in the cid column.

1 CREATE TABLE `redflagterms` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `term` VARCHAR(50),
4 `cid` INT,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 4: redflagterms table.

160 � Applied User Data Collection and Analysis Using JavaScript and PHP

To provide a working example, this database table will be filled with
sample data as shown in Figure 5.3.

FIGURE 5.3: Sample comment records.

Example code: dashboard.php
Building on the dashboard that was described in Chapter 4, additional
HTML and JavaScript is added to include a new option to show red flags
in text. In Sample Code 5, to present the options to the user a Bootstrap
modal is created. On line 2, the ID of the modal is set to selectRanges.
On line 15, a div tag is added with the class set to modal-body. This
is the main location where content will be placed. In this tag, we will
provide the user with two different jQueryUI date pickers that will allow
the user to choose a date range for the analysis process. On line 16, 21
and 26, div tags are added to create individual rows. On line 17, the text
Start Date: is added inside a div tag with the class set to col. On line 18
and 23, input fields are added that will be converted into date pickers
using jQueryUI. A third field is added on line 28, to allow the user to
enter in the CID of interest. A Show Red Flags button is added on line
35. The onclick attribute is set to call the showRedFlags() JavaScript
function described later.

1 <!---- Red Flag Modal -->
2 <div class="modal fade" id="selectRanges" tabindex="-1"
3 role="dialog" aria-labelledby="selectRanges"
4 aria-hidden="true">
5 <div class="modal-dialog" role="document">
6 <div class="modal-content">
7 <div class="modal-header">
8 <h5 class="modal-title" id="addAtt">Select Date Ranges
9 </h5>

10 <button type="button" class="close" data-dismiss="modal"
11 aria-label="Close">

Working with Text � 161

12 ×
13 </button>
14 </div>
15 <div class="modal-body">
16 <div class="row">
17 <div class="col-3">Start Date:</div>
18 <div class="col"><input type="text" id=
19 "startDate"></div>
20 </div>
21 <div class="row">
22 <div class="col-3">End Date:</div>
23 <div class="col"><input type="text" id=
24 "endDate"></div>
25 </div>
26 <div class="row">
27 <div class="col-3">CID:</div>
28 <div class="col"> <input type="text" id=
29 "selectedCID"></div>
30 </div>
31 </div>
32 <div class="modal-footer">
33 <button type="button" class="btn btn-secondary"
34 data-dismiss="modal">Close</button>
35 <button onclick="showRedFlags()" type="button"
36 class="btn btn-primary">Show Red Flags</button>
37 </div>
38 </div>
39 </div>
40 </div>
41 <!---- end red flag modal -->

SAMPLE CODE 5: dashboard.php — Select date ranges and campaign
ID of interest.

In Sample Code 6, a short hand for the document ready function
is added on line 43. On line 44, the jQuery selector is used to select
the startDate input field. A call is made to the datePicker() jQueryUI
function to convert the input field into a date picker. On line 45, the
date format that is being used is set to yy-mm-dd. On line 47 and 48,
the same process is repeated for the endDate input field.

On line 51, the showRedFlags() function is added. This is the main
function that is called when the Show Red Flags button is clicked on the
modal. In this function on line 52, the start date of interest is gathered

162 � Applied User Data Collection and Analysis Using JavaScript and PHP

followed by the end date on line 53. As there may be a number of cam-
paigns running, on line 54 the unique cid of interest is extracted. On line
55, if the redFlags div tag is already on the dashboard it will be removed
by using the jQuery selector to select the redFlags div tag followed by a
call to the remove() function.

On line 56, the output div tag is selected using the jQuery selector.
This is the main div tag in the center of the dashboard. A call is made
to the load() function that dynamically retrieves the contents of a file.
In this example, the redFlags.php page is called that is responsible for
rendering the output. The cid, start, and end variables are passed via the
URL to this page. The output of this page will be gathered and placed
into the output div tag.

42 <script>
43 $(function() {
44 $("#startDate").datepicker({
45 dateFormat: 'yy-mm-dd',
46 });
47 $("#endDate").datepicker({
48 dateFormat: 'yy-mm-dd',
49 });
50 });
51 function showRedFlags(){
52 var start = $('#startDate').val();
53 var end = $('#endDate').val();
54 var cid = $('#selectedCID').val();
55 $('#redflags').remove();
56 $('#output').append(($('<div>')
57 .load("redFlags.php?cid="+cid+"&start="+start+"&end="+end)));
58

59 }
60 </script>

SAMPLE CODE 6: dashboard.php — JavaScript to convert input field
into date pickers and showRedFlags() function.

Output
In the dashboard, when the item called Text Analysis is clicked a menu
titled View Red Flags becomes available, as shown in Figure 5.4. In
Figure 5.5 the layout of the modal can be seen. When the user clicks on
either of the input boxes, the date picker will then become visible, as

Working with Text � 163

shown in Figure 5.6. The values they select will be populated into the
input fields.

FIGURE 5.4: View red-flags menu option.

FIGURE 5.5: Select date and CID modal.

Example code: redFlags.php
The core of this process is held in the redFlags.php page. In Sample Code
7, at the top of this page on lines 2–4, the start date, end date, and cid
are gathered from the GET request. A new div tag is output to the page
on line 5. The start date, end date, and CID are echoed to the page
on line 6. A call is made to the getData() function on line 9, that is
responsible for gathering the data.

The getData() function is defined on line 12. Inside this function,
on line 19, a connection is made to the database. On line 21, the SQL

164 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 5.6: jQuery datepicker.

SELECT statement to the redflag comments table is added. The com-
ments are narrowed down based on the date stamp being between the
two dates specified by the user. The cid is used for the final aggregation
of records for a single specified campaign.

A call is made to the getRedFlags() function on line 31 to get the
list of specific red flags for the individual campaign. For each individual
comment returned from the database, the comment is split using the
explode() function on line 34 based on the space between each term in
the comment. Each individual term is put into lower case.

On line 39, a PHP variable titled output is added that will be ap-
pended to as each comment is iterated through. On line 37, a single
inputWord from the comment is compared against the redFlags array.
This is done by using the PHP in array() function that checks to see if
a given term exists in the provided array.

On line 39, If the term currently under analysis exists inside of the
redFlags array, then the color of the term is set to red using a small
amount of CSS styling. If the term is not, it is simply appended to the
string. The final result is printed to the browser using a PHP echo.

Working with Text � 165

1 <?php
2 $start = $_GET['start'];
3 $end = $_GET['end'];
4 $cid = $_GET['cid'];
5 echo '<div id="redflags">';
6 echo 'Start: ' . $start . ' - End date: ' . $end.'
7 - CID: '.$cid.'
';
8 echo '<hr>';
9 getData();

10 echo' </div>';
11

12 function getData(){
13 global $start,$end, $cid;
14 try {
15 $host = 'localhost:3306';
16 $dbname = 'test';
17 $user = 'root';
18 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
19 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
20 $pass);
21 $sql = "SELECT * FROM redflag_comments WHERE mytime
22 BETWEEN ?
23 AND ? AND cid = ?";
24 $sth = $DBH->prepare($sql);
25 $sth->bindParam(1, $start, PDO::PARAM_STR);
26 $sth->bindParam(2, $end, PDO::PARAM_STR);
27 $sth->bindParam(3, $cid, PDO::PARAM_INT);
28 $sth->execute();
29 $res = $sth->fetchAll();
30 // Get the list of red flags from the database
31 $redFlags = getRedFlags($cid);
32 foreach ($res as $row){
33 $comment = $row[2];
34 $inputArray = explode(' ', strtolower($comment));
35 $output = '';
36 foreach ($inputArray as $inputWord) {
37 $isFlag = in_array($inputWord, $redFlags);
38 if($isFlag){
39 $output .= ' ' .
40 $inputWord . ' ';
41 } else {
42 $output .= ' ' . $inputWord;
43 }
44 }
45 echo $output . '
';

166 � Applied User Data Collection and Analysis Using JavaScript and PHP

46 }
47 } catch(PDOException $e) {echo $e;}
48 }

SAMPLE CODE 7: redFlags.php — Identifying red flag terms — part
1.

In Sample Code 8, to get a list of unique red flags for each campaign,
a custom getRedFlags() function is created that takes a single parameter
title cid. At the top of this function, an array titled flags is added on
line 45. A connection to the database is performed on line 51.

On line 53, a SELECT statement is created to select data from the
redflagterms table. The results are narrowed by returning those only with
the cid equal to the one provided to the function. For each term, on line
59, they are appended to the flags array that is returned on line 63 and
used as the source of red flags during the analysis of each comment.

44 function getRedFlags($cid){
45 $flags = array();
46 try {
47 $host = 'localhost:3306';
48 $dbname = 'test';
49 $user = 'root';
50 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
51 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
52 $pass);
53 $sql = "SELECT term FROM redflagterms WHERE cid = ?";
54 $sth = $DBH->prepare($sql);
55 $sth->bindParam(1, $cid, PDO::PARAM_STR);
56 $sth->execute();
57 $res = $sth->fetchAll();
58 foreach ($res as $row){
59 array_push($flags, $row[0]);
60 }
61 } catch(PDOException $e) {echo $e;}
62

63 return $flags;
64 }

SAMPLE CODE 8: redFlags.php — Retrieving a lit of red-flag terms
— part 2.

Working with Text � 167

FIGURE 5.7: Each comment is output with the red flag terms
highlighted.

Output

In Figure 5.7 a list of comments that were stored in the database
can be seen. Each red flag term is highlighted in red. The Start date and
End date selected by the user are also shown along with the campaign
ID shown as CID.

5.5 N-GRAMS

When working with text-based data, a common practice that is per-
formed is the process of creating n-grams. Before this process is intro-
duced, we will first begin with an overview of the structure of a docu-
ment. A document D consists of P individual paragraphs. Each para-
graph can contain S individual sentences, each of which contains W
words. Each individual sentence, contains words from W0...Wy.

Although documents can be viewed as a collection of independent
terms, the context around these terms can provide valuable insight into
how the term was used. When considering the sentence I was shocked,
the service was great!, if term frequency was performed on this sentence,

168 � Applied User Data Collection and Analysis Using JavaScript and PHP

TABLE 5.1: Sample n-grams with N =2

the staff
staff are

are horrible
horrible here

here i
i am

am really
really not
not happy

TABLE 5.2: Sample n-grams with N =3

the staff are
staff are horrible
are horrible here
horrible here i

here i am
i am really

am really not
really not happy

the weight for each term would be one as each term was present only
once. If these terms were taken without context, the term shocked would
be seen as a negative term as no additional context is provided.

As a solution to this, n-grams can be generated. N-grams take a
sentence, S, as input that contains terms W0...Wy. The n-gram algorithm
takes a parameter, N , identifying how many terms should be included
in an individual gram sequence. During the n-gram process, different
values for N can produce vastly different results. Bi-grams are when the
N is set to 2. For the sentence the staff are horrible here I am really not
happy, Table 5.1 shows the output when N = 2.

Tri-grams is when N = 3. Unlike the previous examples, tri-grams
include a large body of context. Table 5.2 shows the output when N = 3.

Example 4: Generating n-grams
The advantage of using n-grams during the data analysis process is the
additional context around a term is retained. This is especially useful
when the number of records exceeds that of a manual review process.

Working with Text � 169

Example code ngram.php

Sample Code 9 describes a simple n-gram approach. The sentence
variable on line 2 holds the sentence to be processed. To break the sen-
tence into individual tokens, the explode() function is used on line 3. This
function takes two quotation marks with a single space between them.
This is the delimiter and is used as the token in which the sentence split
on. The second variable that is passed is the sentence variable containing
the text.

As we will be processing any number of grams, a variable titled gram
is added on line 4. In the case of N = 2 for the sentence This is a sample
sentence the gram variable will first contain the term The followed by
a space and then the second term staff will be added. As the number
to grams added will be equal to 2, the gram will be printed, and the
variable will be cleared, allowing it to be reused for the next iteration.

This piece of code contains two loops, the first on line 6 loop will
iterate over each individual term, while on a single term, Y number of
grams will be added using the loop on line 8. A small internal variable
titled counter on line 9 is used to keep track of the number of grams
that have been added. When the counter is equal to the desired number
of tokens, the gram variable is printed to the browser, followed by a br
tag to break onto the next line. This variable is cleared, and then the
loop is broken using the break statement on line 14. This will then allow
the outside loop to progress on to the next term. This piece of code can
be used for any number of gram sequences by modifying the n variable.

1 <?php
2 $sentence = 'The staff are horrible here';
3 $tokens = explode(' ', $sentence);
4 $gram = '';
5 $n = 2;
6 for ($x = 0; $x <= sizeof($tokens) -1; $x++) {
7 $counter = 0;
8 for ($y = $x; $y <= sizeof($tokens) -1; $y++) {
9 $counter++;

10 $gram .= ' '. $tokens[$y];
11 if($counter == $n){
12 echo $gram . '
';
13 $gram='';
14 break;
15 }

170 � Applied User Data Collection and Analysis Using JavaScript and PHP

16 }
17 }

SAMPLE CODE 9: ngram.php — PHP N-gram algorithm.

Output
Figure 5.8 shows the n-gram output where N=2 for the sentence The
staff are horrible here.

FIGURE 5.8: Sample n-gram output with N =2.

5.6 SENTENCE COMPLETION

When working with large quantities of user comments, often an overlap
can be seen in specific words that are used together. An example of this
can be seen with the word staff in the following comments:

1. The staff are great.

2. I had fun. The staff made the experience even better.

3. Good food, but the staff were nasty.

All three comments are outlining how the customer felt about the
staff, however, the last comment was negative. This can be beneficial
during analysis as comments about one topic, e.g., the staff, may prompt
the start of an investigation to see why that one particular piece of
negative feedback was left.

The issue that is presented however, is how to view this data. The
small piece of information about the staff may be hidden in a larger para-
graph or body of the text. The use of sentence completion can greatly
enhance how text is analyzed, trimming the irrelevant text before the
terms of interest occur, leaving only the relevant text. This is done by
first starting with a single term, or set of terms that are considered the
stem of the sentence.

Working with Text � 171

Example 5: Sentence completion

This example contains two files:

1. create.sql — This file is used to create the feedback wild database
table.

2. completion.php — This files provides an example of sentence com-
pleton being used.

Example code: create.sql

To begin, Sample Code 10 starts with a simple SQL table titled
feedback wild. This table contains a column titled feedback that is used
to hold sample records for the sentence completion process.

1 CREATE TABLE IF NOT EXISTS `feedback_wild` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `feedback` text,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 10: feedback wild database table.

Example code: completion.php
In Sample Code 11, a connection to the database is first made on line
7. A variable titled rootWords is added on line 9. This variable contains
the term of interest. In this example, we are searching for the word staff.
On line 10, a fragment of SQL is created. A percentage sign is added
to the start and end of the rootWords variable and placed into a new
variable titled likeString. The percentage sign indicates that the term
can be found anywhere inside of a feedback record, e.g., start with, end
with or in the middle of a sentence.

On line 11, a SQL query is created with a question mark for the value
of the LIKE. An unnamed placeholder is used, shown as a question mark
in the query. During the call to the execute() function on line 13, the
prepared rootWords variable is passed in the form of the likeString.

172 � Applied User Data Collection and Analysis Using JavaScript and PHP

Once the query has been executed, on line 14, a while loop is used
to iterate over the records that have been identified. On line 15, the text
data stored in the feedback column is placed into a local variable titled
record. After this on line 16, the strpos() function is used to identify the
index of where the first occurrence of the term staff was found.

On line 17, a call is made to the substr() function. This function
takes three parameters. The first is the variable that contains the text
we wish to process. The second is the starting index we wish to begin
processing from. Finally, the third parameter contains the index number
where we wish to stop at. In this example, this index is set to be the
length of the record variable that is found using the strlen() function.
The result of the substr() is printed to the browser using a simple echo
statement.

1 <?php
2 try {
3 $host = '127.0.0.1:3306';
4 $dbname = 'test';
5 $user = 'root';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
8 $pass);
9 $rootWords = 'staff';

10 $likeString = '%' . $rootWords . '%';
11 $stmt = $DBH->prepare("SELECT * FROM feedback_wild WHERE
12 feedback LIKE ?");
13 $stmt->execute([$likeString]);
14 while ($row = $stmt->fetch(PDO::FETCH_ASSOC)) {
15 $record = $row['feedback'];
16 $start = strpos($record, "staff");
17 echo substr($record ,$start, strlen($record)).'
';
18 }
19 } catch(PDOException $e) {echo $e;}

SAMPLE CODE 11: completion.php — Sentence completion for the
term staff.

Output

Figure 5.9 shows an example of the term staff being found at the
start and the middle of sentences. All text that was before the term of

Working with Text � 173

interest is disregarded, leaving only the term of interest followed by the
rest of the sentence.

FIGURE 5.9: Result of searching for the word staff inside a feedback
records.

5.7 WORD STEMMING

When processing terms, often they can have a different suffix depending
on how the word is being used. For the term house, if this is used in
a sentence, it is common to see variations such as Houses, House, and
Housing. The issue with this, however, is if any calculations are being
performed, e.g., counting the number of times the word was found, often
the other variations of the term will be missed.

Example 6: Word stemming
To prevent this from happening, when working with collections of text
stemming can be performed. This is the process of reducing the term
back to the word stem. Many different approaches can be taken when
stemming. One example of a stemming tool is the Porter Stemmer. In
this example, we will be working with a PHP implementation of this
algorithm.3

This example contains two files:

1. stemming.php — A sample instance of the Porter stemming being
used.

2. PorerStemmer — An instance of the stemming algorithm.

Example code: stemming.php
In Sample Code 12, on line 2, the library is first added into the current
page. The word to be stemmed is placed inside the word variable on line
3. This variable is passed to the Stem function on line 4. This function

3https://tartarus.org/martin/PorterStemmer/php.txt

https://tartarus.org/

174 � Applied User Data Collection and Analysis Using JavaScript and PHP

returns the word stem that is printed to the page. The stemming process
is completed for the terms Houses, House, and Housing. HTML br tags
are used to break the output onto individual lines.

1 <?php
2 require('PorterStemmer.php');
3 $word = 'Houses';
4 $stem = PorterStemmer::Stem($word);
5 echo $stem . '
';
6 $word = 'House';
7 $stem = PorterStemmer::Stem($word);
8 echo $stem . '
';
9 $word = 'Housing';

10 $stem = PorterStemmer::Stem($word);
11 echo $stem . '
';

SAMPLE CODE 12: stemming.php — Using the Porter Stemmer on
three terms.

Output

Figure 5.10 shows the output of the stemming process. Although
three different words were passed to the stemming algorithm, the same
stem is returned after each call. This approach helps us identify that the
three terms are all related.

FIGURE 5.10: Result after calling the stemming algorithm.

5.8 SYNONYMS

When reviewing feedback records, it can become apparent quickly that
two reviews never contain a similar collection of phrases or terms. This
can cause difficulty for any feedback processing that requires a match
to be made between terms. An example of this can be seen when the
term chef is used in one record and the term cook in another record. By

Working with Text � 175

developing a function to identify these synonyms, another dimension is
added into the analysis process.

Example 7: BigHugeLabs.com API
In this example, we will outline the process of using the BigHuge-
Labs.com API for synonyms of a given term. The first step in this process
is to get an API key to access the service. They currently offer 500 re-
quests per day for free. Additional calls to the service can be made for
a modest fee. To get this key, an account is first created. Figure 5.11
describes the parameters needed to sign up for a key. A brief description
of the application is added, followed by the URL where the requests will
be coming from. As this is a test application, localhost was added for the
URL.

FIGURE 5.11: BigHugeLabs.com API key creation process.

After the key creation has been completed, sample REST URLs are
shown. Each of these passes the unique API key to the service along
with a single word of interest. The difference in each API URL is the
format in which the response is returned. Figure 5.12 shows the options
available including plain text, XML or JSON.

Output
In Sample Code 13, the API URL is constructed. The first parameter
that is passed is the unique API access key. The term dad is passed to
the API as the term of interest. To aid the processing of the result /json
is appended to the end of the URL to retrieve the result in JSON format.

176 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 5.12: BigHugeLabs.com sample REST URLs.

https://words.bighugelabs.com/api/2/
0c7cc83b387027012538b959c8576cfb/dad/json

SAMPLE CODE 13: Complete API call being passed the term dad.

Sample Code 14 shows the result set containing the synonyms for
the term dad.

1 {"noun":{
2 "syn":[
3 "dada",
4 "daddy",
5 "pa",
6 "papa",
7 "pappa",
8 "pop",
9 "begetter",

10 "father",
11 "male parent"
12]
13 }
14 }

SAMPLE CODE 14: Synonyms returned for the term dad.

When calculating the number of feedback records that contain the
term dad, additional records can be included if any of the synonyms are
found. Although a useful tool during analysis, some issues do exist. An
example of this is the synonym for dad titled pop. As context is often

https://words.bighugelabs.com/

Working with Text � 177

removed during the processing of text, it can be difficult to identify if
this is a reference to a person’s dad or to the synonym for soda which is
pop.

Example 8: PHP API request to Big Huge Lab’s
API
To provide access to the REST API from PHP we can use the
file get contents() function. This allows us to pass the URL of the API
that contains a single variable titled term that contains the term of in-
terest.

Example code: syn.php
In Sample Code 15 on line 2, the term of interest is first defined. In this
example, we are searching for synonyms of the term dad. On line 3, a call
is made to the PHP file get contents() function. This function will make
a GET request to the provided URL. The value of the variable term is
substituted into the string. The contents of the page that is output is
placed inside a local variable titled result.

The service will return JSON content. On line 5, to process the JSON,
the result is passed to the json decode() function. The true parameter is
passed to ensure the result is returned as an associative array. On line
6, after the decoded variable is filled, we can pass a key to select the
results from the array. The noun is the parent result. Inside this, the syn
collection can be accessed.

Once we have accessed the syn results, a foreach statement is used
to loop over each individual synonym on line 7. A simple br tag is added
to break each result on to a new line when viewing the results in a web
browser.

1 <?php
2 $term = 'dad';
3 $result = file_get_contents("https://words.bighugelabs.com/api/2/"
4 ."0c7cc83b387027012538b959c8576cfb/$term/json");
5 $decoded = json_decode($result, true);
6 $syn = $decoded['noun']['syn'];
7 foreach($syn as $item){
8 echo $item . '
';
9 }

SAMPLE CODE 15: syn.php — Calling the BigHugeLabs API using
PHP.

https://words.bighugelabs.com/

178 � Applied User Data Collection and Analysis Using JavaScript and PHP

Output

Figure 5.13 shows the output after passing the term dad to the Big
Huge Lab’s synonym API.

FIGURE 5.13: Example synonyms returned from the Big Huge Labs
API called via a GET request.

5.9 TERM WEIGHTING

In previous examples, text was gathered from the database and different
tasks were performed directly on the text without any additional pro-
cessing. One issue that can be seen with this approach is the scalability
of the solutions. When working with a small number of records, the pro-
cess of searching through the text can easily be performed and insights
can be gathered. However, when hundreds or thousands of records are
under analysis, any application of the data quickly becomes difficult as
irrelevant text may become prominent in the results. For this reason,
additional metrics to identify the importance of text can be applied.

Example 9: Term frequency
One simple approach that can be used to aid the analysis process is
focused on applying weights to the individual terms. The most simplistic
approach to this is to calculate the number of times each individual word
has been found across all records. In this example, we will consider five
individual records as shown in Table 5.3.

Working with Text � 179

TABLE 5.3: Sample Records for Term Frequency

ID Feedback
1 I was very happy with the product that I got in the mail.

However, the package was handled badly.
2 I am very happy with the product that I got. I will come back

again in the future.
3 There was a number of issues with the customer service of

this company. I will take my business somewhere else. It was
a bad experience.

4 I will never return. I was treated badly by the man on the
front desk.

5 This is a great company, I will never go elsewhere.

Example code: tf.php
To calculate the term frequency for each word, a total count for each
term across all records is performed.

In Sample Code 16, on lines 2–6 individual records are added as
strings. On line 8, an array is created that will be used as the main
storage place for the strings. On line 9–13, each individual string is added
to the array. On line 14, a new array is created that will be used to hold
all the individual terms. On line 15, a simple foreach statement is used
to iterate over all the records. For each individual record, on line 17, the
full stops and commas are removed from the string and replaced with
spaces. On line 18, the explode() function is called to break the individual
string into single terms every time a space is found.

On line 20, each individual term is added to the allWords array.
Finally on line 24, a call is made to the array count values() function
that will count the total occurrences of each term in the array. This
output is printed to the browser using the print r() function.

1 <?php
2 $doc1 = 'I was very happy with the product that I got in the

mail. However, the package was handled badly.';↪→

3 $doc2 = 'I am very happy with the product that I got. I will
come back again in the future.';↪→

4 $doc3 = 'There was a number of issues with the customer service
of this company. I will take my business somewhere else. It
was a bad experience.';

↪→

↪→

5 $doc4 = 'I will never return. I was treated badly by the man on
the front desk.';↪→

180 � Applied User Data Collection and Analysis Using JavaScript and PHP

6 $doc5 = 'This is a great company, I will never go elsewhere.';
7

8 $documents = array();
9 array_push($documents, $doc1);

10 array_push($documents, $doc2);
11 array_push($documents, $doc3);
12 array_push($documents, $doc4);
13 array_push($documents, $doc5);
14 $allWords = array();
15 foreach($documents as $doc){
16 echo '----------docment----------
';
17 $cleaned = strtr($doc, array('.' => '', ',' => ''));
18 $terms = explode(' ', $cleaned);
19 foreach($terms as $term){
20 array_push($allWords, $term);
21

22 }
23 }
24 print_r(array_count_values($allWords));

SAMPLE CODE 16: tf.php — Sample term frequency calculation with
PHP

Output
In this example, the term badly was seen once in record 1 and once in
record 4. The term frequency for the term badly, therefore, would be set
to two.

When processing these records, if the word I was counted, a value of
9 would be assigned. The issue with this can easily be seen, as very little
insight can be gathered from this word. The raw term frequency can be
considered naive for the purpose of calculating importance. In Table 5.4,
a list of all the term frequency scores for words greater than one can be
seen. Excluding the stop words that can be seen at the top of this table,
interesting terms such as badly, never, and happy can be seen.

Example 10: Term frequency — Inverse Docu-
ment Frequency
A modification of the raw term frequency is the Term Frequency — In-
verse Document Frequency (TF-IDF). This term weighting scheme is
focused on the assumption that terms that frequently appear across all
documents should be given a lower score, and terms that are unique and

Working with Text � 181

TABLE 5.4: Sample Term Frequency Scores

Count Term
9 i
8 the
5 was
4 will
3 with
3 a
2 very
2 this
2 that
2 product
2 of
2 never
2 in
2 happy
2 got
2 company
2 badly

not seen as often should be given a higher score. This weighting scheme
could be considered a direct solution to the issue of stop words that was
seen with traditional term frequency calculations in the previous section.
Table 5.5 describes two sample records for analysis.

TABLE 5.5: Sample Records for Term Frequency—Inverse Document
Frequency

ID Feedback
1 I was very happy with the product that I got in the mail.

However, the package was handled badly.
2 I am very happy with the product that I got. I will come back

again in the future.

The TF-IDF score for the term mail is calculated by first calculating
the term frequency (tf) followed by the inverse document frequency (idf).
Mail occurred once out of the 19 terms in document 1. The first piece
of the equation is shown in Equation 5.1.

tf(mail, d1) = 1
19 = 0.05 (5.1)

182 � Applied User Data Collection and Analysis Using JavaScript and PHP

In document 2, the term frequency for mail is 0 out of the 18 words
in the document as shown in Equation 5.2.

tf(mail, d2) = 0
18 = 0.0 (5.2)

The inverse document frequency for the term mail is then calculated
that takes into consideration the number of times the word appeared
across all documents, D. In this example, out of the two documents, one
document contained the term mail. The result is converted to logarithm
base 10 as shown in Equation 5.3.

idf(mail,D) = log(2
1) = 0.301 (5.3)

Once the term frequency has been calculated, and the inverse doc-
ument frequency is calculated, both components of the equation can be
brought together to form the TF-IDF score. For document 1, the TF-
IDF is be calculated by multiplying the tf score by the idf score for the
term mail as shown in Equation 5.4.

tfidf(mail, d1, d) = 0.05× 0.301 = 0.0158 (5.4)

The TF-IDF for document 2 can then be calculated as shown in
Equation 5.5.

tfidf(mail, d2, d) = 0.0× 0.301 = 0 (5.5)

The resulting TF-IDF score is higher for less common words, provid-
ing a deeper insight into the terms that have been used. This approach
naturally removes common stop words from the results as they often
appear in the documents.

Example code: tfidf.php

Example 17 outlines a sample PHP TF-IDF algorithm. At the top
of this example on lines 2 and 3, two simple feedback records are added
with their original punctuation. On line 5, an array is created titled
documents that is used to hold all documents that will be under con-
sideration during the TF-IDF calculation process. On lines 6 and 7, the
array push() function is used to add the two documents onto the array.

To begin the process, a simple foreach statement is added on line 9
that is used to iterate over each document. On line 10, a simple line is

Working with Text � 183

added with a br tag appended to identify the document we are currently
processing in the web browser. On line 11, the strtr() function is used to
replace any occurrences of a full stop or comma with a space and place
the result into the cleaned variable. On line 12, the cleaned is passed
into the explode() function that takes the delimiter to break the string
on. In this case, a space is passed, followed by a reference to the cleaned
variable. This will leave a collection of individual terms inside the terms
array.

On line 13, a simple call to the count() function is performed to
find out how long the array is, e.g., how many terms we are working
with. A second internal foreach statement is started to iterate over each
individual term in the document. The substr count() function is used to
identify how many times the term appears in the document. The term
under consideration, the length and the count are printed to the browser
to aid debugging. The tf is calculated by taking the count and dividing
it by the length.

On line 21, the idf is calculated by taking the log of the number of
documents divided by the number of documents that contain the term
under analysis. 10 is passed to the log function to return the answer in
logarithm base 10. Finally, on line 23 the final TF-IDF score is generated
by taking the tf value and multiplying it by the idf value. On line 24, a
simple echo is used to print the score to the browser.

To aid the algorithm, on line 27, the body of the countInDocs()
function can be seen. This function takes a single term and counts the
number of documents that contain the term. At the end of this function,
a return statement is added on line 35 to return the count.

1 <?php
2 $doc1 = 'I was very happy with the product that I got in the

mail. However, the package was handled badly.';↪→

3 $doc2 = 'I am very happy with the product that I got. I will
come back again in the future.';↪→

4

5 $documents = array();
6 array_push($documents, $doc1);
7 array_push($documents, $doc2);
8

9 foreach($documents as $doc){
10 echo '----------docment----------
';
11 $cleaned = strtr($doc, array('.' => '', ',' => ''));
12 $terms = explode(' ', $cleaned);
13 $len = count($terms);

184 � Applied User Data Collection and Analysis Using JavaScript and PHP

14 foreach($terms as $term){
15 $count =substr_count($doc,$term);
16 echo ' term: ' .$term;
17 echo ' count: ' . $count;
18 echo ' length: ' . $len;
19 $tf = $count / $len;
20 echo ' - TF: ' . $tf;
21 $idf = log((count($documents) / countInDocs($term)),

10);↪→

22 echo ' IDF: ' . $idf;
23 $score = $tf * $idf;
24 echo ' - TF-IDF: ' . $score . '
';
25 }
26 }
27 function countInDocs($term){
28 global $documents;
29 $count = 0;
30 foreach($documents as $doc){
31 if(substr_count($doc,$term) > 0){
32 $count = $count + 1;
33 }
34 }
35 return $count;
36 }

SAMPLE CODE 17: tfidf.php — Sample PHP TF-IDF algorithm.

Output
Figure 5.14 shows the output for the first document during analysis by
the TF-IDF algorithm. For debugging, echo statements were added to
all calculations. In this output, we can see that the common terms that
were in both documents provided a lower TF-IDF score. Unique terms
have higher TF-IDF scores.

5.10 SENTIMENT ANALYSIS

When working with text, an additional opportunity is provided to gather
the overall sentiment of the text. The sentiment of a piece of text is the
categorization of a record into a defined category of positive, negative, or
neutral sentiment. Traditional statistic metrics such as ranges between
1–10 easily allow us to see if a user was satisfied or not with a service.
Working with text, however, is a little bit more difficult as the terms in a

Working with Text � 185

FIGURE 5.14: Example TF-IDF output for each term in a single
document.

sentence can easily be considered positive if specific keywords are used.
These words may, however, be associated to a negative response.

Example 11: Sentiment analysis
Synonyms are words that represent the same meaning as other words.
An example of this is the word happy, synonyms include cheerful, con-
tent, delighted, elated, and joyful. If a feedback record contained the text
delighted we would want to make this record as having a positive senti-
ment. Instead of using manual synonym detection, a sentiment analysis
tool can be used.

This example contains one file and one library:

1. sentiment.php — This page shows an example of the sentiment
analysis tool being used.

2. PHPinsight — This library provides us with the ability to run the
sentiment analysis process.

Example code: sentiment.php
To perform sentiment analysis in PHP we will use the PHPinsight
package. This package is available from https://packagist.org/packages/
jwhennessey/phpinsight. Instead of manually downloading files and then
attempting to integrate them into the project, we will use composer.

https://packagist.org/

186 � Applied User Data Collection and Analysis Using JavaScript and PHP

From the command prompt in the root directory of our project, we will
issue the following command:

composer require jwhennessey/phpinsight

SAMPLE CODE 18: Example composer require for PHPinsight.

In Sample Code 19, on line 2, a pre tag is used to format the gen-
erated output. On line 3, an array is added that contains the sentences
that the sentiment analysis process will be run on. Additional sentences
can be added into this array for analysis. On line 8, a reference to the
vendor folder is added that contains PHPinsight. The autoload.php is
used to pull in the required functionality from the library for the senti-
ment analysis process. A simple foreach statement is used on line 10 to
loop over each individual string that has been added to the array. The
score() function is used on line 12 to retrieve the sentiment scores. On
line 13, the categorise() function is used to output the dominant result,
e.g., positive, negative or neutral for the individual sentences.

1 <?php
2 echo "<pre>";
3 $strings = array(
4 1 => 'I am very happy with the staff',
5 2 => 'I did not like the staff they are unhelpful',
6 3 => 'The food was bad',
7);
8 require_once('vendor/autoload.php');
9 $sentiment = new \PHPInsight\Sentiment();

10 foreach ($strings as $string) {
11 // calculations:
12 $scores = $sentiment->score($string);
13 $class = $sentiment->categorise($string);
14 // output:
15 echo "String: $string\n";
16 echo "Dominant: $class, scores: ";
17 print_r($scores);
18 echo "\n";
19 }

SAMPLE CODE 19: sentiment.php — Gathering the sentiment of text
using the PHPInsight library.

Working with Text � 187

FIGURE 5.15: Result of the sentiment-analysis process.

Output

Figure 5.15 shows an example of the output of the sentiment analysis
process. Three different scores ranges between 0.0 and 1.0 are shown.
These show the positive, negative, and neutral score for each sentence.
The dominant score can also be seen, indicating the overall highest out
of all three categories.

188 � Applied User Data Collection and Analysis Using JavaScript and PHP

5.11 SUMMARY

This chapter described the issues that can be seen when working with
text. Unlike numeric values, text requires additional processing to re-
move irrelevant terms and regain focus on terms of relevance. The prac-
tical components of text processing were described, including stop word
removal, red flag term identification, n-gram generation, stemming, and
synonym detection.

As text can come in any size, retaining the focus on relevant terms
can be difficult. To aid this process metrics such as term frequency (TF)
and term frequency—inverse document frequency (TF-IDF) were dis-
cussed. To further analyze text, sentiment analysis was described allow-
ing the positive, negative, and neutral scores of text to be identified.

Chapter 6, outlines the libraries available for creating dynamic in-
teractive visualizations for text.

C H A P T E R 6

Text Visualization

6.1 INTRODUCTION

When working with small amounts of text, it can be easy to identify
patterns and records of interest in a data set. However, the larger the
data set becomes, the more difficult the analysis process becomes. This
chapter describes various text visualization approaches that can easily be
included in a project to enhance the data exploration process. For these
visualizations, JavaScript-based libraries will be used such as D3.js1,
Charts.js2 and HiCharts.3

6.2 WORD CLOUD

Example 1: Word cloud

One of the most simplistic but insightful visualizations possi-
ble is the word cloud. This allows a user to quickly view the key
terms in a large body of text. A sentence is tokenized into individ-
ual terms where the frequency is used to dictate the size an indi-
vidual word will be in the final visualisation. In this example, we
will be working with the wordcloud2.js plug-in that is available from
https://github.com/timdream/wordcloud2.js. Although the steps out-
lined in the documentation describe the process installing the library
using node’s npm, we will look at the manual installation and setup
process as very little setup is required.

1https://d3js.org
2https://www.chartjs.org
3https://www.highcharts.com

189

https://github.com/
https://d3js.org
https://www.chartjs.org
https://www.highcharts.com

190 � Applied User Data Collection and Analysis Using JavaScript and PHP

This example requires two files:

1. wordcloud.html — This contains the main HTML and JavaScript
to run the example.

2. wordcloud2.js — This is the core JavaScript library required to
generate the visualization.

Example code: wordcloud.html
The first step in this process is downloading the wordcloud2.js file that
can be found at https://github.com/timdream/wordcloud2.js. This sin-
gle folder contains all the needed tools to create the word cloud. After
this has been downloaded, we will create a new HTML file that will be
used for holding the word cloud. In Sample Code 1, on line 1, a reference
to the JavaScript file is first added, followed by a single canvas HTML
tag on line 3 that is used to hold the generated word cloud. This tag is
given a unique ID, which will be used in the next step.

On line 6, a simple JavaScript array is created that takes in a list
of the terms to be represented in the cloud, along with the size each
term should be in the cloud. In this example, no stop words have been
removed. On line 8, an instance of the WordCloud is created. A reference
to the canvas element that was created earlier is selected, and the list of
terms is passed into the cloud.

1 <script src="wordcloud2.js">
2 </script>
3 <canvas id="my_canvas">
4 </canvas>
5 <script>
6 var list = [['this', 40], ['is', 20], ['my', 60], ['sample', 20],
7 ['chart', 60]];
8 WordCloud(document.getElementById('my_canvas'), { list: list });
9 </script>

SAMPLE CODE 1: wordcloud.html — Sample code to generate a
custom word cloud.

Output
After the file has been saved and opened using a web browser, Figure
6.1 shows the sample output that is generated. Each different term that

https://github.com/

Text Visualization � 191

is added to the cloud is represented in a different color. The size of the
terms is dictated by the variables set in the array. Although this provides
a working example of using a word cloud it does not dynamically take
in a string of text or perform any calculation on the text to determine
the number of occurrences of each term.

FIGURE 6.1: Sample word cloud without stop words removed.

Example 2: Dynamic word cloud
This example word cloud builds on the previous example. Instead of hav-
ing hard-coded terms and sizes, they are dynamically generated based
on an input string. This example requires two files:

1. wordcloud2.html — This contains the main HTML and JavaScript
to run the example.

2. wordcloud2.js — This is the core JavaScript library required by
the application.

Example code: wordcloud2.html
Sample Code 2 begins on line 1 with a reference to the wordcloud2.js file
that is the driving force behind this visualization. A canvas tag is added
on line 3 that will be the location for the visualization. The important
element to retain here is the ID that is set to my canvas. A height and
width is set for the canvas.

On line 6, a variable titled text string is added that contains the data
that will be added to the visualization. A second string titled common
is added on line 7 that is used to hold a collection of common terms,
e.g., stop words that are separated by commas. This will act as a filter
that will be applied to the visualization before it is rendered. As text
may come in a number of different formats with different punctuation

192 � Applied User Data Collection and Analysis Using JavaScript and PHP

for separating terms, a Regular Expression pattern is used for the split()
function on line 8 that is applied to the text string. In this case, if a space,
full stop or comma is encountered, it will then break on this token.

Two arrays are created on lines 9 and 10. The first of these is used
to hold the terms, and the second is used to hold the count of the terms.
The next process is to count the number of occurrences for each term in
the tokens array that was generated after the split() function runs.

On line 11, a for loop is used to iterate over each element in the
tokens array from 0 to the length of the tokens array. When this loop is
running, one individual token will be taken from the tokens array and
then forced into lower case to reduce duplication. The trim() function is
called on each term to remove white space.

In the body of the for loop,on line 14, for each individual term, the
words array is checked to see if the current term under analysis exists in
it by using the indexOf() function. If the term does exist, on line 16, the
term is pushed into the words array. On line 17, the value 1 is pushed
on to the wordsCount array.

If the term does exist in the array, then the else statement on line
19 is run. To find where the word is stored, the indexOf() function for
the individual term is used that will return the position of the term in
the array that is stored in the index variable. This is passed directly into
the wordsCount array on line 21 to retrieve the current value. On line
22, the current value is incremented by one and set into the wordsCount
array at position index.

On lines 25–31, a simple for loop is used to iterate over the terms
and the associated values and print them to the browser console to aid
debugging. On line 33, a new array titled list is created that will be
passed to the visualization. To populate this, a for loop iterates over each
of the individual terms gathered in the words array. For each iteration,
the value from words at position i is gathered on line 35, and on line 36,
the wordsCount at position i is gathered. Both values are placed in local
variables.

On line 38, the S pattern is used to specify that for anything but
white space, the individual term will be pushed onto the list array. A
check is also performed to ensure the term does not appear in the com-
mon string, which would indicate it is a stop word. On line 39, the term
and value, e.g., the size of the term in the visualization, is the count of
the term multiplied by 20.

Finally, on line 42, the canvas with the ID set to my canvas is se-
lected, and the list array is passed to it for rendering.

Text Visualization � 193

1 <script src="wordcloud2.js">
2 </script>
3 <canvas id="my_canvas" style="width:400px; height;300px">
4 </canvas>
5 <script>
6 var text_string = "I was very happy with the product that I got

in the mail. However, the package was handled badly. I am
very happy with the product that I got. I will come back
again in the future. There was a number of issues with the
customer service of this company. I will take my business
somewhere else. It was a bad experience. I will never
return. I was treated badly by the man on the front desk.
This is a great company, I will never go elsewhere.";

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7 var common = "i, you, me, is, was, of, a, with, that, in";
8 var tokens = text_string.split(/[.,]/);
9 var words = new Array();

10 var wordsCount = new Array()
11 for (var i = 0; i < tokens.length; i++) {
12 var term = tokens[i].toLowerCase().trim();
13 console.log(term);
14 if(words.indexOf(term) == -1){
15 console.log("does not exist");
16 words.push(term);
17 wordsCount.push(1);
18 }
19 else {
20 var index = words.indexOf(term);
21 var currentValue = wordsCount[index];
22 wordsCount[index] = currentValue + 1;
23 }
24 }
25 for (var i = 0; i < words.length; i++) {
26 var term = words[i];
27 var count = wordsCount[i];
28 if(/\S/.test(term) != false){
29 console.log("term: " + term + " count" +count);
30 }
31 }
32 // viewing the resuls
33 var list = new Array();
34 for (var i = 0; i < words.length; i++) {
35 var term = words[i];
36 var count = wordsCount[i];
37

38 if(/\S/.test(term) != false && common.indexOf(term) == -1){

194 � Applied User Data Collection and Analysis Using JavaScript and PHP

39 list.push([term,count*20]);
40 }
41 }
42 WordCloud(document.getElementById('my_canvas'), { list: list }

);↪→

43 </script>

SAMPLE CODE 2: wordcloud2.html — Sample word cloud with a
dynamic data source.

Output

Figure 6.2 shows the output of the dynamically created word cloud
based on term frequency.

FIGURE 6.2: Output from the dynamic generation of a word cloud
using term frequency.

Although this visualization provides great insights into the data at
a glance, the larger the data set becomes the more difficult the visual-
ization process becomes. Considerations should be made to remove stop
words before the visualization process is started as these can easily build
up the bulk of the content. The second consideration needed is to use a
metric to assign a weight to individual terms of interest.

Text Visualization � 195

6.3 COLLAPSIBLE TREE LAYOUT

Example 3: Tree Layout

When working with text-based feedback, often there are times when
a number of different feedback records will contain similar sentences but
end differently. An example of this can be seen in the following feedback
records:

• The food was good but I did not like the service.

• I did not like how the chairs were dirty.

• Why was their no chicken today? I did not like how the table was
not cleaned.

• The food was great but I did not like the attitude of the server.

Each of the sentences contains similar terms did not like. Although
this is a short example, if we sorted through a large collection of records
that contained these three terms, we can gain additional insight into the
context of the terms. The collapsible tree layout allows us to create a
tree-based structure horizontally across the page. At the root of the tree
we can place a common piece of text, and each branch can contain N
different child nodes, which in turn can have N children. The advan-
tage of using a collapsible tree is that we can easily hide away different
branches on the tree, allowing us to focus on the areas of interest.

This example consists of three files:

1. create.sql — SQL to create the required feedback tree table.

2. tree.html — Core visualization example.

3. generateJSON.php — A simple PHP script to retrieve records from
the database table and convert them into JSON format.

4. D3.js — This is used as the main library to render the graph.

5. jQuery — This is used to perform a JavaScript GET request.

196 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: create.sql

For this example, as shown in Sample Code 3, a simple database
table is used that contains a unique ID column, time stamp column that
is automatically inserted when the record is created, and a comment
column, which is where the text-based feedback will be stored.

1 CREATE TABLE IF NOT EXISTS `feedback_tree` (
2 `id` int NOT NULL AUTO_INCREMENT,
3 `mytime` timestamp NULL DEFAULT CURRENT_TIMESTAMP,
4 `comments` text,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 3: Feedback tree database table.

The collapsible tree-based visualization is built from a single JSON
document. Each individual node is defined with a name attribute, fol-
lowed by the piece of text to be shown. In the JSON in the following
example, the root of the tree is did not like. This node has four child
nodes.

1 {
2 "name": "did not like",
3 "children": [
4 {
5 "name": "the service"
6 },
7 {
8 "name": "how the chairs were dirty"
9 },

10 {
11 "name": "how the table was not cleaned"
12 },
13 {
14 "name": "the attitude of the server"
15 }
16]
17 }

JSON documents need to be fully valid to be rendered. This can be a
difficult process during development. The JSON, however, does not need
to be spaced apart, as shown in the example above. To aid the process

Text Visualization � 197

of editing JSON during development, online JSON formatting tools can
structure or compress JSON as needed. An example of this can be found
at https://jsonformatter.org/json-editor.

Example code: tree.html

In Sample Code 4, a reference is made to the CSS style on lines 4–18
that is used by the visualization. A reference is made to include D3.js on
line 21. On line 22, jQuery is included. jQuery will allow us to dynam-
ically call the PHP page that will generate the JSON content for the
visualization. To aid us in identifying how far we have progressed during
the loading of the code, a simple console.log() is added on line 28 to state
we are about to call the server-side to generates the JSON content.

On line 29, a jQuery GET request is made that is responsible for
calling the generateJSON.php page. The result of this call will be avail-
able in the data variable. However, the content that is returned to us
although it is valid JSON, it is not stored in JSON format. On line 31,
to convert the string into JSON format, we can use the JSON.parse()
function that takes in a variable containing a string and converts it into
objects. These JSON objects are stored in the treeData variable that is
passed to the generateTree() function on line 32 that is responsible for
rendering the tree. For brevity, the code for this function is excluded but
can be found in the online examples that accompany this book.

1 <!DOCTYPE html>
2 <meta charset="UTF-8">
3 <style>
4 .node circle {
5 fill: #fff;
6 stroke: steelblue;
7 stroke-width: 3px;
8 }
9

10 .node text {
11 font: 12px sans-serif;
12 }
13

14 .link {
15 fill: none;
16 stroke: #ccc;
17 stroke-width: 2px;
18 }

https://jsonformatter.org/

198 � Applied User Data Collection and Analysis Using JavaScript and PHP

19 </style>
20 <!-- load the d3.js library -->
21 <script src="https://d3js.org/d3.v4.min.js"></script>
22 <script
23 src="https://code.jquery.com/jquery-3.5.1.js"
24 integrity="sha256-WpOohJOqMqqyKL9FccASB9O0KwACQJpFTUBLTYOVvVU="
25 crossorigin="anonymous"></script>
26 <body>
27 <script>
28 console.log("Calling the genreateJSON.php page");
29 $.get("generateJSON.php", function(data) {
30 console.log(data);
31 treeData = JSON.parse(data);
32 generateTree(treeData);
33 });

SAMPLE CODE 4: tree.html — Retrieving data to be graphed with
D3.

Example code: generateJSON.php

The generateJSON.php page is responsible for connecting to a
MySQL database, collecting records that are relevant to the query that
was executed, and then formatting them in a JSON structure. The core
behind the process of gathering records from the database is the loose-
fitting SQL query. In this example, the LIKE statement is used, with
% surrounding the text of interest. This indicates that the terms may
appear at the beginning, the middle or the end of a feedback record.
Additional processing however, will be required to remove the text at
the beginning of the records as it is not required.

In Sample Code 5 a variable titled rawtext is is added on line 7. This
variable contains the text that is treated as the stem for all the text we
are interested in finding. On line 8, a connection is made to the database.
On line 10, a new array titled params is created that takes in the single
rawtext variable with the percentage signs at the start and end of the
variable. On line 11, the SQL query is created.

On line 15, the beginning of the JSON content is first created in
the variable titled header. A footer variable is created that contains the
JSON to append to the end of the content. A variable titled body is
added on line 22 that will be used as the main holder for the generated
JSON.

https://d3js.org/
https://code.jquery.com/

Text Visualization � 199

On line 23, a simple foreach is used to iterate over the database
results. For each individual result, the data is first placed into the record
variable on line 24. On line 24, the starting point for the text of interest
is found by using the strpos() function that takes in two parameters.
The first of these is the raw record variable, and the second is the text
of interest in the form of the rawtext variable. This function will return
an integer of where to start the extraction process from.

On line 27, the body variable is built up. This begins with JSON
content and enters in a substring that is received by calling the substr()
function and passing the complete record variable followed by the start
position added to the length of the record variable. This will strip off
any additional text before the terms of interest. To finish on line 32, the
header is first printed, followed by the body on line 33 and finally by the
footer JSON content on line 34. Together these three components make
a single valid JSON document.

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $rawtext = 'did not like';
8 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
9 $pass);

10 $params = array("%$rawtext%");
11 $sql = " SELECT * FROM feedback_tree WHERE comments LIKE ?";
12 $sth = $DBH->prepare($sql);
13 $sth->execute($params);
14 $res = $sth->fetchAll();
15 $header = '
16 {
17 "name": "did not like",
18 "children": [';
19 $footer = '
20]
21 }';
22 $body = '';
23 foreach ($res as $row){
24 $record = $row[2];
25 $start = strpos($record, $rawtext);
26

27 $body .= '

200 � Applied User Data Collection and Analysis Using JavaScript and PHP

28 {
29 "name":"'. substr($record, $start+strlen($rawtext)).'"
30 },';
31 }
32 echo $header;
33 echo substr_replace($body ,"", -1); // strip the last comma.
34 echo $footer;
35 } catch(PDOException $e) {echo $e;}

SAMPLE CODE 5: generateJSON.php — Dynamically building a
JSON document.

Output

Figure 6.3 shows the completed tree-based structure running in a
web browser. On the left, we have the stem of the sentence, and on the
right, we have all the comments that contained the original stem.

6.4 TERMS OF INTEREST NODE GRAPH

Example 4: Term node graph

When reviewing text-based feedback from users, often there are con-
nections between the feedback records that may not see when looking
at individual records. An example of this could be seen in the following
five different records that may have been left by different users:

• The staff are horrible here, I am really not happy.

• The staff have been great, I am really not happy about the pool.

• I was five minutes late and they said I cannot have breakfast.

• The breakfast was great.

• More coffee is needed at breakfast time. How can I work without
it?

• Breakfast was good but the staff are great.

Although a very simplistic example, we can see that there are two

Text Visualization � 201

FIGURE 6.3: Completed tree-based structure with the root of the
sentence as the parent node.

references to the staff, and there are three different references to break-
fast. In this section, we will outline the process of identifying terms that
are of interest to us that we may have seen in a record such as breakfast
and staff and use this as the terms to connect different feedback records
together in a node and edge-based graph.

This example consists of three files:

1. create.sql — Create SQL for the nodetree table.

2. graph.php — This is the main script that allows the user to enter
terms of interest along with a date.

3. getRecords.php — The file retrieves the records from the database.

4. Viz.js — This library is used to add nodes to the graph.

202 � Applied User Data Collection and Analysis Using JavaScript and PHP

5. jQueryUI — This library adds the functionality of an interactive
date picker.

6. jQuery — This is used to select elements on the page.

Example code: create.sql
To begin, we will start with a basic table structure that will hold the
feedback records, as shown in Sample Code 6. This table titled nodetree
contains three columns, a unique ID column, a timestamp column, and
a feedback column that will contain the text that the user has entered.

1 CREATE TABLE `nodetree` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `feedback` TEXT,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 6: Node tree database table.

For this example, we will work with the Vis.js library that can be
downloaded from the following GitHub page: https://github.com/visjs/vis-
network. We will use two different filtering criteria for the records that
will be plotted. The first of these is the date that is stored in YYYY-
MM-DD format, and a collection of comma-separated terms that we are
searching for on that particular date. The two terms we will be searching
for are breakfast and staff.

Example code: getRecords.php
The first step in this process is to create a PHP page that will allow us
to select records from the database for visualization. In Sample Code 7,
the date and terms variables are received on lines 2 and 3. A connection
to the database is made on line 9. On line 10, the explode() function is
used to break the terms apart based on the comma between the terms.
On line 11, a variable titled whereClause is created that will be used as
the placeholder for the SQL WHERE clause that will be built up.

For each of the terms, on line 13, additional WHERE clauses are
added to search for terms that are like the term entered by the user. An
OR operator is added at the end of the statement allowing additional
WHERE clauses to be appended. When the foreach statement has fin-
ished, on line 15 the substr() function is used to remove the last OR

https://github.com/
https://github.com/

Text Visualization � 203

statement from the whereClause variable as SQL cannot have an OR as
the ending of a valid SQL statement.

On line 16, the date is entered into a new array that is stored in
a local variable titled params. The main body of the SQL statement is
added to line 17, which searches the notetree table for records where the
time stamp is greater than the date provided. The WHERE clause is
appended to this SQL query. On line 19, the query is finally executed.
On line 21, for each record returned, the column at position 2 of the row
is gathered and placed in the record variable. This is the feedback text
that is output to the page.

1 <?php
2 $date = $_GET['date'];
3 $terms = $_GET['terms'];
4 try {
5 $host = 'localhost:3306';
6 $dbname = 'bookexamples';
7 $user = 'sampleuser';
8 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
9 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

10 $words = explode(',',$terms);
11 $whereClause = '';
12 foreach($words as $word) {
13 $whereClause .= ' feedback LIKE "%' . $word . '%" OR';
14 }
15 $whereClause = substr($whereClause, 0, -2);
16 $params = array($date);
17 $sql = "SELECT * FROM nodetree WHERE timestamp > ? AND " .

$whereClause;↪→

18 $sth = $DBH->prepare($sql);
19 $sth->execute($params);
20 $res = $sth->fetchAll();
21 foreach ($res as $row){
22 $record = $row[2];
23 echo $record . '
';
24 }
25 } catch(PDOException $e) {echo $e;}

SAMPLE CODE 7: getRecords.php — Retrieving records using a
WHERE clause.

204 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: graph.php
A second page is created titled graph.php. This is the main interface that
will be presented to the user allowing them to select a date and enter
terms of interest.

In Sample Code 8, at the top of this file, a reference to the jQueryUI
CSS is included that will be used to aid the pop-up date picker. On line
3, a reference to jQuery is included. On line 4, the JavaScript required
by jQueryUI is included. On lines 6 and 7, the vis-network.min.js file
and the vis-network-min.css file are included. These two files can be
found inside of the dist folder, which is in the root of the Vis.js source
code. On line 10–15, CSS is used to define the height, width, border, and
background of the div tag titled mynetwork that will be used to hold the
visualization.

The body of the document page contains two input boxes. The first
of these on line 22, with the ID set to datepicker will allow the user to
select the date of interest from a jQueryUI date picker tool. The second
input box is added on line 24, with an ID set to terms that will allow
the user to enter in terms of interest. The user can enter a single term
or multiple terms that have been separated using commas. A button is
added on line 25 with the ID set to generate, which, when clicked, will
generate the graph. On line 26, a div tag with the ID set to mynetwork
is added that is the main placeholder for the visualization.

1 <link rel="stylesheet"
href="http://code.jquery.com/ui/1.12.1/themes/base/↪→

2 jquery-ui.css">
3 <script src="https://code.jquery.com/jquery-1.12.4.js"></script>
4 <script src="https://code.jquery.com/ui/1.12.1/jquery-ui.js">
5 </script>
6 <script type="text/javascript"

src="vis-network.min.js"></script>↪→

7 <link href="vis-network.min.css" rel="stylesheet"
type="text/css" />↪→

8 <head>
9 <style type="text/css">

10 #mynetwork {
11 width: 1000px;
12 height: 1000px;
13 border: 1px solid lightgray;
14 background:#d1d1d1;
15 }
16 p {

http://code.jquery.com/
https://code.jquery.com/
https://code.jquery.com/

Text Visualization � 205

17 max-width:600px;
18 }
19 </style>
20 </head>
21 <body>
22 <p>Date of interest: <input type="text" id="datepicker"

value="2019-08-05"></p>↪→

23 Please enter terms of interest
24 <input type="text" value= "breakfast" size="30" id="terms">
25 <button id="generate"> Generate graph </button>
26 <div id="mynetwork"></div>
27 </body>

SAMPLE CODE 8: graph.php — Providing a date and terms of
interest — part 1.

After the HTML component has been created, the next step is to
implement the JavaScript that will be used to generate the graph.

In Sample Code 9, inside a script tag, two data sets are created on
lines 29 and 30. The first is used to hold the nodes for the graph, and
the second is used to hold the edges for the graph. The edges are the
connections that will be created between each different node. A variable
titled nodeId is created on line 31 that is used as a reference point for
storing a unique ID for each node. Whenever a new node is added to
the graph, this variable will be incremented.

To begin the graph generation process, a click() handler is added on
to the generate button on line 32. The graph generation will be added
inside of this click handler. The jQuery selector is used to select the
terms and the date input boxes on lines 33 and 34. The val() function
will extract the values from the input fields. On line 35, a GET request is
made to the getRecords.php page that was created earlier. Two variables
are passed to this page, terms and date on lines 36 and 37. The values
t and d are retrieved from the variables that were used temporarily to
store the values.

This GET request has a done() function on line 39 that returns the
variable data. This will return the selected rows from the database. To
view these records before any processing is performed a console.log(data)
can be added to aid debugging.

Using this data variable, on line 40, each individual record is split
apart based on the br tags that were appended to the end of each line
in the getRecords.php page. This br tag serves as a marker to identify

206 � Applied User Data Collection and Analysis Using JavaScript and PHP

one row from the next. After the split() function has been called, the
feedbackRecords variable will then contain an array, with each row being
one individual position in the array.

To identify the number of terms that have been entered by the user,
the t variable is split on line 42 based on the comma between each term.
These terms are placed into the termsSplit array variable. On line 44,
A for loop is added to iterate over each of the terms entered by the
user. For each individual term, the trim() function is called on line 45 to
remove any additional white space around the term. A call then is made
to the generateGraphForTerm() function on line 47. This function takes
a single term as a parameter. This is the core of the graphing process
for each term.

On line 51, the function generateGraphForTerm() can be seen. On
line 52, a new array is created titled connections, which will be used
to store the edges between the nodes. A parent node with the current
nodeId is created. This will serve as a reference point for all nodes that
are generated. In the case of the term staff, any records that contain this
term will be linked back to this parent node.

To create the parent node, the nodes data set is called on line 54 and
the add() function is called. This takes in the unique ID for the node and
the label, which contains the text the node will hold. In this case, for the
parent node, on line 56, the text will come from the singleT variable,
which is one individual term entered by the user. The font size and color
are then added. A crucial element in this process is to increment the
nodeId variable when a new node is created, as shown on line 63. This
will allow each node to have a unique ID in the graph.

After the generation process of the root nodes for each individual
term, nodes for each record that has been returned need to be created. To
do this a for loop is added on line 65 to iterate over the feedbackRecords
array that contains the individual feedback records. To aid the debugging
process a console.log() function is added on line 66 to print out the nodeId
that we are currently working with.

Two variables are created to monitor the processing of the individual
record. The first variable is the termCount record on line 67, which
is used to store the number of terms the user has entered that have
appeared inside the record we are currently processing.

On line 69, while processing each record, an internal for loop is used
to loop over each of the terms that the user has entered. These terms
were stored inside of the termsSplit array. The indexOf() function is
called on line 71 inside an if statement and passed one term the user

Text Visualization � 207

has entered. If the feedback record contains the term, then the function
will return a number greater than -1. When we have found the term, the
termCount is incremented on line 72.

For each of the individual records that are added to the graph, if one
term entered by the user is found in the record, it is treated as a normal
record. In this case, the default font color black will be used. In the case
where all the terms are found, then the color of the record is changed to
red. After the internal for loop has run, a check is performed on line 77
to see if the termCount is less than the number of terms entered by the
user. If this is the case, then the record is identified as a normal record
by setting the normalRecord boolean variable to true on line 78.

28 <script>
29 var nodes = new vis.DataSet();
30 var edges = new vis.DataSet();
31 var nodeId = 1; // unique Node ID for each.
32 $("#generate").click(function() {
33 var t = $('#terms').val();
34 var d = $('#datepicker').val();
35 $.get("getRecords.php", {
36 terms: t,
37 date: d
38 })
39 .done(function(data) {
40 var feedbackRecords = data.split('
');
41 // count number of terms entered by the user
42 var termsSplit = t.split(',');
43 // for each indivudal term entered by the user
44 for (var i = 0; i < termsSplit.length; i++) {
45 var singleTerm = termsSplit[i].trim();
46 console.log("running graph for " + singleTerm);
47 generateGraphForTerm(singleTerm);
48 }
49 // main function for generating a graph for
50 // a specific term
51 function generateGraphForTerm(singleT) {
52 var connections = new Array();
53 var parentNode = nodeId;
54 nodes.add({
55 id: nodeId,
56 label: singleT,
57 font: {
58 size: 16,
59 color: 'black',

208 � Applied User Data Collection and Analysis Using JavaScript and PHP

60 face: 'arial'
61 }
62 });
63 nodeId++;
64 // for each row in the data set we are working with.
65 for (var i = 0; i < feedbackRecords.length; i++) {
66 console.log("NodeiD " + nodeId);
67 var termCount = 0;
68 var normalRecord = false;
69 for (var y = 0; y < termsSplit.length; y++) {
70 console.log("looking in" + feedbackRecords[i]);
71 if (feedbackRecords[i].indexOf(termsSplit[y]) >

-1) {↪→

72 termCount++;
73 console.log("found occurrence for " +

termsSplit[y]);↪→

74 }
75 }
76 console.log("term count " + termCount);
77 if (termCount < termsSplit.length) {
78 normalRecord = true;
79 }

SAMPLE CODE 9: graph.php — Identifying terms of interest — part 2
In Sample Code 10, on line 80, if the normalRecord is set to true, and

the record we are working with does contain the term of interest, then a
new node is added to the nodes data set. Similar to how the record was
added for the parent record, the add() function is called on line 82. The
unique nodeId and label is added. To visualize the complete record on
line 84, the label for the node is set to be the feedbackRecords[i] where
i is the current position of the array we are iterating over. As this is a
normal record, the font color is set to black on line 87.

On line 92, the final step in this process is to push the node that
has just been created to the connections array for the later attaching of
edges. On line 95, again, it is essential to increment the nodeId after the
new node has been created to prevent any duplicate node IDs on the
graph.

On line 97, in the case of a record where all of the terms entered
by the user appear in the feedback record, the same process is used to
add the node to the graph. The only modification that is made is that
instead of adding an if statement, an else is used as this will only run if

Text Visualization � 209

the normalRecord variable is equal to false. The color of the font in this
case is changed to red on line 102 to make a distinction to other records.

After the parent nodes have been created for each individual term
and the child nodes, e.g., the individual feedback record nodes have been
created the process of making the edges must be performed. The edges
are the connections that appear between the nodes. On line 112, a for
loop is used to iterate over all of the connections that have been stored.
This connections array contained a list of all the IDs of the nodes, which
have been added in the previous step.

On line 113, for each individual connection, the node counter variable
is used to select the node ID from the connections array. This will begin
at 0 and iterate up to the length of the connections array. For each node
ID that is stored in the connection array, they are first placed into a
temporary variable title leftNode. On line 115, the edges data set is used
and the add() function is called on the data set to make a connection
between the leftNode which we currently have and the parentNode which
was created earlier. This parent node will only contain one term, e.g.,
staff where the leftNode will contain the complete text feedback record
that contained the term staff.

80 if (normalRecord == true) {
81 if (feedbackRecords[i].indexOf(singleT) > -1) {
82 nodes.add({
83 id: nodeId,
84 label: feedbackRecords[i],
85 font: {
86 size: 11,
87 color: 'black',
88 face: 'arial'
89 }
90 });
91 console.log(nodeId + feedbackRecords[i]);
92 connections.push(nodeId);
93 }
94

95 nodeId++;
96 } else {
97 nodes.add({
98 id: nodeId,
99 label: feedbackRecords[i],

100 font: {
101 size: 11,
102 color: 'red',

210 � Applied User Data Collection and Analysis Using JavaScript and PHP

103 face: 'arial'
104 }
105 });
106 console.log(nodeId + feedbackRecords[i]);
107 connections.push(nodeId);
108 nodeId++;
109 }
110 }
111 // make edges
112 for (var node = 0; node < connections.length; node++) {
113 var leftNode = connections[node];
114 console.log("connected nodes" + leftNode + " to " +

parentNode);↪→

115 edges.add({
116 from: leftNode,
117 to: parentNode
118 });
119 }
120 } // function

SAMPLE CODE 10: graph.php — Creating the edges — part 3.
In Sample Code 11, the final step in the process is to initialize the

graph on the web page. This is done by using the getElementById()
selector on line 122 to select the div tag with the ID mynetwork that was
created earlier. This reference is placed into a variable titled container.
The data is created which contains references to the nodes and the edges
data sets on lines 124 and 125 that has been built up.

After this, the options for the graph are specified. On lines 129 and
130, the dot shape of size 10 is specified. The three references container,
data, and options are passed to the vis.Network() constructor on line
133. This will create a graph based on the data we have provided. The
click handler function that was originally used to generate the graph
process is closed.

To initialize the jQueryUI date picker, a the jQuery selector is used
to select the datepicker input box on line 137. The datepicker() function
is called. As the dates in the database are stored in YYYY-MM-DD
format, an additional option can be set on the date picker to use this
format, as shown on line 138. If this step is not performed, the days and
months will become reversed.

Text Visualization � 211

121 // create a network
122 var container = document.getElementById('mynetwork');
123 var data = {
124 nodes: nodes,
125 edges: edges
126 };
127 var options = {
128 nodes: {
129 shape: 'dot',
130 size: 10
131 }
132 };
133 var network = new vis.Network(container, data, options);
134 });
135 });
136 $(function() {
137 $("#datepicker").datepicker();
138 $("#datepicker").datepicker("option", "dateFormat",

'yy-mm-dd');↪→

139 });
140 </script>

SAMPLE CODE 11: graph.php — Creating the jQueryUI datepicker
— part 4.

Output
Figure 6.4 provides an example of the output for the selected date, 2019-
08-05 and the keywords breakfast and staff. In this example, we can see
the keywords entered by the user become the parent nodes for all records
that contain the term. Whenever a record contains all the terms the
user has entered, the color of the record is changed to red for additional
emphasis.

6.5 TIME-SERIES ANALYSIS WITH POSITIVE AND NEGATIVE
REVIEW CHART

In this section, we will outline the process of creating a time-series graph.
These graphs are focused on the temporal element, allowing data to be
viewed over a series of days or weeks. This approach to data analysis
allows us to view the impact of a marketing campaign or feature imple-

212 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 6.4: Vis.js graph output for two keywords and a single date.

mentation has on our users. To do this, we will plot the positive and
negative feedback that has occurred on the days across a week.

This example contains three components:

1. create.sql — This contains the create SQL for the pastime table
that contains the review scores.

2. time.php — This is used to retrieve records from the database and
is the main visualization page.

3. Chart.js — This is the main library used to generate the graph.

4. moment.js — A JavaScript-based library used for working with
time stamps.

Example 5: Positive and negative reviews

The graph generation process is broken into two components. The
PHP component that is used for gathering the relevant records from the
database and the HTML/JavaScript component that is used for creating
the visualization. In this example, a file titled time.php is created. The
PHP code will be placed at the top of the file, followed by JavaScript
and HTML.

Text Visualization � 213

Example code: create.sql
Before we begin the process of building the graph, a database table is
needed. In this example, we will create a table titled pastime. This table
contains a unique ID column, that is a primary key and is also auto-
incremented when a new record is entered. The mytime column will
retrieve the current time stamp from the system when a new record is
saved. The feedbacktext is of type text, which will allow the user to enter
in their feedback. The most important column in this example is the
score column that we will use to store a rating score between 1 and 10.
As the range is small, a TINYINT data type can be used.

1 CREATE TABLE `pastime` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP,
4 `feedbacktext` TEXT,
5 `score` TINYINT,
6 PRIMARY KEY (`id`)
7);

Example code: time.php

In Sample Code 12, The PHP component to generate the records for
the graph is broken into four distinct components. The first of these is a
connection to the MySQL database on line 7. This database will be used
for retrieving the positive feedback records and the negative feedback
records. On line 10, a new function is defined titled getNumberOfPos-
itive() that takes in a single parameter in the form of a date. On line
11, a reference to the database object is made. On line 12, The date is
passed into the PHP explode() function that will break the date apart
based on the spaces between the day, month, and year. Each of these
will be stored as an array element in the date array.

The year is accessed by referencing the date object at position 0
and stored in the justYear variable. On line 14, a SQL query is created.
This counts the number of records that are returned using the SQL
count() function on the score column. A WHERE clause is added to
the end of the SQL statement to specify where the year is like the year
in the justYear variable. In addition to this, to classify the records as
positive, an additional AND operator is added to ensure the scores must
be greater than 5. On line 18, the result record that contains the total
count of positive records is returned.

214 � Applied User Data Collection and Analysis Using JavaScript and PHP

This process is repeated again for the getNumberOfNegative() func-
tion on line 20. The only modification that is made is on line 24, the
score must be less or equal to 5.

To retrieve a list of dates to visualize, a new SQL query is adde to on
line 33. The distinct keyword is used to remove duplicate dates. On line
40, For each individual date, the row at position 0 that stores the date
is placed in the labels variable. The positive scores for that date are re-
trieved by calling the getNumberOfPositive() function on line 42 followed
by a comma to separate the result from the next to be generated. The
same is repeated for the negative scores by calling the getNumberOfNeg-
ative() function on lines 45—47 the PHP substr() function is used to
remove the trailing colon from the labels, positive and negative variables
by passing -1 to the substr() PHP function.

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

8 } catch(PDOException $e) {echo $e;}
9

10 function getNumberOfPositive($date){
11 global $DBH;
12 $date = explode(' ', $date);
13 $justYear = $date[0];
14 $sql = "SELECT COUNT(score) as score FROM pastime WHERE

TIMESTAMP LIKE '$justYear%' AND score > 5 LIMIT 7;";↪→

15 $sth = $DBH->prepare($sql);
16 $sth->execute();
17 $res = $sth->fetchAll();
18 return $res[0][0];
19 }
20 function getNumberOfNegative($date){
21 global $DBH;
22 $date = explode(' ', $date);
23 $justYear = $date[0];
24 $sql = "SELECT COUNT(score) as score FROM pastime WHERE

TIMESTAMP LIKE '$justYear%' AND score <= 5 LIMIT 7;";↪→

25 $sth = $DBH->prepare($sql);
26 $sth->execute();
27 $res = $sth->fetchAll();

Text Visualization � 215

28 return $res[0][0];
29 }
30

31 // Get a list of unique dates from the
32 // database
33 $sql = 'SELECT DISTINCT timestamp FROM pastime';
34 $sth = $DBH->prepare($sql);
35 $sth->execute();
36 $res = $sth->fetchAll();
37 $labels = '';
38 $positive = '';
39 $negative = '';
40 foreach ($res as $row){
41 $labels = $labels . "'" .$row[0]. "',";
42 $positive = $positive . getNumberOfPositive($row[0]) . ',';
43 $negative = $negative . getNumberOfNegative($row[0]) . ',';
44 }
45 $labels = substr($labels, 0, -1); // remove the final colon from

the end of the string↪→

46 $positive = substr($positive, 0, -1);
47 $negative = substr($negative, 0, -1);
48

49 ?>

SAMPLE CODE 12: time.php — Retrieving labels, positive and
negative scores — part 1.

In Sample Code 13, the graph generation process will be performed
using Chart.js. To avoid the need to download additional files on our
server, a content delivery network (CDN) for Chart.js and moment.js
will be used. The second library, moment.js, is a JavaScript-based library
used for working with time stamps. On lines 54–56 these CDN references
are included. On line 59, the canvas tag CSS is modified to prevent
the selection of elements for moz (Firefox), ms (Internet Explorer), and
webkit (Safari) browsers.

Inside the body of the document, on line 67, a div tag is created with
a width set to be 75 percent of the available space. Inside of this div tag,
on line 68, a single canvas tag is added with an ID set to canvas. This
is where the graph will be generated. On line 74, a script tag is added
that contains the exact RGB values for seven different colors. Additional
custom colors can be added if required.

216 � Applied User Data Collection and Analysis Using JavaScript and PHP

50 <!doctype html>
51 <html>
52 <head>
53 <title>Positive and Negative Feedback</title>
54 <script

src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.18.1/↪→

55 moment.min.js"></script>
56 <script

src="https://www.chartjs.org/dist/2.8.0/Chart.min.js"></script>↪→

57 <script src="https://code.jquery.com/jquery-1.12.4.js"></script>
58 <style>
59 canvas {
60 -moz-user-select: none;
61 -webkit-user-select: none;
62 -ms-user-select: none;
63 }
64 </style>
65 </head>
66 <body>
67 <div style="width:75%;">
68 <canvas id="canvas"></canvas>
69 </div>
70 </body>
71 </html>
72

73

74 <script>
75 window.chartColors = {
76 red: 'rgb(255, 99, 132)',
77 orange: 'rgb(255, 159, 64)',
78 yellow: 'rgb(255, 205, 86)',
79 green: 'rgb(75, 192, 192)',
80 blue: 'rgb(54, 162, 235)',
81 purple: 'rgb(153, 102, 255)',
82 grey: 'rgb(201, 203, 207)'
83 };

SAMPLE CODE 13: time.php — Initial page setup — part 2.

In Sample Code 14, the config object that stores all the configuration
for the graph is added on line 85. On line 86, the type of graph that will
be generated is specified. In this case, we will be generating a line graph.
On line 87, the data for the graph is defined. This will contain the labels
and data for the graph. On line 88, the labels, in this case, are the

https://cdnjs.cloudflare.com/
https://www.chartjs.org/
https://code.jquery.com/

Text Visualization � 217

individual dates that feedback has been gathered for. To aid the graph
generation process, the labels are generated using PHP. These labels are
stored inside the labels PHP variables and are separated by commas.

The data set that will be represented consists of individual days in
a month, with the count for positive and negative feedback records for
each day. On line 92, to facilitate this, the datasets variable contains
the label, which will be used to show the first data set, in this case, the
positive feedback. The background color for this data is set to red on line
94. This color red is gathered from the chartColors defined earlier. The
data for the graph is defined on line 98. The values will be dynamically
added using PHP on line 99.

A second data set is added. This is done by first specifying the label
on line 102 that we wish to appear, followed by the color we wish to
use to represent the data set. On line 103, blue is set. The fill attribute
allows us to define if we would like the area under the line to be filled
with color or not. To keep this graph clear, we will set this to false on
line 106. Similar to the positive feedback, the data for this data set is
gathered from the negative variable that is output from the PHP variable
on line 108.

On line 113, additional options for the graph can be specified. The
title is set followed by the scales which will be present on the data graph.
On line 119, the xAxes is defined as time. The display is set to true and
the label is set to the value Date on line 123. The yAxes for the graph is
defined on line 126.

The final step in the process is to generate the graph. On line 135,
the window.onload() function is used to trigger this process. When the
window loads the canvas is selected using the getElementById() selector
on line 136. The getContext() function is called and 2d is set. Finally,
on line 137, the window.myLine is set to a new Chart with the ctx
variable being passed as the context and the config variable containing
the configuration for the graph.

84 var color = Chart.helpers.color;
85 var config = {
86 type: 'line',
87 data: {
88 labels: [// Date Objects
89 //'2019-08-06 21:04:11',
90 <?php echo $labels; ?>
91],
92 datasets: [{

218 � Applied User Data Collection and Analysis Using JavaScript and PHP

93 label: 'Positive Feedback',
94 backgroundColor:

color(window.chartColors.red).alpha(0.5).↪→

95 rgbString(),
96 borderColor: window.chartColors.red,
97 fill: false,
98 data: [
99 <?php echo $positive; ?>

100],
101 }, {
102 label: 'Negative Feedback',
103 backgroundColor:

color(window.chartColors.blue).alpha(0.5).↪→

104 rgbString(),
105 borderColor: window.chartColors.blue,
106 fill: false,
107 data: [
108 <?php echo $negative; ?>
109],
110

111 }]
112 },
113 options: {
114 title: {
115 text: 'Time Feedback Analysis'
116 },
117 scales: {
118 xAxes: [{
119 type: 'time',
120

121 scaleLabel: {
122 display: true,
123 labelString: 'Date'
124 }
125 }],
126 yAxes: [{
127 scaleLabel: {
128 display: true,
129 labelString: 'Feedback Count'
130 }
131 }]
132 },
133 }
134 };
135 window.onload = function() {

Text Visualization � 219

136 var ctx =
document.getElementById('canvas').getContext('2d');↪→

137 window.myLine = new Chart(ctx, config);
138 };
139 </script>

SAMPLE CODE 14: time.php — Generating the graph object — part
3.

Output

Figure 6.5 shows the final output of the graph generation process.
Two lines are added to the graph, one for the positive feedback count and
one for the negative feedback count. The days which are being shown
are outlined across the bottom of the graph.

FIGURE 6.5: Time graph showing seven days of positive and negative
feedback for a week.

6.6 SUMMARY

This chapter outlined the visualizations that are possible when working
with text. Word clouds were introduced as a quick method of viewing the
most popular terms in a collection of text. As text comes in a structured
format such as sentences and paragraphs, tree-based structures were then
explored, outlining how the root of a single term can be used to connect
to other sentences.

220 � Applied User Data Collection and Analysis Using JavaScript and PHP

An important element of any feedback record is the time when it
was left. A line graph based on the number of positive and negative
feedback records for a given day was then explored, providing quick
glance statistics for numeric data.

Chapter 7, next, explores the temporal component of data in detail.

C H A P T E R 7

Time-Based Feedback
Analysis

7.1 INTRODUCTION

When feedback data is gathered, time stamps are often added. These
time stamps can be used to leverage additional insights from the data.
Feedback records in a specific time range can indicate an issue with the
current operation of a business or an issue that appeared at a specific
time in the past. These insights may have otherwise been lost if a col-
lection of records was viewed without a temporal component.

In this chapter, the temporal aspect of data is explored.

7.2 GATHERING TIMELINES AND DATABASE DATA TYPES

When gathering feedback from users, MySQL offers a range of different
date and time-based data types. Table 7.1 provides an outline of these
data types. A dividing line can be placed between where the time/date
is created, either programmatically during the data collection process or
automatically during the process of submitting the data to the database.

Example 1: Date and time
In PHP we can use the date() function to return the current date stamp.
Different parameters can be passed to this function to return the date in
different formats.1 Sample Code 1 outlines the process of retrieving the
year, month and day. The Y parameter returns the year in four digits,
e.g., 2021, the m parameter returns a two digit representation of the

1http://php.net/manual/en/function.date.php

221

http://php.net/

222 � Applied User Data Collection and Analysis Using JavaScript and PHP

TABLE 7.1: MySQL Database Data Types for Time and Dates

Data type Description
DATE The date is stored in YYYY-MM-DD format with

a range from 1000-01-01 to 9999-12-31.
TIME HH:MM:SS format with a range from -838:59:59 to

838:59:59. A trailing fraction in microseconds with
6 digit precision is available.

YEAR Year from 1901 to 2155. This can be assigned in
integer or string format. Integers between 1 and 99
can be used, which are converted to a four-character
representation.

DATETIME Auto-generated field with a YYYY-MM-DD
HH:MM:SS format.

TIMESTAMP Auto-generated field with a range of 1970-01-
01 00:00:01 UTC to 2038-01-19 03:14:07 UTC.
MySQL converts the current time zone into UTC
format for storage and back to the current time dur-
ing the retrieval process.

month, e.g., 08, and finally the d parameter returns the day in two digit
format, e.g., 12.

1 <?php
2 echo "Today is " . date("Y-m-d") . "
";
3 ?>

SAMPLE CODE 1: Retrieving the date using PHP.

An alternative method of storing the time is in epoch format. This
format is the number of seconds that have elapsed since the Unix Epoch,
which is January 1 1970 00:00:00 GMT. When storing this format, a
standard date/time data type is not required. Sample Code 2 outlines
the process of retrieving the time in Epoch format.

1 <?php
2 $date = new DateTime();
3 echo $date->getTimestamp();
4 ?>

SAMPLE CODE 2: Returning the current Epoch time.

Time-Based Feedback Analysis � 223

The advantage of using an epoch based format is that calculations
can easily be performed on the time stamp. An example of this is the
epoch time stamp 1540470653. We can add three hours onto this by
simply converting three hours into seconds as shown in Equation 7.1

60 seconds× 60minutes× 3 hours = 10800 (7.1)
A simple addition can be performed on the original epoch time to

give the new epoch time, as shown in Equation 7.2.

1540470653 + 10800 = 1540481453 (7.2)

7.3 TIME-SEGMENT ANALYSIS AND VISUALIZATION

When viewing feedback, many different options are available to us, de-
pending on how close or how far away from the data we wish to be. In
this example, we will describe the process of generating a graph for pos-
itive and negative feedback for a given time segment. In this example,
we will use one day as the largest amount of time to view. For this day,
we will focus on each different hour to view the number of positive and
negative feedback records. This approach allows us to look closer at the
positive or negative feedback that may have been received and review
the exact time the feedback was recorded.

Example 2: Time-segment analysis

This example consists of three files and five libraries:

1. create.sql — This file outlines the create SQL for the exampleex-
ample table.

2. timesegment.php — This contains the controls allowing the user
to select the date and time of interest along with the time segment
size.

3. getTimeRecords.php — This file retrieves the records of interest
from the database.

4. Chart.js — This is used to plot the positive and negative feedback
graph.

5. Moment.js — This library is used for working with time stamps in
JavaScript.

224 � Applied User Data Collection and Analysis Using JavaScript and PHP

6. jQuery — Used to perform JavaScript POST requests.

7. jQueryUI — Provides an interactive date picking utility.

8. timepicker.co — Provides an interactive time picking utility.

Example code: create.sql

Sample Code 3 outlines the structure of the database table. The time
stamp is recorded in the mytime column when a new record is created.
The feedback score is stored in the score column.

1 CREATE TABLE `timeanalysis` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `mytime` TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `score` INT,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 3: SQL to create the timeanalysis database table.

Example code: timesegment.php

The first step in this process is to create a new PHP page titled time-
segment.php that will be used to hold the HTML options for the user to
choose from and the JavaScript for the visualization. For each JavaScript
library that will be utilized, content delivery networks (CDNs) will be
used to remove the need to downloaded and place each individual library
into the project folder.

In Sample Code 4, on lines 5–15, the CDN references are in-
cluded. These include Moment.js, which is used for the manipula-
tion of time stamps in JavaScript. This library is available from
https://momentjs.com/. Chart.js is used for the main graphing process.
In this example, we will be using a line chart with two axes. To ma-
nipulate the HTML document and avail of the DOM object selector
jQuery will be used. To provide the user with an interactive calendar,
the jQueryUI library is utilized along with the jQueryUI CSS file. The
calendar widget is available from https://jqueryui.com/datepicker/. To

https://momentjs.com/
https://jqueryui.com/

Time-Based Feedback Analysis � 225

select a time window, a jQuery based timepicker is used which is avail-
able from https://timepicker.co/. The timepicker also utilizes a CSS file
for styling that is also included.

Similar to previous examples, on lines 17–21, the canvas tag is ma-
nipulated to prevent a user from making selections in Firefox, Chrome,
and Internet Explorer.

On lines 25 and 26, two input fields are added. The first of these is
used to present the date value to the user, and the second is used to
show the time selected to the user. By default, the widgets will not be
present until the user has clicked on the input field. To convert these
regular input fields into widgets, additional JavaScript is used that is
shown later in this section. The two important elements here is the IDs
for each field. datepicker for the first input field and timepicker for the
second.

As the main objective of this visualization is to utilize time, a HTML
select field is added on line 28. The ID for this field is set to minutes.
The initial increments that are used are 15 minutes until the hour mark.
Then the increments are performed in hours. The hour is denoted by the
additional h that is appended to the number. This will be used during
the collection of the data to convert the hour selected into minutes. After
the time window has been specified, on line 57, a button is added that
will be used to trigger the visualization process. The ID of this button
is set to loadData.

On line 58, a div tag is added with a width of 75% of the available
space. Inside of this div tag, a single canvas tag is added that is the core
of the visualization. The ID for this is set to canvas.

1 <!doctype html>
2 <html>
3 <head>
4 <title>Time Segment Analysis</title>
5 <script

src="https://cdnjs.cloudflare.com/ajax/libs/moment.js/2.18.1/↪→

6 moment.min.js"></script>
7 <script src="https://www.chartjs.org/dist/2.8.0/Chart.min.js">
8 </script>
9 <script src="https://code.jquery.com/jquery-1.12.4.js"></script>

10 <link rel="stylesheet"
href="//code.jquery.com/ui/1.12.1/themes/base/jquery-ui.css">↪→

11 <script
src="https://code.jquery.com/ui/1.12.1/jquery-ui.js"></script>↪→

https://timepicker.co/
https://cdnjs.cloudflare.com/
https://www.chartjs.org/
https://code.jquery.com/
https://code.jquery.com/

226 � Applied User Data Collection and Analysis Using JavaScript and PHP

12 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/timepicker/↪→

13 1.3.5/jquery.timepicker.min.css">
14 <script src="https://cdnjs.cloudflare.com/ajax/libs/timepicker/
15 1.3.5/jquery.timepicker.min.js"/>
16 <style>
17 canvas {
18 -moz-user-select: none;
19 -webkit-user-select: none;
20 -ms-user-select: none;
21 }
22 </style>
23 </head>
24 <body>
25 Date: <input type="text" id="datepicker">
26 Time From: <input type="text" id="timepicker">
27 Time Window
28 <select id="minutes">
29 <option value="15">15 Minutes</option>
30 <option value="30">30 Minutes</option>
31 <option value="45">45 Minutes</option>
32 <option value="1h">1 Hour</option>
33 <option value="2h">2 Hour</option>
34 <option value="3h">3 Hour</option>
35 <option value="4h">4 Hour</option>
36 <option value="5h">5 Hour</option>
37 <option value="6h">6 Hour</option>
38 <option value="7h">7 Hour</option>
39 <option value="8h">8 Hour</option>
40 <option value="9h">9 Hour</option>
41 <option value="10h">10 Hour</option>
42 <option value="11h">11 Hour</option>
43 <option value="12h">12 Hour</option>
44 <option value="13h">13 Hour</option>
45 <option value="14h">14 Hour</option>
46 <option value="15h">15 Hour</option>
47 <option value="16h">16 Hour</option>
48 <option value="17h">17 Hour</option>
49 <option value="18h">18 Hour</option>
50 <option value="19h">19 Hour</option>
51 <option value="20h">20 Hour</option>
52 <option value="21h">21 Day</option>
53 <option value="22h">22 Day</option>
54 <option value="23h">23 Day</option>
55 <option value="24h">All Day</option>

https://cdnjs.cloudflare.com/
https://cdnjs.cloudflare.com/

Time-Based Feedback Analysis � 227

56 </select>
57 <button id="loadData"> Load Data </button>
58 <div style="width:75%;">
59 <canvas id="canvas"></canvas>
60 </div>
61 </body>
62 </html>

SAMPLE CODE 4: timesegment.php - part 1.

Output

Figure 7.1 shows the final output of the HTML.

FIGURE 7.1: Time-segment analysis controls.

Figure 7.2 shows the jQueryUI calendar widget after the date input
field has been clicked.

FIGURE 7.2: Selecting the start time for the analysis process.

Figure 7.3 shows an example of the timepicker widget in use to select
the start time of interest.

228 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 7.3: Selecting the start time of interest.

In Sample Code 5, on line 63, a window.chartColors is created. This
specifies the RGB values for a range of colors. In this graph, red and
green will be used. When the page is loaded the function() is called on
line 72. Inside of this, the jQuery selector is used to select the datepicker
input field on line 73. The format that we are using for the date is
specified as a parameter. In this example, we will pass yy-mm-dd, which
will provide a date such as 2020-08-28. The selector is used again to
select the timepicker input field on line 74. The time format is passed as
h:mm p. This will provide us with output such as 10:00am. On line
76, the interval specifies the gap between the times that are added.
In this example, we are using 15 minutes intervals between each time
present. The default time is specified as 1:00am on line 77. On line 79,
the dropdown is set to true, providing a dropdown menu to allow the
user to select the date. On line 80, the scrollbar is set to true, providing
a visual scroll bar.

On line 83, a click() handler is appended on to the button created
earlier by using the jQuery selector to select the loadData button. When
the button is clicked, a call is made to the generateNewGraph() function
that is responsible for the complete graph generation process. On line
86, this new function is created. Both the positive and the negative
feedback will be retrieved from the database when this function is called
and plotted on separate lines.

Time-Based Feedback Analysis � 229

Inside of this function a reference to the Chart.helpers.color is stored
inside of a variable titled color on line 87. The configuration for the
graph is created and stored in the config variable on line 88. In this con-
figuration the first parameter is the type of graph that will be generated
which in this case the value is set to line. The data variable on line 91,
contains the datasets array.

This array contains two distinct data sets. The first of these is stored
at position 0 of the array, which is the negative feedback score. The
chartColours that was defined earlier is used to select the colour red
on line 93. This colour is converted into an RGB string using the rg-
btoString() function. The border color is also defined as red. On line 96,
the fill attribute allows us to color in below the line on the chart. As
there may be a large number of feedback records, to avoid overfilling the
graph, this is set to false. The data variable on line 87 is an array that
is left blank when first initialized. This will be input in a later step.

Beginning on line 100, the second data set is defined. This data set
is stored at position 1 of the array. This data set is used to store the
positive feedback. This process is the same as the previous step, with
the only alteration being the color of the line being set to green on line
103.

63 window.chartColors = {
64 red: 'rgb(255, 99, 132)',
65 orange: 'rgb(255, 159, 64)',
66 yellow: 'rgb(255, 205, 86)',
67 green: 'rgb(75, 192, 192)',
68 blue: 'rgb(54, 162, 235)',
69 purple: 'rgb(153, 102, 255)',
70 grey: 'rgb(201, 203, 207)'
71 };
72 $(function() {
73 $("#datepicker").datepicker({dateFormat: "yy-mm-dd"});
74 $('#timepicker').timepicker({
75 timeFormat: 'h:mm p',
76 interval: 15,
77 defaultTime: '1:00am',
78 startTime: '1:00am',
79 dropdown: true,
80 scrollbar: true
81 });
82 });
83 $("#loadData").click(function() {
84 generateNewChart();

230 � Applied User Data Collection and Analysis Using JavaScript and PHP

85 });
86 function generateNewChart(){
87 var color = Chart.helpers.color;
88 var config = {
89 type: 'line',
90 data: {
91 datasets: [{
92 label: 'Negative Feedback Score',
93 backgroundColor:

color(window.chartColors.red).alpha(0.5).↪→

94 rgbString(),
95 borderColor: window.chartColors.red,
96 fill: false,
97 data: []
98 },
99 {

100 label: 'Positive Feedback Score',
101 backgroundColor:

color(window.chartColors.green).alpha(0.5).↪→

102 rgbString(),
103 borderColor: window.chartColors.green,
104 fill: false,
105 data: []
106 }
107

108]
109 },

SAMPLE CODE 5: timesegment.php — Basic graph configuration —
part 2.

In Sample Code 6, the options for the graph are defined. In this
example, we have set the graph to be responsive on line 111. This allows
the graph to move when the user interacts with a mouse when there is
more data than available space on the graph. The title is set to true to
be visible, and the text for the title is set on line 114

On line 116, the scales for the graph is used to define the X and Y
axes of the graph. The X is shown horizontally on the graph. On line
122, the labelString is set to Time stamp to show the user we are working
with time. The ticks for the graph, e.g., the individual markings for each
record, has the fontColor set to #000000, which is black on line 127. On
line 131, the Y axes for the graph is used to display the text Feedback
Score which is visible vertically on the left-hand side of the graph.

Time-Based Feedback Analysis � 231

110 options: {
111 responsive: true,
112 title: {
113 display: true,
114 text: 'Time Segment Analysis'
115 },
116 scales: {
117 xAxes: [{
118 type: 'time',
119 display: true,
120 scaleLabel: {
121 display: true,
122 labelString: 'Time stamp'
123 },
124 ticks: {
125 major: {
126

127 fontColor: '#000000'
128 }
129 }
130 }],
131 yAxes: [{
132 display: true,
133 scaleLabel: {
134 display: true,
135 labelString: 'Feedback Score'
136 }
137 }]
138 }
139 }
140 };

SAMPLE CODE 6: timesegment.php — Adding X and Y axes — part
3.

In Sample Code 7, once the configuration has been created, the main
graph can be defined. A single variable titled ctx is created on line 141
that serves as a reference point to the canvas tag that was defined ear-
lier in the graph. The context for the graph is set to 2d, which is two
dimensional. On line 142, the window.myLine variable is set to be a new
instance of the Chart() object that takes in two parameters, the context
in the form of the ctx reference and the config variable that was defined
in the previous step.

As the user interface provides the user the ability to select the date,

232 � Applied User Data Collection and Analysis Using JavaScript and PHP

time, and time window they want to see, each of these values must be
retrieved. The first of these is the date variable. As the data is stored
inside a simple HTML input field, the jQuery selector can be used to
select the element by the ID that was set to datepicker earlier, as shown
on line 145. The val() function then extracts the value present from the
selected field.

The time entered by the user is also stored in a simple text input
field, but as the time format of times can vary, the JavaScript library
moment is used to process the time.

On line 147, the first step in this process is to create a new call to the
moment library. Inside of this call, two parameters are passed. The first
of these is the raw time format that was entered. This is retrieved by
using the jQuery selector to select the input field and the .val() function
is used to extract the raw value. The second parameter that is passed is
the original format of the time stamp. In this case, h:mm A, which takes
in the raw date format, e.g., 1:00 AM. This is formatted into HH:mm
which is the 24 hour clock variant of the time, e.g., 01:00.

Further information about these patterns can be found on the mo-
ment.js website.2 The final variable that is extracted is the minutes input
field on line 150. This contains the time window selected by the user. On
line 152, a simple if statement is used to check if the minutes entered by
the user contains the letter h. If this is present, it identifies to us that
we are looking at an hour rather than 15, 30 or 45 minutes. In the case
where the h is present, on line 153, the replace() function is called on
the string to remove the h and replace it with nothing. The remaining
value is the hour that can be multiplied by 60 to get the total desired
time window in minutes.

To gather the feedback records for the chart, two GET requests are
made. One for the positive feedback and one for the negative feedback.
On line 157, a GET request is made to the getTimeRecords.php page.
The type parameter is passed to identify that we wish to receive only
negative records. These negative records are feedback records that have
been rated below 5. The dstart variable is passed, which is the date we
are interested in. The date variable that was previously selected is passed
as the value. Similar to this, the tstart is passed to indicate the time of
interest, and the time value is passed that was selected earlier. The final
variable that is passed is titled minutes that outlines how large a window
we are interested in seeing from the defined start time.

2https://momentjs.com/docs/#/manipulating/

https://momentjs.com/

Time-Based Feedback Analysis � 233

The results that are returned will be in the format of a date followed
by a feedback score. Each individual record that is returned is separated
using a comma. For this reason, to process each individual record, on
line 159, the split() function is called passing a comma as the delimiter to
break on. The result of this process is an array of records that is stored
in the result variable. On line 160, a simple iteration is done using the
forEach() function that provides us access to each individual record in
the set. This is a variable name that we are assigning to the single record.

The record that is returned must be split into four parts: at position
0 of the array is the year, day and month, position 1 is the time, and po-
sition 3 is the feedback score. To perform this action, the split() function
is called passing a single space as the delimiter on line 161.

To add the data to the chart data set, on line 162, the con-
fig.data.datasets[0] is referenced. This points to the original array that
was created in the config variable. Position 0 of the dataset is only used
for negative feedback records. To add the new data to the charts data
set arrays, the push() function is called. This takes two parameters, the
x value, and the y value. The first of these is the single date[0], which is
the date followed by position 1, which is the time the record was logged.
The Y-axes value is the feedback score between 1 and 10 that is stored
at position 2 of the array.

After the loop has finished iterating, a call is made to the win-
dow.myLine.update() function on line 167 to render the changes that
have been made to the graph.

141 var ctx = document.getElementById('canvas').getContext('2d');
142 window.myLine = new Chart(ctx, config);
143

144 // get values entered by the user
145 var date = $('#datepicker').val();
146 console.log($('#timepicker').val())
147 var time = moment($('#timepicker').val(), ["h:mm

A"]).format("HH:mm");↪→

148 console.log("time new" + time);
149

150 var minutes = $('#minutes').val();
151

152 if(minutes.indexOf('h') > -1){
153 minutes = minutes.replace('h', '');
154 minutes = minutes * 60;
155 }
156 // get negative records

234 � Applied User Data Collection and Analysis Using JavaScript and PHP

157 $.get("getTimeRecords.php", { type: "negative", dstart: date,
tstart: time, minutes:minutes})↪→

158 .done(function(data) {
159 var result = data.split(',');
160 result.forEach((record) => {
161 var single = record.split(' ');
162 config.data.datasets[0].data.push({
163 x: newDate(single[0]+single[1]),
164 y: single[2],
165 });
166 });
167 window.myLine.update();
168 }); // end of get

SAMPLE CODE 7: timesegment.php — Appending records to the
data set — part 4.

In Sample Code 8, to gather the positive feedback records, the code
is identical, with the only changes being the the type parameter on line
170 is set to positive and the reference to the positive dataset records on
line 175, which is at position 1 of the data set array. Again, the graph
is updated by making a call to the window.myLine.update() function on
line 180.

After the main function has been added to render the graph, a second
function is added titled newDate() on line 183. This takes in a time stamp
from the database and formats it with the year, month, and day format
followed by the hours, minutes, and seconds. This would return a time
stamp stored in the database as 2020-08-26 10:22:01.

169 // get positive records
170 $.get("getTimeRecords.php", { type: "positive", dstart: date,

tstart: time, minutes:minutes})↪→

171 .done(function(data) {
172 var result = data.split(',');
173 result.forEach((record) => {
174 var single = record.split(' ');
175 config.data.datasets[1].data.push({
176 x: newDate(single[0]+single[1]),
177 y: single[2],
178 });
179 });
180 window.myLine.update();
181 }); // end of GET
182 }

Time-Based Feedback Analysis � 235

183 function newDate(stamp) {
184 return moment(stamp, "YYYY-MM-DD HH:mm:ss");
185 }
186 </script>

SAMPLE CODE 8: timesegment.php — Performing the GET request
— part 5.

Example code: getTimeRecords.php
To retrieve the records from the database for the graph generation pro-
cess, a second PHP page is created titled getTimeRecords.php. In Sample
Code 9, on line 2, the GET function is used to retrieve the type of feed-
back that is requested, e.g., positive or negative. This is stored inside the
type variable. On lines 3–9, a connection to the database is established.

On line 10, a simple if statement is used to check if the type variable
was set to positive or negative. Based on the value, a call is made to the
getRecords() function on line 11 or 14 that takes in the type. This allows
us to reuse the same body of code for both positive and negative records.
On line 16, the getRecords() function is declared that takes in a single
parameter sort which will contain the value positive or negative.

Inside of this function on lines 18, 19, and 20, each parameter that
was passed via the JavaScript GET is retrieved. These include the date
of interest, the time of interest, and the size of the time window required
in minutes. A new variable titled start is created that concatenates the
date and time together with a single space in between. On line 22, This
date is passed to a new instance of the DateTime PHP object. This
DateTime allows us to create an offset to the time, e.g., the number of
minutes after our time of interest. This process is done to derive the end
time of interest, which will be used in our SQL query. On line 24, the
modify() function takes in the offset, which is the number of minutes we
want to alter the original time stamp by. This end-time is stored in the
end variable on line 25. The format() function is called to format the
date and time in the desired format for retrieval from the database.

As this function is used for both positive and negative feedback, a
simple if statement is used to generate a piece of SQL that will be added
to the SQL query. This begins by creating an array titled params on line
26 that contains the start and end time of interest. If the sort variable
that was passed to the function was positive then the scoreSort variable
is set to score >=5 on line 29. When the variable is set to negative, then
the scoreSort is set to score < 5 on line 32.

236 � Applied User Data Collection and Analysis Using JavaScript and PHP

On line 34, the SQL query is built up to select the mytime and
the score columns from the timeanalysis table. The filtering is done by
adding a WHERE clause defining that we are interested in records where
the time stamp is greater or equal to ?, which is the first value in the
params array and the time stamp is less or equal to ?, which is the second
parameter in the array, e.g., the end time. Another AND is appended.
The SQL for the scoreSort is appended. The final step in the process is
the ORDER BY, which outlines that we want to order the records by
the time stamp.

On line 36, the execute() function is called, passing the parameters
followed by a call to the fetchAll() function to return all the records.

The final step in the process is to generate the output variable. This
variable is built up based on the content retrieved from the database.
For each row in the database, on line 40, the output is appended to
include the row[0], which contains the time stamp followed by a space
followed by row[1], which contains the score. Each row is completed by
adding a colon, which is used as the separator between the records that
are returned to the JavaScript GET request defined earlier.

The output that generated is processed on line 42 by making a call
to the substr() function that takes two parameters: the starting index,
which is set to 0, and the end index, which is set to -1 to remove the
final semicolon from the output variable.

All the data is output to the page, which is returned back to the orig-
inal JavaScript GET request on the timesegment.php page for graphing.

1 <?php
2 $type = $_GET['type'];
3 try {
4 $host = 'localhost:3306';
5 $dbname = 'bookexamples';
6 $user = 'sampleuser';
7 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
8 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

9 } catch(PDOException $e) {echo $e;}
10 if($type=='positive'){
11 getRecords('positive');
12 }
13 else if($type=='negative'){
14 getRecords('negative');
15 }
16 function getRecords($sort){

Time-Based Feedback Analysis � 237

17 global $DBH;
18 $dateStart = $_GET['dstart'];
19 $timeStart = $_GET['tstart'];
20 $minutes = $_GET['minutes'];
21 $start = $dateStart . ' ' . $timeStart;
22 $dt = new DateTime($start);
23 $offSet = $minutes;
24 $dt->modify("+{$offSet} minutes");
25 $end= $dt->format('Y-m-d H:m');
26 $params = array($start, $end);
27 $scoreSort = '';
28 if($sort == 'positive'){
29 $scoreSort = 'score >= 5';
30 }
31 else if($sort == 'negative'){
32 $scoreSort = 'score < 5';
33 }
34 $sql = "SELECT timestamp, score FROM timeanalysis where

TIMESTAMP >= ? AND TIMESTAMP <= ? AND $scoreSort ORDER
BY timestamp";

↪→

↪→

35 $sth = $DBH->prepare($sql);
36 $sth->execute($params);
37 $res = $sth->fetchAll();
38 $output = '';
39 foreach ($res as $row){
40 $output .= $row[0] . ' ' . $row[1] . ',';
41 }
42 echo substr($output, 0, -1);
43 }

SAMPLE CODE 9: Retrieving positive and negative feedback based on
a time stamp and score.

Output

Figure 7.4
window starting at 10 a.m. The positive records can be seen in green,
and the negative feedback records can be seen in red.

7.4 REAL-TIME FEEDBACK ANALYSIS

When working with feedback from customers, often the time the feed-
back has been left may be important. Consider a collection of users who

shows an example time segment analysis for a two-hour

238 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 7.4: Time-segment analysis for positive and negative feedback

are interacting with a web application attempting to place orders, and
the site begins to malfunction. This can quickly cause an issue for a
business. In this case, the time when the feedback has been placed may
be of great importance. A focus on the negative feedback instead of the
positive feedback would be the primary area of interest.

In this section, we will outline the process of viewing feedback from
customers in a real-time environment. An example of this is when a user
leaves feedback below a specific threshold, e.g., below 5 on a scale of 1
to 10. The Smoothie charts JavaScript library will be used for the graph
generation process. This graph, unlike previous graphs, will continue to
move from right to left across the screen as feedback is placed by users
in real-time. It can be considered a moving line graph. This library is
available from http://smoothiecharts.org/.

Example 3: Real-time graph analysis
This example consists of three files and two libraries:

1. create.sql — This contains the SQL to create the realtime table to
hold feedback records.

2. realtime.php — This file is used to render the chart.

for a two-hour window.

http://smoothiecharts.org/

Time-Based Feedback Analysis � 239

3. recordFetch.php — This file is used to retrieve feedback records
from the database.

4. Smoothie Charts — This is the main JavaScript library used for
rendering the graph.

5. jQuery — This library is used to perform a JavaScript GET re-
quest.

Example code: create.sql
In Sample Code 10, the database table contains a unique ID column that
is a primary key and auto-incremented. A datetime column is added that
will automatically set the current time stamp when the record is created.
Finally and a score column is added that will hold the score entered by
the user. In this example, we will be working with scores between 1 and
10.

1 CREATE TABLE `realtime` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `datetime` DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
4 `score` TINYINT,
5 PRIMARY KEY (`id`)
6);

SAMPLE CODE 10: Sample realtime database table.

Example code: realtime.php
In Sample Code 11, a new file titled realtime.php is shown. At the top
of this file, we will include two JavaScript libraries. The first of these is
a reference to the smoothie.js file on line 5, which is placed in the same
folder as the PHP page. On line 6, a reference is made to the jQuery
CDN, which will allow us to use the JavaScript GET function.

After the header has been completed, the body of the document can
be added. A simple h1 tag is used on line 9 to add text to the top of the
page. This is followed by a canvas tag on line 10. The ID for this tag is
set to mycanvas. The height and width attributes for the canvas are set
to 500 and 500, respectively. This is the main container for holding the
graph.

The core of the graph generation process is based on the additional
JavaScript libraries that are added. To begin this process, a script tag
is first added on line 13. This is followed by a reference to the current
date that can be retrieved using the new Date() function on line 15. This

240 � Applied User Data Collection and Analysis Using JavaScript and PHP

function by its self will return a complete string with reference to the
time zone the user is in. As this may not correlate with the data that is
stored in our database, the variable containing the date will need further
processing.

On lines 16 and 17, two variables titled date and time are created.
Calls are made to the getFullYear(), getMonth(), and getDate() functions
on the now variable retrieved earlier. After these have been extracted.
Additional calls can be made to extract the hours minutes and seconds.
The benefit of this approach is that we can add in the desired separator
between the dates and times. In this case, a dash is used between the
date components, and a colon is used between the time. On line 18, both
of the date and time variables are appended together and placed inside
the currentTime variable.

Once the time has been gathered, a new line needs to be added onto
the graph. This is done by making a call to the TimeSeries() object on
line 19. A reference to this is placed inside the line1 variable. As there is
a number of different records in the database table, each of which has its
own ID, a variable is created titled currentIdProcessed on line 20. This
will be used as a storage facility for the ID of the record that has been
added to the graph, ensuring that no records with this ID or less will be
added on to the graph. Only new records will be visualized, keeping to
the theme of real-time.

On line 22, the setInterval() function is used to create a loop that
will cause the graph to move as new records are added. At the very end
of this code, 2000 is added as the number of milliseconds to be added
between the iterations. This can be changed to make the updates more or
less frequent. In this case, 2000 will give us a two-second delay between
the updates.

For each call of the function of the setInterval(), a call is made to
the jQuery GET function on line 23 to call the recordFetch.php page
that is the primary source of information for the graph. Two pieces of
data are passed with this call: the time variable, which is set to be the
current time of the system and the currentRecord variable, which is set
to be the value of the currentIdProcessed variable that stores the ID of
the most recent record that has been retrieved from the database. When
the recordFetch.php page is called, the data will be returned in the data
variable on line 24 as a single string. When records are returned the
done() function will be triggered on line 24.

Inside this function, the data variable is available. This variable con-
tains a string that contains the ID of the record retrieved and the score

Time-Based Feedback Analysis � 241

that has been left by the user. This value is separated using a single dash.
On line 25, a simple if statement is used to check if the data variable
contains data or not. If it does, then the processing of the data variable
is started. To process this on line 26, the split() function is called on the
data variable. The dash is used as a separator to split the records. The
result of this process is an array that is titled result.

After the splitting process has been completed, on line 27, a new time
stamp is generated using new Date().getTime() which returns the time
in epoch format. This is followed by result[1] that contains the feedback
score that has been entered by the user. This data is appended to the
line1 object.

On line 28, a simple console.log() is used to print out to the console
the ID and the score that have been appended to the graph for the de-
bugging process. On line 29, the ID of the current record that is stored
in the result[0] of the array is set to be the current value of the curren-
tIdProcessed variable. This will be used in future iterations of the loop,
preventing the same record from being called again.

A new SmoothieChart is created on line 33 with a reference stored
inside the smoothie variable. The color and style of the graph can be set.
In this example, the strokeStyle is set using RBG numbers, followed by
the fillStyle and lineWith. The millisPerLine is set to 250 which is the
gap between the grid shown in the background. The number of vertical
sections shown is set to 6. On line 34, the addTimesSeries() function
is called that takes in a reference to the line1 object. The strokeStyle,
fillStyle, and lineWidth are set. On line 35, the final step in this process
is to set smoothie graph to stream to the canvas tag that was created
earlier with the ID set to mycanvas. We set 2000 as the interval for this
process.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Negative Feedback Real-time view</title>
5 <script type="text/javascript" src="smoothie.js"></script>
6 <script

src="https://code.jquery.com/jquery-1.12.4.js"></script>↪→

7 </head>
8 <body>
9 <h1>Negative Feedback Real-time view</h1>

10 <canvas id="mycanvas" width="500" height="400"></canvas>
11 </body>
12 </html>

https://code.jquery.com/

242 � Applied User Data Collection and Analysis Using JavaScript and PHP

13 <script type="text/javascript">
14 // get the current date and time
15 var now = new Date();
16 var date =

now.getFullYear()+'-'+(now.getMonth()+1)+'-'+now.getDate();↪→

17 var time = now.getHours() + ":" + now.getMinutes() + ":" +
now.getSeconds();↪→

18 var currentTime = date+' '+time;
19 var line1 = new TimeSeries();
20 var currentIdProcessed = '';
21 // start the updating loop
22 setInterval(function() {
23 $.get("recordFetch.php", { time: currentTime,

currentRecord: currentIdProcessed})↪→

24 .done(function(data) {
25 if(!(data.length == 1)){
26 var result = data.split('-');
27 line1.append(new Date().getTime(), result[1]);
28 console.log("adding new record" + result[0] + " "

+ result[1]);↪→

29 currentIdProcessed = result[0];
30 }
31 });
32 }, 2000);
33 var smoothie = new SmoothieChart({ grid: { strokeStyle:

'rgb(125, 0, 0)', fillStyle: 'rgb(60, 0, 0)', lineWidth: 1,
millisPerLine: 250, verticalSections: 6 },
labels:{fontSize:16} });

↪→

↪→

↪→

34 smoothie.addTimeSeries(line1, { strokeStyle: 'rgb(255, 0, 0)',
fillStyle: '', lineWidth: 3 });↪→

35 smoothie.streamTo(document.getElementById("mycanvas"), 2000);
36 </script>

SAMPLE CODE 11: realtime.php — Graph that updates in real-time
as records are added to the database.

Example code: recordFetch.php
A second page is created that is responsible for retrieving records from
the database titled recordFetch.php. In Sample Code 12, the curren-
tRecord variable is fetched from the GET on line 2. This is followed by
the date variable that contains the time stamp of the records of interest
on line 3. To allow this example to be used for a static record collection
during testing, the date record can be replaced with a static date that

Time-Based Feedback Analysis � 243

contains a collection of feedback records. On line 9, a connection to the
MySQL database is created.

To retrieve the records from the database, on line 11, an array titled
params is created that contains the ID of the last record retrieved and
the date of interest. On line 12, the SELECT statement is created. This
statement contains a WHERE clause that only returns IDs that are
greater than the one provided. These results are ordered by the date
which is greater or equal to the date provided. Question marks are used
to replace the variables in the string as unnamed placeholders. A second
Ordering is set as the ID column in ascending order. A LIMIT 1 is added
to only return a single record. The statement and the parameters are
placed together using the prepare() function on line 13 which is followed
by the execute() function on line 14.

On line 15, the records are fetched and placed into a local variable
titled res. On line 16, the final output is generated in a format that will
be processed by the graph. This format is the column 0 of the database
row stored in the res variable, which is the ID of the row followed by
a dash, followed by the score, which is stored in position 2 of the res
database row.

1 <?php
2 $id = $_GET['currentRecord'];
3 $date = '2019-8-18 20:36:18'; // only used for static example
4 try {
5 $host = 'localhost:3306';
6 $dbname = 'bookexamples';
7 $user = 'sampleuser';
8 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
9 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

10 } catch(PDOException $e) {echo $e;}
11 $params = array($id, $date);
12 $sql = "SELECT * FROM realtime WHERE id > ? ORDER BY datetime

>= ?, id asc LIMIT 1";↪→

13 $sth = $DBH->prepare($sql);
14 $sth->execute($params);
15 $res = $sth->fetch();
16 echo $res[0] . '-' . $res[2];

SAMPLE CODE 12: recordFetch.php — Retrieving the records from
the realtime database table.

244 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 7.5: Real-time feedback score-report line graph.

Output
Figure 7.5 shows the final graph. In this graph, the maximum and the
minimum scores will be stored on the right hand-side of the graph. For
every 2 seconds, the graph will update with more data.

7.5 POSITIVE VS. NEGATIVE FEEDBACK CALENDARS

When viewing feedback scores, viewing an entire year can be a bene-
ficial process as context is given for when the feedback was recorded
day by day. In this section, we will outline the process of using
Google Charts to generate JavaScript-based graphs. These charts pro-
vide a simplistic minimal implementation for graphing with little over-
head required. The complete API for the calendar can be found at

Time-Based Feedback Analysis � 245

https://developers.google.com/chart/interactive/docs/gallery/calendar. As
these are calendar-based charts, two different charts will be added to the
same page, one chart for the positive feedback for a year, and the second
chart showing the negative feedback for the same year.

Example 4: feedback calendars

This example consists of three files and two libraries:

1. create.sql — This contains the SQL to create the calendar database
table.

2. calendar.php — This contains the main JavaScript for the visual-
ization.

3. calendarGetRecords.php — This retrieves records to plot on the
calendar.

4. Google Charts — This library contains the main calendar that is
used during the visualization process.

5. jQuery — This is used to perform a JavaScript GET request to
the calendarGetRecords.php page.

Example code: create.sql
Before we begin with the process of visualizing records, a number of pos-
itive and negative feedback records are needed for a selection of calendar
dates. A MySQL table will be created that will contain the ID of the
record, the time stamp, feedback text entered by the user, and the score
given by the user between 1 and 10.

1 CREATE TABLE `calendar` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `timestamp` TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP,
4 `feedbacktext` TEXT,
5 `score` TINYINT,
6 PRIMARY KEY (`id`)
7);

https://developers.google.com/

246 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: calendar.php
We will create a new PHP page titled calendar.php. In Sample Code
13, a content delivery network is added on line 3 to include jQuery. On
line 4, the Google Charts JavaScript loader is included. On line 6, a
call is made to the Google Chart load() function. This function takes
two parameters current, which specifies that we would like to use the
current release of the API. The packages then makes a reference to the
different types of charts that can be used. In this case, we are loading
the calendar package.

When the chart is ready, the setOnLoadCallback() function is called
on lines 7 and 8, which takes a reference to the function we want to use
to generate the graphs. In this example, the function we are calling is the
drawPositiveChart() function and the drawNegativeChart() function. On
line 9, the drawPositiveChart() function is added that will be used for
the graph generation process. Inside this function, we will create a new
DataTable object on line 10 that will contain all the positive and negative
reviews. A call is made to the dataTable.addColumn() function on line
11 that allows us to add the columns required for the visualization. In
this example, we are adding one for the date and one for the feedback
count that will be present when a mouse hovers over the chart.

On line 13, a sample structure of a record is commented out for future
reference. No data is added here when the chart is first loaded. On line 17,
a new chart object is created with a reference to the calendar positive
that will be added later. On line 19, a options object is created that
allows us to specify the title and the height for the graph.

After the columns have been added, the process of adding the data
to the chart can begin. Each row that is added to the chart is a new
Date object which contains the year, month, and day that we would like
to plot the information for. This is followed by a single number that
can be positive or negative, which will be shown when a mouse cursor is
placed over the cell. The number will be colored from white to a shade
of dark blue, depending on the number added. The higher the number,
the darker shade of blue the cell will receive.

On line 23, a jQuery GET request is made to the calendarGe-
tRecords.php page to fetch the data to plot. A type parameter is passed
that indicates we want to retrieve positive feedback records. On line 24,
when the result is returned the data variable becomes available. This
contains the records that will be plotted to the graph.

Inside of the done() on line 24, a simple console.log() is added on line
25 to view the data that is returned to aid debugging. The data variable

Time-Based Feedback Analysis � 247

is split based on a comma that was used to separate each date on line
26 that is placed inside the singleDates array.

The results that are returned in the data variable contain a date and
score separated by dashes for individual values, and a comma between
the records, e.g., 2019-02-11-3 would be the date 2019-02-11 followed by
a score of 3. The next records are separated by commas as the unique
delimiter e.g., 2019-02-11-3,2019-02-24-11,2019-03-24-9,2019-06-19-25.
On line 27, a for loop is used to iterate over each of the dates. For each
individual date on line 28, the split() function is called to separate the
date based on the dash that exists between the year, month, day, and
feedback score total. To aid debugging, another console.log() is added on
line 29. Each component of the singleDate being viewed can be accessed
using the array index 0 to 3.

Finally, to add the new data on to the chart, on line 30, a call is
made to the dataTable.addRow() function. This function takes in a date
object followed by a number that will represent the total count of records
for that day. A new date is created and the oneDate[0] for the year,
oneDate[1] for the month, and oneDate[2] for the day are added. The
date object is closed, and a comma is used to separate the score that is
appended from the oneDate array at position 3.

As the original returned representation of this number is a string,
the Number() function is used to cast it into a number. After the row
has been added to the chart and the for loop has completed the final
iteration, a call is made to the chart.draw() function on line 32 that
takes in the dataTable that has just been populated, followed by the
options array.

1 <html>
2 <head>
3 <script

src="https://code.jquery.com/jquery-3.4.1.min.js"></script>↪→

4 <script type="text/javascript"
src="https://www.gstatic.com/charts/loader.js"></script>↪→

5 <script type="text/javascript">
6 google.charts.load("current", {packages:["calendar"]});
7 google.charts.setOnLoadCallback(drawPositiveChart);
8 google.charts.setOnLoadCallback(drawNegativeChart);
9 function drawPositiveChart() {

10 var dataTable = new google.visualization.DataTable();
11 dataTable.addColumn({ type: 'date', id: 'Date' });
12 dataTable.addColumn({ type: 'number', id: 'Feedback Count'

});↪→

https://code.jquery.com/
https://www.gstatic.com/

248 � Applied User Data Collection and Analysis Using JavaScript and PHP

13 dataTable.addRows([
14 // Sample records that can be added to the chart.
15 //[new Date(2019, 3, 13), 2],
16]);
17 var chart = new

google.visualization.Calendar(document.getElementById↪→

18 ('calendar_positive'));
19 var options = {
20 title: "Positive Feedback Analysis",
21 height: 350,
22 };
23 $.get("calendarGetRecords.php", { type: "positive"})
24 .done(function(data) {
25 console.log(data);
26 var singleDates = data.split(',');
27 for(var i=0; i< singleDates.length; i++){
28 var oneDate = singleDates[i].split('-');
29 console.log(oneDate[0], oneDate[1], oneDate[2],

oneDate[3]);↪→

30 dataTable.addRow([new Date(oneDate[0],
oneDate[1], oneDate[2]), Number(oneDate[3])
]);

↪→

↪→

31 }
32 chart.draw(dataTable, options);
33 });
34 }

SAMPLE CODE 13: calendar.php — Initital chart setup and GET
request — part 1.

In Sample Code 14, for the negative feedback chart, the same process
is completed, with minor changes. The GET request that is made to the
calendarGetRecords.php page is passed the type variable with the value
set to negative on line 50.

The final step in the process is to create the body of the HTML page.
A body tag is added on line 64 and inside of this, a div tag is created
with the unique ID calendar positive on line 65. The style attribute is
used to set the height and width of the visualization. The same process
is repeated for a second div with the ID set to calendar negative on line
67.

35 function drawNegativeChart() {
36 var dataTable = new google.visualization.DataTable();
37 dataTable.addColumn({ type: 'date', id: 'Date' });

Time-Based Feedback Analysis � 249

38 dataTable.addColumn({ type: 'number', id: 'Feedback Count'
});↪→

39 dataTable.addRows([
40 // first sample records that can be hardcoded.
41 //[new Date(2019, 3, 13), 2],
42]);
43

44 var chart = new
google.visualization.Calendar(document.getElementById↪→

45 ('calendar_negative'));
46 var options = {
47 title: "Negative Feedback Analysis",
48 height: 350,
49 };
50 $.get("calendarGetRecords.php", { type: "negative"})
51 .done(function(data) {
52 console.log(data);
53 var singleDates = data.split(',');
54 for(var i=0; i< singleDates.length; i++){
55 var oneDate = singleDates[i].split('-');
56 console.log(oneDate[0], oneDate[1], oneDate[2],

oneDate[3]);↪→

57 dataTable.addRow([new Date(oneDate[0],
oneDate[1], oneDate[2]), Number(oneDate[3])
]);

↪→

↪→

58 }
59 chart.draw(dataTable, options);
60 });
61 }
62 </script>
63 </head>
64 <body>
65 <div id="calendar_positive" style="width: 700px; height:

200px;"></div>↪→

66 <hr>
67 <div id="calendar_negative" style="width: 700px; height:

200px;"></div>↪→

68 </body>
69 </html>

SAMPLE CODE 14: calendar.php — Gathering data for negative
chart — part 2.

250 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example code: calendarGetRecords.php

For the GET request to get the data from the database, a second
PHP page is created titled calendarGetRecords.php. In Sample Code 15,
this page begins with a type variable on line 2 that is used to get the
type of request that was sent to the page. In this chart, the two types of
available data are positive and negative feedback scores. On lines 10–15,
depending on the value of the type variable, a function is called for either
to get the positive feedback using the getPositiveRecords() function or
the negative feedback using the getNegativeRecords() function.

Inside of the getPositiveRecords() function, the keyword global is
added on line 17 to reference the database connection DBH. On line 18,
the SQL query is built up to retrieve all the positive feedback records
from the database. This query selects the time stamp from the database
and casts it into a date and then references the column as date. A
count(score) is performed to count the number of score records that
is referenced as the score column. These actions are performed on the
calendar database table WHERE the score is greater than 5. A GROUP
BY statement is added to the group the records together based on the
time stamp column. This approach allows the database to return the
total score for each unique date that feedback has been stored for.

On line 19, the prepare() function is called followed by the execute()
function. The fetchAll() function is called on line 21 that will return all
relevant records from the database. A variable titled output on line 22 is
used as the place holder for records that are being built up every time
the loop iterates.

In this example, the row[0] indicates the date in YYYY-MM-DD
format followed by a single dash followed by row[1] which contains the
total count of records for that given date. For each individual record,
a comma is added to separate them. This is important as the GET
function in the JavaScript described earlier uses this separator to break
apart the dates during processing. The final step in the process is to
use the substr() function on line 26 that takes in the output variable,
the starting position, e.g., 0 and the ending position, e.g., -1, which will
strip the final comma of the complete output. This output is printed
using an echo statement, which will return the contents back to the
GET JavaScript function when called.

The process for the negative feedback records is very similar to the
positive feedback records. The only modification that is needed is in the

Time-Based Feedback Analysis � 251

WHERE clause. The scores of interest are those that are less or equal
to 5.

1 <?php
2 $type = $_GET['type'];
3 try {
4 $host = 'localhost:3306';
5 $dbname = 'bookexamples';
6 $user = 'sampleuser';
7 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
8 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

9 } catch(PDOException $e) {echo $e;}
10 if($type=='positive'){
11 getPositiveRecords();
12 }
13 else if($type=='negative'){
14 getNegativeRecords();
15 }
16 function getPositiveRecords(){
17 global $DBH;
18 $sql = "SELECT DATE(TIMESTAMP) AS date,COUNT(score) AS

score FROM calendar WHERE score > 5 GROUP BY
date(TIMESTAMP)";

↪→

↪→

19 $sth = $DBH->prepare($sql);
20 $sth->execute();
21 $res = $sth->fetchAll();
22 $output = '';
23 foreach ($res as $row){
24 $output .= $row[0] . '-' . $row[1] . ',';
25 }
26 echo substr($output, 0, -1);
27 }
28 function getNegativeRecords(){
29 global $DBH;
30 $sql = "SELECT DATE(TIMESTAMP) AS date,COUNT(score) AS

score FROM calendar WHERE score <= 5 GROUP BY
date(TIMESTAMP)";

↪→

↪→

31 $sth = $DBH->prepare($sql);
32 $sth->execute();
33 $res = $sth->fetchAll();
34 $output = '';
35 foreach ($res as $row){
36 $output .= $row[0] . '-' . $row[1] . ',';
37 }

252 � Applied User Data Collection and Analysis Using JavaScript and PHP

38 echo substr($output, 0, -1);
39 }

SAMPLE CODE 15: calendarGetRecords.php — Retrieving records
from the database.

Output
Figure 7.6 shows the final output of the graphing process. Two charts
are shown with the positive feedback records in the top graph and the
negative feedback records in the bottom graph. In the top right corner
of the screen, we can see the color shading index. The lighter the color,
the fewer records are present. The darker the color, the more feedback
records are present.

FIGURE 7.6: Calendar view of positive and negative feedback. The
shading of the cells indicates the number of records.

In Figure 7.7, we can see that when a mouse is placed over the
calendar, the total number of feedback records for that date are provided.

7.6 FEEDBACK HEAT MAP

During the analysis of feedback, patterns often occur in the time of day
the feedback was left. When feedback is viewed in a linear format, these
patterns can be easily lost. In this section, we will describe the process
of creating a heat map of feedback for a given day. The heat map will

Time-Based Feedback Analysis � 253

FIGURE 7.7: Mouse hovering shows the number of records for a given
day.

represent a single calendar day that the user can select. For the selected
day, each hour will be represented as an individual block. Within each
hour block, it is further broken down into five-minute time windows.

For each of the individual time windows, the total number of feedback
records collected will be counted. These blocks will be colored depending
on the number of records found. A lighter color will be used to identify
low numbers of records, and a darker color will be used to identify the
higher count of records.

This color-based approach provides detailed feedback on the time
periods when feedback was left at a glance. For each different time seg-
ment, the cursor can be used to dynamically show the total count for
that segment. By using this cursor-based approach, the overall quantity
of data added to the chart is minimal by default with additional data
available when required.

Example 5: Heat map

This example consists of two files and two libraries:

1. heat.php — This is the main PHP page used to show the visual-
ization.

254 � Applied User Data Collection and Analysis Using JavaScript and PHP

2. getRecords.php — This page is responsible for gathering records
from the database.

3. jQuery — This is used to perform a GET request to the ge-
tRecords.php page.

4. jQueryUI — This is used to add a custom date picker widget.

Example code: heat.php
To begin this graph a new PHP file is created titled heat.php. In Sample
Code 16, on line 3, the content delivery network (CDN) for jQuery is
included. On line 4, the jQueryUI CDN is added. This is followed by a
reference to the CSS file used by jQueryUI on line 5.

On line 7, a new style tag is added that is first used to set the font
of the page. In this example, we are using the arial font. On line 11, the
CSS class colorRow is created. This class is used to alter the layout of
each individual time segment that will be shown. The height is first set,
followed by the width. The margin from the left is set to 35px to provide
a space between the time that will be first printed, and the colored row
that will be shown beside it. The background color of the individual
row is set to red by default. This will be changed later to lighter shades
depending on the volume of feedback that was found for the given time.

On line 19, a new variable tag is created titled step. This variable
is used as the core of the color-coding process. For a given collection
of feedback records, e.g., 20 individual records, for a given five minute
time window between 09:00 a.m. and 09:05 a.m., there may be only
12 feedback records. For a later time, e.g., 10:30 a.m. to 10:35 a.m.,
there may have been two records collected. Each of the other times that
feedback records were collected may fall outside of these times, e.g., the
other six records. In this case, the max possible count for a given time
slot on that day is 12 records. To color code this from a light color to
a dark color, red would be used to indicate the 12, and a lighter shade
of red would be used to indicate the 2. The minimum amount of record
possible is zero, which would be the lightest color desired for the chart.

To calculate this, the step variable is equated by taking the maximum
records for a given day divided by 10. This allows ten different shades to
be represented on the chart. Instead of changing the color directly the
opacity of the color red will be changed. This allows for easy manipula-
tion of any base color, allowing it to range from 0.0 as the lightest to 1.0
being the darkest shade.

Time-Based Feedback Analysis � 255

On line 22, a simple span tag is used to add a title to the chart. This
is followed by a single input box on line 23 with the ID set to datepicker.
This input box will be modified to allow the jQueryUI calendar to be
used as the date selection mechanism later. On line 24, a button is added
that will be used to trigger the graph generation process. The ID of
this button is set to viewChart to which a click() handler will later be
appended.

On line 26, a script tag is created, and a call to the on load function
is made. When the page loads, the HTML input box is converted into a
jQuery UI date picker on line 27. The desired date format can be added.
In this example, we are formatting the date to yy-mm-dd, which allows
us to represent the date in a format such as 2020-09-02. On line 30, one
div tag is added with the ID set to chart. This is used to hold the main
graph that will be generated.

1 <html>
2 <head>
3 <script

src="https://code.jquery.com/jquery-3.4.1.min.js"></script>↪→

4 <script src="http://code.jquery.com/ui/1.12.1/jquery-ui.min.js">
</script>↪→

5 <link rel="stylesheet" type="text/css"
href="http://code.jquery.com/ui/1.12.1/themes/base/↪→

6 jquery-ui.css">
7 <style>
8 *{
9 font-family: arial;

10 }
11 .colorRow {
12 height:13px;
13 width:50px;
14 margin-left: 35px;
15 background-color:red;
16 }
17 </style>
18 </head>
19 <script>
20 var step = 0;
21 </script>
22 Feedback Heat Map
23 <p>Date: <input type="text" id="datepicker">
24 <button id="viewChart">View Chart</button></p>
25 <script>
26 $(function() {

http://code.jquery.com/
http://code.jquery.com/
http://code.jquery.com/

256 � Applied User Data Collection and Analysis Using JavaScript and PHP

27 $("#datepicker").datepicker({dateFormat: "yy-mm-dd"});
28 });
29 </script>
30 <div id="chart">
31 </div>
32 </html>

SAMPLE CODE 16: heat.php — Initial page setup — part 1.

In Sample Code 17, on line 34 the jQuery selector is used to select
the viewChart button. A click() handler is appended to this button.
Inside of this click handler, the graph generation process is started. On
line 35, the jQuery selector is used to select the datepicker input field
and extract the value using the val() function. This is placed inside of a
variable titled date. For this process to work correctly, it is essential that
the date entered by the users matches the date stamps that are stored
in the database.

On line 36, a single GET request is made to a second page titled
getData.php to retrieve the records from the database. This page takes
a single parameter titled selectedDate with the value set to the value
entered by the user that was stored in the date variable. When the GET
call is completed on line 37, the done() function is called. The result of
this is a single variable titled data that contains the HTML and records
for each time slot that will be shown. On line 38, The data is set into
the chart div tag using the jQuery selector to select the div tag with the
ID set to chart. The html() function takes the HTML content as input
to set into the div. After the HTML has been added onto the chart, it
still does not have the correct color coding. To complete this, a second
process is started to add additional CSS styling to each div tag added.

Each hour has twelve individual slots. To color code these records
correctly, three variables are used. The first variable is the start on line
40 that is used to store the starting number for the color coding and the
end variable on line 41 that stores the value for the end of the color-
coding range.

An example of this is time slots that have counts between 1 and
10. The first search will be for records that are between 0 and 1, e.g.,
the lowest counts in the set. The next search will be between 1 and 2,
etc. This allows us to process the records in an incremental ascending
method. The text op variable on line 42 is used for storing the current
opacity of the div that that is being processed. The lowest possible we are

Time-Based Feedback Analysis � 257

using is 0.1 that will be used to represent time slots with a low number
of records.

The data record that was returned during the GET request to the
PHP page contains 24 different div tags representing a day, each of which
contains 12 time slots. Each individual time slot has the CSS class set
to colorRow, which allows us to perform a filter on the entire document
to select all div tags with this class.

For each individual time slot in a 1-hour time block, a simple de-
bugging output is added with the console.log() function. The starting
point to color the individual time slot begins with the start variable set
to 0 as there may be time slots with zero records. The end position is
set to be the value of step, which as described earlier, is the maximum
count of records in the collection divided by 10. The op is set to 0.1
and the score, e.g., the number of records counted for a given time slot
is extracted from the div tag attribute titled score on line 48 that was
added during the generation of the HTML when the GET request was
performed.

On line 49, a for loop is added to iterate over the available ranges,
e.g., 0 to 1, 1 to 2, 2 to 3, etc. To aid this process, a console.log() is
added on line 50 that prints out the score we are currently processing
and the start and end variable values at that moment. On line 51, during
the iteration process, if the score we find is greater or equal to the start
variable or less and equal to the end variable, then the color coding is
added.

On line 52, a simple console.log() is added to print out the word found
to the console to aid debugging. On line 53 and 54, the css() function
is called on the div tag being processed to update the colour to be red
and the opacity is set to the current value of the variable op. After the
div has been updated, the break; is called to exit the for loop.

On lines 57 and 58, if the record is not in the first start and end
range then the start variable is updated to be the value of end and the
end variable is updated to be end+step. The op variable is also updated
to add an additional 0.1 making the opacity of the div darker the longer
the for loop iterates. On line 65, to aid the user during the analysis of
records, the jQueryUI tooltip is added to the entire document.

When the attribute track is set to true on line 66, the tooltip is
updated based on where the mouse is currently located. This tooltip
gets the value from the title attribute of an individual div tag that is
generated by the PHP.

258 � Applied User Data Collection and Analysis Using JavaScript and PHP

33 <script>
34 $("#viewChart").click(function() {
35 var date = $('#datepicker').val();
36 $.get("getData.php", { selectedDate: date })
37 .done(function(data) {
38 $("#chart").html(data);
39 // ------- add color style
40 var start = 0;
41 var end = 0;
42 var op = 0.1;
43 $(".colorRow").filter(function() {
44 console.log("processing new record.......");
45 start = 0;
46 end = step;
47 op = 0.1;
48 var score = $(this).attr("score");
49 for(var i=0; i < 10; i++){
50 console.log("checking if "+score+" is between" +

start + " and " + (end) + " op is..." + op);↪→

51 if(score >= start && score <= end){
52 console.log("found");
53 $(this).css('background-color', 'red') ;
54 $(this).css("opacity", op);
55 break;
56 }
57 start = end;
58 end = end + step;
59 op = op + 0.1;
60 }
61 })
62 }); // end .done()
63 }); // end .click()
64 $(function() {
65 $(document).tooltip({
66 track: true
67 });
68 });
69 </script>

SAMPLE CODE 17: heat.php — Modifying the cell colors dynamically
— part 2.

Example code: getData.php

Time-Based Feedback Analysis � 259

To drive this chart, a PHP page is created titled getData.php. In
Sample Code 18, on line 7, a connection to the database is first made.
On line 9, a variable titled totalRecords is created that is used to store
the total number of records we are working with at a given time. On
line 10, a div tag is started with the style set to overflow: hidden which
allows us to put div tags side by side. The width of this is set to 900px,
which can be changed depending on the required layout.

On line 11, the core of the generation process is started by running
a for loop from 0 to 24. Each number represents one hour in the given
calendar day. While looping, a call is made to the getBlockForHour()
function on line 12 that generates a single hour with 12-time slots (5
minutes in each slot). No color coding is performed during this process
as this is done on the client-side. This component is purely to gather
the records for a given day and count the total for each time slot in
the day. On line 16, a JavaScript variable titled step is created that will
be returned to the client-side. This has the value set to max which is
set later, divided by 10, indicating there will be 10 color ranges. On
line 17, the getBlockForHour() function is defined. This is responsible
for generating the 24-hour blocks for a given day. On line 18, a variable
titled output is added. This acts as the placeholder for all content that
will be returned.

On line 20, the output begins with a single div tag with the class
set to oneRow. Inside of the style attribute is set to float:left and a
width is defined as 100px. This single row will contain a time stamp e.g.,
0:00, followed by a coloured bar. The time is added in a span tag which
allows us to set the font-size to 11pt. The content of the span tag is the
hour variable that was passed to the function followed by :00. On line
23, a hourStamp variable is created. On lines 24–28, if the hour we are
currently process is less then 10 for example if hour only has one digit,
then a 0 is added before the hour. On line 30, a for loop is started to
get each of the 12 time slots for the given hour. Each of these time slots
represents five minute time windows.

For each hour, a call is first made to the getScore() function on line
31 that will calculate the total number of records left for the given time
window. This function is passed the hourStamp variable followed by the
minutes variable we are viewing. This function would return a single
integer that is 0 if no records were found for that time slot, or greater
than 0 if records were found.

This result is stored inside of the score variable on line 31. On line
32, the main body of HTML for the time slot is generated. A new div

260 � Applied User Data Collection and Analysis Using JavaScript and PHP

tag is created with a width of 500 and the overflow set to hidden. This
allows the content inside this div tag to float to the left. On line 33, the
div inside this contains a small 50px div that that contains a span tag on
line 34 with the font size set to 10pt to represent the time that will be
printed for the user. The hourStamp is added followed by a colon which
is followed by the minutes stamp. The span tag and the div tag are then
closed.

After this, on line 36, a new div is created with the class set to
colorRow. This is the main color-coded bar the user will see for the
time slot. The title attribute of the div tag is set to be the score that
was returned. This title attribute is used by the jQueryUI tooltip to
gather the score for the given timeslot when the mouse hovers. The score
attribute is set to be the score that was returned. This score attribute is
used during the color-coding process on the client-side. On line 39, the
minutes variable is incremented by five minutes to move onto the next
time slot before the for loop iterates again. On line 40, if the minutes
variable is less than 10, then a single 0 is added to the start of the variable
to aid the appearance of the time stamp. After all 24 of the hours have
been added, each of which contains 12 five minute time windows, then
a final closing div tag is appended to the output variable. The output
variable is returned on line 45.

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

8 } catch(PDOException $e) {echo $e;}
9 $totalRecords = 0;

10 echo '<div style="overflow: hidden; width:900px">';
11 for($h=0; $h<24; $h++){
12 echo getBlockForhour($h);
13 }
14 echo '</div>';
15 // update the step variable before chart generation
16 echo '<script> step = ' . ($max / 10) .'; </script>';
17 function getBlockForhour($hour){
18 $output = '';
19 $minutes = '00';

Time-Based Feedback Analysis � 261

20 $output .='<div class="oneRow" style="float:left;
width:100px">';↪→

21 $output .= '' . $hour .
':00';↪→

22

23 $hourStamp = '';
24 if($hour < 10){
25 $hourStamp = '0' . $hour ;
26 } else{
27 $hourStamp = $hour;
28 }
29

30 for($i=1; $i<13; $i++){
31 $score = getScore($hourStamp, $minutes);
32 $output .= '<div style="width:300px; overflow: hidden;">
33 <div style="width:40px; float: left">
34 '. $hourStamp.':'

. $minutes . ' ↪→

35 </div>
36 <div class="colorRow" id="colorRow"

title="'.$score.' Feeback records" score="'.$score.'">↪→

37 </div>
38 </div>';
39 $minutes += 5;
40 if($minutes < 10){
41 $minutes = '0' . $minutes;
42 }
43 }
44 $output .= '</div>';
45 return $output;
46 }

SAMPLE CODE 18: getData.php — Generating an hour block of
HTML — part 1.

To calculate the score for a given time slot, the getScore() function is
used as shown in Sample Code 19. This function takes in two parameters,
the hourStamp followed by the minuteStamp. On line 48, references to
the max and min variables are made as these may change during the
score gathering process. On line 49, the endTime provided is set to be the
current minute’s stamp + 4 minutes, creating a 5 minute time window.
An example of this would be for the time stamp 17:30, the time slot we

262 � Applied User Data Collection and Analysis Using JavaScript and PHP

are interested in retrieving records for is between 17:30 and 17:35. On
line 50, the date of interest is stored in a local variable.

The SQL query is defined on line 51. Inside this query, the SELECT
statement is used to count all the score records and handle them as score.
This removes the need to work with a column titled count(score). The
feedbackheat table is selected, and a WHERE clause is added to state
that the records of interest are between ? and ?, which are unnamed
placeholders for the current start and end time stamps of interest.

On lines 52–54, the stDate and finish variables are created. The
stDate is the current calendar date entered by the user, followed by
a space, followed by the hour stamp, a colon, the minute stamp, a colon,
and 00 seconds. This is to match the format the records are stored in the
database. The finish stamp is the current calendar date followed by the
same hourStamp, followed by a colon, followed by the endTime variable
followed by a colon and 59 seconds. As shown earlier, we increment the
minutes variable by 4 minutes, the seconds are used to identify we want
all the records from between 0:00 and 4:59 seconds.

To gather the results, a call is made to the fetch() function on line
57. The results are stored inside of the res variable. On lines 58 and
59, a reference to the totalRecords is made as it stores a reference to the
overall count of records found. This variable is updated to include res[0],
which contains the total count of records in the current time slot.

On lines 62–67, a reference to the max and min variables are made. If
the result returned is greater then the max, then the new score is stored.
If the result is less than the current min, then it is also stored. At the
end of this process, the final result variable is returned back to the caller
of the getScore() function as described earlier.

47 function getScore($hourStamp, $minuteStamp){
48 global $DBH, $max, $min;
49 $endTime = $minuteStamp+4;
50 $date = $_GET['selectedDate'];
51 $sql = "SELECT COUNT(score) AS score FROM feedbackheat

WHERE TIMESTAMP BETWEEN ? AND ?";↪→

52 $stDate = $date . " ". "$hourStamp:$minuteStamp:00";
53 $finish = "$date $hourStamp:$endTime".":59";
54 $params = array($stDate, $finish);
55 $sth = $DBH->prepare($sql);
56 $sth->execute($params);
57 $res = $sth->fetch();
58 global $totalRecords;
59 $totalRecords = $totalRecords + $res[0];

Time-Based Feedback Analysis � 263

60 $result = $res[0];
61 global $max, $min;
62 if($result > $max){
63 $max = $result;
64 }
65 if($result < $min){
66 $min = $result;
67 }
68 return $result;
69 }
70 ?>

SAMPLE CODE 19: getData.php — Finding the scores — part 2.

Output

Figure 7.8 shows an example of the date input box being clicked and
the jQueryUI date picker becoming visible. When a date is selected, the
View Chart button must be clicked.

FIGURE 7.8: Calendar day picking using the jQueryUI date picker.

Figure 7.9 shows the final generated graph. For each hour of the
day from 0:00 to 23:59 five-minute time windows are shown. For each of

264 � Applied User Data Collection and Analysis Using JavaScript and PHP

the five-minute time windows, the opacity of the color red is lighter or
darker, depending on the number of records that have been added. This
provides a simple method of viewing the most popular feedback times
for a given day.

FIGURE 7.9: Heat map showing 24 hours in a single calendar day.

Figure 7.10 shows the tooltip being presented when the cursor is
placed over a single time slot. The value for the time slot is extracted
from the score attribute of the time slot div tag.

Time-Based Feedback Analysis � 265

FIGURE 7.10: Tooltip showing the number of feedback records for a
given time slot.

7.7 SUMMARY

This chapter described the temporal aspect of working with data. First,
a time-segment analysis approach was described. This approach allows
the user to select an individual segment of time they are interested in to
graph a smaller quantity of data. The area of real-time feedback analysis
was then described as often, as feedback occurs, it needs to be monitored.
This approach focused on charting the positive and negative feedback
on a graph.

To provide a more comprehensive view of data, a positive versus neg-
ative feedback calendar approach was described. This charted an entire
year of positive feedback and negative feedback. Each was given their
own charts, with color-coding outlining the number of records that were
received for each day. Finally, a 24-hour custom heat map was described,
which breaks an entire day down into smaller hours, and they are bro-
ken down again further into five-minute slots. This approach allows the
analyst to view the trending times of a day when feedback records were
left.

Chapter 8, outlines statistics that can be gathered from both numeric
and text-based data.

http://taylorandfrancis.com

C H A P T E R 8

Feedback Statistics and
Overviews

8.1 INTRODUCTION

When working with large collections of data, statistics can play a vi-
tal role in understanding the data and provide key insights that would
otherwise be lost.

This chapter describes the different tasks that can be performed on
large data collections to provide insights at a glance to a data analyst.
Many of these methods can be integrated with charts to further aid the
delivery of the statistics for quick and efficient analysis.

8.2 BASIC STATISTICS

To work with basic statistics, one database table will be used titled
statistics. For the score1, score2, and score3 columns, values between 1
and 5 can be entered.

Example code: create.sql
This table contains a unique ID column, three separate score fields, and
a mytime that is set to be the current time when the record was created.

1 CREATE TABLE `statistics` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `score1` TINYINT,
4 `score2` TINYINT,
5 `score3` TINYINT,
6 `mytime` DATETIME NULL DEFAULT CURRENT_TIMESTAMP,
7 PRIMARY KEY (`id`)
8)

267

268 � Applied User Data Collection and Analysis Using JavaScript and PHP

Example 1: Calculating the mode
When working with a large collection of feedback records, often we are
interested to see what the most frequent feedback score was. This is
referred to as the mode. A simple example of the mode can be seen with
the following 10 feedback scores In Sample Code 1.

1, 2, 2, 5, 6, 7, 7, 7, 7, 10

SAMPLE CODE 1: Sample values for mode calculation.

In this, we can see that the most frequent feedback score that was
entered by users is 7. The mode would be defined as 7 for this data set.

Example code: getMode.php
To get the mode of a larger data set, e.g., 1000 records, a new PHP
page will be created titled getMode.php. In Sample Code 2, at the top
of this file, a connection to the database is made on line 7. On line 9,
a new PHP function is created titled getMode(). On line 10, a reference
to the database connection is made. Although it is possible to calculate
the mode using PHP, to remove the burden from the PHP server, the
database is used for this calculation. On line 11, the SQL query to calcu-
late the mode is added. The score1 column is first selected, followed by
the count of the score 1 column. This is represented as the scoreCount
variable for future reference.

A GROUP BY is performed on the score1 column to bring all similar
values together. An ORDER BY is added to order the results by the
scoreCount column, as this will place the score with the highest number
of occurrences as the first record in the result set. As we are not interested
in any other records apart from the mode, a LIMIT 1 is appended to
the end to only return a single record.

On lines 12 and 13, the prepare() and execute() functions are run.
As only one record is required, on line 14 a single call to the fetch()
function can be performed. The result of this call is placed in the res
variable as an array. Position 0 of the array contains the mode, and
position 1 contains the count for the score1. On line 17, a simple return
is performed to send these values back to the caller.

On line 19, a simple echo is used to output text followed by a call to
the getMode() function to retrieve the values.

Feedback Statistics and Overviews � 269

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

8 } catch(PDOException $e) {echo $e;}
9 function getMode(){

10 global $DBH;
11 $sql = 'SELECT score1, COUNT(score1) AS scoreCount FROM

statistics GROUP BY score1 ORDER BY scoreCount DESC
LIMIT 1';

↪→

↪→

12 $sth = $DBH->prepare($sql);
13 $sth->execute();
14 $res = $sth->fetch();
15 $mode = $res[0];
16 $count = $res[1];
17 return $mode . ' with count ' . $count;
18 }
19 echo 'The mode is: ' . getMode();

SAMPLE CODE 2: getMode.php — Returning the mode.

Output

Figure 8.1 shows the final result that contains the two columns, one
for the mode, e.g., 9 and one showing the count of the selected score e.g.,
116.

FIGURE 8.1: Output showing the mode and total count of records for
the mode.

Example 2: Calculating the mean/average
The average score for a given column can easily be found by making
a call to the SQL AVG() function that takes a single column name

270 � Applied User Data Collection and Analysis Using JavaScript and PHP

as a parameter. Like the previous example, the database is doing the
processing removing the burden from the web server.

Example code: getAverage.php
In Sample Code 3, on line 7, a connection is first made to the database.
On line 9, the getAverageScore() function is defined. This function takes
a single parameter, the name of the column we wish to find the average
for. On line 11, the SQL is defined. The SQL avg() function is called and
the column parameter is passed in. To remove the text avg() from the
result column title, the column is represented as average.

On lines 12 and 13, the prepare() and execute() functions are called.
On line 14, as only one variable will be returned, the fetch() function
can be used. On line 15, this is placed into a local variable titled avg
which is returned to the function caller on line 16. To call this function,
on line 18, an echo statement is used to print a small piece of proceeding
text followed by a call to the getAverageScore() function that takes in
the name of the column of interest.

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

8 } catch(PDOException $e) {echo $e;}
9 function getAverageScore($columnName){

10 global $DBH;
11 $sql = "SELECT AVG($columnName) AS average FROM statistics";
12 $sth = $DBH->prepare($sql);
13 $sth->execute();
14 $res = $sth->fetch();
15 $avg= $res[0];
16 return $avg;
17 }
18 echo 'The averages for score1 is ' . getAverageScore('score1');

SAMPLE CODE 3: getAvg.php — Calculating the average for a
column.

Feedback Statistics and Overviews � 271

Output

The result of calling this function for a given column can be seen in
Figure 8.2.

FIGURE 8.2: Average result for a given column.

Example 3: Calculating the standard deviation

When reviewing a collection of feedback records, a useful statistic
that can easily be derived is the standard deviation, often shown as σ
(sigma). The standard deviation is a method of identifying how far away
a given number is from the mean. An example of this is feedback scores
1, 2, 2, and 5. When looking at these four numbers, we can easily see
that the number two has been represented twice. The mean for this set
is 2.5. This is calculated, as shown in Equation 8.1, by taking the four
numbers and dividing them by four.

1 + 2 + 2 + 5
4 = 2.5 (8.1)

When looking at the last feedback score, 5, we can see that it is
vastly higher from the other feedback scores. The standard deviation
can be useful for identifying how far away from the mean the score we
are looking at is. If we looked at the feedback score 5 by itself, it would
seem to be positive on a scale of 1 to 5. However, when the standard
deviation is also viewed, it would show us that 5 is actually quite distant
from the true representation of the scores.

For each individual score, we subtract the value from the mean and
the square the result. Each result is added together and divided by the
number of scores in the data set as shown in Equation 8.2.

(1− 2.5)2 + (2− 2.5)2 + (2− 2.5)2 + (5− 2.5)2

4− 1 = 9
4 (8.2)

We are then left with 2.25, as shown in Equation 8.3.

9
3 = 2.25 (8.3)

Finally, the square root of 2.25 is found as shown in Equation 8.4.

272 � Applied User Data Collection and Analysis Using JavaScript and PHP

This provides the final result, 1.5 which is defined as the standard devi-
ation for this set of scores.

√
2.25 = 1.5 (8.4)

This example contains two files:

1. create.sql — This file is used to create the smallset database table.

2. getStdDev.php — This file retrieves the standard deviation from
the database.

Example code: create.sql
This example uses a simple database table titled smallset. This table
contains an ID column that is auto-incremented and a score column to
hold the sample score values between 1 and 5.

1 CREATE TABLE `smallset` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `score` INT,
4 PRIMARY KEY (`id`)
5)

Example code: getStdDev.php
When working with a MySQL database, calculating the standard de-
viation can easily be performed using the std() function. This function
takes in a single parameter in the form of the column that we wish to
calculate the standard deviation for.

In Sample Code 4, on line 7, a new connection to the database is
created. On line 9, the calculateStdDev() is defined. Inside this function
on line 11, the SQL is added. The function titled std() is added after
the SELECT, passing in the name of the column of interest. On line 14,
as only a single record will be returned, a call to the database fetch()
is performed. The result of this call is placed into the res variable. The
res at position 0 is extracted and placed into a local variable titled stdev
that is returned to the function caller on line 16.

On line 18, a simple echo is used to output the proceeding text,
followed by a call to the calculateStdDev() function.

Feedback Statistics and Overviews � 273

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

8 } catch(PDOException $e) {echo $e;}
9 function calculateStdDev(){

10 global $DBH;
11 $sql = 'SELECT STD(score) AS sd FROM smallset;';
12 $sth = $DBH->prepare($sql);
13 $sth->execute();
14 $res = $sth->fetch();
15 $stdev=$res[0];
16 return $stdev;
17 }
18 echo 'The standard deviation is ' . calculateStdDev();

SAMPLE CODE 4: getStdDev.php — Calculating the standard
deviation.

Output
Figure 8.3 shows the result of the SQL query, printing the standard
deviation to the browser.

FIGURE 8.3: Example standard deviation result.

8.3 WORKING WITH SAMPLES

The larger a collection of feedback records becomes, the process of gath-
ering insights from it becomes difficult. In each of the examples we have
previously described, we have been working with relatively small sam-
ples, such as 100 records. When we are working with data sets above
this, providing a quick glance at the overall direction the feedback is
taking can no longer be performed. Sampling is the process of working

274 � Applied User Data Collection and Analysis Using JavaScript and PHP

with a smaller data set that is accurately representative of the larger set.
In this section, we will review common sampling methods.

An example of this can be seen with a collection of 50,000 feed-
back records. There may be a pattern in the data such as 20,000 of the
records contained a feedback score of less than 5 out of 10. Rather than
processing all of the 50,000 records to identify this, if the correct sam-
pling methods are used, we can find the same approximate answers with
fewer records.

This approach removes the strain on the information retrieval and
processing requirements for an application. The overall sample size col-
lected does not need to have a set size, but the accuracy of your results
will help dictate an appropriate value.

Simple random sampling is a very simple method of gathering a sam-
ple. In this method, for a sample set of 1000 records, n number of samples
are randomly selected for the sample, e.g., 100 records. In this approach,
there is an equal chance of any record being selected and included in the
sample set drawn.

Stratified sampling is an approach that first begins by taking a col-
lection of records, e.g., 1000 individual feedback records and dividing
them by a characteristic such as a day the record was taken. The first
strata of records will contain N records and the second strata will also
contain N records. This approach continues to divide the collection into
smaller sets. Then from these sets, simple random sampling is performed
to gather N feedback records from each set. This approach is useful as
it provides a logical way of separating each of the collections of feedback
and ensuring that each collection, in this case, the day of the week, is
accurately represented in the final sample set.

Systematic sampling is a sampling approach, whereby, rather than
randomly selecting feedback scores to use in a sample, a more systematic
approach is taken. In a collection of 100 individual feedback records,
a variable titled K is used, with a value set to 1. As K=1, the first
record in the data set is added to the sample. After this, the variable is
incremented, and five is added to the variable K, were K is equal to 6.
After this increment, the 6th row in the data set is added to the sample.

The downside to this approach is that if any order is used in the
data set, e.g., 70/100 records were added on a Monday and 30/100 of the
records were added on a Tuesday, it can easily be seen that the sample
set would be biased toward Monday as it contains a larger collection of
records.

Feedback Statistics and Overviews � 275

8.4 PERCENTAGE DIFFERENCE

Gathering an overview from a collection of data is an important step in
understanding users. Percentages are often used as a simple way of deliv-
ering information to users with very little additional effort on the users
part. A statistic such as 25% can easily be communicated, regardless of
the sample size being used or the number of feedback records available.
In this section, we will review how to calculate the percentage difference
between two calendar dates.

Example 4: Calculating the percentage differ-
ence
This example consists of three files and three libraries:

1. create.sql — This contains the create code for the sample table
titled diffcalc.

2. diff.php — This is the main user interface provided to the user.

3. getDiff.php — This file gathers the records and calculates the dif-
ference.

4. jQuery — This library is added to perform a JavaScript GET
request.

5. jQueryUI — This file provides an interactive date picker to the
user to select a date.

6. popper.js — Provides a positioning engine for Bootstrap.

To calculate the percentage difference between the two scores, Equa-
tion 8.5 can be used. Where V1 is the first value and V2 is the second
value.

| V1 − V2 |[
v1+v2

2
] × 100 (8.5)

Example code create.sql
Sample Code 5 shows a simple database table that will be used to store
feedback scores, and the date the feedback was left. This table contains
a unique ID column, three score fields, and a datestamp.

276 � Applied User Data Collection and Analysis Using JavaScript and PHP

1 CREATE TABLE `diffcalc` (
2 `id` INT NOT NULL AUTO_INCREMENT,
3 `score1` TINYINT,
4 `score2` TINYINT,
5 `score3` TINYINT,
6 `datestamp` DATE,
7 PRIMARY KEY (`id`)
8);

SAMPLE CODE 5: Sample diffcalc table.

Example code: diff.php

A new page titled diff.php is created. In Sample Code 6, on line 3,
a reference is first made to the jQuery content delivery network (CDN).
This is followed by a reference to the jQueryUI JavaScript file on line 4,
and the associated CSS file on line 5. jQueryUI will be used to create
an interactive date picker. For the styling of the table, Bootstrap will
be used. The requirements for this include popper.js, which included on
line 8. This is a dependency for Bootstrap. On line 10–13, Bootstrap.js
is included along with a reference to the BootStrap CSS file. On line 15,
a small CSS modification is made to the thread tr tag. This will set the
background of the first row to be black with white text.

On line 22, a div tag with the class set to container is added. This
is the container that will be used to hold our table. The parameter
sm is added to identify that we want a small-sized container. Inside this
container, on line 23, an input box is added with the ID set to datepicker.
Just below this, on line 24, a single button is added with the ID set to
viewData. This is the main button that is responsible for generating the
table.

To aid the layout, a HTML table is added on line 25 with the class
set to table table-striped. This will have a different shading for even and
odd rows in the table. Inside of this, on line 27, a table row is added
with four columns. The first of these is the date, followed by the count
of records, the sum of the scores for all the feedback records added for
that column, and the percentage difference. A new tag is created titled
tbody with the ID set to content on line 34. This is the main placeholder
for the HTML that will be generated after a date had been selected, and
the viewData button has been clicked.

Feedback Statistics and Overviews � 277

On line 40, to trigger the content generation process, the jQuery se-
lector is used to attach a click() handler onto the viewData button. When
the button is clicked, the jQuery click handler will then trigger. Inside
of this, on line 41, the jQuery selector is used to select the datepicker
input field where the date is held. The val() function is used to extract
the value and place it into a temporary variable titled dateSelected.

After we have gathered the selected date, on line 42, a jQuery GET
is performed on the getDiff.php page that is responsible for generating
the content. A single parameter titled date is passed with the value set
as the dateSelected variable. When the request is completed, the done()
function is called on line 43. On line 44, the jQuery selector is used to
select the content div tag and set the content to be blank using the
html(‘’) function without any additional parameters. If this step is not
performed, subsequent requests to the getDiff.php page will have the
content appended to the current table.

On line 45, a call is made to the append() function that takes in
a single parameter data that contains the complete HTML that was
received from the getDiff.php page.

At the end of the diff.php page, on line 49, the jQuery selector is
used to select the datepicker input field and convert it into a jQueryUI
interactive date picker. The dateFormat is passed as a parameter to the
datepicker() function in the form of yy-mm-dd. This will format the date
selected by the user into a form such as 2020-09-01.

1 <html>
2 <head>
3 <script

src="https://code.jquery.com/jquery-3.4.1.min.js"></script>↪→

4 <script src="http://code.jquery.com/ui/1.12.1/jquery-ui.min.js">
5 </script>
6 <link rel="stylesheet" type="text/css"

href="http://code.jquery.com/ui/1.12.1/themes/base/↪→

7 jquery-ui.css">
8 <script

src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/↪→

9 umd/popper.min.js"></script>
10 <link rel="stylesheet"

href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/↪→

11 bootstrap.min.css">
12 <script

src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/↪→

13 bootstrap.min.js"></script>

http://code.jquery.com/
http://code.jquery.com/
http://code.jquery.com/
https://cdnjs.cloudflare.com/
https://stackpath.bootstrapcdn.com/
https://stackpath.bootstrapcdn.com/

278 � Applied User Data Collection and Analysis Using JavaScript and PHP

14 <style>
15 thead tr {
16 background-color: #000000;
17 color: #FFFFFF;
18 }
19 </style>
20 </head>
21 <body>
22 <div class="container sm">
23 <p>View Week starting from: <input type="text" id="datepicker">
24 <button id="viewData">View Data</button></p>
25 <table class="table table-striped">
26 <thead style="">
27 <tr>
28 <th scope="col">Date</th>
29 <th scope="col">Number of records</th>
30 <th scope="col">Sum of scores</th>
31 <th scope="col">% difference</th>
32 </tr>
33 </thead>
34 <tbody id="content">
35 </tbody>
36 </table>
37 </div>
38 </body>
39 <script>
40 $("#viewData").click(function() {
41 var dateSelected = $("#datepicker").val();
42 $.get("getDiff.php", { date: dateSelected})
43 .done(function(data) {
44 $("#content").html('');
45 $("#content").append(data);
46 });
47 })
48 $(function() {
49 $("#datepicker").datepicker({dateFormat: "yy-mm-dd"});
50 });
51 </script>

SAMPLE CODE 6: diff.php — Main user interface allowing the user to
select a week.

Example code: getDiff.php
A page titled getDiff.php is created. This page is the core of the data re-

Feedback Statistics and Overviews � 279

trieval and calculation process. In Sample Code 7, a single GET variable
titled date is retrieved on line 2. This date is the date that was selected
by the user and passed to the page via the jQuery GET performed on
the previous page. This date is stored in a variable titled startDate. This
will be used as the starting point for all the calculations that will be
performed. For any given date, the algorithm will look at the difference
between the start date and the next seven calendar days. If the date
rolls onto the next month, the month will automatically adjust. After
the date is gathered, a connection is made to the database on line 8.

On line 10, the core calculateDiffFromDate() function is created that
receives a single parameter titled basedate that the function will work
from.

Inside the function a variable titled output is created on line 12. This
will be used as the main place holder for all the HTML that will be
generated. On line 14, a call is made to the getDateRecords() function
which is passed the current date of interest, baseDate.

The result of calling the getDateRecords() function, is three values,
the count, sum and difference. Each of these is separated by a colon. On
line 15, a call is made to the explode() function, to break the resBase
variable into an array based format, allowing each of the three values to
be extracted.

On lines 16–22, the output variable is appended to include the first
HTML row. This row will contain the baseDate followed by the string
Start, which is used as a visual indicator to tell the user that it is the
date that all other statistics will be derived from. The count of records is
added by making a call to r[0], and the sum is added by calling r[1]. On
line 23, to calculate the differences for each of the seven days following
the initial calendar date, a call is first made to the strtotime() function
to convert the calendar date into an accessible format. A for loop on line
24 is used to iterate over the seven days.

To find the next calendar date, on line 25, a call is made to the date()
function to format a date in Y-m-d format. The strtotime() function is
called, which allows us to pass in the number of days we want to offset
the original date stamp by. The first time this loop runs, the original
calendar date will be offset by +1 day, followed by +2 days, etc. When
the next calendar date is found, a call is made to the getDataRecords()
function on line 26, which is responsible for gathering the records from
the database. This function will return 0 if no data is available.

In the case where data is available for the date, on lines 28, and
29, the explode() function is called on the resBase variable and the res2

280 � Applied User Data Collection and Analysis Using JavaScript and PHP

variable and places the results the coreesponding local variable, e.g., r1,
representing the first day, and r2, representing the second day. Each of
these contain three pieces of data separated by a colon.

The three pieces of data include the total number of records, the
sum of the feedback, and the calendar date, e.g., 100:301:2020-09-02.
For both r1 and r2 arrays on lines 30–35, each value is extracted and
placed in local variables.

On line 36, the calculation process can begin. The calculation per-
formed by taking the count1 and dividing it by the sum1 of the records
to get v1. The same process is repeated to get the value for v2. The
equation is broken down into the top on line 38 and bottom on like 39.

On line 40, the final result is calculated by taking the top result and
dividing it by the bottom. This result is multiplied by 100 to get the
percentage difference. A call is made to the round() function to round()
the result to 2 decimal places on line 41. On lines 43–45, if no records
are present in the database for a given date, then the count, sum, and
diff variables are set to 0. On line 47, the output is appended to include
the values for the three variables as a new table row. On line 55, the
output is printed to the screen to be returned to the client.

1 <?php
2 $startDate = $_GET['date'];
3 try {
4 $host = 'localhost:3306';
5 $dbname = 'bookexamples';
6 $user = 'sampleuser';
7 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
8 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,

$pass);↪→

9 } catch(PDOException $e) {echo $e;}
10 function calculateDiffFromDate($baseDate){
11 global $DBH;
12 $output = '';
13 // Get data for starting record
14 $resBase = getDateRecords($baseDate);
15 $r = explode(':', $resBase);
16 $output .= '
17 <tr>
18 <th scope="row"> '.$baseDate.'[Start]</th>
19 <td>'.$r[0].'</td>
20 <td>'.$r[1].'</td>
21 <td>0</td>
22 </tr>';

Feedback Statistics and Overviews � 281

23 $timestamp = strtotime($baseDate);
24 for($d = 1; $d < 8; $d++){
25 $nextDate = date('Y-m-d', strtotime('+'.$d.' day',

$timestamp));↪→

26 $res2 = getDateRecords($nextDate);
27 if($res2 != 0){
28 $r1 = explode(':', $resBase);
29 $r2 = explode(':', $res2);
30 $count1 = $r1[0];
31 $sum1 = $r1[1];
32 $viewingDate1 = $r1[2];
33 $count2 = $r2[0];
34 $sum2 = $r2[1];
35 $viewingDate2 = $r2[2];
36 $v1 = $count1 / $sum1;
37 $v2 = $count2 / $sum2;
38 $top = $v1 - $v2;
39 $bottom = ($v1 + $v2) / 2;
40 $re = ($top / $bottom) * 100;
41 $diff = round($re,2);
42 } else {
43 $count2 = 0;
44 $sum2 = 0;
45 $diff = 0;
46 }
47 $output .= '
48 <tr>
49 <th scope="row">'.$nextDate.'</th>
50 <td>'.$count2.'</td>
51 <td>'.$sum2.'</td>
52 <td>'.$diff.'%</td>
53 </tr>';
54 }
55 echo $output;
56 }

SAMPLE CODE 7: getDiff.php — part 1.
The retrieval process of records from the database is performed by

making a call to the getDataRecords() function, which takes a single
calendar date. In Sample Code 8, on line 57, this function is defined.

On line 59, a SQL query is made to the count() function to count
the number of records. This result is represented as count in the result
set. The sum of all the records in the column titled score1 is found and

282 � Applied User Data Collection and Analysis Using JavaScript and PHP

represented as sum in the final result. The datestamp is also included to
aid traceability of where the data came from. A simple WHERE clause
is used to narrow down the collection of results based on the date of
interest. A question mark is used as a placeholder for the date.

On line 60, a new array titled params is created that takes the date
variable as input. On line 62, the execute() function is called. On lines
64–66, the count, sum, and date are placed into local variables. On line
67, if no records are returned, then a 0 is returned back to the caller
of the function. In the case where there is records, the count, sum, and
date are appended together with a colon : between each of the records.
On line 73, a call is made to thecalculateDiffFromDate() function which
is passed the starting date. This is done to trigger the retrieval process.

57 function getDateRecords($date){
58 global $DBH;
59 $sql = "SELECT COUNT(score1) AS COUNT, SUM(score1) AS SUM,

datestamp FROM diffcalc WHERE datestamp = ?;";↪→

60 $params = array($date);
61 $sth = $DBH->prepare($sql);
62 $sth->execute($params);
63 $res = $sth->fetch();
64 $count= $res[0];
65 $sum = $res[1];
66 $date = $res[2];
67 if($count == '0'){
68 return 0;
69 } else {
70 return $count . ':' . $sum . ':' . $date;
71 }
72 }
73 calculateDiffFromDate($startDate);
74

75 ?>

SAMPLE CODE 8: getDiff.php — part 2.

Feedback Statistics and Overviews � 283

Output
Figure 8.4 shows the result of selecting a day in the calendar and click-
ing the View Data button. All the content in the table is dynamically
generated by the getDiff.php page and called via a jQuery GET request.

FIGURE 8.4: Calculating the percentage difference.

8.5 SUMMARY

As the size of a data collection grows, it becomes difficult for manual
analysis. This chapter provided an outline of the common statistical
methods that can be used during the analysis of larger data collections.
As many of the statistical methods can be achieved by using PHP or by
using existing database functions, both options were explored.

Chapter 9, next, outlines the process of developing a bespoke hosting
solution for the data collection and analysis process. An emphasis is
placed on the reporting component of data analysis and the distribution
of findings to the key stakeholders in a project.

http://taylorandfrancis.com

C H A P T E R 9

Hosting, Reporting, and
Distribution

9.1 INTRODUCTION

Acting on data acquired in a timely manner is the key to customer satis-
faction. In this chapter, different methods of generating and distributing
reports are described. The content and frequency of the report genera-
tion process is described, outlining the core components of scheduling,
automatic report creation, and delivery.

In addition to this, the Amazon cloud platform is explored as a
method of hosting the solutions that have been discussed in previous
chapters.

9.2 REPORT GENERATION

A key component of any analysis is generating an output that is accessi-
ble by a number of different people. Although some users may have the
ability to login to a web application and view the charts and statistics
that have been generated, it is not the case for all users. Having a sim-
ple formatted document such as a PDF that can easily be distributed
to co-workers is still a common practice. In this chapter, we will look
at the process of generating a PDF file based upon any given content.
All the processing power to generate the PDF files is performed on the
server-side using PHP.

Many different PDF generation libraries are available to use with
PHP, but one particular tool TCPDF has stood the test of time. TCPDF
is available from https://tcpdf.org. TCPDF allows you to generate a

285

https://tcpdf.org

286 � Applied User Data Collection and Analysis Using JavaScript and PHP

PDF-based upon HTML/CSS and also has the ability to include graph-
ics. This allows us to convert any currently existing visualizations and
statistical information quickly into a PDF-based format.

Example 1: Generating a PDF

This example consists of three files and one library:

1. create.sql — Contains the SQL to create the smallset and statistics
tables.

2. custom.php — This is the main code for generating the PDF file.

3. figure1.png — This is a sample graph that will be included in the
PDF.

4. TCPDF — This library is used to generate the PDF.

Example code: create.sql
The smallet table is first created. This contains an ID column and a
score column that is used to hold various scores. The statistics table is
then created that contains an ID column and three score columns.

CREATE TABLE `smallset` (
`id` INT NOT NULL AUTO_INCREMENT,
`score` INT,
PRIMARY KEY (`id`)

);
CREATE TABLE `statistics` (

`id` INT NOT NULL AUTO_INCREMENT,
`score1` TINYINT,
`score2` TINYINT,
`score3` TINYINT,
`mytime` DATETIME NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)

);

SAMPLE CODE 1: create.sql — SQL to create the smallset and
statistics database tables.

Hosting, Reporting, and Distribution � 287

Example code: TCPDF

To use TCPDF, it first must be downloaded from the official repos-
itory.1 You will be given an option to download the contents of the
repository as a single zip file. Once this zip file has downloaded, extract
the contents of the TCPDF-master folder into the root of your htdocs
folder of your local web server. By default, no additional configuration
is needed for the examples in the examples folder to run.

Example code: custom.php

This page consists of two core components: the first of these are the
functions that will be used to gather statistics from the previous chapter
and utilize them in the PDF. The second is focused on the overall layout
and content that will be added to the PDF. In Sample Code 2, on lines
1–39 the PHP functions for calculating the mode, average, and standard
deviation can be seen as described in Chapter 8. When each function is
called, a single value will be returned from each.

1 <?php
2 try {
3 $host = 'localhost:3306';
4 $dbname = 'bookexamples';
5 $user = 'sampleuser';
6 $pass = '3C9038A509BE6145AAD6827B4568AD918BC3DAC0';
7

8 $DBH = new PDO("mysql:host=$host;dbname=$dbname", $user,
$pass);↪→

9 } catch(PDOException $e) {echo $e;}
10 function getMode(){
11 global $DBH;
12 $sql = 'SELECT score1, COUNT(score1) AS COUNT FROM

statistics GROUP BY score1 ORDER BY count DESC LIMIT 1';↪→

13 $sth = $DBH->prepare($sql);
14 $sth->execute();
15 $res = $sth->fetch();
16 $mode=$res[0];
17 $count = $res[1];
18 return $mode . ' with count ' . $count;
19 }
20

1https://github.com/tecnickcom/tcpdf

https://github.com/

288 � Applied User Data Collection and Analysis Using JavaScript and PHP

21 function getAverageScore($columnName){
22 global $DBH;
23 $sql = "SELECT AVG($columnName) AS average FROM statistics";
24 $sth = $DBH->prepare($sql);
25 $params = array($columnName);
26 $sth->execute($params);
27 $res = $sth->fetch();
28 $avg= $res[0];
29 return $avg;
30 }
31 function calculateStdDev(){
32 global $DBH;
33 $sql = 'SELECT STD(score) AS sd FROM smallset;';
34 $sth = $DBH->prepare($sql);
35 $sth->execute();
36 $res = $sth->fetch();
37 $stdev=$res[0];
38 return $stdev;
39 }

SAMPLE CODE 2: custom.php — Gathering statistics — part 1.
In Sample Code 3, on line 41, a call is made to include

the tcpdf include.php page that is used to include the TCPDF li-
brary in our project. On line 43, a new pdf object is created.
PDF PAGE ORIENTATION has a value set to P indicating we are
using portrait mode. The PDF UNIT of measure is mm by default. The
PDF PAGE FORMAT by default is set to A4. The encoding for the
page is then set to use UTF-8. On lines 45–49, basic author and title
information is set into the PDF. On line 51, the monospaced font is set.

On line 53, the margins for the PDF file are set. These are cur-
rently set to their default but can be manually changed. On line 54,
basic header information for the PDF is set. PDF HEADER LOGO
contains a reference to the TCPDF logo. This is followed by
PDF HEADER LOGO WIDTH that indicates the width the logo
should be. This is followed by two strings that can be modified. To add
color, two arrays are added that contain the RGB values for both arrays.

On lines 55 and 56, the margin for the header and the footer are set.
On line 58, the PDF is set to have auto page breaks. On line 60, the
default PDF IMAGE SCALE RATIO is set, which is 1.25. On lines 62
to 67, the default fonts are set.

The core of the PDF generation process starts on line 69, when the
AddPage() function is called. This is the blank canvas where our content

Hosting, Reporting, and Distribution � 289

will be added. On lines 71–73, calls are made to the functions that were
created earlier. The result for each function that is returned is placed
into local variables. On line 77–83, a new variable titled HTML is added.
Instead of directly adding a string to the variable, the EOD tag is added,
allowing any text to be entered. The spacing will be removed before it
is printed. The three variables that we gathered are placed into this
block along with some additional text. To finish, another EOD tag is
added. HTML can be added into this tag, without causing any issues
with regards to quotation marks.

On line 84, an image of a graph is added. This file titled graph.png
is added into a folder titled stats. 10 indicates the position from the left,
and 80 indicates the position from the top of the page. 170 is the width
for the picture, and 80 is the height. A link can be embedded into this,
allowing the user to be taken to a page of interest.

On line 85, a call is made to the writeHTMLCell() function that
takes in the html parameter that had the content we wish to display. The
parameters taken by this include: width, height, X position,Y position,
HTML, border, line, fill, reset header, align, and autopadding.

On line 87, the folder where the file will be placed, and the name
that will be given to the file is specified. When using the page as an
interface, the parameter I can be set, rendering the PDF in the browser.
When the PDF is required as a file, this can be changed to F, and it will
be output in the desired folder.

40 // Include the main TCPDF library (search for installation
path).↪→

41 require_once('tcpdf_include.php');
42 // create new PDF document
43 $pdf = new TCPDF(PDF_PAGE_ORIENTATION, PDF_UNIT,

PDF_PAGE_FORMAT, true, 'UTF-8', false);↪→

44 // set document information
45 $pdf->SetCreator(PDF_CREATOR);
46 $pdf->SetAuthor('Kyle Goslin');
47 $pdf->SetTitle('Sample PDF');
48 $pdf->SetSubject('How to use TCPDF');
49 $pdf->SetKeywords('TCPDF, PDF, example, test, guide');
50 // set default monospaced font
51 $pdf->SetDefaultMonospacedFont(PDF_FONT_MONOSPACED);
52 // set margins
53 $pdf->SetMargins(PDF_MARGIN_LEFT, PDF_MARGIN_TOP,

PDF_MARGIN_RIGHT);↪→

290 � Applied User Data Collection and Analysis Using JavaScript and PHP

54 $pdf->SetHeaderData(PDF_HEADER_LOGO, PDF_HEADER_LOGO_WIDTH,
'Custom Sample Statistics', '', array(000,000,000),
array(000,000,000));

↪→

↪→

55 $pdf->SetHeaderMargin(PDF_MARGIN_HEADER);
56 $pdf->SetFooterMargin(PDF_MARGIN_FOOTER);
57 // set auto page breaks
58 $pdf->SetAutoPageBreak(TRUE, PDF_MARGIN_BOTTOM);
59 // set image scale factor
60 $pdf->setImageScale(PDF_IMAGE_SCALE_RATIO);
61 // set default font subsetting mode
62 $pdf->setFontSubsetting(true);
63 // Set font
64 // dejavusans is a UTF-8 Unicode font, if you only need to
65 // print standard ASCII chars, you can use core fonts like
66 // helvetica or times to reduce file size.
67 $pdf->SetFont('dejavusans', '', 14, '', true);
68 // Add a page
69 $pdf->AddPage();
70 // Gather the data
71 $mode = 'The mode is: ' . getMode();
72 $average = 'The averages for score1 is: ' .

getAverageScore('score1');↪→

73 $stdev = 'The standard deviation of the database table is: ' .
calculateStdDev();↪→

74

75

76 // Set some content to print
77 $html = <<<EOD
78 Welcome to the statistics page!
79 <p>
80 $mode

81 $average

82 $stdev

83 EOD;
84 $pdf->Image('stats/graph1.png', 10, 80, 170, 80, 'PNG',

'http://www.tcpdf.org', '', true, 150, '', false, false, 1,
false, false, false);

↪→

↪→

85 $pdf->writeHTMLCell(0, 0, '', '', $html, 0, 1, 0, true, '',
true);↪→

86 // Close and output PDF document
87 $pdf->Output(__DIR__ . '/stats/report.pdf', 'I');

SAMPLE CODE 3: custom.php — PDF generation using PHP — part
2.

http://www.tcpdf.org

Hosting, Reporting, and Distribution � 291

Output
Figure 9.1 shows the completed PDF file, which can be viewed in a web
browser or by saving it to an external file.

FIGURE 9.1: Statistics rendered in a PDF file.

9.3 CRON AND TASK SCHEDULING

An important aspect of reporting is passing the data to the stakeholders
of a business at a consistent time. There may be times when reports are
most useful, e.g., at 8 a.m. before a meeting on Friday morning, or at 9
a.m. on a Monday morning.

Cron, which is short for chronological, is an application that is de-
signed to perform an action, e.g., run a program or call a URL, at a
specific time, date, or as the result of an internal state change. It is
a command-line utility in the Linux/Unix family of operating systems.
This name, however, has been used as a generic name for any application
that performs time or date based actions. In the Windows operating sys-

292 � Applied User Data Collection and Analysis Using JavaScript and PHP

tem, a similar application exists called Task Schedular. This application
has a graphical user interface to aid the scheduling process.

In this chapter, PDF report generation was performed as a result of
calling a PHP page in a web browser. Although the result was shown to
the user directly, this does not need to be the case. A cron utility can
be used to call the URL to generate the desired PDF.

For cron utilities to work correctly, the operating system where they
are hosted must have a constant up-time. If the operating system is ever
shut down, all of the cron jobs would not be able to execute. For this
reason, there is a division in how cron jobs are created, either locally on
the server or externally on someone else’s server. A single task that is
performed at a given time is called a cron job.

Example 2: Local cron jobs
When direct access is available to the operating system, cron jobs can
be created. The advantage of having access to the server’s operating
system is that individual files can be run in the form of programs or
scripts. The individual jobs that are performed by cron are stored inside
of the crontab, which is short for cron table. To edit the cron jobs, we
type the following command into the terminal:

crontab -e

In the cron table, we can specify the specific details of what time
and date we would like the job to run and what task we want to be
performed. In Sample Code 4, the order of options added to a single row
in the cron table can be seen. A wild card in the form of an Astrix * can
be used to specify all values. Intervals can be defined in the form of /15
to indicate every 15 minutes or /20 to indicate every 20th day.

MIN = Minute 0-60
HOUR = Hour [24-hour clock] 0-23
MDAY = Day of Month 1-31
MON = Month 1-12
DOW = Day of Week 0-6
COMMAND = Program or script to run

SAMPLE CODE 4: List of cron options

Hosting, Reporting, and Distribution � 293

Sample Code 5 shows an example of a complete cron job that is
designed to call myscript.sh every 15 minutes. Inside this script, the
actual call to the PDF generator is performed. The script path, e.g.,
/home/user1/ can be replaced with the script we wish to run.

* /15 * * * /home/user1/myscript.sh

SAMPLE CODE 5: Sample cron job — every 15 minutes.

Sample Code 6 shows the pattern to call the myscript.sh file every
sunday at 4 a.m.

0 4 * * sun /home/user1/myscript.sh

SAMPLE CODE 6: Sample cron job — every Sunday at 4 a.m.

Sample Code 7 outlines how to capture the output of a cron job. As
the script we are calling will print out text, if successful, this text will
be shown in the output.log file.

0 4 * * sun /home/user1/myscript.sh > /home/user1/output.log

SAMPLE CODE 7: Capturing cron output.

Sample Code 8 shows an example of the myscript.sh file. When this
is run, on line 2, a piece of text will be output. On line 3, the wget tool is
used to perform a HTTP GET request to the custom.php file, which was
described in Section 9.2 to generate the PDF. The main consideration
that is needed in custom.php is to have the output flag set to F to ensure
a file is created and not just shown in the browser.

1 #!/bin/bash
2 echo "cron running.."
3 wget http://localhost/custom.php

SAMPLE CODE 8: myscript.sh — Example bash script performing a
GET request.

294 � Applied User Data Collection and Analysis Using JavaScript and PHP

When working with cron patterns, to aid the process, a
number of online cron job pattern generator tools are avail-
able such as https://crontab-generator.org, https://crontab.guru and
http://www.cronmaker.com.

Example 3: External cron jobs

Often on shared hosting solutions, the cron utility may not be acces-
sible. In these cases, external cron services can be utilized. The disad-
vantage of using external cron utilities is that they only have access to
pages that are public-facing on the web server. All scripts and files that
are on the server but are not in the htdocs of the Apache server will not
be available. The advantage, however, of using an external service is the
up-time of the service is often high, and many come with easy to use
interfaces instead of manually entering cron job patterns.

A number of different companies offer web cron utilities with addi-
tional features, such as when a cron fails to execute, an alert can be sent
to the server administrator. On example of this is cron-job.org as shown
in Figure 9.2.

FIGURE 9.2: cron-job.org website.

Figure 9.3 shows the process of creating a new cron job. A
title for the job is first specified. This is followed by the web-
accessible URL that will be called. In this example, we are calling
the http://www.domain.com/scriptToCall.php page. This PHP page can
perform tasks for us, such as generating a PDF, deleting files or sending
automated e-mails.

https://crontab-generator.org
https://crontab.guru
http://www.cronmaker.com
http://www.domain.com/

Hosting, Reporting, and Distribution � 295

FIGURE 9.3: Creating a sample cron on cron-job.org.

In Sample Code 9.4, after these details are entered, the schedule
for the cron can be specified. On this site, a simple user interface with
intuitive options can be seen. Notification options are available to notify
you if the cron fails to run. This can be useful as it often indicates that
there is an issue with the server or task you are attempting to run.

9.4 CLOUD E-MAIL SERVICE INTEGRATION

As cron offers us the ability to perform an action at a specified interval,
this can easily be used for everyday tasks such as report distribution. A
simple method of distributing content is using e-mail. Although e-mail
is used every day in a business environment, there is an ongoing issue
with the process of successfully sending e-mail to users.

The issue with e-mail stems from the way in which it was originally
designed. There are no restrictions on how e-mails are sent or the number
of e-mails that are sent. As a result of this, many e-mail hosting providers
mark e-mails as junk or spam quickly. This can be a result of the sender’s
IP address being previously used as spam or the quality of the e-mails
that are being sent. Many departments that previously hosted inhouse
e-mail solutions have begun to use e-mail hosting providers to deliver
their mail. This can be seen as a robust approach as the e-mail provider
will deal with the process of ensuring that sender’s address is not marked
as spam or junk.

296 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 9.4: Creating a sample schedule for a cron job.

Example 4: Sending an e-mail
One successful e-mail hosting solution is SendGrid.2 To use this API,
two steps must be performed. The first of these is obtaining a unique
API key from the SendGrid website. This key is used to differentiate one
account from another for billing purposes. The second step is to validate
an e-mail address that will be used. During this process, an e-mail is
sent from the SendGrid.com website to the inbox of the desired sending
address after the sign-up process is completed. This step ensures that
the sender of the e-mails is, in fact, the owner. In cases where you own
a domain name, SendGrid offers the ability to verify the domain name.
This is done by adding key and value pairs into the DNS record of your
domain proving authenticity.3

To integrate this solution into an existing web application, composer
can be used to install the SendGrid library. In the htdocs folder of a web

2https://www.sendgrid.com
3https://app.sendgrid.com/settings/sender auth/domain/create

https://www.sendgrid.com
https://app.sendgrid.com/

Hosting, Reporting, and Distribution � 297

server, a new file titled composer.json is created. In this file, the required
JSON for the SendGrid API can be added, as shown in Sample Code 9.

1 {
2 "require": {
3 "sendgrid/sendgrid": "˜7"
4 }
5 }

SAMPLE CODE 9: SendGrid composer.json content.

After this has been added, from a command prompt the following
install command is run:

composer install

SAMPLE CODE 10: Installing the dependancy.

Output
In Figure 9.5, the automated installation of SendGrid using composer
can be seen.

FIGURE 9.5: The SendGrid API being installed by composer.

Example code: sendmail.php
A new file can be created in the same folder where the SendGrid library
was installed, titled sendmail.php. In Sample Code 11, on line 2, a ref-
erence is made to the autoload.php of the SendGrid library. On line 3, a
new instance of the mail object is created and placed into the local vari-
able titled email. The from address is set on line 4. This address must
be an e-mail address that was used during sign-up to the service, as a

298 � Applied User Data Collection and Analysis Using JavaScript and PHP

verification e-mail will be sent by SendGrid. On line 5, the subject for
the e-mail is sent. On line 6, the to is set indicating who we are sending
the e-mail to.

On lines 7 and 8, the addContent() function is called to append
content to the e-mail. This function takes two parameters, the first that
describes the type of content that is being sent and the second containing
the content to send. On line 11, the API key is appended in string format.
This key is unique to your user account and must be included. The
process of sending the e-mail is performed on lines 12–19. A try-catch
surrounds the e-mail sending process to first attempt to send the e-mail,
and if it fails, to capture the error. The status code, headers and body
of the response can be accessed to identify if there was any issues when
sending the e-mail. Typically, if errors occur with the API key or the
address the e-mail was being sent from, they can be seen here.

1 <?php
2 require 'vendor/autoload.php'; // If you're using Composer

(recommended)↪→

3 $email = new \SendGrid\Mail\Mail();
4 $email->setFrom("johnsmith@gmail.com", "Example User");
5 $email->setSubject("Sending with SendGrid is Fun");
6 $email->addTo("johnsmith@gmail.com", "Example User");
7 $email->addContent("text/plain", "and easy to do anywhere, even

with PHP");↪→

8 $email->addContent(
9 "text/html", "and easy to do anywhere, even with

PHP"↪→

10);
11 $sendgrid = new \SendGrid('YOUR_API_KEY');
12 try {
13 $response = $sendgrid->send($email);
14 print $response->statusCode() . "\n";
15 print_r($response->headers());
16 print $response->body() . "\n";
17 } catch (Exception $e) {
18 echo 'Caught exception: '. $e->getMessage() ."\n";
19 }

SAMPLE CODE 11: sendmail.php — Sending an e-mail using
SendGrid.

Hosting, Reporting, and Distribution � 299

Example 5: SendGrid mail with attachment

A simple modification can be made to the original e-mail sending
process to include an attachment, such as a PDF file. A new file is created
titled sendmail attach.php that contains the original e-mail code, along
with a small modification for sending attachments.

Example code: sendmail attach.php
In Sample Code 12, on line 11, the PHP function file get contents() is
called to retrieve the contents of a file titled samplefile.pdf that is in the
same folder as the PHP file. This is encoded in base 64 format using the
base64 encode() function to convert the file into a format that can be
sent by e-mail. On line 12, the addAttachment() function is called that
takes a reference to the encoded file, the format of the file, the name of
the file and finally identifying it as an attachment.

1 <?php
2 require 'vendor/autoload.php'; // If you're using Composer

(recommended)↪→

3 $email = new \SendGrid\Mail\Mail();
4 $email->setFrom("kylegoslin@gmail.com", "Example User");
5 $email->setSubject("Sending with SendGrid is Fun");
6 $email->addTo("kylegoslin@gmail.com", "Example User");
7 $email->addContent("text/plain", "and easy to do anywhere, even

with PHP");↪→

8 $email->addContent(
9 "text/html", "and easy to do anywhere, even with

PHP"↪→

10);
11 $file_encoded =

base64_encode(file_get_contents('samplefile.pdf'));↪→

12 $email->addAttachment(
13 $file_encoded,
14 "application/pdf",
15 "samplefile.pdf",
16 "attachment"
17);
18 $sendgrid = new \SendGrid('YOUR_API_KEY');
19 try {
20 $response = $sendgrid->send($email);
21 print $response->statusCode() . "\n";
22 print_r($response->headers());
23 print $response->body() . "\n";

300 � Applied User Data Collection and Analysis Using JavaScript and PHP

24 } catch (Exception $e) {
25 echo 'Caught exception: '. $e->getMessage() ."\n";
26 }

SAMPLE CODE 12: sendmail attach.php — Sending an e-mail with
an attachment.

9.5 HOSTING A PHP/JAVASCRIPT APPLICATION

Over the last number of years, the landscape of web application hosting
has changed from restricted shared hosting environments to cloud-based
hosting that requires little commitment to resources. A further advance
on cloud hosting was the implementation of lightweight cloud hosting so-
lutions that removed the need to configure a complete operating system
and server. One of these solutions is the Amazon AWS Lightsail.4

In this section, the process of taking the solutions developed in this
book and hosting them on the Amazon Lightsail is described. The main
advantages of using the Lightsail include the speed in which the server
can be deployed, the ease of management, and the overall cost of running
the service per month, which is $3.50 at the time of writing. Before
beginning, an Amazon AWS account is needed that can be created on
the AWS homepage.5 After a new account has been created, we can head
to the Lightsail section of AWS. 6

Example 6: Creating a Lightsail instance
On the Lightsail dashboard, we can first see any instances that are run-
ning. An instance is a single hosting solution that has been created. In
Figure 9.6, one existing instance can be seen. On the right-hand side of
this dashboard, click Create Instance to get started.

In Figure 9.7, an option then exists to choose the type of instance
we wish to launch. The typical options dividing line is choosing a Linux
based image or a Microsoft Windows-based image. As Linux images are
cheaper to run, this will be chosen. Next, The blueprint for the image is
selected. This is the name given to the software that is preloaded onto
the image when it is created. As we are working with PHP and MySQL,
the LAMP (PHP 7) is selected.

4https://aws.amazon.com/lightsail
5https://aws.amazon.com
6https://lightsail.aws.amazon.com/ls/webapp/home/instances

https://aws.amazon.com/
https://aws.amazon.com
https://lightsail.aws.amazon.com/

Hosting, Reporting, and Distribution � 301

FIGURE 9.6: Amazon Lightsail dashboard.

FIGURE 9.7: Selecting Lightsail image type and blueprint.

302 � Applied User Data Collection and Analysis Using JavaScript and PHP

The next choice is focused on the overall RAM, CPU size, and hard-
drive space that we wish to add. To keep costs minimal during the initial
testing of the application, in Figure 9.8, the $3.50 option is selected. This
can be changed at any time in the future if the application requires extra
resources. This basic instance comes with 512MB of RAM, 1 vCPU, 20
gigabytes of a solid-state drive, and 1 terabyte of traditional storage.
The choices that we are viewing are based on price. In scenarios where
memory, processing, storage, or data transfer are important, customized
options are available.

FIGURE 9.8: Selecting the Lightsail instance type.

In Figure 9.9, we can next provide a name to the instance. This is
particularly useful when a number of different instances are being used
at the same time and to organize the names that appear on the monthly
bill.

After creating your first instance, the instance will not be directly
available. It first goes into a pending state as shown in Figure 9.10.
During this time, you will not be able to work with the instance or create
any remote connections to it. This process typically lasts less than five
minutes.

Once the instance has finished the initialization process, it is ready
to access. To connect to the instance, a console can be opened by clicking
on the console icon, as shown in Figure 9.11. This is a complete console
replicating what would be seen on a traditional local operating system.
Just below the console, the unique IP address for your instance can be

Hosting, Reporting, and Distribution � 303

FIGURE 9.9: Providing a name to a Lightsail instance.

FIGURE 9.10: Lightsail instance in a pending state.

FIGURE 9.11: Running Lightsail instance.

seen. When this is typed directly into a web browser, a simple default
HTML page will be shown.

In Figure 9.12 the console for the instance can be seen. To see what
folder we are currently in the ls command can be used. After this com-
mand is issued, we can see that there is a htdocs folder that serves as

304 � Applied User Data Collection and Analysis Using JavaScript and PHP

the root folder for your web application. This is similar to the htdocs on
a local Apache web server.

FIGURE 9.12: Lightsail-integrated console.

Example 7: Uploading files to the instance

Although we now have console access to the server to run any com-
mands we wish, the main desire at this time is to upload the sample
PHP/JavaScript examples that have been described in this book. To do
this we first need to get the access key that will be used to authenticate
with the server when external connections are made. To do this, the
account section of the dashboard offers a keys management section.7 In
Figure 9.13, we can see that no custom keys have been added. Rather
than creating a custom key, we can use the default key. This is done by
simply clicking Download beside the regional area where your instance
is hosted. This private key will contain a .pem extension and should be
stored in a safe place.

To connect to the server and transfer files, we will use secure file
transfer protocol (SFTP). The most common tool used is the FileZilla
client.8 FileZilla is a free and open-source tool that supports many for-
mats for transferring files. To get FileZilla, simply click the Download
client option as shown in Figure 9.14. Once the download had completed,
it should be installed on your system.

7https://lightsail.aws.amazon.com/ls/webapp/account/keys
8https://filezilla-project.org

https://lightsail.aws.amazon.com/
https://filezilla-project.org

Hosting, Reporting, and Distribution � 305

FIGURE 9.13: Options to create or download existing keys.

FIGURE 9.14: FileZilla homepage.

In Figure 9.15, after the installation of FileZilla, we can now begin
the process of creating the connection. The option for a New site is first
selected. Under the protocol section, SFTP should be chosen. The host is
the IP address of your unique instance that can be found on the Lightsail
dashboard under the console button. The Logon type is set to Key file
as it will utilize the .pem file that was downloaded earlier. The default
user name for this instance type is bitnami. Beside the Key file option,

306 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 9.15: FileZilla new connection window.

click on the Browse button and locate the key that was downloaded. To
finally connect to the instance, simply click Connect.

The main FileZilla user interface is broken down into two compo-
nents. The left-hand side of the application is a listing of the files on
your machine, and on the right-hand side is the current directory of the
instance we are connected to. On the right-hand side of FileZila, a list of
the files and folders on the server can be seen as shown in Figure 9.16.
The htdocs is the target for our upload.

Figure 9.17 shows a list of samples files in chapter 4. When any
folder is clicked, the contents of the folder can be seen on the bottom
half of the window. To upload theses files to the server, highlight the
files, right-click on the selected files and click Upload.

In this example, dashboard4.php has been uploaded to the server as
shown in Figure 9.18. To access this page, the unique IP address of the
instance is entered into the browser, followed by the name of the PHP
file.

Hosting, Reporting, and Distribution � 307

FIGURE 9.16: List of files and folders on the Amazon Lightsail
instance.

FIGURE 9.17: Selecting files in FileZilla to upload to the instance.

308 � Applied User Data Collection and Analysis Using JavaScript and PHP

FIGURE 9.18: Sample application viewed in a web browser.

9.6 SUMMARY

This chapter closes the data analysis process by describing the funda-
mental components of any web application. Report generation was de-
scribed, which is a quick and easy method of generating PDF reports
using PHP. To provide a synchronous approach to reporting, cron and
task scheduling were described for both local and external cron sources.
As managing e-mail delivery has become a full-time job, the basics of
cloud-based e-mail services were described as an alternative solution to
in-house e-mail hosting.

Finally, to take the solutions that have been described in this book
and provide a tangible application, a lightweight cloud web application
hosting solution using Amazon Lightsail was described.

Index

Note: Locators in italics represent figures and bold indicate tables in
the text.

A
Active data collection, 3–4, 11

binary data collection, 11–16
ajax.php, 12–16
binary.html, 12–14
create.sql, 11–12
jQuery, 14, 12

custom response form, 29–38
Bootstrap, 29
create.sql, 29–30
form.html, 29–35
jQuery, 29
saveForm.php, 29, 35–38

star ratings, 21–28
ajax.php, 24–28
create.sql, 21, 23
jQuery, 26
RateYo! star rating

package, 21
rating.html, 21–24
retrieving, 26–28
star.php, 26–27

text-based data collection,
16–21

ajax.php, 17, 19–21
binary.html, 16–19
create.sql, 16–17
jQuery, 17

AddAtt, 124
AddAttachment() function, 299
AddContent() function, 298

AddElementToCamp, 146, 148
AddEventListener, 75
Add() function, 206, 208–209
AddItem() function, 45–46
Addnewcamp, 141
Add new campaign, 142–150
AddNewCamp() function, 140–141
AddPage() function, 288–289
AddTimesSeries() function, 241
Add Visualization option, 130–139
AddViz() function, 124–125, 131
Add Vizualization, 124
Ajax.php

binary data collection, 12,
14–16

campaign, 139, 141–143, 148
database table, 79–80
page, 141
select campaign elements,

123–129
star ratings, 24–28
text-based data collection, 17,

19–21
user IP address, 63–64
user registration page, 96,

101–103
Alert() function, 13, 24
Alert() statement, 18, 146
Amazon

AWS Lightsail, 300
cloud platform, 285

309

310 � Index

Lightsail, 308
AMPPS, 5
Apache web server, 2, 5
Append() function, 277
Apple Mac, 5
Aria-describedby, 30
Aria-labelledby, 124
Array count values() function, 179
Array push() function, 182
Articleid column, 23
Autoload.php, 186
Avg() function, 269–270

B
Barchart.php, 130, 132
Bar.php, 137–139
Base64 encode() function, 299
Basic dashboard, 116–123
Bcrypt algorithm, 94, 102
Beforeunload, 75
Bg-light colour, 90
BigHugeLabs.com API, 175–177
Binary bar chart, 110–115
Binary data collection, 11–16

ajax.php, 12, 14–16
binary.html, 12–14
create.sql, 11–12
jQuery, 14, 12

Binary feedback, 110
Binary.html

binary data collection, 12–14
text-based data collection,

16–19
BindParam() functions, 15, 19, 25,

27, 63, 79, 93, 102, 109,
141, 148

Bitnami, 305
Blueprint for image, 300
Bootstap.min.css, 88, 95
Bootstrap, 87, 89, 117–118, 123

custom response form, 29
dashboard, 119
form.html, feedback, 32–33
JavaScript file, 96
library, 89
modal, 38, 160
website, 90

Bootstrap.js, 88, 95
Browser-based website caching, 7

C
CalculateDiffFromDate() function,

279, 281
CalculateStdDev() function, 272
CalendarGetRecords.php,

245–246, 250
Calendar.php, 245–246, 248
Campaigns, 87, 115, 120, 139–142

element, 142–150
select elements, 123–130

CampID, 117–118
Camps.sql, 116–119
Canvas, 107
Canvas tag, 225, 231
Categorise() function, 186
Chart, 131
Chart.bundle.js, 104, 107, 111
ChartColors, 217
Chart.draw() function, 247
Chart.helpers.color, 229
Chart.js, 104, 106, 212, 223
Chart.js.zip file, 105
Chart() object, 231
Chart1.php, 104, 107
Chart2.php, 111–112, 114–115
Charts.js, 3
Click() handler, 17, 205, 255, 277
Client-side based filter, 156
Client-side cookies; see also

Server-side sessions

Index � 311

custom appending function,
45–47

Iterating over JSON, 43–45
JSON content, 42–43
simple set and get, 40–42

Closedir() function, 148
Cloud-based e-mail services, 308
Cloud e-mail service integration,

295–300
Collapse navbar-collapse, 119
Collapsible tree layout, 195–200

text-based feedback, 195–200
Color-coding process, 254
Color shading index, 252
Command line

application composer, 5–6
utility, 291

Comma separated value (CSV)
files, 3, 49

Completion.php, 171
Composer, 5–6, 82
Composer init command, 82
Composer.json, 6, 82–83, 83
Config.data.datasets[0], 233
Connections array, 209
Console.log() functions, 6–7, 65,

77, 92, 131, 197, 206, 241,
246, 257

Contactinfo, 48
Container div tag, 107
Content delivery network (CDN),

5, 12, 40–41, 154, 215,
224, 254, 276

Cookies and sessions
client-side cookies, 40–47
cookies.html, 41
delete, 42
developer console, 41
reliability of, 40
server-side sessions, 47–49

Cookies.html, 41–42
Cookies json.html, 42–43
Cookies set() function, 44
Count() function, 109, 114, 183,

213, 281
CountInDocs() function, 183
Create dashboard.sql, 88–89
Create new campaign, 140
Create.sql, 61, 171, 195–196,

201–202, 213, 223,
238–239, 245, 267, 272

binary data collection, 11–12
custom response form, 29–30
PDF generation, 286–287
percentage difference, 275
star ratings, 21, 23
text-based data collection,

16–17
Cron

job, 292, 294–295
table, 292
and task scheduling, 291–295

Crontab -e, 292
CSV files, 55

from Google Forms, 53–55
reading from, 55–56

Current Epoch time, 222
CurrentIdProcessed variable, 241
CurrentTerm, 154
CurrentTime, 240
Custom dashboard, 87

binary bar chart, 110–115
dynamic dashboard, 115–150
multi-column bar chart,

104–110
user login, 88–95, 93
user registration, 95–104

Custom response form, 29–38
Bootstrap, 29
create.sql, 29–30

312 � Index

form.html, 29–35
jQuery, 29
saveForm.php, 29, 35–38

D
Dashboard accounts, 88, 102
Dashboard camp elements,

116–118
Dashboard.css, 117, 123
Dashboard.php, 92, 158, 160
Dashboard1.php, 117, 121–122
Dashboard2.php, 123–125
Dashboard3.php, 130–131
Dashboard4.php, 139–141, 306
Dashboard5.php, 142, 146
Data analysis, 87, 211
Data[] array, 108
Database tables, 3
Data collection, 1

active, 3–4
passive, 3–5

Data exploration, 189
Data processor.php, 130, 132, 134
Datasets array, 107
Datasource, 131
DataSourceOptions div, 145
Data storing, 39
DataTable.addColumn() function,

246
DataTable.addRow() function, 247
Data visualizations, see

Visualization
DATE, 222
Date() function, 52, 221, 279
Datepicker() function, 210, 225,

228, 255, 277
Datepicker input, 277
Datestamp, 275
DATETIME, 222

Diffcalc table, 276
Diff.php, 275–276
Div tags, 90, 124, 204, 215, 225,

276
tracking individual, with

TimeMe.js, 73–74
D3.js, 3, 195
Document.getElementById()

function, 73
Document ready function, 18
Done() function, 13, 26, 34, 62,

205, 240, 246, 256, 277
Draggable() function, 135
DrawNegativeChart() function,

246
DrawPositiveChart() function, 246
Dynamic dashboard, 115–116

basic dashboard, 116–123
campaign, 139–142

element, 142–150
select elements, 123–130

visualization, 130–139

E
Each() function, 44, 46
EasyPHP, 5
Echo getcwd(), 147
ElementID, 131
Elementtitle, 131
E-mail

SendGrid mail with
attachment, 299–300

sending, 296–298
stems, 295

Event.preventDefault(), 99
Execute() function, 15, 35, 63, 79,

236, 268, 270, 281
Explode() function, 132, 156, 164,

169, 179, 183, 213, 279

Index � 313

F
Facebook, 81
Fclose() function, 57
Feedback

dashboard, 90
tree database table, 196

FeedbackElementID, 107
FeedbackFormId, 107, 112
Feedbackformrecords.sql, 104, 107
Feedback heat map, 252–265
FeedbackRecords, 206
FeedbackRecords[i], 208
Feedback statistics, 267

basic statistics, 267–273
percentage difference,

275–283
working with samples,

263–274
Feedbacktext, 213
Feof() function, 57
FetchAll() function, 250
Fgetcsv() function, 56, 132
Fgets() function, 57
File get contents(), 299
File get contents() function, 177
FileZilla, 305–306, 306–307
FindOutWhy() function, 17
Fopen() function, 55
ForEach() function, 233
Foreach statement, 183
Foreach() statement, 109
Format() function, 235
Form.html

Bootstrap feedback, 32–33
custom JavaScript form

validation, 35
custom response form, 29–35

FormID, 109
Function() function, 228

G
GenerateGraphForTerm()

function, 206
GenerateJSON.php, 195, 200
GenerateTree() function, 197
Geographical information, 69
Geo.html, 67–71
Geolocation-db.com, 67–69
GetAverageScore() function, 270
GetBlockForHour() function, 259
Getcamp, 125
GetContext() function, 217
GetData() function, 112, 115, 132,

134, 163
GetData.php, 256, 258–263
GetDataRecords() function, 281
GetDataSourceOptions() function,

132
GetDate() functions, 240
GetDateRecords() function, 279
GetDiff.php, 275, 277–278, 281
GetElementById() function, 17,

210
GetElementById() selector, 217
Getformfields, 125
GetFullYear(), 240
Get() function, 41
Get ip.php, 59
GetJSON() function, 42, 44
GetJSON() request, 60
GetMessage() function, 15
GetMode() function, 268
GetMode.php, 268–269
GetMonth(), 240
GetNegativeRecords() function,

250
GetNumberOfNegative() function,

214
GetNumberOfPositive() function,

214

314 � Index

GetPositiveRecords() function, 250
GetRating() function, 27
GetRecords() function, 235
GetRecords.php, 201–203, 205,

254
GetRedFlags() function, 164, 166
GetSatisfactionScores() function,

109
GetScore() function, 259
GetStdDev.php, 272–273
GetTimeOnCurrent-

PageInSeconds() function,
77

GetTimeRecords.php, 223, 232,
235

GitHub repository, 104
Google Charts, 3, 245
Google Chrome, 3
Google Forms, 53

CSV file, 54
CSV responses, 55
export options, 54
sample, 54

Google Map, 67
Graph.php, 201, 204–211

H
Handle file upload() function, 52
Hashing, 88
Heat.php, 253–256
HourStamp, 260
Href tag, 119
HTML, 2
Html() function, 33, 68, 125, 256,

277
HTTP REFERER variable, 80–81

I
ID output1, 154
ID output2, 154

In array() function, 164
Index.html, 50, 106
IndexOf() function, 154, 192, 206
Index.php, 88–92
In-house e-mail hosting, 308
Inline-block, 96
InnoDB storage engine, 153
InputArray, 157
INSERT statement, 15, 63, 79, 103
Internet Service Providers (ISPs),

58
Inverse document frequency,

180–184
IPify, 59
Ipstack.com, 69–71
Isset() function, 81
IsStopWord, 157
Iterate.html, 44–45

J
JavaScript, 2, 6–7

code, 2
GET request, 59–60
jQuery library, 44
libraries, 2–3, 5
POST, 12–13
script tag, 7
stop word function, 154–156

JavaScript-based libraries, 189,
215

JQuery, 14, 50, 89, 158, 195, 201,
224, 239, 245, 254, 275

binary data collection, 12
CDN, 61
click() listener, 13
custom response form, 29
datepicker, 164
File Upload

demo, 51
plug-in, 50, 51

Index � 315

jQueryUI, 117, 123
POST, 14
star ratings, 26
text-based data collection, 17
version 3.5.3, 2

Jquery.min.js, 88, 96
JQueryUI, 158, 201, 224, 254,

275–276
calendar widget, 227

Js-cookie library, 40
JSON content, 3, 42–43

custom JavaScript function,
47

getJSON() function, 42
Iterating over values, 43–45,

45
JavaScript jQuery library, 44
Set and get JSON value, 43

Json decode() function, 177
JSON formatting tools, 197
JSONP, 70
JSON.parse() function, 197
JSON.php, 198
Jumbotron, 90, 96

L
LAMP (PHP 7), 300
Lightsail image, 301
Lightsail instance, 300–304,

303–304
LIMIT 1 clause, 93
Line.php, 130, 132, 134–137
Linux distributions, 5
List-group, 124
ListOfFiles.php, 143, 145, 147–148
List-tab-att items, 131
List-tab-camp element, 125
LoadData, 225, 228
Load() function, 246
Logging times, 75–80

custom function on unload,
75–76

database table, saving to,
76–80

Login() function, 93
Login.php, 88, 93–95

M
MAMP, 5
Margin, 89, 96
Message span tag, 100
Microsoft Windows, 5
Modal-dialog, 124
Modal() function, 34, 101
Modal-header, 124
Modify() function, 235
Moment.js, 212, 223
Multi-column bar chart, 104–110
MyArray, 48
Mycanvas, 239
MySQL 8 community edition

database, 3
MySQL database, 5, 12, 198

data types for time and dates,
222

table, 118
Mytime, 23

N
Natural-language processing

(NLP), 151–152
Nav bar, 90
Navbar-brand, 90
Navbar-dark theme, 119
NewDate() function, 234, 239
New Date().getTime(), 241
N-grams, 167–168

generating n-grams, 168–170
NodeId, 206
Nodetree, 202

316 � Index

Node tree database table, 202
NormalRecord, 208

boolean variable, 207
variable, 209

Number() function, 247

O
Oauth() function, 84
OptionString, 146
Output div tag, 131

P
Padding, 89, 96
PageID column, 76
PageOfInterest, 43
PARAM INT, 15
PARAM STR, 102
PARAM STR, 15
ParentNode, 209
Passive data collection, 3–5, 39–40

cookies and sessions
client-side cookies, 40–47
server-side sessions, 47–49

div tags, tracking individual,
73–74

with TimeMe.js, 73–74
logging times, 75–80

custom function on unload,
75–76

database table, saving to,
76–80

reading from files, 49–58
CSV files, 55–56
CSV files from Google

Forms, 53–55
text file, 56–58
uploading files to web

server, 50–53
social media content, 81–86

Twitter library-based feed
extraction, 82–86

time spent on pages, 71–72
TimeMe.js implementation,

71–72
user, 80–81

agent, 64–66
HTTP REFERER variable,

80–81
user geographic location,

67–71
geolocation-db.com, 67–69
ipstack.com, 69–71

user IP address, 58–64
JavaScript GET request,

59–60
user Yes/No selection and

IP address, 60–64
web browser URL, 59

Password, 88, 92
Password1, 97, 100
Password2, 97, 100
Password hash() function, 102
Password verify() function, 94
Pathinfo() function, 52
PDF generation

create.sql, 286–287
using PHP, 290–291

PDF HEADER LOGO, 288
PDF HEADER LOGO WIDTH,

288
PDF IMAGE SCALE RATIO,

288
PDF PAGE FORMAT, 288
PDF PAGE ORIENTATION, 288
Percentage difference, 275–283
PHP, 2

API request to Big Huge
Lab’s API, 177–178

Index � 317

JAVASCRIPT application,
300

lightsail instance, 300–304
uploading files to instance,

304–308
stop word function, 156–158

PHP Data Object (PDO), 14
PHPinsight, 185
PHPinsight package, 6
Pointer, 89
Popper, 89
Popper.js, 96, 117, 123, 275
PorerStemmer, 173
Positive vs. negative feedback

calendars, 244–252
Post() function, 12–14, 34
Prepare() function, 268, 270
PreventDefault() function, 33, 91
Print r() function, 179
Push() function, 45, 132, 233
Python NLTK library, 153

Q
Querybox, 146

R
RateYo() function, 22
RateYo! star rating package,

21–22
Rating.html

star ratings, 21–24
Rawtext, 198
Read text.php, 57
Real-time environment, 238
Real-time feedback

analysis, 237–244
score report line graph, 244

Realtime.php, 238–242
RecordFetch.php, 239, 242–243
Redflag comments.sql, 158–159

Red flag monitoring, 158
dashboard option, 158–167

RedFlags array, 164
RedFlags.php, 158, 163–164, 167
Redflagterms.sql, 158
Redflagterms table, 160
Ref.php, 80
RegisterNewUser() function, 35,

101
Register.php, 95–101
Remove() function, 162
Replace() function, 231
Report generation, 285–286

and delivery, 1
PDF generation, 286–291

Resizable() function, 135
Response form, 37
RgbtoString() function, 229
RootWords variable, 171
Round() function, 27

S
SampleSentence, 155
Sample term frequency scores,

181
Sample Value, 47
Sampling, 273–274
SaveAnswer() function, 13, 61
SaveForm.php

custom response form, 29,
35–38

SaveRating() function, 24
SaveWhyAnswer() function, 17
SaveWhyAnswer() JavaScript

function, 17
ScoreCount column, 268
Score() function, 186
Script tag, 131, 205
Secure file transfer protocol

(SFTP), 304

318 � Index

Select campaign elements, 123–130
Select Campign, 124, 129, 129
SelectedDate, 256
SendGrid library, 297
SendGrid mail with attachment,

299–300
Sendmail attach.php, 299
Sentence completion, 170–173
Sentiment analysis, 184–187
Sentiment.php, 185–186
Server-side PHP, 86
Server-side sessions, 40; see also

Client-side cookies
storing arrays, 48–49
storing variables, 47–48

Servicerating
database table, 29–30
table, 35

Session arrays.php, 48–49
Session destroy() function, 49
Session destroy.php, 49
Session.php, 47–48
Session start() function, 47
Set() function, 41–42
SetInterval() function, 240
SetOnLoadCallback() function, 246
Show() function, 17
ShowRedFlags() function, 160–162
Simple random sampling, 274
Simple text files, 3
SingleDates array, 246
SingleT variable, 206
Smoothie Charts, 239
Social media content, Twitter

library-based feed
extraction, 82–86

Solid-state drive, 302
SourceType variable, 132
Span tag, 92, 97, 259
Split() function, 192, 206, 233, 241

SQL avg() function, 270
SQL INSERT statement, 102
Star.php, star ratings, 26–27
Starratinglog database table, 23,

25
StarRatingLog() function, 25
Star ratings, 21–28

ajax.php, 24–28
create.sql, 21, 23
example, 23
inteface, 22
jQuery, 26
RateYo! star rating package,

21
rating.html, 21–24
retrieving, 26–28
star.php, 26–27

Std() function, 272
Stemming.php, 173–174
Stop words, 152–153

JavaScript stop word
function, 154–156

PHP stop word function,
156–158

Stopwords.html, 154–156
Stopwords.php, 156–158
Stratified sampling, 274
StripStopWords() function,

154–155, 157
Strlen() function, 172
StrokeStyle, 241
Strpos() function, 172, 199
Strtotime() function, 279
Strtr() function, 183
Structured data, 3
Substr count() function, 183
Substr() function, 172, 199, 202
Substr() PHP function, 214
SurveyMonkey, 53
Survey.sql, 111–112

Index � 319

Synonyms, 174–175
BigHugeLabs.com API,

175–177
PHP API request to Big Huge

Lab’s API, 177–178
Systematic sampling, 274

T
Task schedular, 292
TCPDF, 285, 287–291
TCPDF-master folder, 287
TermArray, 154
TermCount, 207
TermCount record, 206
Term frequency—inverse

document frequency
(TF-IDF), 180–184, 188

Term frequency (TF), 178–180,
188

Terms of interest node graph,
200–211

TermsSplit array, 206
Term weighting, 178
Text, 151

analysis, 120, 162
file, 56–58
natural-language processing,

151–152
n-grams, 167–168

generating n-grams,
168–170

red flag monitoring, 158
dashboard option, 158–167

sentence completion, 170–173
sentiment analysis, 184–187
stop words, 152–153

JavaScript stop word
function, 154–156

PHP stop word function,
156–158

synonyms, 174–175
BigHugeLabs.com API,

175–177
PHP API request to Big

Huge Lab’s API, 177–178
term weighting, 178

inverse document frequency,
180–184

term frequency, 178–180
visualization, 189

collapsible tree layout,
195–200

terms of interest node
graph, 200–211

times series analysis with
positive and negative
review chart, 211–219

word cloud, 189–194
word stemming, 173–174

Text-based data, 16–21, 151
ajax.php, 17, 19–21
binary.html, 16–19
create.sql, 16–17
jQuery, 17

Text() function, 92
Text string, 191
Tfidf.php, 182
Tf.php, 179
TIME, 222
Timeanalysis database, 224
Time-based feedback, 221

feedback heat map, 252–265
positive vs. negative feedback

calendars, 244–252
real-time feedback analysis,

237–244
timelines and database data

types, 221
date and time, 221–223

320 � Index

time segment analysis and
visualization, 223–237

TimeMe.js, 73–74
implementation, 71–72
library, 71

Time.php, 72–76, 212–213, 216
Timepicker, 225
Timepicker.co, 224
TimeRecordLog() function, 79
Time segment analysis and

visualization, 223–237,
265

Timesegment.php, 223–224, 230,
234–236

TimeSeries() function, 240
TimeSpentOnElement.toFixed()

function, 73
Times series analysis with positive

and negative review
chart, 211–219

TIMESTAMP, 222
TimingDataStore() function, 75,

77
Timinglog.sql, 76–77
Timing.php, 77–80
Tooltip positioning engine, 89
TrackTimeOnElement function, 73
Tree-based structure, 201
Tree-based visualization, 196
TreeData variable, 197
Tree.html, 195
Tri-grams, 168
Trim() function, 192, 206
Try-catch statement, 15, 19
Twitter, 81

auth.php, 82, 84
library-based feed extraction,

82–86
OAuth process, 84

Twitteroauth library, 82

U
Unix Epoch, 222
UploadHandler.php, 50–53
Uploading files

to instance, 304–308
to web server, 50–53

Upload url references, 52
User

agent.html, 65–66
agent.php, 66
geographic location, 67–71

geolocation-db.com, 67–69
ipstack.com, 69–71

IP address, 58–64
JavaScript GET request,

59–60
JSON format, 59
user Yes/No selection and

IP address, 60–64
web browser URL, 59

login
password, 88, 92
username, 88, 92

registration, 95–105
username, 88, 92

variable, 94
Yes/No selection and IP

address, 60–64
Utils.js, 104, 111

V
Val() function, 13, 33, 61, 92, 99,

205, 231–232, 256
Varchar data, 29
ViewChart, 255
ViewData, 276
View Red Flags, 120, 162
Vis.js graph, 212
Vis.Network() constructor, 210
Vis-network-min.css file, 204

Index � 321

Vis-network.min.js file, 204
Visualizations, 2, 122, 130–139,

189, 194, 204
Viz.js, 201

W
Web applications, 5
Web browser, 40

URL, 59
Web server, uploading files to,

50–53
WhyAnswer() function, 19
Whyanswerlog database, 16–17
Window.chartColors, 228
Window.myLine.update()

function, 233–234
Window.myLine variable, 231
Window.onload() function, 217
Word cloud, 189–194

Wordcloud.html, 190
Wordcloud2.html, 191, 194
Wordcloud2.js, 189–191
WordsCount array, 192
Word stemming, 173–174
WriteHTMLCell() function, 289

X
XAMPP, 5

Y
YEAR, 222
Yesno database table, 11–12
Yesno ip.html, 61
YesNoLog() PHP function, 14, 63

Z
Zip file, 53–54

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Authors
	Acknowledgments
	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1. INTRODUCTION
	1.2. WHO THIS BOOK IS AIMED AT
	1.3. TECHNOLOGIES USED
	1.4. VARIATIONS OF DATA
	1.4.1. Active Data
	1.4.2. Passive Data

	1.5. WHAT YOU NEED
	1.6. DEVELOPMENT ENVIRONMENT
	1.7. CODE EXAMPLES
	1.8. BOOK OUTLINE
	1.9. SUMMARY

	Chapter 2: Active Data Collection
	2.1. INTRODUCTION
	2.2. BINARY DATA COLLECTION
	2.3. TEXT-BASED DATA COLLECTION
	2.4. STAR RATINGS
	2.5. CUSTOM RESPONSE FORM
	2.6. SUMMARY

	Chapter 3: Passive Data Collection
	3.1. INTRODUCTION
	3.2. COOKIES AND SESSIONS
	3.3. READING FROM FILES
	3.4. USER IP ADDRESS
	3.5. FINDING THE USER AGENT
	3.6. USER GEOGRAPHIC LOCATION
	3.7. TIME SPENT ON PAGES
	3.8. TRACKING INDIVIDUAL DIV TAGS
	3.9. LOGGING TIMES
	3.10. WHERE A USER CAME FROM
	3.11. SOCIAL MEDIA CONTENT HARVESTING
	3.12. SUMMARY

	Chapter 4: Custom Dashboards
	4.1. INTRODUCTION
	4.2. USER LOGIN
	4.3. USER REGISTRATION
	4.4. MULTI-COLUMN BAR CHART
	4.5. BINARY BAR CHART
	4.6. DYNAMIC DASHBOARD
	4.7. SUMMARY

	Chapter 5: Working with Text
	5.1. INTRODUCTION
	5.2. NATURAL-LANGUAGE PROCESSING
	5.3. STOP WORDS
	5.4. RED-FLAG MONITORING
	5.5. N-GRAMS
	5.6. SENTENCE COMPLETION
	5.7. WORD STEMMING
	5.8. SYNONYMS
	5.9. TERM WEIGHTING
	5.10. SENTIMENT ANALYSIS
	5.11. SUMMARY

	Chapter 6: Text Visualization
	6.1. INTRODUCTION
	6.2. WORD CLOUD
	6.3. COLLAPSIBLE TREE LAYOUT
	6.4. TERMS OF INTEREST NODE GRAPH
	6.5. TIME-SERIES ANALYSIS WITH POSITIVE AND NEGATIVE REVIEW CHART
	6.6. SUMMARY

	Chapter 7: Time-Based Feedback Analysis
	7.1. INTRODUCTION
	7.2. GATHERING TIMELINES AND DATABASE DATA TYPES
	7.3. TIME-SEGMENT ANALYSIS AND VISUALIZATION
	7.4. REAL-TIME FEEDBACK ANALYSIS
	7.5. POSITIVE VS. NEGATIVE FEEDBACK CALENDARS
	7.6. FEEDBACK HEAT MAP
	7.7. SUMMARY

	Chapter 8: Feedback Statistics and Overviews
	8.1. INTRODUCTION
	8.2. BASIC STATISTICS
	8.3. WORKING WITH SAMPLES
	8.4. PERCENTAGE DIFFERENCE
	8.5. SUMMARY

	Chapter 9: Hosting, Reporting, and Distribution
	9.1. INTRODUCTION
	9.2. REPORT GENERATION
	9.3. CRON AND TASK SCHEDULING
	9.4. CLOUD E-MAIL SERVICE INTEGRATION
	9.5. HOSTING A PHP/JAVASCRIPT APPLICATION
	9.6. SUMMARY

	Index

