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Chapter 1

1. S = {(R, R), (R, G), (R, B), (G, R), (G, G), (G, B),
(B, R), (B, G), (B, B)}

The probability of each point in S is 1/9.

3. S = {(e1, e2, …, en), n ≥ 2} where ei ∈ (heads, tails}.
In addition, en = en−1 = heads and for i = 1, …,
n − 2 if ei = heads, then ei+1 = tails.

P{4 tosses} = P{(t, t, h, h)} + P{(h, t, h, h)}

= 2
[

1
2

]4
= 1

8

5.
3
4

. If he wins, he only wins $1, while if he loses, he

loses $3.

7. If (E ∪ F)c occurs, then E ∪ F does not occur, and so
E does not occur (and so Ec does); F does not occur
(and so Fc does) and thus Ec and Fc both occur.
Hence,

(E ∪ F)c ⊂ EcFc

If EcFc occurs, then Ec occurs (and so E does not),
and Fc occurs (and so F does not). Hence, neither E
or F occurs and thus (E ∪ F)c does. Thus,

EcFc ⊂ (E ∪ F)c

and the result follows.

9. F = E ∪ FEc, implying since E and FEc are disjoint
that P(F) = P(E) + P(FE)c.

11. P{sum is i} =

⎧⎪⎪⎨
⎪⎪⎩

i − 1
36

, i = 2, …, 7

13 − i
36

, i = 8, …, 12

13. Condition an initial toss

P{win} =
12

∑
i=2

P{win | throw i}P{throw i}

Now,

P{win| throw i} = P{i before 7}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i = 2, 12

i − 1
5 + 1

i = 3, …, 6

1 i = 7, 11

13 − i
19 − 1

i = 8, …, 10

where above is obtained by using Problems 11
and 12.

P{win} ≈ .49.

17. Prob{end} = 1 − Prob{continue}
= 1 − P({H, H, H} ∪ {T, T, T})

= 1 − [Prob(H, H, H) + Prob(T, T, T)].

Fair coin: Prob{end} = 1 −
[

1
2

· 1
2

· 1
2

+ 1
2

· 1
2

· 1
2

]

= 3
4

Biased coin: P{end} = 1 −
[

1
4

· 1
4

· 1
4

+ 3
4

· 3
4

· 3
4

]

= 9
16

19. E = event at least 1 six P(E)

= number of ways to get E
number of sample pts

= 11
36

D = event two faces are different P(D)

= 1 − Prob(two faces the same)

= 1 − 6
36

= 5
6

P(E|D) = P(ED)
P(D)

= 10/36
5/6

= 1
3

4
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21. Let C = event person is color blind.

P(Male|C)

= P(C|Male) P(Male)
P(C|Male P(Male) + P(C|Female) P(Female)

= .05 × .5
.05 × .5 + .0025 × .5

= 2500
2625

= 20
21

23. P(E1)P(E2|E1)P(E3|E1E2) · · · P(En|E1 · · · En−1)

= P(E1)
P(E1E2)

P(E1)
P(E1E2E3)

P(E1E2)
· · · P(E1 · · · En)

P(E1 · · · En−1)

= P(E1 · · · En)

25. (a) P{pair} = P{second card is same
denomination as first}

= 3/51

(b) P{pair|different suits}
= P{pair, different suits}

P{different suits}
= P{pair}/P{different suits}

= 3/51
39/51

= 1/13

27. P(E1) = 1
P(E2|E1) = 39/51, since 12 cards are in the ace of
spades pile and 39 are not.

P(E3|E1E2) = 26/50, since 24 cards are in the piles
of the two aces and 26 are in the other two piles.

P(E4|E1E2E3) = 13/49

So

P{each pile has an ace} = (39/51)(26/50)(13/49)

29. (a) P(E|F) = 0

(b) P(E|F) = P(EF)/P(F) = P(E)/P(F) ≥
P(E) = .6

(c) P(E|F) = P(EF)/P(F) = P(F)/P(F) = 1

31. Let S = event sum of dice is 7; F = event first
die is 6.

P(S) = 1
6

P(FS) = 1
36

P(F|S) = P(F|S)
P(S)

= 1/36
1/6

= 1
6

33. Let S = event student is sophomore; F = event
student is freshman; B = event student is boy;
G = event student is girl. Let x = number of
sophomore girls; total number of students =
16 + x.

P(F) = 10
16 + x

P(B) = 10
16 + x

P(FB) = 4
16 + x

4
16 + x

= P(FB) = P(F)P(B) = 10
16 + x

10
16 + x

⇒ x = 9

35. (a) 1/16
(b) 1/16
(c) 15/16, since the only way in which the

pattern H, H, H, H can appear before the pat-
tern T, H, H, H is if the first four flips all land
heads.

37. Let W = event marble is white.

P(B1|W) = P(W|B1)P(B1)
P(W|B1)P(B1) + P(W|B2)P(B2)

=
1
2

· 1
2

1
2

· 1
2

+ 1
3

· 1
2

=
1
4
5

12

= 3
5

39. Let W = event woman resigns; A, B, C are events
the person resigning works in store A, B, C, respec-
tively.

P(C|W)

= P(W|C)P(C)
P(W|C)P(C) + P(W|B)P(B) + P(W|A)P(A)

=
.70 × 100

225

.70 × 100
225

+ .60 × 75
225

+ .50
50

225

= 70
225

/140
225

= 1
2

41. Note first that since the rat has black parents and
a brown sibling, we know that both its parents are
hybrids with one black and one brown gene (for
if either were a pure black then all their offspring
would be black). Hence, both of their offspring’s
genes are equally likely to be either black or brown.

(a) P(2 black genes | at least one black gene)

= P(2 black genes)
P(at least one black gene)

= 1/4
3/4

= 1/3
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(b) Using the result from part (a) yields the
following:

P(2 black genes | 5 black offspring)

= P(2 black genes)
P(5 black offspring)

= 1/3
1(1/3) + (1/2)5(2/3)

= 16/17

where P(5 black offspring) was computed by con-
ditioning on whether the rat had 2 black genes.

43. Let i = event coin was selected; P(H|i) = i
10

.

P(5|H) = P(H|5)P(5)
10

∑
i=1

P(H|i)P(i)

=
5

10
· 1

10
10

∑
i=1

1
10

· 1
10

= 5
10

∑
i=1

i

= 1
11

45. Let Bi = event ith ball is black; Ri = event ith ball
is red.

P(B1|R2) = P(R2|B1)P(B1)
P(R2|B1)P(B1) + P(R2|R1)P(R1)

=
r

b + r + c
· b

b + r
r

b + r + c
· b

b + r
+ r + c

b + r + c
· r

b + r

= rb
rb + (r + c)r

= b
b + r + c

47. 1. 0 ≤ P(A|B) ≤ 1

2. P(S|B) = P(SB)
P(B)

= P(B)
P(B)

= 1

3. For disjoint events A and D

P(A ∪ D|B) = P((A ∪ D)B)
P(B)

= P(AB ∪ DB)
P(B)

= P(AB) + P(DB)
P(B)

= P(A|B) + P(D|B)

Direct verification is as follows:

P(A|BC)P(C|B) + P(A|BCc)P(Cc|B)

= P(ABC)
P(BC)

P(BC)
P(B)

+ P(ABCc)
P(BCc)

P(BCc)
P(B)

= P(ABC)
P(B)

+ P(ABCc)
P(B)

= P(AB)
P(B)

= P(A|B)



Chapter 2

1. P{X = 0} =
[

7
2

]/[
10
2

]
= 14

30

3. P{X = −2} = 1
4

= P{X = 2}

P{X = 0} = 1
2

5. P{max = 6} = 11
36

= P{min = 1}

P{max = 5} = 1
4

= P{min = 2}

P{max = 4} = 7
36

= P{min = 3}

P{max = 3} = 5
36

= P{min = 4}

P{max = 2} = 1
12

= P{min = 5}

P{max = 1} = 1
36

= P{min = 6}

7. p(0) = (.3)3 = .027

p(1) = 3(.3)2(.7) = .189

p(2) = 3(.3)(.7)2 = .441

p(3) = (.7)3 = .343

9. p(0) = 1
2

, p(1) = 1
10

, p(2) = 1
5

,

p(3) = 1
10

, p(3.5) = 1
10

11.
3
8

13.
10

∑
i = 7

(
10
i

)[
1
2

]10

15.
P{X = k}

P{X = k − 1}

=
n!

(n − k)! k!
pk(1 − p)n−k

n!
(n − k + 1)!(k − 1)!

pk−1(1 − p)n−k+1

= n − k + 1
k

p
1 − p

Hence,

P{X = k}
P{X = k − 1} ≥ 1 ↔ (n − k + 1)p > k(1 − p)

↔ (n + 1)p ≥ k

The result follows.

17. Follows since there are
n!

x1! · · · xr!
permutations of n

objects of which x1 are alike, x2 are alike, …, xr are
alike.

19. P{X1 + · · · + Xk = m}

=
[

n
m

]
(p1 + · · · + pk)m(pk+1 + · · · + pr)n−m

21. 1−
[

3
10

]5
− 5

[
3

10

]4 [ 7
10

]
−
[

5
2

] [
3
10

]3 [ 7
10

]2

23. In order for X to equal n, the first n − 1 flips must
have r − 1 heads, and then the nth flip must land
heads. By independence the desired probability is
thus[

n − 1
r − 1

]
pr−1(1 − p)n−rxp

25. A total of 7 games will be played if the first 6 result
in 3 wins and 3 losses. Thus,

P{7 games} =
(

6
3

)
p3(1 − p)3

Differentiation yields

7
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d
dp

P{7} = 20
[
3p2(1 − p)3 − p33(1 − p)2

]
= 60p2(1 − p)2 [1 − 2p

]
Thus, the derivative is zero when p = 1/2. Taking
the second derivative shows that the maximum is
attained at this value.

27. P{same number of heads} = ∑
i

P{A = i, B = i}

= ∑
i

(
k
i

)
(1/2)k

(
n − k

i

)
(1/2)n−k

= ∑
i

(
k
i

)(
n − k

i

)
(1/2)n

= ∑
i

(
k

k − i

)(
n − k

i

)
(1/2)n

=
(

n
k

)
(1/2)n

Another argument is as follows:

P{# heads of A = # heads of B}
= P{# tails of A = # heads of B}

since coin is fair

= P{k − # heads of A = # heads of B}
= P{k = total # heads}

29. Each flip after the first will, independently, result
in a changeover with probability 1/2. Therefore,

P{k changeovers}=
(

n − 1
k

)
(1/2)n−1

33. c
∫ 1

−1

(
1 − x2

)
dx = 1

c

[
x − x3

3

]∣∣∣∣∣
1

−1

= 1

c = 3
4

F(y) = 3
4

∫ 1

−1
(1 − x2)dx

= 3
4

[
y − y3

3
+ 2

3

]
, −1 < y < 1

35. P{X > 20}=
∫ ∞

20

10
x2 dx = 1

2

37. P{M ≤ x} = P{max(X1, …, Xn) ≤ x}
= P{X1 ≤ x, …, Xn ≤ x}

=
n∏

i=1

P{Xi ≤ x}

= xn

fM(x) = d
dx

P{M ≤ x} = nxn−1

39. E [X] = 31
6

41. Let Xi equal 1 if a changeover results from the ith

flip and let it be 0 otherwise. Then

number of changeovers =
n

∑
i=2

Xi

As,

E [Xi] = P{Xi = 1} = P{flip i − 1 
= flip i}
= 2p(1 − p)

we see that

E[number of changeovers] =
n

∑
i=2

E [Xi]

= 2(n − 1)p(1 − p)

43. (a) X =
n

∑
i=1

Xi

(b) E [Xi] = P{Xi = 1}
= P{red ball i is chosen before all n

black balls}
= 1/(n + 1) since each of these n + 1

balls is equally likely to be the
one chosen earliest

Therefore,

E [X] =
n

∑
i=1

E [Xi] = n/(n + 1)

45. Let Ni denote the number of keys in box i,
i = 1, …, k. Then, with X equal to the number

of collisions we have that X =
k

∑
i=1

(Ni − 1)+ =
k

∑
i=1

(Ni − 1 + I{Ni = 0}) where I{Ni = 0} is equal

to 1 if Ni = 0 and is equal to 0 otherwise. Hence,
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E[X] =
k

∑
i=1

(rpi − 1 + (1 − pi)r) = r − k

+
k

∑
i=1

(1 − pi)r

Another way to solve this problem is to let Y denote
the number of boxes having at least one key, and
then use the identity X = r − Y, which is true since
only the first key put in each box does not result in

a collision. Writing Y =
k

∑
i=1

I{Ni > 0} and taking

expectations yields

E[X] = r − E[Y] = r −
k

∑
i=1

[1 − (1 − pi)r]

= r − k +
k

∑
i=1

(1 − pi)r

47. Let Xi be 1 if trial i is a success and 0 otherwise.

(a) The largest value is .6. If X1 = X2 = X3, then

1.8 = E[X] = 3E[X1] = 3P{X1 = 1}

and so

P{X = 3} = P{X1 = 1} = .6

That this is the largest value is seen by Markov’s
inequality, which yields

P{X ≥ 3} ≤ E[X]/3 = .6

(b) The smallest value is 0. To construct a probabil-
ity scenario for which P{X = 3} = 0 let U be a
uniform random variable on (0, 1), and define

X1 = 1 if U ≤ .6
0 otherwise

X2 = 1 if U ≥ .4
0 otherwise

X3 = 1 if either U ≤ .3 or U ≥ .7
0 otherwise

It is easy to see that

P{X1 = X2 = X3 = 1} = 0

49. E[X2] − (E[X])2 = Var(X) = E(X − E[X])2 ≥ 0.
Equality when Var(X) = 0, that is, when X is
constant.

51. N =
r

∑
i=1

Xj where Xi is the number of flips between

the (i − 1)st and ith head. Hence, Xi is geometric
with mean 1/p. Thus,

E[N] =
r

∑
i=1

E[Xi] = r
p

53.
1

n + 1
,

1
2n + 1

−
[

1
n + 1

]2
.

55. (a) P(Y = j) =
j

∑
i=0

(
j
i

)
e−2λλj/j!

= e−2λ λj

j!

j

∑
i=0

(
j
i

)
1i1j−i

= e−2λ (2λ) j

j!

(b) P(X = i) =
∞
∑
j=i

(
j
i

)
e−2λλj/j!

= 1
i!

e−2λ
∞
∑
j=i

1
( j − i)!

λj

= λi

i!
e−2λ

∞
∑
k=0

λk/k!

= e−λ λi

i!

(c) P(X = i, Y − X = k) = P(X = i, Y = k + i)

=
(

k + i
i

)
e−2λ λk+i

(k + i)!

= e−λ λi

i!
e−λ λk

k!

showing that X and Y − X are independent
Poisson random variables with mean λ. Hence,

P(Y − X = k) = e−λ λk

k!

57. It is the number of successes in n + m independent
p-trials.

59. (a) Use the fact that F(Xi) is a uniform (0, 1) ran-
dom variable to obtain

p = P{F(X1) < F(X2) > F(X3) < F(X4)}
= P{U1 < U2 > U3 < U4}

where the Ui, i = 1, 2, 3, 4, are independent
uniform (0, 1) random variables.
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(b) p =
∫ 1

0

∫ 1

x1

∫ x2

0

∫ 1

x3

dx4dx3dx2dx1

=
∫ 1

0

∫ 1

x1

∫ x2

0
(1 − x3)dx3dx2dx1

=
∫ 1

0

∫ 1

x1

(x2 − x2
2/2)dx2dx1

=
∫ 1

0
(1/3 − x2

1/2 + x3
1/6)dx1

= 1/3 − 1/6 + 1/24 = 5/24

(c) There are 5 (of the 24 possible) orderings such
that X1 < X2 > X3 < X4. They are as follows:

X2 > X4 > X3 > X1

X2 > X4 > X1 > X3

X2 > X1 > X4 > X3

X4 > X2 > X3 > X1

X4 > X2 > X1 > X3

61. (a) fX(x) =
∫ ∞

x
λ2e−λydy

= λe−λx

(b) fY(y) =
∫ y

0
λ2e−λydx

= λ2ye−λy

(c) Because the Jacobian of the transformation
x = x, w = y − x is 1, we have

fX,W (x, w) = fX,Y(x, x + w) = λ2e−λ(x+w)

= λe−λx λe−λw

(d) It follows from the preceding that X and
W are independent exponential random vari-
ables with rate λ.

63. φ(t) =
∞
∑
n=1

etn(1 − p)n−1p

= pet
∞
∑
n=1

((1 − p)et)n−1

= pet

1 − (1 − p)et

65. Cov(Xi, Xj) = Cov(μi +
n

∑
k=1

aikZk , μj +
n

∑
t=1

ajtZt)

=
n

∑
t=1

n

∑
k=1

Cov(ajkZk , ajtZt)

=
n

∑
t=1

n

∑
k=1

aikajtCov(Zk , Zt)

=
n

∑
k=1

aikajk

where the last equality follows since

Cov(Zk , Zt) = 1 if k = t
0 if k 
= t

67. P{5 < X < 15} ≥ 2
5

69. Φ(1) − Φ

[
1
2

]
= .1498

71. (a) P {X = i} =
[

n
i

] [
m

k − i

]/[
n + m

k

]

i = 0, 1,…, min(k, n)

(b) X =
k

∑
i=1

Xi

E[X] =
K

∑
i=1

E[Xi] = kn
n + m

since the ith ball is equally likely to be
either of the n + m balls, and so
E[Xi] = P{Xi = 1} = n

n + m

X =
n

∑
i=1

Yi

E[X] =
n

∑
i=1

E[Yi]

=
n

∑
i=1

P{ith white ball is selected}

=
n

∑
i=1

k
n + m

= nk
n + m

73. As Ni is a binomial random variable with para-
meters (n, Pi), we have (a) E[Ni] = nPji (b) Var(Xi) =
nPi = (1 − Pi); (c) for i 
= j, the covariance of Ni and
Nj can be computed as

Cov (Ni, Nj) = Cov

[
∑
k

Xk , ∑
k

Yk

]
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where Xk(Yk) is 1 or 0, depending upon whether or
not outcome k is type i( j). Hence,

Cov(Ni, Nj) = ∑
k

∑
�

Cov(Xk , Y�)

Now for k 
= �, Cov(Xk , Y�) = 0 by independence of
trials and so

Cov (Ni, Nj) = ∑
k

Cov(Xk , Yk)

= ∑
k

(E[XkYk] − E[Xk]E[Yk])

= −∑
k

E[Xk]E[Yk] (since XkYk = 0)

= −∑
k

PiPj

= −nPiPj

(d) Letting

Yi =
{

1, if no type i’s occur
0, otherwise

we have that the number of outcomes that never

occur is equal to
r

∑
1

Yi and thus,

E

[
r

∑
1

Yi

]
=

r

∑
1

E[Yi]

=
r

∑
1

P{outcomes i does not occur}

=
r

∑
1

(1 − Pi)n

75. (a) Knowing the values of N1, …, Nj is equivalent
to knowing the relative ordering of the ele-
ments a1, …, aj. For instance, if N1 = 0, N2 = 1,
N3 = 1 then in the random permutation a2
is before a3, which is before a1. The indepen-
dence result follows for clearly the number
of a1,…, ai that follow ai+1 does not proba-
bilistically depend on the relative ordering of
a1, …, ai.

(b) P{Ni = k} = 1
i

, k = 0, 1,…, i − 1

which follows since of the elements a1, …, ai+1
the element ai+1 is equally likely to be first or
second or … or (i + 1)st.

(c) E[Ni] = 1
i

i−1

∑
k=0

k = i − 1
2

E[N2
i ] = 1

i

i−1

∑
k=0

k2 = (i − 1)(2i − 1)
6

and so

Var(Ni) = (i − 1)(2i − 1)
6

− (i − 1)2

4

= i2 − 1
12

77. If g1(x, y) = x + y, g2(x, y) = x − y, then

J =

∣∣∣∣∣∣∣
∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

∣∣∣∣∣∣∣ = 2

Hence, if U = X + Y, V = X − Y, then

fU, V(u, v) = 1
2

fX, Y

[
u + v

2
,

u − v
2

]

= 2
4τσ2 exp

[
− 1

2σ2

[[
u + v

2
− μ

]2

+
[

u − v
2

− μ

]2
]]

= e−μ2/σ2

4τσ2 exp
[

uμ

σ2 − u2

4σ2

]

exp
{

− v2

4σ2

}

79. K′(t) = E
[
XetX]

E
[
etX
]

K′′(t) = E
[
etX]E[X2etX]− E2[XetX]

E2
[
etX
]

Hence,

K′(0) = E[X]

K′′(0) = E[X2] − E2[X] = Var(X)



Chapter 3

1. ∑
x

p
X|Y(x|y) = ∑x p(x, y)

pY(y)
= pY(y)

pY(y)
= 1

3. E[X|Y = 1] = 2

E[X|Y = 2] = 5
3

E[X|Y = 3] = 12
5

5. (a) P{X = i|Y = 3} = P{i white balls selected
when choosing 3 balls from 3 white and 6 red}

=

[
3
i

] [
6

3 − i

]
[

9
3

] , i = 0, 1, 2, 3

(b) By same reasoning as in (a), if Y = 1, then
X has the same distribution as the number
of white balls chosen when 5 balls are chosen
from 3 white and 6 red. Hence,

E[X|Y = 1] = 5
3
9

= 5
3

7. Given Y = 2, the conditional distribution of X
and Z is

P{(X, Z) = (1, 1)|Y = 2} = 1
5

P{(1, 2)|Y = 2} = 0

P{(2, 1)|Y = 2} = 0

P{(2, 2)|Y = 2} = 4
5

So,

E[X|Y = 2] = 1
5

+ 8
5

= 9
5

E[X|Y = 2, Z = 1] = 1

9. E[X|Y = y] = ∑
x

xP{X = x|Y = y}
= ∑

x
xP{X = x} by independence

= E[X]

11. E[X|Y = y] = C
∫ y

−y
x(y2 − x2)dx = 0

13. The conditional density of X given that X > 1 is

fX|X > 1(x) = f (x)
P{X > 1} = λ exp−λx

exp−λ
when x > 1

E[X|X > 1] = expλ
∫ ∞

1
xλ exp−λx dx = 1 + 1/λ

by integration by parts.

15. fX|Y = y(x|y) =
1
y

exp−y

fy(y)
=

1
y

exp−y

∫ y

0

1
y

exp−y dx

= 1
y

, 0 < x < y

E[X2|Y = y] = 1
y

∫ y

0
x2dx = y2

3

17. With K = 1/P{X = i}, we have that

fY|X
(
y|i)= KP{X = i|Y = y}fY(y)

= K1e−yyie−αyya−1

= K1e−(1+α)yya+i−1

where K1 does not depend on y. But as the pre-
ceding is the density function of a gamma random
variable with parameters (s + i, 1 + α) the result
follows.

12
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19.
∫

E[X|Y = y] fY(y)dy

=
∫ ∫

xfX|Y(x|y)dx fY(Y)dy

=
∫ ∫

x
f (x, y)
fY(y)

dx fY(y)dy

=
∫

x
∫

f (x · y)dydx

=
∫

xfX(x)dx

= E[X]

21. (a) X =
N

∑
i=1

Ti

(b) Clearly N is geometric with parameter 1/3;
thus, E[N] = 3.

(c) Since TN is the travel time corresponding to
the choice leading to freedom it follows that
TN = 2, and so E [TN] = 2.

(d) Given that N = n, the travel times Tii = 1,…,
n − 1 are each equally likely to be either 3 or
5 (since we know that a door leading back to the
nine is selected), whereas Tn is equal to 2 (since
that choice led to safety). Hence,

E

[
N

∑
i=1

Ti|N = n

]
= E

[
n−1

∑
i=1

Ti|N = n

]

+ E[Tn|N = n]

= 4(n − 1) + 2

(e) Since part (d) is equivalent to the equation

E

[
N

∑
i=1

Ti|N
]

= 4N − 2

we see from parts (a) and (b) that

E[X] = 4E[N] − 2

= 10

23. Let X denote the first time a head appears. Let us
obtain an equation for E[N|X] by conditioning on
the next two flips after X. This gives

E[N|X] = E[N|X, h, h]p2 + E[N|X, h, t]pq

+ E[N|X, t, h]pq + E[N|X, t, t]q2

where q = 1 − p. Now

E [N|X, h, h] = X + 1, E[N|X, h, t] = X + 1

E [N|X, t, h] = X + 2, E[N|X, t, t] = X + 2 + E[N]

Substituting back gives

E[N|X] = (X + 1)(p2 + pq) + (X + 2)pq

+ (X + 2 + E[N])q2

Taking expectations, and using the fact that X is
geometric with mean 1/p, we obtain

E[N] = 1 + p + q + 2pq + q2/p + 2q2 + q2E[N]

Solving for E[N] yields

E[N] = 2 + 2q + q2/p
1 − q2

25. (a) Let F be the initial outcome.

E[N] =
3

∑
i=1

E[N|F = i]pi =
3

∑
i=1

(
1 + 2

pi

)
pi = 1 + 6 = 7

(b) Let N1,2 be the number of trials until both out-
come 1 and outcome 2 have occurred. Then

E[N1,2] = E[N1,2|F = 1]p1 + E[N1,2|F = 2]p2

+ E[N1,2|F = 3]p3

=
(

1 + 1
p2

)
p1 +

(
1 + 1

p1

)
p2

+ (1 + E[N1,2])p3

= 1 + p1

p2
+ p2

p1
+ p3E[N1,2]

Hence,

E[N1,2] =
1 + p1

p2
+ p2

p1

p1 + p2

27. Condition on the outcome of the first flip to obtain

E[X] = E[X|H]p + E[X|T](1 − p)

= (1 + E[X])p + E[X|T](1 − p)

Conditioning on the next flip gives

E[X|T] = E[X|TH]p + E[X|TT](1 − p)

= (2 + E[X])p + (2 + 1/p)(1 − p)

where the final equality follows since given that
the first two flips are tails the number of additional
flips is just the number of flips needed to obtain a
head. Putting the preceding together yields

E[X] = (1 + E[X])p + (2 + E[X])p(1 − p)

+ (2 + 1/p)(1 − p)2

or

E[X] = 1
p(1 − p)2
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29. Let qi = 1 − pi, i = 1.2. Also, let h stand for hit and
m for miss.

(a) μ1 = E[N|h]p1 + E[N|m]q1

= p1(E[N|h, h]p2 + E[N|h, m]q2)

+ (1 + μ2)q1

= 2p1p2 + (2 + μ1)p1q2 + (1 + μ2)q1

The preceding equation simplifies to

μ1(1 − p1q2) = 1 + p1 + μ2q1

Similarly, we have that

μ2(1 − p2q1) = 1 + p2 + μ1q2

Solving these equations gives the solution.

h1 = E[H|h]p1 + E[H|m]q1

= p1(E[H|h, h]p2 + E[H|h, m]q2) + h2q1

= 2p1p2 + (1 + h1) p1q2 + h2q1

Similarly, we have that

h2 = 2p1p2 + (1 + h2)p2q1 + h1q2

and we solve these equations to find h1
and h2.

31. Let Li denote the length of run i. Conditioning on
X, the initial value gives

E[L1] = E[L1|X = 1]p + E[L1|X = 0](1 − p)

= 1
1 − p

p + 1
p

(1 − p)

= p
1 − p

+ 1 − p
p

and

E[L2] = E[L2|X = 1]p + E[L2|X = 0](1 − p)

= 1
p

p + 1
1 − p

(1 − p)

= 2

33. Let I(A) equal 1 if the event A occurs and let it equal
0 otherwise.

E

[
T

∑
i=1

Ri

]
= E

[∞
∑
i=1

I(T ≥ i)Ri

]

=
∞
∑
i=1

E[I (T ≥ i) Ri]

=
∞
∑
i=1

E[I(T ≥ i)]E[Ri]

=
∞
∑
i=1

P{T ≥ i}E[Ri]

=
∞
∑
i=1

βi−1E[Ri]

= E

[∞
∑
i=1

βi−1Ri

]

35. np1 = E[X1]

= E[X1|X2 = 0](1 − p2)n

+ E[X1|X2 > 0][1 − (1 − p2)n]

= n
p1

1 − p2
(1 − p2)n

+ E[X1|X2 > 0][1 − (1 − p2)n]

yielding the result

E[X1|X2 > 0] = np1(1 − (1 − p2)n−1)
1 − (1 − p2)n

37. (a) E[X] = (2.6 + 3 + 3.4)/3 = 3

(b) E[X2] = [2.6 + 2.62 + 3 + 9 + 3.4 + 3.42]/3
= 12.1067, and Var(X) = 3.1067

39. Let N denote the number of cycles, and let X be the
position of card 1.

(a) mn = 1
n

n

∑
i=1

E[N|X = i] = 1
n

n

∑
i=1

(1 + mn−1)

= 1 + 1
n

n−1

∑
j=1

mj

(b) m1 = 1

m2 = 1 + 1
2

= 3/2

m3 = 1 + 1
3

(1 + 3/2) = 1 + 1/2 + 1/3

= 11/6

m4 = 1 + 1
4

(1 + 3/2 + 11/6) = 25/12

(c) mn = 1 + 1/2 + 1/3 + · · · + 1/n
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(d) Using recursion and the induction hypothesis
gives

mn = 1 + 1
n

n−1

∑
j=1

(1 + · · · + 1/j)

= 1 + 1
n

(n − 1 + (n − 2)/2 + (n − 3)/3

+ · · · + 1/(n − 1))

= 1 + 1
n

[n + n/2 + · · · + n/(n − 1)

− (n − 1)]

= 1 + 1/2 + · · · + 1/n

(e) N =
n

∑
i=1

Xi

(f) mn =
n

∑
i=1

E[Xi] =
n

∑
i=1

P{i is last of 1,…, i}

=
n

∑
i=1

1/i

(g) Yes, knowing for instance that i + 1 is the last
of all the cards 1, …, i + 1 to be seen tells us
nothing about whether i is the last of 1, …, i.

(h) Var(N) =
n

∑
i=1

Var(Xi) =
n

∑
i=1

(1/i)(1 − 1/i)

41. Let N denote the number of minutes in the maze.
If L is the event the rat chooses its left, and R the
event it chooses its right, we have by conditioning
on the first direction chosen:

E(N) = 1
2

E(N|L) + 1
2

E(N|R)

= 1
2

[
1
3

(2) + 2
3

(5 + E(N))
]

+ 1
2

[3 + E(N)]

= 5
6

E(N) + 21
6

= 21

43. E[T|χ2
n] = 1√

χ2
n/n

E[Z|χ2
n] = 1√

χ2
n/n

E[Z] = 0

E[T2|χ2
n] = n

χ2
n

E[Z2|χ2
n] = n

χ2
n

E[Z2] = n
χ2

n

Hence, E[T] = 0, and

Var(T) = E[T2] = E
[

n
χ2

n

]

= n
∫ ∞

0

1
x

1
2 e−x/2(x/2)

n
2 −1

Γ (n/2)
dx

= n
2Γ (n/2)

∫ ∞

0

1
2

e−x/2(x/2)
n−2

2 −1 dx

= nΓ (n/2 − 1)
2Γ (n/2)

= n
2(n/2 − 1)

= n
n − 2

45. Now

E[Xn|Xn−1] = 0, Var(Xn|Xn−1) = βX2
n−1

(a) From the above we see that

E[Xn] = 0

(b) From (a) we have that Var(xn) = E[X2
n]. Now

E[X2
n] = E{E[X2

n|Xn−1]}
= E[βX2

n−1]

= βE[X2
n−1]

= β2E[X2
n−2]

·
= βnX2

0

47. E[X2Y2|X] = X2E[Y2|X]

≥ X2(E[Y|X])2 = X2

The inequality following since for any random
variable U, E[U2] ≥ (E[U])2 and this remains true
when conditioning on some other random variable
X. Taking expectations of the above shows that

E[(XY)2] ≥ E[X2]

As

E[XY] = E[E[XY|X]] = E[XE[Y|X]] = E[X]

the result follows.

49. Let A be the event that A is the overall winner, and
let X be the number of games played. Let Y equal
the number of wins for A in the first two games.

P(A) = P(A|Y = 0)P(Y = 0)

+ P(A|Y = 1)P(Y = 1)

+ P(A|Y = 2)P(Y = 2)

= 0 + P(A)2p(1 − p) + p2

Thus,

P(A) = p2

1 − 2p(1 − p)
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E[X] = E[X|Y = 0]P(Y = 0)

+ E[X|Y = 1]P(Y = 1)

+ E[X|Y = 2]P(Y = 2)

= 2(1 − p)2 + (2 + E[X])2p(1 − p) + 2p2

= 2 + E[X]2p(1 − p)

Thus,

E[X] = 2
1 − 2p(1 − p)

51. Let α be the probability that X is even. Condition-
ing on the first trial gives

α = P(even|X = 1)p + P(even|X > 1)(1 − p)
= (1 − α)(1 − p)

Thus,

α = 1 − p
2 − p

More computationally

α =
∞
∑
n=1

P(X = 2n) = p
1 − p

∞
∑
n=1

(1 − p)2n

= p
1 − p

(1 − p)2

1 − (1 − p)2 = 1 − p
2 − p

53. P{X = n} =
∫ ∞

0
P{X = n|λ}e−λdλ

=
∫ ∞

0

e−λλn

n!
e−λdλ

=
∫ ∞

0
e−2λλn dλ

n!

=
∫ ∞

0
e−ttn dt

n!

[
1
2

]n+1

The result follows since∫ ∞

0
e−ttndt = Γ (n + 1) = n!

57. Let X be the number of storms.

P{X ≥ 3} = 1 − P{X ≤ 2}

= 1 −
∫ 5

0
P{X ≤ 2|Λ = x}1

5
dx

= 1 −
∫ 5

0
[e−x + xe−x + e−xx2/2]

1
5

dx

59. (a) P(AiAj) =
n

∑
k=0

P(AiAj|Ni = k)
(

n
k

)
pk

i (1 − pi)n−k

=
n

∑
k=1

P(Aj|Ni = k)
(

n
k

)
pk

i (1 − pi)n−k

=
n−1

∑
k=1

[
1 −

(
1 − pj

1 − pi

)n−k
](

n
k

)

× pk
i (1 − pi)n−k

=
n−1

∑
k=1

(
n
k

)
pk

i (1 − pi)n−k −
n−1

∑
k=1

×
(

1 − pj

1 − pi

)n−k (n
k

)
× pk

i (1 − pi)n−k

= 1 − (1 − pi)n − pn
i −

n−1

∑
k=1

(
n
k

)
× pk

i (1 − pi − pj)n−k

= 1 − (1 − pi)n − pn
i − [(1 − pj)n

−(1 − pi − pj)n − pn
i ]

= 1 + (1 − pi − pj)n − (1 − pi)n

−(1 − pj)n

where the preceding used that conditional on
Ni = k, each of the other n − k trials indepen-
dently results in outcome j with probability

pj

1 − pi
.

(b) P(AiAj) =
n

∑
k=1

P(AiAj|Fi = k) pi(1 − pi)k−1

+ P(AiAj|Fi > n) (1 − pi)n

=
n

∑
k=1

P(Aj|Fi = k) pi(1 − pi)k−1

=
n

∑
k=1

[
1 −

(
1 − pj

1 − pi

)k−1
(1 − pj)n−k

]
× pi(1 − pi)k−1

(c) P(AiAj) = P(Ai) + P(Aj) − P(Ai ∪ Aj)

= 1 − (1 − pi)n + 1 − (1 − pj)n

−[1 − (1 − pi − pj)n]

= 1 + (1 − pi − pj)n − (1 − pi)n

−(1 − pj)n

61. (a) m1 = E[X|h]p1 + E[H|m]q1 = p1 + (1 + m2)

q1 = 1 + m2q1.
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Similarly, m2 = 1 + m1q2. Solving these equa-
tions gives

m1 = 1 + q1

1 − q1q2
, m2 = 1 + q2

1 − q1q2

(b) P1 = p1 + q1P2

P2 = q2P1

implying that

P1 = p1

1 − q1q2
, P2 = p1q2

1 − q1q2

(c) Let fi denote the probability that the final hit
was by 1 when i shoots first. Conditioning on
the outcome of the first shot gives

f1 = p1P2 + q1 f2 and f2 = p2P1 + q2 f1

Solving these equations gives

f1 = p1P2 + q1p2P1

1 − q1q2

(d) and (e) Let Bi denote the event that both hits
were by i. Condition on the outcome of the first
two shots to obtain

P(B1) = p1q2P1 + q1q2P(B1) → P(B1)

= p1q2P1
1 − q1q2

Also,

P(B2) = q1p2(1 − P1) + q1q2P(B2) → P(B2)

= q1p2(1 − P1)
1 − q1q2

(f) E[N] = 2p1p2 + p1q2(2 + m1)

+ q1p2(2 + m1) + q1q2(2 + E[N])

implying that

E[N] = 2 + m1p1q2 + m1q1p2

1 − q1q2

63. Let Si be the event there is only one type i in the
final set.

P{Si = 1} =
n−1

∑
j=0

P{Si = 1|T = j}P{T = j}

= 1
n

n−1

∑
j=0

P{Si = 1|T = j}

= 1
n

n−1

∑
j=0

1
n − j

The final equality follows because given that there
are still n − j − 1 uncollected types when the first
type i is obtained, the probability starting at that
point that it will be the last of the set of n − j types
consisting of type i along with the n − j − 1 yet
uncollected types to be obtained is, by symmetry,
1/(n − j). Hence,

E

[
n

∑
i=1

Si

]
= nE[Si] =

n

∑
k=1

1
k

65. (a) P{Yn = j} = 1/(n + 1), j = 0, …, n

(b) For j = 0, …, n − 1

P{Yn−1 = j} =
n

∑
i=0

1
n + 1

P{Yn−1 = j|Yn = i}

= 1
n + 1

(P{Yn−1 = j|Yn = j}

+ P{Yn−1 = j|Yn = j + 1})

= 1
n + 1

(P(last is nonred| j red)

+ P(last is red| j + 1 red)

= 1
n + 1

(
n − j

n
+ j + 1

n

)
= 1/n

(c) P{Yk = j} = 1/(k + 1), j = 0, …, k

(d) For j = 0, …, k − 1

P{Yk−1 = j} =
k

∑
i=0

P{Yk−1 = j|Yk = i}

P{Yk = i}

= 1
k + 1

(P{Yk−1 = j|Yk = j}

+ P{Yk−1 = j|Yk = j + 1})

= 1
k + 1

(
k − j

k
+ j + 1

k

)
= 1/k

where the second equality follows from the
induction hypothesis.

67. A run of j successive heads can occur in the fol-
lowing mutually exclusive ways: (i) either there is
a run of j in the first n − 1 flips, or (ii) there is no
j-run in the first n − j − 1 flips, flip n − j is a tail,
and the next j flips are all heads. Consequently, (a)
follows. Condition on the time of the first tail:

Pj(n) =
j

∑
k=1

Pj(n − k)pk−1(.1 − p) + p j, j ≤ n
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69. (a) Let I(i, j) equal 1 if i and j are a pair and 0
otherwise. Then

E

[
∑
i<j

I(i, j)

]
=
⎛
⎝n

2

⎞
⎠1

n
1

n − 1
= 1/2

Let X be the size of the cycle containing person
1. Then

Qn =
n

∑
i=1

P{no pairs|X = i}1/n = 1
n ∑

i �=2
Qn−i

73. Condition on the value of the sum prior to going
over 100. In all cases the most likely value is 101.
(For instance, if this sum is 98 then the final sum
is equally likely to be either 101, 102, 103, or 104. If
the sum prior to going over is 95 then the final sum
is 101 with certainty.)

75. (a) Since A receives more votes than B (since a > a)
it follows that if A is not always leading then
they will be tied at some point.

(b) Consider any outcome in which A receives
the first vote and they are eventually tied,
say a, a, b, a, b, a, b, b…. We can correspond this
sequence to one that takes the part of the
sequence until they are tied in the reverse
order. That is, we correspond the above to the
sequence b, b, a, b, a, b, a, a… where the remain-
der of the sequence is exactly as in the original.
Note that this latter sequence is one in which
B is initially ahead and then they are tied. As
it is easy to see that this correspondence is one
to one, part (b) follows.

(c) Now,
P{B receives first vote and they are
eventually tied}
= P{B receives first vote}= n/(n + m)
Therefore, by part (b) we see that
P{eventually tied}= 2n/(n + m)
and the result follows from part (a).

77. We will prove it when X and Y are discrete.

(a) This part follows from (b) by taking
g(x, y) = xy.

(b) E[g(X, Y)|Y = y] = ∑
y

∑
x

g(x, y)

P{X = x, Y = y|Y = y}
Now,

P{X = x, Y = y|Y = y}

=
⎧⎨
⎩

0, if y 
= y

P{X = x, Y = y}, if y = y

So,

E
[
g(X, Y)|Y = y

]= ∑
k

g(x, y)P{X = x|Y = y}

= E[g(x, y)|Y = y

(c) E[XY] = E[E[XY|Y]]

= E[YE[X|Y]] by (a)

79. Let us suppose we take a picture of the urn before
each removal of a ball. If at the end of the exper-
iment we look at these pictures in reverse order
(i.e., look at the last taken picture first), we will
see a set of balls increasing at each picture. The
set of balls seen in this fashion always will have
more white balls than black balls if and only if in
the original experiment there were always more
white than black balls left in the urn. Therefore,
these two events must have same probability, i.e.,
n − m/n + m by the ballot problem.

81. (a) f (x) = E[N] =
∫ 1

0
E[N|X1 = y]dy

E[N|X1 = y] =
{

1 if y < x

1 + f (y) if y > x

Hence,

f (x) = 1 +
∫ 1

x
f (y)dy

(b) f ′(x) = −f (x)

(c) f (x) = ce−x. Since f (1) = 1, we obtain that
c = e, and so f (x) = e1−x.

(d) P{N > n} = P{x < X1 < X2 < · · · < Xn} =
(1 − x)n/n! since in order for the above event to
occur all of the n random variables must exceed
x (and the probability of this is (1 − x)n), and
then among all of the n! equally likely order-
ings of this variables the one in which they are
increasing must occur.

(e) E[N] =
∞
∑
n=0

P{N > n}

= ∑
n

(1 − x)n/n! = e1−x

83. Let Ij equal 1 if ball j is drawn before ball i and
let it equal 0 otherwise. Then the random variable
of interest is ∑

j �= i
Ij. Now, by considering the first
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time that either i or j is withdrawn we see that
P{ j before i} = wj/(wi + wj). Hence,

E

[
∑
j �=i

Ij

]
= ∑

j �=i

wj

wi + wj

85. Consider the following ordering:
e1, e2, …, el−1, i, j, el+1, …, en where Pi < Pj

We will show that we can do better by inter-
changing the order of i and j, i.e., by taking
e1, e2, …, el−1, j, i, el+2, …, en. For the first ordering,
the expected position of the element requested is

Ei,j = Pe1 + 2Pe2 + · · · + (l − 1)Pel−1

+ lpi + (l + 1)Pj + (l + 2)Pel+2 + · · ·
Therefore,

Ei,j − Ej,i = l(Pi − Pj) + (l + 1)(Pj − Pi)

= Pj − Pi > 0

and so the second ordering is better. This shows
that every ordering for which the probabilities are
not in decreasing order is not optimal in the sense
that we can do better. Since there are only a finite
number of possible orderings, the ordering for
which p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn is optimum.

87. (a) This can be proved by induction on m. It is
obvious when m = 1 and then by fixing the
value of x1 and using the induction hypothe-

sis, we see that there are
n

∑
i=0

[
n − i + m − 2

m − 2

]

such solutions. As
[

n − i + m − 2
m − 2

]
equals the

number of ways of choosing m − 1 items from
a set of size n + m − 1 under the constraint
that the lowest numbered item selected is
number i + 1 (that is, none of 1, …, i are
selected where i + 1 is), we see that

n

∑
i=0

[
n − i + m − 2

m − 2

]
=
[

n + m − 1
m − 1

]
It also can be proven by noting that each solu-
tion corresponds in a one-to-one fashion with
a permutation of n ones and (m − 1) zeros.
The correspondence being that x1 equals the
number of ones to the left of the first zero, x2

the number of ones between the first and sec-
ond zeros, and so on. As there are (n + m −
1)!/n!(m − 1)! such permutations, the result
follows.

(b) The number of positive solutions of x1 + · · · +
xm = n is equal to the number of nonnegative
solutions of y1 + · · · + ym = n − m, and thus

there are
[

n − 1
m − 1

]
such solutions.

(c) If we fix a set of k of the xi and require them
to be the only zeros, then there are by (b)

(with m replaced by m − k)

⎡
⎣ n − 1

m − k − 1

⎤
⎦ such

solutions. Hence, there are

⎡
⎣m

k

⎤
⎦
⎡
⎣ n − 1

m − k − 1

⎤
⎦

outcomes such that exactly k of the Xi are
equal to zero, and so the desired probability

is

⎡
⎣m

k

⎤
⎦
⎡
⎣ n − 1

m − k − 1

⎤
⎦/

⎡
⎣n + m − 1

m − 1

⎤
⎦.

89. Condition on the value of In. This gives

Pn(K) = P

{
n

∑
j=1

jIj ≤ K|In = 1

}
1/2

+ P

{
n

∑
j=1

jIj ≤ K|In = 0

}
1/2

= P

{
n−1

∑
j=1

jIj + n ≤ K

}
1/2

+ P

{
n−1

∑
j=1

jIj ≤ K

}
1/2

= [Pn−1(k − n) + Pn−1(K)]/2

91.
1

p5(1 − p)3 + 1
p2(1 − p)

+ 1
p

95. With α = P(Sn < 0 for all n > 0), we have

−E[X] = α = p−1β



Chapter 4

1. P01 = 1, P10 = 1
9

, P21 = 4
9

, P32 = 1

P11 = 4
9

, P22 = 4
9

P12 = 4
9

, P23 = 1
9

3.

(RRR) (RRD) (RDR) (RDD) (DRR) (DRD) (DDR) (DDD)
(RRR) .8 .2 0 0 0 0 0 0
(RRD) .4 .6
(RDR) .6 .4
(RDD) .4 .6

P = (DRR) .6 .4
(DRD) .4 .6
(DDR) .6 .4
(DDD) .2 .8

where D = dry and R = rain. For instance, (DDR)
means that it is raining today, was dry yesterday,
and was dry the day before yesterday.

5. Cubing the transition probability matrix, we obtain
P3:⎡
⎢⎣13/36 11/54 47/108

4/9 4/27 11/27
5/12 2/9 13/36

⎤
⎥⎦

Thus,

E[X3] = P(X3 = 1) + 2P(X3 = 2)

= 1
4

P3
01 + 1

4
P3

11 + 1
2

P3
21

+ 2
[

1
4

P3
02 + 1

4
P3

12 + 1
2

P3
22

]

7. P2
30 + P2

31 = P31P10 + P33P11 + P33P31

= (.2)(.5) + (.8)(0) + (.2)(0) + (.8)(.2)

= .26

9. It is not a Markov chain because information about
previous color selections would affect probabili-
ties about the current makeup of the urn, which
would affect the probability that the next selection
is red.

11. The answer is
P4

2, 2

1 − P4
2, 0

for the Markov chain with

transition probability matrix⎡
⎣1 0 0

.3 .4 .3

.2 .3 .5

⎤
⎦

13. Pn
ij = ∑

k
Pn−r

ik Pr
kj > 0

15. Consider any path of states i0 = i, i1, i2, …, in = j
such that Pikik+1 > 0. Call this a path from i to j.
If j can be reached from i, then there must be a
path from i to j. Let i0, …, in be such a path. If all
of the values i0, …, in are not distinct, then there
is a subpath from i to j having fewer elements (for
instance, if i, 1, 2, 4, 1, 3, j is a path, then so is i, 1, 3, j).
Hence, if a path exists, there must be one with all
distinct states.

17.
n

∑
i=1

Yj/n → E[Y] by the strong law of large num-

bers. Now E[Y] = 2p − 1. Hence, if p > 1/2, then
E[Y] > 0, and so the average of the Yis converges
in this case to a positive number, which implies

that
n

∑
1

Yi → ∞ as n → ∞. Hence, state 0 can be

visited only a finite number of times and so must
be transient. Similarly, if p < 1/2, then E[Y] < 0,

and so lim
n

∑
1

Yi = −∞, and the argument is

similar.

19. The limiting probabilities are obtained from

r0 = .7r0 + .5r1

r1 = .4r2 + .2r3

r2 = .3r0 + .5r1

r0 + r1 + r2 + r3 = 1

and the solution is

r0 = 1
4

, r1 = 3
20

, r2 = 3
20

, r3 = 9
20

20
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The desired result is thus

r0 + r1 = 2
5

21. The transition probabilities are

Pi, j =
{

1 − 3α, if j = i
α, if j 
= i

By symmetry,

Pn
ij = 1

3
(1 − Pn

ii), j 
= i

So, let us prove by induction that

Pn
i, j =

⎧⎪⎪⎨
⎪⎪⎩

1
4

+ 3
4

(1 − 4α)n, if j = i

1
4

− 1
4

(1 − 4α)n, if j 
= i

As the preceding is true for n = 1, assume it for n.
To complete the induction proof, we need to show
that

Pn+1
i, j =

⎧⎪⎪⎨
⎪⎪⎩

1
4

+ 3
4

(1 − 4α)n+1, if j = i

1
4

− 1
4

(1 − 4α)n+1, if j 
= i

Now,

Pn+1
i, i = Pn

i, i Pi, i + ∑
j �=i

Pn
i, j Pj, i

=
(

1
4

+ 3
4

(1 − 4α)n
)

(1 − 3α)

+ 3
(

1
4

− 1
4

(1 − 4α)n
)

α

= 1
4

+ 3
4

(1 − 4α)n(1 − 3α − α)

= 1
4

+ 3
4

(1 − 4α)n+1

By symmetry, for j 
= i

Pn+1
ij = 1

3

(
1 − Pn+1

ii

)
= 1

4
− 1

4
(1 − 4α)n+1

and the induction is complete.

By letting n → ∞ in the preceding, or by using that
the transition probability matrix is doubly stochas-
tic, or by just using a symmetry argument, we
obtain that πi = 1/4.

23. (a) Letting 0 stand for a good year and 1 for a bad
year, the successive states follow a Markov chain
with transition probability matrix P:(

1/2 1/2
1/3 2/3

)

Squaring this matrix gives P2:(
5/12 7/12
7/18 11/18

)
Hence, if Si is the number of storms in year i then

E[S1] = E[S1|X1 = 0]P00 + E[S1|X1 = 1]P01

= 1/2 + 3/2 = 2

E[S2] = E[S2|X2 = 0]P2
00 + E[S2|X2 = 1]P2

01

= 5/12 + 21/12 = 26/12

Hence, E[S1 + S2] = 25/6.

(b) Multiplying the first row of P by the first column
of P2 gives

P3
00 = 5/24 + 7/36 = 29/72

Hence, conditioning on the state at time 3 yields

P(S3 = 0) = P(S3 = 0|X3 = 0)
29
72

+ P(S3 = 0|X3 = 1)

× 43
72

= 29
72

e−1 + 43
72

e−3

(c) The stationary probabilities are the solution of

π0 = π0
1
2

+ π1
1
3

π0 + π1 = 1

giving
π0 = 2/5 , π1 = 3/5.

Hence, the long-run average number of storms is
2/5 + 3(3/5) = 11/5.

25. Letting Xn denote the number of pairs of shoes
at the door the runner departs from at the begin-
ning of day n, then {Xn} is a Markov chain with
transition probabilities

Pi, i = 1/4, 0 < i < k

Pi, i−1 = 1/4, 0 < i < k

Pi, k−i = 1/4, 0 < i < k

Pi, k−i+1 = 1/4, 0 < i < k

The first equation refers to the situation where the
runner returns to the same door she left from and
then chooses that door the next day; the second to
the situation where the runner returns to the oppo-
site door from which she left from and then chooses
the original door the next day; and so on. (When
some of the four cases above refer to the same tran-
sition probability, they should be added together.
For instance, if i = 4, k = 8, then the preceding
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states that Pi, i = 1/4 = Pi, k−i. Thus, in this case,
P4, 4 = 1/2.) Also,

P0, 0 = 1/2
P0, k = 1/2
Pk, k = 1/4
Pk, 0 = 1/4
Pk, 1 = 1/4

Pk, k−1 = 1/4

It is now easy to check that this Markov chain is
doubly stochastic—that is, the column sums of the
transition probability matrix are all 1—and so the
long-run proportions are equal. Hence, the propor-
tion of time the runner runs barefooted is 1/(k + 1).

27. The limiting probabilities are obtained from

r0 = 1
9

r1

r1 = r0 + 4
9

r1 + 4
9

r2

r2 = 4
9

r1 + 4
9

r2 + r3

r0 + r1 + r2 + r3 = 1

and the solution is r0 = r3 = 1
20

, r1 = r2 = 9
20

.

29. Each employee moves according to a Markov chain
whose limiting probabilities are the solution of∏

1
= .7

∏
1

+ .2
∏

2
+ .1

∏
3∏

2
= .2

∏
1

+ .6
∏

2
+ .4

∏
3∏

1
+
∏

2
+
∏

3
= 1

Solving yields
∏

1
= 6/17,

∏
2

= 7/17,
∏

3
=

4/17. Hence, if N is large, it follows from the law
of large numbers that approximately 6, 7, and 4 of
each 17 employees are in categories 1, 2, and 3.

31. Let the state on day n be 0 if sunny, 1 if cloudy, and 2
if rainy. This gives a three-state Markov chain with
transition probability matrix

0 1 2

0 0 1/2 1/2
P = 1 1/4 1/2 1/4

2 1/4 1/4 1/2

The equations for the long-run proportions are

r0 = 1
4

r1 + 1
4

r2

r1 = 1
2

r0 + 1
2

r1 + 1
4

r2

r2 = 1
2

r0 + 1
4

r1 + 1
2

r2

r0 + r1 + r2 = 1

By symmetry it is easy to see that r1 = r2. This
makes it easy to solve and we obtain the result

r0 = 1
5

, r1 = 2
5

, r2 = 2
5

33. Consider the Markov chain whose state at time n is
the type of exam number n. The transition proba-
bilities of this Markov chain are obtained by condi-
tioning on the performance of the class. This gives
the following:

P11 = .3(1/3) + .7(1) = .8

P12 = P13 = .3(1/3) = .1

P21 = .6(1/3) + .4(1) = .6

P22 = P23 = .6(1/3) = .2

P31 = .9(1/3) + .1(1) = .4

P32 = P33 = .9(1/3) = .3

Let ri denote the proportion of exams that are type
i, i = 1, 2, 3. The ri are the solutions of the following
set of linear equations:

r1 = .8 r1 + .6 r2 + .4 r3

r2 = .1 r1 + .2 r2 + .3 r3

r1 + r2 + r3 = 1

Since Pi2 = Pi3 for all states i, it follows that
r2 = r3. Solving the equations gives the solution

r1 = 5/7, r2 = r3 = 1/7

35. The equations are

r0 = r1 + 1
2

r2 + 1
3

r3 + 1
4

r4

r1 = 1
2

r2 + 1
3

r3 + 1
4

r4

r2 = 1
3

r3 + 1
4

r4

r3 = 1
4

r4

r4 = r0

r0 + r1 + r2 + r3 + r4 = 1
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The solution is

r0 = r4 = 12/37, r1 = 6/37, r2 = 4/37,
r3 = 3/37

37. Must show that

πj = ∑
i

πiPk
i, j

The preceding follows because the right-hand side
is equal to the probability that the Markov chain
with transition probabilities Pi, j will be in state j
at time k when its initial state is chosen according
to its stationary probabilities, which is equal to its
stationary probability of being in state j.

39. Because recurrence is a class property it follows
that state j, which communicates with the recur-
rent state i, is recurrent. But if j were positive recur-
rent, then by the previous exercise i would be as
well. Because i is not, we can conclude that j is null
recurrent.

41. (a) The number of transitions into state i by time
n, the number of transitions originating from
state i by time n, and the number of time peri-
ods the chain is in state i by time n all differ
by at most 1. Thus, their long-run proportions
must be equal.

(b) riPij is the long-run proportion of transitions
that go from state i to state j.

(c) ∑j riPij is the long-run proportion of transi-
tions that are into state j.

(d) Since rj is also the long-run proportion of tran-
sitions that are into state j, it follows that

rj = ∑
j

riPij

43. Consider a typical state—say, 1 2 3. We must show∏
123

=
∏

123
P123, 123 +

∏
213

P213, 123

+
∏

231
P231, 123

Now P123, 123 = P213, 123 = P231, 123 = P1 and thus,∏
123

= P1

[∏
123

+
∏

213
+
∏

231

]
We must show that

∏
123

= P1P2

1 − P1
,
∏

213
= P2P1

1 − P2
,
∏

231
= P2P3

1 − P2

satisfies the above, which is equivalent to

P1P2 = P1

[
P2P1

1 − P2
+ P2P3

1 − P2

]

= P1

1 − P2
P2(P1 + P3)

= P1P2 since P1 + P3 = 1 − P2

By symmetry all of the other stationary equations
also follow.

45. (a) 1, since all states communicate and thus all are
recurrent since state space is finite.

(b) Condition on the first state visited from i.

xi =
N−1

∑
j=1

Pijxj + PiN , i = 1, … , N − 1

x0 = 0, xN = 1
(c) Must show

i
N

=
N−1

∑
j=1

j
N

Pij + PiN

=
N

∑
j=0

j
N

Pij

and follows by hypothesis.

47. {Yn, n ≥ 1} is a Markov chain with states (i, j).

P(i, j),(k, �) =
{

0, if j 
= k
Pj�, if j = k

where Pj� is the transition probability for {Xn}.

lim
n → ∞ P{Yn = (i, j)} = lim

n
P{Xn = i, Xn+1 = j}

= lim
n

[P{Xn = i}Pij]

= riPij

49. (a) No.

lim P{Xn = i} = pr1(i) + (1 − p)r2(i)

(b) Yes.

Pij = pP
(1)
ij + (1 − p)P

(2)
ij

53. With πi(1/4) equal to the proportion of time
a policyholder whose yearly number of acci-
dents is Poisson distributed with mean 1/4 is in
Bonus-Malus state i, we have that the average pre-
mium is

2
3

(326.375) + 1
3

[200π1(1/4) + 250π2(1/4)

+ 400π3(1/4) + 600π4(1/4)]
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55. S11 = P{offspring is aa | both parents dominant}

= P{aa, both dominant}
P{both dominant}

=
r2 1

4
(1 − q)2 = r2

4(1 − q)2

S10 = P{aa, 1 dominant and 1 recessive parent}
P{1 dominant and 1 recessive parent}

= P{aa, 1 parent aA and 1 parent aa}
2q(1 − q)

=
2qr

1
2

2q(1 − q)

= r
2(1 − q)

57. Let A be the event that all states have been visited
by time T. Then, conditioning on the direction of
the first step gives

P(A) = P(A|clockwise)p

+ P(A|counterclockwise)q

= p
1 − q/p

1 − (q/p)n + q
1 − p/q

1 − (p/q)n

The conditional probabilities in the preceding
follow by noting that they are equal to the proba-
bility in the gambler’s ruin problem that a gambler
that starts with 1 will reach n before going broke
when the gambler’s win probabilities are p and q.

59. Condition on the outcome of the initial play.

61. With P0 = 0, PN = 1

Pi = αiPi+1 + (1 − αi)Pi−1, i = 1, … , N − 1

These latter equations can be rewritten as

Pi+1 − Pi = βi(Pi − Pi−1)

where βi = (1 − αi)/αi. These equations can now
be solved exactly as in the original gambler’s ruin
problem. They give the solution

Pi =
1 + ∑i−1

j=1 Cj

1 + ∑N−1
j=1 Cj

, i = 1, …, N − 1

where

Cj =
j∏

i=1

βi

(c) PN−i, where αi = (N − i)/N

65. r ≥ 0 = P{X0 = 0}. Assume that
r ≥ P{Xn−1 = 0}
P{Xn = 0 = ∑

j
P{Xn = 0|X1 = j}Pj

= ∑
j

[
P{Xn−1 = }]jPj

≤ ∑
j

rjPj

= r

67. (a) Yes, the next state depends only on the present
and not on the past.

(b) One class, period is 1, recurrent.

(c) Pi, i+1 = P
N − i

N
, i = 0, 1, …, N − 1

Pi, i−1 = (1 − P)
i

N
, i = 1, 2, …, N

Pi, i = P
i

N
+ (1 − p)

(N − i)
N

, i = 0, 1, …, N

(d) See (e).

(e) ri =
[

N
i

]
pi(1 − p)N−i, i = 0, 1,…, N

(f) Direct substitution or use Example 7a.

(g) Time =
N−1

∑
j=i

Tj, where Tj is the number of

flips to go from j to j + 1 heads. Tj is geo-

metric with E[Tj] = N/j. Thus, E[time] =
N−1

∑
j=i

N/j.

69. r(n1,…, nm) = M!
n1,…, nm!

[
1
m

]M

We must now show that

r(n1,…, ni − 1,…, nj + 1,…)
nj + 1

M
1

M − 1

= r(n1,…, ni,…, nj,…)
i

M
1

M − 1

or
nj + 1

(ni − 1)!(nj + 1)!
= ni

ni!nj!
, which follows.

71. If rj = c
Pij

Pji
, then

rjPjk = c
PijPjk

Pji

rkPkj = c
PjkPkj

Pki

and are thus equal by hypothesis.



Answers and Solutions 25

73. It is straightforward to check that riPij = rjPji. For
instance, consider states 0 and 1. Then

r0p01 = (1/5)(1/2) = 1/10

whereas

r1p10 = (2/5)(1/4) = 1/10

75. The number of transitions from i to j in any interval
must equal (to within 1) the number from j to i since
each time the process goes from i to j in order to get
back to i, it must enter from j.

77. (a) ∑
a

yja = ∑
a

Eβ

[
∑
n

anI{Xn = j, an = a}
]

= Eβ

[
∑
n

an ∑
a

I{Xn = j, an = a}
]

= Eβ

[
∑
n

anI{Xn = j}
]

(b) ∑
j

∑
a

yja = Eβ

[
∑
n

an ∑
j

I{Xn = j}

]

= Eβ

[
∑ an

]
= 1

1 − α

∑
a

yja

= bj + Eβ

[ ∞
∑
n=1

= anI{Xn = j}

]

= bj + Eβ

[ ∞
∑
n=0

an+1I{Xn+1 = j}

]

= bj + Eβ

[ ∞
∑
n=0

= an+1 ∑
i, a

I{Xn = i, an = a}

I(Xn+1 = j}

]

= bj +
∞
∑
n=0

an+1 ∑
i, a

Eβ

[
I{Xn = i, an = a}

]
Pij(a)

= bj + a ∑
i, a

∑
n

anEβ

[
I(Xn = i, an = a}

]
Pij(a)

= bj + a ∑
i, a

yiaPij(a)

(c) Let dj, a denote the expected discounted time
the process is in j, and a is chosen when policy
β is employed. Then by the same argument as
in (b):

∑
a

dja

= bj + a ∑
i, a

∑
n

anEβ[I{Xn = i, an = a}] Pij(a)

= bj + a ∑
i, a

∑
n

anEβ

[
I{Xn= i}

] yia

∑
a

yia
Pij(a)

= bj + a ∑
i, a

∑
a

dia,
yia

∑
a

yia
Pij(a)

and we see from Equation (9.1) that the above
is satisfied upon substitution of dia = yia. As

it is easy to see that ∑i,a dia = 1
1 − a

, the result

follows since it can be shown that these linear
equations have a unique solution.

(d) Follows immediately from previous parts.
It is a well-know result in analysis (and
easily proven) that if limn→∞ an/n = a then
limn → ∞ ∑n

i ai/n also equals a. The result fol-
lows from this since

E[R(Xn)] = ∑
j

R( j)P{Xn = j}

= ∑
i

R( j)rj



Chapter 5

1. (a) e−1 (b) e−1

3. The conditional distribution of X, given that
X > 1, is the same as the unconditional distribution
of 1 + X. Hence, (a) is correct.

5. e−1 by lack of memory.

7. P{X1 < X2| min(X1, X2) = t}

= P{X1 < X2, min(X1, X2) = t}
P{min(X1, X2) = t}

= P{X1 = t, X2 > t}
P{X1 = t, X2 > t} + P{X2 = t, X1 > t}

= f1(t)F̄2(t)
f1(t)F̄2(t) + f2(t)F̄1(t)

Dividing though by F̄1(t)F̄2(t) yields the result.
(For a more rigorous argument, replace ′′ = t”
by ” ∈ (t, t + ε)” throughout, and then let ε → 0.)

9. Condition on whether machine 1 is still working at
time t, to obtain the answer,

1 − e−λ1t + e−λ1t λ1

λ1 + λ2

11. (a) Using Equation (5.5), the lack of memory prop-
erty of the exponential, as well as the fact that
the minimum of independent exponentials is
exponential with a rate equal to the sum of
their individual rates, it follows that

P(A1) = nμ

λ + nμ

and, for j > 1,

P(Aj|A1 · · · Aj−1) = (n − j + 1)μ
λ + (n − j + 1)μ

Hence,

p =
n∏

j=1

(n − j + 1)μ
λ + (n − j + 1)μ

(b) When n = 2,
P{max Yi < X}

=
∫ ∞

0
P{max Yi < X|X = x}λe−λxdx

=
∫ ∞

0
P{max Yi < x}λe−λxdx

=
∫ ∞

0
(1 − e−μx)2λe−λxdx

=
∫ ∞

0
(1 − 2e−μx + e−2μx)2λe−λxdx

= 1 − 2λ

λ + μ
+ λ

2μ + λ

= 2μ2

(λ + μ)(λ + 2μ)

13. Let Tn denote the time until the nth person in line
departs the line.Also, let D be the time until the first
departure from the line, and let X be the additional
time after D until Tn. Then,

E[Tn] = E[D] + E[X]

= 1
nθ + μ

+ (n − 1)θ + μ

nθ + μ
E[Tn−1]

where E[X] was computed by conditioning on
whether the first departure was the person in line.
Hence,

E[Tn] = An + BnE[Tn−1]

where

An = 1
nθ + μ

, Bn = (n − 1)θ + μ

nθ + μ

Solving gives the solution

E[Tn] = An +
n−1

∑
i=1

An−i

n∏
j=n−i+1

Bj

= An +
n−1

∑
i=1

1/(nθ + μ)

= n
nθ + μ

26
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Another way to solve the preceding is to let Ij equal
1 if customer n is still in line at the time of the ( j −
1)st departure from the line, and let Xj denote the
time between the ( j − 1)st and jth departure from
line. (Of course, these departures only refer to the
first n people in line.) Then

Tn =
n

∑
j=1

IjXj

The independence of Ij and Xj gives

E[Tn] =
n

∑
j=1

E[Ij]E[Xj]

But,

E[Ij] = (n − 1)θ + μ

nθ + μ
· · · (n − j + 1)θ + μ

(n − j + 2)θ + μ

= (n − j + 1)θ + μ

nθ + μ

and

E[Xj] = 1
(n − j + 1)θ + μ

which gives the result.

15. Let Ti denote the time between the (i − 1)th and
the ith failure. Then the Ti are independent with Ti
being exponential with rate (101 − i)/200. Thus,

E[T] =
5

∑
i=1

E[Ti] =
5

∑
i=1

200
101 − i

Var(T) =
5

∑
i=1

Var(Ti) =
5

∑
i=1

(200)2

(101 − i)2

17. Let Ci denote the cost of the ith link to be
constructed, i = 1, …, n − 1. Note that the first

link can be any of the
(

n
2

)
possible links.

Given the first one, the second link must connect
one of the 2 cities joined by the first link with one of
the n − 2 cities without any links. Thus, given the
first constructed link, the next link constructed will
be one of 2(n − 2) possible links. Similarly, given the
first two links that are constructed, the next one to
be constructed will be one of 3(n − 3) possible links,
and so on. Since the cost of the first link to be built

is the minimum of
(

n
2

)
exponentials with rate 1,

it follows that

E[C1] = 1
/(n

2

)

By the lack of memory property of the exponential
it follows that the amounts by which the costs of
the other links exceed C1 are independent exponen-
tials with rate 1. Therefore, C2 is equal to C1 plus
the minimum of 2(n − 2) independent exponentials
with rate 1, and so

E[C2] = E[C1] + 1
2(n − 2)

Similar reasoning then gives

E[C3] = E[C2] + 1
3(n − 3)

and so on.

19. (c) Letting A = X(2) − X(1) we have
E[X(2)]

= E[X(1)] + E[A]

= 1
μ1 + μ2

+ 1
μ2

μ1

μ1 + μ2
+ 1

μ1

μ2

μ1 + μ2

The formula for E[A] being obtained by condi-
tioning on which Xi is largest.

(d) Let I equal 1 if X1 < X2 and let it be 2 otherwise.
Since the conditional distribution of A (either
exponential with rate μ1 or μ2) is determined
by I, which is independent of X(1), it follows
that A is independent of X(1).
Therefore,

Var(X(2)) = Var(X(1)) + Var(A)

With p = μ1/(μ1 + μ2) we obtain, upon condi-
tioning on I,

E[A] = p/μ2 + (1 − p)/μ1,

E[A2] = 2p/μ2
2 + 2(1 − p)/μ2

1

Therefore,
Var(A) = 2p/μ2

2 + 2(1 − p)/μ2
1

− (p/μ2 + (1 − p)/μ1)2

Thus,

Var(X(2))

= 1/(μ1 + μ2)2 + 2[p/μ2
2 + (1 − p)/μ2

1]

−(p/μ2 + (1 − p)/μ1)2

21. E[time] = E[time waiting at 1] + 1/μ1

+ E[time waiting at 2] + 1/μ2

Now,

E[time waiting at 1] = 1/μ1 ,

E[time waiting at 2] = (1/μ2)
μ1

μ1 + μ2
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The last equation follows by conditioning on
whether or not the customer waits for server 2.
Therefore,

E[time] = 2/μ1 + (1/μ2)[1 + μ1/(μ1 + μ2)]

23. (a) 1/2.
(b) (1/2)n−1: whenever battery 1 is in use and a

failure occurs the probability is 1/2 that it is
not battery 1 that has failed.

(c) (1/2)n−i+1, i > 1.
(d) T is the sum of n − 1 independent exponentials

with rate 2μ (since each time a failure occurs
the time until the next failure is exponential
with rate 2μ).

(e) Gamma with parameters n − 1 and 2μ.

25. Parts (a) and (b) follow upon integration. For part
(c), condition on which of X or Y is larger and use
the lack of memory property to conclude that the
amount by which it is larger is exponential rate λ.
For instance, for x < 0,

fx − y(x)dx

= P{X < Y}P{−x < Y − X < −x + dx|Y > X}

= 1
2
λeλxdx

For (d) and (e), condition on I.

27. (a)
μ1

μ1 + μ3

(b)
μ1

μ1 + μ3

μ2

μ2 + μ3

(c) ∑
i

1
μi

+ μ1

μ1 + μ3

μ2

μ2 + μ3

1
μ3

(d) ∑
i

1
μi

+ μ1

μ1 + μ2

[
1
μ2

+ μ2

μ2 + μ3

1
μ3

]

+ μ2

μ1 + μ2

μ1

μ1 + μ3

μ2

μ2 + μ3

1
μ3

29. (a) fX|X + Y(x|c) = CfX. X+Y(x, c)

= C1 fXY(x, c−x)

= fX(x) fY(c − x)

= C2e−λxe−μ(c−x), 0 < x < c

= C3e−(λ−μ)x, 0 < x < c

where none of the Ci depend on x. Hence, we
can conclude that the conditional distribution
is that of an exponential random variable con-
ditioned to be less than c.

(b) E[X|X + Y = c] = 1 − e−(λ−μ)c(1 + (λ − μ)c)

λ(1 − e−(λ−μ)c)
(c) c = E [X + Y|X + Y = c] = E [X|X + Y = c]

+ E [Y|X + Y = c]
implying that

E[Y|X + Y = c]

= c − 1 − e−(λ−μ)c(1 + (λ − μ)c)

λ(1 − e−(λ−μ)c)

31. Condition on whether the 1 PM appointment is still
with the doctor at 1:30, and use the fact that if she or
he is then the remaining time spent is exponential
with mean 30. This gives

E[time spent in office]

= 30(1 − e−30/30) + (30 + 30)e−30/30

= 30 + 30e−1

33. (a) By the lack of memory property, no matter
when Y fails the remaining life of X is expo-
nential with rate λ.

(b) E [min (X, Y) |X > Y + c]

= E [min (X, Y) |X > Y, X − Y > c]

= E [min (X, Y) |X > Y]

where the final equality follows from (a).

37.
1
μ

+ 1
λ

39. (a) 196/2.5 = 78.4

(b) 196/(2.5)2 = 31.36

We use the central limit theorem to justify approx-
imating the life distribution by a normal distri-
bution with mean 78.4 and standard deviation√

31.36 = 5.6. In the following, Z is a standard nor-
mal random variable.

(c) P{L < 67.2} ≈ P
{

Z <
67.2 − 78.4

5.6

}
= P{Z < −2} = .0227

(d) P{L > 90} ≈ P
{

Z >
90 − 78.4

5.6

}
= P{Z > 2.07} = .0192

(e) P{L > 100} ≈ P
{

Z >
100 − 78.4

5.6

}
= P{Z > 3.857} = .00006
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41. λ1/(λ1 + λ2)

43. Let Si denote the service time at server i, i = 1, 2 and
let X denote the time until the next arrival. Then,
with p denoting the proportion of customers that
are served by both servers, we have

p = P{X > S1 + S2}
= P{X > S1}PX > S1 + S2|X > S1}
= μ1

μ1 + λ

μ2

μ2 + λ

45. E[N(T)] = E[E[N(T)|T]] = E[λT] = λE[T]

E[TN(T)] = E[E[TN(T)|T]] = E[TλT] = λE[T2]

E[N2(T)] = E
[
E[N2(T)|T]

]
= E[λT + (λT)2]

= λE[T] + λ2E[T2]

Hence,

Cov(T, N(T)) = λE[T2] − E[T]λE[T] = λσ2

and

Var(N(T)) = λE[T] + λ2E[T2] − (λE[T])2

= λμ + λ2σ2

47. (a) 1
/

(2μ) + 1/λ

(b) Let Ti denote the time until both servers are
busy when you start with i busy servers i =
0, 1. Then,

E[T0] = 1/λ + E[T1]

Now, starting with 1 server busy, let T be the
time until the first event (arrival or departure);
let X = 1 if the first event is an arrival and let it
be 0 if it is a departure; let Y be the additional
time after the first event until both servers are
busy.

E[T1] = E[T] + E[Y]

= 1
λ + μ

+ E[Y|X = 1]
λ

λ + μ

+ E[Y|X = 0]
μ

λ + μ

= 1
λ + μ

+ E[T0]
μ

λ + μ

Thus,

E[T0] − 1
λ

= 1
λ + μ

+ E[T0]
μ

λ + μ

or

E[T0] = 2λ + μ

λ2

Also,

E[T1] = λ + μ

λ2

(c) Let Li denote the time until a customer is lost
when you start with i busy servers. Then,
reasoning as in part (b) gives that

E[L2] = 1
λ + μ

+ E[L1]
μ

λ + μ

= 1
λ + μ

+ (E[T1] + E[L2])
μ

λ + μ

= 1
λ + μ

+ μ

λ2 + E[L2]
μ

λ + μ
Thus,

E[L2] = 1
λ

+ μ(λ + μ)
λ3

49. (a) P{N(T) − N(s) = 1} = λ(T − s)e−λ(T−s)

(b) Differentiating the expression in part (a) and
then setting it equal to 0 gives

e−λ(T−s) = λ(T − s)e−λ(T−s)

implying that the maximizing value is

s = T − 1/λ

(c) For s = T − 1/λ, we have that λ(T − s) = 1 and
thus,

P{N(T) − N(s) = 1} = e−1

51. Condition on X, the time of the first accident, to
obtain

E[N(t] =
∫ ∞

0
E[N(t)|X = s]βe−βsds

=
∫ t

0
(1 + α(t − s))βe−βsds

53. (a) e−1

(b) e−1 + e−1(.8)e−1

55. As long as customers are present to be served,
every event (arrival or departure) will, inde-
pendently of other events, be a departure with
probability p = μ/(λ + μ). Thus P{X = m} is the
probability that there have been a total of m tails at
themomentthat thenth headoccurs,whenindepen-
dent flips of a coin having probability p of coming
up heads are made: that is, it is the probability that
the nth head occurs on trial number n + m. Hence,

p{X = m} =
(

n + m − 1
n − 1

)
pn(1 − p)m
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57. (a) e−2

(b) 2 p.m.

59. The unconditional probability that the claim is type
1 is 10/11. Therefore,

P(1|4000) = P(4000|1)P(1)
P(4000|1)P(1) + P(4000|2)P(2)

= e−410/11
e−410/11 + .2e−.81/11

61. (a) Poisson with mean cG(t).

(b) Poisson with mean c[1 − G(t)].

(c) Independent.

63. Let X and Y be respectively the number of cus-
tomers in the system at time t + s that were present
at time s, and the number in the system at t + s
that were not in the system at time s. Since there
are an infinite number of servers, it follows that
X and Y are independent (even if given the num-
ber is the system at time s). Since the service dis-
tribution is exponential with rate μ, it follows that
given that X(s) = n, X will be binomial with param-
eters n and p = e−μt. Also Y, which is indepen-
dent of X(s), will have the same distribution as X(t).

Therefore, Y is Poisson with mean λ

t∫
0

e−μydy

= λ(1 − e−μt)/μ

(a) E[X(t + s)|X(s) = n]

= E[X|X(s) = n] + E[Y|X(s) = n].

= ne−μt + λ(1 − e−μt)/μ

(b) Var(X(t + s)|X(s) = n)

= Var(X + Y|X(s) = n)

= Var(X|X(s) = n) + Var(Y)

= ne−μt(1 − e−μt) + λ(1 − e−μt)/μ

The above equation uses the formulas for the
variances of a binomial and a Poisson random
variable.

(c) Consider an infinite server queuing system in
which customers arrive according to a Poisson
process with rate λ, and where the service
times are all exponential random variables
with rate μ. If there is currently a single cus-
tomer in the system, find the probability that

the system becomes empty when that cus-
tomer departs.
Condition on R, the remaining service time:
P{empty}

=
∫ ∞

0
P{empty|R = t}μe−μtdt

=
∫ ∞

0
exp
{
−λ

∫ t

0
e−μydy

}
μe−μtdt

=
∫ ∞

0
exp
{
−λ

μ
(1 − e−μt)

}
μe−μtdt

=
∫ 1

0
e−λx/μdx

= μ

λ
(1 − e−λ/μ)

where the preceding used that P{empty|
R = t} is equal to the probability that an
M/M/∞ queue is empty at time t.

65. This is an application of the infinite server Pois-
son queue model. An arrival corresponds to a new
lawyer passing the bar exam, the service time is
the time the lawyer practices law. The number in
the system at time t is, for large t, approximately a
Poisson random variable with mean λμ where λ is
the arrival rate and μ the mean service time. This
latter statement follows from∫ n

0
[1 − G(y)]dy = μ

where μ is the mean of the distribution G. Thus, we
would expect 500 · 30 = 15, 000 lawyers.

67. If we count a satellite if it is launched before time
s but remains in operation at time t, then the num-
ber of items counted is Poisson with mean m(t) =∫ s

0
Ḡ(t − y)dy. The answer is e−m(t).

69. (a) 1 − e−λ(t−s)

(b) e−λse−λ(t−s)[λ(t − s)]3/3!

(c) 4 + λ(t − s)

(d) 4s/t

71. Let U1, … be independent uniform (0, t) random
variables that are independent of N(t), and let U(i, n)

be the ith smallest of the first n of them.
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P

{
N(t)

∑
i=1

g(Si) < x

}

= ∑
n

P

{
N(t)

∑
i=1

g(Si) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
n

∑
i=1

g(Si) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
n

∑
i=1

g(U(i,n)) < x

}
P{N(t) = n}

(Theorem 5.2)

= ∑
n

P

{
n

∑
i=1

g(Ui) < x

}
P{N(t) = n}

(
n

∑
i=1

g(U(i, n)) =
n

∑
i=1

g(Ui)

)

= ∑
n

P

{
n

∑
i=1

g(Ui) < x|N(t) = n

}
P{N(t) = n}

= ∑
n

P

{
N(t)

∑
i=1

g(Ui) < x|N(t) = n

}
P{N(t) = n}

= P

{
N(t)

∑
i=1

g(Ui) < x

}

73. (a) It is the gamma distribution with parameters
n and λ.

(b) For n ≥ 1,
P{N = n|T = t}

= P{T = t|N = n}p(1 − p)n−1

fT(t)

= C (λt)n−1

(n − 1)! (1 − p)n−1

= C (λ(1 − p)t)n−1

(n − 1)!

= e−λ(1−p)t (λ(1 − p)t)n−1

(n − 1)!

where the last equality follows since the
probabilities must sum to 1.

(c) The Poisson events are broken into two classes,
those that cause failure and those that do not.
By Proposition 5.2, this results in two indepen-
dent Poisson processes with respective rates
λp and λ(1 − p). By independence it follows

that given that the first event of the first pro-
cess occurred at time t the number of events of
the second process by this time is Poisson with
mean λ(1 − p)t.

75. (a) {Yn} is a Markov chain with transition proba-
bilities given by

P0j = aj, Pi, i−1+j = aj, j ≥ 0

where

aj =
∫

e−λt(λt)j

j!
dG(t)

(b) {Xn} is a Markov chain with transition proba-
bilities

Pi, i+1−j = βj, j = 0, 1, …, i, Pi, 0 =
∞
∑

k=i+1
βj

where

βj =
∫

e−μt(μt)j

j!
dF(t)

77. (a)
μ

λ + μ

(b)
λ

λ + μ

2μ

λ + 2μ

(c)
j−1∏
i=1

λ

λ + iμ
jμ

λ + jμ
, j > 1

(d) Conditioning on N yields the solution; namely
∞
∑
j=1

1
j

P(N = j)

(e)
∞
∑
j=1

P(N = j)
j

∑
i=0

1
λ + iμ

79. Consider a Poisson process with rate λ in which an
event at time t is counted with probability λ(t)/λ
independently of the past. Clearly such a process
will have independent increments. In addition,

P{2 or more counted events in(t, t + h)}
≤ P{2 or more events in(t, t + h)}
= o(h)

and

P{1 counted event in (t, t + h)}
= P{1 counted | 1 event}P(1 event)
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+ P{1 counted | ≥ 2 events}P{≥ 2}

=
∫ t+h

t

λ(s)
λ

ds
h

(λh + o(h)) + o(h)

= λ(t)
λ

λh + o(h)

= λ(t)h + o(h)

81. (a) Let Si denote the time of the ith event, i ≥ 1.
Let ti + hi < ti+1, tn + hn ≤ t.
P{ti < Si < ti + hi, i = 1, …, n|N(t) = n}
P{1 event in (ti, ti + hi), i = 1, …, n,

= no events elsewhere in (0, t)
P{N(t) = n}

=

[
n∏

i=1

e−(m(ti+hi)−m(ti))[m(ti + hi) − m(ti)]

]

e−[m(t)−∑i
m(ti+hi)−m(ti)]

e−m(t)[m(t)]n/n!

=
n

n∏
i

[m(ti + hi) − m(ti)]

[m(t)]n

Dividing both sides by h1 · · · hn and using the

fact that m(ti + hi) − m(ti) =
∫ ti+h

ti

λ(s) ds =
λ(ti)h + o(h) yields upon letting the hi → 0:
fS1 ··· S2 (t1, …, tn|N(t) = n)

= n!
n∏

i=1

[λ(ti)/m(t)]

and the right-hand side is seen to be the joint
density function of the order statistics from a
set of n independent random variables from
the distribution with density function f (x) =
m(x)/m(t), x ≤ t.

(b) Let N(t) denote the number of injuries by time
t. Now given N(t) = n, it follows from part (b)
that the n injury instances are independent and
identically distributed. The probability (den-
sity) that an arbitrary one of those injuries was
at s is λ(s)/m(t), and so the probability that
the injured party will still be out of work at
time t is

p =
∫ t

0
P{out of work at t|injured at s} λ(s)

m(t)
dζ

=
∫ t

0
[1 − F(t − s)]

λ(s)
m(t)

dζ

Hence, as each of the N(t) injured parties have
the same probability p of being out of work at
t, we see that

E[X(t)]|N(t)] = N(t)p

and thus,
E[X(t)] = pE[N(t)]

= pm(t)

=
∫ t

0
[1 − F(t − s)]λ(s) ds

83. Since m(t) is increasing it follows that nonover-
lapping time intervals of the {N(t)} process will
correspond to nonoverlapping intervals of the
{No(t)} process. As a result, the independent
increment property will also hold for the {N(t)}
process. For the remainder we will use the identity

m(t + h) = m(t) + λ(t)h + o(h)

P{N(t + h) − N(t) ≥ 2}
= P{No[m(t + h)] − No[m(t)] ≥ 2}
= P{No[m(t) + λ(t)h + o(h)] − No[m(t)] ≥ 2}
= o[λ(t)h + o(h)] = o(h)

P{N(t + h) − N(t) = 1}
= P{No[m(t) + λ(t)h + o(h)] − No[m(t)] = 1}
= P{1 event of Poisson process in interval

of length λ(t)h + o(h)]}
= λ(t)h + o(h)

85. $ 40,000 and $1.6 × 108.

87. Cov[X(t), X(t + s)]

= Cov[X(t), X(t) + X(t + s) − X(t)]

= Cov[X(t), X(t)] + Cov[X(t), X(t + s) − X(t)]

= Cov[X(t), X(t)] by independent increments

= Var[X(t)] = λtE[Y2]

89. Let Ti denote the arrival time of the first type i
shock, i = 1, 2, 3.

P{X1 > s, X2 > t}
= P{T1 > s, T3 > s, T2 > t, T3 > t}
= P{T1 > s, T2 > t, T3 > max(s, t)}

= e−λ1s e−λ2t e−λ3max(s, t)
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91. To begin, note that

P

[
X1 >

n

∑
2

Xi

]

= P{X1 > X2}P{X1 − X2 > X3|X1 > X2}
= P{X1 − X2 − X3 > X4|X1 > X2 + X3}…

= P{X1 − X2 · · · − Xn−1 > Xn|X1 > X2

+ · · · + Xn−1}
= (1/2)n−1

Hence,

P

{
M >

n

∑
i=1

Xi − M

}
=

n

∑
i−1

P

{
X1>

n

∑
j �=i

Xi

}

= n/2n−1

93. (a) max(X1, X2) + min(X1, X2) = X1 + X2.

(b) This can be done by induction:

max{(X1, …, Xn)

= max(X1, max(X2, …, Xn))

= X1+ max(X2, …, Xn)

− min(X1, max(X2, …, Xn))

= X1+ max(X2, …, Xn)

− max(min(X1, X2), …, min (X1, Xn)).

Now use the induction hypothesis.
A second method is as follows:
Suppose X1 ≤ X2 ≤ · · · ≤ Xn. Then the coeffi-
cient of Xi on the right side is

1 −
[

n − i
1

]
+
[

n − i
2

]
−
[

n − i
3

]
+ · · ·

= (1 − 1)n−i

=
{

0, i 
= n
1, i = n

and so both sides equal Xn. By symmetry the
result follows for all other possible orderings
of the X′s.

(c) Taking expectations of (b) where Xi is the time
of the first event of the ith process yields

∑
i

λ−1
i − ∑

i
∑
<j

(λi + λj)−1

+ ∑
i

∑
<j

∑
<k

(λi + λj + λk)−1 − · · ·

+ (−1)n+1

[
n

∑
1

λi

]−1

95. E[L|N(t) = n] =

∫
xg(x)e−xt(xt)ndx∫
g(x)e−xt(xt)ndx

Conditioning on L yields

E[N(s)|N(t) = n]

= E[E[N(s)|N(t) = n, L]|N(t) = n]

= E[n + L(s − t)|N(t) = n]

= n + (s − t)E[L|N(t) = n]

For (c), use that for any value of L, given that there
have been n events by time t, the set of n event times
are distributed as the set of n independent uniform
(0, t) random variables. Thus, for s < t

E[N(s)|N(t) = n] = ns/t

97. With C = 1/P(N(t) = n), we have

fL|N(t)(λ|n) = Ce−λt (λt)n

n!
pe−pλ (pλ)m−1

(m − 1)!

= Ke−(p+t)λλn+m−1

where K does not depend on λ. But we recognize
the preceding as the gamma density with param-
eters n + m, p + t, which is thus the conditional
density.



Chapter 6

1. Let us assume that the state is (n, m). Male i mates
at a rate λ with female j, and therefore it mates at a
rate λm. Since there are n males, matings occur at
a rate λnm. Therefore,

v(n, m) = λnm

Since any mating is equally likely to result in a
female as in a male, we have

P(n, m); (n+1, m) = P(n, m)(n, m+1) = 1
2

3. This is not a birth and death process since we need
more information than just the number working.
We also must know which machine is working. We
can analyze it by letting the states be

b : both machines are working

1 : 1 is working, 2 is down

2 : 2 is working, 1 is down

01: both are down, 1 is being serviced

02: both are down, 2 is being serviced

vb = μ1 + μ2, v1 = μ1 + μ, v2 = μ2 + μ,

v01 = v02 = μ

Pb, 1 = μ2
μ2 + μ1

= 1 − Pb, 2, P1, b = μ
μ + μ1

= 1 − P1,02

P2, b = μ
μ + μ2

= 1 − P2, 01 , P01, 1 = P02, 2 = 1

5. (a) Yes.

(b) It is a pure birth process.

(c) If there are i infected individuals then
since a contact will involve an infected and
an uninfected individual with probability
i (n − i) /(n

2), it follows that the birth rates are
λi = λi(n − i)/(n

2), i = 1, …, n. Hence,

E[time all infected] = n(n − 1)
2λ

n

∑
i=1

1/[i(n−i)]

7. (a) Yes!

(b) For n = (n1, … , ni, ni+1, …, nk−1) let

Si(n) = (n1, …, ni−1, ni+1 + 1, …, nk−1),

i = 1, …, k − 2

Sk−1(n) = (n1, …, ni, ni+1, …nk−1 − 1),

S0(n) = (n1 + 1, …, ni, ni+1, …, nk−1)
Then

qn, S1(n) = niμ, i = 1, …, k − 1

qn, S0(n) = λ

9. Since the death rate is constant, it follows that as
long as the system is nonempty, the number of
deaths in any interval of length t will be a Poisson
random variable with mean μt. Hence,

Pij(t) = e−μt(μt)i − j/(i − j)!, 0 < j ≤ i

Pi, 0(t) =
∞
∑
k=i

e−μt(μt)k/k!

11. (b) Follows from the hint upon using the lack of
memory property and the fact that εi, the min-
imum of j − (i − 1) independent exponentials
with rateλ, is exponential with rate (j − i + 1)λ.

(c) From (a) and (b)

P{T1 + · · · + Tj ≤ t} = P
{

max
1 ≤ i ≤ j

Xi ≤ t
}

= (1 − e−λt) j

(d) With all probabilities conditional on X(0) = 1

P1j(t) = P{X(t) = j}
= P{X(t) ≥ j} − P{X(t) ≥ j + 1}
= P{T1 + · · · + Tj ≤ t}

−P{T1 + · · · + Tj+1 ≤ t}

(e) The sum of independent geometrics, each
having parameter p = e−λt, is negative bino-
mial with parameters i, p. The result follows

34
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since starting with an initial population of i is
equivalent to having i independent Yule pro-
cesses, each starting with a single individual.

13. With the number of customers in the shop as the
state, we get a birth and death process with

λ0 = λ1 = 3, μ1 = μ2 = 4

Therefore

P1 = 3
4

P0, P2 = 3
4

, P1 =
[

3
4

]2
P0

And since
2

∑
0

Pi = 1, we get

P0 =
[

1 + 3
4

+
[

3
4

]2
]−1

= 16
37

(a) The average number of customers in the
shop is

P1 + 2P2 =
[

3
4

+ 2
[

3
4

]2
]

P0

= 30
16

[
1 + 3

4
+
[

3
4

]2
]−1

= 30
37

(b) The proportion of customers that enter the
shop is

λ(1 − P2)
λ

= 1 − P2 = 1 − 9
16

· 16
37

= 28
37

(c) Now μ = 8, and so

P0 =
[

1 + 3
8

+
[

3
8

]2
]−1

= 64
97

So the proportion of customers who now enter
the shop is

1 − P2 = 1 −
[

3
8

]2 264
97

= 1 − 9
97

= 88
97

The rate of added customers is therefore

λ

[
88
97

]
− λ

[
28
37

]
= 3

[
88
97

− 28
37

]
= 0.45

The business he does would improve by 0.45
customers per hour.

15. With the number of customers in the system as the
state, we get a birth and death process with

λ0 = λ1 = λ2 = 3, λi = 0, i ≥ 4

μ1 = 2, μ2 = μ3 = 4

Therefore, the balance equations reduce to

P1 = 3
2

P0, P2 = 3
4

P1 = 9
8

P0, P3 = 3
4

P2 = 27
32

P0

And therefore,

P0 =
[

1 + 3
2

+ 9
8

+ 27
32

]−1
= 32

143

(a) The fraction of potential customers that enter
the system is

λ(1 − P3)
λ

= 1 − P3 = 1 − 27
32

× 32
143

= 116
143

(b) With a server working twice as fast we would
get

P1 = 3
4

P0 P2 = 3
4

P1 =
[

3
4

]2
P0 P3 =

[
3
4

]3
P0

and P0 =
[

1 + 3
4

+
[

3
4

]2
+
[

3
4

]3
]−1

= 64
175

So that now

1 − P3 = 1 − 27
64

= 1 − 64
175

= 148
175

17. Say the state is 0 if the machine is up, say it is i
when it is down due to a type i failure, i = 1, 2. The
balance equations for the limiting probabilities are
as follows.
λP0 = μ1P1 + μ2P2

μ1P1 = λpP0

μ2P2 = λ(1 − p)P0

P0 + P1 + P2 = 1

These equations are easily solved to give the results

P0 = (1 + λp/μ1 + λ(1 − p)/μ2)−1

P1 = λpP0/μ1, P2 = λ(1 − p)P0/μ2

19. There are 4 states. Let state 0 mean that no
machines are down, state 1 that machine 1 is down
and 2 is up, state 2 that machine 1 is up and 2 is
down, and 3 that both machines are down. The bal-
ance equations are as follows:

(λ1 + λ2)P0 = μ1P1 + μ2P2

(μ1 + λ2)P1 = λ1P0 + μ1P3

(λ1 + μ2)P2 = λ2P0

μ1P3 = μ2P1 + μ1P2

P0 + P1 + P2 + P3 = 1

These equations are easily solved and the
proportion of time machine 2 is down is P2 + P3.
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21. How we have a birth and death process with
parameters

λi = λ, i = 1, 2
μi = iμ, i = 1, 2

Therefore,

P0 + P1 = 1 + λ/μ

1 + λ/μ + (λ/μ)2/2

and so the probability that at least one machine is
up is higher in this case.

23. Let the state denote the number of machines that
are down. This yields a birth and death process
with

λ0 = 3
10

, λ1 = 2
10

, λ2 = 1
10

, λi = 0, i ≥ 3

μ1 = 1
8

, μ2 = 2
8

, μ3 = 2
8

The balance equations reduce to

P1 = 3/10
1/8

P0 = 12
5

P0

P2 = 2/10
2/8

P1 = 4
5

P1 = 48
25

P0

P3 = 1/10
2/8

P2 = 4
10

P3 = 192
250

P0

Hence, using
3

∑
0

Pi = 1 yields

P0 =
[

1 + 12
5

+ 48
25

+ 192
250

]−1
= 250

1522

(a) Average number not in use

= P1 + 2P2 + 3P3 = 2136
1522

= 1068
761

(b) Proportion of time both repairmen are busy

= P2 + P3 = 672
1522

= 336
761

25. If Ni(t) is the number of customers in the ith
system (i = 1, 2), then let us take {N1(t), N2(t)}
as the state. The balance equation are with
n ≥ 1, m ≥ 1.

(a) λP0, 0 = μ2P0, 1

(b) Pn, 0(λ + μ1) = λPn−1, 0 + μ2Pn, 1

(c) P0, m(λ + μ2) = μ1P1, m−1 + μ2P0, m+1

(d) Pn, m(λ + μ1 + μ2) = λPn−1, m + μ1Pn+1, m−1

+ μ2Pn, m+1

We will try a solution of the form Cαnβm = Pn, m.
From (a), we get

λC = μ2Cβ = β = λ

μ2

From (b),

(λ + μ1) Cαn = λCαn−1 + μ2Cαnβ

or

(λ + μ1) α = λ + μ2αβ = λ + μ2α
λ

μ
= λ + λα

and μ1α = λ ⇒ α = λ

μ1

To get C, we observe that ∑
n, m

Pn, m = 1

but

∑
n, m

Pn, m = C ∑
n

αn ∑
m

βm = C
[

1
1 − α

] [
1

1 − β

]

and C =
[

1 − λ

μ1

] [
1 − λ

μ2

]

Therefore a solution of the form Cαnβn must be
given by

Pn, m =
[

1 − λ

μ1

] [
λ

μ1

]n [
1 − λ

μ2

] [
λ

μ2

]m

It is easy to verify that this also satisfies (c) and
(d) and is therefore the solution of the balance
equations.

27. It is a Poisson process by time reversibility. If
λ > δμ, the departure process will (in the limit) be
a Poisson process with rate δμ since the servers will
always be busy and thus the time between depar-
tures will be independent random variables each
with rate δμ.

29. (a) Let the state be S, the set of failed machines.

(b) For i ∈ S, j ∈ Sc,

qS, S − i = μi/|S|, qS, S+j = λj

where S − i is the set S with i deleted and S + j
is similarly S with j added. In addition, |S|
denotes the number of elements in S.

(c) PSqS, S−i = PS−iqS − i, S
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(d) The equation in (c) is equivalent to

PSμi/|S| = PS − iλi

or

PS = PS−i|S|λi/μi

Iterating this recursion gives

PS = P0(|S|)!
∏
i∈S

(λi/μi)

where 0 is the empty set. Summing over all S
gives

1 = P0 ∑
S

(|S|)!
∏
i∈S

(λi/μi)

and so

PS =
(|S|)!

∏
i∈S

(λi/μi)

∑
S

(|S|)!
∏
i∈S

(λi/μi)

As this solution satisfies the time reversibility
equations, it follows that, in the steady state,
the chain is time reversible with these limiting
probabilities.

31. (a) This follows because of the fact that all of the
service times are exponentially distributed and
thus memoryless.

(b) Let n = (n1, …, ni, …, nj, …, nr), where
ni > 0 and let n′ = (n1, …, ni − 1, …,
nj − 1, …, nr). Then qn, n′ = μi/(r − 1).

(c) The process is time reversible if we can find
probabilities P(n) that satisfy the equations

P(n)μi/(r − 1) = P(n′)μj/(r − 1)

where n and n′ are as given in part (b). The
above equations are equivalent to

μiP(n) = μj/P(n′)

Since ni = n′
i + 1 and n′

j = nj + 1 (where nk

refers to the kth component of the vector n), the
above equation suggests the solution

P(n) = C
r∏

k=1

(1/μk)nk

where C is chosen to make the probabili-
ties sum to 1. As P(n) satisfies all the time
reversibility equations it follows that the chain
is time reversible and the P(n) given above are
the limiting probabilities.

33. Suppose first that the waiting room is of
infinite size. Let Xi(t) denote the number of cus-
tomers at server i, i = 1, 2. Then since each of
the M/M/1 processes {Xi(t)} is time-reversible,
it follows by Problem 28 that the vector process
{(X1(t), X2(t)), t ≥ 0} is a time-reversible Markov
chain. Now the process of interest is just the trun-
cation of this vector process to the set of states A
where

A = {(0, m) : m ≤ 4} ∪ {(n, 0) : n ≤ 4}
∪ {(n, m) : nm > 0, n + m ≤ 5}

Hence, the probability that there are n with server 1
and n with server 2 is

Pn, m = k(λ1/μ1)n(1 − λ1/μ1)(λ2/μ2)m(1 − λ2/μ2),

= C(λ1/μ1)n(λ2/μ2)m, (n, m) ∈ A

The constant C is determined from

∑ Pn, n = 1

where the sum is over all (n, m) in A.

35. We must find probabilities Pn
i such that

Pn
i qn

ij = Pn
j qn

ji

or

cPn
i qij = Pn

j qji, if i ∈ A, j /∈ A
Piqij = cPn

j qji, if i /∈ A, j ∈ A
Piqij = Pjqji, otherwise

Now, Piqij = Pjqji and so if we let

Pn
i = kPi/c if i ∈ A

kPi if i /∈ A

then we have a solution to the above equations. By
choosing k to make the sum of the Pn

j equal to 1, we
have the desired result. That is,

k =
(

∑
i∈A

Pi/c − ∑
i/∈A

Pi

)−1

37. The state of any time is the set of down
components at that time. For S ⊂ {1, 2, …, n},
i /∈ S, j ∈ S

q(S, S + i) = λi

q(S, S − j) = μjα
|S|

where S + i = S ∪ {i}, S − j = S ∩ {j}c, |S| = number
of elements in S.
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The time reversible equations are

P(S)μiα
|S| = P(S − i)λi, i ∈ S

The above is satisfied when, for S = {i1, i2, …, ik}

P(S) = λi1λi2 · · ·λik

μi1μi2 · · ·μik α
k(k+1)/2

P(φ)

where P(φ) is determined so that

∑ P(S) = 1

where the sum is over all the 2n subsets of
{1, 2, …, n}.

39. E[0(t)|x(0) = 1] = t − E[time in 1|X(0) = 1]

= t − λt
λ + μ

− μ

(λ + μ)2 [1 − e−(λ+μ)t]

The final equality is obtained from Example 7b (or
Problem 38) by interchanging λ and μ.

41. (a) Letting Ti denote the time until a transition out
of i occurs, we have

Pij = P{X(Y) = j} = P{X(Y) = j | Ti < Y}

× vi
vi + λ

+ P{X(Y) = j|Y ≤ Ti} λ
λ + vi

= ∑
k

PikPkj
vi

vi + λ
+ δijλ

λ + vi

The first term on the right follows upon con-
ditioning on the state visited from i (which is k
with probability Pik) and then using the lack of
memory property of the exponential to assert
that given a transition into k occurs before time
Y then the state at Y is probabilistically the
same as if the process had started in state k
and we were interested in the state after an

exponential time with rate λ. As qik = viPik ,
the result follows.

(b) From (a)

(λ + vi)P̄ij = ∑
k

qikP̄kj + λδij

or

−λδij = ∑
k

rikP̄kj − λP̄ij

or, in matrix terminology,

−λI = RP̄ − λIP̄

= (R − λI)P̄

implying that

P̄ = −λI(R − λI)−1 = −(R/λ − I)−1

= (I − R/λ)−1

(c) Consider, for instance,

P{X(Y1 + Y2) = j|X(0) = i}

= ∑
k

P{X(Y1 + Y2) = j|X(Y1) = k, X(0) = i)

P{X(Y1) = k|X(0) = i}

= ∑
k

P{X(Y1 + Y2) = j|X(Y1) = k}P̄ik

= ∑
k

P{X(Y2) = j|X(0) = k}P̄ik

= ∑
k

P̄kjP̄ik

and thus the state at time Y1 + Y2 is just the
2-stage transition probabilities of P̄ij. The gen-
eral case can be established by induction.

(d) The above results in exactly the same approx-
imation as Approximation 2 in Section 6.8.
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1. (a) Yes, (b) no, (c) no.

3. By the one-to-one correspondence of m(t) and F, it
follows that {N(t), t ≥ 0} is a Poisson process with
rate 1/2. Hence,

P{N(5) = 0) = e−5/2

5. The random variable N is equal to N(I) + 1 where
{N(t)} is the renewal process whose interarrival
distribution is uniform on (0, 1). By the results of
Example 2c,

E[N] = a (1) + 1 = e

7. Once every five months.

9. Ajob completion constitutes a reneval. Let T denote
the time between renewals. To compute E[T] start
by conditioning on W, the time it takes to finish the
next job:

E[T] = E[E[T|W]]

Now, to determine E[T|W = w] condition on S, the
time of the next shock. This gives

E[T|W = w] =
∞∫

0

E[T|W = w, S = x]λe−λxdx

Now, if the time to finish is less than the time of the
shock then the job is completed at the finish time;
otherwise everything starts over when the shock
occurs. This gives

E[T|W = w, S = x] =
{

x + E[T], if x < w
w, if x ≥ w

Hence,

E[T|W = w]

=
w∫

0

(x + E[T])λe−λxdx + w

∞∫
w

λe−λxdx

= E[T][1−e−λw]+1/λ − we−λw− 1
λ

e−λw−we−λw

Thus,

E[T|W] = (E[T] + 1/λ)(1 − e−λW )

Taking expectations gives

E[T] = (E[T] + 1/λ)(1 − E[e−λW ])

and so

E[T] = 1 − E[e−λW ]

λE[e−λW ]

In the above, W is a random variable having distri-
bution F and so

E[e−λW ] =
∞∫

0

e−λwf (w)dw

11.
N(t)

t
= 1

t
+ number of renewals in (X1, t)

t

Since X1 < ∞, Proposition 3.1 implies that

number of renewals in (X1, t)
t

− 1
μ

as t − ∞.

13. (a) N1 and N2 are stopping times. N3 is not.

(b) Follows immediately from the definition of Ii.

(c) The value of Ii is completely determined
from X1, …, Xi−1 (e.g., Ii = 0 or 1 depend-
ing upon whether or not we have stopped
after observing X1, …, Xi−1). Hence, Ii is inde-
pendent of Xi.

(d)
∞
∑
i=1

E[Ii] =
∞
∑
i=1

P{N ≥ i} = E[N]

(e) E
[
X1 + · · · + XN1

] = E[N1]E[X]

But X1 + · · · + XN1 = 5, E[X] = p and so

E[N1] = 5/p

E
[
X1 + · · · + XN2

] = E[N2]E[X]

E[X] = p, E[N2] = 5p + 3(1 − p) = 3 + 2p

E
[
X1 + · · · + XN2

] = (3 + 2p)p

39
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15. (a) Xi =amount of time he has to travel after his ith
choice (we will assume that he keeps on mak-
ing choices even after becoming free). N is the
number of choices he makes until becoming
free.

(b) E[T] = E

[
N

∑
1

Xi

]
= E[N]E [X]

N is a geometric random variable with
P = 1/3, so

E[N] = 3, E[X] = 1
3

(2 + 4 + 6) = 4

Hence, E[T] = 12.

(c) E

[
N

∑
1

Xi|N = n

]
= (n − 1)

1
2

(4 + 6) + 2 = 5n −
3, since given N = n, X1, …, Xn−1 are equally

likely to be either 4 or 6, Xn = 2, E
(
∑n

1 Xi

)
=

4n.

(d) From (c),

E

[
N

∑
1

Xi

]
= E [5N − 3] = 15 − 3 = 12

17. (i) Yes. (ii) No—Yes, if F exponential.

19. Since, from Example 2c, m(t) = et − 1, 0 < t ≤ 1,
we obtain upon using the identity t + E[Y(t)] =
μ[m(t) + 1] that E[Y(1)] = e/2 − 1.

21.
μG

μ + 1/λ
, where μG is the mean of G.

23. Using that E[X] = 2p − 1, we obtain from Wald’s
equation when p 
= 1/2 that

E[T](2p − 1) = E

[
T

∑
j=1

Xj

]

= (N − i)
1 − (q/p)i

1 − (q/p)N − i
[

1 − 1 − (q/p)i

1 − (q/p)N

]

= N
1 − (q/p)i

1 − (q/p)N − i

yielding the result:

E[T] =
N

1 − (q/p)i

1 − (q/p)N − i

2p − 1
, p 
= 1/2

When p = 1/2, we can easily show by a condition-
ing argument that E[T] = i(N − i)

25. Say that a new cycle begins each time a train is
dispatched. Then, with C being the cost of a cycle,
we obtain, upon conditioning on N(t), the number
of arrivals during a cycle, that

E[C] = E[E|C|N(t)]] = E[K + N(t)ct/2]

= k + λct2/2

Hence,

average cost per unit time = E[C]
t

= K
t

+ λct/2

Calculus shows that the preceding is minimized
when t =

√
2K/(λc), with the average cost equal to√

2λKc.

On the other hand, the average cost for the N
policy of Example 7.12 is c(N − 1)/2 + λK/N. Treat-
ing N as a continuous variable yields that its
minimum occurs at N =

√
2λK/c, with a resulting

minimal average cost of
√

2λKc − c/2.

27. Say that a new cycle begins when a machine fails;
let C be the cost per cycle; let T be the time of a
cycle.

E[C] = K + c2

λ1 + λ2
+ λ1

λ1 + λ2

c1

λ2
+ λ2

λ1 + λ2

c1

λ1

E[T] = 1
λ1 + λ2

+ λ1

λ1 + λ2

1
λ2

+ λ2

λ1 + λ2

1
λ1

T the long-run average cost per unit time is
E[C]/E[T].

29. (a) Imagine that you are paid a reward equal to
Wi on day i. Since everything starts over when
a busy period ends, it follows that the reward
process constitutes a renewal reward process
with cycle time equal to N and with the reward
during a cycle equal to W1 + · · · + WN . Thus
E[W], the average reward per unit time, is
E[W1 + · · · + WN]/E[N].

(b) The sum of the times in the system of all
customers and the total amount of work that
has been processed both start equal to 0 and
both increase at the same rate. Hence, they are
always equal.

(c) This follows from (b) by looking at the value
of the two totals at the end of the first busy
period.

(d) It is easy to see that N is a stopping time
for the Li, i ≥ 1, and so, by Wald’s Equation,

E

[
N

∑
i=1

Li

]
= E[L]E[N]. Thus, from (a) and (c),

we obtain that E[W] = E[L].
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31. P{E(t) > x|A(t) = s}
= P{0 renewals in (t, t + x]|A(t) = s}
= P{interarrival > x + s|A(t) = s}
= P{interarrival > x + s|interarrival > s}
= 1 − F(x + s)

1 − F(s)

33. Let B be the amount of time the server is busy in
a cycle; let X be the remaining service time of the
person in service at the beginning of a cycle.

E[B] = E[B|X < t](1 − e−λt) + E[B|X > t]e−λt

= E[X|X < t](1 − e−λt) +
(

t + 1
λ + μ

)
e−λt

= E[X] − E[X|X > t]e−λt +
(

t + 1
λ + μ

)
e−λt

= 1
μ −

(
t + 1

μ

)
e−λt +

(
t + 1

λ + μ

)
e−λt

= 1
μ

[
1 − λ

λ + μ
e−λt

]
More intuitively, writing X = B + (X − B), and not-
ing that X − B is the additional amount of service
time remaining when the cycle ends, gives

E[B] = E[X] − E[X − B]

= 1
μ

− 1
μ

P(X > B)

= 1
μ

− 1
μ

e−λt λ

λ + μ

The long-run proportion of time that the server is

busy is
E[B]

t + 1/λ
.

35. (a) We can view this as an M/G/∞ system where
a satellite launching corresponds to an arrival
and F is the service distribution. Hence,

P{X(t) = k} = e−λ(t)[λ(t)]k/k!

where λ(t) = λ

∫ t

0
(1 − F(s))ds.

(b) By viewing the system as an alternating
renewal process that is on when there is at least
one satellite orbiting, we obtain

lim P{X(t) = 0} = 1/λ

1/λ+ E[T]

where T, the on time in a cycle, is the quantity
of interest. From part (a)

lim P{X(t) = 0} = e−λμ

where μ =
∫ ∞

0
(1 − F(s))ds is the mean time

that a satellite orbits. Hence,

e−λμ = 1/λ

1/λ + E[T]

and so

E[T] = 1 − e−λμ

λe−λμ

37. (a) This is an alternating renewal process, with
the mean off time obtained by conditioning on
which machine fails to cause the off period.

E[off] =
3

∑
i=1

E[off|i fails]P{i fails}

= (1/5)
λ1

λ1 + λ2 + λ3
+ (2)

λ2

λ1 + λ2 + λ3

+ (3/2)
λ3

λ1 + λ2 + λ3

As the on time in a cycle is exponential with
rate equal to λ1 + λ2 + λ3, we obtain that p,
the proportion of time that the system is
working is

p = 1/(λ1 + λ2 + λ3)
E[C]

where

E[C] = E[cycle time]
= 1/(λ1 + λ2 + λ3) + E[off]

(b) Think of the system as a renewal reward pro-
cess by supposing that we earn 1 per unit time
that machine 1 is being repaired. Then, r1, the
proportion of time that machine 1 is being
repaired is

r1 =
(1/5)

λ1

λ1 + λ2 + λ3
E[C]

(c) By assuming that we earn 1 per unit time when
machine 2 is in a state of suspended anima-
tion, shows that, with s2 being the propor-
tion of time that 2 is in a state of suspended
animation,

s2 =
(1/5)

λ1

λ1 + λ2 + λ3
+ (3/2)

λ3

λ1 + λ2 + λ3
E[C]

39. Let B be the length of a busy period. With S equal
to the service time of the machine whose failure
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initiated the busy period, and T equal to the
remaining life of the other machine at that moment,
we obtain

E[B] =
∫

E[B|S = s]g(s)ds

Now,

E[B|S = s] = E[B|S = s, T ≤ s](1 − e−λs)

+ E[B|S = s, T > s]e−λs

= (s + E[B])(1 − e−λs) + se−λs

= s + E[B](1 − e−λs)

Substituting back gives

E[B] = E[S] + E[B]E[1 − e−λs]

or

E[B] = E[S]
E[e−λs]

Hence,

E[idle] = 1/(2λ)
1/(2λ) + E[B]

41.
∫ 1

0

(1 − F(x)dx
μ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ 1

0

2 − x
2

dx = 3
4

in part (i)

∫ 1

0
e−x dx = 1 − e−1 in part (ii)

43. Since half the interarrival times will be exponential
with mean 1 and half will be exponential with mean
2, it would seem that because the exponentials with
mean 2 will last, on average, twice as long, that

F̄e(x) = 2
3

e−x/2 + 1
3

e−x

With μ= (1)1/2 + (2)1/2 = 3/2 equal to the mean
interarrival time

F̄e(x) =
∫ ∞

x

F̄(y)
μ

dy

and the earlier formula is seen to be valid.

45. The limiting probabilities for the Markov chain are
given as the solution of

r1 = r2
1
2

+ r3

r2 = r1

r1 + r2 + r3 = 1

or

r1 = r2 = 2
5

, r3 = 1
5

(a) r1 = 2
5

(b) Pi = riμi

∑i riμi
and so,

P1 = 2
9

, P2 = 4
9

, P3 = 3
9

.

47. (a) By conditioning on the next state, we obtain
the following:

μj = E[time in i]

= ∑ E[time in i|next state is j]Pij

= ∑
i

tijPij

(b) Use the hint. Then,

E[reward per cycle]
= E[reward per cycle|next state is j]Pij

= tijPij

Also,

E[time of cycle] = E[time between visits to i]
Now, if we had supposed a reward of 1 per unit
time whenever the process was in state i and
0 otherwise then using the same cycle times as
above we have that

Pi = E[reward is cycle]
E[time of cycle]

= μi

E[time of cycle]

Hence,

E[time of cycle] = μi/Pi

and so

average reward per unit time = tijPijPi/μi

The above establishes the result since the aver-
age reward per unit time is equal to the pro-
portion of time the process is in i and will next
enter j.

49. Think of each interarrival time as consisting of n
independent phases—each of which is exponen-
tially distributed with rate λ—and consider the
semi–Markov process whose state at any time is
the phase of the present interarrival time. Hence,
this semi-Markov process goes from state 1 to 2 to
3 … to n to 1, and so on. Also the time spent in each
state has the same distribution. Thus, clearly the
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limiting probabilities of this semi-Markov chain are
Pi = 1/n, i = 1, …, n. To compute lim P{Y(t) < x},
we condition on the phase at time t and note that if
it is n – i + 1, which will be the case with probability
1/n, then the time until a renewal occurs will be the
sum of i exponential phases, which will thus have
a gamma distribution with parameters i and λ.

51. It is an example of the inspection paradox. Because
every tourist spends the same time in departing
the country, those questioned at departure consti-
tute a random sample of all visiting tourists. On
the other hand, if the questioning is of randomly
chosen hotel guests then, because longer staying
guests are more likely to be selected, it follows that
the average time of the ones selected will be larger
than the average of all tourists. The data that the
average of those selected from hotels was approx-
imately twice as large as from those selected at
departure are consistent with the possibility that
the time spent in the country by a tourist is expo-
nential with a mean approximately equal to 9.

55. E[T(1)] = (.24)−2 + (.4)−1 = 19.8611,

E[T(2)] = 24.375, E[T12] = 21.875,

E[T2, 1] = 17.3611. The solution of the equations

19.861 = E[M] + 17.361P(2)

24.375 = E[M] + 21.875P(1)

1 = P(1) + P(2)

gives the results

P(2) ≈ .4425, E[M] ≈ 12.18

57. P{
T

∑
i=1

Xi > x} = P{
T

∑
i=1

Xi > x|T = 0}(1 − ρ)

+ P{
T

∑
i=1

Xi > x|T > 0}ρ

= P{
T

∑
i=1

Xi > x|T > 0}ρ

= ρ

∫ ∞

0
P{

T

∑
i=1

Xi > x|T > 0, X1 = y} F̄(y)
μ

dy

= ρ

μ

∫ x

0
P{

T

∑
i=1

Xi > x|T > 0, X1 = y}F̄(y)dy

+ ρ

μ

∫ ∞

x
F̄(y)dy

= ρ

μ

∫ x

0
h(x − y)F̄(y)dy + ρ

μ

∫ ∞

x
F̄(y)dy

= h(0) + ρ

μ

∫ x

0
h(x − y)F̄(y)dy − ρ

μ

∫ x

0
F̄(y)dy

where the final equality used that

h(0) = ρ = ρ

μ

∫ ∞

0
F̄(y)dy
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1. (a) E[number of arrivals]

= E[E{number of arrivals|service
period is S}]

= E[λS]

= λ/μ

(b) P{0 arrivals}
= E[P{0 arrivals|service period is S}]

= E[P{N(S) = 0}]

= E[e−λS]

=
∫ x

0
e−λsμe−μsds

= μ

λ + μ

3. Let CM = Mary’s average cost/hour and CA =
Alice’s average cost/hour.

Then, CM = $3 + $1× (Average number of cus-
tomers in queue when Mary works),

and CA = $C + $1 × (Average number of cus-
tomers in queue when Alice works).

The arrival stream has parameter λ = 10, and there
are two service parameters—one for Mary and one
for Alice:

μM = 20, μA = 30.

Set LM = average number of customers in
queue when Mary works and

LA = average number of customers in
queue when Alice works.

Then using Equation (3.2), LM = 10
(20 − 10)

= 1

LA = 10
(20 − 10)

= 1
2

So CM = $3 + $1/customer × LM customers
= $3 + $1
= $4/hour

Also, CA = $C + $1/customer × LA customers

= $C + $1 × 1
2

= $C + 1
2

/ hour

(b) We can restate the problem this way: If CA =
CM, solve for C.

4 = C + 1
2

⇒ C = $3.50/hour

i.e., $3.50/hour is the most the employer
should be willing to pay Alice to work. At a
higher wage his average cost is lower with
Mary working.

5. Let I equal 0 if W∗
Q = 0 and let it equal 1 otherwise.

Then,

E[W∗
Q|I = 0] = 0

E[W∗
Q|I = 1] = (μ − λ)−1

Var(W∗
Q|I = 0) = 0

Var(W∗
Q|I = 1) = (μ − λ)−2

Hence,

E[Var(W∗
Q|I] = (μ − λ)−2λ/μ

Var(E[W∗
Q|I]) = (μ − λ)−2λ/μ(1 − λ/μ)

Consequently, by the conditional variance formula,

Var(W∗
Q) = λ

μ(μ − λ)2 + λ

μ2(μ − λ)

7. To compute W for the M/M/2, set up balance equa-
tions as

λp0 = μp1 (each server has rate μ)

(λ + μ)p1 = λp0 + 2μp2

(λ + 2μ)pn = λpn−1 + 2μpn+1, n ≥ 2

These have solutions Pn = ρn/2n−1p0 where
ρ = λ/μ.

44
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The boundary condition
∞
∑
n=0

Pn = 1 implies

P0 = 1 − ρ/2
1 + ρ/2

= (2 − ρ)
(2 + ρ)

Now we have Pn, so we can compute L, and hence
W from L = λW :

L =
∞
∑
n=0

npn = ρp0

∞
∑
n=0

n
[
ρ
2

]n−1

= 2p0

∞
∑
n=0

n
[
ρ
2

]n

= 2 (2 − ρ)
(2 + ρ)

(ρ/2)
(1 − ρ/2)2

= 4ρ
(2 + ρ)(2 − ρ)

= 4μλ
(2μ + λ)(2μ − λ)

From L = λW we have

W = Wm/m/2 = 4μ

(2μ + λ)(2μ − λ)

The M/M/1 queue with service rate 2μ has

Wm/m/1 = 1
2μ − λ

from Equation (3.3). We assume that in the
M/M/1 queue, 2μ > λ so that the queue is stable.

But then 4μ > 2μ + λ, or
4μ

2μ + λ
> 1, which

implies Wm/m/2 > Wm/m/1.

The intuitive explanation is that if one finds the
queue empty in the M/M/2 case, it would do no
good to have two servers. One would be better off
with one faster server.

Now let W1
Q = WQ(M/M/1)

W2
Q = WQ(M/M/2)

Then,

W1
Q = Wm/m/1 − 1/2μ

W2
Q = Wm/m/2 − 1/μ

So,

W1
Q = λ

2μ(2μ − λ)
(3.3)

and

W2
Q = λ2

μ(2μ − λ)(2μ + λ)

Then,

W1
Q > W2

Q ⇔ 1
2 > λ

(2μ + λ)
λ < 2μ

Since we assume λ < 2μ for stability in the
M/M/1, W2

Q < W1
Q whenever this comparison is

possible, i.e., whenever λ < 2μ.

9. Take the state to be the number of customers at
server 1. The balance equations are

μP0 = μP1

2μPj = μPj+1 + μPj−1, 1 ≤ j < n

μPn = μPn−1

1 =
n

∑
j=0

Pj

It is easy to check that the solution to these equa-
tions is that all the Pjs are equal, so Pj = 1/(n + 1),
j = 0, …, n.

11. (a) λP0 = αμP1

(λ + αμ)Pn = λPn−1 + αμPn+1, n ≥ 1

These are exactly the same equations as in the
M/M/1 with αμ replacing μ. Hence,

Pn =
[

λ

αμ

]n [
1 − λ

αμ

]
, n ≥ 0

and we need the condition λ < αμ.

(b) If T is the waiting time until the customer first
enters service, then conditioning on the num-
ber present when he arrives yields
E[T] = ∑

n
E[T|n present]Pn

= ∑
n

n
μ

Pn

= L
μ

Since L = ∑ nPn, and the Pn are the same as
in the M/M/1 with λ and αμ, we have that
L = λ/(αμ − λ) and so

E[T] = λ

μ(αμ − λ)

(c) P{enters service exactly n times}
= (1 − α)n−1α

(d) This is expected number of services × mean
services time = 1/αμ
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(e) The distribution is easily seen to be memory-
less. Hence, it is exponential with rate αμ.

13. Let the state be the idle server. The balance equa-
tions are

Rate Leave = Rate Enter,

(μ2 + μ3)P1 = μ1
μ1 + μ2

P3 + μ1
μ1 + μ3

P2,

(μ1 + μ3)P2 = μ2
μ2 + μ3

P1 + μ2
μ2 + μ1

P3,

μ1 + μ2 + μ3 = 1.

These are to be solved and the quantity Pi repre-
sents the proportion of time that server i is idle.

15. There are four states = 0, 1A, 1B, 2. Balance equa-
tions are

2P0 = 2P1B

4P1A = 2P0 + 2P2

4P1B = 4P1A + 4P2

6P2 = 2P1B

P0 + P1A + P1B + P2 = 1 ⇒ P0 = 3
9

P1A = 2
9

, P1B = 3
9

, P2 = 1
9

(a) P0 + P1B = 2
3

(b) By conditioning upon whether the state was 0
or 1B when he entered we get that the desired
probability is given by

1
2

+ 1
2

2
6

= 4
6

(c) P1A + P1B + 2P2 = 7
9

(d) Again, condition on the state when he enters
to obtain

1
2

[
1
4

+ 1
2

]
+ 1

2

[
1
4

+ 2
6

1
2

]
= 7

12

This could also have been obtained from (a)

and (c) by the formula W = L
λa

.

That is, W =
7
9

2
[

2
3

] = 7
12

.

17. The state space can be taken to consist of states
(0, 0), (0, 1), (1, 0), (1, 1), where the ith component of

the state refers to the number of customers at server
i, i = 1, 2. The balance equations are

2P0, 0 = 6P0, 1

8P0, 1 = 4P1, 0 + 4P1, 1

6P1, 0 = 2P0, 0 + 6P1, 1

10P1, 1 = 2P0, 1 + 2P1, 0

1 = P0, 0 + P0, 1 + P1, 0 + P1, 1

Solving these equations gives P0, 0 = 1/2,
P0, 1 = 1/6, P1, 0 = 1/4, P1, 1 = 1/12.

(a) P1, 1 = 1/12

(b) W = L
λa

= P0, 1 + P1, 0 + 2P1, 1

2(1 − P1, 1)
= 7

22

(c)
P0, 0 + P0, 1

1 − P1, 1
= 8

11

19. (a) Say that the state is (n, 1) whenever it is a good
period and there are n in the system, and say
that it is (n, 2) whenever it is a bad period and
there are n in the system, n = 0, 1.

(b) (λ1 + α1)P0, 1 = μP1, 1 + α2P0, 2

(λ2 + α2)P0, 2 = μP1, 2 + α1P0, 1

(μ + α1)P1, 1 = λ1P0, 1 + α2P1, 2

(μ + α2)P1, 2 = λ2P0, 2 + α1P1, 1

P0, 1 + P0, 2 + P1, 1 + P1, 2 = 1

(c) P0, 1 + P0, 2

(d) λ1P0, 1 + λ2P0, 2

21. (a) λ1P10

(b) λ2(P0 + P10)

(c) λ1P10/[λ1P10 + λ2(P0 + P10)]

(d) This is equal to the fraction of server 2’s cus-
tomers that are type 1 multiplied by the pro-
portion of time server 2 is busy. (This is true
since the amount of time server 2 spends with
a customer does not depend on which type of
customer it is.) By (c) the answer is thus

(P01 + P11)λ1P10/[λ1P10 + λ2(P0 + P10)]

23. (a) The states are n, n ≥ 0, and b. State n means
there are n in the system and state b means
that a breakdown is in progress.
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(b) βPb = a(1 − P0)

λP0 = μP1 + βPb

(λ + μ + a)Pn = λPn−1 + μPn+1, n ≥ 1

(c) W = L/λn =
∞
∑
n=1

nPa/[λ(1 − Pb)]

(d) Since rate at which services are completed =
μ(1 − P0 − Pb) it follows that the proportion of
customers that complete service is
μ(1 − P0 − Pb)/λa

= μ(1 − P0 − Pb)/[λ(1 − Pb)]
An equivalent answer is obtained by condi-
tioning on the state as seen by an arrival. This
gives the solution

∞
∑
n=0

Pn[μ/(μ + a)]n+1

where the above uses that the probability that
n + 1 services of present customers occur
before a breakdown is [μ/(μ + a)]n+1.

(e) Pb

25. (a) λP0 = μAPA + μBPB

(λ + μA)PA = aλP0 + μBP2

(λ + μB)PB = (1 − a)λP0 + μAP2

(λ + μA+μB)Pn = λPn−1 + (μA + μB)Pn+1′

n ≥ 2 where P1 = PA + PB.

(b) L = PA + PB +
∞
∑
n=2

nPn

Average number of idle servers = 2P0 +
PA + PB.

(c) P0 + PB + μA

μA + μB

∞
∑
n=2

Pn

27. (a) The special customer’s arrival rate is act θ
because we must take into account his ser-
vice time. In fact, the mean time between his
arrivals will be 1/θ + 1/μ1. Hence, the arrival
rate is (1/θ + 1/μ1)−1.

(b) Clearly we need to keep track of whether the
special customer is in service. For n ≥ 1,
set
Pn = Pr{n customers in system regular cus-

tomer in service},

PS
n = Pr{n customers in system, special cus-

tomer in service}, and
P0 = Pr{0 customers in system}.

(λ + θ)P0 = μP1 + μ1PS
1

(λ + θ + μ)Pn = λPn−1 + μPn+1 + μ1PS
n+1

(λ + μ)PS
n = θPn−1 + λPS

n−1,

n ≥ 1
[
PS

0 = P0
]

(c) Since service is memoryless, once a customer
resumes service it is as if his service has
started anew. Once he begins a particular ser-
vice, he will complete it if and only if the next
arrival of the special customer is after his ser-
vice. The probability of this is Pr {Service <
Arrival of special customer}= μ/(μ + θ), since
service and special arrivals are independent
exponential random variables. So,

Pr{bumped exactly n times}
= (1 − μ/(μ + θ))n(μ/(μ + θ))

= (θ/(μ + θ))n(μ/(μ + θ))

In essence, the number of times a customer is
bumped in service is a geometric random vari-
able with parameter μ/(μ + θ).

29. (a) Let state 0 mean that the server is free; let state
1 mean that a type 1 customer is having a wash;
let state 2 mean that the server is cutting hair;
and let state 3 mean that a type 3 is getting a
wash.

(b) λP0 = μ1P1 + μ2P2

μ1P1 = λp1P0

μ2P2 = λp2P0 + μ1P3

μ1P3 = λp3P0

P0 + P1 + P2 + P3 = 1

(c) P2

(d) λP0
Direct substitution now verifies the equation.

31. The total arrival rates satisfy

λ1 = 5

λ2 = 10 + 1
3

5 + 1
2

λ3

λ3 = 15 + 1
3

5 + λ2
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Solving yields that λ1 = 5, λ2 = 40, λ3 = 170/3.
Hence,

L =
3

∑
i=1

λi

μi − λi
= 82

13

W = L
r1 + r2 + r3

= 41
195

33. (a) Use the Gibbs sampler to simulate a Markov
chain whose stationary distribution is that of
the queuing network system with m − 1 cus-
tomers. Use this simulated chain to estimate
Pi, m−1, the steady state probability that there
are i customers at server j for this system.
Since, by the arrival theorem, the distribu-
tion function of the time spent at server j in
the m customer system is ∑m−1

i=0 Pi, m−1Gi+1(x) ,
where Gk(x) is the probability that a gamma
(k, μ) random variable is less than or equal to
x, this enables us to estimate the distribution
function.

(b) This quantity is equal to the average number
of customers at server j divided by m.

35. Let S and U denote, respectively, the service time
and value of a customer. Then U is uniform on
(0, 1) and

E[S|U] = 3 + 4U, Var(S|U) = 5

Hence,

E[S] = E{E[S|U]} = 3 + 4E[U] = 5

Var(S) = E[Var(S|U)] + Var(E[S|U])

= 5 + 16Var(U) = 19/3

Therefore,

E[S2] = 19/3 + 25 = 94/3

(a) W = WQ + E[S] = 94λ/3
1 − δλ

+ 5

(b) WQ + E[S|U = x] = 94λ/3
1 − δλ

+ 3 + 4x

37. (a) The proportion of departures leaving behind
0 work

= proportion of departures leaving an
empty system

= proportion of arrivals finding an empty
system

= proportion of time the system is empty
(by Poisson arrivals)

= P0

(b) The average amount of work as seen by a
departure is equal to the average number it
sees multiplied by the mean service time (since
no customers seen by a departure have yet
started service). Hence,
Average work as seen by a departure

= average number it sees × E[S]
= average number an arrival sees × E[S]
= LE[S] by Poisson arrivals

= λ(WQ + E[S])E[S]

= λ2E[S]E[S2]
λ − λE[S] + λ(E[S])2

39. (a) a0 = P0 due to Poisson arrivals. Assuming
that each customer pays 1 per unit time
while in service the cost identity (2.1) states
that
Average number in service = λE[S]
or

1 − P0 = λE[S]

(b) Since a0 is the proportion of arrivals that have
service distribution G1 and 1 − a0 the propor-
tion having service distribution G2, the result
follows.

(c) We have

P0 = E[I]
E[I] + E[B]

and E[I] = 1/λ and thus,

E[B] = 1 − P0
λP0

= E[S]
1 − λE[S]

Now from (a) and (b) we have

E[S] = (1 − λE[S])E[S1] + λE[S]E[S2]

or

E[S] = E[S1]
1 + λE[S1] + λE[S2]

Substitution into E[B] = E[S]/(1 − λE[S]) now
yields the result.

41. E[N] = 2, E[N2] = 9/2, E[S2] = 2E2[S] = 1/200

W =
1

20
5
2
/4 + 4 · 2/400

1 − 8/20
= 41

480

WQ = 41
480

− 1
20

= 17
480
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43. Problem 42 shows that if μ1 > μ2, then serving 1’s
first minimizes average wait. But the same argu-
ment works if c1μ1 > c2μ2, i.e.,

E(S1)
c1

<
E(S2)
μ1

45. By regarding any breakdowns that occur during a
service as being part of that service, we see that
this is an M/G/1 model. We need to calculate the
first two moments of a service time. Now the time
of a service is the time T until something happens
(either a service completion or a breakdown) plus
any additional time A. Thus,

E[S] = E[T + A]

= E[T] + E[A]

To compute E[A] we condition upon whether the
happening is a service or a breakdown. This gives

E[A] = E[A|service]
μ

μ + α

+ E[A|breakdown]
α

μ + α

= E[A|breakdown]
α

μ + α

= (1/β + E[S])
α

μ + α

Since, E[T] = 1/(α + μ) we obtain

E[S] = 1
α + μ

+ (1/β + E[S])
α

μ + α

or

E[S] = 1/μ + α/(μβ)

We also need E[S2], which is obtained as follows.

E[S2] = E[(T + A)2]

= E[T2] + 2E[AT] + E[A2]

= E[T2] + 2E[A]E[T] + E[A2]

The independence of A and T follows because
the time of the first happening is independent of
whether the happening was a service or a break-
down. Now,

E[A2] = E[A2|breakdown] α
μ + α

= α

μ + α
E[(down time + Sα)2]

= α

μ + α

{
E[down2] + 2E[down]E[S] + E[S2]

}

= α

μ + α

{
2
β2 + 2

β

[
1
μ

+ α

μβ

]
+ E[S2]

}

Hence,

E[S2] = 2
(μ + β)2 + 2

[
α

β(μ + α)

+ α

μ + α

(
1
μ

+ α

μβ

)]

+ α

μ + α

{
2
β2 + 2

β

[
1
μ

+ α

μβ

]
+ E[S2]

}

Now solve for E[S2]. The desired answer is

WQ = λE[S2]
2(1 − λE[S])

In the above, Sα is the additional service needed
after the breakdown is over. Sα has the same dis-
tribution as S. The above also uses the fact that
the expected square of an exponential is twice the
square of its mean.

Another way of calculating the moments of S is to
use the representation

S =
N

∑
i=1

(Ti + Bi) + TN+1

where N is the number of breakdowns while a cus-
tomer is in service, Ti is the time starting when ser-
vice commences for the ith time until a happening
occurs, and Bi is the length of the ith breakdown.
We now use the fact that, given N, all of the ran-
dom variables in the representation are indepen-
dent exponentials with the Ti having rate μ + α
and the Bi having rate β. This yields

E[S|N] = (N + 1)/(μ + α) + N/β

Var(S|N) = (N + 1)/(μ + α)2 + N/β2

Therefore, since 1 + N is geometric with mean
(μ + α)/μ (and variance α(α + μ)/μ2) we obtain

E[S] = 1/μ + α/(μβ)

and, using the conditional variance formula,

Var(S) = [1/(μ + α) + 1/β]2α(α + μ)/μ2

+ 1/[μ(μ + α)] + α/μβ2)

47. For k = 1, Equation (8.1) gives

P0 = 1
1 + λE(S) = (λ)

(λ) + E(S) P1 = λ(ES)
1 + λE(S)

= E(S)
λ + E(S)
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One can think of the process as an alteracting
renewal process. Since arrivals are Poisson, the time
until the next arrival is still exponential with
parameter λ.

end of 
service arrival

end of 
service

A
A S

S states

The basic result of alternating renewal processes is
that the limiting probabilities are given by

P{being in “state S”} = E(S)
E(A) + E(S)

and

P{being in “state A”} = E(A)
E(A) + E(S)

These are exactly the Erlang probabilities given
above since E[A] = 1/λ. Note this uses Poisson
arrivals in an essential way, viz., to know the distri-
bution of time until the next arrival after a service
is still exponential with parameter λ.

49. P3 =
(λE[S])3

3!
3

∑
j=0

(λE[S])j

j!

, λ = 2, E[S] = 1

= 8
38

51. Note that when all servers are busy, the depar-
tures are exponential with rate kμ. Now see
Problem 26.

53. 1/μF < k/μG, where μF and μG are the respective
means of F and G.



Chapter 9

1. If xi = 0, φ(x) = φ(0i, x).

If xi = 1, φ(x) = φ(1i, x).

3. (a) If φ is series, then φ(x) = minixi and so φD(x) =
1 − mini (1 − xi) = max xi, and vice versa.

(b) φD,D(x) = 1 − φD(1 − x)

= 1 − [1 − φ(1 − (1 − x))]

= φ(x)

(c) An n − k + 1 of n.

(d) Say {1, 2, …, r} is a minimal path set. Then
φ(1, 1, …,︸ ︷︷ ︸

r

1, 0, 0, …0) = 1, and so

φD(0, 0, …,︸ ︷︷ ︸
r

0, 1, 1, …, 1) = 1 − φ(1, 1, …,

1, 0, 0, …, 0) = 0, implying that {1, 2, …, r} is a
cut set. We can easily show it to be minimal.
For instance,

φD(0, 0, …,︸ ︷︷ ︸
r−1

0, 1, 1, …, 1)

= 1 − φ(1, 1, …,︸ ︷︷ ︸
r−1

1, 0, 0, …, 0) = 1,

since φ(1, 1, …,︸ ︷︷ ︸
r−1

1, 0, 0, …, 0) = 0 since

{1, 2, …, r − 1} is not a path set.

5. (a) Minimal path sets are

{1, 8}, {1, 7, 9}, {1, 3, 4, 7, 8}, {1, 3, 4, 9},

{1, 3, 5, 6, 9}, {1, 3, 5, 6, 7, 8}, {2, 5, 6, 9},

{2, 5, 6, 7, 8}, {2, 4, 9}, {2, 4, 7, 8},

{2, 3, 7, 9}, {2, 3, 8}.

Minimal cut sets are

{1, 2}, {2, 3, 7, 8}, {1, 3, 4, 5}, {1, 3, 4, 6},

{1, 3, 7, 9}, {4, 5, 7, 8}, {4, 6, 7, 8}, {8, 9}.

7. {1, 4, 5}, {3}, {2, 5}.

9. (a) A component is irrelevant if its functioning or
not functioning can never make a difference as
to whether or not the system functions.

(b) Use the representation (2.1.1).

(c) Use the representation (2.1.2).

11. r(p) = P{either x1x3 = 1 or x2x4 = 1}
P{either of 5 or 6 work}

= (p1p3 + p2p4 − p1p3p2p4)

(p5 + p6 − p5p5)

13. Taking expectations of the identity

φ(X) = Xiφ(1i, X) + (1 − Xi)φ(0i, X)

noting the independence of Xi and φ(1i, X) and of
φ(0i, X).

15. (a) 7
32 ≤ r

[
1
2

]
≤ 1 −

[
7
8

]3 = 169
512

The exact value is r(1/2) = 7/32, which
agrees with the minimal cut lower bound since
the minimal cut sets {1}, {5}, {2, 3, 4} do not
overlap.

17. E[N2] = E[N2|N > 0]P{N > 0}
≥ (E[N|N > 0])2P{N > 0}

since E[X2] ≥ (E[X])2.

Thus,

E[N2]P{N > 0} ≥ (E[N|N > 0]P{N > 0})2

= (E[N])2

Let N denote the number of minimal path sets
having all of its components functioning. Then
r(p) = P{N > 0}.

Similarly, if we define N as the number of minimal
cut sets having all of its components failed, then
1 − r(p) = P{N > 0}.

51
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In both cases we can compute expressions for E[N]
and E[N2] by writing N as the sum of indicator (i.e.,
Bernoulli) random variables. Then we can use the
inequality to derive bounds on r(p).

19. X(i) is the system life of an n − i + 1 of n system
each having the life distribution F. Hence, the result
follows from Example 5e.

21. (a) (i), (ii), (iv) − (iv) because it is two-of-three.

(b) (i) because it is series, (ii) because it can be
thought of as being a series arrangement of 1
and the parallel system of 2 and 3, which as
F2 = F3 is IFR.

(c) (i) because it is series.

23. (a) F̄(t) =
n∏

i=1
Fi(t)

λF(t) =
d
dt

F̄(t)

F̄(t)
=

n

∑
j=1

F
′
j (t)
∏
i �=j

Fj(t)

n∏
i=1

Fi(t)

=

n

∑
j=1

F
′
j (t)

Fj(t)

=
n

∑
j=1

λj(t)

(b) Ft(a) = P{additional life of t-year-old > a}

=

n∏
1

Fi(t + a)

Fi(t)

where Fi is the life distribution for component
i. The point being that as the system is series,
it follows that knowing that it is alive at time t
is equivalent to knowing that all components
are alive at t.

25. For x ≥ ξ,

1 − p = 1 − F(ξ) = 1 − F(x(ξ/x)) ≥ [1 − F(x)]ξ/x

since IFRA.

Hence,

1 − F(x) ≤ (1 − p)x/ξ = e−θx

For x ≤ ξ,

1 − F(x) = 1 − F(ξ(x/ξ)) ≥ [1 − F(ξ)]x/ξ

since IFRA.

Hence,

1 − F(x) ≥ (1 − p)x/ξ = e−θx

27. If p > p0, then p = p0
α for some a ∈ (0, 1). Hence,

r(p) = r(p0
α) ≥ [r(p0)]α = p0

α = p

If p < p0, then p0 = pα for some a ∈ (0, 1). Hence,

pα = p0 = r(p0) = r(pα) ≥ [r(p)]α

29. Let X denote the time until the first failure and let
Y denote the time between the first and second fail-
ure. Hence, the desired result is

EX + EY = 1
μ1 + μ2

+ EY

Now,

E[Y] = E[Y|μ1 component fails first] μ1
μ1 + μ2

+ E[Y|μ2 component fails first] μ2
μ1 + μ2

= 1
μ2

μ1
μ1 + μ2

+ 1
μ1

μ2
μ1 + μ2

31. Use the remark following Equation (6.3).

33. The exact value can be obtained by conditioning
on the ordering of the random variables. Let M
denote the maximum, then with Ai,j,k being the
even that Xi < Xj < Xk , we have that

E[M] = ∑ E[M|Ai, j, k]P(Ai, j, k)

where the preceding sum is over all 6 possible per-
mutations of 1, 2, 3. This can now be evaluated by
using

P(Ai, j, k) = λi
λi + λj + λk

λj
λj + λk

E[M|Ai, j, k] = 1
λi + λj + λk

+ 1
λj + λk

+ 1
λk

35. (a) It follows when i = 1 since 0 = (1 − 1)n

= 1 − [n1] + [n
2
] · · · ± [n

n]. So assume it true for
i and consider i + 1. We must show that[

n − 1
i

]
=
[

n
i + 1

]
−
[

n
i + 2

]
+ · · · ±

[n
n

]
which, using the induction hypothesis, is
equivalent to[

n − 1
i

]
=
[n

i

]
−
[

n − 1
i − 1

]
which is easily seen to be true.
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(b) It is clearly true when i = n, so assume it for i.
We must show that

[
n − 1
i − 2

]
=
[

n
i − 1

]
−
[

n − 1
i − 1

]
+ · · · ±

[n
n

]
which, using the induction hypothesis,
reduces to[

n − 1
i − 2

]
=
[

n
i − 1

]
−
[

n − 1
i − 1

]
which is true.



Chapter 10

1. X(s) + X(t) = 2X(s) + X(t) − X(s).

Now 2X(s) is normal with mean 0 and variance 4s
and X(t) − X(s) is normal with mean 0 and variance
t − s. As X(s) and X(t) − X(s) are independent, it
follows that X(s) + X(t) is normal with mean 0 and
variance 4s + t − s = 3s + t.

3. E[X(t1)X(t2)X(t3)]

= E[E[X(t1)X(t2)X(t3) | X(t1), X(t2)]]

= E[X(t1)X(t2)E[X(t3) | X(t1), X(t2)]]

= E[X(t1)X(t2)X(t2)]

= E[E[X(t1)E[X2(t2) | X(t1)]]

= E[X(t1)E[X2(t2) | X(t1)]] (∗)

= E[X(t1){(t2 − t1) + X2(t1)}]

= E[X3(t1)] + (t2 − t1)E[X(t1)]

= 0

where the equality (∗) follows since given X(t1),
X(t2) is normal with mean X(t1) and variance
t2 − t1. Also, E[X3(t)] = 0 since X(t) is normal with
mean 0.

5. P{T1 < T−1 < T2} = P{hit 1 before − 1 before 2}
= P{hit 1 before −1}

× P{hit −1 before 2 | hit 1 before −1}

= 1
2

P{down 2 before up 1}

= 1
2

1
3

= 1
6

The next to last equality follows by looking at the
Brownian motion when it first hits 1.

7. Let M = {maxt1≤s≤t2 X(s) > x}. Condition on X(t1)
to obtain

P(M) =
∫ ∞

−∞
P(M|X(t1) = y)

1√
2πt1

e−y2/2t1dy

Now, use that

P(M|X(t1) = y) = 1, y ≥ x

and, for y < x

P
(
M|X(t1) = y

)= P{ max
0<s<t2−t1

X(s) > x − y}

= 2P{X(t2 − t1) > x − y}

11. Let X(t) denote the value of the process at time
t = nh. Let Xi = 1 if the ith change results in the
state value becoming larger, and let Xi = 0 other-

wise. Then, with u = eσ
√

h, d = e−σ
√

h

X(t) = X(0)u∑n
i=1 Xi dn−∑n

i=1 Xi

= X(0)dn
(u

d

)∑n
i=1 Xi

Therefore,

log
(

X(t)
X(0)

)
= n log(d) +

n

∑
i=1

Xi log(u/d)

= − t
h
σ
√

h + 2σ
√

h
t/h

∑
i=1

Xi

By the central limit theorem, the preceding
becomes a normal random variable as h → 0. More-
over, because the Xi are independent, it is easy to
see that the process has independent increments.
Also,

E
[

log
(

X(t)
X(0)

)]

= − t
h

σ
√

h + 2σ
√

h
t
h

1
2

(1 + μ

σ

√
h)

= μt

and

Var
[

log
(

X(t)
X(0)

)]
= 4σ2h

t
h

p(1 − p)

→ σ2t

where the preceding used that p → 1/2 as h → 0.
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13. If the outcome is i then our total winnings are

xioi − ∑
j �=i

xj =
oi(1 + oi)−1 − ∑

j �=i
(1 + oj)−1

1 − ∑
k

(1 + ok)−1

=
(1 + oi)(1 + oi)−1 − ∑

j
(1 + oj)−1

1 − ∑
k

(1 + ok)−1

= 1

15. The parameters of this problem are

σ = .05, σ = 1, xo = 100, t = 10.

(a) If K = 100 then from Equation (4.4)

b = [.5 − 5 − log(100/100)]/
√

10

= −4.5
√

10 = −1.423

and

c = 100φ(
√

10 − 1.423) − 100e−.5φ(−1.423)

= 100φ(1.739) − 100e−.5[1 − φ(1.423)]

= 91.2

The other parts follow similarly.

17. E [B(t)|B(u), 0 ≤ u ≤ s]

= E[B(s) + B(t) − B(s)|B(u), 0 ≤ u ≤ s]

= E[B(s)|B(u), 0 ≤ u ≤ s]

+ E[B(t) − B(s)|B(u), 0 ≤ u ≤ s]

= B(s) + E[B(t) − B(s)] by independent

increments

= B(s)

19. Since knowing the value of Y(t) is equivalent to
knowing B(t) we have

E[Y(t)|Y(u), 0 ≤ u ≤ s]

= e−c2t/2E[ecB(t)|B(u), 0 ≤ u ≤ s]

= e−c2t/2E[ecB(t)|B(s)]

Now, given B(s), the conditional distribution of
B(t) is normal with mean B(s) and variance t − s.

Using the formula for the moment generating func-
tion of a normal random variable we see that

e−c2t/2E[ecB(t)|B(s)]

= e−c2t/2ecB(s)+(t−s)c2/2

= e−c2s/2ecB(s)

= Y(s)

Thus, {Y(t)} is a Martingale.

E[Y(t)] = E[Y(0)] = 1

21. By the Martingale stopping theorem

E[B(T)] = E[B(0)] = 0

But, B(T) = (x − μT)/σ and so

E[(x − μT)/σ] = 0

or

E[T] = x/μ

23. By the Martingale stopping theorem we have

E[B(T)] = E[B(0)] = 0

Since B(T) = [X(T) − μT]/σ this gives the equality

E[X(T) − μT] = 0

or

E[X(T)] = μE[T]

Now

E[X(T)] = pA − (1 − p)B

where, from part (c) of Problem 22,

p = 1 − e2μB/σ2

e−2μA/σ2 − e2μB/σ2

Hence,

E[T] = A(1 − e2μB/σ2
) − B(e−2μA/σ2 − 1)

μ(e−2μA/σ2 − e2μB/σ2 )

25. The means equal 0.

Var
[∫ 1

0
tdX(t)

]
=
∫ 1

0
t2dt = 1

3

Var
[∫ 1

0
t2dX(t)

]
=
∫ 1

0
t4dt = 1

5
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27. E[X(a2t)/a] = 1
a

E[X(a2t)] = 0

For s < t,

Cov(Y(s), Y(t)) = 1
a2 Cov(X(a2s), X(a2t))

= 1
a2 a2s = s

As {Y(t)} is clearly Gaussian, the result follows.

29. {Y(t)} is Gaussian with

E[Y(t)] = (t + 1)E(Z[t/(t + 1)]) = 0

and for s ≤ t

Cov(Y(s), Y(t))

= (s + 1)(t + 1) Cov
[

Z
[

s
s + 1

]
, Z

[
t

t + 1

]]

= (s + 1)(t + 1)
s

s + 1

[
1 − t

t + 1

]
(∗)

= s

where (∗) follows since Cov(Z(s), Z(t)) = s(1 − t).
Hence, {Y(t)} is Brownian motion since it is also
Gaussian and has the same mean and covariance
function (which uniquely determines the distribu-
tion of a Gaussian process).

31. (a) Starting at any time t the continuation of the
Poisson process remains a Poisson process
with rate λ.

(b) E[Y(t)Y(t + s)]

=
∫ ∞

0
E[Y(t)Y(t + s) | Y(t) = y]λe−λydy

=
∫ ∞

0
yE[Y(t + s) | Y(t) = y]λe−λydy

+
∫ ∞

s
y(y − s)λe−λydy

=
∫ s

0
y

1
λ

λe−λydy +
∫ ∞

s
y(y − s)λe−λydy

where the above used that

E[Y(t)Y(t + s)|Y(t) = y]

=
⎧⎨
⎩yE(Y(t + s)) = y

λ
, if y < s

y(y − s), if y > s

Hence,
Cov(Y(t), Y(t + s))

=
∫ s

0
ye−yλdy +

∫ ∞

s
y(y − s)λe−λydy − 1

λ2

33. Cov(X(t), X(t + s))

= Cov(Y1 cos wt + Y2 sin wt,

Y1 cos w(t + s) + Y2 sin w(t + s))

= cos wt cos w(t + s) + sin wt sin w(t + s)

= cos(w(t + s) − wt)

= cos ws



Chapter 11

1. (a) Let u be a random number. If
i−1

∑
j=1

Pj < u ≤
i

∑
j=1

Pj

then simulate from Fi.(
In the above

i−1

∑
j=1

Pj ≡ 0 when i = 1.

)

(b) Note that

F(x) = 1
3

F1(X) + 2
3

F2(x)

where

F1(x) = 1 − e−2x, 0 < x < ∞

F2(x) =
{

x, 0 < x < 1

1, 1 < x

Hence, using (a), let U1, U2, U3 be random
numbers and set

X =
⎧⎨
⎩

−log U2

2
, if U1 < 1/3

U3, if U1 > 1/3

The above uses the fact that
−log U2

2
is expo-

nential with rate 2.

3. If a random sample of size n is chosen from a set of
N + M items of which N are acceptable then X, the
number of acceptable items in the sample, is such
that

P{X = k} =
[

N
k

] [
M

n − k

]/[
N + M

k

]

To simulate X note that if

Ij =
{

1, if the jth section is acceptable

0, otherwise

then

P{Ij =1| I1, …, Ij−1} =
N −

j−1

∑
1

Ii

N + M − (j − 1)
. Hence, we

can simulate I1, …, In by generating random num-
bers U1, …, Un and then setting

Ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩1, if Uj <

N −
j−1

∑
1

Ii

N + M − (j − 1)
0, otherwise

X =
n

∑
j=1

Ij has the desired distribution.

Another way is to let

Xj =
⎧⎨
⎩

1, the jth acceptable item is in the sample

0, otherwise

and then simulate X1, …, XN by generating random
numbers U1, …, UN and then setting

Xj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if Uj <

N −
j−1

∑
i=1

Ii

N + M − (j − 1)

0, otherwise

X =
N

∑
j=1

Xj then has the desired distribution.

The former method is preferable when n ≤ N and
the latter when N ≤ n.

7. Use the rejection method with g(x) = 1. Differen-
tiating f (x)/g(x) and equating to 0 gives the two
roots 1/2 and 1. As f (.5) = 30/16 > f (1) = 0, we
see that c = 30/16, and so the algorithm is

Step 1: Generate random numbers U1 and U2.

Step 2: If U2 ≤ 16(U2
1 − 2U3

1 + U4
1), set X = U1.

Otherwise return to step 1.

57
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13. P{X = i} = P{Y = i|U ≤ PY/CQY}

= P{Y = i, U ≤ PY/CQY}
K

= QiP{U ≤ PY/CQY|Y = i}
K

= QiPi/CQi
K

= Pi

CK

where K = P{U ≤ PY/CQY}. Since the above is a
probability mass function it follows that KC = 1.

15. Use 2μ = X.

17. (a) Generate the X(i) sequentially using that given
X(1), …, X(i−1) the conditional distribution of
X(i) will have failure rate function λi(t) given
by

λi(t) =

⎧⎪⎨
⎪⎩

0, t < X(i−1),
X(0) ≡ 0.

(n − i + 1)λ(t), t > X(i−1)

(b) This follows since as F is an increasing function
the density of U(i) is

f(i)(t) = n!
(i − 1)!(n − i) (F(t))i−1

× (F(t))n−if (t)

= n!
(i − 1)!(n − i) ti−1(1 − t)n−i,

0 < t < 1

which shows that U(i) is beta.

(c) Interpret Yi as the ith interarrival time of a Pois-
son process. Now given Y1 + · · · + Yn+1 =
t, the time of the (n + 1)st event, it fol-
lows that the first n event times are distri-
buted as the ordered values of n uniform (0, t)
random variables. Hence,

Y1 + · · · + Yi

Y1 + · · · + Yn+i
, i = 1, …, n

will have the same distribution as U(1), …,
U(n).

(d) fU(1), …|U(n)
(y1, …, yn−1|yn)

= f (y1, …, yn)
fU(n) (yn)

= n!
nyn−1

= (n − 1)!
yn−1 , 0 < y1 < · · · < yn−1 < y

where the above used that

FU(n) (y) = P{max Ui ≤ y} = yn

and so

FU(n) (y) = nyn−1

(e) Follows from (d) and the fact that if
F(y) = yn then F−1(U) = U1/n.

21. Pm+1{i1, …, ik−1, m + 1}

= ∑
j≤m

j �=i1,…,ik−1

Pm{i1, …, ik−1, j} k
m + 1

1
k

= (m − (k − 1))
1[m
k

] 1
m + 1

1[
m + 1

k

]

25. See Problem 4.

27. First suppose n = 2.

Var(λX1 + (1 − λ)X2) = λ2σ2
1 + (1 − λ)2σ2

2.

The derivative of the above is 2λσ2
1 −2(1−λ)σ2

2 and
equating to 0 yields

λ = σ2
2

σ2
1 + σ2

2
= 1/σ2

1

1/σ2
1 + 1/σ2

2

Now suppose the result is true for n − 1. Then

Var

[
n

∑
i=1

λiXi

]
= Var

[
n−1

∑
i=1

λiXi

]
+ Var(λnXn)

= (1 − λn)2 Var

[
n−1

∑
i=1

λi
1 − λn

Xi

]

+ λ2
n Var Xn

Now by the inductive hypothesis for fixed λn the
above is minimized when

(∗)
λi

1 − λn
= 1/σ2

i
n−1

∑
j=1

1/σ2
j

, i = 1, …, n − 1
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Hence, we now need choose λn so as to minimize

(1 − λn)2 1
n−1

∑
j=1

1/σ2
j

+ λ2
n σ2

n

Calculus yields that this occurs when

λn = 1

1 + σ2
n

n−1

∑
j=1

1/σ2
j

= 1/σ2
n

n

∑
j=1

1/σ2
j

Substitution into (*) now gives the result.

29. Use Hint.

31. Since E[Wn|Dn] = Dn + μ, it follows that to
estimate E[Wn] we should use Dn + μ. Since
E[Dn|Wn] 
= Wn − μ, the reverse is not true and

so we should use the simulated data to determine
Dn and then use this as an estimate of E[Dn].

33. (a) E[X2] ≤ E[aX] = aE[X]

(b) Var(X) = E[X2] − E2[X] ≤ aE[X] − E2[X]

(c) From (b) we have that

Var(X) ≤ a2
(

E[X]
a

)
(

1 − E[X]
a

)
≤ a2 max

0<p<1
p(1 − p) = a2/4

35. Use the estimator
k

∑
i=1

Ni/k2 where Ni = number

of j = 1, …, k : Xi < Yj.


	Title Page
	Copyright Page
	Table of Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11

