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Chapter 1

. $={(R,R),(R,G),(R,B),(G,R),(G,G),(G,B),
(B,R), (B,G), (B, B)}.

The probability of each point in S is 1/9.
ES {(R, G)r (R/ B)r (G, R), (Gr B)/ (B/ R)r (B; G)}

. S={(e1,ez,...,6n), n>2} where ¢; € (heads,
tails}. In addition, e, =e,_1= heads and for
i=1,...,n—2if ¢; =heads, then ¢;, 1 = tails.

P{4 tosses} = P{(t,t,h,h)} + P{(h,t,h,h)}
1% 1

—2[2} ~ %

. (@) F(EUG)® = FE°G".

(b) EFGE.

() EUFUG.

(d) EFUEGUFG.

(e) EFG.

(f) (EUFUG)® = EF°G".

(8) (EF)'(EG)(FG)".

(h) (EFG)“.

Z. If he wins, he only wins $1, while if he loses, he

loses $3.

. If E(FUG) occurs, then E occurs and either F or G
occur; therefore, either EF or EG occurs and so

E(FUG) C EFUEG.

Similarly, if EF U EG occurs, then either EF or EG
occur. Thus, E occurs and either F or G occurs; and
so E(F U G) occurs. Hence,

EFUEG C E(FUG),

which together with the reverse inequality proves
the result.

7. If (EUF)‘ occurs, then E U F does not occur, and

10.

11.

12.

so E does not occur (and so E° does); F does not
occur (and so F¢ does) and thus E° and F¢ both
occur. Hence,

(EUF)® C E°F°.

If E°F€ occurs, then E occurs (and so E does not),
and F° occurs (and so F does not). Hence, neither
E or F occur and thus (E U F)¢ does. Thus,

E°F° C (EUF)°
and the result follows.
1>P(EUF) =P(E)+ P(F) — P(EF).

F = EUFES, implying since E and FE® are disjoint
that P(F) = P(E) + P(FE)".
Either by induction or use

n

UE; = EfUE{E; UE{ESE3U---UES---E _4E,

—_

and as each of the terms on the right side are
mutually exclusive:

P(UE;) = P(E1) 4+ P(ESE;) + P(ESESE3) + - - -
1
+P(ES---ES_{Ey)

< P(E1) + P(Ez) +---+ P(E,). (why?)
L
L. 36
P{sumisi} = ,
Bl s 12
36 7 - 7 A

Either use hint or condition on initial outcome as:
P{E before F}
= P{E before F | initial outcome is E}P(E)
+P{E before F | initial outcome is F}P(F)
+P{E before F | initial outcome neither E

or F}[1 — P(E) — P(F)]



13.

14.

16.

Answers and Solutions

= 1-P(E)+0- P(F) + P{E before F}
[1— P(E) - P(F))

Therefore, P{E before F} = B

Condition an initial toss
12

P{win} = }' P{win | throw i} P{throw i}.
i=2

Now,

P{win| throw i} = P{i before 7}

0 i=2,12
i—1
- 571 1i=3,...,6
1 i=7,11
13 —1i
191 i=38,...,10,

where above is obtained by using Problems 11
and 12.

P{win} ~ .49.

P{Awins} = ) P{A winson (21 + 1)st toss}
n=0

(1—P)*p

|
18

n

P

t-18~

[(1—P)?)"

1
1—(1-P)?
P

n=0

P

~2p_p2
1

T2-p
P{Bwins} =1 — P{A wins}

_1-p
2-PpP°
P(EUF)=P(EUFE")
= P(E) + P(FE°)
since E and FE® are disjoint. Also,
P(F)=P(FEUFE")
= P(FE) + P(FE") by disjointness.
Hence,

P(EUF) = P(E) + P(F) — P(EF).

17. Prob{end} =1 — Prob{continue}
=1-P({H,H,HYU{T,T,T})
=1—[Prob(H, H, H) + Prob(T, T, T)].

Fair coin: Prob{end} =1 — { fffff

_3
==

. . 111 3 33
Blasedcom.P{end}—l—{4-4.44_4.4.4}
9

16°

18. Let B = event both are girls; E = event oldest is
girl; L = event at least one is a girl.

_ P(BE) P(B) 1/4 1

(@) P(B|E) = P(E) _P(E) 12 2
(b) P(L) =1—P(nogirls) =1— i = %
_ P(BL) _P(B) 1/4 1

PR =y TRy T3 3

19. E =event at least 1 six P(E)

_ numberof waystogetE 11
~ number of sample pts 36

D = event two faces are different P(D)

=1 — Prob(two faces the same)

6 5 _ P(ED) 10/36 1
=15~ EID) =55y = 56 ~ 3

20. Let E = event same number on exactly two of
the dice; S = event all 3 numbers are the same;
D = event all 3 numbers are different. These
3 events are mutually exclusive and define the
whole sample space. Thus, 1 = P(D) + P(S) +
P(E),P(S)=6/216=1/36; for D have 6 possible
values for first die, 5 for second, and 4 for third.

.. Number of waystoget D = 6-5-4 = 120.
P(D) =120/216 = 20/36
.P(E)=1-P(D) - P(S)

20 15
o 36 36 12’

21. Let C = event person is color blind.



22.

23.

24.

Answers and Solutions 3

P(Male|C)

B P(C|Male) P(Male)
~ P(C|Male P(Male) + P(C|Female) P(Female)

_ 05 x .5

.05 x .5 4+ .0025 x .5
2500 _ 20

2625 21°

Let trial 1 consist of the first two points; trial 2 the
next two points, and so on. The probability that
each player wins one point in a trial is 2p(1 — p).
Now a total of 2n points are played if the first
(a — 1) trials all result in each player winning one
of the points in that trial and the n'" trial results in
one of the players winning both points. By inde-
pendence, we obtain that

P{2n points are needed }
=(2p(L-p)" (P’ +(1-p)?), n>1

The probability that A wins on trial n is
(2p(1 —p))" 'p? and so

P{Awins} =% ¥ (2p(1 - p))"!

n=1

p2

T1-2p(1-p)

P(E)P(E,|E1)P(E3|E1Ey) ---P(E,|E1---Ey—1)

P(E\Ey) P(E\E;E5)  P(Ei---Ep)
=PE) D) BlE ) B Ey 1)
= P(E; - Ep).

Let a signify a vote for A and b one for B.

@) Ppy = P{a,a,b} =1/3.

(b) P31 = P{a,a} = (3/4)(2/3) =1/2.

(c) P3p=P{a,a,a} +P{a,a,b,a}
=(3/5)(2/9)[1/3+(2/3)(1/2)] = 1/5.

(d) Pyy = Pla,a} = (4/5)(3/4) = 3/5.

(e) Pup=P{a,a,a}+ P{a,a,b,a}
=(4/6)(3/5)[2/4 + (2/4)(2/3)] = 1/3.

25.

26.

27.

(f) Py3 = P{always ahead|a,a}(4/7)(3/6)
=(2/7)[1 —P{a,a,a,b,b,b|a,a}
— P{a,a,b,bla,a} — P{a,a,b,a,b,bla,a}]
— (2/7)[1 - (2/5)(3/4)(2/3)(1/2)
— (3/5)(2/4) - (3/5)(2/4)(2/3)(1/2)
=1/7.
(8) Ps1 = Pla,a} = (5/6)(4/5) = 2/3.
(h) Psp =P{a,a,a} +P{a,a,b,a}
=(5/7)(4/6)[(3/5) + (2/5)(3/4)] =3/7.

By the same reasoning we have that
(i) P53 =1/4,
G) P54 =1/9.

(k) In all the cases above, P, ;; = e

n+n

(a) P{pair} = P{second card is same
denomination as first}

=3/51.
(b) P{pair|different suits}
_ P{pair, different suits}
- P{different suits}
= P{pair}/P{different suits}

3/51
= 30751 = 1/13.

re=(1) () (3) - 50
- () (2)/ () - 22

)
P(E4|E\Ey) = <i> Gi) / <ig) = 13/25.

P(E4|E1E2E3) = 1.

39-26-13
P(EE2Esby) = 550759

P(E)) =1
P(E;|E1) = 39/51, since 12 cards are in the ace of
spades pile and 39 are not.

P(E;|E1E;) = 26/50, since 24 cards are in the piles
of the two aces and 26 are in the other two piles.

P(E,|E1E,E3) = 13/49.

So
P{ eachpilehasanace} = (39/51)(26/50)(13/49).
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28.

29.

30.

31.

32.

Answers and Solutions

Yes. P(A|B) > P(A) is equivalent to P(AB) >
P(A)P(B) which is equivalent to P(B|A) > P(B).

(@) P(E|F) =0

(b) P(E|F) = P(EF)/P(F) = P(E)/P(F) =
P(E)=.6

(c) P(E|F) = P(EF)/P(F) = P(F)/P(F) =1.

(a) P{George|exactly 1 hit}

_ P{George, not Bill}
- P{exactly 1}
B P{G, not B}
~ P{G, not B} + P{B, not G)}
_ (14)(.3)
(4)(:3)+ (.7)(.6)
=2/9.
(b) P{G|hit}
= P{G, hit}/P{hit}
= P{G}/P{hit} = .4/[1 — (.3)(.6)]
= 20/41.

Let S = event sum of dice is 7; F = event first
die is 6.

P(S) = %P(PS) - %P(F\S) . Plgfg)
L 1/36 1
-2z

Let E; = event person i selects own hat.
P (no one selects own hat)

=1—-P(EJUE,U---UEy)

=1—|Y P(Eiy)— Y P(Ei1Eip) +---

i i1 <ip

+(=1)"*'P(E1EEy)

=1-Y P(Eiy)— Y P(EiEip)
I 11 <ip
— Z P(Ei1EiyEiz) + - -
i1<i2<i3

+ (=1)"P(E1EEy,).

Let k€{1,2,...,n}. P(EiiELEiy) = number  of
ways k specific men can select own hats =
total number of ways hats can be arranged
= (n — k)!/n!. Number of terms in summation
L <iy<..<ip = number of ways to choose k vari-

ables out of n variables = {ﬂ =n!/kl(n — k).

33.

34.

35.

36.

Thus,
Y, P(EiiEip-- - Eiy)
i <<
_ Z (n—k)!
i, M
[n]l (=K 1
|k nl kU
.. P(no one selects own hat)
1 1 1 a1
1oty gt D
1 1 1

Let S= event student is sophomore; F = event
student is freshman; B = event student is boy;
G = event student is girl. Let x = number of
sophomore girls; total number of students =
16 + x.

10 10 4
P(F) = P(B) = P(FB) =
(F) 16+x() 16+x( ) 16 +x
= P(FB) = P(F)P(B) = ——-
16 + x (FB) (F)P(B) 16 + x
10
716+x:>x—9.

Not a good system. The successive spins are
independent and so

P {11% is red|1st 10 black} = P {11% is red}
18
-5

(a) 1/16
(b) 1/16

(c) 15/16, since the only way in which the
pattern H, H, H, H can appear before the pat-
tern T,H, H, H is if the first 4 flips all land
heads.

Let B = event marble is black; B; = event that box
i is chosen. Now

B = BB, UBB,P(B) = P(BB,) + P(BB,)
= P(B|B;)P(B;) + P(B|B,)P(B,)

_11
)

217
3 27 12°

N |

. Let W = event marble is white.



Answers and Solutions 5

P(W|By)P(By)

PBW) = BB P(B1) + P(W[B,)P(B2)
1 1 1
_ 23 _3_3
1 1 1 1 5 5
22732 1@

38. Let Ty = event transfer is white; Tg = event trans-
fer is black; W = event white ball is drawn from

urn 2.
P(W|Tw)P(Tw)
PIWIW) = BT )P (Tw) + POW|T3)P(T5)
2 2 4
_ 73 _21_+4
2 2 1 1 5 5
73773 o0

39. Let W = event woman resigns; A, B, C are events
the person resigning works in store A,B,C,
respectively.

P(CIW)
_ P(W|C)P(C)
~ P(W|C)P(C) + P(W|B)P(B) + P(W|A)P(A)

100
.70 x 55

o 100 75 50
.70xﬁ+.60xﬁ+.50ﬁ

70 ;140 1

T 225/ 225 2

40. (a) F= event fair coin flipped; U = event two-
headed coin flipped.

P(HH|F)P(F)
(HH|F)P(F) + P(HH|U)P(U)

(b) P(F|HH) = 3

(c) P(F|HHT)
_ P(HHT|F)P(F)
~ P(HHT|F)P(F) + P(HHT|U)P(U)
_ P(HHTIF)P(F) _
~ P(HHTI|F)P(F)+0 '
since the fair coin is the only one that can show
tails.

41. Note first that since the rat has black parents and
a brown sibling, we know that both its parents
are hybrids with one black and one brown gene
(for if either were a pure black then all their off-
spring would be black). Hence, both of their off-
spring’s genes are equally likely to be either black
or brown.

(a) P(2black genes | at least one black gene)

B P(2black genes)
~ P(at least one black gene)

1/4
(b) Using the result from part (a) yields the follo-
wing:

P(2black genes | 5 black offspring)

P2 black genes)
~ P(5 black offspring)

B 1/3
- 1(1/3) +(1/2)%(2/3)
=16/17

where P(5 black offspring) was computed by con-
ditioning on whether the rat had 2 black genes.

42. Let B= event biased coin was flipped; F & U
(same as above).

P(U|H)
_ P(H|U)P(U)
P(H|U)P(U)+ P(H|B)P(B) + P(H|F)P(F)
1 1
1.= -
- 3 34
1 31 11 9 9
'3713%23 &2
43. Leti= event coin was selected; P(H|i) = %
5 1
P(H|5)P(5 10 10
P(5|H) = 10( 5)P(5) _ 10101 101
Y. P(HIi)P(i) 010
i=1 =10 10
5 1
T 1



6 Answers and Solutions

44. Let W = event white ball selected. and so,
B P(W|T)P(T) S
P(T|W) = BOWITYP(T) + P(W|H)P(H) P{A tobe executed|X = B} = 3
11 Similarly,
53 _12 1
11+i1 37 P{A tobe executed|X = C} = =
52 12 2 3
and thus the jailer’s reasoning is invalid. (It is true
45. Let B;= event ith ball is black; R ;= event it pall that if the jailer were to answer B, then A knows
is red. that the condemned is either himself or C, but it is
twice as likely to be C.
P(R2|B1)P(By) + P(R2|R1)P(R1) 47. 1. 0<P(A|B) <1
4 b
. P(SB P(B)
— b+r+c b+r 2. P(S|B):P(B)):PEB):
r b L +c 7 L
btrtc btr "btrtc brr 3. For disjoint events A and D
_ rb P((AUD)B)
Tt rtor P(AUDIB) = ——pmp—
__ b _ P(ABUDB)
b+r+c ~ P(B)
_ P(AB)+ P(DB)
46. Let X(=B or =C) denote the jailer’s answer to - P(B)
prison A. Now for instance, — P(A|B) + P(D|B)

P{A to be executed|X = B}
_ P{Atobe executed, X = B}

Direct verification is as follows:

P(A|BC)P(C|B) + P(A|BC®)P(C°|B)

P{X =B}
_ P {Ato be executed} P {X = B|A to be executed _ P(ABC) P(BC) n P(ABC*) P(BC")
- P{X = B} P(BC) P(B) P(BC¢) P(B)
_ (1/3)P{X = B|A to be executed } _ P(ABC) i P(ABC*)
- 1/2 ‘ P(B) P(B)
_ P(AB)
. . P(B)
Now it is reasonable to suppose that if A is to be
= P(A|B)

executed, then the jailer is equally likely to answer
either B or C. That is,

1
P{X = B| A to be executed} = 3



Chapter 2

1. P{X =0} = B] / [120} — %

2. —n,—n+2,-n+4,...,n—2,n.

3 p{xz—z}:i:p{xzz}

P{X =0} = %

4. Q) 1,2,3,4,5,6.
(i) 1,2,3,4,5,6.
(iii) 2,3,...,11,12.
(iv) —5,—4,...,4,5.

5. P{max =6} = % = P{min =1}
P{max =5} = % = P{min = 2}
P{max =4} = % = P{min = 3}
P{max =3} = 35—6 = P{min = 4}
P{max =2} = % = P{min = 5}
P{max =1} = 3176 = P{min = 6}.

6. (H,H,H,H,H),p’ifp = P {heads} .

7. p(0) = (.3)° =.027
p(1) = 3(.3)%(.7) = .189
p(2) = 3(.3)(.7)% = .441
p(3) = (.7)° = .343

10.

11.

12.

13.

14.

15.

16.

17.

LR E-BIE -5

AL B BIG) - -2

116
P{X:O}:P{X:6}:% :61—4
6
P{X—1}—P{X—5}—6m :%
1 r116
P{X=2}=P{X=4} = |5 m -2

ra-[g {2

P{X = k}
PIX=k-1}
| e
mpk(lﬂ’) ¢
(e I S Ol
_n—k+1 p
k  1-p

Hence,
P{X =k}

>len—k+1)p>k(1-p)
—sm+1p >k

P{X=k—1}

The result follows.

1—(.95)°* — 52(.95)°1(.05).

n!

Follows since there are 7| permutations of
.. xr.

x1!

n objects of which x; are alike, x, are alike, ..., x,

are alike.



18.

19.

20.

21.

22.

23.

24.

25.

26.

Answers and Solutions

Follows immediately.
P{X1+ -~-+Xk:m}

=[] e
51 (1127372 71]°
21112! M {10] [2] =054

(o (8] -V T

1

32

In order for X to equal n, the first n — 1 flips
must have 7 — 1 heads, and then n'" flip must land
heads. By independence the desired probability is
thus

n—1 _ _
[r—J Pt = p)" ap.

It is the number of tails before heads appears for
the " time.

A total of 7 games will be played if the first 6 result
in 3 wins and 3 losses. Thus,

(7 games) = (§) (1 )"

Differentiation yields that

d
gyt 7 =20[32 (1= p)" = p%3(1 - p)]
= 60p*(1—p)*[1 — 2p].
Thus, the derivative is zero when p = 1/2. Taking

the second derivative shows that the maximum is
attained at this value.

Let X denote the number of games played.

(@) P{X=2}=p’+(1—p)
P{X =3} =2p(1-p)
E[x]=2{p*+(1—-p)*} +6p(1—p)
=2+2p(1—p).
Since p(1 — p) is maximized when p = 1/2,
we see that E[X] is maximized at that value

of p.

(b) P{X=3}=p’+(1—p).
P{X =4}
= P{X =4, T has 2 wins in first 3 games}
+P {X = 4, Il has 2 wins in first 3 games}

=3p*(1=p)p+3p(1-p)*(1 —p).
P{X =5}
= P {each player has 2 wins in the first
4 games}
= 6p*(1—p).
E[X]=3[p*+(1-p)’| +12p(1-p)
P2+ (1= p)*] + 30p°(1 = p)*.

Differentiating and setting equal to 0 shows
that the maximum is attained when p = 1/2

27. P {same number of heads} = ZP{A =i,B=i}
) (F)am ("7 2yt
2 (5) (") o
-2(E) ("o
= (Z) (1/2)".

Another argument is as follows.
P{# heads of A = # heads of B}
= P{# tails of A = # heads of B}

since coin is fair

= P{k — # heads of A = # heads of B}
= P{k = total # heads}.

28. (a) Consider the first time that the two coins give
different results. Then

P{X =0}=P{(th)|(t h)or (ht)}

_pd-p) _1
2p(1—p) 2

(b) No, with this procedure
P{X =0} = P{firstflipisatail} =1 —p.

29. Each flip after the first will, independently, result
in a changeover with probability 1/2. Therefore,



30.

32.

33.

34.

35.

36.

37.

P {k changeovers} = (n ; 1) (1/2)" L.

P{X =i}
P{X=i—1} e M1/(i—1)

e AN /il

= = A/

Answers and Solutions

38.

c=2.
31

39. E[X] ="

40. Let X denote the number of games played.

Hence, P{X = i} is increasing for A > i and

decreasing for A < i.

(@) 394 (b).303 (c).091.

8c/3=1
3
=3
1 31 3 (32 )
P{-<X<Zi==2 4x —2
{2< <2} 8/1/2(x x)dx
_n
T 16
% 10 1
P{X>20)=[ —dx=-.
{X > 20} /20 xzdx 7
area of disk of radius x
< =
PAD < x} area of disk of radius 1
2
7T
P{M < x} =P {max(Xy,..., X;) < x}

-1<y<1

41.

42.

P{X=4}=p*+(1-p)
P{X =5}=P{X =5, Iwins 3 of first4}
+P{X =5, Il wins 3 of first4}
=4p°(1=p)p + 4(1 - p)*p(1 - p)
P{X=6}=P{X =6, Iwins 3 of first5}
+ P{X = 6, Il wins 3 of first 5}
=10p°(1—p)’p + 10p*(1 — p)’
(I-p)
P{X =7} = P {first 6 games are split}
—205°(1 - p)’,
7
E[X]=) iP{X=i}.
i=4
When p = 1/2, E[X] = 93/16 = 5.8125.

Let X; equal 1 if a changeover results from the "
flip and let it be 0 otherwise. Then

n
Number of changeovers = Y X;.

i=2
As,
E[X]]=P{X;=1} = P{flipi — 1 # flip i}
=2p(1-p)
we see that

n
E[ Number of changeovers] = Y E [X;]
i=2

=2(n—1)p(1-p).

Suppose the coupon collector has i different types.
Let X; denote the number of additional coupons
collected until the collector has i + 1 types. It
is easy to see that the X; are independent geomet-
ric random variables with respective parameters
(n—i)/n,i=0,1,...,n — 1. Therefore,

n—1 n—1 n—
£|' x| =5 £ix) ="z n/n -

i=0
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43.

44.

45.

Answers and Solutions

n
(a) X = Z Xi-
i=1
(b) E[Xi]=P{X;=1}
= P{red ball i is chosen before all n
black balls}
=1/(n+1) since each of these n + 1
balls is equally likely to be the
one chosen earliest
Therefore,
n
Z (n+1).

(a) LetY;equallifredballiischosen after the
first but before the second black ball,
i=1,...,n. Then

n
Y = Z Y;.
= 46.
(b) E[Y;]=P{Y;=1}

= P{red ball i is the second chosen from
aset of n + 1 balls}
=1/(n+ 1) since each of the n+1 is
equally likely to be the second one
chosen.

Therefore,

E[Y] =n/(n+1).

(c) Answer is the same as in Problem 41.

(d) We can let the outcome of this experiment
be the vector (Ry, Ry, ..., R,) where R; is the
number of red balls chosen after the (i — 1)
but before the i black ball. Since all orderings
of the n + m balls are equally likely it follows
that all different orderings of Ry, ..., R, will
have the same probability distribution.

For instance,
P{Rl = LI,RZ = b} = P{Rz = ﬂ,Rl = b}

From this it follows that all the R; have the
same distribution and thus the same mean.

Let N denote the number of keys in box i,

i = .,k. Then, with X equal to the num-
k

Y (N; —

i=1

ber of collisions we have that X =

k
)" =Y (Nj—1+4I{N; = 0}) where I {N; = 0}
i=1
is equal to 1 if N; = 0 and is equal to 0 otherwise.
Hence,

47.

Another way to solve this problem s tolet Y denote
the number of boxes having at least one key, and
then use the identity X = r — Y, which is true since
only the first key put in each box does not result in

k
a collision. Writing Y = }' I{N; > 0} and taking
i=1
expectations yields that

k
Z [1—(1—p)]

k
—r—k+ Y (1-py
o0
Using that X = Z I,, we obtain
n=1

=Y E[Il,]=) P{X>n}
n=1 n=1
Making the change of variables m = n — 1 gives

EX]= Y P{X>mt1}= Y P{X>m)

m=0 m=0

Let X; be 1 if trial i is a success and 0 otherwise.

(a) The largest valueis .6.If X1 = X, =
1.8 = E[X] = 3E[X;]| = 3P{X,=1};

X3, then

and so
P{X=3}=P{X; =1} = .6.

That this is the largest value is seen by
Markov’s inequality which yields that

P{X >3} < E[X]/3 = 6.

(b) The smallest value is 0. To construct a proba-
bility scenario for which P{X = 3} = 0letU

be a uniform random variable on (0, 1), and

define
w1 ifu<e
170 otherwise
w1 ifu>4
270 otherwise
1 ifeitheriU<.3 or U>.7
X3 = .

0 otherwise
It is easy to see that

P{X; =X, =X3=1} =0.
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1
E[X?] — (E[X])* = Var(X) = E(X — E[X])* > 0.
Equality when Var(X) = 0, that is, when X is
constant.
Var(cX) = E[(cX — E[cX])?]
= E[*(X - E(X))?]
= 2Var(X).
Var(c + X) = E[(c+ X — E[c + X))?]
— E[(X — E[X])’]
= Var(X).

r
N = Z X; where X; is the number of flips between
i=1
the (i — 1)* and i head. Hence, X; is geometric
with mean 1/p. Thus,

:;E[X]:

@) n—l—l
(b) 0.
(o) 1.

1 1 17

n+1" 2n+1 n+1] °

(a) Using the fact that E[X + Y] = 0 we see that
0=2p(1,1) —2p(~-1,-1)

which gives the result.
(b) This follow since

0=E[X—Y]=2p(1,-1) —2p(—1,1).
(c) Var(X) = E[X?] = 1.
(d) Var(Y) =E[Y}] =1.
(e) Since

1=p(1,1)+p(-1,1) +p1,-1) +p(-1,1)
=2p(1,1) +2p(1,-1)

we see thatif p = 2p(1,1) then

1—-p=2p(1,-1).

Now,
Cov(X,Y) = E[XY]
=p(1,1) +p(-1,-1)
-p(L,-1) —p(-1,1)

=p-(1-p)=2p-1

55.

56.

57.

58.

1= /af(x)dx—i— 7f(x)dx
0 a

a
< /cdx+P{X>a}
0
<ac+ P{X > a}.

Let X; equal 1 if there is a type i coupon in the
collection, and let it be 0 otherwise. The number of
distinct types is X = )° X;.
i=1
n n n k
EX] =Y E[Xj]=} P{X;=1} =} (1-p))
i=1 i=1 i=1

To compute Cov(X;, X;) wheni # j, note that X;X;
is either equal to 1 or 0 if either X; or X; is equal to

0, and that it will equal 0 if there is either no type i
or type j coupon in the collection. Therefore,

P{X;X; = 0} = P{X; = 0} + P{X; = 0}

— P{X; = X; = 0}
=(1-p)+1-pp)
—(1—pi—pj)
Consequently, for i # j
COZ)(XZ‘, X]) = P{XZ‘X]' = 1} - E[XZ‘]E[X]']
=1-[1—p)+ (1 —ppt
—(1=pi—pp)f = A —p)
(1—pj)F
Because Var(X;) = (1 — p)[1 — (1 — p)¥]
we obtain
Var(X) = fﬂ Var(X;) +2) Z Cov(X;, X;)
i= i<j
=30 p - (-
22 Z 1—[(1- pl
ji<j
+(1=p) = =pi—p)

— (L=p)A-pp~

It is the number of successes in n + m independent
p-trials.

Let X; equal 1 if both balls of the i withdrawn
pair are red, and let it equal O otherwise. Because
r(r—1)

E[X] 2n(2n —1)

—P{X; =1} =
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59.

Answers and Solutions

we have

E[X] = Zl E[]

r(r—1)

(4n —2)

Because

r(r—1)(r—2)(r—3)
E[XiXj] = 2n(2n —1)(2n —2)2n — 3)

For Var(X) use

Var(X) =Y Var(X;) +2 Y Cov(X;, X;)
i i<j
=nVar(Xy) +n(n—1)Cov(Xy, Xp)
where

Var(Xq) = E[X1](1 — E[X4])

r(r—1)(r—2)(r—23)
Cov(X,X2) = o o 1)@m= 2)2n —3)

— (E[x1])?

(a) Use the fact that F(X;) is a uniform (0, 1) ran-
dom variable to obtain that

p=P{F(Xq) <F(Xz) > F(X3) < F(X4)}
= P{U1 <U; >Usz < U4}

where the U;,i = 1,2,3,4, are independent
uniform (0, 1) random variables.

1,1 pxp f1
b) p= / / / / dxgdxsdxodx;
0 X1 0 X3
1 1 X2
:/ / / (1 — X3)dX3dXQdX1
0 X1 0

1 /1
= / / (x7 — x5 /2)dxodx
0 X1

_ /01 (1/3 — x2/2 + 23 /6)dx,

=1/3-1/6+1/24=5/24

(c) There are 5 (of the 24 possible) orderings such
that X1 < Xp > X3 < X4. They are as follows:

Xo > Xy > X3 > Xq
Xo > Xy >X1 > X3
Xo > X1 > Xy > X3
Xy >Xp > X3 > Xy
Xy >Xp>X1 > X3

60.

61.

62.

63.

64.

65.

1 t_
E[¢"¥] :/ etrgx = &1
0 t
d . x, tel—et41
—E - - -
dt [ t2
A2 xy [P(te? 4ot —ef) —2t(tet — et +1)]
72E[e }: 1
dt t

2t —2(tef — et +1)
t3 ’

To evaluate at t = 0, we must apply 'Hospital’s
rule.

This yields
tet +eft —et et 1
EXI=lim = — =lim35 =3
2 t 2t_2 t_zt zt
E[X2]_1m te’ 4+ t<e tze e +2e
t= 3t
*lime—t*1
T =03 3

1
1—«a

E[ea)\X] — /ea)\x)\ef)\xdx —

Therefore,

1
P=— —In(1-a).
n(l-a)

The inequality In(1 — x) < —x shows that
P>1/A.

1-(1- p)e'
(See Section 2.3 of Chapter 5.)
n n
Cov(X;, X;) = Cov(p; + Y awZy, i+ Y ajsZt)
=1

k=1

non
= Z Z Cov(aijk, a]-tZt)
t=1k=1
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non . .th . .
_ o since the i ball is equally likely to
B Z‘l k; ikt Cov(Zy, Z1) be either of the n + m balls, and so
n E[X;]=P{X; =1} =
=) anaj } ntm
k=1 X=Y,
where the last equality follows since =1
Coo(2,2;) = L k=t P ZEE[Y']
kS =0 ik At n
=Y P{i" white ball is selected }
i=1
66. P{’X1+"'+X”””’>e} _y ko
" ~n+m n+m

Il
_

{IX1 4+ Xy —np| >n e} 72. For the matching problem, letting

< Var{Xi+---+ Xy} /n* €2 X=X+ + Xy

— no?/n? &2 where

X — { 1 if i man selects his own hat
=

— 0asn — oo. 0 otherwise,

we obtain
67. P{5< X <15} > 2 N
- P5<X <15} > 5 Var(X) = Y Var(X;) +2Y Y Cov(X;, X;).
i=1 i<j
68. (i) P{X;+ - +Xj>15} < % Since P{X; =1} = 1/N, we see
1 —1
5 Var(X;) = E [1 - ] = Niz
(ii) P{X1+~--+X10>15}z1—®{ﬁ}. N N N
0 Also
Cov(X;, X;) = E[X;X;] — E[X.]E[X].
69. cD(1)—<DH = .1498. (X X)) = EIXiXj] = EIXELX]]
2 Now,
: ith :th
70. Let X; be Poisson with mean 1. Then bif t}.1e i and j™ men both select
XiX; = their own hats
n noopk 0 otherwise,
P ZXiSn :e_”zn—.
1 = k! and thus
" EX;X;]=P{X; =1, X; =1}
But for n large 21: x; — n has approximately a nor- =P{X; = 1}P{X; = 1|X; = 1}
mal distribution with mean 0, and so the result - 1_1
follows. NN-1
Hence,
7. G) P{x=i}= "] ".|/|"t™ 1 112 1
i) k=i k Cov(X;, Xi) = ———~—|=| =
v N(N-1) N N2(N —1)
i=0,1,...,min(k,n). and
k
_N-1 N 1
(ii) X_E;Xl Var(X) = N +2{2} NN 1)
N—-1_,1
kn - N + N
EIX] = ) E[X)] = 1
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74.
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As Nj is a binomial random variable with para-
meters (1, P;), we have (i) E[N;] = nPj; (i) Var(X;)
= nP; = (1 — P;); (iii) for i # j, the covariance of
N; and N; can be computed as:

ZXkIZYk
k k

where X;(Y) is 1 or 0, depending upon whether
or not outcome k is type i(j). Hence,

Cov(N;, Nj) ZZCOZ) Xi, Yo).

Now for k # ¢, Cov(Xk, Yy) = 0 by independence
of trials and so

Cov(N;, N;) = Cov

7

Cov(N;, Nj) = Z Cov(X,, Yy)
Z [XiYi] — E[X(JE[Y4])
=— ZE X, JE[Y,] (since XYy = 0)
ZPlPJ
k
= —I’ZPl‘P]‘.
(iv) Letting

Y. — 1, ifno typei’s occur
710, otherwise,

we have that the number of outcomes that never
r

occur is equal to Z Y; and thus,
1

r

EILY

E[Y

i
1
r
Z P{outcomes i does not occur}
Z}:
1

(i) As the random variables are independent,
identically distributed, and continuous, it fol-
lows that, with probability 1, they will all
have different values. Hence the largest of
X1,..., Xy is equally likely to be either X; or
X5 ...or X,.Hence, as there is a record at time
n when X, is the largest value, it follows that

1
P{arecord occursatn} = .

.. |1, ifarecord occurs at j
(i) Let Ij = { 0, otherwise.
Then

] fon-53

75.

76.

(iii) It is easy to see that the random variables
L, I,..., I, are independent. For instance, for
j<k

since knowing that X is the largest of
Xi,eos Xjyoon, X clearly tells us nothing
about whether or not X; is the largest of
X1,..., X]-. Hence,s

VarZI —ZVar i{ ] [ 1]

j=1
(iv) P{N > n}
. 1
= P{Xj is the largest of X;,..., Xy} = o
Hence,

1_
n

= iO:P{N>n i
n=1 n=1

(i) Knowing the values of Ny, ..., N; is equiva-
lent to knowing the relative ordering of the
elements aq,...,a;. For instance, if N; =0,
N; = 1,N3 = 1 then in the random permu-
tation a, is before a3, which is before a;. The
independence result follows for clearly the
number of a4, ..., a; that follow a;,1 does not
probabilistically depend on the relative order-
ingofay,...,a;.

1
() P{N; =k} ==, k=0,1,...,i~1

which follows since of the elements
ai,...,aiy1 the element a;;1 is equally
likely to be first or second or ...or (i +1)*.
(iii) E Z k= 71 -1
i—1 . .
20 1N o (-1)(2i-1)
N7] = ikgok = .
and so
(i-1)@2i-1) (@G-1)
Var(N;) S 1
!
12
E[XY] = pxpy
E[(XY)?] = (12 + 02) (1 + 02)

Var(XY) = E[(XY)?] — (E[XY])?
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77. fg1(x,y) =x+y, g2(x,y) = x —y, then

981 981
J= ox dy |
982 92
ox dy
Hence,if U=X+Y, V=X -, then
1 Uu+v u—ov
fu,v(ufv)zzfx,y[ 5 5 ]

uto 12
> H

T 1102 P | T 202

470? 02 402
oen | 7
P 4072
78. (a) ¢y (t;)) = ¢(0,0...0,1,0 ... 0) with the 1 in

the i place.

(b) If independent, then

79.

Ytixi| — tix;
E{e } 7ir[e ]

On the other hand, if the above is satisfied, then
the joint moment generating function is that of the
sum of n independent random variables the i of
which has the same distribution as x;. As the joint
moment generating function uniquely determines
the joint distribution, the result follows.

tz2] 1 /oo tx? —x2/2
E{e }_\/ﬂ 7006 e dx

= \/;7[ /f:o exp{—x*(1—2t)/2}dx

=(1-2t)" 12

where the last equality follows since with 02 =
1/(1—2t)

1 © 2,2
— e 20 =0
V2 /—oo /

Hence,

E[eX] = (1-20""7






Chapter 3

Y. r(xy) Py
L) Pyt = == = =1
; X Py(y) Py(y)

2. Intuitively it would seen that the first head would
be equally likely to occur on either of trials
1,...,n — 1. Thatis, it is intuitive that

P{X;=ilXi +Xp=n}=1/(n—1),
i=1,...,n—1.

Formally,

P{X; =i|X; + X, =n}
CP{Xy =i, X+ Xp = n}
- P{Xy1+Xp=n}

o P{X1 :i,X2 Zl’l—i}
P{X1+X2:n}

_p-ppa—p
(" 1 1> p(1—p)"?p
=1/(n—1).

In the above, the next to last equality uses the inde-
pendence of X; and X, to evaluate the numerator
and the fact that X; + X, has a negative binomial
distribution to evaluate the denominator.

3. E[X|]y=1]=2

5
EIX|]Y =2] ==
(X =3
12
EIX|]Y =3]=—.
[X|Y =3]= %
4. No.

5. (a) P{X = i|Y = 3} = P{i white balls selected
when choosing 3 balls from 3 white and 6 red }

o

(b) By same reasoning as in (a), if Y = 1, then
X has the same distribution as the number of
white balls chosen when 5 balls are chosen
from 3 white and 6 red. Hence,

3 5
E[X|]Y] =52 =2,
[X[Y] =55 =3

6. pxy(113) =P{X =1,Y = 3}/P{Y =3}

= P{1 white, 3 black, 2 red }
/P{3 black}

6! [31'151%7677
T 113121 {14] {14} {14}

6! 151°7971°
s 11 |14)

pxy(0[3) =

pxy(2[3) =

B

px|y(3]3) =

N

E[X|Y =1] =

WU N

7. Given Y = 2, the conditional distribution of X and

Zis
P{(X,Z) = (1,1)]Y =2} = %
P{(1,2)]y =2} =0

P{(2,1)[Y =2} =0

P{(2,2)|Y =2} = %.
So

1 8 9
EX[Y=2] =z + = ¢
EX[Y=2,Z=1=1.
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13.
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(a) E[X] = E[X|first roll is 6}%

+ E[X|first roll is not 6]%
5

1
=+ (1+EX])3

implying that E [X] = 6.
(b) E[X|Y =1] =1+E[X] =7.
() E[X]Y =5]

ROt
JERREND

EX|Y =y] =) xP{X = x[Y =y}

=) xP{X =x} by independence

(Same as in Problem 8.)
Yy

EX|Y=y]= C/ x(y? — x*)dx =0
-y

1 —x/y
—exp exp Y 1
= —exp ¥

expy/;exp"/ydx Y

fX|Y(x|]/) =

Hence, given Y = y, X is exponential with mean y.

The conditional density of X given that X > 11is

Aexp M
fX|X>l(x) = P{é[((i) 1} = eng)\

when x > 1

E[X|X > 1] = epr/ A exp M dx=1+1/2
1

by integration by parts.
AC)) 1
hax<yW =px <13 ¥ <2
1

15.

17.

18.

1 1
—exp ¥ —exp ¥
p y p

Fxy—y(xly) =2 =—
XY=y fo(®) ./oj ;exp—y dx

1
=—, 0<x<
Y y

1 v e
E[X?|y = :—/ 2dx = 2.
(XN =yl =7 |, ¥dx =73

With K = 1/P{X = i}, we have that

frx Wli) = KP{X = i]Y = y} fy(y)

— Klefyyieﬂxyyafl

_ K167(1+oc)yya+i71

where K; does not depend on y. But as the pre-
ceding is the density function of a gamma random
variable with parameters (s +i,1 + «) the result
follows.

In the following t = Z?:l x;, and C does not
depend on 6. For (a) use that T is normal with
mean 176 and variance #; in (b) use that T is gamma
with parameters (n,0); in (c) use that T is bino-
mial with parameters (#,6); in (d) use that T is
Poisson with mean n6.

@ f(x1, .., xa|T=1t)
_ f(x1, e xn, T=1)
fr(t)
f(x1,...,xn)
fr(t)
Pl X (- 022}
exp{—(t —nb)%/2n}
= Cexp{(t —n6)*/2n — Y (xi— 0)%/2}

= Cexp{t*/2n — 0t + n6*/2—Y x7/2

+ 6t — n6?/2}
= Cexp{(Y, x)?/2n =Y x7/2}
N L C SV
b) f(x1,..., x| T = t)ilfTT
_ Q”e_Qin
e % (et)" ) (n —1)!
=(n—1)"

parts (c) and (d) are similar.
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/ E[X]Y = ylfy(y)dy
= [ [ antetmansyay

= / / xj;(yx(’ yy)) dxfy(y)dy

f(x-y)dydx

= /fo(x)dx
= E[X].

=[x/

' ~ P{disease|x} f(x)
(@) f(x|disease)= [ P{disease|x} f(x)dx

_ PO
J P(x)f(x)dx
no disease) = [1—P()]f(x)
) flxnod =7 [1—P(x)]f(x)dx
f(x|disease) . P(x)
© f(x|no disease) Cl —P(x)

where C does not depend on x.

N
@@ X=)T.
i—1

(b) Clearly N is geometric with parameter 1/3;
thus, E[N] = 3.

(c) Since Ty is the travel time corresponding to
the choice leading to freedom it follows that
Ty =2,and so E [Ty] = 2.

(d) Given that N =n, the travel times T;i=1, ...,
n — 1 are each equally likely to be either 3 or 5
(since we know that a door leading back to the
nine is selected), whereas T}, is equal to 2 (since
that choice led to safety). Hence,

N n—1
E|IYTIN=n|=E|Y TIN=n
1

i=1 i=
+ E[T,|N = n]
=4(n—1)+2.

(e) Since part (d) is equivalent to the equation

N
E[Z Ti|N1 =4N -2,

i=1
we see from parts (a) and (b) that
E[X]=4E[N] -2
=10.

Letting N; denote the time until the same outcome
occurs i consecutive times we obtain, upon condi-
tioning N;_1, that

23.

E[N;] = E[E[N;|N;_1]].

Now,
E[N;[N;_1]
1 with probability 1/n
= Ni_1+
- E[N,] with probability (n — 1) /n
The above follows because after a run of i — 1

either a run of i is attained if the next trial is the
same type as those in the run or else if the next trial
is different then it is exactly as if we were starting
all over at that point.

From the above equation we obtain that
E[Nj] = E[N; 1] +1/n+ E[N;](n —1)/n.
Solving for E[N;] gives
E[N;] =1+nE[N;_4].
Solving recursively now yields
E[N;| =1+n{1+nE[N,_,]}
=1+n+n’E[N;_,]

=1+n+--+n"1E[N;]
=14+n+---4+n1
Let X denote the first time a head appears. Let us

obtain an equation for E[N|X] by conditioning on
the next two flips after X. This gives

E[N|X] = E[N|X,h, h]p* + E[N|X, h,t|pq
+E[N|X, t,hlpg + E[N|X, t,t]g*
where g =1 — p. Now
E[N|X,h,h)=X+1,E[N|X ht]=X+1
E[N|X,t,h] =X +2, E[N|X,t,t] =X +2+ E[N].
Substituting back gives
E[N|X] = (X +1)(p* + pq) + (X +2)pq
+ (X +2+E[N])g?

Taking expectations, and using the fact that X is
geometric with mean 1/p, we obtain

EIN]=1+p+q+2p1+q°/p+2¢° +q°E[N]
Solving for E[N] yields

_2+29+¢%/p

BN =2
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24. In all parts, let X denote the random variable
whose expectation is desired, and start by condi-
tioning on the result of the first flip. Also, h stands
for heads and ¢ for tails.

(@) E[X]=E[X]|h]p+ E[X]t](1 - p)

1 1
~(rriy)pe (1) a-n
=1+p/(A=p)+ 1 -p)/p

(b) E[X] = (1 + E[number of heads before

first tail])p + 1(1 — p)
=1+p(1/(1-p)—1)

=l+p/(A=p)—p
(c) Interchanging p and 1- p in (b) gives result:
1+(A-p)/p—Q1-
(d) E[X]= (14 answer from (a))p
+(1+2/p)(1-p)
=Q2+p/Q-p+Q1-

+(1+2/p)(1—p)

p)/p)p

25. Let W denote the number of wins.

(a) E[W]=E[E[W[X]] = E[X + Xp]
=(1+p)EX]=(1+p)np
=E[E[W[Y]] = E[1+ Yp]

=1+p/p=2
since Y is geometric with mean 1/p.

(b) E[W]

26. Let Ny and Np denote the number of games
needed given that you start with A and given that
you start with B. Conditioning on the outcome of
the first game gives

E[N4] = E[Na|w]pa + E[Na[l](1 - pa)

Conditioning on the outcome of the next game
gives

E[Nalw] = E[Ns|ww]pp + E[Na|wl](1 - pp)
=2pp + (2+ E[N4])(1 - p3)
=2+ (1-pB)E[N4]

As, E[N4|l]= 1+ E[N3], we obtain that

E[Na]=(2+ (1 —pB)E[Nal)pa
+ (14 E[Ng])(1 = pa)
=1+pa+pa(l—pp)E[N4]
+ (1= pa)E[Ng]

27.

28.

Similarly,

E[Np] =1+ pp+ ps(1 — pa)E[Ns]
+ (1= pB)E[NA4]

Subtracting gives

E[Na]

=pa—pB+(pa—1)(1—pp)E[N4]
+(1—pp)(1 — pa)E[N5]

— E[Np]

or
E[NB]) = pa —ps

Hence, if pp > p4 then E[N4] — E[Ng] < 0, show-
ing that playing A first is better.

(14 (1= pa)(1 = pp)](E[Na] -

Condition on the outcome of the first flip to obtain

E[X] = E[X|H]p + E[X|T|(1 - p)

=1+ EX]p+EX|TI(1 —p)
Conditioning on the next flip gives

E[X|T)=E[X|TH]p+ EX|TT|(1 — p)

=Q2+EX)p+(2+1/p)(1-p)

where the final equality follows since given that
the first two flips are tails the number of additional
flips is just the number of flips needed to obtain a
head. Putting the preceding together yields

E[X]=(1+E[X])p+ (2+ E[X])p(1 - p)
+(2+1/p)(1-p)?
or
1
= e

Let Y; equal 1 if selection i is red, and let it equal 0
otherwise. Then

E[x] =Y E[
i=1

EM) = ——

E[Xi]= —
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E[Y2] = E[E[Y2|X1]]

|:1’+711X1]
:E —_—
r+b+m
r
T
r+b+m
B r m r
Cr+b+m  r+b+mr+b
r m
= (1
r+b—|—m< +r+b>
o
r+b
E[X]=2—"
275 T
To prove by induction that E[Yy] = MLZJ' assume
that for all i < k, E[Y;] = L
r+b
Then

E[Yy] = E[E[Yy|Xk—1]]

1’+ka,1
r+b+(k—1)m
_ r+mE[Y Y]
r+b+(k—1)m
r+m(k—1)15
r+b+(k—1)m
o
Cr+b

The intuitive argument follows because each selec-
tion is equally likely to be any of the r + b types.

Letg; = 1 —p;, i = 1.2. Also, let h stand for hit
and m for miss.

(@) w1 =E[N|h]py + E[N|m]q
= p1(E[N|h, h]py + E[N|h, m]q2)
+(1+ m2)q1

=2p1p2 + 2+ w)p1g92 + (1 + w2)q1
The preceding equation simplifies to
(1l =p1g2) =1+ p1+ moq
Similarly, we have that
Ha (1= paq1) =1+ po+ g2

Solving these equations gives the solution.

31.

32.

hy = E[H|h]p1 + E[H|m]q,
= p1(E[H|R, h]p2 + E[H|h, m]q2) + haq1
=2p1p2 + (1 +h1)p1g2 + hoga
Similarly, we have that

hy =2p1p2 + (1 + h2)paqa + Mgz

and we solve these equations to find h
and h,.

Let L; denote the length of run i. Conditioning on
X, the initial value gives

E[Li] =E[L1]X =1]p + E[L1|X = 0](1 — p)

1 1
=——p+-(1-
T p( p)
1i
P 1-p

1-p p

and
E[L2] = E[Ly|X = 1]p + E[Ly|X = 0)(1 - p)
1 1
=p+ - (1-
PP
=2

Let T be the number of trials needed for both at
least n successes and m failures. Condition on N,
the number of successes in the first n + m trials to
obtain
n+m . .
Elr) =Y, BTN =il (" )iy
i=0
Now use

HNN:qzn+m+n;5

i—n

1-p’

Let S be the number of trials needed for =
successes, and let F be the number needed for m
failures. Then T = max(S, F). Taking expectations
of the identity

i>n

E[TIN=il=n+m+

min(S,F) + max(S,F) =S+ F

yields the result
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33. Let I(A) equal 1 if the event A occurs and let it
equal 0 otherwise.
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34. Let X denote the number of the dice that land on
six on the first roll.

@ m= N =il () /6y /6
=Lt mn () 17666
=1+ my(5/6)" Zmn 1() (1/6)!

(5/6)""
implying that
m 1+Zn1mnz(i)(1/6)(5/6)
" 1—(5/6)"
Starting with my = 0 we see that
"=1 576 "
_1Em@A/6E/) g,
1-(5/6)
and so on.

(b) Since each die rolled will land on six with
probability 1/6, the total number of dice
rolled will equal the number of times one
must roll a die until six appears n times.

N

Y Xi

i=1

Therefore, E = 6n.

35.

36.

37.

38.

np1 = E[Xq]
= E[Xl‘Xz = 0](1 — pz)n
+ E[X1]X2 > 0][1 — (1 — p2)"]

P1 n
=n 1-—
1—p2( p2)

+ E[X1|X2 > 0][1 — (1 — p2)"]

yielding the result

Elxilx, > 0 = "= 2 PpZz))nnl)

E[X] = E[X|X # 0](1 = po) + E[X|X = 0]po

yielding that
E[X]
EX|X#0] = ———
XX £0] =
Similarly,

E[X?] = E[X?|X # 0](1 — po) + E[X*|X = O]po
yielding that

E[X2
E[X?|X #0] = I [_ pi
Hence,
E[X2 E2[X
var(XIX#0) =4 [— Pi S Q [Po])2
_ “2 +O‘2 B “2
1—po (1—po)?

(@) E[X]=(2.6+3+34)/3=3
(b) E[X?]=[2.6+2.6*+3+9+34+34%/3
=12.1067, and Var(X) = 3.1067

Let X be the number of successes in the 7 trials.
Now, given that U = u, X is binomial with para-
meters (1, u). As a result,

E[X|U] = nU
E[X?|U] =n*U? +nU(1 - U) =nl + (n* —n)U?
Hence,
E[X] = nE[U]
= E[X?] = E[nU + (n* — n)U?]
=n/2+ (n*—n)[(1/2)* +1/12]
=n/6+n*/3
Hence,
Var(X) = n/6 +n*/12
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Let N denote the number of cycles, and let X be
the position of card 1.

1 & 1 &
(a) mn:EZE[N\X_z ;Z 1+my_q)

i=1 i=1
n—1
l’l].:l
(b) my=1
1
1
my=1+z(1+3/2)=1+1/2+1/3

=11/6

1
my=1+;(1+3/2+11/6) = 25/12
() my=1+1/2+1/3+---+1/n
(d) Using the recursion and the induction hypoth-
esis gives that
1 n—1
my =1+ — Z (1+
n 5

Sl (14 (n1-2)/24 (n—3)/3

-+ 1/))

+o b 1/(n - 1)

=14 [ntn/2 44 n/(n—1)
—(n—1)]
—141/2+4---+1/n
(e) N = ixi
=1
(f) mnzzn:E[Xl] = Zn:P{iislastofl,...,i}
= i=1
o
i=1

(g) Yes, knowing for instance that i + 1 is the last
of all the cards 1,...,i + 1 to be seen, tells us
nothing about whether i is the last of 1, ... ,i

(h) Var(N) = zn: Var(X; Z )(1—1/i)
i=1

Let X denote the number of door chosen, and let
N be the total number of days spent in jail.

(a) Conditioning on X, we get

- 23: E{N|X = i}P{X = 1}.
i=1

41.

42.

The process restarts each time the prisoner
returns to his cell. Therefore,

E(N|X =1) =2+ E(N)
E(N|X = 2) = 3+ E(N)

E(N|X=3)=0.
and
E(N)=(.5)(2+E(N))+ (.3)(3+ E(N))

+(.2)(0),
or
E(N) = 9.5 days.

(b) Let N; denote the number of additional days
the prisoner spends after having initially cho-

sen cell i.

EIN] = 5(2+ E[N)) + 5 (3 + EIN,)) + 5 (0)
=2 + 3 (BN, + E[N))

Now,

E[N] = 5(3) + 5(0) = 3

EIN, = 2(2) +5(0) =1

and so,

E[N] = §+ 25 = g

Let N denote the number of minutes in the maze.
If L is the event the rat chooses its left, and R the
event it chooses its right, we have by conditioning
on the first direction chosen:

E(N) = 3E(N|L) + 3E(NIR)

1[1 2 1
=5 (3@ + 36 +EWN) | +5B+EN)

Let X be the number of people who arrive before
you. Because you are equally likely to be the first,
or second, or third, ..., or eleventh arrival

. 1 .
P{X =i} = 107 i=0,...,10
Therefore,

1 8.
and
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43.

44.

45.

46.

47.

Answers and Solutions

18 1 10(11)(21)
2 2 == e T
E[X] = WX "1 e 385
giving that

Var(X) = 38.5 — 30.25 = 8.25

Using Examples 4d and 4e, mean = pjup, vari-

ance = (103 + p3o7.

From Examples 4d and 4e, mean =500, variance
= E[N]Var(X) + E%(X)Var(N)

_ 10(;20)2 + (50)2(10)

= 33,333.
Now

E[Xu|Xy_1] =0, Var(Xu|X,_1) = BX2_,.

(a) From the above we see that
E[X,] =0.
(b) From (a) we have that Var(x,) = E[X2]. Now
E[X7] = E{E[X}|X-1]}
= E[ﬁxn 1
= ﬁE[Xﬁ—l]
= ﬁZE[Xrszz}
= B"X3.

(a) This follows from the identity Cov(U,V) =

E[UV] — E[U]E[V] upon noting that
E[XY] = E[E[XY|X]] = E[XE[Y|X]],
E[Y] = E[E[Y|X]
(b) From part (a) we obtain

Cov(X,Y) = Cov(a+bX, X)
=b Var(X).
E[X?Y?|X] = X2E[Y?|X]

> X2(E[Y|X])? = x2

The inequality following since for any random
variable U. E[U?]> (E[U])* and this remains
true when conditioning on some other random
variable X. Taking expectations of the above
shows that

E[(XY)?] = E[X?].

48.

49.

As

E[XY] = E[E[XY|X]] = E[XE[Y|X]] = E[X]

the result follows.

Using the hint, we see that

N
E|Y X
1

E[NE[X]] since ¢(0) =1, ¢'(0) = E[X]
= E[N]E[X]
N 2
E [ Y Xi| | =9¢"(0)
1
= E[N(N — 1)E?[X] + NE[X?]]
= E[N?]E?[X] — E[N]E?[X]
+ E[N]E[X?].
Hence,
Var g“xi = E2[X](E|N?] — E2|N]
1

+E[N](E[X?] — E*[X])
= E?[X]Var[N] + E[N]Var(X)
Let A be the event that A is the overall winner, and

let X be the number of games played. Let Y equal
to number of wins for A in the first two games.

P(A) =P(AlY = 0)P(Y = 0)
+P(AlY=1)P(Y=1)
+P(A]Y =2)P(Y =2)

=0+ P(A)2p(1 —p) +p*

Thus,

p?
P =150y
E[X]=E[X|Y =0]P(Y =0)

+EX|Y =1]P(Y = 1)
+E[X|Y =2]P(Y = 2)

=2(1-p)* + 2+ E[X])2p(1 — p) + 2p?
=2+ E[X]2p(1 - p)
Thus,
2
=0y
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1

50, P{N:n}:s[ [10

n

] (.3)1(.7)10-"

+ [1:] (5)"(5)10

+ [10] (.7)”(.3)10"}

n

N is not binomial.

o =} o} -

51. Yes.

52. P(X+Y <x}= [ PX+Y <x|X =s}fx(s)ds
[P < HiX = ) (o)
— [P{Y < x—slX = s}fulo)ds
:/p{Y < x —s}fx(s)ds
= [ Fr{x = shx(s)ds

53. P{X =n}= /Ooo P{X = n|A}eAdA

o0 —An
— / Qe_AdA
0 n!

o0
:/ e—ZA)\ndj
0 n!

1
- /OO €7tt"ﬂ n-
0 nl |2

The result follows since

o0
/ e~tt"dt =T(n+1) = n!
0

10 k-1
10 —n n 1
4. P{N =k} = —_— ——.
> (N =k} n; [ 10 } 1010
N is not geometric. It would be if the coin was
reselected after each flip.

55. Suppose in Exercise 42 that, aside from yourself,
the number of other people who are invited is a
Poisson random variable with mean 10.

(a) Find the expected number of people who
arrive before you.

56.

57.

58.

59.

(b) Find the probability that you are the n"
person to arrive.

Let Y = 1 if it rains tomorrow, and let Y =0
otherwise.

E[X] =E[X|Y = 1]P{Y = 1}
+ E[X|Y = 0]P{Y = 0}
=9(.6) +3(.4) = 6.6
P{X=0}=P{X =0|Y =1}P{Y =1}
+P{X =0|Y =0}P{Y =0}
=607 + 473
E[X?] = E[X?|Y = 1]P{Y =1}
+E[X?]Y =0]P{Y =0}
=(81+9)(.6) +(9+3)(.4) =588
Therefore,

Var(X) = 58.8 — (6.6)* = 15.24

Let X be the number of storms.

P{X >3} =1-P{X <2}
1 5PX 2|A 1d
=1 — < — _
[ pix <21 =i bax

5 1
=1- / e +xe ™ + ef"xz/z}gdx
0

Conditioning on whether the total number of flips,

excluding the jth one, is odd or even shows that
the desired probability is 1/2.

Conditioning on the outcome of the initial replica-
tion yields
P{A first} = P{A firstjoutcome in A}P{A}

+ P{A first|in B} P{B}

+ P{A first|neither in A nor B}

[1- P(A) — P(B)

= P{A} + P{A first}

[1-P(A) - P(B)].

Solving this yields that

oy P(A)
P{A first} = P(A) + P(B)’



26

60.

61.

Answers and Solutions

(a) Intuitive that f(p) is increasing in p, since
the larger p is the greater is the advantage of
going first.

(b) 1

(c) 1/2since the advantage of going first becomes
nil.

(d) Condition on the outcome of the first flip:

f(p) = P{I wins|h}p + P{Iwins|t}(1 —p)
=p+[1-f(p)]1-p)
Therefore,
fp)= 5
p)= 5= b

(@) mqy =E[X|h]lp1 + E[H|m]g1=p1 + (1 + my)
q1 = 1+ mpqq. Similarly, my = 1+ myq,. Solv-
ing these equations gives that

_ 1+qg1
1-q192°

_ 144>
1-q1q2

b) Pr=p1+qP
P, =g Py
implying that

2 U

P =
T g1492 1—qg192

(c) Let f; denote the probability that the final hit
was by 1 when i shoots first. Conditioning on
the outcome of the first shot gives:

fi=piPo+qif> and fr = p2P1 +q2f1

Solving these equations gives

fi= p1P + qip2 Py
1—qaq2
(d) and (e) Let B; denote the event that both hits

were by i. Condition on the outcome of the
first two shots to obtain:

P(B1) = p192P1 + q1492P(B1) — P(By)
_ 192D
1—-q192
Also,
P(Bz) = q1p2(1 — P1) +q192P(B2) — P(B2)
_ qap2(1—Dy)
1—aq192

(f) E[N]=2p1p2+ p192(2+ m1)
+g1p2(2 +mq) +q192(2 + E[N])
implying that
E[N] = 2+ myp1q2 + miqgip2

1—-qg192

62. Let W and L stand for the events that player A

63.

wins a game and loses a game, respectively. Let
P(A) be the probability that A wins, and let P(C)
be the probability that C wins, and note that this is
equal to the conditional probability that a player
about to compete against the person who won the
last round is the overall winner.

P(A) = (1/2)P(A|W) + (1/2)P(A|L)
=(1/2)[1/2+ (1/2)P(A|WL)]
+(1/2)(1/2)P(C)
=1/4+(1/4)(1/2)P(C)
+(1/4)P(C) = 1/4+ (3/8)P(C)
Also,
P(C) = (1/2)P(A|W) = 1/4+ (1/8)P(C)
and so
P(C)=2/7, P(A)=5/14,
P(B) = P(A) =5/14

Let S; be the event there is only one type 7 in the
final set.

P{s; =1} = Z P{S; = 1T = j}P{T = j}

1 n—1
LY psi=r=j)
j=0
- 1 n—1 1
n =0 n—j

The final equality follows because given that there
are still # — j — 1 uncollected type when the first
type i is obtained, the probability starting at that
point that it will be the last of the set of n — j types
consisting of type i along with the n — j — 1 yet
uncollected types to be obtained is, by symmetry,
1/(n — j). Hence,

([ 5] i £

M=

>\~ \

1
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64. (a) P(A) =5/36+ (31/36)(5/6)P(A)
— P(A) =30/61
(b) E[X] =5/36+ (31/36)[1+1/6+ (5/6)
(1+ E[X])] — E[X] = 402/61

(c) Let Y equal 1if A wins on her first attempt, let
it equal 2 if B wins on his first attempt, and let
it equal 3 otherwise. Then

Var(X|Y =1) =0, Var(X|Y=2)=0,
Var(X|Y = 3) = Var(X)

Hence,
E[Var(X|Y)] = (155/216)Var(X)
Also,

EX[Yy=1]=1, E[X|Y=2]=2,
E[X|Y = 3] = 24 E[X] = 524/61

and so

Var(E[X|Y]) =12(5/36) +2%(31/216)
+ (524/61)%(155/216)
— (402/61)% ~ 10.2345

Hence, from the conditional variance formula we
see that

Var(X) =~ z(155/216)Var(X) + 10.2345
— Var(X) =~ 36.24

65. (@) P{Y,=j}=1/(n+1), j=0,...,n
(b) Forj=0,..., n—1
n
. 1 . .
P{Y,-1=j} _1;) mp{yn—l = j|Yn =i}
1 . )
= (P{Y = jIYa = )

+P{Y1 = Y = j+1})

= 1 (P(last is nonred|j red)

+ P(lastis red|j + 1 red)

1 n—j  j+1\ __
_n+1( - )—1/11

() P{Yy=jt=1/(k+1), j=0,...,k
(d) Forj=0,...,k—1

66.

67.

68.

69.

k
P{Yioy = j} =) P{Yi1 =jlVk =i}

i=0
P{Yy =i}
1 . .
= m(P{kal = j|Yx = j}

+P{Yy = jlYk=j+1})

1 (k=) j+1N
k+1< kT x >1M

where the second equality follows from the
induction hypothesis.

(@) E[G1+ Gy = E[G1] + E[G]
= (.6)2+(4)3+(.3)2+(.7)3=5.1
(b) Conditioning on the types and using that the
sum of independent Poissons is Poisson gives
the solution

P{5} = (.18)e *4° /5! + (.54)e°5° /5!
+ (.28)e~%6° /5!

A run of j successive heads can occur in the fol-
lowing mutually exclusive ways: (i) either there is
a run of j in the first n — 1 flips, or (ii) there is no
j-run in the first n — j — 1 flips, flip n — j is a tail,
and the next j flips are all heads. Consequently, (a)
follows. Condition on the time of the first tail:

] .
P]-(n) :kz P]-(n—k)pk_l(.l—p)+p], j<n
=1

@ p"
(b) After the pairings have been made there are

2k=1 players that I could meet in round k.
Hence, the probability that players 1 and 2 are

scheduled to meet in round kis 28=1 /(2" —1).
Therefore, conditioning on the event R, that
player I reaches round k, gives

P{W,} = P{W,| R}p*!
+ P{W,| R°}(1 — p*1)
=p" 1 -p)p Tt pra-ph

(a) Let I(i,j) equal 1 if i and j are a pair and 0
otherwise. Then

n
E[Z,I(irj)] - (2) %nil =1/2
1<]

Let X be the size of the cycle containing per-

son 1. Then
n
. b 1
Qu =) P{no pairs|X =i}1/n = - Y Qui
i=1 i#2
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70.

72.

73.

Answers and Solutions

(@) Condition on X, the size of the cycle
containing person 1, to obtain
noq 1" —1
Z - (14+M,_;) =1+~ Z M;
i=1 ]

(b) Any cycle containing, say, » people is counted
only once in the sum since each of the r people
contributes 1/r to the sum. The identity gives

E[C] = nE[1/Cy] = Z (/1) (1/n) = Y 1/i
i=1 i=1

(c) Let p be the desired probability.
Condition on X

(i)
1
n ; (7_11>

) (n ;k)!

Forn > 2

P{N > n|Uy =y}
=P{y>U, > U3 > > Uy}
=P{U;<yi=2,...,n}

P{l, > Uz > - - - geqU,|
U <yi=2,...,n}
=y (n—1)!
0
E[N|Uy = y] = ), P{N > n|U; = y}
n=0
=2+ Y ¢y (n—1)=1+¢
n=2
Also,

P{M>n|U; =1—-y} =P{M(y) >n—1}
v 1)

Condition on the value of the sum prior to going
over 100. In all cases the most likely value is 101.
(For instance, if this sum is 98 then the final sum
is equally likely to be either 101, 102, 103, or 104.
If the sum prior to going over is 95 then the final
sum is 101 with certainty.)

74. Condition on whether or not component 3 works.

75.

Now

P{system works|3 works}
= P{either 1 or 2 works} P{either 4 or 5 works}

= (py + p2 — p1p2) (P4 + P5 — Paps)-
Also,

P{system works| 3 is failed }
= P{1 and 4 both work, or 2 and 5 both work}
= P1P4 — P2P5 — P1P4P2pPs5-

Therefore, we see that

P{system works}
= p3(p1 + p2 — p1p2) (P4 + 5 — paps)
+ (1 = p3)(pypa + paps — p1papaps)-

(a) Since Areceives more votesthan B (sincea > a)
it follows that if A is not always leading then
they will be tied at some point.

(b) Consider any outcome in which A receives
the first vote and they are eventually tied, say
a,a,b,a,b,a,b,b... We can correspond this
sequence to one which takes the part of the
sequence until they are tied in the reverse
order. That is, we correspond the above to
the sequence b,b,a,b,a,b,a,a... where the
remainder of the sequence is exactly as in the
original. Note that this latter sequence is one
in which B is initially ahead and then they are
tied. As it is easy to see that this correspon-
dence is one to one, part (b) follows.

(c) Now,
P{B receives first vote and they are
eventually tied }
= P{B receives first vote}= n/(n + m).
Therefore, by part (b) we see that
P{eventually tied}= 2n/(n + m)
and the result follows from part (a).

76. By the formula given in the text after the ballot

problem we have that the desired probability is

% (1;3) (18/38)19(20/38)°.

77. We will prove it when X and Y are discrete.

(a) This part follows from (b) by taking
8(x,y) = xy.
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(b) Eg(X, V)Y =y =

Zngy

P{X—x Y =ylY =y}

Now,
P{X=uxY=ylY =7}
0, ify#7y
_{NX:LY:yL ify =7.
So,
Eg(X, Y)Y =7]= Xk‘,g X, J)P{X=x[Y=7}.
=E[g(x, )Y =7.
() E[XY]=E[E[XY]|Y]]
=E[YE[X]Y]] by (a).

Let Qu, m denote the probability that A is never
behind, and P, ; the probability that A is always
ahead. Computing P,,;; by conditioning on the
first vote received yields

n
P =
n,m "+
—m
Butas Py, ,; = ——, we have
n—+m
0 n+mn—m n—m
1 = =
neLm n n+m n ’

and so the desired probability is
n+1l-m
n+1

This also can be solved by conditioning on who
obtains the last vote. This results in the recursion

Qn,m -

Qn,m—n+an 1,m n+anm 1,
which can be solved to yield

n+l-—m
Onm == 1

Let us suppose we take a picture of the urn before
each removal of a ball. If at the end of the exper-
iment we look at these pictures in reverse order
(i.e., look at the last taken picture first), we will
see a set of balls increasing at each picture. The
set of balls seen in this fashion always will have
more white balls than black balls if and only if in
the original experiment there were always more
white than black balls left in the urn. Therefore,
these two events must have same probability, i.e.,
n —m/n + m by the ballot problem.

80. Condition on the total number of heads and then
use the result of the ballot problem. Let p denote
the desired probability, and let j be the smallest
integer that is at least /2.

n (Y 2i—n
:Eji p'(1—p) Y

81. (a) flx / IN|X; = yldy,

ify <x,

E[N[X; =y] = {

Hence,

X):1+/xlf(y)dy

(b) f'(x) = =f(x).

(c) f(x) = ce™*. Since f(1) = 1, we obtain that
c=e,andso f(x) =%,

d) PIN>n}=P{x <X <Xp < ---< Xy} =
(1 — x)"/n!sincein order for the above event to
occur all of the n random variables must exceed
x [and the probability of this is (1 — x)"], and
then among all of the n! equally likely order-
ings of this variables the one in which they are
increasing must occur.

(e) E[N] = fOP{N _—
= Z (1—x)"/n! = el =,

ify > x.

82. (a) Let A; denote the event that X; is the k'
largest of Xy, ..., X;. It is easy to see that these
are independent events and P(A;) = 1/i.

P{Ny=n}=P(A AL Ay_14n)
k=1 k  n-21
k k+1 n—1n
k-1
n(n—1)

(b) Since knowledge of the set of values
{X1,...,Xu} gives us no information about
the order of these random variables it follows
that given Ny = n, the conditional distribu-
tion of Xy, is the same as the distribution of

the k'’ largest of n random variables having
distribution F. Hence,

fXNk(x) =

X k-1 n!
Loa(n—1) (=R k= 1)

x (F(x))"*(F(x))*" f(x)
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Now make the change of variable i = n — k. (c)
follow the hint (d) It follows from (b) and (c) that

fXNk(x) = f(x).

Let I; equal 1 if ball j is drawn before ball i and

let it equal 0 otherwise. Then the random variable

of interest is Z I;. Now, by considering the first
j#i

time that either i or j is withdrawn we see that

P{jbeforei} = w;/(w; +w;). Hence,

IhiE

j7i ] AT

We have

E[Position of element requested at time ¢]

n

= Z E[Position at time ¢ | ¢; selected]P;

E[Position of e; at time t]P;,

-

i=1

1,
with I]' =

0, otherwise.

if ej precedes ¢; at time ¢

We have
Position of ¢; at time t = 1 + Z I;
J#i
and so,
E[Position of e; at time ]
=1+Y) E(I)
J#i
=1+ Z P{ej precedes ¢; at time t}.
j#i

Given that a request has been made for either
¢ or ej, the probability that the most recent one
was for e} is P;/(P; + P;). Therefore,

P{e; precedes e; at time t|e; or ¢; was requested }

P

On the other hand,

P{e; precedes ¢; at time f | neither was ever
requested }

1

85.

87.

As

P{Neither e; or ¢; was ever requested by time ¢}
=(1-p-P)"

we have

E[Position of e; at time ¢]

=1+ 1 [J0-PR-p)!
J#
P

+IJ].T]pi (1—(1—Pi—Pj)t71)}

and

E[Position of element requested at ]
=Y PjE[Position of ¢; at time ].

Consider the following ordering;:

61,62,...,el,l,i,j,€l+1,...,€n where Pi < Pj.

We will show that we can do better by inter-
changing the order of i and j, ie., by taking
e1,€,...,€-1,J,1,€112,...,6y. For the first order-
ing, the expected position of the element requested
is

Eij=Pe +2Py + -+ (I =1)P,_,
Flpi+ ()P + (1 +2)Pyy + -+

Therefore,

Ei,j — E]',i:Z(PZ‘ — P]) + (l+1)(P]‘ _Pi)
:Pj - P >0,

and so the second ordering is better. This shows
that every ordering for which the probabilities are
not in decreasing order is not optimal in the sense
that we can do better. Since there are only a finite
number of possible orderings, the ordering for
which p; > pp > p3 > --- > p, is optimum.

(i) This can be proved by induction on m. It is
obvious when m =1 and then by fixing the
value of x1 and using the induction hypoth-

n ;

esis, we see that there are Y [n Eym 2}
i=0 m—2

such solutions. As | 7:"+_n§ B 2] equals the

number of ways of choosing m — 1 items from
a set of size n + m — 1 under the constraint that
the lowest numbered item selected is num-
ber i 4+ 1 (that is, none of 1, ..., i are selected
where i + 1 is), we see that
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z": {n—i—i—m—z} B [n—i—m—l]
P! m—2 m—1
It also can be proven by noting that each solu-
tion corresponds in a one-to-one fashion with
a permutation of n ones and (m — 1) zeros.
The correspondence being that x; equals the
number of ones to the left of the first zero, x;
the number of ones between the first and sec-
ond zeros, and so on. As there are (n + m —
1)!/n!(m — 1)! such permutations, the result
follows.

(ii) The number of positive solutions of x1 + - - - +
Xy = 1 is equal to the number of nonnegative
solutions of y; + - - + Yy = n —m, and thus

there are such solutions.

-1
(iii) If we fix a set of k of the x; and require them

to be the only zeros, then there are by (ii)
n—1

k-1 such

(with m replaced by m — k) m

m n—1
solutions. Hence, there are kllm—k—1

outcomes such that exactly k of the X; are
equal to zero, and so the desired probability

m n—1 n+m-—1
is .
k m—k—1 / m—1
(a) Since the random variables U, X1, ..., X;, are

all independent and identically distributed it

follows that U is equally likely to be the i*"
smallest for eachi +1,...,n + 1. Therefore,

P{X =i} = P{U is the (i + 1) smallest}
=1/(n+1).

(b) Given U, each X; is less than U with probabil-
ity U, and so X is binomial with parameters
n, U. That is, given that U < p X is binomial
with parameters 7, p. Since U is uniform on
(0,1) this is exactly the scenario in Section 6.3.

Condition on the value of I, This gives

Py(K) =P{ ¥ jI; <K|I, = 1}1/2
=1

+P{ % jl; < K|I, = 0}1/2
j=1

90.

91.

92.

n—1
=P{Y jl;+n<K}1/2
j=1

+P{'L jlj <Kp/2
e
= [Pa—1(k—n) + Py (K)] /2.

1
e=352/21.5¢75 . ¢75
1 n 1
e=552/21.5¢=5.¢75.¢7552/21 = ¢=552/21

(a)

(b)

1 Lo
pP(1—p)3

+
p>(1—p) p

Let X denote the amount of money Josh picks up
when he spots a coin. Then

E[X] = (5+10+25)/4 = 10,
E[X?] = (25 + 100 + 625) /4 = 750/4

Therefore, the amount he picks up on his way
to work is a compound Poisson random variable
with mean 10 - 6 = 60 and variance 6 - 750/4 =
1125. Because the number of pickup coins that
Josh spots is Poisson with mean 6(3/4) =4.5, we

can also view the amount picked up as a com-
N
pound Poisson random variable S = Z X; where

i=1
N is Poisson with mean 4.5, and (with 5 cents as
the unit of measurement) the X; are equally likely
to be 1, 2, 3. Either use the recursion developed
in the text or condition on the number of pickups
to determine P(S = 5). Using the latter approach,
with P(N = i) = e 45(4.5)!/i!, gives

P(S=5)=(1/3)P(N =1)+3(1/3)3P(N = 3)

+4(1/3)*P(N = 4) +5(1/3)5P(N = 5)

94. Using that E[N] = rw/(w + b) yields

P{M—-1=n}

(n+1)P{N =n+1}
E[N]
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Using that rw ko ’
" Py, r (k) = Kw+b) i; iot;Py—1,7—1(k — i)
(n+1)<n+1> w—1\ w+b
v n w+b Whenk =1
(") ()
1
- - @ @ _rw r—1
w+b—1 Por(1) = M 7 1 =1
r—1 re1

shows that

(2 ) ons)
{(M—-1=n}= —
P{M—1 (wj_bll)




Chapter 4

1 4
1. Pp1=1, Pyp==, Pry==, Pp=1
01 0= g 21 =g 32
4 4
Ph1=~=, Ppn=-
11=g 2=
4 1
Ppo=—-, Pp3=-.
12=g 3=
2,3.
(RRR) (RRD) (RDR) (RDD) (DRR) (DRD) (DDR) (DDD)
RRR)|| 8 2 0 0 0 0 0 0
(RRD) 4 6
(RDR) 6 4
(RDD) 4 6
= DORR)|| 6 4
(DRD) 4 6
(DDR) 6 4
(DDD) 2 8

where D = dry and R = rain. For instance, (DDR)
means that it is raining today, was dry yesterday,
and was dry the day before yesterday.

4. Let the state space be S = {0,1,2, 0,1,2}, where

state i(i ) signifies that the present value is i, and
the present day is even (odd).

5. Cubing the transition probability matrix, we

obtain P3:
13/36 11/54 47/108
4/9 4/27  11/27
5/12 2/9 13/36
Thus,

1 1 1
E[X] = 747/108 + 711/27 + 513/36

6. It is immediate for n = 1, so assume for n. Now
use induction.
7. P+ P3 =Py Py + Ps3Pyy + P33Py

=(.2)(.5)+ (.8)(0) + (.2)(0) + (.8)(.2)
=.26.

33

8.

10.

11.

Let the state on any day be the number of the coin
that is flipped on that day.

p=1773)

and so,

2= | 5]
and

2= | e o)
Hence,

1

5 [Pfy + P3| = 6665.
If we let the state be 0 when the most recent flip
lands heads and let it equal 1 when it lands tails,
then the sequence of states is a Markov chain with
transition probability matrix

73
6 .4
The desired probability is P{io = .6667

The answer is 1 — Pg, , for the Markov chain with
transition probability matrix

b5 4.1
34 3
0 01
P,
The answer is P 1 for the Markov chain with
— 2,0

transition probability matrix

1 0
3 3
2 .5

Wik o
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The result is not true. For instance, suppose that
PO,l = POIZ = 1/2,P1,0 = l,P2,3 = 1. Given
Xp = 0 and that state 3 has not been entered by
time 2, the equality implies that Xj is equally likely
to be 1 or 2, which is not true because, given the
information, X; is equal to 1 with certainty.

P = zk"Pg(‘VP,Z]- >0

(i) {0,1,2} recurrent.
(i) {0,1,2,3} recurrent.

(iii) {0,2} recurrent, {1} transient, {3,4} recur-
rent.

(iv) {0,1} recurrent, {2} recurrent, {3} transient,
{4} transient.

Consider any path of states iy = 7,i1,1,...,iy = |
such that P;; , > 0. Call this a path from i to j.
If j can be reached from i, then there must be a
path from i to j. Let iy, ..., i, be such a path. If all
of the values iy, ..., i, are not distinct, then there
is a subpath from i to j having fewer elements
(for instance, if i,1,2,4,1,3, j is a path, then so is
i,1,3, j). Hence, if a path exists, there must be one
with all distinct states.

If P;j were (strictly) positive, then Pj; would be 0
for all n (otherwise, i and j would communicate).
But then the process, starting in i, has a positive
probability of at least P;; of never returning to i.
This contradicts the recurrence of i. Hence P; j=0.

n
Z{ Yj/n — E[Y] by the Strong law of large num-

i=
bers. Now E[Y] = 2p — 1. Hence, if p > 1/2, then
E[Y] > 0, and so the average of the Y; ‘s converges

in this case to a positive number, which implies
n

that ZY,» — 00 as 1 — oo. Hence, state 0 can be

1
visited only a finite number of times and so must
be transient. Similarly, if p < 1/2, then E[Y] <0,
n

and so lim ZYi = —oo, and the argument is
1

similar.

If the state at time 1 is the n'" coin to be flip-

ped then sequence of consecutive states consti-

tute a two state Markov chain with transition
probabilities

P1,1:.6:1—P1,2, P2,1:,5:P2’2

19.

20.

21.

(a) The stationary probabilities satisfy
m =.6m + .5m
m+m=1

Solving yields that iy = 5/9, m, = 4/9. So the pro-
portion of flips that use coin 1is 5/9.

(b) P, = 44440

The limiting probabilities are obtained from

ro=.7rg + .5r1
r1=.4ry + 2r;3
rp =.3rg + .511

ro+ri+rp+r3=1,

and the solution is

ro = 1 , ry = i = 3 = J .
4

The desired result is thus

2
7’0—|—7’1 - g

m
If ) Pj=1forallj,thenrj=1/(M+1)
i=0

satisfies
m m

T’j = Z%)l’ipij, ZO:T] =1.
1=

Hence, by uniqueness these are the limiting prob-
abilities.

The transition probabilities are

p .13 ifj=i
YT a, ifj#i
By symmetry,
1 .
szg(l_l)ﬁ)/ ]7&1
So, let us prove by induction that
1—i—g(l—éloc)” ifj=i
no_ ) 4 4
Pi=y1 1
1. e
1 4(1 4a) ifj#£i

As the preceding is true for n = 1, assume it for n.

To complete the induction proof, we need to show

that

+ 21— 4"t ifj=i
+1 _

p! ;=

N U N
I NEORNES)

(1—40)"™t ifj£i
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Now,

P{llﬂ‘l = PZ?,liPl-,l- + Z PZ?]- Pj,i
J#i

— _ _ n - —
44—4(1 40)"(1 — 3t — «x)
— 1 3 n+1
4—|—4(1 4x)

By symmetry, for j # i

n+1 _ n+ly) _
Pij = (1 pii ) =

and the induction is complete.

(1 o 406)n+1

By letting n — oo in the preceding, or by using
that the transition probability matrix is doubly
stochastic, or by just using a symmetry argument,
we obtain that 7;; = 1/4.

Let X,, denote the value of Y, modulo 13. That

is, X;, is the remainder when Y;, is divided by 13.

Now X,, is a Markov chain with states 0,1, ...,12.

It is easy to verify that ZPI'J' = 1 for all j. For
1

instance, for j = 3:

Y Pij=Py 3+ P35+ Py 3+ Pia3+ Pri,3+ Pio,s
i

111,111
6 6 6 6 6 6

Hence, from Problem 20, r; = 11—3
Let the state be 0 if the last two trials were both
successes. 1 if the last trial was a success and the
one before it a failure. 2 if the last trial was a
failure. The transition probability matrix of this
Markov chain is

8 0 .2
P=|50 5
0 .5.5

This gives my = 5/11, m = 2/11, 1, = 4/11. Con-
sequently, the proportion of trials that are suc-
cesses is .8m + .5(1 — mp) = 7/11.

Let the state be the color of the last ball selected,
call it O if that color was red, 1 if white, and
2 if blue. The transition probability matrix of this
Markov chain is

25.

26.

1/5 0 4/5
2/7 3/7 2/7
3/9 4/9 2/9

P =

Solve for the stationary probabilities to obtain the
solution.

Letting X, denote the number of pairs of shoes
at the door the runner departs from at the begin-
ning of day #, then {X,} is a Markov chain with
transition probabilities

P =1/4 0<i<k
Pi,ifl = 1/4, 0<i<k
Piri=1/4, 0<i<k

Piriv1 = 1/4, 0<i<k

The first equation refers to the situation where the
runner returns to the same door she left from and
then chooses that door the next day; the second
to the situation where the runner returns to the
opposite door from which she left from and then
chooses the original door the next day; and so on.
(When some of the four cases above refer to the
same transition probability, they should be added
together. For instance, if i = 4, k = 8, then the pre-
ceding states that P; ; = 1/4 = P, y_;. Thus, in this
case, Py 4 = 1/2.) Also,

Po,o = 1/2
PO,k = 1/2
P = 1/4
P o = 1/4
Py = 1/4
Pexog = 1/4

It is now easy to check that this Markov chain
is doubly stochastic—that is the column sums of
the transition probability matrix are all 1—and so
the long run proportions are equal. Hence, the
proportion of time the runner runs barefooted is
1/(k+1).

Let the state be the ordering, so there are n! states.
The transition probabilities are

1
Pliy, i) 11, i1 41, i) = 3
It is now easy to check that this Markov chain is

doubly stochastic and so, in the limit, all n! possi-
ble states are equally likely.
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The limiting probabilities are obtained from

r—lr

0= gn

r—r—i—ér—kér

1=Totgntgn

r—érﬁ-ér—i-r 30.
2= gl tgrtrs

ro +ri+r+r3=1,

1 9
he solution i =r3=——.711 =1y = —.
and the solution is ry = r3 T

There are 4 states: 1 = success on last 2 trials;
2 = success on last, failure
on next to last;
3 = failure on last, success
on next to last;
4 = failure on last 2 trials.

Transition probabilities are:

Pi1= 2, P53 = i
Py1= él P53 = %
P3 o= gl P34 = % 31.
Pyo= %, Py 4= %

Limiting probabilities are given by
3 2
Il = 1 [T+ 3 I
2 1
[L.= 3 [+ 2 IL
1 1
[L=7IL+3IL
4 3
[L+ATL+IL+1L=1

and the solutionis[ [, = 1/2,[ [, = 3/16,[ ], =
3/16, [ ], = 1/8. Hence, the desired answer is

[T, +IL,=11/16.

Each employee moves according to a Markov
chain whose limiting probabilities are the solution
of

IL="1L+2]L+111
IL=2I+¢6]+4I1;
Hl +H2 +H3 =1

32.

Solving yields [, =6/17]], =7/17.]]; =

4/17. Hence, if N is large, it follows from the law
of large numbers that approximately 6, 7, and 4 of
each 17 employees are in categories 1, 2, and 3.

Letting X, be 0 if the n'" vehicle is a car and letting
it be 1 if the vehicle is a truck gives rise to a two-
state Markov chain with transition probabilities

Py = 4/5,
Pjy=3/4,

Py =1/5
Py =1/4.

The long run proportions are the solutions of

Solving these gives the result

15 4
70 = E, rh = E

That is, 4 out of every 19 cars is a truck.
Let the state on day 7 be 0 if sunny, 1 if cloudy, and

2 if rainy. This gives a three state Markov chain
with transition probability matrix.

|0 1 2

0 0 /2 1/2
P=1 | 1/4 1/2 1/4
2 | 1/4  1/4 172

The equations for the long run proportions are

1 1
7’0211’14—17’2
r1:170+1r1+1r2

2 2 4

1 1 1
1’2251’0+11’1+§1’2
ro+ri+rn=1

By symmetry it is easy to see that rq = r,. This
makes it easy to solve and we obtain the result

ro = ra =

gr
With the state being the number of off switches

this is a 3 state Markov chain. The equations for
the long run proportions are
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1 1
ERTRCR S TR
r —§r —i—lr +§r

1=glhTynTgh

ro+ri+r=1
This gives the solution
ro = 2/7,

1’1:3/7, 1’2:2/7.

Consider the Markov chain whose state at time # is
the type of exam number 7. The transition proba-
bilities of this Markov chain are obtained by condi-
tioning on the performance of the class. This gives
the following.

Py = 3(1/3) +.7(1) = .8
P =Pz = .3(1/3) = .1
Py = .6(1/3) + .4(1) = .6
Py = Pp3 = 6(1/3) = .2
Py =.9(1/3)+.1(1) = 4
Py = P33 = .9(1/3) = .3

Let r; denote the proportion of exams that are type
i,i = 1,2,3. The r; are the solutions of the follow-
ing set of linear equations.

rn=.8r+.6rn+.4r;
ro=.1r+.2r+.3r;
7‘1+7’2—|—7’3:1

Since P, = P for all states i, it follows that
9 = r3. Solving the equations gives the solution

7’1:5/7, 7’2:7’3:1/7.
(@) m, i =1,2,3, which are the unique solutions
of the following equations.

T = 4270 + P33
T = p1711 + 43713
m+m+m=1

(b) The proportion of time that there is a
counterclockwise move from i which
is followed by 5 clockwise moves is

7q;Pi—1PiPi+1Pi+2Pi+3, and so the answer
3

to (b) is Y mqgipi_1pipis1pisopics- In
i=1
the preceding,

Pe = P3-

Po = P3, P4 = P1,P5 = P2,

35.

36.

37.

38.

39.

40.

The equations are

1 1 1
ron=ri+srn+5r3t+ -1,

2 3 4
r==r +1r +17’
1*22 33 44

1
}’2251’3—0—1}’4
r _17’

3—4 4
Yy =Tg

ro+ri+ rp+ r3t+ rg=1
The solution is

Yo =r4 = 12/37,
r3 = 3/37.

r=6/37, r,=4/37,

(@) poPo,o+ p1Po,1 = 4po+.6p1
(b) poPy o+ p1Ps1 = 2512pg + .7488p

() pormo+p1m = p0/4 + 3}91/4
(d) Not a Markov chain.

Must show that
k
7T] = Z 7T1'Pi’]'
1

The preceding follows because the right hand side
is equal to the probability that the Markov chain
with transition probabilities P; ; will be in state j
at time k when its initial state is chosen according
to its stationary probabilities, which is equal to its
stationary probability of being in state j.

Because j is accessible from i, there is an n such
that Pj'; > 0. Because ;P ; is the long run pro-
portion of time the chain is currently in state j and
had been in state i exactly n time periods ago, the
inequality follows.

Because recurrence is a class property it follows
that state j, which communicates with the recur-
rent state i, is recurrent. But if j were positive
recurrent, then by the previous exercise so would
be i. Because 7 is not, we can conclude that j is null
recurrent.

(a) Follows by symmetry.

(b) If 7; = a > 0 then, for any #n, the proportion of
time the chain is in any of the states 1, ..., n is
na. But this is impossible when nn > 1/a.
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(@) Thenumber of transitions into state i by time ,
thenumber of transitions originating from state
i by time #n, and the number of time periods
the chain is in state i by time 7 all differ by at
most 1. Thus, their long run proportions must
be equal.

(b) r;P;j is the long run proportion of transitions
that go from state i to state j.

(c) Z riP;; is the long run proportion of transi-

]

tions that are into state j.

(d) Sincer;isalso the long run proportion of tran-
sitions that are into state j, it follows that

1’]' = Z?’ipi]'.
J

(a) This is the long run proportion of transitions
that go from a state in A to one in A°.

(b) This is the long run proportion of transitions
that go from a state in A° to one in A.

(c) Between any two transitions from A to A€
there must be one from A° to A. Similarly
between any two transitions from A€ to A there
must be one from A to A°. Therefore, the long
run proportion of transitions that are from A
to A° must be equal to the long run proportion
of transitions that are from A to A.

Consider a typical state—say, 1 2 3. We must show

H123 = H123 Pi23, 123 + H213 P213,123

+ [ 1151 Pas1,123-

Now Pi33,123 = P213,123 = P231,123 = P1 and thus,

H123 =P [H123 + H213 + H231] :

We must show that
PP, PPy PP
[T = 1 _p1'H213 —1 _pZ’H231 ~1-p

satisfies the above which is equivalent to

PPy
1-P,

PP
1-P,

_l’_

PP, =P

Py
= 1, Pa(Py + Py)

=P P,

(since Py +P3 =1— Py).

By symmetry all of the other stationary equations
also follow.

44.

45.

46.

Given X;;, X;,=1 is binomial with parameters m and
p = X, /m. Hence, E[X;,11|Xn] = m(X,/m) = X,
and so E[X,11] = E[X,]. So E[X,] = i for all n.
To solve (b) note that as all states but 0 and m are
transient, it follows that X, will converge to either
0 or m. Hence, for n large

E[X,] = mP{hits m} + 0 P{hits 0}

= mP{hits m}.

But E[X,,] = i and thus P{hits m} = i/m.

(a) 1, since all states communicate and thus all are
recurrent since state space is finite.

(b) Condition on the first state visited from i.
N-1
xi=Y Pjxj+Py, i=1,...,N-1
=1

XOZO, XN=1‘

(c) Must show

i N-1 ]
N 21 N1 T DN
j=

N .
J
=Y b
o N
and follows by hypothesis.

(i) Let the state be the number of umbrellas
he has at his present location. The transition
probabilities are

Pyx=1PF,;=1-p,P,_is1=p,
i=1,...,n

(i) We must show that Hj = Zl r; Pjj is satisfied
bythegivensolution. These equationsreduceto

ry =rg+11p
ri=r_j(l-p)+r_jap, j=1...,7—-1
ro=r(1—p),
and it is easily verified that they are satisfied.
(iii) pro = %.
ﬁwd[ﬂl—M}:(4—MG—2m+pﬂ—P)
dpl 4-p (4=p)°
_pP—8p+4
- 4-p?

8 — V48
— = .55.

pPP-8p+a=0=p=
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{Yy, n > 1} is a Markov chain with states (i, j).
0, if j £k

Pl o) = { Py, ifj=k

where Pj, is the transition probability for {X,,}.
Tim P{Y, = (i, )} = lim P{X, = i, X, 11 = j}
n

= ripij-
(i) No.
lim P{X, =i} = pr' (i) + (1 — p)r*(i).
(ii) Yes.
(2)

1
Pij:ppgj)+( _p)Pl‘]‘ .

Using the Markov chain of Exercise 9, uy, ; =1/.3,
pen = 1/.6. Also, the stationary probabilities of
this chain are 7, = 2/3, m; = 1/3. Therefore,

1

HAGOT = Gy e e @@ 0787
giving
E[N(tththtt)| Xo = h] = E[N(t, £)|Xo = h]
+E(A(t, 1)]
Also,
1
EIN(, 61X = ] = EINOIXo = ]+ 73755
13
= 12 = 10.8

Therefore, E[N (tththtt)| Xy = h] = 589.5

Let the state be the successive zonal pickup loca-
tions. Then P4 4 = .6, P 4 = .3. The long run
proportions of pickups that are from each zone are

7Ty = .6714 + 3715 = 6714 + .3(1 — 714)

Therefore, 14 = 3/7, 1 = 4/7. Let X denote the
profit in a trip. Conditioning on the location of the
pickup gives

3

E[X] = 2E[X|A] + ZE[X]B]

3

= 216(6) +.4(12)] + 5[3(12) + 7(8)]

=627

53.

54.

55.

56.

With 7;(1/4) equal to the proportion of time
a policyholder whose yearly number of acci-
dents is Poisson distributed with mean 1/4 is in
Bonus-Malus state 7, we have that the average pre-
mium is

%(326.375) + %[200%1(1/4) +2507,(1/4)

+40073(1/4) 4+ 600714 (1/4)]
E[XnJrl] = E[E[Xn+l|Xn”'

Now given X,

X, +1, with probability M — X
Xn+1 = X

Xy —1, with probability Mn
Hence,

M-X, X
E[X, 11 Xn] = X + Tn - Mn
2X
=Xt 1=

and so E[X, 4] = {1 - ]\2/1] E[X,]+1.

It is now easy to verify by induction that the
formula presented in (ii) is correct.

S11 = P{offspring is aa | both parents dominant}

_ P{aa, both dominant}
- P{both dominant}

1
Tz Z B r
(1-9)* 4(1—9q)

S P{aa, 1 dominant and 1 recessive parent}
10 =

2

P{1 dominant and 1 recessive parent}

_ P{aa, 1 parent aA and 1 parent aa}
2q(1 —q)

1
_ 2qr 5
2q(1—q)
_r
2(1—q)

This is just the probability that a gambler start-
ing with m reaches her goal of n 4 m before going

1—(q/p)"
1—(q/p)"™

broke, and is thus equal to

where g =1—p.
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Let A be the event that all states have been visited
by time T. Then, conditioning on the direction of
the first step gives

P(A) = P(A|clockwise)p

+P(A|counterclockwise)q

1-4q/p 1-p/q
= +

PI=ta/pr Tl
The conditional probabilities in the preceding
follow by noting that they are equal to the proba-
bility in the gambler’s ruin problem that a gambler

that starts with 1 will reach n before going broke
when the gambler’s win probabilities are p and 4.

Using the hint, we see that the desired proba-
bility is
P{Xp41 =i+1|X, =i}
P{limXy =N|X, =i, Xy, +1=i+1}
P{lim X, = N|X, = 1}

pPi+1
P;

and the result follows from Equation (4.74).
Condition on the outcome of the initial play.

With Py =0, Py =1
Pi:(XiPiqu_._(l_‘xi)Pifl/ izl,...,N—l
These latter equations can be rewritten as

Piyq1 — P = Bi(P; — Pi_1)

where f; = (1 — «;) /. These equations can now
be solved exactly as in the original gambler’s ruin
problem. They give the solution

1+Y71C
izili,_l , i=1,...,N—-1
1+ Zj:1 C]
where
]
C] = H ﬁi
i=1
(c) Py_;, whereo; = (N —i)/N
(a) Since r; = 1/5 is equal to the inverse of the

expected number of transitions to return to
state i, it follows that the expected number of
steps to return to the original position is 5.

64.

65.

66.

67.

(b) Condition on the first transition. Suppose it
is to the right. In this case the probability is
just the probability that a gambler who always
bets 1 and wins each bet with probability p
will, when starting with 1, reach y before
going broke. By the gambler’s ruin problem
this probability is equal to

1-q/p
1=(a/p)"
Similarly, if the first move is to the left then
the problem is again the same gambler’s ruin

problem but with p and g reversed. The
desired probability is thus

P-4 __ q-p
1-@/p)" 1-(p/9)"

o0 o0
@ E[Y XilXo=1|= Y E[X|Xo=1]
k=0 k=0
o0
1
=) ut = 1_
k=0 H
s n
(b) E Xk|XO =n| = .
k=0 1—n
r >0 = P{Xy = 0}. Assume that

r>P{X,_1 =0}.
P{X,=0= ;P{XH =0[X, = j}P,
- Z [P{X, 1 = ]fP]-
S]ijl’j
j

=r.

1
(@ ro= 3
(b) ro=1.
() ro= (\(’3—1) /2.
(@) Yes, the next state depends only on the present

and not on the past.

(b) One class, period is 1, recurrent.

N—i
(C) P1/1+1:PT, l:O,]., ,N_].
Pi,ifl:(l_P>§/ i=12,...,N
N_
Pi=Pl (1 )( D i_o01..N



68.

69.

70.

Answers and Solutions 41

(d) See (e).

N| ; - .
(e) ;= L }p(l—p)N , i=0,1,...,N.

(f) Direct substitution or use Example 7a.

N-1
Tj, where T; is the number of
j=i
flips to go from j to j+ 1 heads. T; is geo-
metric with E[T;] = N/j. Thus, E[time] =

N-1
L N/
j=t

(g) Time =

(a) ZfiQij = ijpjz‘ = erPji =Tj
i 1 )

(b) Whether perusing the sequence of states in
the forward direction of time or in the reverse
direction the proportion of time the state is i
will be the same.

/nm) =

M! 1M
r(ng,... '[ ] .

Ny, e, Myt
We must now show that
nj+ 1 1

M M-1
1

r(nl,...,ni—1,...,nj—|—1,...)

n; )i
T MM -1

=r(ny,...,nj...

n:+1 ;
or / ' ;= 7'11 -, which follows.
(nj = Din;+ 1! nylnj!
N2 2
m—i i
(@ Piiy1= (miz) P i1 =—,
2i(m —i
Py = 2i{m ~1) 2 )

(b) Since, in the limit, the set of m balls in urn 1 is
equally likely to be any subset of m balls, it is
intuitively clear that

ML) )
COIN

(c) We must verify that, with the 71; given in (b),

P iv1 = M1 Pia,i
That is, we must verify that

()=,

which is immediate.

71.

72.

73.

74.

If r; = & th
rj=cp , then

Jt

PPy

1Py = cillj)j‘]

Pji Py

ryPrj=c ]Pk' /
1

and are thus equal by hypothesis.

Rate at which transitions from i to j to k occur =
riP;jPjx, whereas the rate in the reverse order is
rkPx;Pji. So, we must show

riPiijk = TkPk]'Pj,'.
Now, riPiijk = T]P]ZP]k by reversibﬂity
= 1iPjPji
= 1cLyjPi by reversibility.

It is straightforward to check that r;P;; = r;Pj;. For
instance, consider states 0 and 1. Then

ropo1 = (1/5)(1/2) =1/10

whereas

npi = (2/5)(1/4) = 1/10,

(@) The state would be the present ordering of the
n processors. Thus, there are n! states.

(b) Consider states x = (x1,...,%_1,X;, Xi11,---,
x,) and I = (X9, oo Xim1, X1, Xy o oo, X))
With g; equal to 1 — p; the time reversible
equations are

i—1 i-1
(), Py [T 9w =7, px [ 4w
k=1 k=1
or

r(x) = @y, /Pr,) 00/ Pr) (X))

Suppose now that we successively utilize the
above identity until we reach the state (1,2,...,n).
Note that each time j is moved to the left we mul-
tiply by q;/p j and each time it moves to the right

we multiply by (qj / pj)*l. Since x;, which is ini-
tially in position j, is to have a net move of j — x;
positions to the left (so it will end up in position
j— (j—x;) = x;) it follows from the above that

r(x) = CI] gy, /py)) ).
)
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The value of C, which is equal to r(1,2,...,n),
can be obtained by summing over all states x
and equating to 1. Since the solution given by the
above value of r(x) satisfies the time reversibil-
ity equations it follows that the chain is time
reversible and these are the limiting probabilities.

The number of transitions from i to j in any inter-
val must equal (to within 1) the number from j to i
since each time the process goes from i to j in order
to get back to 7, it must enter from ;.

We can view this problem as a graph with 64 nodes

where there is an arc between 2 nodes if a knight

can go from one node to another in a single move.

The weights on each are equal to 1. It is easy

to check that Z Z w;j = 336, and for a corner
L

node i,Zwij = 2. Hence, from Example 7b, for

)
one of the 4 corner nodes i, H =2/336, and thus

1
the mean time to return, which equals 1/r;, is
336/2 = 168.

(a) ;yja = ;Eﬁ {; ”"I{Xn—j,un—a}}
=Ep [;””;I{Xn—f,an—a}}
—Eg| Lo,

(b) ;Z Yja=Ep lZ a” ; Iix, —j}]

1

:Eﬁ{Za”} 1

= bj‘FE/g Z = a”l{xn_j}]

| n=1
o0
- b] + Eﬁ Z an+11{xn+1 ]}]
| n=0
[ oo
= b]'—l—Eﬁ ZO = anJrlZI{Xn:i,un:u}
n= ia

I(XnJrl = ]}]

78.

o0
= bf + Z an+l ZEﬁ |:I{Xn:i/911:a}:| Pl](a)
n=0 ia

= b]—f—&lZZ&lnEﬁ [I(X

i,a n

n:i,an:a}} P;j(a)

= b] -+ azyiapij(a)
ia

(c) Letd j,a denote the expected discounted time
the processis in j, and a is chosen when policy
3 is employed. Then by the same argument as

in (b):
ot

=bj+a) Y a"Eg[I{Xy, =i, a,=a}] Pj(a)

i,an

—bj+aY Y a" Eﬁ[ x,— ’}]Zy

ijan

P](”)

— b, +a22dm Sl
ﬂ

and we see from Equation (9.1) that the above

is satisfied upon substitution of d;; = y;,. As
.\ 1
it is easy to see that Zi,a di, = 1= the result

follows since it can be shown that these linear
equations have a unique solution.

(d) Follows immediately from previous parts. It
is a well-know result in analysis (and easily
proven) that if lim, ., Z? a;/n also equals
a. The result follows from this since

X,)] = LROG)PLX, = j}
]
= Y R(j)r,

Let 7, j > 0, be the stationary probabilities of the
underlymg chain.

®) Pl =5 L



Chapter 5

1. (a) gil, (b) eil 7. P{X1 < X2|min(X1,X2): i’}

P{Xl < X, min(Xl, Xz) = i’}
2. Let T be the time you spend in the system; let S; be -

the service time of the i person in queue: let R be
the remaining service time of the person in service;
let S be your service time. Then,

E[T] [R+S1+52+53+S4+S]
+ZE S| =6/u

Where we have used the lack of memory property
to conclude that R is also exponential with rate p.

and thus

) lvem)
M+ A AM+A]

P{Smith is last} = [

43

P{min(Xl, Xz) = t}

B P{X1=tXo >t}
O P{X1=tXo >t} +P{Xp=1tX; >t}
AR
~ AMR® + AORE
Dividing though by F(t)F,

(For a more rigorous argument, replace
by ” € (t,t+ €)” throughout, and then let e — 0.)

(t) yields the result.

" — t//

8. Let X; have density f; and tail distribution F;.
. The conditional distribution of X, given that
X >1, is the same as the unconditional distribu- Z PAT =i} fi(t)
tion of 1 + X. Hence, (a) is correct. r(t) =
Z PAT = j}Fj(t)
1
- @0, (®) 5 (© 5 ”
27 4 Z = i}ri(t)Fi(t)
¢! by lack of memory. i" P{T = j}Fi(t)
j=1
. Condition on which server initially finishes first. The result now follows from
Now, -
. o PIT =X > t) = L= 1A
P{Smith is last|server 1 finishes first} Z P{T = j}Fi(t)
= P{server 1 finishes before server 2} j=1
by lack of memory
Py 9. Condition on whether machine 1 is still working
= 1 at time ¢, to obtain the answer,
A+ A A
1— —At —Aqt 1
Similarly, ¢ A+ A
P{Smith is last|server 2 finished first} = A 11. (@) Using Equation (5.5), the lack of memory
A+ A property of the exponential, as well as the fact

that the minimum of independent exponen-

tials is exponential with a rate equal to the

sum of their individual rates, it follows that
ny

A+nu

P(Ay) =
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and, for j > 1,

(n—j+1u
Ad+n—j+1)u

P(Aj|Ay---Ajq) =
Hence,

L n—j+1)u
P:HA( j+1)
=1

+(n—j+1u

(b) Whenn = 2.
P{maxY; < X}

oo
- / P{maxY; < X|X = x}Ae Mdx
0
o0
:/ P{maxY; < x}Ae Mdx
0

:/ (1 —e ") 2Ae Mdx
0

(e}
= (1 —2e M 4 e724%)2xe My
0

2A A
At+u  2u+4+A
2;12
(A4 ) (A+2p)

12. (a) P{Xl < Xy < X3}
= P{X1 = min(Xl,Xz, X3)}
P{Xz < X3|X1 = min(Xl,Xz,Xg,)}
A

= —P{Xp < X3|X
= min(Xl,Xz,Xg)}
A1 A2

B e

where the final equality follows by the lack of
memory property.

(b) P{Xz < X3|Xl = maX(Xl,Xz,Xg)}

B P{X2<X3<X1}
- P{Xz < X3 < X]} +P{X3 < Xy < Xl}

A2 A3
_ MA+2A+A3A1 4+ A3
N A2 A3 A3 A2
MAA+A3A14+A3 A+ A+A3 A+ A
_ 1/(A1 4 A3)
/(M +2A3) +1/(A1 + Ag)
(0) ! + ! + 1
M+ A+ A3 +A+ A3 Az

13.

A Aj 1
(d) Z A }\Z A A-—i-]A {}\ A A
itk M T AT A3 A+ A A+ A2+ A3
.
Ai+Ae A

where the sum is over all 6 permutations of 1, 2, 3.

Let T, denote the time until the n'" person in line
departs the line. Also, let D be the time until the
tirst departure from the line, and let X be the addi-
tional time after D until T},. Then,

E[T,] = E[D] + E[X]

1 (n—l)@—i—uE
R né +

[Tn—l]

where E[X] was computed by conditioning on
whether the first departure was the person in line.
Hence,

E[Ty] = Ay + ByE[T, 1]
where

1 _ (n—-1)0+nu
no+p’ T onl+u

Ay =

Solving gives the solution.

n—1 n
[T B

E[Tn] =An+ Z Ay
i=1 j=n—i+1

n—1
=Ay+ ) 1/(n6+p)
i=1
n

:nG—I—u

Another way to solve the preceding is to let I;
equal 1 if customer # is still on line at the time
of the (j — 1) departure from the line, and let
X; denote the time between the (j — 1)* and jt
departure from line. (Of course, these departures
only refer to the first n people in line.) Then

The independence of I; and X; gives

E[T,) = Y E[LIE(X;)
j=1

_(n=1)0+p
no + pu
_ (n—j+1)0+pu
- no+p

(n—j+1)0+pu
(n—j+2)0+pu
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15.
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and
1
EXl = e mera

which gives the result.

(a) The conditional density of X gives that

X <cis
f(x) Ae M
X = = , 0
flX <o) = preZy = 7, 0<x<e
Hence,

c
E[X|X < ¢] = /x}\e*“dx/(l _ e,
0
Integration by parts yields that

Cc

c
(o
/x)\e*}\x dx = —xe M| +/e*"xdx
0 0 9
=—ce M4 (1 —e M)/

Hence,
E[X|X <c]=1/A—ce /(1 —e ).
(b) 1/A=E[X|X <c](1—e )+ (c+1/A)e ¢

This simplifies to the same answer as given in
part (a).

Let T; denote the time between the (i — 1) and
the i failure. Then the T; are independent with T;
being exponential with rate (101 — i) /200. Thus,

9 G > 200
E[T) = 1; E[T}] l; 101 — ;
8 L2 (200)2
Vo= L et = & G~y

Letting T; denote the time between departurei — 1
and departure i, we have

E[T] = E[T1] + E[T2] + E[T3]

The random variables T; and T, are both expo-
nential with rate A; + A;, and so have mean
1/(A1 + Az). To determine E[T3] consider the time
at which the first customer has departed and con-
dition on which server completes the next service.
This gives:

E[T3] = E[T3|server 1] [A1/(A1 + A2)]
= E[Ts|server 2|[A2/ (A1 + A7)]
= (1/A)[M/(A1 + A2)]

+ (1/A1)[A2/ (A1 + A2)].

Therefore,

E[Time] =2/(A1 + A2) + (1/A2)[A1/ (A1 + A2)]
+ (/A1) [A2/ (A1 + A2)].

17. Let C; denote the cost of the i" link to be

constructed, i=1,...,n—1. Note that the first

link can be any of the possible links.

n
(3)
Given the first one, the second link must connect
one of the 2 cities joined by the first link with one
of the n — 2 cities without any links. Thus, given
the first constructed link, the next link constructed
will be one of 2(n — 2) possible links. Similarly,
given the first two links that are constructed, the
next one to be constructed will be one of 3(n — 3)
possible links, and so on. Since the cost of the first

link to be built is the minimum of <Z> exponen-

tials with rate 1, it follows that

E[Cy] :1/(3)

By the lack of memory property of the exponen-
tial it follows that the amounts by which the costs
of the other links exceed C; are independent expo-
nentials with rate 1. Therefore, C; is equal to C;
plus the minimum of 2(n — 2) independent expo-
nentials with rate 1, and so

(c) Letting A = X(3) — X(1) we have

E[X(p)]
= E[X)] + E[A].
1 1 1
_ I o ST o S
M1+ M2 Mo M1FH2 M M1 H2

The formula for E[A] being obtained by con-
ditioning on which X; is largest.

(d) Let I equal 1 if X; < X, and let it be 2 oth-
erwise. Since the conditional distribution of
A (either exponential with rate p; or pp) is
determined by I, which is independent of
X(1), it follows that A is independent of X ).
Therefore

Var(Xp)) = Var(Xy)) + Var(A).

With p = p1 /(1 + pp) we obtain, upon con-
ditioning on I,

EAl=p/ua+ (1 —p)/m,
E[A%)=2p/u3 +2(1—p)/ui.

Therefore,
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Var(A) = 2p/us +2(1~ p) /i

—(p/u2+ (1= p)/m)?
Thus,

Var(X 3))
=1/(m +2)* +2[p/15 + (1 -
—(p/m2+ (1= p)/m)>

p)/1)

H1
a) Py =
@) Pa H1 + H2
2
Ho
b) Pg=1—
®) Pp (#14-#2)

(0 E[T]=1/p1+1/u2+Pa/uo + Pp/2

E[time| = E[time waiting at 1] + 1/

+ E[time waiting at 2] + 1 /.

Now
E[time waiting at 1] =1/pq,
H
=(1/pp) ———.
1/ 2)#1 + 12
The last equation follows by conditioning on

whether or not the customer waits for server 2.
Therefore,

Eltime] =2/ + (1/m2)[1 + 1/ (11 + p2)]-

E[time waiting at 2]

E[time] = E[time waiting for server 1] + 1/

+ E[time waiting for server 2] + 1/ .
Now, the time spent waiting for server 1 is the
remaining service time of the customer with server
1 plus any additional time due to that customer
blocking your entrance. If server 1 finishes before
server 2 this additional time will equal the addi-

tional service time of the customer with server 2.
Therefore,

E[time waiting for server 1]
=1/u + E[Additional]

=1/m + (/21 / (11 + p2)]-

Since when you enter service with server 1 the cus-
tomer preceding you will be catering service with
server 2, it follows that you will have to wait for
server 2 if you finish service first. Therefore, con-
ditioning on whether or not you finish first

E[time waiting for server 2]
= (1/m2) [/ (11 + p2)]-
Thus,
Eftime] = 2/u1 + (2/p2) [t/ (11 + p2)] + 1/ o

23.

24.

25.

26.

(@) 1/2.

(b) (1/2)" 1. whenever battery 1 is in use and a
failure occurs the probability is 1/2 that it is
not battery 1 that has failed.

@ (1/2)" ", i>1.

(d) T is the sum of n — 1 independent exponen-
tials with rate 2u (since each time a failure
occurs the time until the next failure is expo-
nential with rate 2p).

(e) Gamma with parameters n — 1 and 2p.

Let T; denote the time between the (i — 1) and the
i" job completion. Then the T; are independent,
with T;,i=1,...,n — 1 being exponential with rate

. .1s H1
U1 + wo. With probabilit ,
e P Y M1+ M2

T, is exponen-

itis

tial with rate p,, and with probability
H2
exponential with rate p;. Therefore,

Z il + E[Tx]
i=
1 1 1
=(n-1) RN R o M.
H1+H2  p+p2 M2 M+ H2 Hg
Var(T Z Var(T;) + Var(Ty)
1
= (n —1)———— + Var(T,)
(11 +#2)2 !
Now use
Var(Ty) = E[T3] — (E[Tu])?
. m 2 p 2
= ot =
m o+ ps pl+pp g
. m 1 e 1.,
M1+ H2 Mo M1 H2 M

Parts (a) and (b) follow upon integration. For part
(c), condition on which of X or Y is larger and use
the lack of memory property to conclude that the
amount by which it is larger is exponential rate A.
For instance, for x < 0,

fx—y(x)dx
=P{X <Y}P{—x<Y—-X< —x+dx|Y > X}

1)
= =Ae™d
yAedx
For (d) and (e), condition on I.
1 & 1
(a) Z
M1+ Mo + U3 LL1+142+H3 i

4
o+ muy + s
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S R
H1 =+ H2 + 13 M1+ Mo + U3
H1
M1+ p3
H1 H2
M1+ p3 pHp + M3
l+ H pp 1
~ Wi M1+ H3 Mo+ M3 M3
1 Mo 1
Zﬂz 1+H2 Ho + p3 3
Ho H w1

+
p1+pp 3 Hp A+ U3 M3

28. For both parts, condition on which item fails first.

(b)

29. (a)

)\
i#1 Z A]]z";éz

1 oA 1
R
Z A TEY A j#i :
i=1 j=1
Ix1x+ Y(xle) = Cfx. X4 (x,0)

= leXy(X,C*X)
= fx(x)fy(c—x)

=Cpe MeHleY) o< x<c

= C3e*()‘*“)", O<x<c

where none of the C; depend on x. Hence, we
can conclude that the conditional distribution
is that of an exponential random variable con-
ditioned to be less than c.

1—e A=MW1 4+ (A = o)

(b) EX|IX4+Y=c]= A1 e Oy
(¢ c=EX+Y|X+Y=c]=E[X|X+Y =]
+E|X+Y =],
implying that
E[YIX+Y =]
1 (A =)o)

A1 — e~ (A=)

30.

31.

32.

33.

34.

37.

38.

Condition on which animal died to obtain
E[additional life]

= E[additional life | dog died|]

Ad
Ac+ Ay

B N VI S
A A+ A Ag A+ A

+ E[additional life | cat died] p + p
c d

Condition on whether the 1 PM appointment is
still with the doctor at 1:30, and use the fact that if
she or he is then the remaining time spent is expo-
nential with mean 30. This gives

E[time spent in office]
= 30(1 — e39/30) 4 (30 + 30)e~30/30
=30+ 30e~!

Let T; denote the time spent on job i. Then
X=T1+Th1+1TL+T1+T,+T13=3T1+2T, + T3
and thus

EX]=6, Var(X)=9+4+1=14

(@) By the lack of memory property, no matter
when Y fails the remaining life of X is expo-
nential with rate A.

(b) E[min(X,Y)|X > Y + (]
=Emin(X,Y)|X>Y,X-Y >
=E[min (X,Y) |X > Y]

where the final equality follows from (a).
A

A+ pa

A+ g . A
A+pa+pup A+ pup

(@)

(b)

e /10 ,=1/4 ,=1/2 -1

,e % e e
Let k = min(n, m), and condition on Mj(t).

P{N;(t) = n,Ny(t) = m}

k
=Y P{Ni(t) = n,Ny(t) = m|M;(t) = j}
j=0 .

ot (Bat)" T i (o)
=7
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39.

40.

41.

42.

43.

44.

Answers and Solutions

(a) 196/2.5 =78.4
(b) 196/(2.5)* =31.36

We use the central limit theorem to justify approx-
imating the life distribution by a normal distri-
bution with mean 78.4 and standard deviation
Vv31.36 = 5.6. In the following a standard normal
random variable.

7.2—784
= P{Z < —2} = .0227

—78.4

(d) P{L> 9o}zp{z > %
— P{Z > 2.07} = .0192

(e) P{L > 100} zP{Z 100_78'4}

5.6
=P{Z > 3.857} = .00006

The easiest way is to use definition 5.1. It is easy
to see that {N(t),t > 0} will also possess station-
ary and independent increments. Since the sum of
two independent Poisson random variables is also
Poisson, it follows that N(t) is a Poisson random
variable with mean (A1 + A7)t

A/ (A1 + A2).

(@) E[S,] =4/A.
(b) E[S4|N(1) =2]
=1+ E[time for 2 more events] = 1+ 2/A.
© EIN(4)— N)IN(1) = 3] = EIN(4) - N(2)]
=2A.

The first equality used the independent incre-
ments property.

Let S; denote the service time at server i,i = 1,2
and let X denote the time until the next arrival.
Then, with p denoting the proportion of customers
that are served by both servers, we have

p:P{X>51+52}
= P{X > S1}PX >S5+ 5|X > 51}

1 o
1+ A up+A
@) e T

46.

47.

(b) Let W denote the waiting time and let X
denote the time until the first car. Then
o0
E[W] :/ E[W|X = x]Ae Mdx
0
T
:/ E[W|X = x]Ae Mdx
0

o0
+ / E[W|X = x]Ae Mdx
T

T
= / (x + E[W])Ae Mdx + Te AT
0

Hence,

T
E[W] = T—O—e”/ xAe”Mdx
0

E[N(T)] = E[E[N(T)|T]] = E[AT] = AE[T]

E[T (T)] = E[E[TN(T)|T]] = E[TAT] = AE[T?]
T)] = E[E[N*(T)|T]| = E\T + (AT)?
= AE[T] + A%E[T?

Hence,

Cov(T,N(T)) = AE[T?] — E[T]AE[T] = Ac?

and

Var(N(T)) = AE[T] + A?E[T?] — (AE[T])?

= Au+ A%02

N(t) N(t)
E[Y, Xi]=E lE[ Y Xi|N(t)]]

i=1
= E[uN(t)] = pAt

NGO D
N(t) Zi Xi] :E[E[N(t) ; XiN(t”}
= E[uN?(t)] = p(At + A*#)
Therefore,
N(#)
Cou(N Z

(At 4 A22) — At(uAt) = pAt

(@ 1/(2p)+1/A
(b) Let T; denote the time until both servers are

busy when you start with i busy servers i =
0.1. Then,

E[To] = 1/A+ E[T]

Now, starting with 1 server busy, let T be the
time until the first event (arrival or departure);
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let X =1 if the first event is an arrival and
let it be O if it is a departure; let Y be the
additional time after the first event until both
servers are busy.

E[Ty] = E[T] + E[Y]
1 A
—— 4+ ElY|X=1|——
)\+ +E[Y] ]A+)u
n
+ ElY|X =0]———
Y]x = 0}
L—FE[T] ad
At+u At
Thus,
1 1 U
E[Ty] 3T ar E[To]}\+‘i
or
20+
E[TO]: )\2
Also,
A+
E[T) = =5"

(c) Let L; denote the time until a customer is lost
when you start with i busy servers. Then,
reasoning as in part (b) gives that

E[Ly] = ﬁ +E[L1])\iu
- ﬁ + (E[T] +E[L2D)\iu
_%ﬂ-k%—kE[Lz}Aiu
Thus,
E[Ly] = %+ w

48. Given T, the time until the next arrival. N, the

number of busy servers found by the next arrival,
is a binomial random variable with parameters n
and p = e M.

(@) E[N /E N|T = A Mdt

= /ne*“t)\e_“dt -
A+pu

For (b) and (c), you can either condition on T,
or use the approach of part (a) of Exercise 11
to obtain

49.

50.

51.

52.

53.

54.

—j+u
P{N_O}_HA+ (n—j+1)u
P{N—n—z}
_ i n—]+1)
A+ (i) I;I +(n—j+1)u
@@ P{N(T)—N(s) =1} = A(T —s)e M=)

(b) Differentiating the expression in part (a) and
then setting it equal to 0, gives

—A(T—-s) _ A(T _ S)e—)\(T—s)
implying that the maximizing value is
s=T—-1/A

(¢) Fors = T —1/A, we have that A(T —
and thus,

P{N(T) =N(s) =1} = ¢!

s) =1

Let T denote the time until the next train arrives;
and so T is uniform on (0, 1). Note that, conditional
on T, X is Poisson with mean 7T.

() E[X]=E[E[X|T]]=E[7T] =7/2.

(b) E[X|T] = 7T, Var(X|T)=7T. By the condi-
tional variance formula

Var(X) = 7E[T] +49Var[T| =7/2+49/12 =
91/12.

Condition on X, the time of the first accident to
obtain

E[N(f] = /0°° E[N()|X = s|e~Pds
= /Ot (1+ a(t —s))Be Pds

This is the gambler’s ruin probability that, start-
ing with k, the gambler’s fortune reaches 2k
before 0 when her probability of winning each
bet is p = A1 /(A1 + Az). The desired probability is

1—(A/A1)"
1— (M /A)*

(@) et

(b) el +el(.8)e?

(@) P{L; =0} =M
(b) P{L; < x} = e A%
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(© P{Ry =1} =¢ 20"
(d) P{Ry > x} = ¢ AMx=m)

() E[R]= /0 PR > x}dx

1
:m—i-/ P{R > x}dx
m

1
:m+/enA(x m)
m

1— efn)\(lfm)
D™ —
Now, using that

P{L>x}=1-P{L<x}=1—¢ mm2),

O<x<m
gives
1— efn)\m
E{L 7n/\ (m—x) dx — m —
w=["a Jx = m— =

Hence,

T efn)\(lfm) 1 — g nAm
ER-1]= nA + nA

~
~

h is 1
A When nis large

As long as customers are present to be served,
every event (arrival or departure) will, indepen-
dently of other events, be a departure with prob-
ability p = u/(A+u). Thus P{X = m} is the
probability that there have been a total of m tails at
themomentthatthe ' head occurs, when indepen-
dent flips of a coin having probability p of coming
up heads are made: that is, it is the probability that
the n'" head occurs on trial number 1 + . Hence,
plX=m}= (n:ml 1> pr1—p)"

(a) Itisabinomial (1, p) random variable.

(b) Itis geometric with parameter p.

(c) Itisanegative binomial with parameters 7, p.
(d) Let0 < iy <ip, -+ < i <n.Then,

,ir|N(n) =r}

_ P{eventsatiy,..., i, N(n) =r}
P{N(n) =r}

_ Pr(l _ p)nfr

()ra-pr

P{events atiy, ...

57.

58.

59.

61.

62.

(@) e
(b) 2p.m.

Let L; = P{i is the last type collected }.

-----

—/ pie PFT] (1 — e Pi%)dx
]7&1

_A I_I 1fypj/pl dy (y:e_pix)
i

—E [H (1 — UuPi'Piy
j#i

Li=P{X; = max_ Xi}
j

The unconditional probability that the claim is
type 1is 10/11. Therefore,
P(4000[1)P(1)
P(4000[1)P(1) + P(4000[2)P(2)
_ e~410/11
e 410/11 + 2¢781/11

P(1/4000) =

(a) Poisson with mean cG(t).
(b) Poisson with mean c[1 — G(f)].

(c) Independent.

Each of a Poisson number of events is classified as
either being of type 1 (if found by proofreader 1
but not by 2) or type 2 (if found by 2 but not by 1)
or type 3 (if found by both) or type 4 (if found by
neither).

(a) The X; are independent Poisson random
variables with means

E[X1] = Ap1(1 = p2),
E[Xo] = A(1 = p1)p2,
E[X3] = Ap1p2,

E[X4] =A(1=p1)(1 = p2).

(b) Follows from the above.

(©) Using that (1 —p1)/p1 = E[X]/E[X3] =
X, /X3 we can approximate p by X3/(Xy +
X3). Thus p; is estimated by the fraction of
the errors found by proofreader 2 that are
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also found by proofreader 1. Similarly, we can
estimate p, by X3/(X1 + X3).

The total number of errors found, X7 + X, +
X3, has mean

EX; + X+ X3] = A1 = (1—p1)(1—p2)]

_ _ X Xq
=/ [l X+ %)(% +X3>}

Hence, we can estimate A by

(X1 + Xo + X3)/ [1 _ XX } |

(X2 +X3)(X1 + X3)

For instance, suppose that 1 finds 10 errors,
and 2 finds 7 errors, including 4 found by 1.
Then X; = 6, X; = 3, X3 = 4. The estimate of
p1is 4/7, and that of p; is 4/10. The estimate
of Ais 13/ (1 —18/70) = 17.5.

(d) Since A is the expected total number of errors.
We can use the estimator of A to estimate
this total. Since 13 errors were discovered we
would estimate Xy to equal 4.5.

Let X and Y be respectively the number of cus-
tomers in the system at time ¢ + s that were present
at time s, and the number in the system at t + s
that were not in the system at time s. Since there
are an infinite number of servers, it follows that X
and Y are independent (even if given the number
is the system at time s). Since the service distribu-
tion is exponential with rate i, it follows that given
that X(s) = n, X will be binomial with parame-
ters nand p = e . Also Y, which is independent
of X(s), will have the same distribution as X(t).

t
Therefore, Y is Poisson with mean A / e Mdy
0
=A(1—eH)/p.

(@) E[X(t+s)|X(s)=n]
= E[X|X(s) = n| + E[Y|X(s) = n].
=ne M+ A(1—e M)/p.
(b) Var(X(t+s)|X(s) =n)
= Var(X +Y|X(s) =n)
= Var(X|X(s) = n) + Var(Y)

=ne M1 —e ")+ A1 —e M)/
The above equation uses the formulas for the

variances of a binomial and a Poisson random
variable.

(c) Consider an infinite server queuing system in
which customers arrive according to a Poisson
process with rate A, and where the service
times are all exponential random variables
with rate p. If there is currently a single cus-
tomer in the system, find the probability that
the system becomes empty when that cus-
tomer departs.

Condition on R, the remaining service time:
P{empty}
o0
= / P{empty|R = t}ue Hdt
0

0 t
= / exp{—)\/ e Mdy}ue Mt
0 0

Jo'e} A
= —2(1 — e H) ueHtdt
| el (e e

= /1 e M1y
0

= ;(1 — e_/\/}"')
where the preceding used that P{empty]|

R =t} is equal to the probability that an
M/M/oo queue is empty at time ¢.

64. (a) Since, given N(t), each arrival is uniformly

distributed on (0, t) it follows that

E[X|N(£)] = N(t) /Ot (t—s)ds/t = N(t) /2.

(b) Let Uy, Uy, ... be independent uniform (0, t)
random variables.

Then

Var(X|N(t) = n) = Var (t—Uu;)

D=

i=1
= nVar(U;) = nt?/12.

(¢) By (a), (b), and the conditional variance
formula,

Var(X) = Var(N(t)t/2) + E[N(t)t* /12]
= A2 /4 + Att? )12 = At3/3.

. This is an application of the infinite server Pois-

son queue model. An arrival corresponds to a new
lawyer passing the bar exam, the service time is
the time the lawyer practices law. The number in
the system at time t is, for large ¢, approximately a
Poisson random variable with mean Ay where A is
the arrival rate and p the mean service time. This
latter statement follows from

= ey =
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66.

67.

68.

69.

Answers and Solutions

where u is the mean of the distribution G. Thus,
we would expect 500 - 30 = 15,000 lawyers.

The number of unreported claims is distributed as

the number of customers in the system for the infi-
nite server Poisson queue.

(@) e~"®(a(t))" /n!, where a(t) = A /O ' Gly)dy

(b) a(t)ur, where pr is the mean of the distribu-
tion F.

If we count a satellite if it is launched before time
s but remains in operation at time ¢, then the num-
ber of items counted is Poisson with mean m(t) =
s —
/ G(t — y)dy. The answer is e™"("),
0
E[A(H)IN(t) = n]

= E[A]le™E ie"‘siN(t) = n]

i n
=E[Ale™E |} e"‘%}

= E[Ale ™E -i e“ui]

0 t

_ ,—at
T

at
Therefore,

1_efrxt 1_670(1‘

E[A(t)] = E|N(t)E[A = AE[A
A()] = E|NOELAIZ =S | = AElA) 2=

Going backwards from f to 0, events occur accord-
ing to a Poisson process and an event occurring a
time s (from the starting time ) has value Ae™**
attached to it.

(a) Write D(t+h) = D(t) +D(t+h)— D(t), and
note that D(t + h) — D(t) has the same distri-
bution as e *D(h).

(b) Write D(t+h) = D(h)+ D(t+h) — D(h), and
note that D(t + h) — D(h) has the same distri-
bution as e~ *"D(#).

Y

() M(h) = ~ (1 —e ") = Auh + o(h)

(d) M'(t) = Ape ™

(e) M'(t) = Ap— aM(t)

70. (a) Let A be the event that the first to arrive is the
first to depart, let S be the first service time,
and let X(t) denote the number of departures
by time ¢t.

P(A) :/P(A|S — {)g(t)dt
:/P{X(t) — 0)g(t)dt

_ /e,)\fé G(y)dyg(t)dt

(b) Given N(t), the number of arrivals by ft,
the arrival times are iid uniform (0, f). Thus,
given N(t), the contribution of each arrival to
the total remaining service times are indepen-
dent with the same distribution, which does
not depend on N (t).

(c) and (d) If, conditional on N(t), X is the
contribution of an arrival, then

Ex= [ [ sy - ngivas
e = [ [ s y—02gaas
E[S(t)] = AtE[X] Var(S(t)) = AtE[X?]

71. Let Uy, ... be independent uniform (0, ) random
variables that are independent of N(t), and let

U(;, n) be the i smallest of the first n of them.

N(t)
P{ Z g(Sl) < X}
i=1

1

I
=
T

8(8i) <x|N(t) :n} P{N(t) =n}
1

8(8i) < x|N(t) = ”} P{N(t) = n}

Il
—

Il
=™
o)
—N— — =
'MS

-

Il
—_

[
=11
e

8(WU(in)) < x} P{N(t) = n}

(Theorem 5.2)



72. (a)

(b)

73. (a)

(b)

(©)
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Call the random variable S,. Since it is
the sum of n independent exponentials with
rate A, it has a graze distribution with param-
eters n and A.

Use the result that given S;, = f the set of times
at which the first n — 1 riders departed are
independent uniform (0, f) random variables.
Therefore, each of these riders will still be
walking at time ¢ with probability

1—e M

wut

t
p :/ efu(tfs)ds/t =
0

Hence, the probability that none of the are
walking at time #is (1 — p)" L.

It is the gamma distribution with parameters
nand A.

Forn > 1,
P{N =n|T =t}
_ P{T =N =n}p(1—p)""
fr(t)

where the last equality follows since the
probabilities must sum to 1.

The Poisson events are broken into two
classes, those that cause failure and those that
do not. By Proposition 5.2, this results in 2

75.

76.

(b)

(©

(b)

53

independent Poisson processes with respec-
tive rates Ap and A(1 — p). By independence
it follows that given that the first event of the
first process occurred at time ¢ the number of
events of the second process by this time is
Poisson with mean A(1 — p)t.

Since each item will, independently, be found
with probability 1 — e # it follows that the
number found will be Poisson distribution
with mean A(1 — e #). Hence, the total
expected return is RA(1 — e #) — Ct.

Calculus now vyields that the maximizing
value of t is given by

1 RAu
t_ubg( C )

provided that RAu > C; if the inequality is
reversed then t = 0 is best.

Since the number of items not found by any
time ¢ is independent of the number found
(since each of the Poisson number of items
will independently either be counted with
probability 1 — e~ or uncounted with prob-
ability e ") there is no added gain in let-
ting the decision on whether to stop at time
t depend on the number already found.

{Y;} is a Markov chain with transition proba-
bilities given by

Pyj=aj, Piiayj=aj, j=0,

where
e M(Ar)]
0 = / G (D).

{Xy,} is a Markov chain with transition prob-
abilities

(o)
Piv1j=Bj, j=01,...,iPo= ) Bj
k=it1
where

B = /ewj(!“t)]dp(t).

Let Y denote the number of customers served
in a busy period. Note that given S, the service
time of the initial customer in the busy period, it
follows by the argument presented in the text that
the conditional distribution of Y — 1 is that of the



54 Answers and Solutions

compound Poisson random variable Y Yj,

1
where the Y; have the same distribution as does

Y. Hence,
E[Y|S] =1+ ASE[Y]
Var(Y|S) = ASE[Y?]
Therefore,

1

Y= T

Also, by the conditional variance formula

Var(Y) = AE[S]E[Y?] + (AE[Y])?Var(S)
= AE[S]Var(Y) + AE[S](E[Y])?
+ (AE[Y])*Var(S)
implying that

AE[S](E[Y])? + (AE[Y])?Var(S)

Var(Y) = 1= AE[S]

77. e 1(11)"/n!

78. Poisson with mean 63.

79. Consider a Poisson process with rate A in which an
event at time t is counted with probability A(t)/A
independently of the past. Clearly such a process
will have independent increments. In addition,

P{2 or more counted events in(,t + h) }
< P{2 or more events in(t, t + h)}
=o(h),

and

P{1 counted event in (t,t + h)}

= P{1 counted | 1 event}P(1 event)

+ P{1 counted | > 2 events}P{> 2}

_/ %% (Ah+o(h)) +o(h)

_A)
= T)\h +o(h)

= A()h +o(h).

80. (i) No.
(ii) No.

(i) P{Ty >t} = P{N(t) = 0} = ¢7"") where

m(t) = /Ot)\(s)ds.

81. (i) Let S; denote the time of the ith event, i > 1.

Lett;j+h; < tiyq, th+hy < t.P{t; < S; <
ti+h;, i= 1,...,7’1|N(l‘) = 7’1}
P{leventin (t;,t;+h;), i=1,...,n,
__no events elsewhere in (0, )
P{N(t) =n}

ﬁ m(ti+hy)—m(t; ))[m(ti+hi) —m(t;)]

i=1

o [m(O)=5i m(thy)—m (1)

e O m(B)]" /n!
n T Tim(ti+ o) — m(e)
N [m(£)]"

Dividing both sides by h - - - h;, and using the
fact that m(t; + h;) —m(t;) = /tiJrh A(s) ds =
A(ti)h + o(h) yields upon lettiﬁg the h; — 0:
fsy s, (t1, o taN(t) = 1)

= n!ﬁ[)\(tz)/m t
i=1

and the right hand side is seen to be the joint
density function of the order statistics from a
set of n independent random variables from
the distribution with density function f(x) =
m(x)/m(t), x < t.

(i) Let N(t) denote the number of injuries by time
t. Now given N(t) = n, it follows from part
(i) that the n injury instances are indepen-
dent and identically distributed. The proba-
bility (density) that an arbitrary one of those
injuries was at s is A(s) /m(t), and so the prob-
ability that the injured party will still be out of
work at time ¢ is

A(s) i

t
=/ P tof k at t|injured at
p /0 {outof work at t|injured a S}m(t)

T e A
_/0[1 F(t = )] 4

Hence, as each of the N(t) injured parties have

the same probability p of being out of work at
t, we see that

EX(]IN(8)] = N(t)p

and thus,
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E[X(t)] = pE[N(t)]

= pm(t)
_ /;[1 — F(t—9)]A(s) ds.

Interpret N as a number of events, and correspond
X; to the it" event. Let I, I, ..., Iy be k nonover-
laping intervals. Say that an event from N is
a type j event if its corresponding X lies in I,
j = 1,2,..., k. Say that an event from N is a
type k + 1 event otherwise. It then follows that the
numbers of type j,j =1, ..., k, events—call these
numbers N (Ij), j = 1,..., k—are independent
Poisson random variables with respective means

EIN(I})] = AP{X; € I}} = }\/Ivf(s)ds

The independence of th N(I;) establishes that
the process {N(t)} has independent increments.
Because N(t+h)— N(t) is Poisson distributed
with mean

_N()]=A tt”l F(s)ds

= ARf(t) +o(h)

E[N(t +h)

it follows that

P{N(t+h) — N(t) = 0} = e~ Wf(t)Fo(h))
=1 Mif(t) +o(h)
P{N(t+h)—N(t) =1}
= (Mif(£) +o(h))e™ A o)
= (Anf(t) +o(h)

As the preceding also implies that
P{N(t+h) —N(t) > 2} = o(h)

the verification is complete.

Since m(t) is increasing it follows that nonover-
lapping time intervals of the {N(f)} process
will correspond to nonoverlapping intervals of
the {N,(t)} process. As result, the independent
increment property will also hold for the {N(t)}
process. For the remainder we will use the
identity

m(t+h) = m(t) + A(t)h 4 o(h).

P{N(t+h) — N(t) > 2}

= P{No[m(t +h)] — No[m(t)] > 2}
= P{No[m(t) + A(t)h + o(h)] — No[m(t)] > 2}
=o[A(t)h +o(h)] = o(h).

84.

85.

86.

87.

P{N(t+h)—N(t) =1}

= P{No[m(t) + A(t)h + o(h)] — No[m(t)] = 1}

= P{1 event of Poisson process in interval
of length A(t)h + o(h)]}

— A(t)h+ o(h).

There is a record whose value is between t and
t + dt if the first X larger than t lies between ¢ and
t + dt. From this we see that, independent of all
record values less that t, there will be one between
t and t 4 dt with probability A(t)dt where A(f) is
the failure rate function given by

Alt) = f(8)/[1 — F(B)].

Since the counting process of record values has, by
the above, independent increments we can con-
clude (since there cannot be multiple record val-
ues because the X; are continuous) that it is a
nonhomogeneous Poisson process with intensity
function A(f). When f is the exponential density,
A(t) = A and so the counting process of record
values becomes an ordinary Poisson process with
rate A.

$ 40,000 and $1.6 x 108.

(@) P{N(t)=n} =3¢
(b) No!
(c) Yes! The probability of n events in any interval

of length t will, by conditioning on the type of
year, be as given in (a).

(3t)"n! +.7e > (5¢)"n!.

(d) No! Knowing how many storms occur in an
interval changes the probability that it is a
good year and this affects the probability dis-
tribution of the number of storms in other
intervals.

(e) P{good|N(1) =3}
P{N(1) = 3|good} P{good}

~ P{N(1) = 3|good } P{good } + P{N(1)
= 3|bad}P{bad}

(e733%/31).3
~ (e733%/31).3+¢795%/31).7

Cov[X(t), X(t+5s)]

(1),
= Cov[X(t), X(t) + X(t +5) — X(¢)]
= Cov[X(t), X(t)] + Cov[X(t), X(t +s) — X(t)]
= Cov[X(t), X(t)] by independent increments
= Var[X(t)] = AtE[Y?].
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88. Let X(15) denote the daily withdrawal. Its mean
and variance are as follows.

E[X(15)] =12-15-30 = 5400
Var[X(15)] =12-15-[30-30 + 50 - 50] = 612.000
Hence,
P{X(15) < 6000}

_P{X(15)—54OO< 600 }
V612,000 ~ /612,000

= P{Z < .767} where Z is a standard normal

= .78 from Table 7.1 of Chapter 2.

89. Let T; denote the arrival time of the first type i
shock,i=1,2,3.

P{Xl >5,Xp > t}
= P{Tl >s,T3 >5s,T, >t,T3 > t}
= P{Tl >s,T) >t, T3 > max(s, i’)}

A

3max(s, t)

=e Mg Mate”

90. P{X; >s}=P{X; >s,X; >0}
— oM p A

— o~ MtA3)s.

91. To begin, note that

n
P|X:>Y X
2
= P{X;> X} P{X; — Xo > X3|X;> X3}
= P{Xl —Xp — X3> X4|X1> X2+X3}
:P{Xl_X2"'_ n71>X;1|X1>X2
+oo X1}
=(1/2"".
Hence,
n n n
PIM>Y X;—Mp=Y PIXi>) X;
i=1 i—1 j#i
=n/2" L.
92. Myp(t) =) J;
i

where J; = { 1 if bugicontributes 2 errors by ¢

0 otherwise

and so

E[My ()] = ¥ P{N;(5) =2} =Y e (A1) /2.

93. (i) max(X;, Xp) +min(X,, Xp) = X; + Xo.

(if) This can be done by induction:

max{(Xy,...,Xy)
= max(X;, max(X,,..., X))
= Xj+max(X,,..., X,)
—min(X;, max(X,,..., X))
= X1+ max(X,,..., X,)
—max(min(X;, Xz),..., min (X;, Xy)).
Now use the induction hypothesis.
A second method is as follows:

Suppose X1 < Xp < --- < X;). Then the coef-
ficient of X; on the right-side is

N U PR

_ (1 N 1)717i
0, i#mn
11, i=mn,

and so both sides equal X;,. By symmetry the
result follows for all other possible orderings
of the X’s.

(iif) Taking expectations of (ii) where X; is the
time of the first event of the i process yields
YA =LY+

i i <j
+ ZZZ(Ai—'—A]‘—’_Ak)il —
i <j<k

-1
+ (—1)mHt [Z 7\1']
1

94. (i) P{X >t}
= P{no events in a circle of area rt*}

_ 2
:e)\rt_
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(ii) E[X]:/OOO P{X > t}dt

o0
= / e dt
0

o0
e /2y by x = tV2Ar

~ V2ra Jo
1
2V/A

where the last equality follows since
o0
1/V Zr/ e 2y = 1/2 since it represents the
0

probability that a standard normal random
variable is greater than its mean.

/xg( x)e ™ (xt)"dx

'~ e

Conditioning on L yields

E[L|N(t)

xt V'dx

96.

EIN(s)IN() = n]
= E[E[N(s)|N(t) = n, L]IN(t) = n]

E[n +L(s —t)|N(t) = n]

=n + (s —t)E[L|N(t) = n]
For (c), use that for any value of L, given that there
have been n events by time t, the set of n event

times are distributed as the set of # independent
uniform (0, t) random variables. Thus, for s < t

E[N(s)|N(t) =n] = ns/t
E[N(s)N(t)|L] = E[E[N(s)N(#)[L, N(s)][L]
= E[N(s)E[N(t)[L, N(s)]|L]
= E[N(s)[N(s) + L(t —s)]|L]
= E[N?(s)|L] + L(t — s)E[N(s)|L]
= Ls+ (Ls)* + (t — s)sL?
Thus,

Cov(N(s), N(t)) = smy + stmy — stm?






1. Let us assume that the state is (1,

Chapter 6

m). Male i mates
at a rate A with female j, and therefore it mates at a
rate Am. Since there are n males, matings occur at
a rate Anm. Therefore,

V(n,m) = Anm.

Since any mating is equally likely to result in a
female as in a male, we have

1
= P(n,m)(n,m+1) = 2"

P(n,m); (n+1,m)
. Let N4(t) be the number of organisms in state
A and let Np(t) be the number of organisms
in state B. Then clearly {Na(t);Np(t)} is a
continuous-Markov chain with

Vi, my = an+ pm

P — an
{n,m}; {n—1;,m+1} an + Bm

_ _ pm
P{n,m};{n+2;m71} = an+ /371’[

. This is not a birth and death process since we need
more information than just the number working.
We also must know which machine is working. We
can analyze it by letting the states be

b : both machines are working

1:11is working, 2 is down

2:2is working, 1 is down

01: both are down, 1 is being serviced

0,: both are down, 2 is being serviced.

Up= M1+ Hp, U1 = M1+ M, V2= U,

0o, = Vo, = H

Poi= i m =1 P2 Puv= i
:1—13102

Py = H-le =1=Py0, Po,1=Py2=1

59

. Let N(f) denote the number of customers in the

station at time ¢. Then {N(#)} is a birth and death
process with

An = Aoy,  Hp = K.

. (@) Yes.

(b) Itis a pure birth process.

(c) If there are i infected individuals then
since a contact will involve an infected and
an uninfected individual with probability
i(n—1i)/(3),it follows that the birth rates are
Ai=Ai(n—1i)/(3), i=1,...,n. Hence,

Zl/

E[time all infected] =

. Startingwith E[Tp] = — = %,employ the identity
_ 1 M
E[Tz] - }Tl + )TiE[Tzfl}

to successively compute E[T;] fori =1, 2, 3, 4.

(@) E[To]+---+E[T3].
(b) E[T2] + E[T5] + E[T4].
. (a) Yes!
(b) For n=(ny, ..., nj, niy1, ..., np_1) let
Si(n —(7’11 RCE VRS | +1/ -~-/nk71)/
i=1,...,k—2
Sk—1(n) = (n1, ..., i, niq, ...meq — 1),
So(n) = (7’11+1 s iy g1, -y g1)-
Then
qn, S1(n) = nju, i=1,...,k—-1
qn, So(n) = A.

. The number of failed machines is a birth and death

process with
Ao =2A
A=A

o= =p
LlnIO,T’l#l,Z



60

10.

Answers and Solutions

Ay =0,n> 1.
Now substitute into the backward equations.

Since the death rate is constant, it follows that as
long as the system is nonempty, the number of
deaths in any interval of length ¢ will be a Poisson
random variable with mean ut. Hence,

Pyt =e M (ut) /(- ), 0<j<i

Poo(t) = ¥ e (ut)¥ /K.
k=i

0, if machine j is working at time ¢
Let I i (t) = .
1, otherwise.

Also, let the state be (I (), I(1)).

This is clearly a continuous-time Markov chain
with

V00,00 = M + A2 A0,0); 0,1) = A2 A0,0); (1,0) = M
v(0,1) = M+ 12 A0,1); (0,00 = H2 Ao,1); (1,1) = M
V(1,00 = M1 1 A2 A1,0; (0,0) = H1 A(1,0; (1,1) = A2

V(1,1) = M1+ H2 A1, 1); (0,1) = M1 A1, 1); (1,00 = A2

By the independence assumption, we have
@) P, jyx,0)(t) = P iy () Q0 (1)

where P; ((t) = probability that the first machine
be in state k at time ¢ given that it was at state i at
time 0.

Qj,¢(t) is defined similarly for the second
machine. By example 4(c) we have

Poo(t) = [Are™ HM ] /(Ag + )
Pio(t) = [u1 — pae” A /(Ag + ).
And by the same argument,

Pri(t) = [pre” H20F 4 ]/ (Mg + )
Poi(t) = [Ar = Are™ B4 /(Ag + ).

Of course, the similar expressions for the sec-
ond machine are obtained by replacing (A1, 11) by
(A2, p2). We get P(; iy, ¢)(t) by formula (a). For
instance,

P(o,0)(0,0)(t) = P(o,0)(£)Q(0,0)(t)
{}\le*(hﬂil)f + lll} {)\Ze*(Aﬁuz)t + P‘Z}
(A1 + 1) (A2 + 2)

Let us check the forward and backward equations
for the state {(0, 0); (0, 0)}.

Backward equation

We should have
A
P(loro),(olo)(t) = (Al + AZ) {MTZMP(OJ)(O,O)(IL)
A
+;\1T1;\2P(1,0)(0,0)(f) - P(O,O)(O,O)(t)]/

or

Plo, 0(0,0)(t) = A2P(0,1)(0,0) () + A1P1,0)(0,0) ()
— (M +A2) P(g,0)(0,0) (£)-

Let us compute the right-hand side (r.h.s.) of this
expression:

r.h.s.
) )\le—(Aﬁ-ul)f + Hl} [“2 _ uze—(#ﬂ-)\z)f
e (A1 + 1) (A2 + p2)
[y — ule_(Mm)t] [Aze—()\2+u2)t + o]
_l’_ L J

(A1 + 1) (A2 + p2)
— (M +A2)

[Ale*(ﬂﬁm)t + P‘l} [)\Ze*(hﬂu)t + Plz}
(A4 1) (A2 + p2)

A [Ale*(Alﬂq)t + Hl}
(A1 +11) (A2 + p2)

X {P—z — ppe~ (2 tA)t _ 3 o= (Aatm)t _ #2}

M [Aze*(Azﬂiz)f 4 “2}
(A1 + 1) (A2 + p2)

X {Hl - “15*(H1+)\1)t — g — Ale*(Alﬂil)t}

_ [—AZe—(Aeruz)t} [Ale_()\AllTiJr”l}

—(Aptu)t
o= (M)t | A2e + 1
+ [Fhe ] [ Ax 4 2 }

= Qb (1) Poo(t) + Py () Qoo (t) = [Poo(t) Qoo ()]’
= [P(o,o)(o,o)(t)]/~

So, for this state, the backward equation is
satisfied.
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Forward equation

According to the forward equation, we should
now have

Plo,0)(0,0) (1) = H2P(0, 0)(0,1) () + 11P(0,0)(1,0) (1)
— (A1 4+ M) P, 0)(0, 0) ()-

Let us compute the right-side:

r.h.s.

[}\le—(#l +A)t + Iil} [)\2 _ }\ze—(Az-Hiz)t}
(A1 + 1) (A2 + p2)

= H2

[7\1 - Ale_(Al+#l)t:| {Aze—(Azﬂtz)f + !12}
(A4 11)(A2 + p2)

+H

[;\16—(#1+7\1)f + ﬂl} [;\26—(#2+7\2)f + HZ}

—(A1 4 Ap) (A1 + 1) (A2 + p2)

[)\16—(#1+A1)f + !il}
N (A1 + 1)

-PLZAZ — A~ (Matm)t _ 3, [;\26—(#2+7\2)f + ”ZH
Ay + 12

_)\Ze—(uz-l-)\z)f + “2}
T At m)

1 [Al - )\1e—(A1+u1)t} —M [A16_(“1+A1)t t ”1H
. M+ )

=t [ 054+ ) [ 0]

= Poo(£)QGo(t) + Quo(£)P'00(t) = [Pro0)00)(8)]

In the same way, we can verify the Kolmogorov’s
equations for all the other states.

11. (b) Follows from the hint upon using the lack
of memory property and the fact that ¢;, the
minimum of j — (i — 1) independent expo-
nentials with rate A, is exponential with rate
(j—i+1)A.

(c) From (a) and (b)

P{T1+~-+T]-§t}:P{max X,-St}

1<i<j

=(1—e )i

12.

(d) With all probabilities conditional on X(0) = 1

Pyj(t) = P{X(t) = j}
=P{X(t) = j} - P{X(t) = j+ 1}
=P{Ty+ - +T; <t}
—P{Ty+ -+ Tjy1 < t}

(e) The sum of independent geometrics, each
having parameter p = ¢~ is negative bino-
mial with parameters i, p. The result follows
since starting with an initial population of i is
equivalent to having i independent Yule pro-
cesses, each starting with a single individual.

(a) If the state is the number of individuals at time
t, we get a birth and death process with

A =nA+0 n<N
Anp =nA n>N
Up = nu.

(b) Let P; be the long-run probability that the
system is in state i. Since this is also the pro-
portion of time the system is in state i, we are

o0
looking for Z P;.
i=3

We have Akpk = ‘le+1Pk+1.

This yields
P1=€P0
u
A0 8(A+0)
P, = 20 P = 22 Py
2A 46 0(A+0)2A+ 0
by PAt0, _OA402A+0)
2p 61
For k > 4, we get
(k=12
Pk_ k'u Pk—]/

which implies

(k=1)(k=2)--(3) [A]
"= Tk-1- @ L]

3TA k-3
peila]

therefore f P, =3 {ErPg,
k=3 A
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but OZO: % [Ar = log [1}

00 2
En=sls] oalis] 22 2]
O(A+0)(2A+6)

6;13

Po.

Now Z P; = 1 implies
0

6 6(A+6) 1
Pp= |1+ -+ "t —0(A+0)(2A+6
o= |12 S0 +0)21+0)
2 _1
s ] - 22T
p—A w2 |u
And finally,

o 1 n A 1[A]?
Po=||—||log|—|-=—-2|%
kgg,k HzPHOg[u—?\} u Z[MH

6 O6(A+06
8(A+6)(2A +6) / 1+—+(7+2)
H 2u
O(A+6)(2A + 6)
+ 3
21

<[oeiz] 330}

With the number of customers in the shop as the
state, we get a birth and death process with

A=M=3 m=mw=4

Therefore

3 2
P=1R P=3 P1:H Py.

2
And since Z P; =1, we get
0

Py =

2 -1
NIRRT
4 4 37

(@) The average number of customers in the
shop is
3 31°
—+2 || | P

271
3. [3 30
1+ + |3

P+ 2P, =

_ 0

~ 16 4 37

(b) The proportion of customers that enter the
shop is
Al—-P) - 9 16 28
o S iThElmgeg =

(c) Now pu =38, and so

71
3 [3 64
1+ 2+ |3

Py = - 2=
0 8|8 97

So the proportion of customers who now enter
the shop is

31% 264 9 88
I=h=1- M o7 1Ty T o
The rate of added customers is therefore
88 28 88 28
Mol - 3] =0 5 - ] —oss
The business he does would improve by 0.45
customers per hour.

14. Letting the number of cars in the station be the
state, we have a birth and death process with

A=A =A=20, A =0,i>2,
m = pp = 12.
Hence,
5 5 512
Py ==-Py, P, ==-P=|=-| P
1 30/ 2 31 |:3:| 0s
5 513
P3=—-P=|=| P
3 32 |:3] 0

3
and as Z P, = 1, we have
0

-1
P PO TR E-) i 1
0 3713 3 T 272
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(a) The fraction of the attendant’s time spent ser-
vicing cars is equal to the fraction of time
there are cars in the system and is therefore
1— Py =245/272.

(b) The fraction of potential customers that are
lost is equal to the fraction of customers that
arrive when there are three cars in the station
and is therefore

5 3
Py = M Py = 125/272.

With the number of customers in the system as the
state, we get a birth and death process with

A=A =A=3A=0,
=2y =z =4.

i>4,

Therefore, the balance equations reduce to

3 3 9 3 27
And therefore,

poof143,.9,27]"_32
0= 2 "8 32| T 143

(a) The fraction of potential customers that enter
the system is

A(l—-P;) 27x£—11—6
327 143 143"
(b) With a server working twice as fast we would

get

3 3 312 313
1 4 012 1 1 |:4] 0143 [4:| 0s

B -

and Py = 1 1 1

So that now

27 1 64 148

1-P=1-27= =

175 175
Let the state be

0: an acceptable molecule is attached
1: no molecule attached

2: an unacceptable molecule is attached.

Then this is a birth and death process with balance
equations

T 175

17.

18.

n
P = =P,
12 = 570
A(l— 1-
p= =¥, (-,
H1 x M

2
Since ) P; =1, we get
0

11—« -1
Py 14t Loam
Ax ax
Aapy

C Aap + i+ AL — )

Py is the percentage of time the site is occupied by
an acceptable molecule.

The percentage of time the site is occupied by an
unacceptable molecule is

P2:1—OC&P Al —a)u

a 0 Ao+ AL o)y

Say the state is 0 if the machine is up, say it is i
when it is down due to a type i failure, i = 1, 2.
The balance equations for the limiting probabili-
ties are as follows.

APy =P+ P
Py = ApPy

Py =A(1—p)P
Py +P +P =1

These equations are easily solved to give the
results

Po=(14Ap/u+A(1—p)/u2) "}
Py = ApPy/u1,  Po=A(1—p)Py/ua.

There are k + 1 states; state 0 means the machine
is working, state i means that it is in repair phase
i, i=1,...,k. The balance equations for the limit-
ing probabilities are

APy = Py
mP = AP
wiPi=pi 1P, i=2,...k
Pot- 4+ D =1.

To solve, note that

wili = pi1Pig = pi 2P o=+ =AR.
Hence,

Py = (A/wi)Po,
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and, upon summing,

1="n,

k
1+ 21(7\/141‘)1 :

i=
Therefore,

k

1
1+ Z(A/P—i)] , Pi= (A )P,

i=1

Py =

i=1,...,k

The answer to part (a) is P; and to part (b) is Fp.

There are 4 states. Let state 0 mean that no
machines are down, state 1 that machine one is
down and two is up, state 2 that machine one is
up and two is down, and 3 that both machines are
down. The balance equations are as follows.

(A1 +A2)Py = 1 Py + uo Pp

(u1 + A2)Pr = APy + w1 P3

(M + )Py =AD

P =Py + P

Py+ P+ P+ P3=1.

These equations are easily solved and the
proportion of time machine 2 is down is P, + P3.

Letting the state be the number of down machines,
this is a birth and death process with parameters

A=A,

i=0,
pi=p i=1

1
,2.
By the results of Example 3g, we have that
E[time to go from 0 to 2] = 2/A + /A2,

Using the formula at the end of Section 3, we have
that

Var(time to go from 0 to 2)

= Var(Ty) + Var(Ty)

1 1 H H 22
==+t =+—=(2/A A%)*.
AT T T aGAT )
Using Equation (5.3) for the limiting probabilities
of a birth and death process, we have that

1+A/u

P, P = .
O T T (A2

21.

22.

23.

How we have a birth and death process with
parameters

A=A i=1,2
Wi = l‘LL, i=1,2.
Therefore,

1+ A
Py+ P = /‘Ll

L+ A u+ (A/p)?/2

and so the probability that at least one machine is
up is higher in this case.

The number in the system is a birth and death pro-
cess with parameters

A=A/(n+1), n>0
u“ﬂ = "L/ n Z 1
From Equation (5.3),

1/Py=1+ i (A/p)" /nt = MM
n=1

and
Py =Py(A/w)" /nt = e MH(A )" /nl, n > 0.
Let the state denote the number of machines that

are down. This yields a birth and death process
with

3 2 1 )
AO 10, Al 101 AZ 10/ Al 0/ [ 3
L2222
#1—8/U2—8/IJ3—8-
The balance equations reduce to
3/10 12
Py =—""—Py=—P
1= 980" 50
2/10 4 48
Py=—-—P =—-P = —P,
27 2/8 ' 51T 2570
p 110, 4, 192
T 2/8° %710 0 250

3
Hence, using Z P; =1, yields
0

12 48 19217°' 250
1+ =+ 2+ =

Py = 2o = =22
0 5 " 25 ' 250 1522

(a) Average number not in use

2136 1068

= P14+ 2P 43 = 1055 = e
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(b) Proportion of time both repairmen are busy

672 336

— Pyt Py = 4= =22
2105 = 7555 < 761

We will let the state be the number of taxis wait-
ing. Then, we get a birth and death process with
An = 1uy = 2. Thisisa M/M/1, and therefore,

(a) Average number of taxis waiting = Y ! 3
1

1= 1.

(b) The proportion of arriving customers that get
taxis is the proportion of arriving customers
that find at least one taxi waiting. The rate
of arrival of such customers is 2(1 — Py). The
proportion of such arrivals is therefore

2(1-Py) B Al A 1

If N;(t) is the number of customers in the ith
system (i = 1,2), then let us take {N7(t), N,(t)}
as the state. The balance equation are with
n>1m>1.

(@) APy, 0 = m2Po,1

(b) Py, 0(A+ 1) = APy—1,0 + H2P,1

(€) Po,m(A+u2) = m1Pr,m-1+ 2P, ms1

(d) Pu,m(A+ 1+ 12) = APyt m + H1Pai1, m—1
+PL2Pn, m+1-

We will try a solution of the form Ca 3™ = Py, .
From (a), we get

A
AC=mCR=B=—.

H2
From (b),
(A+ 1) Ca = ACa" ! + i, Ca 3,

or
A
@+uﬂa==k+maﬁ=wﬁ+maﬁ==A+Am

A
and pa=A=>a=—.
H1

To get C, we observe that Z Pom=1,

n,m

but
" m 1 1
T Pun=CE@ L8 =C || [15).

and C = [1—A] [1—}\].
I 12

26.

27.

28.

Therefore a solution of the form Ca” 3" must be
given by

- -2

It is easy to verify that this also satisfies (c) and
(d) and is therefore the solution of the balance
equations.

Since the arrival process is Poisson, it follows that
the sequence of future arrivals is independent of
the number presently in the system. Hence, by
time reversibility the number presently in the sys-
tem must also be independent of the sequence of
past departures (since looking backwards in time
departures are seen as arrivals).

It is a Poisson process by time reversibility. If
A > bpu, the departure process will (in the limit)
be a Poisson process with rate éu since the servers
will always be busy and thus the time between
departures will be independent random variables
each with rate op.

Let P}, Vi denote the parameters of the X(t) and

P%,Viy of the Y(t) process; and let the limiting
probabilities by P, P/, respectively. By indepen-
dence we have that for the Markov chain
{X(t),Y(t)} its parameters are

%w:W+W

P, S = pr
(0,3, 6 = VE+ VY ij

1

Vy

_ ‘ y
P, o, (i, 1) = T ng Py

1

and

lim P{(X(), Y(£) = (i, )} = PP

t—o00

Hence, we need show that

Y — Y
PXP/VFPE = P¥P!VIP3.
[That is, rate from (i, ¢) to (j, ¢) equals the rate
from (j, £) to (i, ¢)]. But this follows from the fact
that the rate from i to j in X(t) equals the rate from
jtoi; thatis,
PyV{Pj = P;V;Pj.
The analysis is similar in looking at pairs (i, ¢) and

(i, k).
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(a) Let the state be S, the set of failed machines.
(b) Forie S,je S,

qs,s—i = Hi/|S|,qs, 54 = Ajs

where S —iis the set S with i deleted and S + j
is similarly S with j added. In addition, |S|
denotes the number of elements in S.

(©) Psqs,s—i = Ps—ifs—i,s-
(d) The equation (c) are equivalent to
Pspi/|S| = Ps_iAi
or
Ps = Ps_;|S|Ai/ -
Iterating this recursion gives

Ps = Po(ISD!TT (Ai/mi),

i€S

where 0 is the empty set. Summing over all S
gives

1—POZ ISDITT (Ai/ i),

i€S

and so

(ISDTT (Ai/ mi)

PS i€S

L (ST i/mi)

S i€S

As this solution satisfies the time reversibility
equations, it follows that, in the steady state,
the chain is time reversible with these limiting
probabilities.

Since A;; is the rate it enters j when in state i, all
we need do to prove both time reversibility and
that P; is as given is to verify that

n
Akjpk = A]kP]ZP] =1.
1

Since Ay; = Aj, we see that P; = 1/n satisfies the
above.

(a) This follows because of the fact that all of
the service times are exponentially distributed
and thus memoryless.

(b) Let n:(nl,...,n,-,...,nj,...,nr),
n;>0 and let n'= (ny,....n;—1,...,
nj—1,...,n;). Thenq, , = p;/(r —1).

where

. The states are 0, 1, 1/,

(c) The process is time reversible if we can find
probabilities P (1) that satisfy the equations

P(n)pi/(r = 1) = P(n")u;/(r = 1)

where 1 and 1’ are as given in part (b). The
above equations are equivalent to

wP(n) = i/ P(n').

Since n; = n';+ 1 and n'; = n;+ 1 (where
ny refers to the Kt component of the vector n),
the above equation suggests the solution

P(n) = C [T (1/m)"k
k=1

where C is chosen to make the probabili-
ties sum to 1. As P(n) satisfies all the time
reversibility equations it follows that the chain
is time reversible and P(n) given above are the
limiting probabilities.

n,n > 2. State 0 means the
system is empty, state 1 (1') means that there is
one in the system and that one is with server 1 (2);
state n,n > 2, means that there are n customers in
the system. The time reversibility equations are as
follows.

(A/2)Py = Py
(A/2)Py = pa Py

APy =Py

APy =P

APy =uP,iq,n>2

where 1 = pj + pp. Solving the last set of equa-
tions (with n > 2) in terms of P, gives

Py = (A/IJ)PH

= (A/uw)?Py_y=---=
That is,
Pn+2 = (A/LL)HP;)_, n > 0.
Equations three and four yield that
Py = (12/A)P,
Py = (/)P
The second equation yields that
Py = (2u2/A)Py = (21112 /A*) P

Thus all the other probabilities are determined in
terms of Py. However, we must now verify that the

(A/1)" P,
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top equation holds for this solution. This is shown
as follows.

Py = (2111 /A)Py = (2p112/A%) Pa.

Thus all the time reversible equations hold when
the probabilities are given (in terms of P,) as
shown above. The value of P, is now obtained
by requiring all the probabilities to sum to 1. The
fact that this sum will be finite follows from the
assumption that A/p < 1.

Suppose first that the waiting room is of
infinite size. Let X;(t) denote the number of cus-
tomers at server i,i = 1, 2. Then since each of
the M/M/1 processes {X;(t)} is time reversible,
it follows by Problem 28 that the vector process
{(X;(t), X,(t)),t > 0} is a time reversible Markov
chain. Now the process of interest is just the trun-
cation of this vector process to the set of states A
where

A={0,m):m<4}yU{(n,0):n <4}
U{(n, m):nm>0,n+m <5}.

Hence, the probability that there are n with server 1
and n with server 2 is

Py, =k(A1 /)" (1 = Ar/m1) (A/p2)™ (1 = Az / m2),
= C(Ar/m)"(A2/m2)™, (n,m) € A.

The constant C is determined from

ZPn,n :11

where the sum is over all (1, m) in A.

The process {X;(t)} is a two state continuous time
Markov chain and its limiting probability is

Hm P{X;(1) =1} = w/(i+A), i=1,....4

(a) By independence,
proportion of time all working

. P
i=1

(b) Itis a continuous time Markov chain since the
processes {X;(t)} are independent with each
being a continuous time Markov chain.

(c) Yes, by Problem 28 since each of the processes
{X;(t)} is time reversible.

(d) The model which supposes that one of the
phones is down is just a truncation of the pro-
cess {X(t)} to the set of states A, where A

includes all 16 states except (0, 0, 0, 0). Hence,
for the truncated model

P{all working/truncated}
= P{all working}/(1 — P(0,0,0,0)
4
(1i/ (1 + Ai)
=1

1

1T/ (A + )

i=1

~

35. We must find probabilities P' such that

Pinqzr'lj = P]nq?z

or

cPiqij="Plqji, ficAj¢A
Pigij=cPiqj, ifi¢ AjeA
Pigij = Pjqji,  otherwise.

Now, Pig;j = P;q;; and so if we let

kP/C
pr i
i kPi

ifiec A
ifig A
then we have a solution to the above equations. By

choosing k to make the sum of the P}’ equal to 1, we
have the desired result. That is,

k:(gpi/c_zpi>1.

icA i¢A

36. In Problem 3, with the state being the number of
machines down, we have

UoZZAP(),l:l

Piy= 51

= = PL
aEATR R = G T

vp=p P =1

We will choose v =2A =2y, then the uniformized
version is given by

v} =2(A+p) fori =0,1,2
2A A

Pn:]_— =

o 20+ (A+p)

pn_ _2A A

NT2A k) (A+w)

n Atp p

724w (A+w) 20 +n)



68 Answers and Solutions

Adtp 1
n _q__2TH _ 2
P =1 2A+u) 2
L At A2
U2+ A+ 2(A+p)
u
o
A7 204 )
proq_ M 2Atu
22 20+ 2A+p)

37. The state of any time is the set of down
components at that time. For S C {1,2,...,n},
i¢S,jes

E](S, S + l) = )\1‘
9(S,5 = j) = njals!

where S+i=SU{i},S—j=SN{j}%|S| = num-
ber of elements in S.

The time reversible equations are
P(S)alS = P(s—i)A;, ies
The above is satisfied when, for S = {iy,1,..., i}

- -~ k(;fﬂ)/zp(d’)
Hiy My = -+ i, o

where P(¢) is determined so that

Y P(s)=1
where the sum is over all the 2" subsets of
{1,2,...,n}.

P(S)

38. Say that the process is “on” when in state 0.

(a) E[0(t+h)]=E[0(t) + ontimein (¢ t+ h)]
n(t) + E[on timein (¢, + h)]

Now
Elontimein (¢t +h)|X(t) = 0] = h+o(h)
E[on timein (¢, t+ h)|X(t) = 1] = o(h).
So, by the above
n(t+h) =n(t) + Py (t)h + o(h).
(b) From (a) we see that

n(t+h) —n(t)
h
Let i1 — 0 to obtain
n'(t) = Poo(t)
i A

At

= Poo(t) + O(h)/h

—(A+)t

= +
At

39.

40.

41.

Integrating gives

n(t)

wut A

_ —(A4p)t
T Ate 1t MRS

Since m(0) = 0 it follows that C = A/(A + p)2.

E[0(t)]x(0) = 1] = ¢ — E[time in 1|X(0) = 1]

At W

TAvn Gl )

=t

The final equality is obtained from Example 7b (or
Problem 38) by interchanging A and p.

Cov[X(s), X(1)] = E[X(s)X ()] — E[X(s) | EX ()
Now,

XOXO={5 gherine

Therefore, for s <t
E[X(s)X (1)
= P{X(s) = X(t) =1|X(0) = 0}
= Pyo(s)Poo(t — s) by the Markovian property

= ol e (R A )
n

Also,
E[X(s)]E[X(t)]

= ()\+1 7 [+ Ae=(AHHs] [ 4 Ae=(AH)t,
u

Hence,
Cov[X(s), X(t)]

()H— )2 [;i + Ae—()\-i—p.)s];\e—()\-&-u)t[e()\+u)s _ 1]'
u

(a) Letting T; denote the time until a transition
out of i occurs, we have

Py =P{X(Y) = j} = P{X(Y) = j | T, < Y}

0; .
X o +PIX(Y) = Y < T}y
5

. A
— . p .U j
_%Plkpkfvi—ll—)\ At

The first term on the right follows upon con-
ditioning on the state visited from i (which
is k with probability Pj) and then using the
lack of memory property of the exponential
to assert that given a transition into k occurs
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before time Y then the state at Y is probabilis-
tically the same as if the process had started in
state k and we were interested in the state after
an exponential time with rate A. As g = v; Py,
the result follows.

From (a)
(A+01)P;j =Y quPej + A5
or ‘
—A6ij =Y. riBj — AP;
or, in matfix terminology,
—AI=RP — AIP
= (R—AD)P,
implying that
P=-AI(R—AI)'=—R/A-D""
=(I—-R/A)L

Consider, for instance,

PEX (Y1 +Y2) = jIX(0) = i}
= ;P{X(Yl +Y2) = jIX(Yy) =k, X(0) = i)
P{X(Y) = k|X(0) = i}
= ;P{X(Yl +Y7) = j|X(Y;) = k} Dy
= ;P{X(Yz) = j1X(0) = k} Py

=Y PP
k

42.

(d)

(a)

(b)

69

and thus the state at time Y; + Y» is just the
2-stage transition probabilities of P;;. The gen-
eral case can be established by induction.

The above results in exactly the same approx-
imation as Approximation 2 in Section 8.

The matrix P* can be written as
P*=1+R/v,

and so Pjj" can be obtained by taking the i, j

element of (I + R/v)", which gives the result
when v = n/t.

Uniformization shows that P;;(t)=E {P;}N } ,
where N is independent of the Markov chain
with transition probabilities P;; and is Poisson
distributed with mean vt. Since a Poisson ran-
dom variable with mean vt has standard devi-
ation (vt)l/ 2, it follows that for large values of
ot it should be near vt. (For instance, a Poisson
random variable with mean 10° has standard
deviation 103 and thus will, with high proba-
bility, be within 3000 of 10°.) Hence, since for
fixed i and j, P;j" should not vary much for
values of m about vt when vt is large, it fol-
lows that, for large vt

E {P;}N } ~ Pt

ij »  Wheren = vt.






Chapter 7

1. (a)
2. (a)
(b)

Yes, (b) no, (c) no.

S, is Poisson with mean np.

P{N(t) = n}
= P{N(t) 2 n} —P{N(t) = n+1}
=P{Sy <t} —P{Sy11 <t}

—Ze” nu)k /k!

(1]
= Y e G+ 1)k
k=0
where [t] is the largest integer not exceeding ¢.

3. By the one-to-one correspondence of m(t) and F,
it follows that {N(t),t > 0} is a Poisson process
with rate 1/2. Hence,

P{N(5)=0)=e

4. (a)

(b)

(©

-5/2.

No! Suppose, for instance, that the interarrival
times of the first renewal process are identi-
cally equal to 1. Let the second be a Poisson
process. If the first interarrival time of the pro-
cess {N(t),t > 0} is equal to 3/4, then we
can be certain that the next one is less than or
equal to 1/4.

No! Use the same processes as in (a) for a coun-
ter example. For instance, the first interarrival
will equal 1 with probability e =, where A is the
rate of the Poisson process. The probability will
be different for the next interarrival.

No, because of (a) or (b).

5. The random variable N is equal to N(I) 4+ 1 where
{N(t)} is the renewal process whose interarrival
distribution is uniform on (0, 1). By the results of
Example 2c,

E[N] =

a(l)y+1=e.

71

6. (a)

(b)

Consider a Poisson process having rate A
and say that an event of the renewal process
occurs when ever one of the events numbered
1, 2r, 3r, ... of the Poisson process occur. Then

P{N(t) = n}

= P{nr or more Poisson events by ¢}

= ¥ e M/,

i=nr

E[N(8)]
i P{N(t) > n} = i i e M(An) /it

Z [i/rle M (Ar)! /i,

i=r

[i/1]
Z ML) it =

I
HM8

7. Once every five months.

8. (a)

The number of replaced machines by time ¢
constitutes a renewal process. The time bet-
ween replacements equals

T, if lifetime of new machineis > T
x, if lifetime of new machineis x, x < T.

Hence,
E[time between replacements]

_ /OT xf (x)dx + T[1 - F(T)],

and the result follows by Proposition 3.1.

The number of machines that have failed in
use by time t constitutes a renewal process.
The mean time between in-use failures, E[F],
can be calculated by conditioning on the life-
time of the initial machine as

E[F] = E[E[F |lifetime of initial machine]].
Now

E|[F|lifetime of machine is x|

ifx<T

X,
B { T + E[F], ifx>T.
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Hence,

T
Ewyzé.quw+w+5wpu—pwn
A?ﬁ@ﬂx+TU—FUH

F(T) '
and the result follows from Proposition 3.1.

E[F] =

Ajobcompletion constitutesareneval. Let T denote
the time between renewals. To compute E[T] start
by conditioning on W, the time it takes to finish the
next job.

E[T] = E[E[T|W]].

Now, to determine E[T|W = w] condition on §,
the time of the next shock. This gives

E[TIW = w] = [ E[T|W =w, S = x]Ae " dx

Now, if the time to finish is less than the time of the
shock then the job is completed at the finish time;
otherwise everything starts over when the shock
occurs. This gives

_ 4 [x+E[T] ifx<w
E[T|W—w,S—x]—{w ifx>w"
Hence,

E[T|W = w]
w [e0]
/ x + E[T])Ae Mdx + w /Ae_)‘xdx
0 w )
= E[T)[1=e]4+1/A — we™ — 2 e —we™
Thus,
E[T|W] = (E[T] +1/A)(1 —e ).
Taking expectations gives
E[T] = (E[T] +1/A)(1 — E[e™*"]),
and so
—AW
E[T] = 1-Ef 7]

AE[e "]

In the above, W is a random variable having dis-
tribution F and so

o0
E[e™"] = /e*Awf(w)dw

0

10.

11.

12.

13.

14.

Yes, p/u

N(t) 1

number of renewals in (X3, t)
ot t

Since X; < oo, Proposition 3.1 implies that

number of renewals in (Xj,t) 1
; ——ast—oo

Let X be the time between successive d-events.
Conditioning on T, the time until the next event
following a d-event, gives

d 00
E[X] = / e Mt / (x + E[X]AeMdx
0 d

=1/A+ E[X]e™M

1

Therefore, E[X] = m

(@) E[lX] — A1 —e M)

(b) 1—e M

(@) Njand N; are stopping times. N3 is not.
(b) Follows immediately from the definition of I;.

(c) The value of I; is completely determined
from Xy,...,X;_1 (e.g., I; = 0 or 1 depend-
ing upon whether or not we have stopped

after observing Xj,...,X;_1). Hence, I; is
independent of X;.
(d) Z E[L;] = Z P{N > i} = E[N].
i=1 i=1
(@ E[X1+---+Xy] = E[N{]E[X]
But X; +--- 4 Xy, = 5,E[X] = pand so
E[N;] =5/p.
[X1+ -+ XN, | = E[NJE[X]
E[X] = [Nz} =5p+3(1-p)=3+2p,
E[X;+ -+ Xn,| = (3+2p)p.

(a) It follows from the hint that N(t) is not a stop-
ping time since N(t) = n depends on X4 1.

Now N(t)+1=n(<)N(t) =n—1

(&)X1 4+ X1 <,

Xy 4+ Xy >t

and so N(t)+1=mn depends only on

X1,..., Xu. Thus N(t) + 1 is a stopping time.
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(b) Follows upon application of Wald’s
equation—using N(t) + 1 as the stopping
time.

N(t)+1
(c) Z X; is the time of the first renewal
i=1
after f. The inequality follows directly from
this interpretation since there must be at least
one renewal in the interval between t and
t+m.
N(t)+1
(e t< ) X;<t+M.
i=1
Taking expectations and using (b) yields
t<pu(m(t)+1) <t+M,

or
t—p<pm(t) <t+M-—y,
or
11 m) 1, Mo
poot t u ut -

Let t — oo to see that mit) _ %

(a) X; = amount of time he has to travel after
his ith choice (we will assume that he keeps
on making choices even after becoming free).
N is the number of choices he makes until
becoming free.

N
(b) E[T] =E|) X;| = E[N]JE[X].
1
N is a geometric random variable with
P=1/3,s0
1
E[N] =3,E[X] = §(2+4+6) =4.
Hence, E[T] = 12.
N 1
() E ;X,'|N:n = (n—1)§(4—|—6)+2 =

5n — 3, since given N = n,Xy,...,X,_1 are
equally likely to be either 4 or 6, X, =2,

E (Z;’ Xi) — 4n.
(d) From (c),
N
Y X
1

E —E[5N—3]=15-3 =12.

N
No, since )’ X; = 4 and E[X;] = 1/13 which

1=i
would imply that E[N] = 52, which is clearly
incorrect. Wald’s equation is not applicable since
the X; are not independent.

17.

18.

19.

20.

21.

(i) Yes. (ii) No—Yes, if F exponential.

We can imagine that a renewal corresponds to a
machine failure, and each time a new machine is
put in use its life distribution will be exponential
with rate p; with probability p, and exponential
with rate p, otherwise. Hence, if our state is the
index of the exponential life distribution of the
machine presently in use, then this is a 2-state con-
tinuous time Markov chain with intensity rates

71,2 = (1 —p), g, 1 = tap.

Hence,

Py (t)
= AU e (a1 - )+l )
- ,Li1<1 — P)‘HJZP exp H1 p)tTH2p

wp
pi1(1—p)+pap

with similar expressions for the other transition
probabilities [Py () = 1 — Py1(t), and Py (t) is the
same with ppp and pi(1 — p) switching places].
Conditioning on the initial machine now gives

E[Y(#)]
= PE[Y(H)|X(0) = 1]+ (1 = p)E[Y(£)[X(0) = 2]

_ Py(t) PL(t) B P (t)  Px(t)

Finally, we can obtain m(t) from
plm(t) +1] = t+ E[Y(t)],
where

p=p/m+01-p)/u

is the mean interarrival time.

Since, from Example 2¢, m(t) = d—1,0<t<1,
we obtain upon using the identity t + E[Y ()] =
p[m(t) +1] that E[Y(1)] =e/2 —1.

(Ri+---+Ryp) ER

W, = - =
T (Xi++Xy)/n EX

by the Strong law of large numbers.

HG
p+1/A7

where i is the mean of G.
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23.

24.

Answers and Solutions

Cost of a cycle = C; + CoI — R(T)(1 - I).

1, if X<T

I= where X = life of car.
0, ifX>T

Hence,

E[cost of a cycle]
=C1 +CH(T) — R(T)[1 — H(T)].
Also,
E[time of cycle = / E[time| X = x]h(x)dx
- /Ot xh(x)dx + T[1 — H(T)].
Thus the average cost per unit time is given by
C1+ GH(T) — R(T)[1 — H(T)]
/Ot xh(x)dx + T[1 — H(T)]

From Problem 22 we want to minimize

i
,2<T<8
/Txd—x+T 51 -
2 6 6
18T —20-T?

16T —4-—-T2"

Using calculus the equation can be shown to be
increasing in T for 2 < T < 8, and so the optimal
valueis T = Z.

Let Ny =N denote the stopping time. Because
Xj,i>1, are independent and identically dis-
tributed, it follows by the definition of a stopping
time that the event {N; =n} is independent of
the values X,;;, i >1. But this implies that the
sequence of random variables Xy, 11, Xn, 12, .18
independent of Xj, ..., Xy and has the same dis-
tribution as the original sequence X;, i > 1. Thus if
we let Nj be a stopping time on Xy, 11, Xn;+2, - -
that is defined exactly as is Ny is on the original
sequence, then Xy, 11, Xn; 42, - - -, XNp 4+, 18 inde-
pendent of and has the same distribution as does
X1,...,Xn,. Similarly, we can define a stopping
time N3 on the sequence Xy, N, +1, XNy 1Ny 425 - - -
that is identically defined on this sequence as is Ny
on the original sequence, and so on. If we now con-
sider a reward process for which X; is the reward
earned during period i, then this reward process is

25.

26.

27.

a renewal reward process whose cycle lengths are
Ni, Ny, . ... By the renewal reward theorem,

E[Xy+ -+ Xy]
E[N]

average reward per unit time =

But the average reward per unit time is

n
limy o0 Z X;/n, which, by the strong law of
i=1
large numbers, is equal to E[X]. Thus,
CE[Xi4...XN]
E[X] = EN]

Say that a new cycle begins each time a train is
dispatched. Then, with C being the cost of a cycle,
we obtain, upon conditioning on N (), the number
of arrivals during a cycle, that

E[C] = E[E|C|N(t)]] = E[K + N(t)ct/2]
=k+ Act? /2
Hence,

EIC K
average cost per unit time = % =7 + Act/2

Calculus shows that the preceding is minimized

when t = /2K/(Ac), with the average cost equal
to v2AKc.
On the other hand, the average cost for the N

policy of Example 7.12 is ¢(N — 1)/2 + AK/N.
Treating N as a continuous variable yields that its

minimum occurs N = 1/2AK/c, with a resulting
minimal average cost of V2AKc — ¢ /2.

[c+2c+ -+ (N—1)c]/A+KNc+ AK?c/2
N/A+K
¢(N —1)N/2A+ KNc + AK?c/2
N/A+K ‘

Say that a new cycle begins when a machine fails;
let C be the cost per cycle; let T be the time of a
cycle.

€2 Al g A g

E|IC] =K+ + — —

[ ] AM+A A +A A A1+ A
1 A 1 A 1
E[T] = LI 2
AM+A A+ A A+A A

T the long run average cost per unit time is
E[C]/E[T].
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29.

31.
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For N large, out of the first N items produced there
will be roughly Ngq defective items. Also, there
will be roughly NP inspected items, and as each
inspected item will still be, independently, defec-
tive with probability g, it follows that there will be
roughly NPjq defective items discovered. Hence,
the proportion of defective items that are discov-
ered is, in the limit,

(1/p)*
(/pf—1+1/a

NP1g/Nq = P; =

(a) Imagine that you are paid a reward equal
to W; on day i. Since everything starts over
when a busy period ends, it follows that the
reward process constitutes a renewal reward
process with cycle time equal to N and with
the reward during a cycle equal to Wy + - - - +
Wy Thus E[W], the average reward per unit
timeis E(W; +---+ Wy]|/E[N].

(b) The sum of the times in the system of all
customers and the total amount of work that
has been processed both start equal to 0 and
both increase at the same rate. Hence, they are
always equal.

(c) This follows from (b) by looking at the value
of the two totals at the end of the first busy
period.

(d) It is easy to see that N is a stopping time
for the L;,i>1, and so, by Wald’s Equation,

N
E[ Y L;] = E[L]IE[N]. Thus, from (a) and (c),
welj)%:)tain that E(W] = E[L].

A(t)  t—=SN@)
t t
S
_q_ SN
t
Sy N(1)
N() ¢t

The result follows since Syy;)/N(t)—u (by the
Strong law of large numbers) and N(t)/t—1/p.
P{E(t) > x|A(t) = s}

= P{Orenewals in (¢, + x]|A(t) = s}

= P{interarrival > x +s|A(t) = s}

= P{interarrival > x + sl|interarrival > s}

_1—-F(x+5s)
- 1-F(s)

32.

33.

34.

Say that the system is off at t if the excess at ¢ is
less than c. Hence, the system is off the last c time
units of a renewal interval. Hence,

Proportion of time excess is less than ¢

= E[off time in a renewal cycle]|/[X]

= E[min(X,c)]/E[X]

_ /O (1 — F(x))dx/E[X].

Let B be the amount of time the server is busy in
a cycle; let X be the remaining service time of the
person in service at the beginning of a cycle.

E[B]=E[B|X < t](1 —e M) + E[B|X > t]le™

1
=E[X|X < t](1—eM +(t+>e)‘t
[XIx < 4] ) T

1
:EX—EXX>te’“+(t+>eM
X] ~ E[XIX > 1 T

More intuitively, writing X =B + (X — B), and
noting that X — B is the additional amount of ser-
vice time remaining when the cycle ends, gives

E[B] = E[X] — E[X — B]

11
—— - -P(X>B)
T

B U P

e M
O

The long run proportion of time that the server is
E(B]

tEF1/A°

busy is

A cycle begins immediately after a cleaning starts.
Let C be the cost of a cycle.

3T/4

E[C] :AC2T/4+C1)\/O Gy)dy

where the preceding uses that the number of cus-
tomers in an M/G/oo system at time f is Poisson

t
distributed with mean A / G(y)dy. The long run
0
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average cost is E[C]/T. The long run proportion of

T/4

time of the system is being cleaned is T = 1/4.

35. (i)

(ii)

36. (i)

(ii)

We can view this as an M /G /oo system where
a satellite launching corresponds to an arrival
and F is the service distribution. Hence,

P{X(t) = k} = e 2O ()]} /K1,

where A(f) = A /Ot (1— F(s))ds.

By viewing the system as an alternating
renewal process that is on when there is at
least one satellite orbiting, we obtain

1/
1/A+E[T]’

where T, the on time in a cycle, is the quantity
of interest. From part (i)

lim P{X(t) = 0} =

lim P{X(t) = 0} = e ™,

o0
where p = / (1 —F(s))ds is the mean time
0

that a satellite orbits. Hence,
67}\“ — 1/)‘

1/A+E[T]’
and so

1—e M
BN = S

If we let N;(t) denote the number of times
person i has skied down by time ¢, then
{N;(t)} is a (delayed) renewal process. As
N(t) =} Nj(t), we have

1

N(#) _ vy Nit)
—;hm _;Hi+9i,

where ; and 0; are respectively the mean of
the distributions F; and G;.

For each skier, whether they are climbing up or
skiing down constitutes an alternating renewal
process, and so the limiting probability that
skieris climbing up is p; = p;/(1; + 6;). From
this we obtain

=k} = Z{le]—[ 1—pi)},

i€eS ieS¢

lim P{U(t)

where the above sum is over all of the [Z}

subsets S of size k.

37.

38.

(iii) In this case the location of skier i, whether

(a)

(b)

(0

going up or down, is a 2-state continuous time
Markov chain. Letting state 0 correspond to
going up, then since each skier acts indepen-
dently according to the same probability, we
have

PLU() =k} = || [Poo(O] L = Roo(£)]"

where Pyo(t) = (Ae™ A0 L 1) /(A + ).
This is an alternating renewal process, with
the mean off time obtained by conditioning on

which machine fails to cause the off period.

E[off] = Z E|off|i fails] P{i fails}
i=1

A1 A
1 +(2
(/)A1+A2+A3 )Al—l—Az—"-Ag
A3
+(3/2)— 28
(/)7\1+7\2+/\3

As the on time in a cycle is exponential with
rate equal to A; + Ay + A3, we obtain that
p, the proportion of time that the system is
working is

_ 1A+ A+ A)

B E[C]

where

E[C] = E[cycle time]

21/(7\1 +A2+A3)+E[Off]

Think of the system as a renewal reward pro-
cess by supposing that we earn 1 per unit time
that machine 1 is being repaired. Then, 1, the
proportion of time that machine 1 is being
repaired is

(1/5) 2L

M+ A+ A3
E[C]

By assuming that we earn 1 per unit time
when machine 2 is in a state of suspended ani-
mation, shows that, with s, being the propor-
tion of time that 2 is in a state of suspended
animation,

(1/5)

r =

M

M ) P
M+ A+ A3 M+ A+ A3

Sy =

Let T,  denote the time it takes to go from e to
f, and let d be the distance between A to B. Then,
with S being the driver’s speed
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1 60
E[Ts, ] = 20 Ao E[T4, B|S = s]ds

1 [99d

:270405S

- % log(3/2)

Also,

E[Ty, ] = E[Tg 4|S = 40](1/2) + E[Ts, a|S
— 60](1/2) = %(d/40 +d/60)
—d/48

21*0 log(3/2)

1
%log(3/2)+1/48

E[T4,B] _
E[Ty, ] + E[T3, 4]

(a)

(b) By assuming that a reward is earned at a rate
of 1 per unit time whenever he is driving at a
speed of 40 miles per hour, we see that p, the
proportion of time this is the case, is

1
(1/2)d/40  _ 80

a 1
%log(3/2)+1/48

E[T4, ] + E[Ts, 4]

Let B be the length of a busy period. With S
equal to the service time of the machine whose
failure initiated the busy period, and T equal to
the remaining life of the other machine at that
moment, we obtain

E[B] = [ E[BIS =s]g(s)ds

Now,

E[B|S=s]=E[B|S=s, T <s](1—e ") +E[B|S
=5,T > sle™™
= (s+E[B])(1 —e™7%) 4 se=7
=5+ E[B|(1-e )

Substituting back gives that

E[B] = E[S] + E[BJE[1 — e~

or

40.

41.

42.

43.

44.

Hence,
1/(2A)

Elidlel = 4 o0 T EB]

1/1—-n)
X 1/(1-P)
j=1

alternating renewal process (or by semi-Markov
process) since 1/(1 — P;) is the mean time marks-
man j shoots. Similarly, proportion of time i shoots
_ 1/(1-p)

Y1/(1-p)

/1 (1 — F(x)dx
0 u

Proportion of time 1 shoots = by

12 —x 3, ,
/0 5 dx = zin part (i)

1
/ e dx=1—e¢ Linpart (ii).
JO

X

1
(a) F(x) = O/ey/“dy =1—e /"

X
(b) Fe(x) :% /dy =x/c, 0<x<ec.
0

(c) You will receive a ticket if, starting when
you park, an official appears within 1 hour.
From Example 5.1c the time until the offi-
cial appears has the distribution F,, which, by
part a, is the uniform distribution on (0, 2).
Thus, the probability is equal to 1/2.

Since half the interarrival times will be exponen-
tial with mean 1 and half will be exponential with
mean 2, it would seem that because the exponen-
tials with mean 2 will last, on average, twice as
long, that

_ 1
Fo(x)= %e_x/z + ge_x

With p=(1)1/2+ (2)1/2 =3/2 equal to the mean
interarrival time

_ o F
R = [T H gy
x H
and the earlier formula is seen to be valid.

Let T be the time it takes the shuttle to return.
Now, given T, X is Poisson with mean AT. Thus,

E[X|T] = AT, Var(X|T) = AT

Consequently,
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(@) E[X] = E[E[X|T]] = AE[T]
(b) Var(X)=E[Var(X|T)] + Var(E[X]|T))

= AE[T] + A*Var(T)

(c) Assume that a reward of 1 is earned each time
the shuttle returns empty. Then, from renewal
reward theory, r, the rate at which the shuttle
returns empty, is

,— Plempty}
E[T]

_ [ P{empty|T = t}f(t)dt
E[T]

Je Mf(t)at
E[T)
Ele ]
E[T]

(d) Assume that a reward of 1 is earned each time
that a customer writes an angry letter. Then,
with N, equal to the number of angry letters
written in a cycle, it follows that r,, the rate at
which angry letters are written, is

ra = E[N,]/E[T]

:/E[Na|T = t]f(t)dt/E[T]

o]

:/ A(t—c)f()dt/E[T)

= AE[(T —¢)"]/E[T]

Since passengers arrive at rate A, this implies
that the proportion of passengers that write
angry letters is 75/ A.

(e) Because passengers arrive at a constant rate,
the proportion of them that have to wait more
than ¢ will equal the proportion of time that
the age of the renewal process (whose event
times are the return times of the shuttle) is
greater than c. It is thus equal to F(c).

The limiting probabilities for the Markov chain are
given as the solution of

1
r1="roz +7r
1 22 3
Yo =1
r+r+ry=1
or

2
5

1
rH="ry=—-, 1’325.

2
(a) 7’1*5-
it
b) P, = —"" andso,
®) B YiTiti
2 4 3
Pi=—, P,=—-, Py =—.
1=y =5 B=35

46. Continuous-time Markov chain.

47. (a) By conditioning on the next state, we obtain

48.

the following:
pj = E[time in ]
=Y E[time in i[next state is j]P;;

:Ztijpij-
1

(b) Use the hint. Then,
E[reward per cycle]
= E[reward per cycle|next state is j]P;;
= ;D).
Also,

E[time of cycle = E[time between visits to i].
Now, if we had supposed a reward of 1 per
unit time whenever the process was in state
i and 0 otherwise then using the same cycle
times as above we have that

P — E[reward is cycle] 1L
' E[timeofcycle]  E[time of cycle]’
Hence,

E[time of cycle] = p;/P;,
and so
average reward per unit time = tiiPijP; /i

The above establishes the result since the aver-
age reward per unit time is equal to the pro-
portion of time the process is in i and will next
enter j.

Let the state be the present location if the taxi is
waiting or let it be the most recent location if it
is on the road. The limiting probabilities of the
embedded Markov chain satisfy

T _27'
1_3 3

1
) =711+ =73

3
r+r+r3=1
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Solving, yields
r _1 Ty =7 -3
1=3 Nn=nk=g

The mean time spent in state i before entering
another state is

mp=1+10=11, pp =2+420=22,

2 1 67
=4+ |Z[15+4 |2 |25 =2
RONH.
and so the limiting probabilities are
66 198 201
B g T a6 T s

The time the state is 7 is broken into 2 parts—the
time t; waiting at 7, and the time traveling. Hence,
the proportion of time the taxi is waiting at state i
is P;t;/(t;/ ;). The proportion of time it is travel-
ing from i to jis Pim;;/(t; + ;).

Think of each interarrival time as consisting of n
independent phases—each of which is exponen-
tially distributed with rate A—and consider the
semi-Markov process whose state atany time is the
phase of the present interarrival time. Hence, this
semi-Markov process goes fromstate1to2to3...to
n to 1, and so on. Also the time spent in each state
has the same distribution. Thus, clearly the limit-
ing probabilities of this semi-Markov chain is P; =
1/n,i=1,...,n.To compute lim P{Y(t) < x}, we
condition on the phase at time ¢ and note that if it
is n —i 4 1, which will be the case with probability
1/n, then the time until a renewal occurs will be the
sum of i exponential phases, which will thus have
a gamma distribution with parameters i and A.

]
L XX

(c) Follows from the Strong law of large numbers

since the Xl] are independent and identically
distributed and have mean ;.

(d) This is most easily proven by first consid-
ering the model under the assumption that
each transition takes one unit of time. Then
Nj(m)/m is the rate at which visits to i occur,

which, as such visits can be thought of as
being renewals, converges to

(E[number of transitions between visits]) ~!

by Proposition 3.1. But, by Markov-chain the-
ory, this must equal x;. As the quantity in (d) is
clearly unaffected by the actual times between
transition, the result follows.

Equation (6.2) now follows by dividing numer-
ator and denominator of (b) by m; by writing

m — Ni(m) (m)

and by using (c) and (d).

51. Itis an example of the inspection paradox. Because
every tourist spends the same time in departing
the country, those questioned at departure consti-
tute a random sample of all visiting tourists. On
the other hand, if the questioning is of randomly
chosen hotel guests then, because longer staying
guests are more likely to be selected, it follows that
the average time of the ones selected will be larger
than the average of all tourists. The data that the
average of those selected from hotels was approx-
imately twice as large as from those selected at
departure are consistent with the possibility that
the time spent in the country by a tourist is expo-
nential with a mean approximately equal to 9.

52. (@) P{X;+---+ Xy <Y}
—P{X,+ -+ Xy <Y|X, <Y} P{X, <Y}

=P{X;+ -+ X1 <Y}P{X<Y}

where the above follows because given that
Y > X,, the amount by which it is greater is,
by the lack of memory property, also expo-
nential with rate A. Repeating this argument

yields the result.
) BN = ¥ PIN(Y) 2 n}

I
D2 1
=
~
e

b X, <Y)

3
Il
—_

P{X < Y}n = ﬁ/

Il
18

3
Il
—_

where

P=P{X<Y}= /'P{X < Y|X=x} f(x)dx

= /e‘“f(x)dx —E[e™].
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54. Let T denote the number of variables that need
be observed until the pattern first appears. Also,
let T*° denote the number that need be observed
once the pattern appears until it next appears. Let

p = pirsps

p~t = E[T™]
= E[T| - E[Ty, 2]
=E[T] — (p1p2) "

Hence, E[T] = 8383.333. Now, since E[I(5)I(8)] =

(.1)3(.2)%(.3)%, we obtain from Equation (7.45)
that

Var(T*) = (1/p)* = 9/p +2(1/p)*(:1)*(:2)(:3)?
=6.961943 x 107

Also,

Var(Ty, ) = (.02)72 —3(.02) "1 = 2350

and so

Var(T) = Var(Ty,2) + Var(T®) ~ 6.96 x 107

55. E[T(1)] = (.24) 72+ (.4)~! = 19.8611,
E[T(2)] = 24.375, E[Ty5] = 21.875,
E[T,,1] = 17.3611. The solution of the equations
19.861 = E[M] + 17.361P(2)
24.375 = E[M] + 21.875P(1)
1=P(1)+P(2)
give the results
P(2) ~ 4425. E[M] ~ 12.18
5. (a) 10),10 Y. it/ (10)

(b) Define a renewal process by saying that a
renewal occurs the first time that a run of
5 consecutive distinct values occur. Also, let
a reward of 1 be earned whenever the previ-
ous 5data values are distinct. Then, letting

R denote the reward earned between renewal
epochs, we have that
4
E[R] =1+ Y E[reward earned a time i after
i=1
a renewal]

:Hé (5;Li>/<1io>

=1+46/10+7/15+7/154+6/10
—47/15
If R; is the reward earned at time i then for
i>5
E[R;]=10-9-8-7-6/(10)'° = 189/625

Hence,

E[T] = (47/15)(625/189) ~ 10.362
T T
P{Z X; > x} = P{Z X; > X|T = 0}(1 - p)
i=1 i=1

T
+P{) X; > x|T >0}p
i=1

T
=P{) X;>x|T>0}p

i=1

00 T r
:p/o P{ZXi>xT>O,X1:y}1:ELy)dy
: i=1

X T _
:E/O P{Y X > x|T > 0,X; = y} E(y)dy
i=1
+B/OOF
H Jx
p [ _ p/°°
P [T — ) E(p)dy+ P
u% (x=y)Fdy+ £ |
s oo [ 5

where the final equality used that

m:p:B/ F
uJo



Chapter 8

1.

(a) E[number of arrivals]

= E[E{number of arrivals|service
period is S}]

= E[AS]
=A .
(b) P{0 arrivals}

= E[P{0 arrivals|service period is S}|
= E[P{N(S) = 0}]
_ E[ef}\S]
X

= / e M e Hds

0
_ M

A4

This problem can be modeled by an M/M/1
queue in which A=6, 1= 8. The average cost rate
will be

$10 per hour per machine x average number of
broken machines.

The average number of broken machines is just L,
which can be computed from Equation (3.2):

L=A/(n—A)

Hence, the average cost rate = $30/hour.

Let Cpy= Mary’s average cost/hour and Cy =
Alice’s average cost/hour.

Then, Cp = $3 + $1x (Average number of cus-
tomers in queue when Mary works),

and C4=$C+$1x (Average number of cus-
tomers in queue when Alice works).

The arrival stream has parameter A = 10, and
there are two service parameters—one for Mary
and one for Alice:

HM = 20 HaA = 30.

Set Ly = average number of customers in
queue when Mary works and
L 4 = average number of customers in
queue when Alice works.

Then using Equation (3.2), Ly = (201_010) =1
L= 10 1
A7 (20-10) 2
So  Cp =93+ $1/customer x Ly customers
=$3+ %1
= $4 /hour.
Also, C4 = $C + $1/customer x L4 customers
1
= 1 —
$C + %1 x 5

=$C+ % / hour.

(b) We can restate the problem this way: If C4 =
Cpm, solve for C.

4=C+ % = C = $3.50/hour,

i.e, $3.50/hour is the most the employer
should be willing to pay Alice to work. At
a higher wage his average cost is lower with
Mary working.

Let N be the number of other customers that were
in the system when the customer arrived, and let
C= 1/fwé(x). Then

fN\Wé(n|x) = waa\N(ﬂ”)P{N =n}

e e (10"

B (A (L= A
(Ax)"!

:K(n—l)!
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where
1

fwg (%)
Using
1= n§1fNWé(n|x) =K i E” i = Ke™

shows that

pe (A /) (1= A/n)

_ ,—Ax (Ax)nil
fN‘Wé(n|x>_e (7’[*1)" n>0
Thus, N — 1 is Poisson with mean Ax.

The preceding also yields that for x > 0
fwg (x) = eMpue H (A /1) (1 = A/ )
= %(‘u — A)g_(”_)\)x
Hence, for x > 0
X
P{W < x} = P{Wy = 0} + [ fus (v)dy

—1— % + %(1 — e (u=A)x)

Let I equal 0if W, = 0 and let it equal 1 otherwise.
Then,

EWh|I=0]=0

EWHII=1] = (u—2)""
Var(W5|I: 0)=0
Var(Wh|I=1) = (n—A)~?
Hence,
E[Var(W|1) = (11— A) 2 /u
Var(E[Wg 1)) = (1 = A)72A /(1 — A/ )

Consequently, by the conditional variance
formula,

A n A
p(e—2A2?  p(u—A)

Let the state be the idle server. The balance equa-
tions are
Rate Leave = Rate Enter,

Var(Wg) =

(mp+ )P =+ _p —H1_p)

H1 4 p2 H1 + U3
__ K H2
(i1 + H3) Py = 22 Pr+ 2 Pa,

m+p +p3=1
These are to be solved and the quantity P; repre-
sents the proportion of time that server i is idle.

To compute W for the M/M/2, set up balance
equations as

Apo = pup1 (each server has rate ()
(A+w)p1=Apo +2up2

(A421)pn = App_1+2upuy1 n>2.

These have solutions P, = p"/ 2”_1;90 where
p=A/.

o0
The boundary condition Z P, =1 implies

n=0

_1-p/2 (2-p)
T 1+p/2 (2+4p)

Now we have P, so we can compute L, and hence
W from L = AW :

(2—p) _(p/2)
2+p) (1-p/2)*
4p
(2+p)(2-p)
4uA
Qu+A)2u—2)

|
N

From L = AW we have

4p
u+A)(2u—2A)

The M/M/1 queue with service rate 2 has

W= Wm/m/Z =

1
2u—A

Wm/m/1 =

from Equation (3.3). We assume that in the
M/M/1 queue, 2u > A so that the queue is sta-
4p
ble. But then 4p > 2 A,

e. But then 4u u+ 0r2u+}\

implies Wm/m /2 > Wm/m/1.

> 1, which

The intuitive explanation is that if one finds the
queue empty in the M/M/2 case, it would do no
good to have two servers. One would be better off
with one faster server.

Now let W} = Wo(M/M/1)
W = Wo(M/M/2).
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Then,
Wh =Wm/m/1—1/2u

WE =Wm/m/2 —1/p.

So,
A

|/ — .

Ty R
and

AZ

W3 = .

@7 uu—2A)(2u+2)
Then,

1 2 1 A
Wy >Wh & 5 Ty
A< 2u.

Since we assume A < 2pu for stability in the
M/M/1, Wé < Wé whenever this comparison is
possible, i.e., whenever A < 2.

Take the state to be the number of customers at
server 1. The balance equations are

uPy = pby
2uPj = pPjy1 +pPjq, 1<j<n
Py = puPyq

n
1=Y P
j=0

It is easy to check that the solution to these equa-
t‘ions is that all the P]/-s areequal,so P; = 1/(n+1),
j=0,...,n

This model is mathematically equivalent to the
M/M/1 queue with finite capacity k. The pro-
duced items constitute the arrivals to the queue,
and the arriving customers constitute the services.
That is, if we take the state of the system to be the
number of items presently available then we just
have the model of Section 8.3.2.

(a) The proportion of customers that go away
empty-handed is equal to Py, the proportion
of time there are no items on the shelves. From
Section 8.3.2,

1-A/p
LT
L L
(b) W= =B where L is given by equa-
tion (8.12).

(c) The average number of items in stock is L.

(d) The state space is j, —n < j < k. The state
is j,j > 0, when there are j items in stock
and no waiting customers; it is j, j < 0, when
there are no items in stock and no waiting cus-
tomers. The balance equations are

uPy = AP
A+ .U)Pj = Apj_l + “Pj-‘rl, —-n<j<k
}\an = “P—(n—l)

k
1= Y P,

j=n

© — Y0P

10. The state is the number of customers in the system,

and the balance equations are
(a) m@PO = ,LLP1
((m — )0+ w)Pj = (m — j + 1)6P;_,

WPy = 0Py 1
m

1= Z P;
=0

(b) Ao =Y, (m— ))OP;
(©) L/Aa=Y"0jPi/ Y g (m—)OP;

11. (a) APO = (X],LP1

(A + “PL)Pn =APy1+apuPyi, n=>1

These are exactly the same equations as in the
M/M/1 with au replacing . Hence,

n
e[A &)
au au

and we need the condition A < ap.

(b) If T is the waiting time until the customer
first enters service, then by conditioning on
the number present when he arrives yields

E[T] =Y E[T|n present]P,
n
= Z Epn
n M

Sl
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(©

(d)
(e)

12. (a)

(b)

(d)

(e)

(f)
(8)

13. (a)

Answers and Solutions

Since L = Z nP,, and the P, are the same as
in the M/M/1 with A and ap, we have that
L=A/(ap—A) and so
A

(o —A)
P{enters service exactly n times}

=(1-a)" la
This is expected number of services x mean
services time = 1/ap.

E[T] =

The distribution is easily seen to be memory-
less.
Hence, it is exponential with rate ap.

A — {7\, if n<N

"0, if n>N

pn =4, 1<n<N
AoPo =11 Py

(An+lin)Pn =M-1Py—1+ tn41Pry1, n>0
The rate at which an arrival finds 7 is equal to
the rate at which a departure leaves behind .

An—
P, = . 1Pnfl
n
_ An—1An—2 P,
HnHn—1
AoAL - Ay
_ 701 n 1PO
H1p - My
Using that ZZO:O b, gives
1
Py

g 1+Zoo AOAl...An_l
=1 - gy

The necessary condition for a solution is that
o Ao A
e YRR T
Aa = ZZO:O Anbn

W — £ _ ZOZOZO nPy,
Aa Zn:O AnPn

< 00

Apo = up1
(A+w)p1=Apo + 2up2
(A+21)pn = Apn1 +2ppn n > 2.
These are the same balance equations as for

the M/M/2 queue and have solution

C[2u—A o
PO \aus Al Pr= ut b0

(b) The system goes from 0 to 1 at rate Apy =

2 —
M. The system goes from 2 to 1 at rate

2+ A)

A2 (2u—A)
Qupy = o2
STy

(¢) Introduce a new state cl to indicate that the
stock clerk is checking by himself. The balance
equation for P is

(A+H)pa = up2.
The reason for p; that it is only if the checker
completes service first in p, that the system
moves to state c/. Then

w2 (2u-))
P = 3 1P = 2u(h+ ) (u+A)
Finally, the proportion of time the stock clerk
is checking is

Pel - Pn Pel “(2“+A) .

14. The system has given states whose transition dia-

gram is

40 40 40 40

60 60 60 60

Hence, the balance equations are

40pp =30p1

70p1 =40po + 30p>

70p2 =40p1 +60p3

100p3 = 40py + 60ps

60ps =40p3.
Solution of these gives p; = 4/3po, p2 = 16/9po,
p3=232/27po, ps = 64/81py. The condition Y p; =
1 implies pg is 81/493, which is about 1/6.

Clearly, pg = Proportion of time both servers are
free.

(b) The original attendant works a proportion
(1 — po) of the time, and the second atten-
dant works a proportion p3 + p4 of the time.
So if the first attendant receives Sz, the second
should receive only S(p3 + pa)(1 — po)z.
Computation shows this factor to be about
0.414, so 0.414x + x = 100, or x = 70.72, and
the second attendant receives $29.28.
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There are four states=0,14,15,2. Balance

equations are
2Py =2Py,
4P, =2Py + 2P,
4Py, = 4P, + 4P,
6P, =2Py,

3
Po P+ Py +P=1= PR =,

2 3 1
Pl =2,P. =2P= -
14 9’ 1p 9’ 2 9
2
(a) P0+P15:§-

(b) By conditioning upon whether the state was 0
or 1p when he entered we get that the desired
probability is given by
112 4
2 26 6

7

(C) PlA +P1B +2P2 = §

(d) Again, condition on the state when he enters

to obtain
1 1), 1M1, 217
214 2 204 62| 127

This could also have been obtained from (a)

and (c) by the formula W :A—La.

7
. 9 7
Th. = —Z— = —,
atis, W 2% 1
3

Let the states be (0,0),(1,0),(0,1), and (1,1),
where state (i, j) means that there is i customers
with server 1 and j with server 2. The balance
equations are as follows.

APoo = 1 Pro + H2 P
(A+p1)Pyg = APoo + HoP1y
(A+ p2)Por = 1 Py

(1 + H2) P11 = APo1 + APyo

Poo + Po1 + Pio+ P11 =1

Substituting the values A = 5,1 = 4, up = 2 and
solving yields the solution

Poo = 128/513, Pjp = 110/513, Py = 100/513,
Py = 175/513

17.

18.

@ W=L/A = [1(Po1 + Pro) + 2P11]/[A(1 —
Pyq)] = 56/119.
Another way is to condition on the state as
seen by the arrival. Letting T denote the time
spent, this gives

W = E[T|00]128/338 + E[T|01]100/338
+ E[T|10]110/338
= (1/4)(228/338) + (1/2)(110/338)
—56/119.
(b) Py + Py = 275/513.

The state space can be taken to consist of states
(0,0),(0,1),(1,0), (1,1), where the i component
of the state refers to the number of customers at
server i, i = 1,2. The balance equations are

2Py 0 =6P 1

8Py,1 =4P1,0+4P1,1

6P1, 0= ZP(), 0+ 6P1, 1
10P1/ 1= ZP(), 1+ 2P1, 0

1="Po,0+Po,1+ P10+ P11

Solving these equations gives Py o = 1/2,
Py1=1/6,P10=1/4,P; 1=1/12.

(a) P1,1=1/12.
L P p 2P, 7
b) W=— = o1 tPo+2h1 7
Aa 21— Py 1) 22
© Po,o+Po,1 _ 8
1—-P 4 11

(a) The states are 0, 1, 2, 3 where the state is i
when there are i in the system.

(b) The balance equations are
APy = uPy
(A+ )Py = APy +2uP,
(A+2u)P, = AP +2uPs
2uPs = AP,
Po+P+P,+P3=1
The solution of these equations is
Py = (A/u)Po, Py = (A*/2u?) Py, P3 = (A% /415°) Py
Po=[1+A/u+ A/ (20%) + A/ (4p%)]
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(c) E[Time] = E[Time in queue]
+E[time in service]
=1/(2u) +1/p.
d) 1— Ps.

(e) Conditioning on the state as seen by the
arrival

W= [(1/u)(Po+ P1) + (2/w)P2] /(1 = P5).
Could alsouse W = L/A,.

(a) Say that the state is (1,1) whenever it is a
good period and there are # in the system, and
say that it is (n,2) whenever it is a bad period
and there are 7 in the system, n = 0, 1

(b) (A1 +a1)Py,1=uP1, 1+ arPy,»

(A2 +a2)Py, 2= pP1,2 + 1Py, 1
(h+o1)Pr1=MPo 1+ P 2
(h+o)P12=2Py 2+ P

Py,1+Py,o+Pi,1+P,o=1
() Po,1+ Py, 2
(d) APy, 1+ APy, 2

(a) The states are 0,(1, 0),(0, 1) and (1, 1),
where 0 means that the system is empty, (1, 0)
that there is one customer with server 1 and
none with server 2, and so on.

(b) (A1 +A2)Py = m1Pro + u2Por
(M + A2+ p1)Pro = M Py + po P
(M + m2)Por = APy + 1 Py
(1 + 12) P11 = A1 Por + (A1 + A2) Pro
Py+Pig+ Py +Pi1=1

(¢) L= Py + Pip+2Py
(d) W= L/)\a = L/[}H(l —P11)+}\2(P0+P10)]

(@) A1Pio

(b) A2(Py+ Pro)

(©) A1Pro/[APro + A2 (Py + Pro)]

(d) This is equal to the fraction of server 2’s cus-
tomers that are type 1 multiplied by the pro-
portion of time server 2 is busy. (This is true
since the amount of time server 2 spends with
a customer does not depend on which type of
customer it is.) By (c) the answer is thus

(Poy + P11)A1Pro/ [ Pro + A2 (Py + Pro)]-

22.

23.

The state is the pair (i,j),i = 0,1,0 < j < n where
i signifies the number of customers in service and
j the number in orbit. The balance equations are

(A+jO)Py,j = Py,

(A4 )Py = APy j+ (j+1)0P j11,

j=0,...,N

j=0,...,N—-1
1PN = APo,N
(@ 1-P,N
(d) The average number of customers in the sys-
tem is
L=Y (i+))P,;

i]
Hence, the average time that an entering cus-
tomer spends in the system is W = L/A(1 —

Pj n), and the average time that an entering
customer spends in orbitis W — 1/ p.

(a) The states are n,n > 0, and b. State n means
there are 7 in the system and state b means
that a breakdown is in progress.

(b) PP, =a(l- Py)
APy = puPy + BP,

(A4+u+a)P, =AP, 1 +puP, 1, n>1

o0

(@ W=L/A, =Y nP/[A(1—DPy)].
n=1
(d) Since rate at which services are completed =
u(1 — Py — Pp) it follows that the proportion
of customers that complete service is

u(l =Py —Py)/Aa
= (1 =Py —By)/[A(1 = Ry)].
An equivalent answer is obtained by condi-

tioning on the state as seen by an arrival. This
gives the solution

o0

Pulp/(n+a)]" 1,
n=0

where the above uses that the probability
that n + 1 services of present customers occur

before a breakdown is [/ (u + a)]" 1.
(e) Pp.

24. The states are now n,1n > 0,and #n’,n > 1 where

the state is n when there are n in the system and no
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breakdown, and it is n’ when there are 7 in the sys-
tem and a breakdown is in progress. The balance
equations are

APy = uPy
A+pu+a)Py=AP;_1 +puPy1+BPy, n>1
(B+A)Py=aP
(B+A)Py=aPy + APy _qy, n>2

o0 o0
Y P+ ) Py=1
n=0 n=1

In terms of the solution to the above,
o0
L= Z n(P, + Py)
n=1
and so

W =L/Ay = L/A.

(a) APy =paPa+ pupPp
(A+pa)Py=aAPy + upPs
(A+up)Pg=(1—a)APy + uasP>

(A+ pa+up) Py =APy—1 + (1a + 1) Py
n>2 where P;=Py+ Pp.
o0
(b) L=Po+Pg+ Y nP,
n=2

Average number of idle servers = 2Py + P4 +
Pg.

LA
c) Py+Pg+ ——— P,.
(c) Py+ P #A+IJBZ "

Statesare 0,1,1/,...,k—1(k—1)",k,k+1,...
with the following interpretation

0 = system is empty

n = n in system and server is working

n =nin system and server is idle,

n=12,...,k-1

(a) APy = pPy, (A+p)Py = pP,

)\P,; :)\P(n_l)/n = 1,...,k— 1

(A4 w) Py = APy_1y + 1uPr1 + AP
(A+u)Py=AP,_1 +uP, yn>k

k
A

1 klrk—1-n n & n
b Py + |:+:|P/+ P,—.
() 0 n§1 A 1 n Z nu

n—1

(c) A< p.

27. (a) The special customer’s arrival rate is act 8

because we must take into account his ser-
vice time. In fact, the mean time between his
arrivals will be 1/6 4+ 1/u1. Hence, the arrival
rate is (1/6 4+ 1/up) L.
(b) Clearly we need to keep track whether the
special customer is in service. For n > 1, set
P, = Pr{n customers in system regular cus-
tomer in service},

P; = Pr{n customers in system, special cus-
tomer in service}, and

Py = Pr{0 customers in system}.

(A+6)P = uPy + 1 P}

(A4 6+ )P, = APy_q + uPyiq +m Py 4

(A+w)P7 = 6P, 1 +APS_,,
n>1[P§="n].

(c) Since service is memoryless, once a customer
resumes service it is as if his service has
started anew. Once he begins a particular ser-
vice, he will complete it if and only if the
next arrival of the special customer is after his
service. The probability of this is Pr {Service
< Arrival of special customer} = p/(u +6),
since service and special arrivals are indepen-
dent exponential random variables. So,

Pr {bumped exactly n times}
= (1= p/(n+0))"(1/(n+0))
= (0/(1+6))"(1/ (1 +0)).

In essence, the number of times a customer
is bumped in service is a geometric random
variable with parameter p/(u + 0).

28. If a customer leaves the system busy, the time until

the next departure is the time of a service. If a cus-
tomer leaves the system empty, the time until the
next departure is the time until an arrival plus the
time of a service.

Using moment-generating functions we get
A
E{e(SD = ; E{e{SD |system left busy }

+ [1 - ;\l E{e’"|system left empty}

Bl b
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where X has the distribution of interarrival times,
Y has the distribution of service times, and X and
Y are independent.

Then
E{e5(X+Y)} _ E{eL;Xe(sY)}

= E[e**|E [e‘w)] by independence

£0%) = 3] 5] + 1- 2] [t

By the uniqueness of generating functions, it fol-
lows that D has an exponential distribution with
parameter A.

(a) Let state 0 mean that the server is free; let state
1 mean that a type 1 customer is having a
wash; let state 2 mean that the server is cut-
ting hair; and let state 3 mean that a type 3 is
getting a wash.

(b) APy =Py + wo P>
P = Ap1Py
HoPy = ApaPo + 1 P3
HPs = ApsPy
Po+ P+ P+ P;=1
() P

(d) AP
Direct substitution now verifies the equation.

Solving for the total arrival rates we have

M =5

M =10+ A+ 32

A3 =15+ SA1+ Ay

implying that A; = 5,A; = 85/2, and A3 = 60.

A 5 85/2 60
i) L= L — =
@) Zw—m 57 50_85/2 " 10060
_®
==

32.

33.

34.

35.

L 49

Letting the state be the number of customers at
server 1, the balance equations are

(H2/2)Py = (11/2)Py
(M1/2+ m2/2)P1 = (p2/2) Py + (11/2) P>
(11/2)Py = (12/2) Py

Po+P+P=1

Solving yields that

Pr=(1+p/p+p/m)" Y,
Py =y /Py

Py = w1 /up Py,

Hence, letting L; be the average number of cus-
tomers at server i, then

Ly =P +2P,, Ly=2—-14
The service completion rate for server 1 is
p1(1 — Py), and for server 2 it is pp(1 — Ps) .

(a) Use the Gibbs sampler to simulate a Markov
chain whose stationary distribution is that of
the queuing network system with m — 1 cus-
tomers. Use this simulated chain to estimate
P; ;u—1, the steady state probability that there
are i customers at server j for this system.
Since, by the arrival theorem, the distribution
function of the time spent at server j in the

' Py m1Gisa(x),
where Gi(x) is the probability that a gamma
(k, 1) random variable is less than or equal to
x, this enables us to estimate the distribution
function.

. m—
m customer system is Zi:o

(b) This quantity is equal to the average number
of customers at server j divided by m.

2
N
o — A
Wo = Lo/Ae = ik —Aj)
Y .7
il
Let S and U denote, respectively, the service time

and value of a customer. Then U is uniform on
(0, 1) and

E[S|U] = 3 +4U, Var(S|U) = 5.
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Hence,
E[S] = E{E[S|U]} = 3 +4E[U] = 5
Var(S) = E[Var(S|U)] + Var(E[S|U])

=5+ 16Var(U) = 19/3.

Therefore,

E[S?*] =19/3 + 25 = 94/3.

B  94A/3
(@) W=Wg+E[s] = L +5.
) WQ+E[S|U:x]:%+3+4x.

The distributions of the queue size and busy
period are the same for all three disciplines; that of
the waiting time is different. However, the means
are identical. This can be seen by using W =
L/A, since L is the same for all. The smallest vari-
ance in the waiting time occurs under first-come,
first-served and the largest under last-come, first-
served.

37. (a) The proportion of departures leaving behind

0 work
= proportion of departures leaving an
empty system
= proportion of arrivals finding an empty
system

= proportion of time the system is empty
(by Poisson arrivals)

=D,

(b) The average amount of work as seen by a

departure is equal to the average number
it sees multiplied by the mean service time
(since no customers seen by a departure has
yet started service). Hence,

Average work as seen by a departure
= average number it sees X E[S]
= average number an arrival sees x E[S]
= LE[S] by Poisson arrivals

— MW + E[S])ES]

_ NE[SIE[S?]

= A_AE[% + A(E[S])>.

38. (a) Y, = number of arrivals during the (n + 1)st

service.

(b)

(©

(d)

89

Taking expectations we get
EXu41 = EXy —1+EY, + Edy.

Letting n — o0, EX,;11 and EX;, cancel, and
EY s = EY;. Therefore,

ESoo =1 —EY;.

To compute EY1, condition on the length of
service S; E[Y;|S = t] = At by Poisson arrivals.
But E[AS] is just AES. Hence,

Eéoo =1— AES.
Squaring Equation (8.1) we get

(") X3

2 =XE 1+ YE+2(X0 Y — Xn) — 2Ys

+ 8, (2Yy 42X, — 1).

But taking expectations, there are a few facts
to notice:

Eb,S, =0 since 6,S,=0.

Y, and X, are independent random variables
because Y, = number of arrivals during the
(n +1)% service. Hence,

EX,Y, = EX,EY,.

For the same reason, Y, and 6, are indepen-
dent random variables, so Eb,Y;, = E6,EY,,.
EY? = AES + A*ES? by the same conditioning
argument of part (b).

Finally also note 62 = &,.

Taking expectations of (*) gives

EX2. ;= EX2 41+ AE(S) 4+ A2E(S?)
+2EX,(AE(S) — 1)
—2AE(S) + 2AE(S)E&, — E5,,.

Letting 1 — oo cancels EX2 and EX? 41, and
Eéy — Eboo =1 — AE(S). This leaves

0= A2E(S5?) + 2EX oo (AE(S) — 1) + 2AE(S)
[1- AE(S)],
which gives the result upon solving for EX,.

If customer n spends time W, in system,
then by Poisson arrivals E[X,|W,]=AW,.
Hence, EX;; = AEW,, and letting n — oo yields
EXs =AW = L. It also follows since the aver-
age number as seen by a departure is always
equal to the average number as seen by an
arrival, which in this case equals L by Poisson
arrivals.
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(@) a9 = Py due to Poisson arrivals. Assuming
that each customer pays 1 per unit time while
in service the cost identity (2.1) states that

Average number in service = AE[S],
or

1— Py = AE[S].

(b) Since ag is the proportion of arrivals that have
service distribution G; and 1 — ag the propor-
tion having service distribution G, the result
follows.

(c) We have
__ El]
Po= E v e
and E]I]=1/A and thus,

1-P
EB] = )\POO

_ __E[S]
=T AE[S]’

Now from (a) and (b) we have

E[S] = (1 — AE[S])E[S;] + AE[S]E[S,],

_ E[S,]
14 AE[S;] + AE[S,])’

Substitution into E[B] = E[S]/(1 — AE[S])
now yields the result.

E[S]

(@) (i) A little thought reveals that time to go
from n to n — 1 is independent of #.
nE[S]
1-AE[S]'
(b) (i) E[T|N]= A+ NE[B].
(i) E[T)=A+E[N]E[B]

(i) nE[B] =

AE[S] A
1—AE[S]  1-AE[S]’

— A+

E[N] =2, E[N%] = 9/2, E[S?] = 2E?[S] = 1/200

15
—2/444 . 2/4
W:202/ + /00:ﬂ
1-8/20 480
.4 117
Q7480 20 480

For notational ease, set « = A;/(A; + Ap) = pro-
portion of customers that are type I.

P1 = )\lE(Sl)/ PZE(Sz)-

43.

44.

Since the priority rule does not affect the amount
of work in system compared to FIFO and

WFQH:O = V, we can use Equation (6.5) for WFQIFO.
Now Wg = (xWé +(1-«a) Wé by averaging over
both classes of customers. It is easy to check that
Wq then becomes

[AlES% + AzESﬂ [ax(1—p1 —p2) + (1 — )]
2(1—p1—p2)(1—p1) '

which we wish to compare to

Wo =

[AlEs% +A2Es§] (1— o)
21-p1—p2) (A—p1)°

Q
Weiro =

Then Wj < WI%FO Sa(—p1—p) < —p1
Sapy > (1-a)py

M

Ao
> AN A -MESq

& E(S,) > E(Sy).

Problem 42 shows that if 1 > pp, then serving 1’s
first minimizes average wait. But the same argu-
ment works if cip1 > copp, ie.,

E(S,)

E(S) .
1 H1

(a) As long as the server is busy, work decreases
by 1 per unit time and jumps by the service
of an arrival even though the arrival may go
directly into service. Since the bumped cus-
tomer’s remaining service does not change
by being bumped, the total work in sys-
tem remains the same as for nonpreemptive,
which is the same as FIFO.

(b) As far as type I customers are concerned, the
type II customers do not exist. A type I cus-
tomer’s delay only depends on other type I
customers in system when he arrives. There-
fore, Wé = V! = amount of type I work in
system.

By part (a), this is the same V! as for the
nonpreemptive case (6.6). Therefore,

ME (8]

1
W4 = ME(S)Wq + —
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or
ME [sﬂ
2(1 = ME(Sy)]

Note that this is the same as for an M/G/1
queue which has only type I customers.

1 _
Wy =

(c) This does not account for the fact that some
type II work in queue may result from cus-
tomers that have been bumped from service,
and so their average work would not be E[S].

(d) If a type II arrival finds a bumped type II
in queue, then a type I is in service. But in
the nonpreemptive case, the only difference is
that the type II bumped customer is served
ahead of the type I, both of whom still go
before the arrival. So the total amount of work
found facing the arrival is the same in both
cases. Hence,

VZQ (nonpreemptive) + E (extra time)

Wo~ - v ~ Y
total work found extra time due
by type Il to being bumped

(e) As soon as a type II is bumped, he will not
return to service until all type I's arriving dur-
ing the first type I's service have departed, all
further type I's who arrived during the addi-
tional type I services have departed, and so
on. That is, each time a type II customer is
bumped, he waits back in queue for one type I
busy period. Because the type I customers do
not see the type II's at all, their busy period is
just an M/G, /1 busy period with mean

E(51)
1-ME(Sy)”
So given that a customer is bumped N times,
we have
. NE(S;)
E{extra time|N} = ———~-—.
{extra time|N'} T ME(S))

(f) Since arrivals are Poisson, E[N|S;] = A1 S5,
and so EN = A ES».
(g) From (e) and (f),
ME(S,)E(S;)
1-ME(Sy)
this with (e) gives the result.

E(extra time) = Combining

By regarding any breakdowns that occur during a
service as being part of that service, we see that
this is an M/G/1 model. We need to calculate the

first two moments of a service time. Now the time
of a service is the time T until something happens
(either a service completion or a breakdown) plus
any additional time A. Thus,

E[S] = E[T + A]
— E[T] + E[4]

To compute E[A] we condition upon whether the
happening is a service or a breakdown. This gives

E[A] = E[A|service] s
U+ o

fo4
+E[A|breakdown
A e

= E[A|breakdown] “
u+«a

o
p+a

=(1/B+E[S])

Since, E[T] =1/(a«+p) we obtain that

E[S] = —— + (1/B + EIS)

or
E[S] =1/u+a/(1B)
We also need E[S?], which is obtained as follows.
E[S?] = E[(T + A)?]

= E[T?] + 2E[AT] + E[A?]

= E[T?] 4 2E[A]E[T] + E[A?]
The independence of A and T following
because the time of the first happening

is independent of whether the happen-
ing was a service or a breakdown. Now,

E[A®] = E[A®|breakdown] &

U+«
= LE[(down time + $%)?]
pt o
o

= % {Eldown?] + 2E[down[E[s] + E[S7]}

2 211
= Salp Lt ) )

Hence,
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2 1o%
(n+B)° +2[ﬁ(u+0¢)

)
p+a \pn  up

« [2 271 « 2
+u+fx{ﬁ2+ﬁ[u+uﬁ}+ﬂs]}'

Now solve for E[S?]. The desired answer is
AE[S?]
Wo ===~
Q7 2(1 = AE[9))

In the above, S¥ is the additional service needed
after the breakdown is over. S* has the same dis-
tribution as S. The above also uses the fact that
the expected square of an exponential is twice the
square of its mean.

Another way of calculating the moments of S is to
use the representation

N
S=Y (T;+B;)+ Tn+1
i=1
where N is the number of breakdowns while a cus-
tomer is in service, T; is the time starting when ser-
vice commences for the i’ time until a happening

occurs, and B; is the length of the i breakdown.
We now use the fact that, given N, all of the ran-
dom variables in the representation are indepen-
dent exponentials with the T; having rate p + «
and the B; having rate 3. This yields

E[SIN|=(N+1)/(p+a)+N/B
Var(SIN) = (N +1)/(u+a)* + N/p%.
Therefore, since 1 + N is geometric with mean
(1 + «)/u [and variance (o + u)/uz} we obtain

E[S] =1/p+e/(uB);
and, using the conditional variance formula,

Var(S) = [1/(u+ @) + 1/BPac(a + ) /12
+1/[u(p + )]+ a/up?).

f3 is to be the solution of Equation (7.3):

_ [T u(1-p)
B /O e dG(#)

IfG(t)=1—eMA<u) and B=A/u
/Oo efut(lfA/u)dG(t) - /OO e H(A=A 1) 3 o= At g4
0 0
= /oo e Mt
0
A
= = B.

W

The equation checks out.

47. For k =1, Equation (8.1) gives

48.

A A(ES
P = 1 AE(S) = ()\)S—;S(S) Pr= 1+()\E()S)
_ _E(5)
“ATE(S)

One can think of the process as an alteracting
renewal process. Since arrivals are Poisson, the time
until the next arrival is still exponential with
parameter A.

end of end of
service arrival service
i 0. O O o
—_—" A S — states
A S

The basic result of alternating renewal processes is
that the limiting probabilities are given by

Pr{being in “state S”} = E(AI)S(—i:S)IS(S) and
. L7 7\ E(A)
PR{being in “state A"} = E(A) + E(S)

These are exactly the Erlang probabilities given
above since EA=1/A. Note this uses Poisson
arrivals in an essential way, viz., to know the dis-
tribution of time until the next arrival after a ser-
vice is still exponential with parameter A.

The easiest way to check that the P; are correct is
simply to check that they satisfy the balance equa-
tions:

Apo = up1
(A4 p)p1=Apo + 2up>
(A+2u)p2 = Ap1 +3ups
(A+iw)pi=Api1 + (i +1ppin

(A+kp)pn = Apn—1+kupp1 n >k,

0<i<k

or
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1
1=—P
=y
A2
p2 ZTLZPO
Al
pi 11‘1P0 0<i<k
Ak-l—)’l

Pi4n = WPO n=>1
In this form it is easy to check that the p; of
Equation (8.2) solves the balance equations.

(AE[S])’

49, pp=—3t
(AE[S])’

j!

A=2,E[s] =1

| TP

@
o]

50.

51.

52.

53.

(i) P{arrival finds all servers busy}
i
P, il kn—A

k [A}l
k=1 | k
p A ku
k! —
)M T [u] k- A
(i) W = Wo+1/u  where Wy, is as given by
Equation (7.3) L = AW.

I
™

Note that when all servers are busy, the departures
are exponential with rate kp.. Now see Problem 26.

S, is the service time of the n'! customer. T}, is the
time between the arrival of the n'" and (n + 1)
customer.

1/pur < k/ug, where pp and pg are the respective
means of F and G.






Chapter 9

If x; =0, ¢p(x) = $(0;, )
If v, =1, ¢(x) = b(1;,x).

. (@) Ifmin; x;, = 1, thenx = (1,1,...,1) and so
d(x) =1.
If max; x; = 0, then x = (0,0,...,0) and so
$(x) = 0.
(b) max(x,y) > x = ¢(max(x,y)) > ¢(x)
max(x, y) > y = ¢(max(x,y)) > ()
. ¢(max(x,y)) > max($(x), d(y)).

(©
- (@)

Similar to (b).

If ¢ is series, then ¢(x) = min;x; and so
¢P(x) = 1 —min; (1 —x;) = maxx;, and vice
versa.

PP (x) =1-¢P(1-x)
=1-[1-¢(1-(1-x))]
= d(x).

(b)

(c) Ann—k+1ofn.
(d) Say{1,2,...,r}is a minimal path set. Then
¢(1,1,...,1,0,0,...0) =1, and so
~—
r
¢P,0,...,0,1,1,...,1) =1 — ¢(1,1,...,
\“,—J

r
1,0,0,...,0)=0, implying that {1,2,...,r} is
a cut set. We can easily show it to be minimal.
For instance,

¢P(0,0,...,0,1,1,...,1)
r—1
=1-¢(1,1,...,1,0,0,...,0) =1,
N——

r—1

since d)(l,_l,...,l,0,0,...

r—1
{1,2,...,r — 1} isnot a path set.

,0) = 0 since

4. (a) ¢(x) = x1 max(xo, x3,X4)Xs5.

(b) ¢(x) = x1 max(x2x4, X3X5)Xe.

95

5.

10.

11.

(@ ¢(x) = max(x1, x2x3)x4.

(a) Minimal path sets are
{1,8}, {1,7,9}, {1,3,4,7,8}, {1,3,4,9},
{1,3,5,6,9}, {1,3,5,6,7,8}, {2,5,6,9},
{2,5,6,7,8}, {2,4,9}, {2,4,7,8},
{2,3,7,9}, {2,3,8}.
Minimal cut sets are
{1,2}, {2,3,7,8}, {1,3,4,5}, {1,3,4,6},
{1,3,7,9}, {4,5,7,8}, {4,6,7,8}, {8,9}.

A minimal cut set has to contain at least one
component of each minimal path set. There are
6 minimal cut sets:

(1,5}, {1,6}, {2,5}, {2,3,6}, {3,4,6}, {4,5}.

{1,4,5}, {3}, {2,5}.

The minimal path sets are {1,3,5}, {1,3,6},
{2,4,5}, {2,4,6}. The minimal cut sets are

(1,2}, {3,4}, {5,6}, {1,4}, {2,3}.

(a) A component is irrelevant if its functioning or
not functioning can never make a difference
as to whether or not the system functions.

(b) Use the representation (2.1.1).

(c) Use the representation (2.1.2).

The system fails the first time at least one com-
ponent of each minimal path set is down—thus
the left side of the identity. The right side follows
by noting that the system fails the first time all of
the components of at least one minimal cut set are
failed.

r(p) = P{either x;x3 = 1 or xpx4 = 1}
P{either of 5 or 6 work}

= (p1p3 + pP2pa — P1P3P2P4)
(p5 + pe — psps)-
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12.

13.

14.

15.

17.

Answers and Solutions

The minimal path sets are
{1,4}, {1,5}, {2,4}, {2,5}, {3,4}, {3,5}.
With g; = 1 — P;, the structure function is
r(p) = P{either of 1, 2, or 3 works}
P{either of 4 or 5 works}

= (1 —4q19293) (1 — qaq5).

Taking expectations of the identity
¢(X) = Xip(1i, X) + (1 = X;)$(0;, X),
noting the independence of X; and ¢(1;, X) and of
d)(oi/ X)
r(p) = psP{max(Xy, Xp) =1 = max(Xy, X5)}
+(1 = p3)P{max(X; X4, X, X5) = 1}
=p3(p1+p2 = p1p2)(Pa+ ps — paps)

+(1 = p3)(p1pa + p2ps — pP1pap2ps)-

o B <= (i - 13

The exact value is r(1/2) =7/32, which
agrees with the minimal cut lower bound
since the minimal cut sets {1}, {5}, {2,3,4}
do not overlap.

E[N?] = E[N?|N > 0]P{N > 0}
> (E[N|N > 0])2P{N > 0},
since E[X?] > (E[X])%.
Thus,
E[N?]P{N > 0} > (E[N|N > 0]P{N > 0})2
= (E[N])>.

Let N denote the number of minimal path sets
having all of its components functioning. Then
r(p) = P{N > 0}.

Similarly, if we define N as the number of minimal
cut sets having all of its components failed, then
1—r(p) = P{N > 0}.

In both cases we can compute expressions for E[N]
and E[N?] by writing N as the sum of indicator
(i.e., Bernoulli) random variables. Then we can use
the inequality to derive bounds on r(p).

18.

19.

20.

21.

22.

@ {3} {14}, {1,5}, {2,4}, {2,5}.
(b) P{systemlife > %} =r {%,%,,%} .

Now r(p) = p1paps + p3paps — P1P2P3P4Ps5,

and so

P{systemlife< %}:1_%_%4_3%
25
32

X(j) is the system life of an n — i+ 1 of n sys-
tem each having the life distribution F. Hence, the
result follows from Example 5e.

The densities are related as follows.

g(t) = alFOF £ ().

Therefore,

Ac(t) =alF(O]" £ (1) /[F(B)°
—a f()/F(t)
—a A (b).

(@) (@), (i), (iv) — (iv) because it is two-of-three.

(b) (i) because it is series, (ii) because it can be
thought of as being a series arrangement of 1
and the parallel system of 2 and 3, which as
F, = F; is IFR.

(c) (i) because it is series.

(@ Fa)=P{X>t+a|X>t}

_P{X>t+a} F(t+a)
- P{X>t} —  F() -

(b) Suppose A(t) is increasing. Recall that

F(t) = e o AG)ds,

Hence,
F(;(—:;)a) = e’foHaA(S)dS, which decreases in ¢t

since A(t) is increasing. To go the other way,
suppose F(t + a)/F(t) decreases in t. Now for
a small

F(t+a)/F(t) = e "),

Hence, e ") must decrease in t and thus A(t)
increases.
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(b) Fi(a) = P{additional life of t-year-old > a}

n
[1E(t+a)
_ 1
F(t) 7
where F; is the life distribution for component
i. The point being that as the system is series,
it follows that knowing that it is alive at time ¢

is equivalent to knowing that all components
are alive at t.

It is easy to show that A(t) increasing implies that
3 A(s) ds/t also increases. For instance, if we dif-
ferentiate, we get tA(t) — [o A(s) ds/t2, which is
nonnegative since [{ A(s) ds < [§ A(t) dt = tA(t).
A counterexample is

()

Forx > ¢,

1-p=1-F(&)=1-F(x(&/x) > [1 - Fx)
since IFRA.

Hence,

1—F(x) < (1—p)Y/é=e 0,

Forx < ¢,

1—F(x) =1 F(&(x/8)) = [1 = F(&)]/*

26.

27.

28.

since IFRA.
Hence,

1—F(x) > (1—p)Y/t =e 0,

Either use the hint in the text or the following,
which does not assume a knowledge of concave
functions.

To show: h(y) = A%x* + (1 — A%y~
—(Ax+(1-A)y)*>0,
0<y<wx
where 0 <A<1,0<a<1.

Note: 1(0) = 0, assume y > 0, and let ¢(y) =
h(y)/y"

gly) = [)\;]“Jrl—)\“_ {);C+1_A]

Letz=x/y.Now g(y) >0V0<y<x< f(z) >
0vVz>1,

where f(z) = (Az)*+1—- A% — (Az+1-A)%

24

Now f(1) = 0 and we prove result by showing
that f'(z) > 0 whenever z > 1. This follows since

fz)=ar(Az)* T —aA(Az+1—A)*!

fz) >0 (A2)* 1> (Az4+1—-A)x 1
A < (Az+1-A)l-@
SAzz<Az+1-A

SAL1

If p > po, then p = po* for some a € (0,1). Hence,

r(p) = r(po®) = [r(po)l” = po™ = p.
If p < po, then py = p* for some a € (0,1). Hence,

p* =po=r(po) = r(p%) = [r(p)]*.

@ F(t)=(1—t) {%} 0<t<1

E[lifetime] — 1/1(14)(24) dt= >
2 Jo 12
1-t2/2, 0<t<1
(b) F(f):{
1—t/2, 1<t<2
E[nfeﬁme]:l/l(z—#) dt+1/2(z—t) dt
2 Jo 2.1
13
12°
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29.

30.

31.

32.
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Let X denote the time until the first failure and
let Y denote the time between the first and second
failure. Hence, desired result is

EX+EY = ! + EY
1+ 12
Now,
_ s fi i}
E[Y] = E[Y|u1 component fails flrst] =T
+ E[Y|up component fails first] o + 5

:L H1 _’_l Ho
Hopy+pp © H1pg +

r(p) = p1p2p3 + p1p2ps + p1p3ps + p2p3pa

—3p1p2p3p4
r(1—F(t))
2(1 = £)%(1—#/2) +2(1 — £)(1 — £/2)2
={ -3(1-t)2(1-1t/2)? 0<t <1
0, 1<t<2

E[lifetime] = /01 21— 021 -1/2)
+2(1—t)(1—t/2)?

—3(1—1)2(1— t/z)Z} dt
—31
— 60
Use the remark following Equation (6.3).

Letting I; equal 1 if X; > ¢* and letting it be 0
otherwise. Then,

E[i L} — ¥ Bl = ¥ P{X > )
i=1 i=1

=1

33. The exact value can be obtained by conditioning

on the ordering of the random variables. Let M
denote the maximum, then with A; ;; being the
even that X; < X; < X, we have that

E[M] = Y E[M|A; j ]P(A; k)

where the preceding sum is over all 6 possible per-
mutations of 1,2, 3. This can now be evaluated by
using

A Aj
PUAK = N FA TR T A&
1 1 1
EMIA i = 3 A a T A T

35. (a) It follows when i=1 since 0= (1—1)"

=1—[]+[4] - £[}]- So assume it true for
i and consider i + 1. We must show that

n—1 n n n

[ i } = [H—J - L‘Jrz} o]
which, using the induction hypothesis, is
equivalent to

n—1 n n—1
{ i }_ M_L’—J
which is easily seen to be true.

(b) Itis clearly true when i = n, so assume it for i.
We must show that

n—1 n n—1 n
L’—z] - L’—l} - [i—l} tok ]
which, using the induction hypothesis,
reduces to

=1

which is true.



Chapter 10

. X(s) + X(t) =2X(s) + X(t) — X(s).

Now 2X(s) is normal with mean 0 and variance 4s
and X(t) — X(s) is normal with mean 0 and vari-
ance t —s. As X(s) and X(t) — X(s) are indepen-
dent, it follows that X(s) + X(t) is normal with
mean 0 and variance 4s +f —s = 3s + £.

. The conditional distribution X(s) — A given that
X(#1) = Aand X(t,) = B is the same as the condi-
tional distribution of X (s — t;) given that X(0) = 0
and X(t; —t1) = B — A, which by (1.4) is normal

with mean ~— a (B— A) and variance (s—t)
ty — 1y tr—t
(tp — s). Hence the desired conditional distribu-
tion is normal with mean A + w and
I — 11
variance m
th — 11
E[X(t1)X(t2)X(t3)]
= E[E[X(11)X (k) X(t3) | X(t1), X(£2)]]
= E[X(t1)X(t2) E[X(t3) | X(t1), X(£2)]]
= E[X(t1)X(t2) X (t2)]
= E[E[X(t1)E[X?(t2) | X(t1)]]
= E[X(t1)E[X?(t2) | X(t1)]] (%)
= E[X(t){(t2 — t1) + X?(t1)}]
= E[X3(t1)] + (2 — t1)E[X(t1)]
=0

where the equality () follows since given X(t,),
X(t2) is normal with mean X(t;) and variance

t — t. Also, E[X>(t)] = 0 since X(t) is normal
with mean 0.

. (@ P{T, < oo} :tlim P{T, <t}

_'\;; ;”E’yaqdy by (10.6)
r

—2P{N(0,1) > 0} = 1.

99

Part (b) can be proven by using
o0
E[T,] = / P{T, > t}dt
0

in conjunction with (2.3).

. P{T} < T_1 < T} = P{hit 1 before — 1 before 2}

= P{hit 1 before —1}

x P{hit —1 before 2 | hit 1 before —1}

1
= EP{down 2 before up 1}
111

=237 %
The next to last equality follows by looking at the
Brownian motion when it first hits 1.

. The probability of recovering your purchase price

is the probability that a Brownian motion goes up
c by time t. Hence the desired probability is

1-P X(s)>cl=1—
{52522 (s) >c}

2 00 2
s -y /24
v/ 27t /c/\/ie Y

. Let M = {maxs<s<t, X(s) > x}. Condition on

X(f1) to obtain

o 1 2
P(M) = Lm P(M[X(t1) = ]/)\/TTE vty
Now, use that

P(M|X(t1)=y)=1 y=>x

and, for y < x

P(M|X(t) =y) = P{o<§ﬂ?§it1

=2P{X(tp —t) >x—y}

X(s) >x—y}

8. (a) Let X(t) denote the position at time . Then

t/At

X(t) :\/E[Z]Xi
i=1
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(b)
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where

+1  ifi" stepisu
X, — { p is up
-1

As

if it step is down.

EXi]=p—-1(1-p)
=2p—1

and
Var(X;) =E {Xﬂ — (E[X{])?

=1- uzAt since X12 =1

we obtain that
E[X(1)] = VAt UJ wV/Ar
— utas At — 0

Var(X(t)) = At UJ (1— 12A)

— tas At — 0.

By the gambler’s ruin problem the probability
of going up A before going down B is

1—(q/p)"
1—(q/p)AtB

when each step is either up 1 or down 1
with probabilities p and ¢ =1 — p. (This is
the probability that a gambler starting with
B will reach his goal of A + B before going

1
broke.) Now, when p = E(l + uvVAL),q =

1 — p:%(l — uV/At) and so gq/p =
1—pvAt
1+ VAt
of going up A/VAt before going down
B/V/At (we divide by VAt since each step is
now of this size) is

Hence, in this case the probability

v B/VAt

1+p VAt
l—p m(mzz/@)

1+u VAt

(%)

Now
1/v/At

TR, / s |:1[J.h:|l/h

A0 [14+p AT C h—0 |14 uh
1—% !

= Jim 1+ H

n

byn=1/h

:Z:e_zﬂ

eH

where the last equality follows from

i [147]" =

Hence the limiting value of (x) as At — 0is
1—e21B

T e 2aAB)

11. Let X(t) denote the value of the process at time
t = nh. Let X; = 1 if the i change results in the
state value becoming larger, and let X; = 0 other-

wise. Then, with u = eg‘/ﬁ, d=eoVh

X(t) = X(0)uLiz Xign—Xiza Xi

= x(o)ar (&)

Therefore,

log (;((((t)))> =nlog(d) + él X;log(u/d)

t/h
_ —%wmwﬁ ¥ X;
i=1

By the central limit theorem, the preceding
becomes a normal random variable as 1 — 0.
Moreover, because the X; are independent, it is
easy to see that the process has independent incre-
ments. Also,

elie (5007
= _% U\/ﬁ—i-Zo\[% %(1 + g\/ﬁ)
= ut

and

Var [log (;{((é))ﬂ = 40271%17(1 -p)

— o2t

where the preceding used that p — 1/2 as h — 0.
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12. If we purchase x units of the stock any y of the

option then the value of our holdings at time 1 is
150x + 25y if price is 150

value =
25x if price is 25

So if

150x + 25y = 25x, or y = —5x

then the value of our holdings is 25x no mat-
ter what the price is at time 1. Since the cost of
purchasing x units of the stock and —5x units of
options is 50x — 5xc it follows that our profit from
such a purchase is

25x — 50x 4 5xc = x(5¢ — 25).

(a) If ¢ = 5 then there is no sure win.

(b) Sell |x| units of the stock and buy —5|x| units
of options will realize a profit of 5|x| no matter
what the price of the stock is at time 1. (That
is, buy x units of the stock and —5x units of
the options for x < 0.)

(c) Buying x units of the stock and —5x units of
options will realize a positive profit of 25x
when x > 0.

(d) Any probability vector (p,1 — p) on (150, 25),
the possible prices at time 1, under which buy-
ing the stock is a fair bet satisfies the following

50 = p(150) + (1 — p)(25),
or

p=1/5.

That is, (1/5, 4/5) is the only probability vec-
tor that makes buying the stock a fair bet.
Thus, in order for there to be no arbitrage pos-
sibility, the price of an option must be a fair
bet under this probability vector. This means
that the cost c must satisfy

¢ =25(1/5) = 5.

13. If the outcome is i then our total winnings are

0i(1+0)~ ' = £ (1+0))7"

j#i
xj0; — ¥ x;=
= 1*%(1+0k)_1

(T+0)(A40) ' =X (140))"

]
1 —%(14‘0]()71

14. Purchasing the stock will be a fair bet under

probabilities (p1, p2, 1— p1 — p2) on (50, 100,
200), the set of possible prices at time 1, if

100 = 50p; + 100p, +200(1 — p1 — p2),
or equivalently, if

3p1 +2py = 2.

(a) The option bet is also fair if the probabilities
also satisfy
c=80(1—p1—p2)

Solving this and the equation 3p; + 2p, = 2
for p; and p; gives the solution

p1 = c/40, p» = (80 — 3c)/80,

1—p1 — P2 :C/80

Hence, no arbitrage is possible as long as these
p; all lie between 0 and 1. However, this will
be the case if and only if

80 > 3c.
(b) In this case, the option bet is also fair if
¢ =20p2 +120(1 — p1 — p2).
Solving in conjunction with the equation
3p1 + 2pp = 2 gives the solution
p1 = (c—20)/30, p» = (40 —¢)/20,

1—p1—p2 = (c—20)/60.
These will all be between 0 and 1 if and only if
20 < ¢ < 40.

15. The parameters of this problem are

c=.05, o=1, x,=100, t=10.

(a) If K =100 then from Equation (4.4)
b=[5—5—10g(100/100)]//10
= —4.5\10 = —1.423

and

c=100¢(1/10 — 1.423) — 100e~>¢(—1.423)
=100¢(1.739) — 100e~5[1 — ¢(1.423)]
=91.2.

The other parts follow similarly.
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16.

17.

18.
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Taking expectations of the defining equation of a
Martingale yields that

E[Y(s)] = E[E[Y(£) /Y (), 0 < u < s]] = E[Y(1)].
That is, E[Y(#)] is constant and so is equal to
E[Y(0)].
E[B(1)|B(1), 0 < u <3|
= E[B(s) + B(t) — B(s)[B(u), 0 < u <'s]
= E[B(s)[B(u), 0 < u <]
+ E[B(t) — B(s)|B(u),0 < u < s]
= B(s) + E[B(t) — B(s)] by independent
increments
= B(s).
E[B*(#)|B(u), 0 < u < s] = E[B*(+)|B(s)],

where the above follows by using independent
increments as was done in Problem 17. Since the
conditional distribution of B(t) given B(s) is nor-
mal with mean B(s) and variance f — s it follows
that

E[B?(t)|B(s)] = B%(s) +t —s.

Hence,

E[B?(t) — t|B(u), 0 < u < s] = B%(s) —s.
Therefore, the conditional expected value of
B2(t) — t, given all the values of B(u), 0 < u < s,
depends only on the value of B>(s). From this it
intuitively follows that the conditional expectation
given the squares of the values up to time s is also
B?(s) — s. A formal argument is obtained by con-

ditioning on the values B(u#), 0 < u < s and using
the above. This gives

E[B2(t) — t|B*(), 0 < u < g]
= E[E[B2(t) — t[B(u), 0 < u < s]|B*(u),
0<u<s]
= E[B2(s) — s|B*(u), 0 < u < s
= B(s) —s

which proves that {B?(t) —t, t > 0} is a Martin-
gale. By letting t = 0, we see that

E[B*(t) —t] = E[B?(0)] = 0.

19.

20.

21.

22.

Since knowing the value of Y(t) is equivalent to
knowing B(t) we have that

E[Y()[Y(u), 0 <u <]
= e~ t/2E[eBO)|B(u), 0 < u < s]

_ efczt/zE[ecB(t) |B(s)]

Now, given B(s), the conditional distribution of
B(t) is normal with mean B(s) and variance t — s.
Using the formula for the moment generating
function of a normal random variable we see that

echt/zE[ecB(t)lB(s)]
— efczt/ZecB(s)+(tfs)cz/2

_ e—czs/2ecB(s)

=Y(s).
Thus, {Y(t)} is a Martingale.
E[Y(t)] = E[Y(0)] = 1.

By the Martingale stopping theorem
E[B(T)] = E[B(0)] = 0.

However, B(T) =2 — 4T and so
2—4E[T]=0

or, E[T] =1/2.

By the Martingale stopping theorem
E[B(T)] = E[B(0)] = 0.

But, B(T) = (x — uT) /o and so
E[(x = uT)/o] =0,

or

E[T] = x/p.

(a) It follows from the results of Problem 19 and
the Martingale stopping theorem that

Elexp{cB(T) — ¢*T/2}]
= Elexp{cB(0)}] = 1.
Since B(T) = [X(T) — uT]/o part (a) follows.
(b) This follows from part (a) since

—2u[X(T) — uT]/0? — (2u/0)*T/2

= —2uX(T)/o>.
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24.
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(c) Since T is the first time the process hits A or
—B it follows that

X(T) = A, with probability p
" | —B, withprobability1 —p -

Hence, we see that

1= E[E*ZHX(T)/UZ] _ pefzuA/az (1 p)eZ“B/‘TZ

and so
1_ eZ,uB/Uz
P= ouajer — puBjor

By the Martingale stopping theorem we have that
E[B(T)] = E[B(0)] = 0.
B(T) = [X(T) — uT]/o this

Since, gives the

equality

E[X(T)—uT] =0

or

E[X(T)] = uET].

Now

E[X(T)] = pA— (1—p)B

where, from part (c) of Problem 22,

1— eZ[.LB/O'Z
P= e—2uA/0? _ o2uB/o%’

Hence,

A(l _ eZuB/UZ) _ B(e—Z;,LA/U2 _ 1)

E[T] - },1(672”“4/‘72 _ eZuB/az)

It follows from the Martingale stopping theorem
and the result of Problem 18 that

E[B*(T) - T] =0,

where T is the stopping time given in this problem
and B(t) = [X(t) — ut]/o. Therefore,

E[(X(T) — uT)2/o® — T] = 0.
However, X(T) = x and so the above gives that
E[(x — uT)?] = 02E[T).

But, from Problem 21, E[T] =
above is equivalent to

x/p and so the

Var(uT) = o%x/u
or

Var(T) = o?x /.

25.

26.

27.

28.

29.
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The means equal 0.

Var Uol th(t)} = /01 tZdt:%

1 1 1
Var [/ tde(t)] :/ thdt = —.
0 0 5

(a) Normal with mean and variance given by:
E[Y(t)] =tE[X(1/t)] =0
Var(Y(t)) = t2Var[X(1/t)] = t*/t = t.
(b) Coov(Y(s),Y(t)) =Cov(sX(1/s),tX(1/t))

=st Cov(X(1/s), X(1/1))

1
:st? whens < t

=s whens <t

(c) Clearly {Y(t)} is Gaussian. As it has the same
mean and covariance function as the Brown-
ian motion process (which is also Gaussian) it
follows that it is also Brownian motion.

E[X(a%F) /a] = %E[X(azt)] 0.
Fors < t,
Cou(Y(s), Y (t)) = aichv(X(azs),X(a%))

1
:—gz

s =s.
a2

As {Y(t)} is clearly Gaussian, the result follows.
Cov(B(s) — ;B(t), B(t)) = Cov(B(s), B(t))
—%COZJ(B(t), B(t))
=s—-t=0

{Y(¢)} is Gaussian with

E[Y(t)] = (t+1)E(Z[t/(t+1)]) =0;
and fors <t

Couv(Y(s),Y(t))

_(S+1)(t+1)COU[Z|:S+Sl], Z[H

= (s+ (1) [1—;1] (%)

=S
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where () follows since Cov(Z(s), Z(t)) = s(1 —t).
Hence, {Y(t)} is Brownian motion since it is also
Gaussian and has the same mean and covariance
function (which uniquely determines the distribu-
tion of a Gaussian process).

30. Fors<1

31.

Cov[X(t), X(t +3)]
= Cov[N(t+1) — N(t),N(t+s+1) — N(t +5)]
= Cov(N(t+1),N(t+s+1) — N(t+5))
—Cov(N(t),N(t+s+1) —N(t+s))

= Cou(N(t+1),N(t+s+1) = N(t+s)) (¥)

where the equality () follows since N(t) is inde-
pendentof N(t+s+1) — N(t+s). Now, fors <'t,

Coo(N(s), N(t)) = Cov(N(s), N(s) + N(t) — N(s))
= Cov(N(s),N(s))
=As.
Hence, from () we obtain that, when s < 1,
Cov(X(t),X(t+s)) =Cov(N(t+1),N(t+s+1))
—Cov(N(t+1),N(t+5s))
=A(t+1) = A(t+s)
=A(1—s)

Whens > 1,N(t+1) — N(t) and N(t +s+1) —
N(t +s) are, by the independent increments prop-
erty, independent and so their covariance is 0.

(a) Starting at any time t the continuation of the
Poisson process remains a Poisson process
with rate A.

(b) E[Y(H)Y(t+5)]

_ /O°° E[Y())Y(t+5) | Y(£) = ylAe My

Answers and Solutions

_ /0°° VE[Y(t+5) | Y(t) = y]Ae Mdy
[Tyl =9 My

S 1 A ]
= / yx)\e‘ Ydy + / y(y —s)Ae Mdy
0 s
where the above used that

E[Y(£)Y(t+5)[Y(t) = y]

_ {yE(Y(t—i—s)) =4 iy <s |
y(y —s) ify>s

Hence,

Cov(Y(t),Y(t+5))
= /OS ve vy + [ " yly—s)e My - %

32. (@) Var(X(t+s)—X(t))
= Cou(X(t+s) — X(t), X(t+s) — X(t))
= R(0) = R(s) — R(s) + R(0)
— 2R(0) — 2R(s).
(b) Cov(Y(t),Y(t+s))
= Cou(X(t+1) — X(t), X(t+s+1)
—X(t+5s))

= Ry(s) = Re(s = 1) = Ry(s + 1) + Ru(s)
=2Rx(s) =Ry(s —=1) = Ry(s +1), s=>1.

33. Coou(X(t),X(t+s))
= Cov(Yq coswt + Y, sinwt,
Yicosw(t+s)+ Yysinw(t +s))

= coswitcosw(f+s) + sinwtsinw(t +s)

= cos(w(t+s) —wt)

— COS Ws.
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i—1

1. (a) Let u be a random number. If Z Pi <u <

=1

i
Z P;j then simulate from F;.
j=1

i—1
(In the above Z Pi=0 wheni = 1.)

j=1
(b) Note that

F(x) = 3F(X) + 2Ba(x)

where

F(x)=1 —e %, 0<x<oo,
x, O0<x<l1

lﬂw_{L 1<x

Hence, using (a), let Uy, Uy, Uz be random
numbers and set

—log Uy .
Xx=J0 o if U1<1/3.
Us; if U1>1/3

-1
The above uses the fact that %Uz is expo-

nential with rate 2.

2. Simulate the appropriate number of geometrics

and sum them.

. If arandom sample of size n is chosen from a set of
N + M items of which N are acceptable then X the
number of acceptable items in the sample, is such
that

rox=n =[] L2 /1Y)

To simulate X note that if

L
7o

then

if the j™ section is acceptable

otherwise

105

j—1
N-Y
Iiq} = !
i1 N+M—(j—1)
we can simulate Iy, ..., I, by generating random
numbers Uy, ..., U, and then setting

. Hence,

P{l;=1]1,...

: TSN TMoGoD

0 otherwise

has the desired distribution.

Another way is to let

?
X =
0

and then simulate Xj, ..., Xy by generating ran-
dom numbers Uj, ..., Uy and then setting

j—1
N-Y I
i=1
N+M-(j—-1)
0 otherwise.

the j acceptable item is in the sample

otherwise

X]'Z 1

ifU]‘ <

X=Y) X

j then has the desired distribution.

=

1

]

The former method is preferable when n < N and
the latter when N < n.

R__x R__
ox /2 + 12 dy /x2 4+ y2
0 1 —y

X
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Hence, the Jacobian of the transformation is

x ¥
- Va2 y? 2y 1
_y X *
22 24P Va2

The joint density of R, 0 is thus

fro(s,0) =sfxy [\ [x2 4+ y?, tan_ly/x}

s
o2
1 2s

= — 0<0<2m,

- =, 0<s<r
2m 12

Hence, R and 6 are independent with

2
fr(s) = r—zs, 0<s<r,
1

As Fr(s) = 275 and so FR_l(U) - Vr2Uu = 4,
r

it follows that we can generate R, 60 by letting
U; and U; be random numbers and then setting

R =714/ U1 and 0 = 21’U2.

(b) It is clear that the accepted point is uniformly
distributed in the desired circle. Since

Area of circle 12 s

P{Z2 7% < 2}:—:7:f
1+tey =T Area of square 442 4
it follows that the number of iterations needed
(or equivalently that one-half the number of
random numbers needed) is geometric with
mean 77/4.

7. Use the rejection method with ¢(x) = 1. Differ-
entiating f(x)/g(x) and equating to 0, gives the 2
roots 1/2and 1. As f(.5) =30/16 > f(1) =0, we
see that c = 30/16, and so the algorithm is

Step 1: Generate random numbers U; and U,.

Step 2: If U, < 16(U? — 2U5 + U}), setX = Uyj.
Otherwise return to Step 1.

Ae M (Ax)" !
(n—1)!
Aef)\x/n

and g(x) = p—

n(Ax)"Le=Ax(1=1/n)
(n—1)!

8. (a) With f(x) =

f(x)/g(x) =

Differentiating this ratio and equating to 0
yields the equation

(n—1)x""2=x""1A(1—-1/n)
or x=nmn/A. Therefore,
o= (n=1)

¢ = max[f(x)/g(x)] = T
(b) By Stirling’s approximation

(n—1) = (n—1)""Y2e= (=D (27)1/2,

and so

n'e=(1=1) /(n — 1)

~ (2m) 2 [ 2] (= 1)V

[(n —1)/27]"/
T—1/n)"

~e[(n—1)/2m]'?

since (1 —1/n)" ~ e~ 1.

(c) Since
—Ax(1-1 ettt
F(3)feg () = e A ey 2
the procedure is

Step 1: Generate Y, an exponential with rate
A/n and a random number U.

Step2: If U < f(Y)/cg(Y), set X = Y. Other-
wise return to Step 1.

The inequality in Step 2 is equivalent, upon

taking logs, to

logU<n—1—-AY(1—-1/n)

+(n—1)log(AY) — (n—1)logn

or

—logU > (n—1)AY/n+1—n
—(n—1)log(AY /n).

Now, Y1 = —log U is exponential with rate 1,

and Y, = AY/n is also exponential with rate 1.

Hence, the algorithm can be written as given

in part (c).

(d) Upon acceptance, the amount by which Y;
exceeds (n — 1){Y, — log(Y2) — 1} is expo-
nential with rate 1.

10. Whenever i is the chosen value that satisfies
Lemma 4.1 name the resultant Q as Q(l).
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1 if X; = jfor somei
I‘ =
]

0 otherwise
then

n
D=} I
j=1

and so

(ap!
E
I
™
||

£
)
-

1-—

Q

n

13. P{X =i} =P{Y =i|U < Py/CQy}

_ P{Y =i,U<Py/CQy}
o K

_ QiP{U < Py/CQy|Y =i}
K

_ QiPi/CQ;
K

_ 0

- CK

where K = P{U < Py/CQy}. Since the above is a
probability mass function it follows that KC = 1.

14. (a) By induction we show that

(IP{X >k} = (1=A(1)) - (1 = A(K)).

The above is obvious for k = 1 and so assume
it true. Now

P{X>k+1}
=P{X>k+1|X>k}P{X >k}
=(1—-A(k+1))P{X >k}

which proves (*). Now

P{X =n}
=P{X=nX>n—-1}P{X>n—-1}
=An)P{X>n—-1}

and the result follows from (*).

(b) P{X =n}
= P{U, > A(1), Uy > A(2),..., Uy

>An—1),U, <A(n)}
= (1-AW)(1 - A@2)) -

(1—A(n—1))A(n).
(c) Since A(n) = p it sets
X =min{n: U < p}.

That is if each trial is a success with probabil-
ity p then it stops at the first success.

(d) Given that X > n, then

P{X =n|X>n} = PA(pn) = A(n)

. Use2u=X.

(b) Let I; denote the index of the jth smallest X;.

17. (a) Generate the X(; sequentially using that

given X(y), ..., X(;_1) the conditional distri-
bution of X;) will have failure rate function
Ai(t) given by
0 t < X(ifl)
Ai(t) = +X(0) =0
(n—z+1))\(t) t> X(i—l)
(b) This follows since F is an increasing function
the density of U;) is

for) = =i FOF™
x (F(£))"f(t)

| i _
Sy R G
0<t<1

which shows that Uy;) is beta.

(c) Interpret Y; as the i'" interarrival time of
a Poisson process. Now given Y; + --- +
Y,.1 = t, the time of the (n + 1) event, it
follows that the first n event times are distri-
buted as the ordered values of n uniform (0, t)
random variables. Hence,

Yi+---4Y;
Yi+- 4+ Y
will have the same distribution as U(l), s,
U(n) .

i=1,...,n
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18.

20.

21.

25.

27.
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(d) fU(l),‘U(H)<y1/’yn*l|y”)
_ - ym)
fu(n>(3/n)
_ _mnl!
- len71
= (”n__p!,0<y1 < <Yn1 <Yy

y

where the above used that

Fy,, (y) = P{maxU; <y} = y"
and so

Fy,, (y) = ny" .

(e) Follows from (d) and the fact that if
F(y) = y" then F~ ' (U) = U'/".

Consider a set of n machines each of which inde-
pendently functions for an exponential time with
rate 1. Then Wi, the time of the first failure, is expo-
nential with rate n. Also given W;_;, the time of
the it" failure, the additional time until the next
failure is exponential with rate n — (i — 1).

Since the interarrival distribution is geometric, it
follows that independent of when renewals prior
to k occurred there will be a renewal at k with
probability p. Hence, by symmetry, all subsets of
k points are equally likely to be chosen.

Pm+1{il/---/ik711m+1}

j<m
JE g1

k1

Pudin, - 1k

'/ikfl/j}

:(m_(k_m[%}mlﬂ [m}l—l}
k

See Problem 4.

First suppose n = 2.
Var(AXy + (1 — A)Xa) = A%20% + (1 — A)%03.

The derivative of the above is 2Ad% — 2(1 — A)o3
and equating to 0 yields that

3 et
ol +o5 1/t +1/03

Now suppose the result is true for n — 1. Then

n n—1
Var [2 )\iX,} = Var { y )\in} + Var(AuXy)
i=1 =1

1
_ _ 5 n—1 A '
=(1—An)* Var LZ1 ﬁ X;

+ A2 Var X,.

Now by the inductive hypothesis for fixed A, the
above is minimized when
Ai 1/0?
* 1 _ 1 ] —
()1_)\117”71 , i=1,...

) 1/(7/2
=1

Hence, we now need choose A, so as to minimize

,n—1.

1
Z 1/ 0]-2
j=1
Calculus yields that this occurs when
Ay — 1 1/02

n—1 ~n :
1+02 Y 1/07 ‘le/cfjZ
=1 j=

Substitution into (*) now gives the result.

28. (a) E[I]=P{Y < g(X)}

1
:/ P{Y < g(X)|X = x}dx
0
since X = U

:/Olydx

since Y is uniform (0, b).
(b) Var(bl) = b*Var(I)

= b*(E[I] — E2[I]) since I is Bernoulli

= b/olg(x)dx— [/Olg(x)dxr.

On the other hand
Var g(U) = E[g*(U)] — E*[g(U)]

_ /01 & (x)dx [/01 g(x)dx} 2

< /01 bg(x)dx — {/01 g(x)dx]2

sinceg(x) <b
= Var(bI).



29.

30.

31.

32.

Answers and Solutions

Use Hint.

In the following, the quantities C; do not depend
on x.

fi(x) = Cpetre=(x-1)?/(20)
= Crexp{—(x* — (2u + 2t0?)x)/(20)}

= Cyexp{—(x — (1 +t0?))2/(20)}

Since E[W,|D,]=D, + p, it follows that to
estimate E[W,] we should use D, + p. Since
E[D,|W,] # Wy — u, the reverse is not true and
so we should use the simulated data to determine
D, and then use this as an estimate of E[D,,].

Var[(X+Y)/2]

= %[Var(X) + Var(Y) + 2Cov(X, Y)]

~ Var(X) +Cov(X, Y)
N 2

Now it is always true that

33.

34.
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Cov(V, W) <1

Var(V)Var(W)

and so when X and Y have the same distribution

Cov(X, Y) < Var(X).

(a) E[X?] < E[aX] = aE[X]
(b) Var(X) = E[X?] — E?[X] < aE[X] — E?[X]

(c) From (b) we have that

Var(X) < a® (E[X])

a

E[;q 2 2
< —
(1 a ) a 01?;?2(1 p(l p) a /4

Use the estimator R + XQE[S]. Let A be the
amount of time the person in service at time
to has already spent in service. If E[R|A] is
easily computed, an even better estimator is
E[R|A] + XqE[S].








