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 Preface     

Infrared and Raman Spectroscopic Imaging. Edited by Reiner Salzer and Heinz W. Siesler
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31993-0

  The breakthrough of Raman, mid - infrared and near - infrared spectroscopy as 
practical imaging tools with rational measurement and evaluation times has only 
taken place in recent years, although Raman and infrared spectroscopy are well -
 established analytical techniques for research, quality assurance and process 
control since many decades. The driving force behind this technology jump was 
on the one hand the increasing demand for imaging techniques with high chemi-
cal selectivity and specifi city and on the other hand the commercial availability of 
suitable high - performance multi - channel detectors and the development of effi -
cient evaluation and representation software. Thus, today not only the frequently 
asked questions about the qualitative and quantitative composition of a sample 
( ‘ what ’  and  ‘ how much ’ ) can be answered, but imaging investigations now also 
provide information as to  ‘ where ’  different chemical species are located and how 
they are distributed among a heterogeneous sample. This book is devoted to illus-
trate the new insights which can be achieved and the multiplicity of applications 
which can be tackled in a variety of fi elds with this new technology. 

 Basically, the book can be subdivided into three parts. In the fi rst part the fun-
damentals of the instrumentation for infrared and Raman imaging and mapping 
and an overview on the chemometric tools for image analysis are covered in two 
introductory chapters. The second part comprises the chapters  3  –  9  and describes 
a wide variety of applications ranging from biomedical via food and agriculture to 
polymers and pharmaceuticals. Some historical insights are given as well. In the 
third part the chapters  10  –  15  cover special methodical developments and their 
utility in specifi c fi elds. 

 We would like to thank all authors for their efforts and commitments to the 
timely publication of this volume being completely aware that writing a chapter 
for a book is an activity that is taken on in addition to one ’ s daily work. We would 
also like to acknowledge the superb job and support by WILEY - VCH in the fi nal 
composition and edition of the book. Our greatest debt of gratitude goes to our 
wives for their patience and encouragement. 

   Dresden and Essen, January 2009    Reiner Salzer and Heinz W. Siesler  
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 Infrared and  R aman Instrumentation for Mapping and Imaging  
  Peter R.   Griffi ths        

   3

1

  1.1 
 Introduction to Mapping and Imaging 

 The analysis of localized regions of samples by vibrational microspectroscopy can 
be accomplished in two ways, by mapping or imaging. 

  Mapping  involves the sequential measurement of the spectra of adjacent regions 
of a sample. This is achieved by moving each region of that sample into the beam 
focus of a microscope after the spectrum of the previous region has been mea-
sured; the measurement is then repeated until the entire region of interest has 
been covered. 

  Imaging , on the other hand, requires an image of the sample to be focused onto 
an array detector, where the intensity of the radiation passing through each region 
of the sample is measured at each pixel. In a mapping experiment in which the 
sample is only moved in one direction    –    say the  x  direction    –    the measurement is 
called  line mapping . If the sample is moved in both the  x  and  y  dimensions, the 
measurement cannot be properly called imaging, as the spectra have not been 
acquired by an array detector. However, the spectra that are obtained can be treated 
in exactly the same way as if they had been acquired with an array detector. 

 In  hyperspectral imaging , the images at more than ten wavelength regions are 
recorded simultaneously with a  two - dimensional  ( 2 - D ) array detector. Vibrational 
hyperspectral imaging can be accomplished through the measurement of either 
the mid - infrared,  near - infrared  ( NIR ) or Raman spectrum. The measurement of 
each type of spectrum is accomplished in different ways, although the instruments 
that have been developed for the measurement of NIR and Raman spectra are 
more closely related than are mid - infrared hyperspectral imaging spectrometers. 
In NIR and Raman instruments, the signal at a given wavelength is recorded at 
each pixel. In NIR imaging instruments, the light is usually passed through a 
monochromator or narrow band - pass fi lter (e.g., a liquid crystal tunable fi lter) 
before being focused on the sample, and from there onto the array detector. The 
image from one wavelength region is measured at all pixels simultaneously. The 
wavelength region is then changed (usually, but not necessarily, to an adjacent 
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spectral region) and the intensity at each pixel is measured again. This process is 
repeated until all wavelengths of interest in the spectrum have been measured. 

 An analogous approach is used for Raman imaging, except that the monochro-
mator must be located after the sample. The signal from all pixels for a given 
wavelength setting is acquired rapidly in NIR imaging instruments, where the 
 signal - to - noise ratio  ( SNR ) is usually high. The SNR for Raman imaging is much 
lower, so that a much longer integration time is needed. Thus, Raman imaging 
can be painfully slow unless only a few wavelength regions are measured. In both 
NIR and Raman imaging spectrometers, the bandpass of the monochromator or 
fi lter determines the  spectral resolution . Occasionally, only a short spectral range 
or a few wavelength regions may be suffi cient to classify samples that are com-
posed of just a few components. On the other hand, for complex or previously 
uncharacterized samples, it is usually necessary to measure data over the entire 
spectral range. In mid - IR imaging instruments, it is more common to couple the 
array to an  interferometer , so that interferograms from different spatial regions 
of the sample are recorded at each detector element. Subsequent Fourier transfor-
mation yields the desired hyperspectral data set. All types of systems will be 
described in this chapter. 

 In addition to the mapping and imaging approaches outlined above, a hybrid 
technique is also available where a linear array of detectors is used to measure the 
spectra over a line of points on a sample simultaneously, so that a line image is 
measured. By using the same approach as for mapping measurements, and with 
a single - element detector, the sample is moved after each measurement so that 
the spectra of the next linear region of interest are measured. The spectra are then 
 ‘ stitched ’  together to form the complete image. This  ‘ push - broom ’  approach has 
proved to be useful for mid - IR imaging (as will be discussed later in the chapter). 
Of course, it may well be that even the region that can be monitored with a 2 - D 
array detector (especially the smaller arrays, such as 16    ×    16 pixels) does not cover 
the entire sample of interest. In that case, the sample is also moved after each 
measurement so that a hyperspectral image of the adjacent region is acquired. 
These data can then also be stitched together (a procedure sometimes known as 
 quilting  or  mosaicing ) to allow an image to be observed over a wider area. 

 The end result of either spectroscopic mapping or hyperspectral imaging is an 
array of spectra (sometimes called a  hyperspectral cube ) from which the identify-
ing characteristics of inhomogeneous samples can be obtained. For Raman 
imaging, the sample need not be of constant thickness, although ideally it should 
be as fl at as possible. Conversely, when mid - IR or NIR absorption spectra are to 
be measured, the thickness of the sample should be as uniform as possible. In 
this case, it is sometimes possible to synthesize an image that shows the concen-
tration of a certain component by simply plotting the absorbance at a certain 
wavelength of a band that is isolated from all others in the spectrum (e.g., the 
C ≡ N stretching mode of polyacrylonitrile,  vide infra ; Figure  1.24 ). If this approach 
proves to be feasible, the image may either be plotted as a gray scale, with white 
representing the absence of the component and dark gray representing its greatest 
concentration, or    –    more commonly nowadays    –    through the use of color.   
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 It is usually not possible to obtain samples of absolutely constant thickness, and 
in this case the ratio of the peak absorbance or integrated absorbance of bands 
that can be assigned to particular components must be calculated  [1, 2] . An 
example of this approach can be seen in Figure  1.1 , which shows the infrared 
images of thin cerebellar sections from an untreated rat and a rat treated with the 
drug cytarabine. The images demonstrate the spatial distribution of lipid and 
protein by ratioing the absorbance of the CH 2  antisymmetric stretching band at 
2927   cm  − 1  and the N – H stretching band at 3350   cm  − 1 . For more complex samples, 
principal component analysis or more sophisticated chemometric algorithms may 
be applied (as described in Chapter  2  in this book and also by Diem  et al.   [3]  and 
 Š a š i ć   and Clark  [4] ). Although many applications of imaging spectroscopy will be 
described throughout this volume, only the design of the instruments used to 
acquire these data will be described in this chapter.    

  1.2 
 Mid - Infrared Microspectroscopy and Mapping 

  1.2.1 
 Microscopes and Sampling Techniques 

 Although many noble efforts at fabricating a microscope for infrared spectrometry 
using a prism monochromator were made during the 1940s and 1950s  [5 – 10] , and 
Perkin - Elmer actually advertised a microscope that could be installed in one of 

     Figure 1.1     Infrared spectroscopic gray - scale images of thin cer-
ebellar sections from (a) a control rat and (b) a rat treated with 
the drug cytarabine, showing the spatial distribution of lipid and 
protein by ratioing the absorbance of the CH 2  antisymmetric 
stretching band at 2927   cm  − 1  and the N – H stretching band at 
3350   cm  − 1 .  Reproduced with permission from Ref.  [1] .   

(a) (b)
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their prism spectrometers  [11] , the performance of these instruments was mar-
ginal and the use of infrared microscopes never caught on commercially until the 
early 1990s. Until that time, the mid - IR spectra of minute samples were measured 
by mounting the sample behind a pinhole of the appropriate dimensions, so that 
only the region of the sample of interest was irradiated. The sample was then held 
at the focus of a simple beam condenser that fi tted in the sample compartment 
of the spectrometer. As the size of the region of interest decreased, locating the 
sample so that the region of interest corresponded to the position of the pinhole 
became increasingly diffi cult. However, the situation was dramatically improved 
when a standard refl ecting microscope was interfaced to a  Fourier transform 
infrared  ( FT - IR ) spectrometer. In this case, the previous function of the pinhole 
was replaced by a remote aperture at a conjugate focus of the sample. A simplifi ed 
schematic of a typical infrared microscope is shown in Figure  1.2 .   

 The microscope shown in Figure  1.2  is designed to operate in either the trans-
mission or refl ection mode. In the  transmission mode , the beam from the inter-
ferometer is passed onto a toroidal coupling optic and thence to the Cassegrainian 
condenser. The condenser focuses the beam into a small spot where the sample 
is mounted. The radiation that is transmitted through the sample is collected by 
the objective and refocused at a remote adjustable aperture. The part of beam that 
passes through the aperture is imaged onto an optical viewer (or, more frequently 
nowadays, a video camera) so that the image of the sample that is passed by the 
aperture can be viewed. The sample is usually mounted on an  x,y,z  stage The 
height of the sample is adjusted with the  z  control to ensure that the position of 

     Figure 1.2     Simplifi ed schematic of a typical microscope inter-
faced to an FT - IR spectrometer.  Courtesy of PerkinElmer Inc.   

Beam path for 
transmission 
measurements

Beam path for 
reflection 
measurements
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the sample is coincident with the beam focus. The  x  and  y  controls are then used 
to adjust the location of the sample so that the region of interest is at the center 
of the beam. The jaws of the aperture are then adjusted so that only the region of 
interest is seen at the viewer. The aperture is often rectangular and can be rotated 
through 180    °  to allow the greatest amount of light transmitted through the region 
of interest in the sample to pass through the aperture. When the conditions have 
been optimized, a 45    °  mirror is slid into position so the light that is transmitted 
through the remote aperture is collected by the third Cassegrain and focused onto 
the detector, which measures the spectrum of the desired region of the sample. 

 The condenser goes by two names: some call it a  Cassegrain , while others call it 
a  Schwarzschild  objective. The present author has always been rather confused 
about the difference between a Cassegrain and a Schwarzschild objective but, 
aiming to resolve such confusion, contacted one of the designers of the fi rst FT - IR 
microscopes, Bob Messerschmidt (now with Rare Light, Inc.), as to their differ-
ence. His reply to this question was as follows:

  The Schwarzschild objective has been used in almost all FT - IR 
microscopes, and is still used to this day. The design is 
attributable to the German physicist and astronomer Karl 
Schwarzschild (1873 – 1916). The Schwarzschild objective is an 
all - refl ective two - mirror system in which the mirrors are very 
nearly concentric. The system employs one concave and one 
convex mirror, and is on - axis, with a hole in one mirror for the 
light to pass through. The beauty of the system is in its 
simplicity. It has excellent imaging characteristics over a 
surprisingly wide fi eld of view, a fact that arises from the mirror 
concentricity. The fi rst commercial FT - IR microscope, the 
Digilab IRMA, used this design because the designers were 
aware that the 1953 Perkin - Elmer microscope for dispersive 
spectrometers used such a Schwarzschild objective. 

 The Schwarzschild objective can be considered a special case of 
a Cassegrainian system. In fact, the Schwarzschild objective is 
sometimes simply referred to as a Cassegrainian or Cassegrain 
microscope objective. This name comes from an optical design 
attributed to Laurent Cassegrain, a Catholic priest who was born 
in the region of Chartres around 1629 and died in 1693. The 
invention seems to have occurred in 1672, the same year Isaac 
Newton reported his fi rst invention, the Newtonian telescope, 
using a similar yet not the same two - mirror confi guration. Most 
modern telescopes are Cassegrain designs, or very similar. A 
Cassegrain system is any two - mirror objective with a convex and 
concave mirror, with a hole in the latter for the light to travel 
through. There is no requirement of concentricity. So, all 
Schwarzschild objectives are Cassegrain objectives. The key 
performance feature of the Schwarzschild design is the 
concentricity, or near - concentricity, of the two mirrors. It took 
over 200 years to be invented from the time of Laurent 
Cassegrain ’ s original design.   
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 When the microscope shown in Figure  1.2  is used in the external refl ection mode, 
the same Cassegrain is used both as the condenser and the objective. In the exter-
nal refl ection mode, the angle at which the toroidal coupling optic is held is 
switched so that the beam is passed to the top of the objective via a small defl ec-
tion mirror. The size and location of this mirror are such that half the beam enters 
the Cassegrain. The beam is demagnifi ed by the primary and secondary mirrors 
and focused on the sample, which is at the same location as for transmission 
measurements. The refl ected beam is then reconfi gured by the secondary and 
primary mirrors, the optical properties of which are such that the beam misses 
the small defl ection mirror and passes to the remote aperture. Even if a perfect 
mirror is held at the sample focus, it can be seen that, in comparison to a trans-
mission measurement, only half the signal can be measured when the microscope 
is used in its refl ection mode. 

 Three types of external refl ection spectra can be measured with the micro-
scope optics in the refl ection mode shown in Figure  1.2 , for which the angle of 
incidence on the sample is about 30    ° . In the fi rst type,  transfl ection spectroscopy  
(which is of increasing popularity for mid - IR spectroscopy), a sample of thick-
ness between 5 and 10    µ m is deposited on a refl ective substrate and the transfl ec-
tion spectrum measured. In measurements of this type, the beam passes through 
the sample, is refl ected from the substrate, and then passes back through the 
sample before it re - emerges from the surface of the sample and passes to the 
detector. This type of measurement has occasionally been used for tissue 
samples, and has proved quite benefi cial when the sample is deposited on a 
 ‘ low - e glass ’  (low emissivity) slide (Kevley Technologies, Chesterland, OH, USA). 
These slides, which are fabricated by coating glass with a very thin layer of silver -
 doped tin oxide, were originally developed for the windows of tall buildings. The 
coating is thin enough to be transparent to visible light, yet is highly refl ective 
in the mid - IR region. Thus, while any tissue sample on these slides can be 
inspected by visual microscopy, it still allows the transfl ection spectrum to be 
measured  [12] . 

 Transfl ection spectra have the disadvantage that radiation refl ected from the 
front surface of the sample will also reach the detector and give rise to a distortion 
of the pure transfl ection spectrum. Merklin and Griffi ths  [13]  showed that the 
contribution by front - surface refl ection can be eliminated by measuring the spec-
trum at Brewster ’ s angle using p - polarized radiation; that is, radiation polarized 
such that its electric vector is parallel to the plane of incidence. Brewster ’ s angle 
for tissue samples is about 50    ° , which is somewhat higher than the angle of inci-
dence of most infrared microscopes, although the distortion introduced by front -
 surface refl ection will be reduced signifi cantly. It should be noted, however, that 
the use of a polarizer will reduce the SNR of the spectrum by between a factor of 
2 and 3, so this approach may not be benefi cial if very small samples, such as 
single cells, are being investigated. 

 The other two types of external refl ection microspectroscopy are less well suited 
to the characterization of tissue samples. In the fi rst type, which is variously called 
  specular refl ection  ,   front - surface refl ection   or   Kramers – Kronig refl ection  , the refl ectance 
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spectrum of thick, nonscattering, bulk samples is measured and converted to the 
wavenumber - dependent optical constants    –    that is, the refractive index,   n �ν( )  and 
the absorption index,   k �ν( )     –    by the Kramers – Kronig transform, as discussed by 
Griffi ths and de Haseth  [14] . As the requirement for the lack of scattering by the 
sample is essentially never met for tissue samples of the type obtained in medical 
diagnosis, this will not be discussed further. 

 The fi nal type of measurement that can be made with the microscope in its 
refl ection mode is  diffuse refl ection  ( DR ) spectroscopy. Today, very few applica-
tions of mid - IR microspectroscopy of neat samples are available, because for mid -
 IR DR spectrometry the samples should be diluted to a concentration of between 
0.5 and 5% with a nonabsorbing diluent (e.g., KBr powder) to preclude band satu-
ration and severe distortion by refl ection from the front surface of the particles. 
However, this mode has substantial application for NIR measurements, where 
sample dilution is not needed. Because the absorption of NIR radiation by most 
samples is rather weak, they must either be at least 1   mm thick or be mounted on 
a refl ective or diffusing substrate, such as a ceramic or Tefl on disk. In the latter 
case, the spectrum is caused by a combination of diffuse refl ection, transfl ection 
and front - surface refl ection (hopefully with diffuse refl ection being the dominant 
process).  

  1.2.2 
 Detectors for Mid - Infrared Microspectroscopy 

 Essentially all mid - IR spectra are measured today using FT - IR spectrometers for 
which the  optical path difference  ( opd ) of the interferometers is varied continu-
ously; these are often referred to as  ‘ continuous ’  or  ‘ rapid - scan ’  interferometers. 
Most standard laboratory FT - IR spectrometers are equipped with a 1   mm    ×    1   mm 
or 2   mm    ×    2   mm  deuterated triglycine sulfate  ( DTGS ) detector operating at ambient 
temperature. However, the sensitivity of DTGS detectors is too low to allow them 
to be used to measure the relatively weak signals encountered after the beam has 
been passed through the small aperture of a microscope. Instead, the more sensi-
tive liquid - nitrogen - cooled  mercury cadmium telluride  ( MCT ) detector is almost 
invariably used. These detectors operate in the photoconductive mode; that is, 
when infrared radiation is incident on them the photons promote electrons from 
the valence band to the conduction band, and the increase in conductivity is a 
measure of photon fl ux. 

 The properties of MCT detectors depend on their composition, that is their 
Hg   :   Cd ratio.  ‘ Narrow - band ’  MCT detectors are typically about 50 - fold more sensi-
tive than DTGS, but do not respond to radiation below  ∼ 750   cm  − 1 . The cut - off can 
be extended to a lower wavenumber, but at the expense of sensitivity. Thus,  ‘ mid -
 band ’  MCT detectors have a cut - off of about 600   cm  − 1 , while their sensitivity is 
about half that of the narrow - band detector.  ‘ Wide - band ’  detectors cut off at  ∼ 
450   cm  − 1  but are even less sensitive. Fortunately, few spectra of organic samples 
contain useful bands below 700   cm  − 1 , as a result, FT - IR microscopes are almost 
invariably equipped with narrow - band MCT detectors. 
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 The  noise equivalent power  ( NEP ) of an infrared detector is a measure of the 
noise generated by the detector and is given by:

   NEP
*

=
A

D
D     (1.1)  

where  A D   is the area of the detector element and  D  *  is the specifi c detectivity of the 
detector (which is typically a constant for a given wavelength, detector composition 
and temperature.) The greater the NEP, the lower is the sensitivity of the detector. 
Most detectors are specifi ed in terms of their D *  rather than their NEP. The D *  of 
a narrow - band MCT detector is close to the value given by the background limit for 
infrared photons, and their performance can only be improved signifi cantly by 
switching to a liquid - helium - cooled bolometer. To the present author ’ s knowledge, 
the use of such a bolometer for mid - IR microspectroscopy has not been reported. 

 From Equation  1.1  it can be seen that the area of any detector used for infrared 
microspectroscopy should be as small as possible. Provided that all the radiation 
that passes through the sample is focused on the detector, the use of a 0.25   mm 
detector gives a SNR that is fourfold greater than if a 1   mm detector were used for 
the characterization of microsamples. For mid - IR microspectroscopy, the detector 
is usually a 250    ×    250    µ m narrow - band MCT photoconductive detector, although 
some vendors do provide options for 100    ×    100    µ m or even 50    ×    50    µ m - sized ele-
ments. As identical objectives are usually used to focus the beam onto the sample 
and the detector (e.g., see Figure  1.2 ), there is 1 ×  magnifi cation and the  largest  
sample that can be measured with a 250    µ m detector is 250    ×    250    µ m; however, 
this is rarely a signifi cant limitation in mid - IR microspectroscopy when samples 
 smaller  than 250    µ m are usually of interest. 

 The SNR of a FT - IR spectrum (i.e., the reciprocal of the noise of a 100% line 
measured in transmittance) is given by the following equation  [15] :

   SNR
* 

=
( ) −U T D t

AD

ν ν ξΘ∆� 1 2

1 2     (1.2)  

where  U  ν   ( T ) is the spectral energy density of the source radiation (W   (sr cm 2    cm  − 1 )), 
 Θ  is the optical throughput or    é tendue   (cm 2  sr),   ∆�ν  is the resolution at which the 
spectrum is measured (cm  − 1 ),  t  is the measurement time (s), D *  is the specifi c 
detectivity of the detector (cm Hz 1/2    W  − 1 ),  ξ  is the effi ciency of the optics and  A D   is 
the detector area (cm 2 ). Microscopes are designed to have a high optical effi ciency, 
 ξ , and a numerical aperture that gives the highest  é tendue,  Θ , for small samples. 
The spectral resolution,   ∆�ν , is governed by the nature of the sample and the 
information required by the operator. 

 The data acquisition rate (sampling frequency) for mid - IR interferograms is 
usually equal to the frequency,  f  L  Hz, of the interferogram that is generated by a 
laser (usually a helium - neon laser at 632.8   nm) simultaneously with the infrared 
interferogram.  f  L  is equal to the product of the wavenumber of the laser and the 
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optical velocity (i.e., the rate of change of opd) of the interferometer. For a standard 
Michelson interferometer, the optical velocity is twice the mechanical velocity of the 
moving mirror. The scan speed is usually determined by the effect of the frequency 
on the signal being detected on the D *  of the detector  [15] . For example, the D *  of 
the DTGS detector that is supplied as standard with most FT - IR spectrometers is 
greatest when the modulation frequencies of the signals in the interferogram are 
low. For the most effi cient operation with a DTGS detector, therefore, the optical 
velocity of the interferometer must also be low. The typical optical velocity used in 
this case is 0.316   cm   (opd)   s  − 1 , corresponding to a 5   kHz signal from the interfero-
gram generated by the 632.8   nm line of a He – Ne laser and hence a 5   kHz data 
acquisition rate. Conversely, the D *  of the MCT detector is approximately constant 
for modulation frequencies between 1   kHz and 1   MHz, but decreases at lower 
modulation frequencies. Many continuous - scanning interferometers are operated 
at an optical velocity of 1.264   cm   (opd)   s  − 1 , corresponding to a 20   kHz signal from 
the 632.8   nm line of a He – Ne laser. In this case, the modulation frequency for 
750   cm  − 1  radiation is  ∼ 950   Hz and radiation at all higher wavenumbers is modu-
lated at a frequency greater than 1   kHz. Obviously, the D *  remains relatively con-
stant over the range at which the fastest instruments can scan ( > 100   kHz). 

 Most FT - IR spectra measured through a microscope are acquired at a resolution 
of 4   cm  − 1 , which requires 8K data points for each symmetric (double - sided) inter-
ferogram. If the data acquisition frequency with a He – Ne laser is 20   kHz, then the 
time to measure each interferogram is 0.4   s. Assuming that the mirror can be 
turned around fairly effi ciently, this implies that about 2.5 scans can be measured 
per second. For mapping purposes, it is fairly common to average 16 scans before 
advancing the position of the microscope stage; however, the number of scans 
required to achieve the desired SNR will depend heavily on the size of the sample 
aperture employed, with smaller apertures (for higher spatial resolution) requiring 
many more scans, typically hundreds. 

 Although contemporary FT - IR spectrometers and microscopes are well matched, 
for spectra measured when using sample apertures that approach the diffraction 
limit ( < 20    µ m) even a 30   s collection may result in a spectrum with a rather poor 
SNR. It may be noted that if the measurement of each spectrum takes 30   s and a 
64    ×    64 map is required at 20    µ m spatial resolution, it would take over 34   h to 
acquire all the spectra required for the image! 

 At this point, it may be asked if certain parameters can be changed to decrease 
the measurement time to allow maps to be acquired in reasonable times. As the 
size of the remote aperture for most applications is smaller than 250    µ m, it is valid 
to suggest that even smaller detectors should be installed in FT - IR microscopes, 
so that the SNR is optimized for samples that are 50    µ m or smaller in dimension. 
The answer is a very practical one: it is simply very diffi cult to keep the beam 
aligned with the tighter tolerance required for the beam to be focused accurately 
on a detector that is smaller than 250    µ m. As we will see later, the situation is dif-
ferent when array detectors with very small pixels are used for hyperspectral 
imaging. 
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 The measurement time,  t , is largely determined by the goal of the experiment. 
If only a few regions of the sample are of interest, then several minutes can be 
used for each measurement. However, if the sample is to be mapped, hundreds 
of spectra are often needed and the time for each should be less than 1   min if the 
measurement is to be completed in a reasonable time.  

  1.2.3 
 Sources for Mid - Infrared Microspectroscopy 

 One parameter in Equation  1.2  has not yet been discussed, namely the spectral 
energy density,  U  ν   ( T ). The only parameter that can lead to a signifi cantly improved 
SNR is the spectral energy density of the source radiation,  U  ν   ( T ). In general, the 
operators of laboratory FT - IR spectrometers have little control over the source 
installed in their instruments. Most instruments are equipped with an incandes-
cent silicon carbide source, such as a Globar, operating at about 1400   K. The emis-
sion characteristics of mid - IR sources are usually similar to those of a blackbody, 
so that it is possible to increase the spectral energy density by increasing the tem-
perature of the source. However, increasing the temperature of a Globar often 
leads to cracking and the rapid degradation of electrical contacts at the end of the 
rod. One material that has been reported to be operable to over 1950   K is molyb-
denum silicide; another source that can be taken up to a temperature close to 
2000   K is a homogeneous material with the chemical formula Mo  x  W 1 −  x  Si 2 , which 
is available commercially as Kanthal Super 1900. The molybdenum and tungsten 
atoms are isomorphous in this chemical formula, and can thus replace each other 
in the same structure. However, a detailed comparison of any of these materials 
with a Globar with respect to infrared microspectroscopy has, to the present 
author ’ s knowledge, never been reported. 

 Provided that samples can be removed from the laboratory, there are two alterna-
tive sources of infrared radiation that are far better than incandescent sources for 
mid - IR microspectroscopy, namely the synchrotron and the  free electron laser  
( FEL )  [16] . 

 A  synchrotron  is a particular type of cyclic particle accelerator, or cyclotron, in 
which the particles are electrons. A magnetic fi eld is used to bend the path of the 
electrons and an electric fi eld is used to accelerate them. Both fi elds are carefully 
synchronized with the traveling beam of electrons. By increasing the two fi elds 
appropriately as the particles gain energy, their path can be controlled as they are 
accelerated. This allows the particles to be contained within a large narrow ring, 
with some straight sections between the bending magnets and some bent sections 
within the magnets giving the ring the shape of a round - cornered polygon. This 
shape also allows (and, in fact, requires) the use of multiple magnets to bend the 
particle beam. The strength of the transverse magnetic fi eld is varied periodically 
by arranging magnets with alternating poles along the beam path. This array of 
magnets is sometimes called an undulator, or  ‘ wiggler ’ , because it forces the 
electrons in the beam to assume a sinusoidal path. The acceleration of the elec-
trons along this path results in the release of a photon. 
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 In a typical  cyclotron , the maximum radius is quite limited as the particles start 
at the center and spiral outward; thus, the entire path must be a self - supporting, 
disc - shaped evacuated chamber. As the radius is limited, the power of the device 
becomes limited by the strength of the magnetic fi eld, but synchrotrons overcome 
this limitation through the use of a narrow beam pipe that can be surrounded by 
much smaller and more tightly focused magnets. The ability of this device to 
accelerate particles is limited by the fact that the particles must be charged to be 
accelerated at all, and all charged particles under acceleration emit photons, 
thereby losing energy. The limiting beam energy is reached when the energy lost 
to the lateral acceleration required to maintain the beam path in a circle equals 
the energy added each cycle. More powerful accelerators are built using larger 
radius paths and by using more numerous and more powerful microwave cavities 
to accelerate the particle beam between corners. 

 A FEL shares the same optical property as a conventional laser; that is, the emis-
sion of a beam of coherent electromagnetic radiation that can reach high power. 
However, FELs use some very different operating principles than a conventional 
laser to form the beam. Unlike conventional lasers, which rely on bound atomic 
or molecular states, FELs use a relativistic electron beam as the lasing medium, 
which gives them the widest frequency range of any laser type, and makes many 
of them widely tunable, currently ranging in wavelength from microwaves to soft 
X - rays. In certain respects, the FEL is similar to a synchrotron. To create a FEL, a 
beam of electrons is accelerated to relativistic speeds. As in the operation of a 
synchrotron, the beam passes through a periodic, transverse magnetic fi eld. 
However, in an FEL, the undulator is placed in an optical cavity, or resonator, that 
refl ects the emitted light back and forth. The electrons become tightly bunched 
because of interactions with a light beam that is also passing through the undula-
tor. The light may either be introduced from an external  ‘ seed ’  laser or, more fre-
quently, is radiation that has been generated from a previous bunch of electrons 
that is refl ected from mirrors that form an optical cavity outside the undulator. 

 Viewed relativistically in the rest frame of the electron, the magnetic fi eld can 
be treated as if it were a virtual photon. The collision of the electron with this 
virtual photon creates an actual photon by  Compton scattering . Mirrors capture 
the released photons to generate a resonant gain, while the wavelength can be 
tuned over a wide range by adjusting either the energy of the electrons or the fi eld 
strength. As the energy of the emitted photons is governed by the speed of the 
electron beam and magnetic fi eld strength, an FEL can be tuned. Furthermore, 
because the resonance is specifi c for light of a given wavelength, the power of the 
beam is signifi cantly greater than that of a synchrotron, for which broadband 
radiation is emitted. 

 What makes this device a laser is that the electron motion is in - phase with the 
fi eld of the light already emitted, so that the fi elds add coherently. As the intensity 
of the emitted light depends on the square of the fi eld, the light output is increased. 
In the rest frame moving along the undulator, any radiation will still move with 
the speed of light and pass over the electrons, allowing their motion to become 
synchronized. The phase of the emitted light is introduced from the outside. 
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Depending on the position along the undulator, the oscillation of the electrons is 
either in - phase or out - of - phase with the radiation introduced from the outside. 
The light either tries to accelerate or decelerate these electrons, thereby gaining or 
losing kinetic energy, and so moves faster or slower along the undulator. This 
causes the electrons to form bunches; when they are synchronized they will in 
turn emit synchronized (i.e., coherent) radiation. 

 Steiner  et al . have reported the measurement of maps of  octadecanephosphonic 
acid  ( OPA ) molecules deposited on a microstructured aluminum oxide/gold 
surface using an FEL source  [17] . The beam from the FEL was fi rst passed 
through an interferometer to modulate the beam at a frequency of a few kilo-
hertz. (Note that as the FEL emits monochromatic radiation, the interferometer 
was only used as a modulator and served no spectroscopic function.) The beam 
was then passed through a wire - grid polarizer and a photoelastic modulator so 
that the polarization was switched at a rate of 75   kHz, and then through a pinhole 
to be focused onto the sample with a Cassegrainian objective at an incidence 
angle of approximately 60    ° ; in this way the diameter of the Airy disk ( vide infra ) 
was about 15    µ m. Radiation that was polarized such that the electric vector was 
parallel to the surface was absorbed by the surface species, whereas radiation 
polarized such that the electric vector was perpendicular to the surface was not 
absorbed. The beam was collected by a second Cassegrain and then refocused at 
the detector. As the detector signal is passed into a lock - in amplifi er referenced 
to the polarization modulation frequency, the interferogram was caused only by 
the surface species  [18] . The sample was then moved in a raster fashion in order 
to generate a spectroscopic map that showed OPA to be attached on the alumi-
num oxide surface, and not to the gold. Although the attached molecules formed 
a highly ordered fi lm, a lower degree of ordering was found for phosphonic acid 
adsorbed onto gold. 

 For these investigations, Steiner  et al.  measured either 40    ×    40 or 20    ×    20 pixels 
per image, with three scans being averaged for each data point. The measurement 
time   per pixel for a single wavelength was  ∼ 5   s, with an additional 2   s for data pro-
cessing; hence, the total measurement time per   image for a single wavelength was 
190   min for the 40    ×    40 pixel image and 45   min for the 20    ×    20 pixel image. Under 
normal conditions, the operators of the FEL require 10 – 20   min to change the 
wavelength of the FEL; thus, to measure the image at three wavelengths required 
at least a day. 

 From a spectroscopic standpoint, the main difference between a synchrotron 
and an FEL is that a synchrotron emits broadband radiation, while the FEL emits 
monochromatic radiation with several orders of magnitude higher brilliance than 
a synchrotron. Thus, radiation from a synchrotron can be expanded and passed 
into a FT - IR spectrometer, for which the interferometer and all the subsequent 
optics are no different from those in a conventional FT - IR spectrometer (or micro-
spectrometer.) When a FEL is used for spectroscopy, the monochromatic radiation 
generated can be modulated in any appropriate manner (e.g., by a tuning fork 
chopper) before being passed onto the sample and detector. In principle, FELs can 
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be used for imaging by passing monochromatic radiation onto a focal plane array 
detector and measuring the signal from each pixel ( vide infra ), although such 
experiments have not yet been reported. The laser would then be tuned to the next 
wavelength of interest, and this process would be repeated for as many wave-
lengths as were needed to characterize the sample. This is rarely a fast process, as 
it usually takes several minutes to change from one wavelength to the next. 

 The synchrotron has an equivalent black - body temperature of 10   000   K  [19] . The 
effective diameter of the beam from a synchrotron is typically about 100    µ m; 
moreover, the light is emitted into a narrow range of angles, making this an almost 
perfect radiation source for mid - IR microspectroscopy. Not all synchtrotrons are 
equipped with infrared beam lines, although as the importance of the results 
obtained continues to increase this situation is changing. Beam time on most 
synchrotrons is highly prized, and potential users may often have to write a short 
proposal to be granted beam time. However, since FT - IR microscopes with a syn-
chrotron source allow spectra with diffraction - limited spatial resolution and high 
SNR to be measured in a few seconds, many spectroscopists are starting to use 
the combination of synchrotron source, FT IR spectrometer and either a single -
 element detector or an array detector  [20 – 23] .  

  1.2.4 
 Spatial Resolution 

 Today, FT - IR microscopes are designed to allow the spectra of physically small 
samples, or regions of small samples, to be measured as quickly and easily as 
possible. An example of such a system is shown in Figure  1.3 . On this microscope, 
a video image of the sample is displayed on the monitor screen immediately adja-
cent to the sample; this allows the position of the sample and the jaws of the 
aperture to be optimized prior to measurement of the spectrum. A motorized 
sample stage allows mapping to be readily accomplished.   

 The spatial resolution of a microscope is ultimately determined by diffraction 
of the radiation. If monochromatic radiation from a point source is passed into 
the microscope, then a series of concentric rings of decreasing intensity is seen at 
the beam focus. The Airy disk is the central bright circular region of the pattern 
produced by light diffracted when passing through a small circular aperture. The 
size of the Airy disk depends on the wavelength of the radiation and the optics of 
the microscope. The radius of the Airy disk is the distance between the central 
maximum and the fi rst minimum of the diffraction pattern and is given by:

   r
NA

= 0 61.
λ

    (1.3)   

 Here,  NA  is the numerical aperture, defi ned as:

   NA n= sinθ     (1.4)  
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where  n  is the refractive index of the medium in which the optics are immersed 
(i.e., 1.0 for air and up to 1.56 for oils) and  θ  is the half - angle of the maximum 
cone of light that can enter or exit the condenser or objective. (Immersion optics 
are almost never used for infrared microspectroscopy because of absorption by the 
oil, but have occasionally been used to improve the spatial resolution in Raman 
microspectroscopy. Immersion oils have been shown to be essential in order to 
obtain good depth resolution with confocal Raman microscopy  [24] .) 

 Two objects are completely resolved if they are separated by 2 r , and barely 
resolved if they are separated by  r . The latter condition is sometimes known as the 
 Rayleigh criterion of resolution . The largest numerical aperture that can generally 
be achieved for a Cassegrainian optic is approximately 0.6, so the diffraction -
 limited spatial resolution is approximately equal to the wavelength of the light 
when  n    =   1.0. 

 Although it was stated that the spatial resolution of a microscope is ultimately 
limited by diffraction, all modes of chemical imaging employ detector elements 
of fi nite size. When the image of the pixel at the sample plane becomes the limit-

   
  Figure 1.3     The Bruker Optics Hyperion microscope.  Courtesy of Bruker Optics.   
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ing aperture, it can often become the limiting factor determining the ultimate 
spatial resolution before wavelength - limited diffraction effects become apparent. 
As the wavelengths of radiation across the mid - IR spectrum typically range from 
2 to 14    µ m, and if the pixel size at the sample plane (which is a function of native 
detector pixel size and overall system magnifi cation) is larger than the wavelength 
being used to measure it, then the system is said to be  ‘ pixel size - limited ’ . Con-
versely, if the wavelength of light being used to measure the sample is smaller 
than the pixel size at the sample plane, the system is said to be  ‘ diffraction - limited ’ . 
This is an important    –    yet often misunderstood    –    concept. For example, the use of 
higher magnifi cation objectives (e.g., 36 × ) results in very small images at the 
sample plane. However, this does not necessarily result in an improved spatial 
resolution, as these systems are often already diffraction - limited. Some  focal plane 
array  ( FPA ) imaging systems, report a pixel size of 1.1    µ m when a 36 ×  objective 
is used, but this is a  ‘ waste of pixels ’  as the pixel size is signifi cantly smaller than 
the wavelengths of light in the mid - IR; that is, the resolution is already diffraction -
 limited. In the example of the 36 ×  objective providing a 1.1    µ m pixel size, this 
spatial resolution could only really be achieved at 9000   cm  − 1 , well beyond the high 
wavenumber cut - off of the FPA. 

 In practice, even though the size of the images of the pixels at the sample plane 
is smaller than the wavelengths of light being used to measured the sample, the 
fi nite thickness of the sample (typically 5 – 20    µ m) can degrade the achievable 
spatial resolution signifi cantly. This effect is discussed further in Section  1.4 . 

 While several types of microscope are commercially available for mid - IR micro-
spectroscopy, these differ in how the sample is apertured and how the light is 
transferred within the microscope. The fi rst has the simple design concept shown 
in Figure  1.2 , namely that the beam from the interferometer is focused at the 
sample; thus, the sample is at an image of either the source or the Jacquinot stop 
(for higher - resolution FT - IR spectrometers). The beam is then refocused at the 
remote aperture and then again onto the detector. In the alternative design, the 
beam from the interferometer is passed through two apertures, one before and 
one after the sample, as shown schematically in Figure  1.4 . This approach, which 
originally was called  redundant aperturing  and is now more frequently known as 
 dual aperturing , provides a slightly higher spatial resolution near the diffraction 
limit than the single - aperture design, as shown on a theoretical basis in Figure 
 1.5 . The second aperture serves much the same purpose as the pinhole in a confo-
cal microscope ( vide infra .)   

 Sommer and Katon  [25]  reported an elegant experiment that verifi ed the improve-
ment of spatial resolution through the use of dual aperturing. These authors 
mounted a free - standing polymer fi lm at the beam focus of a microscope with 
dual rectangular apertures of 8    ×    240    µ m, and then measured a series of spectra 
as the edge of the fi lm was moved into the beam. The spectra were measured with 
both apertures installed, and also with a single aperture mounted before or after 
the sample. By measuring the intensity of the polymer bands, it could be shown 
that the worst resolution was obtained when a single aperture was located after 
the sample. The performance for dual remote apertures and a single aperture 
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  Figure 1.5     (a) Energy profi le showing the diffracted radiation 
outside the area defi ned by a single aperture; (b) Corresponding 
profi le obtained with masks located before and after the sample. 
 Reproduced from  Infrared Fourier Transform Spectrometry  by 
P. R. Griffi ths and J. A. de Haseth;  ©  2007, p. 307.   

   
  Figure 1.4     Dual - aperture microscope similar to the optics of an 
IRPlan microscope.  Reproduced with permission from Ref.  [25] .   

(a) (b)
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located before the sample was comparable, as shown in Figure  1.6 . However, it 
should be noted that the dual - aperture design has the limitation that less energy 
reaches the detector than with the single - aperture design, so that the SNR for a 
given spatial resolution is decreased.   

 It was found that keeping the apertures of a dual - aperture microscope in align-
ment over a long period of use was not an easy task, especially when a high spatial 
resolution is desired and the apertures must be very small. Consequently, Thermo -
 Electron devised a clever scheme to overcome this problem by using the same 
aperture twice, as shown in Figure  1.7 . 1)  The dual - aperture concept is similar to 
that of a confocal microscope ( vide infra ; Section  1.5 ). Both, the dual - aperture 
design and confocal microscopes preclude imaging measurements, however, 
because in order to image a sample all regions of that sample which are of interest 
must be completely illuminated by the source radiation, while the detector pixels 
serve the purpose of the remote aperture that would normally be located after the 
sample. The dual - aperture system is ideally suited to mapping measurements with 
diffraction - limited spatial resolution, in which case a source of very high bright-
ness such as a synchrotron is needed.   

 The manufacturers of infrared microscopes are split almost evenly between 
those that produce  ‘ infi nity - corrected ’  and those producing  ‘ non - infi nity - corrected ’  
microscopes. Infi nity correction effectively refers to a collimation of the beam 
throughout the microscope (other than at the condenser and objective outputs), 
and is frequently used in research - grade optical microscopes. Despite the added 

 Nicolet Corporation made its fi rst FT - IR 
spectrometer in 1971 and became the market 
leader shortly afterwards. In 1995, Thermo -
 Electron Corporation purchased Nicolet and 

1) dropped the Nicolet name. In 2006, Thermo 
Electron purchased Fisher Scientifi c and the 
corporation is now known as Thermo - Fisher. 

   
  Figure 1.6     Percentage of stray energy outside the area defi ned 
by an 8    ×    240    µ m rectangular aperture for various imaging 
modes.  Reproduced with permission from Ref.  [25] .   
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complexity in microscope design,  ‘ infi nity correction ’  provides for added fl exibility 
in the choice of  ‘ off - the - shelf ’  visible objectives (as most are for infi nity - corrected 
systems), and also in that fi lters and other optical components can be placed 
anywhere where the beam is collimated. Infi nity correction can also provide for 
improved image clarity and focus. Non - infi nity - corrected microscopes (otherwise 
known as  ‘ fi nite tube length ’  microscopes), although less complex in design, are 
limited in terms of available options, such as other objectives, the placement of 
fi lters and other optical components, and sometimes also in the quality of the 
images in terms of clarity and focus. For those microscopes that are most 
commonly used in conjunction with FT - IR spectrometers, Varian and Thermo -
 Fisher employ the infi nity - corrected type, while Bruker and PerkinElmer use 
non - infi nity - corrected optics.  

  1.2.5 
 Transmission Microspectroscopy 

 Occasionally, transmission spectra of small inhomogeneous samples show the 
presence of artifacts. For example, the effect of scattering may cause symmetrical 
bands to lose their symmetry. Instead of having the symmetric shape of the absorp-
tion index spectrum, the stronger bands begin to take on the appearance of the 

   
  Figure 1.7     Dual confocal aperturing achieved with a single 
physical aperture.  Reproduced from Infrared Fourier 
Transform Spectrometry by P. R. Griffi ths and J. A. de Haseth; 
 ©  2007, p. 307.   



 1.2 Mid-Infrared Microspectroscopy and Mapping  21

refractive index spectrum (this phenomenon is sometimes called the  Christiansen 
effect   [26] ). Romeo  et al.   [27, 28]  observed a second effect caused by light scattering 
while measuring the infrared spectrum of whole cells using FT - IR microspectros-
copy. These authors showed that light scattering by the nucleus introduces a broad 
undulating spectral feature into the baseline of the spectrum, which they attributed 
to Mie - type scattering by the cell nucleus. Dielectric spheres are known to scatter 
electromagnetic radiation if the wavelength of the light is comparable to the 
sphere ’ s size. The theory of this scattering process was fi rst described (on a theo-
retical basis) by Mie  [29] , and has been nicely summarized by Romeo  et al.   [27, 28] . 
The same effect is visible in Raman spectroscopy, causing baseline ripples and 
perturbation of band intensities. In Raman spectroscopy the effect is sometimes 
termed  ‘ morphology - dependent resonance ’ . 

 Mie theory assumes a spherical scattering particle in the fi eld of a plane elec-
tromagnetic wave. The scattering cross - section  Q sca   of a dielectric sphere inter-
acting with a plane electromagnetic wave is given by a series expansion of the size 
parameter,  ρ , and complicated expressions in the half - integer order Bessel (Ricatti –
 Bessel) functions of the fi rst type and their complex equivalents (Hankel func-
tions). The size parameter  ρ  is defi ned by

   ρ π λ= 2 r mo     (1.5)  

where  r  is the radius of the sphere,  λ  the wavelength of the light, and  m  o  the ratio 
of the refractive indices between the sphere and the surroundings. The Bessel 
functions account for the undulating wavelength dependence of Mie scattering. 

 The angular dependence of Mie scattering is given by series expansions in the 
Legendre polynomials and their derivatives with respect to the scattering angle. 
While the exact solution of this problem is rather complex, Diem ’ s group also used 
an approximate formula, which was fi rst reported by Walstra  [30] :

   Q sca = − ( ) + ( ) −( )2 4 4 12ρ ρ ρ ρsin cos     (1.6)  

where  ρ  is the size factor as defi ned above. This approximation reproduces the 
rigorous calculation to within 1%, and matches the spectra remarkably well. By 
using the approximate calculations, Romeo  et al.  were able to model the Mie scat-
tering background satisfactorily, and corrected the distorted spectra by subtracting 
the modeled Mie background.  

  1.2.6 
 Attenuated Total Refl ection Microspectroscopy 

 It can be seen from Equations  1.2  and  1.3  that the spatial resolution of infrared 
microspectroscopy can be improved by immersing the sample in a medium of 
high refractive index. This exactly what is done in  attenuated total refl ection  ( ATR ) 
spectroscopy using a single - refl ection hemispherical  internal refl ection element  
( IRE ). For example, if a germanium ( n    =   4.0) hemispherical IRE is used, not only 
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is an increase in the numerical aperture obtained (because of the increased refrac-
tive index of Ge), but the outer ray angle of incidence (which defi nes  NA ) is also 
increased, as the light is refracted inwards. The difference between the focusing 
that occurs with a triangular prism and a hemispherical IRE is seen in Figure  1.8 a 
and b.   

 The fi rst ATR accessory to make use of a single - refl ection IRE with approxi-
mately hemispherical geometry was the Split Pea (Harrick Scientifi c), the usual 
image size of which is about 250    µ m when used with a germanium IRE. Although 
germanium has the highest refractive index of infrared transparent materials (and 
therefore gives the greatest demagnifi cation), it has the great disadvantage in that 
it is not transparent to visible light. As a result, sample alignment in some of the 
earlier devices was quite tricky. Since the introduction of the Split Pea, a number 
of analogous accessories have been introduced for ATR microspectroscopy, includ-
ing several that have been explicitly designed to replace the objective in a standard 
infrared microscope. The Bruker Optics Hyperion, as shown in Figures  1.9  and 
 1.10 , is just one example of a microscope designed for FT - IR microspectroscopy; 
analogous systems are available from a number of different vendors. Several 
manufacturers have designed accessories where the sample can be aligned without 
being in contact with the IRE. When the appropriate region has been selected, the 
IRE is moved into place. With the Bruker Hyperion, the tip of the internal refl ec-
tion element is 100    µ m in linear dimension to achieve high spatial resolution; this 
instrument is equipped with an electronic pressure sensor to ensure good contact 
with the sample, which is particularly important for mapping by ATR microscopy. 
The IRE is spring - loaded to avoid damage, and there are fi ve different pressure 
steps to allow optimal contact for hard and soft samples.   

 Like germanium, silicon also has a fairly high refractive index ( n    =   3.4). Silicon 
is rarely used for the fabrication of large IREs (for which the optical path may be 

   
  Figure 1.8     Beam focusing through (a) prismatic and 
(b) hemispherical internal refl ection elements.  

(a) (b)
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several centimeters) because the presence of trace impurities leads to excessive 
absorption of the radiation below about 1200   cm  − 1 . With the very short path through 
the IRE installed in a microscope objective, however, this is no longer a problem. 
Thus, either silicon or germanium can be used productively as the IRE in an ATR 
objective. 

   
  Figure 1.9     Optical schematic of the Bruker Optics ATR 
objective used in (a) alignment mode and (b) spectral 
acquisition mode.  Illustration courtesy of Bruker Optics.   

IRE

(a) (b)

   
  Figure 1.10     Photograph of the Bruker Optics ATR objective. 
 Illustration courtesy of Bruker Optics.   
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 The increase in numerical aperture achieved through the use of hemispherical 
IREs can be seen more quantitatively by considering the design of Varian ’ s slide -
 on Ge ATR accessory, shown in Figure  1.11 . On refraction, the outer ray angle 
which is normally 30    °  (for a  NA  of 0.5) is increased to 50    °  after refraction through 
the Ge IRE. In the Varian design, the underside of the hemisphere (which is in 
contact with the sample) has a relatively large radius of curvature, such that over 
the fi eld - of - view of the IRE ( ∼ 100    ×    100    µ m), it is effectively fl at.     

  1.3 
  R aman Microspectroscopy and Mapping 

  1.3.1 
 Introduction to  R aman Microspectroscopy 

 In principle, Raman microspectroscopy is attractive because the practical diffrac-
tion limit is on the order of the excitation wavelength, which is about 10 - fold 
smaller for Raman spectroscopy with a visible laser than for mid - IR spectroscopy. 
It is therefore possible to focus visible or NIR laser light to much smaller spot 

   
  Figure 1.11     Schematic of Varian ’ s Ge slide - on ATR objective, 
showing how the spatial resolution is enhanced by increasing 
the refraction index of the medium to 4 with Ge and 
increasing the outer ray angle of incidence to 50    ° , resulting 
in a numerical aperture of 3.1.  Illustration courtesy of 
Varian Corporation.   



sizes ( ∼ 1    µ m or less) than may be examined by mid - IR radiation. Until the mid 
1980s, however, Raman spectrometry was a time - consuming and relatively unpop-
ular technique for the characterization of both macro -  and micro - samples for the 
following reasons: 

   •      The intensities of strong bands in Raman spectra are usually at least 10 8  - fold 
weaker than the intensity of the incident monochromatic beam.  

   •      When  photomultiplier tube s ( PMT s) were used for the detection of Raman 
spectra, high - power gas lasers (e.g., Ar + ) were required to yield enough photons 
for the measurement of Raman spectra in less than 1   h; the power supplies for 
the early versions of these lasers generated so much heat that they often required 
water cooling.  

   •      Ineffi cient double and triple monochromators were required to eliminate stray 
light from the Rayleigh line.  

   •      No multiplex or multichannel technique was available for the measurement of 
Raman spectra; hence, the instruments were based on scanning monochroma-
tors with a single PMT detector.  

   •      Many  ‘ real - world ’  samples fl uoresce when illuminated with visible light, espe-
cially green light from a frequency - doubled  neodymium - doped yttrium alumi-
num garnet  ( Nd - YAG ) laser at 532   nm or from an argon ion laser at 488 or 
514.5   nm.    

 Although nothing can be done to make the Raman cross - section of vibrational 
bands any greater without the application of techniques such as resonance Raman 
spectroscopy or surface - enhanced Raman scattering, several important technologi-
cal developments have led to the design of today ’ s truly powerful Raman spec-
trometers. These included (in no particular historical order) the development of: 

   •      Highly effi cient notch fi lters that eliminate the Rayleigh line and transmit both 
the Stokes -  and anti - Stokes Raman bands, or edge fi lters that transmit only the 
Stokes Raman bands and block all shorter - wavelength radiation.  

   •      Small, effi cient single monochromators based on concave holographic gratings, 
transmission holographic gratings or standard Czerny – Turner monochroma-
tors in combination with a notch fi lter.  

   •       ‘ Scientifi c ’  CCD array detectors with quantum effi ciencies close to 100%.  

   •      Visible lasers operating at much lower input power than the earlier gas lasers; 
the most important of these is the He – Ne laser (632.8   nm), while argon ion 
(488.0 and 514.5   nm) and krypton lasers (647.1, 568.2 and 530.9   nm) are also 
useful for Raman spectroscopy.  

   •      Diode lasers emitting at 785   and 840   nm, which minimize fl uorescence and are 
still compatible with silicon - based CCD detectors over much of the Raman 
spectrum.  

 1.3 Raman Microspectroscopy and Mapping  25
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   •      Diode - pumped Nd   :   YAG lasers emitting at 1064   nm: with a laser operating at 
this long wavelength, fl uorescence from the sample is often minimized and 
sometimes eliminated.  

   •      The frequency - doubled Nd   :   YAG laser emitting at 532   nm.  

   •      The recent development of blue/green diode lasers operating at, for example, 
472   nm.  

   •      FT Raman spectrometry, which was needed because the Raman spectrum - 
generated 1064   nm radiation was at too long a wavelength for silicon - based CCD 
detectors.  

   •      Effi cient fi ber - optic probes.    

 The fi rst report of the design and testing of an FT - Raman spectrometer was 
by Hirschfeld and Chase in 1986  [31] , and this became available commercially 
during the following year. With these instruments, the sample is illuminated 
with 1064 - nm radiation from a Nd   :   YAG laser, while the Rayleigh -  and Raman -
 scattered light is modulated by a two - beam interferometer. After removal of the 
Rayleigh - scattered radiation by a notch or edge fi lter, the Raman interferogram 
is detected using either an  indium gallium arsenide  ( InGaAs ) or germanium 
detector. Within another year, however, Raman spectrometers based on a poly-
chromator and a CCD array detector were also brought onto the market. These 
instruments were compatible with essentially any laser that led to the generation 
of a Raman spectrum at shorter wavelength than the 1100   nm cut - off of silicon -
 based CCD detectors. Thus, instruments became available with,  inter alia , a 
doubled Nd   :   YAG laser (532   nm), a low - power He – Ne laser (632.8   nm) or NIR 
diode lasers, of which 785   nm and 840   nm were the most common wavelengths. 
Neither of these diode lasers is capable of measuring the complete Raman 
spectrum. For example, if an 840   nm (11   900   cm  − 1 ) diode laser is used, the 
Raman spectrum beyond about 2500   cm  − 1  is beyond the cut - off of a silicon 
CCD. 

 These FT - Raman and CCD - Raman spectrometers revolutionized Raman spec-
troscopy such that, within the space of about fi ve years, about ten different Raman 
spectrometers based on multiplex and multichannel technologies had been intro-
duced commercially  [32, 33] . Several of the CCD - Raman spectrometers were either 
designed for, or could be readily modifi ed for, microspectroscopy. Although FT -
 Raman microspectrometers have been reported (e.g., Ref.  [34] ), they have not 
proved very popular for three reasons: 

   •      Safety: the 1064   nm beam of a FT - Raman spectrometer is high powered, com-
pletely invisible and quite dangerous.  

   •      When the beam from a Nd   :   YAG laser is focused on a sample that absorbs 
1064   nm radiation, even the weakest absorption band will cause signifi cant 
heating. In fact, it is quite common for samples to ignite, or at least to generate 
background blackbody radiation.  



   •      FT - Raman spectroscopy is relatively insensitive compared to dispersive Raman 
spectroscopy, due to the longer wavelength of excitation and the poor noise 
performance of detectors in the NIR. This means that FT - Raman microscopes 
lack the sensitivity to analyze small samples unless high laser powers are 
employed, which leads to the problems noted above.    

 In practice, therefore, CCD - Raman spectrometers have proved to be far more 
successful for Raman microspectroscopy than FT - Raman spectrometers, and most 
instruments are based on this concept. 

 Raman microspectroscopy was not a completely new concept. In 1966, Delhaye 
and Migeon  [35]  showed that a laser beam could be tightly focused at a sample, 
and that Raman - scattered light could be collected and transferred to a spectrome-
ter, with minimal loss. Their calculations showed that the increased irradiance 
more than compensated for the decrease in the size of the irradiated volume. The 
fi rst Raman microscope was reported by Delhaye and Dhamelincourt in 1975  [36] , 
and an instrument based on these principles (the MOLE) was introduced by Jobin 
Yvon at about the same time. However, the optical scheme used for imaging, 
which employed global illumination, was ineffi cient and it was not until the advent 
of CCD - Raman spectrometers that the advantages of Raman microscopy became 
apparent. 

 Arguably the most important advantage of many microscopes used for Raman 
microspectroscopy is the fact that they have a confocal design. In such a design 
(see Figure  1.12 ) the laser beam is fi rst focused on a small aperture (to clean up 
the beam profi le and present a diffraction - limited source), and then refocused by 
an objective lens with a large numerical aperture onto a small (ideally diffraction -
 limited) focal volume within the sample. A mixture of the Raman -  and Rayleigh -
 scattered light from the illuminated spot is then collected by the objective lens. 
The high  NA  of these optics allows the light to be collected over a solid angle of 
almost a full hemisphere. An objective with a  NA  - value of 0.95 collects about 70% 
of the radiation emitted over 2 π  steradians. A dichroic beamsplitter (typically a 

   
  Figure 1.12     Schematic representation of the optics of a confocal microscope.  
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notch fi lter or an edge fi lter) refl ects the radiation from the Rayleigh line and 
transmits the Stokes - shifted Raman - scattered radiation at longer wavelength. After 
passing through a pinhole, the Raman - scattered light is passed into the monochro-
mator and the intensity at each wavelength is measured. The small spot enables 
the image to be transferred to the spectrometer though the narrow (typically ca. 
100    µ m) entrance slit with a minimal loss in energy. Today, several Raman micro-
spectrometers employ confocal optics, which provide the capability to produce 
blur - free images of thick samples at various depths. It may be noted, however, that 
spherical aberration limits sampling with diffraction - limited resolution at depths 
much greater than 10    µ m.   

 As seen in Figure  1.12 , the detector pinhole obstructs the so - called out - of - focus 
(or out - of - plane) light, especially light from adjacent spatial regions and fl uores-
cent emission not originating from the focal plane of the objective lens. Light rays 
from below the focal plane come to a focus before reaching the detector pinhole, 
and then expand out so that most of the rays are physically blocked from reaching 
the detector by the pinhole. In the same way, light from above the focal plane is 
focused behind the detector pinhole, so that most of this light is also vignetted by 
the pinhole and is not detected. However, all the light from the illuminated focus 
(solid lines) is imaged at the pinhole and passed to the detector. The detected light 
originating from an illuminated volume element within the specimen is then 
focused on the entrance slit of a polychromator and the spectrum measured using 
a CCD detector. As the out - of - focus rays from above and below the focal plane are 
largely removed, sharper images are measured than can be acquired from conven-
tional (non - confocal) microscopy techniques. Mapping is accomplished by moving 
the sample by small amounts after each spectrum has been recorded. 

 Several modes of operation are available in state - of - the - art confocal Raman 
microspectroscopy, including the measurement of samples with a spatial resolu-
tion of less than 1    µ m, depth profi ling and line mapping. LaPlant and Ben - Amotz 
have provided a detailed description of the design and construction of a confocal 
Raman microspectrometer  [37] , and several instruments are now available com-
mercially. In the case of the HORIBA Jobin Yvon LabRAM ARAMIS Raman 
spectrometer (see Figure  1.13 ), up to four lasers (three internal, one external), four 
gratings and four notch fi lters may be automatically switched in order to optimize 
the performance for a given sample, as illustrated in Figure  1.14 . While not every 
sample is an effi cient Raman scatterer, this instrument ensures that many types 
of sample can be routinely mapped using fast point acquisitions.   

 Several companies, including Horiba, Renishaw and Witec, market Raman 
spectrometers with confocal optical confi gurations. The WITec alpha300 R confo-
cal Raman microscope differs from other confocal Raman microspectrometers in 
that it has been designed especially for fast microspectroscopy. The data acquisi-
tion time for an entire spectrum can be less than 1   ms, which allows Raman 
mapping of over 10   000 spectra in less than one minute when the Raman signal 
is adequate. These data sets can already be evaluated during data acquisition by 
using fi lters. For example, the integrated intensities of certain bands of interest 
may be calculated or the position or full width at half maximum of the bands may 



be evaluated. Band fi tting to Gaussian or Lorenzian shapes, as well as various other 
fi tting algorithms, can also be applied to the data set. By using these fi lters, several 
 three - dimensional  ( 3 - D ) data sets that can be displayed as images are created from 
the four - dimensional hyperspectral data. 

 The WITec alpha300 R confocal Raman microscope can be upgraded to perform 
 atomic force microscopy  ( AFM ), tip - enhanced Raman spectrometry and near - fi eld 
scanning optical microscopy, and is arguably the most versatile instrument for 
Raman microspectroscopy available today.  

  1.3.2 
  CCD  Detectors 

 The quantum effi ciency of contemporary array detectors can be remarkably high    –
    in excess of 90% in the case of back - illuminated CCDs. The two main sources of 
noise for CCD cameras are: 

   
  Figure 1.13     The HORIBA Jobin Yvon LabRAM ARAMIS 
Raman spectrometer.  Illustration courtesy of Horiba 
Jobin - Yvon Corporation.   

   
  Figure 1.14     Spectra of aspirin measured with seconds of each 
other using a frequency - doubled Nd   :   YAG laser (532   nm) and 
a semiconductor diode laser (785   nm).  Illustration courtesy of 
Horiba Jobin - Yvon Corporation.   
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   •      A dark current, which is largely caused by thermal emission and is usually 
reduced to a negligibly low level by thermoelectrically cooling the detector below 
 − 60    ° C.  

   •      Readout noise, which is the number of electrons introduced per pixel into the 
fi nal signal upon the readout of the device and is caused by: (i) a lack of repeat-
ability of the conversion from an analogue signal to a digital number; and (ii) 
the introduction of spurious electrons into the camera electronics, leading to 
unwanted random fl uctuations in the output. Readout noise, which is usually 
given in terms of electrons, is dependent on the readout rate; typical values are 
5 – 10 electrons for a 50   kHz readout rate to  ∼ 30 electrons for a 2.5   MHz readout 
rate.    

 The combination of these two random effects produces an uncertainty in the 
fi nal output value for each pixel. In the output of the CCD image, readout noise 
is added into every pixel each time the array is read out. This means that a CCD 
with a readout noise of 30 electrons will, on average, contain 30 extra electrons of 
charge in each pixel upon readout. As a consequence, CCDs with a high readout 
noise (more than 80 – 100 electrons) are not very good to use if a sequence of short 
exposure frames is co - added instead of using one long exposure. However, for 
modern scientifi c CCDs, readout noise values are very low, in the range of 10 
electrons per pixel per read or less. Ideally, the limiting noise source in any Raman 
spectrometer should be photon shot noise. Because photons follow Poisson sta-
tistics, for a given signal the uncertainty is the square root of the signals in elec-
trons. In this case, the SNR of many Raman spectra can be remarkably high, even 
though the signal is so low. For example, even if only 100 photons are detected 
(converted to electrons), the SNR is still 10    –    provided that the only noise source 
is photon shot noise. 

 For Raman mapping measurements, the readout time per pixel must be very 
short. For example, if an image consisting of 128 pixels per line and 128 lines is 
acquired with an integration time of 1   s per pixel, then the total acquisition time 
will be a little over 4.5   h. Reducing the readout time to 100   ms per pixel decreases 
the measurement time to 27   min. A further 10 - fold reduction in the readout rate 
decreases the acquisition time to less than 3   min. The latter situation would allow 
hundreds of images to be acquired per day, instead of just one or two. Unfortu-
nately, this condition is not readily achievable in practice because the faster the 
readout time of the detector electronics, the noisier is the readout amplifi er. 

 Hollricher and Ibach  [38]  have described how the SNR of Raman spectra can be 
increased through the use of an  electron multiplying CCD  ( EMCCD ). This device 
is a normal CCD with an additional readout register that is driven with a signifi -
cantly higher clock voltage than a normal CCD readout register. The effect of the 
high clock voltage is to effect an electron multiplication through impact ionization. 
In practice, the gain may be increased by a factor of up to 1000 in this way, so that 
the photon shot noise is always much greater than the readout noise. The SNR of 
the signal from the CH 2  stretching band of  poly(methyl methacrylate)  ( PMMA ) is 
shown as a function of the gain in Figure  1.15 . The improved SNR allows superb 



images to be acquired from Raman mapping experiments in a remarkably short 
time. For example, a 200    ×    200 pixel color - coded image of a 7.1   nm - thick layer of 
PMMA contaminated with 4.2   nm - diameter fi bers acquired with a WITec 
alpha300R confocal Raman microscope is shown in Figure  1.16 . The integration 
time was 7   ms per spectrum, and the total acquisition time 5.4   min. This fast 
response makes it feasible to map relatively large areas in minutes or hours, and 
is critical for practical mapping applications.   

 Another source of  ‘ noise ’  in spectra measured using a CCD is caused by the 
pixel - to - pixel variation in the quantum effi ciency of neighboring pixels. This varia-
tion can be corrected by illuminating the detector array with a uniform light source 
and measuring the signal from each pixel. Once the relative response of each pixel 
has been determined, a correction known as a  fl at fi eld correction  can be applied. 

 Despite all efforts to minimize the noise in Raman spectra measured in the 
short times needed for mapping measurements, it is rare that the spectroscopist 
would not be more satisfi ed if the SNR were higher. Cai  et al.   [39]  reported a more 
powerful way of reducing the noise in Raman spectra a below that achievable by 
Savitzky – Golay smoothing with minimal band broadening  [40] . In their approach, 
multiresolution wavelet transformation and block thresholding was used to both 
suppress the background caused by fl uorescence and to reduce the noise without 
a signifi cant loss in spectral resolution.  

  1.3.3 
 Spatial Resolution 

 For diffraction - limited microscopy, it may be thought that the image should be 
focused on the CCD such that the Airy disk fi lls one pixel. However, Adar  et al .  [41]  

   
  Figure 1.15     Signal - to - noise ratio of the CH 2  symmetric 
stretching band of PMMA plotted against the gain of the 
EMCCD.  Reproduced with permission from Ref.  [38] .   
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demonstrated that image quality could be improved signifi cantly if the sample step 
is much smaller than the spatial resolution of the measurement. As an example, 
Figure  1.17 a shows the Raman map of an 8    µ m polystyrene bead on a silicon sub-
strate recorded with a 100 ×  objective with steps of 1.0, 0.5 and 0.1    µ m. The visual 
image recorded through a standard optical microscope is shown for comparison. 
Clearly, reconstructing the image from data taken with steps smaller than the 
resolution given by the Rayleigh criterion gives a higher quality Raman image.    

 The strength of the objective is, of course, also important, as it controls the 
numerical aperture. Figure  1.18 a shows Raman maps of fi ve 5.18    µ m polystyrene 
spheres recorded with 100 × , 50 ×  and 20 ×  objectives, with the increment between 
data points being 0.2    µ m; Figure  1.18 b shows the line profi les across the two beads 
at the top right of these images.   

 Information can also be collected from different focal planes by raising or lower-
ing the microscope stage. The computer can generate a 3 - D picture of a specimen 
by assembling a stack of these 2 - D images from successive focal planes. Some care 
is needed in the interpretation of the results obtained by depth profi ling with a 
confocal Raman microscope, however. For example, Everall  et al.   [24]  have shown 
that when using metallurgical objectives, which are typically supplied as standard 
with confocal Raman microscopes, the focus is both much deeper than might be 
fi rst thought, and is also blurred due to spherical aberration (see Figure  1.19 ). Even 

   
  Figure 1.16     Color - coded confocal Raman map of a 
7.1   nm - thick PMMA layer (red) and a 4.2   nm contaminant 
layer (green) on glass (blue). The map was computed 
from 200    ×    200 spectra, with an integration time of 7   ms 
per spectrum, for a total acquisition time of 5.4   min. 
 Reproduced with permission from Ref.  [38] .   



   
  Figure 1.17     (a) Visual image of a 1    µ m - diameter polystyrene 
bead. The lower images show Raman images of the bead, 
recorded with a 100 ×  ( NA    =   0.95) infi nity - corrected 
microscope objective at increments of (left to right) 1.0, 0.5 
and 0.1    µ m per step, respectively; (b) Raman spectrum 
measured from the center of one of these beads.  Reproduced 
with permission from Ref.  [41] .   

(a)
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in the absence of spherical aberration, Everall has shown that bands originating 
from sample regions far above and below the optimum focal plane can still con-
tribute signifi cantly to the spectrum  [42] . He demonstrated this by investigating 
the Raman spectra of a 20    µ m - thick layer of  polyethylene  ( PE ) over a 100    µ m - thick 
sheet of  poly(ethylene terephthalate)  ( PET ). The spectra measured at different 
depths, including locating the focus 10    µ m above the sample, are shown in Figure 
 1.20 . It is clear that signals from the PET contribute signifi cantly to the spectrum, 
even when focused in or well above the PE. Everall demonstrated a similar effect 
when scanning laterally across the same sample. These results were found because, 
for every point within the entire illuminated volume of a transparent sample (not 
just the beam waist), there are some rays that can reach the detector. When all of 
these paths are added together, there can be a signifi cant signal originating from 
those parts of the sample that are out of focus. Macdonald and Vaughn have 
developed a simple mathematical model to quantify the contribution of  ‘ out of 
focus ’  regions of the sample  [43] .    

  1.3.4 
 Tip - Enhanced  R aman Spectroscopy 

 By using the techniques discussed in the previous sections of this chapter, it can 
be seen that the spatial resolution achievable by infrared or Raman microspectros-
copy is governed by the diffraction limit shown in Equation  1.3 . It is possible to 

 1.3 Raman Microspectroscopy and Mapping  33



 34  1 Infrared and Raman Instrumentation for Mapping and Imaging

improve on the diffraction limit by  near - fi eld scanning optical microscopy  ( NSOM ), 
although most of the vibrational NSOM techniques are currently in the develop-
mental stage (see Chapter  2 ). However, there is one technique    –    known as  tip -
 enhanced Raman spectroscopy  ( TERS )    –    whereby the spatial resolution of Raman 
spectroscopy can be reduced signifi cantly below the diffraction limit  [44] . TERS is 
a hybrid system that combines the nanometer resolution afforded by scanning 
probe microscopy (e.g., AFM) with the molecular specifi city of  surface - enhanced 

   
  Figure 1.18     (a – c) Raman maps of 5.18    µ m - diameter 
polystyrene beads recorded with 100 × , 50 ×  and 20 ×  
objectives, respectively. Increments between data points were 
0.2    µ m for all three images; (d – f) Line profi les of the two 
beads at the upper right in panels (a – c). Reproduced with 
permission from Ref.  [41] .   
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  Figure 1.19     Schematic diagram showing how the effect of 
refraction leads to an increase in the depth of fi eld for Raman 
microscopy.  Illustration courtesy of Dr Neil Everall, 
Measurement Science Group, Intertek Corporation.   
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  Figure 1.20     Spectra measured by raising the level of a 
polymer laminate sample consisting of a 100    µ m - thick layer 
of poly(ethylene terephthalate) (PET) under a 20    µ m - thick 
layer of poly(ethylene) (PE). The strongest bands in the 
Raman spectra of PE and PET are marked with arrows. 
 Illustration courtesy of Dr Neil Everall, Measurement Science 
Group, Intertek Corporation.   
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Raman scattering  ( SERS ). It is well known that the Raman spectrum of species 
with a few nanometers of roughened silver or gold surfaces is enhanced by at least 
four orders of magnitude. The primary enhancement in SERS arises from the 
electric fi eld of the radiation being greatly increased because of resonance between 
the wavelength of the illumination laser and the nearby Raman signals and the 
wavelengths of the surface plasmon resonance of the metal nanostructures,  λ  SPR . 

 It has been shown that localized plasmon polaritons in the region of sharp metal 
tips act in an analogous fashion, giving rise to TERS. In one mode of operation, 
TERS employs a sharp metal tip, which is illuminated from the outside to create 
a localized light source  [45] . Alternatively, silver nanoparticles have been deposited 
on silica or titania surfaces and a silicon tip is used  [46, 47] . That these tips are 
not easy to prepare most likely accounts for the fact that TERS is not yet widely 
used. Nonetheless, preliminary results have indicated the feasibility of detecting 
and characterizing single molecules  [45]  with atomic site sensitivity  [48] . The 
investigation of bacterial surfaces  [49]  and single - walled carbon nanotubes  [50]  has 
also recently been reported. Although these early results are very promising, TERS 
is not yet widely used and will not be described in any great depth in this chapter 
(although a more detailed account can be found in Chapter  2 ).   

  1.4 
 Near - Infrared Hyperspectral Imaging 

 Following the above introduction to the types of microscopes used for single - point 
sampling and sample mapping, the instrumentation used for hyperspectral 
imaging by vibrational spectrometry will now be described. NIR imaging instru-
ments will be introduced fi rst, as these are the simplest in design. Raman imaging 
spectrometers will then be discussed, as these bear considerable similarity to their 
NIR counterparts. The instrumentation for mid - IR imaging will be described 
subsequently, as their operating principles are somewhat different to those of NIR 
and Raman imaging systems. Finally, terahertz imaging, which is based on a 
completely different principle to any of the other types of imaging instruments 
will be introduced. 

 Perhaps the simplest type of instrument for NIR hyperspectral imaging spec-
trometer is that originally developed by Spectral Dimensions, Inc. (Olney, MD, 
USA, now Malvern Instruments.) In this instrument, the radiation from a broad-
band source of NIR radiation (a simple tungsten or quartz – tungsten – halogen 
lamp) is passed through a  liquid crystal tunable fi lter  ( LCTF ) so that a narrow 
region of the NIR spectrum is isolated. A typical LCTF is constructed from an 
interwoven stack of Lyot stages (linear polarizers and liquid - crystal variable retard-
ers mounted on birefringent quartz crystals), usually mounted in a temperature -
 controlled housing. A single Lyot stage of an LCTF system is shown in Figure  1.21 . 
Varying the voltage applied to the liquid crystals shifts the pass band in less than 
1   ms, without any mechanical motion or vibration of the optics. Thus, the fi lter can 
be tuned an almost infi nite number of times as there is no wear and tear.   



 The operation of an LCTF may be understood by considering a simplifi ed Lyot 
fi lter stack, in which ( N  +1) polarizers are separated by  N  layers of liquid crystals 
sandwiched between birefringent crystals. The optical retardation,  R    nm, intro-
duced by birefringent crystals is dependent on the thickness of the crystal,  d    nm, 
and the difference between the refractive index of the ordinary ray,  n o  , and the 
extraordinary ray,  n e  , at the wavelength of interest:

   R d n ne o= −( )     (1.7)   

 The velocities of the extraordinary and ordinary ray differ, and these emerge 
from the stack with a phase delay,  Γ  radians, that is dependent upon the wave-
length,  λ , of the radiation:

   Γ =
2π

λ
R

    (1.8)   

 The transmittance of the crystal,  T , is given by:

   T = ( )0 5 22. cos Γ     (1.9)   

 In a typical Lyot fi lter, crystals are often selected so that transmission has its 
maximum value at the wavelength determined by the thickest crystal retarder, with 

   
  Figure 1.21     A typical Lyot stage of a liquid crystal tunable fi lter (LCTF) system.  
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other stages in the fi lter serving to block the transmission of unwanted wave-
lengths. The spectral region passed by the LCTF is dependent upon the choice of 
polarizer, the optical coating and the liquid crystal characteristics (nematic, cho-
lesteric, smectic, etc.) In practice, a Lyot LCTF may have as many as 11 polarizers 
and 10 liquid crystalline layers, and is sometimes equipped with an internal micro-
processor to tune all of the stages. 

 Wavelength scanning in NIR hyperspectral imaging spectrometers has also been 
accomplished with both a scanning monochromator and an  acousto - optic tunable 
fi lter  ( AOTF .) AOTFs are also frequently used in confocal fl uorescence micro-
scopes. AOTFs are electro - optical devices that function as electronically tunable 
fi lters and rely on a birefringent crystal, the optical properties of which vary upon 
interaction of the crystal with an acoustic wave. The resulting compression and 
rarefaction of the crystal give it the properties of a diffraction grating. Changes in 
the acoustic frequency alter the grating constant, which enables the wavelength to 
be tuned very rapidly. The switching time is limited only by the acoustic transit 
time across the crystal, and is rarely greater than 50    µ s. AOTFs designed for opera-
tion in the NIR region typically consist of an optically anisotropic tellurium dioxide 
crystal to which a piezoelectric transducer is bonded. In response to the application 
of an oscillating radiofrequency electrical signal, the transducer generates a high -
 frequency acoustic wave that propagates into the crystal. The alternating ultrasonic 
acoustic wave induces a periodic redistribution of the refractive index through the 
crystal, which then acts as a transmission diffraction grating. Changing the fre-
quency of the transducer signal applied to the crystal alters the period of the 
refractive index variation and, therefore, the angle through which the radiation is 
diffracted, and hence the wavelength band that reaches the detector. The design 
parameters that affect resolution include the dispersion constant of the crystalline 
material (related to degree of birefringence), the incidence angle and the acousto -
 optic interaction length. The relative intensity of the diffracted beam is determined 
by the amplitude (power) of the signal applied to the crystal and by the widths of 
the entrance and exit slits of the monochromator. 

 One of the more important parameters governing which of these wavelength 
selection devices to use is their bandpass    –    that is, the  full - width at half height  
( FWHH ) of their transmittance window. The typical bandpass of a LCTF is 5   nm. 
As the FWHH of most bands in the NIR spectrum is greater than 10   nm, a band-
pass of 5   nm is more than adequate for NIR hyperspectral imaging. The LCTF has 
a far higher optical throughput than a monochromator operated at 5   nm resolution 
(although when the size of the sample being examined is very small, as it is in 
any microscopic measurement, the potential throughput advantage is rarely met 
in practice). 

 The bandpass of a typical AOTF ranges from several nanometers to tens of 
nanometers for the visible and NIR spectral regions. This resolution is suitable 
for fl uorescence spectroscopy where bands are very broad, and is just adequate for 
Raman hyperspectral imaging, albeit with lower resolution than may be achieved 
with a monochromator (see Section  1.5 ). A NIR spectrometer based on an AOTF 
has also been sold commercially. However, the transmission of these devices for 



NIR hyperspectral imaging is somewhat poorer than that of LCTFs, and they 
degrade the image quality slightly more than LCTFs. The optical effi ciency of 
monochromators for NIR hyperspectral imaging is poorer than that of both LCTFs 
and AOTFs. Thus, despite the fact that the FWHH of the pass - band of a mono-
chromator can be made much narrower than that of LCTFs and AOTFs, the 
highest performance for NIR microspectroscopy is usually found when wave-
length selection is accomplished through the use of one of these devices rather 
than a monochromator. 

 The NIR hyperspectral imaging spectrometers designed by Malvern Instru-
ments are equipped with a Stirling - engine - cooled  indium antimonide  ( InSb ) FPA 
detector with 320 pixels in one dimension and 256 in the other (total 81   920 pixels) 
that operates in the range 1200 to 2450   nm. Wavelength tuning is achieved by an 
LCTF, such that the entire spectral range can be covered in 2   min. Alternatively, 
as described above, if the signal from just a few wavelengths is all that needs to 
be measured, the LCTF allows rapid switching between a few selected wavelengths 
and the measurement is over in a few seconds. A short - wavelength alternative 
instrument is also available that is equipped with an InGaAs FPA detector that 
operates in the range from 950 to 1720   nm. 

 Because this instrument is designed for NIR operation, it is possible to use a 
microscope with refractive optics. In the case of the Malvern Instruments system, 
a refractive objective that has 1 ×  magnifi cation is used. With this lens, the sample 
is imaged directly onto the FPA detector. This objective can be easily removed and 
objectives with higher (micro mode) or lower (macro mode) magnifi cation installed. 
The initial alignment of the sample is performed manually, although if a series of 
samples is to be measured then a programmable sample stage enables the sequen-
tial analysis of multiple samples. 

 It is probably true to say that instruments for NIR hyperspectral imaging are 
more versatile and rugged than corresponding instruments used to measure mid -
 IR and Raman spectra. However, they have two disadvantages. The fi rst problem 
is that the absorptivities of the overtone and combination bands in the NIR spec-
trum are far weaker than those of corresponding fundamentals from which they 
are derived. For measurements in the transmission mode, the ideal sample thick-
ness is one that yields a low - noise spectrum with bands that are strong enough to 
allow rapid identifi cation or quantifi cation. For mid - IR spectrometry, this thick-
ness is about 10    µ m. As the center wavelength of mid - IR spectra is about 5    µ m, 
the sample thickness is approximately equal to the smallest dimension in the  xy  
plane that can be observed    –    that is, the diffraction limit when  NA  is approximately 
equal to 0.6. For conventional NIR spectrometry (1200 – 2450   nm), on the other 
hand, the absorptivities of the stronger bands are an order of magnitude less than 
the stronger fundamentals from which they are derived, and so the sample thick-
ness should be at least 100    µ m. However, the diffraction limited spatial resolution 
for NIR measurements is less than 3    µ m if optics with a  NA  - value of 0.6 are used. 
Thus, even though the ultimate spatial resolution is, in principle, determined by 
the optics of the spectrometer, in practice this resolution is never achievable 
because the thickness of the sample means that the diameter of the beam waist 
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at the top or bottom surface of the sample is larger than the diffraction - limited 
spatial resolution. 

 For short - wavelength NIR spectra (950 – 1720   nm), where the absorption bands 
are caused by transitions to the third or fourth vibrational states of C – H, N – H and 
O – H stretching modes, along with weak combination bands, the situation is even 
worse because bands are so weak that the sample thickness must be increased to 
about 500    µ m, even though the diffraction limit is less than 2    µ m. It is at least in 
part for this reason that NIR hyperspectral imaging is rarely used for measure-
ments with very high spatial resolution. Thus, the standard objective of the Malvern 
Instruments imaging spectrometer, for example, is a refractive lens with 1 ×  mag-
nifi cation and a low numerical aperture. 

 The second disadvantage of NIR hyperspectral imaging is more subtle, as it is 
only evident for measurements of powders. Perhaps the most common application 
of NIR hyperspectral imaging is in the characterization of intact pharmaceutical 
tablets by DR spectrometry. These measurements have a signifi cant limitation in 
terms of their spatial resolution caused by the effect of light scattering. Photon 
time - of - fl ight measurements  [51 – 57]  have shown that photons in diffuse transmis-
sion and refl ection measurements emerge from compacted powdered samples 
(e.g., pharmaceutical tablets) in a time that is much greater than would be expected 
if no scattering had taken place. In analogous measurements made by mid - IR DR 
spectrometry, Averett and Griffi ths  [58]  estimated that the average path traveled 
by mid - infrared photons through very weakly absorbing samples is at least 100 
particles, strongly implying that photons do not emerge from the same point at 
which they enter the sample. The greater the particle size, the more strongly a 
given particle will absorb at a given wavelength. Similarly, the greater is the scat-
tering coeffi cient, the fewer particles are encountered by photons in a DR measure-
ment and the better the spatial resolution. For scattering samples, this effect 
clearly has a highly deleterious effect on spatial resolution. In DR measurements, 
photons are extensively scattered on entering the sample, passing through several 
particles (often much more than ten) before re - emerging from the top surface. 

 The effect of scattering on spatial resolution in DR/NIR imaging has recently 
been discussed by Hudak  et al.   [59] . These authors measured the DR spectrum of 
polystyrene powder, but then placed a clear polystyrene window of known thick-
ness over the sample and remeasured the spectrum. From the increase in the 
intensity of the polystyrene bands, it was possible to show that the effective path -
 length through the powder was 1   mm ( ±  ∼ 50%). Yet, the more intense the band 
measured, the shorter was the path - length calculated (although the authors did 
not recognize the fact that the path - length varied inversely with the absorptivity). 
The group then devised a way to correlate the effective path - length with the sam-
pling volume, by using a random walk model to estimate the volume sampled by 
a typical photon (which they called a  ‘ voxel ’ ). It was calculated that the average 
path - length    –    that is, the sampling radius from which 68% (one standard deviation) 
of the measured intensity imaged onto a single detector pixel originates    –    was 
between 30 and 50    µ m. Moreover, it is this distance    –    which is well over an order 
of magnitude greater than the diffraction limit    –    that determines the spatial resolu-



tion of NIR imaging measurements made in DR mode. As the spatial resolution 
of NIR hyperspectral imaging measurements of scattering samples (e.g., pharma-
ceutical tablets) is far larger than the diffraction limit, it is clear that NIR DR 
imaging is best used to characterize samples with a particle size that is far larger 
than the diffraction limit. 

 An alternative approach for NIR hyperspectral imaging to that described above 
is to use a  Fourier transform NIR  ( FT - NIR ) spectrometer. As the design of FT - NIR 
microspectrometers is more similar to that of instruments for mid - IR hyperspec-
tral imaging than the dispersive instruments described above, they will be described 
later (see Section  1.6 ).  

  1.5 
  R aman Hyperspectral Imaging 

 Both, Raman mapping and imaging involve the use of CCD array detectors. In 
mapping, the spectrum of a point of the sample is dispersed across the detector, 
and the sample is moved when each spectrum has been measured. In Raman 
imaging, on the other hand, the image of the sample at a single wavelength is 
focused on the detector and the wavelength is changed after each measurement. 
Raman imaging methods can be broadly classifi ed as either line imaging or wide -
 fi eld source illumination approaches  [60] . In the line approach, a cylindrical lens 
or a Powell lens is employed to distribute the laser beam in one direction across 
the sample. The Powell lens (which is a combination of a cylindrical lens and a 
prism) may be visualized as a prism with a small radius at one edge, which oper-
ates as a cylindrical lens with its radius of curvature decreasing from center to 
edge. The effect is a monotonic decrease in beam divergence from center to edge, 
so that the generated line has a near - uniform intensity along its length  [61] . The 
laser line dimension is oriented parallel to the direction of the entrance slit of a 
polychromator, so that the spectrum is dispersed in the short direction of the CCD. 
This approach reduces the duration of the experiment by   n , where  n  is the 
number of image pixels, assuming that the laser power per pixel is kept constant. 
The spatial resolution parallel to the laser line is the convolution of the microscope 
magnifi cation by the pixel size, while in the perpendicular direction it is equal to 
the width of the laser line convolved by the scanning precision of the instrument. 
As a result, the resolution in one dimension is frequently greater than in the 
second direction. 

 In global (wide - fi eld) imaging, the entire sample fi eld - of - view is illuminated by 
defocusing the laser. The scattered radiation is usually fi rst passed through a notch 
fi lter or a long - pass fi lter to remove the Rayleigh - scattered radiation, and then 
through a device that blocks all but one wavelength region. This device may be a 
monochromator, a dichroic fi lter, an acousto - optic tunable fi lter or a liquid crystal 
tunable fi lter, with the latter being generally favored. The wide - fi eld approach is 
generally favored over line - scan imaging when high - fi delity images at a limited 
number of wavenumbers are desired. In wide - fi eld imaging, the spatial resolution 
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is determined by the convolution of diffraction, the CCD pixel size and the micro-
scope magnifi cation at the focal plane of the CCD. 

 Surprisingly, global laser illumination leads to sample heating degradation at 
much lower laser intensities than point illumination, because of the ineffi ciency 
in conducting heat away from a surface sheet rather than a point. For steady - state 
measurements at a given total laser power (in W), the optical damage threshold 
for a given material scales as the square root of the illuminated area (rather than 
linearly with the area).    Thus, the laser intensity (in W m  – 2 ) required to damage a 
sample is higher for a point illumination than for line illumination, which is in 
turn higher than for area illumination.    There is still an advantage to distributing 
power over a wider area; it is just that this so - called  ‘ power distribution advantage ’  
is not as great as was previously assumed  [62] . 

 As noted in Section  1.3 , confocal microscope designs have been used in several 
Raman microspectrometers that allow sample mapping by moving the sample 
between the measurement of each spectrum. However, confocal microscopy 
cannot be used for wide - fi eld Raman imaging as the entire region of the sample 
of interest must be illuminated, and clearly the  ‘ light source pinhole ’  (see Figure 
 1.12 ) in confocal microscopes does not allow this. For hyperspectral Raman 
imaging, the high image quality attained by the use of confocal optics and mapping 
is sacrifi ced somewhat for data acquisition speed. However, this approach is only 
fast if an image is to be acquired at a single wavelength; for the acquisition of full 
spectra, it can be very slow. 

 One of the fi rst Raman imaging spectrometers to be produced in the USA was 
designed and fabricated by Levin ’ s group at the U.S.  National Institutes of Health  
( NIH )  [63] . The wavelengths for this instrument were controlled by a TeO 2  AOTF. 
The instrument produced high - fi delity, large - format images with a theoretical 
spatial resolution of about 1    µ m, although because of dispersion by the TeO 2  crystal 
the fi nite spectral bandwidth of the AOTF resulted in a slight smearing of the 
output image along one axis. This degradation, which is given by the internal beam 
spread in the crystal,  ∆  θ   di  , could be estimated from the approximate relationship 
reported by Suhre  et al .  [64] :
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where  ∆  λ  is the passband (2   nm),  λ  0  is the center wavelength (700   nm),  ∆  n  is the 
difference in refractive index of TeO 2  for the ordinary and extraordinary rays at  λ  0  
(0.138),  n  0  is the refractive index of TeO 2  for the ordinary ray (2.177), and  θ  1  is the 
angle between the incident beam and the optical axis of the crystal (22.5    ° ); the 
values for the AOTF used by Goldstein  et al . are given in parentheses. These values 
give an external beam spread,  ∆  θ   di  , of 0.13   mrad (0.0037    ° ); this value may be com-
pared with the diffracted beam spread of 0.19   mrad caused by the 7   mm 2  aperture 
presented to the AOTF entrance pupil. In total, these values would lead one to 
predict that the image resolution along one axis would be degraded by about a 
factor of 2.5 on passage through the AOTF. For each AOTF passband frequency, 



the image on the CCD will be shifted slightly because of dispersion by the crystal, 
and software correction is needed if the visual and Raman images are to be 
correlated. 

 In the instrument described by Goldstein  et al .  [63] , the 647.1   nm beam from a 
krypton ion laser was delivered to the sample by an infi nity - corrected microscope 
objective using an epi - illumination scheme. For this, light from the rear housing 
was passed down a horizontal shaft and then refl ected down through the objective 
to the sample. The 180    °  back - scattered light was returned to the objective and 
then to the spectrometer. Wavelength selection was accomplished by an AOTF 
that could provide either random or continuous wavelength selection. The epi -
 illumination scheme was seen to preserve the linear polarization of the incident 
laser beam. Because the AOTF is polarization - sensitive, a half - wave plate was used 
to rotate the plane of polarization by 180    °  in order to preserve the AOTF output. 
The collimated output from the AOTF was fi rst imaged by a tube lens, and then 
by a projection lens onto a liquid - nitrogen - cooled silicon CCD array. One, or occa-
sionally two, holographic notch fi lters were placed in front of the detector to elimi-
nate stray radiation from the Rayleigh line. These fi lters transmitted between 75 
and 80% of the Raman emission beyond 75   cm  − 1  of the Rayleigh line. 

 In order to minimize the data acquisition time, the overall magnifi cation of this 
system was made as small as possible, consistent with the spatial resolution 
desired. As the image is sampled by the discrete pixels of the CCD camera, the 
Nyquist sampling criterion must be obeyed to avoid the generation of artifacts. 
There is an explicit relationship describing how the number of counts per pixel 
depends on the optical design. It is known from Equation  1.3  that the radius of 
the Airy disk  r  is equal to   0.61 λ / NA . If the size of the CCD pixel is  p , then the 
Nyquist sampling criterion requires that the overall magnifi cation,  M , satisfi es the 
condition that  Mr     >    2 p . Goldstein  et al . designed their system such that  Mr    =   2.3 p ; 
in other words, the smallest resolvable feature was sampled by at least two pixels 
 [63] . It should be noted that this rule of thumb is equally applicable to imaging 
spectrometers, where the spatial resolution of the measurement should be spread 
over at least two pixels. 

 The instrument reported by Goldstein  et al . is shown diagrammatically in Figure 
 1.22 . Also shown (in Figure  1.23 a) is the Raman image of 1    µ m - diameter polysty-
rene beads, obtained by recording the signal at 1000   cm  − 1  from one of the pixels. 
Figure  1.23 b shows the spectrum measured from one of the pixels in the region 
of this band. Note that its FWHH band is at least 25   cm  − 1 , whereas the true FWHH 
of this band is less than 10   cm  − 1 , thereby demonstrating the trade - off between 
magnifi cation, image quality, spectral resolution and data acquisition time in 
Raman mapping. A similar system explicitly designed for  in vivo  tissue diagnostics 
has been described by Vo - Dinh  et al.   [65] .   

 ChemIcon, Corp. (now ChemImage, Corp.) market a Raman imaging spectrom-
eter that shares some of the features of the NIH instrument reported by Goldstein 
 et al . but, nonetheless, has some signifi cant differences. First and foremost, wave-
length selection is accomplished through the use of an LCTF rather than an AOTF. 
The spectral bandpass of this instrument is 9   cm  − 1 , and it has the capability of 
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  Figure 1.22     Schematic diagram of the Raman imaging 
microscope reported by Goldstein  et al. .  Reproduced with 
permission from Ref.  [63] .   

   
  Figure 1.23     (a) Image of 1    µ m - diameter polystyrene spheres 
acquired using the instrument shown in Figure  1.21  by 
holding the AOTF at 1000   cm  − 1 ; (b) Spectrum from one pixel 
of the CCD.  Reproduced with permission from Ref.  [63] .   

(a) (b)



being tuned at fi ner increments. It is also claimed that a  spectral resolving power  
of better than 0.1   cm  − 1  has been consistently achieved, although this term probably 
refers to the accuracy to which the center wavenumber of the LCTF bandpass may 
be set, as the FWHH of the passband of an LCTF is never as small as 0.1   cm  − 1 . 
The Raman microscope sold by Renishaw, Inc. may also be used in the imaging 
mode, by holding the monochromator at a certain wavelength for each time incre-
ment. However, the Renishaw instruments are mainly used in the Raman micros-
copy and mapping modes.  

  1.6 
 Mid - Infrared Hyperspectral Imaging 

  1.6.1 
 Spectrometers Based on Two - Dimensional Array Detectors 

 The fi rst true chemical imaging microspectrometer was reported by Levin ’ s group 
at NIH and Marcott ’ s group at Procter and Gamble  [66] , who used a Bio - Rad (now 
Varian 2)  FTS 6000 step - scan FT - IR spectrometer equipped with a UMA - 500 micro-
scope. In their earliest instrument, the single - element detector mounted in the 
microscope was replaced by an indium antimonide (InSb) FPA detector with 
64    ×    64 elements imaging an average spatial area of 500    ×    500    µ m. A CaF 2  lens 
was used to focus the sample area onto the FPA detector. As InSb has a cut - off of 
1800   cm  − 1 , the fi ngerprint region of the mid - IR spectrum could not be measured 
with this instrument. 

 A short time later, Levin ’ s group modifi ed step - scan FT - IR spectrometer to 
operate with a mid - IR MCT FPA detector. Unlike most MCT detectors used in 
FT - IR spectrometers, which operate in the  photoconductive  ( PC ) mode, the pixels 
of MCT FPA detectors operate in the  photovoltaic  ( PV ) mode. As noted in Section 
 1.2.2 , the cut - off wavenumber of narrow - band PC MCT detectors is about 750   cm  − 1 . 
The PV detector elements used in MCT FPA detectors have the same high sensi-
tivity as narrow - band PC MCT detectors, but the cut - off wavenumber is higher, 
at about 850   cm  − 1 . 

 The fi rst commercial instrument employing the concepts developed by Levin ’ s 
group was designed by Bio - Rad and marketed as the  Stingray  in 1995. This instru-
ment is shown schematically in Figure  1.24 . In order to maintain the image 

 Like several other corporations in the fi eld, 
the company now doing business as Varian 
has undergone several name changes. It was 
fi rst known as Digilab, Inc. Founded in 1969, 
Digilab developed the fi rst FT - IR 
spectrometer of the modern era, that is the 
fi rst with He – Ne laser referencing, the use of 
a pyroelectric (TGS) detector and the fi rst 
under minicomputer control. Digilab was 
purchased by Bio - Rad in 1978. In 2001, Bio -

2)  Rad sold the company to a group of private 
investors, who renamed the company Digilab 
LLC. The group sold Digilab to Varian in 
2004. During each of these manifestations, 
this organization made many of the 
innovations that have led to the remarkable 
popularity of FT - IR spectroscopy today. In 
this chapter, the name of the company will be 
given as it was when the work was reported. 
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quality, a ZnSe lens was used to focus the sample image onto a MCT FPA detec-
tor, rather than the Cassegrain system used in most microscopes. The instrument 
is equipped with a germanium long - pass fi lter to block visible and short - wave NIR 
radiation, and hence to prevent detector pixel saturation and improve the SNR. A 
lightly sanded KRS - 5 plate placed in the beam path before the condenser further 
improves the spatial homogeneity in the camera fi eld - of - view, and also prevents 
the detector elements in the center of the array from saturating. 

 These fi rst attempts during the mid 1990s at true mid - IR FPA imaging using 
a 2 - D MCT FPA detector were based on the detectors mounted in military 
heat - seeking missiles, and the spectrometers that resulted are now termed  ‘ fi rst -
 generation ’  instruments. As the detectors used in such instruments were not 
designed specifi cally for spectroscopic imaging, they had a number of limitations, 
one being a tendency for pixels to  ‘ delaminate ’  and separate from the substrate. 
As these fi rst - generation detectors were designed essentially for  ‘ one use ’  applica-
tions, they were unable to cope with the thermal stresses of repeated heating –
 cooling cycles associated with liquid nitrogen cooling. 

 Another major limitation arose from the need to employ a step - scan interfer-
ometer. This necessity arose from the relatively slow read - out rates of these fi rst -
 generation FPAs, which were of the order of only a few hundred Hertz. The 
read - out rate (or  frame rate ) of a FPA detector determines the type of interferometer 
that must be used for FT - IR imaging, as the FPA cannot be triggered (for data 
transfer) any faster than its maximum read - out (frame rate) speed. As the fi rst -
 generation FPAs were only capable of frame rates in the hundreds of Hz, and 
rapid - scanning interferometers required a faster frame rate, the use of step - scan 

   
  Figure 1.24     Schematic diagram of the Bio - Rad Stingray 
hyperspectral imaging spectrometer.  Illustration courtesy of 
Varian Corporation.   



interferometers    –    where the movable mirror of the interferometer could be held a 
given optical path difference for several seconds    –    was mandated. 

 In 1999, Snively  et al . described the fi rst report of the use of a rapid - scan inter-
ferometer in conjunction with a small fi rst - generation focal - plane array for 
spectroscopic imaging  [67] . In an attempt to design a mid - IR chemical imaging 
system designed specifi cally for spectroscopic applications, Digilab, together with 
the FPA supplier, developed and marketed the fi rst commercial mid - IR  ‘ rapid -
 scan ’  imaging systems in 2001, with the launch of the  ‘ second - generation ’  FPA, 
designed specifi cally for spectroscopic chemical imaging (see Figure  1.25 ). These 
second - generation FPAs had frame rates which were an order of magnitude faster 
than their fi rst - generation counterparts, such that the standard laboratory - type 
rapid - scanning FT - IR spectrometer could now be used for chemical imaging, with 
a signifi cantly increased affordability yet reduced complexity. This, in turn, led to 
an increased use and application of mid - IR imaging spectrometers.   

 In addition to pioneering the developments in FPA detectors designed specifi -
cally for fast mid - IR hyperspectral imaging, Digilab redesigned their microscope 
to launch the fi rst instrument designed specifi cally to cater for the unique require-
ments of FPA - based imaging. Such improvements included a wider and more 
uniform illumination  fi eld of view  ( FOV ) of up to 700    ×    700    µ m, removing the 
need for any diffusers, the removal of refractive focusing optics and the introduc-
tion of optical zoom capabilities for changing the pixel size at the sample plane 
from 5.5 to 11    µ m (with a corresponding increase in FOV). Despite the availability 
of  ‘ rapid - scan ’  FPA mid - IR chemical imaging systems since 2001, it often still 
thought that mid - IR hyperspectral imaging spectrometers require step scanning, 
this being a legacy from the original fi rst - generation, military - based FPAs of the 
mid 1990s. 

 Generally speaking, the larger the array, the slower the read - out frame rates of 
the FPA. The frame rates of today ’ s second - generation FPAs range from several 
kHz for the smaller 16    ×    16 and 32    ×    32   FPAs, to just over 1   kHz for the largest 

   
  Figure 1.25     The fi rst commercial rapid - scanning FPA chemical 
imaging system, introduced in 2001 by Digilab 
(now Varian Corporation).  
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commercially available (128    ×    128) FPAs. The ability to operate these FPAs at rapid 
scan speeds depends on the frequency at which the spectrometer triggers the FPA. 
The sampling of signals from FPAs is similar to that for a standard detector such 
as DTGS, whereby the detector response is recorded as a function of opd to provide 
an interferogram. For FPAs operated in PV mode, the FPA response (for each 
pixel) is triggered by the interferometer. At each trigger, the pixel response is read 
out in  ‘ snapshot ’  mode, whereby all pixels are read out simultaneously, processed 
and transferred to the data system to provide for an interferogram datum point 
for each pixel in the FPA at each opd. The triggering rate must, of course, be less 
than the maximum frame rate of the FPA; for a 64    ×    64   FPA, the maximum frame 
rate is 3.77   kHz. Because of the discrete speed settings available on most com-
mercial FT - IR spectrometers, for a spectral range of 7900   cm  − 1  (the Nyquist wave-
number for a He – Ne laser - referenced system with an undersampling ratio of 2), 
the fastest scan speed that can currently be used to collect data from a 64    ×    64   FPA 
is 2.5   kHz. The use of an undersampling ratio of 2 allows for the data to be col-
lected without any aliasing into the mid - IR spectral region ( < 4000 cm  − 1 ). 

 The data collection (interferometer) speed can be increased up to 5   kHz, by 
further undersampling the interferogram. An undersampling ratio of 4 (whereby 
the FPA is triggered for data read - out at every fourth He – Ne laser zero crossing; 
that is, every second wavelength of the HeNe interferogram) provides for a Nyquist 
wavenumber of 3950   cm  − 1 . However, in order to prevent spectral artifacts caused 
by aliasing from appearing in the spectrum, a low - pass fi lter must be mounted in 
the optical path to prevent radiation with wavenumbers above 3950   cm  − 1  from 
reaching the FPA detector. The insertion of such a fi lter has the added benefi t of 
limiting detector saturation by preventing light from outside the spectral region 
of interest from reaching the detector, hence allowing longer integration times to 
be utilized for an increased SNR. The increase in interferometer scan speed to 
5   kHz still means that the FPA is being triggered at 2.5   kHz, as now the triggering 
at every fourth zero crossing instead of every second zero crossing means that the 
interferometer scan speed can be increased twofold to 5   kHz. As the FPA is in fact 
still being triggered at 2.5   kHz, the actual frame period is hence the reciprocal of 
the frame rate at 0.40   ms. With typical integration times of 0.01 to 0.05   ms for 
high - throughput systems, it is clear that the FPA is typically integrating for only 
a fraction of the fully available frame period. This is a result of the high sensitivity 
of the MCT material requiring only a short integration time. Despite such advances 
in FPA design    –    and in particular of the electronics    –    the frame rates are still rela-
tively slow. An ideal design would have the maximum probable integration time 
matched to the frame period. For example, assuming that a maximum integration 
period of 0.05   ms is required and the frame period is designed to match, this would 
result in a frame rate of 20   kHz. Although no commercially available FPA has such 
high frame rates, the technological advances observed in modern electronics indi-
cates that these will be achievable in the foreseeable future. 

 For imaging measurements using a step - scan FT - IR spectrometer, the interfer-
ometer mirror is held at a constant position (usually at the zero - crossing of the 
laser interferogram) while the signal from each pixel is recorded by the ADC. This 



process may be repeated several times at the same sampling position to allow  frame 
co - addition , whereby the signals from all pixels are averaged several times before 
the interferometer mirror is stepped to the next sampling position. In practice, 
although frame co - addition works well until about 20 frames have been averaged, 
further averaging does not lead to any great improvement in the SNR. When the 
signal from each pixel has been averaged the required number of times, the inter-
ferometer mirror is stepped forward to the next sampling position, and this 
process is continued until suffi cient data points have been measured to achieve 
the desired spectral resolution. Snively and Koenig showed that  N  successive 
images could also be signal averaged for the expected improvement in SNR of   

N   [68] . When all the data have been acquired, the interferograms are converted 
to single - beam spectra, ratioed against the corresponding single - beam background 
spectrum, and converted to absorbance. 

 By analogy with Equation  1.2 , Sniveley and Koenig showed that the SNR on the 
baseline of spectra measured with an imaging FT - IR spectrometer is given by:
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where  NA  is the numerical aperture and  A  is the area of the sample imaged onto 
the pixel. All the other parameters have the same meaning as in Equation  1.2   [68] . 
The factor of 0.12 is analogous to the effi ciency term  ξ  in Equation  1.2 . Sniveley 
and Koenig used this equation to compare the performance of FT - IR imaging and 
single - detector microspectrometers and found that, for measurements near the 
diffraction limit, the performance of imaging spectrometers should be higher than 
that of standard FT - IR microspectrometers if it is assumed that the  D  *  of the 
detectors and the area of the sample imaged onto the pixel are the same in both 
types of instruments. (In practice, the  D  *  of PV - MCT detectors is slightly higher 
than that of PC detectors for signals modulated at frequencies greater than 1   kHz, 
although the difference is small.) The biggest advantage of the imaging spectrom-
eters is in the  A D   term for array detectors. Whereas, most FT - IR microscopes are 
equipped with 250    µ m detectors, the pixel size in most FPAs is 40    µ m, which leads 
to an advantage in   AD  by a factor of  ∼ 2.5 for the imaging spectrometer for mea-
surements made close to the diffraction limit of spatial resolution. 

 However, the benefi t in SNR of an imaging system over a single point system 
when close to the diffraction limit is much greater than a factor of 2.5. The prob-
able reason for the signifi cantly greater performance of the imaging spectrometers 
is that Equation  1.11  fails to account for the sample aperture (and its resulting 
degradation in  é tendue) when a spectrometer is operated close to the diffraction 
limit. Because they do not require an aperture, each entire pixel is fully illuminated 
in imaging systems. Consider the case of a measurement made at close to a dif-
fraction limit of, say,  ∼ 10    µ m (therefore with a 10    µ m aperture). For a spectrometer 
with a single - element 250    µ m detector, only 0.16% of the detector surface is illu-
minated, with the remaining 99.84% contributing only noise. When this factor is 
taken into account, together with the 2.5 - fold improvement predicted by Equation 
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 1.11 , imaging spectrometry recorded close to the diffraction limit provides for SNR 
benefi ts of many orders of magnitude! 

 Although chemical imaging is typically performed with a microscope, it need 
not be limited to microscopes and samples in the micro domain. In 1998, Digilab 
released the   ‘ Large Sampling ’   ( LS ) accessory; this consisted of an external sample 
compartment unit in which the FPA detector could be mounted and transferred 
as required between the microscope and the LS (see Figure  1.26 ). The LS accessory 
is mounted either directly off the FT - IR spectrometer or off the microscope via 
 ‘ pass - through ’  optics that allow the IR beam to bypass the internal optics of the 
microscope. Under this confi guration, the overall magnifi cation is 1   :   1, so that the 
pixel size at the sample plane now matches that of the native FPA pixel size at 
40    ×    40    µ m. Therefore, with a 128    ×    128   FPA, sample areas of up to 5.1    ×    5.1   mm 
can be imaged at once.    

  1.6.2 
 Spectrometers Based on Hybrid Linear Array Detectors 

 An alternative approach to hyperspectral imaging, namely a hybrid of imaging and 
mapping, was reported in 2001 by PerkinElmer (PE) as the  Spectrum Spotlight . 
This instrument is an imaging FT - IR spectrometer that incorporates a linear array 
of 16 photoconductive narrow - band MCT detectors interfaced to a relatively inex-
pensive rapid - scanning interferometer. Although this detector is commonly (and 
perhaps for the sake of simplicity) often referred to as a 1    ×    16 linear array detector, 
the pixels are in fact arranged in a 2    ×    8 format. As the cut - off for the narrow - band 
PC - MCT detectors used in this spectrometer is about 720   cm  − 1 , the spectral range 
of the instrument is at least 130   cm  − 1  wider than that of the PV MCT FPA detectors 
incorporated into most other hyperspectral imaging FT - IR spectrometers. The 
signals from each of the 16 detectors in the linear array are digitized simultane-
ously with separate ADCs. The sample is mounted on a computer - controlled stage 
that can be rapidly repositioned to allow the spectra from an adjacent region to be 

   
  Figure 1.26     The  ‘ Large Sampling Accessory ’  by Varian, 
provides for FPA chemical imaging at a 1   :   1 magnifi cation for 
the analysis of  ‘ macro ’  samples.  Illustration courtesy of 
Varian Corporation.   



measured once the spectral data from a given stage position have been acquired. 
The spectra are then quilted together to produce the image. This process is 
repeated until the entire spatial region of interest has been covered. In addition 
to this linear detector array, a single 100    µ m medium - band MCT detector is 
mounted in the same Dewar fl ask, that allows individual spectra to be acquired 
over a wider range than the spectra measured with the array. A similar instrument 
is now available from Thermo Fisher Corporation that consists of a 28 - pixel linear 
array arranged in a 2    ×    14 pixel format. 

 Much confusion exists as to the advantages and disadvantages of linear - array 
versus FPA - based imaging systems, and detailed analysis and comparison is 
beyond the scope of this chapter. However, Bhargava  et al.  proposed a useful 
metric to aid in comparing the performance of two imaging systems that can be 
conveniently applied to the comparison of these two systems  [69] . The fi gure of 
merit defi ned is the pixels per minute  ‘ pixpm ’ , and compares the performance of 
two imaging systems relative to each other for a specifi ed SNR at defi ned spectral 
and spatial resolutions. The ratio of the pixpm values of two instruments is given 
by:
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where  R  21  is the ratio of the pixpm of system 2 to system 1,  n i   is the number of 
pixels collected over the defi ned sample measurement area,  t i   is the time required 
to collect the image (of either 1 scan or to achieve the required SNR) and  SNR i   is 
the average SNR achieved over the sample measurement area. Hence, the relative 
performance is linearly related to the time and number of pixels collected and to 
the square of the SNR. 

 Let us assume the sample area to be measured is moderate in size (say, 
700    ×    700    µ m), and is to be collected at high spatial resolution and 4   cm  − 1  spectral 
resolution at a SNR of 200. Based on the manufacturers ’  typical specifi cations, if 
all other parameters are kept equal, we have  : 

       System 2 ( i    =   2)      System 1 ( i    =   1)   

      64    ×    64   FPA (5.5    µ m 
projected pixel size)  

  16 - element linear array 
(6.25    μ m projected pixel size)  

   n i   (number for a pixels 
collected for a 700    ×    700    µ m 
sample area)  

  16   384 (four tiles)    12   544 (784 line scans)  

   t i      5   min (32 scans co - added)    150   min (16 scans co - added)  

  SNR    200    200  
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 Based on the above comparison, the FPA imaging system is 39 - fold better, under 
the specifi ed conditions, despite requiring twice as many scans (32 versus 16). 
This result can be rationalized by considering the massive multichannel advantage 
of a 64    ×    64   FPA (4096 detectors) over a 16 - element linear array. For example, the 
FPA has 256 times as many detectors collecting data simultaneously compared to 
the linear array. To cover the same 700    ×    700    µ m area, the 64    ×    64   FPA, with its 
5.5    µ m pixel size requires a four - tile mosaic, whereas the 16 - element linear array 
in its high spatial resolution mode of 6.25    µ m, requires 784 separate line scans. 
Thus, even though the time during which a given interferogram can be acquired 
with the linear array is shorter than when an FPA is used, the FPA - based spec-
trometer required a total of 128 (4    ×    32) scans while the instrument that incorpo-
rated the linear array required 12   544 (16    ×    784) scans. Thus, the acquisition of 
almost 100 - fold more scans results in a signifi cantly slower overall time of collec-
tion when the linear array is used. The smaller pixel size of the FPA system 
(5.5    µ m) compared to the linear array (6.25    µ m) results in more pixels being col-
lected for the same sample measurement area which, according to Equation  1.12 , 
further increases the advantage of the FPA - based instrument. 

 Although the differences between FPAs and linear arrays are not always of this 
magnitude, they are usually in favor of the FPA - based imaging system. In fact, 
when employing even larger FPAs, such as the 128    ×    128   FPA, the differences are 
even larger. Linear array systems are, however, generally at their most effi cient 
when operated at relatively low spatial and spectral resolutions (e.g., 25    µ m and 
16   cm  − 1 , respectively) and with only a few co - added scans, where the synchroniza-
tion of interferometer step and stage travel is most accurately achieved.  

  1.6.3 
 Sampling 

 Imaging can be accomplished by using any of the approaches used in mid - IR 
mapping, namely transmission, external refl ection and attenuated total refl ection. 
In some instruments, the microscope objective can be changed to permit opera-
tion at either high or low magnifi cation. The key to any imaging measurement is 
that the sample should be accurately located at a beam focus so that it can be 
exactly re - imaged on the array detector. The fi rst applications of mid - IR imaging 
were performed in the transmission mode, with a few examples of refl ection 
spectroscopy. Imaging by ATR took longer to be reported, even though ATR 
imaging is by no means a new concept. For example, in his 1967 book  Internal 
Refl ection Spectroscopy , Harrick showed the visible ATR image of a fi ngerprint 
recorded photographically  [70] . 

 Despite Digilab (now Varian) having been granted a patent on ATR imaging in 
2000  [71] , this does not seem to have stopped others from employing this tech-
nique, using spectrometers from other manufacturers. Sommer  et al .  [72]  used an 
ATR accessory with a germanium IRE mounted in the external beam of a Stingray 
spectrometer/microscope. By using the edge profi le test (as discussed in Section 
 1.2.6 ), the group demonstrated a spatial resolution of about 8    µ m in the fi ngerprint 



region, and claimed also to have shown that the 4 ×  magnifi cation factor associated 
with the germanium internal refl ection element was realized. However, a 4 ×  
reduction of the diffraction limit for a microscope with a  NA  of 0.6 should have 
meant that the spatial resolution was improved to 2.5    µ m, and this was not explic-
itly demonstrated. More recently, Chan and Kazarian reported a detailed study of 
ATR imaging using a patterned fi lm of PMMA on a silicon substrate  [73] ; the 
visible image showed circles of the polymer that were 4    µ m in diameter with a 
separation of 2    µ m (see Figure  1.27 ). Micro - ATR imaging with a germanium IRE 
( n    =   2.4) showed that the PMMA circles were resolved when the spectrum was 
integrated between 1753 and 1672   cm  − 1  (average wavelength,  λ  ave    =   5.8    µ m), but the 
image tended to wash out at longer wavelengths as the diffraction limit was 
approached (see Figure  1.28 ).   

 Perhaps the most detailed investigation into the resolution of ATR imaging instru-
ments was presented by Everall, who fi rst calculated the edge profi le by convolving 
the image at 1600   cm  − 1  of the interface between the two polymers with the Airy disk, 
taking into account the 10    µ m size of the pixels in the FPA MCT detector  [74] . Everall 
then measured absorbance at 1600   cm  − 1  in each spectrum in the hyperspectral ATR 
image  of a laminate of an  acrylonitrile - butadiene - styrene  ( ABS ) polymer in the 
region of the interface, using a Stingray imaging spectrometer equipped with a 
diamond ATR element. The fi t was remarkably accurate, as shown in Figure  1.29 .   

 Everall also demonstrated the problems of quantitative ATR imaging when 
trying to measure the image of a sample containing hard spheres with a diameter 

   
  Figure 1.27     Visible image of the patterned PMMA fi lm on a 
silicon wafer, captured with a 100 ×  objective. The scales on 
the image are in micrometers.  Reproduced with permission 
from Ref.  [73] .   
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(a) (b)   
  Figure 1.28     Micro - ATR images of the PMMA fi lm on a silicon 
wafer shown in Figure  1.24  obtained by integrating between 
(a) 1753 and 1672   cm  − 1  ( λ  ave    =   5.8    µ m) and (b) 1179 and 
1090   cm  − 1  ( λ  ave    =   8.8    µ m).  Reproduced with permission from 
Ref.  [73] .   

   
  Figure 1.29     Calculated and experimental variation of the 
1600   cm  − 1  band of polyurethane as a function of distance from 
the interface of a polyurethane - ABS laminate.  Illustration 
courtesy of Dr Neil Everall, Measurement Science Group, 
Intertek Corporation.   



equal to or smaller than the depth of penetration. It was shown that a shallow 
penetration, combined with the fi nite spatial resolution of an imaging spectrome-
ter, renders ATR insensitive to hard spherical particles with domain sizes ranging 
between 10 and 150    µ m. For large spheres, the shallow penetration depth under-
estimates the diameter whereas, for small spheres the fi nite spatial resolution 
overestimates the diameter due to blurring, causing the apparent size insensitivity 
of the technique for spheres. Everall ’ s conclusions were equally valid for other 
irregular inclusions, while fl at or  ‘ platey ’  domains should yield more accurate 
results. Everall further showed that the compression of soft particles increased 
their apparent size, albeit in a noncontrolled fashion, and stressed that ATR 
imaging is nonetheless a valuable technique for assessing variations in the surface 
composition of polymer samples. It was suggested that, by sectioning the samples, 
a more accurate picture of the near - surface composition could be obtained. 

 Everall also measured the images of polystyrene spheres of several diameters 
using a 1450   cm  − 1  (6.9    µ m) band of polystyrene  [74] , and showed that transmission 
spectroscopy gave far better estimates of sphere diameter than did ATR imaging. 
The error in estimating the sphere diameter was approximately 10% when the 
diameter was  ≥ 50    µ m, whereas with ATR imaging the estimated particle diameter 
was considerably less than the actual diameter. However, when the sphere diam-
eter was  ≤ 10    µ m, their apparent diameter as measured by transmission imaging 
was approximately equal to the diffraction limit (20    µ m). 

 Image - preserving ATR accessories can be mounted in the Varian LS accessory 
for  ‘ Macro ATR Imaging ’ . In 2007, Specac    –    in partnership with and exclusive to 
Varian (under Varian ’ s  ‘ ATR imaging ’  patent  [71]     –    released an imaging - specifi c 
version of their well - known  ‘ Golden Gate ’  single - refl ection diamond ATR that 
differed from the standard version by its patented  ‘ image - preserving ’  optical design 
 [75] . This is necessary if the spatial relationships of the image are to be preserved 
whilst being propagated through the IRE. The FOV with this accessory may be as 
large as 640    ×    640    µ m when used with a 64    ×    64   FPA. 

 Another image - preserving ATR accessory that has been used in conjunction 
with  ‘ macro imaging ’  is the Harrick FastIR, which consists of a simple inverted 
ZnSe prism such as that shown in Figure  1.9 a. As the IRE is fabricated from ZnSe 
rather than diamond, this accessory is less robust, but does offer the advantage of 
having a considerably larger FOV of up to  ∼ 10    ×    6   mm when used with a 
128    ×    128   FPA. These accessories open up a whole new avenue of research, as now 
one can combine the already proven and well - established benefi ts of ATR acces-
sories such as limited or no sample preparation with the information - rich content 
afforded by FPA chemical imaging. 

 In another Digilab patent  [76] , a  ‘ side port ’  adaptor directs the beam that would 
otherwise enter the objective (in refl ection mode), via a 45    °  fl at mirror toward the 
front of the instrument into an objective now facing outwards. In such a confi gura-
tion, the sample size is no longer limited by the working distance of the objective 
(typically  ∼ 24   mm). Thus, large samples may be placed in front of the outward -
 facing objective for measurement (see Figure  1.30 ). In such a confi guration, only 
the external refl ection or ATR modes of sampling are possible. This mode of 
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measurement makes it conceivably possible for large objects such as complete 
vehicle bumper bars to be stood on the fl oor and held in contact with the micro 
ATR accessory on the outward - facing side port objective.   

 In summary, ATR imaging has a number of advantages over transmission or 
external refl ection imaging for studying surfaces that do not have spherical or 
irregular inclusions, not the least of which is the absence of artifacts caused by 
Mie scattering. Sample preparation is much easier and the diffraction - limited 
spatial resolution that can be obtained is less than can be obtained by transmission 
imaging, by a factor equal to the refractive index of the IRE. However, because the 
depth of penetration is low, the peak absorbance of even quite strong bands can 
be rather weak, especially if a germanium or silicon IRE is used. Finally, as noted 
above, if the sample contains spherical or irregular particles, they may not be 
adequately interrogated by the evanescent wave, making them appear smaller than 
they actually are. In an interesting example of  ‘ what goes around, comes around ’ , 
Kazarian ’ s group recently published hyperspectral imaging data of human fi nger-
prints in which trace quantities of drugs of abuse could be detected in a few of 
the spectra  [77] . The science of imaging has certainly come a long way since 
Harrick ’ s original ATR photograph of a fi ngerprint.   

  1.7 
 Mapping with Pulsed Terahertz Radiation 

 Vibrational spectroscopy covers the spectral region from about 0.75    µ m 
( ∼ 13   500   cm  − 1 ) to 1000    µ m (10   cm  − 1 ). To this point, we have covered the NIR (0.75 
to 2.5    µ m or  ∼ 13   500 to 4000   cm  − 1 ) and mid - IR (2.5 to 25    µ m or 4000 to 400   cm  − 1 ) 
regions. The fi nal region that will be discussed in this chapter is the far - IR (25 to 

   
  Figure 1.30     Varian ’ s patented side - port adaptor and objective, 
allowing for the measurement of samples that are too large to 
be accommodated under the objective ’ s standard 24 - mm 
working distance.  Illustration courtesy of Varian Corporation.   
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1000    µ m or 400 to 10   cm  − 1 ). Many different types of transition are seen in the far -
 IR region of the spectrum; these include intramolecular stretching modes involv-
ing heavy atoms, skeletal bending modes involving the entire molecules, torsional 
modes, ring puckering vibrations of small - ring molecules, intermolecular vibra-
tions of hydrogen - bonded molecules and charge - transfer complexes and lattice 
bands (or phonon modes)  [78] . Until only a few years ago, far - IR spectra were dif-
fi cult to measure and rarely used for chemical analysis. This state of affairs was a 
result of the fact that the radiative energy emitted by sources of continuous far - IR 
radiation, such as a Globar or high - pressure mercury lamp, is far lower than the 
corresponding energy emitted by mid - IR sources. The measurement of far - IR 
spectra using such sources is slow, even with a FT spectrometer. 

 In about 2003, a completely new way of generating far - IR radiation was devel-
oped such that far - IR spectra could be measured faster and at a higher sensitivity 
than before  [79, 80] . As a result, there has been a renewed interest in this spectral 
region. In order to distinguish the  ‘ old way ’  of measuring far - IR spectra from this 
 ‘ new way ’ , the new technology has been termed  terahertz spectroscopy , since the 
wavenumber region from 1.2 to 130   cm  − 1  corresponds to the frequency region 
from 0.05 to 4   THz (1   THz   =   1    ×    10 12    Hz). 

 The source for terahertz spectroscopy is an ultra - short - pulsed laser (usually Ti   :   
Sapphire) that emits a stream of pulses of NIR radiation at  ∼ 80   MHz, with each 
pulse lasting for about 70   fs. The laser pulses are focused on a photoconductive 
switch (sometimes known as an  ‘ Auston switch ’ ) which is a small semiconductor 
crystal (often GaAs) on which two planar metal electrodes support a large electric 
fi eld across its surface  [81] . The design of these metal electrodes is that of an 
antenna. The pulses of NIR radiation cause electron - hole pairs to be generated at 
the surface of the semiconductor, thereby changing the conductance and effec-
tively closing the switch. With a carefully designed antenna, the electron - hole pairs 
are accelerated by a  DC  electric fi eld applied across the device, leading to a rapid 
change in the current density. The changing dipole produces a THz transient in 
the antenna that is radiated into free space; the resultant effect is the emission of 
short bursts of broadband coherent terahertz radiation with each laser pulse. The 
long - wavelength radiation that is generated by this technique can then be collected 
using a silicon lens. 

 A small fraction of the NIR laser pulse is also used in the detection process. 
This radiation is focused onto a second semiconductor device where, once again, 
electron - hole pairs are generated at the surface. On this device, however, the electric 
fi eld that is created by the coincident pulses of terahertz radiation induces a mea-
surable photocurrent. The femtosecond laser pulse effectively acts as an optical 
gate, which is only open for the lifetime of the electron - hole pairs in the semicon-
ductor ( < 200   fs.) By sweeping the time delay between the arrival of the femtosecond 
laser pulse and the terahertz pulse, a waveform comprising the terahertz signal 
as a function of time can be constructed (see Figure  1.31 ). The Fourier transform 
of this signal yields the single - beam spectrum, as shown in Figure  1.32 .   

 An operating system of an instrument that is based on this principle, manu-
factured by TeraView Ltd. (Cambridge, UK), is shown in Figure  1.33   [82] . This 
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  Figure 1.31     The terahertz electric fi eld recorded as a function 
of time for the background (left centerburst) and when the 
beam passes through a 4   mm - thick silicon sample (right 
centerburst).  Reproduced with permission from Ref.  [79] .   

   
  Figure 1.32     Fourier transforms of the two time domain 
waveforms shown in Figure  1.31 . The signal is plotted on a 
logarithmic scale to show the dynamic range of the 
instrument. Pure rotation lines due to water vapor are seen 
on the background spectrum (above). The sample spectrum 
(below) is that of crystalline silicon.  Reproduced with 
permission from Ref.  [79] .   



spectrometer generates pulsed broadband terahertz radiation in the range of 0.05 
to 4   THz (1.4 to 130   cm  − 1 ). Measurements on this instrument can be recorded in 
two modes: (i) a rapid - scan mode, where the optical time delay is generated by 
mirrors that move rapidly and continuously and for which the maximum resolu-
tion is 1   cm  − 1 ; and (ii) a step - scan mode where the time delay is generated by a 
cube - corner retrorefl ector the position of which is controlled by a stepper motor, 
where the maximum resolution is 0.1   cm  − 1 . The rapid - scanning delay line allows 
both the delay position and the output of the lock - in amplifi er to be digitized and 
re - interpolated to obtain the THz fi eld as a function of optical delay in real time.   

 Terahertz radiation has the major advantage that, because the wavelengths are 
so long, scattering is minimized. Thus, it is often possible to measure a THz 
transmission spectrum through a pharmaceutical tablet or cardboard packaging 
material. However, the absorption spectrum of water contains a very strong, 
broadband centered at 5.6   THz (17.9   cm  − 1 ) which has been assigned to the resonant 
stretching of the hydrogen bond between the water molecules (although the 
present author believes that that mode should be observed at considerably higher 
frequency and the 5.6   THz band is more likely to be due to a bending or torsional 
mode of the hydrogen bond.) In any event, the high absorption of water in the 
THz region makes it possible to accomplish whole - body imaging  [83] , to observe 
the contrast between muscle and adipose tissue  [84]  and also between tumor and 
normal tissue  [85] . 

   
  Figure 1.33     Schematic representation of a terahertz 
spectrometer.  Reproduced with permission from Ref.  [82] .   
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 The spatial resolution in the  x  and y dimensions is determined by the diffraction 
limit (see Equation  1.3 ). Since  λ  is between  ∼ 70 and 700    µ m, the resolution in 
these directions is far worse than for NIR or mid - IR microspectroscopy. On the 
other hand, signifi cantly better resolution in the  z  direction may be obtained, since 
the THz pulse duration of  < 200   fs produces an axial resolution of 30  µ m. The 3 - D 
structure of the coating of pharmaceutical tablets has been studied by Fitzgerald 
 et al.   [86] . When the instrument is operated in the refl ection mode, a refl ected THz 
signal occurs whenever there is a change in boundary conditions; that is, the 
refractive index of two adjacent layers changes. This results in multiple pulses 
being returned to the detector, as shown schematically in Figure  1.34 . Measure-
ments of this type can be made in two ways: (i) one mode allows for a rapid single -
 point measurement of the coating thickness; alternatively (ii) multipoint 
measurements can be made by rastering the sample to allow false color maps of 
the uniformity of different layers to be produced.   

 An example of the time domain waveforms at several points on ibuprofen tablets 
from two different manufacturers is shown in Figure  1.35 . The lower trace is for 
a tablet that has a single coating, whereas the upper trace is for a tablet with mul-
tiple coatings. By knowing the refractive index of each layer, its thickness can be 
calculated.    

  1.8 
 Summary 

 Powerful instruments for mapping and hyperspectral imaging in the NIR, mid - IR 
and far - IR regions, and by Raman spectroscopy, are now commercially available. 
Although instruments for imaging were initially expensive    –    frequently costing 
more than US $  200   000    –    the price tag continues to fall; for example, with the 
advent of rapid - scanning FPA imaging systems, the cost of mid - IR imaging 

   
  Figure 1.34     Schematic diagram of the experimental 
arrangement to examine the coating of a pharmaceutical 
tablet.  Reproduced with permission from Ref.  [86] .   



   
  Figure 1.35     Example of depth profi ling by terahertz 
spectroscopy. Pulses arise from interfaces between the 
coating layers, as illustrated by the schematic illustrations of 
the tablets. The lower trace is for the sample on the left, and 
the upper trace for the sample on the right.  Reproduced with 
permission from Ref.  [86] .   

spectrometers now starts from US $  150   000. Instruments used for mapping 
measurements, where the spectra of single points on the sample are measured 
sequentially and the position of the sample is changed after each measurement, 
are less expensive than imaging spectrometers, but the measurements are much 
more time - consuming and the spectra, when measured with high spatial resolu-
tion, typically have a decreased SNR. The hybrid linear array mapping approach, 
although much faster than single - point mapping and with an increased SNR and 
spatial resolution, is still several - fold less effi cient in terms of speed (time), SNR 
and spatial resolution than contemporary rapid - scanning, FPA - based chemical 
imaging systems. With NIR instruments, a similar comparison cannot be made, 
as most imaging measurements are made by changing the wavelength with an 
LCTF, and mapping NIR microspectrometers are rarely encountered. The situa-
tion is less defi nitive for Raman spectrometry, as mapping instruments are both 
sensitive and fast, especially with the development of electron - multiplying CCDs. 
In summary, it can certainly be said that hyperspectral imaging spectrometers are 
today revolutionizing the way in which vibrational spectroscopy is used, especially 
with respect to the analysis of pharmaceutical products and for medical 
diagnosis.  
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2

  2.1 
 Introduction 

 Hyperspectral images are measurements which include information not only of 
high quality, but also in high quantity. As the spectral output from an image pro-
vides a massive data set, there is a clear need to identify those tools that are capable 
of handling such measurements and extracting any interpretable knowledge. 
Before the analysis of an image is attempted, two main questions should be asked: 
(i) What are the chemical and mathematical properties of the measurement?; and 
(ii) What is the objective of the analysis? The answer to the fi rst question will 
delimit the families of methods that potentially can be used, and also help in the 
design of new algorithms that may take into account the specifi cities linked to the 
image ’ s nature. Setting the objective of the analysis will highlight the specifi c 
algorithm to be used, taking into account the input information available and the 
desired outcome. 

 The use of chemometric tools in image analysis is crucial in order to take advan-
tage of the full measurement; this is opposed to the  ‘ classical approach ’ , where only 
pieces of information from the whole image are taken in order to provide easily 
visualizable, but partial representations.  Image analysis  is a fi eld which is undergo-
ing constant development in chemometrics and where although some solid knowl-
edge has been already built, new working possibilities continue to emerge. In 
recent years, much effort has been devoted to exploring the spectral and spatial 
information contained in an image (known under the general denomination of 
 multivariate image analysis ,  MIA ) and to assigning the pixels of an image to dif-
ferent groups, according to the similarity of their spectral features (image segmen-
tation). Whilst within these areas a number of excellent reviews and tutorials have 
been published  [1 – 4]  and improvements to the existing methodologies continue to 
appear, less - explored topics include the use of regression or calibration methods 
to relate the information of the image to properties, such as concentrations. As in 
classical spectroscopy, this area is particularly relevant in the  near - infrared  ( NIR ) 
images of food and/or pharmaceutical products. Multivariate resolution methods 
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are among the most recent tools incorporated into the fi eld of image analysis, and 
these have proven to be most easily adapted to the nature of these measurements. 
Indeed, resolution methods can provide the pure spectra and distribution maps of 
the image constituents from sole raw image measurements. 

 When considering the diversity of existing and in - progress methodologies for 
image analysis, it would be far too ambitious and unrealistic to attempt to explain 
all of these in a single book chapter. Instead, we will focus here on a general 
description of hyperspectral measurements, and on some recent aspects of image 
analysis that although having received less attention in the available literature, may 
be of particular interest for infrared and Raman images. 

 Both, Raman and infrared spectroscopies provide information that is rich in fi ne 
spectral features, thereby providing excellent structural information and the pos-
sibility to differentiate among image constituents based on their distinct  ‘ spectral 
fi ngerprints ’ . It is for this reason that resolution techniques, aimed at recovering 
the real pure spectra and distribution maps of the chemical components from a 
raw image, might benefi t from the highest spectral defi nitions of Raman and 
infrared spectroscopic images. The adequacy of resolution methods to the nature 
of the Raman and IR measurement and the smaller amount of literature about 
these kind of chemometric methodologies for image analysis justifi es that a large 
part of the chapter will be devoted to this fi eld. While other methodologies will be 
described briefl y, the reader will also be directed towards other literature sources 
that will provide further information on the subject, should this be required.  

  2.2 
 Hyperspectral Images: The Measurement 

 Hyperspectral images represent a particular type of measurement that contains 
both spatial and spectral    –    and thus chemical    –    information about a sample. The 
sample is physically preserved and compartmented into small surface or volume 
areas, referred to as  ‘ pixels ’  or  ‘ voxels ’ , respectively. Each of these small portions of 
the sample is represented by a spectrum. Information on the chemical composition 
can then be extracted through an examination of the spectra and an interpretation of 
their bands, or by confrontation with a spectra library. Information on the constitu-
ent distribution is consequently obtained from the pixel - to - pixel spectral variation. 

 It is important, therefore, to take into account the spectral and spatial informa-
tion contained in an image, because this duality conforms the singularity of this 
type of measurement as opposed to other bulk sample spectroscopic measure-
ments. Data analysis tools should also take this spatial/spectral character into 
account if the maximum information is to be extracted from the raw data. 

  2.2.1 
 The Data Set and the Underlying Model 

 Hyperspectral images are often displayed as data cubes, where two dimensions 
are the pixel coordinates ( x  and  y ) and the third dimension is the spectral one. In 



the following, the spectral dimension (wavelength/wavenumber) will be generally 
termed as the  ‘ channel ’ . When dealing with a multilayer image, we should imagine 
a hypercube with three spatial directions (the  x  - ,  y  -  and  z  - voxel coordinates) and 
the spectral direction. 

 While this representation is very faithful to the nature of the measurement, it 
is also important to consider the underlying chemical (mathematical) model of 
the measurement, as knowledge of the model will allow selection of the data tools 
that adapt best to it. 

 It is tempting to associate the visual  three - dimensional  ( 3 - D ) or  four - 
dimensional  ( 4 - D ) representation of monolayer or multilayer images with equally 
dimensioned data arrays. This would force us to seek chemometric tools capable 
of handling tensors or higher - order data sets. Fortunately, the mathematical 
description of the variation of the data within an image is much simpler, and only 
needs the use of data tables that adequately represent the underlying bilinear 
chemical model of any spectroscopic measurement, that is the Beer – Lambert law. 

 It is well known that the spectrum of any pixel is represented by the concentra-
tion - weighted sum of the contributions of the pure spectra of the image constitu-
ents. These concentration weights vary from pixel to pixel, depending on the pixel 
composition, but the pure spectra of the constituents are the same along the whole 
image. These chemical ideas can be expressed mathematically by a bilinear model. 
First, we should unfold the image cube into a data table that contains all pixels 
one under the other (see Figure  2.1 ). This data table contains the raw image mea-
surement and can be decomposed into the product of a matrix of pure spectra by 

   
  Figure 2.1     The underlying Beer – Lambert law (bilinear) model of hyperspectral images.  
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the concentration weights of these pure components in each pixel. In matrix form, 
the expression reminds us clearly of the Beer – Lambert law:

   D CS ET= +     (2.1)     

 The matrix  S T   contains the pure spectra of the image constituents, and matrix 
 C  the concentration values of these constituents in each pixel. As we work with 
real measurements,  E  contains the experimental error due to signal variation, and 
not to the signal provided by the chemical compounds. By taking a row of the  C  
matrix, information on the chemical composition of the related pixel can be 
obtained, whereas by taking a column the pixel - to - pixel variation of the concentra-
tion of a particular image constituent can be seen. Then, by folding back each  C  
column to recover the original  two - dimensional  ( 2 - D ) or 3 - D image confi guration, 
the distribution map of each particular image constituent can be obtained. 

 There are important consequences linked to the bilinear image model, the posi-
tive points being linked to the simplicity of the mathematical model. There are 
many well - known chemometric tools that function to decompose the raw data into 
bilinear models and which, therefore, may be potentially suitable for image analy-
sis. The negative aspect here is the decrease in the image dimensionality    –    that is, 
from the original 2 - D or 3 - D spatial dimensions into a single pixel direction, which 
implies that the concept of pixel neighborhood is lost and we should fi nd addi-
tional ways of incorporating this spatial information into the classical bilinear 
analysis tools. 

 Today, a wealth of methods and algorithms is available that we can use to deal 
with images. As will be seen in the following sections, the selection is largely 
infl uenced by the goal of the analysis. For example, we may simply want to explore 
the image, and may be more interested in spatial or spectral information. Alter-
natively, we may try to segment the image into groups of similar pixels, or establish 
a quantitative model between the image measurement and some independent 
information, such as concentrations. We may even try to recover the underlying 
bilinear model of pure constituents from the raw measurement. Clearly, it is very 
important to select the right tool for the right purpose since, although we will 
encounter much progress in the adaptation of existing chemometric tools to the 
particular features of an image data set, we can also derive a host of information 
simply by using the available methodology.   

  2.3 
 Image Preprocessing 

 Although hyperspectral images contain a lot of information, the quality of the raw 
measurements is often affected by noise or by instrumental variations that hamper 
the analysis. Typical problems encountered in image measurements are the high 
noise level, the presence of intense and irregularly shaped baseline contributions 
or the existence of anomalous pixel spectra (dead pixels or outliers) that may infl u-
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ence the results of the image analyzed. It is for this reason that an effective pre-
processing system can signifi cantly improve the results obtained from any image 
data analysis tool. When the quality of the signal has been ensured, additional data 
pretreatments or image compression may be necessary, depending on the data 
analysis to be carried out. 

  2.3.1 
 Signal Preprocessing 

  2.3.1.1   De - noising 
 In recent years, many methods have been designed to de - noise spectroscopic data 
sets, all of which can be applied to hyperspectral images  [5, 6] . Some of these 
methods rely on smoothing procedures, whether by averaging or fi tting neighbor-
ing spectral channels to a polynomial function (such as the Savitzky – Golay 
approach  [7] ), or on mathematical signal fi ltering (Fourier transform - based fi lters 
or wavelet - based fi lters  [8, 9] ). When applying any of these methodologies, it is 
vital that none of the relevant features of the data set is removed together with the 
noise  [10, 11] . Other methods, such as  principal component analysis  ( PCA ) decom-
pose the original data set into a bilinear model of latent variables  [5, 12] , a small 
number of which relate to chemical variation, and the rest to noise. The reproduc-
tion of a data set, taking only the model with the relevant components, is also a 
good method of denoising. An appreciation of the de - noising effect of PCA on the 
spectra of a Raman emulsion image is shown in Figure  2.2 b (more detailed infor-
mation on the PCA method can be found in Section  2.4.2 ).    

  2.3.1.2   Baseline Correction 
 This is a commonly used preprocessing in image analysis that works better if it 
is performed after image denoising. In this way, the baseline is better defi ned and 
can, as a consequence, be better subtracted. Again, a typical baseline correction, 

   
  Figure 2.2     (a) Raw spectra of a Raman emulsion layer image; 
(b) Spectra after de - noising by principal component analysis 
(PCA); (c) Spectra after de - noising and baseline correction by 
asymmetric least squares.  
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based on linear models or on more complex mathematical functions, can be 
performed  [6, 13] . Other strategies, such as working with derivative spectra instead 
of the raw spectra, help to eliminate instrumental variations such as offsets or 
linear baselines that are unrelated to the chemical composition of the image. 
Recently, more sophisticated baseline correction methods have been reported that 
are capable of handling irregularly shaped baselines changing from pixel to pixel; 
 asymmetric least - squares  ( AsLS ) is a good example of these new methodologies 
 [14] . The AsLS method is based on a recursive fi tting of the whole spectrum with 
a baseline. In the fi rst fi tting step, all channels are used, with part of the spectrum 
above the fi tting line and part below. The spectral channels above the fi tting 
line    –    that is, those channels where there is an absorption band    –    are downweighted 
in the next fi tting step. After a small number of fi tting cycles, no more variation 
occurs and the fi tted baseline obtained is used to correct the spectrum. Depending 
on the shape of the baseline, the two parameters    –    one linked to the smoothness 
of the fi t and one to the penalty imposed on the positive residuals (channels above 
the fi tted baseline)    –    can be adjusted. This type of correction is particularly useful 
in spectra, such as Raman and infrared, where the baseline is smoother and has 
a signifi cantly lower frequency than the spectral features. The baseline correction 
effect by AsLS on de - noised emulsion data is shown in Figure  2.2 c.  

  2.3.1.3   Detection and Suppression of Anomalous Pixels or 
Anomalous Spectral Readings 
 Because of diverse instrumental artifacts, some of the pixels may show unexpected 
spectral readings (e.g., spikes)or present completely abnormal spectra ( dead pixels ) 
 [15] . The presence of these very different measurements can distort the results 
obtained from image analysis, and these should be detected and eliminated/
corrected. One easy method of detecting unexpectedly high or low results may be 
by using thresholding methodologies that can highlight spectral readings (or 
complete spectra) that are well below or above a representative reference value 
(spectrum). Median values for spectral readings or median spectra taken from 
 regions of interest  ( ROI ) in the image can be used as references for this detection. 
For this purpose, mean values are not recommended because they can be signifi -
cantly modifi ed by the infl uence of any abnormal measurements  [15] . Anomalous 
readings    –    for example, spikes    –    can be replaced by interpolated values obtained by 
taking the readings of normal neighboring spectral channels for this purpose. 
Likewise, dead pixels can be replaced by interpolated spectra, taking as reference 
the normal neighboring pixels.   

  2.3.2 
 Data Pretreatments 

 When the signal preprocessing is fi nished, additional pretreatments can be carried 
out to enhance certain properties of the image data set. Again, the spectra in an 
image can be subjected to any data pretreatment used in traditional spectroscopic 
data sets, with the choice depending on the spectral structure and the goal of the 
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data analysis. To give some examples, derivatives can be carried out to stress subtle 
differences in spectral features among spectra. Spectra normalization may repre-
sent an option when the focus is on comparing the shapes of the pixel spectra 
independently from their global intensity, for example for pixel classifi cation pur-
poses. Centering or scaling of spectral channels may also be options in quantitative 
regression methods. In contrast, keeping the original spectra intensity may be 
relevant in resolution methods. Further information regarding the effect of the 
main data set pretreatment on the results of the data analysis is available elsewhere 
 [1, 5, 6, 13, 15 – 17] .  

  2.3.3 
 Image Compression 

 Very often, the large size of raw images results in unreasonable computation 
times. Depending on the size of the image, and on the intensity of computation 
of the data analysis tool selected, the original image should be compressed.  Com-
pression  can be performed on the spectral and/or on the spatial dimension. The 
simplest compression is to bin the image as much as needed so as to reach the 
desired data set size. The term  ‘ binning ’  means to add the readings in an interval 
of neighboring spectral channels to form a single measurement (spectral binning), 
or likewise to add the spectra of neighboring pixels (binning in the pixel direction) 
to obtain a single spectrum. Which direction (spatial/spectral) should be binned 
will depend on the resolution of the image, and on which type of information is 
preferred. Although the binned image will enclose the information in all spectral 
channels or pixels, it will suffer a loss of spatial and/or spectral resolution. 
However, most images can be signifi cantly reduced in this way without losing any 
relevant information. Compressed representations of the image that retain all of 
the information in the spectral channels can be obtained by using other methods, 
such as PCA. In this case, the original spectral channels are replaced by a small 
number of variables (principal components), which are linear combinations of the 
original ones and express the image information very effi ciently  [1] . 

 A simple way of accelerating the computing time is based on the selection of a 
reduced number of pixels or spectral channels, according to different criteria. This 
is the case if feature selection is performed in the spectral direction, or if the 
analysis is performed on a representative pixel subset. Many methodologies are 
available for this purpose, some of which rely on the straight selection of the purest 
pixels or the purest spectral channels, such as SIMPLISMA  [18 – 20] ; others are 
based on more exhaustive search strategies, such as genetic algorithms  [21 – 23] . A 
selection can also be made on spectral channels that have been previously trans-
formed, as in wavelet - transformed data  [8, 24, 25] . Representative pixel subsets 
can also be obtained by using sampling methodologies, taking into account the 
same strategies as are followed in chemical sampling  [1] . If the compression per-
formed does retain the relevant information on the original image, then no matter 
which methodology is used no deterioration will occur in the quality of the image 
analysis results.   
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  2.4 
 Exploratory Image Analysis 

 Independent of the fi nal objective of image analysis, it is always worth exploring 
the image in both spatial and spectral directions to obtain a fi rst insight into the 
most relevant spectral features, or on any peculiarities linked to the component 
distribution. 

  2.4.1 
 Classical Image Representations 

 Some traditional approaches to exploring an image are carried out by sacrifi cing 
much of the information in order to obtain visual plots that can be easily inter-
preted with minimal or even zero computation effort. For example, the distribu-
tion map of a constituent can be displayed by taking a slice of the image on a 
particularly relevant wavenumber. This implies that many spectral channels car-
rying information are ignored and that the utilized wavenumber is assumed to 
have selective information for that particular component. However, such an 
assumption is only reliable when all the constituents of the image (and their pure 
spectra) are perfectly known. Even in this case, it may happen that a particular 
component does not have any selective wavenumber and, therefore, a map derived 
using a single mixed spectral channel will be a distortion of the real situation. It 
should also be taken into account that images from natural or complex samples 
may contain unknown components, so that assuming the presence of selective 
spectral channels without any solid evidence could provide incorrect distribution 
maps. 

 Another classical representation of images is the  global intensity plot . This 
graph is obtained by adding up the readings of all spectral channels in a pixel 
spectrum. In this way, each pixel is represented by a single number related to the 
total spectral intensity measured. These plots allow for the observation of certain 
spatial features in the image, but do not provide any information about the chemi-
cal composition of the image, because all of the spectral information is collapsed 
into a single numerical value. At most, they provide a fi rst approximation of the 
physical characteristics of the image. It would also be a mistake to associate these 
intensity measurements with concentrations, as the composition among pixels is 
variable and the intensity can also be affected by slight pathlength changes among 
pixels. Figure  2.3 a shows the global intensity plot and Figure  2.3 b a distribution 
map based on a single spectral channel for a monolayer emulsion image.    

  2.4.2 
 Multivariate Image Analysis ( MIA ) and Principal Component Analysis ( PCA ) 

 In contrast to classical approaches, MIA uses all of the information contained in 
the original image in the spatial and spectral directions, and provides simple ways 
of visualizing the image while preserving the relevant original information  [1, 



26 – 29] . Very often, the expression MIA is linked to PCA, although many other 
methodologies could respond to this general denomination. The early and wide-
spread use of PCA to analyze images is easily understood when considering the 
inner properties of this methodology. PCA is a chemometric method that decom-
poses a data table into a bilinear model of latent variables, the so - called  ‘ principal 
components ’ , according to the expression:

   D TP ET= +     (2.2)  

where  T  are the scores,  P T   the loadings, and  E  accounts for the experimental error. 
Note that  D  must be rearranged, as shown in Figure  2.1 . The principal compo-
nents are linear combinations of the original variables, and are calculated so that 
they express the maximum variance contained in the data set in decreasing order 
of importance and there is null correlation among them  [5, 12, 16] . In the context 
of image analysis, this means that even though an image can have hundreds or 
thousands of spectral channels, the relevant information in all these channels is 
contained in a very small number of principal components. This is due to the 
repeated information among spectral channels in the original image. Therefore, 
although a number of principal components equal to the number of spectral chan-
nels is calculated, only the fi rst few describe spectral variations linked to the 
chemical composition of the image, while the remainder account for noise - related 
signal contributions. 

   
  Figure 2.3     Classical visualizations of a Raman emulsion layer 
hyperspectral image. (a) Global intensity plot; (b) Distribution 
map derived from a single wavenumber.  
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 It is worth noting the identical form of the PCA model and the Beer – Lambert 
law in matrix form,  D    =    CS T     +    E . If the chemical model of an image only needs as 
many pure spectra as image constituents to reproduce any pixel spectrum, it 
should not be surprising that the number of principal components needed to 
describe an image data set is equal to the number of chemical constituents of the 
image. Indeed, the rows in the loadings matrix ( P T  ) could be interpreted as abstract 
pure spectra and the columns in the scores matrix ( T ) can also be folded back to 
form abstract distribution maps (as with the stretched concentration profi les in  C  
in Figure  2.1 ). It is also illustrative to compare the real pure spectra and distribu-
tion maps of an image with the analogous loadings and scores representations, 
respectively. 

 Figure  2.4  shows a comparison of the results obtained from the PCA and real 
chemical models for a Raman emulsion image  [30] . The latter image is formed by 
four constituents related to the drop phase, the interphase, an additive and the 
off - drop phase. The two models (real and PCA) resemble each other when consid-
ering general trends; for example, the  ‘ score maps ’  are reminiscent of the real 
distribution maps, although the information seems to be more mixed, and the 
most salient spectral features in the real spectra can also be found in the different 

   
  Figure 2.4     PCA model and real chemical Beer – Lambert model for a Raman emulsion image.  
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 ‘ loading spectra ’  (see the circled bands in Figure  2.4 ). There are relevant differ-
ences that should be taken into account, however. When comparing the pure 
spectra and the loadings, the fi rst striking difference is the lack of any chemical 
meaning of the loadings, with negative bands (below the dashed line) nonexistent 
in the original Raman spectra. Likewise, we fi nd negative values in the score dis-
tribution maps (color scale not shown), unacceptable for real concentrations. This 
stems from the fact that the principal components are calculated to maintain a 
null correlation among them; that is, the different  ‘ loadings spectra ’  are completely 
uncorrelated. However, the real spectra of constituents hardly ever obey this condi-
tion, and it is for this reason that a principal component cannot be directly associ-
ated with a real chemical compound because the mathematical properties and 
chemical meaning of both are essentially different.   

 Nevertheless, performing PCA on an image data set is always useful because, 
often, the  a priori  information available is very scarce. When considering the 
loading plots, high absolute values will mark relevant spectral features for the 
image description. The score distribution maps will also provide insight as to 
which zones of the image are most related to the features detected in the related 
loadings. It is worth stressing here that PCA allows for a drastic decrease in the 
dimensionality of the original image data, preserving all of the relevant informa-
tion enclosed in the abstract principal components. This strategy is very different 
from picking a few spectral channels for visualization, when all of the information 
outside the selected channels is thrown away. In PCA, all wavenumbers are rep-
resented under the different PC combinations, so that the image scores and 
loadings represent an excellent fi rst approach to visualize an image in a space of 
small dimensions, without losing the richness of information of the original 
measurement. 

 It is interesting to examine a complementary aspect linked to the PCA com-
pressed representation of an image. In a PCA model, a pixel is no longer repre-
sented by a full spectrum, but rather by a small number of score values that provide 
complete information about its chemical composition. Thus, pixels of similar 
composition in an image are expected to have similar score values. This idea has 
been used for image segmentation purposes, by using the score values instead of 
the full pixel spectrum as input information for the suitable segmentation algo-
rithms. A simpler visual way to detect pixel clusters without the need of further 
calculation is through the observation of scatter plots of pixel scores. In these 
2 - D plots, two principal components are taken as the axes and each pixel is repre-
sented by a dot located according to the related score coordinates. Different scatter 
plots can be produced using different combination pairs of principal components. 
In scatter plots, the similar pixels cluster together in the displayed PC space. MIA 
software often allows for the creation of  ‘ pixel masks ’  enclosing pixel clusters in 
scatter plots that afterwards are located spatially in the original image  [31] . These 
masks can be created by a visual inspection of the score plots, enclosing groups 
of close pixels, or they may be automated with the help of auxiliary chemometric 
tools  [32] . Figure  2.5  shows this procedure on the emulsion example. In this fi gure, 
the scatter score plot of PC3 versus PC2 is displayed (each pixel is a dot in this 
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plot; see Figure  2.5 a, right plot). Figure  2.5 b shows how the different masks in 
this scatter plot (drawn by visual inspection and marked in different colors) group 
those pixels with similar score values, which belong to the different image con-
stituents in the sample (drop, additive, interphase and off - drop phase). The plots 
at the left of the masked score plots display the location of the pixels in the mask 
on the original 2 - D spatial image representation.   

 In the approach presented, the shape of the pixel spectra is the driving force to 
detect structures or similarities among pixels. Recent improvements in MIA soft-
ware incorporate explicit information on the spatial location of the pixels to assist 
with any interpretation of the image information  [25] . 

 Similarly to PCA, other methods exist that represent the image raw data in a 
space of smaller dimensionality, aiming to retain all relevant information. Some 
of these project the image in a small space according to different criteria, such as 
statistical independence in  independent component analysis  ( ICA )  [33] , or are 
based on properties linked to data topology  [34] .   

   
  Figure 2.5     (a) Left: RGB plot of the score images related to 
PC1, PC2 and PC3. Right: Scatter score plot of PC3 versus 
PC2; (b) Pixel masks in scatter score plot and location of 
mask pixels in the Raman monolayer emulsion image.  
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  2.5 
 Quantitative Image Information: Multivariate Image Regression ( MIR ) 

 Although images are mainly focused on providing information on the chemical 
composition of the sample and the compound distribution, there are possibilities 
to use them for quantitative purposes if reference information is available. The 
methodologies in this fi eld have been often referred to as  multivariate image 
regression  ( MIR ), although the denomination of MIR extends, in a more general 
way, to the relationship that may be established between an image and any related 
property to be predicted, or also among images  [35 – 40] . MIR includes multivariate 
calibration methods used in spectroscopic data sets that have been adapted to 
investigations with images  [5, 6, 16] . As in other chemical data examples, the most 
commonly used algorithm is  partial least squares  ( PLS )  [41] , which functions by 
building an inverse calibration model,  Y   =   XB  between a matrix of spectra ( X ) and 
a matrix with the properties to be predicted ( Y ); that is, concentration values in a 
quantitation context. Instead of working with the original variables in matrices  X  
and  Y , PLS encloses the information of these original variables in a small number 
of latent variables that are calculated so that they capture the maximum covariance 
between  X  and  Y . The same caution used in building a PLS model for spectrometer 
data, for example the selection of the number of latent variables, internal and 
external validation, should be taken into account when the method is used with 
image data sets  [5, 6, 16] . 

 The main difference between using calibration methods for spectrometer data 
and images is that, in the fi rst case, there is a reference concentration value per 
spectrum, whereas for images, the single concentration value relates to thousands 
of pixel spectra. Besides, the reference concentration value refers to the bulk 
sample and, in an image, there may be pixel - to - pixel variations of concentration 
for a particular compound. Therefore, strategies should be found that retain the 
validity of the relationship between the bulk concentration value and the spectral 
information in the image. It should also be taken into account that, because of 
instrumental reasons, the relationship between the spectrum intensity and the 
concentration may vary from pixel to pixel. Some studies recommend specifi c 
types of image preprocessing to account for these nonchemical differences  [42] . 

 The ideal situation to use calibration methods in images would be to have refer-
ence concentration information for each pixel. In this instance, a number of cali-
bration models equal to the number of pixels would be built. By keeping the same 
experimental conditions in the image recording process, very accurate and precise 
results could then be obtained, although this is a very uncommon situation. 
Usually, there is a tendency to have only one quantitative value of the sample per 
image. From now on, only the scenario where a number of images is available 
with a single concentration value per image will be considered. The particularities 
linked to calibration for image data sets are linked to the strategy used to build 
the calibration model and to the information obtained in the prediction step. 

 In order to establish the calibration model, the available information is a set 
of calibration images and related concentration values. Due to the pixel - to - pixel 
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heterogeneity, a model built selecting a pixel spectrum per image would be neither 
representative nor reliable. A good approach to seek representivity has been pro-
posed by Geladi  [15] , and consists of taking the median spectrum obtained from 
a ROI in the image as the representative spectrum of the image. The ROI should 
be large and contain many pixels in order to provide a median spectrum that is 
representative of the bulk concentration of the sample. The median spectrum is 
not a real measured spectrum, but rather is constructed by taking the median value 
of all spectral readings at each of the spectral channels measured. Median instead 
of mean spectra are preferred so as to avoid the infl uence of extreme spectral 
readings (from anomalous pixels or spectral channels) in the spectrum used to 
build the calibration model. Median spectra obtained from replicate images taken 
from the same sample can be used to be related to the same concentration value 
(see Figure  2.6  to see the scheme followed in the calibration step).   

 When the calibration model has been obtained, the validation is performed by 
applying the calibration model (the  B  matrix) to median spectra obtained from a 
set of validation images, for which the reference concentration value is known. As 
in any other calibration procedure, the predictions obtained can be used to evaluate 

   
  Figure 2.6     Strategies of calibration and prediction in multivariate image regression.  
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the accuracy and the precision of the bulk concentration estimates by examining 
the bias and the  root mean square error in prediction  ( RMSEP ).

   bias i i
i

= −( )∑ c ĉ     (2.3)  

   RMSEP
i i

i=
−( )∑ c c

ns

ˆ
2

    (2.4)  

where  c  i  is the real reference concentration value for the  i  th  sample,   ĉ   1  the predicted 
concentration by the calibration model, and  ns  the number of samples. When the 
model has been validated, it can be used to predict bulk concentration values in 
unknown images. 

 So far, what has been presented does not differ much from the calibration 
models obtained with classical spectrometer data. However, the information 
obtained is greatly increased if we take into account the real nature of the image 
and use all of the available information    –    that is, all of the ROI pixel spectra    –    in 
the prediction step. When this is done, we obtain as many predicted concentration 
values as pixels in the image. The pixel concentration values obtained can be used 
in a straightforward way to display a distribution map of real concentrations, 
keeping the original spatial structure of the image (see Figure  2.6 ). This allows 
concentration information to be obtained in a local context, and also shows the 
homogeneity of compound distribution along the scanned image. 

 For statistical purposes, a histogram representation may be preferred, where the 
x - axis shows the concentration predicted values and the y - axis the pixel counts  [15] . 
This histogram may provide information on the characteristics of the sample and 
also on the quality of the calibration model. As with the sample characteristics, 
the homogeneity of compound distribution can be easily seen by considering the 
width of the distribution obtained (the narrower the width, the more homogeneous 
the sample), while the presence of outlying pixels can be detected at the most 
extreme values of the histogram. The quality of the calibration model can be 
assessed in different ways. For example, a shift between the central value of the 
histogram and the reference concentration value of the calibration sample can 
detect the presence of a bias due to a bad selection of the number of components 
to be included in the model, or for other reasons. The width of the histogram is 
also indicative of the precision of the calibration model. Although the heterogene-
ity of the scanned sample will always be the main factor defi ning the width of the 
histogram, it may be interesting to determine whether the application of data 
pretreatments oriented to reduce instrumental variations of the measurements 
will also result in a decrease in histogram width. Recently, statistical diagnostics 
have been proposed that seek the correct balance between the histogram width 
and the shift between the center of the histogram and the reference concentration 
values to select the correct number of components in the calibration model. 

 It is relevant at this point to stress that calibration using hyperspectral images 
can provide results comparable to those given by spectrometer data, when median 
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spectra are used to predict bulk sample concentrations  [43] . Moreover, when all 
the pixel spectra are included in the prediction step, the images provide much 
more detailed information regarding the complexity of the sample, highlighting 
aspects related to purity and heterogeneity that would never be known from a 
single spectroscopic measurement per sample.  

  2.6 
 Image Segmentation 

 One of the goals of image analysis is to identify groups of similar pixels in an 
image; that is, pixels with similar spectra and, therefore, similar composition and 
chemical or biological properties  [4] . This operation is referred to as  image seg-
mentation , and can be used for different purposes, for example to separate zones 
in biomedical samples that may be later assigned to certain pathologies  [44]  or, 
simply, to obtain an insight into the variation of chemical composition along the 
surface scanned  [45] . While many tools aimed at performing image segmentation 
are available, the main differences among them are linked to the  a priori  knowl-
edge used in the segmentation process and to the defi nition of class membership 
for a particular pixel. The traditional implementation of the parent chemometric 
tools compares the spectral shape of the different pixels, as if they were completely 
independent from one another. Recently, some of these methodologies have been 
adapted to incorporate the spatial information linked to pixel neighborhood, and 
this has resulted in a better clustering performance for image data sets  [25, 46] . 

  2.6.1 
 Unsupervised and Supervised Segmentation Methods 

 These two families of methodologies can be distinguished according to the previ-
ous knowledge about the pixel classes used in the segmentation process. Unsu-
pervised methods do not rely on any  a priori  knowledge, and take the whole 
unknown image to seek pixel clusters or classes, whereas supervised methods use 
previous knowledge of the pixel classes that need to be defi ned. That is, the class 
models are generated with well - identifi ed pixels and are afterwards applied for 
class assignment of unknown pixels  [5, 6, 47, 48] . 

 Unsupervised methods assign pixels into the same cluster when their spectra 
are similar enough. The similarity can be evaluated with many different measures, 
depending on the algorithm at hand. As seen in Section  2.4 , PCA is a good unsu-
pervised segmentation method when the information in the scores scatter plot is 
used for this purpose (cf. Figure  2.5 ). In this case, the clusters are defi ned from a 
visual inspection of the scatter plots, creating masks that enclose pixels which 
group together in the PC space  [1, 31] . A good point in the use of PCA for cluster-
ing is that, not only clusters can be obtained but, from the complementary infor-
mation in the loading plots, it is also possible to detect which spectral features are 
linked to the different groups detected. 



 Other classical unsupervised cluster analysis methods rely on using mathemati-
cal indicators, such as distances, to quantify the similarity among pixel spectra. 
Thus, each pixel can be viewed as a point in the space of original wavenumbers 
or on other spaces, for example PC space. The coordinates of a pixel can be the 
spectral readings at the different wavenumbers (in the original image space) or 
the scores (in the PC space). Similar pixels should be close in the reference space 
and, therefore, distance measurements, such as Euclidean distance ( ℘ ), can be 
used to assess this proximity:

   ℘( ) = −( )
=
∑x x x x

d

i j il jl
l

, 2

1

    (2.5)  

where  x  i  and  x  j  are two pixels and  d  is the total number of variables (wavenumbers, 
scores, etc.) defi ning the pixel coordinates. The distances can also be calculated 
from a pixel to the centroid of a cluster or between cluster centroids, and can be 
defi ned differently from a mathematical point of view  [4, 47, 48] . The main distinc-
tion in  modus operandi  among unsupervised clustering methods based on distance 
measures is between agglomerative methods and partitional methods that attempt 
to optimize a clustering scheme with a predetermined number of clusters. Other 
methods using other concepts, such as  density - based functions , will not be 
described here, although details may be found elsewhere  [1, 49] . 

 Agglomerative or hierarchical methods begin by considering each pixel as an 
individual class, after which the two most similar pixels are linked to constitute 
a new class. In each step, the number of classes decreases by one by merging 
the two closest clusters or a cluster with the closest pixel, until all pixels eventu-
ally form a single class. With these methods, it is possible to examine the 
clustering arrangements with different numbers of groups and to select a 
scheme that may be more easily interpretable. The drawback here is the inten-
sive computation required, because new distances are calculated between pixels 
and clusters at each agglomerative step. This makes image compression a neces-
sary preprocessing step, for example by using the scores as pixel coordinates or 
compressed images by spectral feature selection instead of the original full 
spectra. Although these methods provide very robust clustering schemes, the 
nested clusters result in a loss of fl exibility of the clustering process. Single 
linkage, average linkage or Ward ’ s method are among this family of algorithms 
 [50 – 52] . 

 Partitional methods function by optimizing a single clustering scheme with a 
preselected number of clusters  [47, 48] . These methods generally begin with an 
initial set of centroid pixels, with the remainder of the pixels assembling around 
the closest centroid. Iterative cycles can be carried out, thus modifying the cen-
troids every time to achieve a major degree of compactness in the clusters, or to 
improve a different optimization criterion. An index of compactness (E) can be 
defi ned as follows:

   E ij i j= ℘( )∑∑
=

u x
ij

g

, ω
1

    (2.6)  
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where  g  is the number of clusters,  ω  j  the centroid of the  j  th  cluster and  u  ij  defi nes 
the class membership of pixel  i  in cluster  j  (1 for presence, 0 for absence)  [4] . 

 These partitional methods are both fast and fl exible, because they do not nest 
clusters; that is, the clustering schemes with fi ve and six groups can be completely 
different. However, the selection of the number of clusters is not easy and, often, 
different results can be obtained depending on the starting point (centroids) of the 
clustering process. A good selection of the centroids is crucial to ensure good 
results and stable clustering schemes. Figure  2.7  shows the results of a partition 
clustering method on the emulsion image. As can be seen, pixels in some distinct 
zones in the image, such as the center of the drop, the interphase and the additive 
location (see Figure  2.4 ) are clustered together. There are other clusters more dif-
fi cult to be interpreted. Unlike PCA, the remainder of the unsupervised clustering 
methods do not provide explicit information about the spectral features linked to 
the different classes, although the spectral information is the driving force for the 
clustering process.   

 Supervised segmentation methods operates by defi ning the different pixel 
classes beforehand with a series of well - identifi ed pixels. Each different class is 
described by a model, and these models are used to assign unknown pixels to the 
predefi ned classes.  Self - interactive modeling class analogy  ( SIMCA )  [53 – 55]  or 
 PLS - discriminant analysis  ( PLS - DA )  [56 – 58]  are among the algorithms of this 
family. For example, PLS - DA functions by building class membership models by 
relating reference pixel spectra ( X ) to class membership information ( Y ), using 
the PLS algorithm. The class membership information is coded in a binary 
manner, assigning a value of  ‘ 1 ’  to a pixel in the class and a value of  ‘ 0 ’  to a pixel 
out of the class. Reference pixels in and out of the classes can be selected either 
by applying class membership masks in the image score scatter plots  [59, 60] , or 
by using results from unsupervised segmentation methods. When the discrimina-
tion model has been built it can be used to predict class membership values for 

   
  Figure 2.7     Results of image segmentation by the K - nearest 
neighbor method (hard clustering approach) for a Raman 
emulsion image.  
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unknown pixels. As the  Y  predicted values for unknown pixels will hardly ever be 
1 or 0, a threshold value between 0 and 1 is established that marks the member-
ship of a pixel to a class. If the predicted class membership value is above the 
threshold, the pixel is in the class; if below, it is out of the class. So far, the methods 
described are based on linear models; other nonlinear methods, such as Artifi cial 
Neural Networks or Support Vector Machines, can also be used for the same 
purpose. 

 Although supervised and unsupervised methods have been in the past well - 
separated families, a number of hybrid approaches have appeared that 
combine both unsupervised and supervised classifi ers for image segmentation 
purposes  [61] .  

  2.6.2 
 Hard and Fuzzy Segmentation Approaches 

 This distinction refers to the concept of class membership used in the segmenta-
tion method. In  hard clustering  methods, a pixel belongs to a single class, whereas 
in  fuzzy clustering  schemes, a pixel can have different probabilities to belong to 
several classes; that is, it has a fractional degree of membership for all clusters  [4, 
62, 63] . Recalling the index of compactness shown above, a hard clustering 
approach would only allow for degrees of class membership, u ij , equal to 0 (pixel 
out of the class) or 1 (pixel in the class), whereas fuzzy approaches would allow 
for intermediate values between 0 and 1 for each pixel in the different classes. 

 In hard clustering schemes, the clusters are perfectly separated among them, 
whereas in fuzzy clustering a cluster overlap is allowed. Some fuzziness indices 
are based on the distances to the different clusters from a particular pixel. The 
fractional degree of membership of the pixel to the clusters will then be defi ned 
according to the distance that separates the pixel from the different clusters (a 
higher degree if the pixel is closer; a lower degree if it is further away). 

 Several factors can be considered to decide which segmentation modality is more 
suitable. On the one hand, hard clustering schemes provide a clear defi nition of 
the image groups, which may be more desirable when a clear segmentation scheme 
is needed. However, assuming the existence of perfectly defi ned classes with no 
overlap with each other implies that the pixel spectra of each class have a very 
well - defi ned and uniform spectral shape. This would be the case if pixels in each 
class were to be formed by a single chemical compound, or if regions that were 
well separated had a very homogeneous composition. This may not occur in many 
real images, where many pixel spectra refl ect the signal contribution of several 
compounds overlapping on the image space. In heterogeneous images or images 
where interfacing zones of compounds may exist, a fuzzy clustering approach may 
be more appropriate to describe the real nature of the image. The more relaxed 
defi nition of class membership of fuzzy schemes accounts for this situation. 

 All of the methods and strategies presented in this section have a common 
characteristic, namely that the grouping schemes are obtained using only spectral 
information    –    that is, spectral similarity among pixels. This is a consequence of 
the original goal of the cluster analysis methods, oriented to fi nd groups in spectra 
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collected from independent samples. In image analysis, pixels are not independent 
from each other, and it can be reasonably assumed that neighboring pixels are 
more likely to be similar than pixels that are far away from each other in the image. 
Therefore, the spatial position of a pixel in the image serves as potentially relevant 
information to be taken into account for image segmentation purposes  [4, 46] . 

 Recently, a number of modifi cations of the classical methods have appeared that 
incorporate the spatial distance among pixels as an additional criterion in the 
clustering schemes. Thus, similarity measures based on spectral distances, such 
as  ℘ , can be weighted incorporating pixel neighboring information; for example, 
the Euclidean distance can be redefi ned as:

   �℘( ) =℘( )⋅ ∂( )x x w xi j i j i i j, , , ,ϖ ϖ ϖ     (2.7)  

or:

   �℘( ) =℘( ) + ∂( )x x w xi j i j i i j, , , ,ϖ ϖ ϖ     (2.8)  

where the term   w xi i j, ,∂( )ϖ  is the weight accounting for the neighborhood infor-
mation between a pixel and a cluster, which can be defi ned in different ways.  ∂  i  
is the symbol of the term that accounts for the neighborhood concept. When the 
pixel is close to a group, the weight term becomes small and, so, the considered 
distance for clustering,   �℘( )xi j, ϖ . This strategy favors the incorporation of neigh-
boring pixels into a group to the detriment of distant pixels, with larger weight 
terms. The incorporation of spatial information can also be performed out of the 
clustering process, as a preprocessing or postprocessing step  [46] . 

 There are many benefi ts which derive from the inclusion of spatial information 
into segmentation approaches. First, distant outlying pixels are not incorporated 
in clusters, the noise effect is minimized, and the general clustering scheme is 
smoothed. Another relevant improvement concerns the differentiation of spatially 
distant clusters that may be defi ned by similar spectral features. By adding the 
spatial - related weight term, the distances between far pixels are enhanced and 
cluster merging is hindered. The inclusion of spatial information has also been 
found useful in supervised segmentation methods, which do not use the concept 
of distance. The spatial information is incorporated in different ways in these types 
of algorithm  [25, 64] .   

  2.7 
 Image Resolution 

  2.7.1 
 The Image Resolution Concept: Monolayer and Multilayer Image Analysis 

 The resolution of hyperspectral images is focused on recovering the true underly-
ing spectroscopic model from the raw recorded image. Thus, the goal is to know 



the spatial (distribution map) and chemical (pure spectrum) information about 
each particular image constituent  [65 – 67] . Resolution methods decompose the 
original raw image into the Beer – Lambert bilinear model,  D   =   CS T     +    E , where  D  
is the raw image,  S T   is the matrix of pure spectra and  C  are the stretched concen-
tration profi les. To do so, as shown in Section  2.2  (see Figure  2.1 ), the original 2 - D 
or 3 - D images should be unfolded into a data table with the spectra of all pixels 
one under the other. The spatial structure of the image is then recovered after the 
resolution process by folding back the stretched concentration profi les into the 
higher dimensional spatial ordering. 

 It is important to stress that resolution can be applied to one or more images 
together. Multi - image analysis fi nds an application whenever there is a multilayer 
image from a single sample or a series of images with related chemical composi-
tion    –    for example, groups of pills or the same sample imaged as a function of 
time, temperature or any other variable  [65] . In these cases, the bilinear model is 
retained and, with it, the spectral consistency among different images. This means 
that the same image constituent has always associated the same pure spectrum in 
all the images simultaneously analyzed.  

  2.7.2 
 Spatial and Spectral Exploration 

 Resolution methods do not need  a priori  knowledge to perform the bilinear decom-
position of the image, although when this information is available it can be 
included to obtain more accurate and chemically meaningful results. There are 
some aspects that might be of help in resolving an image. First, many resolution 
methods require a fi rst guess of either the concentration profi les or the spectra of 
the pure constituents to begin an iterative search of the true underlying profi les. 
Knowing that this information is enclosed in the original measurement, some 
methods exist which are focused on fi nding the  ‘ purest ’  spectral channels or pixels 
in the raw hyperspectral image  [20, 68]     –    that is, the most dissimilar among them. 
The rows related to the purest pixels will provide good approximations of the pure 
spectra sought, whereas the columns linked to the purest spectral channels will 
allow for building approximate distribution maps of the pure constituents. 

 SIMPLISMA is one of the main methodologies used for this purpose and, as 
stated before, can be used to identify either the purest pixels or the purest spectral 
channels in an image  [18] . If the focus is on fi nding the purest pixels, a purity 
index,  p  i , will be calculated per each pixel spectrum as:

   p
s

m f
i

i

i i

=
+     (2.9)  

where  s  i  is the standard deviation of the elements in the pixel spectrum,  m  i  the 
mean and  f  i  an offset factor that accounts for the noise percentage in the data. The 
inclusion of this noise offset prevents the selection of background or noise pixels. 
The fi rst spectrum selected is the one with highest purity. Once the fi rst spectrum 

 2.7 Image Resolution  85



 86  2 Chemometric Tools for Image Analysis

is selected, the rest of spectra are normalized and a purity index is recalculated for 
each of them, as   ′ =p w pi i i , where  w  i  is a weighting factor that takes into consider-
ation the dissimilarity of the pixel under analysis with the purest pixel previously 
selected (the more dissimilar the spectrum, the larger the weight). The second 
pixel selected will be the one with largest recalculated purity,   ′pi . The sequence of 
purity recalculation (according to new weights based on the dissimilarity with all 
previously selected pixels) and new pixel selection will continue until a number of 
pixel spectra equal to the number of image constituents has been obtained. No 
previous knowledge on the number of image constituents is needed as the process 
can be stopped when the last purest spectrum selected is very similar in shape to 
a previously selected spectrum. Working in the pixel direction, the purest spectra 
of the image are obtained  [19, 20] . Likewise, the selection can be made to identify 
the purest spectral channels and, as a consequence, the purest distribution maps 
can be derived. 

 Figure  2.8  shows an example of SIMPLISMA applied in the pixel and in 
the spectral direction to an emulsion image with four compounds (a drop, an 

   
  Figure 2.8     SIMPLISMA analysis on a Raman emulsion image. 
Representation of the spectra of the purest pixels (right plot) 
and the distribution map related to the purest spectral 
channels (bottom plot). Letters and numbers in both plots 
mark the location of purest pixels and purest spectral 
channels, respectively.  
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interphase, an additive, and an off - drop constituent). Here, a, b, c and d are the 
purest pixels selected in the image and provide the plotted spectra on the right -
 hand side, where 1, 2, 3 and 4 are the purest spectral channels that, once refolded, 
provide the distribution maps at the bottom of the fi gure. The pixels selected (a – d) 
are located in image zones clearly linked to the nature of the four constituents 
described and, therefore, it can be well imagined that their spectra will be very 
close (if not identical) to the real pure spectra sought. However, when considering 
the location of the four spectral channels selected (1 – 4), it can be easily understood 
why channels 1 – 3 produce reasonable distribution maps for the drop, interphase 
and additive constituents, but channel 4 fails to give a good map for the off - drop 
phase. Channel 4, despite being the most representative for the off - drop phase, 
has signal contributions from the remainder of the components, and therefore 
produces an unacceptable map for this component. These results stress two main 
points: (i) that SIMPLISMA often provides better results when applied in the pixel 
direction, because the possibilities to fi nd selective pixels are often higher than to 
fi nd selective spectral channels; and (ii) the straightforward association of SIM-
PLISMA spectra and distribution maps with the real analogous profi les is a dan-
gerous practice and may not always lead to the correct results.   

 Linked to the importance of the presence of selective pixels or spectral channels, 
and exploring the variation of the degree of compound overlap along the surface/
volume scanned, there is another possibility to obtain information for future reso-
lution purposes. As noted above, PCA for the whole image provides information 
on the total number of constituents of the data set. This information is derived 
from a global image analysis, and does not mean that all constituents are present 
in all pixels. To go to a local scale, PCA analyses should be performed on small 
areas of the data set (a pixel and its surrounding neighbors in the two or three 
spatial dimensions) until the whole image is PCA - scanned. 

  Fixed - size image window - evolving factor analysis  ( FSIW - EFA ) is an evolution of 
the local rank algorithm Fixed Size Moving Window - EFA  [69] , which was designed 
particularly for the study of local pixel complexity in images  [70] . To do so, two 
main concepts must be taken into account: (i) the need to divide the image into 
small areas to obtain local information; and (ii) the need to preserve the 2 - D or 3 - D 
spatial image structures, thus building the small areas by taking one pixel and all 
its surrounding neighbors. 

 Thus, FSIW - EFA can be used to perform local PCAs in the whole image by 
moving small windows around each individual pixel area. Each window is formed 
by a particular pixel and all of its neighbors in the two or three spatial dimensions 
of the image (see Figure  2.9 a). The number of pixels in the window is a com-
promise between the smallest possible to preserve the spatial resolution of the 
image, and the total number of compounds in the image to allow for rank values 
representing all possible situations of compound overlap in the image. The sin-
gular values obtained in these local analyses are displayed together in singular 
value plots, where the spatial structure of the image is preserved (see Figure  2.9 b 
for the emulsion example). In these plots, large values (in warm colors) represent 
signifi cant contributions to the signal, related to the presence of chemical constitu-
ents, whereas small values (in cold colors) describe the experimental noise.   
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  Figure 2.9     FSIW - EFA  modus operandi  (monolayer Raman 
emulsion image). (a) Construction of pixel windows; 
(b) Singular value plots of local PCA analyses; (c) Complete 
local rank map; (d) Partial local rank map. Blue pixels 
(rank 1), green pixels (rank 2), orange pixels (rank 3), deep 
red pixels (rank 4).  
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 Local rank maps are derived from the singular value plots by displaying the 
number of signifi cant singular values in each pixel area. A threshold value or a 
threshold band is set to mark the limit between signifi cant and noise - related sin-
gular values (see the original reference for more detail regarding threshold selec-
tion  [70] ). Depending on the threshold selection and on the information sought, 
it is possible to distinguish between complete local rank maps (Figure  2.9 c) and 
partial local rank maps (Figure  2.9 d). The complete local rank maps display how 
many singular values are above a preset threshold value for each pixel in the image; 
that is, they show how many compounds overlap in each pixel. The complete local 
rank maps provide a good indication of which zones of the image have a lower or 
higher composition complexity. As expected for the emulsion example, those 
zones with higher local rank values appear in the interphase zones of the drop 
and in other potential zones of compound overlap. 

 The partial local rank maps are constructed by using a threshold band to sepa-
rate signifi cant from nonsignifi cant singular values. The use of a threshold band, 
which is as wide as needed, is meant to account for the threshold - dependence on 
the estimation of the pixel local rank. For some pixels, the local rank will remain 
invariant in the highest and lowest boundary of the threshold band, whereas for 
some others different rank values will be obtained when the lowest or the highest 
boundary of the threshold band are taken as a reference. Pixels that preserve an 
invariant rank along the threshold band offer robust local rank information, 
whereas pixels that do not have less - reliable local rank estimates. Partial local rank 
maps only display the pixels with a  ‘ robust ’  local rank estimation. Although this 
representation has some  ‘ void ’  pixels, it is the adequate representation to ensure 
the reliable detection of selective pixels or pixels with low complexity for resolution 
purposes. 

 As with its parent algorithm, the local character of the PCA analyses performed 
by FSIW - EFA is particularly suitable in the detection of very minor compounds 
in the image (impurities) that could pass unnoticed in a global PCA analysis. This 
aspect has been particularly useful for the analysis of impurities in images of 
pharmaceutical formulations. For this type of sample, FSIW - EFA has also pro-
vided relevant information on pill heterogeneity  [65] . 

 FSIW - EFA can also be used in multilayer images, taking into account the 3 - D 
neighborhood of the voxels to build the small windows to be PCA - scanned  [70] . 
In this context, a number of local rank maps equal to the number of layers in the 
image is obtained. It is important to note that the information in the local rank 
map of a particular layer has been obtained taking into consideration the pixels of 
that layer and those in the neighboring layers in the depth direction.  

  2.7.3 
 The Resolution Process: Initial Estimates and Constraints 

 The resolution of data sets into their underlying bilinear models can be performed 
with algorithms based on very diverse backgrounds  [71, 72] . Some of these algo-
rithms rely essentially on the inner mathematical structure of the data set, and 
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were conceived for data sets with an inherent order in the evolution of concentra-
tion profi les, such as processes. Image data sets lack this order in the concentration 
direction; that is, the pixel - to - pixel variation of composition seldom follows a 
smooth evolution along the whole image and, if it were to exist, it would be artifi -
cially truncated because the pixel data table does not preserve the spatial structure 
of the original measurement. This is the reason why the best algorithms for reso-
lution of images are those whose performance is not affected by the lack of pattern 
in the concentration direction. 

  Multivariate curve resolution - alternating least squares  ( MCR - ALS ) is an algo-
rithm that fi ts the requirements for image resolution  [71, 73 – 75] . MCR - ALS is an 
iterative method that performs the decomposition into the bilinear model  D   =   CS T   
by means of an alternating least squares optimization of the matrices  C  and  S T   
according to the following steps: 

  1.     Determination of the number of compounds in the raw image,  D .  
  2.     Generation of initial estimates (e.g.,  S T   - type matrix).  
  3.     Given  D  and  S T  , calculation of  C  under constraints.  
  4.     Given  D  and  C , calculation of  S T   under constraints.  
  5.     Reproduction of  D  from the product of  C  and  S T  .  
  6.     Go to step 3 until convergence is achieved.    

 The number of image constituents can either be known beforehand, or be 
determined by PCA on the whole image. The alternating optimization should 
always start by using the original measurement,  D , and an initial guess of either 
the  C  or the  S T   matrices. Typically, in images, the initial estimate is a matrix  S T  , 
formed by pixel spectra picked up from the image according to previous knowledge 
(from pixels in areas of interest) or as a result of applying chemometric tools for 
purest pixel selection, such as SIMPLISMA  [18] . Spectral initial estimates are more 
common because some of the image constituents (and, consequently, their spectra) 
may be known; alternatively, when this is not the case it is more likely to fi nd 
selective pixels and, as a consequence, good spectral estimates, than selective 
spectral channels. 

 The alternating least - squares procedure in steps 4 and 5 involves the operations 
 C    =    DS ( S T S )  − 1  and  S T     =   ( C T C )  −    1 C T D , respectively. The end of the iterative process 
takes place when the reproduction of the original image from the product of the 
resolved concentration profi les and spectra has enough quality and there is no 
signifi cant variation among the results of consecutive cycles. The quality in the 
data reproduction can be estimated through the lack of fi t, expressed as:

   lack of fit
ij ij

ij

%
( * )

( ) = ×
−∑

∑
100
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2

d d

d
    (2.10)  

where  d  ij  is an element on the image data table and   dij*  is the reproduced element 
by the MCR - ALS model. Different criteria can be adopted to mark the end of the 
optimization process; for example, the comparison between consecutive cycles of 



the percentage of data fi t variation or the dissimilarity of the concentration profi les 
and spectra recovered. Alternatively, the iterative process can also be stopped after 
a preselected number of cycles has been exceeded. 

 The way to incorporate previous knowledge about the images in MCR - ALS is 
through the use of  constraints . These can be defi ned as chemical or mathematical 
properties that the concentration profi les or spectra should fulfi ll  [71, 73] . During 
the iterative process, the calculated concentration profi les and spectra are modifi ed 
so that they obey the preselected conditions. The application of constraints is 
optional, and should be performed according to the natural characteristics of the 
data set.  Flexibility  is also a relevant issue and, therefore, concentration profi les 
and spectra can obey different constraints and, within the  C  or  S T   matrices, con-
straints can be applied profi le - wise or even element - wise. Constraints play a double 
role in resolution methods: on the one hand, they ensure the chemical meaning 
of the recovered distribution maps and spectra, while on the other hand they 
greatly decrease the ambiguity in the resolved profi les. 

 The concept of ambiguity in curve resolution is linked to the fact that many  CS T   
products can reproduce the original data set with the same optimal fi t    –    that is, 
many sets of concentration profi les and spectra can be potentially valid to describe 
the data. In mathematical notation, the bilinear model can be written as:

   D CS ET= +     (2.10)  

Or, in an equivalent form, as:

   D CTT S C ST T= = ′ ′−1     (2.11)  

where  C ′     =    CT  and  S ′  T     =    T   −    1 S T  , and there may be infi nite  T  matrices (solutions). 
One way of reducing the uncertainty in the resolution results is by limiting the 
possible solutions to those that fulfi ll the preset constraints. Thus, the more effi -
cient constraints are, the better defi ned are the resolution results. 

 In image analysis, non - negativity is the most commonly used constraint. Indeed, 
the concentration of any constituent in the image, as well as the spectroscopic 
infrared or Raman readings are, by nature, positive. As a consequence, elements 
in both  C  and  S T   profi les should, by nature, be positive  [65 – 67, 76 – 79] . 

 Although many reports are available regarding constraints in curve resolution 
methods, the majority describe constraints linked to process profi les, such as 
unimodality (only one maximum per concentration profi le) or closure (mass 
balance in reaction systems). These process - related constraints are not applicable 
to image concentration profi les, due to the above - mentioned lack of pattern in this 
direction of the data set. Instead, other types of information are used. One fairly 
intuitive possibility is to include knowledge of the identity (and pure spectrum) of 
certain image constituents, and when this is the case these spectral shapes are 
fi xed in the  S T   matrix during the iterative resolution process. In doing so, the pos-
sible combinations for spectral shapes of unknown constituents decrease and the 
recovery of the correct distribution map for the known component is ensured. 
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 So far, not many constraints have been linked specifi cally to image resolution, 
although some attempts have involved the introduction of information derived 
from cluster analysis in the modeling of concentration profi les  [80]  and the use of 
a smoothing constraint on a local basis for the concentration of each pixel and the 
immediate neighbors  [81] . However, particular attention should be paid to the 
adaptation of the so - called  local rank constraints  for image analysis  [82] . These 
constraints, which include the well - known condition of selectivity, have long been 
used in resolution, and are among the most effi cient to aid in the accurate defi ni-
tion of concentration profi les and spectra  [73] . 

 In the context of image analysis, the local rank of a pixel generally indicates how 
many constituents overlap within it. If it is lower than the global rank of the image, 
this means that some image constituents are absent from that particular pixel. The 
extreme and most relevant local rank constraint is selectivity; when a pixel is 
selective    –    that is, only a particular image constituent is present    –    the pure spectrum 
for this constituent can be straightforwardly derived. Likewise, when a spectral 
channel is selective, the distribution map of the related component can be directly 
obtained. Selectivity is introduced by forcing the absent constituents to present 
null or extremely low concentration values or spectral readings in the selective 
pixels in  C  or in the selective spectral channels in  S T  , respectively. Milder local 
rank constraints can be set when the rank of a pixel is lower than the total by 
setting only some of the image constituents to be absent. Local rank constraints 
have been proven to be the most effi cient at reducing the ambiguity in resolution 
results. When there is selectivity for all components, or when some local rank 
conditions are fulfi lled  [83] , then ambiguity is completely suppressed from the 
resolved profi les. 

 The introduction of local rank constraints in image analysis requires one to 
determine the number and identity of the missing components in the pixels to be 
constrained. When recalling the fl exibility in the introduction of constraints, it is 
important to stress that not all the pixels need to be constrained. Thus, pixels with 
an ambiguous estimation of the local rank, or a dubious identifi cation of the 
missing components, should be left unconstrained. 

 An exploratory analysis performed by FSIW - EFA provides an estimate of the 
number of components in each pixel. For resolution purposes, only those pixels 
in the partial local rank map will be potentially constrained, because these are the 
pixels for which a robust estimation of the number of missing components can 
be obtained. However, the FSIW - EFA information is not suffi cient to identify 
which components are absent from the constrained pixels. For identifi cation pur-
poses, the local rank information should be combined with reference spectral 
information, the ideal reference being the pure spectra of the constituents, although 
in most images not all of these are known. For the image components with no 
pure spectrum available, the reference taken is an approximation of this pure 
spectrum. These approximate pure spectra can be obtained by pure variable selec-
tion methods, or they may be the result of a simpler MCR - ALS analysis where 
only non - negativity constraints have been applied. 



 Thus, to set the local rank constraints, the two necessary inputs are: (i) a partial 
local rank map, with the rank of pixels that can be potentially constrained (see 
Figure  2.10 a); and (ii) a pure spectrum (or good estimate) per each constituent 
(see Figure  2.10 b).   

 The incorporation of local rank constraints in any pixel  I  starts by estimating 
the number of missing components as follows:

   no  of missing components image total rank local rank p. i( ) = − iixel i( )   

 For example, in the emulsion (four compounds), for a pixel of rank three, we 
should look for one missing component. The way to identify this component 
passes through the calculation of the correlation coeffi cient between the raw pixel 
spectrum and each of the reference spectra for the different image constituents. 
The constituent with the lowest correlation coeffi cient with the pixel spectrum will 
likely be the one missing in this pixel. This procedure is carried out individually 
for each of the pixels that can be potentially constrained. At this point, we need to 
consider that the identifi cation of the missing components may not always be 
conclusive enough. To prevent the introduction of misidentifi cations, a fi rst step 
consists of seeing the natural correlation between the spectra used as reference 
(see the matrix below for the emulsion example).
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 Thus, the absence of a particular component in a pixel will not be confi rmed 
unless the correlation coeffi cient between the pixel spectrum and the reference 
spectrum of that component is equal or smaller than the largest element in the 
correlation matrix for that particular component. In this concrete example, A 
cannot be considered a missing component if the correlation coeffi cient obtained 
with the pixel spectrum is larger than 0.75. The highest acceptable correlation 
coeffi cients to consider B, C and D missing will be 0.67, 0.75 and 0.67, respectively. 
Therefore, even a pixel with a well - defi ned rank will not be constrained unless a 
reliable identifi cation of the missing components is achieved. In this example, only 
1177 pixels have been constrained, even though the number of pixels in the partial 
local rank map is 1934. The total number of pixels in the image is 3600. The 
double - check, in terms of local rank by taking only the pixels in the partial local 
rank map and, in terms of identifi cation taking only the identifi cations that match 
the natural correlation of the spectral components, prevents the introduction of 
erroneous information in the resolution process. 

 The information accepted in terms of rank and compound identifi cation (see 
Figure  2.10 c) is translated into a  ‘ mask ’  matrix, sized as  C  (no. of pixels    ×    no. of 

 2.7 Image Resolution  93



 94  2 Chemometric Tools for Image Analysis

   
  Figure 2.10     Procedure followed to incorporate local rank 
constraints in resolution (monolayer emulsion example). 
(a) Partial local rank map; (b) Reference spectral information 
(from SIMPLISMA); (c) Pixel masks for absence of 
constituents in image; (d) Transfer of information in (c) to a 
local rank information matrix.  

components), that will be used to introduce the local rank constraints in the resolu-
tion process (see Figure  2.10 d). This constraint can be applied by keeping null 
values in the concentration elements of the missing components in the con-
strained pixels (equality constraint), although in practice better results are obtained 
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if these missing components are set to have a concentration value equal or smaller 
than a very small predefi ned value. 

 The consequences of introducing local rank information are a better defi nition 
of the distribution maps and pure spectra of the components and a decrease in 
the ambiguity linked to the resolution results  [82] .  

  2.7.4 
 Resolution on Compressed Images 

 A typical problem in image analysis is the size of the data set. As a consequence, 
the computational effort required for resolution is highly increased. When images 
are too large, or when several images are analyzed together,  compression  may rep-
resent a reasonable preprocessing step. Compression can be performed either in 
the spectral or in the pixel direction. the  ‘ golden rule ’  being that the relevant 
information on the compressed direction should be kept. If this is the case, then 
the resolution of compressed images will allow recovery of the full  C  and  S T   matri-
ces, with one derived directly from the resolution results (linked to the uncom-
pressed direction) and the other from postprocessing, with a single least - squares 
step. 

 Figure  2.11  illustrates this two - step procedure for compressed data sets in the 
spectral (right) and spatial (left) directions. Taking as an example the compression 
in the spectral direction, resolution is fi rst carried out on the compressed data set, 
 D comp  , where all pixels are preserved and the number of spectral channels is 

   
  Figure 2.11     Resolution of images compressed in the spectral 
direction and in the spatial direction. Recovery of full  C  
and  S T   matrices.  
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reduced. The decomposition into the bilinear model,   D CScomp comp
T= , gives the full 

concentration matrix,  C , and a matrix of resolved compressed spectra,   Scomp
T . If the 

information contained in the spectral channels is representative from the image, 
then the distribution maps recovered (from the  C  matrix) are the true ones. As a 
consequence, the bilinear model of the original measurement  D   =   CS T   can be used 
as a base to recover the missing full matrix,  S T  , from the single least - squares step 
 S T     =    (C T C)   −    1 C T D , where  D  is the original uncompressed image and  C  has been 
obtained from the resolution on the compressed data set.   

 As for many other methods of image analysis, binning in the spectral or in the 
pixel direction is an option. Actually, the spectral resolution in most images is 
rather high, and a signifi cant compression of spectral channels can be performed 
without losing quality in the resolution results, neither in the data fi t nor in the 
profi les recovered. Likewise, the same strategy can be applied in the pixel direction. 
Figure  2.12  shows the results of the resolution of the full emulsion image (center) 
and of a binned image in the spectral direction (left). The compression allowed 
passing from the original 253 channels to 16, without any loss of relevant informa-
tion. It is interesting to note that the resolved compressed spectra,   Scomp

T , maintain 
the main features of the full spectra in  S T  . Other universal compression methods 
would consist of selecting alternating spectral channels (one of several), or of 

   
  Figure 2.12     Left: Resolution results after image compression 
by binning in the spectral direction. Center: Resolution results 
from full image analysis. Right: Resolution results after image 
compression in the pixel direction by taking a pixel subset 
around SIMPLISMA purest selected pixels.  
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sampling pixels from the image so that all zones scanned were properly repre-
sented  [1] .   

 However, we can envision compression procedures more oriented to the resolu-
tion of the image into the pure components. With this way of thinking, the infor-
mation to be kept should be representative and as unmixed as possible. The perfect 
and maximum compression would consist of taking a selective spectral channel 
or a selective pixel per image constituent. This would be the smallest amount of 
representative information needed to resolve the image. This ideal situation is 
hardly ever found in practice, but approximations based on this idea can be pro-
posed. Thus, compression in the spectral direction can be performed by taking 
the spectral channels selected with pure variable approaches and small bands 
around them. These channels are selective or, if not, they are the purest ones in 
the image and contain the best available information per each image constituent. 
Likewise, the purest selection could be carried out in the pixel direction, keeping 
the purest pixels and their closest neighbors in the two -  or three spatial directions. 
Another option to select the simplest pixels would be based on the local rank 
information provided by FSIW - EFA. In this case, the pixels with lowest rank (one 
or two) could be selected as the compressed subset to perform the resolution 
analysis. Figure  2.12  (right) shows the results of a compressed image in the pixel 
direction, where only 36 pixels of the original 3600 have been selected. These pixels 
are the four selected by SIMPLISMA (see a, b, c and d in Figure  2.8 ) and their 
eight immediate surrounding neighbors. As can be seen in the compressed con-
centration matrix,  C comp  , the recovered concentration profi les show the separate 
blocks related to each type of pixel (drop, interphase, additive and off - drop constitu-
ent). As these pixels are close to being selective, the recovered full  S T   matrix is 
correct, and so are the full distribution maps derived from the single least - squares 
performed after resolution.  

  2.7.5 
 Resolution and Available Library Spectra 

 The resolution of images can be performed even if null knowledge of the image 
constituents is available. In some cases, however, partial information may be avail-
able on the identity of constituents, and this can be incorporated into the resolu-
tion process by forcing the pure spectrum of a certain constituent to maintain a 
known shape. A different case is formed by certain families of images, for example 
biomedical images, for which a spectra library with the most commonly found 
constituents may be available Libraries of spectra are often large, and there is a 
need for screening methodologies to identify candidates that may be present in 
a measured image. Hence, methodologies have been designed to perform this 
task, without the need of a previous resolution of the image, such as Target Factor 
Analysis  [84, 85] . Unfortunately, the information obtained by this and other screen-
ing methods is only related to the presence or absence of a potential constituent 
in the image. Hence, it is not possible to know whether unidentifi ed compounds, 
different from those reported in the library, might also exist. Consequently, 
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distribution maps cannot be directly derived using only the accepted library 
spectra. 

 A good alternative to performing this screening can be carried out as a postpro-
cessing step in image resolution. To illustrate this possibility, we present an 
example of a kidney calculus image. Figure  2.13 a shows the resolution of this 
image into three image constituents, with their related pure spectra and distribu-
tion maps. A library of Raman spectra is available with the spectra of the most 
common inorganic compounds present in this type of biomedical sample  [86] .   

 If the resolution results lacked ambiguity, the resolved spectra would be identical 
to some library spectra but, even if this is were not the case, the resolved profi les 
would be very close to the true ones. Despite the degree of ambiguity in the resolu-
tion results, the matrix  S T   always allows for a good reproduction of the spectral 
variation in the raw image data set, either by using the real pure spectra of the 
constituents or linear combinations of them. From a geometrical point of view, 
this means that the resolved spectra in matrix  S T   always span the spectral space 
of the image, and the library spectra related to the image constituents should 
belong to this space. Therefore, the screening is performed by projecting the 
spectrum of the potential library candidate onto the space defi ned by  S T   (see Figure 
 2.13 b for a schematic view of the projection process). To perform this projection, 
a transformation vector,  r i  , is calculated that relates the library spectrum to be 
checked,  t i  , to the space  S T   as follows:

   t S ri
T

i=     (2.12)  

   r SS Sti
T

i= ( )−1
    (2.13)   

 Subsequently, the projection of the library spectrum onto  S T   is obtained as:

   t S ro
T

i=     (2.14)   

 When the library spectrum,  t i  , and its projection onto the  S T   space,  t o  , are identi-
cal or very similar, the candidate is a constituent present in the image. When the 
distance among them, e i , is large (the original spectrum is far away from the  S T   
space), the potential candidate is absent. Figure  2.13 b shows the plot of e i  for all 
the library spectra of the calculus example. As can be seen, fi ve library candidates 
show e i  values signifi cantly lower than the rest of spectra, and these may be poten-
tial constituents of the analyzed sample. From these results, two constituents were 
unambiguously identifi ed as whewellite and weddellite because of the excellent 
agreement with two of the pure spectra obtained during the resolution process 
(note the clear overlap between the library spectra, in red, and the resolved spectra, 
in black, in Figure  2.13 c). As a second step (not shown), these library spectra were 
fi xed in a new resolution analysis and the identifi cation of the third image constitu-
ent (dahllite) could be carried out. 

 In general, this resolution postprocessing identifi cation step has certain advan-
tages over the classical TFA process. Basically, the library spectra accepted from 



   
  Figure 2.13     (a) Resolution results for a kidney calculus, 
distribution maps and related pure spectra; (b) Image 
constituent screening by projection of library spectra,  t i  , onto 
resolved spectra space,  S T  ; (c) Clear straightforward 
identifi cation of two of the accepted candidates as calculi 
constituents (black spectra: resolved spectra from MCR - ALS; 
red spectra: library spectra).  
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the projection approach can pass through a second identifi cation check by visual 
comparison with the resolved spectra in  S T  . In contrast to TFA, which defi nes the 
image space through abstract score profi les, the pure spectra in  S T   are chemically 
meaningful and a straight association can be made between accepted candidates/
resolved spectra. In addition, the resolution provides complete information con-
cerning the image (distribution maps and pure spectra) and, in case any compo-
nents from the library might also be present in the image, their pure spectra and 
distribution maps would also be obtained. As shown in the calculus example, fol-
lowing an initial identifi cation step the library spectra of the confi rmed components 
can be fi xed in a new resolution process, not only to improve the results but also 
to help in the modeling (or eventual identifi cation) of unknown components.  

  2.7.6 
 Multilayer and Multi - Image Resolution 

 As mentioned in Section  2.7.1 , resolution can be applied simultaneously to several 
images. The most obvious application is to image layers from the same sample, 
scanned at different depths. Another particular example would be formed by 
images related to process monitoring of the same sample (as a function of time 
or temperature). However, this multi - image analysis can also be extended to inde-
pendent samples that share image constituents in common, an example being 
several pills from a production line  [65] . Clearly, multi - image analysis is based on 
the bilinear model based on the Beer – Lambert law (see Figure  2.14 ). Thus, the 
pixel spectra of all images are organized in a data table  D , where a block (or sub-
matrix) belongs to a particular image. The decomposition  D   =   CS T   provides a 
single matrix  S T   of pure spectra, valid for all the images analyzed, and a matrix  C , 
formed by as many submatrices as images in the data set. The profi les in each of 
these submatrices can be refolded conveniently to recover the related distribution 
maps of each image.   

   
  Figure 2.14     Bilinear model for a multi - image resolution analysis.  

Layer 1

D C

ST

Distribution maps

=

Layer 2

Layer 3

Layer n

L1

L2

L3

Ln



 There are some important issues linked to the bilinear nature of multi - image 
analysis. First, the fact of obtaining a single  S T   matrix for all images ensures spec-
tral consistency of the resolution    –    that is, the same constituent will always be 
associated with the same pure spectrum in all analyzed images. Second, the 
stretched matrix of concentration profi les respects the natural difference of shape 
of the distribution maps among images. 

 Another relevant advantage derives from the complementary information in 
the different images, which helps towards a global improvement of resolution 
results  [74] . Clear examples of the benefi ts of multi - image analysis occur when 
differences in concentration level of constituents or in compound overlap are 
encountered among images. In these situations, the minor constituents in one 
image are more easily resolved when analyzed with another image where these 
compounds are present in major proportions. Likewise, images with a high com-
pound overlap are better resolved when analyzed with images with more unmixed 
information. 

 The  modus operandi  of multi - image resolution by MCR - ALS is essentially identi-
cal to the analysis of a single image, with the addition that the concentration sub-
matrices linked to the different images can be constrained in different ways, if 
needed. Other types of information, such as the presence/absence of certain con-
stituents in some images, may be incorporated as an additional constraint. Based 
on the results obtained in multi - image analysis, approximate quantitative informa-
tion of the constituents among layers may also be gathered. 

 Two examples of multi - image analysis are briefl y detailed here to illustrate some 
of the issues mentioned above. The spectral consistency problem is clearly shown 
in a multilayer emulsion example. From a chemical point of view, the fact that a 
certain image constituent should have the same pure spectrum in all image layers 
coming from a single sample is obvious, but this aspect is often overlooked when 
applying multivariate resolution methods, or is taken for granted when perform-
ing individual analyses of several layers of the same image. The spectral consis-
tency among individual layer analyses would exist if all components had selectivity 
in all image layers or, at least, were unambiguously represented. In practice, 
however, this very rarely happens and the automatic assumption of this consis-
tency among individual image analyses is overtly dangerous. 

 Figure  2.15 a shows the distribution maps of some emulsion layers from indi-
vidual image analysis and the large differences among the resolved pure spectra 
for the top and bottom layers. Figure  2.15 b confi rms the decreasing similarity 
(expressed as the correlation coeffi cient) between the spectra resolved on the top 
layer (taken as reference) and those resolved in the rest of the layers as the depth 
increases. Although the distribution maps could seem interpretable, the difference 
between the pure spectra of the different constituents clearly increases with depth 
and, as a matter of fact, this is a chemically unacceptable result.   

 Figure  2.16 a shows the distribution maps and pure spectra for the multilayer 
image analysis. Although, the visual difference in distribution maps between 
individual and multi - image resolution may seem small, there is only a single 
set of pure spectra, representative of the whole sample. Figure  2.16 b shows the 
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percentage of signal contribution of the different constituents in the image to the 
overall signal measured along the layers, sc i , defi ned as:

   sc
c s

CS
i

i i
T

T
%( ) = × ∑

∑
100     (2.15)     

 Here, the subindex  i  refers to each individual constituent, and an sc i  value is 
calculated for each constituent in each of the layers.   c si i

T  and  CS T   are the signal 
contribution of the  i th component and the global signal within a layer image, 
respectively. 

 The signal contribution plot helps to understand the reasons for the spectral 
inconsistency linked to the individual image analysis, coming from the large dif-
ference in representativity of the image constituents in the different layers. Thus, 
three compounds have a very minor signal in the deepest layers and, as a conse-
quence, the resolved spectra obtained from the individual analyses of these layers 
are of poor quality and differ signifi cantly from the spectra obtained from the top 

   
  Figure 2.15     Resolution analysis of individual image layer 
analysis on a multilayer emulsion image. (a) Distribution 
maps of some emulsion layers and resolved pure spectra 
from top and bottom layer obtained by individual layer 
resolution; (b) Correlation coeffi cient plot among resolved 
spectra on the top and subsequent emulsion layers.  
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layers, where the contribution of these compounds to the overall signal is domi-
nant. The opposite happens when the most dominant compound in the deepest 
layers is almost absent from the top layer, and this justifi es the differences in the 
resolved spectra among layers for this compound. Only the joint resolution of all 
layers in the image can provide a good quality description of all compounds in the 
sample, this being driven by the information in the most superfi cial layers to 
defi ne three of the compounds, and by the information in the deepest layers to 
describe the fourth. 

 Another example of the gain in resolution quality from the complementary 
information among different images is seen in the analysis of a series of pills with 
different percentages of excipient and  active principle ingredient  ( API ) of 0, 20, 
40, 60 and 80%  [65] . The different proportions of compounds in the pills ensure 
a good recovery of the pure spectra, and also of the distribution maps of all com-
pounds, even when one of them is present in only a small proportion. It should 

   
  Figure 2.16     (a) Pure spectra and some distribution maps 
coming from global multilayer resolution analysis; (b) Plot of 
the signal contribution (in percentage) from the different 
constituents in the different layers.  
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be noted that commercial pills are designed to have a fi xed composition, although 
for data analysis purposes it is a good practice to analyze the target pills with other 
samples where the information about the target compounds has been designed 
differently. In this case, attention should be paid to the presence of a pure excipi-
ent pill which, by lacking any pharmacological interest, provides an excellent 
means of introducing selective information on one of the compounds of the 
samples. 

 Although these pills were supposed to be formed by two constituents, a FSIW -
 EFA analysis detected the presence of a third compound (impurity) in some cases 
 [65] . According to the theoretical composition of the pill and to the local rank 
analysis, information on the presence/absence of constituents in the different 
images could be introduced in the multi - image resolution process. From the pure 
spectra resolved and the distribution maps in Figure  2.17 , the positive infl uence 
of the pill with the largest amount of impurity was noticeable when this compound 
was modeled in pills where it was present in very few pixels only.   

   
  Figure 2.17     Distribution maps (a – c) and pure spectra 
(d) obtained in the multi - image resolution of pills ranging in 
percentage of API from 0 to 80%.  
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 A positive consequence of multi - image analysis is the recovery of quantitative 
information. At this point, it should be taken into account that quantitation from 
images measured in refl ection is never as accurate and precise as from images 
measured in transmission. The more representative the surface scanned is from 
the rest of the sample, then the more reliable the quantitative information will be. 
When referring to quantitative information, it is possible to differentiate between 
within - image and between - image quantitation. 

 Within - image quantitation is more correctly described as the signal contribution 
of a certain constituent to the overall signal, as shown in the emulsion example 
(see Figure  2.18 a). The fi gures sc i  (%) given in this way should not be associated 
in straightforward manner with the compound concentrations, due to the various 
absorptivities of the different compounds in the image.   

 Between - image quantitation is the concept specifi cally linked to multi - image 
analysis. This quantitation is performed separately for each compound, and con-
sists of estimating the relative concentration of a particular compound in the dif-
ferent images. To do this, the stretched concentration profi le is taken and the 
 ‘ concentration ’  value for each layer obtained as the sum of all elements in the 
concentration profi le linked to a particular image, (c in  in Figure  2.18 b). When 
the images have different sizes or a different number of background pixels (e.g., 

   
  Figure 2.18     (a) Scheme followed to obtain within - image 
 ‘ quantitative ’  information (% of signal contribution); 
(b) Scheme followed to obtain between - image quantitative 
information in image analysis.  
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in pills), this concentration value can be weighted according to the number of pill 
(nonbackground) pixels  [65] . When reference values of concentration exist for 
some images, such as the percentages of API or excipient in the pills, they can be 
used to build calibration lines (r 2   > 0.95 is obtained for the excipient and the API 
compound in the presented pill example). Otherwise, the information obtained is 
the relative concentration of a constituent among images. Although, it should be 
remembered that this quantitation has no analytical value, it does provide a gross 
estimation of the concentration in the different samples. As this quantitation is 
conducted individually and independently for each compound, the relative differ-
ences of absorptivity among image constituents do not suppose any problem. 

 Multi - image analysis is certainly one of the most interesting aspects of image 
resolution, and offers many possibilities yet to be explored. One essential point 
will be to pass beyond the individual analysis of the image of interest and to com-
plement the information contained in this image with designed images of particu-
lar compositions (selective images or  ‘ standard ’  images of known pure or mixed 
composition). The possibility of recovering approximately quantitative information 
should open a new fi eld in the monitoring of processes through a series of images, 
as not only variations in the identity of compounds present and on their physical 
distribution in a sample would be obtained, but quantitative information among 
images would also indicate the evolution of profi les as a function of the process 
control variable. 

 Although, until now, our discussions have been limited to the analysis of images 
monitored using the same instrument, it would be extremely useful when design-
ing methodologies to combine images obtained from the same sample but using 
different spectroscopic techniques (e.g., Raman/infrared). In doing this, the com-
plementary spectral information obtained would help to differentiate more clearly 
between similar compounds, much in the way that multimodal imaging is carried 
out in the biomedical sciences. The ability to apply this strategy should lead to the 
identifi cation of preprocessing procedures envisioned at matching image contours 
and balancing the different spatial resolution (pixel size)  [87]  of the coupled tech-
niques. With such a clear challenge in mind, we shall surely witness major 
advances in this exciting fi eld of image data treatment in the near future.   
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  3.1 
 Introduction 

 In general, biological tissue is a collection of cells that also includes the  extracel-
lular matrix  ( ECM ). The cells of a particular tissue perform a similar function 
within an organism such that, in principle, all compartments of a multicellular 
organism    –    including the organs, structures and other components    –    can be 
assigned to a tissue class or are produced by a tissue type. The study of tissue is 
known as  histology  or, when in connection with disease, as  histopathology . The 
classical tools for studying tissues include fi xation, embedding in a wax block, 
the cutting of tissue sections, followed by their mounting on slides, staining 
and inspection using optical microscopy. More recent developments in electron 
microscopy, fl uorescence microscopy and molecular biology have signifi cantly 
increased our knowledge of the structure and function of tissues. Indeed, with 
these tools we can examine tissues both in health and in disease, thereby enabling 
a considerable refi nement of clinical diagnosis. Unfortunately, all of these methods 
require substantial preparation procedures, the labeling of molecules, and inter-
pretation of the information obtained by experts. Moreover, problems associated 
with label - based techniques may occur due to a limited accessibility of the label to 
the target, coupled with an inadequate binding specifi city and a poor stability. 

 Following the development during the past decade of sensitive and rapid  Fourier 
transform - infrared  ( FT - IR ) and Raman spectrometry, vibrational spectroscopy 
appeared as a complementary tool for the assessment of tissues and their patho-
logical changes. In general, more bands are observed in the vibrational spectra of 
tissues than in their optical spectra, because numerous vibrations of biomolecules 
can be excited simultaneously to produce a  ‘ fi ngerprint - like ’  signature. Conse-
quently, much more potential information regarding the biochemistry, composi-
tion and molecular structure of an underlying sample may be collected without 
the use of external labels, with minimal preparation, and without damaging the 
samples. The earliest of these studies were based on single spectra with a low 
lateral resolution. Hence, as the inherent inhomogeneity of tissue could not be 
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fully considered, a correlation between the histology and the vibrational spectra 
was only achieved for homogeneous sample regions. Major improvements resulted 
from the combination of vibrational spectroscopy with spatial information that 
opened wide perspectives in biomedical applications. These powerful imaging 
techniques enable the characterization of soft tissues with diffraction - limited 
lateral resolution. Spectroscopic near - fi eld imaging can also be used to resolve 
details below the diffraction limit (as described in Chapter  2 ). Vibrational spectro-
scopic images can be analyzed using automatic procedures, thus enabling both 
high throughput and high reproducibility. Since such information is usually dis-
tributed over a wide spectral range, and the spectral variances between tissue types 
and pathological states are invariably small, multivariate algorithms are today 
more appropriate than univariate algorithms for such analyses. False color images 
produced by the segmentation and classifi cation of vibrational spectroscopic 
images are directly comparable to the outcomes of standard histopathological 
staining protocols, and can also be interpreted by non - spectroscopists. Further-
more, these methods offer the possibility for optical biopsies in  in vivo  situations, 
using fi ber - optic probes. 

 Four basic types of soft tissue are found in all vertebrates, including the human 
body and most invertebrates (but with some exceptions, such as fungi), namely 
the  epithelium ,  connective tissue ,  muscle tissue  and  nervous tissue . (Details of 
vegetable fi bers and tissues may be found in Chapter  10 .) In this chapter we con-
centrate on the applications of Raman and FT - IR imaging to soft tissues, initially 
discussing the fundamental aspects of preparing soft tissues for vibrational 
spectroscopic imaging while excluding details of the instrumentation and data 
handling. Topics subsequently described include colon tissue (which contains 
epithelium, connective tissue and muscle tissue and nerve cells), brain tissue 
(which represents nervous tissue) and cervical tissue, which constitutes an example 
of carcinoma originating from the epithelium. Both, skin and ocular tissue are 
also included as dedicated instruments have been developed for the fi rst  in vivo  
applications of this technology. 

  3.1.1 
 Epithelium 

 The  epithelium  (the biological and medical collective term for covering and glan-
dular tissues) is composed of layers of cells that line the outside and inside surfaces 
of organs. The outermost layer of the skin is composed of stratifi ed squamous 
epithelial cells, while other epithelial cells line the insides of the respiratory, gas-
trointestinal, reproductive and urinary tracts, and also comprise the exocrine and 
endocrine glands. The functions of epithelial cells include secretion, absorption, 
protection, transcellular transport, sensation detection and selective permeability. 
The  endothelium     –    the inner lining of blood and lymph vessels    –    is a specialized 
form of epithelium. 

 Epithelial cells are classifi ed by their shape, stratifi cation and specialization. The 
cell shape is subdivided into squamous, cuboidal, columnar and transitional: 



   •      Squamous cells have an irregular, fl attened shape. A one - cell layer of simple 
squamous epithelium forms the alveoli of the respiratory membrane and the 
endothelium, and provides a minimal barrier to diffusion. Other sites of squa-
mous cells include the fi ltration tubules of the kidneys and the major cavities 
of the body. Squamous cells are relatively metabolically inactive, and are associ-
ated with the diffusion of water, electrolytes and other substances.  

   •      Cuboidal cells have a shape similar to a cube, which means that their width is 
the same as their height.  

   •      Columnar cells are longer than they are wide; the small intestine is a tubular 
organ lined with a simple columnar epithelium composed of a single layer of 
cells. Unicellular glands are scattered throughout this type of tissue and secrete 
mucus.  

   •      Translational epithelium is found in organs that can stretch; examples include 
the urothelium that lines the bladder and ureter of mammals.    

 The  stratifi cation  of epithelial cells is defi ned as either  ‘ simple ’     –    having a single 
layer of cells    –    or  ‘ stratifi ed ’     –    having more than one layer. The stratifi ed epithelium 
is usually composed of three layers, with cell division taking place in the basal cell 
layer (layer 1), after which the cells migrate and differentiate in the intermediate 
cell layer (layer 2) until they reach the superfi cial cell layer (layer 3). 

  Cell specializations  include keratinized cells and ciliated cells. The keratinized 
epithelium contains the cytoskeletal protein keratin, and provides a tough imper-
meable barrier, mainly in the skin. Ciliated cells have apical plasma membrane 
extensions composed of microtubules and are capable of beating rhythmically so 
as to move mucus or other substances through a duct. Cilia are common in the 
respiratory system. 

 As the epithelium covers the surface of organs, it is generally exposed to the 
environment and hence is in contact with a wide range of potentially aggressive 
or harmful chemical and physical conditions that may induce the deregulation 
of cell division in the basal cell layer. Consequently, carcinomas of the epithelium 
are among the most common forms of cancer. Both, FT - IR and Raman imaging 
studies have been reported for the study of carcinomas of the skin  [1] , breast 
 [2] , colon  [3] , prostate  [4] , cervix uteri  [5, 6] , esophagus  [7] , bladder  [8]  and oral 
mucosa  [9] .  

  3.1.2 
 Connective Tissue and Extracellular Matrix 

 Connective tissue is a group of tissue types that differ signifi cantly in form and 
function from each other, yet share common features in their development and 
structural organization. Connective tissue is involved in the structure and support 
of an organism, fi lls interspaces with ECM and generates (in the broadest sense) 
further specialized tissues such as blood, cartilage and bone, all of which are 
usually considered as connective tissues. However, because these specialized 
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connective tissues differ so substantially from the other tissues in this class, the 
term  ‘ connective tissue proper ’  is commonly used to exclude those three. Connec-
tive tissue proper is classifi ed into the following four groups: 

   •      Areolar or loose connective tissue: this holds the organs and epithelia in place. 
It is separated from the epithelium by the basal membrane, and contains a 
variety of proteinaceous fi bers, including collagen and elastin. It is also impor-
tant in infl ammation.  

   •      Adipose tissue: this contains adipocytes which are used for cushioning, thermal 
insulation, lubrication and energy storage as fat.  

   •      Dense or fi brous connective tissue: this forms ligaments and tendons. Its 
densely packed collagen fi bers have great tensile strength.  

   •      Reticular connective tissue: this is a network of reticular fi bers made from fi ne 
collagen, type III. These fi bers form a soft skeleton to support the lymphoid 
organs such as lymph nodes, bone marrow and spleen.    

 The ECM is defi ned as a collection of macromolecules outside the plasma 
membrane of cells in tissues and organs. The ECM is the main feature of con-
nective tissue, although it is also found in epithelium, muscle and nervous tissue. 
Its functions include the shape - forming of tissues and organs, water storage, 
elasticity, stability and signal transduction. The dominant components of the 
ECM include various proteins, glycoproteins and polysaccharides. The largest 
group of proteins is the collagen family, which comprises 28 known members 
that are involved in the formation of various fi bers. Carbohydrates form another 
large group, notably long - chain polysaccharides known as  glycosaminoglycans . 
Except for hyaluronic acid, the carbohydrates associate with proteins to form 
 proteoglycans . 

 Connective tissues have often been reported in Raman and FT - IR images as 
being located adjacent to the epithelium or to carcinomas. Disorders of cartilage 
 [10] , of the ECM in cardiac tissue  [11]  and of germinal centers in the lymphoid 
organ spleen  [12]  have each been studied using FT - IR imaging. Indeed, a Raman 
spectroscopic study was reported for sarcoma, a neoplastic process originating 
within the connective tissue  [13] . Applications of vibrational spectroscopic imaging 
to bone (a member of the supportive connective tissue family and considered to 
be a  ‘ hard tissue ’ ) are described in Chapter  4  of this book.  

  3.1.3 
 Muscle Tissue 

 Muscle is the contractile tissue of the body, its function being to produce force 
and cause motion, as well as either locomotion or movement within internal 
organs. Muscles are organized into fi bers that are mainly composed of muscle 
cells which in turn contain myofi brils. The myofi brils contain  sarcomeres  that 
contain the fi lament - forming proteins actin, myosin and titin. Muscle tissue is 
further separated into three distinct categories: 



   •      Skeletal or  ‘ voluntary ’  muscle is anchored to bone and used to effect skeletal 
movement such as locomotion and maintenance of posture. Although such 
postural control is generally maintained as a subconscious refl ex, the muscles 
responsible react to conscious control, like nonpostural muscles. The body of 
an average adult male human contains 40 – 50% skeletal muscle, while an average 
female contains 30 – 40%. Skeletal muscle is further subdivided into Type I (slow 
oxidative fi bers), Type IIa (fast oxidative glycolytic fi bers) and Type IIx (fast 
glycolytic fi bers). These differ in composition, enzyme activity, contractile speed 
and color.  

   •      Smooth or  ‘ involuntary ’  muscle is found within the wall of organs and struc-
tures such as the esophagus, stomach, intestines, bronchi, uterus, urethra, 
bladder and blood vessels. Unlike skeletal muscle, smooth muscle is not under 
conscious control.  

   •      Cardiac muscle is a specialized type of muscle found only within the heart. It 
is also considered to be an  ‘ involuntary ’  muscle.    

 Within the context of muscle tissue, FT - IR and Raman imaging have each been 
applied more often to smooth muscle than to skeletal muscle. Both, FT - IR and 
Raman imaging of blood vessels were used to obtain chemical and spatial informa-
tion about atherosclerosis  [14 – 16] . Raman images of bronchial tissue containing 
not only cartilage and epithelium but also smooth muscle were reported  [17] . Other 
FT - IR and Raman imaging studies on the esophagus, intestine and uterus con-
centrated rather on the epithelium than on smooth muscle, mainly because carci-
nomas arise in the epithelial tissues.  

  3.1.4 
 Nervous Tissue 

 Nervous tissues are composed of nerve cells (neurons) and glial cells, which in 
turn form the  central nervous system  ( CNS ) and  peripheral nervous system  ( PNS ). 
While the CNS comprises the brain and spinal cord, the PNS consists of all other 
nerves not lying within the CNS. The PNS transmits sensory stimuli to the CNS, 
and also transmits information to the muscles, glands and sensory organs. The 
CNS is responsible for the assessment of stimuli and any subsequent reactions, 
the development of thoughts and emotions, and the formation and storage of 
memories. The CNS can be subdivided into the gray and white matter: the gray 
matter is composed of unmyelinated neurons (neural cell bodies), while the white 
matter contains myelinated neurons (axons). Myelin is an electrically insulating 
phospholipid layer that surrounds the axons of many neurons. The neurons are 
connected to a complex network that processes and transmits cellular signals. 

   Glial cells  in the human brain are smaller and more abundant than neurons, 
and are classifi ed according to their structure and function into astrocytes, oligo-
dendrocytes, microglia, ependymal cells, radial glia, Schwann cells and satellite 
cells. The main functions of glial cells are to surround neurons and hold them in 
place, to supply nutrients and oxygen to neurons, to insulate one neuron from 
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another, and to destroy pathogens and remove dead neurons. Glial cells retain the 
ability to undergo mitosis in adulthood, while neurons cannot. This view is based 
on a general defi ciency of the mature nervous system to replace neurons after an 
insult or injury, while very often there is a profound proliferation of glia (called 
 ‘ gliosis ’ ) near or at the stage of damage. However, there is also some recent 
evidence of neural stem cells in some regions of the mature nervous system being 
capable of generating new neurons. The CNS is enveloped by the meninges; these 
form a system of connective tissues that consist of the dura mater, the arachnoid 
mater and the pia mater. The arachnoid and pia mater are sometimes together 
called the leptomeninges. The primary function of the meninges is to protect the 
CNS. 

 Applications of IR and Raman imaging in the study of nervous tissue have been 
reported for Alzheimer ’ s disease  [18] , Parkinson ’ s disease  [19] , multiple sclerosis 
 [20] , scrapie infections  [21]  and brain tumors. Brain tumors can be categorized as 
either  ‘ primary ’  tumors, originating from the brain cells, or  ‘ secondary ’  tumors 
(also called brain metastases), originating from tumors outside the brain. As 
neurons have largely lost the ability to divide, most primary brain tumors are 
derived from glial cells. The wide fi eld of neuro - oncological applications of FT - IR 
and Raman imaging was recently summarized  [22] , including details of primary 
brain tumors  [23] , tumors of the meninges ( ‘ meningeomas ’ )  [24] , secondary brain 
tumors  [25]  and a murine brain tumor model  [26] .   

  3.2 
 Preparation of Soft Tissue for Vibrational Spectroscopic Imaging 

  3.2.1 
 General Preparation Strategies 

 Due to the high sensitivity of vibrational spectroscopy, accurate sample prepara-
tion procedures are essential in order to obtain reproducible results and to permit 
the transfer of results from one laboratory to another. One of the major advantages 
of both IR and Raman spectroscopy is that they require minimal or no preparation, 
which also makes them attractive for  in vivo  applications. However, depending on 
the experimental confi guration and the origin of the tissue, samples must often 
be processed before image acquisition in order to fulfi ll the specifi c requirements 
of the spectroscopic method. As yet, standardized preparation procedures have not 
been defi ned. The effects of  ex vivo  handling procedures (drying, freezing, thawing 
and formalin fi xation) on mammalian tissue  [27] , the effects of fi xation on human 
bronchial tissue  [28]  and the effi cacy of dewaxing agents on cervical tissue  [29] , 
have been described for Raman spectroscopy. Some general considerations are 
provided in the following sections. 

 To date, many of the studies on the vibrational spectroscopic imaging of soft 
tissues have been carried out on  ex vivo  specimens that were either snap - frozen 
at the time of collection or fi xed using formalin, or transferred to an  optimal 



cutting temperature  ( OCT ) medium or embedded in paraffi n. Due to the time 
lapse between tissue excision and spectroscopic examination, such preservations 
are performed by many groups in order to maintain the biochemical state of the 
specimens. Fixation using a formaldehyde solution (formalin) preserves the tissue 
by preventing autolysis and stabilizing the tissue structure. Here, formaldehyde 
reacts with the amino groups of amino acids and promotes coagulation, but not 
the precipitation of proteins. Both, paraffi n and OCT serve as support media; 
subsequently, thin tissue sections are cut using either a microtome (for paraffi n -
 embedded tissue) or a cryotome (for snap - frozen tissue). A recently introduced 
femtosecond laser microtome (Rowiak, Hannover, Germany) offers an alternative 
procedure for slicing soft tissue in its native state, without freezing or embedding. 
The fi xation of thin tissue sections by air - drying is also surprisingly effective. 
When the water content has been vaporized in a dry atmosphere, the proteins are 
precipitated to form an insoluble mass that is resistant to degradation. Spectral 
data collected from samples fi xed in this way have revealed no apparent spectral 
changes when compared directly to those fi xed with formalin  [30] . 

   Staining reagents  such as hematoxylin for the cell nuclei and eosin for the 
cytoplasm, provide additional spectral contributions. Consequently, unstained 
tissue sections are normally prepared for IR and Raman spectroscopic studies, 
although opinion differs in this respect. When  hematoxylin and eosin  ( H & E )  –  
stained breast tissue sections were examined with FT - IR spectroscopy in the 
 attenuated total refl ection  ( ATR ) mode (see Section  3.2.3 ), the spectral contribu-
tions of the staining reagents were found to be negligible  [31] . Due to the nonde-
structive nature of these methods, tissue sections can be stained by H & E, or even 
by more specifi c stains after data acquisition, thus allowing both visual imaging 
and pathological examination. In order to pre - assess and select sampling areas 
before vibrational spectroscopic image acquisition, a parallel section can be pre-
pared on standard glass slides, stained and inspected. 

 The process of paraffi n - embedding requires fi xation and sample dehydration 
before embedding and removal of the support medium by organic solvents after 
sectioning. The tissues are dehydrated by dipping in a graded series of ethanol/
water mixtures, and then by bathing in xylene or benzene. However, a danger of 
this process is that the conformation of proteins and the structure of cells might 
be distorted, and the chemical composition of the sample is altered. For example, 
any hydrophobic constituents (e.g., tissue lipids) will also be partly dissolved by 
such solvent treatment. It is important to realize that, although each processing 
step might alter the chemical or molecular properties of the sample, those changes 
induced by the processing procedures may not be a cause for concern, as long as 
one protocol is strictly adopted throughout a study.  

  3.2.2 
 Vibrational Spectra of Reference Materials 

 The vibrational spectra of reference materials, notably the main components of 
soft tissue, are introduced in Figure  3.1 . In the IR spectrum (trace A) of the all - beta 
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protein concanavalin A, IR bands due to the peptide backbone with  β  - sheet second-
ary structures are found at 3284 (amide A), 1636 (amide I), 1531 (amide II) and 
1235   cm  − 1  (amide III). Bands at 1403 (COO  −  ) and 2963, 2874 and 1455   cm  − 1  (CH 3 ) 
are assigned to the amino acid side chains. These bands are located in the Raman 
spectrum (trace F) at similar positions at 1398 and 1449   cm  − 1 . The Raman amide 
I band is centered at 1672   cm  − 1  and the amide III band at 1238   cm  − 1 . The weak 
amide II band is not observed. Instead, other Raman bands of amino acids are 
identifi ed at 759 and 1555   cm  − 1  for Trp; 621, 1003, 1031 and 1208   cm  − 1  for Phe; 
643, 829 and 853   cm  − 1  for Tyr; 1126, 1317 and 1340   cm  − 1  (CH 2 /CH 3 ) for aliphatic 
amino acids. The IR spectrum (trace B) and Raman spectrum (trace G) of the all -
 alpha protein bovine serum albumin show a number of differences. The amide 
bands are shifted due to the predominant  α  - helical secondary structures to 1304, 
1540, 1658 and 3300   cm  − 1  (B) and to 1276 and 1656   cm  − 1  (F). Additional Raman 
bands are found at 939   cm  − 1  due to C − C vibrations of the  α  - helices and at 508 and 
550   cm  − 1  due to S − S vibrations of the disulfi de bridges. Other intensity differences 

   
  Figure 3.1     IR spectra from 950 to 1800 and from 2750 to 
3600   cm  − 1  (A – E) and Raman spectra from 400 to 1800   cm  − 1  
(F – J) of the protein concanavalin A (A, F), the protein bovine 
serum albumin (B, G), DNA from calf thymus (C, H), a lipid 
extract (D, I) and cholesterol (E, J). The wavenumber scale of 
the IR spectra in the interval 2750 – 3600   cm  − 1  is twofold 
compressed.  



are caused by changes in primary and tertiary structures. The most intense bands 
in the IR spectrum of DNA (trace C) corresponds to vibrations of the nucleotides 
in the interval 1600 to 1705   cm  − 1  and to antisymmetric and symmetric vibrations 
of the phosphodioxy groups of the backbone at 1245 and 1090   cm  − 1 , respectively. 
The Raman spectrum of DNA (trace H) provides more information related to the 
nucleotides thymine (751, 1377, 1671   cm  − 1 ), cytosine (789, 1260   cm  − 1 ), adenine 
(730, 1304, 1338   cm  − 1 ) and guanine (499, 682, 1489, 1579   cm  − 1 ). Further bands are 
assigned to the phosphodiester group (836   cm  − 1 ), phosphodioxy group (1093   cm  − 1 ) 
and CH 2  group (1421   cm  − 1 ) of the backbone.   

 The IR spectrum (trace D) of a brain lipid extract (Fluka No. 53282, Taufkirchen, 
Germany) in Figure  3.1  contains bands of phosphate groups of phospholipids 
(1085, 1239   cm  − 1 ), ceramide groups of glycolipids (1541, 1653   cm  − 1 ), C = O groups 
(1735   cm  − 1 ), C − C groups (1060   cm  − 1 ) and CH 2  groups (1466, 2850, 2920   cm  − 1 ). The 
corresponding bands in the Raman spectrum (I) are at 1064 (C − C), 1085 (PO 2 ), 
1439 (CH 2 ) and 1735   cm  − 1  (C = O). Additional Raman bands are assigned to the 
choline groups of hydrophilic lipid head groups (717   cm  − 1 ) and to C = C groups in 
unsaturated fatty acid side chains (1267, 1657   cm  − 1 ). There are numerous bands 
of the aromatic system of cholesterol with the most intensive IR bands at 1053, 
1364, 1376 and 1466   cm  − 1  (trace E) and the most intensive Raman bands at 427, 
544, 608, 700, 1439 and 1672   cm  − 1  (trace J). More comprehensive band assign-
ments of biomolecules have been published in the  Handbook of Vibrational Spec-
troscopy   [32] . Taken together, these spectra demonstrate that they provide a sensitive 
fi ngerprint for each molecule, and that IR and Raman spectra complement each 
other to some extent.  

  3.2.3 
 Preparation for  FT  -  IR  Imaging 

 If FT - IR images are collected in transmission mode, the samples must be suffi -
ciently thin and the substrates transparent to the wavelength range of the probing 
radiation in the mid - IR range, from 400 to 4000   cm  − 1 . In order to fulfi ll these con-
ditions, tissue sections of typically 5 to 20    µ m thickness are mounted on substrates 
made from materials such as CaF 2 , BaF 2  or ZnSe. In particular, CaF 2  is a material 
with excellent spectral properties for the FT - IR imaging of soft tissue. In contrast 
to BaF 2 , CaF 2  is almost insoluble in water and thus allows post - staining of the 
sections by H & E. Compared to ZnSe, the refractive index of CaF 2  is relatively low, 
so that the extent of optical fringing and chromatic aberrations introduced by the 
window material are reduced  [33] . The disadvantages of CaF 2  are its high price 
(ca.  " 50; US$ 65 per slide) and a decreasing transmission towards zero for wave-
numbers below 1000   cm  − 1 . Glass slides coated with a thin metal layer are also used 
as less - expensive substrates (ca.  " 1.5; US$ 2 per slide) for thin tissue sections (e.
g., MirrIR slides by Kevley, Chesterland, OH, USA). Visible light penetrates these 
slides, thus allowing the tissue to be visually examined by light microscopy, 
whereas IR radiation is refl ected by them, allowing IR spectroscopy in refl ection –
 absorption mode. However, the IR spectra collected from these samples are often 
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affected by dispersion artifacts  [34] . Thin tissue sections will dry rapidly under 
ambient conditions, and this improves the penetration of IR radiation in tissue 
because water strongly absorbs any IR radiation. The evaporation of water induces 
molecular changes in the tissue constituents of proteins, lipids and nucleic acids; 
the proteins may denature, lipids may crystallize (see Section  3.2.4 ) and nucleic 
acids may undergo a change from their natural B - conformation. FT - IR images can 
also be collected from nontransparent samples in back - scattered geometry using 
the ATR mode  [35] . Here, samples are in contact with an ATR crystal prepared 
from an IR - transparent material of high refractive index. When the IR radiation 
strikes the ATR crystal at the correct angle of incidence, the radiation undergoes 
a total internal refl ection such that, inside the ATR crystal a standing wave of 
radiation is established (called an  evanescent wave ) that penetrates a little beyond 
the surface. A sample which is in contact with the crystal can interact with the 
evanescent wave and absorb IR radiation, resulting in an IR spectrum. As the 
penetration of IR radiation is restricted to few micrometers (typically 0.5 – 3.5    µ m), 
it is important to establish a close contact between the sample and the ATR crystal; 
this is sometimes diffi cult for a hydrated tissue, and might lead to destruction of 
the tissue sections. 

 The IR spectra (traces A – C) in Figure  3.2  demonstrate the effect of treating 
tissue sections with polar and nonpolar solvents. The IR spectrum (trace A) was 
obtained from a dried tissue section of a  glioblastoma multiforme  ( GBM ) brain 
tumor. Compared to the spectra in Figure  3.1 , it is evident that this tissue is mainly 
composed of proteins and lipids. The IR spectrum (trace B) was acquired from a 
consecutive tissue section that had been treated for 10   min with a drop of toluol. 
The overlay of the normalized spectra indicates that lipid - associated bands at 1740, 

     Figure 3.2     IR spectra from 950 to 1800 and 
from 2750 to 3600   cm  − 1  (A – C) and Raman 
spectra from 400 to 1800   cm  − 1  (D – G) of brain 
tissue. Untreated tissue section (A); tissue 
section after treatment with toluol (B) and 
tissue section after treatment with water 

(C); Native tumor tissue at 1   h (D) and 10   h 
(E) after surgery; Native tumor tissue with 
hemorrhage at 1   h (F) and 10   h (G) after 
surgery. The wavenumber scale of the IR 
spectra in the interval 2750 – 3600   cm  − 1  is 
twofold compressed.  



2852 and 2925   cm  − 1  had decreased. The IR spectrum (trace C) was acquired from 
a consecutive tissue section that had been treated for 10   min with a drop of water. 
The overlay of the normalized spectra indicated that lipid - associated bands near 
1070, 1230, 1740, 2852 and 2925   cm  − 1  had increased. In summary, the relative 
intensity ratios of lipid to protein bands decreased in the order (C)    >    (A)    >    (B), 
consistent with the removal of lipids by toluene and with the removal of proteins 
by water. Furthermore, the shapes of the amide bands changed, which was con-
sistent with the secondary structure changes in proteins.    

  3.2.4 
 Preparation for  R aman Imaging 

 Raman images of tissues are usually collected in a backscattering geometry using 
 near infrared  ( NIR ) radiation excitation between 700 and 850   nm. Then, most 
Stokes - shifted Raman bands are below 1100   nm which enables their sensitive 
detection by silicon - based NIR - optimized  charge - coupled device  ( CCD ) cameras. 
Within the visible wavelength range (400 – 700   nm), most tissues show a high 
absorbance, mainly due to hemoglobin which limits the penetration of the incident 
and scattered photons. Furthermore, a strong autofl uorescence is usually excited 
using visible lasers which masks the inherently weak Raman signals. Alternatively, 
it is possible to use UV light at wavelengths below 270   nm to circumvent the fl uo-
rescence interference problem. Due to absorption of UV light by nucleotides and 
aromatic amino acids, their Raman signals are enhanced by a resonance effect. 
However, as the tissue penetration depth is only in the order of micrometers, care 
must be taken to avoid tissue damage when using UV light. Thin sections are 
mounted on substrates with low background signals. Upon 785   nm excitation, the 
CaF 2  or BaF 2  slides have a particularly low background, allowing also the collection 
of FT - IR images. The tissue can also be studied in its native state under  in vivo  
conditions by using Raman spectroscopy, as water contributes only marginally to 
the Raman signals. The light penetration depends on factors such as the excitation 
wavelength, excitation intensity, sample composition and optical geometry. When 
using low - magnifi cation objectives in combination with fi ber - optic probes or with 
microscopes, the radiation might penetrate several hundreds of micrometers. 
(Methods used to collect spectral information from deeper layers are described in 
Chapter  7  of this book.) By using a confocal microscope with a high magnifi ca-
tion/high numerical aperture objective, diffraction - limited lateral resolution can 
be achieved below 1    µ m, while the depth of view is reduced to a few micrometers. 
As the laser must be accurately focused to optimally excite and collect the Raman 
signals, a fi xed focus can only be applied for fl at samples. For uneven samples, 
the focus must be adjusted before each measurement. Autofocus routines can be 
used for adjustment during Raman image acquisition in the mapping mode. 

 The Raman spectra (traces D – G) in Figure  3.2  demonstrate the effects of aging 
for a native specimen of a GBM brain tumor. Traces D and F represent two mean 
spectra of a Raman image which was acquired from the specimen just 1   h after 
surgery. The main spectral contributions of proteins are identifi ed at 1004, 1450 
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and 1660   cm  − 1 , of lipids at 717, 1300 and 1440   cm  − 1 , and of cholesterol at 700 and 
1440   cm  − 1 . Additional bands at 757, 1214, 1547, 1607 and 1622   cm  − 1  in spectrum 
(F) can be assigned to the hemoglobin of red blood cells  [36] . These bands are 
enhanced by a resonance effect because the heme group partly absorbs the excita-
tion radiation. The Raman spectra (traces E and G) represent two mean spectra of 
a Raman image which was acquired from the same specimen 10   h after surgery. 
An overlay of the Raman spectra (D) and (E) indicates that both spectra corre-
sponding to tumor tissue are almost identical. However, an overlay of the Raman 
spectra (F) and (G) indicates differences in tumor tissue with a high blood cell 
content. The total and relative intensity changes point to a degradation and deoxy-
genation of the heme group. Further changes were observed after freezing and 
thawing; details of these fi ndings have been reported earlier  [37] . On drying the 
brain tissue sections, a crystallization of the hydrophobic components was induced; 
the Raman spectra of these crystals suggested that they contained almost pure 
cholesterol or cholesterol ester  [38, 39] . Such an artifact can only be avoided if 
nondried tissue sections are studied. In summary, the effects of aging, freezing, 
subsequent thawing and drying must each be considered before results are trans-
ferred to spectra recorded under  in vivo  situations.   

  3.3 
 Applications to Soft Tissues 

  3.3.1 
 Colon Tissue 

 Colon tissue was selected as a model for the comparative analysis of soft tissue by 
FT - IR and Raman imaging at low and high lateral resolution, because it contains 
all four major tissue types such as muscle, connective tissue, epithelium and also 
nerve cells. The vibrational spectroscopic fi ngerprints of normal tissues and their 
distribution in control samples were determined. The compilation of such data is 
important before a method can be applied to pathological colon tissue such as 
colorectal adenocarcinoma, which is the third most common form of cancer and 
the second leading cause of death among cancer patients in the Western world. 
Colorectal adenocarcinomas originate from epithelial cells and are able to infi ltrate 
the subjacent layers of colon and rectum. 

 A colon specimen was obtained with written parental consent from the colos-
tomy site of a neonate with an anorectal malformation. The studied sample rep-
resented a fraction of the normal colon tissue. A tissue section of 20    µ m thickness 
was prepared using a cryotome at temperatures between  − 18 and  − 22    ° C. Figure 
 3.3  shows the photomicrograph of an unstained thin section of colon tissue (b), a 
FT - IR image (a) and a Raman image (c). The photomicrograph (e) shows a gan-
glion in the boxed area in (b) at 15 - fold magnifi cation. The FT - IR and Raman 
microscopic images of this area are included in panels (d) and (f), respectively.   
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 The images were acquired by a FT - IR imaging system coupled to a 64    ×    64  focal 
plane array  ( FPA ) detector (Bruker Optik GmbH, Ettlingen, Germany). The fi eld 
of view in the macro chamber IMAC (Bruker) without magnifi cation using a 
4    ×    4   mm 2  FPA detector was 4    ×    4   mm 2 . Because the size of the tissue section 
exceeded the fi eld of view, three individual images were recorded and combined 
in Figure  3.3 a. The fi eld of view in the IR microscope (Hyperion; Bruker) with 
15 ×  magnifi cation using a 2.5    ×    2.5   mm 2  FPA detector was reduced to 170    ×    170    µ m 2 . 
A mosaic of 3    ×    3 images was recorded and combined in Figure  3.3 d. Although 
each pixel corresponded to an area of just 2.6    ×    2.6    µ m 2 , the actual lateral resolu-
tion was limited by diffraction to 10    µ m at 1500   cm  − 1   [40] . 

 The Raman images were acquired using a Raman system that consisted of a 
785   nm diode laser, a microscope, a notch fi lter, a spectrograph with a refl ective 
grating and a CCD detector (Renishaw, Wotton - under - Edge, UK). By using a 
motorized sample stage, the spectra were sequentially registered from a pre-
defi ned grid. The grating was moved during acquisition in order to access an 
extended spectral range from 600 to 1800   cm  − 1 . The Raman image in Figure  3.3 c 
contained 79    ×    79 spectra at a step size of 62    µ m. The step size was selected in 
order to compare the data with the FT - IR image, where each pixel corresponded 
to an area of 62    ×    62    µ m 2 . The laser of approximately 25   mW intensity was focused 
onto the sample by a 50 × /NA 0.75 objective to a rectangular spot of approximately 
2    ×    7    µ m. The Raman image (f) contained 53    ×    52 spectra at a step size of 10    µ m. 

     Figure 3.3     FT - IR images (a, d), 
photomicrographs (b, e) and Raman images 
(c, f) of a colon tissue section. The location of 
the sample area with a ganglion in the center 
(e) is indicated in (b) by a box. The color code 
represents the segmentation of spectra by a 

cluster analysis: mucus (magenta), mucosa 
(blue), submucosa (red, brown), circular 
muscle (yellow), longitudinal muscle (olive), 
fi brous septa (orange) and ganglion (black). 
Further details are presented in the text.  
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 A widely used multivariate method to segment vibrational spectroscopic images 
is  cluster analysis . After preprocessing procedures, the spectra are grouped accord-
ing to their similarity. The group or cluster memberships are color - coded for 
representation. Here, preprocessing encompassed the removal of low - intensity 
spectra, the subtraction of backgrounds, baselines and offsets, and also normaliza-
tion. These procedures separate variances due to physical effects such as elastic 
light scattering and sample thickness from the chemical information. The algo-
rithm k - means cluster analysis grouped the spectra into a predefi ned number of 
groups using a Euclidean distance metric. Removed spectra appear as white 
regions in the vibrational spectroscopic images; the details of which have been 
reported  [41] . 

 The resulting clusters in Figure  3.3 a, c, d and f correspond to the gross archi-
tectural division of the colon tissue. The mucosa (blue) is the innermost, highly 
specialized layer of the gastrointestinal tract which is responsible for absorption 
and secretion, both of which are important processes in digestion. Some mucus 
(magenta) which has been secreted by epithelial glands is shown at the top of the 
image. A thin layer of muscle tissue (olive/yellow), termed the muscularis mucosae, 
is located between mucosa and submucosa (red/brown). The submucosa consists 
of a dense irregular layer of connective tissue, while below the submucosa can be 
seen a circular muscle layer (yellow) and a longitudinal muscle layer (olive). The 
serosa (red/brown), which belongs to the connective tissue class, is visible at the 
bottom of the image. The nerves and ganglia are the neurons of the enteric 
nervous system that controls the gastrointestinal tract, the ganglia often being 
inter - connected to form a complex system known as a plexus. A ganglion (black) 
of the myenteric plexus between the longitudinal and circular muscle layers and 
fi brous septa (orange), which surrounds the ganglion, can be resolved at higher 
magnifi cation. 

 The cluster - averaged spectra of the six classes in Figure  3.4  reveal information 
about the underlying spectral properties. Calculating averages offers the advan-
tages that pixel - to - pixel variations are reduced and the  signal - to - noise ratio s 
( SNR s) are improved. This was particular important for Raman spectra, which 
had a typical SNR of 34 under the applied experimental conditions. The SNR of 
a single spectrum could be increased by having a longer exposure time, although 
this would also increase the total acquisition time. As the current exposure times 
were already up to 27   h (Figure  3.3 f) and 62   h (Figure  3.3 c), a further increase 
was impracticable. Such a low SNR might contribute to the noisy appearance in 
the cluster assignments of the Raman images in Figure  3.3 . As a consequence 
of the small clusters and low signal intensities for the ganglion (black) and for 
mucus (magenta), the averaged spectra (traces K and L) had lower SNRs than 
the spectra in traces G, H, I. Data acquisition by FT - IR imaging is much faster 
and yields higher quality spectra. For this, the typical acquisition times were 
between 1 and 5   min per FT - IR image, which consisted of 4096 individual 
spectra with a SNR between 500 (Figure  3.3 a) and 1000 (Figure  3.3 d). In spite 
of these differences, the cluster segmentations of the FT - IR and Raman images 
coincided well.   
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 The IR spectra in Figure  3.4  are normalized to equal intensities of the amide I 
band near 1657   cm  − 1  and the Raman spectra to equal intensities of the CH 2 /CH 3  
bands near 1451   cm  − 1 . Compared to the previous spectra of the reference material 
in Figure  3.1 , and of brain tumors in Figure  3.2 , the IR and Raman spectra of 
submucosa contained additional spectral contributions, most evident at 1042, 
1234, 1336, 1451 and 1547   cm  − 1  (A) and at 759, 816, 854, 920, 937 and 1245   cm  − 1  
(G). These bands could be assigned to collagen, which is a major component in 
connective tissue. Collagen has an unusual amino acid composition with a high 
content of hydroxyproline, proline and glycine, and a special coiled - coil triple - helix 
secondary structure. The reduced intensities of collagen - associated bands consti-
tuted the main difference between submucosa (A, G) and muscle tissue and 
between longitudinal muscle layer (B, H) and circular muscle layer (C, I). As 
smooth muscle tissue often must be stretched, elasticity is an important attribute; 
consequently, smooth muscle cells secrete a complex ECM that includes collagen. 
The detection of a relatively small decrease in collagen bands in circular versus 

   
  Figure 3.4     IR spectra from 950 to 1800 and from 2750 to 
3600   cm  − 1  (A – F) and Raman spectra from 400 to 1800   cm  − 1  
(G – L) represent the clusters of the images in Figure  3.3 . 
Submucosa (A, G); longitudinal (B, H) and circular (C, I) 
muscle layers; ganglion (D, J); mucosa (E, K) and mucus 
(F, L). The wavenumber scale of the IR spectra in the interval 
2750 – 3600   cm  − 1  is twofold compressed.  
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longitudinal muscle requires spectra of high SNR; this is the case for the IR 
spectra, but not for the Raman spectra before averaging, as stated above. This 
result was consistent with some overlap between the yellow and olive clusters in 
the Raman images of Figure  3.3 c and f. The collagen - associated bands further 
decreased in the Raman spectra of mucosa (J) and of the ganglion (K). More 
intense Raman bands at 780 and 1092   cm  − 1  pointed to a higher DNA content in 
mucosa, an observation which was confi rmed by the more intense IR bands at 
1085, 1238 and 1710   cm  − 1  in spectrum (D) than in (E), that were assigned to DNA 
phosphate groups and to carbonyl groups of nucleotides, respectively. More intense 
IR bands at 2852 and 2923   cm  − 1  compared with the IR spectra (A – D) indicated that 
more intense lipid bands also contributed to the bands near 1051, 1085 and 
1238   cm  − 1 . Due to the overlap of spectral contributions from lipids, DNA and col-
lagen in the interval 1000 to 1300   cm  − 1 , it is diffi cult to obtain this information 
from the IR spectra alone, and the Raman spectra provided complementary infor-
mation about the DNA and collagen contents. The IR (F) and Raman (L) spectra 
of mucus are markedly different from the previous spectra, with additional IR 
bands being found at 1060, 1114, 1148, 1238, 1280, 1343, 1360, 1467 and 2882   cm  − 1 , 
and additional Raman bands at 845, 859, 1063, 1125, 1140, 1235, 1279, 1396 
and 1468   cm  − 1 . These spectral signatures were consistent with carbohydrates 
and peptides. The main constituent of mucus is mucin, which is known to consist 
of highly glycosylated peptides. Furthermore, some bands pointed to the 
poly(ethyleneglycol) 4000 which was administered before surgery in order to fl ush 
through the gastrointestinal tract. 

 This example demonstrates that FT - IR and Raman imaging is capable of distin-
guishing between different tissue types in unstained tissue sections. A lower 
lateral resolution in the 60    µ m range provided an overview over an extended area, 
while a higher lateral resolution in the 10    µ m range allowed the identifi cation of 
a single ganglion. As the diffraction - limited resolution of Raman imaging is less 
than 1    µ m, it was shown recently that even subcellular features could be resolved 
in ganglia  [41] . The underlying spectra revealed detailed information regarding the 
chemical composition, while the high DNA content in the mucosa indicated a high 
metabolic activity. Given that the mucosa is the outermost layer of the colon, and 
is therefore exposed to a variety of potentially carcinogenic substances, this explains 
why carcinogenesis occurs most often in the mucosa and the epithelial layer. The 
combined use of both modalities offers advantages over the isolated application 
of Raman and FT - IR imaging.  

  3.3.2 
 Brain Tissue and Brain Tumors 

 Brain tissue was selected for the comparative analysis of dried, thin - tissue sections 
by FT - IR imaging and nondried, native tissue by Raman imaging. Potential appli-
cations include the histopathological assessment of tissue sections to determine 
tumor type and grade, or the primary tumor of brain metastases and the intraop-
erative delineation of the tumor margins. The latter point is particularly important 
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in neurosurgery in order to maximize tumor removal with minimal neurological 
damage. Due to the large number of FT - IR images, classifi cation models have 
been trained that could identify several nonpathological and pathological tissue 
types based on their IR spectroscopic fi ngerprint. Raman images of whole mouse 
brains have also been collected using a fi ber - optic probe. 

  3.3.2.1   Whole Mouse Brains 
 An important step in the development of new diagnostic tools is their application 
to animal models. Figure  3.5  displays the photomicrograph of an unstained thin 
section of murine brain, a FT - IR image and a Raman image of the consecutive 
native tissue sample. The box indicates the approximate area which was analyzed 
by Raman imaging, while the color code represents the score plot of a  principal 
component analysis  ( PCA ) that constitutes another widely used multivariate 
method for the analysis of vibrational spectroscopic images. PCA is used to calcu-
late the eigenvalues (scores) and eigenvectors (loadings) of the data matrix, with 
the loadings being orthogonal to each other. Whereas, the fi rst principle compo-
nents explain most of the variance within the data sets, the higher principle com-
ponents are dominated by noise. The PCA was performed in the high wavenumber 
range from 2800 to 3000   cm  − 1 , which was previously suggested to distinguish 
between morphological structures in brain tissue  [42] . The FT - IR image visualizes 
fi ber tracts and cerebellar gyri in the cerebellum at the top, the mesencephalon in 
the middle part, the arachnoid cistern below the mesencephalon, and the ventricu-
lar wall within a ventricle of the left hemisphere. Distortion of the soft pristine 
brain tissue after transfer to the sample compartment was small, so that the 
Raman image coincides remarkably well with the FT - IR image. Larger structures 
such as the fi ber tracts, the mesencephalon, the arachnoid cistern and the ventricle 
of the left hemisphere can also be identifi ed. Finer structures such as the cerebellar 
gyri and the ventricular wall are not resolved, most likely because the Raman map 
was recorded at a larger step size.   

 The Raman image was acquired using a Raman system consisting of a 785   nm 
diode laser, a fi ber - optic probe (Inphotonics, Norwood, MA, USA), a notch fi lter, 
a spectrograph with a transmissive holographic grating and a CCD detector (Kaiser 
Optical Systems, Ann Arbor, MI, USA). The specimen was placed onto a motorized 
stage, and the laser radiation was focused by the probe to a spot of 60    µ m. The 
scattered light was then collected by the probe and the spectra were sequentially 
registered from a 30    ×    91 grid at a step size of 120    µ m. The grating covered the 
entire spectral region from 200 to 3550   cm  − 1  without moving upon each exposure 
of the CCD. During data acquisition the specimen was covered by a CaF 2  window 
and sealed in a compartment in order to prevent the sample from drying. 

 The FT - IR image was acquired by a different FT - IR imaging system than 
described in Section  3.3.1 . The applied system Spotlight 300 (PerkinElmer, Waltham 
MA, USA, cf. Chapter  1 ) was equipped with a small array of 16 detector elements, 
which were rapidly scanned over a predefi ned grid of 310    ×    398 pixels. Each pixel 
corresponded to an area of 25    ×    25    µ m 2 , which enabled the resolution of smaller 
details in the FT - IR image (Figure  3.5 a) than in the Raman image (Figure  3.5 c). 
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 The IR and Raman spectra in Figure  3.6  were extracted from the images in 
Figure  3.5 . These represent the fi ber tracts (traces A and C) and the mesencepha-
lon (traces B and D). The spectra contain more intense spectral contributions of 
lipids and cholesterol relative to the protein bands than the spectra of brain tumors 
in Figure  3.2 . This is evident from the IR bands at 1060, 1234, 1382, 1467, 1740, 

   
  Figure 3.5     FT - IR image (a), photomicrograph (b) and Raman 
image (c) of a mouse brain tissue section. The approximate 
position of the Raman image is indicated in (b) by a box. The 
color codes represent the second principal component scores.  

   
  Figure 3.6     IR spectra from 950 to 1800 and from 2750 to 
3600   cm  − 1  (A, B) of a mouse brain tissue section; Raman 
spectra from 400 to 1800 and from 2750 to 3550   cm  − 1  (C, D) 
of native mouse brain tissue. The wavenumber scale of the IR 
spectra in the interval 2750 – 3600   cm  − 1  is twofold compressed.  
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2851 and 2920   cm  − 1  and from the Raman bands at 427, 544, 608, 700, 716, 1064, 
1298, 1439, 2850, 2882 and 2930   cm  − 1 . The Raman bands above 3100   cm  − 1  are 
assigned to water. The spectral contributions of proteins do not change signifi -
cantly in the IR spectra (A, B) and Raman spectra (C, D). Further details of the 
vibrational spectroscopic imaging of mouse brains, and the detection of metasta-
ses from malignant melanomas in mouse brains, have recently been reported  [26] . 
The possibility of inducing brain tumors in a small animal model opens the route 
to exciting studies for the application and optimization of acquisition techniques 
and data analysis algorithms for vibrational spectroscopic images.    

  3.3.2.2   Primary Brain Tumors 
 Normal human brain tissue contains 68 – 80% water, 10 – 11% proteins and 5 – 15% 
lipids, with higher lipid (15%) and lower water (68%) contents in the white matter, 
and lower lipid (5%) and higher water (80%) contents in the gray matter  [43] . Most 
other tissues, such as muscle (4%), liver (3.1%) and lung (2.9%) contain lesser 
proportions of lipids. The high lipid content of brain tissue is a consequence of 
the fact that neurons and nerve cells are surrounded by a sheath of lipids. If a 
tissue of a lower lipid content is found within the brain, it might point to a differ-
ent tissue type such as the dura mater, leptomeninges, hemorrhage or brain 
tumors. The dura mater and leptomeninges form the layers of the brain that 
encapsulate the meninges, and both have skin - like properties and high spectral 
contributions of collagen  [24, 37, 38] . Another property of most brain cells, which 
distinguishes them from proliferating and dedifferentiated tumor cells, is that they 
are postmitotic; in other words, they do not undergo cell division and all of the 
cells are at the same stage of maturation. Brain tissue is a very soft tissue due to 
its high water content, yet this may even increase (to 90%) in patients with intra-
cranial neoplasms and cerebrovascular pathologies  [44] . 

 Tumors that begin in the brain tissue are known as  ‘ primary ’  brain tumors, and 
are classifi ed according to the cell types from which they originate. Astrocytic 
gliomas, the most frequent primary brain tumors, originate from astrocytes, a 
special class of glial cells. The malignancy of these lesions has been classifi ed by 
the  World Health Organization  ( WHO ) as grades I and II, both of which are 
benign, and grades III and IV, which are malignant tumors with a rapid and 
infi ltrative growth pattern and a strong tendency to form metastases  [45] . When 
more than 100 FT - IR images of human brain tissue and gliomas had been acquired, 
a supervised classifi cation model was trained that distinguished six classes of: 
(i) normal tissue of regular cell density; tissue of (ii) low; (iii) intermediate and (iv) 
highly increased cell density; (v) hemorrhage and (vi) other tissues. The low, inter-
mediate and highly increased cell density was found to correlate with astrocytoma 
grade II, astrocytoma grade III and GBM grade IV, respectively. The model was 
based on the algorithm  linear discriminant analysis  ( LDA ), which uses three band 
ratios as molecular descriptors. The key information here is the ratio of the lipid 
band at 2850   cm  − 1  and the protein band at 1655   cm  − 1 , which decreases with increas-
ing malignancy. It has been reported that the model can assign single - spectra, 
FT - IR images which have been recorded with a single channel detector in the 
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sequential mode, and FT - IR images which were recorded with a FPA multichannel 
detector  [46] . The class assignments are color - coded to visualize the results, while 
the selection of training data and the classifi cation results were validated by a his-
topathological inspection of consecutive H & E - stained tissue sections. In a retro-
spective study, multiple brain tissue specimens from one patient were obtained 
under neuronavigation surveillance  [47] . The LDA classifi cation of FT - IR images 
was capable of distinguishing the central part of the tumor with high cell densities 
from the peripheral region with regular, low and intermediate cell densities. This 
success also enabled the application of FT - IR imaging as a complementary,  ex vivo  
tool to monitor the progress of tumor extirpation. An example is shown in Figure 
 3.7  for ten tissue sections on CaF 2  slides obtained from a brain tumor patient with 
a multifocal GBM. The images were acquired using a FT - IR system coupled to a 
64    ×    64 FPA detector (Bruker, Ettlingen, Germany). The fi eld of view in the macro 
chamber (IMAC; Bruker) was 4    ×    4   mm 2  per image. The color - coded FT - IR images 
demonstrated the inhomogeneous nature of the tumor, and a diagnosis of GBM 
was unambiguously confi rmed by FT - IR image (c), which was dominated by most 
malignant tissue of high cell density (red). Whereas the FT - IR images (d, h, i and 
j) also contained extended regions of high (red) and intermediate (orange) cell 
density, images (a, b, e, f and g) indicated mainly regular (green) and low cell 
densities (blue), which was consistent with low malignancies and a low number 
of tumor cells, respectively. It is important to note in the context of gliomas, that 
astrocytoma grades II and III could be used as descriptive terms to delineate the 
cellularity and morphological appearance of tumor areas, in analogy to the mor-
phological parameters used for the WHO grading. However, they were not identi-
cal with the respective WHO classifi cation. In a tumor which contained areas of 

     Figure 3.7     (a – k) FT - IR images of ten brain 
tissue sections obtained from a brain tumor 
patient with a multifocal glioblastoma 
multiforme. The color code represents the 
classifi cation by a LDA model into six classes: 
regular (green), low increased (blue), 

intermediate (orange) and high (red) cell 
density, hemorrhage (brown) and other 
tissues (gray). The red and orange classes are 
characteristic of malignant brain tumors of 
the glioma type. Scale bar   =   1   mm.  

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
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obvious malignancy (panel c), the areas of low cellularity with only a few tumor 
cells did not represent a benign tumor astrocytoma grade II. Despite the morpho-
logically benign appearance, these tumor cells may retain their malignant poten-
tial, a fact which explains the strong tendency of GBMs to recur within a short 
period. The curing of a GBM is unlikely unless the tumor is eradicated completely; 
however, this also involves other approaches such as immunotherapy or vector -
 mediated gene therapy as adjuncts to surgery.    

  3.3.2.3   Secondary Brain Tumors 
 The term  ‘ metastasis ’  refers to the spread of cancer. In 15 – 40% of all cancer 
patients, tumors that have started elsewhere in the body may spread to the brain 
to cause secondary brain tumors, known as  ‘ brain metastases ’   [48] . Surprisingly, 
in up to 15% of all cases the primary tumor of brain metastases remains 
unknown, despite thorough investigations with standard screening techniques. 
While the failure to detect the primary tumor is usually due to its small size 
and lack of symptoms, this constitutes the main problem when selecting an 
organ - specifi c therapy. Lung cancer, which is known to cause thoracic symptoms 
at a fairly late stage of tumor development, is the most frequent site for brain 
metastases. Other frequent primary tumors include colorectal cancer, breast 
cancer, renal cell carcinoma and malignant melanoma. The concept of applying 
vibrational spectroscopy to identify the primary tumor is that metastatic tumor 
cells contain molecular information of the primary tumor. So, the fact that vibra-
tional spectra can provide a  ‘ molecular fi ngerprint ’  of the tissue type may enable 
its assignment by a supervised classifi cation model. Two classifi cation models 
have been introduced to distinguish between the white and gray matter of normal 
brain tissue, and between the brain metastases of  renal cell carcinoma  ( RCC ), 
 lung cancer  ( LC ),  breast cancer  ( BC ) and  colorectal cancer  ( CC )  [25, 49] . The 
fi rst model was based on the LDA algorithm. Compared to the three molecular 
descriptors used for the classifi cation of gliomas, the number of band ratios was 
increased to eight, since the differences between the tissue types were smaller. 
The second model was based on the algorithm  soft independent modeling of 
class analogies  ( SIMCA ), where the classes are defi ned by a set of principal 
components of training data. Following PCA, the test data were projected into 
the multidimensional data space of the training data and assigned to the class 
with the closest distance. Because ten principal components in the interval 950 –
 1800   cm  − 1  were able to describe more variances, the SIMCA model tended to 
give better classifi cation rates for three control specimens and 17 tumors than 
did the LDA model. 

 The color - coded classifi cation results obtained, using the SIMCA and LDA 
models for fi ve specimens, are shown in Figure  3.8 . Four tissue sections were 
prepared on CaF 2  substrates from different brain metastases, while a normal brain 
specimen was obtained from an autopsy. The images were acquired using a FT - IR 
imaging system coupled to a 64    ×    64 FPA detector (Bruker). The fi eld of view in 
the macro chamber (IMAC) was 4    ×    4   mm 2 , and the resolution of 62    µ m per pixel 
was suffi cient to identify the molecular information of the main tissue classes. 
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The SIMCA model assigned 94.1% of the spectra from the normal sample in panel 
(a), while the LDA model assigned 95.4% of the spectra in panel (f) to white and 
gray matter. Incorrect assignments were observed mainly in the gray matter. 
Subsequently, 99.0% and 95.7% of the spectra from the RCC brain metastasis were 
assigned to RCC in panels (b, g) by the SIMCA and LDA models, respectively. A 
typical molecular property of renal cells is the expression and accumulation of 
glycogen, and these high correct classifi cation rates were based on the detection 
of glycogen throughout FT - IR images of the brain metastasis. As glycogen is not 
present in signifi cant amounts in normal brain tissue (nor in other brain metas-
tases), this molecular marker is indicative of RCC. Although the molecular markers 
were less pronounced for the other brain metastases, the majority of spectra were 
always assigned to the correct primary tumor: 74.3% to CC (c), 86.3% to LC (d), 
82.7% to BC (e), 90.2% to CC (h), 90.8% to LC (i) and 80.4% to BC (j). Besides 
model defi ciencies, classifi cation rates below 100% may occur for several reasons: 
(i) a fraction of normal tissue might be present; (ii) a tissue type which was not 
included in the model might exist; and (iii) the images might be affected by noise 
or physical effects that alter the spectral profi le. In particular, incorrect classifi ca-
tions were observed at the tissue margins in panel (e), where the spectra were seen 
to have low intensities and SNRs. In addition, dispersion artifacts normally show 
a maximum intensity in IR spectra close to the tissue margins. These classifi cation 
models can be optimized by acquiring additional training data, including more 
tissue classes, or by employing other algorithms such as artifi cial neural networks 
or support vector machines.     

     Figure 3.8     FT - IR images of brain tissue 
sections obtained from an autopsy (a, f ) and 
four brain metastasis patients (b – e and g – j). 
The color codes represent the classifi cation by 
a LDA model (a – e) and a SIMCA model (f – j) 

into six classes: white matter (green), gray 
matter (dark green), brain metastases of renal 
cell carcinoma (red), of colon cancer (cyan), 
of lung cancer (blue) and of breast cancer 
(brown). Scale bar   =   1   mm.  
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  3.3.3 
 Cervix Uteri and Squamous Cell Carcinoma 

 Besides the colon, the tissues of the cervix uteri represent another application of 
FT - IR imaging to epithelial and connective tissues. In addition, the tissue section 
encompassed dysplasia, and carcinoma. In pathology, the term dysplasia refers to 
an abnormality in the maturation of cells within a tissue, and is often indicative 
of an early neoplastic process. In this section, we highlight the fact that FT - IR 
imaging is a high - throughput technique which can be used to acquire images from 
several extended regions with microscopic resolution in a relatively short time. 
Since such a large amount of data constitutes an analytical challenge, a processing 
procedure for data reduction must be introduced. 

 One fi eld of research that has attracted much attention during the past decade 
has been the application of FT - IR and Raman spectroscopy in gynecological screen-
ing for cervical dysplasia and malignancies  [50, 51] . Before breast cancer became 
the predominant cancer site among woman, cervical cancer was the most frequent 
neoplastic disease, although it is now estimated that screening programs and 
follow - up interventions have reduced its incidence by approximately 80%  [52] . The 
currently accepted technique for diagnosing exfoliated cells is the  Papanicolaou  
( Pap ) smear test, where cells are collected from the cervical transformation zone 
and stained with the Pap stain. Despite its past success, cytological screening with 
the Pap smear test has its limitations, the most important being the high numbers 
of false - negative results. Thus, since the pioneering studies of Wong and cowork-
ers during the early 1990s  [53] , the main objective has been to improve the diag-
nostic accuracy of the Pap smear by using FT - IR spectroscopy of the exfoliated 
cervical cells. The focal point of Raman spectroscopic research on cervical tissue 
has been the  in vivo  assessment of squamous dysplasia using fi ber - optic probes 
 [54] . Cervical tissue sections have also been studied by three groups using FT - IR 
imaging  [5, 6, 55] , with multiple adenocarcinoma tissue sections from a cervical 
biopsy being used as a model system to demonstrate the generation of three -
 dimensional FT - IR images  [56]  (these are described in more detail in Chapter  9 ). 

 Whereas, cervical samples were usually obtained by cone biopsy from patients 
diagnosed by cytology with high - grade cervical dysplasia or carcinoma, the speci-
men used in these studies  [6]  originated from a patient with a cervical carcinoma 
who had undergone a radical hysterectomy. A tissue section of the specimen 
was mounted on a CaF 2  slide and studied using FT - IR microscopic imaging in 
transmission mode. The FT - IR imaging system was coupled to a microscope 
equipped with a 64    ×    64 FPA detector (Bruker). The fi eld of view at 15 ×  magnifi ca-
tion using was 270    ×    270    µ m 2  per image, and each pixel corresponded to an area 
of 4.2    ×    4.2    µ m 2 . Altogether, 122 FT - IR images totaling 499   712   IR spectra were 
recorded from seven areas representing cervical stroma, squamous epithelium, 
dysplasia and carcinoma. A dedicated strategy to segment this large data set (ca. 
3   Gb) by cluster analysis was developed that was capable of identifying the main 
tissue types. The goal was to perform a  hierarchical cluster analysis  ( HCA ) over 
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the entire set of spectra, in order to fully characterize the range of spectral varia-
tions through all areas. An HCA on each individual area would provide a different 
clustering result, because some tissue types are not present in all FT - IR images. 
HCA has been reported to be the superior clustering algorithm for the segmenta-
tion of FT - IR images compared to  fuzzy C - means  ( FCM ) and k - means cluster 
analyses  [3] . However, HCA has certain disadvantages, notably that it is diffi cult 
to visualize any relationship between large numbers of spectra in the resulting 
dendrogram, and also that long computation times are required to calculate the 
distance matrix ( n     ×     n ) for large wavenumber intervals and high number of spectra 
( n ). Therefore, a cluster analysis using the FCM algorithm was applied as a pre-
processing procedure to group the spectra into less than 100 clusters, such that 
each tissue type was represented by at least one cluster. The advantage of the FCM 
cluster analysis is that it can handle large data sets within relatively short computa-
tion times. This fi rst cluster analysis reduced the number of spectra to a more 
manageable size for subsequent HCA, and also improved the SNR because each 
group was averaged over a certain set of IR spectra. The application to the current 
data set was further optimized by parallel computing, using several processors. 
The sequential cluster analysis approach combines the advantages of FCM and 
HCA so as to enlarge the tissue area to be characterized in one process by FT - IR 
imaging. 

 Two examples of such an analysis are shown in Figure  3.9 , where photomicro-
graphs of H & E - stained tissue sections are compared with FT - IR microscopic 
images of consecutive, unstained tissue sections. The deviations between each pair 
of tissue sections are small. The FT - IR image in Figure  3.9 b is a mosaic of 4    ×    4 
individual images which is composed of 256    ×    256 spectra, while the FT - IR image 
in panel (e) is a mosaic of 4    ×    3 individual images which is composed on 256    ×    192 
spectra. The color codes represent the results of the sequential cluster analyses. 
In panels (b) and (e) the sequential cluster analyses were performed for all spectra 
in the spectral region from 950 to 1480   cm  − 1 . At the interface between stroma 
(pink) and the basal cell layer (red), a thin zone of mild infl ammatory response 
(cyan) is visible (Figure  3.9 b). Intermediate (light and dark orange) and superfi cial 
(brown) layers of epithelium are found at the right. The zone of severe infl amma-
tory response (blue) broadens toward the dysplastic lesion (red) in the lower part. 
The red coloring indicates that this initial approach cannot yet distinguish the 
basal cell layer and the dysplastic lesion. Similarly, the dysplastic lesion in the top 
part of Figure  3.9 e overlaps with the carcinoma in the lower part (both red). A 
blood vessel (green) in the middle part is surrounded by stroma (pink) and infl am-
matory infi ltration (cyan, blue). A small fraction of mucus (yellow) is observed in 
the top right part. In order to separate the overlapping tissue types, the red cluster 
was subjected to a second cluster analysis in the interval 1420 – 1480   cm  − 1 . Figure 
 3.9 c shows that the normal basal cell layer (yellow) can now be distinguished from 
dysplasia (orange), while Figure  3.9 f shows that dysplasia (orange) can be distin-
guished from carcinoma (red). The blue cluster represents spectra of different 
tissue types. Overall, the distinction of normal basal cell layer from dysplasia and 
squamous cell carcinoma was much more diffi cult than of the different tissue 
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types, such as the cervical stroma or upper layers of the epithelium. The reason 
for such diffi culties might be that normal and neoplastic basal cells enter the same 
cell cycle stages at approximately the same rate. The key difference is that neoplas-
tic cells do not regulate this process, which is a hallmark of cancer  [57] . As a con-
sequence, the cytoplasm consists of similar composition and the nuclear - to - cytoplasm 
ratio is similar; this is also indicated by the darker H & E staining patterns of the 
respective tissue regions in Figure  3.9 a and d.   

 The cluster averaged IR spectra of the main cervical tissue types are shown in 
Figure  3.10 . The spectral variances in the amide I and II bands were small, and 
therefore the spectral interval 1480 – 1800   cm  − 1  did not improve the cluster segmen-
tation and was omitted. Bands at 1026, 1080 and 1151   cm  − 1  in spectra (A – D) indi-
cate a gradual increase in the glycogen level from the parabasal to the intermediate 
and to the superfi cial layers of the epithelium. This increase is consistent with an 
accumulation of glycogen on the maturation of epithelial cells. Bands at 1232, 
1336, 1448 and 1538   cm  − 1  are more intense in the IR spectrum of cervical stroma 
(E) than in the other IR spectra. These bands were found earlier (see Figure  3.4 , 
trace A) as indicative for collagen, which is typical for connective tissue. The 
spectra of infl ammatory response (F, G) are similar to the spectra of stroma, which 
suggests that this infl ammation pertains to stroma. The main difference is a band 
near 1069   cm  − 1  which gradually increases with the grade of infl ammation. Spectral 

     Figure 3.9     Photomicrographs of hematoxylin 
and eosin - stained tissue sections (a, d) and 
FT - IR microscopic images (b – c, e – f ) of 
consecutive; unstained tissue sections 
obtained from a patient with squamous cell 
cervical carcinoma. Transition zone from 

normal epithelium to a dysplastic lesion (a – c) 
and carcinoma surrounded by cervical stroma 
containing blood vessels and infl ammatory 
response (d – f ). Color codes represent the 
segmentation of two sequential cluster 
analyses. Scale bars   =   200    µ m.  
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contributions near 1069   cm  − 1  are assigned to  polymorphonuclear leukocyte s 
( PMN s). The presence of PMNs in a cervical sample has been reported to be con-
sistent with infl ammatory conditions  [58] . The IR spectra of the basal cell layer 
(H), dysplasia (I) and carcinoma (J) are very similar, which explains the observed 
overlap in one cluster in Figure  3.9 b and e. The basal cell layer is the germ line 
for the epithelium. Upon cell division, basal cells generate cells that migrate to 
the surface and mature. Cancer cells originate from these progenitor cells, which 
makes the similarity plausible. The most signifi cant spectral change in the interval 
950 – 1480   cm  − 1  is the shift of the band at 1455   cm  − 1  towards 1448   cm  − 1 , with a con-
comitant intensity decrease as a function of malignancy (inset of Figure  3.10 ). A 
cluster analysis was able to differentiate these three tissue types using the spectral 
variances in the interval 1420 – 1480   cm  − 1 , as shown in Figure  3.9 c and f. The bands 
in this interval are assigned to CH 2 /CH 3  deformation vibrations. The CH 2 /CH 3  
stretching vibrations in the interval 2800 – 3000   cm  − 1  confi rm the intensity decrease. 
The bands at 2849 and 2918   cm  − 1  are assigned to fatty acids side chains; these have 
maximum intensity for the basal cell layer, a medium intensity for dysplasia and 
a minimum intensity for carcinoma. A decrease of these bands with increasing 
malignancy was also observed in brain tumors (see Section  3.3.2 ). In view of the 
minimal spectral differences in the interval 950 – 1300   cm  − 1  in spectra (H, I, J), 
where bands due to the polar head groups of lipids are located, the pronounced 
differences of the CH 2  vibrations are unexpected. These studies utilized formalin -
 fi xed, paraffi n - embedded tissue because of its availability and relevance in the 
pathology laboratory. Fixation of the tissue specimen with formalin crosslinks 
proteins; then, during subsequent tissue dehydration with solvents (e.g., ethanol), 
paraffi n embedding and deparaffi nization of tissue sections with solvents (e.g., 
xylol), the unfi xed fatty acids, lipids and their polar head groups are expected to 
be washed out. Spectral contributions due to incomplete removal of the paraffi n 

     Figure 3.10     IR spectra from 950 to 1800 (A – J) 
and from 2750 to 3600   cm  − 1  (H – J) of a cervix 
uteri tissue section. Superfi cial (A); 
intermediate (B, C) and parabasal (D) cell 
layers of epithelium; cervical stroma (E); mild 
(F) and severe (G) infl ammatory response; 

basal cell layer (H); dysplasia (I) and 
carcinoma (J). Spectra are normalized and 
baseline corrected for comparison. The 
wavenumber scale of the IR spectra in the 
interval 2750 – 3600   cm  − 1  is twofold 
compressed.  
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sectioning medium could be excluded because of the histopathologically con-
fi rmed correlation between the intensity of the CH 2  vibrations and the malignancy. 
Further experiments are required to study the effects of fi xation, dehydration and 
deparaffi nization on cervical tissue in more detail.    

  3.3.4 
 Skin 

 Skin offers unique possibilities for the application of vibrational spectroscopic 
imaging, because it is the largest human organ and its surface location makes it 
easily accessible. Applications to corneocyte biology, pharmacology and disease 
diagnosis have recently been reported. Two dedicated Raman instruments to 
measure the depth – concentration profi les of skin constituents (River Diagnostics, 
Rotterdam, Netherlands) and to determine the skin carotenoid level rapidly  in situ  
(Pharmanex, Provo, UT, USA) are now commercially available. Human skin can 
be considered as a multilayered system which is divided into the stratum corneum, 
the epidermis and the dermis. The composition of these layers was assessed by 
FT - IR imaging using a vertical porcine skin section as an example  [59] . The 
 stratum corneum  is the outermost layer and the main protective barrier against 
water loss, microorganisms and toxic agents. This thin (10 – 20    µ m) superfi cial 
region has a biphasic structure consisting of anucleated, keratin - rich corneocytes 
embedded in a highly ordered, lamellar lipid network of ceramides, fatty acids 
and cholesterol. A major function of the underlying epidermis is to generate the 
stratum corneum. The principal cell of the epidermis is the  keratinocyte , which 
differentiates as it migrates towards the stratum corneum. Terminally differenti-
ated keratinocytes generate corneocytes. The thickness of the epidermis ranges 
from 40    µ m on the eyelid to  > 1   mm on the palms. The dermis (0.4 to 4   mm thick) 
is the underlying layer of the epidermis, and dermis consists of tough connective 
tissue along with specialized structures. Approximately 75% of the dry weight of 
the dermis is comprised by collagen. 

  3.3.4.1   Corneocyte Biology 
 The maturation of corneocytes in healthy human stratum corneum was investi-
gated using both FT - IR and Raman imaging  [60] . During the differentiation of 
keratinocytes to corneocytes, a large insoluble protein called  profi laggrin  is con-
verted to fi laggrin. The processing of fi laggrin includes proteolysis of the protein 
into its constituents amino acids, amino acids derivatives and salts. The resultant 
mixture, known as  natural moisturizing factor  ( NMF ), provides suffi cient hydra-
tion to help keep the skin fl exible and to facilitate various enzymatic reactions in 
the pathway that terminates with corneocyte desquamation. Corneocytes from 
different layers of the stratum corneum were collected from the same site of skin 
by sequential tape - stripping, a procedure which removes a layer of cells 0.5    µ m 
thick. The most prominent difference in the spectra of FT - IR images, which were 
acquired from corneocytes in deeper layers, is the increased intensity in the 
band near 1400   cm  − 1 . The carboxylate symmetric stretching mode absorbs in this 
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spectral region, which is consistent with amino acid salts and ionized carboxylic 
acid derivatives in NMF. An NMF concentration profi le was constructed from FT -
 IR images of individual corneocytes, and showed the relative NMF concentration 
to more than double within the outermost layers (5 – 6    µ m). These results were in 
agreement with the outer layers sampled  in vivo  by a combination of confocal 
Raman imaging and confocal microscopy  [61] .  

  3.3.4.2   Pharmacology 
 Due to the strong absorption of IR radiation by water, the penetration depth in 
naturally hydrated skin is limited to a few micrometers. Therefore, in  in vivo  FT - IR 
experiments performed in the ATR mode, only the outermost layer of stratum 
corneum can be sampled. It was recently summarized how FT - IR imaging permits 
the monitoring of the effects of exogenous materials on stratum corneum lipid 
organization and protein structure  [62] . Depth profi les of molecular concentration 
gradients and transdermal drug delivery can be obtained  in situ  by confocal Raman 
imaging in stratum corneum and epidermis up to a depth of 200    µ m  [63] . Prodrugs 
are often constructed to enhance transdermal delivery; once in the epidermis, 
the prodrug is converted to the active drug by endogenous enzymes or simple 
chemical hydrolysis. The prodrug 1 - ethyloxycarbonyl - 5 - fl uorouracil is known to 
enhance the transdermal delivery of 5 - fl uorouracil. When pig skin biopsies were 
treated with the prodrug, and the spatial distribution of both prodrug and drug 
determined with confocal Raman imaging  [64] , the permeation of both species 
was limited to the stratum corneum at 22 ° C, whereas both were distributed 
throughout the stratum corneum and viable epidermis at 34 ° C. Furthermore, a 
solid form of the drug was observed beneath the skin surface. The physical state 
(solution versus solid) could be identifi ed in the Raman spectra. Evidently, an 
increased delivery of the prodrug at particular locations, and its conversion to the 
parent drug, resulted in a supersaturated solution from which the solid form 
precipitated.  

  3.3.4.3   Disease and Cancer Diagnosis 
 Skin cancer, which includes squamous cell carcinoma, malignant melanoma and 
 basal cell carcinoma  ( BCC ), is the cancer with the highest incidence worldwide. 
Hence, an understanding of the molecular, cellular and tissue changes that occur 
during skin carcinogenesis is central to cancer research in dermatology. As with 
many other tissues, vibrational spectroscopic imaging has been used to evaluate 
these changes (for a review, see Ref.  [65] ). A few studies are summarized here. As 
BCC is the most common cancer of the skin, 15 sections of BCC were sampled, 
and Raman images acquired and compared with histopathological results  [66] . 
In this sample set, 100% sensitivity and 93% selectivity were demonstrated. Pig-
mented levi, which belong to benign skin lesions, were distinguished from malig-
nant skin lesions in thin sections of biopsies by FT - IR imaging  [67] .  Melanoma  is 
the most lethal form of skin cancer, and demonstrates a clinical diagnostic sensi-
tivity in the order of 80% for trained dermatologists, but much worse for untrained 
medical personnel. The samples used in a Raman study included melanoma, pig-
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mented nevi, basal cell carcinoma, seborrheic keratoses and normal skin  [68] . The 
sensitivity and specifi city of an artifi cial neural network classifi cation for diagnosis 
of melanoma were 85% and 99%, respectively.  

  3.3.4.4    R aman Systems for Skin Studies 
 A Raman system was designed which can be applied noninvasively to record the 
depth – concentration profi les of living skin with a resolution of  < 5    µ m (River 
Diagnostics, Rotterdam, Netherlands). Using laser excitation at 671 and 785   nm, 
a custom - built detection system and software tools, various parameters of the skin 
can be analyzed. Due to the limited penetration (of typically 20 – 40    µ m), most 
studies are restricted to the stratum corneum. Applications include the determina-
tion of: (i) hydration of the skin; (ii) composition of the NMF; and (iii) the penetra-
tion of topically applied materials. This technique can be expected to experience 
growing use by skin scientists in the cosmetics, pharmaceutical and dermatologi-
cal research fi elds. 

 Another commercially available Raman system can be used to determine carot-
enoid levels in the skin (Pharmanex, Provo, UT, USA). Carotenoids are known to 
be important in human health, with most of their health benefi ts being associated 
with action as antioxidants; that is, they protect cells and tissues from the effects 
of free radicals and reactive oxygen species. As carotenoids are insoluble in water, 
they are transported in blood by  low - density lipoproteins  ( LDL ). An increase in 
blood carotenoids is refl ected in an increase of carotenoids in all organs of the 
body capable of taking up lipoproteins, including the skin. Thus, the direct mea-
surement of carotenoids on skin can provide a good indication of the levels of 
carotenoids in the blood and other tissues, and hence indicate the body ’ s overall 
antioxidant status. Due to the lack of any accepted noninvasive technology for the 
detection of carotenoids in living human tissue, resonance Raman spectroscopy 
was applied as a novel and rapid approach  [69] . The Raman signals originating 
from single - bond and double - bond stretch vibrations of the pi - conjugated carbon 
backbone of carotenoids at 1159 and 1525   cm  − 1  are enhanced by a factor up to 
100   000 under the correct conditions  [70] . This instrument uses  light - emitting 
diode s ( LED s) which are tuned to 471.3 and 473   nm in place of a laser. Although 
there is a large native fl uorescence level in the skin upon Raman excitation with 
blue light, carotenoid levels can be measured over a very wide concentration 
range.   

  3.3.5 
 Ocular Tissue 

 Because Raman signals are typically weak, intense lasers in combination with 
sophisticated light collection must be used. Although intense laser radiation can 
potentially harm the delicate structures in the visual system, ocular tissue has been 
found to be a very suitable target for Raman spectroscopy for two reasons. First, 
the ocular media (cornea, lens and vitreous) generally have good optical clarity, 
which enables high penetration of laser excitation and optical detection of scattered 
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radiation. Second, the retina also contains the pigment carotenoid. Due to its two 
orders of magnitude higher abundance compared to skin, the excitation intensities 
can be reduced to light levels that are within established safety ranges. As no other 
biological molecules found in signifi cant concentrations in human ocular tissues 
exhibit similar resonant enhancement with blue laser excitation, the  in vivo  carot-
enoid Raman spectra are remarkably free from confounding responses. 

  3.3.5.1   Macular Degeneration of the Retina 
  Age - related macular degeneration  ( AMD ) is the leading cause of irreversible blind-
ness in the elderly. Carotenoid macular pigments may provide protection against 
light - induced oxidative damage and lower the risk for this pathology. To explore 
the role of carotenoids in modifying the risk of AMD further, clinical studies to 
quantify their levels in the living human macula are impaired by the lack of appro-
priate instrumentation. Raman spectroscopy has been shown to assess the con-
centration and spatial distribution of carotenoids in the retina through undilated 
eyes, noninvasively, within a fraction of a second  [71] . Ocular Raman instruments 
have been designed for this special application (Spectrotek LC, Salt Lake City, UT, 
USA; however, the company is no longer in business). A new generation of ocular 
resonance Raman scanners will incorporate wide - fi eld imaging of macular carot-
enoid distributions  [72] .  

  3.3.5.2   Chemical Composition of the Vitreous and the Lens 
 Imaging the vitreous is a quest to view what is, by design, invisible. The combined 
use of techniques, including Raman spectroscopy, might provide a better imaging 
of vitreous for future investigational and clinical purposes. Raman spectroscopy 
was applied to image the vitreous in order to detect altered vitreous molecules 
such as glycated collagen and other proteins in diabetic vitreopathy  [73] . Using 
fi lipin (which binds specifi cally to cholesterol) as an external Raman label, the 
distribution of cholesterol in a rat eye lens was determined using Raman spectros-
copy  [74] ; here, the protein distribution was obtained by using intrinsic Raman 
protein bands. Numerous nonimaging Raman studies have been reported which 
demonstrate the high degree and long history of research activities in this fi eld. A 
literature survey in Medline revealed more than 120 references.    

  3.4 
 Conclusions 

 The above examples, references and a recent review  [75]  together demonstrate that 
more FT - IR than Raman imaging studies of soft tissue have been reported to date, 
due mainly to the highly developed instrumentation for FT - IR imaging which is 
able to acquire high - quality images within minutes. The rapid acquisition of FT - IR 
images can complement histopathology as a tool to assess tissue sections, and 
FT - IR - based classifi cation models have now been developed for prostate tissue  [4] , 
primary  [23]  and secondary brain tumors  [25] . The latter models allow an on - site 
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analysis of cryostat sections accompanying neurosurgery that is performed to 
confi rm initial diagnoses and to determine the tumor margins  [47] . The size and 
location of tumors are usually determined using  computed tomography  ( CT ) or 
 magnetic resonance imaging  ( MRI ) before surgery, with such preoperative infor-
mation being transferred during surgery by a neuronavigation system. However, 
the system accuracy is limited because the margins may deviate from the preopera-
tive locations due to intraoperative brain shift or edema. 

 The acquisition of Raman images is usually more time - consuming, and the 
signal - to - noise ratio inferior. Nevertheless, Raman imaging offers advantages in 
terms of: (i) studying nondried, native tissue; (ii) the maximal, diffraction limited 
lateral resolution is higher; (iii) the spectral range can more easily be extended to 
lower wavenumbers; (iv) the technique can be coupled to fi ber - optic probes; and 
(v) enhancement effects can be utilized. For example, the resonance Raman effect 
was used for the rapid and sensitive detection of carotenoids in skin  [69]  and retina 
 [71] , and also for melanin in brain metastases of malignant melanomas  [26] . To 
date, almost all Raman images have been recorded using the sequential point 
mapping mode. In order to improve sample throughput in the future, faster and 
more sensitive Raman systems must be developed utilizing new sampling tech-
niques such as line mapping or global imaging. 

 The complete assessment of an extended, inhomogeneous soft tissue sample 
exceeding 1   cm 2  by vibrational microspectroscopic imaging with lateral resolutions 
below 10    µ m requires the accumulation of more than 1   000   000 spectra. Whereas, 
on the one hand, this is time - consuming when using currently available instru-
ments   (even FT - IR imaging systems), on the other hand the resulting large data 
set is diffi cult to analyze or classify using currently available computer equipment. 
Therefore, as yet, Raman and FT - IR microscopic imaging as a screening tool 
appears to be limited to smaller samples or smaller sampling areas. Such sampling 
areas require careful selection, using complementary tools such as the conven-
tional staining of consecutive samples or using lower resolved vibrational spectro-
scopic images. Without this careful selection there is a great risk of missing 
important information, such as the detection of tumor cells outside the probed 
region. 

 Although in its early stages, one can be optimistic that vibrational spectroscopic 
imaging has the potential to become fully accepted as a diagnostic tool for soft 
tissues, with suffi cient sensitivity and specifi city for rapid and nondestructive  in 
vitro ,  ex vivo  and  in vivo  analyses.  
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  4.1 
 Infrared and  R aman Spectroscopy of Bone 

 Chemical composition is an important contributor to bone quality, a term that 
encompasses the effects of architecture, composition and remodeling dynamics. 
An important advantage of  infrared  ( IR ) and Raman imaging in bone studies is 
that they allow the imaging of parameters that measure tissue quality and compe-
tence. These are usually measured as band height or band area ratios, and in some 
cases as band widths. Although measures of tissue properties are similar in both 
IR and Raman spectroscopy, the IR metrics have been validated with other 
techniques. 

 In the IR spectrum, the mineral   :   matrix ratio is a measure of the mineral 
content, and is calculated as the ratio of the integrated phosphate  ν  1 , ν  3  envelope 
(ca. 900 – 1200   cm  − 1 ) to the collagen amide I envelope (ca. 1600 – 1700   cm  − 1 )  [1] . This 
has been correlated with ash weight  [2] . Similar metrics in Raman spectra use the 
phosphate  ν  1  envelope alone  [3]  or the ratio of the phosphate  ν  1  envelope to 
the amide I envelope. It should be noted that the amide envelope is sensitive to 
the state of collagen crosslinking  [4]  and, more generally, to changes in the hydro-
gen bonding in collagen fi brils. For example, in dentin equilibrated with alcohols 
or acetonitrile, the components of the amide I envelope shift to slightly different 
wavenumbers, and their intensities increase dramatically with the displacement 
of water  [5] . Because of this, in our laboratory we prefer to use bands at 853 and 
876   cm  − 1  as measures of collagen content  [6, 7] . As such bands are predominantly 
due to hydroxyproline, they should be relatively insensitive to changes in the 
collagen secondary structure. 

  Crystallinity  is a metric related to mineral maturity, and is a measure of mineral 
crystallite size, mineral maturity, and the amount of substitution into the apatitic 
lattice. Crystallinity increases when crystals are larger and more perfect (i.e., less 
substitution), and is directly proportional to the inverse width of the 002 refl ection 
(c - axis refl ection) in the powder X - ray diffraction pattern of bone mineral. Several 
features in the IR spectra of bone correlate with mineral crystallinity, including 
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the fractional area of the 1057   cm  − 1  and 1023   cm  − 1  components of the phosphate 
 ν  1 , ν  3  envelope  [8] . More extensive  Fourier transform - infrared  ( FT - IR ) correlations 
in this same band system have been reported  [9]  and include the 1030   cm  − 1 :1020   cm  − 1  
ratio  [10] . The 1030   cm  − 1  band is a component of   PO4

3−   ν  3 , while the 1020   cm  − 1  band 
has been attributed to   HPO4

2− . Similar correlations exist in components of the  ν  4  
(  PO4

3−  bend) envelope  [11] . All of these correlations should be usable in the Raman 
spectrum, provided that there are no other overlapping Raman bands. However, 
there has been less emphasis on crystallinity in the bone Raman literature, and 
only the width of the phosphate  ν  1  band has been used as a measure of 
crystallinity. 

 The carbonate   :   phosphate ratio in the IR spectrum is calculated  [10]  from the 
area of the   CO3

2−   ν  2  components at 866   cm  − 1  (labile carbonate), 871   cm  − 1  (B - type 
carbonate), and 878   cm  − 1  (A - type carbonate) and the area of the   PO4

3−   ν  1,  ν  3  envelope. 
These correlations use earlier carbonate band assignments  [12, 13] . 

 Carbonate band assignment has been more diffi cult in Raman spectra because 
of near - overlap of the major carbonate  ν  1  mode at 1070   cm  − 1  with a component of 
phosphate  ν  3  at 1076   cm  − 1  in carbonated apatites  [14] . These bands have earlier 
been reported as coincident  [15] , or have been assumed to be a single broad car-
bonate band  [16] . Most investigators have used the ratio of the carbonate  ν  1  band:
phosphate  ν  1  band as a measure of the carbonate   :   phosphate ratio. It is likely that, 
for a heavily carbonated mineral, this error is small, but for a lightly carbonated 
mineral the remeasurement or reinterpretation of some Raman spectroscopic data 
may be needed. 

 Collagen crosslinking is measured as changes in the amide I envelope  [4] . The 
biochemical analysis of collagen model peptides showed that  pyridinoline  ( Pyr ) 
crosslinks resulted in a band at ca. 1660   cm  − 1  and  dehydrodihydroxylysinonorleu-
cine  ( de - DHLNL ) crosslinks in a band at ca. 1690   cm  − 1 . It is known that the 
content of de - DHLNL crosslinks decreases with bone collagen maturity, while Pyr 
crosslink content increases  [17] , probably because the former matures into the 
latter  [18] . Thus, the 1660   cm  − 1 :1690   cm  − 1  ratio is an indicator of matrix maturity. 
This metric was developed for IR spectroscopy, but it has also been used success-
fully in Raman spectroscopy  [19, 20] . The same ratio has been used to indicate 
abnormal matrix crosslinking  [21]  and to infer rupture of crosslinks under 
mechanical load  [19] .  

  4.2 
 Infrared and  R aman Imaging of Bone 

  4.2.1 
 Introduction 

 The development, aging, pathology, microstructure and compositional basis of the 
mechanical functioning of musculoskeletal tissue have been major application 
areas for vibrational spectroscopic imaging  [16, 22] . For these applications, the 
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chemical composition and organization of bone components contribute greatly to 
the function of musculoskeletal tissue. Because bone is not homogeneous, a single 
IR or Raman spectrum offers limited information. Both IR and Raman imaging 
provide chemical composition information at a micron spatial scale, offering 
insight into the distribution of both mineral and organic matrix components. 
This information provides a more complete characterization of bone development, 
microstructure and aging because the chemical spatial variations contribute greatly 
to the structural integrity and ultimate biological function of bone. 

 As mentioned above, a common approach to spectroscopic imaging of muscu-
loskeletal tissue is to use band height or area ratios, after background subtraction. 
The sources of background may include fl uorescence or  poly(methyl methacrylate)  
( PMMA ) and epoxies if the specimens are fi xed and embedded. Histological stains 
may also be a source of background, but their contribution is usually insignifi cant 
in IR imaging because the stain layer is usually thin compared to the probed thick-
ness of the specimen. Unless very heavy staining is used, absorption by the stain 
does not result in thermal damage. For Raman imaging, stain fl uorescence is not 
usually observed, because the deep red and  near - infrared  ( NIR ) excitation often 
lie well to the red of the absorption spectra of almost all stains. Crane and cowork-
ers  [23]  have shown that the bands of hematoxylin and eosin, the most common 
stains, are not visible in Raman images. 

 In addition to the imaging parameters of band height   :   area ratios, there has also 
been a heavy reliance on the use of  self - modeling curve resolution  ( SMCR ) in 
Raman imaging, starting with the studies of Timlin  [24]  who showed that factor 
score images rather than Raman intensity images could be used. Even though the 
phenylalanine ring - breathing mode was misidentifi ed as a   HPO4

2−  band that is 
found at the same wavenumber, the ability of SMCR to extract and image spatially 
varying components was demonstrated. 

 While varimax rotation with a non - negativity constraint was used in our early 
investigations, we now employ  band target entropy minimization  ( BTEM )  [25]  to 
extract Raman spectra and to generate score image contrast  [26] . This technique 
allows the extraction of even minor components, provided that a band target    –    a 
region of the spectrum that uniquely identifi es the component    –    can be identifi ed 
either from the underlying spectra or, more commonly, from features in the fi rst 
few eigenvectors of the spectra that comprise the image data set. Unlike varimax 
rotation, BTEM does not require extensive user intervention, and provides superior 
results for minor components. It should be noted that any data reduction procedure 
that begins with the extraction of principal components is based on the assumption 
that the data set consists of a small number of constituents, which contribute to the 
measured spectrum at any point in proportion to their composition at that point.  

  4.2.2 
 Imaging of Normal, Healthy Mineralized Tissue as a Function of Age 

 In this section, imaging studies performed on normal, healthy bone as a function 
of age are briefl y reviewed, so as to provide a background to compare results from 
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tissue compromised by genetic modifi cations, external stresses or disease. Bone 
tissue of different ages is found in both osteonal and trabecular bone as a function 
of the remodeling process. Within an osteon ( ∼ 200 – 250    µ m in diameter), the 
youngest tissue is found at the center and the most mature at the edges. For tra-
becular bone, the youngest tissue is found at the edges of individual trabecula 
while the more mature tissue is located at the center. 

 In early FT - IR studies of osteonal and cortical bone  [1, 10]  it was shown that the 
mineral   :   matrix ratio and crystallinity increased from the center to the edge of an 
individual osteon  [10] , and from the periosteal region to the endosteal region of 
cortical bone  [10] . A greater mineralization was found in more mature tissue, 
consistent with previous nonimaging studies  [27 – 29] . For osteonal bone, a 
maximum in the mineral density was found  ∼ 50 – 60    µ m from the osteon center 
 [10]  and, as with mineralization, a greater crystallinity (i.e., larger and more perfect 
crystals) was also found in older tissue. More recent FT - IR imaging has confi rmed 
these results  [11, 30, 31]  and also allowed the examination of such compositions 
in greater detail  [30] . The collagen crosslink ratio was also found to follow the same 
trends as the mineral   :   matrix ratio and crystallinity  [32] , while the carbonate   :   
phosphate ratio and acid phosphate content were found to decrease away from the 
center of an osteon, with the most marked changes in acid phosphate occurring 
within 30  µ m of the osteon  [10, 11] . 

 Similar results were found in trabecular bone, in which bone crystallinity 
decreased from the center to edge, indicating more mature mineral in the central, 
older tissue  [10, 32] . Although the collagen crosslink ratio decreased from the 
center to the edge in newly forming trabeculae  [4] , this gradient was absent at 
older, resorbing trabecular surfaces  [33] . As in osteonal tissue, the carbonate   :   
phosphate ratio was highest in younger tissue at the edge of trabeculae, as shown 
in Figure  4.1   [32] .   

 In interstitial tissue, SMCR has been used to generate images  [34] . Two mineral 
factors were observed, one which corresponded to normal mineral and the other 
which contained a band at 952   cm  − 1 , which was interpreted as arising from  amor-
phous calcium phosphate  ( ACP ). Images of this factor showed that the ACP was 
located away from the edge of the osteon. The authors suggested that ACP might 
be found in regions susceptible to damage, or perhaps might have been the result 
of prior damage. 

 The use of polarized light to generate contrast between bone components 
provides information on the spatial distribution of bone components and their 
orientation. Kazanci  et al.  used Raman polarized imaging to examine the distri-
bution of mineral and matrix constituents around osteons, and showed that the 
  PO4

3−   ν  1  and amide I bands are highly orientation - dependent, whereas the amide 
III and   PO4

3−   ν  2  and  ν  4  are less orientation - dependent  [35] . Orientation effects 
are nicely illustrated in Figure  4.2   [36] . The   PO4

3−   ν  1    :   amide I ratio coincides with 
the orientation of the lamellae; the same lamellae have different contrasts, 
depending on the polarization of the excitation light and the orientation of the 
specimen.    
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  Figure 4.1     IR microscopic image of the carbonate  ν  3  to 
phosphate  ν  1  ratio in normal trabecular human iliac crest 
tissue.  Reprinted with permission from Ref.  [32] .   

     Figure 4.2     (a) Bone section under polarized 
light; the black line outlines where the 
Raman images were acquired. Polarized 
Raman images of (b) phosphate  ν  2    :   amide 
III; (c) phosphate  ν  1    :   amide I; and 
(d) carbonate   :   phosphate  ν  2  band ratios at 

the interface between osteon and interstitial 
bone; (e, f ) Three - dimensional view of 
phosphate  ν  1    :   amide I ratio for different 
polarization directions.  Reprinted with 
permission from Ref.  [36] .   

(a)

(b) (c)

(d)

(e) (f)
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  4.2.3 
 Adaptation of Bone Induced by Genetic Modifi cations 

 In bone studies, mice are often genetically modifi ed so as to elucidate the role of 
a specifi c protein in the mineralization process. For example, Boskey  et al.  used 
IR imaging to compare the mineral content and crystallinity of the tibia and femur 
in osteopontin - defi cient mice to wild - type controls at ages of 12 and 16 weeks  [37] . 
An increase was observed in the mineral content and crystallinity of osteopontin -
 defi cient mice in all sites, except for the periosteal bone (see Figure  4.3 ). Similar 
results were obtained for trabecular bone. The mineral differences apparent in the 
IR images were not observed with histological staining. The increases in mineral 
content and crystallinity were in agreement with the fi ndings of other studies, 

   
  Figure 4.3     Tissue sections. (a) A 12 - week - old mouse Von 
Kossa - stained for mineral and counterstained with toluidine 
blue for tissue morphology; (b) IR images of cortical bone at 
16 weeks; the top panel shows the integrated area under the 
900 – 1200   cm  − 1  phosphate envelope. The second and third 
panels illustrate the mineral to matrix ratios and crystallinity, 
respectively.  Reprinted with permission from Ref.  [37] .   

(a) (b)
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suggesting that osteopontin is an inhibitor of mineral formation and crystal growth 
 [38 – 40] .   

 Osteonectin - null mice have a lower number of osteoclasts and osteoblasts, as 
well as decreased bone formation and resorption  [41] . Both, osteonectin - null mice 
and wild - type mice at 11, 17 and 36 weeks have been used for IR imaging experi-
ments  [41] . The osteonectin - null bone showed a signifi cant increase in mineral 
content in newly formed periosteal bone, a decrease in mineral crystallinity for 
cortical bone, and an increase in collagen maturity in both cortical and trabecular 
bone. These data refl ect the presence of both existing, older mineral that has not 
been reabsorbed, as well as a more mature collagen matrix that has aged without 
being degraded and replaced. 

 Additional studies utilizing IR imaging to characterize the skeletal phenotype 
for genetically engineered mice have examined the effect of  transforming growth 
factor -  β 1  ( TGF -  β 1 )  [42] ,  dentin matrix protein - 1  ( dmp1 )  [43]  and biglycan  [44] . The 
TGF -  β 1 - null specimens had reduced growth plates, less alkaline phosphatase activ-
ity, and reduced collagen maturity for all ages examined. No effect on mineral 
content or crystallinity was observed in trabecular bone, whereas in cortical bone 
and the secondary ossifi cation center, the mineral content, crystallinity and colla-
gen maturity was reduced. In another noteworthy IR imaging study, the role of 
dmp1 in mineralization was analyzed by comparing bone mineral and matrix 
properties in dmp1 - null mice to those in heterozygous and wild - type controls  [43] . 
The skeletal phenotype expressed a decreased mineral content and increased 
crystal size. 

 Morris and coworkers have investigated the early mineralization in mouse cal-
varia subjected to periodic loading to model craniosynostosis, a birth defect in 
which the calvarial sutures fuse prematurely. Here, Raman imaging was used to 
study the composition, relative amounts and locations of mineral and matrix 
components in murine fetal calvarial sections  [45] ; the results are summarized in 
Figure  4.4 . The same mineral composition was found in the control and force -
 induced tissue. The addition of  fi broblast growth factor - 2  ( fgf2 ) was found to 
increase the rate of mineralization, without causing any change in mineral com-
position  [6, 46, 47] , although the accelerating mineralization did result in a less -
 ordered mineral structure.   

 In a subsequent study, mineralization in cultured fetal murine calvarial sections 
was followed for up to 72   h  [7] . Transient  octacalcium phosphate  ( OCP ) or OCP -
 like intermediates were observed and converted to carbonated apatite over periods 
of a few hours. When increased levels of OCP were found in sutures undergoing 
fgf2 - induced accelerated mineralization, these results supported the transient pre-
cursor mineralization mechanism, which had been hypothesized but not previ-
ously observed  [48, 49] . 

 IR imaging has also been used to investigate mouse models of human disease, 
including Fabry disease (a lipid storage disease)  [50]  and skeletal disorders. 
Camacho  et al.  characterized bone mineralization in a mouse model of  osteogen-
esis imperfecta  ( OI ) after treatment with the bisphosphonate  alendronate  ( ALN ) 
 [51] . The treatment of OI mouse models with ALN led to improved mechanical 
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properties by increasing metaphyseal bone density and bone diameter, resulting 
in reduced fracture rates  [52] . In this study, ALN treatment resulted in increased 
metaphyseal bone mineralization but was found not to improve mineral maturity. 
Although ALN treatment mechanically strengthens the bone, IR imaging has 
provided evidence that treatment neither rescues the phenotype nor normalizes 
the mineralization in OI mouse bone.  

  4.2.4 
 Adaptation of Bone in Response to External Stress 

 The fi rst studies relating damage to bone chemistry focused on mineral changes 
that occurred near sites of mechanical deformation. Mineral phase transforma-
tions were observed in areas where microdamage and deformation/fracture were 
present  [19, 53 – 55] . Timlin  et al.  used Raman imaging to investigate the relation-
ship between bone mineral composition and microdamage in bovine bone  [55] . 
Where no visible microdamage was present, only one  ‘ normal ’  mineral factor with 

     Figure 4.4     (a) Schematic of mouse calvaria; 
the arrow indicates the region from which the 
specimens were harvested; (b) H  &  E - stained 
section; the arrows indicate areas of increased 
collagen production and cell proliferation in 
the loaded specimen; (c) Mineral score image 
of loaded specimen; (d) Mineral score image 
of loaded specimen from the boxed region in 

panels (b) and (c); (e) Mineral score image 
of unloaded specimen; (f) Ratio of mean 
osteogenic front mineral content to mean 
mature bone mineral content. In the pseudo -
 color contrast, red indicates high mineral 
content and blue indicates low.  Reprinted with 
permission from Ref.  [45] .   

(a)

(b)

(c)

(d)

(f)
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a phosphate band at 959   cm  − 1  was found. In areas of visible microcracks, two 
mineral factors were observed, one representing  ‘ normal ’  hydroxyapatite mineral 
and the other containing a high - frequency phosphate band at 963   cm  − 1  that is 
characteristic of stoichiometric (i.e., less - carbonated) hydroxyapatite. Images of 
each factor showed differences in their distribution at the crack tip. In regions of 
diffuse damage, a  ‘ normal ’  mineral factor was found, in addition to one factor that 
contained a phosphate band at 961   cm  − 1 , a frequency which was slightly higher 
than for normal bone but not as high as for bone regions near a visible micro -
crack. The score image of this factor showed not only a random distribution but 
also that diffuse damage was associated with smaller chemical changes than 
microcracking. 

 The results of subsequent studies confi rmed that the abnormal mineral present 
in microdamaged bone was, in fact, a result of the damage and not a cause of it 
 [19, 53] . Morris  et al.  used Raman imaging to investigate the effect of macroscopic 
fracture using femora from young and aged mice  [53] . In undamaged four - month -
 old control tissue, only one  ‘ normal ’  mineral factor was observed. However, after 
fracture the factor analysis identifi ed two mineral factors: one similar to that 
observed prior to fracture, and another that contained a high - frequency phosphate 
band at 965   cm  − 1  but no carbonate band (typical of stoichiometric, uncarbonated 
apatite). These results were similar to those seen in the microdamage study, and 
consistent with phase transformation, a process that occurs in other crystalline 
materials such as ceramics as a means of adapting to an applied mechanical load. 
The score images showed a signifi cant overlap between the two factors. However, 
in an 18 - month - old mouse, only one  ‘ normal ’  mineral factor was observed after 
fracture, either because aging might prevent mineral phase transformations, or 
because the damage did not propagate far enough to be observed. 

 In mechanically indented bovine bone, Raman imaging showed the presence of 
additional mineral species in the indented areas where compression had occurred, 
but not at the edge of the indent or in control areas  [19] . The additional mineral 
factor was consistent with earlier results; however, the factor in the nanoindenta-
tion studies usually contained a lower - frequency phosphate component rather 
than the higher - frequency component found in the fracture study. The addition 
of either a higher -  or lower - frequency component is consistent with high - pressure 
studies on calcium hydroxyapatite, where the frequency of the phosphate  ν  1  band 
initially increases and then decreases with greater pressure  [19] . Importantly, in 
both the indent and control areas, only one matrix factor was found. A second 
matrix factor was found at the edge of the indent where the shear forces were 
great. The spectral features of this factor were characteristic of the absence of 
mature Pyr crosslinks  [4] , and interpreted as a rupture of these crosslinks. No 
collagen damage was observed spectroscopically in the center of indents, and this 
was consistent with the known weakness of bone in shear mode, relative to 
compression. 

 Other studies have produced apparently confl icting results on the relationship 
between local composition and microcrack formation  [56, 57] . In 2005, Akkus and 
coworkers used Raman microspectroscopy and human male femurs to examine 
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mineralization in the vicinity of microdamage. Mineralization was evaluated by 
calculating the intensity ratio of the phosphate  ν  1  band to the CH 2  - scissoring band 
( ∼ 1450   cm  − 1 ). Raman maps of this mineral   :   matrix ratio showed that the miner-
alization close to microcracks was greater than elsewhere, and that the minera-
lization was uniform in regions of microcracks and did not vary with distance 
from the crack. Statistical analysis showed that the average mineralization of 
areas near microcracks was consistently and signifi cantly greater than the overall 
mineralization, suggesting that the formation of some microcracks may be 
composition - dependent. 

 However, with synchrotron IR imaging of canine vertebrae, no difference was 
observed in the mineralization ( ν  4    PO4

3−   ∼ 500 – 650   cm  − 1 ):(amide II  ∼ 1510 – 1595   cm  − 1 ) 
or crystallinity parameters between undamaged and microdamaged bone, showing 
that microdamaged areas were not overmineralized  [57] . In addition, the carbon-
ate   :   phosphate and carbonate   :   matrix ratios were signifi cantly lower in the regions 
of microdamage, consistent with the results of previous studies where an addi-
tional phosphate band was attributed to a more stoichiometric, less - carbonated 
apatite species. The collagen crosslink ratio decreased in the vicinity of microdam-
age, as a result of broken crosslinks, and the acid phosphate content had also 
increased. As can be seen from Figure  4.5 , all differences in composition had 
well - defi ned boundaries in the presence of microcracks, suggesting that these 
differences were an effect of microcrack formation. However, it is unclear whether 
the discrepancies between these studies refl ect differences in the tissue, or in the 
methodology used by the research groups.   

 Pezzotti and coworkers monitored the spectral shift of Raman bands with 
mechanical loading to examine the  in situ  response of femoral and cortical 
bone to external stress  [58, 59] . It has been proposed that collagen operates by a 

     Figure 4.5     Top panel: Visible image of 
fuchsin - stained microcrack. Data were 
collected within the crack and surrounding 
area. (a – f) IR images of the same area 
illustrating: (a) the carbonate   :   phosphate 

ratio; (b) the carbonate   :   protein ratio; (c) the 
acid phosphate   :   total phosphate ratio; (d) the 
phosphate   :   protein ratio; (e) crystallinity; 
(f) collagen crosslinking. Scale bar   =   25    µ m. 
 Reprinted with permission from Ref.  [57] .   
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crack - bridging mechanism during fracture initiation and propagation  [60] . Tensile 
microstresses were quantitatively assessed for the fi rst time by constructing 
microscopic stress maps from shifts of the phosphate  ν  1  band. Figure  4.6  shows 
the stress maps in bovine femoral bone near a fracture. An area of high stress 
exists ahead of the crack tip, and subsequent micrographs showed that micro-
cracks were present in this area of high stress  [58] . Consistent with the crack - bridg-
ing mechanism, the stress fi eld contained areas of stress relaxation and stress 
intensifi cation, seen as the striped pattern in the maps.   

 A follow - up study highlighted the relationship between the composition and the 
redistribution of stress  [58] . Cortical bone was loaded with external compression 
and tension, and the stress stored within the apatite crystals was assessed via the 
shift in phosphate  ν  1  band in two regions: a collagen - rich area and an apatite - rich 
area. In the collagen - rich areas, stress was released under external tension, but 
localized stress intensifi cation occurred under external compression (see Figure 
 4.7 a). In apatite - rich areas, both tensile and compressive stresses were observed 
(see Figure  4.7 b). Tensile stresses were intensifi ed even under weak external 
compression, and a crisscross - like pattern was observed, suggesting a particular 
organization of the collagen fi brils.    

  4.2.5 
 Adaptation of Bone in Response to Osteoporosis 

 In an early FT - IR imaging study, compositional differences between iliac crest 
biopsies from untreated osteoporotic patients and normal controls were examined 

   
  Figure 4.6     An optical micrograph and stress maps in bovine 
femoral bone near a fracture. The map in (a) was acquired at 
zero applied stress; and in (b) at critical stress for crack 
propagation. The net stress fi eld was obtained by subtracting 
(a) from (b), as shown in (c).  Reprinted with permission from 
Ref.  [59] .   
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 [61] . No signifi cant differences were found between osteoporotic and normal 
specimens in the mineral   :   matrix ratios of either cortical or osteonal bone. However, 
in younger osteonal and cortical tissue (defi ned as being within 20    µ m of osteon 
center and 200  µ m of periosteum, respectively), the crystallinity was signifi cantly 
higher in osteoporotic bone, indicating that the mineral was more mature. Simi-

     Figure 4.7     (a) The isovolumetric collagen 
fraction in bovine cortical bone is shown in 
the center, and maps of stress stored in the 
apatite crystals within this area are shown at 
the side. The values on each individual stress 
map indicate the remote uniaxial stress fi eld 

applied to the specimen; (b) A map of the 
collagen volume fraction in cortical bone is 
shown on the left. Microscopic stress maps 
are shown on the right, including a map of an 
apatite - rich region (lower right).  Reprinted 
with permission from Ref.  [58] .   

(a)

(b)
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larly, the collagen crosslinks were shown to be more mature in osteonal, cortical 
and trabecular bone from untreated osteoporotic specimens  [62] . 

 More detailed FT - IR imaging of specimens from human iliac crest biopsies 
showed that mineralization in untreated osteoporotic trabecular bone samples was 
decreased by  ∼ 40% from the normal, and the mineral   :   matrix ratio was lower in 
the center of trabeculae (more mature tissue) than for controls  [63] . The crystal-
linity ratio was also increased in osteoporotic specimens. Differences between the 
trabecular bone matrix of osteoporotic and normal bone have also emerged  [64] . 
The spatial variation of crosslinks at bone - forming trabecular surfaces (within 50 
 µ m) in patients with osteoporotic or multiple spontaneous fractures was signifi -
cantly different from that in normal bone, and the collagen crosslink ratio was 
higher. It has been hypothesized that the matrix produced in osteoporosis might 
mature more quickly or undergo post - translational modifi cations for a longer time 
than normal bone matrix. 

  Ovariectomized  ( ovx ) cynomolgus monkeys represent a common model for 
postmenopausal osteoporosis because they experience regular menstrual cycles, 
hormonal fl uctuations and bone loss upon ovariectomy. Both, ovx monkeys and 
postmenopausal osteoporotic women showed similar modifi cations in trabecular 
mineral properties  [65] , specifi cally a decreased mineral   :   matrix ratio, increased 
crystallinity and increased carbonate content relative to controls. In addition, the 
spatial variation in the mineral   :   matrix ratio was the same in humans and 
monkeys. 

 In contrast to trabecular bone, in the cortical bone of ovx monkeys the mineral 
content was signifi cantly increased in endosteal regions, while the crystallinity and 
collagen crosslink ratio remained constant in both periosteal and endosteal tissue 
 [66] . Because these parameters displayed different trends in cortical and trabecular 
bone, the compositional adaptations may be site - specifi c. 

 Imaging can also be used to examine the effects of therapy. Several treatments 
for osteoporosis exist, and can be grouped as having either antiresorptive or ana-
bolic effects.  Antiresorptive agents  suppress osteoclast activity, whereas  anabolic 
agents  increase bone formation. In general, imaging studies carried out using the 
antiresorptives of estrogen  [64, 67] , hormonal replacement therapy  [68]  and bisphos-
phonate  [69]  demonstrate an increased mineral   :   matrix ratio, crystallinity and col-
lagen crosslink ratio, consistent with the suppression of osteoclast activity and the 
prevalence of more mature bone. One bisphosphonate study examined the effects 
of three -  and fi ve - year risedronate treatment on trabecular bone  [70] . As can be seen 
from the images in Figure  4.8 , patients receiving placebo for three years showed a 
signifi cant increase in crystallinity and collagen crosslink ratio when compared to 
baseline values, which was consistent with previously discussed imaging studies 
on untreated osteoporotic trabecular bone  [63] . Those patients who received rise-
dronate for three or fi ve years retained baseline values for both the crystallinity and 
crosslink ratio. These risedronate treatment results were in confl ict with the 
increased crystallinity and crosslink ratio reported for the aforementioned anti-
resorptive treatments. In order to explore this discrepancy, a more spatially detailed 
analysis was performed within the fi rst 50  µ m of trabecular surfaces, at both 
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formation and resorption sites. The bone - resorbing surfaces showed no signifi cant 
changes in crystallinity or crosslink ratio as a function of either depth from the 
surface or risedronate treatment. However, at the bone - forming surfaces, risedro-
nate treatment signifi cantly lowered the crystallinity and crosslink ratio as a func-
tion of treatment duration. Even though risedronate is an antiresorptive agent, it 
was shown to have benefi cial effects on bone - forming areas  [70] .   

 The anabolic agents  parathyroid hormone  ( PTH )  [66, 71]  and  nandrolone dec-
anoate  ( ND )  [72, 73]  have both been shown to stimulate bone formation. PTH 
caused bone to exhibit compositional characteristics typically associated with 
younger bone, including a lower mineral   :   matrix ratio, crystallinity and crosslink 
ratio. In contrast, ND treatment restored those parameters affected by ovariectomy 
to the level of sham controls in cortical bone, but not in trabecular bone.   

  4.3 
 Infrared and  R aman Spectroscopy of Cartilage 

 Cartilage tissue plays a signifi cant role in the musculoskeletal system because of 
its proximity to bone, and its roles in long bone formation and in diseases such 

     Figure 4.8     FT - IR images of trabecular bone 
from a placebo -  and a risedronate - treated 
patient at baseline, and after three and fi ve 
years of treatment. In placebo - treated 
patients, both mineral crystallinity and 
collagen crosslink ratio were signifi cantly 

higher at three years compared to baseline. In 
risedronate - treated subjects, no signifi cant 
differences in either parameter were found 
after three or fi ve years.  Reprinted with 
permission from Ref.  [70] .   



as  osteoarthritis . Three main types of cartilage have been identifi ed, namely 
hyaline, elastic and fi brocartilage.  Hyaline cartilage  has been the focus of most 
vibrational spectroscopy studies because it is the type of cartilage that covers the 
ends of bones at joints (as articular cartilage), and also comprises the epiphyseal 
plates where the bones grow  [74] .  Articular cartilage  is an avascular tissue located 
at the intersection of two bones, within the synovial joint. A thin layer of cartilage 
is attached to the joint surface of the patella, femur and tibia, and the cavity 
between and around the joint is fi lled with synovial fl uid  [75] . The primary func-
tion of articular cartilage is to minimize friction between bones during movement 
of the joints and to provide resistance to compression. 

 Cartilage contains mostly chondrocytes, proteoglycans and type II collagen; 
water is also a major component of cartilage, comprising 60 – 80% of its total 
weight. The most abundant proteoglycan in cartilage is aggrecan. Typically, pro-
teoglycans consist of a  hyaluronic acid  ( HA ) backbone with core protein side 
chains that attach to sulfated  glycosaminoglycan s ( GAG s), chondroitin sulfate and 
keratin sulfate. At physiological pH, the GAGs are negatively charged and highly 
hydrated. 

 Both the collagen fi ber orientation and the overall composition of articular 
cartilage are heterogeneous in the axial direction, and thus contribute to the 
distinction of three zones of articular cartilage: 

   •      The  superfi cial zone  contains the highest density of chondrocytes, with the type 
II collagen fi bers being oriented parallel to the joint surface.  

   •      In the  tangential zone  (or mid zone), the collagen fi bers are not oriented 
preferentially.  

   •      In the  deep zone , type II collagen is ubiquitous and is oriented perpendicular 
to the cartilage surface. Although articular cartilage is unmineralized in its 
surface layers it contains a layer of calcifi ed tissue adjacent to the subchondral 
bone.    

 In recent years many vibrational spectroscopic studies of macromolecular com-
ponents of cartilage have been conducted, with GAG, sodium hyaluronate, chon-
droitin 6 - sulfate and chondroitin 4 - sulfate contents having been examined using 
both IR and Raman spectroscopy  [76 – 81] . Both HA and chondroitin sulfate have 
been studied using FT - IR  [82 – 85] , while the dichroic properties of HA functional 
groups have been investigated using polarized IR spectroscopy  [79, 80, 86] . Enzy-
matically digested HA was also examined using  nuclear magnetic resonance  ( NMR ), 
IR, Raman and visible spectroscopies  [87] . Whilst the vibrational spectroscopic 
examination of type I collagen has been more extensive than that of type II collagen 
 [88 – 93] , the same methods can be used to examine type II collagen structures in 
tissue, to identify pathological tissues and to monitor fi ber tension  [94 – 101] . 

 Studies such as those listed above provide a framework for assessing the patho-
logical changes in cartilage tissue. For example, an IR examination of proteogly-
cans and GAGs present in a patient with Langer – Saldino achondrogenesis not 
only revealed a low sulfation of proteoglycan but also that levels of chondroitin 
4 - sulfate were decreased relative to those of chondroitin 6 - sulfate  [102] .  
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  4.4 
 Infrared and  R aman Imaging of Cartilage 

  4.4.1 
 Unmineralized Cartilage Tissue 

 The imaging of type II collagen and proteoglycan in cartilage sections using FT - IR 
microscopy was fi rst reported by Potter  et al.   [103] . For these studies, FT - IR images 
of normal bovine nasal cartilage, trypsin - treated bovine nasal cartilage and carti-
lage engineered in a  hollow - fi ber bioreactor  ( HFBR ) were assayed for their sulfated 
GAG content. The pure - component spectra were found not to describe adequately 
the cartilage matrix because interactions between the cartilage matrix molecules 
had infl uenced the tissue spectra. The FT - IR images showed a spatial heterogene-
ity in the chondroitin sulfate distribution and also confi rmed the loss of chondroi-
tin sulfate in trypsin - digested cartilage. Images of engineered cartilage showed the 
penetration of type II collagen into the HFBR. 

 Camacho subsequently reported FT - IR microscopy and imaging on dehydrated 
bovine articular cartilage using polarized and unpolarized light  [52] . The data of 
the FT - IR images were in agreement with histological data with regards to the 
distribution of type II collagen and aggrecan, which in turn validated FT - IR as a 
feasible method for identifying cartilage components and determining collagen 
fi ber orientation, despite the great similarity between the spectra of type I and type 
II collagens and of many GAGs. Spectral markers for collagen orientation, proteo-
glycan content and type II collagen content were also reported, with differences 
in the proteoglycan and type II collagen content in each of the three layers of car-
tilage being refl ected in their relative intensity variations. Polarized images high-
lighted the varying collagen orientation in each layer. The average fi ber orientation, 
as observed by changes in the band area ratio of collagen ’ s amide I:amide II enve-
lopes, showed that the collagen orientation was more parallel to the adjacent bone 
surface in zones closer to the bone. 

 Another study in which orientation effects were examined used polarized FT - IR 
imaging to quantify collagen orientation in equine and human articular cartilage 
 [104] . The FT - IR images quantifi ed collagen orientation in each cartilage zone, 
from the area ratio of amide I   :   amide II. Importantly, the FT - IR images showed 
differences in collagen orientation that were not observed with polarized light 
microscopy; consequently, the authors suggested that these subtle changes in col-
lagen orientation may either precede or accompany the early stages of osteoarthri-
tis. Polarized FT - IR has also been used to generate anisotropy images to monitor 
the composition and orientation of type II collagen and proteoglycans in canine 
articular cartilage  [105, 106] . 

 The validity of using vibrational spectroscopy and imaging to assess damaged 
cartilage and early - stage osteoarthritis has been demonstrated  [107] . A fi ber - optic 
probe coupled to an attenuated total refl ectance crystal in contact with articular 
cartilage was used to collect FT - IR spectra. Spectroscopically measured damage 
then correlated with Collins visual grading of cartilage damage. A further valida-



tion was carried out using cartilage exposure to high levels of the enzyme collage-
nase, which breaks down type II collagen (high levels of the enzyme in synovial 
fl uid indicate cartilage damage)  [108] . A review of FT - IR imaging and spectroscopy 
of cartilage reinforces the feasibility of this method for assessing collagen orienta-
tion and proteoglycan content in both normal and pathological cartilage  [109] . 

 The FT - IR imaging of chondroitin sulfate and type II collagen content in arthritic 
focal lesions was reported by David - Vaudey  et al.   [110] . Here, the FT - IR images 
were collected in the superfi cial, intermediate and deep cartilage zones from knee 
and hip cartilage sections from human patients exhibiting severe osteoarthritis. 
The distribution of chondroitin sulfate was calculated using the partial least 
squares and Euclidean distance method, as introduced by Potter  et al.   [103] . The 
FT - IR images revealed a heterogeneous chondroitin sulfate distribution, not only 
between cartilage zones but also within the territorial and inter - territorial matrices. 
The images also showed a signifi cant decrease in superfi cial layer chondroitin 
sulfate content for severely osteoarthritic cartilage, and a variability in tangential 
zone collagen content. These FT - IR results correlated well with the Mankin 
scoring. 

 Crombie  et al.  employed a combination of histology, FT - IR imaging and 
immunofl uorescence to determine if monoclonal antibodies   ( mAb s) to type II 
collagen penetrated into cartilage and were arthritogenic in nature  [111] . The study 
results showed that the penetration of mAbs into cartilage tissue was associated 
with a loss of proteoglycan content and the denaturation of type II collagen, con-
sistent with a collagenase - induced model of cartilage degradation. Figure  4.9  
shows the loss of proteoglycan content, as measured by FT - IR images and tolu-
idine blue staining. FT - IR spectra also highlighted collagen degradation associated 
with mAb penetration into cartilage, as indicated by a shift in the amide I band 
from 1666   cm  – 1  in control mAb samples to  ∼ 1639 – 1655   cm  − 1  in arthritogenic mAb 
samples.    

  4.4.2 
 Mineralized Cartilage and Subchondral Bone 

 The role of subchondral bone has been examined in current models of osteoar-
thritis, on the basis that a common indication of osteoarthritis is a thickening of 
the subchondral bone plate. Both, radiography and imaging studies have shown 
alterations in bone architecture and chemistry, in addition to plate thickening 
 [112 – 115] . However, it remains unclear if subchondral bone damage occurs before 
cartilage damage, or if bone tissue is altered to compensate for the cartilage 
damage. The pathological mineralization of subchondral bone, cartilage matrix 
vesicles and cartilage has been examined using Raman and synchrotron IR spec-
troscopy. The IR microscopy of subchondral bone was fi rst reported in 1998 by 
Miller  et al.   [116] , while the effects of age and defective type II collagen formation 
on murine subchondral bone were described by Dehring  et al.   [117] . In the latter 
study, subchondral bone specimens from normal mice and Del 1 (+/ − ) transgenic 
mice (a mouse model of early - onset osteoarthritis) were examined using Raman 
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spectroscopy. While the results of these studies have been encouraging, no exten-
sions to imaging have yet appeared.  

  4.4.3 
 Applications in Tissue Engineering 

 The early spectroscopic studies of cartilage allowed the establishment of methods 
for obtaining spectra, for identifying spectroscopic markers of tissue damage, and 
for developing software models of spectroscopic data. Moreover, these spectro-
scopic methods may be applied towards engineered bone and cartilage. Although, 
Boskey and Camacho have reviewed FT - IR imaging and microspectroscopic 
methods for the analysis of bone and cartilage  [118] , all of the studies reported to 
date for the examination of tissue - engineered cartilage have employed FT - IR. 

 When Camacho  et al.  studied genetically modifi ed bovine chondrocytes using 
FT - IR imaging  [52] , they used previously identifi ed markers for collagen orienta-
tion and proteoglycan content in cartilage. In this way, it was possible to examine 
the integration of engineered cartilage - like tissue into defect sites, and also to 

     Figure 4.9     Effects of two arthritogenic 
monoclonal antibodies on cultured cartilage 
imaged by toluidine blue staining (a, d) and 
FT - IR of the proteoglycan spectral region 960 –
 1175   cm  − 1  (b, e); High proteoglycan content 
regions in (b) and (e) are red, whereas low 
proteoglycan content is blue. A shift in the 

amide I envelope position showed 
denaturation of type II collagen (c, f ) in 
spectra (c, f ) taken from surfaces where 
arthritogenic mAbs had penetrated cartilage 
(blue spectra) compared to unaffected areas 
(red spectra).  Reprinted with open access 
permissions from Ref.  [111] .   



evaluate the organization of the native cartilage. The images showed an increased 
proteoglycan production and a decrease in type II collagen, and also allowed a 
distinction to be made between the neo - tissue and host tissue. Surprisingly, the 
results showed an incomplete integration of neo - tissue, though the surrounding 
tissues in neo - tissue integration were not shown conclusively to play an active role. 
Based on these images, the authors suggested that cell - based repairs could not be 
achieved by simply placing an engineered tissue on top of a defective tissue. 

 FT - IR images to monitor quantitatively the proteoglycan content of nasal carti-
lage grown in a HFBR were reported by Potter  et al.   [103] . These authors showed 
that immature cartilage had developed after a three - week incubation period, and 
type II collagen was found to be present in the HFBR. A lower chondroitin sulfate 
content was found in bioengineered cartilage compared to native cartilage. Another 
study in which the growth of articular cartilage was monitored in a HFBR showed 
a signifi cant increase in proteoglycan content at the center area and surface area 
of infl ow tissue  [119] . However, the estimated proteoglycan content did not corre-
late well with the biochemical assays of sulfated GAGs, due mainly to the small 
number of samples. 

 Cartilage spectroscopy and imaging present important challenges. The lack of 
an adequate  in vitro  model complicates proteoglycan quantifi cation and the accu-
rate interpretation of changes in the amide I envelope. In lieu of developing an  in 
vitro  model of cartilage using macromolecules, David - Vaudey has suggested the 
use of normal, nonarthritic cartilage as a suitable pure component spectrum  [110] . 
The development of a model for the entire cartilage spectrum, without the use of 
pure - component spectra, holds much promise because it does not require user 
intervention. In addition, the incorporation of many (15+) factors into a least -
 squares model may be necessary to describe the interactions between collagen and 
proteoglycan molecules. Moreover, the incorporation of a parsimony measure to 
reduce noise contributions in model development may provide a better classifi ca-
tion of osteoarthritic - related damage.   

  4.5 
 Conclusions 

 During recent years, vibrational spectroscopic imaging has matured into an impor-
tant tool for the study of musculoskeletal tissues. Both IR and Raman spectrosco-
pies contain signatures for the stages of development, for tissue disease and 
damage, and even for mechanical properties. Because the tissues are ordered, and 
their composition varies with their anatomic site, imaging has become an essential 
component of spectroscopic analysis. The application to bone has been especially 
fruitful because important details of the mineral composition and function are 
easily characterized when using IR and Raman spectroscopies, although these 
are diffi cult to obtain by other methods. The instrumentation for both FT - IR 
and Raman imaging will continue to evolve towards smaller, easier - to - use and 
faster systems. These advances will encourage an even more widespread use of 
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spectroscopy and spectroscopic imaging among basic research groups and clini-
cians in this important area of biomedical science.  
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  5.1 
 Introduction 

 Since the introduction of the fi rst cytological cancer screening methods in 1941 
by Papanicolaou ( ‘ Pap ’  for short)  [1] , these screening tests have been applied more 
than one billion times; in the US alone, more than 50 million cervical  ‘ Pap ’  tests 
are carried out annually. This test originally consisted of the collection ( ‘ ex foliation ’ ) 
of cells, for example from the uterine cervix, with a brush or spatula, and smearing 
the cells from these collection devices onto a microscope slide (hence the colloquial 
term  ‘ Pap smear ’  for cervical cancer screening). Subsequently, the cells were fi xed 
and stained for microscopic interpretation. The severity of, and morbidity from, 
cervical cancer has been reduced by over an order of magnitude since the introduc-
tion of the Pap test. Furthermore, many other applications exist that use identical 
or similar methodology, an example being bladder cytology, in which cells isolated 
from urine are stained and examined using the same Pap stain. 

 Over the past two decades, new methods for preparing cytological samples of 
exfoliated cells have been developed, aimed at reducing the clumping of cells and 
improving the homogeneity of the cell deposits. This was achieved by removing 
the cells from the collection devices to form a suspension from which the cells    –
    after suitable purifi cation steps    –    are deposited onto slides. These methods, col-
lectively referred to as  ‘ liquid - based methods ’ , produce a very homogeneous single 
layer of cells that increases the number and quality of cells available for visual 
inspection. Indeed, an entire branch of the medical device industry is targeted at 
this market, such that today fully automated instruments that can produce a dozen 
or so stained and fi xed sample slides simultaneously are available and widely used 
in larger cytological laboratories. 

 Any further automation of cytology, however, has largely failed. During the early 
1990s, several methods were developed and introduced that used automatic image 
analysis of cells to render a cytological diagnosis. However, none of these methods 
were widely used at the time of the writing of this review (2007), in part because all 
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the uncertainties of classical cytology are refl ected in an automatic imaging system. 
These uncertainties of classical cytology result from the following aspects: 

   •      The transition from a normal to a cancerous state of cells may proceed via a 
multistep sequence of events (atypia, dysplasia, neoplasia) that cannot be diag-
nosed with certainty from the cellar or nuclear morphology.  

   •      The number of abnormal cells in a typical sample may be quite small, and may 
be masked by a majority of normal cells.  

   •      The cytological diagnosis is inherently subjective, as it is made by visual inspec-
tion and comparison against data in the cytologist ’ s memory.    

 These factors reduce the accuracy of cytological diagnoses (with respect to an 
independent  ‘ gold standard ’ , such as histopathology). Various values of the actual 
accuracy of the Pap test have been cited in the literature; these point to a value  [2]  
of between 65 and 70%, with the majority of false diagnoses being false positives, 
which is in part due to the threat of litigation. The other source of disagreement 
is in the severity of a diagnosed abnormality. While it is unusual that a normal 
sample is diagnosed as cancer, or a cancerous sample is missed altogether, the 
classifi cation as atypical, low - grade or high - grade squamous intraepithelial lesion 
(LGSIL and HGSIL, respectively) is extremely diffi cult, and accounts for many of 
the reported inaccuracies of the Pap test. 

 Thus, it would appear desirable to develop an automatic cytological procedure 
that could utilize quantitative, measured information as a basis for the diagnosis. 
Today, spectral methods    –    and particularly those based on vibrational spectrosco-
py    –    offer a promising venue for such an automatic procedure. Vibrational (infra-
red and Raman) spectroscopy is a method that not only provides  ‘ fi ngerprint ’  
sensitivity for the biochemical composition of a cell but also offers a  ‘ snapshot ’  of 
the cell ’ s physiological activity and state of health. In many reports, we and others 
have demonstrated  [3 – 9]  spectral differences between inactive cells, actively 
growing and mitotic cells, between different cell types within an organ, between 
those of different organs, and between cells of different states of health. In this 
chapter, we describe those methods that have been found to produce reliable 
spectra of individual squamous cells from the oral mucosa (buccal) and the uterine 
cervix, and urothelial cells from the bladder. In particular, the enormous variance 
observed for the spectra of individual cells will be explained, and methods intro-
duced to deal with such spectral heterogeneity. These goals were achieved by 
employing a systematic approach towards samples with increased complexity: 
for example, the buccal samples contain almost exclusively mature squamous 
cells, whereas urine - borne cells consist predominantly of two cell types, namely 
squamous and urothelial cells. Cervical samples can contain various maturity 
states of squamous cells from the ectocervix, as well as glandular cells from the 
endocervix. 

 Earlier efforts to establish spectral cytology  [10, 11]  generally failed because the 
heterogeneity of samples was not understood, and measurements were attempted 
on cell pellets containing upwards of 1000 or 10000 cells. This was due in part to 
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the lack of sensitivity of infrared microscopes during the mid and late 1990s, and 
also to a lack of systematic groundwork to understand cellular spectroscopy. 

 In this chapter, we deal almost exclusively with the spectroscopy and spectral 
imaging of normal cells to establish their distribution, spectral databases and 
methodology, despite the overall aim of the research program being that of cancer 
detection and diagnosis. This approach differs greatly from earlier efforts  [11] , 
which were aimed squarely at cancer diagnosis but failed because the groundwork 
had not been properly established. Such information includes detailed methods 
of sample preparation and fi xation, the discussion of artifacts and spectral vari-
ance, and methods to deal with these adverse effects. In addition, data preprocess-
ing and the choice of diagnostic algorithms will be introduced.  

  5.2 
 Methods 

  5.2.1 
 Cell Collection and Culturing Methods 

 In the following sections, attention is focused on the spectroscopy of human (and 
some other mammalian) cells, most of which are healthy and of epithelial origin, 
the aim being to report the distribution and spectral patterns of normal cells of 
diagnostic signifi cance. The current research program of the authors involves 
three common malignancies for which spectral screening procedures are being 
developed, namely oral, cervical and bladder cancer. For each of these diagnostic 
applications epithelial cells are readily available via oral scraping, gynecological 
examinations and urine samples. All cells utilized for these screening procedures 
were obtained with the approval of the Institutional Review Boards at the partici-
pating hospital (New England Medical Center - Tufts University) and Northeastern 
University. A common method for cell fi xation and sample preparation is pre-
sented in Section  5.2.2 . 

  5.2.1.1   Exfoliated Cells 
 Oral mucosa (buccal) cells were harvested from volunteer graduate and under-
graduate students under a local Institutional Review Board protocol. To collect the 
cells, the inside of the cheek was gently swiped with a sterile polyester swab (it was 
estimated that one swipe would result in ca. 10 5  − 10 6  exfoliated cells). Exfoliated 
buccal cells are the most homogeneous samples reported in these studies; visual 
microscopic inspection indicated that  > 99% of the cells were large and squamous, 
with small, well - delineated nuclei and a large cytoplasmic area. Hence, they were 
ideally suited to establish the spectral variance of human cells. Due to digestive 
enzymes in saliva, the cells are completely devoid of glycogen, which normally is 
a major component of squamous cells. As the spectral contributions of glycogen 
mask the spectral region between 1000 – 1200   cm  − 1  (which contains the diagnostic 
phosphate vibrations  [12] ), the ability to analyze glycogen - free cells is invaluable. 
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 Urine - borne cells were recovered using a membrane fi ltration technique. For 
this, the urine sample was passed through a nylon net fi lter held in a polypropylene 
holder (11    µ m pore size, 47   mm diameter; Millipore, Billerica, MA, USA)  [9] . The 
fi lter was then placed directly into a centrifuge tube containing 20   ml of fi xative 
solution ( vide infra ). The cells were dislodged from the fi lter using a vortex mixer, 
and the resultant cell suspension allowed to stand for 20   min; this permitted fi xa-
tion and further preservation of the cells. The fi lter was then removed, and the 
remaining specimen centrifuged (600    ×     g  for 25   min) to concentrate the diagnostic 
cells. After being resuspended, the cells were prepared on  ‘  low - emmissivity  ’  
( low - e ) glass slides ( vide infra ) using the Cytospin method (see Section  5.2.2 ). 

 The two major cell types identifi ed in the urine were urothelial cells (from the 
lining of the bladder) and mature squamous cells (from the distal end of the 
urethra). The presence or absence of glycogen in both cell types can be demon-
strated spectroscopically. 

 The cervical cells were obtained via a routine gynecological examination, and 
stored on the collection devices in fi xative until a satisfactory cytological reading 
was established (these samples otherwise would have been discarded). Consent to 
participate in this project was obtained from each patient. In all of the studies 
reported below, storage of the fi xative was shown not to cause any spectral degen-
eration of the cells.  

  5.2.1.2   Cultured Cells 
 For adherent cell cultures, the following protocol for HeLa cells may serve as an 
example. Cervical adenocarcinoma (HeLa) cells (purchased from the  American 
Tissue and Cell Culture Corp. ;  ATCC ; Manhasset, VA, USA), cell line CCL - 2, were 
seeded in 75   cm 3  sterile plastic cell culture fl asks (Fisher Scientifi c) at a concentra-
tion of approximately 2    ×    10 4  cells   cm  − 2 . Typically, the growth medium consisted 
of 20   ml  Dulbecco ’ s Modifi ed Eagle ’ s Medium  ( DMEM ; ATCC), supplemented 
with 10%  fetal bovine serum  ( FBS ; ATCC). To prevent bacterial contamination, 
2.5    µ g   ml  − 1  of amphotericin B (ATCC) and 100   IU   ml  − 1  penicillin/streptomycin 
(ATCC) was added to the medium. The cells were incubated at 37    ° C in an atmo-
sphere containing 5% CO 2 . 

 Cultured cells were used for the Raman studies reported in Section  5.3.2 . For 
this, the cells were grown directly onto carefully cleaned and sterilized CaF 2  sub-
strates, and then incubated for various times in a cell culture environment with 
the drug carrier systems reported below. Before spectroscopic data acquisition, the 
cells were formalin fi xed and resuspended in buffer solution. Raman spectra of 
the exfoliated human cells were obtained from cells centrifuged (see Section  5.2.2 ) 
onto CaF 2  windows. The preparation of the drug delivery systems (deuterated 
liposomes) has been reported elsewhere  [13] . 

 When cells were grown directly onto substrates, carefully cleaned and sterilized 
windows   (either CaF 2  or  ‘ low - e ’  slides;  vide infra ) were deposited into the cell 
culture fl asks, and a few milliliters of a suspension of trypsinized cells pipetted 
onto the substrates. After about two days, the cells were seen to grow on the sub-
strate immersed in the medium. After a few division cycles, the cells had a totally 
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different morphology compared to the trypsinized cells (see below). The substrates 
were removed from the medium, and the cells fi xed, washed and air - dried (see 
below). The fi nal washing step was in deionized water to prevent salt crystals (from 
the balanced saline solution) forming on the cells during drying. To prevent cell 
lysis, the fi nal drying step should be performed very quickly under a stream of 
dry, compressed air.   

  5.2.2 
 Sample Preparation 

  5.2.2.1   Sample Substrates 
 For the Raman microspectroscopic studies reported in Section  5.3.2 , round CaF 2  
windows of varying sizes were utilized. CaF 2  is also suitable as a substrate for 
 infrared microspectroscopy  ( IR - MSP ), although its high cost makes it impractical 
for routine cytological studies which require hundreds of sample slides. For all IR 
cytological studies, specially coated glass - slides were used in transfl ection mode; 
these so - called  ‘ low - e ’  slides (Kevley Technologies, Chesterland, OH, USA) consist 
of Ag - coated glass where the coating is suffi ciently thin as to be transparent in the 
visible region, but highly refl ective in the IR region. Thus, any cell on these slides 
can be inspected using visual microscopy, while IR spectral data can be collected, 
in transfl ection, from the cells.  

  5.2.2.2   Fixation 
 Fixation is a major issue in spectral cytology. Exfoliated cells (e.g., oral mucosa 
cells) can be used unfi xed after rapid drying and, once dry (ca. 1   min) will remain 
stable for many days (such stability was established by measuring spectra several 
days apart). Neither morphological nor spectroscopic changes could be observed 
as a function of storage time. Formalin - fi xation, using 5 – 10% buffered aqueous 
formaldehyde for about 10   min, produces spectra that are indistinguishable from 
those of unfi xed cells. This was demonstrated by analyzing the data sets of hun-
dreds of fi xed and unfi xed spectra, using multivariate data analysis methods. 

 Today, however, most cytological procedures employ fi xatives produced by the 
companies which produce the instrumentation for cytological sample preparation; 
examples include SurePath ®  (now known as BD Diagnostics - Tripath, Burlington, 
NC, USA) and Cytyc (Marlboro, MA, USA). When several different spectral cytol-
ogy fi xatives were tested, the fi xation of individual exfoliated cells was shown to 
cause relatively small spectral changes, in contrast to earlier reports where there 
was a heavy dependence on fi xation  [14] . (These results are presented in Section 
 5.3.1 .) As the present cytology procedures involved use of the SurePath method, 
a SurePath preservative fl uid was used as fi xative; this was an aqueous solution 
containing ca. 25% ethanol and a few percent of isopropanol and methanol.  

  5.2.2.3   Sample Deposition 
 In principle, it would appear quite straightforward to pipette a cell suspension onto 
a substrate and evaporate the solvent under mild vacuum or a stream of dry air. 
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However, this method generally produces poor samples, with the cells not spread-
ing evenly but tending to clump. In addition, if isotonic saline is used to prevent 
cell lysis, then salt crystals will form around the cells, causing a substantial scat-
tering of light. If pure water is used as solvent, the cells may lyse in the time 
required for the solvent to evaporate. Thus, exfoliated cells were deposited onto 
the low - e slides using the CytoSpin method  [9] , which was developed originally 
for cytological purposes. The aim of this deposition technique is to produce sparse 
monolayers of cells such that all cells are well separated from their nearest neigh-
bors, as well as providing an unobstructed view (or measurement aperture) of 
each cell. 

 When using the CytoSpin technique (Thermo Shandon, Pittsburgh, PA, USA), 
approximately 0.5   ml of cell suspension (containing ca. 5    ×    10 4  cells   ml  − 1 ) was 
placed into a special, conical funnel that was clamped against the sample substrate. 
A layer of wicking paper with a 5   mm - diameter hole is positioned between the 
funnel and the slide. The entire assembly was placed into a special centrifuge rotor 
and centrifuged at 800 – 1200 rpm for 20 – 300   s. In this process, the centrifugal force 
pressed the liquid onto the slides, where it was wicked away by the absorbent layer 
of paper, leaving the cells on the substrate. A typical sampling area of 5   mm dia-
meter would contain approximately 10 3  cells, with the cells separated by a distance 
larger than the cell size.   

  5.2.3 
 Data Acquisition 

  5.2.3.1   Raman Spectroscopy and Raman Spectral Mapping 
 Raman data were collected using a Confocal Raman Microscope (Model CRM 
2000; WITec, Inc., Ulm, Germany). Excitation (ca. 30   mW each at 488, 514.5 or 
632.8   nm) is provided by air - cooled Ar ion or HeNe lasers (Models 05 - LHP - 928 
and Model 532, respectively; Melles Griot). Exciting laser radiation is coupled into 
the Zeiss microscope through a wavelength - specifi c, single mode optical fi ber, 
after which the incident laser beam is collimated via an achromatic lens and passed 
to a holographic band - pass fi lter, before being focused onto the sample through 
the microscope objective. A Nikon Fluor (60 × /1.00  numerical aperture  ( NA ); 
 working distance  ( WD )   =   2.0   mm) water immersion or a Nikon Plan (100 × /0.90 
NA, WD   =   0.26   mm) objective was used in these studies. 

 The sample was located on a piezo - electrically driven microscope scan stage 
with X − Y resolution of approximately 3   nm and a repeatability of  ± 5   nm, and Z 
resolution of approximately 0.3   nm and  ± 2   nm repeatability. Raman backscattered 
radiation was collected through the microscope objective, and passed through a 
holographic edge fi lter to block any Rayleigh scattering and refl ected laser light. 
Subsequently, the Raman scattered light was focused into a multimode optical 
fi ber, which directed the light to the monochromator. The two optical fi bers acted 
as pinholes for the confocal measurement. The Raman scattered light was dis-
persed by a 30   cm focal length monochromator and detected by a back - illumi-
nated deep - depletion, 1024    ×    128 pixel CCD camera operating at  − 82    ° C. The 
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spectral resolution varies signifi cantly over the spectral range projected onto the 
CCD detector, and depends on the excitation wavelength and grating groove 
density. Most of the results reported were collected at an average spectral band 
pass of approximately 4   cm  − 1 . Raman spectral images were collected by moving 
the sample in a raster pattern, typically in 500   nm steps, through the focal point 
of the laser. Dwell times of between 300 to 500 ms per datum point were typically 
used.  

  5.2.3.2   Infrared Instrumentation 
 The IR spectra and spectral maps were collected using Perkin Elmer Spotlight 300 
or 400 imaging infrared microspectrometers; these consisted of a Spectrum One 
 Fourier transform infrared  ( FT - IR ) spectrometer bench - coupled to a Model 300 or 
400 IR microscope. These integrated imaging infrared microspectrometers incor-
porated a 16    ×    1 element (400    µ m    ×    25    µ m) HgCdTe (MCT) array detector and a 
single point, 100    µ m    ×    100    µ m MCT detector mounted on the same Dewar. Both 
detectors were operated in photoconductive mode at liquid nitrogen temperature. 
The D *  of each element in the array detector exceeded 4.5    ×    10 10    cm Hz ½  W  − 1 . The 
Cassegrain objective provided an image magnifi cation of 6 × , and had a NA of 0.58. 
The visual image collection via a CCD camera was completely integrated with the 
microscope stage motion and IR spectra data acquisition. 

 For single point measurements, individual cells were selected from the visually 
acquired sample image, as seen on the screen. For each cell position on the sample 
substrate, the aperture was selected to straddle the cell, and typically was 
30    µ m    ×    30    µ m. The cell position and apertures were stored for each cell, and the 
data acquisition of all stored positions proceeded automatically. The microscope 
and optical bench were continuously purged with purifi ed, dry air. In addition, the 
sample area in the focal plane of the microscope was enclosed in a purged sample 
chamber. 

 Following the spectroscopic data collection, the sample slides were stained using 
standard cytological protocols, using  ‘ Pap ’  stain  [1]  within our own laboratory. 
Those cells examined in the analysis were then relocated on the slide, and visual 
images captured at high magnifi cation (40 × ) to allow a cytological diagnosis.   

  5.2.4 
 Methods of Data Analysis 

 The earliest efforts to use spectroscopic methods for the diagnosis of disease used 
mostly a visual inspection of the spectra and simple band intensity ratios to cor-
relate spectral features and histopathology. In contrast, the results presented here 
utilize supervised and unsupervised methods of multivariate statistics to maximize 
the spectral information used in the diagnostic process. 

  5.2.4.1   Data Pre - Processing 
 The raw data, in units of absorbance, were truncated to the most diagnostic wave-
number range, typically 800 – 1800   cm  − 1 , and corrected for a constant offset. The 
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IR data were converted to second derivatives, ( d 2 I/d  ν  2 ) and smoothed by a 
Savitzky – Golay  [15]  odd - point, sliding window. Individual spectra may be normal-
ized (either min - max or vector normalization) to account for variations in sample 
thickness. Although derivatization decreases the  signal - to - noise ratio  ( SNR ) of 
the spectra, it offers a number of advantages. First and foremost, any sloping 
baselines are removed, and therefore the second - derivative spectra appear mostly 
with a totally fl at baseline. Furthermore, second - derivative spectra exhibit colla-
psed band width with seemingly  ‘ higher spectral resolution ’ . Indeed,  Fourier 
self - deconvolution   [16]  ( FSD ) and second - derivative methods are offered in stan-
dard software packages as  ‘ resolution - enhancing techniques ’ . Finally, it has been 
demonstrated recently that the distinction of bands consisting of one Gaussian/
Lorentzian envelope from those that contain more than one component is vastly 
enhanced by derivatization  [9] .  

  5.2.4.2   Principal Component Analysis ( PCA ) 
 Spectral data sets from individual cells were analyzed using PCA, a well - 
established multivariate data analysis method that is ideally suited to distinguish 
small, reoccurring spectral variations in large data sets containing uncorrelated 
variations. PCA was utilized at this time because it is a completely unsupervised 
method for establishing whether or not the spectra of cells are grouped into classes 
according to cell type, to donor identity or to disease, among other factors. For a 
more detailed description of PCA, the reader is referred to Chapter  2  of this book 
or to other reviews on chemometrics (e.g., Refs  [9, 17] ). 

 For PCA, the entire spectral data set, containing  n  spectra, is written as a matrix 
 S  in which each column represents one spectral vector S( ν ) of  m  intensity data 
points. The spectral vectors may be raw or smoothed intensities, or fi rst or second 
derivatives. 

 The intensity correlation matrix  C  is constructed from the spectral matrix  S  
according to

   C S ST=      (5.1)  

where C is a ( m  ·  m)  matrix, in which the off - diagonal terms C  kl   are the correlation 
between intensity values at wavelengths  ν   k   and  ν   l  , summed over all spectra. Diago-
nalization of the correlation matrix yields the eigenvalues, which express the vari-
ance contained in each of the principal components, and the eigenvectors from 
which the  ‘ principal components ’  Z can be constructed. These principal compo-
nents are the original spectra expressed in a rotated coordinate system, based on 
the maximum variance of the original spectra. Subsequently, we may express each 
of the original spectra S( ν ) in terms of a linear combination of the new principal 
components (also known as  ‘ loading vectors ’ ) where the  ‘ scores ’ ,  α , are given by 
the weighting coeffi cients in the linear expansion. 

 For spectral data sets of individual cells, it is found that a large fraction of the 
total spectral variance is contained in the fi rst few  ‘ loading vectors ’ . Typically, fi ve 
to eight loading vectors contain more than 99% of the variance, such that the linear 
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combination can be truncated after the  p th term, where  p  is the number of relevant 
loading vectors or principal components. Thus, the score matrix   α  , which deter-
mines how much each principal component contributes to each spectrum, will 
have the dimension ( p  ·  n) . This method results in a much - reduced size of the 
data set, as all spectra are expressed in terms of a few (typically  < 10) basis func-
tions and a  ‘ score vector ’  of about  p  entries. 

 Similar spectra exhibit similar scores  α , which may be used to discriminate, or 
group, spectra. This is accomplished by plotting the values  α   i   and  α   j   (i.e., the con-
tribution of PC  i   and PC  j   to each spectrum) against each other, where each data-
point represents one spectrum. If grouping is observed, there are quantifi able and 
signifi cant variations in the spectra, which can be used to construct discriminant 
algorithms for distinguishing cell types, the state of differentiation and maturation 
of cells, and disease. At this point, PCA can be introduced as an unsupervised, 
preliminary test to determine whether or not there are signifi cant spectral 
differences.  

  5.2.4.3   Hierarchical Cluster Analysis ( HCA ) 
 HCA is a powerful method for data sorting based on local decision criteria. These 
criteria are based on fi nding the smallest  ‘ distances ’  between items such as spectra, 
where the term  ‘ distances ’  may imply Euclidean or Mahalanobis distances  [17] , or 
correlation coeffi cients. HCA is,  per se , not an imaging method, but can be used 
to construct pseudocolor maps from hyperspectral data sets collected from cells 
or tissue sections  [18] . 

 In HCA, the spectral correlation matrix,  C ′   is calculated according to according 
to:

   ′ =C S ST     (5.2)   

 This matrix is of dimension ( n  ·  n ), where  n  is the number of spectra in the data 
set, in which the off - diagonal terms C  ij   are the correlation between spectra  i  and 
 j , summed over all data points of the spectral vector S( ν  N ). The correlation matrix 
is subsequently searched for the two most similar spectra coeffi cients    –    that is, two 
spectra  i  and  j  for which the correlation coeffi cient C  ij   is closest to unity. Subse-
quently, these two spectra are merged into a new object, and the correlation coef-
fi cient of this new object and all other spectra is recalculated. The process of 
merging is repeated, but the items to be merged may be spectra, or spectra and 
merged objects. During the merging process, a membership list is kept that 
accounts for all individual spectra that are eventually merged into a cluster. We 
have used Ward ’ s algorithm  [19]  for the process of merging of spectra, and the 
repeated calculation of the correlation matrix. When all of the spectra have been 
merged into a few clusters, color codes are assigned to each cluster, and the coor-
dinates from which a spectrum was collected is indicated in this color. In this way, 
pseudocolor maps may be obtained that are based strictly on spectral similarities. 
Mean cluster spectra may be calculated that represent the chemical composition 
of all spectra in a cluster.    
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  5.3 
 Results and Discussion 

  5.3.1 
 General Features of Infrared and Raman Spectra of Cells 

 In order to facilitate the discussion on Raman and IR spectra and spectral maps 
of human cells, we present here some characteristic spectral features of typical 
human cells. Although, depending on the cell type and special conditions, these 
spectra may vary to some extent, the information presented here is aimed at pro-
viding the reader with a survey of typical cellular spectral features. 

 A typical IR spectrum of an epithelial cell is shown in Figure  5.1 , Trace A. One 
of the most prominent spectral features is the protein amide A vibration at approxi-
mately 3350   cm  − 1 , this being due mostly to the peptide linkage N − H stretching 
mode. Between 2800 and 3000   cm  − 1 , the C − H stretching vibrations of phospho-
lipids, of protein side chains and of nucleic acid sugars and bases, are observed. 
Although this spectral region has been used less than the mid - IR spectral region 

     Figure 5.1     Infrared (top) and Raman spectra (bottom) of a 
typical cell, specifi cally a urothelial (bladder) cell. The infrared 
spectrum was taken of the entire cell, whereas the Raman 
spectrum was sampled at a small spot within the cytoplasm. 
Both spectra are presented in arbitrary intensity units, along 
the same wavenumber axis.  



( vide infra ), other authors have shown that the C − H stretching region may indeed 
be diagnostic for many cellular states and features.   

 The mid - IR region (1800 – 800   cm  − 1 )    –    also referred to as the  ‘ fi ngerprint ’  region    –    
contains the stretching vibration of the ester linkage of lipids at around 1740   cm  − 1 , 
and the most dominant spectral feature, the amide I protein vibration centered 
around 1655   cm  − 1 . This vibration is the exciton - coupled C = O stretching manifold, 
and consequently, is sensitive for both peptide and protein secondary structure. 
At approximately 1550   cm  − 1 , the quite strong amide II vibration is observed, which 
is due mostly to the peptide C − N stretching motion. At around 1450 and 1350   cm  − 1 , 
two broad, weak and relatively nondiagnostic peaks are observed, due to the C − H 
deformation modes and some carboxylic acid stretching modes. In the region of 
1250 to 900   cm  − 1 , a number of signifi cant bands occurs. 

 The peaks of varying intensity at about 1235 and 1085   cm  − 1  are due to the phos-
phate groups of DNA, RNA and some phospholipids. Within the context of this 
discussion, the biochemical nomenclature is used, where  ‘ phosphate ’  refers to the 
phosphodiester linkage:

   − − − −−O PO O2   

 Here, the central phosphorus atom is surrounded approximately tetrahedrally 
by four oxygen atoms. The central phosphorus atom bears a negative charge that 
is countered in DNA by Na +  ions, while the central   PO2

−  group exhibits multiple 
bond character. The terms  ‘ symmetric ’  and  ‘ antisymmetric ’  phosphate stretching 
vibration refer to the vibrations of the central   PO2

−  group, and are normal modes 
observed at about 1085 and 1235   cm  − 1 , respectively. The vibrations of the  − O − P −
 O −  moiety are referred to as the  phosphodiester vibrations , which are less intense 
in the IR region, and occur around 800 and 830   cm  − 1 . 

 The antisymmetric phosphate vibration at 1235   cm  − 1  is partially overlapped by 
the lower component of the amide III vibration, a complex deformation mode of 
N − H and adjacent C − H groups which extends to about 1330   cm  − 1 . The phosphate 
region is frequently masked by carbohydrate vibrations, such as the prominent 
glycogen peaks shown in Figure  5.3  (this will be discussed later). 

 The Raman spectrum of a typical pixel from a cell is shown in Figure  5.1 , lower 
trace. Since the probing laser beam is much smaller than the size of the cell, dif-
ferent pixels will exhibit different spectra; however, the lower trace shown in 
Figure  5.1  may serve as a representative cellular spectrum. The amide A region is 
very weak in all Raman spectra, but the C − H stretching region is the most promi-
nent spectral feature in a nonresonant Raman spectrum, and may be of signifi cant 
diagnostic value. 

 The amide I peak is relatively weak in the Raman spectrum, and the amide II 
peak is not observed. At the low - frequency side of the amide I peak, weak features 
of DNA and RNA may be observed for the nuclei and nucleoli. All cellular regions 
show distinct methyl and methylene deformation vibrations at about 1450   cm  − 1 , 
and broad, intense amide III vibrations between 1350 and 1220   cm  − 1 . At around 
1000   cm  − 1 , the symmetric ring breathing mode of the aromatic phenyl alanine side 
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chain is observed in nearly all spectra. A number of characteristic DNA/RNA 
marker bands are observed (785, 1095 and 1575   cm  − 1 ), and although some of these 
vibrations are quite weak, multivariate methods of analysis can detect their pres-
ence, and base image reconstruction decisions on their intensities.  

  5.3.2 
 Infrared Cytology 

 This section contains spectral results collected from entire individual cells, with 
the specifi c aim of differentiating between cell types that occur in samples of cells. 
The long - range goal of these studies has been the development of a completely 
automatic method to perform spectral cytology    –    that is, to analyze a sample of 
exfoliated cells (e.g., cervical cells obtained during the  ‘ Pap ’  cervical cancer screen-
ing procedure) for the presence of abnormal cells. 

 Exfoliated human cells present an enormous variance in their spectral results, 
even for the most homogeneous samples of cells investigated to date. Thus, it has 
been necessary to establish the methodology to overcome such variance, and which 
has been reported previously  [5, 20] . Here, we present a logical progression of 
sample complexity, from normal oral mucosa (buccal) cell samples (one cell type), 
through normal urinary cytology (two cell types) to normal cervical cytology, which 
involves at least four cell types. 

  5.3.2.1   Oral Mucosa Cells 
 Oral mucosa (buccal) cells have been used as one of the most easily obtainable 
exfoliated cell types from volunteer donors. The spectra collected from entire 
individual cells are used to introduce the possibility of using IR microspectral 
results to distinguish between cell types and to determine their state of health. In 
particular, the heterogeneity of observed spectra    –    and methods to overcome such 
problems    –    are discussed. 

 It has been reported  [5, 9, 20]  that the spectra of hundreds of buccal cells, col-
lected from one volunteer, showed spectral variations that can be summarized as 
follows: 

   •      There are large overall intensity variations in the overall amplitude of the spectra, 
by over a factor of 5  [9] .  

   •      Mie scattering contributions from the nuclei may contribute a broad undulating 
spectral background  [5, 21] .  

   •      Distinct spectral variations in the low wavenumber region are observed for a 
small number of cells.    

 These features are now well understood, and methods to deal with them have 
been reported. 

 In spite of the apparent differences in the spectra observed for one cell type from 
one donor, PCA of the appropriately preprocessed data showed that there were no 
statistically signifi cant spectral differences between the spectra observed for one 
normal donor. Similarly, when hundreds of cells from other normal donors were 



added to the data set, PCA produced a  ‘ scores plot ’  that showed good scatter of 
the data, with barely any donor - to - donor variations. These early studies were 
carried out using formalin - fi xed cells, but had to be repeated recently when new 
hospital procedures forced a change to SurePath fi xation ( vide supra ). The new data 
sets from more donors, and using the novel fi xation protocol, completely con-
fi rmed the original results (cf. Figure  5.2 ).   

 In our original studies  [20] , we proceeded to compare the human buccal cells to 
canine cervical cells, and found that IR spectroscopy/PCA could distinguish 
between the cell types. It was possible to explain this effect in terms of cell matura-
tion, which was further confi rmed recently for human cervical cells. Thus, we shall 
present the canine model in Section  5.3.2.3  along with the results from human 
cervical cells.  

  5.3.2.2   Human Urine - Borne Cells 
 The next application to be discussed is that of urine cytology, in which epithelial 
cells contained in urine are analyzed for abnormalities. Urine cytology is not 
carried out routinely in the US, even though urine samples are collected frequently 
and, in 2005, bladder cancer was the fi fth most common cancer among males, 
and the eighth most common cancer among females. Presumably, routine urine 

     Figure 5.2     PCA  ‘ scores plot ’  (PC2 versus PC 3) of the spectra 
of ca. 1000   oral mucosa (buccal) cells from fi ve subjects. The 
distribution of scores around the coordinate origin suggests 
minimal person - to - person variation.  
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cytological screening is not carried out due to the overall low accuracy of cytology, 
and the lack of cytological laboratories available to cope with such a large 
workload. 

 Normal human urine contains both squamous cells from the distal urethra, and 
urothelial cells from the lining of the bladder. The former cell type may be further 
subdivided into glycogen - containing and glycogen - free squamous cells. Here, we 
aim to establish that IR spectral methods, followed by multivariate data analysis, 
can distinguish between these cells types. Our ultimate intention is to establish 
this methodology as a low - cost, automated test for bladder cancer. 

 Figure  5.3  shows photomicrographs of the three main types of epithelial cell 
identifi ed in urine sediments after Pap staining. Here, Figure  5.3 a is a glycogen -
 containing squamous cell, Figure  5.3 b is a glycogen - free squamous cell, and 
Figure  5.3 c is a urothelial cell. (Note: glycogen - free, in this context, implies that 
spectral contributions due to glycogen could not be detected in the IR spectra; 

     Figure 5.3     Urine cytology. (a – c) Photomicrographs of 
glycogen - containing, glycogen - free squamous cells, and a 
urothelial cell, respectively; (d) Vector - normalized IR spectra 
of cells shown in (a – c); (e) Second derivatives of spectra 
shown in (d).  



special stains are used to visualize glycogen.) Both, glycogen - free and glycogen -
 containing squamous cells are from the distal end of the urethra, and constitute 
the majority of cells found in urine. They cannot be distinguished one from 
another by visual inspection, although it appears that the glycogen - free cells 
generally exhibit a smaller (more pyknotic) nucleus. Figure  5.3 d shows vector -
 normalized absorbance spectra for the three cell types  [22] . The glycogen - rich and 
glycogen - free cells differ by the presence of a strong, distinct set of carbohydrate 
peaks observed at about 1020, 1080 and 1130   cm  − 1 , whereas the spectra of the 
urothelial cells differ markedly from those of the squamous cells ( vide infra ).   

 Figure  5.3 e shows the second - derivative spectra for the three cell types, where 
the red and blue profi les characterize the glycogen - rich and glycogen - free squa-
mous cells, respectively. These two spectra are almost identical in the amide 
I/amide II region (1700 – 1450   cm  − 1 ), and differ only in the 1200 – 1000   cm  − 1  region 
where the strong spectral bands characteristic for glycogen occur. The green 
profi le describes the spectrum for the urothelial cells. There are several signifi cant 
spectral differences between the squamous and the urothelial cells, among them 
the phospholipid marker band at 1738   cm  − 1 . 

 Spectra recorded from urothelial cells display particularly large absorbance 
intensities (this is not clear from Figure  5.3 d, as the data are vector - normalized). 
This type of cell can range in size from 10 to 30    µ m  [23, 24]  and typically feature 
one or more large nuclei. It has been demonstrated that this observed intensity 
difference for urothelial cells is caused mainly by an increased cell thickness (this 
point will be discussed in more detail in Section  5.3 ). 

 Squamous cells represent the vast majority of cells found in voided urine col-
lected from healthy individuals, which contains very small numbers of transitional 
(urothelial) epithelial cells  [24] , an observation confi rmed by our spectroscopic 
studies. For the squamous cells, a large variation in the overall amplitude of the 
spectra is observed, in accordance with previously discussed results for oral mucosa 
cells (see Section  5.3.2.1 ). Absorbance values recorded for the amide I band vary 
between 0.05 and 0.8   AU for the squamous cells. It is believed that these variations 
are largely due to deviations in both cell thickness and the nucleus   :   cytoplasm ratio 
within the spatial area sampled  [5, 20] . 

 Figure  5.4  presents results obtained from a PCA analysis of a fraction of the 
spectral data set that comprised both squamous and urothelial epithelial cells. The 
data have been projected onto the second (PC2) and third (PC3) principal compo-
nent dimensions, where each dot represents an individual spectrum collected 
from a cell. As can be seen in the diagram, the main types of normal epithelial 
cell identifi ed in the urine form three correlating clusters. The green cluster, rep-
resentative of urothelial cells, displays a distinct separation from the squamous 
cells, and indicates a substantial spectral difference among these cells. Further-
more, the glycogen - rich (red) and glycogen - absent (blue) squamous cells are also 
clearly differentiated. These results are among the fi rst ever to distinguish different 
cell types in exfoliated samples by completely automatic spectral methods at the 
level of individual cells, and constitute the groundwork for an eventual application 
of IR - MSP for the diagnosis of disease.   
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 Recently, we have also analyzed a number of cells spectrally that could not be 
classifi ed cytologically. These cells often had a pale staining, appeared anucleated, 
and in some cases their cytoplasm was ruptured. There might be a variety of 
reasons for these degenerative changes, whether they be externally stimulated or 
induced internally. Nonetheless, conventional cytology requires both the nucleus 
to be clearly visible and the cytoplasm to be completely intact before a diagnosis 
can be made. Photomicrographs from three of 20 such cells are shown in Figure 
 5.5 , where cell A appeared to have been ruptured, but displayed a dark blue - stained 
cytoplasm and a double nucleus that can sometimes be observed for urothelial 
cells. In contrast, cells B and C were much larger and had been stained pale red 
(indicative of a mature squamous cell), although both appeared to be anucleated 
and thus nondiagnostic.   

 To test whether these cells could be characterized using IR microspectroscopy, 
spectra from 20 nondiagnosable cells were introduced into the raw data set. A 
subsequent PCA classifi ed all 20 spectra to belong clearly to one of the three cluster 
regions. The three cells are shown as black dots in the scores plot shown in Figure 
 5.4 . Cell A was included in the green cluster of urothelial cells, while cells B and 
C were classifi ed as squamous in origin. Thus, cells previously overlooked by 
cytologists due to bad staining or degenerative changes could be diagnosed using 
IR microspectroscopy. These initial results of the study show extreme promise, 
and consequently we are currently cataloguing the diagnosis of many thousands 
of recorded cell spectra to serve as input for supervised pattern recognition.  

  5.3.2.3   Human and Canine Cervical Cells 
 Previously, a number of studies were reported involving canine cervical cells  [20]  
in which it was shown that mature and immature squamous cervical cells could 

     Figure 5.4     PCA  ‘ scores plot ’  of urothelial and squamous cells 
from urine samples. The color code is the same as for Figure 
 5.3 . The black dots marked A, B and C refer to the cells 
shown in Figure  5.5 . See text for details.  



be differentiated using spectral cytology. The importance of this result may be 
understood from the viewpoint that, in human cervical cancer screening, the 
ectocervix and endocervix are scraped gently to remove squamous and glandular 
cervical cells from these two regions, respectively. The stratifi ed squamous epithe-
lium consists of four layers, namely the basal, parabasal, intermediate and super-
fi cial layers. In healthy squamous tissue, it is mostly cells from the outermost 
layer, the superfi cial layer, that are harvested during exfoliation, with only a small 
proportion of intermediate cells. In dysplasia, a higher proportion of immature 
cells extend through the squamous tissue layer, and consequently these will be 
contained among the exfoliated cells  [25 – 27] . Thus, the distinction and detection 
of immature squamous cells is of prime importance for the envisioned spectral 
cervical cytology. 

 An initial indication of the ability to distinguish mature from immature cervical 
cells was derived from studies involving canine cervical cells. These cells were 
obtained from the cervices of spayed dogs by exfoliation with a small dental brush, 
fi xed using a formalin fi xation protocol, and then analyzed in the same manner 
as the oral mucosa and urine - borne cells described above. It was found cells 
obtained from that were in dogs in estrous during the spaying procedure clustered 

     Figure 5.5     Urine - borne cells that could not be diagnosed via 
classical cytology due to incomplete cytoplasm (A) or poor 
staining (B,C), but that could be diagnosed easily via spectral 
cytology.  
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differently from those of prepubescent and nonestrous dogs  [20] . A visual inspec-
tion of the canine cervical cells indicated that the cells from estrous dogs were 
mature cervical cells, whereas those from nonestrous dogs were at the stage of 
development corresponding to immature cervical cells. This fact is well known 
among dog breeders, who establish the estrous cycles in bitches by the maturity 
of their cervical cells, which provide an indication of hormonal levels. 

 It is interesting to note that, whilst mature canine cervical cells could not be 
differentiated  [20]  from mature human buccal cells (which have a similar size and 
morphology), human and canine cervical cells may be very easily differentiated, 
as canine cells never accumulate glycogen whereas human cells are generally 
glycogen - rich. 

 The  spectral patterns  of human cervical cells may also depend on their degree 
of maturity. It is diffi cult to collect a suffi cient number of immature cervical cells 
from normal women, as the majority of cells (see above) are mature superfi cial 
cells. However, in post - menopausal women who are not receiving hormone 
replacement therapy the reduced estrogen levels prevent complete maturation of 
the squamous cells, and consequently signifi cantly more immature cells are found 
in the cervical exfoliates. This in turn has allowed studies to be conducted on the 
infl uence of hormone levels on the spectral properties of human cervical cells. 

 Fortunately, these cell types can be diagnosed relatively easily using classical 
cytological methods, thus affording an excellent means to correlate spectral and 
cytological results. Samples were prepared for spectral cytology (as described 
above), using cervical samples obtained from the New England Medical Center 
and stored in SurePath fi xative. Alternatively, they were freshly prepared in the 
same fi xative, by purifi cation (fi ltration) and cytocentrifugation. As a consequence, 
thousands of cell spectra from normal and postmenopausal women were collected 
as described before, and the cells stained and subsequently imaged at high 
magnifi cation for diagnosis. The results of this study are shown in Figure  5.6 , 
where Figures  5.6 a and b show the spectra and stained images of mature superfi -
cial and immature, intermediate cells from premenopausal women, respectively. 
The mature cell is seen to be rectangular in shape, with a very small, pyknotic 
nucleus, whereas the less mature cell in Figure  5.6 b is smaller, with a larger 
nucleus, and more rounded in morphology. Figures  5.6 c and d show similar cells 
from a postmenopausal woman, where the more mature cell is still angular in 
shape, but with a larger nucleus than the mature cell shown in Figure  5.6 a. The 
even less mature cell shown in Figure  5.6 d is smaller, with a more pronounced 
nucleus, and is even more spherical in shape.   

 Figures  5.6 e and f show PCA score plots of the results from these cell samples. 
All PCA calculations were carried out in the amide I/II region (1800 – 1480   cm  − 1 ) 
to reduce the infl uence of glycogen content of the individual cells. Although    –    as 
mentioned above    –    thousands of spectra have been collected to date, not all cell 
images have been analyzed. Nevertheless, the analyses of the spectra and cells 
analyzed so far show great promise. The distinction between superfi cial cells from 
postmenopausal women and those of premenopausal women was excellent. More-
over, the superfi cial (most mature) and intermediate cells from postmenopausal 



women also showed a reasonable separation; in these cells, the most mature cells 
clustered quite tightly, whereas the more immature cells showed a larger variance, 
indicating them to be less homogeneous, and perhaps even less easy to diagnose 
on a visual basis. 

 It is also notable that the raw spectra shown in Figures  5.6 a – d appeared very 
similar at fi rst glance, with most variance contained in the glycogen region between 
the normal and the postmenopausal samples. However, the loading vectors showed 
signifi cant differences in the amide I and amide II second - derivative band profi les 

     Figure 5.6     Spectra and distinction of human 
cervical cells. (a, b) Spectra and images of 
superfi cial and intermediate cell of 
premenopausal women, respectively; (c, d) 
Spectra and images of superfi cial and 
intermediate cell of a postmenopausal woman, 

respectively; (e) PCA  ‘ scores plot ’  
demonstrating the distinction of superfi cial 
cells from pre -  and postmenopausal volunteers, 
respectively; (f) PCA  ‘ scores plot ’  demonstrating 
distinction of superfi cial and intermediate cells 
from postmenopausal women.  
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which were responsible for the distinctive power of the method. Thus, in the 
process of maturation of squamous cells from the intermediate to superfi cial 
stages, signifi cant changes in protein composition must occur in a cell. A number 
of dysplastic cervical and cancerous bladder samples have been obtained recently, 
and are being investigated at the present time.   

  5.3.3 
 Results from Confocal Raman Microspectroscopy of Human Cells 

  5.3.3.1   Morphology and Subcellular Organization of Cells 
 Here, we will present the spectral maps of cells, with the aim of visualizing organ-
elles and variations in chemical composition within a cell, as well as providing 
morphological information that will aid in the interpretation of IR spectral data. 
Figure  5.7  demonstrates the enormous power of multivariate analyses for image 
reconstruction based on Raman spectral hypercubes. These studies were carried 
out in collaboration with a medical research institute  [28, 29] , and involved the 
detection of the differentiation of living neuroblastoma cells. Figure  5.7 a shows a 
univariate display of the integrated C − H stretching intensities of a cell in aqueous 
media. This panel shows only a rough shape of the cell, without any further infor-
mation from within the cell. Figure  5.7 b shows an image of the same cell con-
structed via HCA of the hyperspectral data set, where the gray areas depict the 
nucleus, and blue and red areas the more and less dense areas of the cytoplasm, 
respectively. The green perinuclear area exhibits quite different spectral patterns, 
as shown for one pixel in Figure  5.7 c. The sharp peaks in this spectrum matched 
very well with a reference spectrum of noradrenaline, a small hormone that is 
known to be secreted by differentiating neuroblastoma cells  [28, 29] . The HCA -
 based image provides much more detail than the univariate map, and may detect 
signals from components the presence of which is not known  a priori .   

 Figure  5.8  shows results from a normal urothelial cell that have been included 
to contrast the morphology of such cells from that of mature squamous cells. In 
mature squamous cells, the cytoplasm was found to be is very thin  [9]  (typically 
1 – 2    µ m thick), with the nucleus somewhat thicker (3 – 5    µ m). The short pathlength 
that such a cell presents to a probing IR beam can explain the low absorbance 
values observed in the cytoplasm of squamous cells (typically ca. 0.05 AU). Uro-
thelial cells are signifi cantly thicker, as demonstrated by the depth profi le obtained 
via confocal Raman microspectroscopy. Figure  5.8 a shows the visual image of a 
stained urothelial cell imaged (as described in Section  5.2.3.1 ) with a lateral spatial 
resolution of about 500   nm, using blue excitation (488   nm). Data (120    ×    120 pixels) 
were collected at approximately 15   mW laser power at the sample, and the resulting 
data hypercube was subjected to hierarchical cluster analysis. A pseudocolor map, 
constructed from a hyperspectral Raman data cube via HCA (see Section  5.2.4.3 ), 
is shown in Figure  5.8 b. This image shows two nuclei (normal urothelial cells 
often are binucleated) in blue color, and phospholipid - rich regions of the cyto-
plasm (red). The brightfi eld image of the stained cell barely shows the nuclei, 
which normally should stain dark blue when using Pap stain. However, it is not 



uncommon that cells do not stain well in standard urine cytology (as discussed in 
Section  5.3.2.2 ); however, Raman spectral imaging would detect the nuclei, regard-
less of the cell ’ s staining characteristics.   

 Figure  5.8 c shows a confocal depth profi le of the same urothelial cell, taken 
along the red dashed line in Figure  5.8 b. This profi le indicates that the cell is much 
thicker (ca. 8    µ m) than a squamous cell, which explains its much higher IR absor-
bance. The Raman mean cluster spectra observed for the different regions are 

     Figure 5.7     (a) Univariate (integrated C − H 
stretching intensity; see ellipse in panel c) 
Raman image of a neuroblastoma cell. The 
brighter hues indicate higher intensities; (b) 
HCA - based image of the same hyperspectral 
data set, showing the nucleus (gray), 

(a)

(c)

(b)

accumulations of noradrenaline (green) and 
dense (blue) and thin areas (red) of the 
cytoplasm. The three dark brown spots in 
panel (a) (colored red in panel b) indicate the 
holes burned by the laser. Scale bar in panel 
(a)   =   10    µ m.  
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shown in Figure  5.8 d. Here, the blue trace is associated with the nucleus, the red 
trace is due to the phospholipid - rich region, and the gray and green traces are 
typical of spectra observed for cytoplasm. The spectra were surprisingly similar 
and, aside from obvious changes in the C − H stretching region of the lipid - rich 
trace, would not be amenable to visual interpretation. However, HCA is able to 
discriminate these spectra suffi ciently to produce cluster maps of biological rele-
vance. The IR spectrum of this cell (Figure  5.8 e) shows signifi cant lipid contribu-
tions at approximately 1740   cm  − 1 , and distinct methylene stretching vibrations 
between 2800 and 3000   cm  − 1 . 

     Figure 5.8     (a) Brightfi eld image (40 × ) of a stained urothelial 
cell; (b) Pseudocolor image, obtained from Raman 
hyperspectral data via HCA, of the cell shown in (a); 
(c) Confocal Raman depth profi le of the same cell, collected 
along the dashed red line in (b); (d) Raman mean cluster 
spectra of the regions shown in the same color in (b) 
(see text for details); (e) IR spectrum of the entire cell.  



 Figure  5.9 a shows a brightfi eld image of a HeLa cell attached to a CaF 2  substrate, 
collected in aqueous environment through a 60 ×  water immersion object. Although 
the brightfi eld image reveals low contrast (as it was taken of a cell in an aqueous 
surrounding), the Raman image (Figure  5.9 b) shows the nucleus, containing two 
nucleoli, and various regions of the cytoplasm in exquisite detail. The morphology 
of the cell is quite typical for a HeLa cell found in cell culture, where the cell 
exhibits spindle - like pseudopods and a large nucleus.   

 Immediately after Raman data acquisition, a fl uorescent stain specifi c for mito-
chondria (Mitotracker Green FM; Invitrogen, Carlsbad, CA, USA) was added to 
the sample, without disturbing the optical settings of the instrument  [30] . Fluo-
rescence images were collected at about 20   min after stain addition, using the 
confocal Raman set - up described above (488   nm excitation, 1   mW laser power) and 
a dwell time of 0.2   s per datapoint. Figure  5.9 c shows the fl uorescence image of 
the HeLa cell stained after staining for mitochondrial distribution, where 
the bright green areas correspond to a high mitochondria content. The highest 
Mitotracker fl uorescence intensity was observed in the perinuclear region. A com-
parison of Figure  5.9 b and c reveals that the regions, from which signifi cant 
fl uorescence due to the Mitotracker stain is observed, colocalize very well with the 
salmon - colored and yellow regions of Figure  5.9 b. 

 We have been found  [30]  that the mean cluster spectra obtained for nuclear, 
cytoplasmic and mitochondrial regions were too similar to interpret spectral 
changes reliably. All mean cluster spectra (nucleus, nucleolus, mitochondria - rich 
and remaining cytoplasm) are dominated by protein bands (the amide I vibration 
at 1655   cm  − 1 , the extended amide III region between 1270 – 1350   cm  − 1 , and the 
sharp phenylalanine ring stretching vibration at 1002   cm  − 1 ), which is not surpris-
ing, given that the major component in all regions of the cell is protein. The nuclei 
and nucleoli exhibit a few, weak bands associated with nucleic acids (785, 1095 

     Figure 5.9     (a) Brightfi eld image of a HeLa 
cell, attached to a CaF 2  window, in buffer. 
Scale bar   =   10    µ m; (b) Raman spectral image, 
obtained via hierarchical cluster analysis 
(HCA) from a hyperspectral data cube 
collected at 500   nm spatial resolution (488   nm 

(a) (b) (c)

excitation, 15   mW laser power at sample, 
500   ms dwell time); (c) Fluorescence image 
of the mitochondrial distribution in the same 
cell after Mitotracker staining. For details, 
see text.  
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and 1575   cm  − 1 ); although these bands are weak, they are suffi ciently reproducible 
to be detected by HCA. 

 These results demonstrate that confocal Raman microspectroscopy, when 
coupled to image reconstruction methods such as HCA, can provide label - free 
methods for the visualization of intracellular components and processes. This 
subject will be elaborated further in the next section.  

  5.3.3.2   Visualization of Mitosis 
 Previously, it was shown that cellular nuclei could be distinguished from the 
cytoplasm, but that Raman signals due to DNA are barely visible. This suggests 
that HCA identifi es the nucleus mostly by protein composition   (the nuclear pro-
teins differ from cytoplasmic proteins), rather than the actual DNA signal. However, 
it can be shown that, during certain stages of mitosis, the DNA is so condensed 
and exhibits such a strong signal that it can be observed relatively easily  [31] . 

 For most cell types, mitosis typically lasts for less than 1   h, and can be divided 
into  prophase  (chromosome condensation, growth of mitotic spindle and break-
down of nuclear envelope),  metaphase  (alignment of chromosomes along the 
 ‘ equator ’  of the parent cell),  anaphase  (separation of chromosomes) and  telophase  
(formation of new nuclear membrane around chromosomes). Finally, furrowing 
and division of the cell takes place during cytokinesis to yield two distinct daughter 
cells. 

 Figure  5.10  shows HeLa cells undergoing two of the stages of mitosis, meta-
phase and anaphase. Figures  5.10 a and d show the cells after  4 ′  - 6 - diamidino - 2 -
 phenylindole  ( DAPI ) staining to visualize DNA/chromatin. Figures  5.10 b and e 
show Raman maps of the nucleic acid band intensity at 785   cm  − 1 , normalized with 
respect to the protein peak, while Figures  5.10 c and f depict the protein amide I 
intensity (1655   cm  − 1 ). The protein intensity during mitosis is contributed largely 
by the microtubules and the dense histone - packed chromatin. Chromosomal con-
densation during metaphase and anaphase is manifested by a large intensity 
increase of the DNA - related peaks. The Raman chromatin (DNA) intensities cor-
relate very well with the DAPI fl uorescence of chromatin, but were obtained from 
the inherent Raman of cellular components, rather than from stains. The Raman 
images reveal the chromatin distribution for the metaphase and anaphase cells in 
detail  [31] . In these stages, the highly condensed DNA produces the most promi-
nent Raman signals.    

  5.3.3.3   Liposome Uptake into Cells 
 Apart from imaging subcellular features (as discussed above), Raman imaging 
may provide an opportunity to follow the uptake of molecules or assemblies into 
cells. One method of detecting the incorporation of molecules inside cells is to 
use deuterated compounds  [32] . C − D stretching vibrations are shifted away from 
those of C − H groups by a factor of about the square root of the masses of H and 
D (a factor of 1.4). Consequently, C − D stretching vibrations will occur at about 
2150   cm  − 1 , in a region devoid of any signals in the Raman spectra of cells and cel-
lular components (see Figure  5.11 c). The deuterium  ‘ label ’  is invisible to the cell, 



as it occupies almost exactly the same volume, and acts chemically nearly identi-
cally to hydrogen.   

 This technique was used to investigate the cellular uptake and intracellular fate 
of lipid - based nanoparticles known as  liposomes  (Figure  5.11 a). Liposomes are 
bilayer - based nanospheres with sizes that range from about 50 to 300   nm and 
currently are used for drug - delivery purposes  [33] , including intracellular drug and 
gene delivery  [34, 35] . Many aspects related to the detailed mechanisms of the 
interaction of liposomes and cells remain unresolved, and this is especially true 
for the case of liposomal nanocarriers modifi ed by cell - penetrating peptides, such 
as the HIV TAT (transcriptional activator - derived) peptide  [33] . These carrier 
systems are currently considered to offer a very promising means of transferring 
various drugs, including protein and peptide drugs, into cells  [36] . Here, we dem-
onstrate the feasibility of Raman imaging to follow the uptake of TAT peptide -
 modifi ed deuterated liposomes (TATp - LIP). 

 Deuterated liposomes were prepared from a dried lipid fi lm cast from a chloro-
form solution of deuterated 1,2 -  distearoyl -  sn  - glycero - 3 - phosphocholine  ( DSPC - d 70  ; 
Avanti Polar Lipids, Inc., Alabaster, AL, USA; Figure  5.11 b)  [37, 38] . This fi lm was 
hydrated and vortexed with  HEPES - buffered saline  ( HBS ), pH   7.4, at a DSPC 
concentration of 1.6   m M . The resulting liposomes were sized through double -
 stacked 200   nm pore size polycarbonate membranes (Nucleopore), after which the 

     Figure 5.10     (a, d) Fluorescence images (using 
DAPI stain) of the chromatin distribution of 
HeLa cells in metaphase (a) and anaphase 
(d). The cell in (a) measures ca. 25    µ m 
across; (b, e) Distribution of the Raman 

intensities of DNA - specifi c bands of the cells 
shown in (a) and (d); (c, f) Distribution of the 
Raman intensities of protein bands of the 
cells shown in (a) and (d).  

 5.3 Results and Discussion  197



 198  5 Infrared and Raman Spectroscopy and Spectral Imaging of Individual Cells

liposome size was determined using a Coulter N4 MD Submicron Particle Size 
Analyzer (Coulter Electronics). The preparation of TATp - liposomes was reported 
elsewhere  [13] . 

 Human breast adenocarcinoma MCF - 7 cells were incubated for different time 
intervals with deuterated LIP and TATp - LIP at a lipid concentration of 2   mg   ml  − 1 . 
After incubation, the cells were fi xed in a phosphate - buffered formalin solution 
and subsequently washed and submerged in phosphate - buffered saline, to main-
tain the cell shape within the aqueous environment. 

 Figure  5.11 d shows a microscopic image of an MCF - 7 cell incubated with TATp -
 LIP for 6   h, while Figure  5.11 e shows a pseudocolor map constructed from the 
hyperspectral data set using HCA. The cluster analysis is based mainly on the 

(a) (b)

(c)

(d) (e)

     Figure 5.11     (a) Schematic drawing of a liposome; 
(b) Structure of DSPC - d 70 ; (c) Raman spectrum of cellular 
region rich in deuterated liposomes; (d) Brightfi eld image of 
cell in aqueous medium. The long dimension of the cell is ca. 
40    µ m; (e) HCA - based pseudocolor map of cell after liposome 
uptake. The dark blue areas denote regions of highly 
deuterated phospholipid concentration.  
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detection of the C − D stretching vibrational signal, observed around 2150   cm  − 1 , and 
shown in Figure  5.11 c. Large amounts of the deuterated phospholipids were found 
in the cell periphery. 

 The most important result of this study was that Raman microspectroscopy 
clearly allowed for the observation of lipid particle uptake by the cells. This uptake 
was enormously accelerated by TATp, thus confi rming the results of previous 
experiments  [36] . The uptake was clearly seen after only 3   h for TATp - LIP, and 
after 12   h for plain LIP. Although very small deuterated regions can be detected 
early in an uptake experiment, the aggregation or incorporation of deuterated 
phospholipids into other membrane structures occurs, and this results in contigu-
ous regions of high deuterium content. To ascertain that the liposomes had been 
observed  within  the cytoplasm, and not simply adsorbed onto the cell surface, a 
depth profi le (not shown) in the xz - direction was collected; the results did indeed 
indicate that the deuterated liposomes had penetrated the cell body. The spectral 
appearances of the C − D stretching region, with respect to band shapes and peak 
positions, did not change signifi cantly upon uptake, indicating that the lipid side 
chains had not undergone any substantial conformational changes.    

  5.4 
 Conclusions 

 In this chapter we have presented the results from single cell Raman and infrared 
microscopic studies, demonstrating the exquisite sensitivity of vibrational spec-
troscopy to variations in spectral patterns that may be caused by spatial hetero-
geneity, cell maturation and differentiation, disease and other factors. It is believed 
that these techniques of will usher in a new era of biological and biomedical 
studies that rely on the spectral features of unstained cells collected by objective 
and reproducible measurements. These results may prove invaluable in diverse 
fi elds such as cytology and novel cancer screening applications, in cellular biolo-
gy    –    including studies defi ning the uptake and effects of drugs into cells    –    and also 
in the identifi cation and classifi cation of microorganisms via spectral methods.  
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  6.1 
 Introduction 

 Fourier transform infrared (FT - IR) microspectroscopy has been investigated for a 
number of years, and shown to be useful in the understanding, diagnosis and 
monitoring of a wide range of disease states. The major emphasis has been on 
cancers, including tumors of the cervix, breast, colon, liver, skin, lung and brain. 
Much of the progress made to date was outlined in a recent review that highlighted 
the current extent of the fi eld  [1] . Most of these cancer studies have focused on 
using single point spectroscopy, either with synchrotron IR sources  [2]  to approach 
diffraction - limited resolution, or in the laboratory with larger apertures. For tissue 
samples, point - to - point raster mapping, followed by chemometric manipulation 
to present the data as images, has been developed in an attempt to extend visible 
pathology into molecular - based pathology. Although this methodology has shown 
much promise, with an excellent correlation between the infrared images and 
those sections stained for pathology, the time involved in obtaining suffi cient data 
is prohibitive  [3] . However, with the advent of  focal plane array  ( FPA )  [4]  and linear 
array - based imaging spectrometers capable of rapidly obtaining IR hyperspectral 
maps of thin tissue sections at close to diffraction - limited resolution, this data 
collection  ‘ bottleneck ’  has been overcome. Today, these rapid spectroscopic 
imaging systems provide a basis for the further development of IR spectroscopy 
as a tool in the diagnosis and monitoring of pathological changes and disease 
progression in cells and tissue. The detailed contents of Chapters  3  and  4  of this 
book, when combined with the results of our studies on cervical cancer imaging 
 [5] , together outline the methodology and application of this  two - dimensional  ( 2 - D ) 
imaging approach, which at present is restricted to 4 to 8    µ m - thick sections of 
tissue such that the extent and penetration of disease or tissue degeneration cannot 
easily be determined. 

 It follows that the acquisition of such information will require the ability to 
generate and manipulate  three - dimensional  ( 3 - D ) images of body parts or tissue 
sections, and indeed a number of powerful ways to achieve this have been devised. 
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Currently, the conventional methods for obtaining the contrast required for such 
3 - D imaging include  computed tomography  ( CT ),  positron emission tomography  
( PET ),  magnetic resonance imaging  ( MRI ) and 3 - D ultrasound. In addition, X - ray -
 based techniques are becoming increasingly useful, especially when coupled with 
powerful coherent X - ray sources such as synchrotrons, where phase contrast -  and 
diffraction - enhanced imaging provide remarkably clear and informative images 
 [6, 7] . The fl uorescence 3 - D imaging of tissue sections is also currently undergoing 
development  [8] . While each of these techniques provides contrast based on physi-
cal changes or on the introduction of markers, rather than on the existence of 
inherent molecular markers, vibrational spectroscopy - based techniques can supply 
direct information with regards to macromolecular composition in the image 
contrast. Hence, 3 - D IR imaging would provide a useful and novel alternative, with 
the advantages of image contrast being based directly on the underlying macro-
molecular composition. Although the lack of penetration of mid - IR radiation into 
the tissues precludes any real - time imaging of whole samples, an alternative would 
be to build a composite from the 2 - D images of adjacent sections of tissue, thus 
providing a method by which to gauge the extent and penetration of disease, and 
this may indeed be of clinical value. Moreover, such an approach has the advantage 
of not requiring a chemical or immunological staining protocol to provide bio-
chemical information. 

 Unfortunately, the available knowledge in this area to date is extremely sparse, 
with only one report of 3 - D imaging from IR having been presented by Wood 
 et al.   [9]  on univariate and multivariate imaging of cervical sections, and another 
by Mendelsohn and coworkers  [10] , who constructed a 3 - D univariate map of corti-
cal bone based on the peak ratios from serial 2 - D sections. In this chapter, while 
aiming to expand the current knowledge of the fi eld, we outline the technique of 
3 - D IR image construction and highlight its achievements to date. But, more 
importantly, we also indicate the direction in which 3 - D imaging is heading.  

  6.2 
 Methodologies 

  6.2.1 
 Sample Preparation and Spectroscopy 

 In these studies, fi xed tissue samples were embedded in paraffi n blocks and sliced 
using a microtome into 4    µ m - thick sections. Although other groups, when prepar-
ing for 2 - D imaging, have also used cryo - sectioning or fi xation with glutaraldehyde, 
we fi nd the standard protocols for pathology sectioning to be the most straightfor-
ward, provided that the paraffi n is totally removed (otherwise, bands due to its 
presence are noted in the spectrum). The paraffi n is removed by washing with 
xylene, the major drawback being the consequent removal of accessible lipid. 
Multiple adjacent sections are de - paraffi nized and then mounted on Kevley  ‘ low - e ’  
IR refl ective microscope slides and imaged with a Varian Stingray FT - IR micro-
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scope system equipped with a 64    ×    64 pixel HgCdTe liquid nitrogen - cooled FPA 
with a 15 ×  Cassegrain objective. FT - IR hyperspectral data images were recorded 
in the range 4000 – 950   cm  − 1  at 6   cm  − 1  resolution, and with 16 scans co - added. For 
the adenocarcinoma tissue example described below and shown in Figures  6.1  and 
 6.2 , step - motion control of the microscope stage was used to construct a 16 - tile 
(4    ×    4) FT - IR image mosaic from FPA recordings collected as 16 - pixel aggregates. 
Thus, the lateral resolution obtained was approximately 22    µ m per pixel aggregate. 
Each FT - IR image was therefore 2.0   mm 2  in area and with four 4    µ m - thick adjacent 
sections, giving a total sampled volume of 1400    ×    1400    ×    16    µ m. A lateral resolu-
tion of 22    µ m per pixel was used because this provided FT - IR images that covered 
an area of tissue large enough to encompass several examples of anatomically 
different tissue types within the sample. For the mouse heart section (fi ve adjacent 
sections) and the chick face (16 sections), a similar procedure was used but with 
suffi cient sample area selected to encompass each whole cross - section of the 
organ. In each case, occasional adjacent sections were mounted on glass slides 
and stained with the routine histopathology stain  hematoxylin and eosin  ( H & E ) 
for comparative light microscope examination. Hematoxylin has an affi nity with 
nucleic acids, and eosin for the cellular cytoplasm.    

  6.2.2 
 Univariate and Multivariate Image Construction 

 Using a MATLAB routine developed by our group, simple 3 - D univariate images 
can be derived by simply stacking sections color - coded for absorbance at a particu-
lar wavenumber (chemimages) vertically in a block. These blocks can then be cut 
vertically or horizontally to interrogate the tissue architecture. These crude 3 - D 
images can be useful for determining the extent of pathological structure, however 
multivariate - based methods can provide additional information. The following 
discussion uses a four - section sample as an example of how the data can be treated, 
and the same general techniques have been applied to the other samples. For 
multivariate analysis, the four FT - IR images were stitched together side - by - side 
(or  ‘ unfolded ’ ) using a MATLAB routine developed by our group  [9] , to produce a 
single large 2 - D image frame which was then imported into Cytospec, a purpose -
 built spectroscopic imaging tool that includes preprocessing tools and univariate 
and multivariate imaging routines  [11] . The absorbance was integrated over a large 
spectral region (1750 – 950   cm  − 1 ) to assess sample thickness, using a routine in 
Cytospec; a spectrum was rejected if the determined integration value was higher 
or lower than a predefi ned threshold (1500 and 50 arbitrary units). This avoided 
inaccuracies from including too - thin portions of the samples with low absorbance, 
or those with too - high absorbance that suffered from a nonlinear detector response. 
Spectra that passed the thickness quality test were converted to second - derivative 
spectra using a Savitsky – Golay algorithm (13 smoothing points).  Unsupervised 
Hierarchical Clustering Analysis  ( UHCA ) is a rapid, nonsubjective analytical 
method for the identifi cation of spectroscopically distinct anatomical features  [3, 
12] . UHCA (D values, Ward ’ s algorithm) was performed to generate four clusters 
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  Figure 6.1     Schematic showing steps in the construction of 3 - D FT - IR multivariate images.  
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from the second - derivative spectra over the 1272 – 950   cm  − 1  spectral window. The 
resultant cluster map was then reorganized (or  ‘ back - folded ’ ) into the four indi-
vidual 2 - D cluster maps, each of which corresponded to one of the FT - IR images. 
These individual maps could then be stacked in the same fashion as the chemi-
mages, using a MATLAB routine to provide images that can be sliced vertically or 
horizontally. 

 In order to generate more easily manipulated 3 - D images, the four cluster maps 
were saved in an image fi le format with a unique false color assigned to each 
cluster and then aligned or  ‘ registered ’  as separate fl oating layers of a single image 
in the  GNU Image Manipulation Program  ( GIMP )  [13] . This registration step is 
necessary because the sample orientation is not identical in both rotation and 
translation on each of the four acquired 2 - D mosaic images. Proper pixel corre-
spondence from one image to another was easily achieved using this manual 
approach, given the small number of image layers. The registered layers consti-
tuted a best fi t because some slightly unequal distortion of the tissue matrix was 
observed, presumably caused by the sectioning and preparation processes. For this 
3 - D imaging technique, special care must be taken to ensure that the sections are 
not stretched or distorted when deposited onto the slides. For the cervical, heart 
and chick face samples, SCIRun  [14]  was used to generate the 3 - D cluster images. 
The SCIRun software suite provides a graphical user interface for the rapid 

   
  Figure 6.2     (a) Chemimage (amide I intensity) block 
constructed from four adjacent sections of monkey gut; 
(b) Sections through the block in (a); (c and d) UHCA -
 constructed block images of the same data.  
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development of  ‘ networks ’  of instruction routines for the stacking and rendering 
of the input data. The registered images were loaded into SCIRun as a set of 
indexed integer values (one to four, corresponding to each cluster) and then 
 ‘ stacked ’  into a scalar volume fi eld of cluster values from which the 3 - D cluster 
maps were rendered. 3 - D univariate chemical maps depicting a single spectral 
feature were also generated. The spectra were fi rst vector - normalized over the 
1800 – 950   cm  − 1  range, and the integrated absorbance under the band of interest 
then generated using a trapezoidal baseline function in Cytospec. The 3 - D univari-
ate maps were rendered from a scalar volume fi eld of absorbance values generated 
from 2 - D images stacked in SCIRun. The 3 - D univariate maps were plotted with 
a 256 rainbow color palette using Gaussian interpolation between the data grid 
points to produce a smoothly varying color fi eld. The 3 - D cluster maps, on the 
other hand, were plotted in a palette of only four false colors and box - interpolated, 
with one false color corresponding to each cluster. Figure  6.1  depicts a schematic 
of the overall process from spectral acquisition to 3 - D image reconstruction.  

  6.2.3 
 Artifi cial Neural Network Image Construction 

 The construction of UHCA images is a time - consuming and computer - intensive 
procedure for which a wide variety of alternative methods have been explored for 
its achievement. The most promising of these is the use of  artifi cial neural 
network s ( ANN s), which are computational models inspired by biological deci-
sion - making structures such as the brain. An ANN is a nonlinear adaptive - learn-
ing information processing system comprised of an interconnected network of 
functional computing elements that are usually referred to as  ‘ neurons ’ , after the 
cells of the nervous system and brain. ANNs have the ability to learn through 
adapting to accumulated knowledge of the classifi cation question being posed. 
During learning, ANNs modify their own network topology by adjusting weights 
that act on the individual neuron ’ s interconnections. In this way, ANNs mimic 
the strengthening and weakening of synaptic pathways, as occurs in the human 
brain during the learning process. Because ANNs are able to learn, they are a 
considered to be a supervised multivariate data analysis tool rather than an unsu-
pervised multivariate classifi er such as UHCA. ANNs are able to solve classifi ca-
tion and pattern recognition problems from real nonlinear systems, where the 
statistical variation is not a simple sum of the information components or their 
multiples. 

 As noted below, in Section  6.3.2.1 , in order to perform 3 - D imaging using 
UHCA it is necessary to perform the analysis on the entire data set simultaneously. 
UHCA on a data set larger than 20   000 spectra is currently not feasible due to 
personal computer - addressable memory size limits and time constraints. Thus, to 
enable multivariate imaging beyond this limit, we have employed ANN for tissue 
type classifi cation. However, prior to modeling the data set with ANN, UHCA may 
be gainfully employed to assess the range of spectral variation contained within 
individual 2 - D images of selected tissue sections. Since UHCA is also very effective 



for differentiating different anatomical and histopathological features in tissues, 
preprocessing with UHCA allows collections of spectra to be exported from each 
cluster, and these can then serve as input spectra for training and optimizing an 
ANN model  [15] . 

 The data preprocessing of FT - IR hyperspectral image data for ANN imaging 
essentially follows the same steps as described above for the UHCA multivariate 
image construction, except that the stitching, folding and back - folding steps are 
omitted. The 2 - D FT - IR images from each tissue section are individually imported 
into CytoSpec, quality assessed for sample thickness, and then converted into 
second - derivative spectra as before. The members of a computationally manage-
able subset of these images are then individually processed with UHCA, and the 
resultant 2 - D cluster maps compared with the H & E - stained sections. Sample 
spectra are extracted from those clusters that represent spectroscopically and ana-
tomically distinct tissue types (i.e., unidentifi able and  ‘ noise ’  clusters are rejected 
from further analysis at this point). These extracted spectra are then used to train 
an ANN model. 

 An ANN analysis was performed using the NeuroDeveloper 2.5b software  [16] . 
Feed - forward neural networks were trained using the resilient back propagation 
(Rprop) algorithm. The NeuroDeveloper software allows development of networks 
that can solve multiclass classifi cation problems, a necessary condition for generat-
ing ANN images when more than two classes of spectra are to be identifi ed in the 
samples. The extracted spectra were split into two sets    –    a training set and a valida-
tion set    –    to monitor and stop the training before network overtraining occurred. 
During the training, the network layout was optimized by testing varying numbers 
of neurons in the input and hidden layers for the lowest training and validation 
data set errors. 

 CytoSpec software was employed to generate a 2 - D ANN image for every tissue 
section calculated from the fully trained NeuroDeveloper ANN model. In the fi nal 
step, the 2 - D images are provided as inputs for the SCIRun software to render the 
completed 3 - D ANN image.   

  6.3 
 Resultant 3 -  D  Images 

  6.3.1 
 Chemimage and  UHCA  Stack Plots 

 Figure  6.2  shows a 3 - D block image generated from four adjacent sections of 
monkey gut tissue. Figures  6.2 a and b are chemimages where the color code is 
based on the absorbance value of the amide I band, with red (as usual) being the 
highest absorbance. In Figure  6.2 a the gut villi can easily be seen projecting into 
the tissue block. Figure  6.2 b shows how the stack plot can be cut both vertically 
and horizontally to show the internal tissue architecture. Figures  6.2 c and d show 
stack plots based on a three -  cluster UHCA, with the three clusters corresponding 
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to the epithelial cells, secretory cells and underlying connective tissue, respectively. 
The vertical and horizontal cuts in Figure  6.2 d show how the cell structure within 
the sample varies with depth.  

  6.3.2 
 3 -  D  Chemimage and  UHCA  Images 

  6.3.2.1   Cervical Adenocarcinoma 
 Figure  6.3  shows a H & E - stained 2 - D cervical section exhibiting a relatively rare 
form of neoplasm known as  villoglandular adenocarcinoma . The sample from 
which this section was taken serves as an ideal model for 3 - D UHCA because it 
exhibits a variety of anatomical and histopathological features, including connec-
tive tissue, red blood cells, infl ammatory exudate and glandular cells. The neo-
plasm is characterized by the presence of long villous fronds and papillae lined by 
columnar cells with intact cytoplasmic borders, and also displays minimal atypia 
 [17] . Spherical clusters of cells with smooth intact communal cytoplasmic rings 
are also associated with this condition. Figure  6.4 a depicts a chemical map gener-
ated from all four sections simultaneously by integrating the area under the band 
in the region associated mainly with phosphodiester contributions from nucleic 
acids (1275 – 1190   cm  − 1 ). The chemical maps show a good correlation with morphol-
ogy; however, specifi c correlations with anatomical and histopathological features 
cannot be gauged with this form of processing.   

 It is necessary to perform UHCA over the entire set of spectra collected to fully 
characterize the range of spectral variations through all the tissue sections. Per-
forming separate UHCA on each individual tissue section would provide a differ-
ent clustering result due to changes (though generally small) in the biochemical 

   
  Figure 6.3     Light microscopy image of a labeled H & E - stained 
cervical section exhibiting villoglandular adenocarcinoma.  



composition between sections. For this reason, the images were  ‘ stitched ’  together 
into a single frame to enable spectral preprocessing and UHCA was then per-
formed in CytoSpec on all spectra from all images simultaneously. UHCA was 
performed on the 1272 – 950   cm  − 1  region on second - derivative, vector - normalized 
spectra simultaneously on four adjacent sections, and the resultant cluster maps 
are displayed in Figure  6.4 b. The cluster maps show a general similarity, as might 

     Figure 6.4     Hyperspectral FT - IR data 
processing performed simultaneously on four 
adjacent tissue sections from a cervical biopsy 
sample. The numbers 1 to 4 identify the 
individual sections in the fi gure. (a) A 
univariate chemical image obtained from the 
integrated area under the 1275 – 1190   cm  − 1  
region after baseline subtraction; (b) A four -
 cluster map derived from analysis over the 
1272 – 950   cm  − 1  spectral window. The cluster 

map false color scheme corresponds to brown 
for exudates, blue for infl amed glandular 
tissue, green for connective tissue and orange 
for blood - fi lled capillaries; (c) The four cluster 
average FTIR spectra are presented color -
 coded to match the clusters in panel (b); 
(d) The same four cluster spectra are 
presented but processed as second - derivative 
spectra.  
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be expected, and successfully highlight the major anatomical features. The orange 
cluster represents red blood cells embedded in the stromal matrix, the light green 
cluster is predominately stroma, and the brown is mainly lymphocyte exudates. 
The blue cluster is predominantly glandular tissue. In tissue sections 3 and 4 of 
Figure  6.4 b there is an increase in the area of connective tissue (green cluster) 
relative to glandular tissue (blue cluster) when compared to sections 1 and 2; this 
indicates a penetration of the glandular tissue into the connective layer.   

 Figures  6.4 c and d show the raw and second - derivative mean extracted spectra, 
color - coded in the same fashion as the clusters in Figure  6.4 b. The maps and 
corresponding spectra are very similar for each section, indicating that the bio-
chemistry between the adjacent sections is consistent. The spectra exhibit dramatic 
changes in the amide I mode, both in terms of band width and position. The peak 
center varies from approximately 1643 to 1659   cm  − 1 ; such variation is attributed to 
physical – chemical changes in the tissue matrix. Dramatic variation occurs in the 
areas of thin tissue and on the periphery of tissue sections, with the net result 
being a shifting of the amide I mode along with a concomitant increase in the 
amide II   :   amide I ratio. This effect is clearly observed in the mean extracted 
spectrum from the brown cluster, which shows the amide I mode appearing at 
1643   cm  − 1  and an amide II   :   amide I ratio that is much greater for this spectrum 
when compared to the other spectra. Such strong distortions and shifts in band 
shape were recently addressed by Romeo  et al.   [18] , who reported a method to 
correct for the  ‘ dispersion artifact ’ . To minimize correlations with physical infor-
mation, the analysis was carried out using the 1272 – 950   cm  − 1  region, which omits 
the proteinaceous range (1720 – 1380   cm  − 1 ) that may be strongly distorted by the 
dispersion artifact. Spectra from lymphocyte exudates and glandular tissue are 
dominated by a band at  ∼ 1240   cm  − 1  which is assigned to the anti - symmetric phos-
phodiester stretching vibration of nucleic acids. This band shows the most varia-
tion between all four mean extracted cluster spectra. The mean extracted spectrum 
from the stromal areas (light green) includes contributions from collagen vibra-
tions, although the distinctive collagen triplet in the 1300 – 1200   cm  − 1  cannot be 
observed due to infi ltration by red blood cells, lymphocyte exudates and glandular 
tissue into the connective layer. 

 The 3 - D chemical image constructed from four adjacent sections and generated 
by integrating the area underneath the peaks in the 1272 – 950   cm  − 1  region is pre-
sented in Figure  6.5 . In Figure  6.5 a, the image is orientated to show the fi rst 
section of the tissue block (section 1) while in Figure  6.5 b the last section (section 
4) is oriented towards the viewer. The darkest orange areas in section 1 (Figure 
 6.5 a) correlate well with the stroma and glandular tissue, while the darkest orange 
area shown in section 4 (Figure  6.5 b) is associated mainly with the stroma.   

 Figure  6.6  shows a 3 - D UHCA map performed on the four sections simultane-
ously. The map shows excellent correlation with the anatomical and histopatho-
logical features indicated in Figure  6.3 . The cluster colors are the same as those 
used in Figure  6.4 b. The 3 - D UHCA map enables one to visualize the extent 
of penetration of the anatomical features, and also the degree of variation 
from section to section (a movie of this section is available on the website in our 



   
  Figure 6.5     Two views of a 3 - D univariate chemical map 
plotting integrated absorbance over the spectral region 1275 –
 1190   cm  − 1 , after baseline correction. Red indicates areas of 
highest absorption, blue indicates areas of lowest absorption. 
The view is looking toward the section 1 side of the sampled 
volume in (a) and towards the section 4 side in (b).  

     Figure 6.6     Two views of 3 - D cluster maps for 
four clusters obtained from analysis in the 
1272 – 950   cm  − 1  spectral region. In the cluster 
map false color scheme, brown corresponds 
to exudates, blue to infl amed glandular tissue, 

green to connective tissue, and orange to 
blood - fi lled capillaries (as in Figure  6.4 b). The 
view is looking toward the section 1 side of 
the sampled volume in panel (a) and towards 
the section 4 side in panel (b).  

Biomedical Central article  [9] ). Moreover, 3 - D FT - IR multivariate processing 
enables the visualization of thick tissue sections that cannot normally be analyzed 
using conventional mid - IR spectroscopic techniques, due to the limited depth 
penetration of IR radiation. The thin sections (4    µ m) required for use with the 
Kevley slides are less than the thickness of a single cervical cell; consequently, the 
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use of multiple sections not only enables the analysis of whole cells but also mini-
mizes the effects of orientation artifacts that can arise during tissue sectioning. 
Individual clusters can be studied by rendering the image in semi - transparent 
mode. Figure  6.7  is identical to Figure  6.6 , but with the stroma cluster removed 
from the plot and with glandular tissue now depicted in semi - transparent blue. 
By making the image semi - transparent, it is possible to visualize clusters in the 
center of the 3 - D FT - IR image and examine the shape and penetration of important 
anatomical and histopathological features (a movie of this section is available on 
the website in our Biomedical Central article  [9] ).   

 The time required to acquire and compile 3 - D FT - IR univariate images is depen-
dent on the following steps: 

   •      Approximately 10   min to acquire each 2 - D FT - IR image from each individual 
tissue section.  

   •      A 2   min period to run the MATLAB stitching program.  

   •      Registration of the images was performed  ‘ by hand ’  in this study and was, con-
sequently, quite time - consuming; however, it is envisioned that suitable soft-
ware could be developed to automate the registration process, thereby reducing 
the time required for this to a few minutes.  

   •      About 1   min is required for SCIRun to stack, interpolate and render a single 
3 - D image frame.    

 If a routine data - handling pipeline were to be developed, then it should allow a 
3 - D univariate image to be obtained in less than 1   h from commencement of 

   
  Figure 6.7     Two views of 3 - D cluster maps identical to the 
maps in Figure  6.6 , but with the stroma cluster removed from 
the plot and with glandular tissue now depicted in semi -
 transparent blue. The view is looking toward the section 1 
side of the sampled volume in (a) and towards the section 4 
side in (b).  



sample scanning on the FT - IR microscope stage. In approximately 1   h, SCIRun 
can additionally generate 3 - D movies composed of a few hundred individual 3 - D 
image frames. The production of 3 - D UHCA cluster map images is, unfortunately, 
a signifi cantly slower process, as UHCA is computationally intensive and requires 
a time of approximately 2   h (Pentium 4, 3.4   GHz, Hyper - Threading, 2   GB RAM) 
for the processing of four FT - IR images stitched together. The compilation of 
UHCA 2 - D maps from large collections of tissue sections would be prohibitively 
slow for the current technique to have any value as a rapid diagnostic technique.  

  6.3.2.2   Adult Mouse Heart 
 The above - described information relating to cervical sections shows how the 3 - D 
imaging can provide a powerful technique for examining the penetration of his-
topathological features. Hence, in order to demonstrate its power in examining an 
organ, we obtained a longitudinal section sample of an adult mouse heart. Research 
into the origins and prevention of heart disease requires a detailed understanding 
of the molecular chemistry of the heart tissue matrix. Heart tissue is comprised 
predominantly of cardiac muscle cells ( cardiomyocytes ) which contain the contrac-
tile assembly of sarcomere proteins and are also rich in mitochondria. The inner 
lining of the myocardium towards the lumen of the ventricles and atria is com-
posed of a thin layer of endothelial cells    –    the  endocardium     –    which are noncon-
tractile cells with a low protein content. Similarly, the ventricles and atria are 
surrounded by the so - called  epicardium , a sheet of epithelial cells separated from 
the myocardium by a thin layer of fi brotic tissue. 

 The sample was sectioned into fi ve slices, after which FPA images were obtained 
in the same manner as described above, and 3 - D chemimages constructed using 
SciRun. Figure  6.8 a shows a static, full longitudinal section chemimage based on 
the integrated absorbance of the amide I peak; in Figures  6.8 b and c the same 
image is rotated clockwise by 45    °  and 135    ° , respectively. The 3 - D images show 
the basic anatomy of the adult mouse heart very well, with the major feature in 
the longitudinal section being the left ventricle (right - hand side of Figure  6.8 a) 
composed of tissue with a high protein content (red). The right ventricle, parts of 
the right and left atria, and the base of the aorta are also discernible. Figures  6.8 d – f 
show the same views, but with the weak amide I signals removed, whilst Figures 
 6.8 g – i show views with only the strongest amide I signals remaining. It is apparent 
from these images that areas of high and low protein concentration can be spatially 
located within the mouse heart. Regions of low protein concentration (blue) cor-
respond to areas of noncontracting cells, namely the endocardium and epicar-
dium, as well as fi brotic tissue surrounding the aorta. In contrast, areas of high 
protein concentration (red) are associated with the contractile myocardial tissue. 
However, the myocardium is composed not only of cardiomyocytes but also con-
tains various interstitial cell types such as fi broblasts, endothelial and smooth 
muscle cells of the myocardial vasculature and undifferentiated stem and progeni-
tor cells. A preliminary UHCA failed to clearly distinguish between these different 
cell types, although a full analysis has not yet been carried out. However, the FT - IR 
3 - D imaging technique shows real potential as a method for investigating the 
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     Figure 6.8     Nine views of 3 - D chemimages 
based on the amide I peak, showing different 
protein concentrations within the adult mouse 
heart. (a) Full longitudinal section image 
(abbreviations: LV   =   left ventricle, RV   =   right 
ventricle, LA   =   left atrium, RA   =   right atrium, 

Ao   =   aorta); (b) Rotated clockwise by 45    ° ; 
(c) Rotated 135    ° ; (d – f) As for (a – c), but with 
the lowest protein absorbance values 
removed; (g – i) As for (a – c), but with only the 
highest protein absorbance values retained.  

extent and/or severity of cardiac disease; it is also possible that even the progeni-
tors of heart disease may be measured as changes in myocardial tissue composi-
tion. For example, myocardial fi brosis (i.e., the replacement of cardiomyocytes by 
fi brotic tissue) is a common pathological fi nding in various cardiac diseases, with 
the degree of fi brosis often correlating to the reduction in cardiac function. Fur-
thermore, cardiac ischemia and myocardial infarction results in the loss of 
contractile tissue which is replaced by a fi brotic scar, the extent and localization 
of which signifi cantly determines the resultant impairment of cardiac function. 
Therefore, a FT - IR - based 3 - D reconstruction of the scar tissue might assist in the 
evaluation of cardiac performance following myocardial ischemia. Finally, meta-
bolic diseases (e.g., mitochondrial dysfunction, glycogen storage diseases or cardiac 
deposition of pathological components) often fi rst result in mild changes in the 
cardiac tissue matrix before causing more severe symptoms of cardiac dysfunction. 



Hence, FT - IR might be valuable not only in the early diagnosis but also ultimately 
in the treatment of these deadly conditions, thus reducing morbidity rates.    

  6.3.2.3   3 -  D   ANN  Images 
 Figure  6.9 a shows three views of an embryonic chick face (stained with ethidium 
bromide), with the images taken under a fl uorescence dissecting microscope. For 
FT - IR imaging, 4    µ m - thick microtome sections were obtained from an equivalent -
 age chick embryo. From a series of 16 sections, FT - IR hyperspectral 2 - D images 
were collected using a PerkinElmer Spectrum Spotlight FT - IR microspectrometer 
at 4   cm  − 1  spectral resolution and a lateral resolution of 25    µ m. Figure  6.9 b shows 
a white - light micrograph of one of the sections which was FT - IR imaged (i.e., 
unstained). The labels identify the tissue types, including the maxillary processes 

     Figure 6.9     (a) Three views of an embryonic 
chick face (stage 27, 144   h) stained with 
ethidium bromide; the images were taken 
under a fl uorescence dissecting microscope. 
The white lines in the image indicate, 
approximately, the plane of the sectioning; 

(b) White - light micrograph of 4    µ m - thick 
unstained section from the chick face. 
 MXP    =    maxillary processes , 
 MNP    =    mandibular processes ,  NT    =    neural 
tube ,  OV    =    otic vesicle ,  PP    =    posterior palate , 
 FP    =    fl oor plate .  
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that give rise to most of the upper jaw/ beak, the mandibular processes that give 
rise to lower jaw/beak, the posterior palate, the neural tube that gives rise to the 
central nervous system, and the otic vesicles, which are precursors of the ears.   

 Figures  6.10  and  6.11  show 3 - D FT - IR images of an embryonic chick face con-
structed from the 16 sections. The image volume sampled was 2700    ×    3775    ×    64    µ m 3  

     Figure 6.10     3 - D ANN image of the embryonic chick face. 
Spectroscopically distinct anatomical features identifi ed by 
combined UHCA and ANN analysis are plotted in fi ve cluster 
colors. The maxillary processes that surround the bottom and 
sides of these features are removed for clarity.  

   
  Figure 6.11     3 - D ANN image of the embryonic chick face. This 
view shows only the outer cluster from the maxillary 
processes.  



( x,y,z ) and contained 265   088 spectra. Thus, the chick face data set was approxi-
mately 16 - fold larger than that obtained for the cervical adenocarcinoma sample. 
As the number of spectra contained in this image was greater than can be pro-
cessed with UHCA, an ANN model was used to perform the multivariate image 
analysis. UHCA was initially performed on four FT - IR hyperspectral images 
selected from the complete 16 - image set to identify six spectroscopically distinct 
clusters. The spectra collected from these UHCA clusters were then used to train 
an ANN. After training, ANN 2 - D image processing of all the sections was per-
formed in CytoSpec, and validation of the ANN model performed by comparison 
with the UHCA imaging results. The fi nal 3 - D rendering of the ANN image was 
performed using the SCIRun software.     

 In Figures  6.10  and  6.11  the  z  - direction, which lies perpendicular to the sec-
tioned faces, is in the direction represented by the red arrow in the red - green - blue 
axes indicator shown at the top right corner of the images. These images have a 
greatly exaggerated scale in the  z  - direction. The blue arrow indicates the dorso-
ventral axis, and the dorsal direction in Figure  6.10  is upwards. In Figure  6.10 , the 
one UHCA/ANN cluster that was found to correspond with the maxillary pro-
cesses has been removed so that the shapes of the more internal anatomical fea-
tures can be traced through the sampled area of the chick face. The UHCA/ANN 
model has described the neural tube (not yet closed) as three identifi ably distinct 
spectral clusters, shown in Figure  6.10  by the red, green and gray colors. For visual 
clarity, the green cluster has been rendered as semi - transparent. The spectroscopi-
cally identifi ed gray cluster that can be seen penetrating all the way through the 
collected sections, parallel to the  z  - axis, is identifi ed as the  fl oor plate , a function-
ally defi ned part of the developing neural tube. Other anatomically identifi able 
UHCA/ANN spectral clusters are the  posterior palate , presented as the semitrans-
parent purple cluster. Figure  6.11  reverses the situation, and shows only the maxil-
lary processes with the features internal to the face removed from the plot. Figure 
 6.11  also shows the face from a different vantage point; this view is rotated from 
that shown in Figure  6.10 , as indicated by the new orientation of the axes indicator. 
In the SCIRun software the 3 - D image can be freely rotated, and this ability pro-
vides the viewer with a clear impression of the shape of the various anatomical 
features, which is less apparent in the static images. In the foreground sections 
of Figure  6.11 , the two maxillary processes can be seen as clearly separated tissues. 
However, in several background sections, it is possible to discern that tissue with 
essentially identical spectral properties approximates with the maxillary processes. 
This centrally located tissue is likely derived from the medial nasal process.    

  6.4 
 Conclusions 

 The coupling of vibrational spectroscopic imaging with 3 - D multivariate process-
ing greatly extends the capabilities of IR technology in medical diagnostics. From 
the perspective of the biomedical scientist, existing pathological and histochemical 
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protocols depend on sample morphology and visualization, and so the ability to 
maintain spatial integrity in three dimensions while assessing precise spectro-
scopic data intrinsic to a tissue sample represents an ideal combination. Three -
 dimensional multivariate processing, whether using chemimages, cluster images 
or ANN images in the case of larger samples, provides a new approach to visual-
izing tissue blocks, based on the underlying biochemical make - up of the tissue 
matrix. It is expected, therefore, that the above - described techniques, after further 
development, will in the near future achieve signifi cant application in both biology 
and medicine.  
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  7.1 
 Introduction, Background and Perspective 

  7.1.1 
 Early Technology 

 Remote imaging (usual, thermal, or infrared) began move than nine decades ago, 
when artillery spotters in the era of trench warfare used balloons to view the terrain 
and the enemy forces. Their eyes served as image detectors, their brains as data 
processors and sketches as graphics, while a carrier pigeon transmitted the fi nd-
ings of their remote sensing to their own artillery battery. More recently, broad-
band channels of different wavelength ranges from high - fl ying aircraft or satellites 
employ sun - illuminated refl ection to distinguish between bare soil and land 
covered by organic vegetation. The thermal images thus obtained reveal the emis-
sion of rays resulting from heat generated on the ground or of heat retained to a 
greater or lesser degree by different materials from the prior absorption of solar 
radiation. 

 Today, in the medical fi eld, digital diagnostic images    –    including  computer tomo-
graphy  ( CT ),  magnetic resonance imaging  ( MRI ),  positron emission tomography  ( PET ) 
and ultrasound    –    obtained at geographically remote clinics, and are then transmit-
ted hundreds of kilometers via digital telephone lines with excellent image fi delity, 
to be read by an expert radiologist at another location. Likewise, imaging in light 
microscopy for histology has progressed from grayscale contrast to stains with 
chromophores or fl uorophores that bind to a particular chemical species present 
in the tissue being examined. With vibrational spectroscopy    –    whether infrared, 
Raman, near IR or terahertz    –    staining is not required; rather, the intrinsic 
spectroscopic absorption properties provide a chemically selective image 
contrast. Today, chemical images from  infrared microspectroscopy  ( IMS ) reveal 
 what ,  how much  and  where , various chemical species occur in nature and in 
manmade fi lms, laminates, fi bers or specimens from the materials or forensic 
sciences. IMS images obtained at different optical frequencies of the same wheat 
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Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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kernel transverse section in Figure  7.1  show the locus and relative quantity of lipid, 
protein and carbohydrate in the different botanical parts  [1] . The spectra from 
pixels high in each component have the absorption band identifi ed for which the 
baseline corrected area was calculated to produce each corresponding chemical 
image.   

 Both, IMS and imaging, have developed rapidly since the introduction of the 
fi rst research - grade infrared microscope in 1986. This instrument was equipped 
with front surface optics, remote projected image plane masks and a sensitive, 
dedicated detector with a small area to match the size of the microbeam passing 
through the specimen on the stage. Although the instrumentation for imaging is 
discussed in detail in Chapter  1  of this volume, and also in another monograph 
 [2] , a brief outline of the progression of microspectrometer development prior to 
the applications presented in this chapter should help readers to recognize the 
optics used for each application. Recently, in an editorial of  Applied Spectroscopy , 
Peter Griffi ths stated that  ‘ By far and away the most signifi cant development of a 
peripheral for FT - IR spectroscopy is the infrared microscope ’ .  

  7.1.2 
 Optical Advances 

 The IR - PLAN was patented in 1989  [3]  and designed as an attachment for any 
commercial FT - IR instrument. Subsequently, other manufacturers provided 
similar peripheral microscopes for the same purpose with, in each case, an optical 

     Figure 7.1     Chemical images of the same 
wheat kernel cross - section showing the 
population on the  z  - axis. (a) Lipid in the 
scutellum and aleurone cell walls; (b) Protein 
in the embryonic axis and aleurone cells; 
(c) Starch in the endosperm. The baseline -
 corrected band area maps of 1740, 1550 and 

1025   cm  − 1 , respectively, result from bands 
marked in red on the lipid, protein and 
carbohydrate spectra extracted from the 
wheat kernel. Note: the section size is ca. 
2000    ×    1000    µ m.  Reproduced with permission 
from Ref.  [1] ;  ©   Spectroscopy .   
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interface being required. From that beginning, various IR microscope/IR spec-
trometer systems paired either by design or integrated systems have been used to 
enhance the optical effi ciency to conserve the IR signal. The subsequent develop-
ment of microprocessor - controlled motorized stages made raster scan mapping 
convenient, and multiple  functional group maps  (images) resulted from different 
baseline - corrected band areas, representative of various chemical species in the 
tissue being presented on the  z  - axis as a stacked contour map. 

 The enhanced spatial resolution which is enabled by the substitution of synchro-
tron radiation for a thermal (globar) source was a signifi cant instrumental advance. 
The introduction of  focal plane array  ( FPA ) systems, initially InGaAs, for near - IR 
by Marcott and Lewis  [4]  occurred on 20 June 1994, while the subsequent develop-
ment for mid - IR, using a  mercury cadmium telluride  ( MCT ) array by Lewis and 
Levine  [5]  at Bethesda, Maryland, resulted in very rapid image generation. 

 The instrument development cycle that began with a microscope accessory for 
an FT - IR spectrometer turned full circle with the production of a miniature inter-
ferometer accessory (the IlluminatIR ™ ) for a research microscope. This latter 
development opened IMS to professional microscopists by adding a new, chemi-
cally selective dimension. Another small footprint - dedicated portable IMS used a 
diamond  internal refl ection element  ( IRE ) to analyze solids or liquids on location. 
The internal refl ection IMS is used in conjunction with a laptop computer that 
contains a spectral library; this set - up enables  ‘ emergency fi rst responders ’  or 
investigators to perform the onsite identifi cation of unknown or potentially haz-
ardous materials.  

  7.1.3 
 Early Imaging Applications 

 The vibrational spectroscopy of biological material has been a fruitful area of study 
and practical use for more than four decades, with biological products having been 
analyzed qualitatively with mid - IR systems, and quantitatively with near - IR. For 
mid - IR spectroscopy in most cases, homogenates or solid materials are analyzed 
on a macro scale in transmission as nujol mulls, or as KBr pellets or by diffuse 
refl ection or refl ection absorption techniques. 

 Remote sensing with relatively broad near - IR wavelength bands can provide a 
distinction between land covered with vegetation and bare earth from satellites, 
balloons and other high - altitude platforms. By using silicon photodiode cameras 
and fi lters, broad images resulted in the visible to very near - IR range up to 
1050   nm. Thermal images were also obtained with InAs, InGaAs or InSb array 
cameras. In fact, many hundreds of reports have been made describing remote 
imaging for agriculture and botany. Likewise, laboratory - scale near - IR macro 
imaging, obtained in the silicon region, has been of great use in horticulture for 
the inspection of fruits, vegetables and leaves for surface defects, as well as for 
maturation or ripeness of the crop. 

 The commercial sorting of lemons on a massive scale was achieved as early as 
the 1980s by Sunkist. In this case, each lemon was inspected for spots on the skin 
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as it fell in a perfect spiral, using a near - IR camera system. In apples, a water core 
was detected with a handheld testing device designed for orchard use. More than 
a score of reports on bruised fruit (e.g., apples, pears) have dealt with the fact that 
any bruised fl esh of the apple fi lls with water to a greater extent than does the 
other fl esh within the same fruit  [6] , a fact which readily lent itself to macroimag-
ing with an appropriate CCD camera. The use of a cut - off fi lter to remove wave-
lengths below 700   nm limits imaging from there to 1050   nm; however, with an 
interference fi lter the near - IR response of the water in the bruise can be distin-
guished from other absorbing species present in the fruit. Because the OH vibra-
tion is a very strong absorber, its combination and overtone bands that occur in 
the near infrared are relatively prominent.  

  7.1.4 
 Spatial Resolution 

 The spatial resolution of FT - IR microspectroscopy, without sacrifi cing spectral 
quality and resolution, makes imaging possible. Shortly after the introduction of 
the fi rst research - quality IR microscope by Messerschmidt and Sting in 1986, 
Wetzel, Messerschmidt and Fulcher reported spectra obtained from wheat kernel 
transverse sections  in situ , and compared them with fl our milling fractions  [7] . 
This was achieved with an accessory IR - PLAN microscope optically interfaced to 
a Nicolet interferometer bench. Subsequently, at the Agriculture Canada labora-
tory the same model IR - PLAN was interfaced to a Bomen Michelson IR 100 spec-
trometer such that, over the period of a year, transverse sections of wheat kernels, 
vanilla beans, peppercorns and soybeans were manually line - mapped to reveal any 
differences in microchemical structural characteristics between their different 
botanical parts  [8] . 

 The line maps clearly showed spectroscopic differences on a microscopic 
scale, with the cellulose and hemicellulose content of the pericarp layer of wheat 
readily apparent. The high lipid content of the pericarp was also revealed with 
prominent 2927   cm  − 1  CH 2  bands and carbonyl bands at 1740   cm  − 1 . Similarly, 
the aleurone cells and cell walls could be distinguished from adjacent endo-
sperm and pericarp layers. Within the endosperm (which forms the larger part 
of the wheat kernel), a major compositional difference was documented between 
the subaleurone and a central endosperm; this was evidenced from the spectra 
by a high amide II   :   carbohydrate (1550   :   1025   cm  − 1 ) band area ratio. Within 
another botanical part of the wheat, the  germ , a microchemical structural dif-
ference was noted between the embryonic axis and the surrounding scutellum, 
with the former being high in protein and the latter containing considerable 
lipid. 

 As seen in Figure  7.2 , the discoveries of these early studies formed the basis of 
subsequent research  [8] . Meanwhile, Reffner  [11]  reported the organic functional 
group mapping of a transverse corn section from the outer part of the kernel into 
the endosperm. Instrumentation available at that stage of development consisted 



of an accessory IR microscope optically interfaced to an FT - IR spectrometer, and 
both mammalian and plant tissues were studied extensively using this system. 
Subsequently, line mapping and rectangular mapping were enhanced with the 
introduction of a microprocessor - controlled motorized stage and an optically inte-
grated microscope/spectrometer system  [9] . Another book chapter that includes 
confocal synchrotron IMS with 6    ×    6    µ m image plane masking contains 125 fi gures 
with images and spectra of various seeds  [12] .     

     Figure 7.2     Synchrotron infrared 
microspectroscopy with 6    ×    6    µ m confocal 
operation and truncation at low wavenumber 
due to diffraction showing: (a) The scutellum 
portion of the germ with high 1740   cm  − 1  lipid 
compared to 1650   cm  − 1  protein; (b) The 

embryonic axis portion of the germ with 
higher protein at 1650   cm  − 1  compared to lipid 
at 1740   cm  − 1 .  Reproduced with permission 
from Refs  [9, 10] ;  ©  Elsevier and  Cellular and 
Molecular Biology , respectively.   
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  7.2 
 Application of  IMS  to Kernels and Seeds of Plants 

  7.2.1 
 Motive and First Applications of Spatially Resolved  IMS  

 Revealing the chemical difference between the botanical parts of individual 
wheat kernels was the object of this author ’ s immediate concern for using the 
fi rst research quality accessory infrared microscope that was introduced in 1986, 
featured at that year ’ s Eastern Analytical symposium and documented in a 
monograph that reported mostly forensic science, materials science, and 
potential medical applications  [13] . The patent was subsequently issued to 
Messerschmidt and Sting  [3] . The assumption that the quality factors of wheat 
(which is the primary cash crop of Kansas) may be revealed from a chemical 
microstructure led to a cooperative effort between the present author    –    a micros-
copist and expert in wheat morphology of Agriculture Canada    –    and the designer 
of the IR PLAN Spectra - Tech microscope. The fi rst joint experiment involved 
milling identity - preserved  hard red winter  ( HRW ) wheat to produce physically 
separated fractions, at the  Kansas State University  ( KSU ) pilot fl our mill. The 
spectra of these materials were compared with  in situ  microspectroscopically 
obtained spectra of individual botanical parts within 6 – 8    µ m - thick frozen sections 
that had been thaw - mounted onto 13   mm - diameter BaF 2  windows. The trans-
verse kernel sections representing HRW and  soft red winter  ( SRW ) wheat classes 
were sectioned and mounted, and the spectra collected were presented at the 
1987 Detriot FACSS microspectroscopy symposium  [7] . Other materials scanned 
included wheat gluten, wheat starch, wheat lipid and cellulose. Although the 
abstract for the Detriot symposium had referred to a motorized stage, a period 
of several months passed before Spectra - Tech produced such a stage that enabled 
what was referred to as  ‘ mapping ’  the specimen to provide functional group 
images. Reffner demonstrated a single functional group line mapping of a corn 
transverse section which produced successive spectra capable of distinguishing 
between the pericarp and each layer from that outer portion of the seed into the 
central endosperm  [11] . 

 Subsequently, Reffner and Wetzel produced images from raster scans of a 
wheat section with a prototype of the Spectra - Tech IR µ s. This was an integrated 
instrument that rigidly combined both an IR microscope and an FT - IR spectrom-
eter with a dedicated small - element MCT detector that essentially matched the 
dimensions of the microbeam exiting the Schwartzchild/Cassegrainian condenser 
of the microscope. Yet, while processing the data to be presented at a 1980 inter-
national conference, a seemingly fatal fl aw was revealed, in that spectra from 
pixels of starchy endosperm appeared with higher absorbance values in a protein 
functional group map than pixels known to be high in protein. Software was 
written to produce locally baseline - corrected band areas to negate any light - 
scattering effects that exceed    –    and thus obscure    –    the vibrational absorption in 
some cases  [14] . 
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 Initially, it was exclusively plant materials, including sections of wheat kernels, 
soybeans, peppercorns, vanilla beans and individual starch granules, that were 
probed and manually line mapped. These early investigations were conducted 
using a Bomem - Michelson 100 FT - IR and an IR PLAN and interface on loan from 
Bomem and Spectra - Tech, respectively. The localized chemical compositional dif-
ference between botanical parts was fi rst reported in 1989 by Wetzel and Fulcher 
 [15] . Spectroscopic differences within the botanical parts endosperm (protein) and 
germ (lipid) were fi rst observed from the manual line mapping of these tissues 
mounted on BaF 2 , in transmission mode. Here, 100    µ m - diameter confocal pro-
jected image plane masking was used in step sizes of 50    µ m to obtain successive 
spectra within these botanical parts.  

  7.2.2 
 Mapping Tissue Sections 

 Use of the IR µ s integrated instrument enabled line mapping across boundaries 
within plant tissue to observe differences in microchemical structure. This, after 
all, was the primary motivation for adapting FT - IR microspectroscopy to the inves-
tigative probing of plant material. Successive spectra taken across boundaries from 
pericarp, seed coat, outer cell wall, aleurone cells, inner aleurone cell wall, subal-
eurone endosperm, and fi nally the central endosperm, clearly demonstrated the 
chemical microstructural differences provided by nature. More surprisingly, these 
research laboratory revelations came about while IR microscope salesmen were 
using layered paint chips, ketchup bottles and photographic fi lm cross - sections to 
demonstrate the power of spatial resolution in manmade laminates! 

 The period between the 1990s and the early 2000s was extremely fruitful for the 
imaging of plant material, particularly of kernels and seeds, with many of the 
studies being performed using a raster scanning procedure on a variety of instru-
ments. At the  Microbeam Molecular Spectroscopy Laboratory  ( MMSL ) of KSU, 
the Spectra - Tech IR µ s was used in a transmission mode with samples mounted 
on BaF 2 , often in a compression cell with the specimen between two BaF 2  disks. 
Although the mapping procedures were lengthy, the compression cell kept the 
entire specimen in focus during the process. Mirrored microscope slides, and 
eventually IR - refl ecting ( ‘ low - e ’ ) glass, were used for the refl ection/absorption 
mode. This same model of instrument was the fi rst to be installed on beamline 
U2b at the  National Synchrotron Light Source  ( NSLS ) at  Brookhaven National 
Laboratory  ( BNL ). In all cases for which maximum spatial resolution was 
needed, synchrotron IMS was carried out by the author and collaborators at that 
facility in several month - long summer residences and a 15 - month sabbatical at 
NSLS. Each mapping procedure resulted in a number of different functional group 
images, during which time the various images were usually displayed as stacked 
contour maps. Emphasis was placed on transitions across boundaries between 
botanical parts in wheat, corn and a variety of other seeds. Some sketches of wheat 
and corn cross - sections are shown in Figure  7.3 , where the rectangles superim-
posed on the sections show the regions mapped. A number of these reports 
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appeared in 1993  [9]  and 1995  [12] , and also in a 1993 article by Wetzel and Reffner 
 [16] . Selected images were also included in a subsequent report in  Cellular and 
Molecular Biology , in 1998  [17] . Selected stacked contour images from these early 
studies were also included as examples in a treatise chapter by Budevska, who also 
presented color graphic images of her FPA data. Aspects of color - highlighted 
protein, starch and other functional groups, for the identifi cation of different 
botanical parts of the corn kernel, are discussed later in this chapter.   

 Rectangular x, y mapping was carried out in half - day periods or overnight, 
usually with the microtomed tissue sandwiched between BaF 2  windows to main-
tain focus of all parts of the targeted area to be mapped. Initially, functional group 
images were the result of interpolating skipped areas between spectra acquired 
when the stage step size was greater than the aperture dimension resulting from 
the image on the plane of the microscope stage. The images produced provided 
perspective with regards to the distribution of chemical species; however, the sci-
entifi c contributions were dependent on acquiring excellent spectra. Images result-
ing from applying a mapping procedure were routinely used to locate areas of 
interest in a microscope fi eld to be probed by the  ‘ point and shoot ’  approach with 
adequate scans coadded to maximize the  signal - to - noise ratio  ( SNR ). The plant 
tissue effort benefi ted from parallel (1999) studies in forensic science  [18] , material 
science  [19] , and also extensive microspectroscopic investigations in cooperation 
with Steven LeVine, a neuroscientist at the University of Kansas Medical Center. 

 In parallel with the plant material research, mouse cerebrum sections revealed 
obvious differences between white matter, gray matter and basal ganglia. These 
data were obtained with the IR µ s at the newly established MMSL at KSU. The 
control specimens showed a clear difference between the lipid - rich white matter 
and the protein - rich gray matter for the cerebrum of a normal mouse  [20, 21] . 
However, for the corresponding brain tissue of a diseased mouse in which the 
white matter had not fully developed, there was little spectroscopic difference 
between the two regions of tissue  [22] . In total, 16 scientists have operated at the 
KSU facility, which has hosted cooperative projects with Canadian, British and 
other American investigators, in addition to graduate students and faculty members 
from chemistry, biology and agriculture, as well as neuroscientists from the Uni-
versity of Kansas Medical Center. Elsewhere, other biological materials including 
medical specimens were under investigation in parallel, notably in laboratories at 
Hunter College, New York, the Russell Research Center, Athens, GA, and also in 
Australia, the United Kingdom and Japan.  

  7.2.3 
 Transitions across Botanical Parts 

 Mapping the transitions across boundaries between botanical parts in wheat and 
corn, shown as A – E on the wheat section (Figure  7.3 a) and F – J on the corn kernel 
(Figure  7.3 b), was accomplished in a raster scan procedure. This was achieved in 
a transmission mode between the time that the IR µ s instrument was installed, 
and 1995. Spectra from each mapping experiment yielded functional group images 
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for 3015, 2927, 1740 and 1469   cm  − 1 , representing C = C − H, CH 2  stretch, carbonyl 
and CH 2  bend useful in characterizing lipid deposition. The 3280, 1650 and 
1550   cm  − 1  images provided relative amounts of protein in terms of the NH stretch, 
amide I and amide II. Imaging the 3300   cm  − 1  rounded OH stretching vibrational 
band was indicative of water or carbohydrate, as in the 1025   cm  − 1  band - imaged 
starch, and alternatively a carbohydrate band maximum at 1100   cm  − 1  accompanied 
by a trio of bands at 1420, 1370 and 1335   cm  − 1  plotted the locus of cellulose or 
hemicellulose structures. The 1250   cm  − 1  image showed phosphorous diesters or 
nucleic acids. The areas designated as  ‘ B ’  in Figure  7.3 a were chosen to exemplify 
the mapping procedure for this chapter. Starting in the pericarp, the mapping 
proceeded across the pigment layer, the outer cell wall, the aleurone cell, the inner 
cell wall, subaleurone endosperm, and fi nally into the central endosperm. 

 Figure  7.4 a is the 1740   cm  − 1  stacked contour image of area  ‘ B ’  in Figure  7.3 a, 
showing the lipid present in the pericarp and cell walls, while Figure  7.4 b is the 
1550   cm  − 1  image showing the protein of the aleurone cells. Figure  7.4 c from the 
1025   cm  − 1  band area shows the starch of the endosperm inward from the aleurone 
layer. A corresponding set of images was produced for area  ‘ F ’  of the corn kernel 
in Figure  7.3 b. The transitions from subaleurone to central endosperm are pro-
duced from areas  ‘ A ’  or  ‘ G ’ ; such transition within the endosperm was to docu-
ment the results of early manual mapping. Similarly, the different parts within 
the germ were sampled from areas  ‘ E ’  and  ‘ J ’ .    

     Figure 7.3     (a) Sketch of wheat kernel cross -
 section, showing from the outside towards 
the center: pericarp, aleurone cells, aleurone 
cell walls, endosperm, depleted layer and 
germ (scutellum and embryonic axis). The 
following regions of the kernel were studied: 
A   =   pericarp/endosperm; B   =   pericarp/
subaleurone endosperm; C   =   corner of germ; 
D   =   single aleurone cell; E   =   endosperm/
scutellum; (b) Cross - section (not to common 

scale) sketch of a corn kernel showing 
pericarp, aleurone cells, aleurone cell walls, 
endosperm, depleted layer, scutellum and 
embryo. The following regions of the kernel 
were studied: F   =   aleurone/endosperm; 
G   =   subaleurone/central endosperm; 
H   =   vitreous central endosperm; 
I   =   endosperm/root; J   =   scutellum/embryo 
(root).  Reproduced with permission from Ref. 
 [9] ;  ©  Elsevier.   

(a) (b)
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  7.2.4 
 Imaging Single Cells 

 Imaging single aleurone cells with a typical size of 30    µ m in wheat, corn and other 
grains proved to be a major achievement of the plant tissue IMS. Large algal cells 
(shown subsequently as chemical images), oral mucosa cells and cervical cells 
were analyzed and shown to be on the order of 100    µ m in length. As early as 1992, 
a single cell was mapped at the author ’ s laboratory with 6    ×    7    µ m confocal image 
plane masking on the Spectra - Tech IR µ s. In this overnight procedure, the step 
size was equal to the aperture, so as to maximize the detail. The fi rst single cell 
mapping was reported by Wetzel and Reffner  [16] ; the stacked contour plot of 

     Figure 7.4     Stacked contour images of: 
(a) 1740   cm  − 1  for area B of Figure  7.3 , 
showing the lipid present in the pericarp and 
cell walls; (b) 1550   cm  − 1  showing the protein 
of the aleurone cells and the ridge of 
endosperm behind; (c) 1025   cm  − 1  band area 

showing the starch of the endosperm inward 
from the aleurone layer. The units of the  x  -  
and  y  - axes are micrometers, and the z - axis 
band areas are in arbitrary units.  Reproduced 
with permission from Ref.  [9] ;  ©  Elsevier.   
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Figure  7.5  shows the aleurone cell and part of the neighboring cell as a pyramid -
 shaped functional group stacked contour image of the amide II band at ca. 
1550   cm  − 1 . The cell walls were also highlighted, using a frequency representative 
of that tissue; this was accomplished with 256 scans coadded using the built - in 
globar source.   

 Subsequently, with synchrotron IMS and confocal 6    ×    6    µ m image plane 
masking, a shaper functional group image of a row of cells and surrounding tissue 
were obtained. These images and a photomicrograph of the target are shown in 
Figure  7.6 a. It should be noted that, in Figure  7.6 b at 1550   cm  − 1 , images from 
synchrotron IMS, two intact cells and one broken cell were apparent. Likewise, in 
Figure  7.6 c, rows of cell walls appeared in the 2927   cm  − 1  CH 2  functional group 
map. Figure  7.6 d of 1025   cm  − 1  shows the appearance of starchy endosperm, as 
evidenced by the starch absorption  [12, 17] .   

 The next aleurone cell imaging was performed at Proctor and Gamble, using a 
64    ×    64 MCT focal plane array system assembled with a commercial MCT camera, 
an IR microscope and a step scan FT - IR spectrometer  [23] . In Figure  7.7 , two 
aleurone cells are shown with a red false color image for 1550   cm  − 1 . The cell 
walls are found in the 1740   cm  − 1  image and the endosperm is identifi ed by the 
carbohydrate image at 1025   cm  − 1 .   

 All of these small cell imaging studies were subsequently eclipsed by investiga-
tions of Jamin, Dumas and others, with synchrotron IMS of a single living cell 
undergoing mitosis  [24] . Visualization of the two new nuclei shown in the lipid 
wavelength band area images in Figure  7.8  was made possible with confocal image 
plane masking at 3    ×    3    µ m.   

     Figure 7.5     Raster scan mapping results at 
KSU 1992 with 6    ×    7    µ m confocal image plane 
masking and globar source. (a) Chemically 
distinct graphics of single cell and cell wall as 
stacked contour image of single wheat 
aleurone cell from 1650   cm  − 1  baseline 

corrected band area; (b) Cell wall image from 
the 1246   cm  − 1  band area. The units of the  x  -  
and  y  - axes are micrometers.  Reproduced with 
permission from Ref.  [16] ;  ©   Cereal Foods 
World .   
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     Figure 7.6       Synchrotron IMS images of corn 
aleurone. (a) Photomicrograph of aleurone 
cells (top broken, middle and bottom whole); 
(b) Cell image stacked contour plot of 
baseline corrected 1550   cm  − 1  band area, 
(lower left and right respectively). The cell wall 
images were based on the lipid content at 

2927   cm  − 1  (c), and carbohydrate image at 
1025   cm  − 1  (d) band area showing subaleurone 
endosperm. The units of the x -  and y - axes are 
micrometers.  Reproduced with permission 
from Refs  [12, 17] ;  ©  Elsevier and  Cellular and 
Molecular Biology , respectively.   

     Figure 7.7     Focal plane array infrared images 
of the same cells as in Figure  7.6 , cell walls 
and aleurone. (a) Aleurone cells highlighted 
by amide I at 1650   cm  − 1  band area; 
(b) Aleurone cell walls at 1040   cm  − 1  band 
area; (c) Endosperm 1025   cm  − 1  carbohydrate 

band area. The red areas indicate high 
absorbance values. The size of each image 
is ca. 250    ×    250    µ m.  Reproduced with 
permission from Ref.  [23] ;  ©   Vibrational 
Spectroscopy .   
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 Images of single algal cells from both marine Figure  7.9  and freshwater sources 
Figure  7.10  have been reported recently  [25]  and  [26] , respectively, in studies 
involving the infl uence of nutrients and their uptake by organisms in the algal 
colony.    

  7.2.5 
 Applying Synchrotron  IMS  to Kernels, Seeds and Other Tissues 

 While the fi rst synchrotron IR microspectroscopy was performed at the NSLS of 
BNL during late 1992  [27, 28] , in January 1993 the present author was able to 
access the temporary beamline set - up to obtain 6    ×    6    µ m confocal spectra of wheat 
cross - sections, including single cells in successive cell layers that form the bulls -
 eye pattern of the primary root (see Figure  7.11 )  [16] . The spectra in Figure  7.11  

   
  Figure 7.8     (a) Photomicrograph of a cell undergoing mitosis. 
(b, c) Chemical images of amide II band at 1540   cm  − 1  and the 
CH 2  stretch at 2925   cm  − 1 , respectively. Note the forming 
nuclei in panel (c).  Reproduced with permission from Ref. 
 [24] ;  ©  National Academy of Science, USA.   
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  Figure 7.9     Green algal cell,  Micrasterias hardyi . 
(a) Photomicrograph; (b) Chemical image from 1075   cm  − 1  
baseline - adjusted band area, showing areas of protein 
concentration; (c) 1740   cm  − 1  image, showing area of lipid 
concentration. The red color indicates high absorbance 
values. The image sizes are 200    ×    200    µ m.  Reproduced with 
permission from Ref.  [25] ;  ©   FEMS Microbiology Letters .   
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  Figure 7.10      15 N   :    14 N ratio of protein   :   amide II band in 
two  Cladophora glomerata  cells showing the subcellular 
distribution of  15 NO 3  incorporation. (ca. 150    µ m diameter). 
 Reproduced with permission from Ref.  [26] ;  ©   Vibrational 
Spectroscopy .   
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  Figure 7.11     (a) Photomicrograph of the primary root of hard 
wheat, showing the surrounding colorhiza, the epidermis, 
cells of the cortex, cells of the central vascular cylinder and 
large cell at the core; (b) Single - cell spectra are from outer cell 
wall (top), mid (center) and inner cell rows (bottom). 
 Reproduced with permission from Ref.  [12] ;  ©  Elsevier.   
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show the relative lipid content by row within the assembly. Subsequent synchro-
tron experimental sessions with a three - person team operating around the clock 
produced maps and point probing with excellent spatial resolution. From the same 
target observed with a 15 ×  objective that produced a 12    ×    12    µ m double aperture, 
readily produced a 6    ×    6    µ m spot size when the 32 ×  objective mounted on the 
nosepiece was swung into place.   

 At the NSLS, sections of wheat, corn and other plant materials previously 
mapped using the conventional globar source at KSU were re - mapped with 
new similar sections so as to benefi t from the increased spatial resolution. Con-
sequently, more than 150 fi gures from the MMSL and NSLS were used to report 
the results of mapping across borders of different botanical parts in wheat and 
corn  [12] . 

 A subsequent chapter by Budevska showed extensive false color images of corn 
produced with the FPA imaging instrument in the agricultural division of Dupont 
 [29] . Additionally, chemometric and imaging software was reported by the same 
authors  [30] . 

 The upper spectrum of Figure  7.12  was obtained from the red false color area 
of the subaleurone endosperm, and the lower spectrum from the orange false color 
portion of the central endosperm (note the relative amounts of protein and starch 

     Figure 7.12     (a) Spectra of wheat subaleurone 
(top) and central  ‘ starchy ’  endosperm 
(bottom), obtained in 1992, using the  ‘ point -
 and - shoot ’  technique, from 12    ×    12    µ m 
confocal image plane masking  [9] ; (b) Focal 
plane array functional group images 1650   cm  − 1  
(top) and 1025   cm  − 1  (bottom), highlighting 
the subaleurone and central endosperm, 
respectively  [29] . The red color indicates high 

absorbance values. The spectra at the right -
 hand side are extracted from corresponding 
highlighted pixels (cross - hairs in images in 
the mid), showing differing protein   :   starch 
ratios within the wheat endosperm. These 
were measured in 2002 and support the 
earlier observations.  Reproduced with 
permission from Refs  [9]  and  [29] ; 
 ©  Elsevier and Wiley, respectively.   
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at 1650 and 1025   cm  − 1 , respectively). These spectra were similar to those obtained 
with a thermal source shown on the left.   

 The nonplant synchrotron IR microspectroscopic analysis at the NSLS beamline 
included drug metabolites in hair  [31] , depth profi ling of photodecomposition of 
polymer layers  [19] , and numerous mammalian tissue probings, including the 
brain tissue of rats that had consumed D 2 O in their drinking water  [10] . A summary 
of the plant material experience from BNL over a continuous 15 - month period was 
reported in 1998  [17] , and included the spectra of individual cells within a wheat 
primary root and the mapping of transitions between the botanical parts of wheat, 
saffl ower, oats, corn and barley.  

  7.2.6 
 Various Applications of  IMS  

 A research project conducted at KSU included tracing the migration of water by 
tempering wheat with D 2 O and mapping the OD absorption at 2500   cm  − 1 . This 
was accomplished using 20    µ m - thick sections to measure this minor band area 
 [32] . In these studies, the rate of water migration was measured for various differ-
ent wheats, including classes of hard and soft wheat and various cultivars within 
those classes. Such variation is of particular interest in the fl our milling industry, 
because the amount of water permitted in the wheat during storage is less than 
the optimum amount required to be present when milling takes place  [32] . Thus, 
the achievement of an optimum, evenly distributed water content in wheat prior 
to milling is important for the effi ciency of the milling process. 

 Other graduate research projects include the use of a polarizer after the beam-
splitter, so as to obtain dichroism of wheat gluten fi lms at positions of maximum 
stress, and also at positions of no stress. First, frozen gluten was microtomed to 
produce a fi lm; a small hole placed in the fi lm was then elongated to produce a 
stress gradient in space. Spectra with the polarizer parallel and perpendicular to 
the direction of stress were obtained along a line at various distances from the 
spot of maximum stress, outwards to the bulk of the fi lm  [33] . Parallel dichroism 
studies of polymer fi bers for forensic purposes  [34, 35]  had a clear infl uence on 
these gluten dichroism studies since, although the sample preparation for mid - IR 
microspectroscopy of microtomed gluten was diffi cult, the mid - IR spectra led to 
use of the same mid - IR microspectrometer at higher frequencies between 4000 
and 5800   cm  − 1 . In this way it was possible to obtain near - IR spectra in the region 
that included combination bands at 4865 and 4611   cm  − 1 . When these experiments 
were fi rst performed (at the Shelton, CT facility of Spectra - Tech/Nicolet), the stock 
beamsplitter and source were exchanged for a quartz beamsplitter and a tungsten 
source. However, suffi cient SNR was attained with the built - in globar source 
within the upper frequency limit of 5800   cm  − 1  imposed by the germanium coating 
on the KBr beamsplitter to produce excellent spectra. Because the attenuation of 
the beam was very large for one position of the polarizer, dichroic measurements 
were obtained at the higher transmitting angle of the polarizer, with dichroism 
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achieved by rotating the specimen under stress in a custom - fabricated stretching 
device (J.A. Reffner and D.L. Wetzel, unpublished results). 

 This investigative sequence, using a mid - IR instrument to measure near - IR 
spectra, resulted in the design and building of a dedicated near - IR instrument 
with programmable automated rotation of the specimen and digital stepwise 
elongation of the gluten fi lm with a microprocessor - controlled stepping motor 
 [36] . This was done to measure the strength of the wheat gluten, in terms of its 
resistance to molecular orientation in response to a fi xed amount of work input 
that produced an eightfold elongation. The dedicated instrument employed a 
home - made acousto - optic tunable fi lter spectrometer with programmed elec-
tronic wavelength switching to obtain dichroic spectra at appropriate protein fre-
quencies. Another project involved the mapping of isogenic wheat cultivars in 
the subaleurone to central endosperm part of the kernel; this was achieved by 
using a large number of sections to document the chemical microstructure of 
each  [37] .  

  7.2.7 
 Wheat Quality via  IMS  and Germination Study 

 Recent, ongoing studies with wheat have included determining the protein sec-
ondary structure, on behalf of the Kansas Agricultural Experiment Station wheat 
breeders. This approach to such an important aspect of hard wheat protein quality 
for bread making was fi rst proposed by Piot, when confocal Raman microspec-
troscopy was used to reveal the relative populations of  α  - helix and  β  - sheet forma-
tions  [38] . The same type of information was obtained using synchrotron IMS by 
Wetzel  et al. , representing  α  - helix   :    β  - sheet ratios of 1.5 to 2.2 for several mature 
hard wheats, and a ratio of approximately 1.0 for several mature soft wheats  [39] . 
Subsequently, this technique was used as an ongoing project to rank the  α    :    β  ratios 
from 1.2 to 2.3 of hard wheat breeding lines, so as to enable the breeder to make 
an informed selection, thereby enhancing the breeding process. The results from 
multiple crop year experiments to determine the  α    :    β  ratios and wheat protein 
quality for end use were recently reported  [40] . 

 Another important issue in wheat breeding is to avoid the susceptibility of wheat 
to sprouting (germination), when in the fi eld prior to harvest in years when high 
moisture conditions are encountered. By subjecting newly harvested breeding 
lines on moist blotter paper in a Petri dish for controlled periods of time, and 
applying a sensitive germination detection technique, differences between the 
various lines have been revealed by near - IR imaging  [41, 42] . While nondestructive 
near - IR imaging has been developed for the routine testing of new breeding lines, 
a fundamental study of the chemical differences within the germ of the kernel 
before and after germination was conducted in the mid - IR region using synchro-
tron IMS  [1] . Images at three wavelengths, highlighting the protein, lipid and car-
bohydrate, for one kernel that has not germinated and one that has germinated, 
are shown in Figure  7.13 .   
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 Here, the germ in the upper right - hand portion of each image has two parts. In 
the extreme upper right portion is the embryonic axis, where new life develops 
after germination. In an arc around the embryo bordering on the endosperm is 
the  scutellum . Whereas, the scutellum is sacrifi ced to provide nutrition and sus-
tenance to the new life in the embryonic axis, it is observed that the high lipid 
content before germination is reduced signifi cantly after germination. It is also 
noted from the protein images that the developing embryo has a much higher 
protein content than does the embryonic axis prior to germination. An extension 
of this experiment (see Figure  7.14 ) involved the mapping of a rectangular region 
in the scutellum for a number of ungerminated and germinated seeds.   

 A total of 48   000 spectra was recorded (28   000 sprouted, 20   000 unsprouted) and, 
by comparing the mean of the lipid   :   protein ratio in ungerminated and germinated 
seeds, a signifi cant difference was noted, the average post - germination lipid 
content being only 80% of the original. Such information was utilized in recent 
near - IR procedures, where wavelengths between 1700 and 2400   nm revealed such 
chemical differences. 

 In the fi eld of animal science, FT - IR microspectroscopy has been used to link 
animal feed performance (ruminant digestion) to localized chemical distributions 
within specifi c corn, barley and canola varieties  [43, 44] . A potential solution for 
remediating chemicals encountered environmentally in contaminated soil is to 
grow plants capable of  ‘ mining ’  such chemicals. As an example, sunfl ower stalks 
grown hydroponically were imaged by IMS to fi rst locate, and then determine the 
relative uptake of, these materials  [45] . The same group also reported selected 

     Figure 7.13     (a) Unsprouted kernel  x , y , z  
chemical functional group maps of (left) 
scutellum (lipid), (center) embryonic 
axis (protein) and (right) endosperm 
(carbohydrate). All images are from the 
same imaging data cube; (b) Sprouted kernel 
 x , y , z  chemical functional group maps of (left) 

scutellum, (center) the developed 
proteinaceous embryo and (right) the 
endosperm next to the embryo, which is 
virtually void with respect to carbohydrate. 
The kernel length was ca. 4000 – 6000    µ m. 
 Reproduced with permission from Ref.  [1] ; 
 ©   Spectroscopy .   
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articles on plant spectroscopy, including those prior to the introduction of the IR 
microscope  [46] .  

  7.2.8 
 Desiccation Study 

 Recently, IR microspectroscopy has been used to study protein secondary struc-
tures in isolated, immature maize embryos, to demonstrate their tolerance to rapid 
drying. A similar approach was also used to highlight the desiccation tolerance of 
developing maize embryos at various stages of growth, as a function of changes 
in their protein secondary structure that occur when they are dried at different 
stages of their development  [47] . The deconvolved spectra of fresh maize embryos 
excised at 20 and 25 days after pollination differed slightly with regards to the 
non -  α  - helix population. The observation of such a difference was enhanced by 
using D 2 O to hydrate samples excised at the same development stage; this avoided 
any distortion of the amide - I band due to the presence of H 2 O. The rapid drying 
of immature embryos was seen to result in a proportionately lower  α  - helix content, 
and a higher contribution of  β  - sheet/turn stretches. This observation was espe-
cially prominent in embryonic axes at 20 days after pollination. However, when 
these embryos were fl ash - dried their  β  - sheet content remained unaffected, match-
ing the profi le of fresh embryos. 

 The IMS study showed an increased proportion in  α  - helix structure for both 
slow and mature drying. Thus, the acquisition of full desiccation tolerance is a 
gradual process that takes place during maturation, as suggested previously 

   
  Figure 7.14     Photomicrograph of a wheat kernel transverse 
section, with mapped areas within the scutellum outlined in 
red. Note the corresponding botanical parts from the artist ’ s 
sketch at the right (courtesy of Kansas Wheat Commission); 
the kernel dimensions were ca. 2000    ×    1000    µ m.  Adapted from 
Ref.  [1] ;  ©   Spectroscopy .   
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(although at that time IMS was not available to reveal protein secondary structural 
changes). The rapid drying of embryos at 20 days after pollination led to a residual 
 α  - helix population and lost viability, whereas at 25 days after pollination some 74% 
of the embryos had germinated and the protein profi le resembled that of fresh 
control embryos. However, with slow drying between 20 – 25 days after pollination, 
the  α  - helix content increased compared to fresh control embryos, and the survival 
rate from desiccation was high. These authors concluded that the slow drying of 
excised immature embryos led to an increased population of the  α  - helical protein 
secondary structure that coincided with an additional tolerance to desiccation 
stress.   

  7.3 
 Leaves 

 Leaves represent one of the most frequently quantitatively analyzed materials, 
from the early days of diffuse refl ection near - IR instrumentation. In the past, 
tobacco leaves were analyzed for their nicotine, reducing sugars and moisture 
content on a routine basis, using a variety of near - IR instruments. Most of these 
analyses employed interference fi lter technology and chemometric relationships 
to effect the appropriate calculations. In this way, forage crops, including native 
grasses in pastures as well as hay, were analyzed for their feed value based on their 
protein, lipid and carbohydrate contents, and their digestibility. Recently, hay 
market auctions in the Pennsylvania dairyland have included loads of hay labeled 
with near - IR - determined nutrient values, so as to provide potential buyers with 
information that might concern the well - being of their dairy herds. Although the 
digestibility calibrations were based on data with a wide scatter, because of the 
poor precision and accuracy of animal experiments used for calibration, a large 
data base resulted in a useable regression line. Subsequently, the improved preci-
sion of near - IR in comparison with animal experiments made this approach both 
acceptable and practical. 

 Mid - IR microspectrometry data on  parenchyma bundle sheath  ( PBS ) transverse 
sections of grass leaf provide a molecular - based method for predicting eventual 
ruminant digestibility, for selection processes. Such a method is also useful for 
evaluating experimental crosses in a forage crop breeding program, the aim of 
which is to improve the digestibility of forage crops, thereby assisting in the con-
version of plant protein into animal protein. In this way, large areas of rangeland 
considered unsuitable for tilling may be grazed with a greater effi ciency towards 
the production of food. As an example, a forage network in North America was 
established by the United States Department of Agriculture that used near - IR to 
coordinate research towards the improvement of forage crops. The link between 
the chemical content of the leaf (PBS) and ruminant digestibility was established 
by biologist Aiben via microscopy experiments  [48] . For this, sections of  coastal 
Bermuda grass  ( CBG ) and an experimental cultivar referred to as CBX, were placed 
on microscope slides with double - sided Scotch tape. A photomicrograph of each 



section was taken before and after treatment with ruminant fl uid, at the appropri-
ate temperature for the animal. This results of this microscopic study revealed 
that, while other parts of the leaf section had been digested, the PBS remained 
undigested. Moreover, ruminant digestion was greater for the CBX than for the 
parent CBG, which was known to contain lignin with a high aromatic character. 

 The analysis of PBS in a cross - section of a grass leaf represented a major chal-
lenge to the spatial resolution of the microspectrometer. In 1989, early attempts 
using an accessory - type IR microscope attached to a conventional FT - IR instru-
ment by way of an optical interface, proved to be unsatisfactory because the 
neighboring tissue was sampled accidentally and, consequently, the resultant 
spectra did not accurately represent the PBS. However, when the experiment was 
repeated using the Spectra - Tech IR µ s integrated instrument, in which the spec-
trometer and microscope were built as a unit, the PBS alone could be probed. With 
an IR µ s installed on NSLS Beamline U2b, the detailed mapping of the vascular 
bundle and its surrounding tissue was accomplished and the aromatic lignin 
localized. 

 The functional group images of the CBG shown in Figure  7.15  have been pub-
lished previously  [12, 17] . For this mapping IMS experiment, Aiken provided 
6    µ m - thick sections that were subsequently mounted between BaF 2  windows and 
mapped in transmission mode, using a raster scan process. Attention was focused 
on the aromatic character of the lignin, with a benzene ring absorption band at 
ca. 1508   cm  − 1 . The spatial resolution of IMS allows the  in situ  tissue imaging or 
probing of the PBS to obtain localized chemical imaging and analysis. Such an 
approach with experimental grasses can be substituted for animal digestion 
studies, with results having shown that such as technique could provide a means 
of screening various crosses at early stages of a forage - breeding program. Aiken 
 et al.   [49]  independently reported the single point probing of PBS tissue in which 
a prominence of the 1508   cm  − 1  band was observed.   

 In 2005, Heraud  et al.   [50] , while working with eucalyptus leaf transverse sec-
tions, provided a thorough study of the plant ’ s epidermis, vascular bundle and 
mesophyl. Each of these botanical parts was characterized spectroscopically from 
an average of 40 spectra, together with chemometric assessments. The authors 
presented a useful tabulation of band assignments that referenced previously 
recorded original investigations. For lignin, in particular, fi ve bands were identi-
fi ed that included 1595 and 1515   cm  − 1 ; these were also identifi ed from the spectra 
of the vascular bundle. The differentiation of protein secondary structures was also 
revealed between the other two fractions. For example, the amide I band maximum 
for the mesophyl band at 1658   cm  − 1  was indicative of the  α  - helix structure, whereas 
structures from the epidermis, where the amide I band appeared at 1630   cm  − 1 , 
provided evidence of a  β  - sheet protein secondary structure. This brief summary 
does not present the depth and breadth of these studies, however, and the reader 
is referred to the original article in which the advantages of imaging by synchro-
tron IMS to provide excellent spatial resolution are discussed. This was achieved 
with a NicPLAN equipped with a 15 ×  Cassegrainian objective at the Advanced 
Light Source. A Varian Stingray 300, operated at 8   cm  − 1  resolution with a 64    ×    64 
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focal plane array, also provided 4096 pixel images. Various spectroscopic features 
were identifi ed in the epidermis, the vascular bundle and mesophyl, and band 
assignments were provided and discussed. The practicality of the IMS focal plane 
array instrument and the synchrotron IMS for data acquisition applicable to all 
similar studies of leaf materials, was also discussed. 

 Changes in wheat carbohydrate chemistry due to chemical enzymatic degrada-
tion were measured on a macro scale by internal refl ection ( attenuated total refl ec-
tion ;  ATR ) FT - IR spectroscopy from a spot size of 250    ×    250    µ m  [51] . In this study, 
the absorption bands of sucrose, fructose, glucose, arabinose and galactose were 
identifi ed, and spectra included for mahogany, huckleberry and oak, as well as for 
cellulose and cellophane. Both,  principal component analysis  ( PCA ) and plotting 
of PC1 versus PC2 enabled distinctions to be made between fi lter paper, cello-

     Figure 7.15     Forage digestibility prediction 
(leaf vascular bundle, shown in 
photomicrograph top left) analyzed for 
aromatic character of lignin in the 
parenchyma bundle sheath. The bundle 
sheath is less digestible if it is composed of 
lignin with a great amount of aromatic 
character. The 1509   cm  − 1  band area functional 
group map (top right) is indicative of 

aromatic character. Surrounding the sheath 
within the vascular bundle are the protein and 
lipid in the 1550   cm  − 1  and 1469   cm  − 1  band 
area images (lower left and right), 
respectively. The units of the  x  -  and  y  - axes are 
micrometers ( × 10 2 ); the  z  - axis band areas are 
in arbitrary units.  Reproduced with permission 
from Ref.  [12] ;  ©  Elsevier.   
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phane, mahogany, huckleberry and oak. A table of band assignments was also 
included citing the original references.  

  7.4 
 Application of  IMS  to Stems and Cellulose Polymers 

  7.4.1 
 Structure and Lignifi cation 

 The stems of plants represent the main sources of cellulose, hemicellulose and 
lignin. The structural function performed by the cellulose biopolymer enables the 
plant to stand upright alone, to expose the leaves to the sun and to support the 
weight of the fruit. The stems contain a vascular system that connects the exposed 
part of the plant to the nutrients and water via the roots. In the trunks of trees, 
cellulose is provided in the form of wood. Although remote spectroscopic sensing 
is used to survey the forest canopy, hard and soft woods are characterized in the 
laboratory by their infrared spectra, the details of which reveal the growing location 
(north or south), together with various compositional and varietal distinctions. 
Such fi ndings, when fi rst presented at the International Conference on Fourier 
Transform Spectroscopy in 1993, served as examples of what could be determined 
in wood by the use of spectroscopy  [52] . Internal refl ection techniques are often 
used on the surface of wood specimens, although very thin specimens obtained 
with a plane have been analyzed in transmission mode. The distribution and 
quantity of lignin throughout the specimen is of interest. The stems of small 
grains such as rice, wheat, oats and barley are potential sources of cellulosic 
ethanol, and for this particular end use the breeding of such plants with a reduced 
lignin content in their straw has been suggested. 

 During the late 1980s and early 1990s, while the present author and coworkers 
were using IMS to image and analyze brains and grains, McCann and colleagues, 
at the John Innes Centre for Plant Science Research in Norwich, United Kingdom 
(in cooperation with the Institute of Food Research in Norwich) were studying 
plant cell walls using IMS. In parallel with these activities, IMS was being used 
for biomedical research in areas of cancer, bone and cardiology; indeed, a thematic 
issue of  Cellular and Molecular Biology   [53]  included multiple articles from several 
countries. In 1992, McCann  et al.  were the fi rst to use IMS to examine plant 
cell walls  [54] . For this, IMS was applied to the cell wall material at all stages of 
extraction and polymer purifi cation, in the frequency range of 2000 - 900   cm  − 1 . 
At each step of extraction, when both the extracts (which contained pectins and 
xyloglucans) and the residue cell wall materials were examined, IMS was able 
to detect large conformational changes in pectin polymers on their removal from 
the cell wall and drying. 

 The spectra of extracted polymers via IMS were obtained by drying a droplet of 
extract on a BaF 2  window and selecting an area with an appropriate thickness from 
which to obtain the spectrum. The spectra of alkali - extracted polymers were alike, 
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and differed signifi cantly from those of the pectins. Spectral subtraction between 
the successive extraction steps of onion cell wall material showed that distinct car-
bohydrate features were removed at each step. With polarizers aligned parallel and 
perpendicular to the long axis of the cell, dichroism studies showed the ester band, 
amide band, phenolic structure and carbohydrate band to be preferentially oriented 
transversely to the long axis of a carrot cell. These early IMS studies were performed 
with a 100    µ m spot projected onto a BaF 2  disk, although subsequent investigations, 
where a greater spatial resolution was important, were conducted with smaller spot 
sizes. Some results of these experiments are detailed in Sections  7.4.2 – 7.4.4 .  

  7.4.2 
 Application of Polarized  IMS  

 The macromolecular orientation in dry and hydrated walls of single onion epider-
mal cells was studied using IMS  [55]  by group at Norwich, using polarizing 
radiation directed either parallel or perpendicular to the long axis of the cell. 
Dichroism was measured for a single onion cell under various hydration 
conditions on a Spectra - Tech IR - PLAN microscope stage, using a demountable 
humidity - controlled hydration cell with BaF 2  windows. Changes in the dichroism 
of the carbohydrate bands in the 1200 – 1000   cm  − 1  region were observed, while dif-
ference spectra (resulting from parallel polarized spectra minus perpendicular 
polarized spectra) were plotted for four distinct humidity conditions and compared 
to a spectrum of cellulose. Because an enhancement of the cellulose background 
vibration of the polymer chain at 1165, 1115 and 1070   cm  − 1  occurred with the paral-
lel polarization, the authors concluded that cellulose in the epidermal cells was 
arranged parallel to the long axis of the cell.  

  7.4.3 
 Alteration of Cell Wall Architecture 

 Recently, McCann and coworkers reported the details of some extensive studies 
targeted at identifying and classifying cell wall phenotypes of mutants on a genome -
 wide scale  [56] . For this, they studied the elongation of a maize coleoptile system 
for which the cell wall changes have been well characterized. Changes in cell wall 
architecture were studied during development in reference perturbation, environ-
ment or by mutation. Measurements were made at half - day intervals for the matu-
ration study, in refl ection/absorption mode, on gold mirror microscope slides with 
a Continu µ m IR microspectrometer operating confocally. (These studies were a 
combined effort from the Department of Botany and Plant Pathology at Purdue 
University, IN, and the United Kingdom Cell and Developmental Biology research 
group.) Cell wall - related mutants in maize are currently being identifi ed in a NSF -
 funded genomics project ( http://cellwall.genomics.purdue.edu ); two genes used 
in these studies are Robertson ’ s   mutator   (  mu  ) and  Wisconsin 22  ( W22 ). The well -
 characterized dynamics in cell wall composition that occur during elongation of 
the hybrid and the W22 maize coleoptiles were used to test the sensitivity of IR 



spectra in detecting any defi ned differences in either monosaccharide or polysac-
charide composition. Many subtle changes in band height and shape were seen 
to occur between the half - days of development, particularly in the carbohydrate 
fi ngerprint region involving bands at 1157, 1103, 1060 and 1030   cm  − 1 . A total of 
36 IMS spectra was obtained from the cell walls of populations of coleoptiles for 
each half - day of elongation. Half - day differences in spectra and PCA were then 
used to account for the variance among a set of spectra. 

 The results of the PCA showed that three periods in the development of cell 
walls were defi ned, and those representing individual embryonic coleoptiles were 
generally well resolved from those of elongating and senescent days. The embry-
onic phase was represented by spectra pooled from 1 -  to 2 - day specimens, while 
the elongation phase was represented by spectra from 3.5 to 4 days, and the senes-
cent phase was represented by combining 5.5 -  and 6 - day spectra. A spectral sub-
traction (elongating walls minus embryonic walls) revealed the characteristic 
bands of cellulose. In general, the positively correlated bands represented an 
increase in carbohydrate, while the negatively correlated bands at 1651, 1628 
and 535   cm  − 1  indicated that the protein content of the embryonic walls was greater 
than that of the elongating walls. 

 Subtraction of the spectra of elongating walls from the senescent walls showed 
carbohydrate bands at 1157, 1068 and 1041   cm  − 1  that were relatively enriched. 
Negatively correlated bands at 1693, 1593 and 1515   cm  − 1  represented a higher 
content of aromatic compounds in the senescing walls. With the dynamic changes 
in cell wall composition documented by FT - IR spectra, the spectra were subjected 
to various multivariate statistical techniques to allow discrimination according to 
the stage of development, including PCA and ANN. The former technique dis-
criminated 10 different growth stages, while the enhanced capacity of ANN was 
applied to all 12 growth stages to report on both class assignment, and on the 
probability of membership of each class for each spectrum. Both, a supervised 
approach with a genetic algorithm, Neuro - Shell 2, and an unsupervised Kohnen 
Lavine network were attempted  [56] . 

 When applying this procedure to the W22, only coleoptiles at maximum elonga-
tion rate could be clearly resolved as distinct classes. The authors predicted that 
the application of neural networks spectroscopic data into other multivariate 
measurements of phenotype would provide the framework for a systematic clas-
sifi cation of cell wall phenotypes in response to numerous perturbations. In order 
to establish data for this massive effort, the triplicate average spectra from 36 
to 60 inbred coleoptiles were averaged and used for digital subtraction. Baseline -
 corrected and area - normalized data sets of spectra were used in the chemometric 
analysis. The multivariate analysis involved PLS, PCA, linear discriminated analy-
sis and Mahalanobis distance. Mahalanobis distance metrics were also applied to 
the PCA scores of original data. For neural networks, FT - IR spectra were analyzed 
by genetic and Kohonen algorithms, using a combination of NeuroShell2 and 
Classifi er software (Wards systems group). For the genetic networks, a total of 
432 spectra for hybrid maize belonging to 12 classes, each representing half - day 
growth intervals, was trained through 129 generations. 
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 Synchrotron IMS was used by Raab and Vogel to study the role of  Arabidopsis  
cell wall enzymes as susceptibility factors to the fungus  Erysiphe cichoracearum , a 
causative agent of powdery mildew disease  [57]  that occurs in the leaf, stem and 
root tissues of some plants. For this, mutants of cell wall polysaccharides that 
lacked a particular biosynthetic enzyme were studied. Live plants were imaged in 
ecological experiments in small microcosms with a special cell constructed with 
ZnSe windows (this was referred to as a  ‘ rhizobox ’ ). Spatial resolution was an issue 
in relation to the root architecture effect of microbial symbioses on the quantity 
and quality of exudates. The leaf IR spectrum from  Arabidopsis  mutants lacking a 
particular gene was compared with leaf spectra of wild - type plants. When a detailed 
comparison of wild - type and  Arabidopsis  spectra was conducted in the 1200 to 
950   cm  − 1  region, prominent absorption bands from 1159 to 962   cm  − 1  were assigned 
to various pectin - related species. 

 By studying the spectrum of the root in a transparent box, the proposal of study-
ing the ecology of plant responses to different climates and soils was introduced. 
It has been suggested that the function of the roots is serve as a communication 
network in the soil. The authors  [58]  state that, during the life of the plant, as much 
as 15 % of the total fi xed carbon will be diverted into sugars, proteins and other 
small molecules that are surrendered to the plant. The role of these exudates was 
discussed, the authors suggesting an interdisciplinary approach to the study of 
plants, soils and microbes in the fi eld.  

  7.4.4 
 Flax Fibers 

 When Himmelsbach  et al.  used IMS to study fl ax stems  [58] , the microchemical 
structure of the fl ax stems was determined via an imaging procedure, with the 
individual domains within stems being identifi ed where various chemical species 
were located and their spectra monitored. From these IR spectra it was possible 
to identify the different chemical species present, and to make band assignments, 
based on published data. Closely related studies performed by the same research 
group at their Athens facility involved microRaman spectroscopy. The inclusion 
of a microscopist (Akin) in the team allowed the plant morphology and chemical 
imaging to be combined in the same study. Subsequently, Akin and coworkers 
provided additional information on the dew - retted fl ax fi bers; this was considered 
an important issue in the United States in anticipation of the reintroduction of 
fl ax as a cash crop to supply the textile industry. Morrison, Aiken and others 
described what occurs during the dew - retting of fl ax fi bers  [59] . 

 Himmelsbach and colleagues continued to use IMS to produce maps of 
the distribution of chemical components in fl ax stem tissues by examining cross -
 sections of the fl ax cultivars, ariane and natasja. For this, the chemical composition 
was superimposed onto the anatomical structure from a photomicrograph, after 
which functional group maps were produced to indicate each component to the 
exclusion of others in the matrix by comparison of pure components.  Waxes , 
which were indicated by a sharp shoulder at 2850   cm  − 1 , appeared primarily in the 



cuticle and epidermal tissues.  Pectin  was observed based on the band at 1615   cm  − 1  
for the calcium salt form that was primarily detected in surrounding fi ber bundles. 
 Cellulose  was mapped based on a 1335   cm  − 1  band that showed the greatest inten-
sity in fi ber cells.  Aromatic compounds  were identifi ed with a band at 1510   cm  − 1 , 
and were located primarily in the core tissue. Acetyl groups associated with hemi-
cellulosic polysaccharides were indicated by a band at 1250   cm  − 1  found within the 
fi bers and the core tissues  [59] .  

  7.4.5 
 Biopolymer Structure 

 The protein secondary structure of silk fi broin  [60]  was studied with near - IR spec-
troscopy, using silk fi bers that had been very carefully selected from naturally 
generated fi bers. The isolation of individual fi bers allowed the trapping from 
Nature of a protein with a particular secondary structure. A spider is able to gener-
ate different fi bers for different uses, with each fi ber having its own secondary 
structural composition. In the case of silk, an individual fi ber may well have a 
particular composition secondary structure, and in this case it is possible to use 
near - IR spectra to perform a characterization. This is quite remarkable because 
the use of a relatively prominent amide - I band in the mid - IR represents a major 
challenge. 

 The subject of the secondary protein structure as a means of defi ning the per-
formance characteristics of wheat endosperm    –    known as  hardness     –    been explored 
over a seven year period  [39, 40] . Another approach, taken by Baron  et al. , involves 
the IMS imaging of the endosperm cell walls rather than of the protein found in 
the endosperm itself  [61] . All of these authors performed the imaging  in situ , fol-
lowing removal of the protein and starch, in order to study the compositional and 
architectural heterogeneity and, in relation to this,  wheat hardness . In this case, 
the research was focused on kernel hardness rather than on endosperm hardness, 
as was the case with our studies. A further study of carbohydrate polymers by the 
same group involved the investigation of cereal arabinoxylans in relation to their 
structure and physico - chemical properties. 

 The technique of FT - IR internal ATR has been developed to the point that, today, 
ATR mirror lenses are available for an IR microscope. Furthermore, a newly 
developed, dedicated diamond internal refl ection instrument, the IlluminatIR ™  
(Smith ’ s Detection, Shelton, CT, USA) has now joined the ranks of microspectros-
copy. This instrument incorporates a small, horizontally mounted diamond, on 
the surface of which is placed the material to be examined. In this way, the mate-
rial is in optical contact with the diamond, and is held in place by a shaft pressing 
down from above. In this case, the radiation enters from beneath the instrument 
at an appropriate angle, and internally refl ected rays are subsequently collected. 
The specimen is illuminated from beneath with a near - IR source that is detected 
and displayed on a video screen. With this optical arrangement, it is possible to 
locate a particular part of the material in the fi eld of view and to interrogate it. 
Such an arrangement is particularly user friendly, and indeed it is mostly used by 
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nonspectroscopists. With modern - day developments in internal refl ection, and the 
use of a diamond  internal refl ection element  ( IRE ), a solid specimen such as a 
stem transverse section was easily analyzed in order to detect and measure the 
uptake of contaminants present in the soil (J.A. Reffner and D.L. Wetzel, 2001, 
unpublished results). Internal refl ection has also been employed to detect  Fusar-
ium  fungi on maize, this being a nondestructive testing system for the specifi c 
analysis of the surface of a material  [62] . 

 Cell walls have been analyzed during early grain development in rice by Gottlieb 
 et al.   [63] , who paid particular attention to the cell wall at the (1 - 3) and on the 
(1 - 3, 1 - 4) position of the six - carbon units. In one study, conducted in 1990, Carpita 
 et al.   [64]  collected IMS data with an image plane mask size of 25    ×    25    µ m, using 
a BioRad UMA 500 microscope interfaced to an FTS 1750 FT - IR spectrometer. 
The cell wall polysaccharides were studied and considered to be some of the most 
complex biopolymers yet found. The main concern of these authors was the struc-
tural and architectural changes in cell walls that appeared as a consequence of 
developmental regulation, environmental adaptation or genetic modifi cation. 
Hence, a rapid method for screening large numbers of plants for cell wall pheno-
types using IMS and PCA was developed. 

 IMS simultaneously reveals the type, distribution and relative abundance of 
chemical components within a particular system. A single spectrum contains 
information regarding the molecular structure and intermolecular interactions 
among individual sample components. Investigations in this area, including the 
detection of cell walls with altered compositions and the selection of mutant plants 
with altered cell wall compositions and architectures, is particularly useful because 
of the wide range of potential modifi cations and the possibility of uncovering novel 
genes that encode enzymes participating in biosynthetic pathways, wall assembly 
or modifi cations to polymers.  

  7.4.6 
 Cell Wall Alterations via Mutations 

 When pixelated imaging was employed in a transverse section of a three - day - old 
maize coleoptile  [65] , the 25    ×    25    µ m pixilated images were produced in maps for 
1720   cm  − 1  for phenolic esters, 1740   cm  − 1  for carbonyl, 1550   cm  − 1  for aromatics, and 
1000, 1020, 1034 and 1090   cm  − 1  for various carbohydrate components. When PCA 
was carried out on an exploratory basis over the range of 1400 to 1200   cm  − 1 , four 
bands (three of them cellulosic) were exhibited from potato tuber cortex from 20 
wild - type tubers. On comparison of these spectra with those from 20 transgenic 
tubers, the latter were seen to have overexpressed a fungal galactanase associated 
with the apoplast. Transdifferentiation as a function of time from 30   min to 48   h 
was shown to involve both glucosyl transferase and cellulose synthase, and these 
developments were followed by galactosyl transferase and a cellulose synthase - like 
material, simultaneously with the addition of caffeic acid and  o  - methyltransferase. 
Such spectroscopically identifi ed, genetically defi ned variations through mutant 
approaches or transgenic technologies offer an excellent opportunity to identify a 
broad range of structural and architectural alterations in cell walls.  



  7.4.7 
 Cell Wall Heterogeneity 

 Barron  et al.   [61]  used IMS to study the architectural heterogeneity of endosperm 
cell walls. In order to obtain these cell walls, one endosperm was selected which 
was very soft, and other groups of endosperms that were very hard. Following 
removal of the endosperm, an analysis of the remaining cell walls revealed two 
distinct populations of endosperm cells that could be identifi ed by spectral features 
related to the cell morphology and age. The main cell wall component responsible 
for the difference was the polysaccharide  arabinoxylan , while the cell walls of the 
hard endosperm could be distinguished from those of the soft endosperm by their 
spectral features, in comparison with water - extractable arabinoxylan. In the central 
endosperm, structural differences within the polysaccharides are thought to con-
tribute to the distinction between hard and soft cultivars. In the developing grain, 
a clear difference in the composition of the endosperm cell walls is observed 50 
days after anthesis. These studies were conducted with a FPA Digilab instrument, 
where the nominal pixel size was 5    µ m 2 . The spectra were recorded in a internal 
refl ection mode with an ATR Golden Gate accessory (Specac). Strictly speaking, 
these studies did not constitute  in situ  microspectroscopy because the cell walls 
were harvested from the endosperm prior to recording the spectra. However, this 
particular project and its results are interesting in relation to our own  α  - helix/
 β  - sheet protein secondary structure found within the subaleurone endosperm 
and central endosperm of various hard wheats  [39, 40] . Quantitation of the ratio 
of secondary protein structures was used in our studies to establish a ranking of 
the endosperm hardness trait. However, in carbohydrate microspectroscopy 
studies the cell wall was used as a matter of distinction by its architectural 
heterogeneity. 

 A combination of synchrotron IMS and immunolabeling techniques was used 
to study the biochemistry of aleurone cell walls at Synchrotron SOLEIL (France) 
 [66] . A confocal operation with the synchrotron source led to a maximized spatial 
resolution. Such high spatial resolution and discrimination of various polysac-
charides in cell walls enabled an estimation to be made of the localized relative 
population of  β  - glucan and arabinozylan.  β  - Glucan levels were found to be highest 
in the periclinal cell walls, close to the starchy endosperm, while the walls between 
cells were enriched with arabinozylan. When confocal imaging experiments were 
performed on both mature and early - stage kernel development, heterogeneity was 
seen to be greater prior to maturation.  

  7.4.8 
 Esters in Cell Walls 

 In studies conducted at Norwich by Sene and coworkers  [67] , a BioRad FTS - 40 
FT - IR instrument interfaced to a Spectra - Tech IR PLAN microscope was used, 
with sample areas of 100    ×    100    µ m. The operation was conducted in transmission 
mode on BaF 2  windows, and the spot size used was compatible with areas of the 
single cell wall fragments of 0.1 – 0.2    µ m thickness. Pectic polysaccharides extracted 

 7.4 Application of IMS to Stems and Cellulose Polymers  253



 254  7 FT-IR Microspectroscopic Imaging of Plant Material

from onion were examined, notably in the region of 1200 to 900   cm  − 1 . When 
operating with fi ve plants that contained esters, the spectra showed the ester band 
to contain more than one type of ester. In both the cell walls and isolated poly-
mers, the maximum ester band was between 1741 to 1730   cm  − 1 , indicating that 
the majority of wall esters were saturated alkyl esters. (Included in this reference 
is a table with assignments of the main bands of the IR and Raman spectra that 
had been imported from earlier published accounts.) Ester bands from cell walls 
in the onion and carrot were compared, and methyl esters of the  D  - galacturonic 
acid residues of pectin revealed. In this way, the spectra of the unextracted cell 
wall materials of onion, carrot, polypogon rice and sweet corn were obtained. 
These IR studies were backed up with Raman spectroscopy. The degree of 
esterifi cation of the wall was compared to the extraction step used to obtain 
the sample.   

  7.5 
 Algae 

 Although algae has been the subject of biological investigation over time, since 
1993 the application of FT - IR microspectroscopy  [68]  by groups from 
Australia, Italy, the UK and the US have involved the development of algal colonies 
and their response to available nutrients. This topic is not discussed here due to 
the limited space available; however, recently reported  [25, 26]  images of two single 
algal cells are shown in Figures  7.9  and  7.10 .  

  7.6 
 Comments 

 Quoting John Reffner,  ‘ Microscopy and spectroscopy are two of the oldest tech-
niques used in the study of nature and combined, their value is greater than the 
sum of the two. ’  With this proposal I heartily agree. Indeed, array detection makes 
imaging more convenient and further enhances the contribution of IMS. More-
over, an acceleration of its use is expected to continue throughout the twenty - fi rst 
century.  Come on in, the water is fi ne!   
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  8.1 
 Introduction 

  8.1.1 
 A Brief History of Near - Infrared Spectral Imagers 

 Although imaging in the near - infrared (NIR) spectral range was fi rst developed 
for remote sensing applications during the 1970s, major interest was not expressed 
in the NIR imaging of food products until the 1990s. By the start of the twenty - fi rst 
century, however, the procedure had become generally accepted, driven by the 
availability of reliable NIR imaging systems for both on - line and laboratory 
purposes. 

 NIR imaging experiments create  three - dimensional  ( 3 - D ) images where two 
dimensions provide spatial information and one dimension provides spectral 
information. If the third dimension is restricted to a limited number of wavelength 
bands (typically between 3 and 10), a multispectral image is created; consequently, 
when the whole spectrum is scanned the image created is termed  ‘  hyperspectral  ’  
(Figure  8.1 ).   

 Optimizing the acquisition of this type of images has been a major challenge 
for the past 20 years, and two techniques have emerged and are now mainstream. 
The fi rst method involves recording the images at each wavelength consecutive-
ly    –    that is, band - by - band    –    using either a fi lter wheel (for multispectral imaging 
only) or a tunable fi lter, generally an  acousto - optic tunable fi lter  ( AOTF ) or a  liquid 
crystal tunable fi lter  ( LCTF ), for hyperspectral imaging. The main advantage of 
these whole - image, single - band approaches is that the spatial resolution is very 
good and the entire image is acquired at once, thereby minimizing the presence 
of artifacts in the image. The downside is that inconsistencies may appear 
when the wavelength is changed, and if the optical device or the sample is not 
stabilized. 

 The second method of creating NIR images is to acquire one line of a sample 
at a time, projecting the spectral axis on the second dimension of the imaging 
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array (cf. Chapter  13  of this book). By sweeping along the sample line by line, it 
is possible to reconstruct the overall hyperspectral image of the sample. This 
technology, which has been widely used in remote sensing, is generally the one 
chosen for on - line cameras because the displacement of the sample on the con-
veyor belt is compatible with the need for relative repositioning of the sample 
below the array; the image is thereby acquired as the sample proceeds in front of 
the camera. The availability of  prism - grating - prism  ( PGP ) components designed 
for the 400 – 900   nm range during the late 1990s has boosted the design of line - by -
 line imagers. Such components are now also available in the 900 – 1700   nm range, 
with prototypes having also just been introduced for the 1000 – 2450   nm range  [1] . 
The detectors are cameras, usually based on a silicon array for the short wavelength 
range (400 – 1000   nm), or on InGaAs, InSb or MCT arrays for longer wavelengths. 
There is a general agreement that the  analogue/digital  ( A/D ) converter must be 
at least 10 bits to yield valuable spectral information.  

  8.1.2 
 When Should  NIR  Hyperspectral Imaging be Used in Food and 
Agricultural Products? 

 Today, NIR imaging is increasingly investigated for the analysis of food. Applica-
tions range from on - line quality monitoring to the spatially resolved evaluation of 
structural and biochemical composition of various products  [2] . The breadth of 
applications exploits both the broad wavelength range that is attributed to the NIR 
spectrometry and the facility and versatility with which applications can be devel-
oped, based on the simplicity of sampling. Although there are no rules that govern 

   
  Figure 8.1     Hyperspectral image of poultry; the third 
dimension is the spectral one.  Illustration courtesy of B. Park.   
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where instrumentation may be most benefi cial    –    that is, in the laboratory, at line 
or on - line    –    there has been a general trend to mount short - wavelength range instru-
ments on - line, but to keep the imaging systems accessing the longer wavelength 
range in the laboratory. Many reasons have led to this inclination, the most impor-
tant factors probably relating to cost and the type of information that is needed. 
This leads to two main types of use for NIR hyperspectral imagers: 

   •      As a laboratory - based analytical technique, NIR imaging is an extension of NIR 
spectrometry. It accesses the same chemical information, but in a spatially 
resolved multispectral parallel approach. Laboratory devices are generally aimed 
at developing knowledge on product composition and at routine quality control. 
This calls on two main advantages of NIR hyperspectral imaging: (i) the capabil-
ity of mapping chemical components; and (ii) the possibility of high - throughput 
analysis such as screening. In addition, NIR imaging enables acquisition with 
a small pixel size, and therefore can reduce considerably the limit of detection 
compared to that of traditional NIR spectrometry, as far as mixtures are dealt 
with. This opens very interesting paths in the detection of contaminants and 
small biochemical changes, as might be expected in  genetically modifi ed organ-
ism s ( GMO s).  

   •      As an on - line process monitoring technology, in the food plant NIR imaging 
appears more as an extension of vision and image analysis systems, when clas-
sical  red/green/blue  ( RGB ) vision systems fail. In - line devices are generally 
dedicated to detecting foreign bodies or anomalous areas (defects, etc.) which 
are not visible using RGB cameras.    

 Descriptions of these two  ‘ families ’  of NIR hyperspectral imaging usage are 
provided in the following sections, together with example applications that 
illustrate today ’ s state - of the art technologies and methodologies.   

  8.2 
 At the Laboratory Scale 

 Regardless of the fi nal location of the analytical tool, all of these methods have 
originated in the laboratory. Hence, in order to avoid repetition we focus the dis-
cussion here on chemical imaging using vibrational spectroscopic principles    –    that 
is, the spectral range encompassing the combination, fi rst, second and third over-
tone regions of the NIR spectrum. Beyond the third overtone, the spectral bands 
are broad and begin to overlap with fl uorescence and visible bands. The short 
wavelength range is further discussed in   Section  8.3 , which details the on - line 
applications of these systems. 

 Here, we provide examples of various paths of development leading to NIR 
imaging methods that have been described for the analysis of corn. Although these 
examples focus on a single commodity, the approaches are universal and provide 
a good overview of possibilities for the development of NIR chemical imaging 
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methods in food science. The basic steps involved in determining optimal sam-
pling, instrumentation and analytical parameters are presented, with particular 
emphasis placed on the practical aspects of the methods. Finally, we describe other 
areas, such as plant breeding and feed analysis, where laboratory NIR imaging 
systems are gaining, or already hold, important value in the food sector. 

  8.2.1 
 Factors to Consider in the Development of  NIR  Chemical Imaging Methods 

 The fi rst question that must be answered before any development work can start 
is the objective of the method. For simplicity, we focus on three common and 
important goals: (i) the detection of contamination; (ii) the evaluation of economic 
value (grading); and (iii) understanding the biochemical and physiological changes. 
Each objective involves a number of different requirements. For example, the 
detection of contamination probably requires good chemical specifi city, but also 
possibly a very large magnifi cation if the contaminant is present at the microscopic 
scale. Grading is at the opposite end of the scale; here, speed is of the essence, 
some chemical specifi city is needed, and a macroscale is often suffi cient. Research -
 type methods aimed at characterizing subtle differences go beyond contaminant 
detection and sampling schemes, and often involve oversampling both on the 
spectral and spatial axes to gain a maximum amount of knowledge, regardless of 
the time penalty. 

 Once the objective has been established, the sampling options are appraised. 
The fi eld of view required for the application, the type of measurement (transmis-
sion or diffuse refl ection), the type and intensity of the NIR source, requirements 
for depth of fi eld and spatial resolution must also be established. 

 The third step involves selecting the spectral range or bands that can access the 
desired information. As mentioned above, the width of the electromagnetic 
spectrum referred to as NIR is very large. For food applications, the reported NIR 
range expands somewhat beyond the traditional defi nition of the NIR, that is 
the 750 – 2500   nm range. The terms  ‘ NIR chemical imaging ’  or NIR vibrational 
spectroscopic imaging specifi cally imply that the image contrast originates from 
the molecular vibrational transitions, as opposed to visible color or fl uorescence, 
which originates from electronic transitions. Considering that NIR chemical 
imaging systems are perceived as better suited in laboratory settings and the 
lengthy discussion of shorter wavelength applications in the section discussing 
on - line application, the scope of this discussion is limited to NIR chemical imaging 
systems (i.e., 750 – 2500   nm). 

 Today, NIR spectroscopy is a staple in the food and agricultural analytical labora-
tory, and consequently tables of NIR bands arising from the chemical composition 
of foods are readily available (e.g., Ref.  [3] ). These may help to determine if a 
multispectral or hyperspectral imaging system suits the problem more economi-
cally and effi ciently. However, it is really the scope of the problem, or question, at 
hand that ultimately guides the selection of the system. A hyperspectral imaging 
system is, by defi nition, a better option in a laboratory setting because it allows 



access to the whole spectral range, providing the fl exibility to explore large spectral 
regions, bands and/or specifi c wavelengths for optimal classifi cation or quantifi ca-
tion (cf. Chapter  2 ). Chemical specifi city increases with wavelength, where the NIR 
bands arising from broad and weak overtone bands appear in the lower end of the 
range, while the sharper and more intense bands arising from combination bands 
typically show above 1800   nm. The  chemical specifi city  required for a particular 
application is thereby a fundamental criterion for the selection of appropriate 
instrumentation. 

 The fi nal step in the development of a method is to establish the requirements 
for speed versus the necessary specifi city. In short, a method may perform better 
in terms of specifi city if a broad spectral region is used in a comprehensive che-
mometric model, but the duration of data acquisition may not be suitable for the 
application. The opposite is also true, where a single -  or dual - wavelength measure-
ment may meet the ideal speed target, but fail in terms of specifi city. Various 
instrumental platforms are available on the market, and it is imperative that a 
balance between these parameters be achieved for a method to ever reach deploy-
ment. For laboratory - based methods, specifi city is often much more important 
than speed, reinforcing the need for a hyperspectral imaging system. If the instru-
ment is to be used for quality control, then speed should be considered in the 
development of the method. It is important to bear in mind that speed and speci-
fi city are not mutually exclusive; indeed, they can often both be achieved if the 
method is properly targeted to the question at hand.  

  8.2.2 
 The Many Interests of Corn from a  NIR  Imaging Perspective 

 Corn is a great example of a food product that has generated broad chemical 
imaging interest. Early in the history of industrial applications of NIR spectros-
copy, corn was placed in the NIR beam path to measure its moisture content  [4] . 
A number of reports have described the determination of various constituent 
concentrations using NIR spectroscopy (e.g., Refs  [4, 5] ). Although the availability 
of the chemical information was clearly understood in these early advances, it was 
also established that the physical characteristics of the kernel, the fact that only a 
portion of the kernel is analyzed and the dilution of spectral information from 
minor components in the spectrum originating from the bulk components, played 
a large role in the errors of predictions obtained. When approaching the problem 
with a chemical imaging system, it is possible to investigate the chemical composi-
tion at all spatial positions on the kernel surface, thereby increasing the capability 
to detect and measure minor components. Appropriate data processing and cali-
brations can be devised to account for the spectral changes due to physical factors, 
such as baseline offsets resulting from density differences. For example, Cogdill 
and colleagues  [6]  used a custom NIR imaging system based on silicon CCD 
camera and an LCTF to measure individual corn kernels in the spectral range 
750 – 1090   nm. The objective of these studies was to improve measurement 
accuracy by limiting the effect of sampling diffi culties experienced with NIR 
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spectroscopy of individual kernels, where the spectrum is only representative of a 
portion of the kernel  [7] . Placing the whole kernel in the fi eld of view should 
improve the results by eliminating the variability associated with the position of 
the probe on the kernel. Although this experiment utilized an imaging system for 
data acquisition, the data were reduced to a single spectrum per kernel for process-
ing. The  signal - to - noise ratio  ( SNR ) of the data, and the choices made in the data 
processing (especially discarding the spatial aspect of the data) limited the success 
of predicting moisture and oil content using this approach. Nevertheless, the 
authors foresaw interesting possibilities, and suggested that multiple models 
might be combined to predict constituent contents in the various regions of the 
kernel. This would also increase the intrinsic economic value of the results by 
expanding the method to measure the content of minor constituents, rather than 
limiting the focus on measurements of the major constituents. The results of these 
studies illustrate how an imaging approach differs from the traditional NIR spec-
troscopic measurement, and can greatly expand information that can be derived 
from the NIR spectra. 

 Another group approached the imaging of the whole corn kernel from a differ-
ent angle, optimizing the use of the imaging array by selecting a magnifi cation 
that allowed the simultaneous imaging of 25 kernels, while using suffi cient pixels 
per kernel to differentiate the sections of each one  [8] . Data acquisition was per-
formed on a MatrixNIR commercial NIR chemical imaging system (Spectral 
Dimensions Inc., Olney, MD, USA) equipped with an InGaAs camera and fi tted 
with optics providing a  ∼ 10    ×    10   cm fi eld of view. Diffuse refl ectance images were 
acquired in the spectral range 950 – 1700   nm. Data processing was adapted for the 
two objectives of the paper: average spectra per kernel were computed and used 
in the prediction of oil content, while germ - specifi c average spectra were utilized 
to predict oleic acid content. The germ region was determined by various means, 
including computer - determined on the basis of spectral features corresponding to 
physical and chemical aspects of the kernel, and by visual inspection of the image 
by a qualifi ed user. The root mean square error of cross - validation for the predic-
tion of oleic acid was better when the spectral features were used to identify the 
germ. While the prediction accuracy for oil content did not match  nuclear mag-
netic resonance  ( NMR ) results or its speed, it was suffi cient to allow sorting into 
high -  and low - oil kernels. More valuable information was derived from the predic-
tion of oleic acid because the results, although less accurate than achieved with 
the standard method, offered the distinctive advantage of being obtained nonde-
structively. Kernel orientation was reported as having a signifi cant impact on the 
predicting ability for oleic acid because this fatty acid is present in the germ. The 
difference was due to the depth of penetration of NIR radiation in a diffuse refl ec-
tance measurement. When kernels are imaged on the endosperm side, little or no 
germ may interact with the incident radiation, while some (or even all) of the germ 
is sampled when the kernel is presented germ - side up. The speed of data acquisi-
tion, which may be increased further by the selection of a limited number of 
wavelengths required for the calibration, led to the imaging of all 25 kernels on 
both sides becoming a viable solution for this method. 



 In the two studies, the imaging systems were used to acquire data that were 
later reduced to either whole - kernel or section - specifi c average spectra. While the 
advantages in terms of simplicity of processing are obvious, these approaches 
clearly discard a tremendous amount of information related to the spatial localiza-
tion of the chemical constituents and the corresponding heterogeneity of the 
individual spectra included in the image. In both cases, the objectives were to 
predict concentrations of specifi c components, or average values per kernel, both 
measurements being related to economic value and of special importance in plant 
breeding. Lewis and colleagues  [9]  presented a completely different approach to 
using NIR chemical imaging for accessing spatially resolved biochemical informa-
tion in the corn kernel by examining the kernel in three dimensions. The same 
instrument as used in the second study mentioned above, the MatrixNIR, was 
used to acquire NIR chemical images of a single corn kernel over the spectral 
range 1100 – 1750   nm by utilizing a fi eld of view of approximately 1    ×    0.75   cm. The 
kernel was fi rst imaged whole, after which a thin slice was shaved from the top 
and the kernel and it was imaged again; slices were then removed consecutively 
until the whole kernel had been imaged. Unsupervised data processing, namely 
 principal component analysis  ( PCA ; see Chapter  2 ), revealed signifi cant spectral 
differences in the various regions of the kernel that allowed the clear classifi cation 
of pixels as belonging to one of four specifi c structural elements of the kernel 
(Figure  8.2 ). Unlike traditional NIR imaging, this data set was volumetric in nature 
because the imaging array captured the two dimensions of the plane, and exposed 
sequential planes captured the third dimension. This analysis accesses completely 
novel information about the corn kernel (see also Chapter  7 ).   

   
  Figure 8.2     Three - dimensional NIR chemical imaging of a 
corn kernel. (a) False - color image based on the structures 
identifi ed in the NIR imaging data set.  Reprinted with 
permission from Ref.  [9] ;  ©  2007, John Wiley & Sons, 
Inc.; (b) NIR spectra extracted from selected structures 
highlighting the information content of the spectra.   
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 This example illustrates a research application of NIR chemical imaging. 
Although the sampling time was not extravagant at a total of 80   min, the destruc-
tive nature of the analysis makes it incompatible with quality assurance - type 
methods. Despite the relatively short data acquisition time, the analysis accessed 
a large spectral range (i.e., it provided much chemical information) and spatially 
sampled the whole kernel    –    two factors that are important for laboratory methods 
used in plant breeding programs, for example. It is important to note also that 
fairly simple information was accessed with the data processing scheme selected, 
and that a wealth of additional details is contained in the spectral hypercube and 
could be extracted from the same data set. 

 While the level of detail accessed in this sampling scheme is excessive for a 
large number of applications, the availability of this information is important as 
it allows the selection of optimal parameters for the design of less laborious 
sampling, which can provide specifi c information in a manner that is suited for 
routine use.  

  8.2.3 
 Can  NIR  Chemical Imaging Replace Traditional Wet Chemistry? 

 Some of the diffi culties experienced when developing spectroscopic techniques to 
replace traditional wet chemistry have related to the correlation of measurements, 
despite the intrinsic difference in their origin. Shenk and colleagues  [3]  discussed 
this issue in the context of NIR spectroscopy. For example, measurements of 
protein based on total nitrogen content are not directly equivalent to a spectro-
scopic approach that only probes the N − H bonds. Similarly, determining individ-
ual fatty acids from the fairly broad combination and even broader overtone bands 
found in the NIR region, is hardly related to the quantifi cation of species isolated 
on the basis on chain length and level of saturation. 

 One of the most attractive roles of NIR chemical imaging is to use the chemical 
information, and its distribution in the image, to assess abundance as a primary 
method, rather than attempting to correlate all pixel spectra with a single value 
obtained using a traditional method. In order to mimic an average abundance 
measurement, the image must almost inevitably be averaged, thereby losing the 
spatial information. In a primary method, the presence and relative abundance of 
a species can be determined at every pixel of the image, and the total abundance 
estimation then relates to localized concentrations in relation to the volume occu-
pied by a species. The classifi cation of NIR spectra contained in NIR chemical 
images is a widespread approach in the determination of abundance and localiza-
tion of ingredients in pharmaceutical products  [10] . The same approach could be 
taken with food samples, where reference libraries for various chemical moieties 
of interest could be built from pure materials such as specifi c fatty acids or types of 
starch, and their localized abundance evaluated in a single plane or 3 - D data set. 

 The three examples described above are clearly distinct in terms of the level of 
sophistication of image data acquisition, data processing and interpretation. Nev-
ertheless, they all use spatially resolved NIR spectra for the identifi cation of chemi-



cal species and their quantifi cation, with or without relying on a reference method. 
They each represent a very different utilization of the technology, and all require 
some variations of basic instrumental characteristics and fl exibility. For example, 
the fi rst two applications imaged whole kernels; these measurements require a 
suffi cient depth of fi eld for all parts of the kernel surface to be in focus. However, 
the third example involved imaging fl at surfaces created through careful sample 
preparation, and does not require a large depth of fi eld. It does, however, require 
a precise sample positioning, although this can easily be overcome by using image 
correction routines (see Chapter  2 ). Moreover, a fast acquisition of a fairly large 
fi eld of view of each plane with a reasonably small pixel size will keep the experi-
ment within a time frame that avoids changes in the sample itself. This particular 
aspect of NIR imaging is not a concern in inert or stable products, such as many 
pharmaceutical ingredients and polymers, but it is important in food science, 
where samples may spoil or their chemical composition may change as a function 
of time over a period as short as a few hours.  

  8.2.4 
 Interest of  NIR  Chemical Imaging in Plant Breeding and  GMO  s  

 Plant breeding is a good candidate fi eld for the development of analytical methods 
utilizing NIR chemical imaging, because it is a chemical analysis performed with 
a  two - dimensional  ( 2 - D ) spatial component. The products of genetic modifi cations 
are, by design, biochemical and/or physical changes in the plant. Hence, if the 
magnitude of the changes at the biochemical level matches the sensitivity of 
the system used for image acquisition, it is reasonable to expect that the results 
of the genetic modifi cations will be visible in the NIR image. The sensitivity, or 
limit of detection, depends on sample preparation, the acquisition procedure, and 
on the processing scheme applied to the data. 

 The instrument must provide a pixel size where the acquired spectrum is not 
averaging too - large a region. Of course, the pixel size required to avoid the dilution 
problem must be strictly related to the sample and the distribution of the bio-
chemical changes. There is a greater probability of detecting the difference brought 
on by breeding if the biochemical modifi cations are localized. This means, on 
occasion, that a microscopic scale is required, while other sample types perform 
well with a macroscopic approach enabling a higher throughput. The choice of 
instrument must fi t the question at hand, with the fi elds of view available and 
depth of fi eld receiving special attention. For example, applications aimed at 
analyzing intact samples require a large depth of fi eld to accommodate the 
irregular surface, and a reasonably large fi eld of view to image a whole sample or 
multiple units at once. When the changes are expected to be detectable only in 
an experiment performed at the microscopic scale (with a magnifi cation less than 
ca. 50    µ m per pixel), the samples will almost inevitably need to be prepared in 
a manner that creates a fl at surface to image. 

 Smail and colleagues  [11]  described the analysis of intact seeds using a Matrix -
 NIR, a focal plane array - based system operating in the spectral range 900 – 1700   nm, 
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to detect early germination in hard winter wheat varieties. Since the kernels were 
used whole and the objective was to develop a method for screening large numbers 
of seeds, the fi eld of view was set to include 24 or 30 kernels. The authors estimated 
that 15 million spectra could be acquired in one day using this approach. Each 
kernel spans multiple pixels in this sampling scheme, representing well over 4000 
kernels per day. In this report, NIR chemical imaging was successful at identifying 
kernels undergoing early sprouting, with a sensitivity greater than visual inspec-
tion or other tests such as the destructive alpha amylase and viscosity monitoring. 
The depth of penetration of IR radiation in this wavelength range produces a 
chemical image with features from both the outside and beneath the surface, thus 
enabling the detection of underlying sprouting structures. 

 Figure  8.3  illustrates the impact of the fi eld of view selected to acquire different 
types of information on a particular sample. A large fi eld of view provides a single 
image containing multiple wheat kernels (Figure  8.3 a); as each pixel spectrum is 
a measure of a larger area of the sample (125    ×    125    µ m 2  in this case), it is a good 
approach to investigate differences occurring on a larger scale. Figure  8.3 b shows 
information obtained with a pixel magnifi cation of about 40    µ m, where the various 

   
  Figure 8.3     NIR chemical images of wheat kernels acquired at 
magnifi cations of: (a) 100    µ m per pixel; (b) 36    µ m per pixel; 
(c) 8.7    µ m per pixel; (d) Second derivative spectra extracted 
from areas of image (c).  
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segments of the kernel are better defi ned than on the left. Finally, the image in 
Figure  8.3 c represents a high - magnifi cation acquisition, where a pixel magnifi ca-
tion causing oversampling on the spatial axis (10    µ m per pixel)  [12] . The greater 
detail obtained with this approach provides access to the small - scale features of 
the kernel. The individual NIR spectra extracted from the image acquired at very 
high magnifi cation (Figure  8.3 d) illustrate the chemical differences that are 
measured.   

 Today, GMOs represent an example of biochemical modifi cations that may be 
measured using NIR chemical imaging. A study has been conducted to determine 
the suitability of this physical test for providing chemical information to detect 
GMO grains. The investigation is being conducted within the framework of 
the Co - Extra FP6 project (Nr 007158), studying Genetically Modifi ed and non -
 Genetically Modifi ed supply chains, their coexistence and traceability. The prelimi-
nary results have shown that GM soy and barley can indeed be differentiated 
from traditional grain by using NIR chemical imaging, using PCA scores of 
NIR (900 – 1700   nm) chemical imaging to detect differences between varieties. 
The GM and non - GM groups are fully separated in the training set, despite a 
wide variability of the spectra, a statistical challenge that is often faced in the 
analysis of biological samples.  

  8.2.5 
 Interest of  NIR  Chemical Imaging in Animal Feed 

 Recent problems associated with bovine spongiform encephalopathy and its appar-
ent predecessor, scrapie, have brought about new demands for the analysis of 
animal feed. The challenges of analyzing feed are many - fold: the composition is 
variable, the food comes in various shapes and size ranges, and the components 
that are now considered contaminants are not biochemically very different from 
what is acceptable. Although it is expected that the level of distinction will in time 
need to reach the differentiation of species, this is not the case at present, when 
to discern mammalian from bird and fi sh is suffi cient. Nevertheless, the demands 
on the methods are greater than expected for routine methods. Indeed, the level 
of detection required by current regulations in Europe is 1   g   kg  – 1  (0.1%), and per-
formed at a speed that would enable the testing of large quantities. Hence, a variety 
of methodologies is being developed in parallel  [13] , among which NIR chemical 
imaging has shown much promise. 

 NIR microscopic mapping    –    that is, acquiring a single point at a time and moving 
this target point from one position on the sample to another    –    was investigated for 
this purpose. Although microscopy offers the type of spatial resolution required 
to detect low - level contaminants, the time required to collect data from all spatial 
positions in a sample make it impracticable for routine use. The use of an imaging 
system not only reduces the amount of time for data acquisition (cf. Chapter  1 ), 
but also has the benefi t that the spectra are acquired from all neighboring pixels, 
which limits the risk of missing some contaminant particles by only performing 
 ‘ spot checks ’  on a sample. These analyses have been described in detail  [14, 15] , 
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and are currently considered to show great promise, notably when a complemen-
tary data processing system is applied.  

  8.2.6 
 A Quick Look at Other Products 

 The examples discussed above clearly illustrate the breadth of the problems that 
can be tackled with NIR chemical imaging, and the innovative approaches leading 
to their solution. This sections is concluded with several examples demonstrating 
the fl exibility of NIR chemical imaging to tackle samples of various shapes, sizes 
and chemical composition. Figure  8.4  shows a false - color image of a muesli cereal 
obtained by segmenting the image on the basis of spectral features that are well 
known for their use in the NIR spectroscopic analysis of food. The lipids, proteins 
and high - moisture content ingredients of the cereal can be easily distinguished 
using the NIR spectra, which might enable the use of these features to calculate 
ratios of ingredients, or to evaluate the integrity of each type of ingredient. An 
example might be the segments of a peanut showing a weak oil signature that is 
indicative of a deterioration problem. A two - step segmentation procedure could, 
for example, fi rst identify the ingredient and then evaluate its quality. This image 
cube, containing the full spectra at each pixel, was acquired on a Sapphire chemical 
imaging system (Malvern Instruments Ltd, UK) in less than 3   min. A rapid method 
utilizing only the three wavelengths used to produce the image and two reference 
points would provide the same discrimination with an acquisition time of less 
than 10   s.    

   
  Figure 8.4     False - color image of muesli cereal based on the 
spectral intensity at three wavelengths in the NIR. 
Red   =   1720   nm (C − H fi rst overtone); green   =   1980   nm (OH 
combination); blue   =   2150   nm (N − H   +   C − H combinations).  
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  8.2.7 
 Conclusion: Laboratory - Based  NIR  Imaging 

 These many examples of applications of NIR chemical imaging in the laboratory 
environment and the various aspects of sampling, data acquisition and processing, 
must be borne in mind when approaching a new problem. With its chemical 
specifi city, fl exibility in spectral data selection, sample presentation options, fi elds -
 of - view and advanced mathematical processing now more user - friendly than ever, 
there is no doubt that NIR chemical imaging represents an invaluable tool for the 
analysis of food. Yet, many areas remain untouched, and there is much room for 
creative thought in the use of this technology to solve old and new problems alike. 
An additional advantage of this methodology is that it is amenable to both at - line 
and on - line measurements, under a variety of circumstances.   

  8.3 
 At the Industrial Scale 

  8.3.1 
 Introduction 

  8.3.1.1   The Failure of  RGB  Systems in Food Quality Control 
 In the food industry, numerous on - line controls are still made by human vision, 
especially for sorting bad - looking products or foreign bodies. This generates many 
problems: for example, human operators can miss defective items, the work is 
laborious and tedious, and the speed of the line is limited by the number of opera-
tors in charge of monitoring. Moreover, while visual sorting can be diffi cult for 
humans, cameras can perform the task easily and image analysis provide very 
accurate results. For example, the machine - vision sorting of size (diameter, length, 
etc.) or shape (roundness) can provide a much better performance than would be 
obtained with human vision. It is for this reason that, for many years, vision 
systems have attracted great attention for use in the food industry. 

 Despite all these advantages, vision systems are still relatively limited in the food 
industry, having been developed primarily for packaging operations because it is 
easier to handle manufactured items than very variable, highly heterogeneous 
biological products. The main problems associated with biological food products, 
when submitted to processing operations, is that they exist in a wide variety of 
states (liquid, solid, fragmented), shapes, colors and chemical compositions. They 
can also vary drastically with regards to origin, and even between the start and 
fi nish of the season! Food quality monitoring also encounters other issues such 
as chemical composition measurement, foreign body detection, nonconformity 
detection and grading. 

 Although technically and economically feasible artifi cial vision systems have 
been developed for the food industry, based on classic RGB video cameras, the 
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vision systems too often fail to detect defects or contaminants, for two main 
reasons: 

   •      The colors of the objects to be discriminated are too similar; the three color com-
ponents (red/green/blue or hue intensity saturation coordinates) are not suf-
fi ciently discriminative to identify differences between an object of interest and 
any surrounding objects. This problem is enhanced by a wide variability in color 
typical of biological products: variance of the colorimetric components inside 
an object may also be greater than the variance between this object and those 
to be removed. In that case, the solution is to seek other information, either in 
the visible spectrum or in the NIR spectrum. The NIR spectrum can provide 
information regarding the chemical composition and internal physical struc-
ture, and can be used to separate same - color objects of different composition.  

   •      The scenes to be analyzed are too complex. Except for fl at products (e.g., meat 
slices, fi sh, biscuits), the third dimension of food products may be relatively odd, 
with concave areas leading to shadowing and color changes. This is typically the 
case for the calyx cavity in fruits, which is generally  ‘ seen ’  as a defect by classical 
RGB vision systems. Similar problems of misclassifi cation due to concavities 
occur with chicken carcasses. The use of NIR imaging will allows these effects 
of shadowing and of depth of fi eld to be reduced.    

 Consequently, within an industrial environment, hyperspectral NIR imaging 
has been used primarily to improve object detection previously carried out using 
RGB cameras and optical systems. Yet, the many other advantages of these systems 
make them highly suited to not only on - line analysis but also high - speed laboratory 
analyses for product grading.  

  8.3.1.2   How Did We Come to On - Line  NIR  Imaging? 
 The main driver for the introduction of NIR wavelengths into vision systems for 
on - line sorting has clearly been the dead - end of certain applications of classical 
RGB cameras. During the late 1980s, Cemagref, in Montpellier, France, built a 
vision system in which three CCD cameras could be equipped with three different 
fi lters. When equipped with only a red, a green and a NIR fi lter, this system was 
successful at differentiating between the stem - end/calyx and bruises on apples 
 [16] . The hypothesis was that a NIR image could help to detect an object with a 
water content or an internal structure that differed from its surroundings and, 
based on this hypothesis, many other applications have been investigated. 

 An example of this occurred during the 1990s, when a NIR imager was devel-
oped for canning companies that could detect stone pieces in peach halves. In the 
canning plant, when the peaches are pitted automatically the stone may be broken 
by the saw of the stoner; a sorting step is then required to remove the residual 
stone pieces. The RGB cameras proved to be totally ineffective for this purpose as 
the stone contaminants were located in a concave area, generating shadows. When 
the task was performed manually it proved to be especially tedious as the colors 
of the stone and inner fl esh were very similar. However, as the water content of 
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the stone differed signifi cantly from that of the fl esh, Cemagref proposed the use 
of a basic NIR - imaging system based on the water absorption band. The fl esh, 
with a high water content, absorbs NIR radiation, whereas the stone pieces do not, 
and hence a difference in the light colors of the image was apparent (Figure  8.5 ). 
Initially, the Cemagref device used an InGaAs camera (900 – 1700   nm; Sensors 
Unlimited, NJ, USA), and later a linear InGaAs array (Model G8160 - 256S, module 
C8161; Hamamatsu, Japan), the prototype of which was tested on - line. Custom 
image analysis software was subsequently developed to automatically detect the 
white (stone) spots of minimal area.   

 The same very basic one - band InGaAs camera system was also used in the 
ASTEQ project  [17]  to detect bruises on bicolored Jonnagold apples (Figure  8.6 ). 

   
  Figure 8.5     Detection of pieces of stone in peach halves 
(canning industry). (a) Visual image of the peach half; (b) NIR 
image of the same peach; the stone pieces are located inside 
the rectangle (white spots in the NIR image).  Illustration 
courtesy of Gorretta, Cemagref.   

   
  Figure 8.6     Detection of bruises on a Jonnagold apple. 
(a) Color image; (b) NIR image at 930   nm; (c) NIR image at 
1200   nm revealing the two bruises.  Illustration courtesy 
of C. Guizard, Cemagref.   
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When bruise causes damage to the internal structure of the apple fl esh, the cells 
are destroyed and the cytoplasm invades the intercellular space; this leads to a 
change in diffusion and absorption coeffi cients, creating easily detected black 
spots.   

 Another, easily detected, example of structural changes in fruit tissue is that of 
 bitter pit , which causes necrosis of the subsurface tissues in apples; this in turn 
creates a localized dehydration such that the bitter pit spot appears white when 
using a very simple, one - band (1200   nm) setting (Figure  8.7 ).   

 At the same time, during the 1990s, the manufacturers of sorting machines for 
grains, berries and small fruits began to include NIR lighting/imaging as a key 
for detecting foreign bodies and unwholesome products in high - speed sorting 
processes. For this, NIR lasers are used to illuminate the objects in a fall or on a 
sorting belt, while CCD cameras capture the images. The way in which the NIR 
light is scattered provides information concerning the presence of foreign bodies; 
for example, a lower scattering indicates problems such as foreign bodies or black 
spot. 

 In addition to differences in scattering, NIR lighting/imaging also allows advan-
tage to be taken of more subtle chemical differences between objects, although in 
this case more sophisticated systems based on multispectral or hyperspectral 
imaging are required.  

  8.3.1.3   When Is  NIR  Imaging Worth Using in On - Line Settings? 
 Among the above - described advantages of NIR hyperspectral imaging in on - line 
settings, we can include the following: 

   •      NIR imaging can be used to discriminate between same - color objects with dif-
ferent chemical compositions; among the properties of NIR this is the most 
exploited in on - line settings, to sort objects of diverse composition.  

   
  Figure 8.7     Bitter pit on a Golden Delicious apple. (a) RGB 
image; (b) NIR image.  Illustration courtesy of C. Guizard, 
Cemagref.   
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   •      NIR hyperspectral imaging can provide  transmission images  of commodities, 
due to the smaller absorption and diffusion coeffi cients in the NIR range (e.g., 
in apples  [18] ). With visible light, transmission is only possible through small 
and low - absorbing tissues, but with NIR light transmission can be carried out 
on thicker samples, such as an entire fruit. This allows the detection of internal 
defects, provided that they are suffi ciently large.  

   •      NIR imaging is capable of mapping areas of various chemical components in 
one sample; this property is largely used in laboratory studies, notably in the 
pharmaceutical industry, although examples are also found in the food industry, 
occasionally on - line.  

   •      Even when used in refl ection mode, NIR imaging will reveal much more infor-
mation about the internal structure of products than will visible light. This is 
due to the fact that the diffusion coeffi cient is lower in NIR, and that the light is 
not altered by pigments at the surface of the commodity. This property is utilized 
to determine the physical traits of a sample, or to reveal beneath - skin defects.  

   •      An appropriate combined use of molecular chemical information (NIR) and 
morphological measurements in macroscopic images (e.g., shape, optical 
texture, size) can enable the analysis of further complicated systems. This is 
particularly relevant when objects composed of different color - same compart-
ments are being processed (e.g., meat slices), or when the product is composed 
of heterogeneous pieces within a bulk, such as animal feed.    

 Previously, these properties of NIR have been exploited not only by research 
groups but also by industrial teams to create new quality control systems for food 
processing and production. In the following sections, we describe a variety of 
examples of NIR imaging in the food industry, classifi ed according to the indus-
trial issues that they address.   

  8.3.2 
 External Contamination Detection by  NIR  Imaging 

 The main quality issue within the food industry is most defi nitely that of  safety     –
    keeping foods free from contamination and avoiding food - borne illness. The latter 
situation must be prevented by ensuring that processing is correctly carried out 
to avoid microbial development; these include respecting the time – temperature 
profi les during thermal treatment, and/or the hermetical sealing of cans or jars. 
However, food contamination also includes both macroscopic physical contamina-
tion (e.g., large foreign bodies) and microscopic contamination by small foreign 
bodies, microbes or hazardous chemicals (e.g., pesticide residues). Fortunately, 
food contamination can be detected by using NIR imaging much more accurately 
than when using RGB imaging and/or human sorting. 

  8.3.2.1   Foreign Bodies 
  ‘ Surface ’  foreign bodies are, as their name indicates, present on the outer surface 
of the product, whereas embedded foreign bodies are  ‘ hidden ’  inside the food 
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product; as a consequence, surface foreign bodies are much easier to detect. 
Foreign bodies may be either  intrinsic , such as bone in an animal food product or 
stem or leaves in a vegetable food product, or  extrinsic , such as metal, glass or 
insects. Foreign bodies may have a color which is similar to that of the commodity 
yet differ in its chemical composition and internal structure; in such a case NIR 
imaging will be more effi cient than RGB imaging for foreign body detection. 

 Following the initial forays into foreign body detection using one - band systems 
described above, more sophisticated imaging systems based on multispectral 
imaging have now been proposed for this purpose. For example, BEST (Heverlee, 
Belgium) has proposed the use of sorters equipped with up to 12 lasers (some of 
which are in the NIR range) for sorting foreign bodies and unwholesome products 
in the bulk of small fruits, vegetables, grains, beans and tobacco leaves. For this, 
laser lines are projected consecutively onto the stream of objects and NIR multi-
spectral images created by use of CCD cameras (Figure  8.8 ). The objects are sorted 
based on differences in scattering and in the absorbance spectrum. In the tobacco 
industry, for instance, the most frequently found foreign bodies include polypro-
pylene strings, pieces of rubber and other plastic materials that are very similar to 
tobacco in color, but very different chemically.   

 Another solution to the problem, based on multispectral imaging, has been 
developed by Japan Tobacco (Tokyo, Japan)  [19] , by using three infrared bands in 
combination with an RGB camera. With this system, 78% of the targeted foreign 

   
  Figure 8.8     Sorting of tobacco leaves using laser lighting and 
CCD cameras for creating multispectral images.  Illustration 
courtesy of BEST.   
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materials not recognized by the RGB system are correctly identifi ed by the com-
bined system, which is reported to provide a more than 98% recognition (based 
on weight) of foreign bodies. 

 The foreign body issue can be extended to that of small food product streams 
contaminated by abnormal individual units. For example, in grain streams it is 
necessary to detect any contamination by abnormal kernels and to remove these 
in order to maintain the level of contamination within regulatory limits. In par-
ticular, mold contamination is of great concern in the grain industry. As an 
example,  Fusarium  head blight (also called  ‘ scab ’ ) produces mycotoxins (deoxyni-
valenol, DON) that become concentrated in (but are not limited to) the infected 
kernel. The  Food and Drug Administration  ( FDA ) specifi es that the DON content 
of fi nished wheat products destined for human consumption should not exceed 
1   ppm. Moreover, the monetary value of wheat may be reduced by 40% (or even 
more) if only 5% of the kernels are infected. 

 Currently, several groups are investigating the use of a visible - NIR hyperspectral 
imaging system to detect scab - damaged grains. For this, Delwiche and Kim  [20]  
used a line - by - line hyperspectral camera composed of a ImSpector V9 monochro-
mator and a 16 - bit CCD camera (Specim, Oulu, Finland) in the 425 – 860   nm range 
to view wheat kernels positioned, crease - side down, in eight rows of eight kernels 
(four infected, four wholesome). The spatial resolution was 0.23   mm per pixel, and 
for each kernel a spectrum was computed by averaging the refl ectance of all pixels; 
the kernels were then classifi ed with regards to this spectrum. The misclassifi ca-
tion error ranged from 2 to 17%, depending on the wheat variety. Polder  et al.   [21]  
studied the same problem, but worked in transmission mode and with two types 
of hyperspectral imager: one in the 400 – 900   nm (Vis - NIR) range (ImSpector 
V9   +   12 bit CCD camera), and one in the 900 – 1700   nm NIR range (ImSpector 
n17   +   8 bits InGaAs camera) (both from Specim). In both cases, preparing the 
transmission images would cause the sensor to be saturated at a place where there 
was no object, and to avoid this two strategies were employed. In the Vis - NIR 
range, polarized fi lters were used to block direct lighting from the source. However, 
in the NIR range the source was covered by a pinhole, on which the kernel was 
placed. The light was then scattered by the kernel and the image recoded. In both 
cases, imaging was necessary because the kernel presented saturated and con-
versely black areas which were removed by image analysis, but which would have 
biased a single spectrum. The conclusion of the study was that the NIR range was 
better suited than the Vis - NIR for detecting  Fusarium  in whole kernels, but that 
the set - up should be improved by incorporating NIR - sensitive polarization fi lters 
and using a higher dynamic range (12 - bit) InGaAs camera.  

  8.3.2.2   Surface Liquid Contaminations 
 Contaminants include not only foreign bodies but also liquids or slurries that may 
be splashed onto the food products and create spots. For example, fecal contamina-
tion has caused food - borne diseases due to  Escherichia coli , which in turn led to a 
thorough investigation of both apples and poultry. The fi rst investigations into 
hyperspectral imaging as applied to fecal contamination were started at the USDA/
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ARS Beltsville research center by Y. - R. Chen, R. Lu and B. Park  [22] , and later still 
by the teams of both Park and Lawrence at USDA Athens/GA, while Beltsville 
focused more on surface contaminants on apples. 

 The primary recommendation of the US FDA, to avoid cross - contamination in 
the washing pool of apples, is to remove any fruit which is contaminated with 
feces. Consequently, the research teams at the USDA Agricultural Research 
Service in Beltsville have been investigating the use of a NIR imager to detect cattle 
manure on apples. These studies were carried out using a home - made, line - by - line 
imaging system (known as the  ‘ ISL imager ’ ) that comprised a PGP spectrograph 
imager (Specim) in the 350 – 950   nm range  [22] . The aim was to use a hyperspectral 
system to identify optimal spectral bands for use in a multispectral detection 
scheme. First, the 450 – 850   nm spectral range was selected for its high SNR  [23] . 
A PCA was then carried out that showed the most suitable wavelength bands to 
be the longest, suggesting that it was worthwhile examining wavelengths above 
850   nm. In a second study  [24] , the investigated range was extended to 950   nm and 
the sensitivity to contaminant concentration evaluated. The average spectra were 
calculated in three types of  regions of interest  ( ROI ): uncontaminated, slightly, 
and importantly litter - contaminated apples. Whichever the apple variety or the 
skin color, the average refl ectance intensities were seen to decrease from the 
uncontaminated to the importantly litter - contaminated apples. It was concluded 
that the 675 – 950   nm spectral range was best for developing a variety - stable calibra-
tion, thus highlighting the strength of NIR imaging in comparison to color 
imaging. In order to transfer the system on - line, a low - cost, dual - band system 
based on the 725   nm/811   nm band ratio was investigated. As these wavelengths 
are insensitive to the absorption from the pigments, the multispectral imaging 
system could potentially be used regardless of the cultivar. However, this system 
was shown to be unsatisfactory for detecting thin litter contamination on apples. 
Other spectral techniques, such as fl uorescence imaging, were also investigated 
with the aim of overcoming this problem. 

 Poultry provides another, much more complex, example of litter - contaminated 
food product. The complexity is generated both by the odd shape of poultry car-
casses, with several concave shaded areas (under the wings and the leg folds), by 
the heterogeneity of the skin color due to the relative transparency of the chicken 
skin, and by the various causes of safety hazards in chicken: here, not only litter 
contamination must be detected, but also cadaver, septicemia and tumor problems 
among others. 

 In Beltsville, several studies followed in quick succession, each based on the ISL 
hyperspectral imager with the aim of differentiating wholesome carcasses from 
cadaver, septicemia and tumor carcasses. In a preliminary study  [22] , the system 
was calibrated spectrally and tested on four classes of chicken carcass to determine 
the best discriminating spectral ranges; for this, 650 – 900   nm was selected based 
on qualitative observations. In a later study  [25] , a dual - wavelength camera was 
developed and tested. 

 The Athens hyperspectral system was similar to that produced by the Beltsville 
group, being composed of an Imspector PGP spectrograph and a CCD camera. 
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The system functioned in the 400 – 900   nm range, with a nominal resolution of 
2.5   nm. The aim here was to defi ne the specifi cations for a multispectral system 
based on a few wavelengths for a future on - line set - up in order to detect cecal, 
duodenal and colonic feces on wholesome chicken skin. In an initial study  [26] , 
the wavelength range of interest was investigated using a classical visible - NIR 
spectral analysis of the various objects to discriminate. Four wavelengths were 
extracted from the analysis of the loadings, namely 434, 517, 565 and 628   nm. 
(Note: in the following description, the hyperspectral image analysis relates only 
to these four spectral planes.) The shadows were removed by making ratio images, 
and the best performances were obtained with the 565   nm/517   nm ratio images 
(Figure  8.9 ). Here, not only were all of the contaminants revealed (including those 
hidden in the wing shadows), but blood clots    –    which are not actually contami-
nants    –    were also detected and correctly classifi ed as  ‘ wholesome ’ . In a later study 
 [27] , the hyperspectral image was used directly to determine the most signifi cant 
wavelengths. ROIs were chosen at different locations representing various con-
taminations and various skin conditions (e.g., wings, thigh, breast). The average 
refl ectance spectrum of each ROI was used for wavelength selection. The results 
of the study confi rmed that the two - band ratio 565/517 was best suited; the predic-
tion accuracy of surface contaminants was 96.2% and the number of false positives 
the lowest. A broad patent application has been fi led covering a wide range of 
poultry and meat products  [28] ; it is planned to transfer this system to the poultry 
industry, to operate at 140 birds per minute, or more.     

  8.3.3 
 Surface and Subsurface Nonconformities 

 Whereas contamination corresponds to the addition of matter which is very dif-
ferent from the surface under investigation, other defects can be generated by 

   
  Figure 8.9     The utilization of multispectral machine vision to 
detect fecal contamination on poultry carcasses. (a) RGB 
image; (b) 565   nm/517   nm image ratio, in which the fecal 
contaminants are clearly highlighted.  Illustration courtesy of 
USDA - ARS, Athens/GA, USA.   
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changes in the surface or subsurface optical properties of the product. In this 
respect, RGB cameras are generally effi cient when the change occurs on a homo-
geneous surface, and is suffi ciently contrasted with the background color. In all 
other cases, hyperspectral (and multispectral) imaging represents the only alterna-
tive for detecting defects. 

 Hyperspectral imaging is worthy of use for detecting two types of defect that are 
diffi cult to identify when using RGB cameras: 

   •      Actual defects:   that is, defects that would be recognized by a thorough human 
inspection, such as bruises and bitter pit; these are generally characterized not 
only by a change in the spectral absorption, but also mainly by a change in the 
light scattering due to water exchanges.  

   •      Potential defects:   that is, the  ‘ defects ’  that are not yet detectable by human eye 
but which will turn into actual defects during processing; the spectral changes 
are small and are not accompanied by light scattering changes. These defects 
often relate to chilling injuries or to latent greening. In addition, hyperspectral 
imaging is used to differentiate between defects and shaded areas such as 
calyx/stem ends.    

  8.3.3.1   Human - Detectable Defects 
  ‘ Actual defects ’  such as bruises or bitter pit encounter scattering coeffi cient 
changes, due to water movements in the tissues. As shown in Section  8.3.1  
(see also Figures  8.6  and  8.7 ), these types of defect (bruise, bitter pit, necrosis) 
are relatively easily detected, with several research groups having successfully 
tackled the problem. 

 As an example, Xing and De Baerdemaeker  [29]  used a custom - built hyper-
spectral imager based on an ImSpector V10 imaging spectrograph (Specim), and 
proposed a two - step procedure for identifying bruises. First, the stem and calyx 
ends are identifi ed by analyzing the general refl ectance of the fruit (this is the fi rst 
score image). Second, bruises are identifi ed by searching indentations in the ring 
shape of the refl ectance level lines. The classifi cation levels obtained were as high 
as 85% for nonbruised apples, 77% for bruised apples, and 98% for the end - calyx 
group. The errors were the misclassifi cation of bruised apples as stem - end/calyx 
(2.5%) and misclassifi cation of stem - end when the latter was too close to the edge 
of the image. In this example, fi nally only six wavelengths (571, 608, 671, 709, 798, 
867   nm) were deemed necessary for a successful discrimination. 

 Both, Mehl  et al.   [30]  and Kleynen  et al.   [31]  attempted to detect various defects 
on apples, including contaminations. Mehl  et al.   [30]  used the ISL hyperspectral 
imaging system described above to detect defects ranging from rot to bruises, fl y-
specks, scabs, molds, black pox and other soil or fungal contaminations. The group 
showed that these defects could all be detected using either PCA applied to images 
acquired in the 682 – 900   nm range, or by a second - difference asymmetric method 
which used only three wavelengths (685, 722, 869   nm). However they did not deal 
with the issue of stem - end/calyx discrimination from defects. Kleynen  et al.   [31]  
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used a four - band multispectral system (Multispec Agro - imager; Optical Insight, 
Sante Fe, NM, USA) with fi lters at 450, 500, 750 and 800   nm to detect defects such 
as scald, hail damage, bruises, russets, scar tissues, frost damage and rot. The NIR 
bands were seen to be better suited than the RGB bands for detecting subsurface 
defects, based on the higher penetration power, whereas 450   nm was effi cient 
enough to detect slight surface defects such as russet. The stem - end and calyx 
areas were removed by applying a template with a 90% recognition rate. In order 
to cope with the problem of stem end/calyx detection, Cheng  [32]  coupled a NIR 
monochromatic camera (700   nm) with a MIR camera (7.5 – 13    µ m), because this 
last range was not sensitive to bruises but was affected by refl ectance changes due 
to cavities. 

 Bruises were also investigated on other commodities such as tomatoes  [33]  and 
pickling cucumbers  [34] . In the latter study  [34] , the interesting fact was that a 
longer - wavelength imager was used (900 – 1700   nm range); this was composed of 
an imaging spectrograph (ImSpector N17E; Specim) and an InGaAs camera 
(Model C4880 - 21; Hamamatsu); the greatest difference between safe and bruised 
tissues was observed in the 950 – 1350   nm range. 

 Another defect, which is more diffi cult to detect than bruises, is bitter pit; this 
appears as a subsurface necrosis of apple tissues, as spots of 2 – 5   mm diameter. 
Bitter pit appears as white spots in NIR images, as do old bruises showing dehy-
dration (see Figure  8.7 ). 

 Nicola ï   et al.   [35]  used an InGasAs camera (Sensors Unlimited) coupled with an 
Imspector spectrograph (Specim) to investigate apples translating under the 
camera. These authors showed a good separation between bitter pit pixels and 
wholesome pixels, even with only two latent variables in the PLS. It was concluded 
that, rather than spectral information, the total refl ectance in the 900 – 1700   nm 
region was probably suffi cient for detecting bitter pit. This was in full accordance 
with our own results (as shown in Figure  8.8 ).  

  8.3.3.2   Potential Defects: Chilling Injuries, Potential Greening Area 
  ‘ Potential ’  defects are defects too slight to be detected by eye, but which may 
host chemical, and therefore spectral, changes. For example, chilling injuries 
are diffi cult to detect because the symptoms generally develop after the product 
has been placed in a warmer environment. On citrus, Menesatti  et al.   [36]  used 
a 400 – 970   nm hyperspectral camera (Imspector v10   +   Teli CCD camera) in 
refl ectance mode to detect chilling injuries, 14 days before they were revealed 
visually; the detection was based on refl ectance levels and refl ectance ratios 
(610/680, 610/750 and 680/750   nm). When studying cucumbers, Cheng  [32]  
used the ISL imager (450 – 950   nm) to show that cucumbers with severe and 
moderate chilling injury had a greater absorbance than wholesome fruit, above 
700   nm. A performance rate of about 90% was achieved, and with a good robust-
ness with regards to noise. In French fries, Noordam  et al.   [37]  were able to 
detect latent greening defects that were invisible to the human eye or to a RGB 
camera by using a 430 – 900   nm hyperspectral camera composed of a spectro-
graph (ImSpectorV9; Specim) combined with a monochrome camera (model 
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PMI 1400EC; QImaging, Burnaby, Canada) and a support vector machine clas-
sifi er (see Chapter  2 ). 

 In the applications described above (Sections  8.3.2  and  8.3.3 ), the contaminants 
were located on the surface or subsurface of the food product, or as separate bodies 
in a stream of other objects. Detection was mainly carried out on the basis of 
spectral absorption properties. Even more challenging is the detection of internal 
foreign bodies.   

  8.3.4 
 Detection of Internal Defects by Candling 

 The hyperspectral imaging of internal defects is based on a transmittance mea-
surement, that is, candling the object with an IR source and analyzing the resultant 
image. NIR radiation is more suitable than the visible method for candling, 
because it is much less scattered. In biological samples, the reduced scattering 
coeffi cients decrease continuously from the visible range to the NIR range, as can 
been seen in Figure  8.10   [38] . Absorption has a lower infl uence because the absorp-
tion coeffi cients are about 10 - fold (in slightly scattering media such as cartilage; 
see Figure  8.10 ) to 100 - fold lower (in highly scattering media such as apples, as 
shown by Qin  [18]  or Chauchard  et al.   [39] ) than scattering coeffi cients. Therefore, 
transmittance is much greater in the NIR range than in the visible range.   

  8.3.4.1   Internal Foreign Bodies 
 Internal foreign bodies (i.e., foreign bodies embedded into the food material) are 
a nightmare for food plant quality monitoring. Detection systems are generally 
based on analysis by X - rays, the absorbance of which depends on the atomic 
number and concentration of the material  [40] . However, very often the X - rays are 
not sensitive to intrinsic foreign bodies such as stem, pits, skin pieces or hair, 

   
  Figure 8.10     (a) Absorption  µ a coeffi cient and (b) reduced 
scattering  µ s ′  coeffi cient of aural (light gray curve) and nasal 
septal (dark gray curve) cartilage samples as a function of the 
wavelength.  Illustration courtesy of T.E. Milner, Center for 
Biomedical Engineering, University of Austin, TX, USA.   
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because the tissues are not signifi cantly different in terms of their atomic 
number. 

 The detection of remaining pits in unpitted cherries  [41]  is an example of embed-
ded foreign body detection. Qin and Lu used the same camera as for the feces -
 contaminated apple study, but this time the fruit were illuminated in transmission 
mode with a quartz halogen lamp irradiating through a 13   mm - diameter hole. The 
correctly unpitted cherries gave brighter images than those with a remaining pit. 
The best spectral range for separating the two classes of object ranked from 692 
to 856   nm. Both, fruit size and defects had a major infl uence on the classifi cation 
performance, whereas fruit orientation, color and post - bruising treatments had 
negligible effects. Last, but not least, the detection carried out using a ROI of the 
NIR image was twice as effective as that carried out on a single NIR spectrum 
detection, leading to an average error of 3%.  

  8.3.4.2   Internal Tissue Defects 
 Although less crucial than embedded foreign materials, internal defects are still 
very important from a commercial point of view, mainly because of the consum-
ers ’  reaction to undetectable internal defects. Internal defects must have a large 
infl uence on the NIR signal in order to be detectable. Consequently, only defects 
of a large size, that generate a signifi cant change in the scattering coeffi cient, will 
be detected. This is generally the case for defects leading to internal holes, such 
as mechanical damage in cucumbers. 

 Mechanical damage in cucumbers results in carpel separation and a hollow 
center. As the transmittance signal is very low, the spatial resolution is necessary 
to obtain a sensitive method. Hyperspectral imaging reduces mixing of the rele-
vant signal from the unwholesome region with that of the wholesome region, and 
therefore increases the sensitivity. Ariana  et al.   [34]  used a transmission visible/
NIR hyperspectral imager developed at USDA/ARS at Michigan State University 
(450 – 950   nm) to detect internal defects in cucumbers. The set - up was composed 
of an imaging spectrograph (ImSpector) and a backlit CCD camera; a 150   W 
halogen light candled the cucumber with dual fi ber - optic light lines. Three images 
were recorded for each cucumber by rotating it around its main axis and taking 
images 120    °  apart. The cucumbers were imaged before and after (2   h, 1, 2, 3 and 
6 days) mechanical injuries were applied. Both, the average spectrum along the 
longitudinal line and standard deviation spectrum (of the pixels along that line) 
were recorded. As expected, transmission was greater for defective cucumbers 
with hollow hearts than for normal ones. The defective cucumbers also showed a 
greater standard deviation of transmittance levels, because the defect was not 
homogeneous along the longitudinal axis. Finally, a single - band image (at 800   nm) 
was found to be suffi cient for this application, yielding a classifi cation rate of about 
90%. Further studies on pickling cucumbers showed a predictability of internal 
defects that reached 91.5%, based on a hyperspectral imaging method using the 
spectral range 700 – 1000   nm  [42] . 

 To date, no other studies related to the detection of deeply embedded defects 
such as vitreous melons, brown - hearted pears or frost - damaged citrus, have been 
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identifi ed. Nonetheless, it would be worthwhile studying such defects which today, 
are only detectable by NMR and occasionally by X - ray analysis.   

  8.3.5 
 Measuring Internal Quality Traits 

 Due to its good diffusion in scattering media, NIR is better suited than the visible 
range to provide information concerning scattering properties across different 
media. Hence, NIR hyperspectral imaging is used to measure scattered light 
profi les, and to correlate them to scattering properties. Moreover, since the NIR 
range also provides chemical information, it is possible to  ‘ kill two birds with 
one stone ’     –    that is, to measure both the absorption and scattering coeffi cients 
of the absorbing medium. 

 For the fi rst time, in 2007, Qin and Lu  [43]  used a NIR hyperspectral imager to 
determine the optical properties of turbid liquid foods. The system was that devel-
oped previously by USDA/ARS Michigan (16 - bit camera coupled to an ImSpector 
spectrograph), and covered the 530 – 900   nm range. The coeffi cients  µ a and  µ s ′  were 
calculated for model liquids, milk and fruit juices, using Farrel ’ s model, which is 
a simplifi cation of the radiation transfer equation (Boltzmann equation). Farrel ’ s 
model computes the refl ectance of a turbid medium in any point of a semi - infi nite 
turbid material as a function of  µ a,  µ s ′ , the internal refl ection coeffi cient (relative 
to the refractive index) and  r , which is the distance from the incident point. The 
coeffi cients  µ a and  µ s ′  were assessed by simulation and data assimilation, using 
38 wavelengths with a 10   nm increment in the 530 – 900   nm range images. In this 
fi rst study, the absorption coeffi cients were not used for predicting chemical 
values; rather, the milk fat content was deduced from the  µ s ′  coeffi cient at 
600   nm. 

 Renfu Lu ’ s team has also applied hyperspectral NIR imaging to solid scattering 
media such as fruit  [44] . These scattering properties are related to quality traits 
such as fi rmness, which in turn are linked to the structure of the fruit tissues, 
especially in peaches and apples. First, a very straightforward method is used for 
processing the refl ectance image of apples, extracting three spectra for each fruit: 
the maximum refl ectance spectrum (close to the incident point), the mean refl ec-
tance spectrum, and the standard deviation spectrum. The spectra are then fed 
into a neural network to predict both fi rmness and  soluble solid content  ( SSC ). 
The standard error of prediction ranges between 6 and 7.3   N   cm  – 2  for fi rmness, 
and between 0.72 and 0.81 Brix for SSC. Later, a more accurate method was devel-
oped by Lu ’ s team for analyzing refl ectance images. Here, at each wavelength, the 
refl ectance profi le is modeled by a Lorentzian function, using two parameters, a 
and b; this gives rise to two spectra, for a and b, respectively, which are then used 
to predict fi rmness. In peaches, 10 to 11 wavelengths have been necessary to obtain 
a good prediction,  r  2    =   0.77 and 0.58, for two varieties  [45]  whereas, in apples, the 
best predictions ( r  2    =   0.8 and an error of prediction or SEP   =   6.14   N) required 21 
wavelengths  [46] .  
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  8.3.6 
 Chemical Imaging Analysis of Heterogeneous Products and Heterogeneous 
Product Streams 

 When dealing with homogeneous products or product streams (liquid, slurry), 
NIR spectrometric devices are often suffi cient to provide a good estimate of the 
chemical content. However, with heterogeneous products or solid product streams, 
imaging is necessary in order to avoid averaging among regions of different 
concentrations. This situation can be encountered in biological products in 
two cases: 

   •      The chemical to be analyzed varies  gradually  or is not delineated by any mem-
brane or organ. In that case, the chemical change is generally invisible and only 
detectable by NIR; NIR imaging is used to measure the concentration distribu-
tion of the component.  

   •      The chemical of interest is embedded into a compartment of the product (e.g., 
lean/fat in meat products) or into one item of the stream. In this case, imaging 
is necessary to determine the ROI in which chemical analysis is carried out; 
NIR imaging is therefore initially used for image segmentation followed by 
 targeted chemical composition analysis .    

  8.3.6.1   Gradual Chemical Changes: Mapping the Chemistry of a Sample 
 In issues dealing with chemical gradient mapping of biological products, the 
major challenge is to build an appropriate calibration. This diffi culty is enhanced 
by the unavailability of reference materials. Examples of mapping chemical gradi-
ents at a macroscopic scale are generally found in fruit, wood and fi sh products. 

  8.3.6.1.1   Fruit     One of the very fi rst experiments was carried out in 1998 by Hart 
 et al.   [47] , who mapped the SSC in kiwi fruit. For this, a NIR hyperspectral imager 
spanning the spectral range 650 – 1100   nm was used on a cut kiwi fruit. The crucial 
issue of the reference data was solved as follows: the SSC of plugs cut from thin 
slices of fruit were measured and related to the spectra collected on the same areas 
from which the plugs had been taken. A prediction error of 1.2    °  Brix (over a 
4.7 – 14.1    °  Brix range) was obtained. Later, Tsuta  et al.   [48]  built a 16 - bit CCD 
camera system with band - pass fi lters at 846, 874, 902 and 930   nm to map the sugar 
content of half - cut melon. Cores measuring 25   mm in diameter were analyzed 
to calibrate the system. Long  et al.   [49]  developed a low - cost multispectral system 
with an 8 - bit CCD camera and fi ve fi lters at 830, 850, 870, 905 and 930   nm to 
map sugar on half - cut melons. These authors concluded that it was necessary to 
average 23    ×    23 pixel blocks to obtain a correct prediction ( r  2    =   0.98 and standard 
error of cross - validation   =   1.1    °  Brix) and that a 10 - bit camera was required to 
increase the SNR. 

 Although these experiments are interesting from a scientifi c point of view, they 
do not directly address any practical grading issues. Peirs  et al.   [50]  described an 
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application in which NIR hyperspectral imaging allowed the elimination of toxic 
product handling used in apple grading, namely iodine solution. The procedure 
entailed measuring the regression of starch in half - cut apples, to determine their 
maturity stage. Normally, the apple is stained with an iodine solution (which turns 
black in the presence of starch), and then analyzed using RGB or a black and white 
camera. The use of a NIR hyperspectral camera alleviated the need for the staining 
step, and allowed imaging of the continuous gradient of starch content instead of 
a binary (starch/nonstarch) response. In order to obtain a reasonably good evalu-
ation of the starch/nonstarch areas, a threshold was applied to the fi rst principal 
score image. However, the authors supposed that a multispectral camera might 
be suffi cient to make this mapping, which would both reduce the price of the 
device and speed up the measurement time.  

  8.3.6.1.2   Wood     Wood is the another vegetal commodity for which NIR hyper-
spectral imaging has attracted huge interest. The main issue here is being able to 
map the compression wood, which may cause problems as it provokes the future 
distortion of sawn wood. Hence, the mapping of compression wood on timber 
sections is of interest for both grading and research purposes, and to better under-
stand compression wood elaboration factors. The chemical composition of com-
pression wood differs from that of normal wood, in that the lignin content is 
higher. Several studies have been reported, using either hyperspectral or multi-
spectral NIR imaging systems. The fi rst method (dating back to 1941!)  [51]  for 
detecting compression wood involved candling the wood slices in the visible range: 
compression wood is opaque, whereas normal wood is translucent with regard to 
visible light. However, this method had certain limitations, and consequently 
methods based on NIR imaging were developed. For example, Nystr ö m and 
Hagman  [52]  used a commercially available scanning system (IVP, Sweden) com-
bined with a PGP spectrograph to create a real - time NIR imager. Whole - wood 
planks were scanned in refl ectance mode in the 400 – 710   nm range, while the refer-
ence method for determining compression wood was based on  scanning electron 
microscopy  ( SEM ) and human judgment. The system was evaluated on a 4   m - long 
plank of Norway spruce, conveyed at 0.3   m   s  – 1  with a resolution of 2   mm in the 
feeding direction. Both, PCA and PLS were carried out on pixels, and the real - time 
classifi cation was correct in 11 of 14 cases. 

 Noordam  et al.   [53]  used a multispectral imager composed of a PbS camera and 
a fi lter wheel (680, 740, 800, 840, 1010, 1110   nm) for viewing two wooden disks of 
pine and spruce wood (Figure  8.11 ). Based on PCA on single pixels, these authors 
were able to map three regions, namely bark wood, compression wood and normal 
wood.    

  8.3.6.1.3   Fish     Among animal products, fi sh offers the best example of on - line 
chemical mapping, with a commercial system developed by SPECMOD (the 
Center for Bio - Spectroscopy and Data Modeling, Aas, Norway), together with 
Sintef ICT and the Norwegian company Qvision AS (Oslo, Norway). This indus-
trial on - line visible/NIR spectroscopic imaging scanner has been used for mapping 
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the water content in salted cod (Figure  8.12 )  [54]  and the fat and pigment contents 
in salmon fi llet  [55] .   

 The system operates in transfl ectance mode, with a penetration depth of approxi-
mately 20 – 25   mm. The capacity of the system is about 60 fi llets per second; at 
present, the system is being further developed for use in the meat industry.   

  8.3.6.2   Targeted Chemical Composition Analysis 
 The issue here is to use image analysis to identify the ROI; that is, the target where 
the chemical analysis must be carried out. 

 This is typically the case for streams of mixed items that require sorting, 
an example being in the recycling industries. Several reports  [56, 57]  and patents 
 [58, 59]  are related to on - line hyperspectral or multispectral imaging for the 

   
  Figure 8.11     A multispectral wood image. (a) Pseudocolor 
image; (b) Score plot; (c) Multivariate image analysis (MIA) 
combined score image; (d) Feedback Multivariate Model 
Selection (FEMOS) nine - class segmented image.   Illustration 
reproduced from Ref.  [53] .   



 288  8 Near-Infrared Hyperspectral Imaging in Food and Agricultural Science

identifi cation and separation of various types of waste from each other, based on 
their NIR properties; including paper from cardboard, various types of plastic, and 
plastic fi lm pieces in compost. 

 Images are either taken with a hyperspectral imaging system  [56, 59]  or are 
rebuilt from a whisk - broom scanning procedure  [58] . In the latter case, a scanning 
mirror is made to rotate over the conveyor belt, perpendicular to the waste stream 
and, at each point in time, the refl ectances at all wavelengths of interest are 
recorded. The typical velocity of the conveyor ranges from 2 to 3   m   s  – 1 . 

 Identifying a ROI is also relevant when a product is composed of various com-
partments of diverse compositions; here, meat slices are perhaps the best example. 
Hyperspectral images are fi rst used to isolate the ROIs, and then to analyze their 
chemical compositions. For example, in pork quality studies  [60, 61]  spectral 
analyses are concentrated in the  ‘ eye ’  of the loin area: the loin - eye ROI is seg-
mented from fat or background, after which the spectra from this ROI are averaged 
for each sample. Following a PCA, the wavelengths with the highest weight are 
selected and fed into a neural network, the outputs of which are the four quality 
classes  [60] . The classifi cation with regard to quality has yielded a rate of 87% by 
use of this method.   

  8.3.7 
 Conclusion: On - Line Applications 

 The on - line applications of hyperspectral NIR imaging cover a wide range of 
issues, including the detection of foreign bodies and of contaminants (either 
exogenous or endogenous, internal or external), the identifi cation for sorting, 
localized spectral analysis within a given ROI, and chemical mapping. 

 As in this situation the objects are moving, the hyperspectral images are easily 
created line - by - line. However, due to the high speed of the conveyor belt, huge 
amounts of data are collected and must be processed; consequently, companies 
endeavor to reduce the quantity of information, and hence often switch from 

   
  Figure 8.12     (a – c) Predicted water contents in dried and salted 
cod. (d) Image of a dried and salted cod for comparison. 
 Illustration courtesy of SPECMOD, Aas, Norway.   

(a) (b) (c) (d)



hyperspectral to multispectral imaging, either through software wavelength selec-
tion using the hyperspectral system, or by hardware modifi cation geared towards 
multispectral imaging systems. 

 Until now, on - line applications have mainly been concerned with the very NIR 
and visible ranges (400 – 1000   nm), with systems composed of PGP spectrographs 
and CCD cameras of various dynamic ranges (from 10 to 16 bits). Few applications 
have been carried out on NIR longer wavelengths (i.e., in the 900 – 1700   nm range), 
due mainly due to the fact that cameras operating in this range have not only been 
developed more recently but are also more expensive and have lower SNRs. In the 
near future, it is expected that additional applications will be developed within this 
spectral range, thereby allowing those problems to be tackled that require the 
increased chemical specifi city that is available with access to lower - order overtone 
bands and combination bands.   

  8.4 
 General Conclusions 

 Within 10 years of the fi rst attempts to use NIR multispectral or hyperspectral 
imaging for food products, prodigious advances have been achieved such that NIR 
hyperspectral imaging is now commonly used in both laboratory and on - line 
applications. Yet, this outstanding technique continues to raise many questions 
that must be addressed before it is more widely accepted. Such questions relate 
not only to the hardware and data processing but also to specifi c issues related to 
NIR imaging. 

  8.4.1 
 Hardware Development 

 Hardware innovation incorporates extension of the spectral range towards longer 
wavelengths, as has been the case for linear diode arrays during the past 10 years. 
Whereas, long - wavelength (up to 2450   nm) NIR imagers based on solid - state 
tunable fi lters were fi rst developed commercially in about 2003, line - mounted 
whisk - broom systems are very new devices for food applications, despite their 
long - term history in remote sensing. At the 13th International Conference on Near 
Infrared Spectroscopy, held in Umea, Sweden in 2007, Hyv ä rinen  et al.   [1]  pre-
sented the details of a whisk - broom NIR imager in the 970 – 2450   nm range based 
on a PGP spectrograph and a MCT camera, as a novelty. 

 Today, major hopes are placed on the use of  microelectromechanical systems  
( MEMS ) for future NIR imaging schemes. In addition, individual submillimeter 
(50    ×    50    µ m 2 ) modules that integrate an interferometer and a detector are becom-
ing available  [62]  which, when arranged in arrays, will allow the design and con-
struction of low - cost and robust hyperspectral imagers  [63] . 

 In parallel, the spatial encoding of signals with tools such as the Hadamard 
optical encoder represents an innovative means of gathering hyperspectral 
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information. The Hadamard spatial encoding of the sensor aperture consists of: 
(i) summing the spectra of some pixels at the scene, instead of recording the 
spectra of all pixels; and (ii) using the Hadamard transform to reconstruct the 
hyperspectral image. Recently, PlainSight Systems constructed a system based on 
this approach, where a  digital mirror array  ( DMA ) device realizes the Hadamard 
multiplexed imaging. As a consequence, some interesting results were reported 
by Mahalanobis and Muise  [64] , and more news of this development is expected 
to be heard in the very near future. Eventually, portable and even hand - held NIR 
imagers are expected to result from miniaturization and novel image - gathering 
schemes, for use either in the fi eld or for raw material grading. It is not beyond 
consideration that novel concepts of overlaid projections of NIR - contrasted images 
onto the viewed scene  [65]  may represent some of the fi rst improvements seen for 
hand - held imagers.  

  8.4.2 
 Data Processing 

 The availability of hyperspectral and multispectral imaging systems with large 
arrays has brought about new demands in terms of data processing capacity and 
the mathematics required to extract the important content from these large data 
sets. As spectral information in images greatly increases the amount of data to be 
processed, it is absolutely necessary to reduce the dimensionality of the data  [66] . 

 One route that has been explored to limit this challenge is that of  data reduction , 
by acquiring fewer datum points. This can be achieved through either of the two 
dimensions    –    that is, spatial and spectral    –    by using less spatial resolution or moving 
towards multispectral imaging systems rather than hyperspectral approaches. 
Unfortunately, the main drawback of multispectral imaging is that, except for 
multispectral systems using hyperspectral components  [67] , the versatility is not 
preserved because the wavelengths are set. In contrast, hyperspectral imaging 
preserves the system versatility and, therefore, has a greater potential. 

 The other route to reduce the amount of data would be to develop dedicated 
 image analysis software . The most important issue for hyperspectral image pro-
cessing is to create effi cient data processing methods based on all available infor-
mation of the hypercube, based on both spectral and spatial information. For this, 
numerous creative approaches have been described  [68 – 70] , although the imple-
mentation of such new concepts has not yet been achieved in food science applica-
tions. Other imaging fi elds, such as  magnetic resonance imaging  ( MRI ) and 
remote sensing  [71, 72]  have moved towards novel processing schemes at an early 
stage, and offer good examples that may contribute to a broader deployment of 
NIR imaging for food analysis.  

  8.4.3 
 Calibration and Characterization of  NIR  Imaging Systems 

 Last, but not least, specifi c questions continue to arise regarding the characteriza-
tion and calibration of spectral imagers. At present, there are no NIR imaging 



standards that can be used to compare instruments, although a subcommittee 
(E13) of the American Society for Testing and Material (ASTM) is currently devel-
oping such a standard. Traditional NIR standards, such as NIST 1920a and NIST 
2060, may be used to ensure wavelength accuracy, but provide no means of inves-
tigating spatial characterization. As the numerous NIR spectral imagers built for 
food applications (especially in the on - line domain) are in fact assemblies of 
individual components    –    each of which is susceptible to a number of possible 
sources of error such as noise, drift, nonlinear response of detectors, read - out 
errors, non - uniform illumination  [73]     –    it is imperative that characterization 
routines and proper calibration and correction procedures be applied. 

 It is common practice to measure relative refl ectance or transmittance values in 
global NIR imaging, using highly refl ective materials (e.g., Spectralon or ceramics) 
as reference ( R  Spectralon ). Camera dark counts at every pixel ( R  dark ) are also measured 
and subtracted from the data, eventually to yield a relative refl ectance value corre-
sponding to ( R  sample     –     R  dark )/( R  Spectralon     –     R  dark ), where  R  is the refl ectance measured. 
Lawrence  et al.   [74]  have proposed a three - step procedure to carry out calibration 
and corrections on a whisk - broom system. The geometric distortions are corrected 
by use of the  geometric control point  ( GCP ) calibration. The wavelength/pixel 
relationship is built using calibrating lamps and linear or quadratic models, and 
the relative refl ectance value is calibrated with one standard 99% refl ectance panel 
and a one - point correction (the dark). 

  Spectral calibration     –    that is, building up a relationship between pixels and wave-
lengths    –    represents another calibration issue of pushbroom and whisk - broom 
devices. By using PGPs as wavelength separators, Polder  et al.   [75]  have focused 
on the issue of wavelength/pixel relationships on three devices covering the 
400 – 1700   nm range. Here, a HgAr lamp is used for spectral calibration, and 
a third - order polynomial model provides an appropriate fi t for the pixel to the 
wavelength mapping. 

 In order to create the most stable hyperspectral images, Burger and Geladi  [73]  
proposed a two - step calibration procedure using  ‘ external ’  and  ‘ internal ’  Spec-
tralon standards. Standards, termed  ‘ external standards ’ , imaged independently 
from the sample images, are used to cancel pixel - to - pixel variations due to camera 
inconsistencies and variations in sample illumination (as proposed by Lawrence 
 et al.   [74] ). Standards recorded jointly to samples    –    that is, in the same image, 
termed  ‘ internal standards ’     –    are innovative and used to compensate for signal drift 
over time. 

 In addition to hardware characterization and calibration, analytical calibration 
(i.e., correspondence between spectral data and reference data) is, as in NIR spec-
trometry,  the  burning issue for biological products. One of the problems deals with 
the reference measurement, namely: How to take a sample for the reference 
measurement? This is, of course, very challenging for samples with gradient - like 
concentrations or for centimeter - scale samples (e.g., kernels). In the fi rst case, the 
samples are punctured at various locations and submitted to reference analysis. 
In the second case, contrasted individuals (high and low concentrations) are 
chosen as reference samples. By using centimeter - large samples, another approach 
would be to build the calibration on images with regards to images built up using 
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other imaging technologies (e.g., fl uorescence imaging) or moving toward classi-
fi cation approaches, which only require pure reference materials. These approaches 
alleviate the need for concentration calibration sets, which are diffi cult to obtain.  

  8.4.4 
 Concluding Remarks 

 NIR imaging in food science has broadened the way in which both NIR spectrom-
etry and vision systems are used, and has therefore opened new opportunities for 
high - throughput analysis, reduced detection limits, chemical gradient mapping 
and improved object identifi cation. We believe it is possible to go even further by 
extending the images to include other spectral information, such as combining 
NIR with fl uorescence images, as proposed by Kim  et al.   [76] . Innovations in 
hardware, software control and data processing will surely pave the way for the 
development of additional analytical capabilities. Current on - line sorting mecha-
nisms, based on size and color, will undoubtedly be augmented by additional 
sorting for quality and safety attributes of food products as a result.   
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  9.1 
 Introduction 

 Both,  Fourier transform - infrared  ( FT - IR ) and  near - infrared  ( NIR ) spectra of a 
multicomponent sample measured with a single - element detector, can provide 
information on the identity of the different components in the investigated sample 
area, but do not yield any information on their spatial separation. For many ana-
lytical problems, however, this is the crucial point of the investigation. In this 
respect, the development of  focal plane array  ( FPA ) detectors  [1]  for imaging mea-
surements in the mid - IR and NIR has launched vibrational spectroscopy into 
a new era of analytical applications. Thus, several thousand spectra of laterally 
resolved sample positions can be measured simultaneously within a few minutes, 
thereby providing  ‘ chemical images ’  of the investigated sample area. As a conse-
quence, both FT - IR and NIR imaging techniques have over the past years proved 
to be powerful tools for a broad range of industrial and research applications. The 
experimental principles of operation, however, are different for the two imaging 
methods (see also Chapter  1 ). While FT - IR imaging is mainly operated in trans-
mission mode or in  attenuated total refl ection  ( ATR ) as a macro or, in combination 
with a microscope, as a micro technique, NIR imaging is almost exclusively 
applied in diffuse refl ection in the macro mode. This can be explained in terms 
of the signifi cantly higher absorptivities of the mid - IR absorption bands of funda-
mental vibrations compared to the NIR overtone and combination bands. The 
penetration depth of the ATR technique and the optimum sample thickness for 
mid - IR spectra lie in the range of a few microns, which corresponds approximately 
to the lateral resolution achievable with the FT - IR imaging technique. For NIR 
transmission spectra, sample thicknesses of up to millimeters are required, which 
are far beyond the theoretically feasible lateral resolution (in the  µ m - range) for the 
NIR wavelength region. Consequently, the focus of the two imaging techniques 
is in different fi elds of applications. While FT - IR imaging has mainly been applied 
for biomedical diagnostics and material (especially polymer)    –    analysis, NIR 
imaging has to date been used primarily for the quality control of food or agricul-
tural products and for the analysis of solid pharmaceutical drug formulations. 
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 The main research activities using a FPA detector for FT - IR imaging began in 
1997, since when the group of Koenig, at Case Western Reserve University in 
Cleveland, USA, has made important contributions to this research area. In their 
fi rst FT - IR imaging applications in the transmission mode (1996, 1998, 1999), the 
group studied the diffusion of liquid crystals into polymers. The diffusion process 
was analyzed in detail and quantitative results, such as diffusion coeffi cients, were 
derived  [2 – 4] . 

 FT - IR imaging was rapidly adopted in polymer research. For example, in 1998 
Bhargava  et al.  reported their FT - IR imaging results of the interface of a phase -
 separated multicomponent polymeric system  [5] . A subsequent report by Snively 
and Koenig in 1999 dealt with the examination of the homogeneity and the degree 
of orientation in semi - crystalline polymer systems, notably different  poly(ethylene 
glycol)  ( PEG ) systems  [6] . 

 Other examples from the research group of Koenig (2000 – 2002) include details 
of the dissolution behavior of polymers in different solvents (partly with the addi-
tion of nonsolvents) or a mixture of solvents. From these investigations, a nonuni-
form dissolution of the polymer at the interface could be observed for several 
solvent systems  [7 – 11] . Further results of diffusion measurements were presented 
in 2002 by Rafferty and Koenig, and later in 2005 by Bobiak and Koenig  [12, 13] , 
in which the diffusion of nicotine into an ethylene – vinyl acetate copolymer was 
analyzed. 

 In 2002, Gupper  et al.  investigated polymer blends by using FT - IR imaging 
(ATR, transmission) in combination with Raman imaging and electron micro-
scopy  [14] . Later, Gupper  et al.  described the morphological characterization of 
polymer blends consisting of polyamide and poly(tetrafl uorethylene) by using FT -
 IR mapping and electron microscopy  [15] . The thermal oxidation of poly(isoprene) 
rubber with hot air (140    ° C) as a function of time was investigated by Li and Koenig 
 [16] . 

 In an ATR imaging study, Kazarian and Chan described the behavior of polymer 
blends under high - pressure CO 2 . Under these conditions and at 40    ° C, initially 
homogeneous blends were seen to undergo a phase separation. By using this 
method, it was also possible to examine the infl uence of other gases on the mate-
rial properties of polymers  [17] . Likewise, in 2006, Kaun  et al.  demonstrated an 
FT - IR imaging system for the examination of a chemical reaction in a solution, 
and the time - resolved model reaction of formaldehyde and sulfi te was also visual-
ized  [18] . 

 Another fi eld of application, especially for ATR imaging, is that of pharmaceuti-
cal formulations. Here, in 2003, Chan  et al.  reported the fi rst results on macro and 
micro ATR imaging of pharmaceutical tablets by characterizing the spatial distri-
bution of active ingredients and excipients  [19] . Further examples in this fi eld are 
described in Chapter  10  of this volume. 

 With the introduction of more economical, large - format (320    ×    256 pixels) FPA 
detectors, NIR hyperspectral imaging was also developed into an important tool 
in selected industrial areas such as the evaluation of food quality (see Chapter  8 ) 
or in the pharmaceutical industry. Most likely, the delay in implementation of NIR 
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imaging relative to mid - IR and Raman imaging was based on the (largely unde-
served) reputation of the inferior specifi city of NIR compared to Raman and mid -
 IR spectroscopy. Yet, based on the much simpler and more rugged instrumentation 
for NIR chemical imaging, its rapid and nondestructive sampling, and also on the 
fact that in many cases  a priori  information on the investigated material is available 
(e.g., in pharmaceutical applications), the advantage of obtaining high - fi delity, 
spatially resolved pictures of the chemistry of the sample has eventually accelerated 
the practical application of this imaging technique. Typically, a NIR imaging ana-
lyzer uses quartz halogen lamps as NIR sources, a device for wavelength discrimi-
nation [e.g., a  liquid crystal tunable fi lter  ( LCTF ) or an  acousto - optic tunable fi lter  
( AOTF )], and a large - format FPA detector which does not require cryogenic 
cooling. Additionally, working in the NIR permits the use of relatively simple 
refractive achromatic optics with long working distances. It must be pointed out 
however that, compared to mid - IR and Raman imaging, the diffraction - limited 
spatial resolution in the NIR region ( ∼ 2    µ m) cannot be exploited for two reasons: 

   •      Due to the signifi cantly lower (10 – 100 - fold) absorptivities of overtone and com-
bination bands compared to fundamental absorptions, the sample thickness for 
NIR transmission measurements must be several hundred micrometers.  

   •      In diffuse refl ection measurements of particulate materials, scattering effects 
also lead to maximum pathlengths of several hundred micrometers of the 
photons within the sample (see below and Chapter  1 ).    

 Apart from food industry (see Chapter  8 ), NIR chemical imaging has so far pri-
marily been applied to qualitative and quantitative product characterization in the 
pharmaceutical industry. The ability to visualize and assess the compositional 
heterogeneity and structure of the end products is extremely important for both 
the development and manufacture of solid dosage forms  [20] . Hence, NIR chemi-
cal images have been used to determine authenticity, content uniformity, particle 
sizes and distribution of sample components, polymorph distributions, moisture 
content and location, contaminations, coating and layer thickness, as well as a host 
of other structural details  [21 – 29] .  

  9.2 
 Instrumentation for  FT  -  IR  and  NIR  Imaging 

 In the following sections the instrumentation used for the application examples 
described in this chapter will be discussed in some detail. Specifi cally, the basic 
instrumental features of the two imaging systems, different possible measure-
ment modes and the occurrence of instrument - related and sample - related artifacts 
and misinterpretations will be outlined. Because NIR imaging instruments are 
simpler in design, these will be discussed fi rst. 

 The application example outlined in detail in this chapter refers to diffuse - 
refl ection NIR chemical imaging measurements of a pharmaceutical drug 
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formulation consisting of three active ingredients and two excipients. The main 
purpose of these investigations was to demonstrate that, from the imaging data 
not only qualitative information regarding the homogeneity of the component 
distribution but also quantitative data concerning the active ingredient content can 
be derived. 

  9.2.1 
  NIR  Imaging 

 The NIR hyperspectral images presented later in the chapter were recorded on a 
MatrixNIR system (Malvern, formerly Spectral Dimensions, Olney, MD, USA) 
with four quartz - halogen lamps as NIR sources, a LCTF as monochromator, and 
a thermoelectrically cooled 256    ×    320 InGaAs FPA detector covering 118 channels 
(960 – 1662   nm or 10   417 – 6017   cm  − 1 ) with a spectral resolution of 6   nm at 1600   nm 
(corresponding to 24   cm  − 1 ). Figure  9.1 a shows the instrument alongside an optical 
scheme of the system (Figure  9.1 b). For high - throughput measurements the 

   
  Figure 9.1     (a) The NIR imaging system; (b) The optical 
scheme of the instrument for diffuse - refl ection measurements 
of a powder sample.  
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instrument can also be adapted with a programmable sample carousel which 
enables the sequential analysis of multiple samples.   

 The quantitative determination of the active ingredients is only part of the 
quality control requirements for a solid pharmaceutical drug formulation. At 
least as important is the homogeneous distribution of the active ingredients in the 
formulation. In this respect, the inherent advantage of imaging measurements 
comes into play and provides the relevant information. Because the majority of 
the NIR spectroscopic imaging measurements are made in diffuse refl ection, the 
pathlength of NIR radiation in the sample for such measurements has become a 
fundamental area of debate  [29 – 35] . 

 Some possible schematic NIR radiation pathways in diffuse refl ection measure-
ments of a powder sample are outlined in Figure  9.2 . The important issue with 
reference to the spatial resolution of imaging measurements is, on the one hand, 
the lateral extension of photons in the sample (Figure  9.2 b, point 1) and, on the 
other hand, the maximum penetration depth of NIR radiation into the sample 
(Figure  9.2 b, point 2).   

 The fi rst question was addressed recently by E. N. Lewis  et al.   [36] , whereby an 
effective pathlength of approximately 780    µ m at 1660   nm (6024   cm  − 1 ), resulting 
in a sampling volume of a sphere with a diameter of  ∼ 72    µ m, was derived from 
theoretical calculations with a random walk model and transmission and diffuse 

   
  Figure 9.2     (a) Schematic pathways of NIR radiation in diffuse -
 refl ection measurements of a powder sample; (b) Lateral 
extension (b, point 1) and maximum penetration depth 
(b, point 2) of NIR radiation in the powder sample 
(for details, see the text).  
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refl ection measurements of an aspirin ( acetylsalicylic acid ;  ASA ) tablet. Further-
more, it has been concluded that, depending on the wavelength, approximately 
70% of the photons exiting the sample at any given point in a diffuse refl ection 
measurement will have interacted with a spherical region of a diameter between 
about 90 and 60    µ m. The issue of maximum penetration depth has been addressed 
by Siesler  et al.   [68] , using a somewhat different experimental approach (Figure 
 9.2 b, point 2).  Poly(dimethylsiloxane)  ( PDMS ) fi lms, containing 25   wt% silica par-
ticles, were stacked with layers of different thickness (100 – 900    µ m) of the specifi ed 
drug formulation. The spectra of these different two - layer drug formulation/PDMS 
stacks were then measured in diffuse refl ection. The drug formulation used for 
these measurements had a composition of: ASA 18.1   wt%;  ascorbic acid  ( ASC ) 
22.85   wt%;  caffeine  ( CF ) 19.05   wt%; and cellulose/starch (CE/ST, 1   :   3, w/w) 
40   wt%. 

 PDMS has relatively sharp absorption bands in the NIR region that are not or 
only weakly superimposed by the broad absorption bands of the drug formulation. 
Thus, the polymer fi lm can be used as a detection layer and the occurrence of 
signals in the PDMS - specifi c wavenumber regions are indicative of the penetration 
of NIR radiation through the drug formulation layer into the polymer fi lm. With 
this experimental set - up, the decrease of the PDMS - specifi c absorption bands 
could be monitored in different wavenumber regions as a function of increasing 
drug formulation layer thickness to an intensity value  < 5% of the corresponding 
pure PDMS diffuse - refl ection spectrum. These drug formulation layer thicknesses 
were taken as maximum penetration depth of the NIR radiation, and the following 
values estimated for selected wavenumber regions:  ∼ 300    µ m for the 4000 – 4500   cm  − 1  
region,  ∼ 400    µ m for the 5300 – 6000   cm  − 1  region,  ∼ 550    µ m for the 7000 – 7500   cm  − 1  
region, and  ∼ 650    µ m at 8440   cm  − 1 . Despite the different experimental approach, 
these values were relatively consistent with previous estimates  [29] . Thus, in view 
of the diffraction - limited spatial resolution  < 3    µ m in the NIR region (see Chapter 
 1 ), the NIR imaging technique is best used for the characterization of scattering 
samples with a particle size far larger than the diffraction limit.  

  9.2.2 
  FT  -  IR  Imaging 

 The Bruker FT - IR imaging system (Bruker Optik GmbH, Ettlingen, Germany) 
used for the investigations described in this chapter is shown in Figure  9.3 . The 
system consists of an IFS66/S step - scan/rapid - scan FT - IR spectrometer (left), 
which is connected to an IR microscope (Hyperion 3000) (center) and a macro-
chamber (IMAC) for the investigation of larger imaging areas. Depending on the 
type of measurement, the FPA detector can be connected either to the microscope 
or to the macrochamber.   

 The low - pass fi lter between the FT - IR spectrometer and the microscope restricts 
the high - wavenumber range beyond 3850   cm  − 1  in order to avoid artifacts due to 
 Fourier fold - over . 
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  9.2.2.1   Micro  FT  -  IR  Imaging 
 For small samples, or in order to achieve a higher spatial resolution, the micro-
scope is used which is specially designed for FT - IR measurements. In this case, 
a motorized mirror in the microscope enables a change between single - point 
measurements with a single - element detector and imaging measurements with 
the FPA detector. FT - IR images can be measured with different objectives in 
transmission, in refl ection, or in the ATR mode. A computer - controlled motorized 
stage enables an exact positioning of the sample and a mapping with the single -
 element detector and also with the FPA detector. For transmission measurements, 
a well - aligned condenser focuses the IR radiation with maximum intensity on the 
sample. A live FPA image (see Section  9.2.2.3 ) is used to check the focus and 
facilitate the alignment. 

 For transmission and refl ection measurements, a 15 ×  objective with a  numerical 
aperture  ( NA ) of 0.4 and an imaging area or  fi eld of view  ( FOV ) of 260    ×    260    µ m 2  
is used (see Table  9.1 ).   

 Micro ATR measurements in the refl ection mode are performed using a special 
ATR objective with a Ge crystal. The tip has a diameter of 100    µ m and is shaped 
slightly convex in order to ensure an optimal contact between the ATR crystal and 
the sample. This is a 20 ×  objective with a NA of 0.6 and a fi eld of view of 
50    ×    50    µ m 2  (see Table  9.1 ). 

 The ATR crystal can be moved to different positions, as shown in Figure  9.4 ; a 
schematic diagram shows the ATR objective in two different confi gurations. For 
visual observation of the sample, the crystal is in the upper position (Figure  9.4 a), 
while in the measuring mode the ATR crystal is in contact with the sample (Figure 

   
  Figure 9.3     The Bruker FT - IR imaging system used for the 
investigations described in this chapter.  
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 9.4 b). Five different pressure stages (0.5 – 8   N) are available in order to optimize the 
contact between the crystal and the sample.    

  9.2.2.2   Macro  FT  -  IR  Imaging 
 If a larger fi eld of view is required, the macrochamber IMAC is used instead of 
the microscope. This consists of an optical and a sample compartment, with con-

 Table 9.1     The objectives applied for the micro  FT  -  IR  imaging measurements and their 
corresponding instrumental parameters. 

  Objective  

      
      

  Type of measurement    Transmission/refl ection    ATR (Ge - crystal)  
  Magnifi cation    15 ×     20 ×   
  Numerical aperture    0.4    0.6  
  Imaging area    260    ×    260    µ m 2     50    ×    50    µ m 2   

   
  Figure 9.4     Schematic diagram showing the ATR objective in 
the two different measurement confi gurations. (a) Visual 
observation of the sample; (b) Measuring mode with contact 
of the ATR crystal and the sample.  
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nections for the FPA detector and the CCD camera. Several other spectroscopic 
accessories may also be installed in the sample compartment. 

 The macrochamber enables measurements in transmission (with a manual  x / y  
sample holder), in refl ection and in the ATR mode. Some of the different acces-
sories available are shown in Figure  9.5 .   

 The imaging area for transmission and refl ection measurements is consistent 
with the detector size (3.9    ×    3.9   mm 2 ). For ATR - measurements, the imaging area 
is 3.9    ×    5.5   mm 2  because of the illumination geometry  [37] . 

 Usually, there is only one FPA detector available, and the position of 
the FPA detector must be interchanged between the microscope and the 
macrochamber.  

  9.2.2.3   Measurement of an  FT  -  IR  Image 
 While the imaging measurements were operated in the step - scan mode with the 
fi rst - generation FPA detectors, the new - generation FPA detectors operate in a 
continuous rapid scan mode. Before the measurement, certain parameters    –    such 
as the frame rate, offset and gain    –    must be adjusted with assistance from the live 
FPA image and the oscilloscope image. Both images indicate if some pixels have 
a very low intensity, and if the illumination of the imaging area is not perfect and, 
if necessary, an adjustment must be performed. 

 Because of delamination, each detector has a few so - called  ‘ bad ’  pixels which 
can be seen very clearly in the live FPA image. Their intensity and the  signal - to -
 noise ratio  ( SNR ) differ from those of other pixels. New FPA detectors must not 
have more than 3%  ‘ bad ’  pixels. Similar to conventional single - element MCT 
detectors, the detector pixels function at low temperature, which can be attained 
by cooling with liquid nitrogen. During cooling, there is a thermal contraction of 
the detector pixels and, because the detector consists of layers of different materials 
(with different expansion coeffi cients), delamination can occur. However, the 

   
  Figure 9.5     Available accessories for the imaging 
macrochamber. (a) Transmission (Bruker Optik GmbH, 
Ettlingen, Germany); (b) Refl ection (Pike Technologies, 
Madison, USA); (c) ATR with a ZnSe crystal (Harrick Scientifi c 
Products Inc., New York, USA).  

(c)(b)(a)
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imaging software allows these  ‘ bad ’  pixels to be masked in order to avoid outliers 
in the IR image. 

 In order to minimize the number of cooling cycles guaranteed by the instrument 
manufacturer, special Dewar fl asks with a prolonged holding time of up to 
about 50   h (at  − 196    ° C) can be used (note the black reservoir on the FPA detector 
in Figure  9.3 ).  

  9.2.2.4   Observation of a Penetration Depth Gradient in  ATR   FT  -  IR  Spectroscopic 
Imaging Applications 
 In order to check the illumination uniformity of the ATR crystal of the 
FastIR accessory used in investigations with the macrochamber, a homogeneous 
liquid sample (paraffi n oil, from Shell Deutschland Oil GmbH, Hamburg, 
Germany) was chosen because of its perfect contact with the ATR crystal  [38] . 
However, despite this perfect contact, the integrated absorbance values for a 
particular band were not constant for the imaged area. Rather, an absorbance 
gradient in the  z  - direction of the image (the direction of the IR beam from source 
to detector) was observed in the image, for example, for the absorption bands at 
ca. 2920 and 1460   cm  − 1 , representing largely different penetration depths  d  p  of 
0.64 and 1.28    µ m  [39, 40] , respectively, for the nominal angle of incidence (45    ° ) 
and refractive indices n(paraffi n oil)   =   1.4679 and n(ZnSe)   =   2.4 (see Figure 
 9.6 ).   

 The quantitative evaluation of the integration results are listed in Table  9.2 , there 
being a difference of approximately 16% between the highest and lowest absor-
bance values. The fl at plateaus, observed in the absorbance values along the  z  - axis 
for low and high  z  - values (see Figure  9.6 b and d), are also refl ected in the bimodal 
histograms (see Figure  9.7 ) of frequency (number of pixels) versus integral absor-
bance plots with minima at intermediate absorbance values.     

 The explanation for the observed absorbance gradient is that the angle of 
incidence on the ZnSe refl ection element is not exactly 45    °  for all IR rays, but 
varies between 45.6 and 44.3    °  (as calculated by Bruker Optik GmbH, using a 
ray - tracing technique) (Figure  9.8 ). This phenomenon is inherent to the construc-
tion of the accessory, and cannot be eliminated by alignment. As a consequence, 
the penetration depth and absorbance values increase in the  z  - direction. As 
shown in Figure  9.6 , the phenomenon is most pronounced in the central region 
of the imaged area. No gradient can be observed across the width of the IR 
beam.   

 For homogeneous samples, it would be possible to correct this gradient mathe-
matically. However, for heterogeneous samples, which are mostly analyzed with 
IR imaging, this is hardly possible due to the large infl uence of the different refrac-
tive indices, which would have to be taken into consideration. 

 The same artifact was observed for a solid sample. The example shown in 
Figure  9.9  demonstrates the ATR FT - IR images of the distribution of a release 
coat ( poly(vinyl - stearylcarbamate ;  PVSC ) on the  polypropylene  ( PP ) backing of 
an adhesive tape (tesa AG, Hamburg, Germany). Sample 1 has a heterogeneous 
distribution of PVSC (Figure  9.9 a), whereas the release coat of sample 2 is 
homogeneously distributed (Figure  9.9 d).   
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  Figure 9.6     ATR FT - IR imaging results of paraffi n oil for the 
 ν (CH/CH 2 /CH 3 ) absorption bands at 3000 – 2800   cm  − 1 . (a) 2 - D; 
(b) 3 - D and the  δ (CH 2 /CH 3 ) absorption bands at 1482 –
 1425   cm  − 1  (c) 2 - D; (d) 3 - D.  Reproduced with permission from 
Ref.  [38] ;  ©  2006, Society for Applied Spectroscopy.   
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 Table 9.2     Integral absorbance of the  ATR FT  -  IR  imaging results of paraffi n oil for the 
 ν ( CH / CH 2  / CH 3  ) and  δ ( CH 2  / CH 3  ) absorption bands. 

  Integral absorbance     ν (CH/CH 2 /CH 3 )     δ (CH 2 /CH 3 )  

  (3000 – 2800   cm  − 1 )    (1482 – 1425   cm  − 1 )  

  Maximum value (approx.)    19.0    2.25  
  Minimum value (approx.)    16.2    1.88  
  Ratio (Max/Min value)    1.17    1.20  
  Percentage difference (%)    15    16  
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 However, it is diffi cult to differentiate clearly between the  ‘ bad ’  (Figure  9.9 a) 
and  ‘ good ’  (Figure  9.9 d) sample, because the instrumentally based absorbance 
gradient (as discussed above) is superimposed on the sample data and is also 
observable for a homogeneous distribution (Figure  9.9 d). It is, therefore, not sur-
prising that a gradient is also observed for the PP - backing only (Figure  9.9 b, c, e 
and f). Thus, whenever possible, this penetration depth (absorbance) gradient 
should be taken into consideration for the interpretation of the results. 

 For heterogeneous samples this gradient does not become obvious in the 
imaging data. This is demonstrated in Figure  9.10 , which shows a separation 
of the water and oil phases in an oil - in - water emulsion. Here, the absorbance 
gradient cannot be detected due to the large heterogeneity of the component 
distribution.   

   
  Figure 9.7     Histograms. (a) Number of pixels versus integral 
absorbance of the ATR FT - IR imaging measurements of 
paraffi n oil for the  ν (CH/CH 2 /CH 3 ) absorption bands at 
3000 – 2800   cm  − 1 ; (b)  δ (CH 2 /CH 3 ) absorption bands at 1482 –
 1425   cm  − 1 .  Reproduced with permission from Ref.  [38] ; 
 ©  2006, Society for Applied Spectroscopy.   
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     Figure 9.8     Schematic optical diagram 
of the ATR accessory FastIR, demonstrating 
the different angles of incidence on the 
interface of the sample and the ATR refl ection 
element.  Adapted from  http://www.harricksci.
com/accessories/H_fastir.cfm .  The variably 

dashed rays have different angles of 
incidence, symbolizing the range from 45.6    °  
to 44.3    ° .  Reproduced with permission from 
Ref.  [38] ;  ©  2006, Society for Applied 
Spectroscopy.   
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 Generally, for a qualitative analysis of heterogeneous samples the results will 
hardly be infl uenced by this phenomenon. For quantitative analysis, however, the 
effect must be taken into account. By using another refl ection element, for example, 
germanium with a higher refractive index (4.0 instead of 2.4 for ZnSe), the gradi-
ent would be much smaller (about one - third), because of the lower penetration 
depth under these experimental conditions.  

   
  Figure 9.9     ATR FT - IR images of the distribution of a release coat (PVSC) on the PP - backing 
of an adhesive tape. Sample 1 ( ‘ bad ’ ) has a heterogeneous (a) and sample 2 ( ‘ good ’ ) a 
homogeneous (d) distribution of the release coat. The absorbance gradient observed for the 
original PP - backing is demonstrated in panels (b), (c), (e) and (f).  Reproduced with 
permission from Ref.  [38] ;  ©  2006, Society for Applied Spectroscopy.   
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  9.2.2.5   Infl uence of Pressure on  ATR   FT  -  IR  Imaging Results 
 With several polymer systems, ATR FT - IR microimaging measurements with 
a germanium ATR objective showed spectral differences in the area under 
observation, although the investigated fi lm was completely homogeneous. This 
artifact, which is frequently observed for pressure - sensitive polymer systems, is 
demonstrated exemplarily for a poly(3 - hydroxybutyrate -  co  - 3 - hydroxyhexanoate) 
(HHx   =   12   mol%) fi lm. Different image areas of 50    ×    50    µ m 2  of the polymer fi lm 
were measured with the pressure stages 1, 2 and 3 by accumulating 10 scans in 
the spectral range from 3800 to 900   cm  − 1  with a spectral resolution of 8   cm  − 1  
(Figure  9.11 ).   

   
  Figure 9.10     Phase separation of an oil - in - water emulsion. 
Integration of (a) the  ν (OH) (3670 – 3015   cm  − 1 ) and (b) the 
 ν (CH/CH 2 /CH 3 ) (3000 – 2800   cm  − 1 ) absorption bands. 
 Reproduced with permission from Ref.  [38] ;  ©  2006, 
Society for Applied Spectroscopy.   
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  Figure 9.11     IR images of a poly(3 - hydroxybutyrate -  co  - 3 -
 hydroxyhexanoate) fi lm measured by ATR FT - IR imaging (Ge 
ATR objective) with the pressure stages 1 – 3 (evaluation of the 
left wing of the  ν (C = O) band; see Figures  9.12  and  9.13 ).  
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 The IR images of the analyzed sample areas were evaluated by integration of 
the left wing of the  ν (C = O) absorption band, which is characteristic for the weakly 
hydrogen - bonded amorphous regions of this biopolymer (see Figures  9.12  and 
 9.13 ). In order to compare the colors of the IR images at different pressure stages, 
a standardized color scale was used which included the range from the lowest to 
the highest integral absorbance of the three measurements.   

 Although the sample was a homogeneous copolymer fi lm, inhomogeneities 
were detected in the IR images with increasing pressure. Thus, the red areas in 
the right upper corner of the IR images (Figure  9.11 ) indicated a larger degree of 
amorphous content in the polymer fi lm. However, this enrichment of amorphous 
regions is a consequence of the nonuniform contact pressure of the ATR crystal 
on the sample area, and is not due to the heterogeneity of the sample. Obviously, 
a higher pressure leads to destruction of the crystalline regions and an increase 
in the amorphous content of this pressure - sensitive biopolymer. The validity of 
this interpretation has been proved by repeated measurements of this copolymer 
fi lm. 

 Figure  9.12  shows two spectra of the IR images measured with the pressure 
stage 3. The red spectrum corresponds to the red area in Figure  9.11 , where the 
crystallinity has been reduced because of the higher contact pressure. Destruction 
of the crystallites is also accompanied by conformational changes of the polymer 
chains, because a comparison of the red and blue spectra clearly shows, that there 
are also signifi cant changes of the spectrum in the fi ngerprint region. For an 
accentuation of the changes in the  ν (C = O) absorption region, an enlarged section 
of this wavenumber region is shown in Figure  9.13 . Here, the higher intensity of 
the left wing of the  ν (C = O) absorption band of the red spectrum can be seen more 
clearly than in the spectra of Figure  9.12 . 

   
  Figure 9.12     ATR FT - IR imaging spectra of the poly(3 -
 hydroxybutyrate -  co  - 3 - hydroxyhexanoate) fi lm measured with 
pressure stage 3 of the Ge ATR objective: comparison of two 
spectra of the  ‘ red ’  (amorphous) and  ‘ blue ’  (crystalline) 
regions.  
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 Similar effects have also been observed for fi lms of the pressure - sensitive poly-
mers poly(vinylidene fl uoride) and poly(tetrafl uoroethylene). Thus, repeated mea-
surements of the investigated polymer are recommended in order to confi rm this 
phenomenon and to avoid misinterpretations. For samples without conformation 
and state of order sensitive absorption bands, this phenomenon is not relevant.  

  9.2.2.6   Spatial Resolution of Micro  FT  -  IR  Imaging Measurements 
 For FT - IR imaging, a high spatial resolution is very important in order to visualize 
the distribution of different substances of a heterogeneous sample as precisely as 
possible. The size of the imaging area of, for example, a Ge ATR objective is 
50    ×    50    µ m 2 . By using a FPA detector with 64    ×    64 detector elements, an area of 
0.78    ×    0.78    µ m 2  can be allocated for each detector element. However, this does not 
mean that such a spatial resolution can be achieved, because this parameter is 
limited not only by the pixel size and magnifi cation of the objective but also by 
the diffraction of the IR radiation (see Chapter  1 , Section  1.2.4 ). 

 Chan and Kazarian were able to achieve a spatial resolution of 3 – 4    µ m with 
micro ATR FT - IR imaging measurements with a Ge ATR crystal  [37] . A recent 
report by Lasch and Naumann described the lateral resolution of FT - IR imaging 
measurements in transmission, whereby numerous results from measurements 
of a  resolution target USAF 1951  and tissue samples with different imaging 
systems from different manufacturers and with different objectives were com-
pared  [41] . 

 The theoretical defi nition of the spatial resolution requires a distance of 2 r  
(where  r  is the  Rayleigh criterion of resolution ) in order to differentiate two adja-
cent points completely, and is limited by the wavelength of the IR radiation and 
the NA of the objective  [42, 43]  (see Chapter  1 , Section  1.2.4 ). 

   
  Figure 9.13      ν (C = O) absorption band of the ATR FT - IR 
imaging spectra of a poly(3 - hydroxybutyrate -  co  - 3 -
 hydroxyhexanoate) fi lm measured with pressure stage 3 of the 
Ge ATR objective: comparison of two spectra of the  ‘ red ’  
(amorphous) and  ‘ blue ’  (crystalline) regions.  
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 The spatial resolution can be improved by evaluating absorption bands at 
high wavenumbers. Unfortunately, characteristic high - wavenumber absorption 
bands are not always available for the calculation of FT - IR images. However, by 
using a Ge ATR objective with a high NA, Sommer  et   al.  and Chan and Kazarian 
were able to optimize the spatial resolution by a factor in the range of the refractive 
index of the Ge crystal ( n    =   4)  [37, 44] . 

  9.2.2.6.1   The Test Systems     In order to demonstrate the spatial resolution 
achieved in practical measurements, two test sample systems were investigated by 
FT - IR imaging measurements in the ATR mode and in transmission. The sizes 
of the imaging areas were 50    ×    50    µ m 2  for the micro ATR FT - IR measurements 
(20 ×  objective) and 260    ×    260    µ m 2  for the micro FT - IR transmission measure-
ments (15 ×  objective). 

 The fi rst system involved a polymer laminate of  polyethylene  ( PE ) (25    µ m) and 
 polycarbonate  ( PC ) (3    µ m) fi lms (both from Bayer AG, Germany). A portion of PC 
fi lm ( ∼ 1   cm 2 ) was positioned on top of a 2   cm 2  PE fi lm, and the two were sand-
wiched between two aluminum foils, heated to 150    ° C in a drying oven for 1   h and 
then compressed (10 bar pressure). The sample was then imaged at the sharp 
borderline of the PE/PC laminate and the single PE layer in the ATR mode 
(50    ×    50    µ m 2 ) and in transmission (260    ×    260    µ m 2 ). 

 The second system involved a  poly(ethylene terephthalate)  ( PET ) fi lm, coated 
with a 3 – 4   nm aluminum layer. By using a semiconductor laser, grooves with a 
width and distance of 4.8    µ m were written into the sample, in the form of a grid 
(tesa AG) and FT - IR/ATR imaging measurements performed within the area of 
the grid.  

  9.2.2.6.2   Evaluation and Results     The IR images of the analyzed sample areas 
were calculated by integration of the specifi c absorption bands (see Table  9.3 ). The 
integral absorbances were converted into a color code (see color scale beside the 
IR images). The visible image of Figure  9.14  showed a sharp separation line 
between the PC/PE polymer laminate and the single PE layer. This separation line 
can also be seen in the IR images of Figure  9.14  for the evaluations of PC -  and 
PE - specifi c absorption bands. The FT - IR/ATR spectra of the PE and PC areas are 
shown in Figure  9.15 .     

 Table 9.3     Integration range for the image evaluation of the 
polymer samples. 

  Sample    Band assignment    Integration range (cm  − 1 )  

  PC     ν (C = O)    1820 – 1740  
  PE     ν (CH 2 )    2960 – 2820  
  PET     ν (C = O)    1750 – 1695  
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 Figures  9.16  and  9.17  show graphs of the integral absorbance of PE and PC 
(FT - IR/ATR imaging measurement) and of PC (FT - IR imaging measurement in 
transmission) versus pixel number of a row (64 pixels) perpendicular to the PE/PC 
borderline between the laminate (PE/PC) and the single layer (PE) (50    µ m and 
260    µ m, respectively). The integral absorbances used for the calculation of the 
spatial resolution at 95% and 5% of the maximum integral absorbance (100%) are 
marked.   

 According to Sommer  et   al. , the spatial resolution is the distance between 95% 
and 5% of the maximum integral absorbance (100%)  [44] . The maximum integral 
absorbance was determined by averaging the maximum integral absorbances on 
the left and right sides of the border line, respectively (see marks in Figures  9.16  

   
  Figure 9.14     Visible image and FT - IR/ATR images of the 
borderline between PE and the PC/PE laminate (50    ×    50    µ m 2 ).  
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  Figure 9.15     FT - IR/ATR spectra of the PE (blue) and PC (red) areas.  
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  Figure 9.16     Graph of the integral absorbance of PE (black) 
and PC (grey) (FT - IR/ATR imaging measurement) versus 
pixel number of a row (64 pixel) perpendicular to the 
PE/PC borderline (50    µ m, 0.78    µ m per pixel). The integral 
absorbances at 95% and 5% of the maximum integral 
absorbance (100%) used for the calculation of the spatial 
resolution are marked.  
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  Figure 9.17     Graph of the integral absorbance of PC (FT - IR 
imaging measurement in transmission) versus pixel number 
of a row (64 pixel) perpendicular to the PE/PC borderline 
(260    µ m, 4.06    µ m per pixel). The integral absorbances at 95% 
and 5% of the maximum integral absorbance (100%) used for 
the calculation of the spatial resolution are marked.  
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and  9.17 ). The pixels with 95% and 5% of the maximum integral absorbance were 
then determined, and the distance (in  µ m) subsequently calculated from the 
number of pixels and the size of one pixel (ATR measurement: 50    µ m/64   =   0.78    µ m, 
transmission: 260    µ m/64   =   4.06    µ m). The results are summarized in Table  9.4 . 
Thus, for the ATR measurement a spatial resolution of approximately 6    µ m was 
achieved at 2880 and 1728   cm  − 1 ; for the measurement in transmission, a spatial 
resolution of 20    µ m at 1728   cm  − 1  was derived.   

 Figure  9.18  shows the visible image of the laser - induced grid on the aluminum -
 metallized PET fi lm (the dark lines indicate the PET) and the corresponding 
FT - IR/ATR image based on the PET - specifi c  ν (C = O) band. Figure  9.19  shows the 
FT - IR/ATR spectra of an exposed (irradiated) PET area (light gray) and of an alu-
minum - coated (non irradiated) area (dark gray); this spectrum clearly shows the 
dispersion - shaped features of a refl ection spectrum.   

 Table 9.4     Results of the experimental determination of spatial resolution for the polymer 
laminate ( PE / PC ) and the laser - imprinted grid on an aluminum - metallized  PET  fi lm. 

      Wavenumber (cm  − 1 )    Wavelength ( μ m)    Experimental  (and 
theoretical)  spatial 
resolution ( μ m)  a    

  ATR    Transmission  

  PE    ca. 2880    3.5    5.5 (1.8)     —   
  PC    ca. 1768    5.7    6.3 (2.9)    20.3 (17.3)  
  PET    ca. 1716    5.8    4.0 (3.0)     —   

    a  Values in parentheses are the theoretical (2 r ) values.   

   
  Figure 9.18     Visible image of a 60    µ m - wide grid written by a 
laser into an aluminum - metallized PET fi lm (dark lines   =   PET) 
and the corresponding  ν (C = O) FT - IR/ATR image.  
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 Figure  9.20  shows the integral absorbance of the n(C = O) band (PET) versus the 
pixels of a row perpendicular to the grid (50    µ m). According to the method 
described above, a spatial resolution of approximately 4    µ m could be derived with 
the 1716   cm  − 1  absorption band from this experiment.   

   
  Figure 9.19     FT - IR/ATR spectra of an exposed (irradiated) PET 
area (light gray) and of an aluminum - coated (non - irradiated) 
layer (dark gray).  

   
  Figure 9.20     Graph of the integral absorbance of the  ν (C = O) 
band (PET) versus the pixels of a row perpendicular to the 
grid (50    µ m). The integral absorbances at 95% and 5% of the 
maximum integral absorbance (100%) which were used for 
the calculation of the spatial resolution are marked.  
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 The results for the experimental determination of spatial resolution for the 
polymer laminate (PE/PC) and the laser - imprinted grid on the aluminum - coated 
PET fi lm are summarized in Table  9.4 . Whereas, a good agreement between the 
experimental and the theoretical (2 r ) values (in parentheses) was obtained for the 
transmission measurement and the aluminum - coated PET fi lm, relatively large 
deviations were observed for the ATR FT - IR measurements and the theoretical 
values of the PE/PC laminate. This discrepancy can most likely be attributed to 
the thickness step along the borderline between the PC/PE dual layer and the PE 
monolayer fi lm, and to the resultant nonoptimum contact of the polymer fi lm and 
the refl ection element in this area.     

  9.3 
 Applications of  FT  -  IR  Imaging for Polymer Research and Quality Control 

 One area of material science where FT - IR imaging has proved to be of extraordi-
nary importance, in terms of scientifi c and practical aspects, is that of polymer 
analysis and polymer physics. In order to illustrate the broad range of applicability 
in these disciplines, we will now discuss some selected examples in detail, ranging 
from phase separation in biopolymer blends, the use of polarized radiation to 
produce anisotropy images of inhomogeneously deformed polymer fi lms, and 
determination of the diffusion coeffi cient of D 2 O in an aliphatic polyamide. 

  9.3.1 
 Investigation of Phase Separation in Biopolymer Blends 

 The blending of different polymers is a frequently used technique in industrial 
polymer production to optimize the material ’ s properties. The biodegradable 
polymer  poly(3 - hydroxybutyrate)  ( PHB )  [45, 46] , for example, which can be pro-
duced by bacteria from renewable resources, has the disadvantage of being stiff 
and brittle. The mechanical properties of PHB, however, can be readily enhanced 
by blending with another biopolymer,  poly(lactic acid)  ( PLA )  [47] . In order to 
prepare the optimum blend, it must be noted that the miscibility of different 
polymers depends on their concentration, the temperature, and their structural 
characteristics  [48] . 

 Polymer blends of PHB and PLA have previously been analyzed with miscella-
neous methods by several other groups  [49 – 51] . In the following, the used of 
transmission FT - IR imaging will be demonstrated as an alternative approach 
towards a better understanding of the chemical and physical properties of these 
materials. 

 The FT - IR transmission spectra of the individual blend components PHB and 
PLA and of a PHB/PLA (50   :   50   wt%) blend fi lm are shown in Figure  9.21 a and b, 
respectively. In Figure  9.21 a, only a limited number of absorption bands are detect-
able which are specifi c for the individual blend components PHB and PLA. For 
FT - IR imaging, primarily the nonoverlapped left and right wings of the intense 



 ν (C = O) absorption bands in the blends (Figure  9.21 b) can be used to characterize 
PLA (1755   cm  − 1 ) and PHB (1724   cm  − 1 ), respectively.   

 The visible images and PHB -  and PLA - specifi c FT - IR images of two polymer 
blends of PHB/PLA (50   :   50   wt% and 30   :   70   wt%) are shown in Figure  9.22 . The 
polymers were blended by dissolving the components in the appropriate weight 
ratio in chloroform (p.a. grade), after which fi lm samples of thickness of 7 – 10    µ m 
were prepared by solution casting on surface - roughened microscope slides (to 
avoid interference fringes in the transmission spectra) and subsequent evapora-
tion of the chloroform at 35    ° C  in vacuo . Areas (260    ×    260    µ m 2 ) of these polymer 
fi lms were then analyzed in the transmission micro mode with the Bruker FT - IR 
imaging system (see Figure  9.3 ).   

 Figure  9.22 a (left) shows the visual image of the PHB/PLA (50   :   50   wt%) blend 
with dark, circular islands embedded in a light matrix. To prepare the FT - IR 
contour plots, the PHB -  and PLA - specifi c absorptions bands were integrated for 
all pixel spectra (PHB: 1720 – 1700   cm  − 1 ; PLA: 1800 – 1770   cm  − 1 ; baseline: 1880 –
 1600   cm  − 1 ). The FT - IR image based on the PHB - specifi c absorption band (Figure 
 9.22 a, right) indicates a higher concentration of PHB in the islands (red - colored 
areas) which correlate with the darker areas in the visual image. On the other hand, 
the matrix has a higher concentration of PLA which can be derived from the red -
 colored areas in the PLA - specifi c image (Figure  9.22 a, center). In contrast, within 
the available lateral resolution at this wavelength range ( ∼ 20    µ m), no phase separa-
tion could be observed in the FT - IR images of the PHB/PLA (30   :   70   wt%) blend 
fi lm, nor in the visible image (Figure  9.22 b). 

   
  Figure 9.21     (a) FT - IR transmission spectra of a PHB ( — ) and 
a PLA ( -  -  - ) fi lm (the inset shows the enlarged region of the 
2    ×     ν (C = O) absorption bands of PLA and PHB); (b) FT - IR 
transmission spectrum of a PHB/PLA (50   :   50   wt%) blend fi lm. 
 Reproduced with permission from Ref.  [52] ;  ©  2008, ACS 
Publications.   
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 For a detailed compositional analysis of the blend phases, different PHB/PLA 
blends ranging from 15   :   85   wt% to 85   :   15   wt% were analyzed using FT - IR imaging. 
To compare these blends in terms of phase homogeneity and composition, the 
peak maxima of the PHB  ν (C = O) band at 1723   cm  − 1  and PLA  ν (C = O) band at 
1759   cm  − 1 , respectively, were determined for the spectra with the highest absorp-
tion intensities for PLA and PHB. The PHB max /PLA max  intensity ratios were then 
mapped versus the concentration of PLA (wt%) (see Figure  9.23 ) for the different 
PHB/PLA blends. The data show clearly that the polymer blends with 15, 30, 60, 
70 and 85   wt% PLA exhibit only small differences in the PHB max /PLA max  intensity 
ratios for the PHB - rich and PLA - rich areas; such observations indicate that these 
blends are homogeneous one - phase polymer systems. The blends with 40 and 
50   wt% PLA, on the other hand, show signifi cant differences in the PHB max /PLA max  
intensity ratios of their PHB - rich and PLA - rich phases. Thus, the FT - IR images 
provide evidence that the blends are separated into two phases with different 
PHB/PLA compositions. These results were also confi rmed with  differential scan-
ning calorimetry  ( DSC ) measurements  [52] .   

 If a calibration line is drawn through the data points representing the miscible 
blends (15, 30, 60, 70 and 85   wt% PLA) in Figure  9.23 , the compositions of the 
two phases in the phase - separated blends (40 and 50   wt% PLA) can be derived. In 
the PHB/PLA (50   :   50   wt%) blend, the PHB - rich phase has a concentration of 
39   wt% PLA, while the PLA - rich phase contains 69   wt% PLA. For the PHB/PLA 

   
  Figure 9.22     (a) Visual image (left), PLA - specifi c FT - IR image 
(center) and PHB - specifi c FT - IR image (right) of a PHB/PLA 
(50   :   50   wt%) blend; (b) Visual image (left), PLA - specifi c FT - IR 
image (center) and PHB - specifi c FT - IR image (right) of a 
PHB/PLA (30   :   70   wt%) blend.  Reproduced with permission 
from Ref.  [52] ;  ©  2008, ACS Publications.   



(60   :   40   wt%) blend, 33   wt% and 71   wt% PLA were calculated for the PHB - rich and 
PLA - rich phases, respectively.  

  9.3.2 
 Imaging Anisotropic Materials with Polarized Radiation 

  9.3.2.1   Blends of  PHB  and  PLA  
 Recently, FT - IR imaging was also applied to analyze phase - separated PHB/PLA 
blend fi lms which had previously been oriented by uniaxial mechanical elongation 
 [53] . For this purpose, a selected area of the polymer fi lm was measured with 
radiation polarized parallel and perpendicular, respectively, to the drawing direc-
tion of the fi lm sample. From these data, the orientation functions of the PHB 
and PLA polymer chains were calculated and images representing the anisotropy 
of the phase - separated regions with respect to the two polymer components were 
constructed. The fi rst reports on the use of polarized radiation in combination 
with FT - IR imaging were made by Wilhelm  et al.   [54]  and Koenig  et al.   [6] . 

 The sample discussed here is a PHB/PLA blend (50   :   50   wt%) with an original 
thickness of 27    µ m, that was elongated to 50% strain in a miniaturized, computer -
 controlled stretching machine with a drawing rate of 10% strain per minute. 
During elongation, the white areas with a length of up to about 800    µ m ( ‘ islands ’ ; 
see Figure  9.24 a) developed, and for differentiation of the inhomogeneities there-
fore an imaging area of 3.9    ×    3.9   mm 2  was used (as indicated by the square). Based 
on the absorption intensities of a reference fi lm with known thickness, an image 
of the  ν (C = O) structural absorbance  A  0 PHB+PLA  (see below) was calculated (Figure 
 9.24 b) which represented the thickness variations of the analyzed fi lm area. Thus, 
the white islands of the visible image (blue areas of the FT - IR image) were much 
thinner (thickness  ∼ 5    µ m) compared to the darker matrix (red areas in the FT - IR 
image), which had a thickness of  ∼ 18    µ m.   

   
  Figure 9.23     PHB max /PLA max  ratio versus content of PLA for the 
PHB -  and PLA - rich image areas of the different blend 
compositions (see text).  Reproduced with permission from 
Ref.  [52] ;  ©  2008, ACS Publications.   
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 In polarization spectroscopy, the structural absorbance  A  0  is frequently calcu-
lated from the band intensities measured with radiation polarized perpendicular 
( A   ⊥  ) and parallel ( A   |  |  ), respectively, by Equation  9.1 :

   A
A AII

0
2

3
=

+⊥
    (9.1)   

 This intensity parameter eliminates the infl uence of anisotropy on the spectral 
data. In the present case, composition - specifi c images were calculated (Figures 
 9.25 a and b) with the structural absorbance ratios  A  0PHB / A  0PLA  and  A  0PLA / A  0PHB  to 
eliminate the signifi cant sample thickness inhomogeneities in the stretched 
polymer (see Figure  9.24 b). The  ν (C = O) bands were evaluated with a baseline 
from 1880 to 1600   cm  − 1 , and the peak areas under the left wing (from 1779 to 
1825   cm  − 1 ) and under the right wing (from 1718 to 1691   cm  − 1 ) were assumed to be 
characteristic for the PLA and PHB components, respectively. Figures  9.25 a and 
b indicate that, here too, the islands are PHB - rich and the matrix has a higher PLA 
content.   

 In order to monitor the changes in chain orientation as a consequence of the 
mechanical treatment, the  ν (C = O) absorption bands of the PHB/PLA blend fi lms 
were evaluated to calculate the orientation function  f   ⊥   (assuming a perpendicular 
transition moment of the  ν (C = O) absorption bands relative to the polymer chain 
direction) by:

   f
R

R
⊥ = −

−
+

2
1

2
    (9.2)  

where  R    =    A   |  |  / A   ⊥   is the  dichroic ratio  of the  ν (C = O) absorption bands evaluated 
from the polarization spectra. For more detailed experimental and theoretical 

   
  Figure 9.24     (a) Optical image and (b) FT - IR  ‘ thickness image ’  
(3.9    ×    3.9   mm 2 ) of the  ν (C = O)  A  0 PHB+PLA  of the 50% stretched 
PHB/PLA (50   :   50   wt%) blend fi lm.  



principles of FT - IR/FT - NIR polarization spectroscopy, the reader is referred to the 
relevant literature  [55 – 57] . 

 From the orientation function ( f   ⊥  ) images of the investigated sample area a 
negative orientation ( f   ⊥      ≈     − 0.4) can be derived for the PHB chains in the  ‘ islands ’  
(Figure  9.25 c), whereas the PLA orients positively in the same domains ( f   ⊥      ≈    0.3) 
(Figure  9.25 d). In the matrix, on the other hand, both PHB and PLA orient only 
very slightly positively ( f   ⊥   between 0 and 0.1) (Figures  9.25 c and d). Thus, the two 
phases of the unstretched PHB/PLA (50   :   50   wt%) blend fi lm with uniform thick-
ness respond completely differently to the applied mechanical stress: the PHB - rich 
phase is oriented to higher degrees and lower thickness with opposite orientation 
of the two polymer components (PHB negative, PLA positive), whereas the PLA -
 rich phase undergoes only a small elongation with low thickness reduction and 
very low positive orientation for both polymer components. 

 Figure  9.26 a shows the FT - IR polarization spectra of the 3.9    ×    3.9   mm 2  area 
discussed above, but measured with a single - element detector. Thus, a perpen-
dicular dichroism (corresponding to a preferential orientation of the polymer 
chains in the drawing direction) is observed for the  ν (C = O) absorption of PLA and 
a parallel dichroism (corresponding to a negative chain orientation) for the  ν (C = O) 
absorption of the PHB component. Figures  9.26 b and c show the FT - IR imaging 
polarization spectra of pixels located in the matrix and in an  ‘ island ’ , respectively. 

   
  Figure 9.25     FT - IR images (3.9    ×    3.9   mm 2 ) of (a)  A  0PHB / A  0PLA  
and (b)  A  0PLA / A  0PHB ; Corresponding orientation function ( f   ⊥  ) 
images of (c) PHB and (d) PLA of the 50% stretched PHB/
PLA (50   :   50   wt%) blend fi lm. For optimum comparison, the  f   ⊥   
images (c) and (d) are shown with the same color scale. 
 Reproduced with permission from Ref.  [53] ;  ©  2008, ACS 
Publications.   
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In accordance with the discussion of Figures  9.25 c and d, they refl ect a slightly 
positive orientation for PHB and PLA in the matrix and an opposite orientation 
for the two polymer components (PHB negative, PLA positive) in the  ‘ islands ’ . 
These fi gures clearly demonstrate that the polarization spectra recorded with a 
single - element detector cannot discriminate between the different orientation 
mechanisms in the phase - separated, anisotropic structure of this polymer blend.   

 For a non - phase - separated blend of PHB/PLA, the visual image of the elongated 
polymer appears homogeneous and has a uniform thickness  [53] . This observation 
is also refl ected in the images derived from the PHB -  and PLA - specifi c absorption 
bands. Furthermore, the orientation function  f   ⊥   of the PHB and PLA absorption 
bands is, over the whole area, negative and positive, respectively.  

  9.3.2.2   Stress - Induced Phase Transformation in Poly(vinylidene fl uoride) 
 Another example of the use of polarized radiation in imaging studies is the analy-
sis of  poly(vinylidene fl uoride) ( PVDF ) fi lms, which have been uniaxially elongated 
at different temperatures. Depending on the thermal, mechanical and electrical 
pretreatment, PVDF can exist in different modifi cations  [59] . The crystal structure 
of the crumpled II( α ) modifi cation can be converted into the all -  trans  I( β ) form by 
tensile stress below 140    ° C (see Figure  9.27 a). Figure  9.27 b shows the stress – strain 
diagrams of PVDF fi lms in the II( α ) form which have been elongated to 400% 
strain at 100 and 150    ° C. The observed decrease in stress upon elevation of the 

   
  Figure 9.26     FT - IR polarization spectra ( —  parallel and  -  -  -  -  
perpendicular to the strain direction) measured with a single -
 element detector of the whole area (a) and with one pixel in 
the matrix area (b) and  ‘ island ’  area (c) of the 50% elongated 
PHB/PLA (50/50   wt%) blend fi lm.  Reproduced with 
permission from Ref.  [53] ;  ©  2008, ACS Publications.   



experimental temperature to 150    ° C demonstrates that the applied stress is too low 
to induce the conformational phase transition.   

 In order to monitor the transformation of the II( α ) into the I( β ) modifi cation, 
the structural absorbance of the 975   cm  − 1  band ( γ  t (CH 2 )   +    ν  s (CF 2 ) vibration)  A  0 975  
has been used, because this band is characteristic for the II( α ) form  [60] . While 
the 975   cm  − 1  absorption band completely disappears in the fi lm sample that has 
been elongated to 400% strain at 100    ° C (Figure  9.28 , top), this II( α ) phase - specifi c 
band is retained during elongation of a fi lm at 150    ° C (Figure  9.28 , bottom). 

   
  Figure 9.27     (a) Conformational changes occurring in the 
II( α )    →    I( β ) transformation of PVDF; (b) Stress – strain 
diagrams of PVDF fi lms elongated to 400% strain at 100 and 
150    ° C.  Reproduced with permission from Ref.  [58] ;  ©  2008, 
Society for Applied Spectroscopy.   

   
  Figure 9.28     FT - IR imaging spectra measured in the clamp 
( — ) and stretched ( -  -  - ) regions (top) and in the shoulder ( — ) 
and neck ( -  -  - ) regions (bottom) of PVDF samples elongated 
to 400% strain at 100    ° C and to 100% strain at 150    ° C, 
respectively.  Reproduced with permission from Ref.  [58] ; 
 ©  2008, Society for Applied Spectroscopy.   
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The observed decrease in intensity is simply a consequence of the signifi cant 
fi lm thickness reduction in the elongated sample.   

 The optical image of the fi lm sample which had been elongated to 400% strain 
at 100    ° C is shown in Figure  9.29 a. The imaging area of 3.9    ×    3.9   mm 2  was selected 
at the borderline of the clamp area (undeformed material) and the neck region of 
the elongated part of the PVDF sample fi lm (at elongations of 400% strain, the 
neck extended over the whole sample between the clamps). The FT - IR image 
evaluated with the  A  0 975 / A  0    ν (CH)  (integration  A  0 975 : 996 – 961   cm  − 1 ;  A  0    ν (CH) : 3060 –
 2940   cm  − 1 ) band ratio is displayed in Figure  9.29 b, where the red and blue colors 
represent high and low values of this band ratio, respectively, corresponding to 
the extent of the stress - induced II( α )    →    I( β ) transformation. The image shown 
in Figure  9.29 c is based on the  f   ⊥   orientation function of the  ν (CH) intensity 
(assuming a perpendicular transition moment). While the undeformed clamp area 
appears homogeneous in both the content of II( α ) form (Figure  9.29 b, top) and 
isotropy ( f   ⊥      ∼    0) (Figure  9.29 c, top), the neck region below the clamp area is quite 
inhomogeneous with reference to the extent of II( α )    →    I( β ) transformation and 
anisotropy (variations of  f   ⊥   between 0.2 and about 0.5). Thus, the imaging tech-
nique offers the possibility of visualizing conformational as well as orientational 
inhomogeneities in this transition region.   

 The optical image of a PVDF fi lm stretched to 100% strain at 150    ° C is shown 
in Figure  9.30 a. In contrast to the 400% - elongated sample, here the shoulder – neck 
region has not extended over the whole sample region between the clamps, and 
three different sample regions are observable in the visual image (Figure  9.30 a): 
the undeformed clamp area (top), the (only very slightly oriented) shoulder region 
(center) and the deformed neck region (bottom).   

 Because of the experimental temperature of 150    ° C no signifi cant II( α )    →    I( β ) 
transformation is expected during elongation in the neck region. This is confi rmed 
by the  A  0   975 / A  0    ν (CH)  image (Figure  9.30 b) at the shoulder – neck border line. The 

   
  Figure 9.29     (a) Visual image; (b)  A  0 975 / A  0  ν (CH)  image; and 
(c)  f   ⊥  ( ν (CH)) image recorded of a 3.9    ×    3.9   mm 2  area in the 
unstretched/stretched regions of a PVDF sample elongated to 
400% strain at 100    ° C.  Reproduced with permission from Ref. 
 [58] ;  ©  2008, Society for Applied Spectroscopy.   



slight differences in the contour colors are mainly a consequence of the strong 
intensity decrease of the  ν (CH) reference band. In contrast to the conformational 
similarity of the shoulder/neck regions (Figure  9.30 b), a very strong difference 
could be detected in the anisotropy of these regions, as represented by the orienta-
tion function ( f   ⊥  ) image obtained with the 975   cm  − 1  absorption band (Figure  9.30 c). 
Values of  f   ⊥   between 0 and 0.2 were obtained for the shoulder region, whereas the 
neck region refl ected  f   ⊥   values in the range 0.4 – 0.6.   

  9.3.3 
 Diffusion of  D 2 O  into Polyamide 11 

 The diffusion of small molecules into polymeric materials is important for many 
areas of application, such as food packaging and protective clothing. Polyamides 
absorb small molecules such as water and alcohols, the process being accompa-
nied by a change in the melting temperature and glass transition temperature ( T  g ) 
 [61] ; there is also a strong infl uence on the mechanical  [62]  and electrical properties 
of the materials. Thus, measurement of the diffusion coeffi cient is crucial to both, 
a better understanding of the material transport mechanism, and for the design 
of materials with optimized permeation properties. Several types of diffusion 
behavior have been identifi ed  [63] . Fickian (or case I) diffusion follows the second 
law of Fick  [64] :
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2
    (9.3)  

where  c  is the concentration of the diffusant,  D  is the diffusion coeffi cient,  t  the 
time and  x  the distance along the diffusion direction. In general, Fickian diffusion 
is only observed in glassy systems when the diffusants are simple gases or solvents 
with small molecular diameters or partial solvents at very low temperatures and 

   
  Figure 9.30     (a) Visual image; (b)  A  0 975 / A  0  ν (CH)  image; and 
(c)  f   ⊥   (975   cm  − 1 ) image recorded of a 3.9    ×    3.9   mm 2  area in the 
shoulder/neck region of a PVDF sample elongated to 100% 
strain at 150    ° C.  Reproduced with permission from Ref.  [58] ; 
 ©  2008, Society for Applied Spectroscopy.   

 9.3 Applications of FT-IR Imaging for Polymer Research and Quality Control  327



 328  9 FT-IR and NIR Spectroscopic Imaging

penetrant activities. At temperatures and penetrant activities where the polymer 
is swollen, transport is often controlled by a combination of polymer relaxation 
and Fickian diffusion mechanisms. 

  Case II transport  occurs when the sorption is entirely controlled by stress -
 induced relaxations taking place at a sharp boundary separating an outer swollen 
shell, essentially at equilibrium penetrant concentration, from an unpenetrated 
glassy core. Ideally, this sharp boundary moves through the polymer at a constant 
velocity during case II transport.  Super - case II transport  occurs when the velocity 
of the case II sorption boundary is suffi ciently slow so that a Fickian tail may 
develop ahead of the sorption discontinuity  [63] . 

 In the following it will be shown that FT - IR imaging spectroscopy is a unique 
tool to visualize and study the penetration of water molecules into a polyamide 
fi lm. If D 2 O is used as a diffusant instead of H 2 O, the mobile NH - protons of the 
polyamide (in the present investigations, PA11) undergo a H/D - exchange in the 
accessible regions of the polymer. Most importantly, IR spectroscopy is a very 
convenient method to study this H/D - exchange by the observed isotope effects 
 [65, 66] . Because the H/D - exchange is directly linked to the diffusion of D 2 O into 
the polyamide, the FT - IR imaging technique can be applied to follow the diffusion 
process as a function of time and to monitor the lateral extension of the diffusion 
front. For this purpose, a 260    ×    260  µ m 2  area at a PA11/D 2 O interface was moni-
tored using FT - IR imaging spectroscopy. On the basis of the obtained FT - IR 
spectra, not only the type of diffusion but also the diffusion coeffi cient of D 2 O into 
PA11 can be calculated  [3, 12] . 

  9.3.3.1   Experimental 
 For the FT - IR imaging transmission measurements, a small piece of a PA11 fi lm 
(thickness  ∼ 10  µ m) was sandwiched between two CaF 2  disks with different dia-
meters (2 and 1.5   cm) and a thickness of 1   mm (see Figure  9.31 ). From DSC mea-
surements, a  T  g  of 46    ° C and a melting point of 180    ° C with a melting enthalpy of 
50   Jg  − 1     –    corresponding to a crystallinity of 23% ( ∆  H  (100% cryst. PA 11)    =   222   J   g  − 1 )    –    were 
determined for the PA 11 under investigation. In order to prepare a void - free stack 
of the CaF 2  windows and the PA11 fi lm, the sandwich was heated to 250    ° C on a 
heating plate, and at 1 – 2   min after melting of the PA11 fi lm the heating plate was 
switched off and the polymer allowed to cool to room temperature under the pres-
sure of a small metal cylinder (158   g). The spectrum recorded with this sample 
was then used as the reference ( t  0  measurement). The D 2 O was then carefully 
dropped onto the rim of the larger CaF 2  base plate and allowed to penetrate into 
the free space between the CaF 2  windows under capillary action. When this process 
was complete, excess D 2 O was removed, the CaF 2  windows were sealed with vase-
line to keep the D 2 O between the capillary space, and the time - dependent measure-
ments were started. As shown in the 260    ×    260  µ m 2  image of the  ν (NH) absorption 
band in Figure  9.31 , this sample preparation provided a perfect boundary between 
the polymer and the D 2 O diffusant. The FT - IR imaging spectra were recorded at 
23    ° C over a time period of 165.2   h. During the fi rst day, the measurement intervals 
were initially 10   min, but these were reduced with progressing diffusion to 15 and 



   
  Figure 9.31     Sample preparation for FT - IR imaging studies of the diffusion of D 2 O into PA11.  

30   min. During the second day the measurement intervals were further reduced 
to 1 – 2   h, and from the third day onwards only one to two measurements per day 
were made. The spectra were baseline - corrected and the peak area of the  ν (NH) 
absorption band was determined between 3380 and 3220   cm  − 1  for construction of 
the images. The  ν (NH) band was the optimum signal for this purpose, because 
its short wavelength position ( ∼ 3    µ m) allowed the highest possible spatial resolu-
tion for the images to be obtained (see Section  9.2.2.6 ). For a consistent color code 
of the FT - IR images, the smallest and largest values of the absorbance were set 0 
and 100%, respectively.    

  9.3.3.2   Results and Discussion 
 Figure  9.32  shows the FT - IR spectra of the PA11 fi lm before and after deuteration 
for 8.2   h. The intensity of the  ν (NH) absorption band at 3308   cm  − 1  decreased, and 
simultaneously two new absorption bands developed at 2469 and 2411   cm  − 1 . This 
band doublet was ascribed to Fermi resonance of the evolving  ν (ND) band and the 
Amide II (1470   cm  − 1 )   +   Amide III (975   cm  − 1 ) combination band of the deuterated 
PA11  [67] . Furthermore, a signifi cant decrease in the Amide II band of the 

   
  Figure 9.32     FT - IR spectra of PA11 before ( — ) and after 8.2   h ( -   -   - ) deuteration.  
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nondeuterated polymer at 1543   cm  − 1  and a concurrent increase of the analogous 
Amide II ( ν (CN)   +    δ (ND)) band of the deuterated polymer at 1470   cm  − 1  was 
observed.   

 In Figure  9.33 , the 260    ×    260    µ m 2  FT - IR images of the  ν (NH) band with the bor-
derline between PA11 and D 2 O are shown for three different deuteration times. On 
the left - hand side (magenta and red) the PA11 fi lm, and on the right - hand side (blue) 
the D 2 O are mapped. Initially ( t    =   0   min), no D 2 O has diffused into the polymer fi lm, 
and thus the PA11 part of the image is homogeneously magenta - colored. After 
193   min, the deuteration front has progressed into the PA11 area, and this has led 
to a decrease in the  ν (NH) absorbance with an accompanying change to a red color. 
With advancing deuteration time, the NH/ND exchange front moves further into 
the PA11 area such that, after 493   min (Figure  9.33 , right) the front of the NH/ND 
exchange has reached the end of the measurement area. Continuing deuteration 
leads to a further fading of the red color on the PA11 side towards orange.   

 Figure  9.34  shows the  three - dimensional  ( 3 - D ) FT - IR images based on the 
 ν (NH) absorption band for deuteration time  t    =   0   min and  t    =   193   min. At  t    =   0   min, 
no ND - functionalities have developed and the  ν (NH) absorption intensity of the 
PA11 region provides a homogeneous color contour plane. At the borderline 
between PA11 and D 2 O the intensity values decrease extremely sharply and become 
zero in the region of D 2 O. After 193   min diffusion of D 2 O into the PA11 fi lm, the 
image of the PA11 area is no longer homogeneous, and a decrease in the inte-
grated  ν (NH) band intensity, starting at the diffusion front towards the PA11/D 2 O 
borderline, can be observed as a result of the H/D exchange.   

 The percentage accessibility ( Z (%)) of the PA11 fi lm for deuterium exchange 
was calculated by the equation  [66] :

   Z
A NH A NH

A NH
t t

t

% %( ) =
( ) − ( )

( )
⋅=

=

0

0

100     (9.4)  

where  A t (NH)  and  A t=0 (NH)  are the integral absorbance values measured at deu-
teration time  t  and  t    =   0 (before the start of the deuteration), respectively. 

   
  Figure 9.33     FT - IR images of the  ν (NH) band representing the 
measurement area of 260    ×    260    µ m 2  after 0   min (left), 193   min 
(center) and 493   min (right) deuteration. The dashed lines 
indicate the diffusion front.  
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 For the calculation of accessibility as a function of the deuteration time, only 
the spectra of the pixels in a square area of 48.8    ×    48.8    µ m 2  (144 pixels) on the 
PA11 side, starting at the PA11/D 2 O borderline, were used (see Figure  9.35 ). The 
average value of the integrated absorbance of the  ν (NH) band for this area then 
corresponds to transmission spectra of a PA11 fi lm where D 2 O has access to a 
surface area of 48.8    ×    10    µ m 2 . In Figure  9.36  the corresponding accessibility  Z (%) 
is plotted versus deuteration time. As also observed in previous investigations  [66] , 
the accessibility of the PA11 fi lm rises steeply initially and then levels off into a 
plateau after about 60   h of deuteration, with a maximum value of 28%. From the 
DSC measurements, an amorphous fraction (the regions which are normally 
expected to be accessible to diffusants) of approximately 77% was determined. 

   
  Figure 9.34     3 - D FT - IR images based on the integrated  ν (NH) 
absorbance ( y  - axis) for the measurement area ( x  -  and  z  - axes, 
260    ×    260    µ m 2 ) for deuteration time  t    =   0   min and 193   min. 
The dashed line indicates the NH/ND exchange front.  

   
  Figure 9.35     Image area used for the evaluation of 
the percentage accessibility  Z (%) of the NH/ND 
isotope exchange (square area of 
48.8    ×    48.8    µ m 2 ).  
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This value is much larger than the maximum accessibility of 28% derived from 
Figure  9.36 . This discrepancy can be partly attributed to the experimental tempera-
ture of 23    ° C, which is signifi cantly below the  T  g  value of 46    ° C of PA11, since Wu 
 et al.   [66]  identifi ed an accessibility of 47% for the same polyamide at 50    ° C. 
However, this result also shows, that the frequently used simple two - phase model 
of polymers is certainly not applicable, and intermediate states of order    –    which 
are not accessible for the penetration of D 2 O    –    must be taken into account (see 
below).   

 For the determination of the type of diffusion, Snively and Koenig  [3]  have used 
the equation

   d At= α     (9.5)  

where  d  is the pathlength of the diffusion front (in the present investigations, the 
distance of the NH/ND exchange front to the PA11/D 2 O borderline),  A  is a pro-
portionality factor,  t  the time and  α  the diffusion exponent. The diffusion exponent 
is characteristic of the diffusion process, and can take on the values of 0.5 and 1.0 
for the limiting cases of Fickian (case I) and case II diffusion, respectively. For an 
anomalous diffusion process the value is 0.5    <     α     <    1.0, and for the super - case II 
type  α  is    >    1  [64] . The logarithmic form of Equation  9.5  is given in Equation  9.6 , 
and allows the determination of the diffusion exponent  α  from the slope of a plot 
of log  d  ( d  measured in  µ m) versus log  t  ( t  measured in s).

   log log logd A t= + ⋅α     (9.6)   

 In order to monitor the diffusion front, the spectra of pixels in fi ve neighboring 
rows extending perpendicularly to the PA11/D 2 O borderline into the PA11 area 
were evaluated. The fl uctuations of the integral absorbance of the  ν (NH) band was 
compensated by calculation of the average spectrum corresponding to the fi ve 
neighboring pixels at the same distance from the PA11/D 2 O phase separation. The 

   
  Figure 9.36     Accessibility of PA11 fi lm for D 2 O versus deuteration time at 23    ° C.  



position of the diffusion front was defi ned as the distance from the PA11/D 2 O 
borderline to the pixel column, where the fi rst signifi cant decrease in the  ν (NH) 
band is detectable (see also Figure  9.34 ). From the plot of log  d  versus log  t  (Figure 
 9.37 ) a diffusion exponent  α  of 0.36 was derived which can be interpreted in terms 
of a Fickian - type diffusion.   

 Rafferty and Koenig  [12]  also calculated the diffusion coeffi cient from FT - IR 
imaging spectra. In a Fickian system, the position  d  of the penetrant front versus 
time can be described by the equation

   d kt= 1 2
    (9.7)  

where  t  is time and  k  is a proportionality constant that is related to the square root 
of the diffusion coeffi cient  D  (see below). The average diffusion coeffi cient  D  can 
be calculated from the initial gradient of the sorption curve of a gravimetrically 
determined mass uptake  [63, 66] . For this purpose, the values of  M t /M max   are 
plotted versus the square root of time according to Equation  9.8 :

   M
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where  M t   is the mass uptake at time  t ,  M max   is the mass uptake at saturation and 
 l  is the thickness of the fi lm. For their FT - IR spectroscopic imaging measure-
ments, Rafferty and Koenig  [12]  used the following equations:
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    (9.9)   

   
  Figure 9.37     Plot of log  d  (distance of the D 2 O penetrant front 
from the borderline PA11/D 2 O in  µ m) versus log  t  
(deuteration time in s).  
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 By combining Equation  9.7  with Equation  9.9 , the following relationship is 
obtained:

   k D=
4

π
    (9.10)   

 Thus,  D  can be calculated from the proportionality constant  k  by:
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 In Figure  9.38  the distance  d  (in cm) of the NH/ND exchange front to the bor-
derline PA11/D 2 O is plotted versus the square root of time  t  (in s). By linear 
regression, a proportionality constant  k  of 5.77    ×    10  − 5  was derived, and fi nally a 
diffusion coeffi cient  D  of 6.54    ×    10  − 10    cm 2    s  − 1  was calculated using Equation  9.11 .   

 Thus, the FT - IR imaging technique allows the diffusion of D 2 O into a PA11 fi lm 
to be monitored via spectroscopic changes of the NH/ND isotope exchange in the 
FT - IR imaging spectra. Furthermore, the value of the diffusion exponent was close 
to a Fickian - type diffusion. Based on the assumption that the diffusion of D 2 O and 
NH/ND exchange occur simultaneously, a diffusion coeffi cient of 6.54    ×    10  − 10    cm 2    s  − 1  
was calculated from the kinetic data of the H/D exchange for the fi rst 8   h period.   

  9.3.4 
 Conclusions 

 The above - discussed examples demonstrate that FT - IR spectroscopic imaging can 
be applied in a multiplicity of applications for the characterization of polymers. 

   
  Figure 9.38     Plot of the distance  d  (in cm) of the D 2 O 
penetrant front from the borderline (PA11/D 2 O) versus the 
square root of the deuteration time  t  (in s).  



Thus, apart from the visualization of phase separation in polymer blends    –    
including the quantitative determination of blend components    –    FT - IR imaging 
can provide a thickness map of the investigated sample area. By using polarized 
radiation, anisotropy images based on orientation function values can be con-
structed. And last, but not least, the potential of FT - IR imaging for time - resolved 
investigations of diffusion phenomena has been demonstrated. In conclusion, 
these examples show that a much more detailed picture of the chemical, physical 
and orientational properties of polymers, with reference to their lateral distribu-
tion, may be obtained from imaging studies.   

  9.4 
  NIR  Imaging Spectroscopy for Quality Control of Pharmaceutical Drug Formulations 

 Although, NIR spectroscopic imaging was only introduced on a large scale follow-
ing the initial development of FT - IR spectroscopic imaging, during the past few 
years it has achieved signifi cant progress and proved to be extremely important in 
the fi eld of agricultural (Chapter  7 ), food (Chapter  8 ) and especially pharmaceutical 
quality control  [26, 29] . Because most of these applications are performed in 
diffuse - refl ection mode, the recently discussed issues of the effective pathlength 
of NIR radiation into solid materials  [36] , together with previous studies relating 
to the penetration depth of NIR radiation  [28, 30 – 35] , demonstrate that further 
research is required in order to prove the representative nature of quantitative 
determinations by NIR imaging measurements. 

 In the application discussed below, the derivation of quantitative results from 
NIR spectroscopic imaging data of solid drug formulations is reported. In order 
to assess the validity of these procedures, however, the results will be compared 
to the compositional analysis of the same sample set by conservative NIR spectro-
scopic diffuse - refl ection measurements with a single - element detector  [68] . 

  9.4.1 
 Quantitative Determination of Active Ingredients in a Pharmaceutical 
Drug Formulation 

 The solid drug formulations investigated comprised mixtures (in varying concen-
trations) of the three crystalline, active ingredients acetylsalicylic acid (ASA), ascor-
bic acid (ASC) and caffeine (CF), with the two amorphous excipients cellulose and 
starch in a fi xed ratio and constant composition. A set of 48 samples was prepared 
by milling varying amounts of the active ingredients over a concentration range 
of 13.77 to 26.04   wt% with equal amounts (40   wt%) of a 1   :   3 (w/w) mixture of cel-
lulose and starch for 5   min in a Retsch mill (type BMO; Retsch GmbH, Haan, 
Germany). By using  scanning electron microscopy  ( SEM ), the fi nal particle size 
of the mixtures after milling was determined to range from 10 to 30    µ m. 

 The NIR hyperspectral images were recorded on a MatrixNIR system (Malvern, 
formerly Spectral Dimensions, Olney, MD, USA) (see also Figure  9.1 ) with four 
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quartz - halogen lamps as NIR sources, a LCTF as monochromator and a thermo-
electrically cooled 256    ×    320 InGaAs FPA detector in 118 channels (960 – 1662   nm 
or 10   417 – 6017   cm  − 1 ) with a spectral resolution of 6   nm at 1600   nm (corresponding 
to 24   cm  − 1 ). Each channel was scanned 10 times using a 64   ms integration time. 
The image FOV was 50    ×    62   mm 2  with approximately 200    ×    200    µ m 2  pixels, and 
the total image acquisition time was around 5   min. For the imaging measure-
ments, the powder drug formulations were presented in a circular sample holder 
(FOSS, Hillerod, Denmark) with an outer diameter of about 40   mm and a sample 
layer thickness of 3   mm. In order to eliminate the shadow effects of the sample 
holder, a  region of interest  ( ROI ) with a radius of 80 pixels (ca. 16   mm) was chosen, 
resulting in a sample pixel count of  ∼ 20   000 points. All sample images were brack-
eted with sets of fi ve images of Spectralon standard tiles with 2, 25, 50, 75 and 
99% refl ectance values (Labsphere Inc., North Sutton, NH, USA), and a second -
 order polynomial fi t was used to create a transform function that translated the 
instrument counts to % refl ectance. Finally, the refl ectance data were transformed 
into log 1/R ( ‘ absorbance ’ ) spectra and a  multiplicative signal correction  ( MSC ) 
was applied as data pretreatment. Euclidian distances to a mean spectrum were 
computed and then thresholded to eliminate outlier pixels from each hyperspectral 
image (any pixel greater than fi ve standard deviations was eliminated). This 
procedure typically left about 18   000 pixels with clean spectra for further data 
treatment. 

 From the total sample set (48 samples), 45 samples were used as calibration 
samples. The three samples excluded from the calibration set were selected on the 
basis of a representative variation of their active ingredient concentrations, and 
fi nally used as  ‘ unknown test samples ’  to predict the content of their active ingre-
dients.  Partial least squares  ( PLS ) models for each active ingredient were devel-
oped with the Unscrambler Software (version 9.6; CAMO Software AS, Oslo, 
Norway) from the MSC - pretreated median spectra of all pixels of each of the 45 
calibration sample images. Based on these calibration models, the predictions of 
the active ingredient content for each pixel of the imaging data of the three test 
samples and their evaluation as histograms, contour plots and RGB plots was 
performed with Matlab v. 7.0.4 software (see below). 

 The conventional single - element detector NIR spectra were measured on a 
Bruker Vector 22N FT - NIR spectrometer (Bruker Optik GmbH) equipped with a 
tungsten - halogen light source, a quartz beam splitter, a thermoelectrically cooled 
InGaAs detector and a light - fi ber - coupled diffuse - refl ection probe. The data acqui-
sition and manipulation was performed using OPUS software (version 4.0.24; 
Bruker Optik GmbH). A home - made sample cell consisting of a cylindrical brass 
cup of 37   mm height and an internal diameter of 10.25   mm in the top 7   mm 
(to fi t the probe head with a 10.0   mm external diameter) and a bore hole with an 
internal diameter of 4.0   mm for the residual 30   mm height (corresponding to the 
light - fi ber bundle diameter of the probe head) was used. The interior of the sample 
cup was sand - blasted and subsequently gold - coated. For each measurement, the 
30/4   mm  Ø  volume of the sample cell was fi lled with the powder drug formulation 
and the probe head positioned on top of the sample in the 7/10.25   mm  Ø  opening 



(Figure  9.39 )  [68] . Each sample was measured in duplicate (repacks) with a spectral 
resolution of 2   cm  − 1 , and 256 scans were accumulated. For the development of the 
calibration models, the mean spectra of the replicate measurements were used. 
To match the spectral resolution of these spectra to the imaging data (24   cm  − 1 ), 
the spectral resolution was mathematically reduced with the OPUS software in 
two data sets with 16   cm  − 1  and 32   cm  − 1 , respectively. The spectral range between 
9050 and 7450, 7100 – 5570 and 5300 – 4000   cm  − 1  was selected for quantitative evalu-
ation and a MSC was applied. The data pretreatment and development of the PLS 
calibration models for each active ingredient (based on 45 of the 48 samples) was 
also performed with the Unscrambler Software for the data sets with 16 and 
32   cm  − 1  spectral resolution.   

 In Figure  9.40 a the conservative NIR diffuse - refl ection spectra (reduced to 
32   cm  − 1  spectral resolution) of the three test samples not contained in the calibra-
tion set are compared to typical single - pixel imaging spectra (Figure  9.40 b). Apart 
from the limited wavenumber range of the imaging spectra, their SNR is much 
lower than for the conservative diffuse - refl ection spectra. For the development of 
PLS models in the quantitative evaluation of active ingredient content, the median 
spectra calculated from all pixels of each image of the 45 calibration samples have 
been used. The improvement in SNR compared to the single - pixel spectra is dem-
onstrated for the three test samples in Figure  9.40 c. In Table  9.5 , selected calibra-
tion/cross - validation parameters, including the correlation coeffi cient,  random 
mean - square error of prediction  ( RMSEP ) and number of factors, for the PLS 

     Figure 9.39     Schematic representation of the 
diffuse - refl ection measurements with a single - element 
detector FT - NIR spectrometer.  Reproduced with permission 
from Ref.  [68] ;  ©  2008, Society for Applied Spectroscopy.   
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  Figure 9.40     (a) NIR spectra of the three test samples 

measured in diffuse - refl ection with a single - element detector; 
(b) NIR single - pixel imaging spectra of the three test samples; 
(c) NIR median imaging spectra of the three test samples. 
 Reproduced with permission from Ref.  [68] ;  ©  2008, Society 
for Applied Spectroscopy.   
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models of the imaging median spectra of the 45 calibration samples are bracketed 
between the corresponding data for 32 and 16   cm  − 1  spectral resolution of the 
diffuse - refl ection measurements with the single - element detector for ASA, ASC 
and CF. Despite the availability of a much smaller wavenumber region and the 
inferior SNR of the imaging median spectra (see Figures  9.40 a and c), only slightly 
higher RMSEP values are obtained for the active ingredients. Based on these cali-
bration models, the composition of the three test samples (samples 22, 24, 38) 
have then been predicted on the one hand from their conservative diffuse - refl ec-
tion single - element detector spectra (with 16 and 32   cm  − 1  spectral resolution), and 
on the other hand from their ROI single - pixel spectra. This last - mentioned predic-
tion step has been performed by applying the  B  matrix of the inverse calibration 
model,  Y    =    XB  (where  X  is the matrix of the 45 median imaging calibration spectra 
and  Y  is the reference concentration matrix) to the ROI single - pixel spectra of the 
three test samples. When this is done, as many predicted concentration values as 
pixels in the images of the three test samples have been obtained (see Chapter  2 ). 
The individual pixel concentration values have then been used to display a distribu-
tion map where the  x  - axis shows the concentration predicted values and the  y  - axis 
the pixel counts (with the central value of the histogram representing the predicted 
concentration; see Figure  9.41 a). The predicted concentrations for the three active 
ingredients of the three unknown samples are shown in Table  9.6 , and refl ect the 
comparable prediction capability of the single - pixel imaging data with reference 
to the single - element detector measurements.      

 Table 9.5     Calibration parameters of the  PLS  models for  ASA , 
 ASC  and  CF  for the two measurement techniques. 

  Single - element detector (16   cm  − 1 )  

      RMSEP    Corr. coeff.    No. of factors  

  ASA    0.51    0.98    6  
  ASC    0.65    0.97    6  
  CF    0.51    0.99    2  

  Imaging median spectra (24   cm  − 1 )  

  ASA    0.71    0.96    4  
  ASC    0.65    0.97    2  
  CF    1.03    0.95    4  

  Single - element detector (32   cm  − 1 )  

  ASA    0.54    0.98    6  
  ASC    0.67    0.96    6  
  CF    0.52    0.99    2  
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  9.4.2 
 Spatial Distribution of the Active Ingredients in a Pharmaceutical Drug Formulation 

 The quantitative determination of the active ingredients forms only part of the 
quality control requirements for a pharmaceutical drug formulation. Equally 
important is the homogeneous distribution of the active ingredients in the formu-
lation, and in this respect the inherent advantage of imaging measurements comes 
into play and provides the relevant information. As an example, in Figure  9.41  the 

   
  Figure 9.41     Typical imaging plots for test sample 22. (a) Pixel 
count/pixel concentration histograms for the three active 
ingredients; (b) 3 - D contour plot in 5   wt% level intervals; 
(c) 2 - D color image plot.  Reproduced with permission from 
Ref.  [68] ;  ©  2008, Society for Applied Spectroscopy.   
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 Table 9.6     Prediction results for the three test samples obtained from the diffuse - refl ection 
single - detector measurements (for 16 and 32   cm  − 1  spectral resolution) and the single - pixel 
imaging spectra. 

  NIR Diffuse - refl ection single - element detector spectroscopy  

  (Spectral resolution 16   cm  − 1 , spectral calibration range: 9050 – 7450, 7100 – 5570, 
5300 – 4000   cm  − 1 )  

      Sample 22    Sample 24    Sample 38  

  Reference    Prediction    Reference    Prediction    Reference    Prediction  

  ASA    20.01    20.16    16.52    16.75    23.39    22.86  
  ASC    25.26    25.01    20.87    20.15    16.27    16.80  
  CF    14.73    15.05    22.61    22.57    20.34    20.28  

  NIR Diffuse - refl ection imaging spectroscopy  

  (Spectral resolution 24   cm  − 1 , spectral calibration range: 10   417 – 6017   cm  − 1 )  

      Sample 22    Sample 24    Sample 38  

  Reference    Prediction    Reference    Prediction    Reference    Prediction  

  ASA    20.01    19.35    16.52    16.41    23.39    22.91  
  ASC    25.26    24.57    20.87    21.17    16.27    16.16  
  CF    14.73    16.13    22.61    22.69    20.34    20.51  

  NIR Diffuse - refl ection single - element detector spectroscopy  

  (Spectral resolution 32   cm  − 1 , spectral calibration range: 9050 – 7450, 7100 – 5570, 
5300 – 4000   cm  − 1 )  

      Sample 22    Sample 24    Sample 38  

  Reference    Prediction    Reference    Prediction    Reference    Prediction  

  ASA    20.01    20.19    16.52    16.68    23.39    22.85  
  ASC    25.26    24.99    20.87    20.23    16.27    16.80  
  CF    14.73    15.05    22.61    22.56    20.34    20.31  

width of the concentration distribution over all pixels and the lateral distribution 
of the three active ingredients over the imaged area of test sample 22 are shown 
in different representations: 

   •      Histograms of the number of pixels versus concentration for the three active 
ingredients (Figure  9.41 a). The bold vertical line represents the concentration 
predicted by the corresponding PLS model.  
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   •      3 - D color contour plots of the concentration (at 5   wt% level intervals) (Figure 
 9.41 b).  

   •      Two - dimensional color image contour plots of the imaged sample area 
(representing the top view of the 3 - D color contour plots) (Figure  9.41 c).    

 The histograms in Figure  9.41 a show that CF has the lowest concentration 
uniformity over the imaged sample area compared to ASC and ASA (the same 
phenomenon has been detected for samples 24 and 38). This observation is in 
agreement with the larger particle size inhomogeneity of the original CF material 
(which was obviously not completely eliminated by milling) compared to ASC and 
ASA. Although, the heterogeneity of the imaged sample will always be the domi-
nant factor, the broader width of the CF - histogram could also be partly indicative 
of the lower precision of the calibration model for this active ingredient (see also 
Table  9.6 ). Figures  9.41 b and c represent the lateral distributions of the different 
concentration levels of the three active ingredients over the imaged sample area. 

 The lateral distribution of all three active ingredients may be represented in one 
RGB image. As an example, Figure  9.42 a shows the RGB images for the three test 

   
  Figure 9.42     (a) RGB (red: ASA, green: ASC, blue: CF) plots for 
the three test samples; (b) The corresponding color scale. 
 Reproduced with permission from Ref.  [68] ;  ©  2008, Society 
for Applied Spectroscopy.   
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samples 22, 24 and 38, based on the RGB scale included in Figure  9.42 b (the white 
areas in the RGB images correspond to pixels of which the spectra had been identi-
fi ed as outliers). On the one hand, the different compositions of the three  ‘ unknown ’  
test formulations can be clearly visually discriminated by the tint of their RGB 
images, and on the other hand the spatial distribution of the active ingredients 
becomes available from these data.    

  9.4.3 
 Conclusions 

 Notwithstanding the comparatively large penetration depth and effective path-
length of NIR radiation into particulate matter (see Section  9.2.1 ), and the limited 
wavenumber range and low SNR of NIR imaging spectra, this technique provides 
a powerful approach to combine the quantitative investigations of multicompo-
nent systems with the acquisition of information with regards to the spatial dis-
tribution of components in the investigated samples. Thus, PLS calibration models 
based on NIR imaging spectra have yielded results that were comparable to those 
of calibration models of single - element detector diffuse - refl ection spectra for the 
prediction of the active ingredient content.   
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  10.1 
 Introduction 

 Novel approaches to  Fourier transform - infrared  ( FT - IR ) spectroscopic imaging are 
needed to fully utilize the power of this chemical imaging technique. In our group, 
we have developed a range of approaches and applications of FT - IR imaging in 
both  attenuated total refl ection  ( ATR ) and transmission modes for a broad range 
of materials and chemical systems. It has been demonstrated that ATR - FT - IR 
imaging has the potential for greatly improved spatial resolution compared to 
conventional transmission microscopy, with the achieved resolution of FT - IR 
imaging being beyond the diffraction limit for IR light in air. As a consequence, 
this development opened up many new areas amenable to study, which were previ-
ously ruled out by the inadequate spatial resolution    –    for example, to study the 
distribution of a drug in a tablet, or to image the cross - section of a human hair 
without recourse to a synchrotron. 

 ATR imaging with visible light can be observed most easily if a glass of water 
is held in the hand, when the skin or fi nger print making contact with the glass 
can be observed through the surface of the water, while the remainder of the light 
is totally internally refl ected. The area where the surface of the glass makes contact 
with the skin destroys the total refl ection and forms an image of the fi nger print. 
An ATR image of a fi nger print has been demonstrated by Harrick  [1] , who 
obtained the ATR image by illuminating a prism with a fi nger pressed on the large 
surface and then focusing the light that had been internally refl ected off the prism 
onto a photo fi lm. The same principle described by Harrick has been applied using 
ATR - FT - IR spectroscopic imaging. Here, instead of shining visible light, and using 
a photo fi lm to record the projected image, the IR light was shone through an 
interferometer, an IR transparent crystal, and onto a  focal plane array  ( FPA ) detec-
tor  [2] . 

 The applicability of ATR - FT - IR imaging ranges from micro ATR imaging using 
a microscope objective to the use of ATR accessories with focused or expanded 
optics, without need to use the microscope. The ATR crystal in a prism shape 
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provide much versatility in terms of sample preparation. Thus, the range of areas 
in the samples that could be measured simultaneously using FPA detectors and 
prism - shape ATR crystals was from 500    ×    700    µ m 2  to 1.6    ×    2.1   cm 2  (see Section 
 10.2 ). The measured area with macro ATR imaging depends not only on the spe-
cifi c optics used in these ATR accessories but also on the size of the pixels in the 
array detector. Most currently available detectors have a pixel size of 40    ×    40    µ m 2  
or 60    ×    60    µ m 2 . 

 One of the main advantages of FT - IR spectroscopic imaging in the ATR mode 
is that it requires minimal or no sample preparation. The minimal penetration of 
IR light into the sample when using the ATR mode also allows one to image 
samples in contact with aqueous solutions, or materials containing a high water 
content. As with any technique, however, FT - IR imaging in the ATR mode has its 
limitations. In one of the fi rst reports on the application of ATR - FT - IR imaging, 
a sample of a polymer blend [polyamide 6.6, poly(tetrafl uoroethylene) and silicon 
oil] was analyzed using both FT - IR imaging in transmission and ATR modes, 
and the results were compared  [3] . Moreover, these studies represented the fi rst 
occasion that chemical images obtained by both FT - IR imaging and Raman micro-
spectroscopy for the same samples had been compared. The chemical images were 
also compared to the results obtained with  scanning electron microscopy  ( SEM ), 
energy - dispersive X - ray spectrometry and microthermal imaging analysis. Remark-
ably, this direct comparison between four different imaging techniques resulted 
in an excellent agreement between them! The agreement between FT - IR images 
obtained by transmission and ATR was helped by the fact that the thickness of the 
polymer fi lm was 5    µ m. It was also highlighted in this report that, because of the 
limited penetration of the evanescent wave into the sample, the images obtained 
by the ATR - FT - IR method would only refl ect the composition of the surface layer 
of the 1 – 3    µ m - thick sample, depending on the type of ATR crystal employed, the 
angle of incidence and the wavelength of the light  [3] . However, it was also noted 
that the small thickness of the probed layer in ATR imaging might also be advanta-
geous. For example, imaging in transmission may average through the thickness 
of the sample, and microtoming of samples is usually required for thicknesses 
less than the domain size in order to ensure that imaging in transmission does 
not result in the production of spurious images  [4] . The differences between the 
two FT - IR imaging modes (transmission and ATR), when discussed in more 
detail, were the advantages and limitations of the particular imaging mode in 
terms of spatial resolution, the image  fi eld of view  ( FOV ) and possible artifacts  [4] . 
Micro ATR imaging has the advantage of having a better spatial resolution  [5 – 7] , 
while the sample preparation is relatively simple (there is no need to microtome 
and polish). 

 There is a general belief that pressure must always be applied to a sample in 
order to obtain its FT - IR image in the ATR mode. Whilst it is important to ensure 
homogeneous contact between the sample and the ATR crystal, such that the 
image would not represent only the quality of the contact, there is often no need 
to apply pressure in this situation. Examples in macro ATR imaging include the 
swelling pharmaceutical tablets or biomedical tissues, whereby a good and repro-
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ducible contact is achieved simply by placing the samples onto the surface of the 
ATR crystal. Clearly, special care should be taken to ensure that no excessive pres-
sure is applied when working in micro ATR mode, where the use of an ATR 
microscope objective and a small contact area with the sample may result in sig-
nifi cant pressures. However, modern IR microscopes can employ commercial or 
home - made pressure - monitoring devices to ensure that a controlled and reproduc-
ible contact is achieved in the micro ATR mode. The introduction of various macro 
ATR accessories has provided the opportunity to obtain chemical images with 
different fi elds of view, without recourse to using an IR microscope. In this 
chapter, we describe some general principles and applications of FT - IR imaging 
in the ATR mode, with the focus on new developments achieved primarily in our 
laboratory. While some applications in transmission are discussed, the main focus 
of the chapter is on FT - IR imaging in micro and macro ATR modes, and also to 
present some new, previously unreported, information.  

  10.2 
 The Versatility of  ATR  -  FT  -  IR  Imaging 

 Previously, it was diffi cult to obtain ATR - FT - IR images without the use of a FPA 
detector because, when using the mapping approach, the crystal is in contact with 
the sample during the measurement, such that the sample might be deformed 
and the distribution of different components in the mixture altered. Furthermore, 
if the crystal remains in contact with the sample during translation from one 
measuring location to another, smearing of the sample    –    or even its physical dam-
age    –    might reduce the reliability of the ATR method for mapping. Yet, if the crystal 
is detached from the sample when moving from one measuring point to another, 
then the time required to acquire a single map will be extended and the multiple 
contacts between the crystal and sample might cause damage to the sample. As a 
consequence, Esaki  et al.   [8]  have developed a new ATR crystal with a hexagonal 
shape that allows ATR mapping, but without the problems stated above. Here, the 
crystal is translated with the sample attached, while the size of the ATR map is 
limited only by the size of the crystal used (ca. 2    ×    7   mm 2  map). As a specifi c ATR 
crystal is required  [9]  for this type of measurement, it is currently not as widely 
available as the hemispherical crystals. Lewis  et al.   [10]  have demonstrated ATR 
mapping with a hemispherical germanium crystal on a photographic fi lm lami-
nate. Their study involved mapping an image by translating the ATR crystal 
together with the sample, such that there was no smearing of the sample. However, 
while this method eliminated any potential damages to the sample, it remained a 
relatively long process for mapping a relatively small area. Recently, this ATR 
mapping approach has been further developed by the use of a linear array detector 
rather than a single - element detector  [11] . While this new development speeds up 
the mapping process to a point where it could rival the FPA approach  [12] , it also 
has some other advantages over the FPA detector, such as a more fl exible imaging 
size (up to ca. 600    µ m before signifi cant optical aberration takes place) and a larger 
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spectral range in the lower wavenumber spectral region (down to 700   cm  − 1 ). 
However, the inability to acquire all of the spectra at the same time would serve 
as a limitation when studying dynamic systems. The spatial resolution and depth 
of penetration of this approach is variable across the imaged area, however, the 
further optimization of the method is still in progress. 

 When using the FPA detector and a stationary ATR crystal, all spectral informa-
tion across the whole imaging area is captured simultaneously  [5] . The snap - shot 
feature of this FPA imaging approach enables the study of dynamic systems, such 
as drug dissolution  [13, 14] , parallel analysis of many samples in a  high - throughput  
( HT ) manner  [15 – 18] , studies of biopolymers and biomedical systems  [19 – 23]  and 
diffusion processes  in situ   [24 – 27] . FT - IR imaging in transmission has been used 
in many polymer applications  [13, 28 – 31] , with recent exciting applications includ-
ing micro patterning reactions  [32] . As there is no rastering with a fi xed ATR 
crystal, the imaging area or FOV is defi ned by the size of the FPA and the optics. 
Patterson  et al.   [12]  have shown that it is possible to combine FPA imaging and 
mapping methods by using the translating ATR crystal to image a larger area of 
the sample although, as with other mapping methods, this is limited to the study 
of static systems. Another approach to obtain fl exibility in the imaging with dif-
ferent FOVs, without sacrifi cing the ability to study dynamic systems, is to employ 
different optical arrangements or to use different sizes of detector. With this 
option, the number of pixels measured per image and the FOV is defi ned by the 
number of pixels of the detector, the size of each pixel, and the optics used to 
project the image onto the detector. Today, a range of different sizes of FPA detec-
tors is available commercially, from 32    ×    32 to 256    ×    256. While the earlier versions 
of the FPA detector had a pixel size of approximately 62    µ m, with a relatively slow 
performance, the new - generation FPA detectors may have a pixel size of ca. 40    µ m 
and be up to 10 - fold faster in operation. However, FPA detectors are often expen-
sive, the choice of detector size is still limited, and switching between detectors 
requires an alignment procedure to be carried out which often is not preferable. 
It is, therefore, logical to obtain the fl exibility in FOV by using different optical 
arrangements. 

 When considering a 64    ×    64 new FPA (pixel size ca. 40    µ m), and with no mag-
nifi cation, the FOV of the image would be approximately 2.6    ×    2.6   mm 2 . In an IR 
microscope equipped with a 10 ×  Ge ATR objective, the magnifi cation would be 
40 × , and hence the theoretical image size would be 65    ×    65    µ m 2  (measured image 
size of 50    ×    50    µ m 2  using the old FPA with a 20 ×  Ge ATR). Although the image 
size is relatively small, a high spatial resolution (4    µ m) can be achieved. It is 
important that this value of achieved spatial resolution is obtained using the strin-
gent test of measuring the distance between the 5% to 95% points on an absor-
bance profi le, obtained through a sharp interface between two materials with 
similar refractive indices  [7] , rather than artifi cial resolution markers that use 
refl ective and transparent features. There is a small degree of fl exibility in the FOV 
when using different objectives and FPA detectors, although the range would be 
rather small unless a rastering or mapping approach were to adapted (as discussed 
above). For imaging with a larger FOV using a stationary ATR crystal, the IR light 
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is directed to a large sample compartment instead of to the IR microscope. This 
chamber allows different accessories to be used; specifi cally, ATR accessories with 
an inverted prism can be employed that make measurements more convenient 
for many applications. The optical arrangement using an inverted prism is shown 
schematically in Figure  10.1 .   

 By using an inverted prism diamond ATR accessory, it has been shown that 
the FOV was approximately 500    ×    700    µ m 2  (ca. 5 ×  magnifi cation)  [7] . For the 
inverted prism ZnSe ATR accessory, which does not contain any lenses (e.g., Oil 
Analyzer; Specac, UK)  [14] , the FOV becomes approximately 2.6    ×    3.6   mm, with 
the change in the imaging aspect ratio being related to the geometry of the prism 
and the angle of incidence  [7] . Other novel developments include a new diamond 
ATR accessory designed specifi cally for imaging applications, an inverted prism 
ZnSe ATR accessory with expanding lenses  [33]  and an accessory which allows 
ATR imaging with variable angles of incidence  [34]  (the applications of these are 
discussed later in the chapter). The different FOVs and spatial resolutions of the 
ATR accessories are summarized in Table  10.1 .   

  10.2.1 
 Micro  ATR  Imaging 

 The main advantage of micro ATR imaging with the use of a microscope objective 
is the high spatial resolution images that can be achieved. The high refractive index 
of the ATR crystal used for this type of imaging (for a Ge crystal this is 4) greatly 
increases the numerical aperture of the system, and hence it is possible to achieve 
a spatial resolution beyond the diffraction limit of light in air when compared to 
transmission mode, where the Ge crystal is not used  [6, 35] . High - spatial resolu-
tion FT - IR images up to the diffraction limit can also be obtained using a bright 
synchrotron source (cf. Chapter  13  and  [36] ). However, as these images are obtained 

   
  Figure 10.1     Schematic diagram of the optical arrangement using an inverted ATR prism.  
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by rastering, the method is usually relatively slow and lacks the capability to study 
dynamic systems, as spatial resolution is still limited by the diffraction of light 
traveling in air. The  signal - to - noise ratio  ( SNR ) of the spectra collected, on the 
other hand, is often better than for those spectra measured with FPA detectors, 
and may in fact be complementary to the latter approach. Measurements using 
the FPA detector in micro ATR mode can be achieved within a few minutes of 
acquisition time, and the SNR is often suffi cient for most applications. With this 
advantage, micro ATR imaging enables the measurement of small features that 
were not previously attainable. The high resolving power also enhances the detec-
tion limits for heterogeneous materials  [37] . Hence, micro ATR imaging has 
opened a range of new opportunities for the study of complex materials, polymer 
blends and pharmaceutical tablets, where the ROI is often in the micrometer scale 
 [3, 7, 19, 38 – 42] .  

  10.2.2 
  ATR  -  FT  -  IR  Imaging with a Diamond Accessory 

 In ATR - FT - IR spectroscopy, the crystal used to create the internal refl ection must 
be IR - transparent, while the refractive index must be relatively high to permit the 
measurement of a wide range of materials. One such widely used material is 

 Table 10.1     Summary of the capabilities of different  ATR  -  FT  -  IR  imaging approaches. 

      Large ZnSe    Variable angle 
ATR accessory  

  Medium ZnSe    Diamond ATR    Micro ATR 
with 10 ×  Ge 
objective  

  Field of view/mm  ×  
mm   a     

  15.4  ×  21.5     ∼ 3.9  ×  5.5    2.6  ×  3.6     ∼ 0.5  ×  0.7    0.064  ×  
0.064  

  Spatial resolution 
(estimated)  

  500    150    60    15 – 20    4  

  Combined with a UV 
detector  

  No    No    Yes    Yes    No  

  In situ compaction 
of samples  

  No    No    No    Yes    No  

  High - throughput 
applications (number 
of samples)  

  Yes ( > 100)    Yes (100)    Yes (50)   b       Yes (10)   b       No  

  Depth profi ling    No    Yes    No    Yes    No  

    a  Sizes quoted are obtained with new 64  ×  64 FPA detector (40    µ m pixel size).  
   b  Only possible when using a microdroplet dispensing system.   
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 diamond , the high integrity of which has proven to be a valuable property, as a 
high contact pressure between the sample and crystal may need to be applied in 
order to improve the reproducibility of the spectrum, without damaging the crystal 
 [43, 44] . Such integrity also makes possible the study of polymer materials under 
high - pressure environments  in situ   [45 – 47] . Recently, a diamond ATR accessory, 
although not originally designed for imaging purposes, has been shown to be 
applicable for the acquisition of FT - IR images  [4, 7, 48] . Further developments of 
this have led to the introduction of a new diamond ATR accessory, the Imaging 
Golden Gate (Specac, UK), which is designed specifi cally for imaging applications. 
The aspect ratio of the ATR images obtained using the original diamond ATR 
accessory had to be corrected by a factor of 1.4 due to the geometry of the ATR 
crystal and the angle of incidence of the IR source  [7] . However, the new accessory 
incorporated a pair of zinc selenide/germanium lenses and a new mirror confi gu-
ration patented by Specac  [49] , which supposedly corrects any optical aberrations 
and the aspect ratio of the images. 

  10.2.2.1   Comparison of  ‘ New ’  and  ‘ Old ’  Diamond  ATR  Accessories 
 The ATR - FT - IR images of  poly(dimethyl siloxane)  ( PDMS ) on a copper grid from 
the nonimaging diamond ATR accessory with the old FPA detector, and from the 
new imaging diamond ATR accessory with the new FPA detector, are shown in 
Figure  10.2 . The images are generated based on the distribution of the absorbance 
of spectral bands at 1150 – 950   cm  − 1 . The visible image of the copper grid used is 
shown in Figure  10.2 c, and the distance between each square is approximately 
63    µ m. Previously, Chan and Kazarian  [7]  reported the results of a similar experi-
ment with the same imaging system, but using  poly(vinyl acetate)  ( PVA ) pressed 
onto the same copper grid; the size of the chemical image captured was shown to 
be approximately 820    µ m    ×    1140    µ m. However, with the imaging diamond ATR 
accessory and the new FPA detector, it could be seen that there were about nine 
squares in the  x  - direction and 8.4 squares in the  y  - direction; thus, the new imaged 
area was about 570    µ m    ×    530    µ m. The aspect ratio of the measured area was also 
shown to have improved, from 1   :   1.4 to 1   :   1.1. Moreover, the new image of the 
copper grid not only showed a greater magnifi cation but also appeared to be 
sharper and a better resemblance to the 5 ×  optical image of the grid.   

 It should be noted that the measured area differed from that specifi ed by the 
manufacturer, of 650    µ m    ×    650    µ m. The aspect ratio and magnifi cation of the 
measured area are largely dependent on the alignment of the system. In a typical 
IR macro imaging system, the ATR accessory is placed in the large sample com-
partment that can be adjusted along the path of the IR beam. In order to obtain a 
well - focused image, the two most important parameters are the position of the 
objective lens in the ATR accessory, and the image distance that can be taken as 
the path distance of the IR light from the objective lens to the FPA detector. Spe-
cifi c to this imaging system, the new ATR accessory was aligned slightly left of 
the default factory position, for which the imaging Golden Gate ATR accessory is 
designed, and this may help to explain the slight deviation from the ideal aspect 
ratio and increase in magnifi cation.   
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  10.2.3 
  ATR  -  FT  -  IR  Imaging with an Expanded Field of View 

 For studies where a larger FOV would be advantageous, a large ZnSe inverted 
prism with a set of expanded optics can be used. The design of these optics utilized 
expanding lenses and slightly concaved surfaces of the ZnSe crystal (except for 
the measurement surface) to increase the size of the FOV.  [33]  Hence, the area 
that could be measured in a single snapshot using this accessory would be 
approximately 15.4    ×    21.5   mm 2 ; a schematic diagram of the accessory is shown in 
Figure  10.3 .   

 The large measuring area of this imaging method enables the simultaneous 
measurement of many samples. This accessory has been used to measure the 
spectrum of over 100 samples in one single image acquisition, and the dissolution 
study of fi ve different pharmaceutical formulations, simultaneously  [33] . However, 

   
  Figure 10.2     ATR - FT - IR images of a copper grid with a thick 
fi lm of PDMS pressed behind and measured using (a) the 
ordinary and (b) the new imaging diamond ATR accessory; 
(c) the white light image of the copper grid measured with a 
5 ×  objective.  
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with the expansion of the IR beam, the imaged pixel size will be increased, together 
with a decrease in the  numerical aperture  ( NA ) of the system. The spatial resolu-
tion is signifi cantly lower compared to that of the nonexpanded ATR imaging 
method, which makes this approach unsuitable for imaging samples with smaller 
features, although it would provide an overall distribution over a larger area. A 
further discussion of this imaging method, as applied to HT usage, is provided 
later in the chapter.  

  10.2.4 
  ATR  -  FT  -  IR  Imaging with Variable Angle of Incidence 

 Depth profi ling of materials using variable - angle ATR spectroscopy is a well - 
established approach  [50 – 53]  that is based on the fact that the depth of penetration, 
 d p  , is a function of the angle of incidence in an ATR measurement. The relation-
ship between  d p  , the wavelength of light,  λ , the refractive indices of the ATR crystal 
and the sample ( n  1  and  n  2 , respectively) and the angle of incidence,  θ , is shown in 
Equation  10.1 .
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 A combination of variable - angle ATR spectroscopy with the FPA detector pro-
vided the possibility of obtaining  three - dimensional  ( 3 - D ) images with chemical 
information  [34] . This experiment is made possible by using a macro sample 
chamber that has suffi cient space for the variable angle of incidence ATR acces-
sory, and the associated alignment procedure. In order to demonstrate this imaging 
approach, a thin fi lm of  poly(vinyl pyrrolidone)  ( PVP ) was cast from a solvent on 
one half of the imaging FOV, followed by the pressing on top of a thick PDMS 
fi lm  [34] . ATR - FT - IR images at different angles of incidence were then captured; 
the results are shown in Figure  10.4 , with the color scale normalized against the 
maximum PDMS absorbance observed in each image. These images show how 

   
  Figure 10.3     Schematics diagram showing the optics of the 
accessory which gives an expanded FOV.  
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the thick PDMS fi lm is distributed in the measured area. It is clear that, when the 
thin fi lm of PVP is not present, a strong PDMS absorbance can be observed (left -
 hand side of the image). However, at an angle of incidence of 52    ° , which corre-
sponds to a depth of penetration,  d p  , of approximately 1.3    µ m, no PDMS could be 
observed on the side where the ATR crystal was covered by the thin fi lm of PVP; 
this was shown by the zero absorbance of PDMS (represented as the dark blue on 
the color scale). At 45    °  ( d p     =   1.7    µ m), a small PDMS absorption (navy blue) could 
be seen through the PVP layer, while the PDMS absorption became stronger (light 
blue) when the angle of incidence decreased to 41    °  ( d p     =   2.3    µ m). This straightfor-
ward study showed clearly that information from different layers of the sample 
can be obtained simply by changing the angle of incidence, while the lateral dis-
tribution could be readily measured using the FPA detector. Moreover, this 
approach could be applied to study heterogeneity in both lateral and axial direc-
tions for those layers of samples adjacent to the surface of the ATR crystal.   

 It is important to note here that the variable - angle ATR accessory was originally 
designed for single point measurements, and therefore there is a scope to improve 
the quality of the images and optimize the image size from the optical design 
aspect. Nevertheless, a major potential clearly exists for the use of variable - angle 
ATR - FT - IR imaging with heterogeneous materials, notably biomedical materials 
such as skin  [34] .  

  10.2.5 
 Quantitative  ATR  -  FT  -  IR  Imaging 

 As with  ‘ ordinary ’  ATR spectroscopy, ATR - FT - IR imaging results can be analyzed 
quantitatively, some recent examples including the study of tablet dissolution in 
water. In this case, the concentration profi les of  hydroxylpropylmethylcellulose  
( HPMC ) and niacinamide, at different stages of the dissolution process, were uti-
lized to provide an understanding of the drug release mechanism  [54] . Using this 
technique, it could be shown that the concentration profi les of different compo-
nents could be obtained with the  partial least squares  ( PLS ) method. Here, with 

   
  Figure 10.4     FT - IR images of a thin fi lm of PVP covering half 
of the imaging area with a large piece of thick PDMS pressed 
on top.  
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concentration profi les readily measurable, it is possible to monitor other parame-
ters, such as diffusion type (i.e., Fickian versus non - Fickian mechanism of diffu-
sion).  In situ  ATR - FT - IR spectroscopic imaging has also been used to investigate 
the polymer interdiffusion of PVP and  poly(ethylene glycol)  ( PEG ), under high 
pressure CO 2   [55] . The diffusion mechanism of the system was described based 
on the spectroscopic imaging data, and it was found that CO 2  molecules dissolved 
in the polymeric system greatly enhanced the interdiffusion process. These two 
examples have shown that valuable information can be acquired via ATR - FT - IR 
spectroscopic imaging studies, thus providing an aid for the development of new 
mathematical models in the analysis of dynamic processes. 

 Quantitative analysis is made possible by employing the Beer – Lambert law; 
here, when the pathlength ( l ) of the sample is kept constant, the absorbance ( A ) 
at a wavenumber is proportional to the molar concentration ( c ) of the absorbing 
species (Equation  10.2 ). In this way, a calibration curve can be produced, either 
by measuring the absorbance of a number of samples of various known concentra-
tions, or by identifying the molar absorptivity ( ε ) from reference sources and the 
pathlength in the measurement. For transmission measurements, the pathlength 
is usually equal to the thickness of the sample. In ATR measurements, this is to 
be taken as the effective pathlength, and can be calculated using Equation  10.3  for 
nonpolarized light  [34] .
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 It is important to note that the measurement should operate at least a few 
degrees above the critical angle in order to avoid a strong dispersion of the refrac-
tive index effect to the spectrum. 

 It has been reported that an absorbance gradient was observed across an ATR -
 FT - IR spectroscopic image when measuring a homogeneous paraffi n oil using a 
FastIR ATR accessory. The explanation for this phenomenon was that the angle 
of incidence ( θ ) was not uniform across the imaging plane  [56] . Should the angle 
of incidence change across the imaging plane, the effective pathlength will be dif-
ferent, and hence the absorbance would not be the same, even if the concentration 
of the sample were uniform. Apparently, the alignment of the optics in the acces-
sory is crucial to the occurrence of this absorbance gradient effect, and therefore 
it is important to ensure that the ATR accessories used in imaging studies are well 
aligned if quantitative results are important to the study. 

 To demonstrate that the gradient effect can be removed in an aligned system, 
similar experiments were performed by measuring a homogeneous sample of 
mineral oil (refractive index c 1.48), using both the ZnSe ATR accessory and the 
diamond ATR accessory (Supercritical Fluid Analyzer, Specac, UK). Both results 
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showed a relatively homogeneous distribution of the integrated absorbance in the 
range of (1480 – 1420   cm  − 1 ) over the whole imaged area (see Figures  10.5  and  10.6 ). 
For the ZnSe ATR accessory, the mean integrated absorbance was approximately 
2.1 arbitrary units (a.u.) with a standard deviation of  ± 0.09   a.u., while for the 
diamond ATR accessory the mean integrated absorbance was approximately 
3.5    ±    0.26   a.u. The remainder of the statistical results are summarized in Table 
 10.2 . Notably, the ZnSe ATR accessory had a better SNR due to the intrinsic design 
of the equipment (a better throughput of energy). The difference in mean inte-
grated absorbance could be explained by the difference in the average angle of 
incidence. It has been reported previously that the angle of incidence is not neces-
sarily the same as the specifi cation provided by the manufacturer  [47] . Rather, it 
is very much dependent on the alignment of the spectrometer and the ATR acces-
sory, which may of course vary from system to system. The fi ndings presented in 
Figures  10.5  and  10.6  are important because they show that the acquisition of 
reliable quantitative imaging data is possible with the use of macro ATR accesso-
ries. But, the fi ndings also highlight the fact that the  choice  of accessory and its 
 alignment  are crucial if such data are to be obtained in this way.       

  10.3 
 Applications of  ATR  -  FT  -  IR  Imaging in the Materials Sciences 

  10.3.1 
 Study of the Polymer/Carbon Fiber Interface 

 Micro - carbon fi bers with a 5    µ m diameter, embedded in a polymer matrix, have 
been manufactured as a composite product with improved mechanical properties 
that result from the synergy of  the two materials. An understanding of  inter -
facial properties in such materials is key to their design and manufacture. The 

 Table 10.2     Statistical summary of the integral absorbance of 
mineral oil at the 1480 – 1420   cm  − 1  band. 

      ATR accessory  

  ZnSe    Diamond  

  Refractive Index    2.4    2.4  
  Included no. of pixels    4009    4035  
  Mean absorbance (a.u.)    2.1    3.5  
  Standard deviation (a.u.)    0.09    0.26  
  Upper limit (a.u.)    2.39    4.34  
  Lower limit (a.u.)    1.87    2.68  
  Excluded no. of pixels    87    61  



   
  Figure 10.5     ATR - FT - IR image of mineral oil measured with a 
ZnSe ATR accessory showing the integrated absorbance at 
1480 – 1420   cm  − 1 . The histogram showing the number of 
detector pixels for different values of the integrated 
absorbance at the same range for the ATR - FT - IR 
measurement.  
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  Figure 10.6     ATR - FT - IR image of mineral oil measured on a 
diamond ATR accessory showing the integrated absorbance at 
1480 – 1420   cm  − 1 . The histogram showing the number of 
detector pixels for different values of the integrated 
absorbance at the same range for the ATR - FT - IR 
measurement.  
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measurement of IR spectra from the interfacial area between the micro - carbon 
fi ber cross - sections can easily be obtained using a micro ATR imaging approach, 
with a microscope objective fi tted with a Ge crystal. As the carbon fi ber absorbs 
all wavelengths in the mid - IR region (it is a black body), the distribution of micro-
fi bers in the polymer matrix shown in Figure  10.7  can be observed by monitoring 
changes in absorbance in the 3500 – 3000   cm  − 1  spectral region, where the polymer 
matrix does not have any spectral bands. The size of the microfi ber shown in the 
micro ATR - FT - IR image is approximately 5    µ m, which is very similar to the actual 
fi ber size and demonstrates the spatial resolving power of this imaging technique. 
The spectra extracted from the polymer matrix area close to the microfi bers have 
been compared to those extracted from the bulk. The difference spectrum (not 
shown) has revealed that the spectra extracted near the fi bers have an extra band 
at 1011   cm  − 1 . An image generated by plotting the integrated absorbance of this 
band across the imaged area is shown in Figure  10.7 . The resultant image showed 
that the material in the polymer matrix that has this extra band appears to be dis-
tributed near the carbon fi bers, although this is due to a specifi c manufacturing 
process (further details of which cannot be revealed here as the sample is propri-
etary). Nonetheless, it is important to note that this result can only be achieved by 
utilizing the high spatial resolution offered by micro ATR - FT - IR imaging. It is also 
important to note that the interfacial area between the fi ber and the polymer matrix 
is very small, and thus the diffraction of light    –    which is also present in the ATR 
measurements    –    will affect the quality of the image (Figure  10.7 b). Nevertheless, 
the consistency of its distribution with the distribution of fi bers, coupled with an 
ability to extract its spectrum, is signifi cant in our understanding of the design of 
these novel composite materials.    

   
  Figure 10.7     ATR - FT - IR images of the polymer matrix showing 
the distribution of (a) carbon fi ber; (b) distribution of the 
absorbance of the band at 1011   cm  − 1 . Image size is 
50    µ m    ×    50    µ m.  

(a) (b)

Carbon Fibre (3500-3000 cm-1) Polymer near fibres (1032-944 cm-1)



  10.3.2 
 Polystyrene, Polyethylene Blend: The Effect of a Compatibilizer 

 The mixing of polymers is an important process in the polymer industry since, 
by combining the strength of different polymers through blending, new products 
with desirable physical properties can be produced  [2] . FT - IR imaging with a micro 
ATR objective has been used to study the effect of a compatibilizer on the mixing 
of two immiscible polymers, namely  polystyrene  ( PS ) and  low - density polyethylene  
( LDPE ). The compatibilizer used in this study is a triblock copolymer of 
 polystyrene -  b  - poly(ethylene - butylene) -  b  - polystyrene  ( SEBS ). The blends are pre-
pared by using a microextruder that allows small amounts of the materials to be 
blended  [2] ; this is an important point, as a major advantage of FT - IR imaging 
with the micro ATR objective is the minimal sample preparation. The sampling 
pathlength is independent of the sample thickness, such that there is no need to 
perform microtoming. The two polymers can easily be characterized by their spe-
cifi c absorption bands at 1492   cm  − 1  and 1450   cm  − 1  for PS, and the band at 1466   cm  − 1  
for LDPE. 

 Two batches of PS/LDPE blend, one containing 5% SEBS and the other without 
compatibilizer, were produced. The FT - IR images of both blends were subse-
quently generated by plotting the distribution of the integrated absorbance of the 
corresponding spectral bands of each component with a carefully selected base-
line; the integral values were then plotted across the imaged area. The results (see 
Figure  10.8 ) showed the image of PS distribution to be complementary to that of 
PE distribution, indicating that a good contact had been established between the 
sample and the Ge ATR crystal. In the absence of the compatibilizer, the blend 
exhibited a large segregation of the LDPE and PS, whereas the images of the blend 
with 5 wt% compatibilizer showed a more disperse - type structure. The PS domains, 
which ranged between 5 and 15    µ m in size, were seen to be dispersed within the 
LDPE matrix. It is important to note here that the small PS domains could only be 
revealed with suffi cient spatial resolving power, and that micro ATR - FT - IR imaging 
represented the most suitable method for imaging this type of sample  [2] .     

  10.4 
 Applications of  ATR  -  FT  -  IR  Imaging in the Pharmaceutical Sciences 

  10.4.1 
 Imaging of Compacted Tablets 

 The ATR - FT - IR method is particularly suitable for the spectroscopic analysis of 
pharmaceutical tablets, mainly due to the minimal sample preparation required 
and the possibility of obtaining quantitative chemical information from the sample. 
Such advantages are important with this type of sample, because it is diffi cult to 
microtome a tablet into the suitable thicknesses (usually  < 10    µ m) that are often 
needed for transmission studies. The diffuse - refl ection technique is also often very 
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diffi cult to calibrate for quantitative analysis. Hence, ATR - FT - IR imaging has 
become a very useful tool for studying the distribution of different components 
within compacted tablets  [35, 54, 57 – 61] . 

 Typically, the contact area of the ATR crystal is circular, with a diameter in the 
order of 100    µ m. Such an area is small enough to establish, very easily, a homo-
geneous and intimate contact between the ATR crystal and the tablet. To test the 
procedure, a model tablet containing approximately 3 wt% caffeine in a matrix of 
starch and  hydroxypropylmethylcellulose  ( HPMC ), in a ratio of about 4   :   6, was 
compacted and imaged using the micro ATR method; the results are shown in 
Figure  10.9 . The distribution of starch complemented that of the HPMC, support-
ing the assumption that a good contact had been formed between the crystal and 
the tablet. The images using a micro ATR approach revealed in great detail how 
the different components were distributed in the tablet. For example, caffeine 
particles of less than a few micrometers could be easily detected, although the 
images were actually somewhat misleading as to the amount of starch and HPMC 
that existed in the tablet, due to the relatively small sampling volume used for the 
imaging measurements. Several images at different locations of the sample were 

Without compatibilizer With compatibilizer 

(a) PS 

(b) LDPE 

10 µm 

   
  Figure 10.8     ATR - FT - IR images showing the distribution of the 
absorbance band of (a) PE and (b) LDPE with and without 
compatibilizer.  



required in order to obtain results that were statistically signifi cant, assuming that 
the determination of the amounts of each component was the objective of the 
study. Alternatively, a larger area of the sample could be measured by using dif-
ferent optical arrangements. In order to image with a larger FOV, the shape of the 
tablet is an important issue. Tablets manufactured in the pharmaceutical industry 
often have curved surfaces to avoid chipping during the various stages of process-
ing and transportation, but this curvature limits the size of the image that can be 
recorded in a single measurement. Compressing the tablet, by applying pressure, 
may achieve a good contact over a larger surface area, without greatly altering the 
original distribution of the different components, but will risk fracturing the tablet 
during the measurements. Another approach would be to compact the tablet 
directly onto the measuring ATR crystal surface and to perform the measurements 
 in situ ; this approach is shown schematically in Figure  10.10 .   

 The latter approach enables measurement of the compacted tablet during and 
after the process of compaction, and can be used to evaluate the effect of pressure 
on the distribution of the different components and the density of the tablet  [60] . 
The  in situ  compaction study is only possible by using hard ATR crystals, due to 
the high compressive force used for tablet compaction. Consequently, diamond 
is the material of choice here, and use of the diamond ATR accessory to obtain 
ATR - FT - IR images of compacted tablets has been demonstrated previously 
 [35] . ATR - FT - IR images of a model pharmaceutical formulation containing 

   
  Figure 10.9     Micro ATR - FT - IR images of a tablet showing the 
distribution of caffeine, starch and HPMC.  

50 µm

Caffeine Starch HPMC 

   
  Figure 10.10     Schematic diagram showing the idea of in situ 
imaging of tablet compaction using a diamond ATR 
accessory.  
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approximately 56 wt% starch and 44 wt% caffeine, compacted and measured  in 
situ  on the diamond ATR accessory, are shown in Figure  10.11 . The results showed 
that images with a larger FOV better represented the actual composition of the 
tablet.    

  10.4.2 
  ATR  -  FT  -  IR  Imaging of Tablet Dissolution 

 An understanding of the mechanism of drug release from a pharmaceutical for-
mulation is important for the safe and effective design of tablets and pharmaceuti-
cal formulations. ATR - FT - IR spectroscopic imaging has been shown to be a 
valuable asset in such studies, and has allowed an insight to be gained into many 
processes, such as the polymorphism of drugs  [14, 18, 62] , polymer swelling  [63] , 
the effect of pH of the dissolution medium on drug release  [59] , the effect of drug 
loading and sample preparation methods  [54, 64] . 

 Apart from an ability to acquire thousands of IR spectra simultaneously within 
a matter of seconds, thus allowing dynamic systems to be studied for FT - IR 
imaging with the FPA detector  [14, 22, 30] , this type of study is not only made 
possible by the ATR approach but also allows the study of samples within an 
aqueous environment. To perform the same experiment using the transmission 
approach represents a major challenge, due to the very strong absorption of water 
in the mid - IR region. Previous attempts at transmission - mode measurements 
have required the use of deuterated water and a very thin spacer  [65] . Hence, the 
ATR approach, with its advantage of a sample thickness that is independent of the 
pathlength and a small depth of penetration, allows the dissolution of pharmaceu-
tical formulations (including tablets in water) to be studied much more easily  [14] . 

   
  Figure 10.11     ATR - FT - IR images of a tablet with two 
components compacted directly on the surface of the 
diamond crystal in the ATR accessory.  

820 µm

Caffeine Starch



This is achieved by visualizing the complex process of dissolution that leads to the 
distribution and morphological changes of the different components in the for-
mulation, as a function of space and time. A large FOV would be favorable for this 
type of study as it would provide the opportunity to study dissolved substances at 
some distance from the original tablet. However, a good spatial resolution is also 
desirable in order to detect small changes in the tablet, or the formation of small 
crystallites  [14, 62] . Subsequently, this led to the development of the applications 
of diamond ATR imaging and ZnSe ATR imaging for dissolution studies. These 
two approaches are complementary in terms of their different FOVs and spatial 
resolutions, as summarized in Table  10.1 . A schematic representation of the dis-
solution set - up is shown in Figure  10.12 .   

 One important aspect of this type of dissolution approach is that a good contact 
between the crystal surface and the sample is essential, not only for the imaging 
of the tablet or pharmaceutical formulation but also to ensure that water penetrates 
into the sample only from the side of the tablet. This is especially important when 
mathematical modeling of the dissolution process is compared with experimental 
data. When using the diamond ATR approach, the tablet is pressed onto the 
diamond, and hence the leakage of water between the diamond surface and the 
tablet is not expected  [66] . 

 An innovative approach to studying drug release, using a specially designed 
dissolution cell fi tted onto a diamond ATR accessory and which allowed controlled 
compaction of the tablet and monitoring of the dissolution of the same tablet 
 in situ , has been demonstrated previously  [57] . When a ZnSe crystal was used for 
the imaging with a larger FOV, the softness of the crystal would not allow a high 
pressure to be applied. Formulations which are produced by dissolving the drug 
in a molten polymer matrix may be prepared directly onto the ZnSe crystal surface, 
provided that the polymer matrix has a low melting point. This approach has been 
successfully applied to study the dissolution of PEG - based formulations  [14, 64] . 
For matrices with a higher melting point (e.g., HPMC), it has been shown that 
swelling of the polymer at the tablet edge upon contact with water prevented 
undesirable water ingress from the top or bottom of the tablet into the interfacial 

   
  Figure 10.12     Schematic diagram of drug dissolution study 
using the ATR - FT - IR imaging approach.  
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area with the ATR crystal  [63] . The important feature of both, the diamond and 
ZnSe ATR dissolution cells, was the introduction of fl ow around the tablet in the 
cell, as this helped to prevent saturation of the solution  [54, 64] . The effl uent 
stream may be examined using an external UV - visible detector, thereby obtaining 
results similar to those of standard dissolution tests reported in the  United States 
Pharmacopeia  ( USP ). 

 The results of a typical dissolution study for a model pharmaceutical formula-
tion are shown in Figure  10.13 . Here, PEG was used as the model carrier matrix, 
and nicotinamide as the model drug. The effect of different polymer molecular 
weights (PEG 35   000 and PEG 8000) on drug release from a 50% nicotinamide 
tablet was investigated using the ATR - FT - IR method, fi tted with the medium - sized 
ZnSe ATR accessory  [64] . Nicotinamide, which is highly water - soluble, would be 
released when the polymer dissolved, and consequently the release rate would be 
controlled by the polymer dissolution rate. The images showed that the total drug 
release time with PEG 35   000 as carrier was almost double that when PEG 8000 

   
  Figure 10.13     ATR - FT - IR images showing distribution of PEG 
(top row) and nicotinamide (bottom row) through dissolution 
as a function of time for 50% nicotinamide tablet with 
(a) PEG 35000 and (b) PEG 8000. Image size is circa 

3.8    ×    5.3   mm 2 .  
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was used. On contacting the water, the polymer swelled but the polymer chains 
remained entangled, thus offering a degree of impedance to drug dissolution into 
the surrounding water. But, as water accumulated in the polymer, the chains dis-
entangled and the polymer dissolved. The lower - molecular - weight PEG had a 
shorter polymer chain which could more easily disentangle and thus dissolve more 
rapidly. These results showed that, together with the chemical and spatial informa-
tion provided by ATR - FT - IR spectroscopic imaging, complex processes that affect 
overall drug release could be better understood. The most recent applications of 
the diamond ATR accessory have included the simultaneous imaging of tablet 
dissolution with optical photography and ATR imaging  [67]  and combined ATR 
imaging and X - ray microtomography of compacted pharmaceutical tablets  [61] .    

  10.4.3 
 High - Throughput Studies with  ATR  -  FT  -  IR  Imaging 

 Recent research studies have demonstrated the possibility of applying chemical 
imaging in the ATR mode to the HT analysis of pharmaceutical formulations 
 [18, 33, 68, 69] . It should be noted here that both FT - IR mapping  [70, 71]  and 
Raman spectroscopic mapping approaches may also be used in HT applications. 
However, the use of these mapping approaches means that measurements of all 
samples are not performed simultaneously    –    which is the key advantage of the 
FT - IR imaging approach. The mapping method would also not be suitable for the 
simultaneous analysis of many samples under a controlled environment. Thus, 
the use of ATR - FT - IR imaging would be superior to other mapping techniques 
when applied to HT analysis. 

 A major problem with the use of FT - IR imaging when studying many solid 
samples might be that of having to prepare many samples with small, but precise, 
thickness (thick samples would absorb too much IR light). Possible variations in 
the pathlength may also affect the quantitative data. Consequently, ATR - FT - IR 
imaging would represent a suitable approach in the HT arena as it provides a 
highly reproducible, small pathlength, and requires minimal sample preparation. 
Today, HT studies of the behavior of pharmaceutical formulations under different 
humidities are conducted not only to assist in the design of tablets in terms 
of their drug release, but also to identify ways of extending the shelf life of 
pharmaceuticals. 

 This was successfully achieved using a drop - on - demand device by preparing 
arrays of micro - drop samples directly on the surface of the ATR crystal. The devel-
opment of macro ATR - FT - IR imaging has allowed the simultaneous study of more 
than 100 samples deposited on the surface of the ATR crystal, within a controlled 
environment. By using this approach, it has been possible to obtain  ‘ chemical 
snapshots ’  from a spatially defi ned array of many different polymer/drug formula-
tions, under identical conditions. This HT approach has provided information 
with regards to a specifi c weight fraction of nifedipine in PEG, which should not 
be exceeded in the formulation in order to avoid crystallization of the active agent 
 [18] . This method provides a direct measurement of the material properties for 
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HT formulation design and optimization. The simultaneous response (water sorp-
tion, crystallization, etc.) of the array of formulations to environmental parameters 
was studied. 

 A novel ATR accessory with an expanded FOV has also been designed and 
applied to obtain, simultaneously, the IR spectra of more than 150 miniature 
samples. In principle, this approach enables the measurement of up to 1024 
samples  [33] . The introduction of this new accessory with an expanded FOV pro-
vided the opportunity of combining ATR - FT - IR spectroscopic imaging with a 
multichannel grid that allowed the simultaneous imaging of the dissolution of 
several different formulations. PEGs with different molecular weights, with or 
without the addition of ibuprofen, have been used as model pharmaceutical for-
mulations, and chemical imaging of the simultaneous dissolution of fi ve formula-
tions of PEG/ibuprofen has been demonstrated. A direct comparison between 
these different formulations, under identical conditions, was made possible by 
using this imaging approach. The use of a PDMS grid to serve as sample support 
plate has also been realized; the illustration in Figure  10.14  shows a PDMS grid 
prepared for the simultaneous imaging of many liquid samples.   

 Despite the challenges of using FT - IR imaging in transmission for the HT 
analysis of pharmaceutical formulations, a novel approach which allowed macro 
FT - IR imaging in transmission of samples under a controlled environment has 
also been demonstrated  [69, 72] . This approach required the construction of an 
optical accessory that enables the measurement of samples placed in a horizontal 
position in the macro chamber of the imaging system. This accessory expands the 
range of possible applications of macro FT - IR imaging in studies of samples under 
controlled environments. A combination of this new accessory with a controlled 
humidity cell provided the opportunity of obtaining chemical images of the large 
areas of samples under controlled humidity. In this study, the approach was 

   
  Figure 10.14     ATR - FT - IR image of the grid made of PDMS 
containing the wells for 121 samples. The red lines show the 
walls of the PDMS grid.  



applied to study the effect of humidity on the polymorphic transitions of a thin 
fi lm of amorphous nifedipine  [72] . It has been shown that the exposure nifedipine 
to the experimental conditions for 4   h resulted in its transformation from an 
amorphous to a  β  - crystalline form, while further exposure (several hours) resulted 
in conversion of the  β  form to the  α  form. It has also been shown, using HT FT -
 IR transmission imaging, that the crystallization of a series of amorphous drugs 
could be monitored  in situ  simultaneously  [69] ; this was achieved using a 128    ×    128 
FPA IR detector rather than a 64    ×    64 array detector. The effect of sample thickness 
on the analysis of the imaging results was addressed by using a different defi nition 
of the imaging criteria, based on the wavenumber position of characteristic vibra-
tional bands rather than their absorbance, to create images. The thickness - 
independent images were obtained by plotting the distribution of the wavenumber 
corresponding to the peak maximum of the  ν (N − H) vibrational mode, which is 
sensitive to formation of the various crystalline polymorphs of the studied drugs 
 [69] . Such chemical images enable the spectra of different polymorphs to be 
extracted and analyzed independently, without the need for spectral subtraction. 

 Macro ATR - FT - IR approach included the imaging of many different pharma-
ceutical formulations under a controlled environment, as well as simultaneous 
studies of the dissolution of several formulations in separate microchannels  [33] . 
With exciting research opportunities existing with the possible combination of 
microfl uidics devices and chemical imaging (Figure  10.15 ), this approach could 
serve as a new microfl uidics platform with a powerful chemical imaging detection 
method  [73] . The use of chemical imaging offered by ATR - FT - IR imaging could 
allow the simultaneous analysis of fl uid composition as a function of spatial posi-
tion, to provide a better understanding of the dynamic properties of reactive 
systems. Both, chemical and quantitative analysis of dynamic systems will surely 
play important roles in the further development of microfl uidics. Moreover, chem-
ical imaging will enhance the ability to utilize very small amounts of materials and 
fl uids for new technologies, because it is possible to obtain  ‘ chemical snapshots ’  
from microarrays of samples or multichannel microsystems  [33]  for rapid process 

   
  Figure 10.15     Schematic presentation of ATR imaging 
combined with a microfl uidics device for multi - channel 
studies.  
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control and analysis. Separations using microfl uidics are also set to benefi t from 
 in situ  chemical imaging analysis with IR array detectors. This approach is also 
the fi rst example of the application of spectroscopic imaging to microfl uidics, and 
may broaden its future use in miniaturized HT devices  [73] .   

 Currently, most microfl uidics devices are constructed from polymers, steel, 
glass or silicon. The devices made from silicon are relatively easy to fabricate, and 
have been used to analyze fl ow regions in microfl uidics, although at present the 
chemical and physical processes in these devices are characterized using conven-
tional optical microscopy. In combination with chemical imaging, this will surely 
open a range of new opportunities for the use of devices engineered from Si or 
Ge. As an example, Si - based microchemical systems have been recently developed 
by Jensen  [74] , with potential use in the chemical synthesis of nanoparticles or in 
the high - temperature conversion of hydrocarbons to hydrogen. The combination 
of such devices with ATR - FT - IR imaging will lead to opportunities for the develop-
ment of a new technology for microreactors and process intensifi cation with 
unprecedented chemical specifi city. There is also clear potential for the application 
of this new approach to proteomics and drug discovery, notably in areas of protein 
separation and crystallization, and the advantages of FT - IR imaging in the ATR 
mode to analyze aqueous solutions will undoubtedly be explored in these applica-
tions  [73] .   

  10.5 
  ATR  -  FT  -  IR  Imaging for Forensic Applications 

  10.5.1 
 Detection of Trace Materials 

 For a homogeneous sample, the detection limit of a system is defi ned by the SNR of 
the measurement. As a rule of thumb, the SNR should not be less than 3 if the signal 
corresponding to a particular substance is considered as being  ‘ detected ’ . However, 
for a heterogeneous material the detection limit of a system, apart from being a 
function of the SNR, is also determined by the sample volume that is being mea-
sured. Thus, a small sample volume would enhance the signal and hence improve 
the detection limits; this situation is illustrated schematically in Figure  10.16 .   

   
  Figure 10.16     Schematic diagram demonstrating how the 
signal of the same sample may be enhanced by choosing a 
different sampling volume.  

Large sampling volume, concen-
tration of dark grey dot (the signal) =
area of dark grey dot/area of circle ∼ 0 

Aperture

Small sampling volume, concen-
tration of dark grey dot (the signal) =
area of dark grey dot/area of circle = 1



 Although the signal is increased by decreasing the sampling volume, the chance 
of detection is decreased. The reduced aperture also restricts the amount of light 
reaching the detector, which increases the noise level in the measurement. Fast 
imaging methods without an aperture, such as the use of a FPA detector will, 
therefore, provide the opportunity to improve the detection limits for heteroge-
neous materials, without long measurement times. A comparison of the detection 
limit between two FT - IR spectroscopic systems    –    one using a single - element detec-
tor and another using an FPA detector    –    has shown that, when applied to a hetero-
geneous sample, the FPA system has a signifi cantly better detection limit than the 
single - element detector system  [37] . This enhancement in detection limit when 
comparing single - element detectors to array detectors applies to all imaging 
methods, and is particularly important for the detection of trace materials in 
forensic investigations. The ease of sample preparation, together with the power 
of FT - IR spectroscopy in material characterization, has led ATR - FT - IR imaging 
becoming a valuable tool in many applications, notably in forensic studies  [75, 76] . 
A clear example of this application is the detection of small particle residues left 
on the surface of a person ’ s fi nger after they have handled some drug particles. 
The resultant images (see Figure  10.17 ) demonstrate the power of this imaging 
technique for detecting a single small particle of drug trapped between the ridges 
of the fi ngerprint. The size of this particle was estimated at a few hundred microm-
eters, while the spectrum extracted from the particle identifi ed it as ibuprofen.   

 This approach was extended to combine the  ‘ tape - lifting ’  method with ATR - FT -
 IR imaging when particles were collected from different surfaces, using adhesive 
tape  [76] . The most recent exciting examples of the application of ATR - FT - IR 
imaging to samples of forensic interest have included the chemical imaging of 
latent fi ngerprint residues  [75, 77]  rather than imaging of the surface of a fi nger 
(as described above) or the imaging of developed fi ngermarks  [78] . FT - IR imaging 
in refl ection has also been applied to image latent fi ngermarks  [79] . The chemical 

   
  Figure 10.17     ATR - FT - IR image of the fi nger surface. The 
image on the left represents the protein distribution while the 
image on the right represents the ibuprofen distribution.  

3.7 mm
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images of the fi ngerprints also provide valuable information to the forensic scien-
tist regarding possible chemical changes that have occurred in fi ngerprint residues 
as a function of time  [77] . Here, fi ngerprint residues left directly on the surface of 
the ATR crystal were analyzed with ATR - FT - IR imaging as a function of tempera-
ture; this is especially important for understanding the evolution of these residues 
at elevated temperatures  [77] .  

  10.5.2 
 Imaging of Counterfeit Tablets 

 The chemical imaging of pharmaceutical tablets is important not only in optimiz-
ing the production of specifi c pharmaceutical products, but also in differentiating 
between genuine and counterfeit products. Today, the prevention of counterfeit 
tablets is set to benefi t from the chemical specifi city of the FT - IR imaging approach, 
while in ATR mode it will offer a nondestructive approach for the study of such 
samples, without the need either to stain or to solubilize them. The counterfeiting 
of drugs and medicines presents a very serious threat to public health, an example 
being the spread of counterfeit artesunate antimalarial tablets, which is wide-
spread in some countries. To prevent this situation, the counterfeit tablets must 
be identifi ed and analyzed to determine their origin, and a combined ATR - FT - IR 
imaging and desorption electrospray - ionization linear ion - trap mass - spectrometry 
system was used recently in this role  [41] . The nondestructive approach of ATR -
 FT - IR imaging has also been complemented with highly sensitive mass spectrom-
etry, while micro ATR imaging with a high spatial resolution has been used not 
only to analyze localized area of counterfeit tablets but also to show that they 
contain undesirable contaminants  [41] . Macro ATR - FT - IR imaging using a 
diamond accessory was also combined with spatially offset Raman spectroscopy 
to analyze bulk and surface compositions of counterfeit antimalarial tablets  [80] . 
These investigations successfully combined the applications of ATR - FT - IR imaging 
with mass - spectrometry and Raman spectroscopy, and have demonstrated their 
potential for forensic investigations of counterfeit medicines  [41, 80] .   

  10.6 
 Conclusions and Outlook 

 In this chapter, we have presented some of the recent developments and applica-
tions of ATR - FT - IR imaging to pharmaceutical samples and polymeric materials. 
The use of both micro and macro modes in ATR - FT - IR imaging has been dis-
cussed. Imaging in the ATR mode may be very versatile, and offers imaging with 
different spatial resolution and different fi elds of view. It is important to remember 
that ATR imaging provides information only about that layer of the sample which 
is adjacent to the surface of the ATR crystal, and that the thickness of this layer 
may range from a fraction of a micrometer to several micrometers. However, the 
opportunity exists to obtain chemical images from layers of different thickness in 
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this range, by using an accessory with variable angles of incidence. This allows 
one to combine chemical imaging with depth profi ling, which is important for 
heterogeneous structures, such as biomedical materials. The spatial resolution in 
the  z  - direction, which is perpendicular to the plane of the imaged area, is not 
limited by diffraction but rather is determined by the depth of penetration, which 
can be changed by variations in the angles of incidence. This has provided the 
opportunity of imaging nanostructures in the  z  - direction, which is important for 
nanocomposites and other materials. As demonstrated in this chapter, the main 
advantage of chemical imaging using FPA detectors lies in the study of dynamic 
systems, such as diffusion and dissolution. Thus, signifi cant potential exists in the 
application of FT - IR imaging, and in particular of ATR - FT - IR imaging, to the HT 
analysis of many samples. ATR - FT - IR imaging within a controlled environment 
is benefi cial for studying many samples, including pharmaceutical formulations, 
while systems containing water can easily be imaged by using the ATR mode. The 
most recent examples of such applications include research into tissue engineer-
ing, which is set to benefi t hugely from the use of ATR - FT - IR imaging. 

 The enhanced spatial resolution of micro ATR - FT - IR imaging will benefi t many 
areas of research, ranging from polymeric materials to biomedical and forensic 
sciences. Recent examples include the successful application of micro ATR 
imaging to study objects of cultural heritage  [40, 81] . The development of appli-
cations of imaging with a single refl ection diamond accessory will continue, due 
to an excellent combination of the achieved spatial resolution with a relatively large 
area that is imaged simultaneously. The examples of  in situ  imaging of tablet 
compaction and dissolution presented in this chapter show that signifi cant 
po tential exists for innovative experiments in imaging, without the need for a 
microscope using a diamond accessory. Further applications of ATR - FT - IR 
imaging will benefi t from combinations with other imaging methods, such as 
optical photography in macro imaging  [67] , Raman microscopy and X - ray micro-
tomography  [61] .  
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  11.1 
 Overview 

 Applications of Raman hyperspectral imaging in pharmaceutical products are 
wide and various. For example, magnesium stearate is a very fi ne powder that is 
used as a lubricant in tablet formulation when typically, it is added at a low con-
centration and tends to spread very thinly. The spatial distribution of magnesium 
stearate can affect the dissolution rate  [1, 2]  of tablets, which is an important factor 
when determining the bioavailability of a formulation. Bulk analysis may not be 
able to detect the presence of magnesium stearate due to its low concentration; 
neither can it provide any information on spatial distribution. Likewise, low spatial 
resolution methods may be unable to detect magnesium stearate due to its small 
particle size. However, Raman hyperspectral imaging, with its high spatial resolu-
tion, is an excellent analytical tool by which to detect the presence and characterize 
the distribution of magnesium stearate in tablets. 

   Infrared  ( IR ) hyperspectral imaging, of course, can provide valuable and com-
plementary information to Raman hyperspectral imaging, especially with instru-
ments that combine both Raman and IR microscopy while measuring the sample 
at the same location  [3] . 

 With the increasing popularity of hyperspectral imaging, more and more 
spectroscopic and spectrometric technologies now offer hyperspectral imaging 
capabilities. Multimodal hyperspectral imaging, combining complementary tech-
nologies, may bring us a step closer to the complete characterization of an unknown 
sample.  Energy - dispersive X - ray fl uorescence  ( EDXRF ), which detects elements 
rather than molecules, is a good example of a complementary technology to 
molecular spectroscopy such as Raman and IR. For example, Raman hyperspectral 
imaging can be used to obtain magnesium stearate images, while EDXRF hyper-
spectral imaging will show magnesium images. When such images are obtained 
with independent technologies and measured separately, they will verify and 
confi rm each other so as to heighten the credibility of the analysis results. An 
example of the comparison of Raman and EDXRF hyperspectral imaging is pro-
vided later in the chapter.  

Infrared and Raman Spectroscopic Imaging. Edited by Reiner Salzer and Heinz W. Siesler
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-31993-0
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  11.2 
 Hyperspectral Imaging 

  11.2.1 
 Terminologies 

 Hyperspectral imaging combines spectroscopy ( not  hyperspectroscopy) and 
microscopy. With continuous improvements in instrumentation, spectroscopy 
and microscopy aspects begin to mingle more. In fact, commercial instruments 
are now available that can routinely record  three - dimensional  ( 3 - D ) data, the image 
and spectral quality of which are comparable to spectroscopy - only or microscopy -
 only data. This 3 - D data    –    two spatial axes and one spectral axis    –    is called the 
 hypercube , and the method to record it is referred to as  hyperspectral imaging  to 
differentiate it from  spectral imaging  (cf. Chapter  1 ). However, the terms of spec-
tral imaging and hyperspectral imaging are often used interchangeably. 

 Raman hyperspectral imaging uses the Raman microscope to obtain hyper-
cubes, the spectra of which are Raman spectra, or Raman hypercubes. Although 
multiple hardware approaches are available for obtaining Raman hypercubes, 
Raman mapping using the point mapping method    –    that is, recording one spec-
trum at a time    –    is still the standard data collection method for Raman hyperspec-
tral imaging. Other methods include Raman line scanning, Raman dual scanning 
or Raman global imaging  [4] . Raman imaging is an abbreviated term of Raman 
hyperspectral imaging, and refers to any Raman mapping, scanning or imaging 
method that yields Raman hypercubes. A Raman map is a conventional term for 
the Raman hypercube, and is more often used. Raman images or Raman chemical 
images are data processing results of Raman hypercubes, and their contrast must 
refl ect chemical differences, not simply optical or physical differences. The chemi-
cal contrast in Raman images or Raman chemical images must be verifi ed with 
original Raman spectra from Raman hypercubes, and not just loadings, models 
or principal components. 

 In this chapter, Raman hyperspectral imaging was performed using the confocal 
dispersive Raman microscope. Raman maps were recorded in point mapping and 
dual - scanning modes, with results being given in Raman images, which show 
spatially resolved chemical information based on Raman spectral analysis and can 
be projected to further image analysis.  

  11.2.2 
 Advantages 

 The main attraction of hyperspectral imaging is to obtain  ‘ the complete picture ’  
of the sample. It has been reported that particle size or blending quality (spatial 
distribution characteristics) is as important to the performance of a pharmaceuti-
cal product as its chemical composition  [5, 6] . Hence, by characterizing both the 
chemical and spatial composition of the sample, hyperspectral imaging can provide 
valuable insight that bridges the relationships between processing and perfor-
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mance, thus playing an important role in  PAT  ( processing analysis technology ) 
and  QbD  ( quality by design ) initiatives. 

 A  hypercube  consists of numerous spectra, enabling unsupervised chemometric 
and statistical analysis. Under the right circumstances, this provides an alternative 
way to perform quantitative analysis, which requires no calibration set or model 
development. 

 Raman hyperspectral imaging inherits all the advantages of Raman spectros-
copy, such as a high chemical specifi city, high spatial resolution, wide sample 
ranges and minimum sample preparation. A confocal dispersive Raman micro-
scope allows high resolution (this depends on the samples but better than 2    µ m 
under preferable conditions) depth profi ling, enabling not only lateral but also 
axial and volumetric chemical imaging. 

 In the case of pharmaceutical samples, Raman spectroscopy is sensitive to 
crystallinity and polymorphism, both of which are important with regards to the 
bioavailability (and protection of the intellectual property) of active ingredients. 
With polarized Raman spectroscopy, the orientation and degree of crystalline of 
molecules are observed, which is important when studying polymers that are 
used as carriers, in coatings, and for containers. As Raman spectroscopy can be 
used to measure low - frequency bands ( < 400   cm  − 1 ), inorganic ingredients such as 
TiO 2  are easily detected. Raman scattering tends to be very effective for aromatic 
compounds (typical active ingredients), allowing the rapid measurement of 
active ingredients. Consequently, Raman hyperspectral imaging can be seen 
as an excellent tool for the molecular characterization for pharmaceutical 
applications.  

  11.2.3 
 Spectra versus Image 

 One often - neglected aspect of Raman maps is that, ironically, as they are com-
posed of Raman spectra, the quality of the spectra directly affects the quality of 
the Raman image, while the speed of the spectral measurement affects the speed 
of Raman mapping. 

  11.2.3.1   Spectral Intensity and Speed 
 The intrinsic Raman scattering strengths of different molecules vary widely, easily 
more than an order of magnitude or more, from one material to the next. There-
fore, the speed of mapping, ultimately, is determined by the sample. To demon-
strate the impact of the intrinsic spectral intensity on the mapping speed, let us 
consider three materials of different Raman scattering strengths that require 
10   ms, 100   ms and 1   s to achieve the same  signal - to - noise ratio  ( SNR ), respectively. 
The lengths of time to record a Raman map of 10   000 spectra at the same level of 
SNR for each sample are listed in Table  11.1 .   

 Conversely, if one instrument is more sensitive than another, it will require a 
shorter acquisition time to achieve the required SNR for the same sample, and so 
will be faster in operation.  
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  11.2.3.2    SNR  and Image Quality 
 The SNR in the Raman spectrum is directly correlated to the image quality (i.e., 
the sharpness of contrast in a chemical image), because the contrast in a chemical 
image is driven by the spectral differences which are, naturally, clearer in higher 
than in lower SNR data. 

 Three Raman maps were recorded on the same acetaminophen (paracetamol) 
crystal under the same experimental conditions, except for net acquisition times 
of 100   ms, 1   s and 2   s per spectrum, respectively, to achieve increasing SNR values. 
Raman images were created by mapping integrated intensities from 1310 to 
1350   cm  − 1  of individual spectra (Figure  11.1 ). In each image, the intensity of the 
band is color - scaled to red, green or blue; the brighter the color, the higher the 
intensity. The colored areas, therefore, represent acetaminophen, while the black 
areas represent its absence. The histogram of each Raman image is created by 
plotting the integrated intensity versus the number of spectra.   

 Determining the quality of an image can be performed intuitively. For example, 
an image is deemed  ‘ better ’  when sharper edges, smoother faces and more distinc-
tive features can be seen. Qualitatively, as the SNR increases, the edges of crystals 
in Raman images become sharper and the surfaces smoother. A quantitative 
assessment of the quality of an image, on the other hand, can be achieved using 
histograms (further details on producing and interpreting histograms are provided 
later in the chapter). 

 All three histograms in Figure  11.1  show two separate populations representing 
spectra from the acetaminophen crystal and those from the background (denoted 
in Figure  11.1 b). An image is  ‘ good ’  when there is a separation between two popu-
lations, and  ‘ better ’  when the distance between the two populations is greater. As 
the SNR increases, the separations between two populations increase, refl ecting a 
heightened contrast in the images. In Figure  11.1 a, the centers of the populations 
are at  ∼ 0 (low intensity, black area, background) and at  ∼ 43 (high - intensity, red 
area, acetaminophen). In Figure  11.1 b, the center of population for acetamino-
phen (high - intensity, green area) increases to  ∼ 457, while the center of population 
for background (low - intensity, black area) stays the same. The same trend is main-
tained in Figure  11.1 c, where the center of population for acetaminophen (high -
 intensity, red area) increases to 920. It is clear, therefore, that a high SNR directly 
translates to high image quality.  

 Table 11.1     Net acquisition time to record a  R aman map of 10   000 spectra with samples of 
different  R aman scattering strength. 

  Sample    Net acquisition time 
per spectrum  

  Net acquisition time of 
the map  

  Weak Raman scattering    1   s    10   000   s   =   2   h 46   min 40   s  
  Medium Raman scattering    100   ms    1000   s   =   16   min 40   s  
  Strong Raman scattering    10   ms    100   s   =   1   min 40   s  
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  Figure 11.1     Raman images created as integrated intensity 
maps (1310 – 1350   cm  − 1 ) from Raman maps of an 
acetaminophen crystal recorded at net acquisition times of 
(a) 100   ms (red); (b) 1   s (green) and (c) 2   s (blue) per 
spectrum Figure  11.2 . The histogram of each Raman image 
( x  - axis, Raman intensity in arbitrary units;  y  - axis, number of 
spectra) is displayed next to each Raman image.  
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  11.2.3.3   Spectral Resolution and Detection Limit 
 In Raman hyperspectral imaging, the spectral resolution and spectral sampling 
frequency become factors in determining the detection limit. An example is shown 
in Figure  11.2 . Here, two Raman maps were recorded from the same sample over 
the same area, using identical system confi gurations and experimental conditions, 
except for the grating choices (1800 and 300 grooves mm  − 1 , respectively) to achieve 
high and low spectral resolutions. Within the spectral range of 1525 – 1675   cm  − 1 , 
the Raman map collected with the 1800 grooves mm  − 1  grating has 0.98   cm  − 1  per 
datum point (an indicator for spectral resolution), whereas the Raman map col-
lected with 300 grooves mm  − 1  grating has 8.5   cm  − 1  per datum point.   

 Spectra (baseline - corrected and normalized to unit area) from the same spot in 
high -  and low - resolution maps are shown in Figure  11.2 . The shoulder band at 
1604   cm  − 1  is clearly visible in a spectrum from the high spectral resolution map, 
but not in a spectrum from the low spectral resolution map. Subsequent unsuper-
vised chemometrics analysis (Modeling, LabSPEC 5; HORIBA Jobin Yvon Inc., 
Edison, NJ, USA) is performed to produce score images from each data set. As 
the low - resolution data set cannot distinguish the fourth element (pink areas), the 
numbers of factors employed were different. 

   
  Figure 11.2     Raman spectra measured from the same spot. 
(a) With high spectral resolution (grating: 1800 grooves 
mm  − 1 ); (b) With low spectral resolution (grating: 300 grooves 
mm  − 1 ); (c,d) Combined score images of (c) high spectral 
resolution Raman map with four factors and (d) low spectral 
resolution Raman map with three factors.  
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 It is important to note that the contrast of an image alone cannot determine the 
authenticity of a chemical image. For example, Figure  11.2 d appears to appear to 
be  ‘ nicer ’  (clearer and cleaner interface between different colored areas) than 
Figure  11.2 c. However, as Figure  11.2 d fails to capture the fourth component, it 
is further from the real characteristic of the sample than Figure  11.2 c, where all 
components are identifi ed.  

  11.2.3.4   Instrumentation 
 The Raman spectral imaging data were collected with a confocal dispersive Raman 
microscope (LabRAM HR 800; HORIBA Jobin Yvon Inc.) using Point and DuoScan 
mapping modes. Data processing was performed with LabSPEC 5 (HORIBA Jobin 
Yvon Inc.) and ISys 4.1 (Malvern Instruments Ltd, UK). The EDXRF imaging data 
were collected with XGT - 5000 and EMAX -  scanning electron microscopy  ( SEM ) 
(both from HORIBA, Kyoto, Japan).   

  11.2.4 
 An Example of  R aman Hyperspectral Imaging Analysis:  I  

 An example of Raman hyperspectral imaging analysis on a tablet of a prescription 
drug, the surface of which had been shaved fl at with a razor blade, is shown in 
Figure  11.3 . A multivariate analysis resulted from a Raman map of the tablet, with 
loadings and score images representing the spatial distributions of the active 
ingredient (green), calcium carbonate (red), microcrystalline cellulose (blue) and 
magnesium stearate (pink). The wavelength of the excitation laser was 785   nm, 
the grating 300 grooves mm  − 1  and the objective lens 50    ×    [ numerical aperture  ( NA ) 
0.55]. The mapped area was 70    ×    48    µ m 2 , and the map was recorded in standard 
point mapping mode with 1    µ m step, resulting in 3479 (=71    ×    49) spectra. The data 
were normalized to unit area and then subjected to the direct classical least - square 
algorithm to isolate the four ingredients.     

  11.3 
 Empirical Approach to Successful  R aman Hyperspectral Imaging 

 The goal of Raman hyperspectral imaging analysis is to obtain chemical images 
which provide both chemical and spatial characterization of the sample. In an ideal 
world, each of the chemical components is identifi ed and its distribution visual-
ized; the analysis results then also provide the statistical and quantitative results. 

  11.3.1 
 Spectroscopy 

 A typical pharmaceutical sample contains both active and inactive ingredients that 
are combined into a form that can easily be delivered, such as tablets, injection 
solutions, transdermal patches or implants. Most often, the active ingredients have 
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aromatic groups (e.g., acetaminophen), while the inactive ingredients are generally 
sugars (e.g., cellulose, lactose), organic salts (e.g., magnesium stearate) or inor-
ganic compounds (e.g., calcium carbonate). Compounds with aromatic groups 
show distinctive signatures in the Raman spectra (a strong band  ∼ 1000   cm  − 1  or 
 ∼ 1600   cm  − 1 , depending on numbers and locations of the substitutions)  [7] , which 
help to identify the active ingredients in the formulation. To distinguish inactive 
ingredients one from another is more complicated than for active ingredients, 

   
  Figure 11.3     (a) Score images and (b) loadings that represent 
the spatial distributions of active ingredient (green), calcium 
carbonate (red), microcrystalline cellulose (blue) and 
magnesium stearate (pink).  
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because many different types of material (e.g., polymers, sugars, metal oxides, 
organic salts) are used for many different purposes, including binders, coatings, 
disintegrants and lubricants. Inorganic compounds tend to show fewer bands than 
organic compounds; in fact, they often show Raman bands in the low - frequency 
region ( < 1000   cm  − 1 ), and certainly none in the C − H stretching region (2700 –
 3300   cm  − 1 ). The O − H stretching region ( > 3500   cm  − 1 ) is of interest because it may 
refl ect the degree of hydration. The Raman scattering of polysaccharides tends to 
be weak, although it does vary a great deal depending on the state of the material 
(e.g., crystallinity and hydration). Some examples of Raman spectra are shown in 
Figure  11.4 .   

 A few points are worthy of consideration here: 

   •      It is ideal to measure reference Raman spectra of all ingredients in their pure 
forms, using the same conditions as the sample. Because Raman spectroscopy 
is sensitive not only to molecular structure but also to the local environment of 
molecules (degree of hydration and crystallinity, different isomers and polymor-
phic forms, long - chain polymers of different level of branches and saturations, 

   
  Figure 11.4     Molecular structures and Raman spectra of 
(a) acetaminophen, an active ingredient; (b) Cellulose, an 
organic inactive ingredient; (c) Calcium carbonate, an 
inorganic inactive ingredient.  
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etc.), it is best to measure, whenever possible, what actually was used in the 
sample.  

   •      Most primary analysis methods, such as  high - performance liquid chromatogra-
phy  ( HPLC ) yield contents (e.g., milligrams), while optical spectroscopy analysis 
methods, including Raman, yield concentrations (e.g., wt/wt%). The results of 
HPLC analyses require additional information (e.g., the weight of a tablet) in 
order to make the conversion, which must be recorded.  

   •      The spectral resolution must be high enough to satisfy the sample require-
ments. Closely located Raman bands require a high spectral resolution to resolve 
them. A high spectral resolution confi guration of a Raman microscope also 
provides a large number of datum points within a given spectral range, which 
is critical when measuring peak positions, band widths and band shapes of 
Raman bands.  

   •      The exposure time    –    the length of time that the photons are accumulated on the 
detector before read out    –    must be long enough to achieve the proper SNR. Weak 
Raman scattering samples require longer exposure times to achieve the same 
SNR than do strong Raman scattering samples. As shown in Section  11.2 , high -
 SNR data always produce better results than low - SNR data, under the identical 
circumstances. Reference spectra measured from the pure components can help 
to determine the requirements for spectral resolution and exposure time.     

  11.3.2 
 Mapping 

 In setting up a Raman map, there are three major parameters to consider: (i) the 
location (or center) of the map; (ii) the size of the mapped area; and (iii) the spacing 
between measurements (step size). An ideal map would be centered at the  region 
of interest  ( ROI ) but covering the whole region. The spacing between measure-
ments would be smaller than the smallest object in the sample (ideally one fi fth 
or less of the smallest). The question then is, how can the location and size of the 
ROI be determined without mapping? How can the size of the smallest object be 
determined? It might be possible to map the entire sample with the smallest step 
size available, but this could prove to be an impractical task    –    it would take too long 
and produce an unreasonably large fi le. 

 Survey mapping    –    that is, mapping a large area with a large step size    –    is, there-
fore, a very important step. From a survey map, it is possible to identify the ROI, 
to glimpse the chemical composition, and to obtain an approximation of the neces-
sary step size. An example is shown in Figure  11.5 , where a Raman map of an 
 over - the - counter  ( OTC ) analgesic tablet was measured over 800    ×    800    µ m 2  at 
100    µ m steps (=   9    ×    9 spectra). The number of spectra (81) was suffi ciently small 
to perform a manual exploration for the different spectral species. There were 
at least three different chemical compounds. As this is a survey map, there are at 
least three different chemical compounds (perhaps more). Raman bands unique 



to each spectral species were selected and the Raman images created as intensity 
maps of these bands. A ROI where all three components were present is identifi ed 
(marked with a rectangle). It appears that areas of each spectral species occupied 
are larger than 100    µ m in diameter, 10    µ m steps would provide suffi cient sam-
pling. A second Raman map of the rectangular marked area (400    ×    400    µ m 2 ) 
recorded at 10    µ m steps (41    ×    41   =   1681 spectra) is shown in Figure  11.5 b.    

 The point mapping method, however, may not be optimum for the survey 
mapping. The purpose of survey mapping is to map a large area quickly, with 
coarse steps. However, the laser spot size ( ∼  λ  excitation /NA), which determines the 
sampling area (or volume) of each measurement, is relatively small. When a large 
step size is used, many of the spaces between measurements are missed (Figure 
 11.6 ). A low - NA objective lens can be used for a large spot size, but it is still limited 

   
  Figure 11.5     Raman images of an over - the - counter (OTC) 
analgesic tablet with: (a) 100    µ m step over 800    ×    800    µ m 2 ; and 
(b) 10    µ m step over 400    ×    400    µ m 2 .  
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  Figure 11.6     Schematic diagrams for (a) point mapping and 
(b) DuoScan mapping the same area at the same step size. 
The colored circles represent materials of interest. (a) Small 
circles represent laser focus; (b) Small squares represent 
pixels.  
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to  ∼ 10    µ m. More importantly, the use of a low - NA objective reduces the collection 
solid angle of scattering light, essentially reducing the sensitivity of the instru-
ment. The exposure time to achieve an adequate SNR must then be increased, 
which in turn will slow down the mapping speed. The DuoScan mapping mode 
rasters the laser beam in two directions ( x  -  and  y  - axes) over a predetermined area 
(a pixel), thus measuring a spectrum from the pixel area. Although the pixel size 
is still limited by the objective lens, it is considerably larger than the laser spot 
size. For example, the laser spot size is 1 – 2    µ m in diameter when the excitation 
wavelength is 633   nm and NA of the objective lens is 0.55. The same lens could 
be used to measure a pixel as large as 30    µ m, without sacrifi cing the sensitivity 
and speed. The largest pixel size to have been achieved to date has been 300    µ m 
(with a 10 ×  objective). A survey map with a large pixel and matching step size 
covers the entire mapping area without missing surface area. Whereas, the pixel 
spectrum will be more likely mixed (superposition of multiple spectral species) 
than the point spectrum, the latter will be more likely pure (single spectral 
species of one type or another) than the pixel spectrum.    

  11.3.3 
 Data Analysis: Spectroscopy 

  11.3.3.1   Unsupervised Analysis 
 Unsupervised analysis is performed when there are no other samples, information 
or data than the sample itself and the Raman map to be analyzed. When the 
sample is truly unknown, unsupervised analysis is the fi rst (sometimes only) step 
in characterizing the sample. The objective of the analysis would be to determine 
the chemical and spatial compositions of the unknown sample. 

 Raman spectroscopy, compared to IR spectroscopy, is considered to be  ‘ easy ’  
spectroscopy. Often, it is possible to identify spectral features that are unique to 
each chemical component in the sample, and to use them for univariate analysis. 
When the number of spectra in a Raman map is small and the chemical composi-
tion of the sample is simple, then a univariate analysis is usually suffi cient. The 
typical analysis strategy would be to pretreat the spectra (baseline correction, nor-
malization, etc.), explore to identify any unique spectral features, and to create 
intensity maps of those features as Raman images. When differences between 
spectral species are refl ected in peak shifts or band broadenings, the peak positions 
or bandwidths can also be mapped to create Raman images. 

 When a Raman map consists of a very large number of spectra, it is practically 
impossible to manually explore and identify all spectral species. On the other hand, 
a multivariate analysis will classify the individual spectra in a Raman map into 
groups, based on the systematic and signifi cant variances between them. For a 
Raman map to have a healthy variance, it requires a suffi ciently large number of 
spectra, and therefore multivariate analysis will become necessary and advanta-
geous for a Raman map with a large number of spectra. In addition, when the 
sample is suspected of having a complex chemical composition, it becomes exceed-
ingly diffi cult to identify, compare and isolate all of the spectral species. Yet, by 



classifying the spectra into groups of relative homogeneity, a multivariate analysis 
can simplify the task    –    it is possible to examine one group at a time, for example. 

 When performing an unsupervised multivariate analysis it is important to 
remember that it is a numerical analysis based on the variance of the data set. 
Whenever the data set is manipulated, the results may change. Hence, it is impera-
tive to verify the results with the original spectra to confi rm the chemistry. Repeti-
tion is also a form of variance; when there is more repetition of a spectral species, 
the loading will seem smoother. Conversely, even if the SNRs of the original 
spectra are similar the loading of a spectral species of less repetition will seem 
noisier. 

 The Raman map given as an example in Figure  11.3  consists of 3479 spectra; 
here, there are numerous cellulose spectra compared to only a few magnesium 
stearate spectra. When the original Raman spectra are compared, however, they 
show a similar level of SNR. When the loadings were calculated using direct clas-
sical least square regression, the cellulose loading showed a better SNR than did 
that of magnesium stearate (Figure  11.7 ).   

 The next example of an OTC map was treated fi rst using a  direct classic least 
square  ( DCLS ) method, and then with more sophisticated multivariate analysis 
methods. The tablet was mapped over 800    ×    800    µ m 2  with 10    µ m steps. The data 
were baseline - corrected and normalized before being subjected to an unsupervised 
multivariate analysis. The fi rst set of results was produced using univariate analy-
sis (Figure  11.8 a), when a manual exploration revealed three distinguishable and 

   
  Figure 11.7     Raw single - point spectra of (a) cellulose and 
(b) magnesium stearate; (c,d) Loadings representing 
(c) cellulose and (d) magnesium stearate.  
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recognizable spectra: caffeine, acetaminophen and aspirin. Raman bands at 568, 
1181 and 1057   cm  − 1  were unique to each compound, respectively, and integrated 
intensity maps (red, 536 – 591   cm  − 1 ; green, 1030 – 1077   cm  − 1 ; blue, 1164 – 1197   cm  − 1 ) 
were created. These were Raman images that showed the spatial distribution 
of the chemical components. Spectra from the high - intensity points were also 
shown.   

 Cellulose was shown to be present in the sample, but at a low concentration. 
The cellulose spectra were fewer and superimposed with spectral features from 
other elements, when detected at all. Thus, it was not easy either to isolate or to 
recognize the presence of cellulose while manually exploring the sample. DCLS 
regression (unsupervised mode, four factors) isolated cellulose loading (Figure 
 11.8 b) showing the distinctive spectral signature of cellulose (the doublet at 
 ∼ 1110   cm  − 1 ). However, the loading shows high - intensity spectral features of other 
components. 

 More sophisticated multivariate algorithms can separate the spectral features 
of cellulose to a better degree. A factor - based analysis (Factor Analysis, Isys 4.1; 
Malvern Instrument Ltd, UK) was applied (Figure  11.9 ) where, in the result the 
cellulose loading appeared almost pure.   

   
  Figure 11.8     (a) Spectra and Raman images (integrated 
intensity maps) generated from a Raman map of an OTC 
analgesic tablet; (b) Loadings and Raman images (score 
images) of the same data, produced using DCLS. Note that 
the fourth loading (pink) is  ‘ mixed ’ , with unique spectral 
features (marked with an arrow) as well as those of other 
loadings.  
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 Unsupervised analyses are often performed on unknown samples in order to 
obtain qualitative results. The results shown in Figure  11.9  can be considered the 
fi nal results; here, the sample consisted of at least four chemical components    –
    caffeine, acetaminophen, aspirin and cellulose    –    and their distributions were visu-
alized in Raman images. 

 The large number of spectra in a hypercube provides yet another means of 
quantitative analysis via statistical analysis. For example, the spatial distribution 
image of caffeine (Figure  11.9 b) is created with scores. The histogram (Figure 
 11.10 a) of the image is then created by plotting scores ( x  - axis) versus the number 
of spectra ( y  - axis), and shows a clear distinction between two populations    –    one 
centering at high score ( ∼ 5) for caffeine - rich and the other at low score ( ∼ 0) for 
caffeine - poor. In the image, areas of more caffeine (high scores) are colored red, 
and those of less caffeine (low scores) in black. In the histogram, the population 
at high scores represent caffeine - rich points, and the population at low scores caf-
feine - poor regions. (Note that all assessments here are relative.) By classifying any 
spectra for which the scores are greater than 2.8 (threshold) as caffeine, the 
number caffeine spectra is 661; this is  ∼ 10% of 6561 total spectra. The label infor-
mation on this product indicates the caffeine concentration (wt/wt%) as  ∼ 9.6%. 

   
  Figure 11.9     (a) Loadings and (b) score images from factor - based analysis.  
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  Figure 11.10     Histograms of (a) caffeine and (b) cellulose 
score images. The  x  - axis shows the score; the  y  - axis the 
number of spectra.  
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This is one of the best examples where all criteria for a good approximation (good 
spatial and spectral segregation between components, similar density of all 
components, etc.) are met, and demonstrates the potential usefulness of the 
approach.   

 Two other points should be considered when employing this approach to quan-
tifi cation. First, spatial segregation between the chemical components must be 
signifi cant. For example, from individual spectra, it is known that caffeine - rich 
areas are mostly pure caffeine, while cellulose - rich areas are not pure cellulose. 
In other words, caffeine enjoys a good spatial segregation while cellulose does not. 
Classifying a group of spectra as caffeine spectra based on the histogram, there-
fore, is a good approximation. On the other hand, performing the same procedure 
for cellulose may not be as effective. However, high spatial resolution data will 
increase the chance of good spatial segregation in the Raman map for low - 
concentration or small - particle elements. 

 Second, the position of the threshold must be carefully considered. In the case 
of the caffeine image used here, the separation between two normal distribution 
curves is far and clear. Even if there was a degree of uncertainty in determining 
the threshold, the errors would be small. On the other hand, the histogram for 
cellulose (Figure  11.10 b) does not show as a clear distinction and, depending on 
the threshold value    –    even if the difference were small    –    this may be a signifi cant 
error in estimation. The histogram can be fi tted with multiple normal distribution 
curves to help determine reproducibly the separation of one curve from another.  

  11.3.3.2   Supervised Analysis 
 Supervised analysis is performed when there additional information or data avail-
able, such as reference spectra, calibration samples and concentrations. 

 The simplest form of supervised analysis is to  ‘ look for ’  a chemical component 
using a reference spectrum. For this, the most widely used methods include cor-
relation coeffi cients, Euclidean distance and DCLS regression, in supervised 
model (using reference spectra). 

 When a supervised analysis is mentioned in the pharmaceutical industry, it 
often refers to a concentration prediction using a chemometric model. By nature, 
the objective of the analysis is not to identify the ingredients of the sample, as they 
are all known. Rather, the aim is to predict their concentrations in the sample. 

 The fi rst step is to prepare a calibration set of samples, which contain the same 
ingredients as the target samples but in varying concentrations. A macro measure-
ment is fi rst performed to record a spectrum from each sample (Figure  11.11 a), 
which are assumed to be homogeneous. The spectrum is a superposition of indi-
vidual spectra of ingredients with the spectral contributions proportional to their 
concentrations. These spectra form the   training matrix  , while the concentrations 
of the calibration samples compose the   concentration matrix  . A chemometric 
model is then developed to correlate the training and concentration matrices.   

 The second step is to prepare a validation set of samples in the same way that 
the calibration set is prepared. The validation set is also measured in the same 
way as the calibration set. The model is then applied to the spectra of the validation 



set to predict the concentrations. The model is then adapted (different pretreat-
ment, different number of factors, different algorithms, etc.) until the concentra-
tion prediction of the validation set is successful. The fi nal model is then applied 
to the target sample to predict its concentration. This procedure works best when 
the underling assumptions are well met    –    a homogeneous sample and a large area 
measurement. Among commercial Raman instruments, the P h AT system (Kaiser 
Optical Systems, Ann Arbor, MI, USA) was specifi cally developed for macro 
Raman measurements. 

 In Raman hyperspectral imaging, on the other hand, a single spectrum is often 
measured from a  ≤ 1    µ m spot. The Raman spectrum produced will more likely 
represent either pure A or pure B, rather than a mixture of spectra of A and B. 
The underling assumptions for the model development procedure described 
above break down and the procedure can no longer be used. An alternative 
approach was implemented in ISys (Malvern Instruments) to use a  reference 
matrix , which is a collection of spectra measured from pure components, and a 
 membership matrix  (matrix elements have values of 0 or 1) in place of the train-
ing and concentration matrices. The same algorithms are applied then to develop 
chemometric models  [8] . As the membership matrix has been used instead of the 
concentration matrix, the results are considered to be of relative abundance rather 
than of absolute concentrations. Samples of known chemical compositions can 
be used to validate the model and to calibrate the results from the relative abun-
dance to the absolute concentrations. The samples are assumed to be hetero-
geneous, in fact the more heterogeneous the sample is, the better the method 
works.   

  11.3.4 
 Data Analysis:  R aman Images 

  11.3.4.1   Statistical Analysis 
 A chemical image is an image where the gradient from brightness to darkness is 
associated with the abundance of a chemical component, thus providing chemical 

   
  Figure 11.11     (a) Simulation of a macro measurement. A 
spectrum from a sample covering a large area (large circle); 
(b) Simulation of micro measurements. Multiple spectra from 
a sample each covering a small area (small circles).  

(a) (b)
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information in an image. In contrast, a Raman image is a chemical image for 
which the chemical information is based on Raman spectra. As a subject of a 
numerical analysis, on the other hand, a Raman image is simply a collection of 
numbers, each of which is associated with a level of abundance of a chemical 
component and a location of the sample. If the spatial association is removed, then 
a Raman image can be treated simply as a collection of numbers representative 
of the abundance of a chemical component. A histogram of a Raman image then 
can be created by plotting these numbers (intensities of a characteristic band, 
scores resulting from multivariate analysis, etc.) versus populations (the number 
of spectra or measurement points) (Figure  11.12 ).    

 The histogram provides both qualitative and quantitative characteristics of the 
Raman image. For example, the histogram of a Raman image of a pure com-
pound or a completely homogeneous mixture would show a normal distribution. 
The mean value would be equivalent to the bulk measurement results. An 
increase in standard deviation, skew or kurtosis would indicate an increased devi-
ation from the normal distribution, and in turn an increased sample heterogene-
ity. Conversely, the standard deviation, skew and kurtosis can be used to 
quantitatively assess the sample heterogeneity. For example, samples that are well 
blended would show a low heterogeneity. By comparing the standard deviation, 
skew and/or kurtosis it is possible to compare the blending quality in quantitative 
terms  [5] .  

  11.3.4.2   Morphological Analysis 
 When a number of adjacent spectra (or points or pixels) are classifi ed as one 
chemical component, they can be termed as a  domain . These could be particles, 
agglomerates or simply a continuous area of the same chemical component. 
However, when they form discrete areas, they are more likely to be from particles 
or agglomerates, and it is viable to determine their sizes and distributions. The 
Raman image (Figure  11.13 , left) shows the spatial distribution of caffeine; 
the white areas are caffeine - rich. A binary image isolating these areas is created 
by assigning 1 to all points above a threshold, and 0 to all below. The threshold 

   
  Figure 11.12     A histogram of a Raman image. Total number of 
spectra   =   6561; mean score   =    − 0.35; standard deviation of 
scores   =   1.3; skew of scores   =   1.3; kurtosis of scores   =   1.4.  
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value was determined based on the histogram of the Raman image. Various 
statistics can be drawn from the binary image (or classifi cation image), such as 
the number of domains, mean size in areas and diameters, and distribution sta-
tistics. Table  11.2  shows the domain statistics of the image shown in Figure  11.13 ; 
here, the order of quadrants is from top to bottom, and then left to right. The 
percentage coverage is calculated by dividing the sum of the domain areas by 
the quadrant area.        

 Table 11.2     An example of domain statistics from the image in 
Figure  11.13 . 

  Number of domains    13  

  Mean size in area ( µ m 2 )    2.9  ×  10 4   

  Mean size in diameter ( µ m)    170.0  

  Quadrant 1    No. of domains   a       3  
      Coverage (%)    4  

  Quadrant 2    No. of domains   a       4  
      Coverage (%)    3.8  

  Quadrant 3    No. of domains   a       4  
      Coverage (%)    3.3  

  Quadrant 4    No. of domains   a       4  
      Coverage (%)    12  

    a  Count partial domains.   

   
  Figure 11.13     A Raman image and a binary image showing caffeine chemical domains in red.  
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  11.3.5 
 An Example of  R aman Hyperspectral Imaging Analysis:  II  

 In this analysis, three Raman maps of an OTC analgesic tablet were mapped 
(Figure  11.14 ); the areas are caffeine - rich (red), aspirin - rich (green) and acetamino-
phen - rich (blue).   

 The Raman image in Figure  11.14 b encompasses 7.4    ×    6.2   mm 2 , mapped with 
75    µ m steps; hence, a Raman spectrum is measured at every 75    µ m in the mapping 
area. These data are excellent for assessing the overall characteristics of the sample 
and identifying the ROI. 

 The Raman image in Figure  11.14 c encompasses 2.5    ×    2.5   mm 2  and is mapped 
with 25    µ m steps; this is the image investigated in Section  11.2.3.1  and Figure 
 11.13 . These data are excellent for assessing the local domain statistics and iden-
tifying a domain of interest. The Raman image in Figure  11.14 d encompasses 

   
  Figure 11.14     (a) A visual image of an OTC tablet, cross -
 sectioned; (b) Raman images of a large area of the tablet 
at a coarse grid (marked in red); (c) Intermediate area at 
intermediate grid (marked in green); (d) Small area at fi ne 
grid (marked in blue).  

(a) (b)

(c) (d)



0.5    ×    0.5   mm 2  and is mapped with 5    µ m steps; these data are good for characteriz-
ing a single domain (Table  11.3 ).     

  11.4 
  R aman in Multimodal Hyperspectral Imaging 

 An OTC cold medicine tablet was mapped with Raman, X - ray/EDXRF and 
SEM/EDXRF. The ingredients were acetaminophen (325   mg), chlorpheniramine 
maleate (2   mg), dextromethorphan - HBr (10   mg), phenylephrine - HCl (5   mg), 
benzoic acid, carnauba wax, corn starch, D & C Yellow No. 10 Lake, FD & C Blue 
No. 1 Lake, hypromellose and magnesium stearate. The tablet weight was  ∼ 625   mg. 
The concentrations of active ingredients were 52.0% for acetaminophen, 0.3% for 
chlorpheniramine maleate, 1.6% for dextromethorphan and 0.8% for phenyleph-
rine (totaling 54.7%). The molecular structures of the ingredients are shown in 
Figure  11.15 .   

 A Raman map of the tablet was recorded over 500    ×    500    µ m 2  at 5    µ m steps. The 
tablet contained four active ingrediants. At fi rst glance, all spectra showed features 
of acetaminophen. This is in accordance with the fact that the acetaminophen 
concentration was  ∼ 50% and its spectral features were likely to be present pre-
dominantly. However, a close inspection revealed that the relative intensities of 
the band at 853, the doublet at 1608 and 1615, and the doublet at 1645 and 
1650   cm  − 1 , varied from spectrum to spectrum. Figure  11.16  shows four spectra 
individually identifi ed to demonstrate the largest variance in relative intensities. 
The scores of the individual spectra were calculated using these spectra as loadings 
and the DCLS regression algorithm. The pink spectrum in Figure  11.16 b is rec-
ognizable as that of acetaminophen, while the blue spectrum shows the highest 
intensity at 853   cm  − 1 , and is likely to represent phenylephrine (a secondary amine). 
It is reasonable to assume that the relative intensity variances in the red and green 
spectra are spectral contributions from the other two ingredients, chlorphenira-
mine maleate and dextromethorphan - Hbr. It is not easy to determine which 
spectral features belong to which component without reference spectra from pure 

 Table 11.3     Single domain characteristics of the domain marked 
with an arrow in Figure  11.14 d. 

  Domain size ( µ m 2   )   18   225  
  Orientation ( ° )   a       44.6  
  Major axis ( µ m)   b       222  
  Minor axis ( µ m)   c       107  
  Diameter ( µ m)    152  

    a  Angle between the major axis and the horizontal axis.  
   b  Length of the longest line within the domain.  
   c  Length of the line drawn perpendicular to and through the 

center of the major axis within the domain.   
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  Figure 11.15     Molecular structures of (a) acetaminophen; 
(b) chlorpheniramine maleate; (c) dextromethorphan; 
(d) phenylephrine; (e) hypromellose; and (f) magnesium 
stearate.  

(a) (b)

(e)(d)

(c)

(f)

   
  Figure 11.16     (a) Raman score image using (b) four 
individually identifi ed spectra that are furthest from each 
other; Zoom - in of spectral ranges of (c) 750 – 900 and 
(d) 1450 – 1800   cm  − 1 .  
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components from the Raman spectra of this map. On the other hand, dextro-
methorphan - Hbr is the only component that contains Br, which is very easily 
detected with the EDXRF analysis.   

   X - ray fl uorescence  ( XRF ) mapping was performed over 1024    ×    1024    µ m 2 , mea-
suring 256    ×    256 points; the results are shown in Figure  11.17  (red spot marked 
with an arrow in  ‘ Whole image ’ ). The XRF images identifi ed Mg, Si, Cl, Ca and 
Br, there being two Br images from the K and L lines. The L line was low energy 
(1.48   keV) from the surface, while the K line was high energy ( ∼ 11.9   keV) from the 
entire depth. As the data measurement conditions were optimized for low - energy 
(15   KeV) bands, the L line image of Br was more reliable than the K line image in 
this case.   

 In comparison to Raman images, the Cl and Br images should correlate and 
confi rm chlorpheniramine maleate and dextromethorphan - HBr. The Mg image 
should highlight the magnesium stearate distribution, which was not easy to 
isolate in Raman imaging. According to the ingredient list there was no Ca, but 
this might have been a component of the coloring material or a background arti-
fact. SEM/EDXRF imaging (see below) was also unable to detect Ca, confi rming 
the presence of a background artifact. 

 The magnesium image showed many small spots that may, or may not, have 
been Mg - rich. Based on the label information, magnesium was known to be 
present in the sample; however, if this had been an unknown sample then the 
image would have been of insuffi cient quality to determine the presence of 
magnesium. 

   
  Figure 11.17     X - ray/EDXRF images for Mg, Si, Cl, Ca and Br.  
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 When the same sample was measured using SEM/EDXRF mapping, the map 
(Figure  11.18 ) was recorded over a 400    ×    400    µ m 2  area at 350 ×  magnifi cation. The 
Mg map showed a distinctively sized Mg domain ( ∼ 5    µ m in diameter), and the Si 
map highlighted the same spot. The EDXRF spectrum (Figure  11.19 ) from this 
highlighted spot confi rmed the coexistence of Mg and Si.    

  11.5 
 Conclusions 

 Raman hyperspectral imaging provides an excellent means of characterizing the 
chemical and spatial composition of pharmaceutical products. The most important 
point when performing successful Raman hyperspectral imaging is to understand 
the intertwined relationship between spectroscopy and imaging, as the spectral 
quality    –    and especially the spectral resolution and SNR    –    will have a direct impact 
on the spatial quality produced. 

 The underlying assumptions for multivariate analysis are different for 
macro -  and microanalyses. While Raman hyperspectral imaging is preferred for 
microanalysis and heterogeneous samples, macroanalysis has been shown prefer-
able for homogeneous samples. However, whichever approach is utilized the 

   
  Figure 11.18     SEM/EDXRF images for C, O, Mg, Si, Cl and Br at 350 × .  



multivariate analysis results must fi rst be validated and verifi ed with original 
spectra and chemistry. 

 Raman hyperspectral imaging data sets consist of many spectra, thus providing 
an additional means of extracting quantitative information by the use of statistics. 
The spectra can be classifi ed into groups, with relative homogeneity being based 
on the spectral analysis, or with the scores being associated with individual spectra, 
based on spectral comparisons. The results obtained can then be assessed statisti-
cally to provide details of relative abundance, quantifi ed heterogeneity and domain 
statistics. 

 In addition, EDXRF hyperspectral imaging can be employed to detect the ele-
mental distribution of the sample, with the results being used to complement 
Raman hyperspectral imaging.  
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  12.1 
 Introduction 

 In many analytical applications in biomedical and pharmaceutical sciences it is 
desirable to probe, noninvasively, the composition of deep layers of samples with 
high chemical specifi city. Examples include the diagnosis of bone disease and 
breast cancer, as well as the noninvasive probing of pharmaceutical products in 
quality control applications and drug authentication. 

 Presently, the main chemically specifi c optical spectroscopic techniques used in 
these areas include  near - infrared  ( NIR ) absorption spectroscopy,  mid - infrared  
( MIR ) spectroscopy and Raman spectroscopies. Although, NIR is widely used in 
a number of these applications for its simplicity, it suffers from a limited chemical 
specifi city  [1, 2] . By comparison, both MIR and Raman spectroscopy offer a sub-
stantially higher degree of chemical specifi city, but until now their use has been 
confi ned to probing only shallow layers of turbid media. In the case of MIR, this 
is due not only to the requirement for sample thinning or dilution in the case of 
bulk probing, but also an incompatibility with aqueous samples, as water strongly 
absorbs the MIR radiation. Raman spectroscopy, in contrast, does not suffer from 
these fundamental limitations, and thus holds a substantial potential to become 
a mainstream analytical tool in the areas concerned  [2] . It should be noted that the 
applicability of this technique is limited to samples that do not exhibit strong fl uo-
rescence emission in the spectral region coincident with the Raman spectra, as 
this can easily swamp the relatively weak Raman signals. However, the problem 
of fl uorescence can be signifi cantly reduced by using NIR excitation away from 
the electronic absorption bands of most fl uorescing species. 

 To date, the Raman method has been used with commercial Raman probes and 
microscopes, predominantly in the backscattering collection mode (see Figure 
 12.1 ), although in a number of specialist laboratories a 90 °  collection geometry is 
also used  [1] . While the backscattering mode is used mainly for its instrumental 
simplicity and ease of use, this approach permits the effective depth discrimina-
tion of Raman signals in these media only at shallow depths  [1] . Consequently, as 
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the accessible depths in living tissues are typically only several hundred microm-
eters, many of the tissue ’ s components, such as bones and deep cancerous tissues, 
will be beyond the reach of this technique.   

 A substantial extension to the penetration depth of Raman spectroscopy was 
recently accomplished using the diffuse component of light, in analogy with NIR 
absorption tomography  [3 – 5]  or fl uorescence spectroscopy  [6 – 9] , where corre-
sponding concepts have been used previously. In this chapter we review recent 
developments in this area, and provide examples of several practical applications. 
Although these approaches are targeted primarily on the chemical characterization 
of subsurface domains within turbid media, they also hold considerable potential 
for extracting spatial information (in analogy with NIR tomography). This latter 
aspect, which is outlined in Section  12.4 , is only now beginning to be explored.  

  12.2 
 Techniques for Deep, Noninvasive  R aman Spectroscopy 

 Several deep, noninvasive approaches have been developed following earlier exten-
sive investigations into the photon migration process  [3, 10 – 12] . The methods can 
be divided into two basic classes, namely temporal and spatial. 

  12.2.1 
 Temporal Methods: Ultrafast Gating 

 The discrimination of layers within a stratifi ed turbid sample can be accomplished 
with the temporal approach, using impulsive Raman excitation and fast temporal 
gating of the backscattered Raman signal using, for example, a 1   ps optical Kerr 
gate. This concept builds on the earlier studies of Wu  et al.   [10] , who used a some-
what slower photon counting approach to accomplish this task. The role of the 
gate is to separate the earlier - arriving surface Raman photons from delayed Raman 
photons born at greater depths. 

 The recovery of the full Raman spectrum of a deeply buried layer in a turbid 
sample was accomplished using the Kerr gating approach by Matousek and 
coworkers  [13] , on a two - layer powder sample, building upon pioneering research 

   
  Figure 12.1     Basic types of Raman spectroscopy geometries 
with respect to the sample. Conventional backscattering 
Raman, SORS and Raman transmission geometries. 
R   =   Raman light; L   =   laser beam.  
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into Raman photon migration by Everall  et al.   [11, 12]  and Morris  et al.   [14]  and 
the preceding investigations on Raman Kerr gating fl uorescence rejection  [15 – 17] . 
A more extensive description of the concepts and underlying mechanisms is pro-
vided in a tutorial review  [18] . 

 The Kerr - gated Raman concept proved to be effective, although the complexity 
and high peak intensities involved in these experiments precluded its wider use. 
These limitations were lifted by the subsequent development of the spatial con-
cepts for deep, noninvasive spectroscopy.  

  12.2.2 
 Spatial Methods: Spatially Offset  R aman Spectroscopy ( SORS ) 

 The spatial Raman methods are related to widely used tomographic concepts such 
as NIR absorption  [3]  and subsurface fl uorescence spectroscopy  [6] . The basic 
concept, known as  spatially offset Raman spectroscopy  ( SORS )  [19] , utilizes the 
differences in the spatial distribution of Raman photons emerging at the surface 
from different depths of the probed sample. In this approach, Raman spectra are 
collected from regions on the sample surface that are spatially offset by different 
amounts from the point of laser incidence (see Figures  12.1  and  12.2 ). These 
spectra contain varying relative Raman contributions from layers located at differ-
ent depths within the sample. This difference is brought about by the wider lateral 
diffusion of photons emerging from greater depths  [3, 11, 12] .   

 The feasibility of the SORS concept as a tool for obtaining Raman signals from 
deeply buried layers in turbid media was fi rst demonstrated in a collaborative 
investigation  [19]  (see Figure  12.3 ). The experiments were performed on a two -
 layer sample composed of a 1   mm - thick  poly(methyl methacrylate)  ( PMMA ) 
powder layer placed on top of a  trans -  stilbene powder layer using 514   nm as the 
probe wavelength. The results of these measurements are shown in Figure  12.4 . 
The zero - offset spectrum represents a conventional Raman spectrum. By increas-
ing the spatial offset, the surface layer signal (PMMA) diminishes much more 
quickly that that of the sublayer ( trans  - stilbene) such that, at a spatial offset of 
 > 2   mm, an order of magnitude improvement in the intensity ratio is achieved. The 
same report also detailed improvements in the relative ratio between the Raman 
signals of the two layers by a factor of 19 at a 3.5   mm spatial offset. Interestingly, 
the quality of the spectra obtained in these measurements was substantially higher 

   
  Figure 12.2     Principle of the spatial SORS concept for the 
discrimination of subsurface signals.  
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  Figure 12.3     Schematic diagram of a basic SORS experimental 
set - up.  Reprinted with permission from Ref.  [19] ;  ©  2005, The 
Society for Applied Spectroscopy.   

     Figure 12.4     A set of SORS spectra collected 
from a two - layer system consisting of a 
1   mm - thick layer of PMMA made from 20    µ m -
 diameter spheres followed by a 2   mm - layer of 
 trans  - stilbene powder measured using 514   nm 
as the probe wavelength. The spectra are 
shown for different spatial offsets. The top 

and bottom spectra are those of the individual 
layers obtained in separate measurements. 
The spectra are offset for clarity. The 
acquisition time was 100   s for each spectrum, 
and the average laser power 12   mW.  Reprinted 
with permission from Ref.  [19] ;  ©  2005, The 
Society for Applied Spectroscopy.   

0

5000

10000

15000

20000

25000

30000

35000

750 950 1150 1350 1550 1750

Wavenumber (cm-1)

R
am

an
 in

te
ns

ity
  (

co
un

ts
) 

 

PMMA

0 mm

0.5 mm

1 mm

1.5 mm

2 mm

2.5 mm

t-stilbene



 12.2 Techniques for Deep, Noninvasive Raman Spectroscopy  409

than was achieved using the more complex Kerr - gated system  [13] . The improve-
ment is ascribed to the higher intensity of the Raman signal detected, due to the 
fact that SORS integrates the Raman signal across the entire time domain, unlike 
with the temporal approach, where only a narrow temporal slice is obtained.   

 If a higher degree of separation of the subsurface signals from the surface con-
tribution is required, then this can be accomplished, for a two - layer system, by a 
simple scaled subtraction of two spectra obtained at different spatial offsets to 
cancel the Raman contribution from the surface layer. For a stratifi ed sample with 
more than two layers, a multivariate data analysis approach including factor analy-
sis can be applied, using a more extensive data set. An example of such a procedure 
is  band target entropy minimization  ( BTEM )  [20 – 24] . A major advantage of these 
approaches is that a stratifi ed system can be decomposed with no  a priori  knowl-
edge of its composition. 

 The SORS concept can be combined, in a relatively straightforward manner, 
with a fi ber optic collection scheme developed for conventional Raman spectros-
copy earlier  [25]  to provide a substantial enhancement of the Raman collection 
effi ciency. In this approach, fi bers collecting the Raman signal from the sample 
arranged typically in a ring or disk pattern are reorganized on the spectrograph 
slit into a linear pattern to match the slit geometry. The use of this concept in 
SORS was discussed, from a theoretical standpoint, in studies by Matousek and 
colleagues  [19, 26] , and fi rst experimentally demonstrated by Schulmerich  et al.  
 [27] , who used a commercial fi ber probe with the fi bers arranged at the center of 
the probe with global illumination confi guration  [28] . The concept was employed 
subsequently by Matousek  et al.   [29] , who utilized fi bers distributed on annuli of 
different radii (see Figure  12.5 ), with each different radius being presented to a 
different horizontal section of a  two - dimensional  ( 2 - D ) CCD detector. Similar 
concepts were also used in fl uorescence tomography  [6 – 9] .   

   
  Figure 12.5     A photograph of the SORS ring fi ber probe 
(left   =   input side, right   =   output side).  Reprinted with 
permission from Ref.  [29] ;  ©  2006, The Society for Applied 
Spectroscopy.   
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 The application of SORS in its basic form provides information on the chemical 
composition of individual layers, but no spatial information about their distribu-
tion within the sample. Additional studies performed by Schulmerich and cowork-
ers  [28]  demonstrated how SORS could also be deployed as a tomographic tool. 

 Another SORS variant was described  [30]  for which the concept relies on the sepa-
ration of signals in stratifi ed media by defocusing a conventional Raman instru-
ment. Although less effective than a fully optimized SORS method, the technique 
can be suffi ciently effective with less - challenging samples, and may provide a conve-
nient fi rst stepping stone for those groups fi rst encountering this area of research.  

  12.2.3 
 Inverse  SORS  

 Further research in the area of SORS led to the development of a more effective 
SORS modality, termed  inverse SORS . This improved concept removes some of 
the artifactual limitations inherent to the conventional SORS approach, and 
permits the use of higher laser powers through the provision of a wider illumina-
tion zone at the sample. This is benefi cial in applications where maximum illu-
mination intensity limits exist, such as when probing living tissue  in vivo  and in 
explosive powder environments. 

 The concept, which was proposed and demonstrated independently by Schulm-
erich and colleagues  [31, 32]  and Matousek  [33] , relies on the collection of Raman 
light through a group of fi bers at the center of a probe, and the delivery of the 
laser beam through a ring - shaped area centered on the collection zone (see Figure 
 12.6 ). The ring radius defi nes the SORS spatial offset. In this concept, it is also 
benefi cial that, in each read - out of the CCD detector, an arbitrary illumination ring 
radius can be set, thus enabling a better tailoring of the experimental conditions 
to the sample parameters than was possible with conventional SORS probes, 
where rings are built into the fi ber probe. The laser beam ring profi le can be gen-
erated using an axicon (conical lens), and the spatial offsets set either by adjusting 
the distance of the axicon from the sample  [33]  or by varying the magnifi cation of 
a telescope inserted between the sample and the axicon  [31, 32] .    

   
  Figure 12.6     Schematic diagram of conventional SORS and 
inverse SORS concepts showing Raman collection and laser 
beam delivery geometries.  Reprinted with permission from 
Ref.  [33] ;  ©  2006, The Society for Applied Spectroscopy.   
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  12.2.4 
 Transmission  R aman Spectroscopy 

 In some analytical applications the primary goal of the measurement can be the 
assessment of the overall bulk content of the probed sample, instead of the com-
position of individual layers. This is, for example, the case in the bulk analysis of 
pharmaceutical tablets, when the requirement is to establish the overall tablet 
content. Matousek  et al.   [34]  recently showed that a transmission Raman geometry 
is particularly well suited for such an analysis (see Figure  12.1 ). Although this 
geometry was introduced during the  ‘ early days ’  of Raman spectroscopy  [35] , it 
became largely forgotten and its benefi ts for the analysis of pharmaceutical prod-
ucts were unrecognized. In sharp contrast with the conventional backscattering 
Raman geometry, where the signal is biased towards surface layers of the probed 
sample, the transmission Raman mode exhibits gross insensitivity to the depth of 
a probed layer. This in turn eliminates the so - called  ‘ subsampling ’  problem, when 
sample heterogeneity can limit the accuracy of the prediction of the overall sample 
content  [36] . Previous attempts to minimize this effect have included the use of 
special devices to rotate the pharmaceutical tablets in front of a conventional 
backscattering Raman microscope. 

 This exceptionally useful feature of the transmission Raman mode was con-
fi rmed both experimentally and using Monte Carlo simulations  [34] . The numeri-
cal results (see Figure  12.7 ) show that if a thin  ‘ impurity ’  layer is relocated from 
the surface to a depth of 3   mm within a typical tablet medium, then its conven-
tional backscattering Raman signal is diminished by four orders of magnitude, 

   
  Figure 12.7     Plot of Raman intensities for the backscattering 
and transmission geometries versus depth ( d  1 ) of the 
interlayer (impurity) within a pharmaceutical tablet - like 
medium. The dependencies are the results of Monte Carlo 
simulations.  Reprinted with permission from Ref.  [34] ; 
 ©  2006, The Society for Applied Spectroscopy.   
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and typically is lost in the dominant signal coming from the surface layers. On 
the other hand, the transmission geometry yields a largely unperturbed signal, 
which shows that the transmission concept is much better suited to probing of 
the bulk content of turbid media. The results of these studies also showed that a 
good level of Raman signal can be obtained in the transmission geometry with 
pharmaceutical tablets  [34] .   

 In many pharmaceutical and biomedical applications, such as the noninvasive 
probing of colored capsules, coated tablets and subsurface tissue spectroscopy, it 
is also benefi cial that the transmission Raman method very effectively diminishes 
the Raman and fl uorescence signals originating from the surface layers of the 
probed sample compared to conventional backscattering Raman geometry  [37] .  

  12.2.5 
  R aman Signal Enhancement Using a Bandpass Filter 

 In situations where the laser light delivery point and Raman collection area are 
spatially separated    –    as for SORS, inverse SORS and transmission Raman spectros-
copy    –    a simple method  [38]  can be used to substantially enhance the detected 
Raman signals. Such an enhancement is achieved by using a multilayer dielectric 
optical element, such as a bandpass fi lter, placed in the laser beam over the sample. 
This prevents the loss of laser photons, which re - emerge from the medium at the 
critical point where the laser beam enters the sample and in its vicinity, where 
major photon loss occurs. This leads to a substantial increase in the coupling of 
laser radiation into the sample. Consequently, an enhanced laser photon – medium 
interaction process is present, which boosts the overall Raman signal yield in the 
concerned geometries. In its basic form, the method requires that the coupling 
sample surface is fl at. 

 The method utilizes the angular dependence of the dielectric fi lter on impacting 
photon direction, with its transmission spectral profi le shifting to the blue, in line 
with the increase in the deviation of photons away from normal incidence. This 
feature enables the fi lter to serve as a unidirectional mirror, passing a semi - 
collimated laser beam through unhindered from one side while at the other side 
refl ecting any photons emerging from the sample predominantly at random direc-
tions, back into the sample. 

 Figure  12.8  shows the results of a feasibility experiment carried out in transmis-
sion Raman geometry on a standard paracetamol (acetaminophen) tablet, with and 
without a bandpass fi lter. The bandpass fi lter was centered at 830   nm and its 
bandwidth was 3.2   nm. The Raman spectra are shown in a raw form, without any 
numerical preprocessing. A substantial enhancement ( × 6.5) was observed upon 
the insertion of the bandpass fi lter into the proximity of the tablet. Such a large 
enhancement could be very diffi cult, and in many cases impossible, to reproduce 
by other means. The use of a bandpass fi lter permits the collection of Raman 
spectra of higher quality, and consequently a more sensitive analysis of sample 
can be accomplished, or higher penetration depths attained. It is also worth noting 
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     Figure 12.8     Experimental demonstration of 
the enhancement of the transmission Raman 
signal using a standard dielectric bandpass 
fi lter (BF) placed within the laser beam into 
the proximity of sample. (a) The Raman 
spectra are those of a standard paracetamol 
(acetaminophen) tablet measured with ( ‘ with 
BF ’ ) and without ( ‘ conventional ’ ) BF; (b) The 
same spectra scaled to the identical size to 
illustrate the uniformity of the enhancement 

across the entire spectral range. The 
preservation of the overall spectral pattern is 
important in many analytical applications 
involving complex analytes. The spectra are 
offset for clarity. The acquisition times were 
10   s in both cases with a laser power of 
50   mW (827   nm).  Reprinted with permission 
from Ref.  [38] ;  ©  2007, The Society for 
Applied Spectroscopy.   
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here that the signal enhancement is uniform across the entire spectrum (see 
Figure  12.8 b), and no spectral fl uctuations were observed. Such a feature would 
be important in many analytical applications where the spectral pattern serves as 
a means of identifying the individual chemical components and determining the 
relative concentrations of subcomponents.   

 The simplicity and robustness of the method makes it well suited to a number 
of practical analytical applications, such as sensitive noninvasive  in vivo  disease 
diagnosis, security screening and the quality control of pharmaceutical tablets. The 
concept is also potentially applicable to fl uorescence spectroscopy, NIR tomogra-
phy of turbid media and other general applications, where the enhanced coupling 
of laser radiation into a turbid medium is benefi cial; an example is the case of 
photodynamic therapy in cancer treatment of subsurface tissues.   

  12.3 
 Examples of Application Areas 

  12.3.1 
 Probing of Bones through Skin for Disease Diagnosis 

 As discussed in Chapter  4 , there is considerable benefi t to be obtained from apply-
ing Raman spectroscopy to the analysis of bone matrices. The ability to perform 
such interrogation noninvasively and safely through soft overlaying tissue reveals 
a host of potential applications, including the diagnosis of brittle bone disease and 
osteoporosis  [14, 39, 40] . For example, at present  dual - energy X - ray absorptiometry  
( DEXA ), which represents the  ‘ gold standard ’  screening for the diagnosis of osteo-
porosis, is only 60 – 70% accurate in the prediction of osteoporotic fracture. Such 
inaccuracy most likely stems from the inability of DEXA to probe the protein 
(mainly collagen) components within the bones that not only constitute about 
one - third of the bone matrix but also contribute signifi cantly to bone strength. 
Recently, both the temporal and spatial Raman approaches have been applied 
successfully to this problem, building on the pioneering studies of Morris  et al.  
 [14, 41]  in this area. 

 A collaborative team led by Draper  [39]  recently reported the successful, nonin-
vasive, detection of  osteogenesis imperfecta  (brittle bone disease) in mouse limbs, 
through approximately 1   mm of overlaying soft tissue, using the temporal Kerr -
 gated Raman approach. The presence of the condition was apparent from a sub-
stantial relative intensity change between the collagen and mineral components 
in the spectra (see Figure  12.9 ). These studies represented a milestone in the 
noninvasive Raman spectroscopy of bone, showing for the fi rst time the feasibility 
of such an approach. Unfortunately, however, major issues remain to be resolved 
with this technique. Apart from the high complexity and associated cost of 
the instrumentation, the experiments necessitate the use of laser intensities two 
to three orders of magnitude higher than those permissible for the safe illumina-
tion of human skin  [29] . However, these hurdles were surmounted through the 



     Figure 12.9     Raman spectra of bone measured 
from two genotypes; wild - type mice and 
osteogenesis imperfecta ( oim/oim ) mice. 
The spectra were recorded both through the 
overlying skin and directly on bare bone using 
the ultrafast Raman Kerr - gated method. (a) 
Raman spectra of wild - type mice; (b) Raman 
spectra of  oim/oim  mice; (c) Difference 

Raman spectra obtained by subtracting 
the spectra from the two genotypes. The 
acquisition times were 7 – 15   min for each 
spectrum and the laser pulse energy was 
340    µ J (average power 340   mW, 1   kHz 
repetition rate).  Reproduced with permission 
from Ref.  [39] ;  ©  American Society for Bone 
and Mineral Research.   

 12.3 Examples of Application Areas  415



 416  12 Deep, Noninvasive Raman Spectroscopy of Diffusely Scattering Media

subsequent development of the SORS concept, which is compatible with much 
safer continuous - wave laser beams.   

 The fi rst use of SORS in the area of noninvasive probing of bones was reported 
by Schulmerich  et al.   [27] , who succeeded in recovering the Raman spectra of 
bones transcutaneously from depths of several millimeters in both animal and 
human cadavers. Subsequently, with an improved instrumentation based around 
a ring illumination geometry (equivalent to inverse SORS), Schulmerich  et al.  
 [31]  reached another key milestone by demonstrating the feasibility of measuring 
Raman spectra noninvasively from a depth of 4   mm from chicken tibia, with a 
better than 8% accuracy in terms of the relative Raman band intensities between 
the phosphate (95   cm  − 1 ) and carbonate (1070   cm  − 1 ) bands. These successes 
opened the prospect for the potential detection of osteoporosis, which is likely 
to require the level of accuracy as indicated by McCreadie and coworkers on 
excised bones  [40] . In these investigations (the results of which are shown in 
Figure  12.10 ), the measurements were performed using 785   nm as the probe 
wavelength.   

 Parallel research conducted by Matousek and coworkers  [29]  demonstrated the 
feasibility of recovering the Raman spectra of bones from humans  in vivo . Although 
the obtained spectra were of limited quality, with some overlaying tissue signals 
still present, the study results showed that the key bone features could be mea-
sured transcutaneously  in vivo , under totally safe illumination conditions. The 
measurements were performed with the laser power attenuated to a mere 2   mW    –
    that is, well within the maximum permissible exposure limit and approximately 
equal to the power of a laser pointer. The spectra were collected using a ring fi ber 
probe (see Figure  12.5 ) with zero and 3   mm spatial offsets, and then scaled - 
subtracted to remove the surface layer contributions. The measurements were 
performed on the thumb distal phalanx bone of volunteers through approximately 
2   mm of overlaying soft tissue. The overall acquisition time was 200   s, and the 
probe wavelength 830   nm; three typical processed Raman spectra are shown in 
Figure  12.11 . The accuracy achieved in these studies was limited by the  signal - to -
 noise ratio  ( SNR ) of the spectra obtained at the very low laser power, and did not 
reach the level required for the diagnosis of conditions such as osteoporosis  [40] . 
However, further improvement of the  in vivo  Raman spectra might be feasible by 
using the inverse SORS approach  [31 – 33] , which permits substantially higher laser 
powers to be delivered safely into the tissues.    

  12.3.2 
 Chemical Identifi cation of Calcifi cations in Breast Cancer Lesions 

 Another potential application area for these techniques is in the noninvasive detec-
tion of calcifi cations within breast tissue, as demonstrated by the groups of Baker 
 [42] , Stone  [43]  and Matousek  [44] , using the Raman Kerr - gated, SORS and trans-
mission Raman methods, respectively, with chicken breast tissue phantoms. 
These groups achieved respective penetration depths of 0.9, 8.7 and 16   mm in 
these experiments. Given the potential for recognizing malignant and benign 



lesions from the chemical constituency of the calcifi cations, the techniques hold 
great promise for providing additional diagnostic power to conventional tech-
niques such as X - ray mammography, which cannot identify the chemical make - up 
of the calcifi cations noninvasively, nor the type of lesion. At present, detection of 
the presence of suspected calcifi cations is usually followed by a needle biopsy 
which, in 70 – 90% of cases, uncovers only benign lesions. 

 The above investigations built upon the pioneering studies of Haka  et al.   [45] , 
by showing that excised calcifi cations were identifi able by Raman spectroscopy 
and separable into groups: type I, containing  calcium oxalate dihydrate  ( cod ); and 
type II, containing calcium  hydroxyapatite  ( hap ). Calcium oxalate crystals are 
mainly found in benign ductal cysts, while calcium hydroxyapatite crystals 

     Figure 12.10     Measurements made through 
4   mm of overlying tissue on a chicken tibia at 
the mid diaphysis using the SORS approach. 
Transcutaneous (dotted), recovered bone 
factor (gray), exposed bone (black). (a) 
Recovered bone factor using data from all 50 
collection fi bers; (b) Recovered bone factor 

using data from the 32 innermost collection 
fi bers. The laser power was 110   mW and the 
acquisition time 120   s.  Reprinted with 
permission from Ref.  [31] .;  ©  2006, The 
Society of Photo - Optical Instrumentation 
Engineers.   
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are found both in carcinoma and in benign breast tissue. There is, however, a 
recognizable spectroscopic difference between calcium hydroxyapatite crystals 
originating from malignant and non - malignant sources. 

 In this application, the transmission Raman method has, to date, achieved the 
greatest penetration depth. This method yields a strong suppression of skin fl uo-
rescence originating at the NIR wavelengths, predominantly from melanin com-
ponents, but is grossly insensitive to the depth of the probed calcifi cations  [44] . 
The results of the reported feasibility study  [44]  are shown in Figure  12.12 . These 
experiments were performed at 830   nm with a laser spot diameter of around 4   mm, 
and the Raman light was collected using a fi ber bundle consisting of 33 individual 
optical fi bers. The study was performed on a  ‘ phantom ’  lesion made from a 16   mm 
slab of chicken tissue with a thin calcifi ed material layer (100 – 300    µ m) placed 
within its interior. While recognizable chemical signatures were obtained with 
both calcifi cation types, further studies are clearly required as the amount of cal-
cifi cation used exceeded (by about two orders of magnitude) the clinically relevant 
level. Substantial improvements in the technique are, nonetheless, possible and 
these were also proposed in the study report  [44] . While this application represents 
an ongoing challenge, if proved to be successful it could play a signifi cant role in 
breast cancer diagnosis, as well as contributing to the diagnostic potential of exist-
ing techniques.    
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     Figure 12.11     The estimates of pure Raman 
spectra of human bone  in vivo  measured 
transcutaneously at the distal phalanx of the 
thumb bones. Three different measurements 
are shown decomposed from the raw SORS 
spectra obtained at the zero and 3   mm spatial 
offsets. The spectra were obtained using a 

continuous - wave laser operating at 827   nm 
with skin - safe laser power (2   mW). The 
spectra are offset for clarity. The acquisition 
time was 200   s for each spectrum.  Reprinted 
with permission from Ref.  [29] ;  ©  2006, The 
Society for Applied Spectroscopy.   



  12.3.3 
 Probing of Pharmaceutical Tablets in Quality Control 

 In many pharmaceutical  process analytical technology  ( PAT ) applications it is 
necessary to ascertain the overall bulk content of a tablet. Ideally, this should be 
accomplished both quickly and noninvasively, and with high chemical specifi city. 
An investigation by Matousek  et al.   [34]  outlined the potential of the transmission 
Raman approach  [35]  in this area, demonstrating its ability to provide bulk infor-
mation on the probed object. Moreover, a substantial improvement of subsurface 
probing capability over the conventional backscattering Raman approach was 
demonstrated. The experiments were carried out on a standard 3.9   mm - thick 
paracetamol tablet with a simulated impurity layer (a 2   mm  trans  - stilbene powder 
layer) placed either at the front or back of the tablet. The measurements were 
performed using an 830   nm probe, with a laser beam diameter of 4   mm. The 
results (see Figure  12.13 ) demonstrated the known presence of a strong surface 
bias of the conventional backscattering Raman geometry (often referred to as a 
subsampling problem), yielding Raman signatures of solely the surface layers that 
were presented to the instrument. However, the transmission geometry provided 
mixed Raman signatures originating from both the tablet and the  ‘ impurity ’ , irre-
spective of whether the impurity was at the top or bottom of the tablet being 
examined.   

     Figure 12.12     Raman spectra of two types of 
calcifi ed materials (a 100 – 300    µ m - thick layer) 
recovered from a 16   mm - thick slab of chicken 
tissue ( ‘ hap in tissue ’ ,  ‘ com in tissue ’ ; see text 
for details). The spectra were obtained by 
subtracting raw transmission Raman spectra 
of tissue only from those of tissue containing 

calcifi ed material. The pure Raman spectra of 
individual calcifi ed materials are also shown. 
The acquisition time was 100   s with a laser 
power of 60   mW. The spectra are offset for 
clarity.  Reprinted with permission from Ref. 
 [44] ;  ©  2007, The Society of Photo - Optical 
Instrumentation Engineers.   
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     Figure 12.13     The Raman spectra obtained 
from a two - layer sample (3.9   mm - thick 
paracetamol tablet and 2   mm - thick  trans  -
 stilbene powder  ‘ impurity ’  layer) using: 
(a) conventional backscattering geometry; 
and (b) transmission geometry. The 
measurements were performed at two sample 
orientations, with paracetamol at the top and 
bottom of the  trans  - stilbene cell, as indicated 
in the graphs. The top and bottom spectra are 

those of paracetamol and  trans  - stilbene, 
respectively, obtained in separate 
experiments. The acquisition times were 
between 0.2 and 10   s, with a laser power of 
80   mW. The spectra are offset for clarity. 
Legend:  P    =   paracetamol,  T    =    trans  - stilbene, 
 R    =   Raman light,  L    =   laser beam.  Reprinted 
with permission from Ref.  [34] ;  ©  2006, The 
Society for Applied Spectroscopy.   
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 The overall Raman signal intensity of the tablet alone in the transmission geom-
etry was only 12 - fold lower than that observed with the conventional backscattering 
approach. A further increase in the transmission signal and a reduction in acquisi-
tion time are possible, however, by increasing the laser power permitted by larger 
illumination areas available in the transmission geometry and/or by using an 
enhancing dielectric bandpasss fi lter  [38] . These improvements have the potential 
to bring the acquisition times to well within a fraction of a second, as would be 
required for example in a PAT applications on a production line. 

 The properties of the transmission Raman geometry are well suited to the 
requirements of pharmaceutical production lines, thus underlining the potential 
of this method to displace existing NIR absorption spectroscopy in applications 
where a higher chemical specifi city is required. However, further studies are 
required to establish the technique ’ s sensitivity limits and to validate its potential. 
The results of some very recent investigations by Johansson  et al.   [46]  and Eliasson 
 et al.   [47]  showed that the quantifi cation of active pharmaceutical ingredients in 
tablets and capsules is feasible by using the transmission approach, with a few 
percent relative accuracy.  

  12.3.4 
 Probing of Pharmaceutical Capsules in Quality Control 

 A similar need exists in the quality control of pharmaceutical capsules and coated 
tablets, where their bulk content may be required. Although in many applications 
conventional Raman spectroscopy has proven to be very effective, in some cases 
the Raman signal or interfering fl uorescence emanating from the capsule shell 
or tablet coating can severely reduce the sensitivity of conventional Raman 
spectroscopy. 

 A recent study conducted by Matousek and coworkers  [37]  demonstrated that 
transmission Raman geometry could also dramatically reduce the fl uorescence 
background originating from surface layers, thus permitting a more sensitive 
spectroscopic interrogation of the bulk capsule content. The results of comparative 
measurements using transmission and conventional Raman geometries on a 
variety of colored capsules are shown in Figure  12.14 . Here, the spectra are dis-
played in their raw form as acquired. It is clear that with many colored capsules 
the surface fl uorescence signifi cantly deteriorates the overall Raman SNR, thus 
reducing the sensitivity of the conventional Raman approach  [18] . The transmis-
sion Raman method does not suffer from this problem to the same extent, however, 
as it inherently suppresses the surface - born fl uorescence and permits a much 
more sensitive measurement of the internal content.    

  12.3.5 
 Noninvasive Detection of Counterfeit Drugs 

 Another important analytical area includes the noninvasive detection of counter-
feit drugs, through the plastic or glass bottles and blister packs in which they are 
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     Figure 12.14     Comparison of performance of the conventional 
backscattering and transmission Raman geometries in 
probing various pharmaceutical capsules. The acquisition 
times were 10   s, unless indicated otherwise, with a laser 
power of 80   mW.  *  designates Raman band originating 
from capsule shell.  Reprinted with permission from Ref.  [37] ; 
 ©  2007, John Wiley & Sons.   
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contained. Counterfeit drugs can present a serious health risk which, in extreme 
situations may even be life - threatening; an example is the counterfeiting of anti -
 malarial tablets in eastern Asia  [48 – 50] . Although NIR absorption spectroscopy is 
used in this analytical area, its limited chemical specifi city restricts its effective-
ness. Likewise, while Raman spectroscopy has a high chemical specifi city, its 
effectiveness will vary depending on the color and thickness of the packaging. 
Although the technique can be used to analyze, quite readily, any lightly colored 
capsules and tablets held in blister packs, any darkly colored capsules or thicker 
packaging (e.g., white plastic bottles) will generate excessive amounts of Raman 
and/or fl uorescence emission, causing a substantial reduction in sensitivity. 

 Eliasson  et al.   [51]  showed that SORS could very effectively suppress the surface 
Raman and fl uorescence signals originating from the capsule, coating or packag-
ing, and thus provide a substantially higher degree of chemical sensitivity than 
could conventional Raman spectroscopy. The use of SORS and conventional back-
scattering Raman geometry in the noninvasive probing of white plastic pharma-
ceutical bottles containing paracetamol tablets is shown in Figure  12.15 . The 
conventional Raman approach is ineffective in this case, yielding a massive Raman 
signal originating from the container wall. In contrast, the SORS approach, after 
the scaled subtraction of two SORS spectra obtained at spatial offsets of 0 and 
3   mm, provided a clean Raman spectrum of the tablets held within the bottle. A 
practical use of this method was subsequently demonstrated by Ricci  et al.  on the 
detection of anti - malarial tablets  [52] .   

   
  Figure 12.15     Noninvasive Raman spectra of paracetamol 
tablets measured through a white, diffusely scattering 1.7   mm -
 thick plastic container in drug authentication. Conventional 
Raman and SORS raw data are shown together with the 
tablets reference Raman spectrum. The acquisition time was 
10   s and the laser beam power 50   mW.  Reprinted in part with 
permission from Ref.  [51] ;  ©  American Chemical Society.   
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 As the SORS concept can be easily incorporated into existing commercial, hand -
 held Raman instruments, it holds great promise for the more accurate and sensi-
tive identifi cation of drugs in the entire supply chain. Yet, the applicability of this 
method stretches well beyond this area, and includes applications such the non-
invasive detection of powder and liquid explosives and illicit drugs  [33, 53] .   

  12.4 
 Outlook on  R aman Tomography 

 Today, a number of avenues exists for the further improvement of these tech-
niques, beyond the optimization of the sensitivity through improved data collec-
tion methods and numerical data processing. The SORS approach has tremendous 
imaging potential, which only now is becoming apparent. Such potential was fi rst 
recognized in the studies conducted by Schulmerich and colleagues  [28, 54]  where, 
in addition to chemical information on the sample composition, the ability to 
resolve spatial information was demonstrated. This development allows SORS to 
be used as a tomographic tool, in analogy with NIR absorption tomography, such 
that highly chemical - specifi c images of subsurface sample components in tissues 
and powdered samples can be formed. Moreover, these studies continue to make 
rapid progress, with Schulmerich  et al.   [55]  recently demonstrating the feasibility 
of 3 - D tomographic imaging through a canine hind limb section with thickness 
of up to 45   mm, using transmission Raman spectroscopy. Other alternatives 
include the combination of this method with other techniques, such as ultrasound 
and X - ray computed tomography, to provide an interesting modality whereby 
SORS would complement the greater spatial imaging capability of the established 
methods by providing detailed chemical information on the composition of sub-
surface structures.  

  12.5 
 Conclusions 

 The advent of new, noninvasive Raman spectroscopic techniques promises to have 
a signifi cant impact on many biomedical, security and industrial analytical applica-
tions. Although many additional studies must be conducted, a host of new and 
exciting practical applications are already  ‘ looming on the horizon ’ . Examples of 
these include the diagnosis of diseases such as osteoporosis, brittle bone and 
breast cancer, the quality control and authentication of pharmaceutical products, 
and also the detection of powder and liquid explosives through packaging.  
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  13.1 
 Introduction 

 In Chapter  1 , details were provided of how  focal plane array  ( FPA ) detectors could 
be coupled to  infrared  ( IR ) spectrometers to enable the hyperspectral imaging of 
samples. When working in the mid - IR spectral range, these spectrometers are 
virtually always  Fourier - transform IR  ( FT - IR ) spectrometers. Indeed, their multi-
plex (Fellgett), throughput (Jacquinot) and frequency precision (Connes) advan-
tages are well documented and, together, have caused the near - disappearance of 
dispersive mid - IR instruments from the laboratory  [1] . In stark contrast, dispersive 
instruments have remained the standard instrumentation for spectroscopy in 
other spectral ranges, including that of Raman spectroscopy, in part because of 
the availability of large and sensitive detector arrays, most notably  charge - coupled 
device  ( CCD ) cameras. It is, then, no surprise that the recent availability of mid - IR 
FPAs has renewed interest in the use of dispersive mid - IR spectrometers in a 
spectrographic mode. 

 In this chapter, we present details of the coupling of mid - IR spectrographs with 
FPA detectors into so - called  planar array IR  ( PA - IR ) spectrographs. Such instru-
ments allow the recording of broadband IR spectra in a few milliseconds, or less, 
with a good  signal - to - noise ratio  ( SNR ), and with an intrinsic  one - dimensional  
( 1 - D ) spatial resolution. The concept and basic instrumental aspects of this tech-
nology will fi rst be presented. Details concerning the performances of PA - IR 
spectroscopy will then follow, including the technique ’ s advantages and drawbacks 
as compared to FT - IR spectroscopy. Finally, application examples of this young 
and developing technique will be presented.  

  13.2 
 Concept and Instrumentation 

 The two main differences between a PA - IR spectrograph and a conventional mid -
 IR dispersive spectrometer are the use of a large planar array detector rather than 
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a single - element detector, and the absence of an exit slit on the monochromator. 
This has the obvious advantage of allowing the acquisition of a broad range of 
wavelengths in a single measurement, without any moving part. The acquisition 
time is thus dramatically reduced, typically to a few milliseconds or less, and is 
only limited by the frame rate of the FPA. In addition, removing the exit slit 
increases the throughput of the instrument. 

 The fi rst known use of a dispersive IR spectrometer in a multidetector confi gura-
tion dates from 1951, when Agnew  et al.  coupled a prism spectrograph with 10 
detectors through light pipes, allowing as many resolution elements to be mea-
sured simultaneously  [2] . It was only during the early 1990s that linear array 
detectors became available. Richardson  et al.  described a spectrometer that used a 
32 - element InSb linear array  [3]  which could be use to measure spectra in the 
2400 – 2650   cm  − 1  region with a nominal resolution of 32   cm  − 1  and a time resolution 
of 4    µ s. Subsequently, Hamm  et al.  built a spectrometer that used a monochroma-
tor to disperse the light from a broadband femtosecond IR pulse on a  mercury 
cadmium telluride  ( MCT ) 10 - element array, yielding a 65   cm  − 1  bandwidth with 3 –
 10   cm  − 1  resolution  [4] . Heilweil  et al.  were the fi rst to couple a large 256    ×    256 InSb 
FPA with a dispersive system  [5] . By using a difference - frequency mixing laser as 
a broadband source, they obtained spectra over a range of 400   cm  − 1  and with a 
resolution of 15   cm  − 1 . 

 The fi rst PA - IR spectrograph was developed in 2002 by Rabolt  et al.   [6] . It also 
used a 256    ×    256 InSb FPA and provided a 850   cm  − 1  bandwidth tunable between 
3400 and 2000   cm  − 1  and with an average resolution of 8   cm  − 1 . In 2004, Pellerin 
 et al.  extended the technique to the full mid - IR range (from 4000 to 975   cm  − 1 ) by 
using a 256    ×    256 MCT FPA  [7] . In 2007, Sommer  et al.   [8]  went further back in 
the history of dispersive IR spectrometers by demonstrating the possibility of PA -
 IR spectroscopy using a prism - based spectrograph rather than a grating system. 

 Figure  13.1  shows the typical layout of a grating - based PA - IR spectrograph. In 
contrast with the set - up of Heilweil  et al.   [5] , an inexpensive continuous - 
wave broadband IR source is used, thus decreasing the cost and complexity of the 

   
  Figure 13.1     Schematic representation of the optical layout of 
a planar array infrared spectrograph.  
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instrument. Although such a source provides suffi cient power (often 100   W), its 
height limits the focusing capability. The IR radiation is collected and collimated 
by a concave mirror (M1), typically a spherical or an off - axis parabolic mirror with 
a 5 – 8   cm diameter and a 15   cm focal length. A series of identical concave mirrors 
(M2 – M4) fi rst focus the beam onto the sample holder or accessory, and then onto 
an order - sorting long - pass fi lter (F) and the entrance slit (S) of the spectrograph. 
Any standard FT - IR accessories (specular refl ection, ATR, etc.) can be used with 
a PA - IR spectrograph, as long as the focal length of both the M2 and M3 mirrors 
is similar to that of an FT - IR. The long - pass fi lter is used to reject the second or 
higher diffraction orders from the grating, and is thus critical for quantitative 
measurements. The slit width is often set at 200 – 300    µ m as a compromise between 
spectral resolution (favored by narrow slits) and throughput (favored by large 
slits).   

 A Czerny – Turner spectrograph is used to disperse the different wavelengths and 
to focus the diffracted light on a focal plane for detection by the FPA. A short - focal 
length (10 – 15   cm) system and a planar ruled grating with a low groove density are 
normally used in order to provide an appropriate dispersion of the radiation. Dif-
fraction gratings with 40 to 150 grooves   mm  − 1  are typically used for measurements 
in the fi ngerprint region, whereas a grating with 300 grooves   mm  − 1  is appropriate 
for measurements above 2000   cm  − 1 . 

 The FPA can be aligned directly at the focal plane of the spectrograph, as in 
most CCD - based systems; however, in most cases a compound lens is used (as in 
Figure  13.1 ) to reimage the focal plane on the FPA with a controlled demagnifi ca-
tion. Indeed, the size of (affordable) FPAs is smaller than that of the focal plane 
of the spectrograph, and thus becomes a limiting factor for the spectral bandwidth. 
In contrast to standard 1 - inch (2.5   cm) CCD cameras, a 256    ×    256 mid - IR FPA 
covers only about 40% of the width of the focal plane of the spectrograph. Although 
the compound lens increases the cost of the system, it does allow the measurement 
of a larger spectral range; alternatively, it can be used to optimize the fi eld of view 
along the spatial dimension of the spectral images ( vide infra ). 

 The sensitivity and noise level of a PA - IR spectrograph are affected by the source 
power and the overall throughput of the instrument (refl ectivity of the surfaces, 
slit width, etc.). The dominant factor is, nevertheless, the performance of the FPA, 
the most expensive element of the spectrometer. Up to now, most results have 
been obtained using liquid nitrogen - cooled FPAs (MCT or InSb) with dimensions 
from 64    ×    64 up to 256    ×    320 pixels, sometimes originally intended for use with 
FT - IR imaging microscopes. Liquid nitrogen - cooled FPAs offer the best sensitivity 
and noise level, with  noise equivalent power temperature  ( NEPT ) of 15   mK. Ther-
moelectrically cooled microbolometer arrays can, nevertheless, constitute a cheap 
and convenient alternative. These allow measurements to be made at lower fre-
quencies than MCT FPAs (700 versus 975   cm  − 1 ), albeit at the expense of a greater 
noise level (NEPT of 80   mK), a decreased time resolution, and a high - wavenumber 
response limited to approximately 1400   cm  − 1 . The demand for IR cameras in civil 
applications is prompting the development of uncooled or thermoelectrically 
cooled IR FPAs with improved performance and lower cost. 

 13.2 Concept and Instrumentation  429
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 The frame rate of the FPA directly determines the time resolution of a PA - IR 
spectrograph, while its size can limit the achievable bandwidth/resolution and the 
fi eld of view. Maximum frame rates vary between 100    µ s and 17   ms per spectrum, 
depending on FPA type and size. Such time resolutions are similar or signifi cantly 
better than those possible with continuous - scanning FT - IR spectrometers. It 
should be pointed out that the limiting factor is often not the detection of the IR 
radiation, but rather the time necessary for the read - out and data transfer. Perfectly 
optimized electronics could eventually enable a  ∼ 70    µ s time resolution.  

  13.3 
  PA - IR  Spectroscopy 

 Figure  13.2 a shows a spectral image recorded by a PA - IR spectrograph for a  poly-
styrene  ( PS ) sample. The spectrograph disperses the radiation along the horizontal 
axis (spectral dimension) so that a pixel row corresponds to a single beam spec-
trum of the sample. In this specifi c case, the image ranges from about 1850 to 
1100   cm  − 1  from left to right. The bright color is due to high intensity in the single 
beam spectrum, while dark vertical stripes are due to absorption by PS or by water 
vapor.   

 It is clear in Figure  13.2 a that a PA - IR spectral image is several pixels high and 
offers an intrinsic 1 - D spatial resolution. Each row contains the spectral informa-
tion originating from a specifi c height along the long direction of the entrance slit. 
This is illustrated in Figure  13.2 b, in which only a narrow strip of PS was inserted 
in the middle of the beam. As a consequence, PS absorption bands are only 
observed in the middle of the image (as noted by an arrow), while the rest of the 
spectral image can be used as a single - beam background spectrum. The spatial 
resolution depends on the focal length of the mirrors and the compound lens, as 

   
  Figure 13.2     Spectral image recorded for a polystyrene (PS) 
thin fi lm covering: (a) the full IR beam; and (b) only the 
middle section of the IR beam.  Panel (a) reproduced with 
permission from Ref.  [7] .   
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well as on the pixel size. The resolution is about 150    µ m per pixel for the set - up 
of Figure  13.1 , when no particular magnifi cation or demagnifi cation is introduced. 
Different uses of the spatial dimension, such as multisample and multibeam 
experiments, will be described in the following sections. As Figure  13.2 b suggests, 
this spatial dimension also allows the simultaneous recording of both sample and 
background spectra  [9, 10] . 

 A spectral image in absorbance units can be calculated pixel by pixel as:

   A
I I

I I
sample dbk

background dbk

= −
−

−
⎛
⎝⎜

⎞
⎠⎟

log  

where  I j   is the intensity (counts) detected for the sample, background and  dark 
background  ( dbk ), respectively. The background is a standard open beam spec-
trum that can either be measured in a separate acquisition or on the same image 
as the sample, as in Figure  13.2 b. The dark background is recorded with a shutter 
blocking the entrance slit of the spectrograph. Its purpose is to take into account 
stray light reaching the FPA. Such correction is necessary because the FPA works 
in DC mode and is sensitive to IR emission from the environment (including 
itself). As with any dispersive spectrometer, the spectral axis of a PA - IR spectrum 
must be converted to wavenumbers using a frequency calibration standard. A PS 
secondary standard card is often used for this purpose. 

 Figure  13.3  compares the PA - IR spectra of  poly(ethylene naphthalate)  ( PEN ) and 
PS recorded with InSb and MCT FPAs, respectively, with FT - IR spectra recorded 
at different resolutions  [6, 7] . As expected, the PA - IR spectra are similar to their 
FT - IR counterparts. An InSb PA - IR spectrograph with a 300 grooves   mm  − 1  grating 
(fi rst - order diffraction) provides an approximately 850   cm  − 1  bandwidth that can be 
tuned in the 3400 – 2000   cm  − 1  range, with an average resolution of 8   cm  − 1   [6] . A 
system based on an MCT FPA can provide a bandwidth up to 750   cm  − 1  over the 
3400 – 975   cm  − 1  range, with a resolution that varies between 7 and 14   cm  − 1   [7] . This 
resolution range is due to the fact that the spectral resolution of a dispersive instru-
ment is constant in wavelength units, not wavenumbers. The spectral resolution 
for any given confi guration is always better at low wavenumbers (long wave-
lengths). An uncooled microbolometer FPA can also be used to record spectra 
down to 700   cm  − 1 , below the cut - off of MCT detectors  [8] .   

 In contrast to FT - IR spectroscopy, it is not possible to dissociate bandwidth and 
resolution in a PA - IR experiment. Both are limited by the size of the FPA that 
dictates the number of resolution elements that can be recorded in a single acquisi-
tion. Up to now, bandwidth has usually been favored over resolution because 
moderate resolutions are often suffi cient, especially for time - resolved studies. As 
a rough rule of thumb, doubling the groove density doubles the spectral resolution 
but halves the bandwidth (as long as the slit width and FPA pixel size do not 
become limiting factors). The ideal way of achieving both high spectral resolution 
and large bandwidth is to use larger arrays, as in Raman spectroscopy with 1024 
pixel - wide CCD cameras. However, such mid - IR FPAs are currently prohibitively 
expensive. 
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 An alternative approach recently proposed by Sommer  et al.  is the use of a single 
or double - pass prism monochromator rather than a grating system  [8] . This pro-
vided a large bandwidth, up to 3000   cm  − 1 , at the expense of a reduced spectral reso-
lution, especially in the C − H stretching region. Another recently described 
approach to extend the spectral coverage was to stack two gratings with a low and 

   
  Figure 13.3     Comparison of the PA - IR and FT - IR spectra 
recorded for: (a) Poly(ethylene naphthalate) in the high -
 frequency range with an InSb FPA; (b) Polystyrene recorded 
in the fi ngerprint region with an MCT FPAs.  Panels (a) and 
(b) adapted from Refs  [6]  and  [7] , respectively.   
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high groove density, respectively, in order to simultaneously record two spectral 
ranges in the same image. Such mosaic grating architecture allowed the recording 
of spectra in the C − H stretching and fi ngerprint regions, simultaneously  [9] . 

 PA - IR spectroscopy allows very rapid measurements, with millisecond or sub-
millisecond time resolution, with good to excellent SNRs. By measuring 100% 
lines spectra, Rabolt  et al.  reported that a peak - to - peak noise level of 2.7    ×    10  − 3  
absorbance units can be obtained in 17   ms using an InSb FPA system  [6] . A similar 
value was obtained in 8.7   ms with an MCT FPA system  [7] . As expected, longer 
acquisition times lead to increased SNRs. The data in Figure  13.4  show that 
peak - to - peak noise level in PA - IR spectra decreases with acquisition time, with a 
slope close to the expected square root improvement  [1, 7] . Noise levels are similar 
to those obtained with an FT - IR spectrometer for the same measurement time. 
An important feature of PA - IR spectroscopy is that, when a sample is homoge-
neous, the spectra recorded from multiple rows can be averaged (pixel binned) to 
improve the SNR of the mean spectrum. Again, the data in Figure  13.4  show that, 
when averaging 100 rows, a peak - to - peak noise of 2.4    ×    10  − 4  absorbance units can 
be obtained with an MCT PA - IR spectrograph in a single frame of 8.7   ms. A noise 
level in the low milliabsorbance range has also been reported for a prism - based 
PA - IR spectrograph for an acquisition time of 2   s  [8] .   

 It should be pointed out that, in good part because of the use of large off - 
axis mirrors, optical aberrations can lead to signifi cant curvature of the images 
under certain instrumental confi gurations. This has a detrimental impact on 
spectral resolution when multiple rows are binned. Pelletier  et al.  have reported a 
data processing procedure to minimize this effect for situations where experimen-
tal limitations prevent improving the optical set - up  [9] . In future commercial 

   
  Figure 13.4     Evolution of the peak - to - peak noise level in 100% 
noise spectra as a function of acquisition time using an MCT 
PA - IR spectrograph (with an without pixel binning) and an FT -
 IR spectrometer.  Reproduced with permission from Ref.  [7] .   
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implementations of PA - IR spectroscopy, proper optical design should minimize 
this effect, for instance by using of a curved slit or an aberration - correcting toroidal 
mirror.  

  13.4 
 Applications 

  13.4.1 
 Ultrathin Films 

 The fi rst reported applications of PA - IR spectroscopy and imaging dealt with the 
characterization of ultrathin organic fi lms deposited on solid substrates  [11 – 13] . 
IR spectroscopy is a very useful tool for characterizing various aspects of such 
systems  [14] . In particular the density or surface coverage of the ultrathin fi lm can 
be determined from the absorbance of IR bands with known absorption index, 
while the position and width of some bands provide information about the con-
formation and structure of the molecules. For instance, the position of the methy-
lene symmetric stretching band around 2850   cm  − 1  is often used to evaluate if the 
alkyl chains are in all -  trans  conformation or contain gauche defects  [15] , while the 
splitting of the methylene bending band at 1463 and 1473   cm  − 1  is indicative of a 
crystalline structure with an orthorhombic packing  [16] . IR polarization measure-
ments also allow the quantitative determination of the molecular orientation of 
the molecules  [17] . 

 Elmore  et al.  have used a PA - IR system equipped with a 320    ×    256 InSb FPA to 
analyze a series of  self - assembled monolayer s ( SAM s) of  octadecyltrichlorosilane  
( OTS ) on glass substrates  [11] . The group studied the coverage and conformation 
of SAMs prepared using three different solvents: hexane, benzene and toluene, 
and showed that their PA - IR spectrograph was suffi ciently sensitive to record the 
spectrum of a monolayer on glass in a tilted - transmission geometry. Spectral 
images covered the 3200 – 2800   cm  − 1  range with an average resolution of 6   cm  − 1 . 
The spectra were recorded in only 27   s, corresponding to approximately 256 FT - IR 
scans at the same resolution. Of course, FT - IR spectroscopy would provide a 
complete mid - IR spectrum, but this would not be a major advantage for glass 
substrates because of their limited transmission range. 

 The advantage of PA - IR spectroscopy for this study was the possibility of record-
ing a series of 1 - D, spatially resolved spectra  [11] . Indeed, although the recorded 
spectral image was  ∼ 100 pixels high, the binning of only four pixel rows was found 
to be suffi cient to yield a spectrum with good SNR. Each image was thus converted 
to 28 spectra spatially resolved along the height of the slit. Figure  13.5  shows the 
line spectra recorded for the SAMs prepared from solutions in the three solvents. 
It can be observed that the mean absorbance varies by up to a factor of four, 
depending on the solvent used for the deposition. Based on the known absorbance 
of the antisymmetric H − C − H stretching band (2920   cm  − 1 ) for a full monolayer of 
OTS, it was concluded that deposition from hexane produced almost complete 



monolayers. In contrast, benzene and toluene yielded partial monolayers com-
posed of domains that covered  ∼ 50% and  ∼ 25% of the glass surface, respectively. 
In a different study, a similar trend was observed in SAMs of the short - chain  n  -
 propyltrichlorosilane prepared from the same solvents  [12] . It can be observed in 
Figure  13.5  that the surface coverage is not uniform across a given sample. Statisti-
cal analysis indicated that the largest relative standard deviation in absorbance is 
observed for the SAMs prepared from hexane. Such variation in coverage would 

   
  Figure 13.5     Line images of self - assembled OTS monolayers 
on a glass substrate produced using (a) benzene; (b) hexane; 
and (c) toluene.  Adapted from Ref.  [11] .   
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obviously have been missed by recording a single averaged spectrum instead of a 
line image.   

 The position of the antisymmetric H − C − H stretching band also revealed sig-
nifi cant variations of conformational order in the different samples and with 
position within a sample  [11] . Not unexpectedly, SAMs prepared from hexane 
showed the lowest average band position at 2919   cm  − 1 , which is indicative of higher 
order, while the SAMs with lower surface coverage had frequencies as high as 
2923   cm  − 1 , indicative of high  gauche  conformation content. In fact, Figure  13.6  
shows that there is a relationship between band position and surface coverage. It 
was noted that, interestingly, the shape of this plot is similar to that of a Langmuir 
pressure – area isotherm. An apparent transition from a disordered to an ordered 
state is found between 18 and 40% coverage, followed by a plateau - like region, and 
a second transition at higher surface coverage. These results are in agreement with 
those obtained using sum - frequency generation spectroscopy and contact angle 
measurements  [18] .   

 Monolayers and ultrathin fi lms are often prepared or deposited on metallic 
surfaces and studied using  FT - IR refl ection - absorption spectroscopy  ( FT - IRRAS ) 
 [14] . Rabolt  et al.  showed that such measurements are also possible using a PA - IR 
spectrograph  [13]  by studying the evolution of orientation and conformation in 
monolayers of octadecylthiol self - assembled on gold substrates as a function of 
dipping time. In contrast to the previous study  [11] , 1 - D spectral imaging indicated 
the formation of rather uniform monolayers for all dipping times, even after only 
a few seconds. The conformational order of the SAMs, observed through the 
antisymmetric H − C − H stretching band position, nevertheless increased rapidly 
during the fi rst 5   min of dipping, and then very slowly over a 40   h period. Finally, 
it was shown recently that PA - IR refl ectance spectra can be recorded in a dual -
 beam fashion by covering only half of the metallic or dielectric substrate with the 
sample  [10] . The second half of the beam can be used to record, simultaneously, 

   
  Figure 13.6     Evolution of the frequency of the 
H − C − H antisymmetric stretching band as a function of 
monolayer coverage for OTS SAM on glass substrates. 
 Adapted from Ref.  [11] .   
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a background spectrum, which allows compensation to be made for fl uctuations 
in the water vapor concentration and drifts of the instrument.  

  13.4.2 
 Time - Resolved Studies 

 Because of its intrinsic millisecond or submillisecond time resolution, a natural 
application of PA - IR spectroscopy is the dynamic characterization of complex 
chemical and physical systems. Continuous - scanning FT - IR spectroscopy is cur-
rently the tool of choice to probe phenomena with characteristic times on the order 
of hundreds of milliseconds or more, although its time resolution is limited by 
the need to accelerate and decelerate the moving mirror during each scan  [19] . A 
prototype interferometer designed by Manning  et al.  circumvented this problem 
by using a rotating wedged mirror  [20] . A time resolution of 10   ms has been dem-
onstrated for the study of polymer deformation using this spectrometer  [21] . In 
spite of this, the time resolution for continuous - scanning FT - IR imaging is limited 
to several seconds per image, because relatively slow scanning speeds must be 
used in order for the Fourier frequencies to be appropriately sampled by the FPA 
digitizing electronics  [22] . 

  Step - scan FT - IR spectroscopy  is a technique that decouples the temporal 
response of the chemical system from the Fourier frequencies of the interferom-
eter, thus enabling a time resolution in the nanosecond range for single - point 
studies  [19] . When coupled with an FPA, a time resolution of 2.5   ms has been 
demonstrated by Bhargava and Levin for the electric fi eld - induced Freedericksz 
transition of  liquid crystal s ( LC s)  [23] . However, a serious limitation of step - scan 
FT - IR, both for imaging and nonimaging studies, is that it is strictly limited to 
phenomena that can be perfectly repeated hundreds or even thousands of times 
without any evolution of the sample response. This, unfortunately, prevents its 
use for a large number of interesting systems  [20] . 

 In this context, PA - IR spectroscopy can overcome some of the limitations of 
FT - IR spectrometers by providing millisecond or submillisecond time resolution 
for the study of nonrepeatable events, while still providing a 1 - D spatial resolution. 
If imaging is not needed, the spatial dimension of the FPA can still be used to 
increase the SNR of the spectrum by pixel binning, or to record information from 
two beams simultaneously. In a proof - of - principle study, Rabolt  et al.  demon-
strated the possibility of millisecond time - resolved PA - IR spectroscopy by probing 
the electric fi eld - induced reorientation of a LC,  4 -  n  - pentyl - 4 ′  - cyanobiphenyl  ( 5CB ) 
 [7] . The dynamics of 5CB and other low - molecular - weight LCs have been widely 
studied using step - scan FT - IR spectroscopy, in order to better understand the 
parameters affecting the performance of LC display devices; an example is the 
infl uence of the alignment layers on dynamic response  [24] . It should be recog-
nized that whilst this phenomenon is in fact highly repeatable, it was treated as 
nonrepeatable for demonstration purposes. 

 Figure  13.7 a shows a spectral image of the 5CB sample inserted between two 
germanium plates covered by a rubbed  poly(vinyl alcohol)  ( PVA ) alignment layer. 
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     Figure 13.7     (a) Multiple beams PA - IR spectral 
image: the top and bottom images are p -  and 
s -  polarized, respectively, before application of 
the electric fi eld; (b) p -  and s -  polarized 
spectra of 5CB recorded before (Off) and 

during (On) a 100   ms electric fi eld pulse; 
(c) Dynamics of 5CB submitted to a single 
100   ms electric fi eld pulse. The continuous 
curve is a single exponential fi t of the 
reorientation kinetics.  Adapted from Ref.  [7] .   
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It is often interesting to record time - resolved IR spectra with the radiation polar-
ized parallel (p) and perpendicular (s) to the rubbing direction, in order to extract 
molecular orientation information. This normally requires two independent exper-
iments to be performed, ideally under rigorously identical conditions, to record 
two sets of time - resolved data. In these studies, the spatial dimension of the FPA 
and two stacked mutually perpendicular polarizers were used to detect simultane-
ously two polarized beams. The top and bottom portions of Figure  13.7 a thus 
contain p -  and s - polarized spectra, respectively. It should be noted that the pixel 
rows in each portion of the image still correspond to different positions along the 
height of the sample.   

 Figure  13.7 b shows the average polarized spectra, and reveals that the PVA 
layers introduced a preferential in - plane orientation of the LC prior to application 
of the electric fi eld (Off). For instance, the 1606   cm  − 1  band, attributed to aromatic 
C = C stretching, is much more intense in the p - polarized spectrum. On the other 
hand, the 1398   cm  − 1  band, due to C − H deformation of the tail aliphatic groups, 
preferentially absorbs s - polarized radiation. An orientation function  [25]  of 0.47 
was determined for the LC using the 1606   cm  − 1  band, while a perfect orientation 
would have yielded a maximum theoretical value of 1. When the electric fi eld 
was applied (On), the parallel and perpendicular bands in the p - polarized spec-
trum decreased and increased, respectively. In contrast, no signifi cant variation 
occurred in the s - polarized spectrum. This is the expected behavior for a nematic 
LC reorienting along the electric fi eld direction when cylindrical symmetry is 
preserved  [26] . 

 Figure  13.7 c shows the time - resolved absorbance changes for the 1606   cm  − 1  
band before, during and after the application of a 100   ms electric fi eld pulse. An 
abrupt decrease in absorbance was observed in the fi rst few milliseconds in the 
p - polarized curve when the fi eld was switched on, followed by a slower process 
during the following  ∼ 80   ms. When the fi eld was switched off, the LC molecules 
reoriented back to their initial state, parallel to the alignment layer. Curve fi tting 
with a single exponential function yielded a relaxation time of 55   ms for the reori-
entation process. As expected from Figure  13.7 b, no signifi cant change can be 
observed in the s - polarized curve with the application of the electric fi eld. This 
curve, nevertheless, shows the sensitivity of time - resolved PA - IR spectroscopy. A 
very low scatter in the data ( < 0.005 absorbance units) is observed around the mean 
value in spite of a short 8.7   ms acquisition time. It should be stressed that the 
results of Figure  13.7 c were obtained by applying a single pulse, without any 
averaging other than pixel binning. 

 Snively  et al.  used a PA - IR spectrograph equipped with a 64    ×    64 MCT rolling -
 mode FPA to push the time resolution of PA - IR spectroscopy to less than 100    µ s 
per spectrum  [27] . The small size and the acquisition mode of this FPA, both 
contributed to enable such time resolution. First, a smaller FPA allows faster 
frame rates than a larger one (3.2   ms per image in this specifi c case), at the expense 
of bandwidth and/or resolution. Second, the 100% duty cycle of a rolling - mode 
FPA was put to profi t. In a snapshot - mode FPA, all pixels measure the signal 
intensity simultaneously for  ∼ 100    µ s, but the electronic read - out time can be as 
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much as 100 times longer and effectively limits the time resolution of the instru-
ment. The actual duty cycle depends on the FPA size and on the number of 
acquisition channels. In contrast, only two pixel rows integrate the signal at any 
given time in a rolling - mode FPA. The electronic read - out is then performed while 
the next rows probe the IR signal. A full spectral image is then, in fact, constituted 
of 32  ‘ time slices ’  recorded at 99    µ s intervals. By addressing each time slice (pair 
of rows) separately, the time resolution of the instrument effectively becomes sub -
 100    µ s. A trade - off of such an experimental scheme is that it prevents use of the 
spatial dimension of the spectral images for other purposes, and implicitly assumes 
that the dynamic response is uniform across the height of the sample. 

 Snively  et al.  demonstrated this experimental approach using the same model 
system as above: the Freedericksz transition of 5CB  [27] . Because of the restricted 
number of pixels on a 64    ×    64 FPA, the spectral image was centered on the 
1606   cm  − 1  phenyl C = C stretching band, and covered about 154   cm  − 1  with an 8   cm  − 1  
resolution. While this bandwidth is narrow, it is suffi cient to probe the dynamics 
of the LC reorientation. Figure  13.8  shows the response of the LC when the electric 
fi eld is switched on; here, the orientation of the LC along the electric fi eld occurs 
very rapidly with a characteristic time of approximately 1.5   ms. The dynamics of 
the phenomenon could easily be resolved based on the 99    µ s time resolution of 
the instrument. The noise level was signifi cantly larger than that in experiments 
conducted with the larger 256    ×    256 FPA (Figure  13.7 c)  [7] , this being due in good 
part to the fact that only two pixel rows were averaged as compared to 20 in the 
previous study.   

 Although the previous demonstrations were performed on a repeatable event, 
they illustrated the performance that could be expected for truly nonrepeatable 
events. It should be pointed out here that some IR FPA detectors can be triggered 
by an external signal with a jitter time of  < 100 ns, thus allowing precise synchro-

   
  Figure 13.8     Sub - 100    µ s orientation dynamics of 5CB 
submitted to a single 100   ms electric fi eld pulse.  Reproduced 
with permission from Ref.  [27] .   



nization of time - resolved experiments. One such example currently under study 
is the macroscopic deformation of polymers, for which the simultaneous measure-
ment of p -  and s - polarized spectra with a sub - millisecond time resolution should 
prove invaluable. Another potential application of time - resolved PA - IR imaging is 
the study of  diffusion kinetics , such as the dissolution of polymers or pharmaceuti-
cal tablets. Although this phenomenon is currently investigated using FT - IR 
imaging (see Chapter  9 ), it would be naturally amenable to PA - IR 1 - D imaging as 
spatial resolution is only necessary along the diffusion gradient. In fact, the hyper-
spectral FT - IR images are sometimes reduced to a single line (1 - D imaging) to 
improve the SNR of the spectra. 

 As noted above, step - scan FT - IR can provide a better time resolution than PA - IR 
spectroscopy for time - resolved studies, as well as full spectra at the desired resolu-
tion. On the other hand, its major limitation is that the phenomenon under study 
must be perfectly repeatable    –    information which often is not available before an 
experiment is carried out. Another problematic aspect to consider is that suffi cient 
relaxation time must be allocated for the sample to return to its initial state 
between consecutive perturbations. Unfortunately, this parameter is also often not 
known  a priori  before the experiment is performed, and may risk artifacts appear-
ing in the data. In contrast, a single perturbation is required in a PA - IR experiment 
to record the time - resolved data, eliminating the requirements of repeatability and 
an  a priori  knowledge of the relaxation time. PA - IR spectroscopy was used to assess 
directly the repeatability of the orientation/reorientation cycles for 5CB  [27] . Table 
 13.1  shows the switch - on and switch - off time constants determined individually 
for a series of 300 consecutive reorientation cycles. As expected for this well -
 studied LC, the time constants did not evolve systematically as a function of the 
number of cycles. In this case, however, the repeatability was demonstrated experi-
mentally and not only assumed, as is often necessary in step - scan studies.   

 Table 13.1     Time constants obtained from the switch - on and switch - off portions of the 
response curves for 5 CB  as a function of the number of cycles. 

  Cycle #    Switch - on time 
constant (ms)  

  Error ( ± )    Switch - off time 
constant (ms)  

  Error ( ± )  

     1    1.40    0.10    19.5    1.5  
     2    1.53    0.14    17.6    1.5  
     3    1.49    0.11    18.8    1.5  
     4    1.55    0.11    14.6    1.6  
     5    1.72    0.13    19.4    1.6  
     6    1.76    0.12    13.3    1.4  
     7    1.45    0.11    20.5    1.8  
     8    1.47    0.11    17.2    1.7  
     9    2.03    0.11    15.0    1.3  
  10    1.35    0.10    16.8    1.8  

  100    1.49    0.09    13.9    0.9  
  300    1.33    0.11    20.3    1.5  
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 Even when a phenomenon is proven to be perfectly repeatable, PA - IR spectros-
copy can still constitute an attractive approach when its time resolution is suffi -
cient. Potential advantages include 1 - D spatial imaging, multiple beam capability, 
as well as a shorter experiment duration. In the previous example  [7] , a single 1   s 
experiment was necessary to record both p -  and s - polarized orientation/reorienta-
tion curves of the 5CB liquid crystal. In contrast, a similar step - scan FT - IR study 
would have required the application at least 512 perturbation cycles for each polar-
ization, leading to a measurement time more than two orders of magnitude longer. 
Such a signifi cant reduction in measurement time would clearly be advantageous 
for high - throughput experiments.  

  13.4.3 
 Dynamic  IR  Linear Dichroism 

 Some processes possess dynamics that are too rapid to be studied with continu-
ous - scanning FT - IR spectroscopy, and for which the requirement of perfect repeat-
ability limits the applicability of step - scan FT - IR. A noteworthy illustration is 
 dynamic IR linear dichroism  ( DIRLD ), a technique developed by Noda, Marcott 
and Dowrey that couples  dynamic mechanical analysis  ( DMA ) with polarized IR 
spectroscopy  [28, 29] . In DIRLD, the samples are subjected to cyclic deformations, 
during which their dynamic response is measured in - phase and 90 °  out - of - phase 
(quadrature) with respect to the applied strain. These two components are related 
to the elastic and viscous properties of the polymer, respectively. Detailed informa-
tion regarding the viscoelastic properties of the material, such as its  glass transi-
tion  temperature (  T  g  ), can obtained by studying its response as a function of 
temperature or deformation frequency. Indeed, in contrast to DMA, DIRLD pro-
vides molecular - level information    –    a feature which is especially useful for the 
study of complex systems such as blends, copolymers and semi - crystalline poly-
mers  [29, 30] . However, a signifi cant trade - off is that, while DMA experiments are 
rapid and applicable to most polymer samples, DIRLD experiments require several 
minutes to reach an acceptable SNR. In addition, the process must be repeated at 
several temperatures, without any modifi cation of the sample or fatigue, in order 
to yield meaningful data. As a consequence, DIRLD has found most of its success 
for elastomeric samples that could withstand cyclic deformation for a very long 
time without deterioration  [30] . 

 Pellerin  et al.  have evaluated the possibility of overcoming this important limita-
tion of DIRLD by performing faster experiments using PA - IR spectroscopy  [31] . 
They used a spectrograph equipped with a 256    ×    256 MCT FPA, a 50 grooves   mm  − 1  
grating and a PM - 100 polymer modulator (Manning Applied Technology, Troy, 
ID, USA). Figure  13.9  shows the static and DIRLD spectra obtained for  isotactic 
polypropylene  ( iPP ), a well - studied sample. The in - phase dynamic spectrum 
obtained using PA - IR spectroscopy was in good agreement with that obtained with 
an FT - IR spectrometer (spectrum inverted for clarity) and with previously pub-
lished results  [32] . As expected, the dynamic quadrature spectrum was much 
weaker than the in - phase spectrum because the experiments were performed well 



above the  T  g  of iPP. PA - DIRLD experiments were performed with dynamic strains 
ranging from 0.021% to 0.14%  [31] . A linear relationship between spectral inten-
sity and strain confi rmed the reproducibility and quantitative nature of the 
technique.   

 A key difference between the step - scan FT - IR and PA - IR approaches to DIRLD 
is the shortest achievable acquisition time. The PA - IR experiment only requires, 
in principle, a single deformation cycle. On the other hand, at least one deforma-
tion cycle must be applied for each of the 512 steps required to generate a typical 
step - scan FT - IR spectrum with a 2000   cm  − 1  bandwidth and an 8   cm  − 1  resolution. 
In practice, several cycles must normally be averaged to obtain an acceptable SNR 
because of the very weak DIRLD signal (see the  y  - axis scale of Figure  13.9 ). 

 Unpolarized in - phase iPP spectra were recorded with decreasing acquisition 
times in order to determine the minimum achievable measurement time for a 
PA - DIRLD experiment. Figure  13.10  shows that very good spectra could be 
obtained in 52, 8, and even 1   s. An excellent peak - to - peak noise level of  ∼ 5    ×    10  − 5  
A.U. was found for the 1   s spectrum, good enough to observe most spectral fea-
tures. A further experiment attempted to record the dynamic spectra of iPP in 
70   ms, corresponding to a single deformation cycle at a 14   Hz stretching frequency. 
Although the noise level observed in Figure  13.10  is quite large, it is still possible 
to quantify the most intense bisignate band at 1167   cm  − 1 . Performing such single -
 cycle DIRLD experiments is obviously not realistic for most systems; nevertheless, 
this demonstration opens the door to the characterization of a wide range of 

   
  Figure 13.9     Comparison of the DIRLD in - phase spectra of 
isotactic polypropylene recorded in 20   s with a PA - IR 
spectrograph and in 34   min using a step - scan FT - IR 
spectrometer. The FT - IR spectrum has been inverted for 
clarity. The dynamic quadrature spectrum and the static 
PA - IR spectrum of the bulk sample are also shown. 
 Reproduced with permission from Ref.  [31] .   
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nonelastomeric samples that can be studied using conventional DMA but that 
were not amenable to DIRLD using current methods.    

  13.4.4 
 Emission  PA - IR  Imaging 

 The IR absorption and emission phenomena involve transitions between the same 
vibrational energy levels and thus, in principle, convey the same molecular infor-
mation. In spite of this, the fi rst phenomenon largely dominates its counterpart 
for most applications because of its sampling convenience, better SNR, etc.  Emis-
sion IR spectroscopy  ( IRES ) is nevertheless sometimes the best or even the only 
possible sampling approach, for instance in astronomy when there is no source 
for transmission measurements  [33] . This technique is also used in the laboratory 
(for thermally, chemically or electronically excited species  [34] ), in fi eld applica-
tions (for standoff detection of pollutants or potential threats  [35] ), and in indus-
trial settings  [36] . IRES is usually performed with an FT - IR spectrometer, but the 
astronomy community already uses large (up to 2048    ×    2048) IR FPAs in a spec-
trographic mode in various telescopes. Considering the weakness of the emitted 
signal, these detectors are normally cryocooled using liquid helium (4   K) rather 
than liquid nitrogen (77   K), thereby reducing the thermal background signal that 
can plague the measurements. 

 Pellerin  et al.  assessed the feasibility of IRES measurements with a PA - IR spec-
trograph equipped with a liquid nitrogen - cooled MCT FPA  [37] . They measured 
the spectrum of different polymer thin fi lms heated to temperatures between 60 
and 120    ° C. Spectra with a good SNRs were obtained in the fi ngerprint region for 

   
  Figure 13.10     Unpolarized PA - DIRLD in - phase spectra of 
isotactic polypropylene deformed at 14.36   Hz and recorded in 
a total acquisition time of 52   s, 8   s, 1   s and 70   ms, respectively. 
 Reproduced with permission from Ref.  [31] .   
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samples maintained at 80    ° C or more, while spectra recorded at 60    ° C showed a 
larger noise level but still allowed identifi cation of the samples. The PA - IRES 
spectra were very similar to those obtained using absorption spectroscopy in the 
transmission mode, but quantitative differences were nevertheless observed 
because of the approximate nature of the blackbody source used as a reference. 

 FT - IR emission spectroscopy has been used to perform kinetic studies, for 
instance to probe the thermal degradation of polymers  [34] , although its time reso-
lution is limited by the time required to obtain a suffi cient SNR. As demonstrated 
above, an interest of PA - IR spectroscopy is that it provides good SNRs in short 
acquisition times. Figure  13.11  shows the PA - IR emission spectra of a thin poly-
styrene fi lm recorded at 120    ° C in 870, 87 and 17.4   ms. The quality of these spectra 
demonstrates that sub - 20   ms time - resolved acquisition times are readily achievable 
in PA - IR emission spectroscopy. Such time resolution should prove benefi cial for 
a technique referred to as  transient infrared spectroscopy  ( TIRS )  [36] . In this tech-
nique, a sample in motion is exposed to a hot air stream to create a thin surface 
layer which is warmer than the bulk of the sample. This allows the recording of 
emission IR spectra of thick samples that otherwise would be saturated. FT - TIRS 
is currently applied to the characterization of samples such as polymers, glasses 
and wood chips, but requires relatively long acquisition times  [36] . The conse-
quence is that each spectrum is an average over several samples or a long distance 
(for continuous processes). Pellerin  et al.  recently showed that PA - IR spectroscopy 
could be used to perform much faster TIRS measurements by recording PA - TIRS 
spectra of different packaging polymers with a time resolution below 100   ms  [38] .   

 In addition to high - speed measurements, PA - IR spectroscopy distinguishes 
itself from FT - IR by the possibility of performing 1 - D imaging. Figure  13.12 a 

   
  Figure 13.11     PA - IR emittance spectra of a polystyrene fi lm 
recorded at 120    ° C with acquisition times ranging from 870 to 
17.4   ms.  Reproduced with permission from Ref.  [37] .   
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shows a PA - IRES spectral image obtained for a stack of polymer samples  [37] . As 
this image was recorded in emission mode, the sample - specifi c bands appeared 
as bright stripes on a dark background, in contrast to Figure  13.2  where the bands 
appeared as dark stripes on a bright envelope created by the IR source. The spectral 
image clearly showed three distinct sections along the vertical axis, with each 
containing features due to a different material. Figure  13.12 b shows that the 
recorded emittance spectra allow the identifi cation of PS, isotactic polypropylene 
and poly(ethylene terephthalate). The spatial resolution along the vertical axis of 
Figure  13.12 a was  ∼ 150    µ m per pixel, and the total vertical fi eld of view 15   mm. 
The combination of millisecond IRES acquisition times with 1 - D spatial resolution 
could allow, for example, the real - time imaging of warm moving targets such as 
extrudates, blown fi lms or items on a conveyer belt.    

   
  Figure 13.12     (a) Spatially resolved PA - IR emittance spectral 
image recorded for a stack of three polymer thin fi lms heated 
to 120    ° C; (b) The corresponding emittance spectra. 
 Reproduced with permission from Ref.  [37] .   
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  13.4.5 
  PA - IR  Microscopy 

 In Figures  13.2 b and  13.12 a, the spatial resolution along the height of the slit was 
shown to be on the order of 150    µ m per pixel, using a typical PA - IR spectrograph. 
In principle, nothing prevents the fi eld of view of the spectrometer from being 
expanded or reduced, by using appropriate optics. For example, demagnifi cation 
would be useful for recording the 1 - D - resolved spectra of large objects, while 
magnifi cation would be of obvious interest for microscopic 1 - D imaging with very 
rapid acquisition times. 

 In a recent study, Sommer  et al.  have combined a commercial IR microscope 
with a prism - based spectrograph into a micro - PA - IR system  [8] . Out of necessity, 
the microscope was inserted prior to the spectrograph and its aperture played the 
dual role of area - defi ning element and entrance slit. Figure  13.13  shows a spectral 
image recorded for a cross - sectioned photographic fi lm; this reveals a clear distinc-
tion between the poly(vinyl acetate) substrate (vertical pixels 122 – 160) and a 
 ∼ 10    µ m - thick polyamide layer (pixels 110 – 122). The characteristic amide A, I and 
II bands of the polyamide layer can be observed at the horizontal pixels 5, 150 and 
180, respectively, while the C = O and C − O − C bands of poly(vinyl acetate) are 
located at pixels 135 and 235, respectively. In this image, the polyamide layer spans 
across a height of 12 pixels, leading to an apparent spatial resolution on the order 
of 1    µ m per pixel. The diffraction limit for far - fi eld microscopy is on the order of 
the radiation ’ s wavelength, 3 – 10    µ m in the mid - IR, which means that Figure  13.13  
is oversampled. Although the recorded spectra had a limited SNR, which is to be 

   
  Figure 13.13     Spectral image of a cross - sectioned 
photographic fi lm recorded using a prism - based PA - IR 
spectrograph coupled to an infrared microscope.  Reproduced 
with permission from Ref.  [8] .   
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expected for prototype instruments, these results show much promise for future 
applications of micro - PA - IR spectroscopy.     

  13.5 
 Conclusions 

 Although still in its early stage of development, PA - IR spectroscopy represents a 
promising approach to mid - IR spectroscopy. The combination of focal plane array 
detectors with a spectrograph can: 

  Provide suffi cient sensitivity for challenging experiments such as the study of 
ultrathin fi lms and emission measurements.  

  Follow the dynamics of repeatable and nonrepeatable events with sub - millisecond 
time resolution.  

  Provide a 1 - D spatial resolution that can be used for macro -  or micro - imaging.  
  Be used for multisample or multibeam experiments.    

 The main drawbacks of the technique are a limited spectral bandwidth and/or 
spectral resolution, and the loss of frequency precision found in FT - IR spectrom-
eters. For these reasons, it should not be considered as a replacement method but 
rather as being complementary to the ubiquitous FT - IR spectrometer. It is expected 
that technological developments and the increasing use of mid - IR array detectors 
in civil applications will lead to larger and cheaper (uncooled) FPAs with improved 
performance, thereby overcoming some of the current limitations of PA - IR 
spectroscopy.  
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  14.1 
 Introduction 

  Infrared  ( IR ) microscopes equipped with conventional IR sources have been used 
to examine biological samples for almost 20 years, having been used to examine 
numerous plant and animal tissues  [1] . For complex samples such as human 
tissues, an IR spectrum can provide a direct indication of sample biochemistry. 
For example, Figure  14.1  illustrates the IR spectra of a common phospholipid, 
 dimyristoylphosphatidycholine  ( DMPC ), protein (myoglobin), nucleic acid (poly -
 A) and carbohydrate (sucrose). The dominant absorption features in the lipid 
spectrum are found in the region 2800 – 3000   cm  − 1 , and are assigned to antisym-
metric and symmetric C − H stretching vibrations of CH 3  (2956 and 2874   cm  − 1 ) and 
antisymmetric and symmetric C − H stretching vibrations of CH 2  (2922 and 
2852   cm  − 1 ). In addition, the strong band at 1736   cm  − 1  arises from ester C = O groups 
in the lipid. The protein spectrum has two primary features, the Amide I (1600 –
 1700   cm  − 1 ) and Amide II (1500 – 1560   cm  − 1 ) bands, which arise primarily from the 
C = O and C − N stretching vibrations of the peptide backbone, respectively. The 
frequency of the Amide I band is particularly sensitive to protein secondary struc-
ture  [2, 3] . The nucleic acid spectrum also displays C = O stretching vibrations from 
the purine (1717   cm  − 1 ) and pyrimidine (1666   cm  − 1 ) bases. In addition, the region 
between 1000 – 1500   cm  − 1  contains contributions from antisymmetric (1224   cm  − 1 ) 
and symmetric (1087   cm  − 1 ) PO 2   −   stretching vibrations.   

 When examining the chemical make - up of biological cells and tissues, it is 
important to achieve subcellular spatial resolution. Although conventional IR 
microspectroscopy has proven extremely valuable for resolving the chemical 
components in biological samples, the long wavelengths of IR light limit the 
spatial resolution that can be achieved, and the high brightness of a synchrotron 
source has recently opened the door to improving the spatial resolution of the 
technique.  

Infrared and Raman Spectroscopic Imaging. Edited by Reiner Salzer and Heinz W. Siesler
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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  14.2 
 Spatial Resolution Considerations 

 Typically, IR microscopes are confi gured in one of two ways    –    for  FT - IR micro-
spectroscopy  ( FT - IRM ) or  FT - IR imaging  ( FT - IRI ) (Figure  14.2 ). In a few cases, 
single IR microscopes can operate in both confi gurations. For an FT - IRM instru-
ment, a small area (a  ‘ point ’ ) is spectroscopically sampled by the instrument, and 
an image built up by raster - scanning the specimen through the focused beam. 
Since only a single point is sampled at a time, these instruments use a single -
 element detector. The microscope uses refl ecting Schwarzschild - type objectives to 
avoid absorption and chromatic aberrations over the large mid - IR spectral range 
(cf. Chapter  1 ). One objective serves to focus the light onto the specimen, while 
the other collects the light and relays it on to the detector. An aperture is used to 
constrain the illuminated or detected area on the specimen.   

 In an FT - IRI microscope, Schwarzschild objectives are also used, but the system 
is apertureless  –  that is, it does not provide any spatial discrimination. Instead, 
the fi rst objective illuminates a rather large area, and this illuminated region is 
then imaged onto a  focal plane array  ( FPA ) detector by the second Schwarzschild 
objective  [5, 6] . Spatial discrimination is provided by the individual pixels of the 
detector, each one serving as its own  ‘ aperture ’ . Because there is no matching 
aperture for the illumination objective, this system does not operate in a confocal 
arrangement. However, being a FPA system, the speed at which large IR images 
can be collected is dramatically improved. 

   
  Figure 14.1     Infrared spectra of biological components 
highlighting the most prominent absorption features. Spectra 
for a protein (myoglobin), lipid 
(dimyristoylphosphatidylcholine, DMPC), nucleic acid (poly - A) 
and carbohydrate (sucrose) are shown.  



 When examining the chemical make - up of biological cells and tissues with an 
IR microscope, it is important to achieve subcellular spatial resolution. For both 
FT - IRM and FT - IRI, the spatial resolution is limited by the wavelengths of IR light, 
which are longer than visible light wavelengths used for conventional optical 
microscopy. The diffraction - limited spatial resolution is dependent upon the wave-
length of light and the  numerical aperture  ( NA ) of the focusing optic (Chapter  1  
and  [7] ). Typical IR microscopes utilize Schwarzschild objectives with NA - values 
of  ∼ 0.6. In an FT - IRM experiment, the apertures confi ne the beam to the sample ’ s 

   
  Figure 14.2     (a) Schematic for a scanning (FT - IRM) 
microspectrometer system using a single - element detector 
and the possibility for confocal operation where aperturing is 
used both before and after the sample; (b) Schematic for an 
imaging (FT - IRI) microspectrometer system using an FPA 
detection system.  Reproduced with permission from Ref.  [4] .   
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area of interest, with some microscopes utilizing a single aperture before the 
sample, thus controlling the region that is illuminated. With a single aperture, 
the diffraction - limited spatial resolution is approximately 2 λ /3  [8] . Thus, for the 
mid - IR range, the diffraction - limited spatial resolution is approximately 1.7    µ m (at 
4000   cm  − 1 )  – 13    µ m (at 500   cm  − 1 ). Other microscopes operate in a confocal arrange-
ment, where a second aperture is used after the sample to defi ne the region being 
sensed by the IR detector. For such a confocal microscope, where objectives and 
apertures are placed both before and after the sample, the spatial resolution is 
improved to  ∼  λ /2  [8] . In addition, the confocal arrangement also reduces the 
Schwarzschild ’ s fi rst -  and higher - order diffraction rings, dramatically improving 
image contrast  [8] . 

 In an FT - IRI experiment, no physical apertures are used to limit the illumination 
area of the IR beam. Instead, an array of IR detector elements is used to collect 
the projected image of the unmasked IR beam on the sample. While FPA systems 
dramatically improve the rate at which IR images can be collected, the spatial reso-
lution is poorer than that of a confocal FT - IRM microscope because an FT - IRI 
instrument cannot operate in a confocal arrangement.  

  14.3 
 Advantages of a Synchrotron  IR  Source 

 In an FT - IRM experiment, as the aperture size is decreased, so does the IR fl ux 
that reaches the detector, and hence the  signal - to - noise ratio  ( SNR ) decreases. A 
conventional globar source illuminates light into a  ∼ 100    µ m area; consequently the 
typical aperture settings are 20 to 100    µ m. 

 A synchrotron IR source is 100 to 1000 - fold brighter than a conventional 
thermal (e.g., globar) source  [9] . This brightness advantage is not because the 
synchrotron produces more power, but rather because the effective source size is 
small and the light is emitted into a narrow range of angles. The high brightness 
(i.e., fl ux density) of the synchrotron source allows smaller regions to be probed 
with acceptable SNR  [10, 11] . As a synchrotron IR source typically fi lls a 10 – 20    µ m 
area, a synchrotron source provides no advantage over the thermal source for 
larger aperture settings ( ∼ 20    µ m or greater). Figure  14.3 a demonstrates the differ-
ence in brightness between a synchrotron and globar source by comparing the 
throughput as a function of aperture size  [12] . As can be seen, the globar source 
transmits very little light through a 10    µ m aperture, whereas  > 80% of the syn-
chrotron IR light passes through the same size aperture. However, with a 70    µ m 
aperture, the synchrotron source provides no advantage. Figure  14.3 b shows the 
IR spectra of a single red blood cell collected with a 5    ×    5    µ m 2  aperture, illustrat-
ing how the brightness advantage of the synchrotron leads to a dramatically 
improved SNR.   

 In addition to its high brightness, synchrotron IR light has other advantages of 
over the conventional thermal source: it has a pulsed time structure and a high 
degree of polarization (when a bending magnet is used for producing the IR 



photons). The pulsed nature of the light derives from the intrinsic characteristics 
of synchrotron radiation, where the specifi c pulse structure (10   s to 100   s of pico-
second - long pulses) is determined by the electron bunch structure in the storage 
ring  [13] . The polarization of the synchrotron IR beam depends on both the geo-
metrical and optical characteristics of the beamline  [4, 14, 15] . 

 The fi rst demonstration of FT - IRM with a synchrotron IR source was made 
during the early 1990s, when a custom - built IR microscope was installed at the 
National Synchrotron Light Source (Upton, NY, USA)  [16, 17] , while similar efforts 
were underway at UVSOR in Japan at the same time  [18] . The fi rst commercial 
IR microscope was installed at the NSLS a few years later  [10, 19] . Since then, IR 
microscopes have been installed on over 15 beamlines at synchrotrons worldwide, 
and an equal number are currently in the planning or construction stages.  

  14.4 
 Instrumentation 

  14.4.1 
 Infrared Beamlines 

 A  synchrotron  is an electron storage ring that produces intense broadband light 
from X - rays through microwaves. Synchrotron light is emitted as relativistic elec-
trons are accelerated along a circular trajectory  [20] . Infrared beamlines worldwide 
collect synchrotron light from bending magnets in the electron storage ring. For 
bending magnet radiation, the  ‘ natural opening angle ’  (the total angle required to 

   
  Figure 14.3     (a) Infrared signal through various aperture sizes 
using a synchrotron versus globar source. A confocal IR 
microscope was used with a single - point detector; (b) Infrared 
spectra of a single red blood cell collected with a synchrotron 
versus globar source. A square aperture of 5    ×    5    µ m 2  was 
used.  
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transmit 90% of the emitted light) is given by a simple formula:  θ   ν      ≅    1.6 ( ρ  ν )  − 1/3 , 
where  ρ  is the electron bend radius (in cm) and  ν  is the frequency of light (in 
cm  − 1 ). As an example, the VUV - IR ring at the NSLS (Brookhaven National Labora-
tory) has a bending magnet radius of 1.91   m, giving a natural opening angle of 
28 mrad at 10    µ m, and  ∼ 62   mrad at 100    µ m. The IR microscope beamlines at the 
NSLS are designed around an extraction system that collects  ∼ 40   mrad, the storage 
ring    –    an opening angle that collects essentially all of the IR light down to 250   cm  − 1  
( λ    =   40    µ m), and the collection effi ciency decreases slowly with frequencies below 
this value. As a general rule, the light collected from a bending magnet is linearly 
polarized in the plane of the electron beam orbit, while the off - axis radiation is 
elliptically polarized  [15] . Engineering constraints on newer, third - generation 
synchrotrons prohibit the large vertical opening angles required to extract long -
 wavelength IR photons  [15] . In this case, the smaller opening angle of radiation 
produced at the entrance or exit edge of a bending magnet provides an advantage 
 [21] . Today, several synchrotron IR beamlines utilize radiation from the edge of 
the dipole magnet, which is emitted along the straight section axis in a hollow 
cone  [22 – 24] . While the emission pattern and properties of edge - radiation differ 
from ordinary synchrotron light (e.g., edge radiation beamlines produce radially 
polarized light  [14, 25] ), these beamlines provide comparable fl ux and brightness 
 [4, 14, 21, 25] . 

 Extraction of the synchrotron light from the storage ring is generally accom-
plished with a combination of gold -  or aluminum - coated plane and toroid/ellipsoid 
or spherical mirrors (Figure  14.4 ). The fi rst extraction mirror must handle the heat 
load of higher - energy photons (i.e., X - rays), so water - cooling, water - cooled masks 
and/or slotted mirrors are often employed. The IR radiation is focused through 
an IR - transparent window (usually diamond, but in a few cases IR transparent 

   
  Figure 14.4     Schematic of synchrotron IR beamline extraction 
optics at the NSLS. All components before the diamond 
window are at ultra - high vacuum. The beamline operates at 
rough vacuum and the IR microscope is purged with dry N 2 . 
 Reproduced with permission from Ref.  [20] .   



windows such as KBr, ZnSe and KRS5 have been used), which separates the 
 ultrahigh vacuum  ( UHV ) conditions of the storage ring (10  − 9  – 10  − 10    Torr) and the 
rough vacuum of the IR beamline (10  − 3  – 10  − 4    Torr). The beam is then recollimated 
and directed into the IR microscope. IR beamlines are generally terminated with 
an IR - transparent window (KBr, CsI, polyethylene) to isolate the beamline vacuum 
from the ambient pressure of the microscope. Although IR light passes easily 
through air, any  water vapor and carbon dioxide  ( CO 2  ) in the air are highly 
ab sorbing; consequently, IR microscopes are typically purged with dry nitrogen or 
dry air.    

  14.4.2 
 Synchrotron Infrared Microscopes 

 Infrared microscopes are commercially available from a number of companies 
worldwide, and operate much like conventional visible light microscopes. The IR 
radiation follows the same path as the sample illumination light, so that IR micro-
spectroscopy can be performed on the sample at the center of the viewing fi eld. 
Because of their design, they are also equipped with a number of convenient 
methods for enhanced sample visualization. These include polarized light (visible 
and IR), fl uorescence illumination and  differential interference contrast  ( DIC ), 
all of which are well known and frequently used to identify biological sample 
histology. 

 Very little modifi cation is needed to adapt a commercial FT - IR microscope for 
a synchrotron IR source, where a single synchrotron point source is used to 
illuminate a single IR detector element. The collimated beam of synchrotron IR 
radiation follows the same beam path as the conventional thermal IR source. Thus, 
in general, a simple fl at mirror is used to easily switch between the thermal and 
synchrotron sources. From the end of the beamline, the collimated beam of syn-
chrotron IR light fi rst enters the FT - IR spectrometer and is then directed towards 
the IR microscope. For FT - IRI microscopes, coupling the synchrotron light to the 
size and arrangement of the individual detector elements is more diffi cult. To 
date, FT - IRI microscopes have not been optimized for a synchrotron - powered IR 
microscope, although a number of efforts are currently under way (see Section 
 14.4.3 ). 

 Both, FT - IRM and FT - IRI instruments are designed with two paths from the 
sample to the detector, namely transmission and refl ection: 

   •      In transmission mode, the IR radiation passes through the sample and is col-
lected by a second IR objective that recollimates the beam and sends it to the 
IR detector.  

   •      In refl ection mode, the IR radiation refl ects off of the sample and passes back 
through the illuminating objective. In this confi guration, approximately 40 – 50% 
of the incident IR radiation is blocked by a mirror that collects the refl ected 
light. This fraction can be reduced signifi cantly with a synchrotron IR source, 
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providing a large throughput advantage over the conventional thermal source 
in refl ection mode.     

  14.4.3 
 Infrared Detectors 

 Infrared microscopes are generally equipped with detectors of high responsivity, 
generally liquid nitrogen - cooled, broadband or narrow - band  mercury cadmium tel-
luride  ( MCT ). The long wavelength cut - off for this tunable alloy system is usually set 
to 650   cm  − 1 , which provides a good compromise between the spectral range and the 
SNR. Longer - wavelength MCT detectors (e.g., down to 450   cm  − 1 ) are also available, 
the intrinsic detectivity of which is lower, and this reduced the achieved SNR by a 
factor of 2 to 5 compared to the 650   cm  − 1  cut - off MCT detectors. One drawback of the 
MCT detector is its nonlinear response, where the high brightness of the synchro-
tron source leads to a highly localized intensity on the detector. A better linearity in 
detector response is achieved with extrinsic germanium photoconductor detectors 
 [20] . As a synchrotron IR source produces light well into the far - IR region, IR micro-
scopes are also equipped with low - frequency detectors (e.g., Cu - doped Ge, B - doped 
Si, bolometer). These detectors are generally large in size because they are cooled 
with liquid helium, and mounted externally to the IR microscope  [26] . However, 
new developments in micro - bolometric detectors have been recently reported  [27] . 

 The most recent development in IR detectors involves the coupling of an IR 
FPA detector to an interferometer  [5, 6] . To date, the size and arrangement of the 
individual detector elements have not been optimized for a synchrotron - powered 
IR microscope, primarily because of their optical design and light coupling. Spe-
cifi cally, the FPA collects the projected image of the IR beam onto the sample, 
which is quite large due to the large source size of the conventional globar (a few 
mm 2 ). Each FPA detector element records the spectrum of the corresponding 
projected pixel size onto the sample. With the small inherent source size of the 
synchrotron beam, the brightness advantage would be lost if the beam were 
expanded to accommodate the same projected size. However, early attempts using 
an FPA with 64    ×    64 elements have already shown the great advantage of using 
the synchrotron source  [28] .   

  14.5 
 Biological Sample Preparation and Modes of Data Collection 

 Sample preparation is perhaps the most critical part of a successful IR microspec-
troscopy experiment. In the same way that the IR microscope can be used in a 
number of ways to collect spectra, so too can sample preparation can approached 
in a variety of ways. As biological materials are most frequently probed in either 
transmission mode or refl ection mode, these methods will be described here. 
Other methods are also available, however, such as grazing incidence and  attenu-
ated total refl ection  ( ATR )  [1] . 
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  14.5.1 
 Transmission Mode 

 For transmission mode, which is perhaps the preferred means of collecting IR 
microspectra, it is essential to have thin samples. Although being very sample -
 dependent, the typical thickness for transmission measurements ranges from 5 
to 30    µ m. Polymers, unmineralized biological tissues and other organic materials 
are generally prepared with thicknesses of 10 – 15    µ m. Minerals (both biological 
and geological) are much more variable, depending on the specifi c material; for 
example, a fully mineralized bone is typically sectioned at 3 – 5    µ m. 

 The method of choice for preparing thin sections of biological tissue is  cryogenic 
sectioning , using a microtome, as this best preserves the original state of the tissue 
and does not involve embedding materials. However, cryosectioning is often not 
possible, and in these cases the thin samples are often prepared by embedding 
the sample in a matrix and then cutting with a microtome. The embedding com-
pounds are generally chosen to match the hardness of the sample. For mineralized 
tissues and other hard materials, a variety of polymers are available  [29] , while for 
soft tissues paraffi n is often used. Most importantly, great care must be taken to 
choose an embedding process that does not affect the chemistry of the sample. 
Also, as these compounds usually penetrate throughout the sample, a material 
should be chosen that does not have IR absorption features which overlap those 
of the sample. For example, paraffi n is often used to embed unmineralized biologi-
cal tissues because its most intense absorbance features are limited to the C − H 
stretch region (2800 – 3000   cm  − 1 ). However, weaker C − C stretching modes fall near 
1465   cm  − 1 , which can also interfere with the sample spectrum. Moreover, the 
process of paraffi n - embedding requires sample dehydration and fi xation, which 
can alter the chemistry of the sample to be probed. Consequently, the sample 
component(s) of interest must be robust enough to handle this process. 

 When a thin section has been cut it is placed on an IR - transparent material with 
thickness ranging from nanometers to millimeters. For biological materials, trans-
parent, water - insoluble substrates such as CaF 2  and BaF 2  are most common. When 
using IR - transparent substrates and working with the small spot sizes of a syn-
chrotron IR source, the effect of  dispersion  must also be considered during data 
collection  [8] . Specifi cally, most of the IR - transparent materials have some degree 
of dispersion in the visible, IR (or both) regions. For typical thicknesses of these 
materials (1 – 2   mm), this dispersion leads to focusing errors of 20    µ m or more, and 
a severe loss of signal or spatial resolution may occur over part, or all, of the spec-
tral range of interest. In order to compensate for substrate dispersion, defocusing 
of the collection optics (i.e., condenser) is critical (Figure  14.5 ).    

  14.5.2 
 Refl ection Mode 

 Another method of collecting IR microspectra is that of refl ection mode. Samples 
probed in refl ection mode are most often: (i) highly refl ective or polished samples 
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that cannot be cut to thin sections; or (ii) microtomed thin sections that are placed 
on an IR - refl ective substrate instead of an IR - transparent substrate. Recently, 
refl ection mode has become more popular for probing microtomed thin sections 
that have been placed on IR - refl ective substrates. For these experiments, the IR 
beam penetrates through the sample, refl ects off the substrate, and then passes 
back through the sample again. As the beam passes through the sample twice, the 
result is a  ‘ double - absorption ’  spectrum. For this reason, the thin sections should 
be cut to approximately half of the thickness used for a transmission mode 
measurement. 

 Semi - refl ective and polished samples are also probed in refl ection mode. As the 
SNR of the spectra relies heavily on collection of the refl ected light back into the 
IR objective, it is important that these samples have a smooth, fl at surface and are 
correctly oriented. Samples with smooth surfaces that are not fl at can be mounted 
into a micro - goiniometer, so as to adjust the tilt of the sample with respect to the 
incoming beam. Even simpler, samples can also be pressed into a small sphere 
of putty so that the sample surface is parallel to the microscope stage. 

 While thin sections are often easier to prepare on IR - refl ective substrates, the 
use of IR - refl ective substrates does come at a cost to the IR data collection process, 
and even spectral quality. As noted above, the incident fl ux in refl ection mode is 
reduced by almost 50% compared to transmission mode, as only half of the focus-
ing objective is used to direct the beam onto the sample, while the second half is 
used for collecting the refl ected beam. In addition, any inhomogeneities in the 
thin section can cause interference effects (e.g., oscillations) in the background of 
the IR spectra. These artifacts can alter peak shapes, intensities and frequencies. 
Thus, care must be taken with sample preparation, and only certain (generally 
homogeneous) samples can be investigated well in this mode.   

   
  Figure 14.5     (a) Relative transmission through a 2   mm - thick 
BaF 2  substrate at various focus settings; (b) Lines: Calculated 
focus shift for several common IR materials (all 2   mm thick) 
including BaF 2 . The solid circles indicate the measured focus 
shift for BaF 2 .  Reproduced with permission from Ref.  [8] .   



  14.6 
 Biological and Medical Applications of Synchrotron  IR  Microspectroscopy 

 Infrared microspectroscopy was used to examine numerous plant and animal 
tissues long before the union of the IR microscope and the synchrotron source 
 [30] . For complex samples such as human tissues, an IR spectrum can provide a 
direct indication of sample biochemistry. 

 With the high spatial resolution of the synchrotron, individual cells within a 
tissue can be probed with subcellular resolution. For example, the structures of 
misfolded protein aggregates in neurological protein folding diseases have been 
identifi ed in the brain tissue of Alzheimer ’ s disease patients  [31 – 33] , while infec-
tious prion proteins have been characterized in scrapie  [34 – 37] . Additional bio-
chemical changes have also been observed in the fi ngerprint regions of Alzheimer ’ s 
 [38] , Parkinson ’ s  [39]  and scrapie - infected tissues  [40] . 

 Bone composition, such as mineralization, carbonate accumulation, crystallinity 
and collagen crosslinking, has been shown to change with age  [41] , and is corre-
lated with the bone ’ s mechanical properties  [42, 43] . In microdamaged bone, the 
collagen crosslinking is altered but the mineralization and crystallinity are unaf-
fected  [44]  (Figure  14.6 ). Alterations in bone composition have been observed in 
diseases such as osteoporosis  [45] , osteopetrosis  [46]  and osteoarthritis  [47] . The 
treatment of osteoporosis with nandrolone decanoate, an anabolic steroid, was 
shown to alter the cortical bone composition  [48] , whereas treatment with bisphos-
phonates had little effect  [49] .   

 Synchrotron - based FT - IRM has been used to observe a decreased lipid and 
an increased collagen content in the myocardium in heart disease  [50] , and 
which can be partially normalized by treatment with losartan  [51] . Biochemical 
changes caused during peridural scarring have also been observed with FT - IRM, 
and their reversal by the use of anti - infl ammatory agents is currently being 
assessed  [52] . Changes in collagen content have also been observed in liver 
fi brosis, making FT - IRM a possible diagnostic tool for the early stages of the 
disease  [53] . 

 The high spatial resolution of a synchrotron IR source has permitted the subcel-
lular chemical mapping of single living cells for the fi rst time (Figure  14.7 ). In 
this technique, sample heating has been shown to be negligible, which means that 
single cells can be analyzed over long time scales, of hours to days  [55, 56] . Indi-
vidual mouse hybridoma B cells have been examined during necrosis, at the end 
phases of mitosis  [57] , and also during the process of apoptosis  [58] . Metal – cyano-
bacteria sorption reactions have also been characterized in detail  [59] . In addition, 
spectral differences have been noted between normal and cancerous oral epithelial 
cells  [54, 60 – 62] , between healthy and nutrient - repleted  Micrasterias hardyi  algal 
cells  [63] , and in HepG2 cells exposed to low doses of 2,3,7,8 - tetrachlorodibenzo -
  p  - dioxin  [64] . Variations in DNA/RNA content and packing have also been dem-
onstrated during the cell cycle of human lung epithelial cells  [65] , and correlated 
with the degree of differentiation and proliferative capacity of stem cell populations 
in the human corneal epithelium  [66, 67] .   
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     Figure 14.6     Top panel: Visible image of a 
microcrack indicating the area imaged with 
the IR microscope. The fuchsin stain 
(magenta) highlights the microcrack. Data 
were collected within the crack and from the 
surrounding area. (a – f) Corresponding IR 
images of the same area. The individual 

images illustrate the: (a) carbonate/phosphate 
ratio; (b) carbonate/protein ratio; (c) acid 
phosphate/total phosphate ratio; (d) 
phosphate/protein ratio; (e) crystallinity; and 
(f) collagen crosslinking. Scale bar   =   25    µ m. 
 Adapted from Ref.  [44] .   



 Recently, FT - IRM has been combined simultaneously with epifl uorescence 
microscopy  [68, 69]  to probe 5    µ m - wide layers of newly deposited bone  [42, 45, 48, 
49] , plaques in Alzheimer ’ s disease  [32] , and the different stages of apoptosis  [58] . 
The means by which epifl uorescence microscopy was used to visualize the various 
stages of apoptosis, and synchrotron FT - IRM used simultaneously to assess 
changes in protein and nucleic acid composition, are illustrated in Figure  14.8 . 
Other visualization techniques include the use of polarized light and DIC. At the 
cellular and subcellular level, these techniques can be used to visualize fl uorescent 
tags bound to particular cellular components, and even antibodies to individual 
proteins and, once identifi ed, the IR microscope can be used to analyze the chemi-
cal environment in and around that region of interest. It should be noted that, as 
fl uorescent labels are generally present in extremely low (i.e., nanomolar) concen-
trations, they do not interfere with the IR technique; rather, they are used exclu-
sively for visualizing a region of interest.   

 A considerable analytical effort has been expended recently on the chemical 
composition of human hair, for which the synchrotron IR source can provide the 
ability to probe, separately, the cuticle ( ∼ 5    µ m width), cortex ( ∼ 40 – 80    µ m width) 
and medulla ( ∼ 10    µ m width) substructures (Figure  14.9 )  [70, 71] . The results of 

     Figure 14.7     Synchrotron IR imaging of a 
benign human skin fi broblast showing: (a) the 
visual image; (b) representative IR spectra 
acquired along the black line in (a); and (c) 
protein IR image. Cells were grown onto a 
CaF 2  slide, and treated with ethanol and 
RNAse to remove phospholipids and RNA, 

respectively. Thus, the nucleic acid vibrations 
observed at ca. 1080 and 1235   cm  − 1  are due to 
DNA. The spectra were collected with a 
square aperture of 8    ×    8    µ m, in transmission 
mode.  Reproduced with permission from 
Ref.  [54] .   
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these investigations have shown lipid concentrations to be elevated in the medulla, 
whereas variations in protein structure exist among the different regions  [70, 72] . 
The bleaching of hair affects the hydration level of the cuticle, and also causes the 
formation of sulfonate (S = O) groups in the cortex  [73] . Keratin disorganization 
has been observed in the hair of ancient Egyptian mummies, most likely due to 
peptide bond breakage  [74] , while narcotics have also been identifi ed in human 
hair  [75] .   

 As IR spectroscopy probes the vibrational frequency of a bond, elemental iso-
topes can be used as targets to study biochemical processes. For example, when 
the transport of D 2 O from the gut to the brain was studied in adult rats  [76] , the 
CD   :   CH and ND,OD   :   NH,OH ratios were shown to be highest in the molecular 
layer of the brain, and lowest in the white matter. The fi ndings in the molecular 
layer were consistent with the active synthesis and recycling at synapses, which 
are abundant structures in this layer, while the low levels in white matter 

     Figure 14.8     (a) Visual image of Jurkat cells 
treated with the anti - Fas DX2 monoclonal 
antibody (mAb) under fl uorescence 
illumination with the IR microscope. The 
green and red fl uorescence signify early and 
late apoptosis, respectively; (b) A comparison 
of the fi ngerprint region of untreated cells 
(AV  −  /PI  −  ) ( — ) with those treated with the 

anti - Fas DX2 mAb ( -  -  -  - ); (c, d) A comparison 
of the IR spectra of ( — ) AV  −  /PI  −  , ( -  -  -  - ) AV + /PI  −   
and ( –   ·  ·   – ) AV + /PI +  cells. The (c) 3800 –
 2600   cm  - 1  and (d) fi ngerprint regions are 
shown. The spectra were collected with an 
aperture of 11    ×    11    µ m 2  centered on the 
nucleus. Scale bar   =   20    µ m.  Adapted from 
Ref.  [58] .   



(confi rmed using radiolabels) highlighted a slow turnover of proteins and lipids 
in myelin, the main constituent of that region. 

 Synchrotron FT - IRM has also been used in less - traditional ways to study biologi-
cal systems. For example, a synchrotron IR microscope has been coupled to a 
rapid - mix fl ow cell in order to study protein folding  [77, 78]  and the binding of an 
antibiotic to a tripeptide  [79] , on a time scale as short as microseconds. The small 
spot size of the synchrotron beam permitted a faster time resolution of the tech-
nique and the use of smaller volumes of sample. 

 Another recent,  ‘ nontraditional ’  investigation involved the use a of pump - probe 
technique to study the laser - ablation of tooth enamel  [80]  and the infl uence of an 
optically thick water layer applied onto the tooth surface  [81] . Laser ablation was 
performed in the presence and absence of water, and synchrotron FT - IRM used 
to probe the chemical composition of the enamel in the thus - formed crater. FT -
 IRM revealed the formation of new mineral phases deposited along the crater walls 
after repetitive laser pulses, while the nonapatitic phases reduced the effi ciency of 

     Figure 14.9     Synchrotron IR images of the 
cross - section of a human hair. Hair contains 
three substructures that can only be resolved 
with the high spatial resolution of a 
synchrotron IR source. From the center 
outward, these substructures and their 
thicknesses are: medulla (10 – 20    µ m), cortex 

(30 – 100    µ m) and cuticle (2 – 5    µ m). IR imaging 
of these regions shows that the protein 
concentration (1700 – 1600   cm  − 1 ) is highest in 
the cortex, while phospholipid (1750 –
 1700   cm  − 1 ) concentrations are highest in the 
medulla and cuticle. Scale bar   =   25    µ m.  
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the ablation. The application of a water layer led to the removal of any loosely 
adherent phases, thus maintaining effi cient ablation during multiple - pulse 
irradiation.  

  14.7 
 Future Directions for Synchrotron  IR  Microspectroscopy 

 To date, the vast majority of synchrotron FT - IRM experiments have been per-
formed on static systems, at ambient pressure and temperature, and in the mid - IR 
region (some of the few exceptions have been described above). 

 Future FT - IRM experiments promise to include time - resolved measurements, 
ranging from long time scales (minutes to hours) to time scales that take advantage 
of the pulsed structure of the synchrotron beam (10   s to 100   s of picoseconds). 
Although the pulse duration is signifi cantly longer than what can be achieved with 
ultra - fast lasers (10   s to 100   s of femtosecond pulses), the synchrotron is a  ‘ white ’  
source that allows complete spectral information to be acquired. This provides a 
unique opportunity to study dynamics associated with chemical bonds. It is pos-
sible that future generations of synchrotron light sources will produce pulses with 
durations of  ∼ 100   fs or less. 

 Other areas of growth include applications to systems studied over wide tem-
perature and pressure ranges, and spectra recorded over a much broader spectral 
range, including far - IR or terahertz (THz or T - Ray) FT - IRM. Many IR studies have 
shown that protein and lipid membrane structures are sensitive to temperature 
and pressure, yet none has involved spatially resolved IR imaging  [82 – 85] . The 
throughput limits of cryogenic and/or high - pressure microspectroscopy and the 
brightness limits of X - ray/far - IR microspectroscopy represent a particular chal-
lenge that only a synchrotron source can fulfi ll. Both, proteins and nucleic acids 
have also been studied in the far - IR regime  [86, 87]  and, while some have utilized 
the high brightness of free electron laser sources  [88 – 90] , none has yet taken 
advantage of the high spatial resolution of a synchrotron IR microscope. 

 At the other end of the spectrum, combined X - ray (fl uorescence, absorption and 
diffraction) and IR microscopic analyses on the same sample represent an activity 
of growing interest among the biomedical community. For example, protein mis-
folding has been correlated with trace metal uptake in Alzheimer ’ s disease  [32] , 
Parkinson ’ s disease  [91] , scrapie  [36]  and amyotrophic lateral sclerosis  [91] . Like-
wise, in human hair the protein and lipid composition of the cuticle, cortex and 
medulla have been correlated with trace metal content associated with mummifi -
cation techniques  [74] , and with environmental metal exposure  [92] . 

 Finally, while current synchrotron FT - IRM measurements provide the highest 
possible spatial resolution, they are time - consuming because they utilize a confo-
cal arrangement with a single - element IR detector. Raster - scanned images of a 
single biological cell can take more than an hour to collect, while the subcellular 
imaging of signifi cant regions of tissue can take several days. To date, a compre-
hensive FT - IRI study with a FPA detector has not been performed on with a 



synchrotron source, although the rapid speed at which FPA detectors collect data 
make them an appealing alternative for some chemical imaging measurements. 

 When imaging biological systems at the diffraction limit, a confocal optical 
arrangement can improve the spatial resolution and image contrast. However, this 
optical confi guration is inherently incompatible with FPA detection systems 
having contiguous pixels. Nonetheless, having an accurate knowledge of the dif-
fraction pattern implies that a mathematical correction for diffraction is possible 
by deconvolution methods. Unfortunately, for acceptable results, deconvolution 
requires both high spatial oversampling and an excellent SNR, and it seems 
unlikely that these requirements can be achieved using a conventional thermal 
source. Although high - resolution sampling can be accomplished using an FPA 
and a high - magnifi cation objective, the fl ux incident on each pixel may be more 
than 100 - fold smaller, such that the SNR is insuffi cient for a successful deconvolu-
tion  [4] . The synchrotron source has the potential to correct for diffraction effects 
and to improve the spatial resolution of FT - IRI over regions of modest size (Figure 
 14.10 ). Thus, it is expected that the synchrotron and thermal sources will most 
likely play complementary roles, with the thermal source being capable of illumi-
nating large regions and well suited to surveying large areas. In contrast, synchro-
tron has its intensity concentrated into a small area, and is typically used for 
microsampling (i.e., collecting spectra from small objects with minimal contami-
nation from neighboring regions) or for producing high spatial resolution images 
of small areas   (typically  < 100    µ m on a side). A similar role is anticipated for the 

     Figure 14.10     (a) Bright - fi eld visible image of a 
human oral mucosal cell; (b) Synchrotron FPA 
image of the protein (Amide I) absorbance 
in the oral mucosal cell. The sample was 
illuminated with a low - magnifi cation objective 
(36 × , 0.6 NA) for long working distance and 
collected with a high - magnifi cation (74 × , 0.6 

NA) objective. A 64    ×    64 pixel MCT FPA 
detector was used to image the cell, where 
the resulting fi eld of view on the FPA was 
35    ×    35    µ m 2  with 0.54    µ m per pixel. The IR 
image (192    ×    192 pixels) was generated in 
72   min with a 64    ×    64 pixel FPA detector (200 
scans, 6   cm  − 1  resolution). Scale bar   =   20    µ m.  
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FPA detector, with the thermal source surveying areas many millimeters on a side 
and offering excellent performance down to approximately 10    µ m spatial resolu-
tion. With the synchrotron, the resolution limit may be extended down to around 
1    µ m, but over a much more limited area.    
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  Abbreviations 

  IR   Infrared  
  FT - IRM   Fourier transform infrared microspectroscopy  
  FT - IRI   Fourier transform infrared imaging  
  FPA   Focal plane array  
  MCT   Mercury cadmium telluride  
  SNR   Signal - to - noise ratio   
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  15.1 
 Introduction 

 Methods for performing  in situ  and nondestructive chemical analysis with 
nanometer spatial resolution are in great demand due to rapid developments in 
nanoscience and nanotechnology. These techniques are required to answer out-
standing questions in surface chemistry (e.g., where are the  ‘ hot sites ’  on a catalyst 
surface?); in biology (e.g., where are membrane proteins located in the lipid bilayer 
of a cell?); and in materials science (e.g., what is the nanoscale architecture of the 
tires of a Formula 1 racing car that hardly skids during a rainy race day?). It can 
be observed that these problems demand answers that give more than just a 
number, spectrum or a topographic image of the analyte. Rather, they require full 
spectroscopic information for every pixel of the sample; that is, chemical imaging 
is needed. 

 The requirements for methods that provide such information are clearly strin-
gent, necessitating simultaneously excellent spatial resolution, chemical identifi ca-
tion without the use of labels and good sensitivity, often with  in situ  probing of 
the sample (to prevent degradation). These effectively rule out the established 
workhorses of modern chemical analysis such as nuclear magnetic resonance, 
 infrared  ( IR ) spectroscopy and electron microscopy. 

 In this chapter, we will review near - fi eld optical methods and their applications 
to problems in biology and materials science. Near - fi eld techniques provide nano-
meter spatial resolution by overcoming the Abbe diffraction limit, and can be used 
to investigate many types of sample  in situ . Here, emphasis is placed on near - fi eld 
methods that provide vibrational information (i.e.,  ‘ molecular fi ngerprints ’ ) of the 
analytes. Finally, the current challenges faced by these methods and their potential 
in nanoscale chemical analysis in the near future are discussed.  
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  15.2 
 Methods 

  15.2.1 
 Scanning Near - Field Optical Microscopy with Aperture Probes 

 In order to break the optical diffraction limit, the most straightforward idea is to 
create a  point light source  which can then be scanned over the sample surface in 
close proximity (in the optical near - fi eld) to perform  optical mapping . The spatial 
resolution is in this case not restricted by the diffraction limit (cf. Chapter  1 ), 
but is determined by the size of the light source. Although this idea was fi rst 
proposed in 1928 by Synge  [1] , due to the diffi culties in the fabrication, as well 
as the precise positioning and scanning with such a light source, the real tech-
niques of  scanning near - fi eld optical microscopy  ( SNOM ) was only realized during 
the 1980s, following the invention of  scanning tunneling microscopy  ( STM )  [2, 
3] . Early on, a metal - coated fi ber tip was used to create a nanoscale optical 
aperture, as shown in Figure  15.1 a. The size of the aperture  –  and hence the light 
source  –  may be down to 50   nm, several times smaller than the diffraction limit 
using visible light. This type of SNOM is referred to as  aperture - SNOM  ( a - SNOM ). 
Following its invention, a - SNOM achieved huge success during the 1990s, for 
example, by imaging the fl uorescence of single molecules at room temperature 
 [4] , and the mapping of luminescence from a quantum well with unprecedented 
spatial resolution  [5] .   

 However, a - SNOM faces two fundamental diffi culties: (i) the power emitted 
from the aperture is usually on the order of nanoWatts, and too weak for collecting 
a spectrum with a short acquisition time; (ii) its spatial resolution is limited to 
50   nm in practice, and is insuffi cient for true nanoscale analysis  [6] . In order to 
overcome these problems, alternatives have been developed during the past 10 
years, namely,  tip - enhanced Raman spectroscopy  ( TERS )  [7, 8]  (Figure  15.1 b) and 
 scattering SNOM  ( s - SNOM ), which is mainly used in the IR spectral range (Figure 
 15.1 c)  [9] . In this chapter, we focus primarily on these two methods.  

   
  Figure 15.1     Schematic drawings of different SNOM methods. 
(a) Aperture SNOM (a - SNOM); (b) Tip - enhanced Raman 
spectroscopy; (c) Scattering SNOM (s - SNOM).  
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  15.2.2 
 Tip - Enhanced Raman Spectroscopy 

 Raman scattering is known to be an extremely weak process. Its scattering cross -
 section is approximately 10  − 29    cm 2 , some 14 orders of magnitude smaller than the 
absorption cross - section of fl uorescence. In order to collect a spectrum with a 
reasonable  signal - to - noise ratio  ( SNR ) and speed, signal enhancement techniques 
are required, and this is made possible by using TERS. 

 The origin of TERS arose from studies of localized surface plasmons, which 
suggested that an electric fi eld could be greatly enhanced and confi ned by certain 
metal nanostructures  [10 – 12] . Following reports of single - molecule  surface -
 enhanced Raman spectroscopy  ( SERS ) of Rhodamine 6G and crystal violet dye 
molecules made in 1997  [13, 14] , the feasibility of creating a localized light source 
at the apex of a sharp metal tip was further investigated. Simulations and subse-
quent experimental results demonstrated that the electric fi eld could be laterally 
confi ned into a small area with a diameter less than 30   nm, while the light intensity 
could be enhanced tens of times (see Figure  15.2 )  [15] . In 2000, the use of TERS 
was reported by St ö ckle  et al.   [8] , and almost simultaneously by Anderson and 
Kawata  et al.   [7, 16] . A new era of near - fi eld spectroscopy had begun!   

 The heart of the TERS technique is a  ‘ hot ’  tip, which can highly confi ne and 
enhance the electric fi eld at the tip apex. A brief introduction of the origins of the 
fi eld enhancement is now given here. There are two main types of fi eld enhance-
ment: (i) that powered by localized plasmon resonance which is highly frequency -
 dependent; and (ii) shape - induced enhancement which does not depend on the 
frequency. To yield a good enhancement, one can either tune the excitation wave-
length to coincide with the resonant frequency (or  vice versa ), or use a structure 
which can provide enhancement over a wide spectral range. 

 The fi rst approach was recently successfully demonstrated by our group  [17, 18] . 
It was found that the resonance frequency of Ag - coated AFM tips could be tuned 

   
  Figure 15.2     The lightning rod effect. When 
the polarization of the incident radiation is 
parallel to the tip axis, the electric fi eld will 
be highly enhanced at the tip apex.  
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by modifying the optical constants of the dielectric tips. In these studies, Ag was 
coated on AFM tips made from, or precoated with, different materials such as 
Si 3 N 4 , SiO 2  and AlF 3  (Figure  15.3 ). An AFM tip made of a low - refractive index 
material gave the best enhancement with 488   nm illumination. Further theoretical 
studies have verifi ed that the resonance frequency will indeed red - shift when the 
refractive index of the AFM tip increases  [19] . This provides a methodology to 
fabricate  ‘ hot ’  tips with a high yield.   

 In addition to the possibility of tuning the resonance of the tip by choice of the 
underlying material, two types of structure supporting a strong fi eld enhancement 
over a broad spectral range have been identifi ed. The fi rst of these structures uses 
sharp metal tips (Figure  15.4 ) that benefi t from the  ‘ lightning rod ’  effect  [10, 12] ; 
this means that the electromagnetic fi eld is always highly enhanced at sharp pro-
trusions  [12, 20] . A simple example is provided by a cigar - shaped ellipsoid. Besides 
the plasmon resonance - induced enhancement, another type of resonance exists 

   
  Figure 15.3     Scanning electron microscopy images of Ag -
 coated AFM tips. (a, b) Tips precoated with SiO  x  ; (c, d) Tips 
precoated with AlF 3 .  Adapted from Ref.  [17] .   

(a) (b)
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100 nm 100 nm
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which is only determined by the sharpness of the end of the ellipsoid  –  the sharper 
the nanostructure, the higher the fi eld enhancement. This conclusion was sup-
ported by numerical simulations on tapered metal tips  [10, 11] . To date, many 
TERS measurements have been reported using sharp Au or Ag tips, based on the 
lightning rod effect; an example is a series of investigations on  carbon nanotube s 
( CNT s) conducted by Novotny and coworkers  [21 – 25] . Unfortunately, the enhance-
ment afforded by this type of tip is rather low, and this prevents its application to 
samples consisting of weak Raman scatterers. However, it was recently predicted 
that a fi eld enhancement 100 - fold better than the present result is possible if the 
radius of curvature of the tip apex were to be reduced to 1   nm  [26] . Such a fi nding 
highlights the untapped potential of this approach.   

 The second approach is gap - mode TERS, which is essentially a broadband 
antenna  [27] . Compared to the production of ultrasharp tips, the creation of a 
nanometer gap between a metal tip and a metal substrate is much easier. In the 
case of an electrochemically etched Au tip with a radius of curvature less than 
25   nm, a Raman enhancement better than 10 6  can be achieved, with a good repro-
ducibility  [27, 28] . 

 The most signifi cant achievement of gap - mode TERS is its demonstration of 
single - molecule Raman spectroscopy  [29, 30] , the fi rst attempt at which was 
reported by Neacsu  et al.   [31] . Here, the sample was an Au substrate covered by a 
monolayer of malachite green, a dye molecule which shows a strong resonance 
Raman effect. Signifi cant spectral fl uctuations were observed, and the intensity 
histogram showed a Poisson distribution - like pattern, which was taken as evidence 
for single molecule detection. However, the spectra presented were not consistent 
with the fi ngerprint vibrational modes of the analyte used. Stronger evidence of 
single - molecule TERS was independently reported by Domke  et al. , and shortly 
afterwards by our group  [29, 30] . In these investigations, TER spectra identical to 

   
  Figure 15.4     Scanning electron microscopy images of 
electrochemically etched (a) Au and (b) Ag tips.  
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the normal Raman spectra of the analyte were observed. Several lines of evidence, 
such as intensity which was dependent on sample coverage as well as discrete 
signal losses, prove unambiguously that the sensitivity of TERS can reach the 
single - molecule level. Two interesting observations were made from these studies. 
First, the signal enhancement was only  ∼ 10 7 , and several orders of magnitude 
lower than expected. Second, no signifi cant mode shifts or new modes were 
observed, indicating that the surface selection rules for Raman scattering remained 
valid under such high fi eld intensity. This also implied that existing Raman spec-
trum databases could be employed for interpretation of the TERS data.  

  15.2.3 
 Scattering  SNOM  

 The TERS strategy is not suitable for  IR absorption spectroscopy  ( IRAS ). This is 
because a broadband light source is used in IRAS and it is diffi cult to create a 
constant enhancement over the entire spectral range. Another problem stems 
from the much longer wavelength of IR compared to visible light. In other words, 
the far - fi eld excitation area will be much larger than in the case of TERS, and the 
SNR will deteriorate. In order to overcome these problems, s - SNOM is commonly 
used for near - fi eld IRAS  [32] . 

 Figure  15.1 c shows the basic set - up of a s - SNOM. The tip – sample system is 
illuminated from the side, the near - fi eld signal (i.e., the interaction between the 
tip and sample) is modulated by the oscillation of the tip, and harmonic signal 
components in the scattered light that correspond to the near - fi eld information 
are recorded to form an optical image. In a simplifi ed model, the tip can be treated 
as a spherical particle, the polarizability of which is  α    =   4 π  r  3 ( ε   p    −   ε   m  )/( ε   p     +   2 ε   m  ), 
where  r  is the radius of the sphere, and  ε   p   and  ε   m   are the permittivities of the tip 
and the surrounding medium, respectively. The image dipole of the tip in the 
sample is  α  β , where  β    =   ( ε   s    −  1)/( ε   s     +   1) and  ε   s   denotes the permittivity of the 
sample. The tip – sample coupling can be described as a dipole – dipole coupling, 
and the effective polarizability of the scattering of this system will be  [33] :

   α
α β

αβ
π

eff

r z

= +( )

−
+( )

1

1
16 3

    (15.1)  

where  z  is the tip – sample distance. Using this equation, the optical constants of 
the sample can be deduced. In other words, the IR absorption spectrum is recorded 
by this s - SNOM. To date, the best s - SNOM results were collected by Hillenbrand 
 et al.   [33 – 36] , who achieved spatial resolutions of 10   nm or even lower. Unfortu-
nately, s - SNOM suffers from several problems. First, it only functions at a single 
wavelength at a time, and consequently it is impossible to obtain a full near - fi eld 
IR absorption spectrum. The second problem is the complexity of the tip – sample 
coupling. Equation  15.1  assumes that the sample surface is perfectly fl at, which 
is at best an approximation. Therefore, there is still room for improvement in the 
development of s - SNOM.  



  15.2.4 
 Comparison of the Near - Field Spectroscopic Methods 

 Table  15.1  shows a comparison of all near - fi eld spectroscopic methods. It is clear 
that a - SNOM is not suitable for vibrational spectroscopic imaging because of its 
poor sensitivity. While s - SNOM provides a good spatial resolution and sensitivity, 
it suffers from two problems: (i) the diffi culties in image interpretation; and (ii) it 
does not provide a full spectrum. TERS is more promising, although the fabrica-
tion of  ‘ hot ’  tips can be tricky. As discussed above, much progress has been made 
with TERS during the past few years, and it is predicted that TERS will grow into 
a reliable nanoscale analytical method in the near future, when the tip fabrication 
methods have been optimized.    

  15.2.5 
 Imaging 

 Spectroscopic imaging with nanometer spatial resolution is a very attractive propo-
sition. Having full spectroscopic information available at every pixel is also crucial 
for obtaining simultaneous chemical information for unknown, heterogeneous 
samples, or when following transient events. Detailed information from small 
frequency shifts (not available from fi xed - frequency imaging) can also be obtained. 
Fast spectroscopic imaging will further facilitate the high - throughput investigation 

 Table 15.1     Comparison of different near - fi eld spectroscopic methods. 

      Aperture SNOM    TERS    Scattering SNOM  

  Spatial resolution    50   nm    10   nm    10   nm  

  Sensitivity    Poor    Single molecule 
level(gap - mode TERS)  

   ∼ 100 molecules 
(estimated from its 
spatial resolution)  

  Sample topography    No requirement    No requirement (Flat 
sample is required 
for gap - mode TERS)  

  Flat sample surface  

  Tip preparation    Diffi cult    Diffi cult    Easy  

  Instrumentation    Complex    Complex    Complex  

  Spectral range    Full spectrum 
(for Raman)  

  Full spectrum    Single wavelength  

  Collection time of 
one full spectrum  

  10   min    1   s     –   
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of complex samples, reduce drift and sample damage, and will also allow dynamic 
processes to be followed. Unfortunately, almost all of the published research has 
presented either fi xed - frequency intensity maps or show topographic scans with 
spectroscopic data taken at a very small number of points, which is most likely 
due to the lack of sensitivity and inadequate recording speed of existing instru-
ments. Further technical improvements will enable this analytical method to 
provide more complete solutions to the diffi cult problems in the nanosciences.   

  15.3 
 Applications 

 In this section, various applications of near - fi eld vibrational spectroscopies in 
materials and biological sciences are presented. 

  15.3.1 
 Carbon Nanotubes 

 The imaging of  single - walled carbon nanotube s ( SWNT s) has become the most 
frequent application of TERS  [23 – 25] . SWNTs have generated intense interest due 
to their potential applications in nanotechnology. Four types of Raman mode are 
usually observed in the TER spectra of SWNT: the  radial breathing modes  ( RBM ), 
two graphitic bands (G, G ′ ), and the  disordered  ( D ) band. The positions of these 
bands are vibrational signatures of the state of the SWNT, for example, its defect 
density, chirality, and so on. 

 Defect - density imaging has been demonstrated for an isolated SWNT produced 
by the arc discharge method  [22] . Bumps of 5   nm in height have been observed 
on top of the SWNT in the topography image, and these have been assigned to 
Ni/Y catalyst particles. When TERS measurements were performed on locations 
of the SWNT close to or on the Ni/Y catalyst, the frequencies and intensities of 
the D and G bands changed. Differences in the local tube structure, which may 
be due to defects, junctions or interactions with the glass substrate, may also be 
revealed from the TERS variation of the RBM frequency (diameter sensitive) and 
intensity. 

 The simultaneous near - fi eld photoluminescence and Raman imaging of isolated 
SWNTs with a spatial resolution better than 15   nm has also been reported  [21] . 
Highly localized and intense photoluminescence was observed from certain sec-
tions (20 – 30   nm) of an arc - discharge - produced SWNT, and has been assigned to 
the presence of localized excited states. These states may originate from localized 
chirality variations occurring from defects or from local environmental pertur-
bations. However, for micelle - encapsulated SWNTs, the photoluminescence 
emission extends along the tube length (several hundreds of nanometers). By 
simultaneously acquiring near - fi eld Raman and photoluminescence images, it is 
desired that a correlation between structural defects and the photoluminescence 
properties of individual SWNTs is obtained. 
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 The feasibility of CNTs as components in molecular electronics (e.g., intramo-
lecular junctions) is intimately related to their conducting or semiconducting 
properties. Here, these properties along a nanotube have been measured by the 
near - fi eld recording of the resonant phonon frequencies along spatially isolated 
SWNTs (Figure  15.5 ). The determination of changes in chirality is based on shifts 
in the RBM mode, and supported by changes in the D band. Chirality transitions 
from semiconducting to metal and metal to metal at the single nanotube level 
have been mapped. A spatial extension of the transition region of 40 – 100   nm has 
been found  [23] .   

 The near - fi eld imaging of SWNTs covered with an overlayer of SiO  x   has also 
been performed  [24] , the results having implications for biological processes and 
in semiconductor technology because the functional units found in cells and 
silicon chips are located in the subsurface.  

  15.3.2 
 Semiconductors 

 Stress, strain and impurities in Si samples can be detected based on frequency, 
intensity, shape and width changes of the Si phonon band. Due to the ongoing 
miniaturization of semiconductor structures, there is a need for imaging of these 
features with nanometer - scale resolution. 

     Figure 15.5     (a) TERS image and (b) 
corresponding topography image of an 
isolated single - walled nanotube (SWNT), 
where the optical resolution was determined 
to be 40   nm; (c) A series of TER spectra 
acquired along the length of the SWNT. Two 
resonant RBM phonons are detected. One 
RBM phonon frequency is detected at 
251   cm  − 1 , assigned to semiconducting 
chirality; the second RBM phonon frequency 

recorded from the lower section of the SWNT 
is centered at 192   cm  − 1 , and is assigned to 
metallic chirality. The inset in panel (b) 
displays two cross - sectional profi les acquired 
from both the upper and lower sections, 
respectively, revealing that the expected 
diameter change occurs as the SWNT 
undergoes transition from a semiconducting 
to metallic chirality. Scale bar   =   200   nm 
(panels a and b).  Adapted from Ref.  [23] .   
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 The TERS mapping of a Si device consisting of 380   nm - wide SiO 2  lines separated 
by 300   nm has been demonstrated by Sun and Shen  [37 – 40] . Poborchii  et al.  used 
a depolarization confi guration for TERS in order to suppress the far - fi eld signal 
and to improve the intensity contrast of the Si phonon band at 520   cm  − 1  from 0.5 ×  
to 2 ×   [41] . This group analyzed 100   nm pitches in Si that had been oxidized by 
thermal annealing using an Ag - coated quartz AFM tip. The phonon frequency has 
been found to increase at the proximity of the pitch, which demonstrates that 
compression at the Si/SiO 2  boundary between the pitch and the remainder of the 
substrate has occurred during the thermal oxidation process. Further improve-
ments of this depolarization approach, as assessed by the group of Sokolov, yielded 
contrasts of up to 12, which was partially attributed to refl ection of the incident 
light by the metal - coated tip and thus to a higher irradiance at the sample  [42, 43] . 
Without this contribution, the contrast was still on a high level of  ≥ 3.4 and allowed 
a mapping using the intensity of the Si phonon band with a lateral resolution of 
 ∼ 20   nm and an acquisition time of 2   s per pixel (Figure  15.6 )  [42] .   

 Recently, the research laboratories of the microchip producer AMD began to 
use TERS for characterizing patterned silicon surfaces. Metallized AFM tips that 
have been prepared by sputter deposition of thin Ag fi lms onto quartz tips and 
sharpened by  focused ion beam  ( FIB ) milling were used. With a top - illumination 
set - up, line profi les of patterned samples were recorded and the infl uence of laser 
defl ection at the tip and laser heating on silicon stress measurements were studied 
 [44 – 46] . 

 Subsurface structures in silicon were also studied using apertureless s - SNOM 
in the IR range. Lahrech  et al.  have shown successfully that implanted boron lines 
in silicon can be detected with a lateral resolution of  ∼ 400   nm, even in the absence 
of any topographical contrast  [47] . Knoll and Keilmann have performed near - fi eld 

   
  Figure 15.6     Three - dimensional scanning images 
(10    ×    100   pixels, 180    ×    2000   nm 2 ) of (a) topography and 
(b) integrated Si phonon signal (TERS, 2   s acquisition time 
per pixel) for a silicon sample coated with 30   nm - thick and 
250   nm - wide stripes of SiO  x   with a distance of 250   nm 
between the structures.  Reprinted with permission from 
Ref.  [42] .   
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IR measurements on doped Si and shown that the subsurface mobile carriers can 
be probed by their response to an IR near - fi eld with a spatial resolution of 30   nm 
 [48] . The group of Havenith presented a  scanning near - fi eld infrared microscopy  
( SNIM ) system; this is an IR s - SNOM set - up based on a continuous - wave  optical 
parametric oscillator  ( OPO ) as an excitation source with a much wider tunability 
compared to the usually applied CO 2  lasers  [49] . With this set - up, a subsurface 
pattern of implanted gallium ions in a topographically fl at silicon wafer was 
imaged with a lateral resolution of  ≤ 30   nm. 

 In the context of semiconductor samples, the pattern characterization of deep -
 UV photoresists by a - SNOM IR imaging should be mentioned. The set - up used 
by Dragnea  et al.  is based on an illumination - mode SNOM with a color center 
laser as a tunable IR source and collection of the light transmitted through the 
sample by an IR objective  [50] . Samples were prepared by mask - assisted deep - UV 
patterning of poly( tert  - butylmethacrylate) thin fi lms, leading to poly(methacrylic 
acid) and poly( tert  - butylmethacrylate) in the exposed and unexposed regions, 
respectively. Imaging was performed at 2.80    µ m and 2.94    µ m, and resulted in a 
chemical contrast due to O – H stretching vibrations at 2.94    µ m only present in the 
exposed regions (Figure  15.7 ). The lateral resolution was  ∼ 290   nm, which is clearly 
below the diffraction limit. These studies were extended to measurements of water 
vapor uptake by photolithographic polymers  [51] . Consequently, the entire SNOM 
set - up, excluding the laser source, was built inside a bell - jar chamber in order to 
generate a controlled environment around the sample.   

 All studies mentioned in this section have been single - wavelength/single - 
frequency maps, and thus restricted to the imaging of changes in band intensities, 
such as the Si phonon band of strained silicon. Important information that can 

   
  Figure 15.7     Aperture SNOM IR images of a 8    µ m/8    µ m line/
space pattern obtained by mask - assisted deep - UV exposure of 
a 1    µ m - thick photoresist layer. The images were collected at 
2.80    µ m (a) and 2.94    µ m (b). IR absorption at the OH 
stretching vibration frequency at 2.94    µ m leads to the dark 
contrast of the exposed regions in (b).  Reprinted with 
permission from Ref.  [50] .   
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be derived from changes in band frequencies and shapes is yet to be reported in 
near - fi eld imaging experiments. In IR approaches, this is due to the need to tune 
the laser in order to obtain spectrally resolved information. Scanning the same 
part of a sample sequentially many times, while tuning the wavelength over the 
range of interest, is not feasible in practice, due to the long measurement time 
and long - term drifts of the set - up. A complete spectrum can, alternatively, be 
obtained in one attempt by using near - fi eld Raman spectroscopy with detector 
arrays (e.g., CCDs). With the improvements of TERS with regards to the optical 
contrast mentioned above, and more effi cient collection optics/detectors, full spec-
troscopic imaging of semiconductor samples with nanometer - scale resolution is 
expected in the near future.  

  15.3.3 
 Polymers and Other Materials 

 Imaging with material - specifi c spectral contrast using excitation at a fi xed IR 
wavelength in an apertureless s - SNOM confi guration can be achieved with excel-
lent spatial resolution and relatively rapidly, as no spectral scanning or dispersion 
in a spectrometer is needed. This has been demonstrated for the recognition of 
components in polymer blends, as well as in metal – dielectric composites, and on 
silicon surfaces. Polymer blends are a very interesting and promising area of 
application for near - fi eld spectroscopic imaging. Such blends often show segrega-
tion of the polymer phases, forming domains with sizes in the 100   nm range and 
below. Fillers such as small silica or graphite particles and other additives add to 
the complexity of such samples, especially in materials of industrial relevance. 
State - of - the - art Raman microspectrometry has a spatial resolution on the order of 
1    µ m, and is thus not capable of resolving nanosize polymer phase domains or 
fi ller particles  [52] . 

 The group of Keilmann has applied IR s - SNOM at fi xed wavelengths to image 
polymer mixtures, polymer fi lms and polymer beads, with excellent spatial resolu-
tion  [53 – 55] . A high contrast can be achieved between metals and high - refractive 
index dielectric compounds  [9] , and a spatial resolution of  < 10   nm has been 
reported  [36]  even at IR wavelengths of  λ     ≈    10    µ m, corresponding to a resolution 
of  λ /1000. While the contrast is material - dependent, the spatial resolution is not, 
and is determined solely by the properties of the tip. Figure  15.8  shows the 
imaging of a  poly(methylmethacrylate)/polystyrene  ( PMMA/PS ) polymer blend 
with a resolution of  < 70   nm carried out at different IR wavelengths in the 5.5 – 6    µ m 
range  [56] . This example demonstrates very nicely how spectroscopic contrast is 
achieved at an appropriate (fi xed) wavelength, and how the contrast is completely 
reversed at another wavelength.   

 Akhremitchev  et al.  presented a set - up based on the same principle, namely IR 
s - SNOM with a side - illuminated AFM tip, and employed it to characterize nano-
structured polymer blends that were used as minimally adhesive surface coatings 
to prevent biofouling  [57, 58] . Raschke  et al.  used sharp Au - coated, forward - 
pointing ( ‘ nose - type ’ ) AFM probes with a radius of 10 – 15   nm, and obtained fi xed -
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 frequency s - SNOM images with a lateral resolution of  ≤ 10   nm  [59]  in block 
copolymer blend samples of poly(styrene -  b  - 2 - vinylpyridene) and poly(styrene -  b  -
 ethyleneoxide).When probed at 3.39    µ m (2950   cm  − 1 ), individual domains of the 
two polymers could be distinguished, based on the degree of resonance of their 
C − H stretching vibration with the excitation wavelength. Images with a size of 
300    ×    300   nm 2  were collected within 1 – 2   h, and spatial resolutions down to 8   nm 
were found. 

 The IR s - SNOM approach can also be applied to other materials. For example, 
Keilmann and coworkers have shown examples ranging from SiC partially covered 
with Au  [33]  to metal/Si/polymer three - component samples  [60]  and even subsur-
face imaging in such three - component systems  [61] . 

 An approach to full spectroscopic near - fi eld imaging in the IR range was pre-
sented by Michaels  et al.   [62] , whose illumination - mode a - SNOM set - up was based 
on a Ti   :   sapphire - pumped  optical parametric amplifi er  ( OPA ) coupled into a 
tapered fl uoride glass optical fi ber. The OPA system provides tunable broadband 
IR radiation with output powers in the milli Watt range. After passing the thin 
fi lm sample, the transmitted light is collected by a CaF 2  lens and coupled into a 
monochromator with a detector array. Broadband illumination with a bandwidth 

     Figure 15.8     s - SNOM analysis of polystyrene 
(PS) in a PMMA matrix. (a) Calculated s -
 SNOM amplitude spectra of PMMA (solid 
line) and of PS (dashed line); (b) Topography 
(left) and IR amplitude (right) s - SNOM 
images of a 70   nm - thick polymer blend fi lm 

on Si at three different wavenumbers, as 
indicated in (a). The extracted IR contrast of 
PMMA relative to PS obtained by averaging in 
the regions indicated in the topography is 
shown as experimental data points in (a). 
 Adapted from Ref.  [56] .   
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of 200   cm  − 1  (e.g., 2800 – 3000   cm  − 1 ) in combination with the array detector allows 
the collection of the IR transmission spectrum of the sample over 200   cm  − 1  within 
2   s. For a 2    µ m thickness of PS, a good agreement was found between its near - fi eld 
and the FT - IR reference spectra. The transmission SNOM measurements with 
subdiffraction resolution is limited to sample thicknesses well below the excitation 
wavelength. This is because, as the sample thickness increases beyond the near -
 fi eld regime, the lateral resolution becomes increasingly dominated by diffraction 
rather than by the dimensions of the aperture. Therefore, for spatially resolved 
measurements with this set - up, a 300   nm - thick layer of  poly(ethyl acrylate)  ( PEA ) 
with embedded PS domains was used as a sample  [63] . The chemical nature of 
the domains was determined by AFM reference measurements after a hydrolytic 
etching treatment that is selective for PEA. The spectroscopic imaging of an area 
of 8    ×    8    µ m 2  with 50    ×    50   pixels and a collection time of 2   s per pixel, was performed 
within  ∼ 1.5   h. From the spectra, images at three characteristic frequencies, where 
the far - fi eld spectra of the two components show signifi cant differences, were 
constructed. No clear differences between the images were observed, which indi-
cates that IR absorption is not the major source of contrast in samples with a 
thickness within the near - fi eld regime, but rather scattering/near - fi eld coupling 
effects play a signifi cant role. From some pixels with high signal intensity, absorp-
tion spectra with a reasonable agreement with the reference spectrum of PS could 
be derived. This transmission mode a - SNOM approach with broadband excitation 
represents an interesting step towards real spectroscopic near - fi eld imaging in the 
IR range, but is currently limited to thin fi lm samples with subwavelength thick-
ness. Moreover, the contrast mechanisms are not fully understood.  

  15.3.4 
 Biological Applications  –   I :  IR  a -  SNOM  of Fibroblasts 

 In IR a - SNOM experiments of biological samples,  free - electron laser s ( FEL s) have 
often been employed due to their wide tunability and high output power in the IR 
range. Due to the need for an electron accelerator with an appropriate shielding, 
as well as the size and costs of such systems, FELs are available only at very few 
research centers, usually associated with particle accelerators. Hong  et al.  pre-
sented an interesting approach to near - fi eld IR imaging in liquids  [64] , where FEL 
radiation was coupled into the chalcogenide fi ber of an illumination - mode SNOM, 
while the tapered end of the fi ber was placed in the near - fi eld of a sample coated 
onto a CaF 2  window, which was scanned using piezoelectric transducers. The 
transmitted signal was detected using optics below the CaF 2  window. Several 
advantages become apparent when both the sample and tip are in water. First, 
because of the small distance between fi ber tip and sample, the IR spectral range 
is accessible; this would otherwise be obscured by strong water absorption in 
conventional far - fi eld IR microscopy. Second, metal coating of the tip to prevent 
the leaking of IR radiation was not necessary, due to the strong IR absorption by 
the surrounding water. Third, high laser powers can be coupled into the fi ber 
probe because of the dramatically increased damage threshold due to water cooling 
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of the tip. With this set - up, living fi broblast cells were imaged in water at several 
characteristic IR wavelengths, such as 6.06    µ m (Amide I), 6.45    µ m (Amide II) and 
5.76    µ m (C = O stretching band characteristic for lipids), and signifi cant chemical 
contrast was demonstrated (Figure  15.9 ).   

 As the size of the aperture is defi ned by the IR absorption of water, the lateral 
resolution clearly depends on the wavelength, with the best results obtained in 
regions of the spectrum where water absorbs strongly. The authors reported that, 
with such an approach, a resolution in the range of 10   nm or  λ /600 is within reach. 
On the other hand, images taken at different wavelengths cannot be directly com-
pared due to the wavelength - dependent lateral resolution. In addition, aperture 
transmission - mode arrangements are limited to sample thicknesses below the 
excitation wavelength, because the high - resolution information from the aperture 

     Figure 15.9     IR a - SNOM of fi broblasts. 
(a) Fibroblast cells imaged in water by IR a -
 SNOM at different wavelengths and different 
magnifi cations. The fi rst three images were 
obtained at 6.06    µ m (amide I), whereas the 
image at the right shows the different 
chemical contrast that was obtained at 
6.25    µ m; (b) Left: Fibroblast cells imaged at 

6.06    µ m and 6.45    µ m (Amide II). The high -
 resolution scan at the bottom shows a 
surprisingly high chemical contrast of a 
lamellopodium imaged at 5.76    µ m (C = O band 
assigned to lipids). Right: Images of single 
human hybridoma cells obtained at 6.06    µ m 
(Amide I) and 6.25    µ m, respectively.  Reprinted 
with permission from Ref.  [64] .   

(a)

(b)
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point source vanishes with increasing sample thickness, due to diffraction. Cri-
centi  et al.  presented near - fi eld IR images of partially dried cell samples that were 
collected in refl ection by a collection - mode SNOM set - up in air using unfocused 
FEL radiation for excitation  [65] . The group obtained images with a lateral resolu-
tion of 0.1    µ m or  λ /70, and a chemical contrast that could be explained by absorp-
tion bands of the cell material and components of the buffer/nutrient solution.  

  15.3.5 
 Biological Applications  –   II :  DNA  

 The apertureless s - SNOM IR imaging of biopolymer samples was demonstrated 
by Akhremichev  et al.   [66] , who prepared 5    µ m - wide monolayer stripes of 24 base 
pairs - long DNA and hexadecanethiol on Au - coated glass surfaces and performed 
s - SNOM measurements. With this approach, IR images with a lateral resolution 
of  ∼ 200   nm were obtained that showed a clear chemical contrast based on the 
phosphate absorption band of DNA at 980   cm  − 1 . The stripe pattern revealed by IR 
contrast was not observable in the topography images. 

  Tip - enhanced coherent anti - Stokes Raman scattering  ( TE - CARS ) for near - fi eld 
Raman imaging of DNA samples has been performed  [67] . CARS is based on a 
nonlinear effect, whereby two laser pulses with a constant pump frequency  ω  1  and 
a tunable Stokes frequency  ω  2  (with  ω  1     >     ω  2 ) are synchronized at the sample and 
generate an anti - Stokes fi eld at  ω  as    =   2    ω  1   −   ω  2 ; this corresponds to the Raman 
signal at  ω  R    =    ω  1   −   ω  2 . The advantages of CARS are the enhancement of anti - Stokes 
signals, the confi nement of the volume probed to the center of the laser focus due 
to the nonlinear effect, and the absence of any fl uorescence background, which is 
often present in biological samples. Figure  15.10  shows TE - CARS images of a 
dried DNA network; this system was prepared by spin - coating a solution of an 
alternating  copolymer of 2 ′  - deoxyribosyladenine and 2 ′  - deoxyribosylthymine  
( poly(dA - dT) ) onto a glass slide and drying at room temperature.   

 The AFM topography image revealed a network consisting of single DNA strands 
as well as bundles of up to 10 DNA molecules (Figure  15.10 a). TE - CARS measure-
ments were performed with an Ag - coated tip in contact with the sample, irradiated 
using an inverted microscope set - up by means of a high - NA objective. Images 
collected at the resonant frequency  ω  R    =   1337   cm  − 1  corresponding to the ring 
breathing mode of the purine ring of adenine and at an off - resonant frequency 
1278   cm  − 1 , are shown in Figures  15.10 b and c, respectively. The on - resonant image 
differs clearly from the corresponding off - resonant image, which can also be seen 
in the line profi les in Figure  15.10 d. Thus, the on - resonant image is based on a 
spectroscopic contrast, which allows the imaging of adenine - containing parts of 
the DNA sample. The active volume in these TE - CARS experiments was estimated 
to have a diameter of 20   nm and a height of 2.5   nm, which corresponds to  ∼ 1 zl. 
Determination of the SNR led to a smallest detectable DNA volume of  ∼ 0.25   zl. 
Thus, TE - CARS is a powerful tool for spectroscopically resolved imaging of bio-
polymer networks in their native state at the nanometer scale, and provides vibra-
tional spectral information from a subzeptoliter volume.  
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  15.3.6 
 Biological Applications  –   III :  AFMIR  of  E scherichia  coli  

 Dazzi  et al.  have presented a new approach to apertureless s - SNOM in the IR 
range, which is based on photoacoustic spectroscopy  [68] . In their set - up, the 
sample is coated onto a ZnSe prism and irradiated through the prism by IR pulses 
from a FEL or CO 2  laser. If the IR wavelength matches an absorption band of the 
sample, the absorbed energy leads to local heating and thermal expansion of the 
sample. The pressure waves generated by this effect are detected by an AFM tip/
cantilever that is in contact with the opposite side of the sample. The signals are 
detected in the form of oscillations of the feedback signal, which decay within 
hundreds of microseconds and the amplitudes of which depend on the IR absorp-
tion of the sample at the excitation wavelength. This technique (termed AFMIR) 

   
  Figure 15.10     TE - CARS imaging of the DNA network. (a) 
Topographic AFM image; (b) TE - CARS image at on - resonant 
frequency of adenine (1337   cm  − 1 ); (c) TE - CARS image at off -
 resonant frequency (1278   cm  − 1 ); (d) Cross - sections along the 
line indicated by the arrows.  Reprinted with permission from 
Ref.  [67] .   
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was applied to the imaging of  Escherichia coli  cells  [69] . First, spectra at single spots 
on one cell were collected and compared to the FT - IR reference spectra of bulk 
samples. The two types of spectra showed good resemblance and were dominated 
by bands assignable to proteins (amide I, amide II and amide III) and DNA, which 
is a proof for the spectroscopic information obtainable with AFMIR. In a further 
step, imaging was performed at two on - resonant frequencies 1650   cm  − 1  (amide I) 
and 1550   cm  − 1  (amide II), as well as at an off - resonant frequency (1800   cm  − 1 ). The 
data from resonant signals showed good resemblance with the corresponding 
topography measurements, whereas at the off - resonance frequency, no contrast 
was obtained, indicating a clear chemical contrast in AFMIR imaging (Figure 
 15.11 ). Inhomogeneities inside the image of the bacterium were mainly attributed 
to the inhomogeneous illumination of the sample. The smallest details in the 
AFMIR images had a size of  ∼ 100   nm, corresponding to a lateral resolution of 
 ∼  λ /60.   

 This combination of near - fi eld imaging with the photoacoustic effect is very 
promising: if the time delay between the laser pulse and signal detection is 

   
  Figure 15.11     (a, b) AFM topography and (c, d) corresponding 
AFMIR images of an  E. coli  cell. The AFMIR images were 
collected at the Amide I band (1650   cm  − 1 , left) and at an off -
 resonant frequency (1800   cm  − 1 , right).  Reprinted with 
permission from Ref.  [69] .   

(a)

(c)

(b)

(d)
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additionally analyzed, then depth - resolved investigations could be performed. On 
the other hand, AFMIR is far from being a tool for the imaging of nanometer - sized 
objects. As mentioned above, inhomogeneities found inside the micrometer - sized 
bacterium were attributed to the uneven distribution of the IR radiation, and were 
not due to real subcellular structures. The good agreement between AFMIR spectra 
and FT - IR bulk measurements is also an argument against the possibility of detect-
ing nanoinhomogeneities by AFMIR. It is not clear which volume fraction of the 
sample is represented by the AFMIR spectra; this is mainly due to acoustic effects, 
which complicate the data interpretation. The laterally resolved information is only 
preserved if plane acoustic waves are generated inside the sample and detected by 
the AFM tip. If other acoustic waveforms are generated    –    for example, in small 
absorbing objects that are point sources of spherical acoustic waves    –    then the 
acoustic energy will propagate both perpendicularly to the substrate and in lateral 
directions, which blurs the lateral resolution. In other words, AFMIR is compli-
cated by the fact that the tip has to be within both, the optical and the acoustic 
near - fi eld of the sample. These issues must be solved before AFMIR can be used 
as a tool for nanometer - scale IR imaging.  

  15.3.7 
 Biological Applications  –   IV : Towards Full Spectroscopic Imaging 

 The techniques discussed in Sections  15.3.4 – 15.3.6  (including TE - CARS) were 
used to image samples at single wavelengths/frequencies. Such techniques can 
only be applied to biopolymer samples with known composition and known 
marker bands in the spectrum, or for the intensity mapping of well - known bands 
representing the most important chemical fractions in biological systems, such as 
proteins and lipids. A more detailed understanding of highly inhomogeneous 
biological systems consisting of a variety of chemical compounds is only possible 
on the basis of full spectra collection at every pixel. The most promising techniques 
for spectroscopic imaging of biological samples are near - fi eld Raman spectrosco-
pies, because they provide the whole spectrum at every pixel without the need of 
tuning the laser. Among these techniques, Raman a - SNOM is disadvantaged by 
its low sensitivity, which is insuffi cient to detect biomolecules with low Raman 
cross - sections. TERS provides enhanced spectra from a well - defi ned volume of the 
sample, which is the near - fi eld under the tip, typically a few tens of nanometers, 
both laterally and in depth. 

 To date, the only a - SNOM Raman imaging experiments with biological material 
were conducted on dye - labeled samples, because of the low Raman scattering 
cross - section of the biomolecules alone  [70] . 18 - mer oligonucleotides were labeled 
with  brilliant cresyl blue  dye ( BCB ) and coated onto a SERS substrate consisting 
of Ag - coated Tefl on nanospheres on a glass substrate. With an illumination - mode 
SNOM set - up, near - fi eld Raman spectra were collected on 20    ×    20 points over an 
area of 2    ×    2    µ m 2 . The 488   nm excitation led to a partial resonance enhancement, 
because this wavelength is close to the rising edge of the BCB absorption band. 
With a collection time of 1   min per pixel, the experiment took  ∼ 6   h to complete. 
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From the data obtained, images representing BCB band intensities (at 1524   cm  − 1  
and 1655   cm  − 1 ), as well as the intensity of the glass band at 800   cm  − 1 , were derived 
which showed a high similarity between the two BCB images, and signifi cant dif-
ferences between BCB and glass images; this was proof of the chemical nature of 
the contrast obtained. These study results demonstrated the potential of real spec-
troscopic imaging. A high - BCB signal at one pixel can originate from two causes 
that cannot be distinguished in single - frequency experiments: a high concentra-
tion of BCB - labeled DNA or a high refl ectivity/surface enhancement at this spot. 
In these studies, the glass band intensity was used as a measure for the latter, and 
the BCB spectra were normalized using this band. Images representing the BCB -
 DNA distribution on the sample, with a lateral resolution of  ∼ 100   nm, were then 
constructed as shown in Figure  15.12 .   

   
  Figure 15.12     Higher - magnifi cation of a corrected (see text) a -
 SNOM Raman image of BCB - labeled DNA based on the BCB 
band intensity at 1655   cm  − 1  and full spectra collected along 
the line profi le indicated in the magnifi ed image. Whereas, the 
intensity of the glass band at  ∼ 1100   cm  − 1  remains constant, 
the BCB band intensities (e.g., at 1655   cm  − 1 ) change, 
depending on the position.  Adapted from Ref.  [70] .   



 15.3 Applications  493

 A number of TER point spectroscopy experiments have been conducted to 
probe the contents of the cell wall of  Staphylococcus epidermidis   [71, 72] . The far -
 fi eld spectra of the intact cell contain mainly proteins signals, while the TERS 
showed bands that were assigned to   N  - acetylglucosamine  ( NAG ), a constituent 
of the biopolymer cell surface. Probing the cell at different times also reveals 
spectral fl uctuations; this observation has been attributed to the detection of 
dynamic processes occurring at the cell surface. When TERS was also performed 
on pure NAG, some of the observed vibrational bands resembled those detected 
on the cell surface. However, the bands (from TERS of NAG) appeared very 
different from the Raman spectrum of the pure compound as reported in the 
literature, and no justifi cations were given  [73] . Chemical enhancement/tip pres-
sure/selection rules might cause band shifting, but such effects are not easily 
derived from the data. Further investigations are required to verify the identity 
of the bands. 

 In contrast to dye molecules or CNTs, biomolecules are often weak Raman 
scatterers, and consequently background fl uorescence, as well as Raman signals 
of amorphous carbon and other contaminants present in the sample or on the 
tip surface, can signifi cantly affect the TER spectra (see Section  15.4.3 ). In the 
interpretation of TER spectra, these artifacts can be ruled out by demonstrating 
a resemblance between TERS data and reference spectra of the bulk material, 
or by numerical simulations. Highly reproducible, sharp Raman bands are evi-
dence against carbon contamination signals, because the latter will fl uctuate 
randomly in intensity and frequency, and usually average out to two broad bands 
centered at  ∼ 1360   cm  − 1  and 1590   cm  − 1  when spectra with long acquisition times 
( > 10   s) are collected  [74] . In order to interpret the TER spectra, reference materi-
als for bulk measurements must be selected very carefully. The group of Kawata 
has shown that, in some cases, direct chemical interactions between the binding 
sites of a molecule (e.g., lone - pairs of nitrogen atoms or certain functional 
groups) and the metal surface of the tip can cause band shifts of a few tens of 
wavenumbers, and can even lead to the appearance of new bands that are not 
visible in the bulk spectrum of the pure analyte molecule  [75, 76] . For example, 
adenine can interact with the Ag surface of a TERS tip via each of its four 
nitrogen atoms. Numerical simulations of the four corresponding isomers of the 
adenine – Ag complex resulted in spectra with good resemblance to the TERS 
data. The interpretation of TER spectra of biopolymers is additionally compli-
cated by inhomogeneities in chain length,   molecular mass and sequence, as well 
as by the high number of functional groups and other potential binding sites 
for the metal surface of the tip. These are currently open questions that will 
have to be addressed by the investigation of pure biopolymer compounds and 
comparison of their TER spectra with normal Raman, SER and Ag or Au colloid -
 enhanced Raman spectra. TERS is only useful as a nanoscale chemical analytical 
technique for biological structures if differences between the TER and bulk 
spectra can be satisfactorily explained by chemical interactions with the metal 
surface or tip pressure effects, and if other infl uences such as carbon contamina-
tions can be ruled out.   
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  15.4 
 Current Challenges 

 Although a number of diffi culties still hamper the development of TERS, over-
coming these will surely lead to TERS maturing into a technology for robust 
nanochemical analysis. Some of these challenges are outlined in the following 
sections. 

  15.4.1 
 Performance of the Tips 

 A major limitation of any TERS tip is its durability. Besides strongly enhancing 
the Raman signals of the analytes, an ideal tip should also be mechanically robust 
so that, even in the event of a tip - to - sample contact, the apex is not destroyed (this 
is especially important for mineralogy studies). Furthermore, the tip should be 
chemically inert so that an analysis can be performed over a long period of time. 
At present, Ag - coated or etched tips become TERS - inactive within one to two days 
of fabrication and are discarded. Metallic alloys rather than pure Ag or Au   (the two 
metals generally used for TERS tips, as both are relatively soft)   should be consid-
ered as alternative materials for TERS tips. Theoretical studies on such materials 
could guide the search for higher - quality  ‘ hot ’  tips.  

  15.4.2 
  TERS  Signal Modulation by Surface Roughness 

 Artifacts in gap - mode TERS imaging have been found to occur due to local rough-
ness of the metal substrate  [77] . By scanning an etched Ag tip across a benzene-
thiol monolayer adsorbed onto a rough Au surface, and recording both the 
topology of the substrate and the TERS signals, it has been found that small local 
morphological features of 2   nm can modulate the signal intensity by more than 
10 - fold (Figure  15.13 ).   

 The roughness can also induce an offset between the TERS map and the cor-
responding topography image. This occurs when the enhanced fi eld is asymmet-
rically distributed with respect to the tip axis instead of being directly below it. 
The offset may be tens of nanometers, and larger than the resolution of the 
gap - mode experiment. Hence, in order to obtain reliable data a planar substrate 
without steep edges  –  that is, a corrugation  < 1   nm  –  is necessary. This is a true 
 ‘ catch 22 ’  situation, since it is known from surface science studies that catalytic 
activity on surfaces usually occurs at steps, edges, and so on. However, if nanoscale 
corrugations of the surface can induce an offset, then reliable information on the 
true nature of these sites would be elusive. On the other hand, research studies 
have shown that sharp edges on a metal surface could be exploited as near - ideal 
sites to form nano gaps for very high fi eld enhancement and single - molecule 
detection  [77] .  



  15.4.3 
 Tip Contamination, Analyte Dissociation and  ‘ Blinking ’  

 One unsolved problem in TERS is that of carbon contamination signals arising 
from the dissociation of analyte molecules and/or from pre - adsorbed contamina-
tion on the tip  [78] . These signals often fl uctuate, and could even be mistaken as 
signatures of single molecules, in analogy to single - molecule fl uorescence spec-
troscopy  [79, 80] . However, the bands in  blinking spectra  are often at completely 
different Raman frequencies compared to bands of the bulk molecules. Verifi ca-
tion of the identity of these TERS bands may be made by comparing them with 
the far - fi eld bulk spectra. Assuming that adsorption onto the metal surface does 
not signifi cantly perturb the chemical bonds of the analyte, these TER spectra 
should show a resemblance to the far - fi eld Raman data. This has been demon-
strated by two independent single - molecule studies on malachite green and BCB 
adsorbed, respectively, onto smooth Au surfaces  [29, 30] . 

 The dissociation of an analyte may also be induced by the high local electromag-
netic fi eld intensity, and presumably also from the associated temperature rise 

     Figure 15.13     TERS mapping on a rough Au 
surface, demonstrating changes in spectra 
intensity as a function of surface morphology. 
An STM image of the sample is shown in (a); 
TERS data were collected at the positions 
indicated by the arrows. The cross - section of 

the topography image is shown in (b), where 
the TERS collection sites are labeled with 
crosses; (c) The corresponding TERS 
sequence. The numbers denote the sites 
where the spectra were collected.  Adapted 
from Ref.  [77] .   
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 [78] . In experiments, a compromise between a high intensity of the incident laser 
power and a short data collection time must be found. Robust analytes are able to 
tolerate greater heating, while fragile molecules (e.g., dyes with high absorption 
cross - sections) will be more prone to thermal or fi eld - induced dissociation. Finally, 
the high temperatures created in nano gaps may also lead to thermal annealing 
and morphology changes of the Ag surface and the tip, along with dissociation of 
the analyte. All of these phenomena may lead to an irreversible signal loss during 
the analysis.   

  15.5 
 Summary and Outlook 

 In this chapter, we have reviewed the current state of the art in near - fi eld optical 
technologies for spectroscopic imaging, and applications to CNTs, semiconduc-
tors, polymer - based nanomaterials and biological samples. A general observation 
is that full spectroscopic imaging has only been realized in a handful of studies, 
with most publications focusing on point spectroscopy or single - frequency 
imaging. Consequently, a very large potential for development in this area still 
exists. 

 Far - fi eld Raman imaging using confocal microscopy is gradually becoming a 
standard technique, with several instruments now available commercially that 
possess true spectroscopic imaging capabilities. The spatial resolution is of course 
diffraction - limited, and the collection time can be somewhat long, because the 
incident laser power must be limited in order to avoid photodecomposition of the 
sample. But, compared to Raman  –  and especially to IR imaging  –  TERS has a 
signifi cantly better spatial resolution; the spectral acquisition times are also shorter 
due to enhancement from the tip. With the fi rst commercial TERS instruments 
becoming available only six to seven years after the method was developed, cur-
rently important technical areas include the long - term stability and low drift of the 
scanning unit, the effi cient collection of the Raman scattered light, and the integra-
tion of the controls for the SPM and optical systems into a single unit. Sensitive 
CCD cameras are now also available that allow shorter spectral acquisition times 
to be realized. 

 In the past, TERS has not often achieved high sensitivity in terms of detection, 
and its application to many  ‘ real - world ’  samples is still far from routine. However, 
the technique has shown vast improvements over the past few years as a result of 
better tips, and single - molecule sensibility has been achieved. This detection capa-
bility surpasses the sensitivity of most other analytical methods, including IR 
spectroscopy. Clearly, with a better theoretical understanding of the various fi eld -
 enhancement mechanisms exhibited by TERS, routine procedures with  ‘ very hot ’  
tips can be expected in the near future. 

 Today, both TERS and TERS imaging are utilized and being developed by many 
groups, ranging from basic studies such as adsorption onto single crystal metal 
surfaces, to materials science and biological applications, such as the stretching 
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of DNA or polypeptide chains on very fl at substrates for  ‘ sequencing ’ . Most 
encouragingly, the most recent studies have incorporated new - generation TERS 
optical set - ups with parabolic mirrors that focus into an ultra - high vacuum 
chamber, thus providing access to nanoscale investigations of catalytic processes 
under highly controlled conditions  [81] . It is predicted that chemical and biological 
applications, in particular, will stimulate the development of near - fi eld spectro-
scopic imaging even further. Perhaps most importantly, because TERS is not 
affected adversely by the presence of water in a sample, it may become applicable 
to a host of  in situ  applications where IR imaging would be impossible.  
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Index

a
absorbance gradient   306
acetaminophen   380ff., 390ff., 412ff.
– non-invasive Raman spectrum   423
N-acetylglucosamine (NAG)   493
acetylsalicylic acid (ASA)   335ff., 390
– PLS model   339
acousto-optic tunable fi lter (AOTF)   38, 

259
active principle ingredient (API)   103
adenocarcinoma
– cervical   210
AFM, see atomic force micrsocopy
AFMIR   489
– imaging   490
age-related macular degeneration (AMD)   

142
agricultural science
– near-infrared hyperspectral imaging   

260ff.
algae   254
Alzheimer’s disease   461
amorphous calcium phosphate (ACP)   152
anabolic agent   161
analyte dissociation   495
animal feed
– NIR chemical imaging   269
anisotropic material
– imaging   321
anomalous spectral reading   70
antiresorptive agent   161
AOTF, see acousto-optic tunable fi lter
aperture-SNOM (a-SNOM)   474
Arabidopsis   250
artifi cial neural network (ANN)   208f.
– 3-D image   217
ascorbic acid (ASC)   335ff.
– PLS model   339
aspirin, see acetylsalicylic acid (ASA)

   501

atomic force microscopy (AFM) tip   475
ATR (attenuated total refl ection)   458
ATR FT-IR imaging   347ff.
– diamond accessory   352
– expanded fi eld of view   354
– forensic application   370
– FPA detector   347ff.
– high-throughput (HT)   367
– material sciences   358
– microfl uidics device   369
– pharmaceutical science   347
– pressure   310
– quantitative   356
– variable angle of incidence   355
ATR FT-IR spectroscopic imaging
– penetration depth gradient   306
ATR imaging   53
ATR microspectroscopy   21ff.
ATR prism
– inverted   351

b
band target entropy minimization (BTEM)   

151, 409
bandpass fi lter
– Raman signal enhancement   412
basal cell carcinoma (BCC)   140
baseline correction   69
Beer–Lambert law   67f.
Beer–Lambert model
– Raman emulsion image   74
Bessel function   21
bias   79
biological sample preparation   458
biology   473, 486ff.
biomedical application
– infrared microscopy   451ff.
– synchrotron radiation   451ff.



 502  Index

biomedical sample
– 3-D imaging   203ff.
biopolymer   311
– phase separation   318
– structure   251
bisphosphonate alendronate (ALN)   155f.
blinking   495
bone   149ff.
– adaptation in response to external stress   

156
– adaptation in response to osteoporosis   

159
– composition   461
– genetic modifi cation   154ff.
– infrared and Raman imaging   150
– infrared and Raman spectroscopy   149
– probing   414
– Raman spectrum   418
– subchondral   165
brain tissue   128
– mouse   129
brain tumor   128
– primary   131
– secondary   133
breast cancer (BC)   416
– metastase   133
buccal cell   175ff.

c
caffeine   335ff., 390
– PLS model   339
calcifi cation   416
calcium hydroxyapatite   417
calcium oxalate   417
calibration model   78f.
cancer diagnosis   140
carbon nanotube (CNT)   480
– single-walled (SWNT)   480
– TERS   480
cardiac muscle cell (cardiomyocyte)   215
carotenoid   141
cartilage
– infrared and Raman imaging   164ff.
– infrared and Raman spectroscopy   162f.
– mineralized   165
– unmineralized tissue   164
– zone   163
Cassegrain objective   7
CCD (charge-coupled device) array detector   

25f.
CCD detector   29ff.
CCD-Raman spectrometer   26f.
cell
– cervical   188

– cultured   176
– exfoliated   175
– human urine-borne   185
– infrared spectrum   182
– liposome uptake   196
– morphology   192
– oral mucosa (buccal)   184
– plant   234
– Raman spectrum   182
– subcellular organization   192
cell collection   175
cell culturing method   175
cell wall
– ester   253
– heterogeneity   253
– mutation   252
– Staphylococcus epidermidis   493
cell wall architecture   248
– FT-IR spectrum   249
cellulose polymer   391
– IMS   247
central nervous system (CNS)   117
cervical adenocarcinoma, see 

adenocarcinoma
cervical cell
– human and canine   188
cervix uteri   135
chemical imaging analysis   285, 369
chemical mapping
– on-line   286
chemical specifi city   263
chemimage (chemical imaging)   209
– 3-D   210
chemometrics   65ff.
chondroitin sulfate   163
Christiansen effect   21
chromosome   196
cluster analysis   81, 126
– hierarchical   81, 135f., 181
clustering process   81
coastal Bermuda grass (CBG)   244
collagen   127, 150, 414
– crosslinking   461
– type II   163ff.
colon tissue   124
colorectal cancer (CC)
– metastase   133
compatibilizer   361
concentration matrix   392
confocal microscope   27
confocal Raman microspectroscopy
– human cell   192
connective tissue   115f.
continuous-scanning FT-IR imaging   437
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continuous-scanning FT-IR spectroscopy   
437

corn
– NIR imaging   263
corneocyte biology   139
correlation coeffi cient   392
counterfeit drug
– non-invasive detection   421
counterfeit tablet   372
– imaging   372
cytology
– infrared   184
CytoSpec software   209
Czerny–Turner monochromator   25
Czerny–Turner spectrograph   429

d
data acquisition   178
– Raman spectral mapping   178
– Raman spectroscopy   178
data analysis   179, 388
– Raman image   393
– spectroscopy   388
– supervised   392
– unsupervised   388ff.
data collection
– mode   458
data pretreatment/preprocessing   70, 179
data processing   290
data reproduction   90
de-noising   69
deoxynivalenol (DON)   277
desiccation study   243
detection limit   382
detector
– FPA, see focal plane array detector
– hybrid linear array   50
– infrared   458
– InSb FPA   39, 431
– low-frequency   458
– MCT, see MCT detector
– mid-infrared microspectroscopy   9
– single element   337ff.
– two-dimensional array   45
deuterated triglycine sulfate (DTGS) detector   

9
DEXA, see dual energy X-ray absorptiometry
diamond ATR accessory   353ff.
diamond ATR imaging   365
differential interference contrast (DIC)   

457
diffuse refl ection (DR) measurement
– FT-NIR spectrometer   337
diffuse refl ection spectroscopy   9

diffusion   327ff., 357
– coeffi cient   333
– exponent   332
– Fick’s law   327
– FT-IR imaging spectroscopy   328ff.
– polyamide   327ff.
digital mirror array (DMA)   290
dimyristoylphosphatidylcholine (DMPC)   

451
direct classic least square (DCLS) method   

389ff.
DIRLD, see dynamic IR linear dichroism
disease diagnosis   140
– probing of bone   414
distance   181
DNA   461
– apertureless s-SNOM IR imaging   488
– BCB-labeled   492
– mitosis   196
DR, see diffuse refl ection
drug delivery system   197
dual aperturing   17f.
dual energy X-ray absorptiometry (DEXA)   

414
dynamic IR linear dichroism (DIRLD)   

442
dynamic mechanical analysis (DMA)   442

e
electron multiplying CCD (EMCCD)   30
emission IR spectroscopy (IRES)   444
– PA-IR spectrograph   444
emission PA-IR imaging   444
enamel   465
energy-dispersive X-ray fl uorescence 

(EDXRF)   377
– hyperspectral imaging   401
epithelium   114
– cancerous oral epithelial cell   461
Erysiphe cichoracearum   250
Escherichia coli   277, 489
étendue   10
Euclidean distance   81ff., 181, 392
evanescent wave   122
extracellular matrix (ECM)   115

f
fi broblast
– infrared a-SNOM   486
fi lm
– ultrathin   434
fi nger surface   371
fi sh
– NIR hyperspectral imaging   286



 504  Index

fi xed-size image window-evolving factor 
analysis (FSIW-EFA)   87ff.

fl at fi eld correction   31
fl ax fi ber   250
focal plane array (FPA) detector   347ff., 429, 

452
– ATR FT-IR imaging   347ff.
focal plane array imaging system   17, 52, 

227
food
– candling   282
– chilling injury   281
– external contamination   275
– foreign body   275ff.
– human detectable defect   280
– internal defect   282
– internal quality trait   284
– near-infrared hyperspectral imaging   

260ff.
– potential defect   281
– potential greening area   281
– quality control   271ff.
– surface liquid contamination   277
– surface and subsurface nonconformity   

279
forensic application   370
– attenuated total refl ection (ATR) FT-IR 

imaging   370
Fourier transform, see FT
Fourier transform infrared, see FT-IR
Fourier transform near infrared, see 

FT-NIR
free electron laser (FEL)   12f., 486
front-surface refl ection   8
fruit
– NIR hyperspectral imaging   285
FT-IR/FT-NIR polarization spectroscopy   

321ff.
FT-IR imaging (FT-IRI)   452ff.
– instrumentation   299ff.
– preparation of soft tissue   121
– refl ection   457
– transmission   457
FT-IR imaging microscope   452
FT-IR image
– measurement   305
FT-IR microspectroscopy (FT-IRM)   457
– refl ection   457
– spatial resolution   228, 452
– synchrotron-based   461
– transmission   457
FT-IR refl ection-absorption spectroscopy 

(FT-IRRAS)   436

FT-IR spectroscopic imaging
– material sciences   297ff.
– pharmaceutical sciences   297ff.
FT-IR spectrometer   6ff.
– IRES   444
FT-NIR spectrometer   41
– diffuse-refl ection measurement   337
– single-element detector   337
FT-Raman spectrometer   26
FT-TIRS   445
full-width at half height (FWHH)   38
Fusarium   277
fuzzy C-means (FCM)   136

g
GBM (glioblastoma multiforme)   131f.
genetic modifi cation
– adaptation of bone   154
genetic network   249
genetically modifi ed organism (GMO)   261ff.
– NIR chemical imaging   267
geometric control point (GCP) calibration   

291
germination study   241
glandular tissue   212
β-glucan   253
glycosaminoglycan (GAG)   163
GNU image manipulation program (GIMP)   

207

h
hard tissue   149ff.
hardware development   289
heart
– adult mouse   215
hierarchical cluster analysis (HCA)   81, 135, 

181
– unsupervised (UHCA)   205ff.
HIV transcriptional activator-derived (TAT) 

peptide   197ff.
– modifi ed deuterated liposome (TATp-LIP)   

197ff.
hollow-fi ber bioreactor (HFBR)   164ff.
hyaluronic acid (HA)   163
hybrid linear array detector   50
hydroxylpropylmethylcellulose (HPMC)   

356ff.
hypercube   379, 391
hyperspectral image   66
– Beer–Lambert law   67f.
– data set   66
hyperspectral imaging   378ff.
– mid-infrared   45
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i
ICA, see independent component analysis
image
– 3-D   209
image analysis
– chemometric   65ff.
– exploratory   72ff.
– monolayer   84
– multilayer   84
– between-image quantitation   105
– within-image quantitation   105
image compression   71
– resolution   95f.
image evaluation   313
image information
– quantitative   77
image preprocessing   68
image quality   380
image representation   72
– classical   72
image resolution   84, 92ff.
– concept   84
image segmentation   80
image total rank   93
imaging
– 1-D imaging   427
– 3-D imaging of biomedical sample   203ff.
– anisotropic material   321
– compacted tablet   361
– introduction   3
– single plant cells   234
IMS, see infrared microspectroscopy
independent component analysis (ICA)   76
index of compactness   81
indium antimonide (InSb) FPA   431
– Stirling-engine-cooled detector   39
infi nity correction   20
infrared a-SNOM   486
infrared absorption spectroscopy (IRA)   478
– near-fi eld   478
infrared beamline   455
– extraction   456
infrared data collection   458ff.
infrared detector   458
infrared FPA detector   458
infrared imaging
– bone   150
– cartilage   164ff.
infrared instrumentation   179
infrared microscope   226, 451ff.
infrared microspectrum
– refl ection mode   459
– transmission mode   459

infrared microspectroscopy (IR-MSP, IMS)   
225, 451ff.

– application   240
– biomedical application   451ff.
– cellulose polymer   247ff.
– fl ax   250
– polarized   248
– sample preparation   177
– stem   247
infrared s-SNOM   484
infrared spectral imaging
– individual cell   173ff.
infrared spectroscopy
– bone   149
– cartilage   162f.
– individual cell   173ff.
infrared spectrum
– cell   182
interferometer
– continuous   9
– rapid-scan   9
InSb FPA   431
internal refl ection element (IRE)   21ff.
IR-PLAN microscope   226ff.
IRES, see emission IR spectroscopy

k
kernel   230ff., 264
– 3-D NIR chemical imaging   265
Kohonen algorithm   249
Kramers–Kronig refl ection   8

l
lack of fi t   90
leave   244
lens   142
library spectrum   97f.
lightning rod effect   476
lignifi cation   247
linear discriminant analysis (LDA)   131ff.
liposome   196
– deuterated   197f.
liquid crystal (LC)   437
liquid crystal tunable fi lter (LCTF)   36f., 

259, 300
liquid-based method   173
liver fi brosis   461
loading vector   180
local rank constraint   92f.
local rank pixel   93
Lorentzian function   284
low-density lipoprotein   141
low-frequency detector   458
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lung cancer (LC)
– metastase   133
Lyot fi lter   37

m
macro ATR-FT-IR imaging
– counterfeit tablet   372
macro FT-IR imaging   304f.
magnesium image   399
Mahalanobis distance   181
mapping   386
– chemistry of a sample   285
– DuoScan   387f.
– introduction   3ff.
– plant tissue section   231
– point   387
– pulsed terahertz radiation   56
– transition across botanical parts   232
material sciences   297ff., 473
– ATR FT-IR imaging   358
– FT-IR spectroscopic imaging   297ff.
– NIR spectroscopic imaging   297ff.
MATLAB   205ff.
matrix   181
MCR-ALS, see multivariate curve resolution-

alternating least squares
MCT (mercury cadmium telluride) array   

227, 428
MCT detector   9, 431, 458
– narrow-band   9
– wide-band   9
MCT FPA   431
MCT PA-IR spectrograph   433
MIA, see multivariate image analysis
Micrasterias hardyi   461
micro ATR FT-IR imaging   360
– tablet compaction   363
– tablet dissolution   364
micro ATR imaging   351
micro FT-IR imaging   303
– spatial resolution   312
micro-PA-IR system   447
microcrack   157f.
microelectromechanical system (MEMS)   

289
microfl uidics   369
microscope   5ff.
microspectroscopy
– transmission, see transmission 

microspectroscopy
mid-infrared hyperspectral imaging   45
mid-infrared microspectroscopy   5ff.
– detector   9
– source   12

Mie scattering   21
mineralized tissue   151
missing component   93
mitochondrial distribution   195
mitosis   196
morphological analysis   394
morphology-dependent resonance   21
mosaicing   4
multi-image analysis   100ff.
multilayer resolution   100
multimodal hyperspectral imaging
– Raman   397
multispectral imaging   276
multiplicative signal correction (MSC)   336
multivariate analysis
– unsupervised   389
multivariate curve resolution-alternating 

least squares (MCR-ALS)   90
multivariate image analysis (MIA)   65, 72
multivariate image construction   205
multivariate image regression (MIR)   77
– calibration   78
– prediction   78
muscle tissue   116
musculoskeletal tissue   150f.
mycotoxin   277
myocardial fi brosis   216
myoglobin   451

n
natural moisturizing factor (NMF)   139
Nd : YAG laser   26
nearf-fi eld Raman imaging
– tip-enhanced coherent anti-Stokes Raman 

scattering (TE-CARS)   488
near-fi eld scanning optical microscopy 

(NSOM)   34
near-fi eld spectroscopic method   479
near-infrared, see NIR
nervous tissue   117
neural network   249
NeuroDeveloper software   209
NIR (near-infrared) chemical imaging 

method   262ff.
– genetically modifi ed organism (GMO)   

267
– plant breeding   267
NIR diffuse-refl ection single-element 

detector spectroscopy   341
NIR diffuse-refl ection imaging spectroscopy   

341
NIR hyperspectral imaging   36, 259ff.
– agricultural science   260ff.
– food   260ff.
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– pharmaceutical drug formulation   335
NIR imaging
– calibration   290
– characterization   290
– external contamination   275ff.
– industrial scale   271
– instrumentation   299ff.
– internal defect   282ff.
– laboratory-based   261ff.
– on-line   272
NIR imaging spectroscopy
– pharmaceutical drug formulation   335
– quality control   335
NIR radiation
– pathlength   301
NIR spectroscopic imaging
– material sciences   297ff.
– pharmaceutical sciences   297ff.
NIR spectrum   338
– median imaging   338
– single pixel imaging   338
noise equivalent power (NEP)   10
noise equivalent power temperature (NEPT)   

429
nucleic acid   451

o
octadecanephosphonic acid (OPA)   14
octadecyltrichlorosilane (OTS)   434ff.
ocular tissue   141
on-line application
– food quality   272ff.
– NIR hyperspectral imaging   288
on-line setting
– NIR imaging   274
OPA, see octadecanephosphonic acid or 

optical parametric amplifi er
optical parametric amplifi er (OPA)   485
optical parametric oscillator (OPO)   483
optical path difference (opd)   9
optical throughput   10
oral mucosa cell   175ff.
osteoarthritis   461
osteogenesis imperfecta (OI)   155, 414
osteon   152
osteopetrosis   461
osteoporosis   159, 416, 461

p
PA (planar array)-DIRLD   443
PA-IR microscopy   447
PA-IR spectrograph   427
PA-IR spectroscopy   427ff., 441
– time-resolved   437ff.

PA-IRES spectral image   446
PA-TIRS   445
paracetamol, see acetaminophen
parenchyma bundle sheath (PBS)   244
Parkinson’s disease   461
pathlength   301, 357
penetration depth gradient
– ATR FT-IR spectroscopic imaging   306
4-n-pentyl-4′-cyanobiphenyl (5CB)   437ff.
pharmaceutical capsule
– quality control   421
pharmaceutical drug formulation   335
– quality control   419
– quantitative determination of active 

ingredient   335ff.
– spatial distribution of active ingredient   

340
pharmaceutical science
– attenuated total refl ection (ATR) FT-IR 

imaging   361ff.
– FT-IR spectroscopic imaging   297ff.
– NIR spectroscopic imaging   297ff.
pharmaceutical tablet, see tablet
pharmacology   140
phase separation   318
phospholipid   451
photomultiplier tube (PMT)   25
pixel   66ff.
– anomalous   70
planar array, see PA
plant material
– FT-IR microspectroscopic imaging   225ff.
– IMS   230
– kernel   230
– seed   230
– tissue section   231
PLS-discriminant analysis (PLS-DA)   82
polarizability   478
polarization spectroscopy   322
polarized radiation, see radiation
polyamide (PA)   327
– diffusion   327ff.
– FT-IR imaging spectroscopy   328
– PA11   327ff.
polycarbonate (PC)
– FT-IR/ATR imaging   314f.
poly(dimethyl siloxane) (PDMS)   353ff., 368
poly(ethyl acrylate) (PEA)   486
polyethylene
– blend   361
– FT-IR/ATR imaging   314f.
poly(ethylene glycol) (PEG)   357
poly(ethylene naphthalate) (PEN)   431
poly(ethylene terephthalate) (PET)   313
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– aluminium-metallized   316
– FT-IR/ATR image   316
poly(3-hydroxybutyrate) (PHB)   318ff.
– blend   318ff.
– FT-IR transmission spectrum   318
– phase separation   321
poly(lactic acid) (PLA)   318ff.
– blend   318ff.
– FT-IR transmission spectrum   318
– phase separation   321
polymer
– attenuated total refl ection (ATR) FT-IR 

imaging   347
– FT-IR imaging   318
– interdiffusion   357
– IR s-SNOM   484
– quality control   318
polymer/carbon fi ber interface   358
poly(methyl methacrylate) (PMMA)   30, 53, 

407, 484
polymorphonuclear leukocyte (PMN)   138
polypropylene
– isotatic (iPP)   442
polystyrene (PS)   361, 430f., 484
poly(vinyl alcohol) (PVA)   437
poly(vinylidene fl uoride) (PVDF)   324ff.
– stress-induced phase transformation   324
poly(vinyl pyrrolidone) (PVP)   355
– interdiffusion   357
Powell lens   41
principal component   73, 180
principal component analysis (PCA)   69ff., 

87, 180
– model   74
– vibrational spectroscopic image   129
process analytical technology (PAT)
– pharmaceutical   419
prostate tissue   142
protein   451
– secondary structure   251
pulsed terahertz radiation   56

q
quality control
– food   271ff.
– near-infrared (NIR) imaging spectroscopy   

335
– pharmaceutical capsule   419
– pharmaceutical tablet   419
– polymer   318
quantitation
– between-image   105
– within-image   105
quilting   4

r
radiation
– polarized   321ff., 439
Raman a-SNOM   491
Raman emulsion image   74
Raman hyperspectral imaging   41, 379ff., 

396ff.
– acetaminophen   396
– aspirin   396
– caffeine   396
– pharmaceutical sample   383
– spectroscopy   383
Raman image   381, 396
– caffeine   395
– data analysis   393
– histogram   394
Raman imaging
– bone   150
– cartilage   164ff.
– preparation of soft tissue   123
Raman imaging microscope   44
Raman map   386
– tablet   397
Raman microscope
– confocal dispersive   383
Raman microspectroscopy   24ff.
– confocal, see confocal Raman 

microspectroscopy
– sample preparation   177
Raman scattering   379f.
Raman signal enhancement   412
Raman spectral imaging
– individual cell   173ff.
– instrumentation   383
– pharmaceutical product   377
Raman spectral mapping
– data acquisition   178
Raman spectroscopy
– bone   149
– cartilage   162f.
– data acquisition   178
– deep, non-invasive   405ff.
– diffusely scattering medium   405
– individual cell   173ff.
– spatial method   407
– technique   406
– temporal method   406
– ultrafast gating   406
Raman spectrum
– cell   182
Raman tomography   424
random walk model   301
Rayleigh criterion of resolution   16
redundant aperturing   17
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region of interest (ROI)   336ff.
renal cell carcinoma (RCC)
– metastase   133
resilient back propagation (Rprop) algorithm   

209
resolution   15f.
– compressed image   95f.
– method   85
– postprocessing identifi cation   98
– process   89ff.
– spatial   15ff., 31, 228, 312, 452
– spectral   382
– subcellular   453
retina   142
– macular degeneration   142
RGB (red/green/blue) system
– food quality control   271
– image   342f.
Ricatti–Bessel function   21
RNA   461
root mean square error in prediction 

(RMSEP)   79, 339f.

s
sample deposition   177f.
sample preparation   177, 204
sampling   52
– techniques   5ff.
scanning near-fi eld infrared microscopy 

(SNIM)   483
scanning near-fi eld optical microscopy 

(SNOM)   474
– aperture probe   474
– illumination mode   486
scattering medium
– diffusely   405
scattering SNOM (s-SNOM)   474ff.
Schwarzschild objective   7, 452
SCIRun   207ff.
scrapie   461
seed   230ff.
segmentation method   80
– fuzzy   83
– hard   83
– supervised   80
– unsupervised   80
self-assembled monolayer (SAM)   434
self-interactive modelling class analogy 

(SIMCA)   82, 133
self-modeling curve resolution (SMCR)   151
semiconductor   481
SERS, see surface-enhanced Raman 

scattering
Si phonon signal   482

signal modulation   494
– surface roughness   494
– TERS   494
signal preprocessing   69
signal-to-noise ratio (SNR)   10ff., 49ff., 380
– image quality   380
silk fi broin
– near-IR spectroscopy   251
SIMPLISMA   71, 85ff.
skin   139
– Raman system   141
soft tissue   113ff.
– application   124
– preparation for FT-IR-imaging   121
– preparation for Raman imaging   123
– preparation for vibrational spectroscopic 

imaging   118
source
– mid-infrared microspectroscopy   12
spatial offset Raman spectroscopy (SORS)   

407ff., 423
– inverse   410
spatial resolution   15ff., 31, 228, 312, 452
spectral cytology   175ff.
– fi xation   177
spectral imager
– calibration   291
spectral resolution   382
spectrograph
– prism based   447
spectroscopic imaging   479
– biological application   491
– nanometer resolution   473ff.
– near-fi eld method   473ff.
spectroscopy
– biomedical sample   204f.
spectrum
– vibrational   119ff.
specular refl ection   8
squamous cell carcinoma   135
Staphylococcus epidermidis
– cell wall   493
statistical analysis   393
stem
– IMS   247
Stingray hyperspectral imaging spectrometer   

45ff.
subsampling problem   411ff.
subsurface signal
– discrimination   407
surface chemistry   473
surface-enhanced Raman scattering (SERS)   

34ff., 475
synchrotron   12f.
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– biological sample preparation   458
– instrumentation   455
– radiation   451ff.
synchrotron FT-IRM   463ff.
synchroton IR microscope   457
synchroton IR microscopy
– kernel   237
– plant tissue   237
– seed   237
synchroton IR microspectroscopy (IMS)   

461ff.
– biological and medical application   461ff.
synchrotron IR source   454
– beam line extraction   456

t
T-Ray FT-IRM   466
tablet   397
– compacted   361ff.
– counterfeit tablet   372
– quality control   419
target factor analysis   97
targeted chemical composition analysis   

285ff.
TAT, see HIV transcriptional activator-

derived (TAT) peptide
terahertz (THz) FT-IRM   466
terahertz spectrometer   59
test system   313
tip
– contamination   495
– performance   494
tip-enhanced coherent anti-Stokes Raman 

scattering (TE-CARS)   488
tip-enhanced Raman spectroscopy (TERS)   

33, 474ff.
– analyte dissociation   495
– carbon contamination   495
– gap-mode   477
– signal modulation   494
– surface roughness   494
tip-enhanced Raman (TER) spectrum   493
tissue
– engineering   166
– glandular, see glandular tissue
– hard, see hard tissue
– internal defect in food   283

– mineralized, see mineralized tissue
– normal and healthy   151
– plant   231ff.
– soft, see soft tissue
trace detection   370
– ATR FT-IR imaging   370
training matrix   392
transfl ection spectroscopy   8
transient infrared spectroscopy (TIRS)   445
transmission microspectroscopy   20
transmission Raman spectroscopy   411
two-dimensional array detector   45

u
ultrafast gating   406
– Raman spectroscopy   406
univariate image construction   205
unsupervised hierarchical clustering analysis 

(UHCA)   205ff.
– ANN model   219
– image   210
– stack plot   209
urine cytology   186

v
vibrational hyperspectral imaging   3
vibrational spectrometry   36, 56ff.
vibrational spectroscopic imaging
– hard tissue   149ff.
– soft tissue   113ff.
vibrational spectrum
– reference material   119ff.
vitreous   142
voxel   40, 66

w
Ward’s algorithm   81, 181
wheat quality   241
wood
– NIR hyperspectral imaging   286

x
X-ray fl uorescence (XRF) mapping   399

z
ZnSe ATR accessory   351ff.
ZnSe ATR imaging   365




