
This book is based on expository lectures by six internationally known experts

presented at the 2002 MSRI introductory workshop on commutative algebra.

They focus on the interaction of commutative algebra with other areas of

mathematics, including algebraic geometry, group cohomology and represen-

tation theory, and combinatorics, with all necessary background provided.

Short complementary papers describing work at the research frontier are also

included. The unusual scope and format make the book invaluable reading for

graduate students and researchers interested in commutative algebra and its

various uses.
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Preface

Over the last fifteen years, commutative algebra has experienced a striking

evolution. During this period the outlook of the subject has been altered, new

connections to other areas have been established, and powerful techniques have

been developed. To foster further development a year-long program on com-

mutative algebra was held at MSRI during the 2002–03 academic year, starting

with an introductory workshop on September 9–13, 2002. This workshop concen-

trated on the interplay and growing connections between commutative algebra

and other areas, such as algebraic geometry, the cohomology of groups, and

combinatorics.

Six main speakers each gave a series of three talks during the week: David

Benson, David Eisenbud, Mark Haiman, Melvin Hochster, Rob Lazarsfeld, and

Bernard Teissier. The workshop was very well attended, with more than 120

participants. Every series of main talks was supplemented by a discussion/talk

session presented by a young researcher: Manuel Blickle, Ana Bravo, Srikanth

Iyengar, Graham Leuschke, Ezra Miller, and Jessica Sidman. Each of these

speakers has contributed a paper, or in some cases a combined paper, in this

volume.

David Benson spoke on the cohomology of groups, presenting some of the

many questions which are unanswered and which have a close relationship to

modern commutative algebra. He gave us many convincing reasons for working

in the “graded” commutative case, where signs are introduced when commut-

ing elements of odd degree. Srikanth Iyengar gives background information for

Benson’s notes.

David Eisenbud spoke on a classical subject in commutative algebra: free

resolutions. In his paper with a chapter by Jessica Sidman, he visits this classic

territory with a different perspective, by drawing close ties between graded free

resolutions and the geometry of projective varieties. He leads us through recent

developments, including Mark Green’s proof of the linear syzygy conjecture.

Mark Haiman lectured on the commutative algebra of n points in the plane.

This leads quite rapidly to the geometry of the Hilbert scheme, and to substantial

combinatorial questions (and answers) which can be phrased in terms of common

questions in commutative algebra such as asking about the Cohen–Macaulay

ix
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property for certain Rees algebras. Ezra Miller writes an appendix about the

Hilbert scheme of n points in the plane.

Mel Hochster gave three lectures on tight closure, telling eleven reasons to

study tight closure. Hochster presents tight closure as a test for ideal membership

which is necessary, but not sufficient, except for certain rings such as regular

rings. Graham Leuschke’s appendix gives examples of computation of tight

closure.

The theory of multiplier ideals has been expanding rapidly in the last few

years and bears a close relationship to commutative algebra, particularly tight

closure. Rob Lazarsfeld and Manuel Blickle present a gentle introduction to this

theory, with emphasis on the important theorems and concepts, applications,

and examples.

Resolution of singularities has long played a crucial role in algebraic geometry

and commutative algebra. Bernard Teissier talked about new ideas for under-

standing resolution coming from the simplest of all polynomials: monomials and

binomials. Toric geometry of course enters into this story in a crucial way. Ana

Bravo provides a summary of results on SAGBI bases which enter into this story.

The editors of this volume, who formed the organizing committee for the year

program, would like to thank the many people who made the year possible,

and thank the speakers for their wonderful contributions. A special thanks to

David Eisenbud, the director of MSRI, without whom none of this would have

been possible. We thank Michael Singer, the acting director of MSRI during the

academic year when the program took place, for his generous help, and for the

loan of Eisenbud to participate in our program. The great staff at MSRI were

unfailingly helpful, friendly and professional. We thank the MSRI editor, Silvio

Levy, for all his work on this volume. Finally, we thank the National Science

Foundation for its support of institutes of mathematics in general, and of MSRI

in particular.

We hope the papers in this volume will be a springboard for further learning

and research for both experts and beginners.

Luchezar Avramov

Mark Green

Craig Huneke

Karen Smith

Bernd Sturmfels

Note: The lectures this volume is based on were videotaped. They are available

on streaming video and for downloading at www.msri.org/publications/video or

www.cambridge.org/0521831954.
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Commutative Algebra

in the Cohomology of Groups

DAVE BENSON

Abstract. Commutative algebra is used extensively in the cohomology
of groups. In this series of lectures, I concentrate on finite groups, but I
also discuss the cohomology of finite group schemes, compact Lie groups,
p-compact groups, infinite discrete groups and profinite groups. I describe
the role of various concepts from commutative algebra, including finite gen-
eration, Krull dimension, depth, associated primes, the Cohen–Macaulay
and Gorenstein conditions, local cohomology, Grothendieck’s local duality,
and Castelnuovo–Mumford regularity.
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2 DAVE BENSON

1. Introduction

The purpose of these lectures is to explain how commutative algebra is used in

the cohomology of groups. My interpretation of the word “group” is catholic: the

kinds of groups in which I shall be interested include finite groups, finite group

schemes, compact Lie groups, p-compact groups, infinite discrete groups, and

profinite groups, although later in the lectures I shall concentrate more on the

case of finite groups, where representation theoretic methods are most effective.

In each case, there are finite generation theorems which state that under suitable

conditions, the cohomology ring is a graded commutative Noetherian ring; over

a field k, this means that it is a finitely generated graded commutative k-algebra.

Although graded commutative is not quite the same as commutative, the usual

concepts from commutative algebra apply. These include the maximal/prime

ideal spectrum, Krull dimension, depth, associated primes, the Cohen–Macaulay

and Gorenstein conditions, local cohomology, Grothendieck’s local duality, and

so on. One of the themes of these lectures is that the rings appearing in group co-

homology theory are quite special. Most finitely generated graded commutative

k-algebras are not candidates for the cohomology ring of a finite (or compact Lie,

or virtual duality, or p-adic Lie, or . . . ) group. The most powerful restrictions

come from local cohomology spectral sequences such as the Greenlees spectral

sequence H
s,t
m H

∗(G, k) =⇒ H−s−t(G, k), which can be viewed as a sort of dual-

ity theorem. We describe how to construct such spectral sequences and obtain

information from them.

The companion article to this one, [Iyengar 2004], explains some of the back-

ground material that may not be familiar to commutative algebraists. A number

of references are made to that article, and for distinctiveness, I write [Sri].

2. Some Examples

For motivation, let us begin with some examples. We defer until the next

section the definition of group cohomology

H
∗(G, k) = Ext∗kG(k, k)

(or see § 6 of [Sri]). All the examples in this section are for finite groups G over

a field of coefficients k.

(2.1) The first comment is that in the case where k is a field of characteristic

zero or characteristic not dividing the order of G, Maschke’s theorem in represen-

tation theory shows that all kG-modules are projective (see Theorem 3.1 of [Sri]).

So for any kG-modules M and N , and all i > 0, we have Exti
kG(M,N) = 0. In

particular, H
∗(G, k) is just k, situated in degree zero. Given this fact, it makes

sense to look at examples where k has characteristic p dividing |G|.
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(2.2) Next, we discuss finite abelian groups. See also § 7.4 of [Sri]. The Künneth

theorem implies that

(2.2.1) H
∗(G1 ×G2, k) ∼= H

∗(G1, k)⊗k H
∗(G2, k).

So we decompose our finite abelian group as a direct product of cyclic groups of

prime power order. The factors of order coprime to the characteristic may be

thrown away, using (2.1). For a cyclic p-group in characteristic p, there are two

possibilities (Proposition 7.3 of [Sri]). If p = 2 and |G| = 2, then H
∗(G, k) = k[x]

where x has degree one. In all other cases (i.e., p odd, or p = 2 and |G| ≥ 4), we

have H
∗(G, k) = k[x, y]/(x2) where x has degree one and y has degree two. It

follows that if G is any finite abelian group then H
∗(G, k) is a tensor product of

a polynomial ring and a (possibly trivial) exterior algebra.

(2.2.2) In particular, if G is a finite elementary abelian p-group of rank r (i.e.,

a product of r copies of Z/p) and k is a field of characteristic p, then the coho-

mology ring is as follows. For p = 2, we have

H
∗((Z/2)r

, k) = k[x1, . . . , xr]

with |xi| = 1, while for p odd, we have

H
∗((Z/p)r

, k) = Λ(x1, . . . , xr)⊗ k[y1, . . . , yr]

with |xi| = 1 and |yi| = 2. In the latter case, the nil radical is generated by

x1, . . . , xr, and in both cases the quotient by the nil radical is a polynomial ring

in r generators.

(2.3) The next comment is that if S is a Sylow p-subgroup of G then a transfer

argument shows that the restriction map from H
∗(G, k) to H

∗(S, k) is injective.

What’s more, the stable element method of Cartan and Eilenberg [1956] identifies

the image of this restriction map. For example, if S E G then H
∗(G, k) =

H
∗(S, k)G/S , the invariants of G/S acting on the cohomology of S (see § 7.6 of

[Sri]). It follows that really important case is where G is a p-group and k has

characteristic p. Abelian p-groups are discussed in (2.2), so let’s look at some

nonabelian p-groups.

(2.4) Consider the quaternion group of order eight,

(2.4.1) Q8 = 〈g, h | gh = h
−1

g = hg
−1〉.

There is an embedding

g 7→ i, h 7→ j, gh 7→ k, g
2 = h

2 = (gh)2 7→ −1

of Q8 into the unit quaternions (i.e., SU(2)), which form a three dimensional

sphere S
3. So left multiplication gives a free action of Q8 on S

3; in other words,

each nonidentity element of the group has no fixed points on the sphere. The

quotient S
3
/Q8 is an orientable three dimensional manifold, whose cohomology
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therefore satisfies Poincaré duality. The freeness of the action implies that we

can choose a CW decomposition of S
3 into cells permuted freely by Q8. Taking

cellular chains with coefficients in F2, we obtain a complex of free F2Q8-modules

of length four, whose homology consists of one copy of F2 at the beginning and

another copy at the end. Making suitable choices for the cells, this looks as

follows.

0→ F2Q8

(
g−1
h−1

)
−−−−−→ (F2Q8)

2

(
h−1 hg+1
gh+1 g−1

)
−−−−−−−−−→ (F2Q8)

2 (g−1 h−1)−−−−−−−→ F2Q8 → 0

So we can form a Yoneda splice of an infinite number of copies of this sequence

to obtain a free resolution of F2 as an F2Q8-module. The upshot of this is that

we obtain a decomposition for the cohomology ring

H
∗(Q8, F2) = F2[z]⊗F2

H
∗(S3

/Q8; F2)(2.4.2)

= F2[x, y, z]/(x2 + xy + y
2
, x

2
y + xy

2),

where z is a polynomial generator of degree four and x and y have degree one.

This structure is reflected in the Poincaré series

∞∑

i=0

t
i dimH

i(Q8, F2) = (1 + 2t + 2t
2 + t

3)/(1− t
4).

The decomposition (2.4.2) into a polynomial piece and a finite Poincaré duality

piece can be expressed as follows (cf. § 11):

H
∗(Q8, F2) is a Gorenstein ring.

(2.5) We recall that the meanings of Cohen–Macaulay and Gorenstein in this

context are as follows. Let R be a finitely generated graded commutative k-

algebra with R0 = k and Ri = 0 for i < 0. Then Noether’s normalization lemma

guarantees the existence of a homogeneous polynomial subring k[x1, . . . , xr] over

which R is finitely generated as a module.

Proposition 2.5.1. If R is of the type described in the previous paragraph, then

the following are equivalent .

(a) There exists a homogeneous polynomial subring k[x1, . . . , xr] ⊆ R such

that R is finitely generated and free as a module over k[x1, . . . , xr].

(b) If k[x1, . . . , xr] ⊆ R is a homogeneous polynomial subring such that R is

finitely generated as a k[x1, . . . , xr]-module then R a free k[x1, . . . , xr]-module.

(c) There exist homogeneous elements of positive degree x1, . . . , xr forming a

regular sequence, and R/(x1, . . . , xr) has finite rank as a k-vector space.

We say that R is Cohen–Macaulay of dimension r if the equivalent conditions of

the above proposition hold.
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(2.6) If R is Cohen–Macaulay, and the quotient ring R/(x1, . . . , xr) has a sim-

ple socle, then we say that R is Gorenstein. Whether this condition holds is

independent of the choice of the polynomial subring. Another way to phrase the

condition is that R/(x1, . . . , xr) is injective as a module over itself. This quotient

satisfies Poincaré duality, in the sense that if the socle lies in degree d (d is called

the dualizing degree) and we write

p(t) =

∞∑

i=0

t
i dimk(R/(x1, . . . , xr))i

then

(2.6.1) t
d
p(1/t) = p(t).

Setting

P (t) =

∞∑

i=0

t
i dimk Ri,

the freeness of R over k[x1, . . . , xr] implies that P (t) is the power series expansion

of the rational function p(t)/
∏r

i=1(1− t
|xi|). So plugging in equation (2.6.1), we

obtain the functional equation

(2.6.2) P (1/t) = (−t)r
t
−a

P (t),

where a = d−
∑r

i=1(|xi| − 1). We say that R is Gorenstein with a-invariant a.

Another way of expressing the Gorenstein condition is as follows. If R (as

above) is Cohen–Macaulay, then the local cohomology H
s,t
m R is only nonzero for

s = r. The graded dual of H
r,∗
m R is called the canonical module, and written

ΩR. To say that R is Gorenstein with a-invariant a is the same as saying that

ΩR is a copy of R shifted so that the identity element lies in degree r − a.

In the case of H
∗(Q8, F2), we can choose the polynomial subring to be k[z].

The ring H
∗(Q8, F2) is a free module over k[z] on six generators, corresponding

to a basis for the graded vector space H
∗(S3

/Q8; F2) ∼= H
∗(Q8, F2)/(z), which

satisfies Poincaré duality with d = 3. So in this case the a-invariant is 3−(4−1) =

0. We have p(t) = 1 + 2t + 2t
2 + t

3 and P (t) = p(t)/(1− t
4).

(2.7) A similar pattern to the one seen above for Q8 holds for other groups.

Take for example the group GL(3, 2) of 3 × 3 invertible matrices over F2. This

is a finite simple group of order 168. Its cohomology is given by

H
∗(GL(3, 2), F2) = F2[x, y, z]/(x3 + yz)

where deg x = 2, deg y = deg z = 3. A homogeneous system of parameters

for this ring is given by y and z, and these elements form a regular sequence.

Modulo the ideal generated by y and z, we get F2(x)/(x3). This is a finite

Poincaré duality ring whose dualizing degree is 4. Again, this means that the

cohomology is a Gorenstein ring with a-invariant 4− (3− 1)− (3− 1) = 0, but it
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does not decompose as a tensor product the way it did for the quaternion group

(2.4.2).

(2.8) It is not true that the cohomology ring of a finite group is always Goren-

stein. For example, the semidihedral group of order 2n (n ≥ 4),

(2.8.1) G = SD2n = 〈g, h | g2n−1

= 1, h
2 = 1, h

−1
gh = g

2n−2−1〉

has cohomology ring

H
∗(SD2n , F2) = F2[x, y, z, w]/(xy, y

3
, yz, z

2 + x
2
w)

with deg x = deg y = 1, deg z = 3 and deg w = 4. This ring is not even Cohen–

Macaulay. But what is true is that whenever the ring is Cohen–Macaulay, it is

Gorenstein with a-invariant zero. See § 11 for further details.

Even if the cohomology ring is not Cohen–Macaulay, there is still a certain

kind of duality, but it is expressed in terms of a spectral sequence of Greenlees,

H
s,t
m H

∗(G, k) =⇒ H−s−t(G, k). Let us see in the case above of the semidihedral

group, what this spectral sequence looks like. And let’s do it in pictures. We’ll

draw the cohomology ring as follows.
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H
∗(SD2n , F2)

The vertical coordinate indicates cohomological degree, and the horizontal co-

ordinate is just for separating elements of the same degree. To visualize the

homology, just turn this picture upside down by rotating the page, as follows.

(2.8.2)
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We compute local cohomology using the stable Koszul complex for the homo-

geneous system of parameters w, x,

0→ H
∗(G, F2)→ H

∗(G, F2)[w
−1]⊕H

∗(G, F2)[x
−1]→ H

∗(G, F2)[w
−1

x
−1]→ 0

where the subscripts denote localization by inverting the named element. A

picture of this stable Koszul complex is as follows.

0 −−−−−−−→

1

a

a

a

a

a

a

a

a
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�

z

a

a

a

a

w

a

a

a

a

a

a

�
�

wz

a

a . . .

−−−−−−−→

. . .

w
−1
a

a

a

a

a

a

a

a

�
�

w
−1

z

a

a

a

a

1
a

a

a

a

a

a

a

a

�
�

z

a

a

a

a

w

a

a

a

a

a

a

�
�

wz

a

a . . .

⊕
1

a

a

a

a

a

a

x
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z

a

a

a

a

a

a

x
−4

w

a

a

a

a

a

a

a

a

a

a

a

a

. . .

−−−−−−−→ . . .

xw
−1

z

a

a

a

a

a

a

1

a

a

a

a

a

a

x
−3

z

a

a

a

a

a

a

x
−4

w

a

a

a

a

a

a

a

a

a

a

a

a

. . . −→ 0.

The local cohomology of H
∗(G, k) is just the cohomology of this complex. In

degree zero there is no cohomology. In degree one there is some cohomology,

namely the hooks that got introduced when w was inverted,
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H
1
mH
∗(SD2n , F2) =

. . . w
−2

y

w
−2

y
2

a

a

�

w
−1

y

w
−1

y
2

a

a

�

In degree two, we get the part of the plane not hit by either of the two degree

one pieces,

H
2
mH
∗(SD2n , F2) = . . .

w
−2

x
−1

z

a

a

w
−1

x
−1

a

a

a

w
−1

x
−1

z

a

a

a

a

a

a

Now the differential d2 in this spectral sequence increases local cohomological

degree by two and decreases internal degree by one, and the higher differentials

are only longer. So there is no room in this example for nonzero differentials. It

follows that the spectral sequence takes the form of a short exact sequence

0→ H
1,t−1
m H

∗(SD2n , F2)→ H−t(SD2n , F2)→ H
2,t−2
m H

∗(SD2n , F2)→ 0.

This works fine, because H∗(SD2n , F2) is the graded dual of H
∗(SD2n , F2), as

shown in (2.8.2). So the short exact sequence places the hooks of H
1
m underneath

every second nonzero column in H
2
m to build H∗(SD2n , F2). Notice that the

hooks appear inverted, so that there is a separate Poincaré duality for a hook.

The same happens as in this case whenever the depth and the Krull dimension

differ by one. The kernel of multiplication by the last parameter, modulo the

previous parameters, satisfies Poincaré duality with dualizing degree determined

by the degrees of the parameters; in particular, the top degree of this kernel

is determined. In the language of commutative algebra, this can be viewed in

terms of the Castelnuovo–Mumford regularity of the cohomology ring. See § 14

for more details.

The reader who wishes to understand these examples better can skip directly

to § 14, and refer back to previous sections as necessary to catch up on definitions.

Conjecture 14.6.1 says that for a finite group G, Reg H
∗(G, k) is always zero. This

conjecture is true when the depth and the Krull dimension differ by at most one,

as in the above example. It is even true when the difference is two, by a more

subtle transfer argument sketched in § 14 and described in detail in [Benson 2004].

3. Group Cohomology

For general background material on cohomology of groups, the textbooks I

recommend are [Adem and Milgram 1994; Benson 1991b; Brown 1982; Cartan

and Eilenberg 1956; Evens 1991]. The commutative algebra texts most relevant
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to these lectures are [Bruns and Herzog 1993; Eisenbud 1995; Grothendieck 1965;

1967; Matsumura 1989].

(3.1) For a discrete group, the easiest way to think of group cohomology is as

the Ext ring (see § 5 of [Sri]). If G is a group and k is a commutative ring of

coefficients, we define group cohomology via

H
∗(G, k) = Ext∗

ZG(Z, k) ∼= Ext∗kG(k, k).

Here, the group ring kG consists of formal linear combinations
∑

λigi of elements

of the group G with coefficients in k. The cup product in cohomology comes

from the fact that kG is a Hopf algebra (see § 1.8 of [Sri]), with comultiplication

∆(g) = g⊗g. Another part of the Hopf structure on kG is the augmentation map

kG→ k,
∑

λigi 7→
∑

λi, which is what allows us to regard k as a kG-module.

Cup product and Yoneda product define the same multiplicative structure,

and this makes cohomology into a graded commutative ring, in the sense that

ab = (−1)|a||b|ba,

where |a| denotes the degree of an element a (see Prop. 5.5 of [Sri]). In contrast,

the Ext ring of a commutative local ring is seldom graded commutative; this

happens only for a restricted class of complete intersections. The group ring of

an abelian group is an example of a complete intersection (see § 1.4 of [Sri]).

More generally, if M is a left kG-module then

H
∗(G,M) = Ext∗

ZG(Z,M) ∼= Ext∗kG(k,M)

is a graded right H
∗(G, k)-module.

It is a nuisance that most texts on commutative algebra are written for strictly

commutative graded rings, where ab = ba with no sign. I do not know of an

instance where the signs make a theorem from commutative algebra fail. It is

worth pointing out that if a is an element of odd degree in a graded commutative

ring then 2a
2 = 0. So 2a is nilpotent, and it follows that modulo the nil radical

the ring is strictly commutative. On the other hand, it is more than a nuisance

that commutative algebraists often assume that their graded rings are generated

by elements of degree one, because this is not at all true for cohomology rings.

Nor, for that matter, is it true for rings of invariants.

(3.2) A homomorphism of groups ρ : H → G gives rise to a map the other way

ρ
∗ : H

∗(G,M)→ H
∗(H,M)

for any kG-module M . If ρ : H → G is an inclusion, this is called the restriction

map, and denoted resG,H . If G is a quotient group of H and ρ : H → G is the

quotient map, then it is called the inflation map, and denoted infG,H .
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(3.3) For a topological group (this includes compact Lie groups as well as dis-

crete groups), a theorem of Milnor [1956] says that the infinite join

EG = G ? G ? · · ·

is weakly contractible, G acts freely on it, and the quotient BG = EG/G together

with the principal G-bundle p : EG→ BG forms a classifying space for principal

G-bundles over a paracompact base. A topologist refers to H
∗(BG; k) as the

classifying space cohomology of G. Again, it is a graded commutative ring. For

example, for the compact unitary group U(n), the cohomology ring

(3.3.1) H
∗(BU(n); k) ∼= k[c1, . . . , cn]

is a polynomial ring over k on n generators c1, . . . , cn with |ci| = 2i, called

the Chern classes. Similarly, for the orthogonal group O(2n), if k is a field of

characteristic not equal to two, then we have

(3.3.2) H
∗(BO(2n); k) ∼= k[p1, . . . , pn]

is a polynomial ring over k on n generators p1, . . . , pn with |pi| = 4i, called the

Pontrjagin classes. For SO(2n) we have

(3.3.3) H
∗(BSO(2n); k) ∼= k[p1, . . . , pn−1, e].

where e ∈ H
2n(BSO(2n); k) is called the Euler class, and satisfies e

2 = pn. We

shall discuss these examples further in § 12.

If G is a discrete group then BG is an Eilenberg–MacLane space for G; in

other words, π1(BG) ∼= G and πi(BG) = 0 for i > 1. The relationship between

group cohomology and classifying space cohomology for G discrete is that the

singular chains C∗(EG) form a free resolution of Z as a ZG-module. Then there

are isomorphisms

H
∗(BG; k) = H

∗HomZ(C∗(BG), k) ∼= H
∗HomZG(C∗(EG), k) ∼= H

∗(G, k),

and the topologically defined product on the left agrees with the algebraically

defined product on the right.

(3.4) Another case of interest is profinite groups. A profinite group is defined

to be an inverse limit of a system of finite groups, which makes it a compact,

Hausdorff, totally disconnected topological group. For example, writing Z
∧

p for

the ring of p-adic integers, SLn(Z
∧

p ) is a profinite group. The open subgroups of

a profinite group are the subgroups of finite index.

Classifying space cohomology turns out to be the wrong concept for a profinite

group. A better concept is continuous cohomology, which is defined as follows

[Serre 1965a]. Let G = lim
←−

U∈U

G/U be a profinite group, where U is a system of
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open normal subgroups with
⋂

U∈U
U = {1}. We restrict attention to modules

M such that M =
⋃

U∈U
M

U , and continuous cohomology is then defined as

H
i
c(G,M) = lim

−→
U∈U

H
i(G/U,M

U ).

Again, if k is a commutative ring of coefficients then H
∗
c (G, k) is a graded com-

mutative ring.

(3.5) In all of the above situations, if p is a prime number and k is the finite

field Fp, then there are Steenrod operations

(3.5.1)

{
Sqi : H

n(G, F2)→ H
n+i(G, F2) (p = 2),

P
i : H

n(G, Fp)→ H
n+2i(p−1)(G, Fp) (p odd)

(i ≥ 0) acting on the cohomology of any group (Sq0 and P
0 act as the identity

operation).1 These operations satisfy some identities called the Adem relations,

and the Steenrod algebra is the graded algebra generated by the Steenrod oper-

ations subject to the Adem relations. The action of the Steenrod operations is

related to the multiplicative structure of cohomology by the Cartan formula

(3.5.2)

{
Sqn(xy) =

∑
i+j=n Sqi(x)Sqj(y) (p = 2),

P
n(xy) =

∑
i+j=n P

i(x)P j(y) (p odd).

Finally, the action of the Steenrod operations on group cohomology satisfies the

unstable axiom, which states that

(3.5.3){
Sqi(x) = 0 for i > |x| and Sq|x|(x) = x

2 (p = 2)

P
i(x) = 0 for i > 2(p− 1)|x| and P

2(p−1)|x|(x) = x
p (p odd).

The Cartan formula and the unstable axiom make the cohomology ring of a group

(or more generally, the cohomology ring of any space) with Fp coefficients into

an unstable algebra over the Steenrod algebra. For more details, see [Steenrod

1962; Schwartz 1994].

(3.6) There are some important variations on the definitions of group cohomol-

ogy. For example, for a finite group, Tate cohomology is defined using complete

resolutions, and gives a Z-graded ring Ĥ
∗(G, k). More precisely, if G is a finite

group, k is a field2 and N is a kG-module, then we splice together an injective

1For p odd, there is also a separate Bockstein operation β : H
n(G, Fp) → H

n+1(G, Fp)

which we shall systematically ignore. For p = 2, the Bockstein operation is equal to Sq1, so it
is not a separate operation.

2Tate cohomology is defined over an arbitrary commutative ring of coefficients, but the
definition is slightly different to the one given here. See [Cartan and Eilenberg 1956, Chapter
XII].
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resolution and a projective resolution of N to give an exact sequence

. . . //
P̂1

//
P̂0

//

&&MMMM P̂−1
//
P̂−2

// . . .

N

77oooo

((QQ
QQ

QQ

0

66nnnnn
0

The fact that injective kG-modules are the same as projective kG-modules (see

Theorem 3.6 as well as the paragraph following Corollary 3.7 in [Sri]) means

that this is an exact sequence of projective modules such that the image of the

middle map is equal to N , which is the definition of a complete resolution. If M is

another kG-module, we define Ex̂t
∗

kG(N,M) to be the cohomology of the cochain

complex obtained by taking homomorphisms from the complete resolution P̂∗ to

M . In the case where N = k, we define

Ĥ
∗(G,M) = Ex̂t

∗

kG(k,M).

If M is also equal to k, then Ĥ
∗(G, k) is a graded commutative ring. If M is a

left kG-module then Ĥ
∗(G,M) is a right module over Ĥ

∗(G, k).

There is a map from a complete resolution of N to the projective resolution

of N used to make it

. . . //
P̂1

//

��

P̂0
//

��

P̂−1
//

��

P̂−2
//

��

. . .

. . . // P1
// P0

// 0 // 0 // . . .

which is an isomorphism in nonnegative degrees and the zero map in negative

degrees. This induces a map from Ext∗kG(N,M) to Ex̂t
∗

kG(N,M) which is an

isomorphism in positive degrees, surjective in degree zero, and the zero map in

negative degrees. In particular, we obtain this way a map from ordinary coho-

mology to Tate cohomology, H
∗(G,M) → Ĥ

∗(G,M). This is a homomorphism

of graded k-algebras.

Tate duality says that for any kG-module M and every n ∈ Z, the k-vector

space Ex̂t
n−1

kG (M,k) is the dual of Ĥ
−n(G,M),

(3.6.1) Ex̂t
n−1

kG (M,k) ∼= Homk(Ĥ−n(G,M), k).

The case M = k of this statement can be interpreted as saying that the Tate

cohomology is isomorphic to its graded dual, shifted in degree by one. This

implies that it is selfinjective as a ring.

4. Finite Generation

There are various finite generation theorems, which provide the Noetherian

hypothesis as starting point for the application of commutative algebra.
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(4.1) We begin with finite groups, where we have the following algebraic theo-

rem of Evens [1961] (see also [Golod 1959] for the case of a finite p-group).

Theorem 4.1.1. Let G be a finite group, k a commutative ring of coefficients

and M a kG-module. If M is Noetherian as a k-module then H
∗(G,M) is Noe-

therian as an H
∗(G, k)-module. In particular , if k is Noetherian then H

∗(G, k)

is a finitely generated k-algebra.

This can be contrasted with the situation in commutative algebra, where the

Ext ring of a commutative local ring is Noetherian if and only if the ring is a

complete intersection [Bøgvad and Halperin 1986]. The following extension of

the theorem above also appears in [Evens 1961].

Theorem 4.1.2. Let H be a subgroup of a finite group G, let k be a commutative

ring of coefficients, and let N be a Noetherian kH-module. Then H
∗(H,N) is

a finitely generated module over H
∗(G, k) via the restriction map (3.2) from G

to H.

In contrast, Tate cohomology is almost never finitely generated. In fact, if k is

a field of characteristic p, then there is a dichotomy [Benson and Krause 2002].

Either

(4.1.3) G has no subgroups isomorphic to Z/p×Z/p (i.e., the Sylow p-subgroups

of G are cyclic, or p = 2 and the Sylow 2-subgroups of G are generalized quater-

nion) and Ĥ
∗(G, k) is periodic and Noetherian, of the form k[x, x

−1] tensored

with a finite dimensional part, or

(4.1.4) G has a subgroup isomorphic to Z/p × Z/p and Ĥ
∗(G, k) is not Noe-

therian. In this case, the negative degree cohomology Ĥ
−(G, k) is nilpotent,

in the sense that there is some integer n such that every product of n or more

elements of Ĥ
−(G, k) gives zero. In fact, if the depth of H

∗(G, k) is bigger than

one then all products in Ĥ
−(G, k) vanish [Benson and Carlson 1992].

(4.2) Evens’ theorem generalizes in a number of directions. The following is a

theorem of Friedlander and Suslin [1997].

Theorem 4.2.1. Let G be a finite group scheme over a field k (i .e., kG is a

finite dimensional cocommutative Hopf algebra), and let M be a finitely generated

kG-module. Then H
∗(G, k) = Ext∗kG(k, k) is a finitely generated k-algebra and

H
∗(G,M) = Ext∗kG(k,M) is a finitely generated H

∗(G, k)-module.

(4.3) For compact Lie groups, the following is a theorem of Venkov [1959].

Theorem 4.3.1. Let G be a compact Lie group and k a Noetherian ring of coef-

ficients. If G→ U(n) is a faithful unitary representation3 of G then H
∗(BG; k)

3The Peter–Weyl theorem implies that every compact Lie group has a faithful unitary
representation, so that this is not a restriction on G.
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is finitely generated as a module over the image of the Chern classes (3.3.1):

H
∗(BU(n); k) = k[c1, . . . , cn]→ H

∗(BG; k).

In particular , H
∗(BG; k) is a finitely generated k-algebra. If H is a closed

subgroup of G then H
∗(BH; k) is a finitely generated module over the image of

the restriction map (3.2) from G to H.

(4.4) There is an interesting generalization of compact Lie groups which has

been extensively investigated by Dwyer and Wilkerson, among others. A loop

space is by definition a space X together with another space Y and a homotopy

equivalence X ' ΩY between X and the space of pointed maps from S
1 to Y . If,

furthermore, H∗(X; Z) is finitely generated as an abelian group (in other words,

if each Hi(X; Z) is finitely generated, and only nonzero for a finite number of

different values of i), so that X looks homologically like a finite CW-complex,

then we say that X is a finite loop space. For example, if G is a compact Lie

group then G ' ΩBG and G is a finite loop space. For this reason, in general,

the notation for the space Y is BX, and it is called the classifying space of the

loop space X. But in spite of the notation, the space Y cannot be recovered

from the space X, so naming Y = BX is regarded as part of the structure of

the finite loop space X. The following theorem of Dwyer and Wilkerson [1994]

generalizes Venkov’s Theorem 4.3.1.

Theorem 4.4.1. If X is a finite loop space, then for any field k, the algebra

H
∗(BX; k) is finitely generated .

A closely related concept is that of a p-compact group, which is by definition a

loop space X which is Fp-complete in the sense of [Bousfield and Kan 1972]4,

Fp-finite in the sense that H
∗(X; Fp) is finite, and such that π0X is a finite p-

group. The Fp-completion of a finite loop space is an example of a p-compact

group. The following theorem is also proved by Dwyer and Wilkerson [1994].

Theorem 4.4.2. If X is a p-compact group then H
∗(BX; Fp) is a finitely

generated Fp-algebra.

(4.5) For infinite discrete groups, the question of finite generation is more del-

icate, and there are various theorems for some special classes of infinite groups.

For example, the cohomology of an arithmetic group with coefficients in Z or a

field is finitely generated. More generally, we have the following theorem.

Theorem 4.5.1. If a discrete group G has a subgroup H of finite index , such

that there is a classifying space BH which is a finite CW complex , and k is a

Noetherian commutative ring of coefficients, then H
∗(G, k) is Noetherian.

4Bousfield–Kan Fp-completion of a space is analogous to completion with respect to a
prime ideal, inasmuch as it isolates the homotopy theoretic information at the prime p and
kills torsion coprime to p. It is used in order to do homotopy theory one prime at at time.
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Proof. We can take H to be normal, and then the spectral sequence

H
∗(G/H,H

∗(H, k)) =⇒ H
∗(G, k)

has Noetherian E2 page, and so H
∗(G, k) is Noetherian. �

(4.6) A pro p-group is defined to be in inverse limit of finite p-groups. For

pro p-groups, we have the following finite generation theorem of Minh and

Symonds [2004].

Theorem 4.6.1. Let G be a pro p-group.

(i) The cohomology ring H
∗
c (G, Fp) is finitely generated over Fp if and only if

G contains an open normal torsion-free subgroup U such that H
∗
c (U, Fp) is finite.

(ii) If H
∗
c (G, Fp) is finitely generated then the number of conjugacy classes of

finite subgroups of G is finite.

(iii) H
∗
c (G, Fp) modulo its nil radical is a finitely generated Fp-algebra if and

only if G has only a finite number of conjugacy classes of finite elementary abelian

p-subgroups.

5. Krull Dimension

(5.1) For a finitely generated graded commutative algebra R over a field k,

there are several ways to define Krull dimension, which all give the same answer.

(5.1.1) Noether normalization (2.5) guarantees the existence of a homogeneous

polynomial ring k[x1, . . . , xr] over which R is finitely generated as a module. The

integer r is the Krull dimension of R.

(5.1.2) If m = p0 ⊃ p1 ⊃ p2 ⊃ · · · ⊃ pr is the longest chain of homogeneous

prime ideals in R and proper inclusions then r is the Krull dimension of R.

(5.1.3) Set pR(t) =
∑∞

i=0 t
i dimk Ri. Then pR(t) is a rational function of t, and

the order of the pole at t = 1 is the Krull dimension of R.

(5.2) The first results on Krull dimension for cohomology rings are due to

Quillen [1971b; 1971c], and are expressed in terms of the p-rank rp(G), where

p ≥ 0 is the characteristic of k. If p is a prime, this is defined to be the largest r

such that G has an elementary abelian subgroup of rank r; in other words, such

that (Z/p)r ⊆ G. If G is a compact Lie group, this is at least as big as the Lie

rank r0(G), which is defined to be the rank r0 of a maximal torus (S1)r0 ⊆ G.

Quillen’s theorem is as follows.

Theorem 5.2.1. Let G be a compact Lie group, and k be a field of characteristic

p ≥ 0. Then the Krull dimension of H
∗(BG; k) is equal to rp(G).

(5.3) In the special case where G is finite, this means that the Krull dimension

of H
∗(G, k) is equal to rp(G). Quillen [1971c] proved that the same holds more

generally for groups of finite virtual cohomological dimension; in other words,
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for discrete groups G containing a normal subgroup H of finite index such that

H
n(H,M) = 0 for all large enough values of n and all ZH-modules M . The

cohomology ring of G is not necessarily finitely generated in this situation, but

it is finitely generated modulo its nil radical.

In fact, in these cases, Quillen obtained much more than just the Krull di-

mension. He obtained a complete description of the maximal ideal spectrum of

H
∗(BG; k) up to inseparable isogeny, in terms of the Quillen category Ap(G)

whose objects are the finite elementary abelian p-subgroups of G, and whose

arrows are the monomorphisms induced by conjugation in G.

Theorem 5.3.1. The restriction map (3.2)

(5.3.2) H
∗(BG; k)→ lim

←−
E∈Ap(G)

H
∗(BE; k)

is an inseparable isogeny . In other words, the kernel of this map consists of

nilpotent elements, and if x is an element of the right hand side then x
pa

is in

the image for some a ≥ 0.

We interpret Theorem 5.3.1 in terms of varieties in § 9. But for now, notice that

the cohomology of a finite elementary abelian p-group of rank r is described in

(2.2.2). In particular, modulo its nil radical it is always a polynomial ring in r

generators.

Corollary 5.3.3. The minimal primes in H
∗(BG; k) are in one-one corre-

spondence with the conjugacy classes of maximal elementary abelian p-subgroups

of G, with respect to inclusion. If E is a maximal elementary abelian p-subgroup,

then the corresponding minimal prime is
√

ker(resG,E), the radical of the kernel

of the restriction map (3.2) from G to E. The Krull dimension of the quotient

by this minimal prime is equal to the rank rp(E).

(5.4) The analog of the inseparable isogeny (5.3.2) was also proved by Quillen

[1971c, Proposition 13.4] in the case of a profinite group with a finite number of

conjugacy classes of elementary abelian p-subgroups.

6. Depth

(6.1) In contrast with Krull dimension, the depth of a cohomology ring is harder

to compute. There are many interesting classes of groups for which the coho-

mology is known to be Cohen–Macaulay, even though this is less common for

general finite groups, let alone for more general classes of groups.

(6.1.1) Groups with abelian Sylow p-subgroups have Cohen–Macaulay coho-

mology [Duflot 1981].

(6.1.2) GLn(Fq) in characteristic not dividing q [Quillen 1972], as well as vari-

ous other finite groups of Lie type away from their defining characteristic, have
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Cohen–Macaulay cohomology (see [Fiedorowicz and Priddy 1978] for the classi-

cal groups and [Kleinerman 1982] for the groups of exceptional Lie type).

(6.1.3) (p = 2) Groups with almost extraspecial Sylow 2-subgroups5 have

Cohen–Macaulay cohomology [Quillen 1971a].

(6.1.4) (p = 2) Finite simple groups of 2-rank at most three have Cohen–Mac-

aulay cohomology [Adem and Milgram 1995].

(6.1.5) Finite groups of Lie type in the defining characteristic and finite sym-

metric groups almost never have Cohen–Macaulay cohomology, because they

have maximal elementary abelian p-subgroups of different ranks, and hence min-

imal primes with quotients of different dimensions by Corollary 5.3.3.

(6.1.6) (p = 2) By computations of Carlson [≥ 2004], of the 267 isomorphism

classes of 2-groups of order 64, 119 have Cohen–Macaulay cohomology rings.

The depth differs from the Krull dimension by one in 126 cases and by two in

the remaining 22 cases. See the Appendix at the end of these notes for more

detailed information.

(6.2) As far as group theoretic characterizations of depth are concerned, the

best theorems to date only give bounds on the depth. For example, Duflot’s

theorem [1981] gives the following lower bound.

Theorem 6.2.1. Let G be a finite group and k a field of characteristic p. Then

the depth of H
∗(G, k) is greater than or equal to the p-rank of the center of a

Sylow p-subgroup S of G. In particular , if |G| is divisible by p then H
∗(G, k)

has strictly positive depth.

The bound of Theorem 6.2.1 gives the exact value for the depth for 193 of the

267 groups of order 64.

(6.3) Theorem 6.2.1 generalizes to compact Lie groups as follows. If G is a

compact Lie group and T is a maximal torus, then the inverse image S ⊆ G of

a Sylow p-subgroup of NG(T )/T is called a Sylow p-toral subgroup of G. The

Sylow p-toral subgroups play the same role for compact Lie groups that Sylow

p-subgroups do for finite groups. The crucial property as far as cohomology is

concerned is that the restriction map (3.2) H
∗(BG; k) → H

∗(BS; k) followed

by the transfer map H
∗(BS; k) → H

∗(BG; k) of [Becker and Gottlieb 1975] is

the identity.6 Since the transfer map is a map of H
∗(BG; k)-modules, it follows

that H
∗(BG; k) is a direct summand of H

∗(BS; k) as an H
∗(BG; k)-module. In

particular, the depth of H
∗(BG; k) is at least as big as the depth of H

∗(BS; k).

5A finite p-group P is said to be almost extraspecial if P has a central subgroup Z ∼= Z/p

such that P/Z is elementary abelian.
6For any closed subgroup, the composite of the restriction and the transfer is multiplication

by the Euler characteristic of the quotient. The analog of the third Sylow theorem says that
χ(G/S) is congruent to 1 modulo p.
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Stong (unpublished) showed how to generalize Duflot’s proof to this situation,

and showed that the depth of H
∗(BG; k) is at least as big as rp(Z(S)). Broto

and Henn [1993] gave another proof which is conceptually easier, and goes as

follows. We begin by establishing the notation.

If C is a central elementary abelian p-subgroup of S, then the multiplica-

tion maps C × C → C and µ : C × S → S are group homomorphisms. This

means that H
∗(BC; k) is a graded commutative and cocommutative Hopf alge-

bra, H
∗(BS; k) is an H

∗(BC; k)-comodule algebra via

µ
∗ : H

∗(BS; k)→ H
∗(BC; k)⊗k H

∗(BS; k),

and H
∗(BG; k) is a sub-comodule algebra.

Since H
∗(BC; k) is Cohen–Macaulay (2.2.2), we can find elements ζ1, . . . , ζr ∈

H
∗(BG; k) whose restriction to C form a homogeneous system of parameters

and hence a regular sequence x1, . . . , xr ∈ H
∗(BC; k). One way to do this is

to use Theorem 4.3.1 and throw away redundant Chern classes. We claim that

ζ1, . . . , ζr form a regular sequence in H
∗(BG; k). Setting ξi = µ

∗(ζi), the ele-

ments ξ1, . . . , ξr are elements of H
∗(B(C × G); k) ∼= H

∗(BC; k) ⊗k H
∗(BG; k)

(see (2.2.1)) whose restrictions to the first factor are x1, . . . , xr and whose re-

strictions to the second factor are ζ1, . . . , ζr. So

µ
∗(ζi) = xi ⊗ 1 + · · ·+ 1⊗ ζi.

We begin with ζ1. If y is a nonzero element in H
d(BG; k) such that ζ1y = 0,

then µ
∗(ζ1y) = 0. Then µ

∗(y) is a sum of tensors, and we separate out the terms

whose degree in H
∗(BC; k) are highest, say

µ
∗(y) =

∑

j

uj ⊗ vj + terms of lower first degree.

Then

µ
∗(ζ1y) =

∑

j

x1uj ⊗ vj + terms of lower first degree.

But multiplication by x1⊗ 1 is injective on H
∗(BC; k)⊗H

∗(BG; k), so the only

way this can be zero is for
∑

j uj ⊗ vj to be zero. This means that µ
∗(y) = 0

and so y = 0.

The same argument works inductively, because the map µ
∗ passes down to a

well defined map

µ
∗ : H

∗(BG; k)/(ζ1, . . . , ζi)→ H
∗(BC; k)/(x1, . . . , xi)⊗H

∗(BG; k)/(ζ1, . . . , ζi).

Applying the same argument to ζi+1 using this map, we see that multiplication

by ζi+1 is injective on H
∗(BG; k)/(ζ1, . . . , ζi). This inductive argument proves

that ζ1, . . . , ζr is a regular sequence in H
∗(BG; k), and completes the Broto–

Henn proof of the following version of Duflot’s theorem.
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Theorem 6.3.1. Let G be a compact Lie group and k a field of characteristic p.

Then the depth of H
∗(BG; k) is greater than or equal to the p-rank of the center

of a Sylow p-toral subgroup S of G. �

(6.4) Green [2003] extended the above idea to prove a stronger result. An

element x ∈ H
∗(BS; k) is said to be primitive if its image under µ

∗ is equal

to 1 ⊗ x. Since µ
∗ is a ring homomorphism, the primitives form a subring of

H
∗(BS; k). Since both µ and the projection onto the second factor of C × S

have the same composite with the quotient map S → S/C, it follows that the

image of the inflation map (see (3.2)) H
∗(B(S/C); k) → H

∗(BS; k) consists of

primitive elements. If I is an ideal in H
∗(BG; k) generated by a regular sequence

of primitive elements, then we can replace H
∗(BG; k) by H

∗(BG; k)/I in the

above argument for Duflot’s theorem, to obtain the following.

Theorem 6.4.1. Let G be a compact Lie group with Sylow p-toral subgroup S,

and set r = rp(Z(S)). If there is a regular sequence of length s in H
∗(BG; k)

which consists of primitive elements, then the depth of H
∗(BG; k) is at least

r + s.

7. Associated Primes and Steenrod Operations

(7.1) Depth of the cohomology ring is closely linked with the action of the

Steenrod operations (3.5). For example, an analysis of unstable algebras over

the Steenrod algebra gives rise to a way of computing the depth with a single

test sequence.

The test sequence takes the form of Dickson invariants. If Fp[x1, . . . , xr] is a

polynomial ring, then the general linear group GLr(Fp) acts by linear substitu-

tions, and Dickson [1911] proved that the invariants form a polynomial ring

Fp[x1, . . . , xr]
GLr(Fp) = Fp[cr,r−1, . . . , cr,0].

The Dickson invariant cr,i has degree p
r − p

i in the variables x1, . . . , xr. The

Dickson invariants are further studied in [Wilkerson 1983], where the action of

the Steenrod operations on them is also described.

If G is a compact Lie group of p-rank r, then it is shown in [Benson and

Wilkerson 1995] that it follows from Quillen’s Theorem 5.3.1 that as an algebra

over the Steenrod algebra, H
∗(BG; Fp) always contains a copy of the Dickson

invariants as a homogeneous system of parameters, where, for a suitable integer

a ≥ 0 depending on G, x1, . . . , xr are taken to have degree 2a if p = 2 and 2p
a

if p is odd. So

|cr,i| =
{

2a+r − 2a+i (p = 2)

2(pa+r − p
a+i) (p odd).

If E is an elementary abelian p-subgroup of G of rank s ≤ r, then the restric-

tion to H
∗(BE; k) of cr,i ∈ H

∗(BG; k) is equal to c
pa+r−s

s,i−r+s; thus it is a power of
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the Dickson invariant in the polynomial generators (2.2.2) in degree one (p = 2)

or two (p odd) of H
∗(BE; k).

The Landweber–Stong conjecture, proved by Bourguiba and Zarati [1997],

implies the following.

Theorem 7.1.1. The depth of H
∗(BG; Fp) is equal to the maximum value of d

for which cr,r−1, . . . , cr,r−d is a regular sequence.

Theorem 8.1.8 of [Neusel 2000] proves the much stronger statement that such a

copy of the Dickson algebra can be found in any Noetherian unstable algebra

over the Steenrod algebra. The conclusion of Theorem 7.1.1 holds in this more

general context. The proof given by Bourguiba and Zarati makes heavy use of

the machinery of unstable algebras over the Steenrod algebra. A proof without

this machinery, but which only works in the context of the cohomology of a finite

group, can be found in [Benson 2004].

The Dickson invariants have further desirable properties among all homo-

geneous systems of parameters in cohomology. For example, if H is a closed

subgroup of G of p-rank s then the restrictions of cr,r−1, . . . , cr,r−s are Dickson

invariants forming a homogeneous system of parameters in H
∗(BH; k). Further-

more, cr,i is a sum of transfers from centralizers of elementary abelian subgroups

of rank i.

(7.2) To get further with depth, it is necessary to get some understanding of

the associated primes in group cohomology. In general, the dimension of the

quotient by an associated prime is an upper bound for the depth. For general

commutative rings, the depth cannot be computed from the dimensions of the

quotients by associated primes, but in the case of cohomology of a finite group, we

have the following conjecture of Carlson [1999]. Partial results on this conjecture

have been obtained by Green [2003].

Conjecture 7.2.1. Let G be a finite group and k a field. Then H
∗(G, k) has

an associated prime p such that the Krull dimension of H
∗(G, k)/p is equal to

the depth of the H
∗(G, k).

(7.3) The following theorem of Wilkerson [1982] shows that associated primes

are invariant under the action of the Steenrod operations. Since it is not easy to

find an explicit reference, we include a complete proof here.

Theorem 7.3.1. Let H be a graded commutative unstable algebra over the

Steenrod algebra. For example, these hypotheses are satisfied if H is the mod p

cohomology ring of a space, see (3.5). Then the radical of the annihilator of any

element is invariant under the action of the Steenrod operations.

More explicitly , for p = 2, if y annihilates x and 2n
> |x| then (Sqk

y)2
n

x = 0

for all k > 0. For p odd , if y annihilates x and p
n

> 2(p−1)|x| then (P k
y)pn

= 0

for all k > 0.
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Proof. We give the proof for p = 2; the proof for p odd is the same, with P
i

instead of Sqi and p
n instead of 2n.

Let x ∈ H, let I be the annihilator of x, and let y ∈ I. We have y
2n

x = 0,

and so for any k > 0 we have Sq2nk(y2n

x) = 0. Using the Cartan formula (3.5.2)

we obtain
2nk∑

i=0

Sq2nk− i(y2n

)Sqi
x = 0.

The Cartan formula and divisibility properties of binomial coefficients imply

that Sq2nk− i(y2n

) = 0 unless i is of the form 2n
j, and in that case we have

Sq2n(k−j)(y2n

) = (Sqk−j
y)2

n

. So the above equation becomes

k∑

j=0

(Sqk−j
y)2

n

Sq2nj
x = 0.

Since 2n
> |x|, the unstable condition implies that the only term which survives

in this sum is the term with j = 0. So we have (Sqk
y)2

n

x = 0. �

Since associated primes are annihilators, we get the following.

Corollary 7.3.2. The associated primes in a mod p cohomology ring of a space

are invariant under the Steenrod operations. �

(7.4) The importance of the Steenrod invariance of the associated primes in

the cohomology of groups comes from the following theorem of Serre [1965b,

Proposition 1].

Theorem 7.4.1. Let E be an elementary abelian p-group. The Steenrod invari-

ant prime ideals in H
∗(E, Fp) are in one-one correspondence with the subgroups

of E. If E
′ is a subgroup of E then the corresponding Steenrod invariant prime

ideal is
√

ker(resE,E′), the radical of the kernel of restriction from E to E
′.

(7.5) Combining Theorem 7.4.1 with Quillen’s Theorem 5.3.1, it follows that for

any of the classes of groups for which that theorem holds, the Steenrod invariant

primes in the mod p cohomology ring are the radicals of the kernels of restriction

to elementary abelian subgroups. So using Corollary 7.3.2 we have the following.

Theorem 7.5.1. Let G be a compact Lie group. Then the Steenrod invariant

prime ideals in H
∗(BG; Fp) are the ideals of the form

√
ker(resG,E), where E is

an elementary abelian p-subgroup of G. In particular , the associated primes are

of this form.

(7.6) The corresponding result holds for the cohomology of groups of finite

virtual cohomological dimension, and continuous cohomology of profinite groups

with a finite number of conjugacy classes of elementary abelian p-subgroups.

(7.7) The question of exactly which elementary abelian subgroups give the

associated primes is difficult. In the next section, we relate this to the question

of finding upper bounds for the depth.
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8. Associated Primes and Transfer

(8.1) Upper bounds on the depth of the cohomology ring of a finite group come

from a careful analysis of transfer and its relationship to the associated primes.

If H is a subgroup of a finite group G and M is a kG-module, then the transfer

is a map

TrH,G : H
n(H,M)→ H

n(G,M).

It is defined by choosing a set of left coset representatives gi of H in G. Let P∗

be a projective resolution of k as a kG-module. Given a representative cocycle,

which is a kH-module homomorphism ζ̂ : Pn → M , the transfer TrH,G(ζ) is

represented by
∑

i gi(ζ̂), which is a kG-module homomorphism.

The reason why the transfer map is relevant is that if H is a subgroup of G

and M is a kG-module, then TrH,G is H
∗(G, k)-linear, when H

∗(H,M) is viewed

as a right module over H
∗(G, k) via the restriction map H

∗(G, k) → H
∗(H, k).

In other words, the following identity holds. If ζ ∈ H
∗(G, k) and η ∈ H

∗(H,M)

then

(8.1.1) TrH,G(η.resG,H(ζ)) = TrH,G(η).ζ.

In particular, if η annihilates resG,H(ζ) then TrH,G(η) annihilates ζ. For exam-

ple, if ζ restricts to zero on some set of subgroups, then all transfers from those

subgroups annihilate ζ.

(8.2) One way to exploit the above observation is to use the following transfer

theorem from [Benson 1993]. This generalizes a theorem of Carlson [1987] relat-

ing transfers from all proper subgroups of a p-group to the kernel of restriction

to the center.

Theorem 8.2.1. Suppose that G is a finite group, and k is a field of character-

istic p. Let H be a collection of subgroups of G. Let K denote the collection

of all elementary abelian p-subgroups K of G with the property that the Sylow

p-subgroups of the centralizer CG(K) are not conjugate to a subgroup of any of

the groups in H .

Let J be the sum of the images of transfer from subgroups in H , which is an

ideal in H
∗(G, k) by (8.1.1). Let J

′ be the intersection of the kernels of restriction

to subgroups in K , which is again an ideal in H
∗(G, k) (in case K is empty ,

this intersection is taken to be the ideal of all elements of positive degree). Then

J and J
′ have the same radical ,

√
J =
√

J ′.

(8.3) Theorem 8.2.1 is the main ingredient in the proof of the following theorem

of Carlson [1995] relating the associated primes with detection on centralizers.

Theorem 8.3.1. Let G be a finite group. Suppose that H
∗(G, k) has a nonzero

element ζ which restricts to zero on CG(E) for each elementary abelian p-

subgroup E ≤ G of rank s. Then H
∗(G, k) has an associated prime p such
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that the Krull dimension of H
∗(G, k)/p is strictly less than s. In particular , the

depth of H
∗(G, k) is strictly less than s.

Proof. In Theorem 8.2.1, we take H to be the set of centralizers of elementary

abelian p-subgroups of rank s. Then the elementary abelian p-subgroups in K

have rank strictly less than s. So the theorem implies that the ideal J has

dimension strictly less than s.

If ζ is an element of H
∗(G, k) which restricts to zero on every element of

H , then by (8.1.1), ζ is annihilated by all transfers from H . In other words,

the annihilator of ζ contains J . Since the associated primes are the maximal

annihilators, there is an associated prime containing J , and such an associated

prime has dimension strictly less than s. �

(8.4) Another way of stating the conclusion to the theorem above is that if

H
∗(G, k) has depth at least s then cohomology is detected on centralizers of

rank s elementary abelian p-sugroups of G.

9. Idempotent Modules and Varieties

(9.1) There is a method for systematically exploiting the connections between

representation theory and cohomology, which was first introduced by Carlson

[1981a; 1981b; 1983] for finitely generated modules, and by Benson, Carlson and

Rickard [Benson et al. 1995; 1996] for infinitely generated modules.

Let G be a finite group, and let k be an algebraically closed field of charac-

teristic p. We write VG for the maximal ideal spectrum of H
∗(G, k). This is a

closed homogeneous affine variety. For example, if G ∼= (Z/p)r then VG = Ar(k),

affine r-space over k. Quillen’s Theorem 5.3.1 can be interpreted as saying that

for any finite group G, the natural map

lim
−→

E∈AG

VE → VG

is bijective at the level of sets of points. However, it is usually not invertible in

the category of varieties.

If M is a finitely generated kG-module, then the kernel of the natural map

H
∗(G, k) = Ext∗kG(k, k)

M⊗k−−−−−→ Ext∗kG(M,M)

is an ideal in H
∗(G, k), which defines a closed homogeneous subvariety VG(M)

of VG. The same subvariety can be obtained by taking the intersection of the

annihilators of Ext∗kG(S,M) as S runs over the simple kG-modules. Properties

of varieties for modules include (9.1.1)–(9.1.5) below.

(9.1.1) VG(M) = {0} if and only if M is projective,

(9.1.2) VG(M ⊕N) = VG(M) ∪ VG(N),
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(9.1.3) VG(M ⊗N) = VG(M) ∩ VG(N),7

(9.1.4) If 0 6= ζ ∈ H
n(G, k) is represented by a cocycle ζ̂ : Ωn(k)→ k, let Lζ be

the kernel of ζ̂. Then VG(Lζ) is the hypersurface in VG determined by regarding

ζ as an element of the coordinate ring of VG.

(9.1.5) If V is any closed homogeneous subvariety of VG, then we can choose

homogeneous elements ζ1, . . . , ζt ∈ H
∗(G, k) so that the intersection of the hy-

persurfaces they define is equal to V . Properties (9.1.3) and (9.1.4) then imply

that

VG(Lζ1
⊗ · · · ⊗ Lζt

) = V.

So every closed homogeneous subvariety is the variety of some module.

(9.2) For infinite dimensional modules,8 the definitions are more difficult. A

tentative definition was given in [Benson et al. 1995], and the definition was

modified in [Benson et al. 1996] to remedy some defects. We begin with some

background on the stable module category. We write Mod(kG) for the cate-

gory of kG-modules and module homomorphisms. The stable module category

StMod(kG) has the same objects as Mod(kG), but the morphisms are

HomkG(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) is the subspace consisting of maps which factor through

some projective kG-module. One of the advantages of StMod(kG) over Mod(kG)

is that if we define ΩM to be the kernel of a surjection from a projective module P

onto M , then Ω is a functor on StMod(kG). Since, over kG, projective modules

are the same as injective modules, Ω is a self-equivalence of StMod(kG). Its

inverse Ω−1 is defined by embedding M into an injective kG-module I and

writing Ω−1
M for the quotient I/M .

The category Mod(kG) is abelian, but StMod(kG) is not. Instead it is a

triangulated category. The triangles are of the form

A→ B → C → Ω−1
A

where 0 → A → B → C → 0 is a short exact sequence in Mod(kG). We write

mod(kG) and stmod(kG) for the full subcategories of finitely generated modules.

Write ProjH∗(G, k) for the set of closed homogeneous irreducible subvarieties

of VG, and let V be a subset of ProjH∗(G, k) which is closed under specialization,

7When we write M ⊗ N for kG-modules M and N , we mean M ⊗k N with diagonal G-
action. So an element g ∈ G acts via g(m ⊗ n) = gm ⊗ gn. But the general element of kG

does not act in this fashion; rather, we extend linearly from the action of the group elements.
See § 2.11 of [Sri].

8The reason for interest in infinite dimensional modules in this context is similar to the
reason for the interest in infinite CW complexes in algebraic topology. Namely, the repre-
senting objects for functors often turn out to be infinite. For example in algebraic topology,
Eilenberg–Mac Lane spaces are the representing objects for cohomology, BU for K-theory, MU
for cobordism, and so on.
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in the sense that if V ∈ V and W ⊆ V then W ∈ V . Let M be the full

subcategory of stmod(kG) consisting of finitely generated modules M such that

VG(M) is a finite union of elements of V . Then M is a thick subcategory of

stmod(kG); in other words it is a full triangulated subcategory of stmod(kG) with

the same definition of triangles, and is closed under taking direct summands.

Furthermore, a tensor product of any module with a module in M gives an

answer in M , so we say that M is a tensor closed thick subcategory. To such a

subcategory of stmod(kG), Rickard [1997] associates two idempotent modules9

EV and FV and a triangle

EV → k → FV → Ω−1
EV

in StMod(kG). This triangle is characterized by the statement that EV can be

written as a filtered colimit of modules in M , and for any M in M , we have

HomkG(M,FV ) = 0. This construction is the analog in representation theory of

Bousfield localization [Bousfield 1979] in algebraic topology.

As an example, if ζ ∈ H
n(G, k) defines a hypersurface V in VG and V is the

set of subvarieties of V then we write Eζ and Fζ instead of EV and FV . If ζ is

represented by a cocycle ζ̂ : Ωn(k)→ k, then the module Fζ can be constructed

as follows. We can dimension shift ζ̂ to give maps

k
Ω−nζ̂−−−→ Ω−n(k)

Ω−2nζ̂−−−−→ Ω−2n(k)
Ω−3n ζ̂−−−−→ · · ·

and the colimit is Fζ . So for example the cohomology of Fζ ,

Ĥ
∗(G,Fζ) ∼= Ĥ

∗(G, k)ζ
∼= H

∗(G, k)ζ

is the localization of either Tate or ordinary cohomology with respect to ζ.

If we take the map from the first term in the sequence to the colimit and

complete to a triangle, we get the module Eζ and the triangle

(9.2.1) Eζ → k → Fζ → Ω−1
Eζ .

If Lζi is the kernel of ζ̂
i then Eζ can be written as the colimit of

Ω−n
Lζ → Ω−2n

Lζ2 → Ω−3n
Lζ3 → · · ·

More generally, if V is a closed homogeneous subvariety of VG defined by the

vanishing of elements ζ1, . . . , ζt ∈ H
∗(G, k) and V is the set of subvarieties of

V , we write EV and FV for EV and FV . In this case, EV can be obtained as

Eζ1
⊗ · · · ⊗ Eζt

, and FV can be obtained by completing the map EV → k to a

triangle.

9A module M is said to be idempotent if M ⊗ M is isomorphic to M in StMod(kG). The
only finite dimensional idempotent module is the trivial kG-module k.
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Now if V is a closed homogeneous irreducible subvariety of VG, let W be the

set of subvarieties of VG which do not contain V . Then we define

(9.2.2) κV = EV ⊗ FW .

This is an idempotent module which corresponds to a layer of stmod(kG) con-

sisting of modules with variety exactly V .

If M is a kG-module, not necessarily finitely generated, we associate to M a

collection of varieties

VG(M) = {V |M ⊗ κV is not projective} ⊆ ProjH∗(G, k).

If M happens to be finitely generated, then VG(M) is just the collection of all

subvarieties of VG(M). But for infinitely generated modules, the collection is

not necessarily closed under specialization. The properties of VG(M) include:

(9.2.3) VG(M) = ∅ if and only if M is projective,

(9.2.4) VG(
⊕

α Mα) =
⋃

α VG(Mα),

(9.2.5) VG(M ⊗N) = VG(M) ∩ VG(N),

(9.2.6) VG(κV ) = {V }.

(9.2.7) It follows from (9.2.4) and (9.2.6) that every subset of ProjH∗(G, k)

occurs as VG(M) for some M .

10. Modules with Injective Cohomology

In this section, we continue with our assumption that G is a finite group and

k is a field.

(10.1) A better understanding of the modules κV comes from understanding

modules whose Tate cohomology is injective as a module over the Tate coho-

mology of the group. In this section, we shall see that there is an essentially

unique module with a given injective as its cohomology [Benson and Krause

2002]. Conjecturally, these are the translates of the modules κV described in the

last section. This has been proved under some restrictive hypotheses in [Benson

2001], but at least it is true for elementary abelian groups, an important special

case. The connection between the κV and modules with injective cohomology

involves the study of the local cohomology of the cohomology ring, H
∗∗
p H

∗(G, k).

This is the subject of the next section.

(10.2) It is well known that the indecomposable injective modules over a com-

mutative Noetherian ring R are precisely the injective hulls E(R/p) of the mod-

ules R/p, as p ranges over the prime ideals of R, and that a general injective
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module can be written in an essentially unique way as a direct sum of indecom-

posable injectives.10 For a Noetherian graded commutative ring, the classifica-

tion of injective graded modules is the same, except that we must restrict our

attention to homogeneous prime ideals, and we must allow degree shift. If p is

a homogeneous prime ideal in H
∗(G, k) and d is an integer, we define Ip to be

E(H∗(G, k)/p) and Ip[n] to be the result of shifting degrees by n. The notation

here is that a shift of [n] in a graded module means that the degree d part of the

shifted module is the same as the degree (n + d) part of the original module.

(10.3) Recall that the ordinary cohomology H
∗(G, k) is Noetherian, whereas

Tate cohomology Ĥ
∗(G, k) is usually not. The way to get from injective modules

over ordinary cohomology to injectives over Tate cohomology is by coinduction.

If I is an injective H
∗(G, k)-module, we define Î to be the injective Ĥ

∗(G, k)-

module

Î = Hom∗H∗(G,k)(Ĥ
∗(G, k), I).

The notation here is that Homn denotes the graded homomorphisms which in-

crease degree by n. If there is no superscript, it is assumed that n = 0.

Theorem 10.3.1. Every injective Ĥ
∗(G, k)-module is of the form Î for some

injective H
∗(G, k)-module I.

(10.4) In order to understand what happens when we coinduce I = Ip[n], we

consider two cases. Let m = H
+(G, k) be the maximal ideal of positive degree

elements in H
∗(G, k). If p is not equal to m then Î = I. More precisely, the

restriction of Î to an H
∗(G, k)-module is naturally isomorphic to I. On the other

hand, if p = m then Tate duality (3.6.1) says that I = Ĥ
−(G, k)[n− 1]. In this

case, Î = Ĥ
∗(G, k)[n− 1].

Since Ĥ
∗(G, k) is usually not Noetherian, coinduction does not preserve di-

rect sums. Actually, it does preserve direct sums as long as the injective only

has copies of Ip[n] with p 6= m, and no copies of Im[n]; in other words if

Hom∗H∗(G,k)(k, I) = 0. Although Ĥ
∗(G, k) is not Noetherian, it is shown in

[Benson and Krause 2002] that the general injective Ĥ
∗(G, k)-module has the

form

(10.4.1)
⊕

Îp[n] ⊕ E

(⊕
Ĥ
∗(G, k)[n− 1]

)
,

where p 6= m for each of the left hand summands, and E(−) stands for injective

hull over Ĥ
∗(G, k).

A way to construct modules with injective cohomology is to use the Brown rep-

resentability theorem [Brown 1965; Neeman 1996]. If I is an injective H
∗(G, k)-

module, the functor from StMod(kG) to vector spaces, which takes a kG-module

10A ring R is Noetherian if and only if an arbitrary direct sum of injective R-modules is
injective.
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M to the degree preserving homomorphisms

HomH∗(G,k)(Ĥ
∗(G,M), I)

is exact (in other words it takes triangles in StMod(kG) to long exact sequences)

and takes direct sums to direct products. Brown’s representability theorem says

that any such functor is representable. In other words, there exists a kG-module

T (I) and a functorial isomorphism

(10.4.2) HomH∗(G,k)(Ĥ
∗(G,M), I) ∼= HomkG(M,T (I)).

We remark that we could just as easily have replaced the left hand side of this iso-

morphism with HomĤ∗(G,k)(Ĥ
∗(G,M), Î), because this gives the same answer,

and because by Theorem 10.3.1, every injective Ĥ
∗(G, k)-module is coinduced

from H
∗(G, k).

(10.5) Yoneda’s lemma says that all natural transformations from a repre-

sentable functor are representable. Applying this to natural transformations

arising from homomorphisms between injective H
∗(G, k)-modules, this makes

T into a functor from the full subcategory InjH∗(G, k) of injective H
∗(G, k)-

modules to the stable module category StMod(kG). Here are some properties of

the modules T (I), proved in [Benson and Krause 2002].

(10.5.1) T (Im[n]) ∼= Ω−n+1(k).

(10.5.2) If p 6= m then T (Ip[n]) is an infinitely generated module whose variety

is given by VG(T (Ip[n])) = {V }, where V is the irreducible variety corresponding

to p.

(10.5.3) Hom∗H∗(G,k)(Ĥ
∗(G,M), I) ∼= Ex̂t

∗

kG(M,T (I)). This isomorphism fol-

lows by dimension shifting the defining isomorphism (10.4.2).

(10.5.4) Ĥ
∗(G,T (I)) ∼= Î. This is the special case of (iii) where M = k.

(10.5.5) If p 6= m then Ex̂t
∗

kG(T (Ip[n]), T (Ip[n])) ∼= End∗H∗(G,k)(Ip). By a the-

orem of Matlis [1958], End∗H∗(G,k)(Ip) is isomorphic to the p-adic completion of

cohomology,

H
∗(G, k)

∧

p = lim
←−
n

H
∗(G, k)p/p

n
p .

More generally, if I has no copies of Im[n] as summands, or equivalently, if there

are no homomorphisms from any degree shifted copy of k to I, then

HomkG(T (I), T (I ′)) ∼= HomH∗(G,k)(I, I
′).

So T is a fully faithful functor on the full subcategory Inj0 H
∗(G, k) of injective

modules I satisfying Hom∗H∗(G,k)(k, I) = 0.
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(10.5.6) The modules T (I) are pure injective. This means that if a short exact

sequence of kG-modules

0→ T (I)→ X → Y → 0

has the property that every morphism from any finitely generated module to Y

lifts to X, then it splits. The reason for this is that T (I) is a direct summand of

a direct product of finitely generated kG-modules. In fact,

(10.5.7) The modules T (I) are precisely the direct summands of direct products

of modules isomorphic to Ωn(k) for n ∈ Z. The indecomposable ones are exactly

T (Ip[n]). So we obtain an embedding of Proj H∗(G, k) into the Ziegler spectrum

[Ziegler 1984] of pure injective kG-modules with the Zariski topology (modulo the

translation Ω), and we can recover Proj H∗(G, k) from the category StMod(kG)

if we know where the translates of the trivial module are.

(10.6) The following conjecture from [Benson 2001] relates the modules T (Ip[n])

described in this section and the modules κV described in the previous section.

Conjecture 10.6.1. If p is the homogeneous prime ideal corresponding to a

closed homogeneous irreducible subvariety V of dimension d in VG, then there is

an isomorphism T (Ip[n]) ∼= Ω−n−d
κV in StMod(kG).

This conjecture is known to hold if H
∗(G, k)p is Cohen–Macaulay. In the next

few sections, we describe how to view this conjecture in terms of local cohomology

and Grothendieck’s local duality. See Conjecture 13.2.2.

(10.7) Another conjecture, related in philosophy to Conjecture 10.6.1, comes

from an idea of Amnon Neeman. If M is a kG-module, not necessarily finitely

generated, then for each simple module S, consider a minimal injective resolution

of Ex̂t
∗

kG(S,M) as a module over Ĥ
∗(G, k),

0→ Ex̂t
∗

kG(S,M)→ Î0 → Î1 → Î2 → · · ·

Each injective in such a resolution can be written in the form (10.4.1), and we

can ask which nonmaximal prime ideals occur in such a decomposition. Since

each Îj is coinduced from some injective H
∗(G, k)-module Ij , we have

Hom∗
Ĥ∗(G,k)

(H∗(G, k)/p, Îj) ∼= Hom∗H∗(G,k)(H
∗(G, k)/p, Ij),

and this is nonzero exactly for the primes appearing in this minimal resolution.

Since coinduction is exact on injectives away from the maximal ideal, it does not

matter whether we resolve over Ĥ
∗(G, k) or H

∗(G, k). The following conjecture

says that the primes appearing in these minimal resolutions, as S runs over the

simple kG-modules, correspond exactly to the varieties in VG(M).

Conjecture 10.7.1. Let M be a kG-module. If p is a homogeneous prime

ideal in H
∗(G, k), we define k(p) to be the homogeneous field of fractions of
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H
∗(G, k)p. Then the nonmaximal homogeneous primes p for which11

Ext∗∗H∗(G,k)p
(k(p),Ex̂t

∗

kG(S,M)p) 6= 0

for some simple kG-module S are exactly the primes corresponding to the vari-

eties in VG(M).

The point of this conjecture is that it provides a method for characterizing

VG(M) just in terms of Ex̂t
∗

kG(S,M), without having to tensor M with the

rather mysterious modules κV .

11. Duality Theorems

In this section, we describe various spectral sequences which can be inter-

preted as duality theorems for group cohomology. It is these theorems which

demonstrate that most finitely generated graded commutative algebras are not

candidates for group cohomology. The original version of the spectral sequence

for finite groups appeared in [Benson and Carlson 1994b], and used multiple com-

plexes and related finite Poincaré duality complexes of projective kG-modules.

One consequence of the existence of this spectral sequence is that if H
∗(G, k)

is Cohen–Macaulay then it is Gorenstein, with a-invariant zero (2.5). Even if

H
∗(G, k) is not Cohen–Macaulay, the spectral sequence gives severe restrictions

on the possibilities for the ring structure.

Greenlees [1995] discovered a way of using the same techniques to construct

a cleaner spectral sequence of the form

H
s,t
m H

∗(G, k) =⇒ H−s−t(G, k)

giving essentially equivalent information. We present here an alternative con-

struction [Benson 2001] of Greenlees’ spectral sequence using Rickard’s idempo-

tent modules.

(11.1) Choose a homogeneous set of parameters ζ1, . . . , ζr for H
∗(G, k). For

each ζi, we truncate the triangle (9.2.1) to give a cochain complex of the form

(11.1.1) · · · → 0→ k → Fζi
→ 0→ · · ·

where k is in degree zero and Fζi
is in degree one, and the remaining terms are

zero. The cohomology of this complex is Ω−1
Eζi

concentrated in degree one.

Tensoring these complexes together gives a complex Λ∗ of the form

0→ k →
⊕

1≤i≤r

Fζi
→ · · · →

⊗

1≤i≤r

Fζi
→ 0,

11In commutative algebra, the ranks over k(p) of these Ext groups are called the Bass
numbers.
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which is exact except in degree r, where its cohomology is

Ω−1
Eζ1
⊗ · · · ⊗Ω−1

Eζr
.

Now VG(Ω−1
Eζi

) is the set of subvarieties of the hypersurface determined by ζi.

So using (9.2.5), the variety of this tensor product is the intersection of these sets,

which is empty. It follows using (9.2.3) that this tensor product is a projective

kG-module.

Now let P̂∗ be a Tate resolution of k as a kG-module, and consider the double

complex Ê
∗∗
0 = HomkG(P̂∗,Λ

∗). This double complex gives rise to two spectral

sequences. If we take cohomology with respect to the differential coming from

Λ∗ first, the E1 page is HomkG(P̂∗,H
∗(Λ)). Since H

∗(Λ) is projective, the E2

page is zero, and so the cohomology of the total complex Tot Ê
∗∗
0 is zero.

On the other hand, if we first take cohomology with respect to the differen-

tial coming from P̂∗, we obtain a spectral sequence whose E1 page is Ê
s,t
1 =

Ĥ
t(G,Λs). Now each Λs is a direct sum of modules of the form Fζ , where

ζ is the product of a subset of size s of ζ1, . . . , ζr. The cohomology of Fζ is

Ĥ
∗(G, k)ζ

∼= H
∗(G, k)ζ , and the maps are exactly the maps in the stable Koszul

complex12 for Ĥ
∗(G, k) over ζ1, . . . ζr,

Ê
∗∗
1 = C

∗(Ĥ∗(G, k); ζ1, . . . , ζr).

The stable Koszul complex computes local cohomology with respect to the max-

imal ideal m, and so we have a spectral sequence

(11.1.2) Ê
s,t
2 = H

s,t
m Ĥ

∗(G, k) =⇒ 0.

(11.2) The spectral sequence (11.1.2) is almost, but not quite, the Greenlees

spectral sequence, so we modify it as follows. Consider the subcomplex E
∗∗
0

consisting of all the terms in Ê
∗∗
0 except the ones of the form Ê

0,t
0 with t < 0.

Then we have a short exact sequence of complexes

0→ TotE
∗∗
0 → Tot Ê

∗∗
0 → HomkG(P̂−∗ , k)→ 0.

Since Tot Ê
∗∗
0 is exact, the long exact sequence in cohomology and Tate duality

give

H
nTotE

∗∗
0
∼= H

n+1(HomkG(P̂−∗ , k)) ∼= H−n(G, k).

So the spectral sequence of the double complex E
∗∗
0 has

E
∗∗
1 = C

∗(H∗(G, k); ζ1, . . . , ζr)

E
s,t
2 = H

s,t
m H

∗(G, k) =⇒ H−s−t(G, k).(11.2.1)

12See for example [Bruns and Herzog 1993, § 3.5]. Sometimes the stable Koszul complex

is called the Čech complex, but strictly speaking the latter name should be reserved for the
complex where the degree zero term is deleted and the degrees of the remaining terms are
decreased by one. This is the complex used to derive the spectral sequence (11.3.1).
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This is a spectral sequence of H
∗(G, k)-modules; that is, the differentials

dn : E
s,t
n → E

s+n,t−n+1
n

are H
∗(G, k)-linear. It converges because there are only a finite number of

nonzero columns. This is because E
s,t
2 = 0 unless s lies between the depth and

the Krull dimension of H
∗(G, k). The spectral sequence (11.2.1) is isomorphic to

the one constructed by Greenlees [1995], although the construction given there

is slightly different. Note also that H∗(G, k) is just the injective module Im, so

we can write this as

H
s,t
m H

∗(G, k) =⇒ Im.

The local cohomology can only be nonzero for s at least the depth and at most

the Krull dimension, so this spectral sequence often has only a few nonvanishing

columns.

(11.3) Another variation on the construction (11.2) is as follows. Instead of

eliminating just the negative part of the s = 0 line of the E0 page, we eliminate

the whole of the s = 0 line. Then after reindexing, we obtain a spectral sequence

whose E2 page is the Čech cohomology of the cohomology ring, and converging

to Tate cohomology,

(11.3.1) Ȟ
s,t
m H

∗(G, k) =⇒ Ĥ
s+t(G, k).

This is the spectral sequence described in [Greenlees 1995, Theorem 4.1].

(11.4) As an example of an application of the spectral sequence (11.2.1), con-

sider the case where H
∗(G, k) is Cohen–Macaulay (2.5). In this case, the local co-

homology H
s,∗
m H

∗(G, k) is zero unless s = r, and the graded dual of H
r,∗
m H

∗(G, k)

is the canonical module ΩH∗(G,k). So the E2 page is only nonzero on the col-

umn s = r, and there is no room for differentials. It follows that the spectral

sequence converges to (ΩH∗(G,k)[r])
∗, and so ΩH∗(G,k)[r] is isomorphic to the

graded dual of H∗(G, k), which in turn is isomorphic to H
∗(G, k). We deduce

that ΩH∗(G,k)
∼= H

∗(G, k)[−r]. It follows that H
∗(G, k) is Gorenstein with

a-invariant zero. This gives the following theorem, which was first proved in

[Benson and Carlson 1994b], using the original version of the spectral sequence.

Theorem 11.4.1. Let G be a finite group and k be a field of characteristic p.

If H
∗(G, k) is Cohen–Macaulay , then it is Gorenstein with a-invariant zero.

This theorem may be interpreted in terms of Poincaré series as follows. If we

set pG(t) =
∑∞

i=0 t
i dimH

i(G, k) then the finite generation theorem says that

pG(t) is a rational function of t whose poles are at roots of unity. If H
∗(G, k) is

Cohen–Macaulay, the theorem above implies that this rational function satisfies

the functional equation pG(1/t) = (−t)r
pG(t). For this and related functional

equations, see [Benson and Carlson 1994a].
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(11.5) Another interpretation of Theorem 11.4.1 is as follows. If ζ1, . . . , ζr is a

homogeneous system of parameters for H
∗(G, k) with |ζi| = ni then the quotient

ring H
∗(G, k)/(ζ1, . . . , ζr) satisfies Poincaré duality with dualizing degree a =∑r

i=1(ni − 1). See the description of the quaternion group of order eight (2.4)

for an explicit example of this phenomenon. Whether or not H
∗(G, k) is Cohen–

Macaulay, it is shown in [Benson and Carlson 1994b] that there is always a

nonzero element of the quotient H
∗(G, k)/(ζ1, . . . , ζr) in the dualizing degree a.

In particular, we get the following corollary from that paper:

Corollary 11.5.1. Let G be a finite group and k be a field of characteristic

p. If H
∗(G, k) is a polynomial ring , then the generators are in degree one. This

forces p to be 2, and G/O2′(G) to be an elementary abelian 2-group.

Here, Op′(G) denotes the largest normal subgroup of G of order not divisi-

ble by p. If k is a field of characteristic p, then the inflation map (3.2) from

H
∗(G/Op′(G), k) to H

∗(G, k) is an isomorphism, so we would expect to get

information only about the structure of G/Op′(G) from information about the

cohomology of G. If p = 2 and G ∼= (Z/2)r is elementary abelian then by (2.2.2),

H
∗(G, k) = k[x1, . . . , xr] is a polynomial ring on r generators of degree one. In

this case, H
s,t
m H

∗(G, k) vanishes except when s = r, and13

H
r,∗
m H

∗(G, k) = k[x−1
1 , . . . , x

−1
r ],

where the right hand side is graded in such a way that the identity element is in

H
r,−r
m H

∗(G, k).

There are no differentials, and it is easy to see how the spectral sequence

converges to the dual of the cohomology ring.

On the other hand, if G ∼= (Z/p)r with p odd, then H
∗(G, k) = Λ(x1, . . . , xr)⊗

k[y1, . . . , yr] is a tensor product of an exterior algebra on r generators of degree

one with a polynomial algebra on r generators in degree two. Taking y1, . . . , yr

as a homogeneous sequence of parameters, the exterior algebra Λ(x1, . . . , xr) is

the finite Poincaré duality piece referred to in the discussion following Theo-

rem 11.4.1. The local cohomology is again concentrated in degree r, and H
r
m

consists of 2r copies of k[y−1
1 , . . . , y

−1
r ] with generators in H

r,−r−i
m , i = 0, . . . , r

dual to a basis for the exterior algebra.

(11.6) As another Cohen–Macaulay example, if G = D2n is dihedral of order

2n then H
∗(G, F2) = F2[x, y, z]/(xy) where x and y have degree one and z has

degree two. We can take x+y and z as a homogeneous system of parameters, and

the quotient is H
∗(G, F2)/(x+y, z) = F2[x]/(x2), which satisfies Poincaré duality

13The notation k[x−1
1 , . . . , x

−1
r ] is just a shorthand notation for the graded dual of the

polynomial ring in x1, . . . , xr. Beware that the notation does not transform correctly with
respect to linear transformations of x1, . . . , xr because it depends on the choice of system
of parameters for the stable Koszul complex. The action on the inverse generators should be
transposed from what the notation suggests. However, the notion is called “Macaulay’s inverse
system,” and is standard in commutative algebra.
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with dualizing degree one. The local cohomology is concentrated in degree two,

and consists of two copies of F2[(x + y)−1
, z
−1] with generators in H

2,−2
m and

H
2,−3
m dual to 1 and x.

(11.7) If G = SD2n is semidihedral of order 2n (2.8.1) and k is a field of

characteristic two then H
∗(G, k) = k[x, y, z, w]/(xy, y

3
, yz, z

2 + wx
2) where x

and y have degree one, z has degree three, and w has degree four. The depth

of this ring is one, and the Krull dimension is two, so there is local cohomology

in degrees one and two; H
1
m consists of two copies of F2[w

−1] with generators in

H
1,−2
m and H

1,−3
m which play the role of duals for y and y

2, while H
2
m consists of

two copies of F2[w
−1

, x
−1] with generators in H

2,−2
m and H

2,−5
m dual to 1 and z.

This example is described in more detail in § 2.

(11.8) The cohomology of the 2-groups of order at most 32 has been calculated

by Rusin [1989]. A particularly interesting example is the group

(11.8.1) Γ7a2 = 〈a, b, c | a4
b = ba

4
, a

4
c = ca

4
, bc = cb,

a
8 = b

2 = c
2 = 1, aba

−1 = bc, aca
−1 = a

4
c〉,

of order 32, whose cohomology has Krull dimension three and depth one. This

is the smallest example where the Greenlees spectral sequence has a nonzero

differential. The cohomology ring H
∗(Γ7a2, F2) is generated by elements z, y, x,

w, v, u, t and s of degrees 1, 1, 2, 2, 3, 3, 4, 4, respectively, where the ideal of

relations is generated by the elements

zy, y
2
, yx, yw, yv, yu, yt, xw + zu, z

2
w +w

2
, wv + zt, zxw +wu,

z
2
t+wt, x

3 + zxv + z
2
s+ v

2
, vu+xt, x

2
u+ zxt+ zws+ vt,

x
3
w + z

2
xt+ z

2
ws+ t

2
, zxt+ut, x

2
w +u

2
.

As a module over the polynomial subring F2[z, x, s], the cohomology is generated

by 1, y, w, v, u and t, subject to the relations zy = 0, xy = 0 and zu = xw.

The local cohomology is nonvanishing in degrees 1, 2 and 3; both H
1
m and H

2
m

consist of a copy of F2[s
−1] generated in degree −3, while H

3
m consists of four

copies of F2[z
−1

, x
−1

, s
−1] generated in degrees −3, −4, −6 and −7. The nonzero

differential d2 takes the generator in H
1,−3
m to the generator in H

3,−4
m , wiping out

H
1
m and having a cokernel on this part of H

3
m which plays the role of the dual of

the summand generated by w and u. The remaining generators in H
3,−3
m , H

3,−6
m

and H
3,−7
m are dual to 1, v and t, while the generator of H

2,−3
m is dual to y.

12. More Duality Theorems

(12.1) There is a version of the spectral sequence (11.2.1) for compact Lie

groups [Benson and Greenlees 1997a]. This involves a dimension shift, equal to

the dimension d of G as a manifold. There is also an orientation issue. Namely,
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the adjoint representation of G gives a homomorphism G→ O(d), whose image

does not necessarily lie in SO(d). Composing with the determinant represen-

tation of O(d), which takes values ±1, gives a one dimensional representation

ε : π1(BG) ∼= π0(G)→ k
×. The spectral sequence then takes the form

(12.1.1) H
s,t
m H

∗(BG; k) =⇒ H−d−s−t(BG; ε).

Dwyer, Greenlees and Iyengar [Dwyer et al. 2002] give another proof for compact

Lie groups and also a version for p-compact groups.

For example, if H
∗(BG; k) is a polynomial ring on generators ζ1, . . . , ζr with

|ζi| = ni, and ε = k, then we have

(12.1.2) d =

r∑

i=1

(ni − 1).

If G = U(n), the compact unitary group of n × n matrices, and k is any

commutative coefficient ring, then H
∗(BU; k) = k[c1, . . . , cn] is a polynomial ring

on Chern classes ci of degree 2i (3.3.1). In accordance with equation (12.1.2),

we have dimU(n) = n
2 =

∑n
i=1(2i− 1).

On the other hand, if G = O(2n), the compact orthogonal group of real

2n× 2n matrices preserving a positive definite inner product, and k is a field of

characteristic not equal to two, then H
∗(BO(2n); k) = k[p1, . . . , pn] is a polyno-

mial ring on Pontrjagin classes pi of degree 4i (3.3.2). Since dimO(2n) = 2n
2−n

and
∑n

i=1(4i− 1) = 2n
2 +n, we see that the two sides of equation (12.1.2) differ

by 2n. This is because the orientation representation ε is nontrivial, and

H
∗(BO(2n); ε) = k[p1, . . . , pn] · e

where e ∈ H
2n(BSO(2n); k) ∼= H

2n(BO(2n); k ⊕ ε) is the Euler class, satis-

fying e
2 = pn (3.3.3). The degree of the Euler class exactly accounts for the

discrepancy in equation (12.1.2).

(12.2) Another version of the spectral sequence has been developed for virtual

duality groups [Benson and Greenlees 1997b]. The latter is a class of groups

which includes arithmetic groups [Borel and Serre 1973], mapping class groups

of orientable surfaces [Harer 1986] and automorphism groups of free groups of

finite rank [Bestvina and Feighn 2000]. A discrete group G is said to be a

duality group of dimension d over k (see [Bieri 1976]) if there is a dualizing

module. This is defined to be a kG-module I such that there are isomorphisms

H
i(G,M) ∼= Hd−i(G, I ⊗k M) for all kG-modules M . It turns out that such

isomorphisms may be taken to be functorial in M if they exist at all, and in

that case, I ∼= H
d(G, kG). A Poincaré duality group is a duality group for which

the dualizing module I is isomorphic to the field k with some G-action, and it is

orientable if the action is trivial. A virtual duality group of dimension d is a group

G with a normal subgroup N of finite index which is a duality group of dimension

d. Since the Eckmann–Shapiro lemma says that H
∗(G, kG) ∼= H

∗(N, kN), the
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dualizing module I does not depend on which normal subgroup is used in the

definition. The spectral sequence for a virtual duality group takes the form

H
s,t
m H

∗(G,M) =⇒ Hd−s−t(G, I ⊗M).

Notice that the sign of the degree shift in this case is in the opposite direction

to the case of a compact Lie group. So a virtual Poincaré duality group of

dimension d behaves very much like a compact Lie group of dimension −d.

(12.3) In [Greenlees 2002, § 8.4], there is a brief discussion of the corresponding

version for continuous cohomology of p-adic Lie groups, which are a particular

kind of profinite groups. These include matrix groups over the p-adic integers

such as SL(n, Z
∧

p ). The discussion for p-adic Lie groups translates into continuous

cohomology the story for virtual duality groups, with the same shift in dimension.

The way this works is as follows. By [Lazard 1965, Chapter V, 2.2.7.1 and

2.5.7.1], if G is a p-adic Lie group then G has a normal open subgroup H for

which H
∗
c (H, Fp) is the exterior algebra on H

1
c (H, Fp), so that H is a Poincaré

duality group. Furthermore, H
1
c (H, Fp) is a finite dimensional Fp-vector space

whose dimension is equal to the dimension d of G as a p-adic manifold. So

the dualizing module ε is the FpG-module H
d
c (H, Fp), which is the same as the

determinant of the adjoint representation of G on its Lie algebra. The spectral

sequence then takes the form

(12.3.1) H
s,t
m H

∗
c (G, Fp) =⇒ H

c
d−s−t(G, ε).

(12.4) There are also versions of the spectral sequence for other cohomology

theories. For example, [Bruner and Greenlees 2003] investigates the spectral

sequence

H
∗,∗
I ku

∗(BG) =⇒ ku∗(BG)

where ku denotes connective complex K-theory, I is the kernel of the augmen-

tation map ku
∗(BG)→ ku

∗, and G is a finite group.

(12.5) The papers [Dwyer et al. 2002; Greenlees 2002] also explain a more

general context for some of these spectral sequences. They explain the sense

in which the cochains on BG and related objects are examples of Gorenstein

differential graded algebras. Their notions are expressed in the language of E∞

ring spectra, or commutative S-algebras, see [Elmendorf et al. 1997].

13. Dual Localization

(13.1) Greenlees and Lyubeznik [2000] introduced a way of obtaining informa-

tion at nonmaximal prime ideals out of the Greenlees spectral sequence. Roughly

speaking, one would like to localize the spectral sequence. Attempting to do

this directly turns out to be a bad move. The reason is that every element of

H
∗∗
m H

∗(G, k) and every element of Im is killed by some power of m. So the idea
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is to dualize first, then localize, and then dualize back again. The dualization

process needed for this is graded Matlis duality. See [Matlis 1958] for ordinary

Matlis duality, and [Bruns and Herzog 1993, § 3.6] for the graded version. If p is

a homogeneous prime ideal in H
∗(G, k) and X is a module over H

∗(G, k)p, then

we write Dp(X) for the graded Matlis dual of X

Dp(X) = HomH∗(G,k)p
(X, Ip),

where Ip is the injective hull of H
∗(G, k)/p. The latter can be viewed as a

module over the completion H
∗(G, k)

∧

p , and so Dp takes H
∗(G, k)p-modules to

H
∗(G, k)

∧

p -modules. It takes Artinian modules to Noetherian modules, and vice-

versa. Applying Dp twice to an Artinian module returns the same module, and

applying Dp twice to a Noetherian module returns its p-adic completion. In this

language, we can rewrite equation (10.5.3) as

DpĤ
∗(G,M) ∼= Ex̂t

∗

kG(M,T (Ip)).

Tate duality is the special case of this statement where p = m, because Dm

can be interpreted as taking the graded dual of a graded vector space, and

T (Im) = Ω(k).

Grothendieck duality [Grothendieck 1965; 1967] says that if we choose a poly-

nomial subring R = k[ζ1, . . . , ζr] over which H
∗(G, k) is finitely generated as a

module, and M is a graded H
∗(G, k)-module, then the graded Matlis dual of

local cohomology is Ext over R in complementary degrees,

(13.1.1) DmH
s,t
m M ∼= Ext

r−s,−t
R (M,R[−a])

where a =
∑r

i=1 |ζi| and R[−a] is the canonical module for R. So the graded

Matlis dual of the Greenlees spectral sequence is

Ext
r−s,−t
R (H∗(G, k), R[−a]) =⇒ H

−s−t(G, k).

Localizing this spectral sequence with respect to a homogeneous prime ideal

p 6= m of dimension d gives a spectral sequence

Ext
r−s,−t
Rq

(H∗(G, k)p, Rq[−a]) =⇒ H
−s−t(G, k)p

where q = p ∩R. Since Rq has Krull dimension r − d instead of r, applying Dp

to this spectral sequence and using Grothendieck duality again gives a spectral

sequence of the form H
s−d,t
p H

∗(G, k)p =⇒ Ip, or reindexing,

(13.1.2) H
s,t
p H

∗(G, k)p =⇒ Ip[d].

This is the Greenlees–Lyubeznik dual localized form of the Greenlees spectral

sequence. So for example, taking p to be a minimal prime in H
∗(G, k), this spec-

tral sequence has only one nonvanishing column, and it follows that H
∗(G, k)p

is Gorenstein. This gives the following theorem.
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Theorem 13.1.3. If G is a finite group and k is a field then H
∗(G, k) is

generically Gorenstein.

(13.2) There is another, more module theoretic method for getting a spectral

sequence with the same E2 page as (13.1.2), described in [Benson 2001]. Let

V ⊆ VG be the closed homogeneous irreducible subvariety corresponding to p,

and let W be the subset of ProjH∗(G, k) used in the definition (9.2.2) of κV .

Since the maximal elements of W have codimension one in VG, the cohomology of

the F -idempotent is just the homogeneous localization, Ĥ
∗(G,FW ) = H

∗(G, k)p.

Let h be the height of p, namely the Krull dimension of H
∗(G, k)p. Then by the

version of the Noether normalization theorem described in [Nagata 1962], we can

choose a homogeneous set of parameters ζ1, . . . , ζr for H
∗(G, k) so that ζ1, . . . , ζh

lie in p. So ζ1, . . . , ζh is a system of parameters for H
∗(G, k)p. We tensor together

the complexes (11.1.1) for ζ1, . . . , ζh to obtain a complex Λ∗(ζ1, . . . , ζh) of the

form

0→ k →
h⊕

i=1

Fζi
→ · · · →

h⊗

i=1

Fζi
→ 0

and then tensor the answer with the module FW to obtain a complex

Λ∗p = Λ∗(ζ1, . . . , ζh)⊗ FW

whose cohomology is Ω−h
EV ⊗ FW = Ω−h

κV concentrated in degree h. The

spectral sequence of the double complex E
∗∗
0 (p) = HomkG(P̂∗,Λ

∗
p) gives

(13.2.1) E
s,t
2 (p) = H

s,t
p H

∗(G, k)p =⇒ Ĥ
s+t(G,κV ).

Conjecture 13.2.2. The spectral sequences 13.1.2 and 13.2.1 are isomorphic

from the E2 page onwards.

It is proved in [Benson 2001] that Conjecture 13.2.2 implies Conjecture 10.6.1.

Furthermore, Conjecture 13.2.2 clearly holds in the case where H
∗(G, k) is

Cohen–Macaulay, because there is no room for nontrivial differentials or un-

grading problems.

14. Quasiregular Sequences

In this section, we describe the theory of quasiregular sequences, first intro-

duced in [Benson and Carlson 1994b], and describe their relationship with the

local cohomology of H
∗(G, k). The material of this section is further developed

in a companion paper [Benson 2004], written during the month following the

MSRI workshop.

(14.1) Let G be a finite group of p-rank r, and let k be a field of characteristic

p. A homogeneous sequence of parameters ζ1, . . . , ζr for H
∗(G, k) with |ζi| = ni

is said to be filter-regular if for each i = 0, . . . , r − 1, the map

(14.1.1) (H∗(G, k)/(ζ1, . . . , ζi))
j → (H∗(G, k)/(ζ1, . . . , ζi))

j+ni+1



COMMUTATIVE ALGEBRA IN THE COHOMOLOGY OF GROUPS 39

induced by multiplication by ζi+1 is injective for j large enough. The existence

of a filter-regular sequence is guaranteed by the standard method of prime avoid-

ance.

In [Benson and Carlson 1994b, § 10], the following terminology was intro-

duced. A sequence of parameters ζ1, . . . , ζr is said to be quasiregular 14 if the

map (14.1.1) is injective for i = 0, . . . , r − 1 whenever j ≥ n1 + · · · + ni, and

H
∗(G, k)/(ζ1, . . . , ζr) is zero in degrees at least n1 + · · · + nr. For i = 0 this is

the same as saying that ζ1 is a regular element, but for i > 0 it allows some low

degree kernel.

Conjecture 14.1.2. For any finite group G and field k, there exists a quasi-

regular sequence in H
∗(G, k).

It is proved in [Benson and Carlson 1994b] that the conjecture is true if r ≤ 2,

and Okuyama and Sasaki [2000] have a proof for r ≤ 3. These proofs work more

generally when the depth and Krull dimension differ by at most one, respectively

two. In this section, I shall try to explain the ideas behind these proofs, and the

relevance of quasiregular sequences for the computation of group cohomology.

(14.2) We can reinterpret the definition of quasiregular sequence in terms of

cohomology of modules as follows, and in the process give some sort of explana-

tion of where the condition j ≥ n1 + · · ·+ni comes from. We can always take our

first parameter ζ1 to be a regular element, by Duflot’s Theorem 6.2.1. Consider

the short exact sequence

0→ Lζ1
→ Ωn1(k)→ k → 0.

The long exact sequence in cohomology gives (for j ≥ n1) an exact sequence

· · · → H
j(G,Lζ1

)→ H
j−n1(G, k)

ζ1−→ H
j(G, k)→ H

j+1(G,Lζ1
)→ · · ·

So we have H
j+1(G,Lζ1

) ∼= (H∗(G, k)/(ζ1))
j for j ≥ n1.

Working inductively, for each i = 0, . . . , r − 1, if we tensor the short exact

sequence

0→ Lζi+1
→ Ωni+1(k)→ k → 0

with the module Mi = Lζ1
⊗ · · · ⊗ Lζi

and take the long exact sequence in

cohomology, then we obtain the following.

Proposition 14.2.1. A homogeneous sequence of parameters ζ1, . . . , ζr is quasi-

regular if and only if for each i = 0, . . . , r − 1, multiplication by ζi+1 is injective

on H
j(G,Mi) for j ≥ n1 + · · ·+ ni + i. �

14This terminology has nothing to do with the terminology of quasiregular sequences used
in [Matsumura 1989]. The definition in [Benson and Carlson 1994b] omits the condition on
H

∗(G, k)/(ζ1, . . . , ζr), but this condition turns out to be automatic, see Corollary 14.2.2.
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Corollary 14.2.2. If ζ1, . . . , ζr is a homogeneous system of parameters and

the condition for quasiregularity is satisfied for i = 0, . . . , r − 2, then it is also

satisfied for i = r− 1, and the quotient H
∗(G, k)/(ζ1, . . . , ζr) is zero in degree at

least n1 + · · ·+ nr.

Proof. H
j+r−1(G,Mr−1) = (H∗(G, k)/(ζ1, . . . , ζr−1))

j for j ≥ n1 + · · ·+nr−1.

Tensoring the sequence 0 → Lζr
→ Ωnrk

ζ̂r−→ k → 0 with Mr−1, and using

the fact that Mr−1 ⊗ Lζr
is projective, we see that ζr induces an isomorphism

ΩnrMr−1
∼= Mr−1, and hence an isomorphism on H

∗(G,Mr−1) in positive de-

grees. �

(14.3) To go further, we make use of the transfer map. If we choose the pa-

rameters to be the Dickson invariants (see § 7), then the restriction to each

elementary abelian p-subgroup E of rank r − 1 of the sequence ζ1, . . . , ζr−1 is a

homogeneous sequence of parameters in H
∗(E, k). It follows that VG(Mr−1) has

trivial intersection with the image of VE → VG for each such E. Theorem 1.5

of [Benson 1994/95] (see also Corollary 4.5 of [Carlson et al. 1998]) then shows

that Mr−2 ⊗ Lζr−1
= Mr−1 is projective relative to15 the set Hr of centralizers

CG(E) of elementary abelian p-subgroups E of rank r. So the sum of the trans-

fers from these subgroups gives a surjective map in cohomology. Furthermore,

the restrictions of ζ1, . . . , ζr to a subgroup in Hr form a regular sequence, by

Duflot’s theorem. Now examine the diagram

· · · // Hj+nr−1(G,Mr−1) // Hj(G,Mr−2)
ζr−1 // Hj+nr−1(G,Mr−2)

· · · //
M

H∈Hr

H
j+nr−1(H,Mr−1)

OO

//
M

H∈Hr

H
j(H,Mr−2)

OO

//ζr−1 //
M

H∈Hr

H
j+nr−1(H,Mr−2)

OO

where the vertical maps are given by
∑

H∈Hr
TrH,G. The map marked ζr−1 on

the bottom row is injective, and a diagram chase shows that the corresponding

map on the top row is therefore also injective. So ζr−1 is quasiregular. Finally,

the argument of the previous paragraph shows that the last parameter ζr is also

quasiregular. This completes the argument of Okuyama and Sasaki, proving

Conjecture 14.1.2 in the case where the depth and the Krull dimension differ by

at most two.

It looks as though the argument above ought to admit a modification which

makes it work inductively and prove the conjecture, but so far nobody has suc-

ceeded in doing this.

Carlson [1999; 2001] has developed some conjectures related to Conjecture

14.1.2, which allow a machine computation of group cohomology by computing

15A module M is said to be projective relative to a set of subgroups H of G if it is a
direct summand of a direct sum of modules induced from elements of H . This is equivalent to
the statement that the sum of the transfer maps TrH,G : EndkH(M) → EndkG(M) from the

subgroups H ∈ H is surjective. For further details, see [Benson 1991a, § 3.6].
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just a finite part at the beginning of a projective resolution. The usefulness of

the conjectures depends on the fact that during the course of the calculation for

a particular group, it is proved that the cohomology ring really does satisfy the

conjectures, so there is no uncertainty about the answer. Condition G of [Carlson

2001] is related to the existence of a quasiregular sequence, while Condition R of

that paper is a weak form of Conjecture 7.2.1. If the existence of a quasiregular

sequence could be verified a priori, then the computational method could be

guaranteed to work. This is explained in Theorem 14.5.2 below.

The cohomology of the groups of order 64 can be found in [Carlson ≥ 2004].

In the course of the computations, Conditions G and R of [Carlson 2001] were

verified for these groups.

(14.4) The existence of a quasiregular sequence in group cohomology can be

reformulated in terms of local cohomology as follows. If

H =
⊕

i≥0

H
i = k ⊕m

is a graded commutative ring with H
0 = k a field and m =

⊕
i>0 H

i, and M is

a graded H-module, we set

a
i
m(M) = max{n ∈ Z | H i,n

m (M) 6= 0}

(or a
i
m(M) = −∞ if H

i
m(M) = 0).

The following is proved in Corollary 3.7 of [Benson 2004].

Theorem 14.4.1. If G is a finite group and k is a field , then the following are

equivalent .

(i) There is a quasiregular sequence in H
∗(G, k),

(ii) Every filter-regular sequence of parameters in H
∗(G, k) is quasiregular ,

(iii) The Dickson invariants (see § 7) in H
∗(G, k) are quasiregular ,

(iv) For all i ≥ 0 we have a
i
m(H∗(G, k)) < 0.

(14.5) It is shown in [Benson 2004, § 5] that we can interpret the invariants a
i
m

in terms of resolutions. If R = k[ζ1, . . . , ζr] is a polynomial subring over which

H is finitely generated as a module, and M is a graded H-module, let

0→ Fr → · · · → F0 →M → 0

be a minimal resolution of M over R. We define β
R
j (M) to be the largest degree

of a generator of Fj as an R-module (or β
R
j (M) = −∞ if Fj = 0). Then we have

(14.5.1) max
j≥0
{aj

m(M)} = max
j≥0
{βR

j (M)−
∑r

i=1 |ζi|}.

This equation, together with Theorem 14.4.1, explains the relevance of the exis-

tence of quasiregular sequences to finding bounds for the degrees of generators
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and relations for the group cohomology. Better ways of bounding the degrees of

the relations can be found in [Carlson 2001] and in [Benson 2004].

Theorem 14.5.2. Let G be a finite group and k be a field . If ζ1, . . . , ζr is

a quasiregular sequence in H
∗(G, k), then all the generators for H

∗(G, k) have

degree at most
∑r

i=1 |ζi|, and the relations have degree at most 2(
∑r

i=1 |ζi|)− 2.

Proof. Set R = k[ζ1, . . . , ζr] as above. By Theorem 14.4.1, the existence of

a quasiregular sequence implies that a
j
m(H∗(G, k)) < 0 for all j ≥ 0. So by

equation (14.5.1), we have

β
R
j (H∗(G, k)) <

r∑

i=1

|ζi|

for all j ≥ 0. The numbers β
R
0 and β

R
1 are the largest degrees for generators

and relations respectively of H
∗(G, k) as an R-module. The ring generators

have degree at most max(βR
0 , |ζ1|, . . . , |ζr|). For the ring relations, we need the

R-module relations together with relations saying how the products of pairs of

R-module generators can be written as R-linear combinations of generators. �

(14.6) The Castelnuovo–Mumford regularity of a graded H-module M (see

[Eisenbud 1995, § 20.5], for example) is defined as

Reg M = max
j≥0
{aj

m(M) + j} = max
j≥0

{
β

R
j (M)− j −

r∑

i=1

(|ζi| − 1)

}
.

The second equality here is proved in [Benson 2004]. Usually the summation

term does not appear, because much of the literature on the subject assumes

that the graded ring H is generated over H
0 by elements of degree one; in this

context the above equality was proved in [Eisenbud and Goto 1984].

The “last survivor” described in [Benson and Carlson 1994b, Theorem 1.3]

and reinterpreted in terms of local cohomology in [Benson 2001, Theorem 4.1]

says that for a finite group G over a field k we have H
r,−r
m H

∗(G, k) 6= 0, so

that Reg H
∗(G, k) ≥ 0. One might strengthen Conjecture 14.1.2 to the following

statement, which has been checked for the 2-groups of order at most 64 using

Carlson’s calculations [≥ 2004].

Conjecture 14.6.1. If G is a finite group and k is a field then Reg H
∗(G, k) = 0.

This conjecture is equivalent to a strengthening of the bound given in the defi-

nition of a quasiregular sequence to j > n1 + · · ·+ ni− i. Pushing the argument

given in the proof of Proposition 14.2.1 to its limits, and using some subtle in-

formation about Ĥ
−1(G, k), one can translate this into a strengthening of the

module theoretic bounds given in that proposition to j > n1 + · · ·+ ni. For the

details, see [Benson 2004].

Example 14.6.2. Let G be the Sylow 2-subgroup of PSL(3, F4), of order 64 (this

is group number 183 in the Appendix). Then H
∗(G, F2) has Krull dimension four
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and depth two, with a
2
m = −3, a

3
m = −5 and a

4
m = −4. So the regularity is zero.

This is the only example of a 2-group of order at most 64 where H
r,−r
m H

∗(G, F2)

has dimension bigger than one; in this example it has dimension two.

(14.7) Conjecture 14.6.1 can be interpreted in terms of the Greenlees spectral

sequence (11.2.1). It says that the E2 page vanishes above the line s + t = 0.

Of course, this part of the E2 page dies by the time the E∞ page is reached,

in order for the spectral sequence to be able to converge to a negatively graded

target. In the above example, the extra dimension in H
4,−4
m has to be hit in the

spectral sequence by H
2,−3
m .

The conjecture can be generalized to compact Lie groups, virtual duality

groups and p-adic Lie groups as follows.

Conjecture 14.7.1. If G is a compact Lie group of dimension d and k is a field

then Reg H
∗(BG; ε) = −d. Here, ε is the orientation representation of (12.1.1).

Conjecture 14.7.2. If G is an orientable virtual Poincaré duality group of

dimension d over a field k then Reg H
∗(G, k) = d.

Conjecture 14.7.3. If G is a p-adic Lie group of dimension d then over Fp we

have Reg H
∗(G, ε) = d. Here, ε is the the orientation representation of (12.3.1).

As a nontrivial example, for the compact simply connected Lie group E6 of

dimension 78, the calculations of Kono and Mimura [1975] (see also [Benson and

Greenlees 1997a]) imply that H
∗(BE6; F2) has Krull dimension six and depth

five, with a
5
m = −90 and a

6
m = −84, so that Reg H

∗(BE6; F2) = −78.

Appendix: Two-Groups of Order 64 and Their mod 2

Cohomology

The table on the next page lists the Krull dimension of H
∗(G, F2), the depth

of H
∗(G, F2), and the rank of the center of G (see Duflot’s Theorem 6.2.1), for

each of the 2-groups G of order 64. The numbering of the groups follows that of

Hall and Senior [1964], who classified these groups. Underlined entries have

Krull dimension − depth = 2;

otherwise the difference is 1 or 0.

A separate table on page 45 gives the invariants a
i
m(H∗(G, F2)) defined in

(14.4), for the entries where the difference is 2, with the rows of the table arranged

in decreasing order of Krull dimension. Note that Duflot’s Theorem 6.2.1 implies

that a
0
m is always zero, so the tables begin with the entry a

1
m.

All this information has been extracted from [Carlson ≥ 2004].
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gp K d r gp K d r gp K d r gp K d r gp K d r gp K d r

001 6 6 6 046 3 3 2 091 4 3 3 136 2 2 2 181 3 1 1 226 3 2 2
002 5 5 5 047 4 3 3 092 3 3 3 137 2 2 1 182 2 1 1 227 2 2 2
003 4 4 4 048 3 3 3 093 3 3 3 138 3 2 2 183 4 2 2 228 3 2 2
004 4 4 4 049 3 3 3 094 4 2 2 139 2 2 2 184 4 3 2 229 3 2 2
005 3 3 3 050 3 3 3 095 3 2 2 140 2 2 2 185 3 2 2 230 3 2 2
006 3 3 3 051 3 3 2 096 3 3 2 141 2 2 2 186 3 2 2 231 3 2 2
007 3 3 3 052 3 2 2 097 3 2 2 142 2 2 1 187 2 2 2 232 3 2 2
008 2 2 2 053 3 3 2 098 3 2 2 143 2 1 1 188 3 3 2 233 2 2 2
009 2 2 2 054 3 2 2 099 3 2 2 144 4 4 3 189 3 2 2 234 3 2 2
010 2 2 2 055 3 3 2 100 3 2 2 145 3 3 3 190 2 2 2 235 2 2 2
011 1 1 1 056 3 2 2 101 2 2 2 146 4 3 3 191 2 2 2 236 2 2 2
012 5 5 4 057 2 2 2 102 3 2 2 147 4 3 3 192 2 2 2 237 3 3 2
013 4 4 4 058 2 2 1 103 4 4 2 148 4 3 3 193 3 2 2 238 3 2 2
014 4 4 3 059 3 3 3 104 3 3 2 149 3 3 3 194 2 2 2 239 3 2 2
015 5 4 4 060 3 2 2 105 3 3 1 150 4 3 3 195 3 3 2 240 2 2 2
016 4 4 4 061 3 2 2 106 4 3 2 151 4 3 3 196 3 2 2 241 3 3 1
017 4 3 3 062 3 2 2 107 3 3 2 152 3 3 3 197 3 2 2 242 3 2 1
018 4 4 3 063 2 2 2 108 3 2 2 153 3 3 3 198 3 2 2 243 2 2 1
019 3 3 3 064 2 2 2 109 3 2 1 154 4 4 2 199 2 2 2 244 3 2 1
020 4 3 3 065 2 2 2 110 4 3 2 155 3 3 2 200 3 2 2 245 2 1 1
021 3 3 2 066 2 2 1 111 3 2 2 156 2 2 2 201 4 3 2 246 2 1 1
022 4 4 4 067 2 1 1 112 3 2 1 157 4 3 2 202 4 2 2 247 3 1 1
023 3 3 3 068 5 4 3 113 4 2 2 158 3 3 2 203 3 3 2 248 2 2 1
024 4 3 3 069 4 4 3 114 3 3 2 159 3 3 2 204 3 2 2 249 2 1 1
025 3 3 3 070 3 3 3 115 3 2 2 160 3 3 2 205 3 3 2 250 4 2 1
026 3 2 2 071 4 4 3 116 3 2 2 161 3 2 2 206 3 2 2 251 3 1 1
027 3 3 2 072 4 3 3 117 3 3 2 162 2 2 2 207 3 2 2 252 3 2 1
028 4 3 3 073 4 3 3 118 3 2 2 163 4 2 2 208 3 2 2 253 3 1 1
029 3 3 3 074 4 3 3 119 2 2 2 164 3 3 2 209 3 2 2 254 3 1 1
030 3 3 3 075 3 3 3 120 3 2 1 165 3 2 2 210 2 2 2 255 2 1 1
031 3 2 2 076 4 3 3 121 3 1 1 166 3 2 2 211 2 2 2 256 3 2 1
032 3 2 2 077 4 3 2 122 2 2 1 167 3 2 2 212 2 2 2 257 3 1 1
033 3 2 2 078 3 3 2 123 4 3 2 168 3 2 2 213 3 2 2 258 2 1 1
034 3 3 2 079 3 2 2 124 4 2 2 169 4 3 2 214 3 2 2 259 4 3 1
035 2 2 2 080 3 2 2 125 3 2 2 170 4 3 2 215 3 2 2 260 3 2 1
036 2 2 1 081 5 3 3 126 3 2 1 171 3 3 2 216 3 2 2 261 3 3 1
037 3 3 3 082 3 3 3 127 3 2 1 172 3 2 2 217 3 3 2 262 3 1 1
038 2 2 2 083 4 3 3 128 4 3 2 173 4 2 2 218 3 2 2 263 3 2 1
039 2 2 2 084 4 4 3 129 3 2 2 174 3 2 2 219 3 2 2 264 2 2 1
040 3 2 2 085 4 3 3 130 3 1 1 175 4 2 2 220 3 2 2 265 2 2 1
041 2 2 2 086 4 3 3 131 4 2 2 176 3 3 2 221 3 2 2 266 2 1 1
042 2 1 1 087 3 3 3 132 3 2 2 177 3 2 2 222 2 2 2 267 1 1 1
043 4 4 3 088 3 3 3 133 3 1 1 178 3 2 2 223 3 2 2
044 4 3 3 089 4 3 3 134 3 3 2 179 3 2 2 224 3 2 2
045 3 3 3 090 3 3 3 135 3 2 2 180 3 1 1 225 3 2 2

Table 1. For each 2-group G of order 64, identified by its number in the notation
of [Hall and Senior 1964], we give the Krull dimension K of H∗(G, F2), the
depth d of H∗(G, F2), and the rank r of the center of G. Underlined entries
have K − d = 2. Data taken from [Carlson ≥ 2004].
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Group a
1
m a

2
m a

3
m a

4
m a

5
m

081 −∞ −∞ −5 −5 −5

094 −∞ −4 −4 −4

113 −∞ −4 −4 −4

124 −∞ −4 −4 −4

131 −∞ −5 −4 −4

163 −∞ −5 −4 −4

173 −∞ −5 −4 −4

175 −∞ −5 −4 −4

183 −∞ −3 −5 −4

202 −∞ −4 −4 −4

250 −∞ −5 −4 −4

Group a
1
m a

2
m a

3
m

121 −5 −3 −3

130 −5 −3 −3

133 −5 −3 −3

180 −5 −3 −3

181 −5 −3 −3

247 −3 −3 −3

251 −4 −3 −3

253 −5 −3 −3

254 −4 −3 −3

257 −5 −3 −3

262 −5 −3 −3

Table 2. Invariants ai
m(H∗(G, F2)) defined in (14.4), for the underlined entries

of Table 1.
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[Carlson 2001] J. F. Carlson, “Calculating group cohomology: tests for completion”, J.

Symbolic Comput. 31:1-2 (2001), 229–242.

[Carlson ≥ 2004] J. F. Carlson, “Cohomology of 2-groups of order ≤ 64”. Available
at http://www.math.uga.edu/˜jfc/groups/cohomology.html. These tables will be
published in Cohomology rings of finite groups, by J. F. Carlson and L. Townsley.

[Carlson et al. 1998] J. F. Carlson, C. Peng, and W. W. Wheeler, “Transfer maps and
virtual projectivity”, J. Algebra 204:1 (1998), 286–311.

[Cartan and Eilenberg 1956] H. Cartan and S. Eilenberg, Homological algebra, Prince-
ton University Press, Princeton, NJ, 1956.

[Dickson 1911] L. E. Dickson, “A fundamental system of invariants of the general
modular linear group with a solution of the form problem”, Trans. Amer. Math.

Soc. 12 (1911), 75–98.



48 DAVE BENSON

[Duflot 1981] J. Duflot, “Depth and equivariant cohomology”, Comment. Math. Helv.

56:4 (1981), 627–637.

[Dwyer and Wilkerson 1994] W. G. Dwyer and C. W. Wilkerson, “Homotopy fixed-
point methods for Lie groups and finite loop spaces”, Ann. of Math. (2) 139:2 (1994),
395–442.

[Dwyer et al. 2002] W. G. Dwyer, J. P. C. Greenlees, and S. Iyengar, “Duality in
algebra and topology”, Preprint, University of Notre Dame, 2002. Available at
http://www.nd.edu/˜wgd.

[Eisenbud 1995] D. Eisenbud, Commutative algebra, with a view toward algebraic

geometry, Graduate Texts in Mathematics 150, Springer, New York, 1995.

[Eisenbud and Goto 1984] D. Eisenbud and S. Goto, “Linear free resolutions and
minimal multiplicity”, J. Algebra 88:1 (1984), 89–133.

[Elmendorf et al. 1997] A. D. Elmendorf, I. Kř́ıž, M. A. Mandell, and J. P. May,
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Introduction

The available accounts of group algebras and group cohomology [Benson

1991a; 1991b; Brown 1982; Evens 1991] are all written for the mathematician

on the street. This one is written for commutative algebraists by one of their

own. There is a point to such an exercise: though group algebras are typically

noncommutative, module theory over them shares many properties with that

over commutative rings. Thus, an exposition that draws on these parallels could

benefit an algebraist familiar with the commutative world. However, such an

endeavour is not without its pitfalls, for often there are subtle differences be-

tween the two situations. I have tried to draw attention to similarities and to
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discrepancies between the two subjects in a series of commentaries on the text

that appear under the rubric Ramble1.

The approach I have adopted toward group cohomology is entirely algebraic.

However, one cannot go too far into it without some familiarity with algebraic

topology. To gain an appreciation of the connections between these two subjects,

and for a history of group cohomology, one might read [Benson and Kropholler

1995; Mac Lane 1978].

In preparing this article, I had the good fortune of having innumerable ‘chalk-

and-board’ conversations with Lucho Avramov and Dave Benson. My thanks to

them for all these, and to the Mathematical Sciences Research Institute for giving

me an opportunity to share a roof with them, and many others, during the Spring

of 2003. It is also a pleasure to thank Kasper Andersen, Graham Leuschke, and

Claudia Miller for their remarks and suggestions.

1. The Group Algebra

Let G be a group, with identity element 1, and let k be a field. Much of

what is said in this section is valid, with suitable modifications, more generally

when k is a commutative ring. Let k[G] denote the k-vector space with basis

the elements of G; thus k[G] =
⊕

g∈G kg. The product on G extends to an

associative multiplication on k[G]: for basis elements g and h, one has g ·h = gh,

where the product on the right is taken in G, while the product of arbitrary

elements is specified by the distributive law and the rule a · g = g · a for a ∈ k.

The identity element 1 is the identity in k[G]. The k-linear ring homomorphism

η : k → k[G] with η(1) = 1 makes k[G] a k-algebra. This is the group algebra of

G with coefficients in k.

Note that k[G] is commutative if and only if the group G is abelian. Moreover,

it is finite-dimensional as a k-vector space precisely when G is finite.

An important part of the structure on k[G] is the augmentation of k-algebras

ε : k[G] → k defined by ε(g) = 1 for each g ∈ G. Through ε one can view k as

a k[G]-bimodule. The kernel of ε, denoted I(G), is the k-subspace of k[G] with

basis {g−1 | g ∈ G}; it is a two-sided ideal, called the augmentation ideal of G.

For every pair of elements g, h in G, the following relations hold in the group

algebra:

g
−1 − 1 = g

−1(1− g),

gh− 1 = g(h− 1) + (g − 1) = (g − 1)h + (h− 1).

Thus, if a subset {gλ}λ∈Λ of G, with Λ an index set, generates the group, the

subset {gλ−1}λ∈Λ of k[G] generates I(G) both as a left ideal and as a right ideal.

1This word has at least two meanings: “a leisurely walk”, or “to talk or write in a discursive,
aimless way”; you can decide which applies. By the by, its etymology, at least according to
www.dictionary.com, might amuse you.
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(1.1) Functoriality. The construction of the group algebra is functorial: given

a group homomorphism ϕ : G1 → G2, the k-linear map

k[ϕ] : k[G1]→ k[G2], where g 7→ ϕ(g),

is a homomorphism of k-algebras, compatible with augmentations. Its kernel is

generated both as a left ideal and as a right ideal by the set {g− 1 | g ∈ Kerϕ}.
For example, when N is a normal subgroup of a group G, the canonical

surjection G→ G/N induces the surjection of k-algebras k[G]→ k[G/N ]. Since

its kernel is generated by the set {n−1 | n ∈ N}, there is a natural isomorphism

of k-algebras

k[G/N ] ∼= k ⊗k[N ] k[G] =
k[G]

I(N)k[G]
.

Let me illustrate these ideas on a few simple examples.

(1.2) Cyclic groups. The group algebra of the infinite cyclic group is k[x±1],

the algebra of Laurent polynomials in the variable x. Here x is a generator of the

group; its inverse is x
−1. The augmentation maps x to 1, and the augmentation

ideal is generated, as an ideal, by x− 1.

In view of (1.1), the group algebra of the cyclic group of order d is k[x]/(xd−1),

and the augmentation ideal is again generated by x− 1.

(1.3) Products of groups. Let G1 and G2 be groups. By (1.1), for n = 1, 2

the canonical inclusions ιn : Gn → G1×G2 induce homomorphisms of k-algebras

k[ιn] : k[Gn] → k[G1 × G2]. Since the elements in the image of k[ι1] commute

with those in the image of k[ι2], one obtains a homomorphism of augmented

k-algebras

k[G1]⊗k k[G2]→ k[G1 ×G2],

g1 ⊗k g2 7→ (g1, g2).

This is an isomorphism since it maps the basis {g1⊗kg2 | gi ∈ Gi} of the k-vector

space k[G1]⊗kk[G2] bijectively to the basis {(g1, g2) | gi ∈ Gi} of k[G1×G2]. For

this reason, the group algebra of G1×G2 is usually identified with k[G1]⊗kk[G2].

(1.4) Abelian groups. Let G be a finitely generated abelian group. The struc-

ture theorem for such groups tells us that there are nonnegative numbers n and

d1, . . . , dm, with dj ≥ 2 and di+1 |di, such that

G = Zn ⊕ Z

(d1Z)
⊕ · · · ⊕ Z

(dmZ)
.

The description of the group algebra of cyclic groups given in (1.2), in conjunction

with the discussion in (1.3), yields

k[G] =
k[x±1

1 , . . . , x
±1
n , y1, . . . , ym]

(yd1

1 −1, . . . , y
dm
m −1)
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The augmentation is given by xi 7→ 1 and yj 7→ 1, the augmentation ideal is

generated by {x1−1, . . . , xn−1, y1−1, . . . , ym−1}.

Ramble. Observe: the group algebra in (1.4) above is a complete intersection.

(1.5) Finite p-groups. Let R be a ring; it need not be commutative. Recall

that the intersection of all its left maximal ideals is equal to the intersection of

all its right maximal ideals, and called the Jacobson radical of R. Thus, R has a

unique left maximal ideal exactly when it has a unique right maximal ideal, and

then these ideals coincide. In this case, one says that R is local ; note that the

corresponding residue ring is a division ring; for details see [Lang 2002, XVII § 6],

for example.

Suppose that the characteristic of k is p, with p ≥ 2. Let G be a finite p-group,

so that the order of G is a power of p. I claim:

The group algebra k[G] is local with maximal ideal I(G).

Indeed, it suffices to prove (and the claim is equivalent to): the augmentation

ideal I(G) is nilpotent. Now, since G is a p-group, its centre Z is nontrivial, so

(1.1) yields an isomorphism of k-algebras

k[G]

I(Z)k[G]
∼= k[G/Z].

Since the order of G/Z is strictly less than that of G, one can assume that I(G/Z)

is nilpotent. By the isomorphism above, this entails I(G)
n ⊆ I(Z)k[G], for some

positive integer n. Now Z is an abelian p-group, so I(Z) is nilpotent, by (1.4).

Since I(Z) is in the centre of k[G], one obtains that I(G) is nilpotent, as claimed.

The converse also holds:

(1.6) Exercise. Let G be a finite group and p the characteristic of k. Prove

that if the ring k[G] is local, then G is a p-group. (Hint: k[G] has finite rank

over k, so its nilradical is equal to its Jacobson radical.)

(1.7) The diagonal map. Let G be a group and let G→ G×G be the diagonal

homomorphism, given by g 7→ (g, g). Following (1.3), one identifies the group

ring of G×G with k[G]⊗k k[G], and then the diagonal homomorphism induces

a homomorphism of augmented k-algebras

∆: k[G]→ k[G]⊗k k[G], where g 7→ g ⊗k g.

This is called the diagonal homomorphism, or coproduct, of the group algebra

k[G].

There is another piece of structure on the group algebra: the map G → G

given by g 7→ g
−1 is an anti-isomorphism of groups, and hence induces an anti-

isomorphism of group algebras

σ : k[G]→ k[G],
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that is to say, σ is an isomorphism of additive groups with σ(rs) = σ(s)σ(r).

The map σ is referred to as the antipode of the group algebra. It commutes with

the diagonal map, in the sense that

σ
(G×G) ◦∆G = ∆G ◦ σ

G
.

Here are the salient properties of the diagonal and the antipode:

(a) ∆ is a homomorphism of augmented k-algebras;

(b) ∆ is co-associative, in that the following diagram commutes:

k[G]
∆ //

∆

��

k[G]⊗k k[G]

∆⊗k1

��
k[G]⊗k k[G]

1⊗k∆ // k[G]⊗k k[G]⊗k k[G]

(c) The following diagram commutes:

k[G]

∼=

vvmmmmmmmmmmmmmm

∆

��

∼=

((QQQQQQQQQQQQQQ

k ⊗k k[G] oo ε⊗k1
k[G]⊗k k[G] k[G]⊗k k//1⊗kε

This property is paraphrased as: ε is a co-unit for ∆.

(d) For each element r ∈ k[G], if ∆(r) =
∑n

i=1(r
′
i ⊗k r

′′
i ), then

n∑

i=1

σ(r′i)r
′′
i = η(ε(r)) =

n∑

i=1

r
′
iσ(r′′i )

Taking these properties as the starting point, one arrives at the following notion.

(1.8) Hopf algebras. An augmented k-algebra H, with unit η : k → H and

augmentation ε : H → k with k-linear homomorphisms ∆: H → H ⊗k H and

σ : H → H satisfying conditions (a)–(d) listed above, is said to be a Hopf algebra.

Among these, (b) and (c) are the defining properties of a coalgebra with diag-

onal ∆; see [Montgomery 1993] or [Sweedler 1969]. Property (a) says that the

algebra and coalgebra structures are compatible. At first —and perhaps second

and third—glance, property (d) appears mysterious. Here is one explanation

that appeals to me: The diagonal homomorphism endows the k-vector space

Homk(H,H) with the structure of a k-algebra, with the product of elements f

and g given by

(f ? g)(r) =

n∑

i=1

f(r′i)g(r′′i ), where ∆(r) =

n∑

i=1

(r′i ⊗k r
′′
i ).

This is called the convolution product on Homk(H,H); its unit is the element

η ◦ ε. Condition (d) asserts that σ is the inverse of the identity on H.
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The group algebra is the prototypical example of a Hopf algebra, and many

constructions and results pertaining to them are best viewed in that generality;

see [Benson 1991a, Chapter 3]. There is another good source of Hopf algebras,

close to home: the coordinate rings of algebraic groups. You might, as I did,

find it entertaining and illuminating to write down the Hopf structure on the

coordinate ring of the circle x
2 + y

2 = 1.

If this all too brief foray into Hopf algebras has piqued your curiosity and you

wish to know more, you could start by reading Bergman’s charming introduc-

tion [Bergman 1985]; if you prefer to jump right into the thick of things, then

[Montgomery 1993] is the one for you.

2. Modules over Group Algebras

This section is an introduction to modules over group algebras. When G is

a finite group, the k-algebra k[G] is finite-dimensional, that is to say, of finite

rank over k. Much of the basic theory for modules over finite group algebras is

just a specialization of the theory for finite-dimensional algebras. For example,

I hinted in Exercise (1.6) that for finite group algebras, the nilradical coincides

with the Jacobson radical; this holds, more generally, for any finite-dimensional

k-algebra. Here I will focus on two crucial concepts: the Jordan–Hölder theorem

and the Krull–Schmidt property.

(2.1) The Jordan–Hölder theorem. Let R be a ring and M an R-module. It is

clear that when M is both artinian and noetherian it has a composition series: a

series of submodules 0 = Ml ⊂ Ml−1 ⊂ · · · ⊂ M1 ⊂ M0 = M with the property

that the subfactors Mi/Mi+1 are simple, that is to say, they have no proper

submodules. It turns out that if 0 = M
′
l′ ⊂ M

′
l′−1 ⊂ · · · ⊂ M

′
1 ⊂ M

′
0 = M

is another composition series, then l = l
′ and, for 1 ≤ i, j ≤ l, the factors

Mi/Mi−1 are a permutation of the factors M
′
j/M

′
j−1. This is a consequence of

the Jordan–Hölder theorem, which says that for each R-module, any two series

(not necessarily composition series) of submodules can be refined to series of the

same length and with the same subfactors.

Suppose that R is artinian; for example, R may be a finite-dimensional k-

algebra, or, more specifically, a finite group algebra. In this case every finite, by

which I mean ‘finitely generated’, module over it is both artinian and noetherian

and so has a composition series. Here is one consequence: since every simple

module is a quotient of R, all the simple modules appear in a composition series

for R, and so there can only be finitely many of them.

(2.2) Indecomposable modules. Recall that a module is said to be indecom-

posable if it has no nontrivial direct summands. It is clear that a simple module

is indecomposable, but an indecomposable module may be far from simple — in

either sense of the word. For example, over a commutative ring, the only simple

modules are the residue fields, whereas it is usually not possible to classify all
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the indecomposable modules; I will pick up on this point a few paragraphs down

the road. For now, here are a couple of remarks that are useful to keep in mind

when dealing with indecomposability; see the discussion in (2.10).

In this sequel, when I say (R,m, k) is a local ring, I mean that R is local, with

maximal ideal m and residue ring k.

(2.3) Exercise. Let (R,m, k) be a commutative local ring. Prove that if M is

indecomposable, then socle(M) ⊆ mM .

(2.4) Exercise. Let R be a commutative local Gorenstein ring and M an

indecomposable R-module. Prove that if socle(R) ·M 6= 0, then M ∼= R.

(2.5) The Krull–Schmidt property. Let R be a ring. It is not hard to see that

each finite R-module can be broken down into a finite direct sum of indecompos-

ables. The ring R has the Krull–Schmidt property if for each finite R-module such

a decomposition is unique up to a permutation of the indecomposable factors: if

m⊕

i=1

Mi
∼=

n⊕

j=1

Nj ,

with each Mi and Nj indecomposable, then m = n, and, with a possible re-

arrangement of the Nj , one has Mi
∼= Ni for each i.

For example, complete commutative noetherian local rings have this property;

see [Swan 1968, (2.22)]. In the present context, the relevant result is that artinian

rings have the Krull–Schmidt property [Benson 1991a, (1.4.6)]. When G is a

finite group, k[G] is artinian; in particular, it has the Krull–Schmidt property.

The Krull–Schmidt property is of great help in studying modules over group

algebras, for it allows one to focus on the indecomposables. The natural question

arises: when does the group algebra have only finitely many isomorphism classes

of indecomposable modules? In other words, when is the group algebra of finite

representation type? This is the case, for example, when every indecomposable

module is simple, for there are only finitely many of them; see (2.1). There is an

important context when this happens: when the characteristic of k is coprime

to the order of the group. This is a consequence of Maschke’s Theorem:

(2.6) Theorem (Maschke). Let G be a finite group such that |G| is coprime

to the the characteristic of k. Each short exact sequence of k[G]-modules splits.

Proof. Let 0 → L → M
π−→ N → 0 be an exact sequence of k[G]-modules.

Since k is a field, π admits a k-linear section; let σ : N → M be one such. It is

not hard to verify that the map

σ̃ : N →M, where σ̃(n) =
1

|G|
∑

g∈G

gσ(g−1
n) for all n ∈ N,

is k[G]-linear, and that π ◦ σ̃ = idN . Thus, the exact sequence splits, as desired.

�
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This theorem has a perfect converse: if each short exact sequence of k[G]-modules

splits, the characteristic of k is coprime to |G|. In fact, it suffices that the exact

sequence 0 → I(G) → k[G]
ε−→ k → 0 splits. The proof is elementary, and is

recommended as an exercise; I will offer a solution in the proof of Theorem (3.1).

A group algebra can have finite representation type even if not every inde-

composable module is simple:

(2.7) Finite cyclic groups. In describing this example, it is convenient to let p

denote 1 when the characteristic of k is 0, and the characteristic of k otherwise.

Let G be a finite cyclic group. Write |G| as p
n
q, where n is a nonnegative

integer and p and q are coprime. Let R = k[x]/(xpnq − 1), the group algebra.

The binomial theorem in characteristic p yields x
pnq − 1 = (xq − 1)pn

, so the

Jacobson radical of R is (xq − 1). In k[x], the polynomial x
q − 1 breaks up into

a product of distinct irreducible polynomials:

x
q − 1 =

d∏

i=1

fi(x), with

d∑

i=1

deg(fi(x)) = q.

Since the ideals (fi(x)pn

), where 1 ≤ i ≤ d, in k[x] are pairwise comaximal, the

Chinese Remainder Theorem yields

R ∼=
d∏

i=1

Ri, where Ri =
k[x]

(fi(x)pn
)
.

This implies that each R-module M decomposes uniquely as M =
⊕d

i=1 Mi,

where Mi is an Ri-module. Furthermore, it is easy to see that Ri/(fi(x)s), for

1 ≤ s ≤ p
n, is a complete list of indecomposable modules over Ri, and that

each Mi has a unique decomposition into a direct sum of such modules. This is

exactly as predicted by the Krull–Schmidt theory. The upshot is that we know

‘everything’ about the modules over the group algebras of finite cyclic groups.

All this is subsumed in the structure theory of modules over principal ideal

rings. By the by, the finite cyclic groups are the source of group algebras of

finite representation type, in the following sense; see [Benson 1991a, (4.4)] for

the appropriate references.

(2.8) Theorem. If k is an infinite field of characteristic p and G a finite

group, then k[G] has finite representation type exactly when G has cyclic Sylow

p-subgroups. �

In some cases of infinite representation type, it is still possible to classify all

the indecomposable modules. The Klein group is one such. Let me give you a

flavour of the modules that arise over its group algebra. For the calculations, it

is helpful to recall a result on syzygies of indecomposable modules.

(2.9) Let (R,m, k) be a commutative artinian local ring and E the injective

hull of the R-module k. Let M be a finite R-module. Write Ω1
M for the first
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syzygy of M , and Ω−1
M for the first co-syzygy of M . These are defined by exact

sequences

(†) 0→ Ω1
M → R

b →M → 0 and 0→M → E
c → Ω−1

M → 0,

with b = rankk(M/mM) and c = rankk socle(M).

The conclusion of the following exercise is valid for the syzygy module even

when R is a Gorenstein ring of higher (Krull) dimension, as long as M is also

maximal Cohen–Macaulay; this was first proved by J. Herzog [1978].

Exercise. Assume that R is Gorenstein. Prove that when M is indecomposable,

so are Ω1
M and Ω−1

M .

I cannot resist giving a sketch of the argument: Suppose Ω1
M = U ⊕V , with U

and V nonzero. Since R is self-injective, neither U nor V can be free: if U is free,

then it is injective and hence splits from R
b in the exact sequence (†) above, and

that cannot happen. Now, HomR(−, R) applied to (†) yields an exact sequence

0→M
∗ → R

b → U
∗ ⊕ V

∗ → 0.

This presents M
∗ as the first syzygy of U

∗ ⊕ V
∗ (why?); that is,

M
∗ = Ω1(U∗ ⊕ V

∗) = Ω1(U∗)⊕ Ω1(V ∗).

Note that the modules Ω1(U∗) and Ω1(V ∗) are nonzero: if Ω1(U∗) = 0, then

pdimR(U∗) is finite, so U
∗ is free, and hence U is free, a contradiction. It follows

that the same is true even after we dualize them. Applying HomR(−, R) to the

equality above gives us

M
∗∗ = Ω1(U∗)∗ ⊕Ω1(V ∗)∗

Since M ∼= (M∗)∗, one obtains that M is indecomposable.

Now we turn to indecomposable modules over the Klein group.

(2.10) The Klein group. Let k be a field of characteristic 2 and let G be

Z2 × Z2, the Klein group. Let R denote its group algebra over k, so R =

k[y1, y2]/(y2
2−1, y

2
2−1).

This k-algebra looks more familiar once we change variables: setting xi =

yi − 1 one sees that R = k[x1, x2]/(x2
1, x

2
2); a local zero dimensional complete

intersection with maximal ideal m = (x1, x2). Note that R is Gorenstein, so

R ∼= Homk(R, k) and, for any R-module M , one has M
∗ ∼= Homk(M,k), where

(−)∗ = HomR(M,R). I will use these remarks without ado.

For each positive integer n, let Mn denote Ωn(k), the n-th syzygy of k. I claim

that in the infinite family {. . . ,M2,M1, k, (M1)
∗
, (M2)

∗
, . . . } no two modules are

isomorphic and that each is indecomposable.

Indeed, a repeated application of Exercise (2.9) yields that each Mn is inde-

composable, and hence also that (Mn)∗ is indecomposable, since (Mn)∗∗ ∼= Mn.



60 SRIKANTH IYENGAR

As to the remaining assertion: for i = 1, 2, let Ri = k[xi]/(x2
i ). The minimal

Ri-free resolution of k is

Fi = · · · xi−→ Ri
xi−→ Ri

xi−→ Ri → 0

Since R = R1 ⊗k R2, the complex of R-modules F1 ⊗k F2 is the minimal free

resolution of the R-module k. It follows that the n-th Betti number of k is n+1.

Thus, for any positive integer n, the n-th syzygy Mn of k is defined by an exact

sequence

(†) 0→Mn → R
n ∂n−1−−−→ R

n−1 → · · · → R
2 ∂1−→ R→ k → 0,

with ∂i(R
i+1) ⊆ mR

i for each i. It follows that rankk Mn = 2n + 1, and hence

also that rankk (Mn)∗ = 2n + 1. Therefore, to settle the claim that the modules

in question are all distinct, it remains to verify that the R-modules Mn and

(Mn)∗ are not isomorphic. These modules appear in exact sequences

0→Mn → R
n ∂n−1−−−→ R

n−1 and 0→ (Mn)∗ → R
n+1 ∂∗

n+1−−−→ R
n+2

.

The one on the right is obtained from

R
n+2 ∂n+1−−−→ R

n+1 →Mn → 0,

keeping in mind that R
∗ ∼= R. Since ∂n−1(R

n) ⊆ mR
n−1 and ∂

∗
n+1(R

n+1) ⊆
mR

n+2, the desired conclusion is a consequence of:

Exercise. Let (R,m, k) be a local ring. If 0 → K → R
b f−→ R

c is an exact

sequence of R-modules with f(Rb) ⊆ mR
c, then

socle(K) = socle(Rb) = socle(R)b
.

This completes the justification that the given family consists of nonisomor-

phic indecomposables. In this process we found that rankk Mn = 2n + 1 =

rankk (Mn)∗. It turns out that the Mn, their k-duals, and k are the only in-

decomposables of odd rank; here is a sketch of the proof. Exercise: fill in the

details.

Let M be an indecomposable R-module with rankk M = 2n + 1 for some

integer n. In particular, M 6∼= R, and so Exercise (2.4) tells us that (xy)M = 0,

so m2
M = 0 and hence mM ⊆ socle(M); the opposite inclusion also holds,

by Exercise (2.3), hence mM = socle(M). Thus, one has an exact sequence of

R-modules

0→ socle(M)→M →M/mM → 0

Now we use Exercise (2.9); in the notation there, from the exact sequence above

one deduces that either b ≤ n or c ≤ n. In the former case rankk(Ω1
M) ≤ 2n−1

and in the latter rankk(Ω−1
M) ≤ 2n − 1. In any case, the ranks of Ω1

M and
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Ω−1
M are odd. Now an induction on rank yields that M belongs to the family

of indecomposable R-modules that we have already constructed.

At this point, we know all the indecomposable R-modules of odd rank. The

ones of even rank are harder to deal with. To get an idea of what goes on here,

solve:

Exercise. Prove that every rank 2 indecomposable R-module is isomorphic to

a member of the family of cyclic R-modules

V(α1,α2) =
R

(α1x1 + α2x2, xy)
, where (α1, α2) 6= (0, 0).

Moreover, V(α1,α2)
∼= V(β1,β2) if and only if (α1, α2) and(β1, β2) are proportional.

Thus, the nonisomorphic indecomposable R-modules of rank 2 are parametrized

by the projective line over k; it turns out that this is the case in any even rank,

at least when k is algebraically closed. This classification of the indecomposable

modules over the Klein group goes back to Kronecker; see [Alperin 1986] or

[Benson 1991a, (4.3)] for a modern treatment.

This discussion shows that while the group algebra of Z2×Z2 in characteristic 2

is not of finite type, in any given rank all but finitely many of its indecomposable

modules are contained in a one-parameter family. More generally, by allowing

for finitely many one-parameter families in each rank, one obtains the notion

of a tame algebra. Tame group algebras k[G] are completely classified: the

characteristic of k is 2, and the Sylow 2-subgroups of G are isomorphic to one of

the following groups: Klein, dihedral, semidihedral, or generalized quaternion.

See [Benson 1991a, (4.4.4)]. The significance of this result lies in that every

finite-dimensional k-algebra that is neither of finite type nor tame is wild, which

implies that the set of isomorphism classes of its finite-rank indecomposable

modules contains representatives of the indecomposable modules over a tensor

algebra in two variables.

Ramble. There is a significant parallel between module theory over finite group

algebras and over artinian commutative Gorenstein rings; see the discussion

around Theorem (3.6). In fact, this parallel extends to the category of maximal

Cohen–Macaulay modules over commutative complete local Gorenstein rings.

For example, analogous to Theorem (2.8), among this class of rings those of

finite Cohen–Macaulay type (which means that there are only finitely many iso-

morphism classes of indecomposable maximal Cohen–Macaulay modules) have

been completely classified, at least when the ring contains a field. A systematic

exposition of this result can be found in [Yoshino 1990]. The next order of com-

plexity beyond finite Cohen–Macaulay type is bounded Cohen–Macaulay type,

which is a topic of current research: see [Leuschke and Wiegand ≥ 2004].

The rest of this section describes a few basic constructions, like tensor products

and homomorphisms, involving modules over group algebras.
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(2.11) Conjugation. Over a noncommutative ring, the category of left modules

can be drastically different from that of right modules. For example, there exist

rings over which every left module has a finite projective resolution, but not

every right module does. Thus, in general, one has to be very careful vis-à-vis

left and right module structures.

However, in the case of group algebras, each left module can be endowed with

a natural structure of a right module, and vice versa. More precisely, if M is

a left k[G]-module, then the k-vector space underlying M may be viewed as a

right k[G]-module by setting

m · g = g
−1

m for each g ∈ G and m ∈M.

For this reason, when dealing with modules over group algebras, one can afford to

be lax about whether they are left modules or right modules. This also means,

for instance, that a left module is projective (or injective) if and only if the

corresponding right module has the same property.

This is similar to the situation over commutative rings: each left module N

over a commutative ring R is a right module with multiplication

n · r = rn for each r ∈ R and n ∈ N.

There is an important distinction between the two situations: over R, the

module N becomes an R-bimodule with right module structure as above. How-

ever, over k[G], the module M with prescribed right module structure is not a

bimodule.

(2.12) Tensor products. Over an arbitrary ring, one cannot define the tensor

product of two left modules. However, if M and N are two left modules over a

group algebra k[G], one can view M as a right module via conjugation (2.11) and

make sense of M ⊗k[G] N . But then this tensor product is not a k[G]-module,

because M and N are not bimodules. In this respect, the group ring behaves

like any old ring.

There is another tensor product construction, a lot more important when

dealing with group algebras than the one above, that gives us back a k[G]-

module. To describe it, we return briefly to the world of arbitrary k-algebras.

Let R and S be k-algebras and let M and N be (left) modules over R and S,

respectively. There is a natural left (R⊗k S)-module structure on M ⊗k N with

(r ⊗k s) · (m⊗k n) = rm⊗k sn.

Now let M and N be left k[G]-modules. The preceding recipe provides an

action of k[G] ⊗k k[G] on M ⊗k N . This restricts, via the diagonal map (1.7),

to a left k[G]-module structure on M ⊗k N . Going through the definitions one

finds that

g · (m⊗k n) = gm⊗k gn,
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for all g ∈ G, m ∈M and n ∈ N . It is worth remarking that the ‘twisting’ map

M ⊗k N
∼=−→ N ⊗k M,

(m⊗k n) 7→ (n⊗k m),

which is bijective, is k[G]-linear.

Ramble. To a commutative algebraist, the tensor product M ⊗k N has an un-

settling feature: it is taken over k, rather than over k[G]. However, bear in mind

that the k[G]-module structure on M ⊗k N uses the diagonal homomorphism.

The other possibilities, namely acquiring the structure from M or from N , don’t

give us anything nearly as useful. For instance, M⊗k N viewed as a k[G]-module

via its left-hand factor is just a direct sum of copies of M .

(2.13) Homomorphisms. Let M and N be left k[G]-modules. One can then

consider Homk[G](M,N), the k-vector space of k[G]-linear maps from M to N .

Like the tensor product over k[G], this is not, in general, a k[G]-module. Note

that since the k[G]-module k is cyclic with annihilator I(G), and I(G) is generated

as an ideal by elements g − 1, one has

Homk[G](k,M) = {m ∈M | gm = m}.

The k-subspace on the right is of course M
G, the set of G-invariant elements

in M .

As with M ⊗k N , one can endow the k-vector space Homk(M,N) with a

canonical left k[G]-structure. This is given by the following prescription: for

each g ∈ G, α ∈ Homk(M,N), and m ∈M , one has

(g · α)(m) = gα(g−1
m).

In particular, g · α = α if and only if α(gm) = gα(m); that is to say,

Homk[G](M,N) = Homk(M,N)
G

.

Thus the homomorphisms functor Homk[G](M,N) is recovered as the k-subspace

of G-invariant elements in Homk(M,N). This identification leads to the following

Hom-Tensor adjunction formula:

Homk[G](L⊗k M,N) ∼= Homk[G](L,Homk(M,N)).

This avatar of Hom-Tensor adjunction is very useful in the study of modules

over group algebras; see, for example, the proof of (3.2).

Ramble. Let G be a finite group such that the characteristic of k is coprime

to |G|, and let 0 → L → M → N → 0 be an exact sequence k[G]-modules.

Applying Homk[G](k,−) to it yields, in view of Maschke’s theorem (2.6), an

exact sequence

0→ L
G →M

G → N
G → 0.
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This is why invariant theory in characteristics coprime to |G| is so drastically

different from that in the case where the characteristic of k divides |G|.

(2.14) A technical point. Let M be a left k[G]-module and set M
∗=Homk(M,k).

One has two choices for a left k[G]-module structure on M
∗: one given by spe-

cializing the discussion in (2.13) to the case where N = k, and the other by

conjugation—see (2.11) — from the natural right module structure on M
∗. A

direct calculation reveals that they coincide. What is more, these modules have

the property that the canonical maps of k-vector spaces

M →M
∗∗

m 7→
(
f 7→ f(m)

)
N ⊗k M

∗ → Homk(M,N)

n⊗k f 7→
(
m 7→ f(m)n

)

are k[G]-linear. These maps are bijective when rankk M is finite.

Ramble. Most of what I said from (2.11) onward applies, with appropriate

modifications, to arbitrary Hopf algebras. For example, given modules M and

N over a Hopf algebra H, the tensor product M ⊗k N is also an H-module with

h · (m⊗k n) =

n∑

i=1

h
′
im⊗k h

′′
i n, where ∆(h) =

n∑

i=1

h
′
i ⊗k h

′′
i .

There are exceptions; for example, over a group algebra M ⊗k N ∼= N ⊗k M ; see

(2.12). This holds over H only when
∑n

i=1 h
′
i ⊗k h

′′
i =

∑n
i=1 h

′′
i ⊗k h

′
i, that is to

say, when the diagram

H
∆

xxqqqqqq ∆
&&MMMMMM

H ⊗k H τ
// H ⊗k H

commutes, where τ(h′⊗kh
′′) = (h′′⊗kh

′). Such an H is said to be cocommutative.

3. Projective Modules

The section focuses on projective modules over group algebras. First, I address

the question: When is every module over the group algebra projective? In other

words, when is the group algebra semisimple? Here is a complete answer, at

least in the case of a finite group.

(3.1) Theorem. Let G be a finite group. The following conditions are equiva-

lent :

(i) The group ring k[G] is semisimple.

(ii) k, viewed as a k[G]-module via the augmentation, is projective.

(iii) The characteristic of k is coprime to |G|.
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Proof. (i) =⇒ (ii) is a tautology.

(ii) =⇒ (iii): As k is projective, the augmentation homomorphism ε : k[G] →
k, being a surjection, has a k[G]-linear section σ : k → k[G]. Write σ(1) =∑

g∈G agg, with ag in k. Fix an element h ∈ G. Note that σ(1) = σ(h · 1) =

h · σ(1), where the first equality holds because k[G] acts on k via ε, the second

by the k[G]-linearity of σ. This explains the first equality below:
∑

g∈G

agg =
∑

g∈G

ag(hg) =
∑

g∈G

ah−1gg.

The second is just a reindexing. The elements of G are a basis for the group

algebra, so the equality above entails ah−1 = a1. This holds for each h ∈ G, so

1 = ε(σ(1)) = a1

∑

g∈G

ε(g) = a1

∑

g∈G

1 = a1|G|.

In particular, the characteristic of k is coprime to |G|.
(iii) =⇒ (i): Let M be a k[G]-module, and pick a surjection P � M with P

projective. Maschke’s theorem (2.6) provides that every short exact sequence of

k[G]-modules splits; equivalently, that every surjective homomorphism is split.

In particular, P � M splits, so M is a direct summand of P , and hence projec-

tive. �

Exercise. A commutative ring is semisimple if and only if it is a product of

fields.

The last result dealt with modules en masse; now the focus is shifted to individual

modules.

Stability properties of projective modules. The gist of the following para-

graphs is that many of the standard functors of interest preserve projectivity. A

crucial, and remarkable, result in this direction is

(3.2) Theorem. Let G be a group and P a projective k[G]-module. For any

k[G]-module X, the k[G]-modules P ⊗k X and X ⊗k P are projective.

Take note that the tensor product is over k, as it must be, for such a conclusion

is utterly wrong were it over k[G]. This theorem underscores the point raised

in (2.12) about the importance of this tensor product in the module theory of

group algebras; the other results in this section are all formal consequences of

this one.

Ramble. There is another way to think about Theorem (3.2): one may view

the entire category of k[G]-modules as a ‘ring’ with direct sum and tensor prod-

uct over k playing the role of addition and multiplication respectively; the unit

is k, and the commutativity of the tensor product means that this is even a

‘commutative’ ring. (With suitable compatibility conditions, such data define a

symmetric monoidal category.) In this language, the theorem above is equivalent

to the statement that the subcategory of projective modules is an ideal.
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Proof of Theorem (3.2). I will prove that P ⊗k X is projective. A similar

argument works for X ⊗k P ; alternatively, note that it is isomorphic to P ⊗k X,

by (2.12).

One way to deduce that P ⊗k X is projective is to invoke the following iso-

morphism from (2.13), which is natural on the category of left k[G]-modules:

Homk[G](P ⊗k X,−) ∼= Homk[G](P,Homk(X,−)).

Perhaps the following proof is more illuminating: by standard arguments one

reduces to the case where P = k[G]. Write X
\ for the k-vector space underlying

X. Now, by general principles, the inclusion of k-vector spaces X
\ ⊂ k[G]⊗k X,

defined by x 7→ 1⊗k x, induces a k[G]-linear map

k[G]⊗k X
\ → k[G]⊗k X, where g ⊗k x 7→ g(1⊗k x) = g ⊗k gx.

The action of k[G] on k[G] ⊗k X
\ is via the left-hand factor. An elementary

calculation verifies that the map below, which is k[G]-linear, is its inverse:

k[G]⊗k X → k[G]⊗k X
\
, where g ⊗k x 7→ g ⊗k (g−1

x).

Therefore, the k[G]-modules k[G]⊗kX and k[G]⊗kX
\ are isomorphic. It remains

to note that the latter module is a direct sum of copies of k[G]. �

One corollary of Theorem (3.2) is the following recognition principle for semi-

simplicity of the group algebra; it extends to arbitrary groups the equivalence of

conditions (i) and (ii) in Theorem (3.1).

(3.3) Lemma. Let G be a group. The following conditions are equivalent .

(i) k[G] is semisimple;

(ii) the k[G]-module k is projective.

Proof. The nontrivial implication is that (ii) =⇒ (i). As to that, it follows

from Theorem (3.2) that k ⊗k M is projective for each k[G]-module M , so it

remains to check that the canonical isomorphism k ⊗k M → M is k[G]-linear.

Note that this is something that needs checking for the k[G]-action on k ⊗k M

is via the diagonal; see (2.12). �

Ramble. Lemma (3.3), although not its proof, is reminiscent of a phenomenon

encountered in the theory of commutative local rings: Over such a ring, the

residue field is often a ‘test’ module. The Auslander–Buchsbaum–Serre charac-

terization of regularity is no doubt the most celebrated example. It says that a

noetherian commutative local ring R, with residue field k, is regular if and only

if the R-module k has finite projective dimension.

There are analogous results that characterize complete intersections (Avramov

and Gulliksen) and Gorenstein rings (Auslander and Bridger).

There is however an important distinction between a group algebra over k

and a local ring with residue field k: over the latter, k is the only simple module,

whilst the former can have many others. From this perspective, Lemma (3.3)
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is rather surprising. The point is that an arbitrary finite-dimensional algebra

is semisimple if and only if every simple module is projective; the nontrivial

implication holds because each finite module has a composition series.

(3.4) Theorem. Let G be a finite group. For each finite k[G]-module M , the

following k[G]-modules are projective simultaneously : M , M ⊗k M , M
∗ ⊗k M ,

M ⊗k M
∗, Homk(M,M), and M

∗.

Proof. It suffices to verify: M , M ⊗k M , and M
∗ ⊗k M are simultaneously

projective.

Indeed, applied to M
∗ that would imply, in particular, that M

∗ and (M∗)∗⊗k

M
∗ are simultaneously projective. Now, (M ∗)∗ ∼= M , since rankk M is finite,

and M ⊗k M
∗ ∼= M

∗ ⊗k M , by the discussion in (2.12). Thus, one obtains the

simultaneous projectivity of all the modules in question, except for Homk(M,M).

However, the finiteness of rankk M implies this last module is isomorphic to

M ⊗k M
∗.

As to the desired simultaneous projectivity, it is justified by the diagram

M

1 '!&"%#$
+3

3 '!&"%#$

��

M
∗ ⊗k M

2 '!&"%#$

��
M ⊗k M

4 '!&"%#$
+3 M ⊗k M

∗ ⊗k M

5 '!&"%#$

ck NNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNN

where X =⇒ Y should be read as ‘if X is projective, then so is Y ’. Implications

(1)–(4) hold by Theorem (3.2). As to (5), the natural maps of k-vector spaces

M → Homk(M,M)⊗k M →M

m 7→ 1⊗k m and α⊗k m 7→ α(m)

are k[G]-linear, and exhibit M as a direct summand of Homk(M,M) ⊗k M .

However, as remarked before, the k[G]-modules Homk(M,M) and M ⊗k M
∗ are

isomorphic, so M is a direct summand of M ⊗k M
∗ ⊗k M . �

Projective versus Injectives. So far, I have focused on projective modules,

without saying anything at all about injective, or flat, modules. Now, a commu-

tative algebraist well knows that projective modules and injective modules are

very different beasts. There is, however, one exception.

(3.5) Exercise. Let R be a commutative noetherian local ring. Prove that

when R is zero-dimensional and Gorenstein, an R-module is projective if and

only if it is injective. Conversely, if there is a nonzero R-module that is both

projective and injective, then R is zero-dimensional and Gorenstein.

The preceding exercise should be compared with the next two results.
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(3.6) Theorem. Let G be a finite group and M a finite k[G]-module. The

following conditions are equivalent :

(i) M is projective;

(ii) the flat dimension of M is finite;

(iii) M is injective;

(iv) the injective dimension of M is finite.

These equivalences hold for any k[G]-module, finite or not; see [Benson 1999].

The preceding theorem has an important corollary.

(3.7) Corollary. The group algebra of a finite group is self-injective. �

There are many other proofs, long and short, of this corollary; see [Benson 1991a,

(3.1.2)]. Moreover, it is an easy exercise (do it) to deduce Theorem (3.6) from it.

Ramble. Let G be a finite group. Thus, the group algebra k[G] is finite-

dimensional and, by the preceding corollary, injective as a module over itself.

These properties may tempt us commutative algebraists to proclaim: k[G] is

a zero-dimensional Gorenstein ring. And, for many purposes, this is a useful

point of view, since module theory over a group algebra resembles that over a

Gorenstein ring; Theorem (3.6) is one manifestation of this phenomenon. By

the by, there are diverse extensions of the Gorenstein property for commutative

rings to the noncommutative setting: Frobenius rings, quasi-Frobenius rings,

symmetric rings, self-injective rings, etc.

The proof of Theorem (3.6) is based on Theorem (3.4) and an elementary obser-

vation about modules over finite-dimensional algebras.

(3.8) Lemma. Let R be a k-algebra with rankk R finite. For each finite left

R-module M , one has pdimR M = fdimR M = injdimRop M
∗.

Proof. Since rankk M is finite, (M∗)∗ ∼= M , so it suffices to prove the equiva-

lence of the conditions

(i) M is projective;

(ii) M is flat;

(iii) the right R-module M
∗ is injective.

The implication (i) =⇒ (ii) is immediate and hold for all rings. The equivalence

(ii) ⇐⇒ (iii) is a consequence of the standard adjunction isomorphism

Homk(−⊗R M,k) ∼= HomR(−,M
∗)

and is valid for arbitrary k-algebras.

(iii) =⇒ (i): Since M is finite over R, one can construct a surjective map

π : R
n � M . Dualizing this yields an inclusion π

∗ : M
∗

↪→ (Rn)∗ of right R-

modules. This map is split because M
∗ is injective, and hence π

∗∗ is split. Since

rankk R and rankk M are both finite, π
∗∗ = π, so that π is split as well. Thus,

M is projective, as claimed. �
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Proof of Theorem (3.6). Theorem (3.4) yields that M is projective if and

only if M
∗ is projective, while the lemma above implies that M

∗ is projective if

and only if (M∗)∗ is injective, i.e., M is injective. This settles (i) ⇐⇒ (iii).

That (i) =⇒ (ii) needs no comment. The lemma above contains (ii) ⇐⇒ (iv);

moreover, it implies that to verify (ii) =⇒ (i), one may assume pdimR M finite,

that is to say, there is an exact sequence

0→ Pn
∂n−→ Pn−1

∂n−1−−−→ · · · → P0 →M → 0,

where each Pi is finite and projective; see (6.6). If n ≥ 1, then, since Pn is

injective by the already verified implication (i) =⇒ (iii), the homomorphism ∂n

splits, and one obtains an exact sequence

0→ ∂n−1(Pn−1)→ Pn−2 → · · · → P0 →M → 0.

In this sequence ∂n−1(Pn−1), being a direct summand of Pn−1, is projective, and

hence injective. An iteration of the preceding argument yields that M is a direct

summand of P0, and hence projective. �

Ramble. The small finitistic left global dimension of a ring R is defined as

sup {pdimR M |M a finite left R-module with pdimR M <∞.}

One way of rephrasing Theorem (3.6) is to say that this number is zero when R

is a finite group algebra. Exercise: Prove that a similar result holds also for mod-

ules over commutative artinian rings. However, over arbitrary finite-dimensional

algebras, the small finitistic global dimension can be any nonnegative integer. A

conjecture of Bass [1960] and Jans [1961], which remains open, asserts that this

number is finite; look up [Happel 1990] for more information on this topic.

Hopf algebras. Theorem (3.2) holds also for modules over any finite-dimen-

sional Hopf algebra; the proof via the adjunction isomorphism does not work,

but the other one does. However, I found it a nontrivial task to pin down the

details, and I can recommend it to you as a good way to gain familiarity with

Hopf algebras. Given this, it is not hard to see that for cocommutative Hopf

algebras, the analogues of theorems (3.4) and (3.6), and Corollary (3.7), all

hold; the cocommutativity comes in because in the proof of (3.4) I used the fact

that tensor products are symmetric; confer with the discussion in (2.14).

4. Structure of Projectives

So far, I have not addressed the natural question: what are the projective

modules over the group algebra? In this section, I tabulate some crucial facts

concerning these. Most are valid for arbitrary finite-dimensional algebras and

are easier to state in that generality; [Alperin 1986] is an excellent reference for

this circle of ideas.
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(4.1) Projective covers. Let R be a ring and M a finite R-module. A projective

cover of M is a surjective homomorphism π : P → M with P a projective R-

module and such that each homomorphism σ : P → P that fits in a commutative

diagram

P

π

""F
F

F
F

F
F

F

σ //
P

π

||xx
x
x
x
x
x

M

is bijective, and hence an automorphism. It is clear that projective covers, when

they exist, are unique up to isomorphism. Thus, one speaks of the projective

cover of M . Often P , rather than π, is thought as being the projective cover of

M , although this is an abuse of terminology.

Among surjective homomorphisms κ : Q→M with Q a projective R-module,

projective covers can be characterized by either of the properties:

(i) Q/JQ ∼= M/JM , where J is the Jacobson radical of R;

(ii) Q is minimal with respect to direct sum decompositions.

When R is a noetherian ring over which every finite R-module has a projective

cover, it is easy to see that a projective resolution

P : · · · → Pn
∂n−→ Pn−1

∂n−1−−−→ · · · ∂1−→ P0 → 0

of M so constructed that Pn is a projective cover of Ker(∂n−1) is unique up

to isomorphism of complexes of R-modules. Such a P is called the minimal

projective resolution of M . Following conditions (i) and (ii) above, the minimality

can also be characterized by either the property that ∂(P) ⊆ JP, or that P splits

off from any projective resolution of M .

Projective covers exist for each finite M in two cases of interest: when R is a

finite-dimensional k-algebra, and when R is a (commutative) local ring. This is

why these two classes of rings have a parallel theory of minimal resolutions.

(4.2) Simple modules. Let R be a finite-dimensional k-algebra with Jacobson

radical J , and let P and S be the isomorphism classes of indecomposable

projective R-modules and of simple R-modules, respectively.

(a) The Krull–Schimdt property holds for R, so every P in P occurs as a direct

summand of R, and there is a unique decomposition

R ∼=
⊕

P∈P

P
eR(P )

, with eR(P ) ≥ 1.

In particular, R has only finitely many indecomposable projective modules.

(b) The simple R-modules are precisely the indecomposable modules of the

semisimple ring R̃ = R/J (verify this) so property (a) specialized to R̃ reads

R̃ ∼=
⊕

S∈S

S
e eR

(S)
, with e eR(S) ≥ 1.
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(c) The ring R̃ in (b), being semisimple, is a direct sum of matrix rings over

finite-dimensional division algebras over k; see [Lang 2002, XVII]. Moreover,

when k is algebraically closed, these division algebras coincide with k (why?),

and we obtain that e eR(S) = rankk S for each S ∈ S .

(d) From (a)–(c) one obtains that the assignment P 7→ P/JP is a bijection be-

tween P and S ; in other words, there are as many indecomposable projective

R-modules as there are simple R-modules. Moreover, eR(P ) = e eR(P/JP ).

When k is algebraically closed, combining the last equality with that in (c)

and the decomposition in (a) yields

rankk R =
∑

P∈P

rankk(P/JP ) rankk P.

I will illustrate the preceding remarks by describing the indecomposable projec-

tive modules over certain finite group algebras.

(4.3) Cyclic groups. This example builds on the description in (2.7) of modules

over the group algebra of a finite cyclic group G. We saw there that

k[G] ∼=
d∏

i=1

k[x]

(fi(x)pn
)
.

This is the decomposition that for general finite-dimensional algebras is a con-

sequence of the Krull–Schmidt property; see (4.2.a). For each 1 ≤ i ≤ d, set

Pi = k[x]/(fi(x)pn

). These k[G]-modules are all projective, being summands of

k[G], indecomposable (why?), and no two of them are isomorphic (count ranks,

or look at their annihilators). Moreover, as a consequence of the decomposition

above, any projective k[G]-module is a direct sum of the Pi. Thus, there are

exactly d distinct isomorphism classes of indecomposable projective R-modules.

Over any commutative ring, the only simple modules are the residue fields.

Thus, the simple modules over k[G] are k[x]/(fi(x)) where 1 ≤ i ≤ d; in par-

ticular, there are as many as there are indecomposable projectives, exactly as

(4.2.d) predicts.

Now I will describe the situation over finite abelian groups. Most of what I have

to say can be deduced from:

(4.4) Lemma. Let R and S be finite-dimensional k-algebras, and set T = R⊗kS.

Let M and N be R-modules. If S is local with residue ring is k, and the induced

map k → S → k is the identity , then

(a) M ∼= N as R-modules if and only if M ⊗k S ∼= N ⊗k S as T -modules;

(b) the R-module M is indecomposable if and only if the T -module M ⊗k S is;

(c) M is projective if and only if the T -module M ⊗k S is projective.

In particular , the map P 7→ P ⊗k S induces a bijection between the isomorphism

classes of indecomposable projective modules over R and over T .



72 SRIKANTH IYENGAR

Proof. To begin with, note that M ⊗k S and N ⊗k S are both left R-modules

and also right S-modules, with the obvious actions. Moreover, because of our

hypothesis that the residue ring of S is k, one has isomorphisms of R-modules

M ∼= (M ⊗k S)⊗S k and N ∼= (N ⊗k S)⊗S k.

Now, the nontrivial implication in (a) and in (c) — the one concerning descent—

is settled by applying −⊗S k. As to (b), the moot point is the ascent, so assume

the R-module M is indecomposable and that M ⊗k S ∼= U ⊕ V as T -modules.

Applying −⊗S k, one obtains isomorphisms of R-modules

M ∼= (M ⊗k S)⊗S k ∼= (U ⊗S k)⊕ (V ⊗S k)

Since M is indecomposable, one of U ⊗S k or V ⊗S k is zero; say, U ⊗S k is 0,

that is to say, U = Un, where n is the maximal ideal of S. This implies U = 0,

because, S being local and finite-dimensional over k, the ideal n is nilpotent. �

(4.5) Finite abelian groups. Again, we adopt that convention that p is the

characteristic of k when the latter is positive, and 1 otherwise.

Let G a finite abelian group, and write |G| as p
n
q, where n is a nonnegative

integer and p and q are coprime. Via the fundamental theorem on finitely gen-

erated abelian groups this decomposition of |G| translates into one of groups:

G = A ⊕ B, where A and B are abelian, |A| = p
n, and |B| = q. Hence,

k[G] ∼= k[A]⊗k k[B].

Now, A ∼= Z/(pe1Z)⊕ · · · ⊕ Z/(pemZ), for nonnegative integers e1, . . . , em, so

k[A] ∼= k[y1, . . . , ym]

(y
pe1

1 −1, . . . , y
pem

m −1)

The binomial theorem in characteristic p yields y
pei

i − 1 = (yi − 1)pei
for each i.

Thus, it is clear that k[A] is an artinian local ring with residue field k.

In the light of this and Lemma (4.4), to find the indecomposable projectives

over k[G], it suffices to find those over k[B].

When B is cyclic, this information is contained in (4.3). The general case is

more delicate. First, since |B| is coprime to p, every k[G]-module is projective,

so the indecomposables among them are precisely the simple k[B]-modules; see

Theorem (3.1). Now, as noted before, over any commutative ring the only simple

modules are the residue fields. Thus, the problem is to find the maximal ideals

of k[B]. Writing B as Z/(q1Z)⊕ · · · ⊕ Z/(qnZ), one has

k[B] ∼= k[x1, . . . , xn]

(x
q1

1 −1, . . . , x
qn
m−1)

.

If k is algebraically closed, there are q1 · · · qn distinct maximal ideals, and hence

as many distinct indecomposable projectives. The general situation is trickier.

By the by, if you use the method outlined above for constructing projective

modules over a cyclic group, the outcome will appear to differ from that given

by (4.3). Exercise: Reconcile them.
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(4.6) p-groups. As always, free k[G]-modules are projective. When the char-

acteristic of k is p and G is a p-group, these are the only projectives over k[G].

This is thus akin to the situation over commutative local rings, and the proof

over this latter class of rings given in [Matsumura 1989] carries over; the key

ingredient is that, as noted in (1.5), the group algebra of a p-group is an artinian

local ring.

In general, the structure of projective modules over the group algebra is a lot

more complicated. However, the triviality of the projectives in the case of p-

groups also has implications for the possible ranks of indecomposable projectives

over the group algebra of an arbitrary group G.

(4.7) Sylow subgroups. Let p
d be the order of a p-Sylow subgroup of G. If a

finite k[G]-module P is projective, then p
d divides rankk P .

Indeed, for each p-Sylow subgroup H ⊆ G, the restriction of P to the subring

k[H] of k[G] is a projective module, and hence a free module. Thus, by the

preceding remark, rankk P is divisible by rankk k[H], that is to say, by |H|.
The numerological restrictions in (4.2) and (4.7) can be very handy when hunting

for projective modules over finite group algebras. Here is a demonstration.

(4.8) Symmetric group on three letters. The symmetric group on three letters,

Σ3, is generated by elements a and b, subject to the relations

a
2 = 1, b

3 = 1, and ba = ab
2
.

Thus, Σ3 = {1, b, b
2
, a, ab, ab

2}. It has three 2-Sylow subgroups: {1, a}, {1, ab},
and {1, ba}, and one 3-Sylow subgroup: {1, b, b

2}.
Let p be the characteristic of the field k; we allow the possibility that p = 0.

Case (α). If p 6= 2, 3, every k[Σ3]-module is projective, by Theorem (3.1).

Case (β). Suppose p = 3. By (4.7), the rank of each finite projective k[G]-

module is divisible by 3, since the latter is the order of the 3-Sylow subgroup.

Moreover, (4.2.d) implies that the number of indecomposable projectives equals

the number of simple modules, and the latter is at least 2, for example, by

Exercise (1.6). These lead us to the conclusion that there are exactly two inde-

composable projectives, each having rank 3.

One way to construct them is as follows: Let H = {1, a}, a 2-Sylow subgroup

of Σ3. There are two nonisomorphic k[H]-module structures on k: the trivial one,

given by the augmentation map, and the one defined by character σ : H → k with

σ(a) = −1; denote the latter σ
k. Plainly, both these k[H]-modules are simple

and hence, by Theorem (3.1), projective. Consequently, base change along the

canonical inclusion k[H]→ k[Σ3] gives us two projective k[Σ3]-modules,

k[Σ3]⊗k[H] k and k[Σ3]⊗k[H]
σ
k.

They both have rank 3. I leave it to you to verify that they are not isomorphic.

Hint: calculate the Σ3-invariants.
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Case (γ). The situation gets even more interesting when p = 2. I claim that

there are two indecomposable projective k[G]-modules, of ranks 2 and 4, when

x
2 + x + 1 is irreducible in k, and three of them, each of rank 2, otherwise.

Indeed, let H = {1, b, b
2}; this is a cyclic group of order 3. Hence, by (4.3),

when x
2 + x + 1 is irreducible in k[x], the group algebra k[H] has 2 (nonisomor-

phic) simple modules, of ranks 1 and 2, and when x
2 +x+1 factors in k[x], there

are 3 simple modules, each of rank 1. As the characteristic of k does not divide

|H|, all these simple modules are projective, so base change along the inclusion

k[H] ⊂ k[Σ3] gives rise to the desired number of projective modules, and of the

right ranks, over k[G]. Note that, by (4.7), projective modules of rank 2 are

indecomposable. Thus, to be sure that these are the projectives one seeks, one

has to verify that in the former case the rank 4 module is indecomposable, and

in the latter that the three rank 2 modules are nonisomorphic. Once again, I

will let you check this.

5. Cohomology of Supplemented Algebras

This section collects basic facts concerning the cohomology of supplemented

algebras. To begin with, recall that in the language of Cartan and Eilenberg

[1956] a supplemented k-algebra is a k-algebra R with unit η : k → R and an

augmentation ε : R→ k such that ε ◦ η is the identity on k.

Group algebras are supplemented, but there are many more examples. Take,

for instance, any positively (or negatively) graded k-algebra with degree 0 com-

ponent equal to k. Or, for that matter, take the power series ring k[[x1, · · · , xn]],

with η the canonical inclusion, and ε the evaluation at 0. More generally, thanks

to Cohen’s Structure Theorem, if a complete commutative local ring R, with

residue field k, contains a field, then R is a supplemented k-algebra.

Let R be a supplemented k-algebra, and view k as an R-module via the aug-

mentation. Let M be a (left) R-module. The cohomology of R with coefficients

in M is the graded k-vector space Ext∗R(k,M). The cohomology of R with

coefficients in k, that is to say, Ext∗R(k, k), is usually called the cohomology of R.

The k-vector space structure on Ext∗R(k, k) can be enriched to that of a sup-

plemented k-algebra, and then Ext∗R(k,M) can be made into a right module

over it. There are two ways to introduce these structures: via Yoneda splicing

and via compositions. They yield the same result, up to a sign; see (5.2). I

have opted for composition products because it is this description that I use to

calculate group cohomology in the sequel.

(5.1) Composition products. Let P be a projective resolution of k. Composition

endows the complex of k-vector spaces HomR(P,P ) with a product structure,

and this product is compatible with the differential, in the sense that, for every

pair of homogenous elements f, g in HomR(P,P ), one has

∂(fg) = ∂(f)g + (−1)|f |f∂(g).
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In other words, HomR(P,P ) is a differential graded algebra (DGA). One often

refers to this as the endomorphism DGA of P . It is not hard to verify that the

multiplication of HomR(P,P ) descends to homology, that is to say, to Ext∗R(k, k).

This is the composition product on cohomology, and it makes it a graded k-

algebra. It is even supplemented, since Ext0R(k, k) = k.

Let F be a projective resolution of M . The endomorphism DGA HomR(P,P )

acts on the complex HomR(P,F ) via composition on the right, and, once again,

this action is compatible with the differentials. Thus, HomR(P,F ) becomes

a DG right module over HomR(P,P ). These structures are inherited by the

corresponding homology vector spaces; thus does Ext∗R(k,M) become a right

Ext∗R(k, k)-module.

One has to check that the composition products defined do not depend on the

choice of resolutions; [Bourbaki 1980, (7.2)] justifies this, and much more.

(5.2) Remark. As mentioned before, one can introduce products on Ext∗R(k, k)

also via Yoneda multiplication, and, up to a sign, this agrees with the compo-

sition product; [Bourbaki 1980, (7.4)] has a careful treatment of these issues.

The upshot is that one can set up an isomorphism of k-algebras between the

Yoneda Ext-algebra and Ext-algebra with composition products. Thus, one has

the freedom to use either structure, as long as it is done consistently.

(5.3) Graded-commutativity. Let E be a graded algebra. Elements x and y in

E are said to commute, in the graded sense of the word, if

xy = (−1)|x||y| yx.

If every pair of its elements commute, E is said to be graded-commutative.

When E is concentrated in degree 0 or in even degrees, it is graded-commutative

precisely when it is commutative in the usual sense.

An exterior algebra on a finite-dimensional vector space sitting in odd degrees

is another important example of a graded-commutative algebra. More generally,

given a graded vector space V , with Vi = 0 for i < 0, the tensor product of

the symmetric algebra on Veven and exterior algebra on Vodd, that is to say, the

k-algebra

Sym(Veven)⊗k

∧
Vodd,

is graded-commutative. If the characteristic of k happens to be 2, then Sym(V )

is also graded-commutative even when Vodd 6= 0. This fails in odd characteristics,

the point being that, in a graded-commutative algebra, for an element x of odd

degree, x
2 = −x

2, so that x
2 = 0 when 2 is invertible in E.

A graded-commutative algebra with the property that x
2 = 0 whenever the

degree of x is odd is said to be strictly graded-commutative. An exterior algebra

(with generators in odd degrees) is one example. Here is one more, closer to

home: for a homomorphism of commutative rings R→ S, the graded S-module

TorR
∗ (S, S) is strictly graded-commutative, with the pitchfork product (homology

product) defined by Cartan and Eilenberg; see [Mac Lane 1995, VIII § 2].
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(5.4) Functoriality. The product in cohomology is functorial, in that, given

a homomorphism of supplemented k-algebras ϕ : R → R
′, the induced map of

graded k-vector spaces

Ext∗ϕ(k, k) : Ext∗R′(k, k)→ Ext∗R(k, k)

is a homomorphism of supplemented k-algebras.

Now let R and S be supplemented k-algebras. The tensor product R⊗k S is

also a supplemented k-algebra, and the canonical maps

R
1⊗εS

←−−− R⊗k S
εR⊗1−−−→ S

respect this structure. By functoriality of products, the diagram above induces

homomorphisms of supplemented k-algebras

Ext∗R(k, k)
Ext∗

1⊗εS (k,k)

−−−−−−−−→ Ext∗R⊗kS(k, k)
Ext∗

εR⊗1
(k,k)

←−−−−−−−−− Ext∗S(k, k).

It is not hard to check that the images of these maps commute, in the graded

sense, so one has a diagram of supplemented k-algebras:

Ext∗R(k, k)
Ext∗

id⊗εS (k,k)
// Ext∗R⊗kS(k, k) Ext∗S(k, k)

Ext∗
εR⊗id

(k,k)
oo

Ext∗R(k, k)⊗k Ext∗S(k, k)

OO

**id⊗1

TTTTTTTTTTTTTTTT tt 1⊗id

jjjjjjjjjjjjjjjj

(∗)

I should point out that the tensor product on the lower row is the graded tensor

product and the multiplication on it is defined accordingly, that is,

(r ⊗k s) · (r′ ⊗k s
′) = (−1)|s||r

′|(rr′ ⊗k ss
′).

Under suitable finiteness hypotheses— for example, if R and S are noetherian—

the vertical map in (∗) is bijective. However, this is not of importance to us.

The cohomology of Hopf algebras. The remainder of this section deals with

the cohomology of Hopf algebras. So let H be a Hopf algebra, with diagonal ∆

and augmentation ε; see (1.8). The main example to keep in mind is the case

when H is the group algebra of a group, with the diagonal defined in (1.7).

One crucial property of the cohomology algebra of H, which distinguishes it

from the cohomology of an arbitrary supplemented algebra, is the following.

(5.5) Proposition. The cohomology algebra Ext∗H(k, k) is graded-commutative.

Note that H is not assumed to be cocommutative. This is a striking result, and

its proof is based on the diagram of k-algebra homomorphisms

(5–1) Ext∗H(k, k)⊗k Ext∗H(k, k)→ Ext∗H⊗kH(k, k)
Ext∗∆(k,k)−−−−−−→ Ext∗H(k, k),

where the one on the left is the vertical map in (5.4.1), with R and S equal to

H, and the one on the right is induced by the diagonal homomorphism.
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(5.6) Proposition. The composition of homomorphisms in (5.5.5–1) is the

product map; that is to say , (x⊗k y) 7→ xy for x and y in Ext∗H(k, k).

In particular , the product map of Ext∗H(k, k) is a homomorphism of k-algebras.

Proof. The diagram in question expands to the following commutative diagram

of homomorphisms of k-algebras, where the lower half is obtained from (5.4.1),

the upper half is induced by property (c) of Hopf algebras—see (1.8) — to the

effect that ε is a co-unit for the diagonal.

Ext∗H(k, k)
OO

Ext∗∆(k,k)

44
id

jjjjjjjjjjjjjjjj jj
id

TTTTTTTTTTTTTTTT

Ext∗H(k, k)
Ext∗id ⊗ε(k,k)

// Ext∗H⊗kH(k, k) Ext∗H(k, k)
Ext∗ε⊗id(k,k)

oo

Ext∗H(k, k)⊗k Ext∗H(k, k)

OO

**id⊗1

TTTTTTTTTTTTTTTT tt 1⊗id

jjjjjjjjjjjjjjjj

Let x and y be elements in Ext∗H(k, k). The element x goes to x ⊗k 1 under

the map heading southeast, and to x under the map heading northeast. The

commutativity of the diagram thus implies that x⊗k 1 7→ x under the composed

vertical map. A similar diagram chase reveals that 1⊗k y 7→ y. Since the vertical

maps are homomorphisms of k-algebras, one has

x⊗k y = (x⊗k 1) · (1⊗k y) 7→ xy.

This is the conclusion we seek. �

The proof of Proposition (5.5) uses also the following elementary exercise, of

which there are versions for groups, for coalgebras, etc.

(5.7) Exercise. A graded k-algebra R is graded-commutative precisely when

the product map R⊗k R→ R with r ⊗ s 7→ rs is a homomorphism of rings.

Now one can prove that the cohomology algebra is graded-commutative.

Proof of Proposition (5.5). By the preceding proposition, the product map

Ext∗H(k, k)⊗kExt∗H(k, k)→ Ext∗H(k, k) given by x⊗ky 7→ xy is a homomorphism

of rings (for a general algebra it is only k-linear). To complete the proof one has

to do Exercise (5.7). �

6. Group Cohomology

In this section we return to group algebras.

(6.1) Cohomology. Let G be a group and let M be a k[G]-module. Recall that

k[G] is a supplemented algebra. The cohomology of G with coefficients in M is

the graded k-vector space

H∗(G,M) = Ext∗k[G](k,M).
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There is no ambiguity concerning the field k since Ext∗k[G](k,M) is isomorphic

to Ext∗
Z[G](Z,M); see [Evens 1961, (1.1)]. The cohomology of G is H∗(G, k).

Standard properties of Ext-modules carry over to the situation on hand. For

instance, each short exact sequence of k[G]-modules 0 → L → M → N → 0

engenders a long exact sequence of k-vector spaces

0→ H0(G,L)→ H0(G,M)→ H0(G,N)→ H1(G,L)→ H1(G,M)→ · · · .

Note that Hn(G,−) = 0 for n ≥ 1 if and only if k is projective. Therefore,

one has the following cohomological avatar of Maschke’s theorem (3.1):

(6.2) Theorem. Let G be a finite group. Then Hn(G,−) = 0 for each integer

n ≥ 1 if and only if the characteristic of k is coprime to |G|. �

As is typical in homological algebra, low degree cohomology modules have nice

interpretations. For a start, Ext0k[G](k,M) = Homk[G](k,M), so (2.13) yields

H0(G,M) = M
G

.

Thus, one can view the functors Hn(G,−) as the derived functors of invariants.

The degree 1 component of H∗(G,M) is also pretty down to earth. Recall

that a map θ : G → M is said to be a derivation, or a crossed homomorphism,

if it satisfies the Leibniz formula: θ(gh) = θ(g) + gθ(h), for every g, h in G.

The asymmetry in the Leibniz rule is explained when one views M , which is

a priori only a left k[G]-module, as a k[G]-bimodule with trivial right action:

m · g = m. Using the k-vector space structure on M one can add derivations,

and multiply them with elements in k, so they form a k-vector space; this is

denoted Der(G;M). This vector space interests us because of the following

(6.3) Lemma. The k-vector spaces Homk[G](I(G),M) and Der(G;M) are iso-

morphic via the maps

Homk[G](I(G),M)→ Der(G;M)

α 7→
(
g 7→ α(g − 1)

)
,

Der(G;M)→ Homk[G](I(G),M)

θ 7→
(
g − 1 7→ θ(g)

)
.

The proof is an elegant computation and is best rediscovered on one’s own. As

to its bearing on H1(G,M): applying Homk[G](−,M) to the exact sequence

0→ I(G)→ k[G]→ k → 0

of k[G]-modules leads to the exact sequence of k-vector spaces

0→M
G →M → Der(G;M)→ H1(G,M)→ 0.

In this sequence, each m ∈M maps to a derivation: g 7→ (g−1)m; these are the

inner derivations from G to M , and their set is denoted by IDer(G;M). Thus,

H1(G,M) = Der(G;M)/ IDer(G;M).

Let us specialize to the case when M = k. The Leibniz rule for a derivation

θ : G → k then reads: θ(gh) = θ(g) + θ(h), so Der(G; k) coincides with group
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homomorphisms from G to k. Moreover, every inner derivation from G to k is

trivial. The long and short of this discussion is that H1(G, k) is precisely the set

of additive characters from G to k.

There are other descriptions, some of a more group theoretic flavour, for

H1(G,M); for those the reader may look in [Benson 1991a].

The discussion in Section 5 on products on cohomology applies in the special

case of the cohomology of group algebras. In particular, since k[G] is a Hopf

algebra, Proposition (5.5) specializes thus:

(6.4) Theorem. The cohomology algebra H∗(G, k) is graded-commutative. �

(6.5) Künneth formula. Let G1 and G2 be groups. Specializing (5.4.1) to the

case where R = k[G1] and S = k[G2], one obtains a homomorphism of k-algebras

H∗(G1 , k)⊗k H∗(G2 , k)→ H∗(G1 ×G2 , k).

This map is bijective whenever the group algebras are noetherian. This is the

case when, for example, Gi is finite, or finitely generated and abelian.

(6.6) Resolutions. If one wants to compute cohomology from first principles,

one has to first obtain a projective resolution of k over k[G]. In this regard, it is

of interest to get as economical a resolution as possible. Fortunately, any finitely

generated module over k[G] has a minimal projective resolution; we discussed

this point already in (4.1); unfortunately, writing down this minimal resolution

is a challenge. In this the situation over group algebras is similar to that over

commutative local rings. What is more difficult is calculating products from

these minimal resolutions.

There is a canonical resolution for k over k[G] called the Bar resolution; while

it is never minimal, it has the merit that there is a simple formula for calculating

the product of cohomology classes. The are many readable sources for this, such

as [Benson 1991a, (3.4)], [Evens 1991, (2.3)], and [Mac Lane 1995, IV § 5], so I

will not reproduce the details here.

7. Finite Generation of the Cohomology Algebra

In the preceding section, we noted that the cohomology algebra of a finite

group is graded-commutative. From this, the natural progression is to the fol-

lowing theorem, contained in [Evens 1991], [Golod 1959], and [Venkov 1959].

(7.1) Theorem. Let G be a finite group. The k-algebra H∗(G, k) is finitely

generated , and hence noetherian. �

This result, and its analogues for other types of groups, is the starting point of

Benson’s article [2004]; see the discussion in Section 4 of it. There are many

ways of proving Theorem (7.1), some more topological than others; one that is

entirely algebraic is given in [Evens 1961, (7.4)].

In this section I prove the theorem in some special cases. But first:
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Ramble. Theorem (7.1) has an analogue in commutative algebra: Gulliksen

[1974] proves that when a commutative local ring R, with residue field k, is a

complete intersection, the cohomology algebra Ext∗R(k, k) is noetherian. There is

a perfect converse: Bøgvad and Halperin [1986] have proved that if the k-algebra

Ext∗R(k, k) is noetherian, then R must be complete intersection.

There are deep connections between the cohomology of modules over complete

intersections and over group algebras. This is best illustrated by the theory of

support varieties. In group cohomology it was initiated by Quillen [1971a; 1971b],

and developed in depth by Benson and Carlson, among others; see [Benson

1991b] for a systematic introduction. In commutative algebra, support varieties

were introduced by Avramov [1989]; see also [Avramov and Buchweitz 2000].

As always, there are important distinctions between the two contexts. For

example, the cohomology algebra of a complete intersection ring is generated by

its elements of degree 1 and 2, which need not be the case with group algebras.

More importantly, once the defining relations of the complete intersection are

given, one can write down the cohomology algebra; the prescription for doing so

is given in [Sjödin 1976]. Computing group cohomology is an entirely different

cup of tea. Look up [Carlson 2001] for more information on the computational

aspects of this topic.

Now I describe the cohomology algebra of finitely generated abelian groups. In

this case, the group algebra is a complete intersection—see (1.4)— so one may

view the results below as being about commutative rings or about finite groups.

(7.2) Proposition. For each positive integer n, the cohomology of Zn is the

exterior algebra on an n-dimensional vector space concentrated in degree 1.

Proof. As noted in (1.2), the group algebra of Z is k[x±1], with augmentation

defined by ε(x) = 1. The augmentation ideal is generated by x − 1, and since

this element is regular, the Koszul complex

0→ k[x±1]
x−1−−−→ k[x±1]→ 0,

is a free resolution of k. Applying Homk[x±1](−, k) yields the complex with

trivial differentials: 0 → k → k → 0, and situated in cohomological degrees

0 and 1. Thus, H0(Z, k) = k = H1(Z, k). Moreover, H1(Z, k) · H1(Z, k) = 0,

by degree considerations, so that the cohomology algebra is the exterior algebra

∧k k, where the generator for k sits in degree 1.

For Zn, one uses the Künneth formula (6.5) to calculate group cohomology:

H∗(Zn
, k) = H∗(Z, k)⊗n = ∧k k

n
,

where the generators of k
n are all in (cohomological) degree 1. �

The next proposition computes the cohomology of cyclic p-groups. It turns out

that one gets the same answer for all but one of them; the odd man out is the

group of order two.
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(7.3) Proposition. Let k be a field of characteristic p, and let G = Z/p
eZ, for

some integer e ≥ 1.

(i) When p = 2 and e = 1, H∗(G, k) = Sym(ke
∗
1), with |e∗1| = 1.

(ii) Otherwise H∗(G, k) =
∧

(ke
∗
1)⊗k Sym(ke

∗
2), with |e∗1| = 1 and |e∗2| = 2.

Proof. The group algebra of G is k[x]/(xpe − 1), and its augmentation ideal is

(x − 1). Note that x
pe − 1 = (x − 1)pe

, so the substitution y = x − 1 presents

the group algebra in the more psychologically comforting, to this commutative

algebraist, form k[y]/(ype

). Write R for this algebra; it is a 0-dimensional hy-

persurface ring—the simplest example of a complete intersection—with socle

generated by the element y
pe−1. The R-module k has minimal free resolution

P : · · · → Re3
y−→ Re2

ype
−1

−−−−→ Re1
y−→ Re0 → 0.

This is an elementary instance of the periodic minimal free resolution, of period 2,

of the residue field of hypersurfaces constructed by Tate [1957]; see also [Eisenbud

1980]. Applying HomR(−, k) to the resolution above results in the complex

HomR(P, k) : 0→ ke
∗
0

0−→ ke
∗
1

0−→ ke
∗
2

0−→ ke
∗
3

0−→ · · ·

Thus, one obtains Hn(G, k) = k for each integer n ≥ 0.

Multiplicative structure. Next we calculate the products in group cohomology,

and for this I propose to use compositions in HomR(P,P ); see (5.1). More

precisely: since P is a complex of free modules, the canonical map

HomR(P, ε) : HomR(P,P )→ HomR(P, k)

is an isomorphism in homology. Given two cycles in HomR(P, k), I will lift them

to cycles in HomR(P,P ), compose them there, and then push down the resultant

cycle to HomR(P, k); this is their product.

For example, the cycle e
∗
1 of degree −1 lifts to the cycle α in HomR(P,P )

given by

· · · //

1

##G
G

G
G

G
G

G
G

G
Re4

ype
−1

//

−ype
−2

##H
H

H
H

H
H

H
H

H
Re3

y //

1

##H
H

H
H

H
H

H
H

H
Re2

ype
−1

//

−ype
−2

##H
H

H
H

H
H

H
H

H
Re1

y //

1

##H
H

H
H

H
H

H
H

H
Re0

// 0

· · · // Re4
ype

−1

// Re3 y
// Re2

ype
−1

// Re1 y
// Re0

// 0

It is a lifting of e
∗
1 since ε(α(e1)) = 1, and a cycle since ∂α = −α∂. Similarly,

the cycle e
∗
2 lifts to the cycle β given by

· · · //

1

))SSSSSSSSSSSSSSSSSS Re4
ype

−1

//

1

))SSSSSSSSSSSSSSSSSS Re3
y //

1

))SSSSSSSSSSSSSSSSSS Re2
ype

−1

//

1

))SSSSSSSSSSSSSSSSSS Re1
y // Re0

// 0

· · · // Re4
ype

−1

// Re3 y
// Re2

ype
−1

// Re1 y
// Re0

// 0
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This is all one needs in order to compute the entire cohomology rings of G.

As indicated before, there are two cases to consider.

When p = 2 and e = 1, one has y
pe−2 = 1, so that ε(αn(en)) = 1 for each

positive integer n. Therefore, (e∗1)
n = e

∗
n, and since the e

∗
n form a basis for the

graded k-vector space H∗(G, k), one obtains H∗(G, k) = k[e∗1], as desired.

Suppose that either p ≥ 3 or e ≥ 2. In this case

ε(αn+1(en+1)) = 0, ε(βn(e2n)) = 1, and ε(αβ
n−1(e2n−1)) = 1,

for each positive integer n. Passing to HomR(P, k), these relations translate to

(e∗1)
n+1 = 0, (e∗2)

n = e
∗
2n, e

∗
1(e
∗
2)

n−1 = e
∗
2n−1.

In particular, the homomorphism of k-algebras k[e∗1, e
∗
2]→ H∗(G, k) is surjective;

here, k[e∗1, e
∗
2] is the graded-polynomial algebra on e

∗
1 and e

∗
2, that is to say, it

is the tensor product of the exterior algebra on e
∗
1 and the usual polynomial

algebra on e
∗
2. This map is also injective: just compare Hilbert series.

This completes our calculation of the cohomology of cyclic p-groups. �

(7.4) Finitely generated abelian groups. Let the characteristic of k be p, and

let the group G be finitely generated and abelian. By the fundamental theorem

of finitely generated abelian groups, there are integers n and e1, . . . , em, such

that

G ∼= Zn ⊕ Z

(pe1Z)
⊕ · · · ⊕ Z

(pemZ)
⊕G

′
.

where G
′ is a finite abelian group whose order is coprime to p. By the Künneth

formula (6.5), the group cohomology of G is the k-algebra

H∗(Zn
, k)⊗k H∗(Z/p

e1Z, k)⊗k · · · ⊗k H∗(Z/p
emZ, k)⊗k H∗(G′ , k).

Note that H∗(G′ , k) = k, by Theorem (6.2); the remaining terms of the tensor

product above are computed by propositions (7.2) and (7.3).

To give a flavour of the issues that may arise in the nonabelian case, I will

calculate the cohomology of Σ3. This gives me also an excuse to introduce an

important tool in this subject:

(7.5) The Lyndon–Hochschild–Serre spectral sequence. Let G be a finite group

and M a k[G]-module. Let N be a normal subgroup in G.

Via the canonical inclusion of k-algebras k[N ] ⊆ k[G], one can view M also

as an k[N ]-module. Since N is a normal subgroup, the k-subspace M
N of N -

invariant elements of M is stable under multiplication by elements in G (check!)

and hence it is a k[G]-submodule of M . Furthermore, I(N) ·M N = 0, so that

M
N has the structure of a module over k[G]/ I(N)k[G], that is to say, of a

k[G/N ]-module; see (1.1). It is clear from the definitions that (M N )G/N = M
G.

In other words, one has an isomorphism of functors

Homk[G/N ](k,Homk[N ](k,−)) ∼= Homk[G](k,−).
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The functor on the left is the composition of two functors: Homk[N ](k,−) and

Homk[G/N ](k,−). Thus standard homological algebra provides us with a spectral

sequence that converges to its composition, that is to say, to H∗(G,M). In our

case, the spectral sequence sits in the first quadrant and has second page

E
p,q
2 = Hp(G/N ,Hq(N ,M))

and differential

∂
p,q
r : Ep,q

r → Ep+r,q−r+1
r .

This is the Lyndon–Hochschild–Serre spectral sequence associated to N .

Here are two scenarios where the spectral sequence collapses.

(7.6) Suppose the characteristic of k does not divide [G : N ], the index of N in

G. In this case, Hp(G/N ,−) = 0 for p ≥ 1, by Maschke’s theorem (6.2), so that

the spectral sequence in (7.5) collapses to yield an isomorphism

H∗(G,M) ∼= H0(G/N ,H∗(N ,M)) = H∗(N ,M)G/N
.

In particular, with M = k, one obtains that H∗(G, k) ∼= H∗(N , k)G/N ; this

isomorphism is compatible with the multiplicative structures. Note that the

object on the right is the ring of invariants of the action of G/N on the group

cohomology of N . Thus does invariant theory resurface in group cohomology.

(7.7) Suppose the characteristic of k does not divide |N |. Then Hq(N ,M) = 0

for q ≥ 1, and once again the spectral sequence collapses to yield an isomorphism

H∗(G,M) ∼= H∗(G/N ,M
N ).

The special case M = k reads H∗(G, k) = H∗(G/N , k).

As an application we calculate the cohomology of Σ3:

(7.8) The symmetric group on three elements. In the notation in (4.8), set

N = {1, b, b
2}; this is a normal subgroup of Σ3, and the quotient group Σ3/N is

(isomorphic to) Z/2Z. We use the Hochschild–Serre spectral sequence generated

by N in order to calculate the cohomology of Σ3. There are three cases.

Case (α). When p 6= 2, 3, Maschke’s theorem (6.2) yields

Hn(Σ3 , k) ∼=
{

k if n = 0,

0 otherwise.

Case (γ). If p = 2, then

H∗(Σ3 , k) = k[e∗1], where |e∗1| = 1;

the polynomial ring on the variable e1 of degree 1. Indeed, the order of N is 3,

so (7.7) yields that H∗(Σ3 , k) = H∗(Z/2Z, k). Proposition (7.3) does the rest.
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Case (β). Suppose that p = 3. One obtains from (7.6) that

H∗(Σ3 , k) = H∗(N , k)Z/2Z
.

The group N is cyclic of order 3, so its cohomology is k[e∗1, e
∗
2], with |e∗1| = 1

and |e∗2| = 2; see Proposition (7.3). The next step is to compute the ring of

invariants. The action of y, the generator of Z/2Z, on H∗(N , k) is compatible

with products, so it is determined entirely by its actions on e
∗
1 and on e

∗
2. I claim

that

y(e∗1) = −e
∗
1 and y(e∗2) = −e

∗
2.

Using the description of H1(N , k) given in (6.3), it is easy to verify the assertion

on the left; the one of the right is a little harder. Perhaps the best way to get this

is to observe that the action of y on H∗(N , k) is compatible with the Bockstein

operator on cohomology and that this takes e
∗
1 to e

∗
2; see [Evens 1961, (3.3)]. At

any rate, given this, it is not hard to see that

H∗(Σ3 , k) =
∧

(ke
∗
1e
∗
2)⊗k Sym(k(e∗2)

2),

the tensor product of an exterior algebra on an element of degree 3 and a sym-

metric algebra on an element of degree 4.

Hopf algebras. In this article I have indicated at various points that much

of the module theory over group algebras extends to Hopf algebras. I wrap up

by mentioning a perfect generalization of Theorem (7.1), due to E. Friedlander

and Suslin [1997]: If a finite-dimensional Hopf algebra H is cocommutative, its

cohomology algebra Ext∗H(k, k) is finitely generated.
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Abstract. Multiplier ideals are associated with a complex variety and an
ideal or ideal sheaf thereon, and satisfy certain vanishing theorems that
have proved rich in applications, for example in local algebra. This article
offers an introduction to the study of multiplier ideals, mainly adopting the
geometric viewpoint.
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1. Introduction

Given a smooth complex variety X and an ideal (or ideal sheaf) a on X, one

can attach to a a collection of multiplier ideals J(ac) depending on a rational

weighting parameter c > 0. These ideals, and the vanishing theorems they

satisfy, have found many applications in recent years. In the global setting they

have been used to study pluricanonical and other linear series on a projective

variety [Demailly 1993; Angehrn and Siu 1995; Siu 1998; Ein and Lazarsfeld

1997; 1999; Demailly 1999]. More recently they have led to the discovery of

some surprising uniform results in local algebra [Ein et al. 2001; 2003; 2004].

The purpose of these lectures is to give an easy-going and gentle introduction to

the algebraically-oriented local side of the theory.

Multiplier ideals can be approached (and historically emerged) from three

different viewpoints. In commutative algebra they were introduced and studied

Lazarsfeld’s research was partially supported by NSF Grant DMS 0139713.

87
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by Lipman [1993] (under the name “adjoint ideals”, which now means something

else), in connection with the Briançon–Skoda theorem. On the analytic side

of the field, Nadel [1990] attached a multiplier ideal to any plurisubharmonic

function, and proved a Kodaira-type vanishing theorem for them. (In fact, the

“multiplier” in the name refers to their analytic construction; see Section 2.4.)

This machine was developed and applied with great success by Demailly, Siu and

others. Algebro-geometrically, the foundations were laid in passing by Esnault

and Viehweg in connection with their work involving the Kawamata–Viehweg

vanishing theorem. More systematic developments of the geometric theory were

subsequently undertaken by Ein, Kawamata and Lazarsfeld. We will take the

geometric approach here.

The present notes follow closely a short course on multiplier ideals given by

Lazarsfeld at the Introductory Workshop for the Commutative Algebra Program

at the MSRI in September 2002. The three main lectures were supplemented

with a presentation by Blicke on multiplier ideals associated to monomial ideals

(which appears here in Section 3). We have tried to preserve in this write-up

the informal tone of these talks: thus we emphasize simplicity over generality in

statements of results, and we present very few proofs. Our primary hope is to

give the reader a feeling for what multiplier ideals are and how they are used.

For a detailed development of the theory from an algebro-geometric perspective

we refer to Part Three of the forthcoming book [Lazarsfeld 2004]. The analytic

picture is covered in Demailly’s lectures [2001].

We conclude this introduction by fixing the set-up in which we work and

giving a brief preview of what is to come. Throughout these notes, X denotes

a smooth affine variety over an algebraically closed field k of characteristic zero

and R = k[X] is the coordinate ring of X, so that X = SpecR. We consider

a nonzero ideal a ⊆ k[X] (or equivalently a sheaf of ideals a ⊆ OX). Given a

rational number c ≥ 0 our plan is to define and study the multiplier ideal

J(c · a) = J(ac) ⊆ k[X].

As we proceed, there are two ideas to keep in mind. The first is that J(ac)

measures in a somewhat subtle manner the singularities of the divisor of a typical

function f in a: for fixed c, “nastier” singularities are reflected by “deeper”

multiplier ideals. Secondly, J(ac) enjoys remarkable formal properties arising

from the Kawamata–Viehweg–Nadel vanishing theorem. One can view the power

of multiplier ideals as arising from the confluence of these facts.

The theory of multiplier ideals described here has striking parallels with the

theory of tight closure developed by Hochster and Huneke in positive character-

istic. Many of the uniform local results that can be established geometrically via

multiplier ideals can also be proven (in more general algebraic settings) via tight

closure. For some time the actual connections between the two theories were

not well understood. However very recent work of Hara and Yoshida [2003] and

Takagi [2004] has generalized tight closure theory to define a so called test ideal
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τ(a), which corresponds to the multiplier ideal J(a) under reduction to positive

characteristic. This provides a first big step towards identifying concretely the

links between these theories.

Concerning the organization of these notes, we start in Section 2 by giving

the basic definition and examples. Section 3 discusses in detail multiplier ideals

of monomial ideals. Invariants arising from multiplier ideals, with some appli-

cations to uniform Artin–Rees numbers, are taken up in Section 4. Section 5

is devoted to a discussion of some basic results about multiplier ideals, notably

Skoda’s theorem and the restriction and subadditivity theorems. We consider

asymptotic constructions in Section 6, with applications to uniform bounds for

symbolic powers following [Ein et al. 2001].

We are grateful to Karen Smith for suggestions concerning these notes.

2. Definition and Examples

As just stated, X is a smooth affine variety of dimension n over an algebraically

closed field of characteristic zero, and we fix an ideal a ⊆ k[X] in the coordinate

ring of X. Very little is lost by focusing on the case X = C
n of affine n-space over

the complex numbers C, so that a ⊆ C[x1, . . . , xn] is an ideal in the polynomial

ring in n variables.

2.1. Log resolution of an ideal. The starting point is to realize the ideal a

geometrically.

Definition 2.1. A log resolution of an ideal sheaf a ⊆ OX is a proper, birational

map µ : Y −→ X whose exceptional locus is a divisor E, satisfying the following

conditions:

(i) Y is nonsingular.

(ii) a · OY = µ
−1a = OY (−F ), with F =

∑
riEi an effective divisor.

(iii) F + E has simple normal crossing support.

Recall that a (Weil) divisor D =
∑

αiDi has simple normal crossing support if

each of its irreducible components Di is smooth, and if locally analytically one

has coordinates x1, . . . , xn of Y such that SuppD =
∑

Di is defined by x1· · · · ·xa

for some a between 1 and n. In other words, all the irreducible components of

D are smooth and intersect transversally. The existence of a log resolution for

any sheaf of ideals in any variety over a field of characteristic zero is essentially

Hironaka’s celebrated result [1964] on resolution of singularities. Nowadays there

are more elementary constructions of such resolutions, for instance [Bierstone and

Milman 1997; Encinas and Villamayor 2000; Paranjape 1999].

Example 2.2. Let X = A2 = Spec k[x, y] and a = (x2
, y

2). Blowing up the

origin in A2 yields

Y = Bl0(A
2)

µ−→ A2 = X.
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Clearly, Y is nonsingular. Computing on the chart for which the blowup µ is a

map A2 −→ A2 given by (u, v) 7→ (u, uv) shows that a · OY = OY (−2E). On the

same chart we have a · OY = (u2
, u

2
v
2) = (u2) and (u = 0) is the equation of

the exceptional divisor. This resolution is illustrated in Figure 1, where we have

drawn schematically the curves in A2 defined by typical k-linear combinations

of generators of a, and the proper transforms of these curves on Y . Note that

these proper transforms do not meet: this reflects the fact that a has become

principal on Y .

µ

E

Figure 1. Log resolution of (x2, y2).

Example 2.3. Now let a = (x3
, y

2). Here a log resolution is constructed by the

familiar sequence of three blowups used to resolve a cuspidal curve (Figure 2).

We have a · OY = OY (−2E1 − 3E2 − 6E3), where Ei is the exceptional divisor

of the i-th blowup.

These examples illustrate the principle that a log resolution of an ideal a is very

close to being the same as a resolution of singularities of a divisor of a general

function in a.

2.2. Definition of multiplier ideals. Besides a log resolution of µ : Y −→ X

of the ideal a, the other ingredient for defining the multiplier ideal is the relative

canonical divisor

KY/X = KY − µ
∗
KX = div(det(Jac µ)).

It is unique as a divisor (and not just as a divisor class) if one requires its support

to be contained in the exceptional locus of µ. Alternatively, KY/X is the effective

divisor defined by the vanishing of the determinant of the Jacobian of µ. The

canonical divisor KX is the class corresponding to the canonical line bundle ωX .

If X is smooth, ωX is just the sheaf of top differential forms Ωn
X on X.

The next proposition is extremely useful for basic computations of multiplier

ideals; see [Hartshorne 1977, Exercise II.8.5].

Proposition 2.4. Let Y = BlZX, where Z is a smooth subvariety of the smooth

variety X of codimension c. Then the relative canonical divisor KY/X is (c−1)E,

E being the exceptional divisor of the blowup.
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µ

E1

E3

E2

E1

E2

E1

Figure 2. Log resolution of (x3, y2).

Now we can give a provisional definition of the multiplier ideal of an ideal a: it

coincides in our setting with Lipman’s construction [1993].

Definition 2.5. Let a ⊆ k[X] be an ideal. Fix a log resolution µ : Y −→ X of

a such that a · OY = OY (−F ), where F =
∑

riEi, and KY/X =
∑

biEi. The

multiplier ideal of a is

J(a) = µ∗OY (KY/X − F )

=
{
h ∈ k[X] | div(µ∗h) + KY/X − F ≥ 0

}

=
{
h ∈ k[X] | ordEi

(µ∗h) ≥ ri − bi for all i

}
.

(We will observe later that this is independent of the choice of resolution.)

The definition may seem at first blush a little mysterious. One way to motivate it

is to note that J(a) is the push-forward of a bundle that is very natural from the

viewpoint of vanishing theorems. In fact, the bundle OY (−F ) appearing above

is (close to being) ample for the map µ. Therefore KY/X − F has the shape to

which Kodaira-type vanishing results will apply. In any event, the definition will

justify itself before long through the properties of the ideals so defined.
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Exercise 2.6. Use the fact that µ∗ωY = ωX to show that J(a) is indeed an

ideal in k[X].

Exercise 2.7. Show that the integral closure ā of a is equal to µ∗OY (−F ). Use

this to conclude that a ⊆ ā ⊆ J(a) = J(a). (Recall that the integral closure of

an ideal a consists of all elements f such that v(f) ≥ v(a) for all valuations v of

OX .)

Exercise 2.8. Verify that for ideals a ⊆ b one has J(a) ⊆ J(b). Use this and

the previous exercise to show that J(a) = J(ā).

The above definition of the multiplier ideal is not general enough for the most

interesting applications. As it turns out, allowing an additional rational (or real)

parameter c considerably increases the power of the theory.

Note that a log resolution of an ideal a is at the same time a log resolution

of any integer power an of that ideal. Thus we extend the last definition, using

the same log resolution for every c ≥ 0:

Definition 2.9. For every rational number c ≥ 0, the multiplier ideal of the

ideal a with exponent (or coefficient) c is

J(ac) = J(c · a) = µ∗OY (KY/X − bc · F c)
=

{
h ∈ k[X]

∣∣ ordEi
(µ∗h) ≥ bcric − bi for all i

}
,

where µ : Y −→ X is a log resolution of a such that a · OY = OY (−F ).

Note that we do not assign any meaning to ac itself, only to J(ac).1 The round-

down operation b · c applied to aQ-divisor D =
∑

aiDi for distinct prime divisors

Di is just rounding down the coefficients. That is, bDc =
∑baicDi. The round

up dDe = −b−Dc is defined analogously.

Exercise 2.10 (Caution with rounding). Show that rounding does not in

general commute with restriction or pullback.

Exercise 2.11. Let m be the maximal ideal of a point x ∈ X. Show that

J(mc) =

{
mbcc+1−n for c ≥ n = dimX.

OX otherwise.

Example 2.12. Let a = (x2
, y

2) ⊆ k[x, y]. For the log resolution of a as

calculated above we have KY/X = E. Therefore,

J(ac) = µ∗

(
OY (E − b2ccE)

)
= (x, y)b2cc−1

.

(In view of Exercise 2.8, this is a special case of Exercise 2.11.)

1There is a way to define the integral closure of an ideal ac, for c ≥ 0 rational, such that
it is consistent with the definition of the multiplier ideal. For c = p/q with positive integers p

and q, set f ∈ ap/q if and only if f
q ∈ ap, where the bar denotes the integral closure.
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Example 2.13. Let a = (x2
, y

3). In this case we computed a log resolution

with F = 2E1 + 3E2 + 6E3. Using the basic formula (Proposition 2.4) for

the relative canonical divisor of a blowup along a smooth center, one computes

KY/X = E1 + 2E2 + 4E3. Therefore,

J(ac) = µ∗

(
OY (E1 + 2E2 + 4E3 − bc(2E1+3E2+6E3)c)

)

= µ∗

(
OY ((1− b2cc)E1 + (2− b3cc)E2 + (4− b6cc)E3)

)
.

This computation shows that for c <
5
6 the multiplier ideal is trivial, that is,

J(ac) = OX . Furthermore, J(a5/6) = (x, y). The next coefficient for which

the multiplier ideal changes is c = 1. This behavior of multiplier ideals to be

piecewise constant with discrete jumps is true in general and will be discussed

in more detail later.

Exercise 2.14 (Smooth ideals). Suppose that q ⊆ k[X] is the ideal of a

smooth subvariety Z ⊆ X of pure codimension e. Then

J(ql) = q
l+1−e

.

(Blowing up X along Z yields a log resolution of q.) The case of fractional

exponents is similar.

2.3. Two basic properties. The definitions of the previous subsection are

justified by the fact that they lead to two fundamental results. The first is that

the ideal J(ac) constructed in Definition 2.9 is actually independent of the choice

of resolution.

Theorem 2.15. If X1
µ1−→ X and X2

µ2−→ X are log resolutions of the ideal

a ⊆ OX such that aOXi
= OXi

(−Fi), then

µ1∗

(
OX1

(KX1/X − bc · F1c
)

= µ2∗

(
OX2

(KX2/X − bc · F2c
)
.

As one would expect, the proof involves dominating µ1 and µ2 by a third res-

olution. It is during this argument that it becomes important to know that F1

and F2 have normal crossing support. See [Lazarsfeld 2004, Chapter 9].

Exercise 2.16. By contrast, give an example to show that if c is nonintegral,

the ideal µ∗(−bcF c) may indeed depend on the log resolution µ.

The second fundamental fact is a vanishing theorem for the sheaves computing

multiplier ideals.

Theorem 2.17 (Local Vanishing Theorem). Consider an ideal a ⊆ k[X] as

above, and let µ : Y −→ X be a log resolution of a with a ·OY = OY (−F ). Then

R
i
µ∗OY (KY/X − bcF c) = 0

for all i > 0 and c > 0.
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This leads one to expect that the multiplier ideal, being the zeroth derived image

of OY (KY/X − bcF c) under µ∗, will display particularly good cohomological

properties.

Theorem 2.17 is a special case of the Kawamata–Viehweg vanishing theorem

for a mapping; see [Lazarsfeld 2004, Chapter 9]. It is the essential fact underlying

all the applications of multiplier ideals appearing in this article. When c is a

natural number, the result can be seen as a slight generalization of the classical

Grauert–Riemenschneider Vanishing Theorem. However, as we shall see, it is

precisely the possibility of working with nonintegral c that opens the door to

applications of a nonclassical nature.

2.4. Analytic construction of multiplier ideals. We sketch briefly the

analytic construction of multiplier ideals. Let X be a smooth complex affine

variety, and a ⊆ C[X] an ideal. Choose generators g1, . . . , gp ∈ a. Then

J(ac)an =locally

{
h holomorphic

∣∣∣∣
|h|2(∑
|gi|2

)c is locally integrable

}
.

In other words, the analytic ideal associated to J(ac) arises as a sheaf of “mul-

tipliers”. See [Demailly 1999, (5.9)] or [Lazarsfeld 2004, Chapter 9.3.D] for the

proof. In brief the idea is to show that both the algebraic and the analytic defi-

nitions lead to ideals that transform the same way under birational maps. This

reduces one to the situation where a is the principal ideal generated by a single

monomial in local coordinates. Here the stated equality can be checked by an

explicit calculation.

2.5. Multiplier ideals via tight closure. As hinted at in the introduction,

there is an intriguing parallel between effective results in local algebra obtained

via multiplier ideals on the one hand and tight closure methods on the other.

Almost all the results we will discuss in these notes are of this kind: there are

tight closure versions of the Briançon–Skoda theorem, the uniform Artin–Rees

lemma and even of the result on symbolic powers that we present as an applica-

tion of the asymptotic multiplier ideals in Section 6.4. (For these tight closure

analogues see [Hochster and Huneke 1990], [Huneke 1992] and [Hochster and

Huneke 2002], respectively.) There is little understanding for why such different

techniques (characteristic zero, analytic in origin vs. positive characteristic) seem

to be tailor-made to prove the same results.

Recently, Hara and Yoshida [2003] and Takagi [Takagi 2004; Takagi and

Watanabe 2004; Hara and Takagi 2002; Takagi 2003] strengthened this par-

allel by constructing multiplier-like ideals using techniques modelled after tight

closure theory. Their construction builds on earlier work of Smith [2000] and

Hara [2001], who had established a connection between the multiplier ideal as-

sociated to the unit ideal (1) on certain singular varieties with the so-called test
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ideal in tight closure. The setting of the work of Hara and Yoshida is a regular2

local ring R of positive characteristic p. For simplicity one might again assume

R is the local ring of a point in An. Just as with multiplier ideals, one assigns

to an ideal a ⊆ R and a rational parameter c ≥ 0, the test ideal

τ(ac) =
{
h ∈ R | hI

∗ac ⊆ I for all ideals I

}
.

Here I
∗ac

denotes the ac–tight closure of an ideal, specifically introduced for the

purpose of constructing these test ideals τ(ac).3 The properties the test ideals

enjoy are strikingly similar to those of the multiplier ideal in characteristic zero:

For example the Restriction Theorem (Theorem 5.8) and Subadditivity (Theo-

rem 5.10) hold. What makes the test ideal a true analog of the multiplier ideal is

that under the process of reduction to positive characteristic the multiplier ideal

J(ac) corresponds to the test ideal τ(ac), or more precisely to the test ideal of

the reduction mod p of ac (for p� 0).

3. The Multiplier Ideal of Monomial Ideals

Although multiplier ideals enjoy excellent formal properties, they are hard to

compute in general. An important exception is the class of monomial ideals,

whose multiplier ideals are described by a simple combinatorial formula estab-

lished by Howald [2001]. By way of illustration we discuss this result in detail.

To state the result let a ⊆ k[x1, . . . , xn] be a monomial ideal, that is, an ideal

generated by monomials of the form x
m = x

m1

1 · · · · · xmn
n for m ∈ Zn ⊆ Rn.

In this way we can identify a monomial ideal a of k[x1, . . . , xn] with the set of

exponents (contained in Zn) of the monomials in a. The convex hull of this set

in Rn = Zn⊗R is called the Newton polytope of a and it is denoted by Newt(a).

Now Howald’s result states:

Theorem 3.1. Let a ⊆ k[x1, . . . , xn] be a monomial ideal . Then for every c > 0,

J(ac) =
〈
x

m | m + (1, . . . , 1) ∈ interior of c ·Newt(a)
〉

For example, the picture of the Newton polytope of the monomial ideal a =

(x4
, xy

2
, y

4) in Figure 3 shows, using Howald’s result, that J(a) = (x2
, xy, y

2).

Note that even though (0, 1)+(1, 1) lies in the Newton polytope Newt(a) it does

not lie in the interior. Therefore, the monomial y corresponding to (0, 1) does

not lie in the multiplier ideal J(a). But for all c < 1, clearly y ∈ J(ac).

To pave the way for clean proofs we need to formalize our setup slightly and

recall some results from toric geometry.

2One feature of their theory is that there is no reference to resolutions of singularities. As a
consequence no restriction on the singularity of R arises, whereas for multiplier ideals at least
some sort of Q–Gorenstein assumption is needed.

3Similarly as for tight closure, x ∈ I
∗a

c
if there is a h 6= 0 such that for all q = p

e one has
hx

qadqce ⊆ I
[q]. Note that I

[q] denotes the ideal generated by all q-th powers of the elements
of I, whereas adqce is the usual dqce-th power of a.
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Figure 3. Newton polytope of (x4, xy2, y4).

The ring k[X] = k[x1, . . . , xn] carries a natural Zn-grading that assigns to

a monomial x
m = x

m1

1 · · · · · xmn
n the degree m ∈ Zn. Equivalently, the n-

dimensional torus

T
n = Spec k[x±1

1 , . . . , x
±1
n ] ∼= (k∗)n

acts on k[X] via λ·xm = λ
m

x
m for λ ∈ (k∗)n. In terms of the varieties this means

that X = An contains the torus T
n as a dense open subset, and the action of T

n

on itself naturally extends to an action of T
n on all of X. Under this action, the

torus fixed (= Z
n-graded) ideals are precisely the monomial ideals. We denote

the lattice Zn in which the grading takes place by M . It is just the lattice of the

exponents of the Laurent monomials of k[T n].

As indicated above, the Newton polytope Newt(a) of a monomial ideal a is

the convex hull in MR = M ⊗Z R of the set {m ∈ M | xm ∈ a}. The Newton

polytope of a principal ideal (xv) is just the positive orthant in MR shifted by v.

In general, the Newton polytope of any ideal is an unbounded region contained

in the first orthant. With every point v the Newton polytope also contains the

first orthant shifted by v.

Exercise 3.2. Let a be a monomial ideal in k[x1, . . . , xn]. The lattice points

(viewed as exponents) in the Newton polytope Newt(a) of a define an ideal ā ⊇ a.

Show that ā is the integral closure of a (see [Fulton 1993]).

The fact that X = An contains the torus T
n as a dense open set such that the

action of T
n on itself extends to an action on X as just described makes it a

toric variety, by definition. The language of toric varieties is the most natural to

phrase and prove Howald’s result (and generalize it— see [Blickle 2004]). To set

this up completely would take us far afield, so we choose a more direct approach

using a bare minimum of toric geometry.

A first fact we have to take without proof from the theory of toric varieties

is that log resolutions of torus fixed ideals of k[X] exist in the category of toric

varieties. (To be precise, a toric variety comes with the datum of the torus

embedding T
n ⊆ X. Maps of toric varieties must preserve the torus action.)
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Theorem 3.3. Let a ⊆ k[x1, . . . , xn] be a monomial ideal . Then there is a

log resolution µ : Y −→ X of a such that µ is a map of toric varieties and

consequently a ·OY = OY (−F ) is such that F is fixed by the torus action on Y .

Indication of proof. This follows from the theory of toric varieties. First one

takes the normalized blowup of a, which is a (possibly singular) toric variety since

a was a torus-invariant ideal. Then one torically resolves the singularities of the

resulting variety as described in [Fulton 1993]. This is a much easier task than

resolution of singularities in general. It comes down to a purely combinatorial

procedure.

An alternative proof could use Encinas and Villamayor’s [2000] equivariant

resolution of singularities. They give an algorithmic procedure of constructing

a log resolution of a such that the torus action is preserved—that is, by only

blowing up along torus fixed centers. �

Toric Divisors. A toric variety X has a finite set of torus-fixed prime (Weil)

divisors. Indeed, since an arbitrary torus fixed prime divisor cannot meet the

torus (Tn acts transitively on itself and is dense in X), it has to lie in the

boundary Y − T
n, which is a variety of dimension at most n − 1 and thus

can only contain finitely many components of dimension n − 1. Furthermore,

these torus fixed prime divisors E1, . . . , Er generate the lattice of all torus fixed

divisors, which we shall denote by L
X . We denote the sum of all torus-invariant

prime divisors E1 + · · ·+ Er by 1X .

The torus-invariant rational functions of a toric variety are just the Laurent

monomials x
m1

1 · · · · ·xmn
n ∈ k[Tn]. For the toric variety X = An one clearly can

identify M , the lattice of exponents, with L
X by sending m to div x

m. In general

this map will not be surjective and its image is precisely the set of torus-invariant

Cartier divisors. We note the following easy lemma, which will nevertheless play

an important role in our proof of Theorem 3.1. It makes precise the idea that a

log resolution of a monomial ideal a corresponds to turning its Newton polytope

Newt(a) ⊆MR into a translate of the first orthant in L
X
R .

Lemma 3.4. Let µ : Y −→ X = Spec k[x1, . . . , xn] be a toric resolution of the

monomial ideal a⊆ k[x1, . . . , xn] such that a·OY =OY (−F ). For m∈M we have

c ·m ∈ c
′ Newt(a) ⇐⇒ c · µ∗ div x

m ≥ c
′ · F

for all rational c, c
′
> 0.

Proof. We first show the case c = c
′ = 1. Assume that m ∈ Newt(a). By

Exercise 3.2, this is equivalent to x
m ∈ ā, the integral closure of a. Since, by

Exercise 2.7, ā = µ∗OY (−F ) it follows that x
m ∈ ā if and only if µ

∗
x

m ∈
OY (−F ). This, finally, is equivalent to µ

∗(div x
m) ≥ F .

For the general case, express c and c
′ as integer fractions. Then reduce to the

previous case by clearing denominators and noticing that aNewt(a) = Newt(aa)

if a is an integer. �
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The canonical divisor. As a further ingredient for computing the multiplier ideal

we need an understanding of the canonical divisor (class) of a toric variety.

Lemma 3.5. Let X be a (smooth) toric variety and let E1, . . . , Er denote the

collection of all torus-invariant prime Weil divisors. Then the canonical divisor

is KY = −
∑

Ei = −1X .

We leave the proof as an exercise or alternatively refer to [Fulton 1993] or

[Danilov 1978] for this basic result. We verify it for X = An. In this case

Ei = (xi = 0) for i = 1, . . . , n are the torus-invariant divisors and KX is repre-

sented by the divisor of the T
n-invariant rational n-form dx1/x1 ∧ · · · ∧ dxn/xn,

which is −(E1 + · · · + En). As a consequence of the last lemma we get the

following lemma.

Lemma 3.6. Let µ : Y −→ X = An be a birational map of (smooth) toric

varieties. Then KY/X = µ
∗1X − 1Y and the support of µ

∗1X is equal to the

support of 1Y .

Proof. As the strict transform of a torus-invariant divisor on X is a torus-

invariant divisor on Y it follows that µ
∗1X − 1Y is supported on the exceptional

locus of µ. Since −1X represents the canonical class KX and likewise for Y , the

first assertion follows from the definition of KY/X . Since µ
∗1X is torus-invariant,

its support is included in 1Y . Since µ is an isomorphism over the torus T
n ⊆ X

it follows that µ
−1(1X) ⊇ 1Y , which implies the second assertion. �

Exercise 3.7. This exercise shows how to avoid taking Lemma 3.5 on faith but

instead using a result of Russel Goward [2002] that states that a log resolution

of a monomial ideal can be obtained by a sequence of monomial blowups.

A monomial blowup Y = BlZ(Y ) of An is the blowing up of An at the

intersection Z of some of the coordinate hyperplanes Ei = (xi = 0) of An.

For such a monomial blowup µ : Y = BlZ(X) −→ X ∼= An, show that Y is

a smooth toric variety canonically covered by codim(Z,X) many An patches.

Show that 1Y = E1 + · · ·+ En + E, where E is the exceptional divisor of µ. Via

a direct calculation verify the assertions of the last two lemmata for Y .

Since a monomial blowup is canonically covered by affine spaces, one can

repeat the process in a sequence of monomial blowups. Using Goward’s result,

show directly that a monomial ideal has a toric log resolution µ : Y −→ A with

the properties stated in Lemma 3.6.

We are now ready to wrap up the Proof of Theorem 3.1. By the existence of a

toric (or equivariant) log resolution of a monomial ideal a, it follows immediately

that the multiplier ideal J(ac) is also generated by monomials. Thus, in order to

determine J(ac), it is enough to decide which monomials x
m lie in J(ac). With

our preparations this is now an easy task.

Proof of Theorem 3.1. As usual we denote Spec k[x1, . . . , xn] by X and let

µ : Y −→ X be a toric log resolution of a such that a · OY = OY (−F ).
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Abusing notation by identifying div(x1 · · · · ·xn) = 1X ∈ L
X with (1, . . . , 1) ∈

M , the condition of the theorem that m + 1X is in the interior of the Newton

polytope c ·Newt(a) is equivalent to

m + 1X − ε 1X ∈ c Newt(a)

for small enough rational ε > 0. By Lemma 3.4 this holds if and only if

µ
∗ div g + µ

∗1X − εµ
∗1X ≥ cF.

Using the formula KY/X = µ
∗1X − 1Y from Lemma 3.5 this is equivalent to

µ
∗ div g + KY/X + b1Y − εµ

∗1X − cF c ≥ 0

for sufficiently small ε > 0. Since by Lemma 3.6, µ
∗1X is effective with the same

support as 1Y it follows that all coefficients appearing in 1Y−εµ
∗1X are very close

to but strictly smaller than 1 for small ε > 0. Therefore, b1Y − εµ
∗1X − cF c =

d−cF e = −bcF c. Thus we can finish our chain of equivalences with

µ
∗ div g ≥ −KY/X + bcF c,

which says nothing but that g ∈ J(ac). �

This formula for the multiplier ideal of a monomial ideal is applied in the next

section to concretely compute certain invariants arising from multiplier ideals.

4. Invariants Arising from Multiplier Ideals and Applications

We keep the notation of a smooth affine variety X over an algebraically closed

field of characteristic zero, and an ideal a ⊆ k[X]. In this section we use multiplier

ideals to attach some invariants to a, and we study their influence on some

algebraic questions.

4.1. The log canonical threshold. If c > 0 is very small, then J(ac) = k[X].

For large c, on the other hand, the multiplier ideal J(ac) is clearly nontrivial.

This leads one to define:

Definition 4.1. The log canonical threshold of a is the number

lct(a) = lct(X, a) = inf
{
c > 0 | J(ac) 6= OX

}
.

The following exercise shows that lct(a) is a rational number, and that the infi-

mum appearing in the definition is actually a minimum. Consequently, the log

canonical threshold is just the smallest c > 0 such that J(ac) is nontrivial.

Exercise 4.2. As usual, fixing notation of a log resolution µ : Y −→ X with

a · OY =
∑

riEi and KY/X =
∑

biEi, show that

lct(X, a) = min
{

bi + 1

ri

}
.
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Recall the notions from singularity theory [Kollár 1997] in which a pair (X, ac)

is called log terminal if and only if bi − cri + 1 > 0 for all i. It is called log

canonical if and only if bi − cri + 1 ≥ 0 for all i. The last exercise also shows

that (X, ac) is log terminal if and only if the multiplier ideal J(ac) is trivial.

Example 4.3. Continuing previous examples, we observe that lct((x2
, y

2)) = 1

and lct((x2
, y

3)) = 5
6 .

Example 4.4 (The log canonical threshold of a monomial ideal). The

formula for the multiplier ideal of a monomial ideal a on X = Spec k[x1, . . . , xn]

shows that J(ac) is trivial if and only if 1X = (1, . . . , 1) is in the interior of the

Newton polytope c Newt(a). This allows to compute the log canonical threshold

of a: lct(a) is the largest t > 0 such that 1X ∈ t ·Newt(a).

Example 4.5. As a special case of the previous example, take

a = (xa1

1 , . . . , x
an
n ).

Then the Newton polytope is the subset of the first orthant consisting of points

(v1, . . . , vn) satisfying
∑

vi/ai ≥ 1. Therefore 1X ∈ t · Newt(a) if and only if∑
1/ai ≥ t. In particular, lct(a) =

∑
1/ai.

4.2. Jumping numbers. The log canonical threshold measures the triviality

or nontriviality of a multiplier ideal. By using the full algebraic structure of

these ideals, it is natural to see this threshold as merely the first of a sequence

of invariants. These so-called jumping numbers were first considered (at least

implicitly) in [Libgober 1983] and [Loeser and Vaquié 1990]. They are studied

more systematically in [Ein et al. 2004].

We start with a lemma:

Lemma 4.6. For a ⊆ OX , there is an increasing discrete sequence of rational

numbers

0 = ξ0 < ξ1 < ξ2 < · · ·
such that J(ac) is constant for ξi ≤ c < ξi+1 and J(aξi) ! J(aξi+1).

We leave the (easy) proof to the reader.

The ξi = ξi(a) are called the jumping numbers or jumping coefficients of a.

Referring to the log resolution µ appearing in Example 4.2, note that the only

candidates for jumping numbers are those c such that cri is an integer for some

i. Clearly the first jumping number ξ1(a) is the log canonical threshold lct(a).

Example 4.7 (Jumping numbers of monomial ideals). Consider a mono-

mial ideal a ⊆ k[x1, . . . , xn]. For the multiplier ideal J(ac) to jump at c = ξ is

equivalent to the condition that some monomial, say x
v, is in J(aξ) but not in

J(aξ−ε) for all ε > 0. Thus, the largest ξ > 0 such that v+(1, . . . , 1) ∈ ξ Newt(a)

is a jumping number. Performing this construction for all v ∈ Nn one obtains all

jumping numbers of a (this uses the fact that the multiplier ideal of a monomial

ideal is a monomial ideal).
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Exercise 4.8. Consider again a = (xa1

1 , . . . , x
an
n ). The jumping numbers of a

are precisely the rational numbers of the form

v1 + 1

a1
+ · · ·+ vn + 1

an
,

where (v1, . . . , vn) ranges over Nn. But different vectors (v1, . . . , vn) may give

the same jumping number.

It is instructive to picture the jumping numbers of an ideal graphically. The

figure below, taken from [Ein et al. 2004], shows the jumping numbers of the two

ideals (x9
, y

10) and (x3
, y

30): the exponents are chosen so that the two ideals

have the same Samuel multiplicity, and so that the pictured jumping coefficients

occur “with multiplicity one” (in a sense whose meaning we leave to the reader).

(x9, y10)

(x3, y30)

0.0

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

4.3. Jumping length. Jumping numbers give rise to an additional invariant

in the case of principal ideals.

Lemma 4.9. Let f ∈ k[X] be a nonzero function. Then J(f) = (f) but (f)  

J(f c) for c < 1. In other words, ξ = 1 is a jumping number of the principal

ideal (f).

Deferring the proof for a moment, we note that the lemma means that ξl(f) = 1

for some index l. We define l = l(f) to be the jumping length of f . Thus l(f)

counts the number of jumping coefficients of (f) that are ≤ 1.

Example 4.10. Let f = x
4 + y

3 ∈ C[x, y]. One can show that f is sufficiently

generic so that J(f c) = J((x4
, y

3)c) provided that c < 1. Therefore the first few

jumping numbers of f are

0 < lct(f) = 1
4 + 1

3 <
2
4 + 1

3 <
1
4 + 2

3 < 1,

and l(f) = 4.

Proof of Lemma 4.9. Let µ : Y −→ X be a log resolution of (f) and denote

the integral divisor (f = 0) by D =
∑

aiDi. Clearly, a · OY = OY (−µ
∗
D) and

µ
∗
D is also an integral divisor. Thus

J(f) = µ∗OY (KY/X − µ
∗
D) = µ∗(OY (KY/X)⊗ µ

∗
OX(−D))

= OX ⊗ OX(−D)

= (f).
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On the other hand, choose a general point x ∈ Di on any of the components of

D = div(f) =
∑

aiDi. Then µ is an isomorphism over x and consequently

ordDi

(
J(f c)

)
< ai for 0 < c < 1.

Therefore J((f)c) $ (f) whenever c < 1. �

Finally, we note that the jumping length can be related to other invariants of

the singularities of f :

Proposition 4.11 [Ein et al. 2004]. Assume the hypersurface defined by the

vanishing of f has at worst an isolated singularity at x ∈ X. Then

l(f) ≤ τ(f, x) + 1,

where τ(f, x) is the Tjurina number of f at x, defined as the colength in Ox,X

of (f, ∂f/∂z1, . . . , ∂f/∂zn) for z1, . . . , zn parameters around x.

4.4. Application to uniform Artin–Rees numbers. We next discuss a

result relating jumping lengths to uniform Artin–Rees numbers of a principal

ideal.

To set the stage, recall the statement of the Artin–Rees lemma in a simple

setting:

Theorem (Artin–Rees). Let b be an ideal and f an element of k[X]. There

exists an integer k = k(f, b) such that

b
m ∩ (f) ⊆ b

m−k · (f)

for all m ≥ k. In other words, if fg ∈ bm then g ∈ bm−k.

Classically, k is allowed to depend both on b and f . However, Huneke [1992]

showed that in fact there is a single integer k = k(f) that works simultaneously

for all ideals b. Any such k is called a uniform Artin–Rees number of f . (Both

the classical Artin–Rees Lemma and Huneke’s theorem are valid in a much more

general setting.)

The next result shows that the jumping length gives an effective estimate (of

moderate size!) for uniform Artin–Rees numbers.

Theorem 4.12 [Ein et al. 2004]. As above, write l(f) for the jumping length of

f . Then the integer k = l(f) · dimX is a uniform Artin–Rees number of f .

If f defines a smooth hypersurface, its jumping length is 1 and it follows that

n = dimX is a uniform Artin–Rees number in this case. (In fact, Huneke showed

that n− 1 also works in this case.)

If f defines a hypersurface with only an isolated singular point x ∈ X, it fol-

lows from Proposition 4.11 and the theorem that k = n·
(
τ(f, x)+1)

)
is a uniform

Artin–Rees number. (One can show using the next lemma and observations of

Huneke that k = τ(f, x) + n also works: see [Ein et al. 2004, § 3].)
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The essential input to Theorem 4.12 is a statement involving consecutive

jumping coefficients:

Lemma 4.13. Consider two consecutive jumping numbers

ξ = ξi(f) < ξi+1(f) = ξ
′

of f , and let b ⊆ k[X] be any ideal . Then given a natural number m > n =

dimX, one has

b
m · J(f ξ) ∩ J(f ξ′

) ⊆ b
m−n · J(f ξ′

).

We will deduce this from Skoda’s theorem in the next section. In the meantime,

we observe an immediate application:

Proof of Theorem 4.12. We apply Lemma 4.13 repeatedly to successive

jumping numbers in the chain of multiplier ideals:

k[X] = J(f0) ! J(f ξ1) ! J(f ξ2) ! · · · ! J(f ξl) = J(f) = (f).

After further intersection with (f) one finds

b
m ∩ (f) ⊆ b

m−n · J(f ξ1) ∩ (f)

⊆ b
m−2n · J(f ξ2) ∩ (f) ⊆ · · · ⊆ b

m−ln(f),

as required. �

Remark 4.14. When a = (f) is a principal ideal, the jumping numbers of f are

related to other invariants appearing in the literature. In particular, if f has an

isolated singularity, suitable translates of the jumping coefficients appear in the

Hodge-theoretically defined spectrum of f . See [Ein et al. 2004, § 5] for precise

statements and references.

5. Further Local Properties of Multiplier Ideals

In this section we discuss some results involving the local behavior of multiplier

ideals. We start with Skoda’s theorem and some variants. Then we discuss the

restriction and subadditivity theorems, which will be used in the next section.

5.1. Skoda’s theorem. An important and early example of a uniform result

in local algebra was established by Briançon and Skoda [1974] using analytic

results of Skoda [1972]. In our language, Skoda’s result is this:

Theorem 5.1 (Skoda’s Theorem, I). Consider any ideal b ⊆ k[X] with X

smooth of dimension n. Then, for all m ≥ n,

J(bm) = b · J(bm−1) = · · · = b
m+1−n · J(bn−1).
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Remark 5.2. The statement and proof in [Skoda 1972] have a more analytic

flavor (see [Hochster 2004, pp. 125 and 126] in this volume for some more on

this). In fact, using the analytic interpretation of multiplier ideals (Section 2.4)

one sees that the analytic analogue of Theorem 5.1 is essentially equivalent to

the following statement.

Suppose that b is generated by (g1, . . . , gt), and that f is a holomorphic

function such that ∫ |f |2

(
∑
|gi|2)m

<∞

for some m ≥ n = dimX. Then locally there exist holomorphic functions

hi such that f =
∑

higi, and moreover each of the hi satisfies the local

integrability condition
∫ |hi|2

(
∑
|gi|2)m−1

<∞.

(The hypothesis expresses the membership of f in J(bm)an and the conclusion

writes f as belonging to ban · J(bm−1)an.)

As a corollary of Skoda’s theorem, one obtains the classical theorem of Briançon–

Skoda.

Corollary 5.3 (Briançon–Skoda). With the notation as before,

bm ⊆ J(bm) ⊆ b
m+1−n

where denotes the integral closure and n = dimX.

Sketch of proof of Theorem 5.1. The argument follows ideas of Teissier and

Lipman. We choose generators g1, . . . , gk for the ideal b and fix a log resolution

µ : Y −→ X of b with b · OY = OY (−F ). Write g
′
i = µ

∗(gi) ∈ Γ(Y,OY (−F )) to

define the surjective map

(5–1)
⊕k

i=0 OY −→ OY (−F )

by sending (x1, . . . , xk) to
∑

xig
′
i. Tensoring this map with OY (KY/X−(m−1)F )

yields the surjection

⊕k
i=1 OY (KY/X − (m− 1)F )

ϕ−→ OY (KY/X −mF ).

Further applying µ∗ we get the map
⊕k

i=0 J(bm−1)
µ∗ϕ−−→ J(bm), which again

sends a tuple (y1, . . . , yk) to
∑

yigi. Therefore, the image of µ∗(ϕ) is

Image(µ∗ϕ) = bJ(bm−1) ⊆ J(bm).

What remains to show is that µ∗ϕ is surjective. For this consider the Koszul

complex on the g
′
i on Y that resolves the map in (5–1):

0 −→ OY ((k − 1)F ) −→
⊕k

OY ((k − 2)F ) −→ · · ·
· · · −→

⊕(k

2) OY (F ) −→
⊕k

OY −→ OY (−F ) −→ 0.
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As above, tensor through by OY

(
KY/X − (m−1)F

)
to get a resolution of ϕ.

Local vanishing (Theorem 2.17) applies to the m ≥ n = dimX terms on the

right. Chasing through the sequence while taking direct images then gives the

required surjectivity. See [Lazarsfeld 2004, Chapter 9] or [Ein and Lazarsfeld

1999] for details. �

It will be useful to have a variant involving several ideals and fractional coef-

ficients. For this we extend slightly the definition of multiplier ideals. Fix a

sequence of ideals a1, . . . , at and positive rational numbers c1, . . . , ct. Then we

define the multiplier ideal

J(ac1

1 · · · · · act

t )

starting with a log resolution µ : Y −→ X of the product a1 · · · · · at. Since this

is at the same time also a log resolution of each ai write ai · OY = OY (−Fi) for

simple normal crossing divisors Fi.

Definition 5.4. With the notation as indicated, the mixed multiplier ideal is

J
(
a

c1

1 · · · · · act

t ) = µ∗(OY (KY/X − bc1F1 + · · ·+ ctFtc)
)
.

As before, this definition is independent of the chosen log resolution.

Once again we do not attempt to assign any meaning to the expression a
c1

1 · · · · ·act

t

in the argument of J. This expression is meaningful a priori whenever all the ci

are positive integers and our definition is consistent with this prior meaning.

With this generalization of the concept of multiplier ideals we get the following

variant of Skoda’s theorem.

Theorem 5.5 (Skoda’s Theorem, II). For every integer c ≥ n = dimX and

any d > 0 one has

J(ac
1 · ad

2) = a
c−(n−1)
1 J(an−1

1 · ad
2).

The proof of this result is only a technical complication of the proof of the first

version, Theorem 5.1. See [Lazarsfeld 2004, Chapter 9] for details.

We conclude by using Skoda’s Theorem to prove (a slight generalization of)

the Lemma 4.13 underlying the results on uniform Artin–Rees numbers in the

previous section.

Lemma 5.6. Let a ⊆ k[X] be an ideal and let ξ < ξ
′ be consecutive jumping

numbers of a. Then for m > n we have

b
m · J(aξ) ∩ J(aξ′

) ⊆ b
m−n · J(aξ′

)

for all ideals b ⊆ k[X].

Proof. We first claim that

b
mJ(aξ) ∩ J(aξ′

) ⊆ J(bm−1 · aξ′

).

This is shown via a simple computation. In fact, to begin with one can replace ξ

by c ∈ [ξ, ξ′) arbitrarily close to ξ
′ since this does not change the statement. Let
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µ : Y −→ X be a common log resolution of a and b such that a · OY = OY (−A)

and b ·OY = OY (−B). Let E be a prime divisor on Y and denote by a, b and e

the coefficient of E in A, B and KY/X , respectively. Then f is in the left-hand

side if and only if

ordE f ≥ max
(
−e + mb + bcac,−e + bξ′ac

)
.

If b = 0 this implies that ordE f ≥ −e + (m − 1)b + bξ′ac. If b 6= 0 then b is a

positive integer ≥ 1. Since c is arbitrarily close to ξ
′ we get

bξ′ac − b ≤ bξ′ac − 1 ≤ bcac.

Adding −e+mb it follows that also in this case ordE f ≥ −e+(m− 1)b+ bξ′ac.
Since this holds for all E it follows that f ∈ J(bm−1 · aξ′

).

Now, using Theorem 5.5 we deduce

J(bm−1 · aξ′

) ⊆ b
m−nJ(bn−1 · aξ′

) ⊆ b
m−nJ(aξ′

).

Putting all the inclusions together, the lemma follows. �

Exercise 5.7. Let a ⊆ k[X] be an ideal. Starting at dimX − 1, the jumping

numbers are periodic with period 1. That is, ξ ≥ dim X−1 is a jumping number

if and only if ξ + 1 is a jumping number.

5.2. Restriction theorem. The next result deals with restrictions of multiplier

ideals. Consider a smooth subvariety Y ⊆ X and an ideal b ⊆ k[X] that does

not vanish on Y . There are then two ways to get an ideal on Y . First, one can

compute the multiplier ideal J(X, bc) on X and then restrict it to Y . Or one

can restrict b to Y and then compute the multiplier ideal on Y of this restricted

ideal. The Restriction Theorem—arguably the most important local property

of multiplier ideals— says there is always an inclusion among these ideals on Y .

Theorem 5.8 (Restriction Theorem). Let Y ⊆ X be a smooth subvariety

of X and b an ideal of k[X] such that Y is not contained in the zero locus of b.

Then

J
(
Y, (b · k[Y ])c

)
⊆ J(X, b

c) · k[Y ].

One can think of the theorem as reflecting the principle that singularities can

only get worse under restriction.

In the present setting, the result is due to Esnault and Viehweg [1992, Propo-

sition 7.5]. When Y is a hypersurface, the statement is proved using the Local

Vanishing Theorem, page 93. Since in any event a smooth subvariety is a local

complete intersection, the general case then follows from this.

Exercise 5.9. Give an example where strict inclusion holds in the theorem.
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5.3. Subadditivity theorem. We conclude with a result due to Demailly, Ein

and Lazarsfeld [Demailly et al. 2000] concerning the multiplicative behavior of

multiplier ideals. This subadditivity theorem will be used in the next section to

obtain uniform bounds on symbolic powers of ideals.

Theorem 5.10 (Subadditivity). Let a and b be ideals in k[X]. Then, for all

c, d > 0,

J(ac · bd) ⊆ J(ac) · J(bd).

In particular , for every positive integer m, J(acm) ⊆ J(ac)m.

Sketch of proof. The idea is to pull back the data to the product X × X

and then to restrict to the diagonal ∆. Specifically, assume for simplicity that

c = d = 1, and consider the product

X ×X

p1{{ww
w
w
w
w
w
w
w

p2 ##G
G

G
G

G
G

G
G

G

X X

along with its projections as indicated. For log resolutions µ1 and µ2 of a and b

respectively one can verify that µ1 × µ2 is a log resolution of the ideal p−1
1 (a) ·

p−1
2 (b) on X ×X. Using this one shows that

J(X ×X, p−1
1 (a) · p−1

2 (b)) = p−1
1 J(X, a) · p−1

2 J(X, b).

Now let ∆ ⊆ X ×X be the diagonal. Apply the Restriction Theorem 5.8 with

Y = ∆ to conclude that, as required,

J(X, a · b) = J(∆, p−1
1 (a) · p−1

2 (b) · O∆)

⊆ J(X ×X, p−1
1 (a) · p−1

2 (b)) · O∆

= J(X, a) · J(X, b). �

6. Asymptotic Constructions

In many natural situations in geometry and algebra, one must confront rings

or algebras that fail to be finitely generated. For example, if D is a nonample

divisor on a projective variety V , the section ring R(V,D) =
⊕

Γ(V, OV (mD)) is

typically not finitely generated. Likewise, if q is a radical ideal in some ring, the

symbolic blow-up algebra
⊕

q(m) likewise fails to be finitely generated in general.

It is nonetheless possible to extend the theory of multiplier ideals to such settings.

It turns out that there is finiteness built into the resulting multiplier ideals that

may not be present in the underlying geometry or algebra. This has led to some

of the most interesting applications of the theory.

In the geometric setting, the asymptotic constructions have been known for

some time, but it was only with Siu’s work [1998] on deformation invariance of
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plurigenera that their power became clear. Here we focus on an algebraic for-

mulation of the theory from [Ein et al. 2001]. As before, we work with a smooth

affine variety X defined over an algebraically closed field k of characteristic zero.

6.1. Graded systems of ideals. We start by defining certain collections of

ideals, to which we will later attach multiplier ideals.

Definition 6.1. A graded system or graded family of ideals is a family a• =

{ak}k∈N of ideals in k[X] such that

al · am ⊆ al+m

for all l,m ≥ 1. To avoid trivialities, we also assume that ak 6= (0) for k � 1.

The condition in the definition means that the direct sum

R(a•)
def
= k[X]⊕ a1 ⊕ a2 ⊕ · · ·

naturally carries a graded k[X]-algebra structure and R(a•) is called the Rees

algebra of a•. In the interesting situations R(a•) is not finitely generated, and

it is here that the constructions of the present section give something new. One

can view graded systems as local objects displaying complexities similar to those

that arise from linear series on a projective variety V . If D is an effective divisor

on V , the base ideals bk = b(|kD|) ⊆ OV form a graded family of ideal sheaves

on V : this is the prototypical example.

Example 6.2. We give several examples of graded systems.

(i) Let b ⊆ k[X] be a fixed ideal, and set ak = bk. One should view the resulting

graded system as a trivial example.

(ii) Let Z ⊆ X be a reduced subvariety defined by the radical ideal q. The

symbolic powers

q
(k) def

=
{
f ∈ k[X]

∣∣ ordz f ≥ k for z ∈ Z generic
}

form a graded system.4

(iii) Let < be a term order on k[x1, . . . , xn] and b be an ideal. Then

ak
def
= in<(bk)

defines a graded system of monomial ideals, where in<(bk) denotes the initial

ideal with respect to the given term order.

Example 6.3 (Valuation ideals). Let ν be a R-valued valuation centered on

k[X]. Then the valuation ideals

ak
def
=

{
f ∈ k[X]

∣∣ ν(f) ≥ k

}

4When Z is reducible, we ask that the condition hold at a general point of each component.
That this is equivalent to the usual algebraic definition is a theorem of Zariski and Nagata:
see [Eisenbud 1995, Chapter 3].
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form a graded family. Special cases of this construction are interesting even when

X = A2
C .

(i) Let η : Y −→ A2 be a birational map with Y also smooth and let E ⊆ Y be

a prime divisor. Define the valuation ν(f)
def
= ordE(f). Then

ak
def
= µ∗OY (−kE) =

{
f ∈ OX

∣∣ ν(f) = ordE(f) ≥ k

}
.

(ii) In C[x, y] put ν(x) = 1 and ν(y) = 1/

√
2. Then one gets a valuation by

weighted degree. Here ak is the monomial ideal generated by the monomials

x
i
y

j such that i + j/

√
2 ≥ k.

(iii) Given f ∈ C[x, y] define ν(f) = ordz(f(z, e
z−1)). This yields a valuation

giving rise to the graded system

ak
def
= (xk

, y − Pk−1(x)),

where Pk−1(x) is the (k − 1)-st Taylor polynomial of e
x − 1. Note that the

general element in ak defines a smooth curve in the plane.

Remark 6.4. Except for Example 6.2(i), all these constructions give graded

families a• whose corresponding Rees algebra need not be finitely generated.

6.2. Asymptotic multiplier ideals. We now attach multiplier ideals J(ac
•
)

to a graded family a• of ideals. The starting point is:

Lemma 6.5. Let a• be a graded system of ideals on X, and fix a rational number

c > 0. Then for p� 0 the multiplier ideals J(a
c/p
p ) all coincide.

Definition 6.6. Let a• = {ak}k∈N be a graded system of ideals on X. Given

c > 0 we define the asymptotic multiplier ideal of a• with exponent c to be the

common ideal

J(ac
•
)

def
= J(ac/p

p )

for any sufficiently big p� 0.5

Indication of Proof of Lemma 6.5. We first claim that one has an inclusion

of multiplier ideals J(a
c/p
p ) ⊆ J(a

c/pq
pq ) for all p, q ≥ 0. Granting this, it follows

from the Noetherian condition that the collection of ideals
{
J(a

c/p
p )

}
p≥0

has a

unique maximal element. This proves the lemma at least for sufficiently divisible

p. (The statement for all p� 0 requires a little more work; see [Lazarsfeld 2004,

Chapter 11].)

To verify the claim let µ : X
′ −→ X be a common log resolution of ap and apq

with ap ·OY = OY (−Fp) and apq ·OY = OY (−Fpq). Since the ak form a graded

system one has aq
p ⊆ apq and therefore −cqFp ≤ −cFpq. Thus, as claimed,

µ∗OY (KY/X − b cq
pq Fpc) ⊆ µ∗OY (KY/X − b c

pq Fpqc). �

5In [Ein et al. 2001] and early versions of [Lazarsfeld 2004], one only dealt with the ideals
J(al

•
) for integral l, which were written J(‖al‖).
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Remark 6.7. Lemma 6.5 shows that any information captured by the multiplier

ideals J(a
c/p
p ) is present already for any one sufficiently large index p. It is in

this sense that multiplier ideals have some finiteness built in that may not be

present in the underlying graded system a•.

Exercise 6.8. We return to the graded systems in Example 6.3 coming from

valuations on A2.

(ii) Here ak is the monomial ideal generated by x
i
y

j with i + j/

√
2 ≥ k, and

J(ac
•
) is the monomial ideal generated by all x

i
y

j with

(i+1) +
(j+1)√

2
> c.

(Compare with Theorem 3.1.)

(iii) Now take the valuation ν(f) = ordz f(z, e
z−1). Then

J(ac
•
) = C[x, y]

for all c > 0. (Use the fact that each ak contains a smooth curve.)

6.3. Growth of graded systems. We now use the Subadditivity Theorem

5.10 to prove a result from [Ein et al. 2001] concerning the multiplicative behavior

of graded families of ideals:

Theorem 6.9. Let a• be a graded system of ideals and fix any l ∈ N. Then

J(al
•
) = J(a

1/p
lp ) for p� 0.

Moreover , for every m ∈ N,

a
m
l ⊆ alm ⊆ J(alm

•
) ⊆ J(al

•
)m

.

In particular , if J(al
•
) ⊆ b for some natural number l and ideal b, then alm ⊆ bm

for all m.

Remark 6.10. The crucial point here is the containment J(alm
•

) ⊆ J(al
•
)m: it

shows that passing to multiplier ideals “reverses” the inclusion am
l ⊆ alm.

Proof of Theorem 6.9. For the first statement, observe that if p� 0 then

J(al
•
) = J(al/p

p ) = J(a
l/lp
lp ) = J(a

1/p
lp ),

where the second equality is obtained by taking lp in place of p as the large index

in Lemma 6.5. For the containment alm ⊆ J(alm
•

) it is then enough to prove

that alm ⊆ J(a
1/p
lmp). But we have alm ⊆ J(alm) thanks to Exercise 2.7, while

the inclusion J(alm) ⊆ J(a
1/p
lmp) was established during the proof of 6.5.

It remains only to prove that J(alm
•

) ⊆ J(al
•
)m. To this end, fix p� 0. Then

by the definition of asymptotic multiplier ideals and the Subadditivity Theorem

one has, as required,

J(alm
•

) = J(alm/p
p ) ⊆ J(al/p

p )m = J(al
•
)m

�
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Example 6.11. The Theorem gives another explanation of the fact that the

multiplier ideals associated to the graded system a• from Example 6.3.(iii) are

trivial. In fact, in this example the colength of ak in C[X] grows linearly in k.

It follows from Theorem 6.9 that then J(al
•
) = (1) for all l.

Exercise 6.12. Let ak = bk be the trivial graded family consisting of powers

of a fixed ideal. Then J(ac
•
) = J(bc) for all c > 0. So we do not get anything

new in this case.

6.4. A comparison theorem for symbolic powers. As a quick but sur-

prising application of Theorem 6.9 we discuss a result due to Ein, Smith and

Lazarsfeld [Ein et al. 2001] concerning symbolic powers of radical ideals.

Consider a reduced subvariety Z ⊆ X defined by a radical ideal q ⊆ k[X].

Recall from Example 6.2(ii) that one can define the symbolic powers q(k) of q as

q
(k) def

=
{
f ∈ OX

∣∣ ordz f ≥ k for z ∈ Z

}
.

Thus evidently qk ⊆ q(k), and equality holds if Z is smooth. However, if Z is

singular, the inclusion is strict in general:

Example 6.13. Take Z ⊆ C3 to be the union of the three coordinate axes,

defined by the ideal

q = (xy, yz, xz) ⊆ C[x, y, z].

Then xyz ∈ q(2), since the union of the three coordinate planes has multiplicity 2

at a general point of Z. But q2 is generated by monomials of degree 4, and so

cannot contain xyz.

Swanson [2000] proved (in a much more general setting) that there exists an

integer k = k(Z) such that

q
(km) ⊆ q

m

for all m ≥ 0. At first glance, one might be tempted to suppose that for very

singular Z the coefficient k(Z) will have to become quite large. The main result

of [Ein et al. 2001] shows that this isn’t the case, and that in fact one can take

k(Z) = codimZ:

Theorem 6.14. Assume that every irreducible component of Z has codimension

at most e in X. Then

q
(em) ⊆ q

m for all m ≥ 0.

In particular , q(m·dim X) ⊆ qm for all radical ideals q ⊆ k[X] and all m ≥ 0.

Example 6.15 (Points in the plane). Let T ⊆ P2 be a finite set, considered

as a reduced scheme, and let I ⊆ S = C[x, y, z] be the homogeneous ideal of T .

Suppose that f ∈ S is a homogeneous form having multiplicity at least 2m at

each of the points of T . Then f ∈ I
m. (Apply Theorem 6.14 to the homogeneous

ideal I of T .) In spite of the classical nature of this statement, we do not know

a direct elementary proof.
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Proof of Theorem 6.14. Applying Theorem 6.9 to the graded system ak =

q(k), it suffices to show that J(ae
•
) ⊆ q. Since q is radical, it suffices to test this

inclusion at a general point of Z. Therefore we can assume that Z is smooth, in

which case q(k) = qk. Now Exercises 2.14 and 6.12 apply. �

Remark 6.16. Using their theory of tight closure, Hochster and Huneke [2002]

have extended Theorem 6.14 to arbitrary regular Noetherian rings containing a

field.

Remark 6.17. Theorem 6.9 is applied in [Ein et al. 2003] to study the mul-

tiplicative behavior of Abhyankar valuations centered at a smooth point of a

complex variety.

Remark 6.18. Working with the asymptotic multiplier ideals J(ac
•
) one can

define the log canonical threshold and jumping coefficients of a graded system a•,

much as in Section 4. However now these numbers need no longer be rational, the

periodicity of jumping numbers (Exercise 5.7) may fail, and the set of jumping

coefficients of a• can contain accumulation points. See [Ein et al. 2004, § 5].
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1. Hilbert Functions and Syzygies

1.1. Counting functions that vanish on a set. Let K be a field and let S =

K[x0, . . . , xr] be a ring of polynomials over K. If X ⊂ Pr is a projective variety,

the dimension of the space of forms (homogeneous polynomials) of each degree d

vanishing on X is an invariant of X, called the Hilbert function of the ideal IX

of X. More generally, any finitely generated graded S-module M =
⊕
Md has

a Hilbert function HM (d) = dimK Md. The minimal free resolution of a finitely

generated graded S-module M provides invariants that refine the information

in the Hilbert function. We begin by reviewing the origin and significance of

Hilbert functions and polynomials and the way in which they can be computed

from free resolutions.

Hilbert’s interest in what is now known as the Hilbert function came from

invariant theory. Given a group G acting on a vector space with basis z1, . . . , zn,

it was a central problem of nineteenth century algebra to determine the set of

polynomial functions p(z1, . . . , zn) that are invariant under G in the sense that

p(g(z1, . . . , zn)) = p(z1, . . . , zn). The invariant functions form a graded subring,

denoted T
G, of the ring T = K[z1, . . . , zn] of all polynomials; the problem of

invariant theory was to find generators for this subring.

For example, if G is the full symmetric group on z1, . . . , zn, then T
G is the

polynomial ring generated by the elementary symmetric functions σ1, . . . , σn,

where

σi =
∑

j1<···<ji

i∏

t=1

zjt
;

see [Lang 2002, V.9] or [Eisenbud 1995, Example 1.1 and Exercise 1.6]. The

result that first made Hilbert famous [1890] was that over the complex numbers

(K = C), if G is either a finite group or a classical group of matrices (such

as GLn) acting algebraically— that is, via matrices whose entries are rational

functions of the entries of the matrix representing an element of G—then the

ring TG is a finitely generated K-algebra.

The homogeneous components of any invariant function are again invariant,

so the ring T
G is naturally graded by (nonnegative) degree. For each integer

d the homogeneous component (TG)d of degree d is contained in Td, a finite-

dimensional vector space, so it too has finite dimension.

How does the number of independent invariant functions of degree d, say

hd = dimK(TG)d, change with d? Hilbert’s argument, reproduced in a similar

case below, shows that the generating function of these numbers,
∑∞

0 hdt
d, is a

rational function of a particularly simple form:

∞∑

0

hdt
d =

p(t)∏s
0(1− tαi )

,

for a polynomial p and positive integers αi.
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A similar problem, which will motivate these lectures, arises in projective

geometry: Let X ⊂ Pr = Pr
K

be a projective algebraic variety (or more generally

a projective scheme) and let I = IX ⊂ S = K[x0, . . . , xr] be the homogeneous

ideal of forms vanishing on X. An easy discrete invariant of X is given by

the vector-space dimension dimK Id of the degree d component of I. Again,

we may ask how this “number of forms of degree d vanishing on X” changes

with d. This number is usually expressed in terms of its complement in dimSd.

We write SX := S/I for the homogeneous coordinate ring of X and we set

HX(d) = dimK(SX)d = dimK Sd−dimK Id =
(
r+d

r

)
−dimK Id. We callHX(d) the

Hilbert function of X. Using Hilbert’s ideas we will see that HX(d) agrees with

a polynomial PX(d), called the Hilbert polynomial of X, when d is sufficiently

large. Further, its generating function
∑

d HX(d)td can be written as a rational

function in t, t
−1 as above with denominator (1 − t)r+1. Hilbert proved both

the Hilbert Basis Theorem (polynomial rings are Noetherian) and the Hilbert

Syzygy Theorem (modules over polynomial rings have finite free resolutions) in

order to deduce this. As a first illustration of the usefulness of syzygies we shall

see how these results fit together.

This situation of projective geometry is a little simpler than that of invariant

theory because the generators xi of S have degree 1, whereas in the case of

invariants we have to deal with graded rings generated by elements of different

degrees (the αi). For simplicity we will henceforward stick to the case of degree-1

generators. See [Goto and Watanabe 1978a; 1978b] for more information.

Hilbert’s argument requires us to generalize to the case of modules. If M is

any finitely generated graded S-module (such as the ideal I or the homogeneous

coordinate ring SX), then the d-th homogeneous component Md of M is a finite-

dimensional vector space. We set HM (d) := dimK Md. The function HM is

called the Hilbert function of M .

Theorem 1.1. Let S = K[x0, . . . , xr] be the polynomial ring in r + 1 variables

over a field K. Let M be a finitely generated graded S-module.

(i) HM (d) is equal to a finite sum of the form
∑

i±
(
r+d−ei

r

)
, and thus HM (d)

agrees with a polynomial function PM (d) for d ≥ maxi ei − r.
(ii) The generating function

∑
dHM (d)td can be expressed as a rational function

of the form

p(t, t−1)

(1− t)r+1

for some polynomial p(t, t−1).

Proof. First consider the case M = S. The dimension of the d-th graded

component is dimK Sd =
(
r+d

r

)
, which agrees with the polynomial in d

(r + d) · · · (1 + d)

r · · · 1 =
d

r

r!
+ · · ·+ 1
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for d ≥ −r. Further,

∞∑

0

HS(d)td =

∞∑

0

(
r + d

r

)
t
d =

1

(1− t)r+1

proving the theorem in this case.

At this point it is useful to introduce some notation: If M is any module

we write M(e) for the module obtained by “shifting” M by e positions, so that

M(e)d = Me+d. Thus for example S(−e) is the free module of rank 1 generated

in degree e (note the change of signs!) Shifting the formula above we see that

HS(−e)(d) =
(
r+d−e

r

)
.

We immediately deduce the theorem in case M =
⊕

i S(−ei) is a free graded

module, since then

HM (d) =
∑

i

HS(−ei)(d) =
∑

i

(
r + d− ei

r

)
.

This expression is equal to a polynomial for d ≥ maxi ei − r, and

∞∑

d=−∞

HM (d) =

∑
i t

ei

(1− t)r+1
.

Hilbert’s strategy for the general case was to compare an arbitrary module

M to a free module. For this purpose, we choose a finite set of homogeneous

generators mi in M . Suppose degmi = ei. We can define a map (all maps are

assumed homogeneous of degree 0) from a free graded module F0 =
⊕
S(−ei)

onto M by sending the i-th generator to mi. Let M1 := kerF0 → M be the

kernel of this map. Since HM (d) = HF0
(d) − HM1

(d), it suffices to prove the

desired assertions for M1 in place of M .

To use this strategy, Hilbert needed to know that M1 would again be finitely

generated, and that M1 was in some way closer to being a free module than was

M . The following two results yield exactly this information.

Theorem 1.2 (Hilbert’s Basis Theorem). Let S be the polynomial ring in

r + 1 variables over a field K. Any submodule of a finitely generated S-module

is finitely generated .

Thus the module M1 = kerF0 →M , as a submodule of F0, is finitely generated.

To define the sense in which M1 might be “more nearly free” than M , we need

the following result:

Theorem 1.3 (Hilbert’s Syzygy Theorem). Let S be the polynomial ring

in r+ 1 variables over a field K. Any finitely generated graded S-module M has

a finite free resolution of length at most r + 1, that is, an exact sequence

0 - Fn
φn- Fn−1

- · · · - F1
φ1- F0

- M - 0,

where the modules Fi are free and n ≤ r + 1.
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We will not prove the Basis Theorem and the Syzygy Theorem here; see the very

readable [Hilbert 1890], or [Eisenbud 1995, Corollary 19.7], for example. The

Syzygy Theorem is true without the hypotheses that M is finitely generated and

graded (see [Rotman 1979, Theorem 9.12] or [Eisenbud 1995, Theorem 19.1]),

but we shall not need this.

If we take

F : 0 - Fn
φn- Fn−1

- · · · - F1
φ1- F0

- M - 0

to be a free resolution of M with the smallest possible n, then n is called the

projective dimension of M . Thus the projective dimension of M is zero if and

only if M is free. If M is not free, and we take M1 = imφ1 in such a minimal

resolution, we see that the projective dimension of M1 is strictly less than that

of M . Thus we could complete the proof of Theorem 1.1 by induction.

However, given a finite free resolution of M we can compute the Hilbert

function of M , and its generating function, directly. To see this, notice that if

we take the degree d part of each module we get an exact sequence of vector

spaces. In such a sequence the alternating sum of the dimensions is zero. With

notation as above we have HM (d) =
∑

(−1)i
HFi

(d). If we decompose each Fi as

Fi =
∑

j S(−j)βi,j we may write this more explicitly as

HM (d) =
∑

i

(−1)i
∑

j

βi,j

(
r + d− j

r

)
.

The sums are finite, so this function agrees with a polynomial in d for d ≥
max{j − r | βi,j 6= 0 for some i}. Further,

∑

d

HM (d)td =

∑
i(−1)i

∑
j βi,jt

j

(1− t)r+1

as required for Theorem 1.1.

Conversely, given the Hilbert function of a finitely generated module, one can

recover some information about the βi,j in any finite free resolution F . For this

we use the fact that
(
r+d−j

r

)
= 0 for all d < j. We have

HM (d) =
∑

i

(−1)i
∑

j

βi,j

(
r + d− j

r

)
=

∑

j

(∑

i

(−1)i
βi,j

)(
r + d− j

r

)
.

Since F is finite there is an integer d0 such that βi,j = 0 for j < d0. If we

put d = d0 in the expression for HM (d) then all the
(
r+d−j

r

)
vanish except for

j = d0, and because
(
r+d0−d0

r

)
= 1 we get

∑
i(−1)i

βi,d0
= HM (d0). Proceeding

inductively we arrive at the proof of:

Proposition 1.4. Let M be a finitely generated graded module over S =

K[x0, . . . , xr], and suppose that F is a finite free resolution of M with graded



120 DAVID EISENBUD AND JESSICA SIDMAN

Betti numbers βi,j . If βi,j = 0 for all j < d0, then the numbers Bj =
∑

i(−1)i
βi,j

are inductively determined by the formulas

Bd0
= HM (d0)

and

Bj = HM (j)−
∑

k<j

Bk

(
j + d− k

r

)
.

1.2. Meaning of the Hilbert function and polynomial. The Hilbert

function and polynomial are easy invariants to define, so it is perhaps surprising

that they should be so important. For example, consider a variety X ⊂ Pr

with homogeneous coordinate ring SX . The restriction map to X gives an exact

sequence of sheaves 0→ IX → OPr → OX → 0. Tensoring with the line bundle

OPr(d) and taking cohomology we get a long exact sequence beginning

0→ H0
IX(d)→ H0

OPr (d)→ H0
OX(d)→ H1

IX(d)→ · · · .

The term H0OPr (d) may be identified with the vector space Sd of forms of degree

d in S. The space H0IX(d) is thus the space of forms of degree d that induce

0 on X, that is (IX)d. Further, by Serre’s vanishing theorem [Hartshorne 1977,

Ch. III, Theorem 5.2], H1IX(d) = 0 for large d. Thus for large d

(SX)d = Sd/(IX)d = H0
OX(d).

Applying Serre’s theorem again, we see that all the higher cohomology of OX(d)

is zero for large d. Taking dimensions, we see that for large d the Hilbert function

of SX equals the Euler characteristic

χ(OX(d)) :=
∑

i

(−1)i dimK Hi(OX(d)).

The Hilbert function equals the Hilbert polynomial for large d; and the Euler

characteristic is a polynomial for all d. Thus we may interpret the Hilbert poly-

nomial as the Euler characteristic, and the difference from the Hilbert function

(for small d) as an effect of the nonvanishing of higher cohomology.

For a trivial case, take X to be a set of points. Then OX(d) is isomorphic to

OX whatever the value of d, and its global sections are spanned by the charac-

teristic functions of the individual points. Thus χ(OX(d)) = PX(d) is a constant

function of d, equal to the number of points in X.

In general the Riemann–Roch Theorem gives a formula for the Euler charac-

teristic, and thus the Hilbert polynomial, in terms of geometric data on X. In

the simplest interesting case, where X is a smooth curve, the Riemann–Roch

theorem says that

χ(OX(d)) = PX(d) = d+ 1− g,
where g is the genus of X.

These examples only suggest the strength of the invariants PX(d) and HX(d).

To explain their real role, we recall some basic definitions. A family of algebraic
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sets parametrized by a variety T is simply a map of algebraic sets π : X → T .

The subschemes Xt = π
−1(t) for t ∈ T are called the fibers of the family. Of

course we are most interested in families where the fibers vary continuously in

some reasonable sense! Of the various conditions we might put on the family to

ensure this, the most general and the most important is the notion of flatness, due

to Serre: the family π : X → T is said to be flat if, for each point p ∈ T and each

point x ∈ X mapping to t, the pullback map on functions π∗ : OT,t → OX ,x is

flat. This means simply that OX ,x is a flat OT,t-module; tensoring it with short

exact sequences of OT,t-modules preserves exactness. More generally, a sheaf F

on X is said to be flat if the OT,t-module Fx (the stalk of F at x) is flat for

all x mapping to t. The same definitions work for the case of maps of schemes.

The condition of flatness for a family X → T has many technical advantages.

It includes the important case where X , T , and all the fibers Xt are smooth

and of the same dimension. It also includes the example of a family from which

algebraic geometry started, the family of curves of degree d in the projective

plane, even though the geometry and topology of such curves varies considerably

as they acquire singularities. But the geometric meaning of flatness in general

could well be called obscure.

In some cases flatness is nonetheless easy to understand. Suppose that X ⊂
Pr × T and the map π : X → T is the inclusion followed by the projection onto

T (this is not a very restrictive condition: any map of projective varieties, for

example, has this form). In this case each fiber Xt is naturally contained as an

algebraic set in Pr.

We say in this case that π : X → T is a projective family. Corresponding to

a projective family X → T we can look at the family of cones

X̃ ⊂ Ar+1 × T → T

obtained as the affine set corresponding to the (homogeneous) defining ideal of

X . The fibers X̃t are then all affine cones.

Theorem 1.5. Let π : X → T be a projective family , as above. If T is a

reduced algebraic set then π : X → T is flat if and only if all the fibers Xt of X

have the same Hilbert polynomial . The family of affine cones over Xt is flat if

and only if all the X̃t have the same Hilbert function.

These ideas can be generalized to the flatness of families of sheaves, giving an

interpretation of the Hilbert function and polynomial of modules.

1.3. Minimal free resolutions. As we have defined it, a free resolution F of

M does not seem to offer any easy invariant of M beyond the Hilbert function,

since F depends on the choice of generators for M , the choice of generators for

M1 = kerF0 → M , and so on. But this dependence on choices turns out to be

very weak. We will say that F is a minimal free resolution of M if at each stage

we choose the minimal number of generators.
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Proposition 1.6. Let S be the polynomial ring in r+1 variables over a field K,

and M a finitely generated graded S-module. Any two minimal free resolutions

of M are isomorphic. Moreover , any free resolution of M can be obtained from

a minimal one by adding “trivial complexes” of the form

Gi = S(−a) 1- S(−a) = Gi−1

for various integers i and a.

The proof is an exercise in the use of Nakayama’s Lemma; see for example

[Eisenbud 1995, Theorem 20.2].

Thus the ranks of the modules in the minimal free resolution, and even the

numbers βi,j of generators of degree j in Fi, are invariants of M . Theorem 1.1

shows that these invariants are at least as strong as the Hilbert function of M ,

and we will soon see that they contain interesting additional information.

The numerical invariants in the minimal free resolution of a module in non-

negative degrees can be described conveniently using a piece of notation intro-

duced by Bayer and Stillman: the Betti diagram. This is a table displaying the

numbers βi,j in the pattern

· · ·
β0,0 β1,1 · · · βi,i

β0,1 β1,2 · · · βi,i+1

· · ·
with βi,j in the i-th column and (j−i)-th row. Thus the i-th column corresponds

to the i-th free module in the resolution, Fi =
⊕

j S(−j)βi,j . The utility of this

pattern will become clearer later in these notes, but it was introduced partly to

save space. For example, suppose that a moduleM has all its minimal generators

in degree j, so that β0,j 6= 0 but β0,m = 0 for m < j. The minimality of F then

implies that β1,j = 0; otherwise, there would be a generator of F1 of degree j,

and it would map to a nonzero scalar linear combination of the generators of F0.

Since this combination would go to 0 in M , one of the generators of M would be

superfluous, contradicting minimality. Thus there is no reason to leave a space

for β1,j in the diagram. Arguing in a similar way we can show that βi,m = 0 for

all m < i + j. Thus if we arrange the βi,j in a Betti diagram as above we will

be able to start with the j-th row, simply leaving out the rest.

To avoid confusion, we will label the rows, and sometimes the columns of the

Betti diagram. The column containing βi,j (for all j) will be labeled i while the

row with β0,j will be labeled j. For readability we often replace entries that are

zero with −, and unknown entries with ∗, and we suppress rows in the region

where all entries are 0. Thus for example if I is an ideal with 2 generators of

degree 4 and one of degree 5, and relations of degrees 6 and 7, then the free

resolution of S/I has the form

0→ S(−6)⊕ S(−7)→ S
2(−4)⊕ S(−5)→ S
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and Betti diagram

0 1 2

0 1 − −

1 − − −

2 − − −

3 − 2 −

4 − 1 1
5 − − 1

An example that makes the space-saving nature of the notation clearer is the

Koszul complex (the minimal free resolution of S/(x0, . . . , xr) — see [Eisenbud

1995, Ch. 17]), which has Betti diagram

0 1 · · · i · · · r + 1

0 1 r + 1 · · ·
`

r+1

i

´

· · · 1

1.4. Four points in P2. We illustrate what has gone before by describing the

Hilbert functions, polynomials, and Betti diagrams of each possible configuration

X ⊂ P2 of four distinct points in the plane. We let S = K[x0, x1, x2] be the

homogeneous coordinate ring of the plane. We already know that the Hilbert

polynomial of a set of four points, no matter what the configuration, is the

constant polynomial PX(d) ≡ 4. In particular, the family of 4-tuples of points is

flat over the natural parameter variety

T = P2 × P2 × P2 × P2 \ diagonals.

We shall see that the Hilbert function of X depends only on whether all four

points lie on a line. The graded Betti numbers of the minimal resolution, in

contrast, capture all the remaining geometry: they tell us whether any three of

the points are collinear as well.

Proposition 1.7. (i) If X consists of four collinear points, HSX
(d) has the

values 1, 2, 3, 4, 4, . . . at d = 0, 1, 2, 3, 4, . . .

(ii) If X ⊂ P2 consists of four points not all on a line, HSX
(d) has the values

1, 3, 4, 4, . . . at d = 0, 1, 2, 3, . . . . In classical language: X imposes 4 conditions

on degree d curves for d ≥ 2.

Proof. Let HX := HSX
(d). In case (i), HX has the same values that it would

if we considered X to be a subset of P1. But in P1 the ideal of any d points

is generated by one form of degree d, so the Hilbert function HX(d) for four

collinear points X takes the values 1, 2, 3, 4, 4, . . . at d = 0, 1, 2, 3, 4, . . . .

In case (ii) there are no equations of degree d ≤ 1, so for d = 0, 1 we get

the claimed values for HX(d). In general, HX(d) is the number of independent

functions induced on X by ratios of forms of degree d (see the next lecture) so

HX(d) ≤ 4 for any value of d.

To see that HX(2) = 4 it suffices to produce forms of degree 2 vanishing at

all X \ p for each of the four points p in X, since these forms must be linearly
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independent modulo the forms vanishing on X. But it is easy to draw two lines

going through the three points of X \ p but not through p:

p

and the union of two lines has as equation the quadric given by the product

of the corresponding pair of linear forms. A similar argument works in higher

degree: just add lines to the quadric that do not pass through any of the points

to get curves of the desired higher degree. �

In particular we see that the set of lines through a point in affine 3-space (the

cones over the sets of four points) do not form a flat family; but the ones where

not all the lines are coplanar do form a flat family. (For those who know about

schemes: the limit of a set of four noncoplanar lines as they become coplanar

has an embedded point at the vertex.)

When all four points are collinear it is easy to compute the free resolution:

The ideal of X contains the linear form L that vanishes on the line containing

the points. But S/L is the homogeneous coordinate ring of the line, and in the

line the ideal of four points is a single form of degree 4. Lifting this back (in

any way) to S we see that IX is generated by L and a quartic form, say f .

Since L does not divide f the two are relatively prime, so the free resolution of

SX = S/(L, f) has the form

0→ S(−5)

 
f

−L

!

- S(−1)⊕ S(−4)
(L, f )- S,

with Betti diagram
0 1 2

0 1 1 −

1 − − −

2 − − −

3 − 1 1

We now suppose that the points of X are not all collinear, and we want to

see that the minimal free resolutions determine whether three are on a line. In

fact, this information is already present in the number of generators required by

IX . If three points of X lie on a line L = 0, then by Bézout’s theorem any conic

vanishing on X must contain this line, so the ideal of X requires at least one

cubic generator.

On the other hand, any four noncollinear points lie on an irreducible conic

(to see this, note that any four noncollinear points can be transformed into any
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other four noncollinear points by an invertible linear transformation of P2; and we

can choose four noncollinear points on an irreducible conic.) From the Hilbert

function we see that there is a two dimensional family of conics through the

points, and since one is irreducible, any two distinct quadrics Q1, Q2 vanishing

on X are relatively prime. It is easy to see from relative primeness that the

syzygy (Q2,−Q1) generates all the syzygies on (Q1, Q2). Thus the minimal free

resolution of S/(Q1, Q2) has Betti diagram

0 1 2

0 1 − −

1 − 2 −

2 − − 1

It follows that S/(Q1, Q2) has the same Hilbert function as SX = S/IX . Since

IX ⊃ (Q1, Q2) we have IX = (Q1, Q2).

In the remaining case, where precisely three of the points of X lie on a line,

we have already seen that the ideal of X requires at least one cubic generator.

Corollary 2.3 makes it easy to see from this that the Betti diagram of a minimal

free resolution must be
0 1 2

0 1 − −

1 − 2 1
2 − 1 1

2. Points in the Plane and an Introduction to

Castelnuovo–Mumford Regularity

2.1. Resolutions of points in the projective plane. This section gives a

detailed description of the numerical invariants of a minimal free resolution of a

finite set of points in the projective plane. To illustrate both the potential and the

limitations of these invariants in capturing the geometry of the points we compute

the Betti diagrams of all possible configurations of five points in the plane. In

contrast to the example of four points worked out in the previous section, it

is not possible to determine whether the points are in linearly general position

from the Betti numbers alone. The presentation in this section is adapted from

Chapter 3 of [Eisenbud ≥ 2004], to which we refer the reader who wishes to find

proofs omitted here.

Let X = {p1, . . . , pn} be a set of distinct points in P2 and let IX be the

homogeneous ideal of X in S = K[x0, x1, x2]. Considering this situation has the

virtue of simplifying the algebra to the point where one can describe a resolution

of IX quite explicitly while still retaining a lot of interesting geometry.

Fundamentally, the algebra is simple because the resolution of IX is very

short. In particular:

Lemma 2.1. If IX ⊆ K[x0, x1, x2] is the homogeneous ideal of a finite set of

points in the plane, then a minimal resolution of IX has length one.
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Proof. Recall that if

0 - Fm
- · · · - F1

- F0
- S/IX

- 0

is a resolution of S/IX then we get a resolution of IX by simply deleting the

term F0 (which of course is just S). We will proceed by showing that S/IX has

a resolution of length two.

From the Auslander–Buchsbaum formula (see Theorem 3.1) we know that the

length of a minimal resolution of S/IX is:

depthS − depthS/IX .

Since S is a polynomial ring in three variables, it has depth three. Our hypothesis

is that S/IX is the coordinate ring of a finite set points taken as a reduced

subscheme of P2. The Krull dimension of S/IX is one, and hence depthS/IX ≤ 1.

Furthermore, since IX is the ideal of all homogeneous forms in S that vanish on

X, the irrelevant ideal is not associated. Therefore, we can find an element of S

with positive degree that is a nonzerodivisor on S/IX . We conclude that S/IX

has a free resolution of length two. �

We see now that a resolution of IX has the form

0 -
t1⊕

i=1

S(−bi)
M-

t0⊕

i=1

S(−ai) - IX
- 0.

We can complete our description of the shape of the resolution via the following

theorem:

Theorem 2.2 (Hilbert–Burch). Suppose that an ideal I in a Noetherian ring

R admits a free resolution of length one:

0 - F
M- G - I - 0.

If the rank of the free module F is t, then the rank of G is t+1, and there exists

a nonzerodvisor a ∈ R such that I is aIt(M); in fact , regarding M as a matrix

with respect to given bases of F and G, the generator of I that is the image of

the i-th basis vector of G is ±a times the determinant of the submatrix of M

formed by deleting the i-th row . Moreover , the depth of It(M) is two.

Conversely , given a nonzerodivisor a of R and a (t + 1) × t matrix M with

entries in R such that the depth of It(M) is at least 2, the ideal I = aIt(M)

admits a free resolution as above.

We will not prove the Hilbert–Burch Theorem here, or its corollary stated below;

our main concern is with their consequences. (Proofs can be found in [Eisenbud≥
2004, Chapter 3]; alternatively, see [Eisenbud 1995, Theorem 20.15] for Hilbert–

Burch and [Ciliberto et al. 1986] for the last statement of Corollary 2.3.)

As we saw in Section 1.1, the Hilbert function and the Hilbert polynomial

of S/IX are determined by the invariants of a minimal free resolution. So, for
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example, we expect to be able to compute the degree of X from the degrees of

the entries of M . When X is a complete intersection this is already familiar to us

from Bézout’s theorem. In this case M is a 2× 1 matrix whose entries generate

IX . Bézout’s theorem says that the product of the degrees of the entries of M

gives the degree of X.

The following corollary of the Hilbert–Burch Theorem generalizes Bézout’s

theorem and describes the relationships between the degrees of the generators of

IX and the degrees of the generators of the module of their syzygies. Since the

map given by M has degree zero, the (i, j) entry of M has degree bj − ai. Let

ei = bi− ai and fi = bi− ai+1 denote the degrees of the entries on the two main

diagonals of M . Schematically:




e1

f1 e2

f2 .

.

.

ft−1 et

ft




Corollary 2.3. Assume that a1 ≥ a2 ≥ · · · ≥ at+1 and b1 ≥ b2 ≥ · · · ≥ bt.

Then, for 1 ≤ i ≤ t, we have

ei ≥ 1, fi ≥ 1, ai =
∑

j<i

ej +
∑

j≥i

fj , bi = ai + ei.

Moreover ,

n = degX =
∑

i≤j

eifj . (2–1)

The last equality is due to Ciliberto, Geramita, and Orecchia [Ciliberto et al.

1986].

From Corollary 2.3 we can already bound the number of minimal generators

of IX given a little bit of information about the geometry of X.

Corollary 2.4 [Burch 1967]. If X lies on a curve of degree d, then IX requires

at most d+ 1 generators.

Proof. Since X lies on a curve of degree d there is an element of IX of degree

d. Therefore, at least one of the ai’s must be at most d. By Corollary 2.3, each

ai is the sum of t integers that are all at least 1. Therefore, t ≤ ai ≤ d, which

implies that t+ 1, the number of generators of IX , is at most d+ 1. �

Using the information above one can show that for small values of n there are

very few possibilities for the invariants of the resolution of IX .
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2.2. Resolutions of five points in the plane. We now show how to use

these ideas to compute all possible Betti diagrams of X when X is a set of five

distinct points in the projective plane. As before, let S = K[x0, x1, x2], and let

IX be the saturated homogeneous ideal of X. In keeping with conventions, we

give the Betti diagrams of the quotient S/IX . From these computations it will

be easy to determine the Hilbert function HX(d) as well.

First, we organize the possible configurations of the points into four categories

based on their geometry:

(1) The five points are all collinear.

(2) Precisely four of the points are collinear.

(3) Some subset of three of the points lies on a line but no subset of four of the

points lies on a line.

(4) The points are linearly general.

Case (1): Corollary 2.4 implies that IX has at most two generators. Thus, t = 1,

and the points are a complete intersection. By Bézout’s Theorem, the generators

of IX have degrees a1 = 5 and a2 = 1. Furthermore, we see that IX is resolved

by a Koszul complex and hence b1 = 6. The Betti diagram of the resolution of

5 collinear points is

0 1 2

0 1 1 −

1 − − −

2 − − −

3 − − −

4 − 1 1

From Section 1.1 we see that the Hilbert function is given by

(
2 + d

2

)
−

(
2 + d− 1

2

)
−

(
2 + d− 5

2

)
+

(
2 + d− 6

2

)
.

Thus, HX(d) has values 1, 2, 3, 4, 5, 5, . . . at d = 1, 2, 3, 4, 5, . . . .

We claim that t = 2 in the remaining cases. Since the degree of X is prime,

Bézout’s theorem tells us that the points are a complete intersection if and only

if they are collinear. Hence, t ≥ 2. Since there is a 6-dimensional space of conics

in three variables, any set of five points must lie on a conic. Thus Corollary 2.4

implies that IX has at most three generators, so t = 2. We conclude that in Cases

(2)–(4), the invariants of the resolution satisfy the relationships a1 ≥ a2 ≥ a3,

b1 ≥ b2, and

a1 = f1 + f2,

a2 = e1 + f2.

a3 = e1 + e2.



LECTURES ON THE GEOMETRY OF SYZYGIES 129

Case (2): If precisely four of the points are collinear, we see from the picture

below that there are two conics containing the points: L1 ∪ L3 and L2 ∪ L3.

L3

L1 L2

Since these conics are visibly different, their defining equations must be linearly

independent. We conclude that IX must have two minimal generators of degree

two, and hence that

a2 = e1 + f2 = 2,

a3 = e1 + e2 = 2.

By Corollary 2.3, e1, e2, f2 ≥ 1, which implies that e1 = e2 = f2 = 1. We also

know that

5 = e1f1 + e1f2 + e2f2 = f1 + 1 + 1.

Hence, f1 = 3, a1 = 4, b1 = a1 + e1 = 5, and b2 = a2 + e2 = 3. In this case, the

points have Betti diagram

0 1 2

0 1 − −

1 − 2 1
2 − − −

3 − 1 1

and Hilbert function

(
2 + d

2

)
− 2

(
2 + d− 2

2

)
−

(
2 + d− 4

2

)
+

(
2 + d− 3

2

)
+

(
2 + d− 5

2

)
,

taking on the values 1, 3, 4, 5, 5, . . . at d = 0, 1, 2, 3, 4, . . . .

Case (3): We will show that the points lie on a unique reducible conic. By

assumption there is a line L containing three of the points. Any conic containing

all five must vanish at these three points and hence will vanish identically on

L. Therefore, L must be a component of any conic that contains X. There are

precisely two points not on L, and they determine a line L′ uniquely. The union

of L and L′ is the unique conic containing these points.

If the five points lie on a unique conic, we can determine all of the remaining

numerical invariants. We must have a3 = e1 + e2 = 2, which implies that

e1 = e2 = 1. We also know that 3 ≤ a2 = e1 + f2 = 1 + f2, which implies that

f2 ≥ 2. Since

5 = e1f1 + e1f2 + e2f2 = f1 + f2 + f2,
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we must have f1 = 1 and f2 = 2. Now the invariants a1, a2, b1, and b2 are

completely determined: a1 = f1 + f2 = 3, a2 = e1 + f2 = 3, b1 = a1 + e1 = 4

and b2 = a2 + e2 = 4. The Betti diagram is

0 1 2

0 1 − −

1 − 1 −

2 − 2 2

We have the Hilbert function
(

2 + d

2

)
−

(
2 + d− 2

2

)
− 2

(
2 + d− 3

2

)
+ 2

(
2 + d− 4

2

)
,

which takes on values 1, 3, 5, 5, . . . at d = 0, 1, 2, 3, . . . .

Case (4): We claim that five points in linearly general position also lie on a

unique conic. If the points lie on a reducible conic then it is the union of two

lines, and one of the lines must contain at least three points. Therefore, if the

points are linearly general, any conic containing them must be irreducible. By

Bézout’s theorem, five points cannot lie on two irreducible conics because the

intersection of the conics contains only four points.

As we saw in Case (3), the Betti diagram of IX was completely determined

after we discovered that X lay on a unique conic. We conclude that the Betti

numbers are not fine enough to distinguish between the geometric situations

presented by Cases (3) and (4).

2.3. An introduction to Castelnuovo–Mumford regularity. Let S =

K[x0, . . . , xr] and let M be a finitely generated graded S-module. One of the

ways in which the Betti diagrams for the examples in Section 2.1 differ is in the

number of rows. This apparently artificial invariant turns out to be fundamental.

In this section we introduce it systematically via the notion of Castelnuovo–

Mumford regularity. We follow along the lines of [Eisenbud ≥ 2004, Chapter 4].

Definition 2.5. (i) If F is a finitely generated free module, we define regF ,

the regularity of F , as the maximum degree of a minimal generator of F :

regF = max
{
i | (F/(x0, . . . , xr)F )i 6= 0

}
.

(The maximum over the empty set is −∞.)

(ii) For an arbitrary finitely generated graded moduleM , we define the regularity

of M as

regM = maxi {regFi − i},
where

0 - Fm
- · · · - F1

- F0
- M - 0

is a minimal free graded resolution of M . We say that M is d-regular if

d ≥ regM .
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Notice that

regM ≥ regF0 − 0 = regF0,

where regF0 is the maximum degree of a generator of M . The regularity should

be thought of as a stabilized version of this “generator degree” which takes into

account the nonfreeness of M . One of the most fundamental results about the

regularity is a reinterpretation in terms of cohomology. We begin with a special

case where the cohomology has a very concrete meaning.

Suppose that we are given a finite set of points X = {p1, . . . , pn} ⊂ Ar
K
,

where K is an infinite field. We claim that for any function φ : X → K there

is a polynomial f ∈ R = K[x1, . . . , xn] such that f |X = φ. As noted in Section

1.2, the set of all functions from X to K is spanned by characteristic functions

φ1, . . . , φn, where

φi(pj) =

{
1 if i = j,

0 if i 6= j.

So it is enough to show that the characteristic functions can be given by poly-

nomials. For each i = 1, . . . , n, let Li be a linear polynomial defining a line

containing pi but not any other point of X. Let fi =
∏

j 6=i Li. The restriction

of fi to X is the function φi up to a constant scalar.

Definition 2.6. The interpolation degree of X is the least integer d such that

for each φ : X → K there exists f ∈ R with deg f ≤ d such that φ = f |X .

When n is small, one can compute the interpolation degree of X easily from first

principles:

Example 2.7. Let X be a set of four points in A2 in linearly general position.

None of the characteristic functions φi can be the restriction of a linear poly-

nomial; each φi must vanish at three of the points, but no three are collinear.

However, we can easily find quadratic polynomials whose restrictions give the φi.

For instance, let L23 be a linear polynomial defining the line joining p2 and p3

and let L34 be a linear polynomial defining the line joining p3 and p4.

p3

p1

p2

p4

L23
L34

The product L23L34|X equals φ1 up to a constant factor. By symmetry, we

can repeat this procedure for each of the remaining φi. Thus, the interpolation

degree of X is two.

It is clear that the interpolation degree of X depends on the cardinality of X.

It will also depend on the geometry of the points. To see this, let’s compute the
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interpolation degree of X when X consists of four points that lie on a line L.

Any polynomial that restricts to one of the characteristic functions vanishes on

three of the points and so intersects the line L at least three times. Therefore,

the interpolation degree is at least three. We can easily find a polynomial fi

of degree three that restricts to each φi: For each j 6= i, let Lj be a linear

polynomial that vanishes at pj and no other points of X. Let fi be the product

of these three linear polynomials. Thus, if X consists of four collinear points, its

interpolation degree is three.

To study what happens more generally we projectivize. We can view the

affine r-space containing our n points as a standard affine open patch of Pr with

coordinate ring S = K[x0, . . . , xr], say, where x0 is nonzero. A homogeneous

polynomial does not have a well-defined value at a point of Pr, so elements of

S do not give functions on projective space. However, the notion of when a

homogeneous polynomial vanishes at a point is well-defined. This observation

shows that we can hope to find homogeneous polynomials that play the role that

characteristic functions played for points in affine space and is the basis for the

following definition.

Definition 2.8. We say that X imposes independent conditions on forms of

degree d if there exist F1, . . . , Fn ∈ Sd such that Fj(pi) is nonzero if and only if

i = j.

We may rephrase the condition in Definition 2.8 as follows: Suppose that F is

a form of degree d, say F =
∑
aαx

α with aα ∈ K for each α ∈ Z
n+1
≥0 such that

|α| = d. Fix a set of coordinates for each of the points p1, . . . , pn and substitute

these values into F . Then F (p1) = 0, . . . , F (pn) = 0 are n equations, linear in

the aα. These equations are the “conditions” that the points p1, . . . , pn impose.

We can translate the interpolation degree problem into the projective setting:

Proposition 2.9. The interpolation degree of X is the minimum degree d such

that X imposes independent conditions on forms of degree d.

Proof. Let {f1, . . . , fn} be a set of polynomials in K[x1, . . . , xr] of degree d

whose restrictions to X are the characteristic functions of the points. Homog-

enizing the fi with respect to x0 gives us homogeneous forms satisfying the

condition of Definition 2.8. So if the interpolation degree of X is d, then X

imposes independent conditions of forms of degree d. Furthermore, if X imposes

independent conditions on forms of degree d, then there exists a set of forms of

degree d that are “homogeneous characteristic functions” and dehomogenizing

by setting x0 = 1 gives a set of polynomials of degree at most d whose restric-

tions to X are characteristic functions for the points in affine space. �

To analyze the new problem in the projective setting we will use methods of

coherent sheaf cohomology. (One could use local cohomology with respect to

(x0, . . . , xr) equally well. See [Eisenbud ≥ 2004, Chapter 4] for this point of

view.) Let IX be the ideal sheaf of X and OX its structure sheaf. These
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sheaves fit into the short exact sequence:

0 - IX
- OPr - OX

- 0.

The following proposition shows that the property that X imposes indepen-

dent conditions on forms of degree d can be interpreted cohomologically.

Proposition 2.10. X imposes independent conditions on forms of degree d if

and only if H1IX(d) vanishes.

Proof. We are interested in whether X imposes independent conditions on

forms of degree d so we tensor (or “twist”) the short exact sequence by OPr(d).

Exactness is clearly preserved on the level of stalks since the stalks of OPr (d) are

rank one free modules, and this suffices to show that exactness of the sequence

of sheaves is also preserved. We write

0 - IX(d) - OPr (d) - OX(d) - 0.

The first three terms in the long exact sequence in cohomology have very

concrete interpretations:

0 - H
0
IX(d) - H

0
OPr(d)

ρ

- H
0
OX(d) - H

1
IX(d) - · · ·

0 - (IX)d

∼=
?

- Sd

∼=
?

- Kn
?

- · · ·

Note that the map ρ, which is given by dehomogenizing with respect to x0 and

evaluating the resulting degree d polynomials at the points of X, is surjective

if and only if X imposes independent conditions on forms of degree d. The

equivalent cohomological condition is that H1IX(d) = 0. �

The next proposition is a first step in relating vanishings in cohomology with

regularity.

Proposition 2.11. If reg IX ≤ d then H
iIX(d− i) = 0.

Proof. The point is to construct a short exact sequence of sheaves where IX

is either the middle or right-hand term and we can say a lot about the vanishing

of the higher cohomology of the other two terms. We will get this short exact

sequence (with IX as the right-hand term) from a free resolution of IX . Let

0 - ⊕
S(−am,j) - · · ·

⊕
S(−a1,j) - ⊕

S(−a0,j) - IX
- 0

be a minimal free resolution of IX . Its sheafification is exact because localization

is an exact functor. Splitting this complex into a series of short exact sequences,
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and twisting by d− i gives

0 0

@
@R �

��

K1(d−i)

�
�� @

@R
· · · - ⊕

OPr (d−i−a1,j) - ⊕
OPr(d−i−a0,j) - IX(d−i) - 0

�
��

K2(d−i)
From the long exact sequence associated to each short exact sequence in the

diagram we see that if d− i ≥ ai,j for each i, j, then H
iIX(d − i) = 0 for each

i > 0. �

These conditions on the vanishings of the higher cohomology of twists of a sheaf

were first captured by Mumford by what we now call the Castelnuovo–Mumford

regularity of a coherent sheaf. We give the definition for sheaves in terms of the

regularity of the cohomology modules

H
i
∗F :=

⊕

d≥0

H
i
F (d),

which are finite-dimensional K−vector spaces by a theorem of Serre. (See

[Hartshorne 1977, Ch. III, Theorem 5.2] for a proof.)

Definition 2.12. If F is a coherent sheaf on Pr,

reg F = max
i>0
{regHi

∗F + i+ 1}.

We say that F is d−regular if d ≥ reg F .

One may also reformulate the definition of the regularity of a finitely generated

graded module in a similar fashion.

Theorem 2.13. If H is an Artinian module, define

regH = max {i | Hi 6= 0}.

If M is an arbitrary finitely generated graded S-module define

regM = max
i≥0

regHi
(x0,...,xr)M + i.

For a proof, one may see [Eisenbud ≥ 2004].

The following theorem is Mumford’s original definition of regularity.

Theorem 2.14 [Mumford 1966, p. 99]. If F is a coherent sheaf on Pr then F

is d-regular if H iF (d− i) = 0 for all i > 0.
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From the proof of Proposition 2.11 it is clear that if an arbitrary homogeneous

ideal I ⊆ S is d-regular, then I is d-regular. In general, the relationship be-

tween the regularity of coherent sheaves and finitely generated modules is a bit

technical. (One should expect this since each coherent sheaf on projective space

corresponds to an equivalence class of finitely generated graded S-modules.)

However, if we work with saturated homogeneous ideals of closed subsets of Pr

the correspondence is quite nice:

Theorem 2.15 [Bayer and Mumford 1993, Definition 3.2]. If IZ is the saturated

homogeneous ideal of all elements of S that vanish on a Zariski-closed subset Z

in Pr and IZ is its sheafification, then reg IZ = reg IZ .

(See the technical appendix to Chapter 3 in [Bayer and Mumford 1993] for a

proof.)

We return now to the problem of computing the interpolation degree of X. As

a consequence of Proposition 2.10, the interpolation degree of X is the minimum

d such that H1IX(d) = 0. We claim that IX is (d+1)-regular if and only if

H
1IX(d) = 0. If IX is (d+1)-regular, the vanishing is part of the definition.

To see the opposite direction, look at the long exact sequence in cohomology

associated to any positive twist of

0 - IX
- OPr - OX

- 0.

The higher cohomology of positive twists of OPr always vanishes, and the higher

cohomology of any twist of OX vanishes because the support of OX has dimension

zero. Therefore, H iIX(k) = 0 for any positive integer k and all i ≥ 2.

We conclude that the interpolation degree ofX equals d if and only if reg IX =

d + 1, if and only if reg IX = d + 1, if and only if regS/IX = d. Thus, the in-

terpolation degree of X is equal to the Castelnuovo–Mumford regularity of its

homogeneous coordinate ring S/IX . In Section 3 we will see many more ways in

which regularity and geometry interact.

3. The Size of Free Resolutions

Throughout this section we set S = K[x0, . . . , xr] and let M denote a finitely

generated graded S-module. Let

F : 0 - Fm
φm- Fm−1

- · · · - F1
φ1- F0

be a minimal free resolution of M , and let βi,j be the graded Betti numbers—

that is, Fi =
⊕

j S(−j)βi,j . In this section we will survey some results and

conjectures related to the size of F .
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3.1. Projective dimension, the Auslander–Buchsbaum Theorem, and

Cohen–Macaulay modules. The most obvious question is about the length

m, usually called the projective dimension of M , written pdM . The Auslander–

Buchsbaum Theorem gives a very useful characterization. Recall that a regular

sequence of length t on M is a sequence of homogeneous elements f1, f2, . . . , ft

of positive degree in S such that fi+1 is a nonzerodivisor on M/(f1, . . . , fi)M for

each 0 ≤ i < t. (The definition usually includes the condition (f1, . . . , ft)M 6=
M , but this is superfluous because the fi have positive degree and M is finitely

generated.) The depth of M is the length of a maximal regular sequence on

M (all such maximal regular sequences have the same length). For example,

x0, . . . , xr is a maximal regular sequence on S and thus on any graded free S-

module. In general, the depth of M is at most the (Krull) dimension of M ;

M is said to be a Cohen–Macaulay module when these numbers are equal, or

equivalently when pdM = codimM .

Theorem 3.1 (Auslander–Buchsbaum). If S = K[x0, . . . , xr] and M is a

finitely generated graded S-module, then the projective dimension of M is r+1−t,
where t is the length of a maximal regular sequence on M .

Despite this neat result there are many open problems related to the existence of

modules with given projective dimension. Perhaps the most interesting concern

Cohen–Macaulay modules:

Problem 3.2. What is the minimal projective dimension of a module annihi-

lated by a given homogeneous ideal I? From the Auslander–Buchsbaum Theo-

rem this number is greater than or equal to codim I; is it in fact equal? That is,

does every factor ring S/I have a Cohen–Macaulay module? If S/I does have a

Cohen–Macaulay module, what is the smallest rank such a module can have?

If we drop the restriction that M should be finitely generated, then Hochster has

proved that Cohen–Macaulay modules (“big Cohen–Macaulay modules”) exist

for all S/I, and the problem of existence of finitely generated (“small”) Cohen–

Macaulay modules was posed by him. The problem is open for most S/I of

dimension ≥ 3. See [Hochster 1975] for further information.

One of the first author’s favorite problems is a strengthening of this one. A

module M is said to have linear resolution if its Betti diagram has just one

row—that is, if all the generators of M are in some degree d, the first syzygies

are generated in degree d + 1, and so on. For example the Koszul complex is a

linear resolution of the residue class field K of S. Thus the following problem

makes sense:

Problem 3.3. What is the minimal projective dimension of a module with

linear resolution annihilated by a given homogeneous ideal I? Is it in fact equal

to codim I? That is, does every factor ring S/I have a Cohen–Macaulay module

with linear resolution? If so, what is the smallest rank such a module can have?
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Cohen–Macaulay modules with linear resolutions are often called linear Cohen–

Macaulay modules or Ulrich modules. They appear, among other places, in

the computation of resultants. See [Eisenbud et al. 2003b] for results in this

direction and pointers to the literature. This last problem is open even when

S/I is a Cohen–Macaulay ring—and the rank question is open even when I is

generated by a single element. See [Brennan et al. 1987].

An interesting consequence of the Auslander–Buchsbaum theorem is that it

allows us to compare projective dimensions of a module over different polynomial

rings. A very special case of this argument gives us a nice interpretation of what

it means to be a Cohen–Macaulay module or an Ulrich module. To explain it

we need another notion:

Recall that a sequence of homogeneous elements y1, . . . , yd ∈ S is called a

system of parameters on a graded module M of Krull dimension d if and only

if M/(y1, . . . , yd)M has (Krull) dimension 0, that is, has finite length. (This

happens if and only if (y1, . . . , yd)+annM contains a power of (x0, . . . , xr). For

details see [Eisenbud 1995, Ch. 10], for example.) If K is an infinite field, M is

a finitely generated graded module of dimension > 0, and y is a general linear

form, then dimM/yM = dimM − 1. It follows that if M has Krull dimension

d then any sufficiently general sequence of linear forms y1, . . . , yd is a system of

parameters. Moreover, if M is a Cohen–Macaulay module then every system of

parameters is a regular sequence on M .

Corollary 3.4. Suppose that K is an infinite field , and that M is a finitely

generated graded S-module of dimension d. Let y1, . . . , yd be general linear forms.

The module M is a finitely generated module over the subring T := K[y1, . . . , yd].

It is a Cohen–Macaulay S-module if and only if it is free as a graded T -module.

It is an Ulrich S-module if and only if , for some n, it is isomorphic to T n as a

graded T -module.

Proof. Because M is a graded S-module, it is also a graded T -module and M

is zero in sufficiently negative degrees. It follows that M can be generated by any

set of elements whose images generate M := M/(y1, . . . , yd)M . In particular, M

is a finitely generated T module if M is a finite-dimensional vector space. Since

y1, . . . , yd are general, the Krull dimension of M is 0. Since M is also a finitely

generated S-module, it is finite-dimensional as a vector space, proving that M

is a finitely generated T -module.

The module M is a Cohen–Macaulay S-module if and only if y1, . . . yd is an

M -regular sequence, and this is the same as the condition that M be a Cohen–

Macaulay T -module. Since T is regular and has the same dimension as M , the

Auslander–Buchsbaum formula shows that M is a Cohen–Macaulay T -module

if and only if it is a free graded T -module.

For the statement about Ulrich modules we need to use the characterization

of Castelnuovo–Mumford regularity by local cohomology; see [Brodmann and

Sharp 1998] or [Eisenbud ≥ 2004]. Since y1, . . . , yd is a system of parameters
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on M , the ideal (y1, . . . , yd) + annM has radical (x0, . . . , xr) and it follows that

the local cohomology modules Hi
(x0,...,xr)(M) and Hi

(y1,...,yd)(M) are the same.

Thus the regularity of M is the same as a T -module or as an S-module. We can

rephrase the definition of the Ulrich property to say that M is Ulrich if and only

if M is Cohen–Macaulay, Mi = 0 for i < 0 and M has regularity 0. Thus M is

Ulrich as an S-module if and only if it is Ulrich as a T -module. Since M is a

graded free T -module, we see that it is Ulrich if and only if, as a T -module, it is

a direct sum of copies of T . �

Since S/annM acts on M as endomorphisms, we can say from Corollary 3.4

that there is an Ulrich module with annihilator I if and only if (for some n) the

ring S/I admits a faithful representation as n × n matrices over a polynomial

ring. Similarly, there is a Cohen–Macaulay module with annihilator I if S/I has

a faithful representation as EndF modules for some graded free module F .

3.2. Bounds on the regularity. The regularity of an arbitrary ideal I ⊂ S

can behave very wildly, but there is evidence to suggest that the regularity of

ideals defining (nice) varieties is much lower. Here is a sampling of results and

conjectures in this direction. See for example [Bayer and Mumford 1993] for the

classic conjectures and [Chardin and D’Cruz 2003] and the papers cited there

for a more detailed idea of current research.

Arbitrary ideals: Mayr–Meyer and Bayer–Stillman. Arguments going back to

Hermann [1926] give a bound on the regularity of an ideal that depends only

on the degrees of its generators and the number of variables—a bound that is

extremely large.

Theorem 3.5. If I is generated by forms of degree d in a polynomial ring in

r + 1 variables over a field of characteristic zero, then reg I ≤ (2d)2
r−1

.

For recent progress in positive characteristic, see [Caviglia and Sbarra 2003].

An argument of Mayr and Meyer [1982], adapted to the case of ideals in a

polynomial ring by Bayer and Stillman [1988], shows that the regularity can

really be (roughly) as large as this bound allows: doubly exponential in the

number of variables. These examples were improved slightly by Koh [1998] to

give the following result.

Theorem 3.6. For each integer n ≥ 1 there exists an ideal In ⊂ K[x0, . . . , xr]

with r = 22n− 1 that is generated by quadrics and has regularity

reg In ≥ 22n−1

.

See [Swanson 2004] for a detailed study of the primary decomposition of the

Bayer–Stillman ideals, which are highly nonreduced. See [Giaimo 2004] for a

way of making reduced examples using these ideals as a starting point.
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By contrast, for smooth or nearly smooth varieties, there are much better

bounds, linear in each of r and d, due to Bertram, Ein and Lazarsfeld [Bertram

et al. 1991] and Chardin and Ulrich [2002]: For example:

Theorem 3.7. If K has characteristic 0 and X ⊂ Pr is a smooth variety defined

scheme-theoretically by equations of degree ≤ d, then

reg IX ≤ 1 + (d− 1)r.

More precisely , if X has codimension c and X is defined scheme-theoretically by

equations of degrees d1 ≥ d2 ≥ · · ·, then

reg IX ≤ d1 + · · · dc − c+ 1.

The hypotheses “smooth” and “characteristic 0” are used in the proof through

the use of the Kawamata–Viehweg vanishing theorems; but there is no evidence

that they are necessary to the statement, which might be true for any reduced

algebraic set over an algebraically closed field.

The Bertram–Ein–Lazarsfeld bound is sharp for complete intersection vari-

eties. But one might feel that, when dealing with the defining ideal of a variety

that is far from a complete intersection, the degree of the variety is a more natu-

ral measure of complexity than the degrees of the equations. This point of view

is borne out by a classic theorem proved by Castelnuovo in the smooth case and

by Gruson, Lazarsfeld and Peskine [Gruson et al. 1983] in general: If K is alge-

braically closed and I is prime defining a projective curve X, then the regularity

is linear in the degree of X. (Extending the ground field does not change the

regularity, but may spoil primeness.)

Theorem 3.8. If K is algebraically closed , and I is the ideal of an irreducible

curve X of degree d in Pr not contained in a hyperplane, then

reg I ≤ d− r + 2.

Giaimo [2003] has proved a generalization of this bound when X is only assumed

to be reduced, answering a conjecture of Eisenbud.

On the other hand, it is easy to see (or look up in [Eisenbud ≥ 2004, Ch. 4])

that if X ⊂ Pr is a scheme not contained in any hyperplane, and S/IX is Cohen–

Macaulay, then

reg IX ≤ degX − codimX + 1.

When X is an irreducible curve, this coincides with the Gruson–Lazarsfeld–

Peskine Theorem. From this remark and some (scanty) further evidence, Eisen-

bud and Goto [1984] conjectured that the same bound holds for prime ideals:

Conjecture 3.9. Let K be an algebraically closed field. If X ⊂ Pr is an

irreducible variety not contained in a hyperplane, then

reg IX ≤ degX − codimX + 1.
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This is now known to hold for surfaces that are smooth [Bayer and Mumford

1993] and a little more generally [Brodmann 1999; Brodmann and Vogel 1993];

also for toric varieties of codimension two [Peeva and Sturmfels 1998] and a

few other classes. Slightly weaker bounds, still linear in the degree, are known

for smooth varieties up to dimension six [Kwak 1998; 2000]. Based on a similar

analogy and and a little more evidence, Eisenbud has conjectured that the bound

of Conjecture 3.9 holds if X is merely reduced and connected in codimension 1.

Both the connectedness and the reducedness hypothesis are necessary, as the

following examples show:

Example 3.10 (Two skew lines in P3). Let

I = (s, t) ∩ (u, v) = (s, t) · (u, v) ⊂ S = K[s, t, u, v]

be the ideal of the union X of two skew lines (that is, lines that do not meet)

in P3. The degree of X is of course 2, and X is certainly not contained in a

hyperplane. But the Betti diagram of the resolution of S/I is

0 1 2 3

0 1 − − −

1 − 4 4 1

so reg I = 2 > degX − codimX + 1.

Example 3.11 (A multiple line in P3). Let

I = (s, t)2 + (p(u, v) · s + q(u, v) · t) ⊂ S = K[s, t, u, v],

where p(u, v) and q(u, v) are relatively prime forms of degree d ≥ 1. The ideal I

has degree 2, independent of d, and no embedded components. The scheme X

defined by I has degree 2; it is a double structure on the line V (s, t), contained

in the first infinitesimal neighborhood V ((s, t)2) of the line in P3. It may be

visualized as the thickening of the line along a “ribbon” that twists d times

around the line. But the Betti diagram of the resolution of S/I is

0 1 2 3

0 1 − − −

1 − 3 2 −

2 − − − −
...

...
...

...
...

d − 1 − − − −

d − 1 2 1

so reg I = d+ 1 > degX − codimX + 1 = 1.

This last example (and many more) shows that there is no bound on the regular-

ity of a nonreduced scheme in terms of the degree of the scheme alone. But the

problem for reduced schemes is much milder, and Bayer and Stillman [1988] have

conjectured that the regularity of a reduced scheme over an algebraically closed
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field should be bounded by its degree (the sum of the degrees of its components).

Perhaps the strongest current evidence for this assertion is the recent result of

Derksen and Sidman [2002]:

Theorem 3.12. If K is an algebraically closed field and X is a union of d linear

subspaces of Pr, then reg IX ≤ d

3.3. Bounds on the ranks of the free modules. From the work of Hermann

[1926], there are (very large) upper bounds known for the ranks of the free

modules Fi in a minimal free resolution

F : 0 - Fm
φm- . . .→ F1

φ1- F0

in terms of the ranks of the modules F1 and F0 and the degrees of their gen-

erators. However, recent work has focused on lower bounds. The only general

result known is that of Evans and Griffith [1981; 1985]:

Theorem 3.13. If Fm 6= 0 then rank imφi ≥ i for i < m; in particular ,

rankFi ≥ 2i+ 1 for i < m− 1, and rankFm−1 ≥ n.

For an example, consider the Koszul complex resolving S/I, where I is generated

by a regular sequence of length m. In this case rankFm−1 = m, showing that the

first statement of Theorem 3.13 is sharp for i = m−1. But in the Koszul complex

case the “right” bound for the rank is a binomial coefficient. Based on many small

examples, Horrocks (see [Hartshorne 1979, problem 24]), motivated by questions

on low rank vector bundles, and independently Buchsbaum and Eisenbud [1977],

conjectured that something like this should be true more generally:

Conjecture 3.14. IfM has codimension c, then the i-th map φi in the minimal

free resolution of M has rankφi ≥
(
c−1
i−1

)
, so the i-th free module, has rankFi ≥(

c
i

)
. In particular,

∑
rankFi ≥ 2c.

The last statement, slightly generalized, was made independently by the topolo-

gist Gunnar Carlsson [1982; 1983] in connection with the study of group actions

on products of spheres.

The conjecture is known to hold for resolutions of monomial ideals [Chara-

lambous 1991], for ideals in the linkage class of a complete intersection [Huneke

and Ulrich 1987], and for small r (see [Charalambous and Evans 1992] for more

information). The conjectured bound on the sum of the ranks holds for almost

complete intersections by Dugger [2000] and for graded modules in certain cases

by Avramov and Buchweitz [1993].

4. Linear Complexes and the Strands of Resolutions

As before we set S = K[x0, . . . , xr]. The free resolution of a finitely generated

graded module can be built up as an iterated extension of linear complexes, its

linear strands. These are complexes whose maps can be represented by matrices



142 DAVID EISENBUD AND JESSICA SIDMAN

of linear forms. In this section we will explain the Bernstein–Gelfand–Gelfand

correspondence (BGG) between linear free complexes and modules over a certain

exterior algebra. We will develop an exterior algebra version of Fitting’s Lemma,

which connects annihilators of modules over a commutative ring with minors of

matrices. Finally, we will use these tools to explain Green’s proof of the Linear

Syzygy Conjecture of Eisenbud, Koh, and Stillman.

4.1. Strands of resolutions. Let

F : 0 - Fm
φm- Fm−1

- · · · - F1
φ1- F0

be any complex of free graded modules, and write Fi =
⊕

j S(−j)βi,j . Although

we do not assume that F is a resolution, we require it to be a minimal complex

in the sense that Fi maps to a submodule not containing any minimal generator

of Fi−1. By Nakayama’s Lemma, this condition is equivalent to the condition

that φiFi ⊂ (x0, . . . , xr)Fi−1 for all i > 0.

Under these circumstances F has a natural filtration by subcomplexes as

follows. Let b0 = mini,j {j − i | βi,j 6= 0}. For each i let Li be the submodule of

Fi generated by elements of degree b0 + i. Because Fi is free and has no elements

of degree < b0 + i the module Li is free, Li
∼= S(−b0 − i)βi,b0+i . Further, since

φiFi does not contain any of the minimal degree elements of Fi−1 we see that

φiLi ⊂ Li−1; that is, the modules Li form a subcomplex of F . This subcomplex

L is a linear free complex in the sense that Li is generated in degree 1 more than

Li−1, so that the differential ψi = φi|Li
: Li → Li−1 can be represented by a

matrix of linear forms.

We will denote this complex Lb0 , and call it the first strand of F . Factoring

out Lb0 we get a new minimal free complex, so we can repeat the process to get

a filtration of F by these strands.

We can see the numerical characteristics of the strands of F : it follows at

once from the definition that the Betti diagrams of the linear strands of F are

the rows of the Betti diagram of F ! This is perhaps the best reason of all for

writing the Betti diagram in the form we have given.

Now suppose that F is actually the minimal free resolution of IX for some

projective scheme X. It turns out in many interesting cases that the lengths of

the individual strands of F carry much deeper geometric information than does

the length of F itself. A first example of this can be seen in the case of the four

points, treated in Section 1. The Auslander–Buchsbaum Theorem shows that

the resolution of SX has length exactly r for any finite set of points X ⊂ Pr. But

for four points not all contained in a line, the first linear strand of the minimal

resolution of the ideal IX had length 1 if and only if some three of the points

were collinear (else it had length 0). In fact, the line itself was visible in the first

strand: in case it had length 1, it had the form

0→ S(−3)
φ- S(−2)2 - 0,
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and the entries of a matrix representing φ were exactly the generators of the

ideal of the line.

A much deeper example is represented by the following conjecture of Mark

Green. After the genus, perhaps the most important invariant of a smooth

algebraic curve is its Clifford index. For a smooth curve of genus g ≥ 3 this

may be defined as the minimum, over all degree d maps α (where d ≤ g − 1)

from X to a projective space Pr, with image not contained in a hyperplane, as

degα−2r. The number CliffX is always nonnegative (Clifford’s Theorem). The

smaller the Clifford index is, the more special X is. For example, the Clifford

index CliffX is 0 if and only if X is a double cover of P1. If it is not 0, it is 1

if and only if X is either a smooth plane curve or a triple cover of the line. For

“most curves” the Clifford index is simply d− 2, where d is the smallest degree

of a nonconstant map from X to P1; see [Eisenbud et al. 1989].

A curve X of genus g ≥ 3 that is not hyperelliptic has a distinguished embed-

ding in the projective space X ⊂ Pg−1 called the canonical embedding, obtained

by taking the complete linear series of canonical divisors. Any invariant derived

from the canonical embedding of a curve is thus an invariant of the abstract

(nonembedded) curve. It turns out that the Hilbert functions of all canonically

embedded curves of genus g are the same. This is true also of the projective

dimension and the regularity of the ideals of such curves. But the graded Betti

numbers seem to reflect quite a lot of the geometry of the curve. In particular,

Green conjectured that the length of the first linear strand of the resolution of

IX gives precisely the Clifford index:

Conjecture 4.1. Suppose that K has characteristic 0, and let X be a smooth

curve of genus g, embedded in Pg−1 by the complete canonical series. The length

of the first linear strand of the minimal free resolution of IX is g − 3− CliffX.

The conjecture has been verified by Schreyer [1989] for all curves of genus g ≤ 8.

It was recently proved for a generic curve of each Clifford index by Teixidor [2002]

and Voisin [2002a; 2002b] (this may not prove the whole conjecture, because the

family of curves of given genus and Clifford index may not be irreducible).

For a version of the conjecture involving high-degree embeddings of X instead

of canonical embeddings, see [Green and Lazarsfeld 1988]. See also [Eisenbud

1992; Schreyer 1991] for more information.

4.2. How long is a linear strand? With these motivations, we now ask for

bounds on the length of the first linear strand of the minimal free resolution of an

arbitrary graded moduleM . One of the few general results in this direction is due

to Green. To prepare for it, we give two examples of minimal free resolutions with

rather long linear strands— in fact they will have the maximal length allowed

by Green’s Theorem:

Example 4.2 (The Koszul complex). The first example is already familiar:

the Koszul complex of the linear forms x0, . . . , xs is equal to its first linear strand.
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Notice that it is a resolution of a module with just one generator, and that the

length of the resolution (or its linear strand) is the dimension of the vector space

〈x0, . . . , xs〉 of linear forms that annihilate that generator.

Example 4.3 (The canonical module of the rational normal curve).

Let X be the rational normal curve of degree d, the image in Pd of the map

P1 → Pd : (s, t) 7→ (sd
, s

d−1
t, . . . , st

d−1
, t

d).

It is not hard to show (see [Harris 1992, Example 1.16] or [Eisenbud 1995, Ex-

ercise A2.10]) that the ideal IX is generated by the 2× 2 minors of the matrix

(
x0 x1 · · · xd−1

x1 x2 · · · xd

)

and has minimal free resolution F with Betti diagram

0 1 · · · d − 2 d − 1

0 1 − · · · − −

1 −
`

d

2

´

· · · (d − 2)d d − 1

Let ω be the module of twisted global sections of the canonical sheaf ωP1 =

OP1(−2 points):

H0
OP1(−2 + d points)⊕H0

OP1(−2 + 2d points)⊕ · · ·

By duality, ω can be expressed as Extd−1
S (SX , S(−d− 1)), which is the cokernel

of the dual of the last map in the resolution of SX , twisted by −d − 1. From

the length of the resolution and the Auslander–Buchsbaum Theorem we see that

SX is Cohen–Macaulay, and it follows that the twisted dual of the resolution,

F
∗(−d− 1), is the resolution of ω, which has Betti diagram

0 1 · · · d − 2 d − 1

1 d − 1 (d − 2)d · · ·
`

d

2

´

−

2 − − · · · − 1

In particular, we see that ω has d − 1 generators, and the length of the first

linear strand of its resolution is d − 2. Since ω is the module of twisted global

sections of a line bundle on X, it is a torsion-free SX -module. In particular, since

the ideal of X does not contain any linear forms, no element of ω is annihilated

by any linear form.

These examples hint at two factors that might influence the length of the first

linear strand of the resolution of M : the generators of M that are annihilated by

linear forms; and the sheer number of generators of M . We can pack both these

numbers into one invariant. For convenience we will normalize M by shifting

the grading until Mi = 0 for i < 0 and M0 6= 0. Let W = S1 be the space of

linear forms in S, and let P = P(M ∗0 ) be the projective space of 1-dimensional
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subspaces of M0 (we use the convention that P(V ) is the projective space of

1-dimensional quotients of V ). Let A(M) ⊂W × P be the set

A(M) :=
{
(x, 〈m〉) ∈W × P | xm = 0

}
.

The set A(M) contains 0×P, so it has dimension ≥ dimK M0−1. In Example 4.3

this is all it contains. In Example 4.2 however it also contains 〈x0, . . . , xs〉× 〈1〉,
a variety of dimension s+1, so it has dimension s+1. In both cases its dimension

is the same as the length of the first linear strand of the resolution. The following

result was one of those conjectured by Eisenbud, Koh and Stillman (the “Linear

Syzygy Conjecture”) based on a result of Green’s covering the torsion-free case,

and then proved in general by Green [1999]:

Theorem 4.4 (Linear Syzygy Conjecture). Let M be a graded S-module,

and suppose for convenience that Mi = 0 for i < 0 while M0 6= 0. The length of

the first linear strand of the minimal free resolution of M is at most dimA(M).

Put differently, the only way that the length of the first linear strand can be

> dimK M0 is if there are “many” nontrivial pairs (x,m) ∈ W ×M0 such that

xm = 0.

The statement of Theorem 4.4 is only one of several conjectures in the paper

of Eisenbud, Koh, and Stillman. For example, they also conjecture that if the

resolution of M has first linear strand of length > dimK M0, and M is minimal

in a suitable sense, then every element of M0 must be annihilated by some linear

form. See [Eisenbud et al. 1988] for this and other stronger forms.

Though it explains the length of the first linear strand of the resolutions of

the residue field K or its first syzygy module (x0, . . . , xr), Theorem 4.4 is far

from sharp in general. A typical case where one would like to do better is the

following: the second syzygy module of K has no torsion and
(
r+1
2

)
generators, so

the theorem bounds the length of its first linear strand by
(
r+1
2

)
− 1. However,

its first linear strand only has length r − 1. We have no theory—not even a

conjecture— capable of predicting this.

We will sketch the proof after developing some basic theory connecting the

question with questions about modules over exterior algebras.

4.3. Linear free complexes and exterior modules. The Bernstein–Gelfand–

Gelfand correspondence is usually thought of as a rather abstract isomorphism

between some derived categories. However, it has at its root a very simple ob-

servation about linear free complexes: A linear free complex over S is “the same

thing” as a module over the exterior algebra on the dual of S1.

To simplify the notation, we will (continue to) write W for the vector space

of linear forms S1 of S, and we write V := W
∗ for its vector space dual. We set

E =
∧
V , the exterior algebra on V . Since W consists of elements of degree 1,

we regard elements of V as having degree −1, and this gives a grading on E with∧i
V in degree −i. We will use the element

∑
i xi⊗ ei ∈W ⊗V , where {xi} and
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{ei} are dual bases of W and V . This element does not depend on the choice of

bases— it is the image of 1 ∈ K under the dual of the natural contraction map

V ⊗W → K : v ⊗ w 7→ v(w).

Although E is not commutative in the usual sense, it is strictly commutative in

the sense that

ef = (−1)(deg e)(deg f)
fe

for any two homogeneous elements e, f ∈ E. In nearly all respects, E behaves

just like a finite-dimensional commutative graded ring. The following simple

idea connects graded modules over E with linear free complexes over S:

Proposition 4.5. Let {xi} and {ei} be dual bases of W and V , and let P =⊕
Pi be a graded E-module. The maps

φi : S ⊗ Pi → S ⊗ Pi−1

1⊗ p 7→∑
j xj ⊗ ejp

make

L(P ) : · · · - S ⊗ Pi
φi- S ⊗ Pi−1

- · · · ,
into a linear complex of free S-modules. Every complex of free S modules L :

· · · → Fi → Fi−1 → · · ·, where Fi is a sum of copies of S(−i) has the form L(P )

for a unique graded E-module P .

Proof. Given an E-module P , we have

φi−1φi(p) = φi−1

(∑

j

xj ⊗ ejp

)
=

∑

k

(∑

j

xjxk ⊗ ejekp

)
.

The terms x2
j ⊗ e2jp are zero because e2j = 0. Each other term occurs twice, with

opposite signs, because of the skew-commutativity of E, so φi−1φi = 0 and L(P )

is a linear free complex as claimed.

Conversely, given a linear free complex L, we set Pi = Fi/(x0, . . . , xr)Fi.

Because L is linear, differentials of L provide maps ψi : Pi →W⊗Pi−1. Suppose

p ∈ Pi. If ψi(p) =
∑
xj ⊗ pj then we define µi : E ⊗ Pi → E ⊗ Pi−1 by

1⊗ p 7→
∑
ej ⊗ pj . Using the fact that the differentials of L compose to 0, it is

easy to check that these “multiplication” maps make P into a graded E-module,

and that the two operations are inverse to one another. �

Example 4.6. The Koszul complex

0→
∧r+1

S
r+1 → · · · →

∧1
S

r+1 → S → 0

is a linear free complex over S. To make the maps natural, we should think of

S
r+1 as S ⊗W . Applying the recipe in Proposition 4.5 we see that Pi =

∧i
W .

The module structure on P is that given by contraction, e ⊗ x 7→ e¬x. This

module P is canonically isomorphic to Hom(E,K), which is a left E-module via

the right-module structure of E. It is also noncanonically isomorphic to E; to
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define the isomorphism E → P we must choose a nonzero element of
∧r+1

W , an

orientation, to be the image of 1 ∈ E. See [Eisenbud 1995, Ch. 17], for details.

The BGG point of view on linear complexes is well-adapted to studying the

linear strand of a resolution, as one sees from the following result. For any

finitely generated left module P over E we write P̂ for the module Hom(P,K);

it is naturally a right module, but we make it back into a left module via the

involution ι : E → E sending a homogeneous element a ∈ E to ι(a) = (−1)deg a
a.

Proposition 4.7. Let L = L(P ) be a finite linear free complex over S corre-

sponding to the graded E-module P .

1. L is a subcomplex of the first linear strand of a minimal free resolution if and

only if P̂ is generated in degree 0.

2. L is the first linear strand of a minimal free resolution if and only if P̂ has a

linear presentation matrix .

· · ·
∞. L is a free resolution if and only if P̂ has a linear free resolution.

Here the infinitely many parts of the proposition correspond to the infinitely

many degrees in which L could have homology. For the proof, which depends on

the Koszul homology formula Hi(L)i+d = Tord(K, P̂ )−d−i, see [Eisenbud et al.

2003a].

4.4. The exterior Fitting Lemma and the proof of the Linear Syzygy

Conjecture. The strategy of Green’s proof of the Linear Syzygy Conjecture is

now easy to describe. We first reformulate the statement slightly. The algebraic

set A(M) consists of P and the set

A
′ =

{
(x, 〈y〉) | 0 6= x ∈W, y ∈M0 and xm = 0

}
.

Supposing that the first linear strand L of the resolution of M has length k

greater than dimA
′, we must show that k < dimM0. We can write L = L(P ) for

some graded E-module P , and we must show that Pm = 0, where m = dimK M0.

From Proposition 4.7 we know that P̂ is generated in degree 0. Thus to show

Pm = 0, it is necessary and sufficient that we show that P̂ is annihilated by

the m-th power of the maximal ideal E+ of E. In fact, we also know that P̂

is linearly presented. Thus we need to use the linear relations on P̂ to produce

enough elements of the annihilator of P to generate (E+)m.

If E were a commutative ring, this would be exactly the sort of thing where

we would need to apply the classical Fitting Lemma (see for example [Eisenbud

1995, Ch. 20]), which derives information about the annihilator of a module from

a free presentation. We will explain a version of the Fitting Lemma that can be

used in our exterior situation.

First we review the classical version. We write Im(φ) for the ideal of m×m
minors of a matrix φ
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Lemma 4.8 (Fitting’s Lemma). If

M = coker(Sn(−1)
φ- S

m)

is a free presentation, then Im(φ) ⊂ annM . In the generic case, when φ is

represented by a matrix of indeterminates, the annihilator is equal to Im(φ).

To get an idea of the analogue over the exterior algebra, consider first the special

case of a module with presentation

P = coker(E(1)

0

B
B
B
@

e1
...

et

1

C
C
C
A

- E
t),

where the ei are elements of V = E−1. If we write p1, . . . , pt for the elements

of P that are images of the basis vectors of Et, then the defining relation is∑
eipi = 0. We claim that

∏
i ei annihilates P . Indeed,

(∏

i

ei

)
pj =

(∏

i6=j

ei

)
ejpj =

(∏

i6=j

ei

)∑

i6=j

−eipi = 0

since e2i = 0. Once can show that, if the ei are linearly independent, then
∏

i ei

actually generates annP . Thus the product is the analogue of the “Fitting ideal”

in this case.

In general, if

P = coker(E(1)s φ- E
t),

then the product of the elements of every column of the matrix φ annihilates P

for the same reason. The same is true of the generalized columns of φ—that

is, the linear combinations with K coefficients of the columns. In the generic

case these products generate the annihilator. Unfortunately it is not clear from

this description which—or even how many—generalized columns are required

to generate this ideal.

To get a more usable description, recall that the permanent permφ of a t× t
matrix φ is the sum over permutations σ of the products φ1,σ(1) · · ·φt,σ(t) (the

“determinant without signs”). At least in characteristic zero, the product
∏
ei

in our first example is t! times the permanent of the t × t matrix obtained by

repeating the same column t times. More generally, if we make a t× t matrix φ

using a1 copies of a column φ1, a2 copies of a second column φ2, and in general

au copies of φu, so that
∑
ai = t, we find that, in the exterior algebra over the

integers, the permanent is divisible by a1!a2! · · · au!. We will write

(φ
(a1)
1 , . . . , φ

(au)
u ) =

1

a1!a2! · · · au!
permφ

for this expression, and we call it a t× t divided permanent of the matrix φ. It

is easy to see that the divided permanents are in the linear span of the products
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of the generalized columns of φ. This leads us to the desired analogue of the

Fitting Lemma:

Theorem 4.9. Let P be a module over E with linear presentation matrix

φ : Es(1) → E
t. The divided permanents (φ

(a1)
1 , . . . , φ

(au)
u ) are elements of

the annihilator of P . If the st entries of the matrix φ are linearly independent

in V , then these elements generate the annihilator .

The ideal generated by the divided permanents can be described without recourse

to the bases above as the image of a certain map Dt(E
s(1)) ⊗

∧t
E

t → E

defined from φ by multilinear algebra, where Dt(F ) = (Symt F
∗)∗ is the t-th

divided power. This formula first appears in [Green 1999] For the fact that

the annihilator is generated by the divided permanents, and a generalization to

matrices with entries of any degree, see [Eisenbud and Weyman 2003].
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Abstract. We study questions arising from the geometry of configurations
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Introduction

These lectures address commutative algebra questions arising from the geom-

etry of configurations of n points in the affine plane C2. In the first lecture, we

study the ideal of the locus where some two of the points coincide. We are led

naturally to consider the action of the symmetric group Sn permuting the points

among themselves. This provides the topic for the second lecture, in which we

study the rings of invariants and coinvariants for this action. As you can see,

we have chosen to study questions that involve rather simple and naive geo-

metric considerations. For those who have not encountered this subject before,

it may come as a surprise that the theorems which give the answers are quite

remarkable, and seem to be hard.

One reason for the subtlety of the theorems is that lurking in the background

is the more subtle geometry of the Hilbert scheme of points in the plane. The

153
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special properties of this algebraic variety play a role in the proofs of the theo-

rems. The involvement of the Hilbert scheme in the proofs means that at present

the theorems apply only to points in the plane, even though we could equally

well raise the same questions for points in Cd, and conjecturally we expect them

to have similar answers.

In the third lecture, we change perspective slightly, by introducing the
(
n
2

)

lines connecting the points in pairs, and asking for the ideal of relations among

the slopes of these lines when the points are in general position (that is, no two

points coincide). We present a synopsis of the beautiful and surprising results

on this problem found by my former student, Jeremy Martin.

Lecture 1: A Subspace Arrangement

We consider ordered n-tuples of points in the plane, denoted by

P1, . . . , Pn ∈ C2
.

We work over C to keep things simple and geometrically concrete, although some

of the commutative algebra results remain true over more general ground rings.

Assigning the points coordinates

x1, y1, . . . , xn, yn,

we identify the space E of all n-tuples (P1, . . . , Pn) with C2n. The coordinate

ring of E is then the polynomial ring

C[E] = C[x,y] = C[x1, y1, . . . , xn, yn]

in 2n variables. Let Vij be the locus where Pi = Pj , that is, the codimension-2

subspace of E defined by the equations xi = xj and yi = yj . The locus

V =
⋃

i<j

Vij

where some two points coincide is a subspace arrangement of
(
n
2

)
codimension-2

subspaces in E. Evidently, V is the zero locus of the radical ideal

I = I(V ) =
⋂

i<j

(xi−xj , yi−yj).

The central theme of today’s lecture is: What does the ideal I look like?

As a warm-up, we consider the much easier case of n points on a line. Then

we only have coordinates x1, . . . , xn, and the analog of I is the ideal

J =
⋂

i<j

(xi−xj) ⊆ C[x].

This ideal has some easily checked properties.
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(1) J is the principal ideal (∆(x)) generated by the Vandermonde determinant

∆(x) =
∏

i<j

(xi−xj) = det




1 x1 . . . x
n−1
1

1 x2 . . . x
n−1
2

...
...

...

1 xn . . . x
n−1
n


 .

(2) J is (trivially) a free C[x] module with generator ∆(x).

(3) J
m = J

(m) def
=

⋂
i<j(xi−xj)m, that is, the powers of J are equal to its

symbolic powers. This is clear, since both ideals are equal to (∆(x)m).

(4) The Rees algebra C[x][tJ ] is Gorenstein. In fact, it’s just a polynomial ring

in n+1 variables.

All this follows from the fact that J is the ideal of a hyperplane arrangement.

In general, one cannot say much about the ideal of an arrangement of subspaces

of codimension 2 or more. However, our ideal I is rather special, so let’s try to

compare its properties with those listed above for J .

Beginning with property (1), we can observe that I has certain obvious ele-

ments. The symmetric group Sn acts on E, permuting the points Pi. In coordi-

nates, this is the diagonal action

σxi = xσ(i), σyi = yσ(i) for σ ∈ Sn.

We denote the sign character of Sn by

ε(σ) =

{
1 if σ is even,

−1 if σ is odd.

Let

C[x,y]ε = {f ∈ C[x,y] : σf = ε(σ)f for all σ ∈ Sn}
be the space of alternating polynomials. Any alternating polynomial f satisfies

f(x1, y1, . . . , xi, yi, . . . , xj , yj , . . . , xn, yn)

= −f(x1, y1, . . . , xj , yj , . . . , xi, yi, . . . , xn, yn),

which immediately implies that f vanishes on every Vij , that is, f belongs to I.

There is a natural vector space basis for C[x,y]ε. Namely, let x
α
y

β =

x
α1

1 y
β1

1 . . . x
αn
n y

βn
n be a monomial, and put

A(xα
y

β) =
∑

σ∈Sn

ε(σ)σ(xα
y

β).

If the exponent pairs (αi, βi) are not all distinct, then A(xα
y

β) = 0. If they are

all distinct, set D = {(α1, β1), . . . , (αn, βn)} ⊆ N×N. Then A(xα
y

β) is given

by a bivariate analog of the Vandermonde determinant

A(xα
y

β) = ∆D = det




x
α1

1 y
β1

1 . . . x
αn

1 y
βn

1
...

...

x
α1
n y

β1
n . . . x

αn
n y

βn
n


 ,
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which only depends on D, up to sign. It is easy to see that the set of all such

polynomials

{∆D : D ⊆ N×N, |D| = n}
is a vector space basis of C[x,y]ε. In particular, the ideal they generate is the

same as the ideal generated by all alternating polynomials. We have just seen

that this ideal is contained in I.

Theorem 1.1. We have I = (∆D : D ⊆ N×N, |D| = n).

As far as I know, this is not an easy theorem. We will say something about its

proof later on. Before that, we discuss briefly the question of finding a minimal

set of generators for I, and take up the analogs of the other properties (2)–(4)

that we had for J .

Note that I is a homogeneous ideal — in fact it is doubly homogeneous, with

respect to the double grading given by degrees in the x and y variables separately.

It follows that a set of homogeneous generators for I, for example a subset of

the ∆D’s, is minimal if and only if its image is a vector space basis of

I/(x,y)I.

It turns out that we know exactly what the size of such a minimal generating

set must be, although no one has yet succeeded in finding an explicit choice of

minimal generators.

Theorem 1.2. The dimension of I/(x,y)I is equal to the Catalan number

Cn =
1

n+1

(
2n

n

)
.

Indeed, quite a bit more can be said. The space M = I/(x,y)I is doubly graded,

say M =
⊕

r,s Mr,s. Define a “q, t-analog” of the Catalan number by

Cn(q, t) =
∑

r,s

t
r
q

s dim Mr,s.

According to Theorem 1.2 we then have Cn(1, 1) = Cn. From geometric con-

siderations involving the Hilbert scheme we have a formula for Cn(q, t) [Haiman

1998; 2002], and Theorem 1.2 is proved by specializing the formula to q = t = 1.

The formula gives Cn(q, t) as a complicated rational function of q, t that on its

face is not even obviously a polynomial. However, Garsia and Haglund [Garsia

and Haglund 2001; 2002] discovered a simple combinatorial interpretation of the

formula, as follows. Let D be the set of integer sequences

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0

satisfying

λi ≤ n− i for all i.
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In other words, D is the set of partitions whose Young diagram fits inside that

of the partition (n−1, n−2, . . . , 1). It is well-known that the number of these is

the Catalan number Cn. For each λ ∈ D , define

a(λ) =
∑

i

(n− i−λ),

b(λ) =
∣∣{i < j : λi−λj + i−j ∈ {0, 1}

}∣∣ .

Garsia and Haglund showed that

Cn(q, t) =
∑

λ∈D

q
a(λ)

t
b(λ)

.

Problem 1.3. Find a rule associating to each λ ∈ D an n-element subset

D(λ) ⊆ N×N in such a way that deg
y

∆D(λ) = a(λ), deg
x

∆D(λ) = b(λ), and

the set {∆D(λ) : λ ∈ D} generates I.

A solution to this problem would give a new and in some sense improved proof

of the Garsia–Haglund result. One can proceed similarly for the powers of I,

defining

M
(m) = I

m
/(x,y)Im

and

C
(m)
n (q, t) =

∑

r,s

t
r
q

s dim M
(m)
r,s .

Again there is a formula for C
(m)
n (q, t) from geometry. There is also a conjectured

combinatorial interpretation, as follows. Let D (m) be the set of integer sequences

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0

satisfying

λi ≤ m(n− i) for all i.

In other words, we now allow partitions whose Young diagram fits inside that of

m ·(n−1, n−2, . . . , 1). For each λ ∈ D (m), define

a
(m)(λ) =

∑

i

(m(n− i)−λ),

b
(m)(λ) =

∣∣{i < j : λi−λj +m(i−j) ∈ {0, 1, . . . ,m}
}∣∣ .

Conjecture 1.4. We have C
(m)
n (q, t) =

∑
λ∈D(m) q

a(m)(λ)
t
b(m)(λ).

Problem 1.5. Find generators for I
m indexed by elements λ ∈ D (m), with

y-degree equal to a
(m)(λ) and x-degree equal to b

(m)(λ).

It is known that C
(m)
n (q, 1) =

∑
λ∈D(m) q

a(m)(λ), and hence in particular that

dim I
m

/(x,y)Im = Cn(1, 1) = |D (m)|. The generating set given by a solution

to Problem 1.5 would therefore be minimal, so Conjecture 1.4 would follow au-

tomatically.



158 MARK HAIMAN

Now we ask whether I has an analog of property (2) for J . It certainly cannot

be that I is a free C[x,y]-module, for then C[x,y]/I would have depth 2n−1,

whereas it has dimension 2n−2. What we have instead is that I is a free module

with respect to either set of variables alone.

Theorem 1.6. The ideal I is a free C[y]-module.

This theorem is best possible, modulo one detail. The ideal I has an extra

degree of freedom: it is invariant with respect to x-translations mapping each

xi to xi +a. This invariance holds for I/(y)I as well, and implies that I/(y)I is

a free C[x1]-module (say). Hence Theorem 1.6 actually implies that I is a free

C[y, x1]-module, and in particular has depth at least n+1. On the other hand,

it is easy to see that ∆(y) represents a nonzero element of I/(y)I annihilated by

(x1−x2, . . . , xn−1−xn). This implies that depth I/(y)I ≤ 1 and hence depth I =

n+1.

Next we turn to property (3), the coincidence of powers with symbolic powers.

Theorem 1.7. We have I
m = I

(m) def
=

⋂
i<j(xi−xj , yi−yj)(m) for all m.

In fact, Theorems 1.1, 1.6, and 1.7 are all plainly corollaries to the following two

statements.

Theorem 1.8. For all m, the m-th power of the ideal (∆D : D ⊆ N×N, |D| = n)

is a free C[y]-module.

Corollary 1.9. For all m, we have I
(m) = (∆D : D ⊆ N×N, |D| = n)m.

On the maxim that every mathematics lecture should contain one proof, we

sketch how Theorem 1.8 implies Corollary 1.9. Abbreviating (∆D : D ⊆ N×
N, |D| = n) to (∆D), we clearly have

(∆D)m ⊆ I
(m)

.

Localizing at any point P ∈ E with not all Pi equal, one shows that both (∆D)P

and I
(m)
P

factor locally into products of the corresponding ideals in subsets of

the variables. On the open set U where some Pi 6= Pj we can therefore assume

locally that (∆D)m
P

= I
(m)
P

, by induction on n.

Now Theorem 1.8 implies that C[x,y]/(∆D)m has depth ≥ n−1 as a C[y]-

module. In particular, (∆D)m cannot have an associated prime supported in

V (y1−y2, . . . , yn−1−yn), if n ≥ 3. In other words, if f ∈ C[x,y] belongs to

the localization (∆D)m
Q for all Q ∈ (SpecC[y])\V (y1−y2, . . . , yn−1−yn), then

f ∈ (∆D)m. By induction this holds for all f ∈ I
(m). The induction step assumes

n ≥ 3. The base cases n = 1, 2 are trivial. �

Finally, we discuss property (4). Take the Rees algebra R = C[x,y][t(∆D)],

and put X = Proj R, that is, the blowup of E at the ideal (∆D). Here, as above,

(∆D) is shorthand for the ideal generated by all the alternating polynomials ∆D.
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In view of Theorem 1.1, we can also identify X with the blowup of E along V ,

but it is preferable for geometric reasons not to take this as the definition.

The symmetric group Sn acts equivariantly on both X and E, giving a diagram

X −−−−→ E




y





y

X/Sn −−−−→ E/Sn.

Now it develops that X/Sn is nothing else but the Hilbert scheme Hilbn(C2)

parametrizing 0-dimensional subschemes of length n in C2, or equivalently, ideals

J ⊆ C[x, y] such that dimC C[x, y]/J = n. This is in fact not difficult to show,

using explicit local coordinates on Hilbn(C2) and the definition of X.

By a classical theorem of Fogarty [1968], Hilbn(C2) is non-singular and irre-

ducible — see the Appendix for another proof using explicit local coordinates. It

is also known that the locus in Hilbn(C2) where the y-coordinates vanish, that is,

the locus describing subschemes of C2 supported on the x-axis, has codimension

n. From this it follows easily that dim R/(y) = n+1.

We come now to the most important theorem from the geometric point of

view.

Theorem 1.10. The blowup scheme X is arithmetically Gorenstein, that is, R

is a Gorenstein ring .

Let us pause to understand how this result is related to Theorem 1.8. The

dimension count above shows that (y) is a complete intersection ideal in R.

Hence, if we assume Theorem 1.10 holds, then R is a free C[y]-module, which is

merely a restatement of Theorem 1.8. So Theorem 1.8 is a simple corollary to

Theorem 1.10.

Unfortunately for this logic, the only proof of Theorem 1.10 known at present

uses Theorem 1.8. Specifically, although the main argument of the proof given

in [Haiman 2001] is an induction based on elementary geometry of the Hilbert

schemes, there is a key technical step that depends on Theorem 1.8. So for now

we cannot elegantly deduce Theorem 1.8 from Theorem 1.10, as above, but must

prove Theorem 1.8 directly.

Problem 1.11. Find an “intrinsic” proof of Theorem 1.10 that does not rely

on Theorem 1.8.

In this connection we may note that there are classical theorems in commutative

algebra for showing that Rees algebras are Cohen–Macaulay or Gorenstein. In

particular, as W. Vasconcelos pointed out to me, since our ideal has codimension

2 it is enough to show that the Rees algebra R is Cohen–Macaulay, and it is

then automatically Gorenstein (this consequence also follows from the geometry).

Unfortunately, as far as I am aware, the theorems one might use to show that R is

Cohen–Macaulay tend to require hypotheses on the blowup ideal, such as strong
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Cohen–Macaulayness, or small analytic spread, that fail drastically for our ideal

I. It is natural to inquire whether advances in singularity theory might even

make it possible to show that our Rees algebra R has singularities better than

Cohen–Macaulay. Could one hope to prove, for instance, that R is of F -rational

type?

I’ll conclude with some remarks concerning the existing proof and possible gen-

eralizations of Theorem 1.8, which for the moment remains the linchpin among

the results. To prove Theorem 1.8, we first show that (∆D)m is a direct summand

as a graded C[x,y]-module of the coordinate ring C[W ] of an auxiliary subspace

arrangement W ⊆ E×C2mn, called a “polygraph.” Then we show that C[W ]

is a free C[y]-module by explicitly constructing a basis. This requires a horri-

bly complicated and not very illuminating induction. The basis construction is

secretly modeled on a combinatorial interpretation of a formula from geometry

for the Hilbert series of C[W ]. In the end, however, both the formula and the

combinatorics are suppressed from the proof, as they must be, since one can only

prove such formulas by assuming the theorem a priori.

I think that some of the complexity of the existing proof may eventually be

removed. I also think that most of the phenomena concerning the ideal I should

persist if we take points in Cd for general d, instead of C2. If so, we will need

proofs that do not refer to the Hilbert scheme, secretly or otherwise. Here are

some specific problems motivated by my thoughts along these lines.

Problem 1.12. Is it possible to dispense with the polygraph and construct a

free C[y]-module basis of (∆D)m directly? It would already be interesting to

accomplish this for d = 2. In this case, the geometry does provide a formula for

the Hilbert series, but an obstacle to using it is that we don’t have a combinatorial

interpretation, and therefore no clue how to index the basis elements.

Problem 1.13. Our subspace arrangement V can be written as C2⊗V
′, where

V
′ is the hyperplane arrangement V

′ =
⋃

i<j V (xi−xj) in Cn. Here, for any

subspace arrangement A =
⋃

k Ak ⊆ Cn, we denote by Cd⊗A the arrangement

of subspaces Cd⊗Ak ⊆ Cd⊗Cn = C
dn.

(a) Is it true more generally that for all d, the ideal of Cd⊗V
′ is a free C[x]-

module, where x is one of the d sets of n coordinates on Cdn?

(b) The hyperplane arrangement V
′ is the Coxeter arrangement of type An−1.

What if we consider instead the Coxeter arrangements of other types?

(c) Are there general criteria for a hyperplane arrangement A ⊆ Cn to have the

property that the ideal Id of Cd⊗A is a free module over the coordinate ring

of Cn, for all d?

(d) Exercise: show that a hyperplane arrangement with the property in (c) must

be free in the sense used in the theory of hyperplane arrangements [Orlik and

Terao 1992]. Freeness as a hyperplane arrangement is not sufficient for (c),

however.



COMMUTATIVE ALGEBRA OF n POINTS IN THE PLANE 161

Lecture 2: A Ring of Invariants

As in Lecture 1, let E = C
2n be the space of n-tuples (P1, . . . , Pn) of points

in the plane. The action of the symmetric group Sn on E has already made

an appearance in our study of the ideal of the locus where points coincide. In

this lecture we will discuss some other features of this action. We will begin

with a review of some general theory of invariants and coinvariants of linear

representations of finite groups, then turn to particulars of the representation of

Sn on E.

For the moment, we consider an arbitrary finite group G, acting linearly on

a finite-dimensional vector space V = k
n. Our only assumption will be that

char k does not divide |G|. Then all finite-dimensional representations of G are

completely reducible, that is, they are direct sums of irreducible representations.

In particular, each homogeneous component of the ring k[V ] of polynomial func-

tions on V is completely reducible. Of special interest is the subring of invariants

k[V ]G. It follows from complete reducibility that k[V ]G is a direct summand of

k[V ] as a G-module, and also as a k[V ]G-module. The projection of k[V ] on its

summand k[V ]G is given explicitly by the Reynolds operator

Rf =
1

|G|
∑

g∈G

g ·f,

which will be important in what follows.

A second ring associated with the action of G on V is the ring of coinvariants

, defined as

RG = k[V ]/IG,

where IG = k[V ]·(k[V ]G+) is the ideal generated by all homogeneous invariants of

positive degree. Geometrically, these rings have the following interpretation (at

least when k is algebraically closed). The space of G-orbits V/G has a natural

structure of algebraic variety, with regular functions given by the G-invariant

functions on V . Thus its coordinate ring is the ring of invariants:

k[V ]G = k[V/G].

The homogeneous maximal ideal k[V ]G+ in k[V ]G is the ideal of the origin 0 ∈ V/G

(the G-orbit consisting only of the origin in V ). Then the scheme-theoretic fiber

π
−1(0) of the natural projection

π: V → V/G

has coordinate ring equal to the ring of coinvariants,

RG = k[π−1(0)].

The two constructions are related by a famous lemma of Hilbert.

Lemma 2.1 (Hilbert). Homogeneous invariants f1, . . . , fr of positive degree

generate k[V ]G as a k-algebra if and only if they generate IG as an ideal .
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Proof. If k[V ]G = k[f1, . . . , fr], then every homogeneous invariant of positive

degree is a polynomial without constant term in the fi’s. This shows that IG ⊆
(f1, . . . , fr), and the reverse inclusion is trivial.

For the converse, suppose to the contrary that IG = (f1, . . . , fr) but k[V ]G 6=
k[f1, . . . , fr]. Let h be a homogeneous invariant of minimal degree, say d, not

contained in k[f1, . . . , fr]. Certainly d > 0, so h ∈ IG, and we can write

h =
∑

i

aifi,

where we can assume without loss of generality that ai is homogeneous of degree

d−deg fi. Applying the Reynolds operator to both sides gives

h =
∑

i

(Rai)fi.

But each Rai is a homogeneous invariant of degree < d, hence belongs to

k[f1, . . . , fr]. This contradicts the assumption h 6∈ k[f1, . . . , fr]. �

It is natural to ask for a bound on the degrees of a minimal set of homogeneous

generators for k[V ]G, or equivalently for IG. To give precise bounds for particular

G and V is in general a difficult problem. One has the following global bound,

which was proved by Noether in characteristic 0.

Theorem 2.2. The ring of invariants k[V ]G is generated by homogeneous ele-

ments of degree at most |G|.

Let us pause to discuss a more modern proof of this theorem, based on a beautiful

lemma of Harm Derksen. To state the lemma we need some additional notation.

Let x1, . . . , xn be a basis of coordinates on V , so k[V ] = k[x]. We introduce a

second copy of V , with coordinates y1, . . . , yn. Then the coordinate ring k[V ×V ]

is identified with the polynomial ring k[x,y]. For each g ∈ G, let

Jg = (xi−gyi : 1 ≤ i ≤ n) ⊆ k[x,y] (2–1)

be the ideal of the subspace Wg = {(v, gv) : v ∈ V } ⊆ V ×V .

Lemma 2.3 [Derksen 1999]. Let J =
⋂

g∈G Jg, with Jg as above. Then k[x]∩
(J +(y)) = IG.

Proof. If f(x) is a homogeneous invariant of positive degree, then f(y) ∈ (y),

and f(x)−f(y) ∈ J , since f(x)−f(y) vanishes on setting y = gx for any g ∈ G.

This shows IG ⊆ k[x]∩(J +(y)).

For the reverse inclusion, suppose f(x) ∈ J +(y), so

f(x) =
∑

i

ai(x)bi(y)+p(x,y), (2–2)

where p(x,y) ∈ J and we can assume bi(y) homogeneous of positive degree. Let

Ry be the Reynolds operator for the action of G on the y variables only. The
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ideal J is invariant for this action, so RyJ ⊆ J . Hence, applying Ry to both

sides in (2–2) yields

f(x) =
∑

i

ai(x)Rybi(y)+q(x,y)

with q(x,y) ∈ J . In particular, q(x,x) = 0. Substituting y 7→ x on both sides

now exhibits f as an element of IG. �

We remark that J is the ideal of the subspace arrangement W =
⋃

g Wg, which we

will call Derksen’s arrangement. It is the arrangement in V ×V whose projection

on the first factor V has finite fiber over each point v, identified set-theoretically

with the orbit Gv (by projecting on the second factor). Derksen’s Lemma says

that the scheme-theoretic 0-fiber of the projection W → V is isomorphic to the

scheme-theoretic 0-fiber of π: V → V/G, that is, to Spec RG.

Derksen’s lemma has the following easy analog for the product ideal.

Lemma 2.4. Let d = |G| and let J
′ =

∏
g Jg, with Jg as in (2–1). Then

k[x]∩(J ′+(y)) = (x)d.

Proof. Note that k[x]∩(J ′+(y)) is the set of polynomials {f(x, 0) : f(x,y) ∈
J
′} (this holds with any ideal in the role of J

′). Since J
′ is generated by products

of d linear forms, this shows k[x]∩(J ′+(y)) ⊆ (x)d. For the reverse inclusion, fix

any monomial x
α of degree d, and write it as a product of individual variables

x
α = xi1xi2 . . . xid

.

Let g1, . . . , gd be an enumeration of all the elements of G, and consider the

polynomial

f(x,y) =
∏

j

(xij
−gjyij

).

The j-th factor belongs to Jgj
, so f(x,y) ∈ J

′, and clearly f(x, 0) = x
α. �

Now J
′ ⊆ J , so Lemmas 2.3 and 2.4 imply (x)d ⊆ IG. Hence IG is generated by

its homogeneous elements of degree at most d, proving Theorem 2.2. In fact, we

have proved something stronger.

Corollary 2.5. The ring of coinvariants RG is zero in degrees ≥ |G|.

The degree bound in Theorem 2.2 is tight only when G is a cyclic group. For

arbitrary G and V , rather little is known about how to describe k[V ]G and RG

more fully. Of the two, the ring of invariants is better understood. In particular,

we have the Eagon–Hochster theorem:

Theorem 2.6 [Hochster and Eagon 1971]. The ring of invariants k[V ]G is

Cohen–Macaulay .

My hope in this lecture is to persuade you that k[V ]G and RG can have surpris-

ingly rich structure for naturally occurring group representations, and that the
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problem of describing them is deserving of further study. We now turn to the

particular case G = Sn, and fix k = C. As we did in Lecture 1, let’s warm up in

the easier situation of n points on a line. This means we consider the represen-

tation of Sn on V = C
n, permuting the coordinates x1, . . . , xn. We make several

observations.

(I) The ring of invariants C[x]Sn is the polynomial ring C[e1, . . . , en] freely

generated by the elementary symmetric functions ej = ej(x). This is the funda-

mental theorem of symmetric functions. Its Hilbert series is

1

(1−q)(1−q2) · · · (1−qn)
,

which can also be written as

hn(1, q, q
2
, . . .), (2–3)

where hn(z1, z2, . . .) denotes the complete homogeneous symmetric function of

degree n in infinitely many variables.

(II) By Lemma 2.1, ISn
(x) = (e1, . . . , en). In particular it is a complete

intersection ideal. Hence RSn
(x) is an Artinian local complete intersection ring.

It can be described quite precisely. For example, since deg ej = j, the Hilbert

series of RSn
(x) is given by the q-analog of n!, namely,

[n]q! =
(1−q)(1−q

2) · · · (1−q
n)

(1−q)n
= [n]q[n−1]q . . . [1]q,

where [k]q = 1+q+ · · ·+q
k−1. Hence

dimC RSn
(x) = n!.

(III) Since C[x] is a graded Cohen–Macaulay ring, and e1, . . . , en is a ho-

mogeneous system of parameters, it follows that C[x] is a free C[x]Sn -module,

with basis given by any n! homogeneous elements forming a vector space basis of

RSn
(x). It is easy using standard techniques to determine the character of the

polynomial ring C[x] as a graded Sn representation, and from this to determine

the corresponding graded character of RSn
(x). The answer can be expressed as

follows. The irreducible representations Vλ of Sn are indexed by partitions λ of

the integer n. For each λ, define

fλ(q) = (1−q)(1−q
2) · · · (1−q

n)sλ(1, q, q
2
, . . .),

where sλ(z1, z2, . . .) is the Schur symmetric function indexed by λ in infinitely

many variables. Then fλ(q) is a polynomial with positive integer coefficients, and

fλ(1) is the number of standard Young tableau of shape λ, which is also equal

to dim Vλ. Let m(Vλ, RSn
(x)d) denote the multiplicity of Vλ in a decomposition
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of the degree d homogeneous component RSn
(x)d as a direct sum of irreducible

representations of Sn. Then these multiplicities are given by

∑

d

m(Vλ, RSn
(x)d)qd = fλ(q).

This is a very precise answer, as fλ(q) has an explicit combinatorial description,

and it is possible to produce a correspondingly explicit decomposition of RSn
(x)

into irreducibles with generators indexed by suitable combinatorial data. It

would take us too far afield to go into this here, but see [Allen 1993], for example,

for more details. We only note that ignoring the grading gives

m(Vλ, RSn
(x)) = fλ(1) = dim Vλ,

so RSn
(x) is a graded version of the regular representation of Sn (the represen-

tation of Sn by left multiplication on its group algebra CSn).

(IV) Derksen’s arrangement W is a complete intersection in Cn×Cn, defined

by the ideal (ei(x)−ei(y) : 1 ≤ i ≤ n). In particular, its coordinate ring C[W ]

is Cohen–Macaulay, and since (y) is obviously a system of parameters, C[W ] is

a free C[y]-module.

These special properties of the invariants and coinvariants of Sn on Cn are

consequences of the fact that Sn acts on Cn as a group generated by complex

reflections: linear transformations that fix a hyperplane pointwise. In the case

of Sn, the reflections are the transpositions (i, j), which fix every vector on

the hyperplane xi = xj . By general results of Steinberg, Chevalley, Shepard

and Todd, every complex reflection group G has k[V ]G a polynomial ring, IG a

complete intersection ideal, and RG isomorphic to a graded version of the regular

representation of G. Moreover, each of these properties holds only for complex

reflection groups, and there is a complete classification of such groups [Chevalley

1955; Shephard and Todd 1954; Steinberg 1960; 1964].

Finally we come to the situation that we set out to study in the first place,

namely, the action of Sn on E = C
2n. Note that this is not an action generated

by complex reflections. In fact, every element of Sn acts on E with determinant

1, while a nontrivial complex reflection has determinant 6= 1. The determinant

1 property does have a useful consequence, however, owing to the following

refinement of the Eagon–Hochster theorem.

Theorem 2.7 [Watanabe 1974]. The canonical module of k[V ]G is the module

of covariants k[V ]ε, where ε denotes the determinant character ε(g) = detV (g).

In particular if G acts on V by endomorphisms with determinant 1, then k[V ]G

is Gorenstein.

There is an old theorem of Weyl giving a (minimal) generating set for the ring

of invariants C[E]Sn .
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Theorem 2.8 [Weyl 1939]. The ring of invariants C[x,y]Sn is generated by the

polarized power sums

pr,s =

n∑

i=1

x
r
i y

s
i , 1 ≤ r+s ≤ n.

The analogous theorem holds in d sets of variables. Note that the actual degree

bound on the generators in this case, namely n, is very much smaller than the

order of the group!

It turns out to be almost as easy to determine the Hilbert series of C[E]Sn =

C[x,y]Sn as it is for C[x]Sn . In fact, we can compute its Hilbert series as a

doubly graded ring, by degree in the x and y variables separately. It is given by

the following analog of (2–3).

∑

r,s

dim(C[x,y]Sn)r,sq
r
t
s = hn(1, q, q

2
, . . . , t, qt, q

2
t, . . . , t

2
, qt

2
, q

2
t
2
, . . .).

There is a also similar formula for the Hilbert series of the ring of invariants

C[x,y, . . . ,z]Sn in d sets of variables, as an Nd-graded ring. So we have good

analogs of observation (I) for the invariants of n points in the plane or more

generally in Cd.

The interesting surprises appear when we turn to analogs of observations (II)

and (III), on the ring of coinvariants. We now drop the modifier x from the

notation and write simply RSn
for the ring of coinvariants C[E]/ISn

.

Around 1991, Garsia and I were led to investigate RSn
because of its con-

nection with a problem on Macdonald polynomials. For small values of n, we

used a computer to determine its dimension and Sn character in each (double)

degree. Immediately we noticed some amazing coincidences between our data

and well-known combinatorial numbers. We publicized our early findings infor-

mally, leading various other people, especially Ira Gessel and Richard Stanley,

to discover still more such coincidences. Eventually I published a compilation of

these discoveries, all of which were then just conjectures, in [Haiman 1994].

Later, Procesi pointed out to us the fact that the Hilbert scheme Hilbn(C2)

provides a nice resolution of singularities of E/Sn, as discussed in Lecture 1,

and observed how this should be useful in attacking the conjectures. Assuming

the validity of some geometric hypotheses that would make Procesi’s method

work, I was soon able to find a formula for the doubly graded character of RSn

in terms of Macdonald polynomials. Garsia and I then proved that the earlier

combinatorial conjectures would all follow from the master formula. Recently I

succeeded in proving the needed geometric hypotheses, which by this time were

the only missing pieces remaining [Haiman 2001; 2002].

There is not room here to discuss in full the geometry of the Hilbert scheme

and the combinatorial theory of Macdonald polynomials. I will only summarize

some of the facts about RSn
that have been established using these methods.
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Theorem 2.9. The coinvariant ring RSn
for Sn acting on C2n has length

dimC RSn
= (n+1)n−1

.

Ignoring the grading , the representation of Sn on RSn
is isomorphic to the sign

representation tensored by the obvious permutation representation of Sn on the

finite Abelian group Q/(n+1)Q, where Q = Z
n
/Z ·(1, 1, . . . , 1). Retaining the

grading by x degree only , one has the Hilbert series

∑

d

dim(RSn
)(d,−)q

d = Fn(q),

where Fn(q) is the generating function enumerating rooted forests on the vertex

set {1, . . . , n} by number of inversions, or equivalently , enumerating parking

functions on n cars by weight (see [Haiman 1994] for definitions and details).

Here we should mention the connection between RSn
and the ideal I studied in

the previous lecture, given by the following proposition, which is easy to prove.

Proposition 2.10. Homogeneous Sn-alternating polynomials f1, . . . , fr ∈ C[E]

minimally generate the ideal I in Theorem 1.1 if and only if their images modulo

ISn
form a basis of the space of Sn-alternating elements of RSn

.

In particular, Theorem 1.2 is really a statement about the character of RSn
. Like

Theorem 2.9, it follows from the master formula for the character of RSn
given

by the geometry of the Hilbert scheme.

I think it should be possible to obtain at least some of the above results on

RSn
, and maybe some new ones, or analogous ones for other groups, without

invoking Hilbert scheme and Macdonald polynomial machinery. In particular, it

seems to me that there is room for purely algebraic approaches. One encouraging

sign is recent work by Iain Gordon [2003], where he obtains an extension of the

(n+ 1)n−1 theorem, in a slightly weakened form, to any Weyl group. This is

especially notable in that for the Weyl groups of type G2, F4, and Dn, it is

known that there is no suitable geometric analog of the Hilbert scheme.

To close, let me suggest some open problems that might repay further study.

Problem 2.11. Can one determine the dimension and Hilbert series of RSn

inductively by fitting it into an exact complex with other terms built out of

the coinvariant rings RSk
for k < n? A specific conjecture along these lines in

[Haiman 1994] remains open.

Problem 2.12. Describe the minimal free resolution of C[x,y]Sn with respect

to the minimal generators given by Theorem 2.8. One could also consider this

problem in d sets of variables, although d = 2 may be nicer, since the ring of

invariants is Gorenstein. I don’t think a good description is known even for the

first syzygies.
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Problem 2.13. Let W be the Derksen arrangement for Sn acting on E, say

with coordinates x,y,x
′
,y
′ on E×E. Is C[W ] a free C[y]-module? What about

the same problem for fiber powers W×E W×E · · ·×E W? An affirmative answer

would be equivalent to sheaf cohomology vanishing properties for certain vector

bundles on the Hilbert scheme. Are there similar results in d sets of variables,

with E replaced by Cdn? Are there similar results for other Weyl groups G, with

E the direct sum of two (or more) copies of the defining representation?

Lecture 3: A Remarkable Gröbner Basis

This lecture will be an overview of some results by Jeremy Martin. I’ll give less

detailed notes here than for the previous two lectures, referring you to [Martin

2003a; 2003b] for the full story. Martin’s results concern the situation where we

introduce not only the points P1, . . . , Pn ∈ C2 but also lines Lij connecting them

in pairs. That is, Lij is a line passing through Pi and Pj . When Pi and Pj are

distinct, of course, Lij is determined. When they coincide, the line Lij can pass

through them with any slope, introducing an extra degree of freedom.

The locus of all configurations of points and lines as above is the picture space

X (Kn). One thinks of these configurations as plane “pictures” of the complete

graph Kn on n vertices, with edges represented by lines. To specify a picture, we

need to give the coordinates x1, y1, . . . , xn, yn of the n points, together with the

slopes mij of the
(
n
2

)
lines. In principle, the slopes mij lie on a projective line

P1. However, we will be interested only in local questions, so we will consider

the affine open set in X (Kn) where mij 6= ∞. It is the locus cut out (set-

theoretically, at least) by the equations

yj−yi = mij(xj−xi) for all i, j.

Now X (Kn) is in general not irreducible. For example, X (K4) has two irre-

ducible components, each of dimension 8: the generic component — the closure

of the locus where all the points are distinct, and the lines are determined —

and another component where all four points coincide, and the six lines have

arbitrary slopes. Martin has given a complete combinatorial description of the

component structure of X (G) for any graph G, which we won’t discuss in this

lecture. Instead we will concentrate on his results describing the generic compo-

nent V (Kn) of X (Kn), which we call the graph variety. Note that V (Kn) is,

essentially by definition, the simultaneous blowup of C2n along the coincidence

subspaces Vij = V (xi−xj , yi−yj) discussed in Lecture 1. This is, however, quite

a different thing from the blowup along the union of these subspaces, which is

the variety X from Lecture 1.

Proposition 2.1. The graph variety V (Kn) is cut out set-theoretically in

X (Kn) by the equations in the variables mij giving the algebraic relations among

the slopes that hold when the points Pi are in general position (no two coincide).
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In view of this proposition, the key issue is to understand the ideal of relations

among the slope variables mij . Although the problem of describing all relations

among the slopes of the
(
n
2

)
lines connecting n points in general position in the

plane is very classical in nature, there seems to have been almost no earlier work

on it. In more geometric terms, the projection of the graph variety V (Kn) on

the slope coordinates is a variety S (Kn), called the slope variety, whose ideal

I(Sn) is the ideal of all algebraic dependencies among the rational functions

(yj−yi)/(xj−xi). We want to describe this ideal.

The first result tells us which subsets of the variables mij are minimally alge-

braically dependent — that is, are circuits of the algebraic dependence matroid

of the quantities (yj−yi)/(xj−xi).

Theorem 2.2. The variables mij corresponding to a set of edges E ⊆ E(Kn)

are minimally algebraically dependent if and only if

(1) |E| = 2 |V (E)|−2, and

(2) |F | ≤ 2 |V (F )|−3 for all nonempty F  E,

where V (E) denotes the set of all endpoints of the edges in E.

This result is particularly interesting because there is another well-known alge-

braic dependence matroid whose characterization (due to Laman) is exactly the

same: that is the rigidity matroid of algebraic dependencies among the squared-

lengths (xi−xj)2+(yi−yj)2 of the line segments connecting the points (for points

with real coordinates).

The next result, which is a key one, is an explicit description of the polynomial

giving the algebraic dependence among the slopes in a rigidity-circuit. First one

shows that every rigidity circuit is the edge-disjoint union of two spanning trees

on a common set of vertices. Conversely, every minimal such union is a rigidity

circuit.

Now consider any two disjoint spanning trees S and T on the same vertex set,

and fix an arbitrary orientation of the edges of each tree. For each edge f ∈ S,

there are unique coefficients cef ∈ {0,±1} such that

f−
∑

e∈T

cefe (2–1)

is a directed cycle. Let us abbreviate xe = xj−xi, ye = yj−yi for a directed

edge e = (i, j). Then for a cycle as in (2–1), we have

yf =
∑

e∈T

cefye, xf =
∑

e∈T

cefxe.

Now since yf = mfxf and ye = mexe, we have an identity between two expres-

sions for yf ∑

e∈T

cefmexe = mf

∑

e∈T

cefxe,
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or ∑

e∈T

cef (me−mf )xe = 0.

This of course is not yet an equation among the variables mij . However, if S

and T are trees on d+1 vertices, then we have d such equations, one for each

f , which we can regard as linear equations in the d “unknowns” xe. When the

points are in general position, they obviously have a nonzero solution, since the

xe’s do not vanish. Hence the d×d matrix

MST = [cef (me−mf )]f∈S,e∈T

must be singular. Its determinant

DS∪T (m)

is a polynomial of degree d in the slope variables me for e in our rigidity circuit

S∪T , and this polynomial belongs to I(Sn).

Theorem 2.3. The determinants DS∪T enjoy the following properties:

(1) Up to sign, DS∪T depends only on the union S∪T , and not on the decom-

position into trees S, T .

(2) Every term of DS∪T is a square-free monomial ±
∏

e∈S′ me, where S
′ is a

spanning tree in S∪T whose complement is also a spanning tree.

(3) DS∪T is irreducible if and only if S ∪T is a rigidity circuit , and in that

case it generates the principal ideal of algebraic dependencies among the slope

variables me for e ∈ S∪T .

One particularly simple class of rigidity circuits consists of the wheels. A wheel is

a graph consisting of a cycle (the rim) and one additional vertex (the hub) with

edges to all the rim vertices (the spokes). With this terminology established, we

can state Martin’s main theorem.

Theorem 2.4. The polynomials DW for W a wheel generate I(Sn). In fact ,

they form a Gröbner basis for this ideal , with respect to the graded lexicographic

term order on the obvious lexicographic ordering of the variables mij . Moreover ,

the initial ideal in(I(Sn)), and hence also I(Sn) itself , is Cohen–Macaulay , of

dimension 2n−3 and degree

M2n−4 = (2n−5)(2n−7) · · · 3 ·1.

Let us say just a few words about the proof of this theorem, which involves a

beautiful interplay of commutative algebra and combinatorics. By Theorem 2.3,

the initial term of DW is a square-free “tree monomial” mT =
∏

e∈T me, for

some tree. Martin proves first that for wheels, the initial terms belong, not to

arbitrary trees, but to trees which are paths, of the following special form.
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Definition 2.5. A Martin path in the graph Kn on vertices {1, . . . , n} is a path

Q = (x, v, . . . , w, y) such that (1) x and y are the two largest vertices of Q, and

(2) assuming without loss of generality that x < y, then v < w.

Now the initial ideal in(DW ) of the ideal generated by wheel polynomials DW

is the square-free monomial ideal generated by monomials MQ for Q a Martin

path. Hence

R∆ = C[m]/ in(DW )

is the Stanley–Reisner ring of the simplicial complex ∆ on the edge set of Kn,

whose faces are those subgraphs H ⊆ Kn that contain no Martin path. Martin

proves next that this simplicial complex has the most optimal properties one

could desire.

Proposition 2.6. Every maximal subgraph of Kn containing no Martin path —

that is, every facet of the simplicial complex ∆ — has 2n−3 edges. The number

of these facets is M2n−4. Moreover the complex ∆ is shellable.

Shellability is a combinatorial property of a simplicial complex which implies

in particular that it is Cohen–Macaulay, that is, the link of each face has only

one nonzero reduced homology group. By a theorem of Hochster (see [Stanley

1996]), the latter property is equivalent to the Stanley–Reisner ring being Cohen–

Macaulay. So Proposition 2.6 shows that the ideal

J = in(DW : all wheels W )

is Cohen–Macaulay, of dimension 2n−3 and degree M2n−4.

Finally, Martin uses a geometric argument to give a lower bound on the degree

of the slope variety Sn.

Proposition 2.7. The slope variety Sn has dimension 2n−3 and degree at

least M2n−4.

Let us see where the above results leave us. We have two ideals, J = in(DW ),

and I = in I(Sn), and from the facts established so far we have:

(i) J ⊆ I,

(ii) J is unmixed (since it is Cohen–Macaulay),

(iii) dim J = dim I,

(iv) deg J ≤ deg I.

Together, these imply J = I, and Theorem 2.4 follows.

To close, I’ll mention a striking combinatorial fact, which Martin left as a

conjecture at the end of his thesis, but has since proved. The number M2n−4 is

the number of matchings on 2n−4 vertices, that is, graphs in which every vertex

is the endpoint of exactly one edge. The Hilbert series of the slope variety may

be written
hn(q)

(1−q)2n−3
,
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where hn(q) is a polynomial with positive integer coefficients (because the ring

is Cohen–Macaulay) and hn(1) = M2n−4. Hence

hn(q) = a0 +a1q+a2q2 + · · ·

is a q-analog of the number of matchings M2n−4. It turns out that it coincides

with a combinatorial q-analog studied long ago by Kreweras and Poupard [1978].

Theorem 2.8. The coefficient al in the polynomial hn(q) is the number of

matchings on the integers {1, . . . , 2n−4} with l long edges, where an edge i, j is

long if |i−j| 6= 1.

Appendix: Hilbert Schemes of Points in the Plane

by Ezra Miller

Consider the polynomial ring C[x, y] in two variables over the complex numbers.

As a set, the Hilbert scheme Hn = Hilbn(C2) of n points in the plane consists

of those ideals I ⊆ C[x, y] such that the quotient C[x, y]/I has dimension n as a

vector space over C. This appendix provides some background on how this set

can be considered naturally as a smooth algebraic variety of dimension 2n. The

goal is to orient the reader rather than to give a complete introduction. Therefore

some details are omitted from the exposition to make the intuition more clear

(and short). The material here, which is based loosely on the introductory parts

of [Haiman 1998], reflects what was presented at the help session for Haiman’s

lectures; in particular, the Questions were all asked by participants at the help

session.

To begin, let’s get a feeling for what an ideal I of colength n can look like.

If P1, . . . , Pn ∈ C2 are distinct (reduced) points, for example, then the ideal of

functions vanishing on these n points has colength n. This is because the ring of

functions on n points has a vector space basis {f1, . . . , fn} in which fi(Pj) = 0

unless i = j, and fi(Pi) = 1. Ideals of the form I(P1, . . . , Pn) are called generic

colength n ideals.

At the opposite end of the spectrum, I could be an ideal whose (reduced)

zero set consists of only one point P ∈ C2. In this case, C[x, y]/I is a local ring

with lots of nilpotent elements. In geometric terms, this means that P carries

a nonreduced scheme structure. Such a nonreduced scheme structure on P is

far from unique; in other words, there are many length n local rings C[x, y]/I

supported at P . In fact, they come in an (n−1)-dimensional family.

Among the ideals supported at single points, the monomial ideals are the

most special. These ideals have the form I = 〈xa1y
b1 , . . . , x

amy
bm〉 for some

nonnegative integers a1, b1, . . . , am, bm, and are supported at (0, 0) ∈ C2. Note

that if x
h
y

k is a monomial outside of I and x
h′

y
k′

is a monomial dividing x
h
y

k (so

h
′ ≤ h and k

′ ≤ k), then x
h′

y
k′

also lies outside of I. This makes it convenient

to draw the monomials outside of I as the boxes “under a staircase”.
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Example A.1. For the ideal I = 〈x2
, xy, y

3〉 of colength n = 4, the diagram of

boxes under the staircase is L-shaped:

y
2

y

1 x

Note that the monomial x
2 would be the first box after the bottom row, while

xy would nestle in the nook of the ‘L’, and y
3 would lie atop the first column.

Thus the minimal generators of I specify where to draw the staircase.

If the diagram of monomials outside I has λi boxes in row i under the staircase,

then
∑

i λi = n is by definition a partition λ of n, and we write I = Iλ.

Example A.2. In Example A.1, there are 2 boxes in row 0, and 1 box in each

of rows 1 and 2, yielding the partition 2+1+1 = 4 of n = 4. Thus the ideal is

I = I2+1+1.

In full generality, the quotient C[x, y]/I is a product of local rings with maximal

ideals corresponding to a finite set P1, . . . , Pr of distinct points in C2, with the

lengths `1, . . . , `r of these local rings satisfying satisfying `1+· · ·+`r = n (do not

confuse this partition of n with the partitions obtained from monomial ideals,

where r = 1). When r = n it must be that `i = 1 for all i, so the ideal I is

generic.

Question 1. Is there some transformation of the plane so that every colength n

ideal has a basis of monomials?

Answer 1. This question can be interpreted in two different ways, because the

word “basis” has multiple meanings. Thinking of “basis” as “generating set”,

the question asks if given I, there is a coordinate system for C2 in which I is

a monomial ideal. The answer is no, in general; for instance, if C[x, y]/I is not

a local ring, then I can’t be a monomial ideal in any coordinates. The second

meaning of “basis” is “C-vector space basis”. Even though I itself may not

be expressible in some coordinates as a monomial ideal, the quotient C[x, y]/I

always has a C-vector space basis of (images of) monomials. This observation

will be crucial later on.

If all colength n ideals were generic, then the set Hn would be easy to de-

scribe, as follows. Every unordered list of n distinct points in C2 corresponds

to a set of n! points in (C2)n, or alternatively to a single point in the quotient

S
nC

2 := (C2)n
/Sn by the symmetric group. Of course, not every point of S

nC
2

corresponds to an unordered list of distinct points; for that, one needs to remove

the diagonals

{(P1, . . . , Pn) ∈ (C2)n | Pi = Pj} (A–1)

of (C2)n before quotienting by Sn. Since Sn acts freely on the complement

((C2)n)◦ of the diagonals (A–1), the complement (SnC
2)◦ of the diagonals in
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the quotient S
nC

2 is smooth. Therefore, whatever variety structure we end

up using, Hn will contain an open smooth subvariety (SnC
2)◦ of dimension 2n

parametrizing generic ideals.

The variety structure on Hn arises by identifying it as an algebraic subvariety

of a more familiar variety: a grassmannian. Consider the vector subspace Vd

inside of C[x, y] spanned by the
(
d+2
2

)
monomials of degree at most d.

Lemma A.3. Fix d ≥ n. Given any colength n ideal I, the image of Vd spans

the quotient C[x, y]/I as a vector space.

Proof. The n monomials outside any initial ideal of I span the quotient

C[x, y]/I, and these monomials must lie inside Vd. �

The intersection I∩Vd is a vector subspace of codimension n. Thus Hn is (as a

set, at least) contained in the grassmannian Grn(Vd) of codimension n subspaces

of Vd.

Definition A.4. Given a partition λ of n, write Uλ ⊂ Hn for the set of ideals I

such that the monomials outside Iλ map to a vector space basis for C[x, y]/I.

The set of codimension n subspaces W ⊂ Vd for which the monomials outside Iλ

span Vd/W constitutes a standard open affine subvariety of Grn(Vd), defined by

the nonvanishing of the corresponding Plücker coordinate. This means that W

has a unique basis consisting of vectors of the form

x
r
y

s−
∑

hk∈λ

c
rs
hkx

h
y

k for 0 ≤ r+s ≤ d. (A–2)

Here, we write hk ∈ λ to mean x
h
y

k 6∈ Iλ, so the box labeled (h, k) lies under

the staircase for Iλ. The affine open inside Grn(Vd) is actually a cell — namely,

the variety whose coordinate ring is the polynomial ring in the coefficients c
rs
hk

from (A–2).

The intersection of each ideal I ∈ Uλ with Vd is a codimension n subspace

of Vd spanned by vectors of the form (A–2), by definition of Uλ. Of course, if

W ⊂ Vd is to be expressible as the intersection of Vd with some ideal I, the

coefficients c
rs
hk can’t be chosen completely at will. Indeed, the fact that I is an

ideal imposes relations on the coefficients that say “multiplication by x takes

x
r
y

s to x
r+1

y
s and preserves I, and similarly for multiplication by y.”

Explicitly, if x
r+1

y
s ∈ Vd, then multiplying (A–2) by x yields another poly-

nomial x
r+1

y
s−∑

hk∈λ c
rs
hkx

h+1
y

k inside I ∩Vd. Some of the terms x
h+1

y
k no

longer lie outside Iλ, so we have to expand them again using (A–2) to get

x
r+1

y
s−

( ∑

h+1,k∈λ

c
rs
hkx

h+1
y

k +
∑

h+1,k 6∈λ

c
rs
hk

∑

h′k′∈λ

c
h+1,k
h′k′ x

h′

y
k′

)

∈ I. (A–3)

Equating the coefficients on x
h
y

k in (A–3) to those in

x
r+1

y
s−

∑

hk∈λ

c
r+1,s
hk x

h
y

k
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from (A–2) yields relations in the polynomial ring C[{crs
hk}]. These relations,

taken along with their counterparts that result by switching the roles of x and y,

cut out Uλ. Though we have yet to see that these relations generate a radical

ideal, we can at least conclude that Uλ is an algebraic subset of an open cell in

the grassmannian.

Theorem A.5. Fix d ≥ n+1. The affine varieties Uλ cover the subset Hn ⊂
Grn(Vd), thereby endowing Hn with the structure of quasiprojective algebraic

variety .

Proof. The sets Uλ cover Hn by Lemma A.3, and each set Uλ is locally closed

in Grn(Vd) by the discussion above. �

In summary: Hn is a quasiprojective variety because it is locally obtained by the

intersection of a Zariski open condition (certain monomials span mod I) and a

Zariski closed condition (W ⊂ Vd is closed under multiplication by x and y).

Theorem A.5 does not claim that the variety structure is independent of d,

although it is true (and important), and can be deduced using smoothness of Hn

(Theorem A.14) along with the fact that projection Vd+1 → Vd maps Hn to itself

by sending I∩Vd+1 7→ I ∩Vd. Had we allowed d = n, however, where Proposi-

tion A.12 can fail, the variety structure might be different. In any case, fix

d ≥ n+1 in the forthcoming discussion.

Having endowed Hn with an algebraic variety structure, let us explore its

properties.

Lemma A.6. Every point I ∈ Hn is connected to a monomial ideal by a rational

curve.

Proof. Choosing a term order and taking a Gröbner basis of I yields a family

of ideals parametrized by the coordinate variable t on the affine line. When t = 1

we get I back, and when t = 0 we get the initial ideal of I, which is a monomial

ideal. �

This proof is stated somewhat vaguely, but can be made quite precise using the

notion of flat family and the fact that Gröbner degenerations are flat families

over the affine line [Eisenbud 1995, Proposition 15.17]. Here is an example, for

more concrete intuition.

Example A.7. Suppose I = 〈x2
, xy+

√
2x, y

3−2y〉, and consider the ideal

It = 〈x2
, xy+

√
2tx, y

3−2ty〉 ⊂ C[x, y][t].

This new ideal should be thought of as a family of ideals in C[x, y], parametrized

by the coordinate t. The ideal at α ∈ C is obtained by setting t = α in the

generators for It. Every one of these ideals has colength 4, because they all

have the ideal 〈x2
, xy, y

3〉 from Example A.1 as an initial ideal. It follows that

this family of ideals (or better yet, the family C[x, y][t]/It of quotients) is flat

over C[t].
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Lemma A.6 allows us to conclude the following:

Proposition A.8. The Hilbert scheme Hn is connected .

Question 2. Lemma A.6 only says that every ideal connects to some monomial

ideal. How do you know that you can get from one monomial ideal to another?

Answer 2. They’re all connected to generic ideals:

Lemma A.9. For every partition λ of n, the point Iλ ∈ Hn lies in the closure of

the generic locus (SnC
2)◦.

Proof. Consider the set of exponent vectors (h, k) on monomials x
h
y

k outside I

as a subset of Z2 ⊂ C2. These exponent vectors constitute a collection of n points

in C2. The colength n ideal of these points is called the distraction I
′
λ of Iλ.

If Iλ = 〈xa1y
b1 , . . . , x

amy
bm〉, then I

′
λ = 〈f1, . . . , fm〉, where

fi = x(x−1)(x−2) · · · (x−ai +2)(x−ai +1)y(y−1) · · · (y−bi +1).

Indeed, this ideal has colength n because every term of fi divides its leading

term x
aiy

bi , forcing Iλ to be the unique initial ideal of 〈f1, . . . , fm〉; and each

polynomial fi clearly vanishes on the exponent set of Iλ, so each fi lies in I
′
λ. �

Example A.10. The distraction of I2+1+1 = 〈x2
, xy, y

3〉 is the ideal

I
′
2+1+1 = 〈x(x−1), xy, y(y−1)(y−2)〉.

The zero set of every generator of the distraction is a union of lines, namely

integer translates of one of the two coordinate axes in C2. The zero set of our

ideal I
′
2+1+1 is

.

.

. .

= ∩ ∩

The groups of lines on the right hand side are the zero sets of x(x−1), xy, and

y(y−1)(y−2), respectively.

Remark A.11. Proposition A.8 holds for Hilbert schemes of n points in Cm

even when m is arbitrary, with the same proof. Hartshorne’s connectedness

theorem [Hartshorne 1966] says that it holds for certain more general Hilbert

schemes, under the Z-grading. However, the result does not extend to Hilbert

schemes under arbitrary gradings [Haiman and Sturmfels 2002; Santos 2002].

Proposition A.12. For each λ, the local ring of Hn ⊂ Grn(Vd) at Iλ has

embedding dimension at most 2n; that is, the maximal ideal mIλ
satisfies

dimC(mIλ
/m

2
Iλ

) ≤ 2n.
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Proof. Identify each variable c
rs
hk with an arrow pointing from the box hk ∈ λ

to the box rs 6∈ λ (see Example A.13). Allow arrows starting in boxes with

h < 0 or k < 0, but set them equal to zero. The arrows lie inside — and in fact

generate — the maximal ideal mIλ
at the point Iλ ∈ Hn. As each term in the

double sum in (A–3) has two c’s in it, the double sum lies inside m2
Iλ

. Moving

both the tail and head of any given arrow one box to the right therefore does not

change the arrow’s residue class modulo m2
Iλ

, as long as the tail of the original

arrow does not end up past the last box in a row of λ, and the head of the arrow

does not end up on a monomial of degree strictly larger than d. Switching the

roles of x and y, we conclude that an arrow’s residue class mod m2
Iλ

is unchanged

by moving vertically or horizontally, as long as the tail stays under the staircase,

while the head stays above it (but still inside the set of monomials of degree at

most d). This analysis includes the case where the tail of the arrow crosses either

axis, in which case the arrow is zero.

Using the fact that d ≥ n+1 in Theorem A.5 to pass the head through corners

(h+1, k+1) for (h, k) ∈ λ, every arrow can be moved horizontally and vertically

until either

(i) the tail crosses an axis; or

(ii) there is a box hk ∈ λ such that the tail lies just inside row k of λ while the

head lies just above column h outside λ; or

(iii) there is a box hk ∈ λ such that the tail lies just under the top of column h

in λ while the head lies in the first box to the right outside row k of λ.

Arrows of the first sort do not contribute at all to mIλ
/m2

Iλ
. On the other hand,

there are exactly n northwest-pointing arrows of the second sort, and exactly n

southeast-pointing arrows of the third sort. Therefore mIλ
/m2

Iλ
has dimension

at most 2n. �

Example A.13. All three figures below depict the same partition λ: 8+8+5+

3+3+3+3+2 = 35. In the left figure, the middle of the five arrows represents

c
54
31 ∈ mIλ

. As in the proof of Proposition A.12, all of the arrows in the left figure

are equal modulo m2
Iλ

. Since the bottom one is manifestly zero as in item (i)

from the proof of Proposition A.12, all of the arrows in the left figure represent

zero in mIλ
/m2

Iλ
.
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The two arrows in the middle figure are equal, and the bottom one c
08
25 provides

an example of a regular parameter in mIλ
as in (ii). Finally, the two arrows in

the rightmost figure represent unequal regular parameters as in (iii).

Now we finally have enough prerequisites to prove the main result.

Theorem A.14. The Hilbert scheme Hn is a smooth and irreducible subvariety

of dimension 2n inside Grn(Vd) for d ≥ n+1.

Proof. Since the intersection of two irreducible components would be contained

in the singular locus of Hn, it is enough by Proposition A.8 to prove smoothness.

Lemma A.9 implies that the dimension of the local ring of Hn at any monomial

ideal Iλ is at least 2n, because the generic locus has dimension 2n. On the other

hand, Proposition A.12 shows that the maximal ideal of that local ring can be

generated by 2n polynomials. Therefore Hn is regular in a neighborhood of any

point Iλ.

The two-dimensional torus acting on C2 by scaling the coordinates has an

induced action on Hn. Under this action, Lemma A.6 and its proof say that

every orbit on Hn contains a monomial ideal (= torus-fixed point) in its closure.

By general principles, the singular locus of Hn must be torus-fixed (though not

necessarily pointwise, of course) and closed. Since every torus orbit on Hn con-

tains a smooth point of Hn in its closure, the singular locus must be empty. �

The proof of Theorem A.14 used the fact that Gröbner degenerations are ac-

complished by taking limits of one-parameter torus actions on Hn. In plain

language, this means simply that if appropriate powers of t are used in the equa-

tions defining the family It, the variable t can be thought of as a coordinate

on C∗ for nonzero values of t.

Remark A.15. Theorem A.14 fails for Hilbert schemes Hilbn(Cm) of points

in spaces of dimension m ≥ 3, as proved by Iarrobino [Iarrobino 1972]. If it

were irreducible, then Hilbn(Cm) would have dimension mn, the dimension of

the open subset of configurations of n distinct points. But Iarrobino constructed

a dimension e family of ideals of colength n in the polynomial ring, where e is

proportional to n
(2−2/m). It follows that Hilbn(Cm) is in fact reducible for m ≥ 3

and n sufficiently large. On the other hand, Hilbn(Cm) is connected by reasoning

as in the case n = 2 (Lemma A.6 and Lemma A.9).

Question 3. Is the open set Uλ ⊂ Hn the locus of colength n ideals having Iλ

as an initial ideal?

Answer 3. When λ is the partition 1+ · · ·+1 = n, then yes. Otherwise, no,

since the set of such ideals has dimension strictly less than 2n. However, the

locus in Hn of ideals having initial ideal Iλ is cell — that is, isomorphic to Cm for

some m. Lemma A.6 can be interpreted as saying that Hn is the disjoint union of

these cells. This is the Bia lynicki-Birula decomposition of Hn [Bia lynicki-Birula

1976; Ellingsrud and Strømme 1987]. It exists essentially because Hn has an
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action of the torus (C∗)2 with isolated fixed points. Knowledge of the Bia lynicki-

Birula decomposition allows one to compute the cohomology ring of Hn, which

was the purpose of [Ellingsrud and Strømme 1987].
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2 (1978), 57–74.

[Martin 2003a] J. L. Martin, “Geometry of graph varieties”, Trans. Amer. Math. Soc.

355:10 (2003), 4151–4169.

[Martin 2003b] J. L. Martin, “The slopes determined by n points in the plane”, 2003.
Available at arXiv:math.AG/0302106.

[Orlik and Terao 1992] P. Orlik and H. Terao, Arrangements of hyperplanes, Grund-
lehren Math. Wiss. 300, Springer, Berlin, 1992.

[Santos 2002] F. Santos, “Non-connected toric Hilbert schemes”, 2002. Available at
arXiv:math.CO/0204044.

[Shephard and Todd 1954] G. C. Shephard and J. A. Todd, “Finite unitary reflection
groups”, Canadian J. Math. 6 (1954), 274–304.

[Stanley 1996] R. P. Stanley, Combinatorics and commutative algebra, Second ed.,
Progress in Mathematics 41, Birkhäuser, Boston, MA, 1996.
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Introduction

The theory of tight closure has recently played a primary role among com-

mutative algebraic methods in characteristic p. We shall see that such methods

can be used even when the ring contains a field of characteristic 0.
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Unless otherwise specified, the rings that we consider here will be Noetherian

rings R containing a field. Frequently, we restrict, for simplicity, to the case

of domains finitely generated over a field K. The theory of tight closure exists

in much greater generality. For the development of the larger theory and its

applications, and for discussion of related topics such as the existence of big

Cohen–Macaulay algebras, we refer the reader to the joint works by Hochster

and Huneke listed in the bibliography, to [Hochster 1994a; 1994b; 1996], to the

expository accounts [Bruns 1996; Huneke 1996; 1998], and to the appendix to

this paper by Graham Leuschke.

Here, in reverse order, are several of the most important reasons for studying

tight closure theory, which gives a closure operation on ideals and on submodules.

We focus mostly on the case of ideals here, although there is some discussion of

modules. We shall elaborate on the themes brought forth in the list below in the

sequel.

11. Tight closure can be used to shorten difficult proofs of seemingly unrelated

results. The results turn out to be related after all. Often, the new results

are stronger than the original results.

10. Tight closure provides algebraic proofs of several results that can otherwise

be proved only in equal characteristic 0, and whose original proofs depended

on analytic techniques.

9. In particular, tight closure can be used to prove the Briançon–Skoda theorem

on integral closures of ideals in regular rings.

8. Likewise, tight closure can be used to prove that rings of invariants of linearly

reductive algebraic groups acting on regular rings are Cohen–Macaulay.

7. Tight closure can be used to prove several of the local homological conjectures.

6. Tight closure can be used to “control” certain cohomology modules: in par-

ticular, one finds that the Jacobian ideal kills them.

5. Tight closure implies several vanishing theorems that are very difficult from

any other point of view.

4. Tight closure controls the behavior of ideals when they are expanded to a

module-finite extension ring and then contracted back to the original ring.

3. Tight closure controls the behavior of certain colon ideals involving systems

of parameters.

2. Tight closure provides a method of compensating for the failure of ambient

rings to be regular.

1. If a ring is already regular, the tight closure is very small: it coincides with

the ideal (or submodule). This gives an extraordinarily useful test for when

an element is in an ideal in regular rings.

One way of thinking about many closure operations is to view them as arising

from necessary conditions for an element to be in an ideal. If the condition

fails, the element is not in the ideal. If the condition is not both necessary and
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sufficient, then when it holds, the element might be in the ideal, but it may only

be in some larger ideal, which we think of as a kind of closure.

Tight closure in positive characteristic can be thought of as arising from such

a necessary but not sufficient condition for ideal membership. One of the reasons

that it is so useful for proving theorems is that in some rings, the condition is

both necessary and sufficient. In particular, that is true in regular rings. In

consequence, many theorems can be proved about regular rings that are rather

surprising. They have the following nature: one can see that in a regular ring a

certain element is “almost” in an ideal. Tight closure permits one to show that

the element actually is in the ideal. This technique works like magic on several

major results that seemed very difficult before tight closure came along.

One has to go to some considerable trouble to get a similar theory working in

rings that contain the rationals, but this has been done, and the theory works

extremely well for “nice” Noetherian rings like the ones that come up in algebraic

and analytic geometry.

It is still a mystery how to construct a similar theory for rings that do not

contain a field. This is not a matter of thinking about anything pathological.

Many conjectures could be resolved if one had a good theory for domains finitely

generated as algebras over the integers.

Before proceeding to talk about tight closure, we give some examples of nec-

essary and/or sufficient conditions for membership in an ideal. The necessary

conditions lead to a kind of closure.

(1) A necessary condition for r ∈ R to be in the ideal I is that the image of r

be in IK for every homomorphism of R to a field K. This is not sufficient: the

elements that satisfy the condition are precisely the elements with a power in I,

the radical of I.

(2) A necessary condition for r ∈ R to be in the ideal I is that the image of

r be in IV for every homomorphism of R to a valuation ring V . This is not

sufficient: the elements that satisfy the condition are precisely the elements in I,

the integral closure of I. If R is Noetherian, one gets the same integral closure

if one only considers Noetherian discrete valuation rings V . There are many

alternative definitions of integral closure.

(3) If R has positive prime characteristic p let Se denote R viewed as an R-

algebra via the e-th iteration F
e of the Frobenius endomorphism F (thus, Se =

R, but the structural homomorphism R→ Se = R sends r to r
pe

). A necessary

condition that r ∈ I is that for some integer e, r
pe ∈ ISe. Note that when Se is

identified with R, ISe becomes the ideal generated by all elements i
pe

for i ∈ I.

This ideal is denoted I
[pe]. This condition is not sufficient for membership in I.

The corresponding closure operation is the Frobenius closure I
F of I: it consists

of all elements r ∈ R such that r
pe ∈ I

[pe] for some nonnegative integer e. (Once
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this holds for once choice of e, it holds for all larger choices.) For example, in

K[x, y, z] = K[X, Y, Z]/(X3 +Y
3 +Z

3),

if K has characteristic 2 (quite explicitly, if K = Z2 = Z/2Z) then with I =

(x, y), we have z
2 ∈ I

F − I. In fact, (z2)2 ∈ I
[2] = (x2

, y
2) here, since z

4 =

z
3
z = −(x3 +y

3)z ∈ (x2
, y

2).

Finally, here is a test for ideal membership that is sufficient but not necessary.

It was used in the first proof of the Briançon–Skoda theorem, and so we mention

it, although easier proofs by analytic methods are available now.

(4) Skoda’s analytic criterion. Let Ω be a pseudoconvex open set in C
n

and φ a plurisubharmonic function1 on Ω. Let f and g1, . . . , gk be holomorphic

functions on Ω. Let γ = (|g1|2 + · · ·+ |gk|2)1/2. Let X be the set of common

zeros of the gj . Let d = max{n, k−1}. Let λ denote Lebesgue measure on C
n.

Skoda’s criterion asserts that if either
∫

Ω−X

|f |2
γ2αd+2

e
−φ

dλ < +∞,

for some real α > 1, or
∫

Ω−X

|f |2
γ2d

(
1+∆ log(γ)

)
e
−φ

dλ < +∞,

then there exist h1, . . . , hk holomorphic on Ω such that f =
∑k

j=1 hjgj. Hilbert’s

Nullstellensatz states that if f vanishes at the common zeros of the gj then

f ∈ Rad I where I = (g1, . . . , gk). The finiteness of any of the integrals above

conveys the stronger information that, in some sense, f is “small” whenever

all the gj are “small” (or the integrand will be too “large” for the integral to

converge), and we get the stronger conclusion that g ∈ I.

1. Reasons for Thinking About Tight Closure

We give here five results valid in any characteristic (i.e., over any field) that

can be proved using tight closure theory. The tight closure proofs are remarkably

simple, at least in the main cases. The terminology used in the following closely

related theorems is discussed briefly after their statements.

Theorem 1.1 (Hochster and Roberts). Let S be a regular ring that is an

algebra over the field K, and let G be a linearly reductive algebraic group over

K acting on S. Then the ring of invariants R = S
G is a Cohen–Macaulay ring .

1We won’t explain these terms from complex analysis here: the definitions are not so
critical for us, because in the application to the Briançon–Skoda theorem, which we discuss
later, we work in the ring of germs of holomorphic functions at, say, the origin in complex n-
space, C

n (∼= convergent power series C{z1, . . . , zn}) — we can pass to a smaller, pseudoconvex
neighborhood; likewise, φ becomes unimportant.
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Theorem 1.1◦ (Hochster and Huneke). If R is a direct summand (as an

R-module) of a regular ring S containing a field , then R is Cohen–Macaulay .

Theorem 1.1◦ implies Theorem 1.1. Both apply to many examples from classical

invariant theory. Recall that an algebraic group (i.e., a Zariski closed subgroup

of GL(n,K)) is called linearly reductive if every representation is completely

reducible. In characteristic 0, these are the same as the reductive groups and

include finite groups, products of GL(1,K) (algebraic tori), and semi-simple

groups. Over C such a group is the complexification of compact real Lie group.

A key point is that when a linearly reductive algebraic group acts on a K-algebra

S, if S
G is the ring of invariants or fixed ring {s ∈ S : g(s) = s for all g ∈ G}

there is a canonical retraction map map S → S
G, called the Reynolds operator,

that is S
G-linear. Thus, R = S

G is a direct summand of S as an R-module.

In particular, if S is a polynomial ring over a field K and G is a linearly

reductive linear algebraic group acting on S1, the vector space of 1-forms of S,

and, hence, all of S (the action should be an appropriate one, i.e., determined

by a K-morphism of G into the automorphisms of the vector space S1), then

the fixed ring S
G is a Cohen–Macaulay ring R. What is a Cohen–Macaulay

ring? The issue is local: for a local ring the condition means that some (equiva-

lently, every) system of parameters is a regular sequence. In the graded case the

Cohen–Macaulay condition has the following pleasant interpretation: when R is

represented as a finitely generated module over a graded polynomial subring A ,

R is free over A. This is a very restrictive and useful condition on R, especially

in higher dimension. The Cohen–Macaulay condition is very important in in-

tersection theory. Notice that since moduli spaces are frequently constructed as

quotients of smooth varieties by actions of reductive groups, Theorem 1.1 implies

the Cohen–Macaulay property for many moduli spaces.

Theorem 1.1 was first proved by a complicated reduction to characteristic

p > 0 [Hochster and Roberts 1974]. Boutot [1987] gave a shorter proof for affine

algebras in characteristic 0 using resolution of singularities and the Grauert–

Riemenschneider vanishing theorem. The tight closure proof of Theorem 1.1◦ is

the simplest in many ways.

Theorem 1.2 (Briançon–Skoda Theorem). Let R be a regular ring and I

an ideal of R generated by n elements. Then In ⊆ I.

We gave one characterization of what u ∈ J means earlier. It turns out to be

equivalent to require that there be an equation

u
h +j1u

h−1 + · · ·+jh = 0

such that every jt ∈ J
t, 1 ≤ t ≤ h. We shall give a third characterization later.

Theorem 1.2 was first proved by analytic techniques; compare (4) on page 184.

See [Skoda and Briançon 1974; Skoda 1972]: in the latter paper the analytic

criteria needed were proved. The first algebraic proofs were given in [Lipman
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and Teissier 1981] (for a very important special case) and [Lipman and Sathaye

1981]. There are several instances in which tight closure can be used to prove

results that were first proved either by analytic techniques or by results like

the Kodaira vanishing theorem and related characteristic 0 vanishing theorems

in algebraic geometry. See [Huneke and Smith 1997] for a discussion of the

connection with the Kodaira vanishing theorem.

Theorem 1.3 (Ein–Lazarsfeld–Smith Comparison Theorem). Let P be

a prime ideal of codimension h in a regular ring . Then P
(hn) ⊆ P

n for every

integer n.

This was most unexpected. The original proof, valid in characteristic 0, ulti-

mately depends on resolution of singularities and deep vanishing theorems, as

well as a theory of asymptotic multiplier ideals. See [Ein et al. 2001]. The tight

closure proof in [Hochster and Huneke 2002] permits one to extend the results to

characteristic p as well as recovering the characteristic 0 result. There are other

connections between tight closure theory and the theory of multiplier ideals: see

[Smith 2000; Hara 2001; Hara and Yoshida 2003].

Theorem 1.4 (Hochster and Huneke). Let R be a reduced equidimensional

finitely generated K-algebra, where K is algebraically closed . Let f1, . . . , fh be

elements of R that generate an ideal I of codimension (also called height) h mod

every minimal prime of R. Let J be the Jacobian ideal of R over K. Then J

annihilates the Koszul cohomology H
i(f1, . . . , fh;R) for all i < h, and hence the

local cohomology H
i
I(R) for i < h.

This result is a consequence of phantom homology theory, test element theory for

tight closure, and the Lipman–Sathaye Jacobian theorem [Lipman and Sathaye

1981], all of which we will describe eventually. If

R ∼= K[x1, . . . , xn]/(f1, . . . , fm)

has codimension r in An
K , then J is the ideal of R generated by the images of

the size r minors of the Jacobian matrix (∂fj/∂xj), and defines the non-smooth

(over K) locus in Spec R. The ideal J ⊆ R turns out to be independent of which

presentation of R one chooses.

Here is a more geometrically flavored corollary.

Corollary 1.5. Let R be a finitely generated graded domain of dimension n+1

over an algebraically closed field K, so that X = Proj(R) is a projective variety

of dimension n over an algebraically closed field K. Let g denote a homogeneous

element of the Jacobian ideal J ⊆ R of degree d (so that g gives a global section

of OX(d) ). Then for 1 ≤ j ≤ n−1, the map H
j(X, OX(t))→ H

j(X, OX(t+d))

induced by multiplication by g is 0.

The reason this follows from Theorem 1.4 is that for j ≥ 1, if we let M =⊕
t∈Z

H
j(X,OX(t)), then M is isomorphic (as an R-module) with H

j+1
m (R)
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which may be viewed as an R-module. We may replace m by the ideal generated

by a homogeneous system of parameters, since the two have the same radical.

Then Theorem 1.4 implies that the Jacobian ideal of R kills M for 1 ≤ j ≤ n−1.

See also Corollary 8.3.

2. The Definition of Tight Closure in Positive Characteristic

One of our guidelines towards a heuristic feeling for when an element u of a

Noetherian ring R should be viewed as “almost” in an ideal I ⊆ R will be this:

if R has a module-finite extension S such that u ∈ IS then u is “almost” in I.

Notice that if R is a normal domain (i.e., integrally closed in its field of

fractions) containing the rational numbers and S is a module-finite extension,

then IS∩R = I, so that for normal rings containing Q we are not allowing any

new elements into the ideal. One can see this as follows. By first killing a minimal

prime ideal of S disjoint from R−{0} we may assume that S is a domain. Let

L → L
′ be the corresponding finite algebraic extension of fraction fields, and

suppose it has degree d. Let trL′/L denote field trace. Then
1

d
trL′/L : S → R

gives an R-linear retraction when R is normal. This implies that IS∩R = I for

every ideal I of R. (We only need the invertibility of the single integer d in R

for this argument.)

The situation for normal domains of positive characteristic is very different,

where it is an open question whether the elements that are “almost” in an ideal

in this sense may coincide with the tight closure in good cases. Our definition

of tight closure may seem unrelated to the notion above at first, but there is a

close connection.

For simplicity we start with the case of ideals in Noetherian domains of char-

acteristic p > 0. Recall that in characteristic p the Frobenius endomorphism

F = FR on R maps r to r
p, and is a ring endomorphism. When R is reduced, we

denote by R
1/pe

the ring obtained by adjoining p
e-th roots for all elements of R:

it is isomorphic to R, using the e-th iterate of its Frobenius endomorphism with

the image restricted to R. Recall that in a ring of positive characteristic p, when

q = p
e, we denote by I

[q] the ideal of R generated by all q-th powers of elements

of I. It is easy to see that this ideal is generated by q-th powers of generators

of I. Notice that it is much smaller, typically, than the ordinary power I
q. I

q

is generated by all monomials of degree q in the generators of I, not just q-th

powers of generators.

Definition 2.1. Let R be a Noetherian domain of characteristic p > 0, let I be

an ideal of R, and let u be an ideal of R. We say that u ∈ R is in the tight closure

I
∗ of I in R if there exists an element c ∈ R−{0} such that for all sufficiently

large q = p
e, we have cu

q ∈ I
[q].

It is equivalent in the definition above to say “for all q” instead of “for all

sufficiently large q”. We discuss why this condition should be thought of as
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placing u “almost” in I in some sense. Let I = (f1, . . . , fh)R. Note that for

every large q = p
e one has

cu
q = r1qf

q
1 + · · · rhqf

q
h

and if we take q-th roots we have

c
1/q

u = r
1/q
1q f1 + · · · r1/q

hq fh,

an equation that holds in the ring Sq = R[c1/q
, r

1/q
iq : 1 ≤ i ≤ h]. S is a module-

finite extension of R. But this is not quite saying that u is in IS: rather, it says

that c
1/q

u is in IS. But for very large q, for heuristic purposes, one may think

of c
1/q as being close to 1: after all, the exponent is approaching 0. Thus, u is

multiplied into ISq in a sequence of module-finite extensions by elements that

are getting closer and closer to being a unit, in a vague heuristic sense. This may

provide some motivation for the idea that elements that are in the tight closure

of an ideal are “almost” in the ideal.

It is ironic that tight closure is an extremely useful technique for proving

theorems about regular rings, because it turns out that in regular rings the tight

closure of any ideal I is simply I itself. In some sense, the reason that tight

closure is so useful in regular rings is that it gives a criterion for being in an

ideal that, on the face of it, is considerably weaker than being in the ideal. We

shall return to this point later.

We may extend the definition to Noetherian rings R of positive prime char-

acteristic p that are not necessarily integral domains in one of two equivalent

ways:

(1) Define u to be in I
∗ if the image of u in R/P is in the tight closure of I(R/P )

in R/P for every minimal prime P of R.

(2) Define u to be in I
∗ if there is an element c ∈ R and not in any minimal

prime of R such that cu
q ∈ I

[q] for all q = p
e � 0.

3. Basic Properties of Tight Closure and the Briançon–Skoda

Theorem

The following facts about tight closure in a Noetherian ring R of positive

prime characteristic p are reasonably easy to verify from the definition.

(a) For any ideal I of R, (I∗)∗ = I
∗.

(b) For any ideals I ⊆ J of R, I
∗ ⊆ J

∗.

We shall soon need the following characterization of integral closure of ideals in

Noetherian domains.

Fact 3.0. Let R be a Noetherian domain and let J be an ideal . Then u ∈ R

is in J if and only if for some c ∈ R−{0} and every integer positive integer n,

cu
n ∈ I

n. It suffices if cu
n ∈ I

n for infinitely many values of n.
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Comparing this with the definition of tight closure and using the fact that I
[q] ⊆

I
q for all q = p

e, we immediately get

(c) For any ideal I of R, I
∗ ⊆ I. In particular, I

∗ is contained in the radical of

I.

Less obvious is the following theorem that we will prove later.

Theorem 3.1. If R is regular , every ideal of R is tightly closed .

Assuming this fact for a moment, we can prove the following result:

Theorem 3.2 (Tight closure form of the Briançon–Skoda Theorem

in characteristic p). Let I = (f1, . . . , fn)R be an ideal of a regular ring R

of characteristic p > 0. Then In ⊆ I. When R is not necessarily regular , it is

still true that In ⊆ I
∗.

Proof. Assuming Theorem 3.1 for the moment, we need only check the final

assertion. It suffices to work modulo each minimal prime of R in turn, so we

may assume that R is a domain. Then u ∈ In implies that for some nonzero c,

cu
m ∈ (In)m for all m. Restricting m = q = p

e we find that cu
m ∈ I

nq ⊆ I
[q] for

all q, since a monomial in n elements of degree nq must have a factor in which

one of the elements is raised to the q-th power. �

Why is every ideal in a regular ring tightly closed? We first need the following:

Fact 3.3. If R is regular of positive characteristic p, the Frobenius endomor-

phism is flat .

Proof. The issue is local on R. In the local case it suffices to prove it for the

completion R̂ because R → R̂ is faithfully flat. We have therefore reduced to

considering the case R ∼= K[[x1, . . . , xn]]. The Frobenius map is then isomorphic

with the ring inclusion K
p[[x

p
1, . . . , x

p
n]] ⊆ K[[x1, . . . , xn]]. Letting K

p = k, we

may factor this map as k[[x
p
1, . . . , x

p
n]] ⊆ k[[x1, . . . , xn]] ⊆ K[[x1, . . . , xn]]. The

first extension is free on the monomials x
h1

1 · · ·xhn
n with 0 ≤ hi < p for all i. The

flatness of the second map (for any field inclusion k ⊆ K) may be seen as follows:

since K is flat (in fact, free) over k, K[x1, . . . , xn] is flat over k[x1, . . . , xn]. This

is preserved when we localize at the maximal ideal generated by the x ’s in the

larger ring and its contraction (also generated by the x ’s) to the smaller ring.

Finally, it is further preserved when we complete both local rings. �

Recall that for an ideal I of R and element u ∈ R, I : u = {r ∈ R : ur ∈ I}.
This may thought of as the annihilator in R of the image of u in R/I.

Fact 3.4. If f : R→ S is flat , I ⊆ R and u ∈ R, then IS :S f(u) = (I :R u)S.

To see why, note the exact sequence (I : u)/I → R/I → R/I where the map is

multiplication by u. Applying S⊗R preserves exactness, from which the stated

result follows.
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Corollary 3.5. If R is regular of positive characteristic, I is any ideal , and

u ∈ R, then I
[q] : u

q = (I : u)[q] for all q = p
e.

The point is that since F : R → R is flat, so is its e-th iterate F
e. If S denotes

R viewed as an R-algebra via F
e then IS = I

[pe] when we “remember” that S

is R. With this observation, Corollary 3.5 follows from Fact 3.4.

Proof of Theorem 3.1. We can reduce to the case where R is a domain. If

c 6= 0 and cu
q ∈ I

[q] for all q = p
e, then c ∈

⋂
q I

[q] : u
q =

⋂
q(I : u)[q] ⊆

⋂
q(I :

u)q. Since the intersection is not 0, we must have that I : u = R, i.e., that

u ∈ R. �

We also mention here the very useful fact that tight closure captures contracted

extensions from module-finite extensions.

Theorem 3.6. Let S be a domain module-finite over R and let I be an ideal of

R. Then IS∩R ⊆ I
∗.

Proof. S can be embedded in a finitely generated free R-module. One of the

projection maps back to R will be nonzero on the identity element of S. That

is, there is an R-linear map f : S → R that sends 1 ∈ S to c ∈ R−{0}. If

u ∈ IS ∩R, then u
q ∈ I

[q]
S for all q. Applying f to both sides yields that

cu
q ∈ I

q. �

Although we have not yet given the definitions the analogous fact holds for sub-

modules of free modules, and can even be formulated for arbitrary submodules

of arbitrary modules.

4. Direct Summands of Regular Rings are Cohen–Macaulay

Elements x1, . . . , xn in a ring R are called a regular sequence on an R-module

M if (x1, . . . , xn)M 6= M and xi+1 is not a zerodivisor on M/(x1, . . . , xi)M ,

0 ≤ i < n. A sequence of indeterminates in a polynomial or formal power series

ring R, with M = R (or a nonzero free R-module) is an example. We shall make

use of the following fact:

Fact 4.1. Let A be a polynomial ring over a field K, say A = K[x1, . . . , xd] or

let A be a regular local ring in which x1, . . . , xd is a minimal set of generators

of the maximal ideal . Then a finitely generated nonzero A-module M (assumed

graded in the first case) is A-free if and only if x1, . . . , xd is a regular sequence

on M . Thus, a module-finite extension ring R (graded if A is a polynomial ring)

of A is Cohen–Macaulay if and only if x1, . . . , xd is a regular sequence on R.

The following two lemmas make the connection between tight closure and the

Cohen–Macaulay property.

Proposition 4.2. Let S be a module-finite domain extension of the domain R

(torsion-free is sufficient) and let x1, . . . , xd be a regular sequence in R. Suppose

0 ≤ k < d and let I = (x1, . . . , xk)R. Then IS :S xk+1 ⊆ (IS)∗ in S.
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Thus, if every ideal of S is tightly closed , and x1, . . . , xd is a regular sequence

in R, it is a regular sequence in S.

Proof. Because S is a torsion-free R-module there is an an element c of R−{0}
that multiplies S into an R-free submodule G ∼= R

h of S. (This is really all we

need about S.) Suppose that uxk+1 ∈ IS. Raise both sides to the q = p
e

power to get u
q
x

q
k+1 ∈ I

[q]
S. Multiply by c to get (cuq)x

q
k+1 ∈ I

[q]
G. Because

the xj form a regular sequence on G, so do their q-th powers, and we find that

cu
q ∈ I

[q]
S = (IS)[q]. Since this holds for all q = p

e, we are done. �

Proposition 4.3. Let R be a domain module-finite over a regular local ring A

or N-graded and module-finite over a polynomial ring A. Suppose that R is a

direct summand of a regular ring S as an R-module. Then R is Cohen–Macaulay

(i .e., A-free).

Proof. Let x1, . . . , xd be as in Fact 4.1. The result comes down to the assertion

that x1, . . . , xd is a regular sequence on R. By Proposition 4.2, it suffices to show

that every ideal of R is tightly closed. But if J is an ideal of R and u ∈ R is in J
∗,

then it is clear that u ∈ (JS)∗ = JS, since S is regular, and so u ∈ JS∩R = J ,

because R is a direct summand of S. �

Pushing this idea a bit further, one gets a full proof of Theorem 1.1. We need

to extend the notion of tight closure to equal characteristic 0, however. This is

tackled in Section 6.

5. The Ein–Lazarsfeld–Smith Comparison Theorem

We give here the characteristic-p proof of Theorem 1.3, and we shall even allow

radical ideals, with h taken to be the largest height of any minimal prime. For a

prime ideal P , P
(N), the N -th symbolic power, is the contraction of P

N
RP to R.

When I is a radical ideal with minimal primes P1, . . . , Pk and W = R−
⋃

j Pj ,

we may define P
(N) either as

⋂
j P

(N)
j or as the contraction of I

N (W−1
R) to R.

Suppose that I 6= (0) is radical ideal. If u ∈ I
(hn), then for every q = p

e

we can write q = an+ r where a ≥ 0 and 0 ≤ r ≤ n−1 are integers. Then

u
a ∈ I

(han) and I
hn

u
a ⊆ I

hr
u

a ⊆ I
(han+hr) = I

(hq). We now come to a key

point: we can show that

I
(hq) ⊆ I

[q]
. (∗)

To see this, note that because the Frobenius endomorphism is flat for regular

rings, I
[q] has no associated primes other than the minimal primes of I, and it

suffices to check (∗) after localizing at each minimal prime P of I. But after

localization, I has at most h generators, and so each monomial of degree hq in

these generators is a multiple of the q-th power of at least one of the generators.

This completes the proof of (∗). Taking n-th powers gives that I
hn2

u
an ⊆

(I [q])n = (In)[q], and since q ≥ an, we have I
hn2

u
q ⊆ (In)[q] for fixed h and n

and all q. Let d be any nonzero element of I
hn2

. The condition that du
q ∈ (In)[q]
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for all q says precisely that u is in the tight closure of I
n in R. But in a regular

ring, every ideal is tightly closed, and so u ∈ I
n, as required.

6. Extending the Theory to Affine Algebras in Characteristic 0

In this section we discuss briefly how to extend the results of tight closure

theory to finitely generated algebras over a field K of characteristic zero. There

is a good theory with essentially the same properties as in positive characteristic.

See [Hochster and Huneke 1999; Hochster 1996].

Suppose that we have a finitely generated K-algebra R. We may think of

R as having the form K[x1, . . . , xn]/(f1, . . . , fm) for finitely many polynomials

fj . An ideal I ⊆ R can be given by specifying finitely many polynomials gj ∈
T = K[x1, . . . , xn] that generate it, and an element u of R can be specified by

giving a polynomial h that maps to. We can then choose a finitely generated

Z-subalgebra B of K that contains all of the coefficients of the fj , the gj and of

h. We can form a ring RB = B[x1, . . . , xn]/(f1, . . . , fm) and we can consider

the ideal IB of the RB generated by the images of the gj in RB . It turns

out that after localizing B at one nonzero element we can make other pleasant

assumptions: that IB ⊆ RB ⊆ R, that RB and RB/IB are B-free (the lemma of

generic freeness), and that tensoring with K over B converts IB ⊆ RB to I ⊆ R.

Moreover, h has an image in RB ⊆ R that we may identify with u.

We then define u to be in the tight closure of I in R provided that for all

maximal Q in a dense open subset of the maximal spectrum of B, with κ =

B/Q, the image of u in Rκ = κ⊗B RB is in the characteristic-p tight closure of

Iκ = IRκ —this makes sense because B/Q will be a finite field.

This definition turns out to be independent of the choices of B RB , IB , etc.

Here is one very simple example. Let R = K[x, y, z]/(x3+y
3+z

3) where K is

any field of characteristic 0, e.g., the complex numbers, let I = (x, y) and u be the

image of z
2. In this case we may take B = Z, RZ = Z[x, y, z]/(x3 +y

3 +z
3) and

IZ = (x, y)RZ . Then z
2 is in the characteristic 0 tight closure of (x, y)R because

for every prime integer p 6= 3 (these correspond to the maximal ideals of Z, the

image of z
2 is in the characteristic-p tight closure of (x, y)(Z/pZ)[x, y, z]/(x3 +

y
3+z

3). Take c = x, for example. One can check that c(z2)q ∈ (xq
, y

q)(RZ/pRZ)

for all q = p
e. Write 2q = 3k+a, a ∈ {1, 2}, and use that xz

2
q = ±x(x3+y

3)k
z

a.

Each term in x(x3+y
3)k has the form x

3i+1
y
3j where 3i+3j = 3k ≥ 2q−2. Since

(3i+1)+3j ≥ 2q−1, at least one of the exponents is ≥ q.

7. Test Elements

In this section we again study the case of rings of characteristic p > 0. Let

R be a Noetherian domain. We shall say that an element c ∈ R−{0} is a test

element if for every ideal I of R, cI
∗ ⊆ I. An equivalent condition is that for
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every ideal I and element u of R, u ∈ I
∗ if and only if cu

q ∈ I
[q] for every

q = p
e ≥ 1. The reason that this holds is the easily verified fact that if u ∈ I

∗,

then u
q ⊆ (I [q])∗ for all q. Thus, an element that is known to be a test element

can be used in all tight closure tests. A priori the element used in tight closure

tests for whether u ∈ I
∗ in the definition of tight closure can vary with both I

and u. The test elements together with 0 form an ideal called the test ideal.

Test elements are known to exist for domains finitely generated over a field.

Any element d 6= 0 such that Rd is regular turns out to have a power that is a

test element. We won’t prove this here.

We will explain, however, why the Jacobian ideal of a domain finitely gener-

ated over an algebraically closed field is contained in the test ideal, which is one

of the ingredients of Theorem 1.4. The discussion of the results on test elements

needed for Theorem 1.4 is continued in the next section.

Here is a useful result that leads to existence theorems for test elements.

Theorem 7.1. Let R be a Noetherian domain module-finite over a regular

domain A of characteristic p > 0, and suppose that the extension of fraction

fields is separable. Then:

(a) There are elements d ∈ A−{0} such that dR
1/p ⊆ R[A1/p].

(b) For any d as in part (a), the element c = d
2 satisfies

cR
1/q ⊆ R[A1/q] for all q. (†)

Let Rq = R[A1/q].

(c) Any element c 6= 0 of R that satisfies condition (†) is a test element for R.

Thus, R has test elements.

Proof. If we localize at all nonzero elements of A we are in the case where A

is a field and R is a separable field extension. This is well-known and is left as

an exercise for the reader. It follows that R
1/p

/R[A1/p], which we may think of

as a finitely generated A
1/p-module, is a torsion module. But then it is killed by

an element of A
1/p−{0} and, hence, by an element of A−{0}.

For part (b) note we note that since dR
1/p ⊆ R[A1/p], we have d

1/q
R

1/pq ⊆
R

1/q[A1/pq] for all q = p
e. Thus,

d
1+1/p

R
1/p2 ⊆ d(d1/p

R
1/p2

) ⊆ d

(
R

1/p[A1/p2

]
)
⊆ R[A1/p][A1/p2

] = R[A1/p2

].

Continuing in this way, one concludes easily by induction that

d
1+1/p+···+1/pe−1

R
1/pe ⊆ R[A1/pe

].

Since 2 > 1+1/p+ · · · 1/p
e−1 for all p ≥ 2, we obtain the desired result.

Finally, suppose that c satisfies condition (†). It suffices to show that for all

I and u ∈ I
∗, that cu ∈ I. But if u ∈ I

∗ we can choose a ∈ A−{0} (all nonzero

elements of R have nonzero multiples in A) such that au
q ∈ I

[q] for all q = p
e.
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Taking q-th roots gives a
1/q

u ∈ IR
1/q for all q. Multiplying by c gives that

a
1/q

cu ∈ IR[A1/q ] = IRq for all q, and so a
1/q ∈ IRq :Rq

cu for all q. It is not

hard to show that R⊗A A
1/q ∼= R[A1/q] here. (The obvious map is onto, and

since R is torsion-free over A and A
1/q is A-flat, R⊗A A

1/q is torsion-free over,

so that we can check injectivity after localizing at A−{0}, and we thus reduce to

the case where A is a field and R is a finite separable extension field, where the

result is the well-known linear disjointness of separable and purely inseparable

field extensions.) The flatness of Frobenius for A means precisely that A
1/q

is flat over A, so that Rq is flat over R; this is simply a base change. Thus,

IRq :Rq
cu = (I :R cu)Rq ⊆ (I :R cu)R1/q. Hence, for all q = p

e, a
1/q ∈ JR

1/q,

where J = I :R cu. This shows that a ∈ J
[q] for all q. Since a 6= 0, we must have

that J is the unit ideal, i.e., that cu ∈ I.

The same argument works essentially without change when I is a submodule

of a free module instead of an ideal. �

8. Test Elements Using the Lipman–Sathaye Theorem

This section describes material from [Hochster and Huneke 1999, Section 1.4].

For the moment, we do not make any assumption on the characteristic. Let

T ⊆ R be a module-finite extension, where T is a Noetherian domain, R is

torsion-free as a T -module and the extension is generically smooth. Thus, if

K is the fraction field of T and L = K ⊗T R is the total quotient ring

of R then K → L is a finite product of separable field extensions of K .

The Jacobian ideal J (R/T ) is defined as the 0-th Fitting ideal of the R-

module of Kähler R-differentials ΩR/T , and may be calculated as follows: write

R ∼= T [X1, . . . , Xn]/P and then J (R/T ) is the ideal generated in R by the im-

ages of all the Jacobian determinants ∂(g1, . . . , gn)/∂(X1, . . . , Xn) for n-tuples

g1, . . . , gn of elements of P . Moreover, to generate J (R/T ) it suffices to take

all the n-tuples of gi from a fixed set of generators of P .

Now suppose in addition that T is regular. Let R
′ be the integral closure of

R in L , which is well known to be module-finite over T (the usual way to argue

is that any discriminant multiplies it into a finitely generated free T -module).

Let J = J (R/T ) and J
′ = J (R′/T ). The result of Lipman and Sathaye [1981,

Theorem 2, p. 200] may be stated as follows:

Theorem 8.1 (Lipman–Sathaye). With notation as above (in particular ,

there is no assumption about the characteristic, and T is regular), suppose also

that R is an integral domain. If u ∈ L is such that uJ
′ ⊆ R

′ then uJR
′ ⊆ R.

In particular , we may take u = 1, and so JR
′ ⊆ R. �

This property of “capturing the normalization” will enable us to produce test

elements.

Corollary 8.2 (Existence of test elements via the Lipman–Sathaye

theorem). If R is a domain module-finite over a regular domain A of character-
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istic p such that the extension of fraction fields is separable, then every element

c of J = J (R/A) is such that cR
1/q ⊆ A

1/q[R] for all q, and , in particular ,

cR
∞ ⊆ A

∞[R]. Thus, if c ∈ J ∩(R−{0}), it is a test element .

Proof. Since A
1/q[R] ∼= A

1/q⊗A R, the image of c is in J (A1/q[R]/A1/q), and

so the Lipman–Sathaye theorem implies that c multiplies the normalization S of

A
1/q[R] into A

1/q[R]. Thus, it suffices to see that R
1/q is contained in S. Since it

is clearly integral over A
1/q[R] (it is obviously integral over R), we need only see

that the elements of R
1/q are in the total quotient ring of A

1/q[R], and for this

purpose we may localize at A
◦ = A−{0}. Thus, we may replace A by its fraction

field and assume that A is a field, and then R is replaced by (A◦)−1
R, which

is a separable field extensions. Thus, we come down to the fact that if A ⊆ R

is a finite separable field extension, then the injection A
1/q⊗A R → R

1/q (the

map is an injection because separable and purely inseparable field extensions are

linearly disjoint) is an isomorphism, which is immediate by a degree argument.

�

Corollary 8.3 (More test elements via Lipman–Sathaye). Let K be a

field of characteristic p and let R be a d-dimensional geometrically reduced (i .e.,

the ring stays reduced even when one tensors with an inseparable extension of

K —this is automatic if K is perfect) domain over K that is finitely generated

as a K-algebra. Let R = K[x1, . . . , xn]/(g1, . . . , gr) be a presentation of R as

a homomorphic image of a polynomial ring . Then the (n−d)×(n−d) minors of

the Jacobian matrix (∂gi/∂xj) are contained in the test ideal of R, and remain

so after localization and completion. Thus, any element of the Jacobian ideal

generated by all these minors that is in R−{0} is a test element .

Proof. We pass to K(t)⊗K R, if necessary, where K(t) is a simple transcenden-

tal extension of K, to guarantee that the field is infinite. Our hypothesis remains

the same, the Jacobian matrix does not change, and, since K(t)⊗K R is faith-

fully flat over R, it suffices to consider the latter ring. Thus, we may assume

without loss of generality that K is infinite. The calculation of the Jacobian

ideal is independent of the choice of indeterminates. We are therefore free to

make a linear change of coordinates, which corresponds to choosing an element

of G = GL(n,K) ⊆ K
n2

to act on the one-forms of K[x1, . . . , xn]. For a dense

Zariski open set U of G ⊆ K
n2

, if we make a change of coordinates corresponding

to an element γ ∈ U ⊆ G then, for every choice of d of the (new) indeterminates,

if A denotes the K-subalgebra of R that these d new indeterminates generate,

the two conditions listed below will hold:

(1) R will be module-finite over A (and the d chosen indeterminates will then,

perforce, be algebraically independent).

(2) R will be generically smooth over A.

We may consider these two statements separately, for if each holds for a dense

Zariski open subset of G we may intersect the two subsets. The first state-
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ment follows from the standard “linear change of variable” proofs of the Noether

normalization theorem for affine K-algebras (these may be used whenever the

ring contains an infinite field). For the second, we want each d element subset,

say, after renumbering, x1, . . . , xd, of the variables to be a separating tran-

scendence basis for the fraction field L of R over K. (The fact that R is geo-

metrically reduced over K implies that L is separably generated over K.) By

[Kunz 1986, Theorem 5.10(d)], for example, a necessary and sufficient condition

for x1, . . . , xd to be a separating transcendence basis is that the differentials of

these elements dx1, . . . , dxd in ΩL/K
∼= L

d be a basis for ΩL/K as an L-vector

space. Since the differentials of the original variables span ΩL/K over L, it is

clear that the set of elements of G for which all d element subsets of the new

variables have differentials that span ΩL/K contains a Zariski dense open set.

Now suppose that a suitable change of coordinates has been made, and, as

above, let A be the ring generated over K by some set of d of the elements xi.

The n−d size minors of (∂gi/∂xj) involving the n−d columns of (∂gi/∂xj) corre-

sponding to variables not chosen as generators of A precisely generate J (R/A).

R is module-finite over A by the general position argument, and since it is

equidimensional and reduced, it is likewise torsion-free over A, which is a regu-

lar domain. It is generically smooth likewise, because of the general position of

the variables. The result is now immediate from Corollary 8.2: as we vary the set

of d variables, every n−d size minor occurs as a generator of some J (R/A). �

9. Tight Closure for Submodules

We make some brief remarks on how to extend the theory of tight closure to

submodules of arbitrary modules.

Let R be a Noetherian ring of positive prime characteristic p and let G be a

free R-module with a specified free basis uj , which we allow to be infinite. Then

we may define an action of the Frobenius endomorphism F and its iterates on G

very simply as follows: if g =
∑t

i=1 riuji
(where the ji are distinct) we let F

e(g),

which we also denote g
pe

, be
∑t

i=1 r
pe

i uji
. Thus, we are simply letting F act (as

it does on the ring) on all the coefficients that occur in the representation of an

element of G in terms of the free basis. If N ⊆ G is a submodule, we let N
[pe]

denote the submodule of G spanned by all the elements g
pe

for g ∈ N . We then

define an element x ∈ G to be in N
∗ if there exists c ∈ R

◦ such that cx
pe ∈ N

[pe]

for all e� 0.

More generally, if M is any R-module, N is a submodule, and we want to

determine whether x ∈M is in the tight closure N
∗ of N in M , we can proceed

by mapping a free module G onto M , taking an element g ∈ G that maps to x,

letting H be the inverse image of N in G, and letting x be in N
∗
M precisely when

g ∈ H
∗
G, where we are using subscripts to indicate the ambient module. This

definition turns out to be independent of the choice of free module G mapping

onto M , and of the choice of free basis for G.
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I believe that there are many important questions about the behavior of tight

closure for modules that are not finitely generated over the ring, especially for

Artinian modules over local rings. See question 3 in the next section.

However, for the rest of this section we restrict attention to the case of finitely

generated modules. The theory of test elements for tight closure of ideals extends

without change to the generality of modules.

In order to prove the result of Theorem 1.4 one may make use of a version of

the phantom acyclicity theorem. We first recall the result of [Buchsbaum and

Eisenbud 1973] concerning when a finite free complex over a Noetherian ring R

is acyclic. Suppose that the complex is

0→ R
bn → · · · → R

b0 → 0

and that ri is the (determinantal) rank of the matrix αi giving the map from

R
bi → R

bi−1 , 0 ≤ i ≤ n+1, where bn+1 is defined to be 0. The result of

[Buchsbaum and Eisenbud 1973] is that the complex is acyclic if and only if

(1) for 0 ≤ i ≤ n, bi = ri+1 +ri, and

(2) for 1 ≤ i ≤ n, the depth of the ideal Ji generated by the ri size minors of αi

is at least i (this is automatic if the ideal generated by the minors is the unit

ideal; by convention, the unit ideal has depth +∞).

A complex 0 → Gn → · · · → G0 → 0 is said to be phantom acyclic if for all

i ≥ 1, one has that the kernel Zi of Gi → Gi−1 is in the tight closure of the

module of boundaries Bi (the image of Gi+1 in Gi) in Gi. Note that this implies

that Zi/Bi is killed by the test ideal.

Consider the following weakening of condition (2) above:

(2◦) for 1 ≤ i ≤ n, the height of the ideal Ji generated by the ri size minors of

αi is at least i (this is automatic if the ideal generated by the minors is the

unit ideal; by convention, the unit ideal has height +∞).

Then:

Theorem 9.1 (Phantom acyclicity criterion). Let R be a reduced biequi-

dimensional Noetherian ring of positive characteristic. A finite free complex as

above is phantom acyclic provided that conditions (1) and (2◦) hold .

See [Hochster and Huneke 1990] and [Hochster and Huneke 1993] for detailed

treatments where the result is established in much greater generality and a partial

converse is proved, and to [Aberbach 1994] for the further development of the

closely related notion of finite phantom projective dimension.

Note that in a domain, condition (2◦) simply says that every Ji has height

at least i: this replaces the subtle and difficult notion of “depth” by the much

more tractable notion of “height” (or “codimension”).
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Theorem 1.4 is simply the result of applying the phantom acyclicity criterion

to a Koszul complex. Conditions (1) and (2) are easy to verify. Therefore, the

higher homology is killed by the test ideal, which contains the Jacobian ideal.

There is another point of view that is very helpful in understanding the phan-

tom acyclicity theorem. It involves the main result of [Hochster and Huneke

1991a]. If R is a domain, let R
+ denote the integral closure of R in an algebraic

closure of its fraction field, which is a maximal integral extension of R that is a

domain. It is unique up to non-unique isomorphism. The theorem of [Hochster

and Huneke 1991a] is that every system of parameters of R is a regular sequence

in R
+: thus, R

+ is a big Cohen–Macaulay algebra for R (and for any module-

finite extension domain of R, all of which are embeddable in R
+. Suppose that

one has a complex that satisfies the hypothesis of the phantom acyclicity crite-

rion. When one tensors with R
+ it actually becomes acyclic: heights become

depths in R
+, and one may apply a generalization to the non-Noetherian case

of the acyclicity criterion of [Buchsbaum and Eisenbud 1973] presented in great

detail in [Northcott 1976]. One may use this to see that any cycle becomes a

boundary after tensoring with a sufficiently large but module-finite extension of

R. The fact that the cycles are in the tight closure of the boundaries is now

analogous to the fact that when an ideal I ⊆ R is expanded and then contracted

from a module-finite extension S of R, we have IS∩R ⊆ I
∗: compare Theorem

3.6.

Finally, we mention the vanishing theorem for maps of Tor. Let A ⊆ R → S

be maps of rings of characteristic p, where A is regular, R is module-finite and

torsion-free over A, and S is any regular ring. The map R→ S is arbitrary here:

it need not be injective nor surjective. Let M be any R-module.

Theorem 9.2 (Vanishing theorem for maps of Tor). With assumptions

as just above, the maps TorA
i (M, R)→ Tor

A
i (M, S) are 0 for all i ≥ 1.

Sketch of proof. One may easily reduce to the case where S is complete

local and then to the case where A is complete local. By a direct limit argument

one may reduce to the case where M is finitely generated over A. Then M has

a finite free resolution over A, which satisfies the hypothesis of the characteri-

zation of acyclic complexes given in [Buchsbaum and Eisenbud 1973]. When we

tensor with R over A we get a free complex over R that satisfies the phantom

acyclicity theorem: every cycle is in the tight closure of the boundaries. Taking

its homology gives the TorA
i (M, R). Now when we tensor S, every module is

tightly closed, so the cycles coming from the complex over R are now boundaries,

which gives the desired result. �

See [Hochster and Huneke 1990; 1993], the discussion in [Hochster and Huneke

1995], and [Ranganathan 2000]. This is an open question in mixed characteristic.

This vanishing result is amazingly powerful. In the case where S is simply a

field, it implies the direct summand conjecture, i.e., that regular rings are direct
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summands of their module-finite extensions. In the case where S is regular and

R is a direct summand of S it implies that R is Cohen–Macaulay. Both questions

are open in mixed characteristic. The details of these implications are given in

[Hochster and Huneke 1995]. In [Ranganathan 2000], it is shown, somewhat

surprisingly, that the vanishing theorem for maps of Tor is actually equivalent

to the following question about splitting: let R be a regular local ring, let S be

a module-finite extension, and suppose that P is a height one prime ideal of S

that contracts to xR, where x is a regular parameter in R. Then xR is a direct

summand of S as an R-module.

10. Further Thoughts and Questions

What we have said about tight closure so far is only the tip of an iceberg.

Here are some major open questions.

1. Does tight closure commute with localization under mild assumptions on

the ring? This is not known to be true even for finitely generated algebras over

a field. Aspects of the problem are discussed in [Aberbach et al. 1993; Hochster

and Huneke 2000; Vraciu 2000].

2. Under mild conditions, if a ring has the property that every ideal is tightly

closed, does that continue to hold when one localizes? This is not known for

finitely generated algebras over a field, nor for complete local rings. An affirma-

tive answer to 1. would imply an affirmative answer to 2.

Rings such that every ideal is tightly closed are called weakly F-regular. The

word “weakly” is omitted if this property also holds for all localizations of the

ring. Weakly F-regular rings are Cohen–Macaulay and normal under very mild

conditions—this holds even if one only assumes that ideals generated by pa-

rameters are tightly closed (this weaker property is called F-rationality and is

closely related to the notion of rational singularities; see [Hara 1998; Smith

1997; Vélez 1995; Enescu 2000]). Both of the conditions of weak F-regularity

and F-rationality tend to imply that the singularities of the ring are in some

sense good. However, the theory is complicated [Hara and Watanabe 2002]. It

is worth noting that weak F-regularity does not deform [Singh 1999], and that

direct summands of F-rational rings are not necessarily F-rational [Watanabe

1997]. See also [Hara et al. 2002a; 2002b]. Weak F-regularity is established for

some important classes of rings (those defined by the vanishing of the minors of

fixed size of a matrix of indeterminates, and homogeneous coordinate rings of

Grassmannians) in [Hochster and Huneke 1994b, Theorem 7.14].

3. Let M be an Artinian module over, say, a complete reduced local ring

with a perfect residue field. Let N be a submodule of M , Is it true that u ∈ N
∗
M

if and only if there exists Q with N ⊆ Q ⊆ M with Q/N of finite length such

that u ∈ N
∗
Q? This is true in a graded version and for isolated singularities

[Lyubeznik and Smith 1999; 2001]; other cases are established in [Elitzur 2003].
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For any domain R, let R
+ denote the integral closure of R in an algebraic

closure of its fraction field. This is unique up to non-unique isomorphism, and

may be thought of as a “largest” domain extension of R that is integral over R.

4. For an excellent local domain R, is an element r ∈ R in the tight closure

of I if and only if it is in IS for some module-finite extension domain of R? It

is equivalent to assert that for such a local domain R, I
∗ = IR

+∩R. This is

known for ideals generated by part of a system of parameters [Smith 1994]. It

is known that IR
+∩R ⊆ I

∗. For some results on homogeneous coordinate rings

of elliptic curves, see the remarks following the next question.

It is known in characteristic p that for a complete local domain R, and element

u ∈ R is in I
∗ if and only if it is in IB∩R for some big Cohen–Macaulay algebra

extension ring B of R: see [Hochster 1994a, Section 11].

It is worth mentioning that there is an intimate connection between tight

closure and the existence of big Cohen–Macaulay algebras B over local rings

(R,m), i.e., algebras B such that mB 6= B and every system of parameters for

R is a regular sequence on B. Tight closure ideas led to the proof in [Hochster

and Huneke 1992] that if R is an excellent local domain of characteristic p then

R
+ is a big Cohen–Macaulay algebra. Moreover, for complete local rings R, it

is known [Hochster 1994a, Section 11] that u ∈ I
∗ if and only if R has a big

Cohen–Macaulay algebra B such that u ∈ IB.

5. Is there an effective way to compute tight closures? The answer is not

known even for ideals of cubical cones, i.e., of rings of the form K[X, Y, Z]/(X 3+

Y
3+Z

3) in positive characteristic different from 3. However, in cones over elliptic

curves, tight closure agrees with plus closure (i.e., with IR
+∩R) for homogeneous

ideals I primary to the homogeneous maximal ideal : see [Brenner 2003b; 2002].

For ideals that are not homogeneous, the question raised in 4. is open even for

such rings. When the characteristic of K is congruent to 2 mod 3, it is even

possible that tight closure agrees with Frobenius closure in these rings. See

[McDermott 2000; Vraciu 2002].

6. How can one extend tight closure to mixed characteristic? By far the

most intriguing result along these lines is due to Ray Heitmann [2002], who has

proved that if (R,m) is a complete local domain of dimension 3 and mixed char-

acteristic p, then every Koszul relation on parameters in R
+ is annihilated by

multiplication by arbitrarily small positive rational powers of p (that is, by p
1/N

for arbitrarily large integers N). This implies that regular local rings of dimen-

sion 3 are direct summands of their module-finite extension rings. Heitmann’s

result can be used to prove the existence of big Cohen–Macaulay algebras in

dimension 3: see [Hochster 2002]. Other possibilities are explored in [Hochster

2003] and [Hochster and Vélez 2004].
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Appendix: Some Examples in Tight Closure

by Graham J. Leuschke

Tight closure and related methods in the study of rings of prime character-

istic have taken on central importance in commutative algebra, leading to both

new results and improvements on old ones. Unfortunately, tight closure has a

reputation for inaccessibility to novices, with what can seem a bewildering array

of F- prefixes and other terminology. The very definition of tight closure is less

than immediately illuminating:

Definition A.1. Let R be a Noetherian ring of prime characteristic p. Let I

be an ideal of R. An element x ∈ R is said to be in the tight closure of I if there

exists an element c, not in any minimal prime of R, so that for all large enough

q = p
e, cx

q ∈ I
[q], where I

[q] is the ideal generated by the q-th powers of the

elements of I. In this case we write x ∈ I
∗.

This appendix is based on an hour-long help session about tight closure that I

gave at MSRI following the series of lectures by Mel Hochster that constitute

the bulk of this article. The help session itself was quite informal, driven mostly

by questions from the audience, with the goal of presenting enough examples of

computations to give a feeling for how the definition is used. The reader will

quickly see that the methods are largely ad hoc; in fact, at this time there is no

useful algorithm for determining that a given element is or is not in a certain

tight closure.2 Still, certain patterns will arise that indicate how problems of

this sort are generally solved.

We first discuss the examples. Examples A.1 and A.2 are drawn from [Huneke

1998]. Example A.3 was shown me by Moira McDermott, whom I thank here

for her help and insight into some of these computations.

After that, I present a few auxiliary results on tight closure, including the

Strong Vanishing Theorem for hypersurfaces and some material on test elements.

This section serves several purposes: In addition to putting the examples in

context, the results address some of the audience questions raised during the

help session and make this appendix relatively self-contained. I am grateful to

Sean Sather-Wagstaff for his notes from the help session on this material.

Throughout, we work with Noetherian rings containing a field k of positive

characteristic p, and write q for a varying power of p. Variables will be repre-

sented by capital letters, which we routinely decapitalize to indicate their images

in a quotient ring.

2See, however, [Sullivant 2002] for a procedure for calculating tight closures of monomial
ideals in Fermat rings. Also, there is an algorithm due to Hochster for countable affine rings
which involves enumerating all module-finite algebras over the ring. It is effective whenever
tight closure is known to be the same as plus closure, but is impractical to implement.
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The examples. We begin with the canonical first example of tight closure. It

involves the “cubical cone” or “Fermat cubic” ring

R = k[[X,Y,Z]]/(X3+Y
3 +Z

3),

which is in some sense the first nontrivial ring from the point of view of tight

closure.

Example A.1. Let R = k[[X,Y,Z]]/(X3 +Y
3 +Z

3), where k is a field of char-

acteristic p 6= 3, and let I = (y, z). Then I
∗ = (x2

, y, z).

We know from the example at the end of Section 6 (page 192) that x
2 ∈ (y, z)∗;

we will reproduce the argument here, since it has a flavor to which we should

become accustomed. We will take c = z in the definition of tight closure, so we

will show that z(x2)q ∈ (y, z)[q] = (yq
, z

q) for all q = p
e. For a general q, write

2q = 3u+ i, where i is 1 or 2. Expand z(x2)q:

z(x2)q = zx
3u+i = zx

i(x3)u = (−1)u
zx

i(y3 +z
3)u

= (−1)u
zx

i
u∑

j=0

(
u
j

)
y
3j

z
3(u−j)

.

Consider a monomial x
i
y
3j

z
3(u−j)+1 in this sum. If we have both 3j ≤ q−1 and

3(u−j)+1 ≤ q−1, then 3u+1 ≤ 2q−2, so 2q ≥ 3u+3, a contradiction. Therefore

each monomial in the expansion of z(x2)q has degree at least q in either y or z,

that is, each monomial is in (yq
, z

q), as desired.

Now we need only show that x /∈ I
∗. This argument is due to Mordechai

Katzman, by way of [Huneke 1998]. We take for granted that z
N is a test element

for some large N , that is, z
N can be used as c in any and all tight closure tests

(see Definition A.2 and Theorem A.9). Then x ∈ I
∗ if and only if z

N
x

q ∈ (yq
, z

q)

for all q. Choose q to be larger than N and let J = (X3 +Y
3 +Z

3
, Y

q
, Z

q) ⊆
k[X,Y,Z].

Let > be the reverse lexicographic term order on k[X,Y,Z] with X > Y > Z.

Then the initial ideal in>(J) is (X3
, Y

q
, Z

q). Write q = 3u+ i, where i is either

1 or 2. Then X
q = X

3u+i ≡ (−1)u(Y 3 +Z
3)u

X
i modulo J . We also have

in>(ZN
X

q) = in>(ZN (−1)u(Y 3 +Z
3)u

X
i) = X

i
Y

3u
Z

N
.

Since N < q, this last is not in in>(J) = (X3
, Y

q
, Z

q), and we see that Z
N

X
q

is not in J . Thus z
N

x
q

/∈ (yq
, z

q) in k[X,Y,Z]/(X3+Y
3 +Z

3). The same holds

in R since k[X,Y,Z]/J has finite length.

At this point in the help session, an audience member asked, “What difference do

the numbers make?” That is, are the exponents (3, 3, 3 in the case of the Fermat

cubic) vital to the outcome of the example? The next example, a side-by-side

comparison, shows that they are indeed.

Example A.2. Let S = k[[X,Y,Z]], where the characteristic of k is greater than

7, and define two polynomials: f1 = X
2 +Y

3 +Z
5, and f2 = X

2 +Y
3 +Z

7. Let
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R1 = S/(f1) and R2 = S/(f2), and put Ii = (y, z)Ri for i = 1, 2. Then I
∗
1 = I1,

whereas I
∗
2 = (x, y, z)R2.

We take for granted that for some large N , x
N is a test element for ideals of

both rings, that is, we may take c = x
N in the definition of tight closure (see

Theorem A.9).

For the first assertion, it suffices to show that x
N

x
q

/∈ (yq
, z

q) for some q = p
e.

Since p > 5, p is relatively prime to 30, and after possibly increasing N slightly,

we can find a power q of p so that q = 30u−N +2 for some u. Expand x
N

x
q:

x
N+q = x

30u+2 = (x2)15u+1 = ±(y3 +z
5)15u+1 = ±

15u+1∑

j=0

y
3j

z
5(15u−j+1)

.

To show that x
q+1

/∈ (yq
, z

q), we just need to find j such that 3j < q and

5(15u− j +1) < q. Taking j = 10u fills the bill. It remains only to show that

the coefficient of y
3(10u)

z
5(5u+1) is nonzero modulo p, that is, that the binomial

coefficient
(
15u+1
10u

)
is not divisible by p. We must show that if a power of p

divides the numerator of the fraction giving
(
15u+1
10u

)
, then it also divides the

denominator. So suppose that p
a divides 15u+1−j for some j ≤ 5k. Then 2p

a

divides 30u+2−j. Since q = p
e = 30u+1, we see that 2p

a divides p
e−(2j−1).

It follows that p
a divides 2j−1, which is a factor of the denominator, and we

are done.

To see that I
∗
2 = (x, y, z)R2, fix q and write N +q = 2u, again after increasing

N if necessary. Then x
N

x
q = x

2u = (−1)u(y3 +z
7)u. Each monomial in the

binomial expansion of the right-hand side is of the form y
3j

z
7(u−j). If both

3j < q and 7(u−j) < q for some j, then 21j+21(u−j) < 7q+3q = 10q, forcing

21u < 10q, or 21u < 20u−10, which is absurd. Thus, for each j, either 3j ≥ q

or 7(u−j) ≥ q, which implies x
N

x
q ∈ (yq

, z
q), so x ∈ (y, z)∗.

In fact, R1 is weakly F-regular, which means that every ideal is tightly closed.

On the other hand, we have shown above that R2 is not weakly F-regular.

The next example is due to M. McDermott. In addition to showing that the

Strong Vanishing Theorem for hypersurfaces (Theorem A.8) is sharp, it illus-

trates the occasionally mysterious nature of tight closure computations: Some-

times the numbers just work out, especially when p is small.

Example A.3. Let R = k[A,B,C,D,E]/(A4 +B
4 +C

4 +D
4 +E

4), where k is

a field of characteristic p, and let I = (a4
, b

4
, c

4
, d

4). By the Strong Vanishing

Theorem for hypersurfaces, for p > 8 we have I
∗ = I+R≥16 = I is tightly closed.

For smaller p, though, I need not be tightly closed. In particular, when p = 7

we have a
3
b
3
c
3
d
3
e
3 ∈ I

∗.

To see this, let w = a
3
b
3
c
3
d
3
e
3. Then

w
7 = a

21
b
21

c
21

d
21

e
21 = −a

21
b
21

c
21

d
21

e(a4 +b
4 +c

4 +d
4)5.

Every monomial of (a4 + b
4 + c

4 +d
4)5 has at least one variable to the eighth

power, so w
7 ∈ (a29

, b
29

, c
29

, d
29) ⊆ I

[7]. So in fact w
p ∈ I

[p] and w is in the
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Frobenius closure of I. In particular, taking c = 1 shows that w is in the tight

closure of I.

The next example is the most involved we will consider. It is due originally to

Anurag Singh [1998], though the proof we will present is due to Holger Brenner,

with improvements by Singh and Huneke. It returns to the Fermat cubic of

Example A.1.

Example A.4. Let R = k[[X,Y,Z]]/(X3 +Y
3 +Z

3), where k is a field of char-

acteristic p > 3. Then xyz ∈ (x2
, y

2
, z

2)∗.

We will need the following lemma, which is an easy consequence of colon-

capturing [Huneke 1998, Theorem 2.3].

Lemma A.5. Let R be a complete equidimensional local ring with a test element

c. Let x1, . . . , xn, y be part of a system of parameters, and set I = (x1, . . . , xn).

Then for any ideal J and any element h ∈ R, hy ∈ (I + yJ)∗ if and only if

h ∈ (I +J)∗.

Proof. Assume first that hy ∈ (I+yJ)∗. This happens if and only if for every q

we have c(yh)q ∈ (I+yJ)[q], which is equal to I
[q]+y

q
J

[q]. So this happens if and

only if there exists some aq ∈ J
[q] such that y

q(chq−aq) ∈ I
[q]. Now, by colon-

capturing [Huneke 1998, Theorem 2.3], I
[q] : y

q ⊆ (I [q])∗, so c(chq−aq) ∈ I
[q].

Unraveling this one more time gives c
2
h

q ∈ I
[q] +J

[q], as desired. The converse

follows by retracing these steps. �

Returning to the example, we see by the Lemma that the claim is equivalent to

showing that xy
2
z ∈ (x2

, y
3
, yz

2)∗ = (x2
, z

3
, yz

2)∗. This in turn is equivalent to

showing that xy
2 ∈ (x2

, z
2
, yz)∗.

For q = p
e, write q = 3u+ i, where i is 1 or 2. We will take c = x

3−i
y
6−2i in

the definition of tight closure. First, expand:

y
6−2i

y
2q = y

6−2i
y
6u+2i = y

3
y
3(2u+1) = y

3(−1)2u+1(x3 +z
3)2u+1

= y
3(−1)2u+1

2u+1∑

j=0

(
2u+1

j

)
x

3(2u+1−j)
z
3j

.

We separate this sum into one part with a factor of x
q and one with a factor of

z
q, writing the preceding expression as y

3(−1)2u+1 times Q, where

Q =

( u∑

j=0

(
2u+1

j

)
x

3(2u+1−j)
z
3j +

2u+1∑

j=u+1

(
2u+1

j

)
x

3(2u+1−j)
z
3j

)

=

(
x

3u+3
u∑

j=0

(
2u+1

j

)
x

3(u−j)
z
3j + z

3u+3
2u+1∑

j=u+1

(
2u+1

j

)
x

3(2u+1−j)
z
3(j−u−1)

)

=

(
x

q
x

3−i
u∑

j=0

(
2u+1

j

)
x

3(u−j)
z
3j + z

q
z
3−i

u∑

j=0

(
2u+1

j+u+1

)
x

3(u−j)
z
3j

)
.
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Thus y
6−2i

y
2q = Fx

q +Gy
3
z

q, where

F = y
3(−1)2u+1

x
3−i

u∑

j=0

(
2u+1

j

)
x

3(u−j)
z
3j

,

G = (−1)2u+1
z
3−i

u∑

j=0

(
2u+1

j+u+1

)
x

3(u−j)
z
3j

.

We are trying to show that the element

(x3−i
y
6−2i)xq

y
2q = x

3−i
Fx

2q +Gx
3−i+q

y
3
z

q

is in the ideal (x2
, z

2
, yz)[q]. The term involving Fx

2q is taken care of, so it

suffices to show that Gx
3−i+q ∈ (y, z)[q]. Write Gx

3−i+q solely in terms of y and

z (recall that q = 3u+ i):

Gx
3−i+q = x

3+3u(−1)2u+1
z
3−i

u∑

j=0

(
2u+1

j+u+1

)
x

3(u−j)
z
3j

= (−1)3u+2(y3 +z
3)u+1

z
3−i

u∑

j=0

(
2u+1

j+u+1

)
(−1)u−j(y3 +z

3)u−j
z
3j

.

Each monomial in this sum has degree 3(u+1)+(3−i)+3u = 6u+6−i ≥ 6u+4 ≥
2q. Since the sum involves only y and z, each monomial must have degree at

least q in either y or z, as desired.

One might reasonably ask why we chose to show the equivalent statement that

xy
2 ∈ (x2

, z
2
, yz)∗, rather than the originally claimed inclusion. The glib answer

is that it works. A more considered and satisfying reply might point to the fact

that we reduced the problem in the end to showing that Gx
3−i+q ∈ (y, z)[q],

which was quite easy, and in the original formulation there was simply too much

symmetry to make a similar reduction.

Brenner has recently used powerful geometric methods ([Brenner 2004] and

[Brenner 2003a]) to prove results like the following, which vastly generalizes the

example above.

Theorem A.6 [Brenner 2004, Corollary 9.3]. Let k denote an algebraically closed

field of characteristic 0 and let F ∈ k[x, y, z] denote a homogeneous polynomial

of degree δ such that R = k[x, y, z]/(F ) is a normal domain. Let f1, f2, f3 ∈ R

denote R+-primary homogeneous elements of degree d1, d2, d3. Suppose that the

sheaf of relations R is indecomposable on the curve Y = Proj R. Then:

(i) Rm ⊆ (f1, f2, f3)
∗ for m ≥ d1+d2+d3

2 + δ−3
2 .

(ii) For m <
d1+d2+d3

2 − δ+3
2 we have (f1, f2, f3)

∗∩Rm = (f1, f2, f3)∩Rm.

This follows from a more general fact involving semistability of vector bundles:
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Theorem A.7 [Brenner 2004, Theorem 8.1]. Let k denote an algebraically closed

field of characteristic 0 and let R be a normal two-dimensional standard-graded

k-algebra. Set t = d d1+...+dn

n−1 e. Suppose that the sheaf of relations R(m) for

ideal generators f1, . . . , fn is semistable. Then

(f1, . . . , fn)∗ = (f1, . . . , fn)+R≥t .

Auxiliary results. We now mention a few results that were prepared for the

help session, but were not presented. They are included here both as examples

of “what might have been” and to make this appendix relatively self-contained

(more so than the help session on which it is based). Complete proofs are given

in [Huneke 1998].

The first result is the Strong Vanishing Theorem for hypersurfaces, which was

mentioned in Example A.3.

Theorem A.8. Let R = k[X0, . . . ,Xd]/(f) be a quasi-homogeneous graded

hypersurface over a field k of characteristic p > 0. Assume that R is an isolated

singularity , and that the partials ∂f
∂X1

, . . . ,
∂f

∂Xd
form a system of parameters for

R. If p > (d−1)(deg f)−
∑d

i=1 deg Xi, then for parameters y1, . . . , yd of degrees

a1, . . . , ad,

(y1, . . . , yd)
∗ = (y1, . . . , yd)+R≥a1+...+ad

.

This theorem is particularly well-suited for computations; see [Sullivant 2002].

The audience at MSRI was interested in the theory of test elements, specifi-

cally when they are known to exist.

Definition A.2. An element c of R, not in any minimal prime, is called a test

element for ideals of R if xI
∗ ⊆ I for every ideal I ⊆ R. Equivalently, c can be

used for all tight closure tests: x ∈ R is in I
∗ if and only if cx

q ∈ I
[q] for all

q = p
e.

The most obvious immediate benefit of the existence of test elements is in show-

ing that elements are not in tight closures. If c is known to be a test element,

and it can be shown that cx
q

/∈ I
[q] for any one q, then x /∈ I

∗. We saw this

principle in action in Example A.2.

The theorem below is not the most general result on the existence of test ele-

ments, but suffices for many applications. We say that a ring R of characteristic

p is F-finite provided the ring of p-th roots R
1/p is a finitely generated R-module.

A complete local ring (R,m, k) such that [k : k
p] < ∞ is always F-finite, but

there are many examples of rings, even fields, that are not.

Theorem A.9 [Hochster and Huneke 1994a, Prop. 6.23]. Let R be reduced

and F-finite or reduced and essentially of finite type over an excellent local ring .

Let c be an element of R not in any minimal prime. If the localization Rc is

Gorenstein and weakly F-regular , then c has a power which is a test element . In

particular , if Rc is regular , then c has a power which is a test element .
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The second case of Theorem A.9, in which R is assumed to be essentially of finite

type over an excellent local ring, is deduced from the F-finite case by means of

the “Γ-construction” [Hochster and Huneke 1994a], which shows that such a

ring has a faithfully flat extension R
Γ which is F-finite, and such that R

Γ
c is still

weakly F-regular and Gorenstein. Then some power of c is a test element in R
Γ,

and that property descends automatically from faithfully flat extensions.

Other, similar, sources of abundant test elements are the theorem of Lipman–

Sathaye and its consequences (see Sections 7 and 8 above).
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Abstract. These lectures provide a glimpse of the applications of toric
geometry to singularity theory. They illustrate some ideas and results of
commutative algebra by showing the form which they take for very simple
ideals of polynomial rings: monomial or binomial ideals, which can be
understood combinatorially. Some combinatorial facts are the expression
for monomial or binomial ideals of general results of commutative algebra
or algebraic geometry such as resolution of singularities or the Briançon–
Skoda theorem. In the opposite direction, there are methods that allow
one to prove results about fairly general ideals by continuously specializing
them to monomial or binomial ideals.
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1. Introduction

Let k be a field. We denote by k[u1, . . . , ud] the polynomial ring in d variables,

and by k[[u1, . . . , ud]] the power series ring.

If d = 1, given two monomials u
m

, u
n, one divides the other, so that if m > n,

say, a binomial u
m − λu

n = u
n(um−n − λ) with λ ∈ k

∗ is, viewed now in k[[u]],

a monomial times a unit. For the same reason any series
∑

i fiu
i ∈ k[[u]] is the

product of a monomial u
n, n ≥ 0, by a unit of k[[u]]. Staying in k[u], we can

211
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also view our binomial as the product of a monomial and a cyclic polynomial

u
m−n − λ.

For d = 2, working in k[[u1, u2]], we meet a serious difficulty: a series in two

variables does not necessarily have a dominant term (a term that divides all

others). The simplest example is the binomial u
a
1 − cu

b
2 with c ∈ k

∗. As we shall

see, if we allow enough transformations, this is essentially the only example in

dimension 2. So the behavior of a series f(u1, u2) near the origin does not reduce

to that of the product of a monomial u
a
1u

b
2 by a unit.

In general, for d > 1 and given f(u1, . . . , ud) ∈ k[[u1, . . . , ud]], say f =∑
m fmu

m, where m ∈ Zd
≥0 and u

m = u
m1

1 . . . u
md

d , we can try to measure how

far f is from a monomial times a unit by considering the ideal of k[[u1, . . . , ud]] or

k[u1, . . . , ud] generated by the monomials {um : fm 6= 0} that actually appear in

f . Since both rings are noetherian, this ideal is finitely generated in both cases,

and we are faced with the following problem:

Problem. Given an ideal generated by finitely many monomials (a monomial

ideal) in k[[u1, . . . , ud]] or k[u1, . . . , ud], study how far it is from being principal .

We shall also meet a property of finitely generated ideals that is stronger than

principality, namely that given any pair of generators, one divides the other.

This implies principality (exercise), but is stronger in general: take an ideal in a

principal ideal domain such as Z, or a nonmonomial ideal in k[u]. I shall call this

property strong principality. Integral domains in which every finitely generated

ideal is strongly principal are known as valuation rings. Most are not noetherian.

Here we reach a bifurcation point in methodology:

– One approach is to generalize the notion of divisibility by studying all linear

relations, with coefficients in the ambient ring, between our monomials. This

leads to the construction of syzygies for the generators of our monomial ideal

M , or free resolutions for the quotient of the ambient ring by M . There

are many beautiful results in this direction; see [Eisenbud and Sidman 2004]

in this volume and [Sturmfels 1996]. One is also led to try and compare

monomials using monomial orders to produce Gröbner bases, since as soon

as the ideal is not principal, deciding whether a given element belongs to it

becomes arduous in general.

– Another approach is to try and force the ideal M to become principal after a

change of variables. This is the subject of the next section.
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2. Strong Principalization of Monomial Ideals by Toric Maps

In order to make a monomial ideal principal by changes of variables, the first

thing to try is changes of variables that transform monomials into monomials,

that is, which are themselves described by monomial functions:

u1 = y1
a1
1 · · · · yd

ad
1 ,

u2 = y1
a1
2 · · · · yd

ad
2 ,

. . . . . . . . . . . . . . . . . . .

ud = y1
a1

d · · · · yd
ad

d ,

where we can consider the exponents of yi appearing in the expressions of

u1, . . . , ud as the coordinates of a vector a
i with integral coordinates. These

expressions decribe a monomial, or toric, map of d-dimensional affine spaces

π(a1
, . . . , a

d) : Ad(k)→ Ad(k)

in the coordinates (yi) for the first affine space and (ui) for the second.

If we compute the effect of the change of variables on a monomial u
m, we see

that

u
m 7→ y

〈a1,m〉
1 . . . y

〈ad,m〉
d .

Exercise. Show that the degree of the fraction field extension k(u1, . . . , ud)→
k(y1, . . . , yd) determined by π(a1

, . . . , a
d) is the absolute value of the determi-

nant of the vectors (a1
, . . . , a

d). In particular, it is equal to one—that is, our

map π(a1
, . . . , a

d) is birational— if and only if the determinant of the vectors

(a1
, . . . , a

d) is ±1, that is, (a1
, . . . , a

d) is a basis of the integral lattice Zd.

In view of the form of the transformation on monomials by our change of vari-

ables, it makes sense to introduce a copy of Zd where the exponents of our

monomials dwell, and which we will denote by M , and a copy of Zd in which

our vectors a
j dwell, which we will call the weight space and denote by W . The

lattices M and W are dual and we consider W as the integral lattice of the vector

space Řd dual to the vector space Rd in which our monomial exponents live. In

this manner, we think of m 7→ 〈ai
,m〉 as the linear form on M corresponding to

a
i ∈W .

Given two monomials u
m and u

n, the necessary and sufficient condition for the

transform of u
n to divide the transform of u

m in k[y1, . . . , yd] is that 〈ai
,m〉 ≥

〈ai
, n〉 for all i with 1 ≤ i ≤ d. If we read this as 〈ai

,m−n〉 ≥ 0 for all i,

1 ≤ i ≤ d, and seek a symmetric formulation, we are led to introduce the

rational hyperplane Hm−n in Řd dual to the vector m− n ∈M , and obtain the

following elementary but fundamental fact, where the transform of a monomial

is just its composition with the map π(a1
, . . . , a

d) in the coordinates (y1, . . . , yd):

Lemma 2.1. A necessary and sufficient condition for the transform of one of the

monomials u
m

, u
n by the map π(a1

, . . . , a
d) to divide the transform of the other
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in k[y1, . . . , yd] is that all the vectors a
j lie on the same side of the hyperplane

Hm−n in Řd
≥0.

The condition is nonvacuous if and only if one of the monomials u
m

, u
n does

not already divide the other in k[u1, . . . , ud], because to say that such divisibility

does not occur is to say that the equation of the hyperplane Hm−n does not have

all its coefficients of the same sign, and therefore separates into two regions the

first quadrant Řd
≥0 where our vectors a

j live.

To force one monomial to divide the other in the affine space Ad(k) with

coordinates (yi) is nice, but not terribly useful, since it provides information on

the original monomials only in the image of the map π(a1
, . . . , a

d) in the affine

space Ad(k) with coordinates (ui), which is a constructible subset different from

Ad(k). It is much more useful to find a proper and birational (hence surjective)

map π : Z → Ad(k) of algebraic varieties over k such that the compositions with

π of our monomials generate a sheaf of ideals in Z which is locally principal; if

you prefer, Z should be covered by affine charts U such that if our monomial ideal

M is generated by u
m1

, . . . , u
mq

, the ideal (um1 ◦ π, . . . , u
mq ◦ π)|U is principal

or strongly principal.

Toric geometry provides a way to do this. To set the stage, we need a few

definitions (see [Ewald 1996]):

A cone σ in Rd (or Řd) is a set closed under multiplication by nonnegative

numbers. A cone is strictly convex if it contains no positive-dimensional vector

subspace. Cones contained in the first quadrant are strictly convex. The convex

dual of σ is the set

σ̌ = {m ∈ Rd : 〈m,a〉 ≥ 0 for all a ∈ σ}.

This is also a cone. A cone is strictly convex if and only if its convex dual has

nonempty interior.

A rational convex cone is one bounded by finitely many hyperplanes whose

equations have rational (or equivalently, integral) coefficients. An equivalent

definition is that a rational convex cone is the cone positively generated by

finitely many vectors with integral coordinates.

A rational fan with support Řd
≥0 is a finite collection Σ of rational strictly

convex cones (σα)α∈A with the following properties:

(1) The union of all the (σα)α∈A is the closed first quadrant Řd
≥0 of Řd.

(2) Each face of a σα ∈ Σ is in Σ; in particular {0} ∈ Σ.

(3) Each intersection σα ∩ σβ is a face of σα and of σβ .

In general, the support of a fan Σ is defined as
⋃

α∈A σα.

A fan is regular if each of its k-dimensional cones is generated by k integral

vectors (a simplicial cone) that form part of a basis of the integral lattice. If

k = d this means that their determinant is ±1.
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If we go back to our monomial map, assuming that the determinant of the

vectors (a1
, . . . , a

d) is ±1, we can express the yj as monomials in the ui; the

matrix of exponents will then be the inverse of the matrix (a1
, . . . , a

d), and will

have some negative entries. Monomials with possibly negative exponents will be

called Laurent monomials here.

If σ = 〈a1
, . . . , a

d〉, the cone positively generated by the vectors a
1
. . . , a

d,

then the monomials in y1, . . . , yd, viewed as Laurent monomials in u1, . . . ud via

the expression of the yj as Laurent monomials in the ui, correspond to the

integral points of the convex dual cone of σ, that is, those points m ∈ Zd such

that 〈ai
,m〉 ≥ 0 for all 1 ≤ i ≤ d. So we can identify the polynomial algebra

k[y1, . . . , yd] with the algebra k[σ̌ ∩M ] of the semigroup σ̌ ∩M with coefficients

in k. Since σ is contained in the first quadrant of Řd, its convex dual σ̌ contains

the first quadrant of Rd, so we have a graded inclusion of algebras

k[Rd
≥0 ∩M ] = k[u1, . . . , ud] ⊂ k[σ̌ ∩M ] = k[y1, . . . , yd],

the inclusion being described by sending each variable ui to a monomial in

y1, . . . , yd as we did in the beginning.

This slightly more abstract formulation has the following use: Given a fan in

Řd, to each of its cones σ we can associate the algebra k[σ̌ ∩M ], even if the

strictly convex cone σ is not generated by d vectors with determinant ±1.

By a lemma of Gordan [Kempf et al. 1973], the algebra k[σ̌ ∩M ] is finitely

generated, so it corresponds to an affine algebraic variety Xσ = Spec k[σ̌ ∩M ].

This variety is a d-dimensional affine space if and only if the cone σ̌ (or σ) is

d-dimensional and generated by vectors that form a basis of the integral lattice

of Řd. It is, however, always normal and has rational singularities only [Kempf

et al. 1973]; moreover it is rational, which means that the field of fractions of

k[σ̌ ∩M ] is k(u1, . . . , ud).

If two cones σα and σβ have a common face ταβ , the affine varieties Xσα
and

Xσβ
can be glued up along the open set corresponding to the shared Xταβ

. By

this process, the fan Σ gives rise to an algebraic variety Z(Σ) proper over Ad(k):

π(Σ) : Z(Σ)→ Ad(k).

The variety Z(Σ) is covered by affine charts corresponding to the d-dimensional

cones σ of Σ, and in each of these charts the map π(Σ) corresponds to the inclu-

sion of algebras k[u1, . . . , ud] ⊂ k[σ̌ ∩M ]. If σ is generated by d vectors forming

a basis of the integral lattice (determinant ±1), the latter algebra is a polyno-

mial ring k[y1, . . . , yd] and the inclusion is given by the monomial expression we

started from.

Definition. A convex polyhedral cone σ is compatible with a convex polyhedral

cone σ
′ if σ ∩ σ

′ is a face of each. A fan is compatible with a polyhedral cone if

each of its cones is.

Remember that {0} is a face of every strictly convex cone.
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Lemma 2.2. Given two monomials u
m

, u
n, if we can find a fan Σ compatible

with the hyperplane Hm−n in the weight space, then in each chart of Z(Σ) the

transform of one of our monomials will divide the other .

Proof. This follows from Lemma 2.1. �

Example. In dimension d = 2, let’s try to make one of the two monomials

(u1, u2) divide the other after a monomial transformation. The hyperplane in

the weight space is w1 = w2; its intersection with the first quadrant defines a

fan whose cones are σ1 generated by a
1 = (0, 1), a

2 = (1, 1) and σ2 generated by

b
1 = (1, 1), b

2 = (0, 1), together with and their faces. The semigroup of integral

points of σ̌1 ∩M is generated by (1, 0), (−1, 1), which correspond respectively

to the monomials y1 = u1, y2 = u
−1
1 u2. The semigroup of integral points of

σ̌2 ∩M is generated by (0, 1), (1,−1), which correspond to y
′
2 = u2, y

′
1 = u1u

−1
2 .

There is a natural isomorphism of the open sets where u1 6= 0 and u2 6= 0,

and gluing gives the two-dimensional subvariety of A2(k) × P1(k) defined by

t2u1− t1u2 = 0, where (t1 : t2) are the homogeneous coordinates on P1(k), with

its natural projection to A2(k): it is the blowing-up of the origin in A2(k).

σ1

σ2

σ̌1

σ̌2

Now if we have a finite number of distinct monomials 6= 1, say u
m1

, . . . , u
mq

, and

if we can find a fan Σ with support Řd
≥0 and compatible with all the hyperplanes

Hms−mt , 1 ≤ s, t ≤ q, s 6= t, this will give us an algebraic (toric) variety Z(Σ),

possibly singular and endowed with a proper surjective map π(Σ) : Z(Σ) →
Ad(k) such that the pullback by π(Σ) of the ideal M generated by our monomials

is strongly principal in each chart. Properness and surjectivity are ensured (see

[Kempf et al. 1973]) by the fact that the support of Σ is Rd
≥0.

Our collection of hyperplanes Hms−mt , 1 ≤ s, t ≤ q, s 6= t through the origin in

fact defines a fan Σ0(F ) that depends only upon the finite set F = {m1
, . . . ,m

q}
of elements of Zd: take as cones the closures of the connected components of

the complement in Řd
≥0 of the union of all the hyperplanes. They are strictly

convex rational cones because they lie in the first quadrant and are bounded

by hyperplanes whose equations have integral coefficients. Add all the faces of

these cones, and we have a fan, of course not regular in general. To say that a

monomial ideal generated by monomials in the generators of the algebra k[σ̌∩M ]

is locally strongly principal is not nearly as useful when these generators do not
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form a system of coordinates as when they do. However, note that we first make

our ideal M locally strongly principal via the map π(Σ0) : Z(Σ0)→ Ad(k), and

then resolve the singularities of Z(Σ0) using a toric map.

The second step corresponds to a refinement of Σ0 into a regular fan Σ, where

refinement means that each cone of the second fan in contained in a cone of the

original.

This is always possible in view of a result of Kempf, Knudsen, Mumford and

St. Donat:

Theorem 2.3 [Kempf et al. 1973]. A rational fan can always be refined into a

regular fan.

From this follows:

Theorem 2.4. Let k be a field . Given a monomial ideal M in k[u1, . . . , ud],

there exists a fan Σ0 with support Řd
≥0 such that , given any regular refinement

Σ of Σ0, the associated proper birational toric map of nonsingular toric varieties

π(Σ) : Z(Σ)→ Ad(k)

has the property that the transform of M is strongly principal in each chart .

Remark. By construction, for each chart Z(σ) of Z(Σ) there is an element of

M whose transform generates the ideal MOZ(σ). This element cannot be the

same for all charts unless M is already principal.

To see this, assume that there is a monomial u
n whose transform generates

MOZ(Σ) in every chart. This means that every simplicial cone σ of our fan with

support Řd
≥0 is on the positive side of all the hyperplanes Hm−n for all other

monomials u
m generating M . But this is possible only if none of these hyper-

planes meets the positive quadrant outside {0}, which means that u
n divides all

the other u
m.

Remark (Strong principalization and blowing-up). Given a finitely gen-

erated ideal I in a commutative integral domain R, there is a proper birational

map π : B(I) → SpecR, unique up to unique isomorphism, with the property

that the ideal sheaf IOB(I) generated by the compositions with π of the elements

of I is locally principal and generated by a nonzero divisor (that is, it’s an in-

vertible ideal), and that any map W → SpecR with the same property factors

uniquely through π. The map π is called the blowing-up of I in R, or in SpecR.

The blowing-up is independent of the choice of generators of I. Since a product

of ideals is invertible if and only if each ideal is, for I = (f1, . . . , fs)R the blowing-

up in SpecR of the ideal J =
∏

i<j(fi, fj)R will make I strongly principal.

If I is a monomial ideal in k[u1, . . . , ud], according to [Kempf et al. 1973], the

blowing-up of I followed by normalization is the equivariant map associated to

the fan dual to the Newton polyhedron of I. (The Newton polyhedron is defined

in the Appendix.) The reader is encouraged to check that the fan just mentioned
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admits the fan Σ0 introduced above as a refinement, illustrating the general fact

that a strong principalization map factors through the blowing-up.

Strong principalization is stressed in these lectures because it is directly linked

with the resolution of singularities of binomial ideals explained in Section 6.

Exercise. Check that one can in all statements and proofs in this section replace

the positive quadrant of Řd by any strictly convex rational cone σ0 ⊂ Řd. The

affine space Ad(k) is then replaced by the affine toric variety Xσ0
.

3. The Integral Closure of Ideals

Given a finite set F = {m1
, . . . ,m

q} of elements of Zd, define its support

function as the function hF : Řd → R defined by

hF (`) = min1≤s≤q `(ms).

For reasons that will become apparent, I denote the convex hull of F by F . It is

a classical result that

F =
{
n ∈ Rd : `(n) ≥ hF (`) for all ` ∈ Řd

}
;

in words, the convex hull of a set is the intersection of the half-spaces containing

that set (or, as often stated in books on convexity, a convex set is the intersection

of the half-spaces determined by its support hyperplanes). The proof of this

statement also shows that the “positive convex hull” is defined by the same

inequalities, restricted to the linear forms lying in the positive quadrant of Řd:

⋃

1≤s≤q

(ms + Rd
≥0) = {n ∈ Rd : `(n) ≥ hF (`) for all ` ∈ Řd

≥0}.

Lemma 3.1. The support function hF is linear in each cone of the fan Σ0(F )

introduced in Section 2.

Proof. This follows directly from the definitions. �

Choose a strongly principalizing map π(Σ) : Z(Σ)→ Ad(k) with Σ a refinement

of Σ0(F ), as in Theorem 2.4. Then Z(Σ) is normal by [Kempf et al. 1973] (it is

regular if Σ is regular), and π(Σ) is proper and birational. Let u
n be a monomial

in k[u1, . . . , ud]. Given a chart Xσ of Z(Σ), corresponding to σ ∈ Σ, a necessary

and sufficient condition for u
n ◦π(Σ) to belong in k[σ̌∩M ] to the ideal generated

by the transforms of the generators of M is that we have `(n) ≥ hF (`) for all

` ∈ σ: by Lemma 3.1, we have for some t ∈ {1, . . . , q} that hF (`) = `(mt)

for all ` ∈ σ, and then by the definition of σ̌ our inequality means that the

quotient of the transform of u
n by the transform of u

mt

is in k[σ̌ ∩M ], which

means that u
n
k[σ̌ ∩ M ] ⊂ M k[σ̌ ∩ M ]. For this to be true in all charts it

is necessary and sufficient, as we saw, that n should be in the convex hull of⋃
1≤s≤q(m

s + Rd
≥0). So we have finally, using a little sheaf-theoretic language
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(in particular, u
nOZ(Σ) = u

n ◦ π(Σ) viewed as a global section of the sheaf

OZ(Σ)):

Lemma 3.2. u
nOZ(Σ) ∈ MOZ(Σ) if and only if n is in the convex hull of⋃

1≤s≤q(m
s + Rd

≥0).

Now one defines integral dependance over an ideal (a concept which goes back

to Prüfer or even Dedekind) as follows:

Definition. An element h of a commutative ring R is integral over an ideal I

of R if it satisfies an algebraic relation

h
r + a1h

r−1 + · · ·+ ar = 0, with ai ∈ I
i for 1 ≤ i ≤ r.

It is not difficult to see that the set of elements integral over I is an ideal I

containing I and contained in
√

I; it is the integral closure of I. We have the

following characterization in algebraic geometry, which follows from the Riemann

extension theorem:

Proposition 3.3 [Lipman and Teissier 1981]. Let k be a field and R a localiza-

tion of a finitely generated reduced k-algebra. Let I be an ideal of R and h ∈ R.

The element h is integral over I if and only if there exists a proper and birational

morphism t : Z → SpecR such that h ◦ t ∈ IOZ (i .e., hOZ ∈ IOZ), and then

this inclusion holds for any such morphism such that Z is normal and IOZ is

invertible.

From this follows the interpretation of Lemma 3.2:

Proposition 3.4. The integral closure in k[u1, . . . , ud] of a monomial ideal

generated by the monomials u
m1

, . . . , u
mq

is the monomial ideal generated by the

monomials with exponents in the convex hull E of E =
⋃

1≤s≤q(m
s + Rd

≥0).

Example. In the ring k[u1, . . . , ud], for each integer n ≥ 1 the integral closure

of the ideal generated by u
n
1 , . . . , u

n
d is (u1, . . . , ud)

n.

Exercise. Check that in the preceding subsection, one can in all statements and

proofs replace the positive quadrant of Rd by any strictly convex rational cone

σ0 ⊂ Rd and let M denote the ideal generated by monomials u
m1

, . . . , u
mq

of the

normal toric algebra k[σ̌0∩M ]; its integral closure M in that algebra is generated

by the monomials with exponents in the convex hull in σ̌0 of
⋃

1≤s≤q(m
s + σ̌0).

m1

mi

ms

E

E
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4. The Monomial Briançon–Skoda Theorem

Theorem 4.1 (Carathéodory). Let E be a subset of Rd; every point of the

convex hull of E is in the convex hull of d + 1 points of E.

Proof. For the reader’s convenience, here is a sketch of the proof, according

to [Grünbaum 1967]. First one checks that the convex hull of E, defined as the

intersection of all convex subsets of Rd containing E, coincides with the set of

points of Rd which are in the convex hull of a finite number of points of E:

Given a finite set F of points of E, its convex hull F is contained in the convex

hull E of E. Now for two finite sets F and F
′ we have F ∪ F

′ ⊆ F ∪ F ′, so that⋃
F F is convex. It contains E and so has to be equal to E, which proves the

assertion.

Given a point x of the convex hull of E, let p be the smallest integer such

that x is in the convex hull of p + 1 points of E, i.e., that x =
∑p

i=0 αixi, with

αi ≥ 0,
∑p

i=0 αi = 1 and xi ∈ E; we must prove that p ≤ d. Assume that p > d.

Then the points xi must be affinely dependent: there is a relation
∑p

i=0 βixi = 0

with βi ∈ R, where not all the βi are zero and
∑p

i=0 βi = 0. We may choose the

βi so that at least one is > 0 and renumber the points xi so that βp > 0 and

for each index i such that βi > 0 we have αi/βi ≥ αp/βp. For 0 ≤ i ≤ p− 1 set

γi = αi − αp/βpβi, and γp = 0. Now we have

p−1∑

i=0

γixi =

p∑

i=0

γixi =

p∑

i=0

αixi −
αp

βp

p∑

i=0

βixi = x,

and moreover
p−1∑

i=0

γi =

p∑

i=0

γi =

p∑

i=0

αi −
αp

βp

p∑

i=0

βi = 1.

Finally, each γi is indeed ≥ 0 since if βi ≤ 0 we have γi ≥ αi ≥ 0 and if βi > 0

then by our choice of numbering we have γi = βi(αi/βi−αp/βp) ≥ 0. Assuming

that p > d we have expressed x as the barycenter of the p points x0, . . . , xp−1 of

E with coefficients γi, which contradicts the definition of p and thus proves the

theorem. �

Taking for E the set consisting of d + 1 affinely independent points of Rd shows

that the bound of the theorem is optimal. However, the following result means

that this is essentially the only case where d + 1 points are necessary:

Proposition 4.2 [Fenchel 1929; Hanner and R̊adström 1951]. Let E ⊂ Rd be

a subset having at most d connected components. Every point of the convex hull

of E is in the convex hull of d points of E.

Proof. We follow [Hanner and R̊adström 1951]. Assume that a point m of

the convex hull is not in the convex hull of any subset of d points of E. By

Caratheodory’s theorem, m is in the convex hull τ ⊂ Rd of d + 1 points of

E; if these d + 1 points were not linearly independent, the point m would be
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in the convex hull of the intersection of E with a hyperplane and we could

apply Caratheodory’s theorem in a space of dimension d− 1 and contradict our

assumption, so the convex hull τ of the d + 1 points is a d-simplex. Choose

m as origin, and denote by (q0, . . . , qd) the vertices of τ . We have therefore

0 =
∑d

0 riqi with ri ≥ 0 and
∑d

0 ri = 1. Our assumption that 0 is not the

barycenter of d points implies that 0 is in the interior of τ , that is, ri > 0 for

0 ≤ i ≤ d. Consider the simplex −τ and the cones with vertex 0 drawn on the

faces of −τ . Since the ri are > 0, we can reinterpret the expression of 0 as a

barycenter of the qi to mean that each qi is in the cone with vertex 0 generated

by the vectors −qj for j 6= i; thus each of these cones drawn from 0 on the faces

of −τ contains a point of E, namely one of the qi. The union of their closures

is Rd because −τ is a d-simplex, and no point of E can be on the boundary of

one of these cones; if such was the case, this point, together with d − 1 of the

vertices of τ , would define a (d − 1)-simplex with vertices in E and containing

0, a possibility which we have excluded. Therefore these d + 1 cones divide E

into d + 1 disjoint nonempty parts, and E must have at least d + 1 connected

components. �

We remark that, given finitely many points m
1
, . . . ,m

q in the positive quadrant

Rd
≥0, the set E =

⋃q
s=1(m

s + Rd
≥0) is connected. Indeed, by definition, each

point of this set is connected by a line to at least one of the points m
s, and

any point of Rd
≥0 having each of its coordinates larger than the maximum over

s ∈ {1, . . . , q} of the corresponding coordinate of the m
s is in E and connected

by lines to all the points m
s, so that any two of the points m

s are connected

in E.

Now let σ be a strictly convex rational cone in Řd and σ̌ ⊂ Rd its dual. We

need not assume that σ is regular, or even simplicial. Let m
1
, . . . ,m

q be integral

points in σ̌, corresponding to monomials u
m1

, . . . , u
mq

in the algebra k[σ̌ ∩M ].

The integral closure M in k[σ̌ ∩M ] of the ideal M generated by the monomials

u
ms

is the ideal generated by the monomials u
n such that n is in the convex hull

of the set E =
⋃q

s=1(m
s + σ̌). What we have just said about the connectedness

of E extends immediately.

Theorem 4.3 (Monomial Briançon–Skoda theorem). Let k be a field and

let σ be a strictly convex rational cone in Rd. Given a monomial ideal M in

k[σ̌ ∩M ], we have the inclusion of ideals

M d ⊂M .

Proof. (Compare with [Teissier 1988].) Let y1, . . . , yN be a system of homo-

geneous generators of the graded k-algebra k[σ̌ ∩ M ] and let y
m1

, . . . , y
mq

be

generators of M in k[σ̌ ∩M ]. Set E =
⋃

1≤s≤q(m
s + σ̌) ⊂ σ̌. Thanks to Propo-

sition 4.2 and the fact that E is connected, it suffices to show that any point

n ∈ σ̌ ∩M which is the barycenter of d points x1, . . . , xd, each of which is the
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sum of d points of E, is in E. But then n/d is also, as a barycenter of barycen-

ters of points of E, in the convex hull of E, and therefore, by Proposition 4.2,

the barycenter of d points of E. Write n/d =
∑d

i=1 riei with ei ∈ E, ri ≥ 0

and
∑d

i=1 ri = 1. At least one of the ri, say r1, must be at least 1/d, so that

n ∈ e1 + σ̌ ⊂ E, which proves the result. �

Exercise. Prove by the same method that for each integer λ ≥ 1 we have

M d+λ−1 ⊂M
λ
.

Remark. It is not difficult to check that

E = lim
n→∞

nE

n
=

⋃

n∈N

nE

n
,

where nE is the Minkowski multiple (the set of all sums of n elements of E)

and division by n means a homothety of ratio 1/n. In fact, the inclusion⋃
n∈N(nE/n) ⊂ E is clear, and the first set is also clearly convex, so they

are equal. The combinatorial avatar of the weak form of the Briançon–Skoda

theorem, which states that x ∈M implies x
d ∈M , is the existence of a uniform

bound for the n such that x ∈ E implies nx ∈ E, namely n = d.

The Briançon–Skoda theorem is the statement M d ⊂ M for an ideal in a d-

dimensional regular local ring. The rings k[σ̌ ∩M ] are not regular in general,

nor are they local, but the monomial Briançon–Skoda theorem for ideals in their

localizations k[σ̌∩M ]m follows from the results of [Lipman and Teissier 1981] in

the case where M contains an ideal generated by a regular sequence and with the

same integral closure, since k[σ̌ ∩M ] has only rational singularities (see [Kempf

et al. 1973]) and hence k[σ̌ ∩M ]m is a pseudorational local ring.

The Briançon–Skoda theorem was originally proved [Skoda and Briançon

1974] by analytic methods for ideals of C{z1, . . . , zd}, and has been the sub-

ject of many algebraic proofs and generalizations. The first algebraic proof was

given in [Lipman and Teissier 1981], albeit for a restricted class of ideals in an

extended class of rings (pseudorational ones). See [Hochster 2004] and [Blickle

and Lazarsfeld 2004] in this volume for references and recent developments.

5. Polynomial Ideals and Nondegeneracy

The hypothesis of nondegeneracy of a polynomial with respect to its Newton

polyhedron has a fairly ancient history in the sense that it was made more or

less implicitely by authors trying to compute various invariants of a projective

hypersurface from its Newton polyhedron. In the nineteenth century one may

mention Minding and Elliott, and in the twentieth Baker (1905) and Hodge

(1930). The last three were interested in computing the geometric genus of a

projective curve or surface with isolated singularities from its Newton polygon

or polyhedron. This is a special case of computation of a multiplier ideal. See



MONOMIAL IDEALS, BINOMIAL IDEALS, POLYNOMIAL IDEALS 223

[Merle and Teissier 1980], and compare its Theorem of Hodge 2.3.1 with the

recent work of J. Howald expounded in [Blickle and Lazarsfeld 2004]; see also

[Howald 2001].

The modern approach to nondegeneracy was initiated essentially by Kush-

nirenko [1976] and Khovanskii, who made the nondegeneracy condition explicit

and computed from the Newton polyhedron invariants of a similar nature. In

particular Khovanskii gave the general form of Hodge’s result. The essential

facts behind the classical computations turned out to be that nondegenerate sin-

gularities have embedded toric (pseudo-)resolutions which depend only on their

Newton polyhedron and from which one can read combinatorially various inter-

esting invariants, and that in the spaces of coefficients of all those functions or

systems of functions having given polyhedra, those which are nondegenerate are

Zariski-dense.

Let f =
∑

p fpu
p be an arbitrary polynomial or power series in d variables with

coefficients in the field k. Let Supp f = {p ∈ Rd : fp 6= 0} be its support.

The affine Newton polyhedron of f in the coordinates (u1, . . . , ud) is the bound-

ary N (f) of the convex hull in Rd
≥0 of the support of f . The local Newton

polyhedron is the boundary N+(f) of

P+(f) = convex hull of (Supp f + Rd
≥0).

It has finitely many compact faces and its noncompact faces of dimension at

most d − 1 are parallel to coordinate hyperplanes. Both polyhedra depend not

only on f but also on the choice of coordinates. Remark also that the local

Newton polyhedron is of no interest if f has a nonzero constant term.

We can define the affine and the local support functions associated with the

function f as follows (in the affine case, this is the same definition as before,

applied to the set of monomials appearing in f):

For the affine Newton polyhedron it is the function defined on Řd by

hN (f)(`) = minp∈N (f) `(p),

and for the local Newton polyhedron it is defined on the first quadrant Řd
≥0 by

hN+(f)(`) = minp∈N+(f) `(p).

Both functions are piecewise linear in their domain of definition, meaning that

there is a decomposition of the domain of definition into convex cones such that

the function is linear in each cone. These collections of cones are actually fans,

in Řd and Řd
≥0 respectively. These fans are “dual” to the Newton polyhedra in

the following sense:

Consider, say for the local polyhedron, the following equivalence relation be-

tween linear functions:

` ≡ `
′ ⇐⇒

{
p ∈N+(f) : `(p) = hN+(f)(`)

}
=

{
p ∈N+(f) : `

′(p) = hN+(f)(`
′)

}
.
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Its equivalence classes form a decomposition of the first quadrant into strictly

convex rational cones, and by definition the support function is linear in each of

them, given by ` 7→ `(p) for any p in the set
{
p ∈ N+(f) : `(p) = hN+(f)(`)

}
.

These sets are faces of the Newton polyhedron, and the collection of the cones

constitutes a fan ΣN in Rd
≥0, called the dual fan of the Newton polyhedron.

This establishes a one-to-one decreasing correspondence between the cones of the

dual fan of a Newton polyhedron and the faces of all dimensions of that Newton

polyhedron. Corresponding to noncompact faces of the Newton polyhedron meet

coordinate hyperplanes outside the origin.

We have now associated to each polynomial f =
∑

p fpu
p a dual fan in Řd cor-

responding to the global Newton polyhedron, and another in Řd
≥0 corresponding

to the local Newton polyhedron. The local polyhedron is also defined for a series

f =
∑

p fpu
p, and the combinatorial constructions are the same. For the mo-

ment, let’s restrict our attention to the local polyhedron, assuming that f0 = 0,

and let’s choose a regular refinement Σ of the fan associated to it.

By the definition just given, this means that for each cone σ = 〈a1
, . . . , a

k〉
of the fan Σ, the primitive vectors a

i form part of a basis of the integral lattice,

and all the linear forms p 7→ 〈ai
, p〉, when restricted to the set {p : fp 6= 0}, take

their minimum value on the same subset, which is a face, of the (local) Newton

polyhedron of f =
∑

p fpu
p. This face may or may not be compact.

We examine the behavior of f under the map π(σ) : Z(σ) → Ad(k) corre-

sponding to a cone σ = 〈a1
, . . . , a

d〉 ⊂ Řd
≥0 of a regular fan which is a subdivision

of the fan associated to the local polyhedron of f . If we write h for hN+(f) we

get

f ◦ π(σ) =
∑

p

fpy
〈a1,p〉
1 . . . y

〈ad,p〉
d

= y
h(a1)
1 . . . y

h(ad)
d

∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d .

The last sum is by definition the strict transform of f by π(σ).

Exercises. Check that:

(a) In each chart Z(σ) the exceptional divisor consists (set-theoretically) of the

union of those hyperplanes yj = 0 such that a
j is not a basis vector of Žd.

(b) Provided that no monomial in the ui divides f , the hypersurface

∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d = 0

is indeed the strict transform by the map π(σ) : Z(σ)→ Ad(k) of the hyper-

surface X ⊂ Ad(k) defined by f(u1, . . . , ud) = 0, in the sense that it is the

closure in Z(σ) of the image of X∩(k∗)d by the isomorphism induced by π(σ)

on the tori of the two toric varieties Z(σ) and Ad(k) as well as in the sense
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that it is obtained from f ◦ π(σ) by factoring out as many times as possible

the defining functions of the components of the exceptional divisor.

Denote by f̃ the strict transform of f and note that by construction it has a

nonzero constant term: the cone σ is of maximal dimension, which means that

there is a unique exponent p such that 〈a, p〉 = h(a) for a ∈ σ.

The map π(τ) associated to a face τ of σ coincides with the restriction of

π(σ) to an open set Z(τ) ⊂ Z(σ) which is of the form yj 6= 0 for j ∈ J , where J

depends on τ ⊂ σ.

Now we can, for each cone σ of our regular fan, stratify the space Z(σ) in

such a way that π(σ)−1(0) is a union of strata. Let I be a subset of {1, 2, . . . , d}
and define SI to be the constructible subset of Z(σ) defined by yi = 0 for

i ∈ I, yi 6= 0 for i /∈ I. The SI for I ⊂ {1, 2, . . . , d} constitute a partition of

Z(σ) into nonsingular varieties, constructible in Z(σ), which we call the natural

stratification of Z(σ). If we glue up two charts Z(σ) and Z(σ′) along Z(σ ∩ σ
′),

the natural stratifications glue up as well.

If we restrict the strict transform

f̃(y1, . . . , yd) =
∑

p

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d

to a stratum SI , we see that in the sum representing f̃(y1, . . . , yd) only the terms

fpy
〈a1,p〉−h(a1)
1 . . . y

〈ad,p〉−h(ad)
d such that 〈ai

, p〉 − h(ai) = 0 for i ∈ I survive.

These equalities define a unique face γI of the Newton polyhedron of f , since

our fan is a subdivision of its dual fan. Given a series f =
∑

p fpu
p and a weight

vector ǎ ∈ Rd
≥0, the set

{
p ∈ Zd

≥0 : fp 6= 0 and 〈ǎ, p〉 = h(ǎ)
}

is a face of the local Newton polyhedron of f , corresponding to the cone of the

dual fan which contains ǎ in its relative interior. If all the coordinates of the

vector ǎ are positive, this face is compact.

Moreover, if we define

fγI
=

∑

p∈γI

fpu
p

to be the partial polynomial associated to the face γI , which is nothing but the

sum of the terms of f whose exponent is in the face γI , we see that we have the

fundamental equality

f̃ |SI
= f̃γI

|SI

and we remark moreover that f̃γI
is a function on Z(σ) which is independent of

the coordinates yi for i ∈ I, so that it is determined by its restriction to SI .

Now, to say that the strict transform f̃ = 0 in Z(σ) of the hypersurface

f = 0 is transversal to the stratum SI and is nonsingular in a neighborhood

of its intersection with it is equivalent to saying that the restriction f̃ |SI
of the

function f̃ defines, by the equation f̃ |SI
= 0, a nonsingular hypersurface of SI .
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By the definition of SI and what we have just seen, this in turn is equivalent to

saying that the equation f̃γI
= 0 defines a nonsingular hypersurface in the torus

(k∗)d =
{
u :

∏d
1 uj 6= 0

}
of Z(σ), and this finally is equivalent to saying that

fγI
= 0 defines a nonsingular hypersurface in the torus (k∗)d of the affine space

Ad(k) since π(σ) induces an isomorphism of the two tori.

This motivates the definition:

Definition. The series f =
∑

p fpu
p is nondegenerate with respect to its New-

ton polyhedron in the coordinates (u1, . . . , ud) if for every compact face γ of

N+(f) the polynomial fγ defines a nonsingular hypersurface of the torus (k∗)d.

Remark. By definition of the faces of the Newton polyhedron and of the dual

fan, in each chart Z(σ) of a regular fan refining the dual fan of N+(f), the

compact faces γI correspond to strata SI of the canonical stratification which

are contained in π(σ)−1(0). Each stratum SI which is not contained in π(σ)−1(0)

contains in its closure strata which are.

Proposition 5.1. If the germ of hypersurface X is defined by the vanishing

of a series f which is nondegenerate, there is a neighborhood U of 0 in Ad(k)

(a formal neighborhood if the series f does not converge) such that the strict

transform of X ∩ U by the toric map

π(Σ) : Z(Σ)→ Ad(k)

associated to a regular fan refining the dual fan of its Newton polyhedron is non-

singular and transversal in each chart to the strata of the canonical stratification.

Proof. By the fundamental equality seen above, the restriction of the strict

transform to one of the strata contained in π(σ)−1(0), say SI , has the same be-

havior as the restriction of fγI
, where γI is a compact face of the Newton poly-

hedron of f , to the torus (k∗)d. As we saw, this implies that the strict transform

of X ∩U is nonsingular and transversal to SI . By openness of transversality the

same transversality holds, whithin a neighborhood of each point of π(Σ)−1(0),

for all strata.

Since the map π(Σ) : Z(Σ)→ Ad(k) is proper, there is a neighborhood U of 0

in Ad(k) such that the strict transform by π(Σ) of the hypersurface X ⊂ Ad(k)

is nonsingular in π(Σ)−1(U) and transversal in each chart Z(σ) to all the strata

of the canonical stratification. �

The definition and properties of nondegeneracy extend to systems of functions

as follows. Let f1, . . . , fk be series in the variables u1, . . . , ud defining a subspace

X ⊂ Ad(k) in a neighborhood of 0. For each j = 1, . . . , k we have a local Newton

polyhedron N+(fj). Choose a regular fan Σ of Rd
≥0 compatible with all the fans

dual to the polyhedra N+(fj) for j = 1, . . . , k. We have for each j the same

correspondence as above between the strata SI of each chart Z(σ) for σ ∈ Σ and

the faces of N+(fj), the strata contained in π(σ)−1(0) corresponding to compact

faces.
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For each vector ǎ ∈ Řd
≥0 we get as above a system of equations f1,ǎ, . . . , fk,ǎ,

where

fj,ǎ =
∑

{p:〈ǎ,p〉=h(ǎ)}

fjpu
p
.

Definition. The system of equations f1, . . . , fk is said to be nondegenerate

of rank c with respect to the Newton polyhedra of the fj in the coordinates

(u1, . . . , ud) if for each vector ǎ ∈ Rd
>0 the ideal of k[u±1

1 , . . . , u
±1
d ] generated by

the polynomials f1,ǎ, . . . , fk,ǎ defines a nonsingular subvariety of dimension d−c

of the torus (k∗)d.

Exercise. Check that, since we took ǎ ∈ Rd
>0 in the definition, it is equiva-

lent to say that for each choice of a compact face γj in each N+(fj), the ideal

generated by the polynomials f1γ1
, . . . , fkγk

defines a nonsingular subvariety of

dimension d− c of the torus (k∗)d.

Exactly as in the case of hypersurfaces, one then has:

Proposition 5.2. If the system of equations f1, . . . , fk is nondegenerate of rank

c, for any regular fan Σ of Rd
≥0 compatible with the dual fans of the polyhedra

N+(fj), there is a neighborhood U of 0 in Ad(k) (a formal neighborhood if all

the series fj do not converge) such that the strict transform X
′ ⊂ Z(Σ) by the

toric map π(Σ) : Z(Σ)→ Ad(k) of the subvariety X∩U defined in U by the ideal

generated by f1, . . . , fk is nonsingular and of dimension d− c and transversal to

the strata of the natural stratification in π(Σ)−1(U).

Proof. The same as that of Proposition 5.1. �

There is a difference, however, between the birational map X
′ → X ∩U induced

by π(Σ) and a resolution of singularities; this map is not necessarily an isomor-

phism outside of the singular locus; it is therefore only a pseudoresolution in the

sense of [Goldin and Teissier 2000]. In fact, even in the nondegenerate case, and

even for a hypersurface, the Newton polyhedron contains in general far too little

information about the singular locus of X near 0. Kushnirenko introduced, for

isolated hypersurface singularities, the notion of being convenient with respect

to a coordinate system. It means that the Newton polyhedron meets all the

coordinate axis of Rd
≥0. For a hypersurface with isolated singularity, it implies

that a toric pseudoresolution associated to the Newton polyhedron is a resolu-

tion. This was extended and generalized by M. Oka for complete intersections.

The reader is referred to [Oka 1997, Ch. III] (especially Theorem 3.4) and we will

only quote here the following fact, which is also a consequence of the existence

of a toric pseudoresolution:

Theorem [Oka 1997, Ch. III, Lemma 2.2]. If k is a field and (X, 0) ⊂ Ad(k)

is a germ of a complete intersection with equations f1 = · · · = fc = 0, which

is nondegenerate with respect to the Newton polyhedra of its equations in the

coordinates u1, . . . , ud, then there is a (possibly formal) neighborhood U of 0 ∈
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Ad(k) such that the intersection of X and the torus (k∗)d has no singularities

in U .

In the formal case this should be understood as saying that formal germ at 0 of

the singular locus of X is contained in the union of the coordinate hyperplanes.

Finally, it seems that the following coordinate-free definition of nondegeneracy

is appropriate:

Definition. An algebraic or formal subscheme X of an affine space Ad(k)

is nondegenerate at a point x ∈ X if there exist local coordinates u1, . . . , ud

centered at x and an open (étale or formal) neighborhood U of x in Ad(k)

such that there is a proper birational toric map π : Z → U in the coordinates

u1, . . . , ud with Z nonsingular and such that the strict transform X
′ of X ∩ U

by π is nonsingular and transversal to the exceptional divisor at every point of

π
−1(x) ∩X

′.

If X admits a system of equations which in some coordinates is nondegenerate

with respect to its Newton polyhedra, it is also nondegenerate in this sense as

we saw. The converse will not be discussed here.

Question [Teissier 2003]. Given a reduced and equidimensional algebraic or

formal space X over an algebraically closed field k, is it true that for every point

x ∈ X there is a local formal embedding of X into an affine space AN (k) such

that X is nondegenerate in AN (k) at the point x?

A subsequent problem is to give a geometric interpretation of the systems of

coordinates in which an embedded toric resolution for X exists.

For branches (analytically irreducible curve singularities), the question is an-

swered positively, and the problem settled in Section 7 below. Recent work of

P. González Pérez [2003] also settles question and problem for irreducible quasi-

ordinary hypersurface singularities.

In [Teissier 2003] one finds an approach to the simpler problem where the

nondegeneracy is requested only with respect to a valuation of the local ring of

X at x.

In a given coordinate system, and for given Newton polyhedra, “almost all”

systems of polynomials having these given Newton polyhedra are nondegenerate

with respect to them. In this sense there are many nondegenerate singularities.

However, nondegenerate singularities are very special from the viewpoint of the

classification of singularities. A plane complex branch is nondegenerate in some

coordinate system if and only if it has only one characteristic pair, which means

that its equation can be written in some coordinate system as

u
p
1 − u

q
0 +

∑

i/q+j/p>1

aiju
i
0u

j
1 = 0,
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where aij ∈ k and the integers p, q are coprime. The curve

(u2
1 − u

3
0)

2 − u
5
0u1 = 0

is degenerate in any coordinate system since it has two characteristic pairs [Smith

1873; Brieskorn and Knörrer 1986].

6. Resolution of Binomial Varieties

This section presents what is in a way the simplest class of nondegenerate

singularities, according to the results in [González Pérez and Teissier 2002]:

Let k be a field. Binomial varieties over k are irreducible varieties of the

affine space Ad(k) which can, in a suitable coordinate system, be defined by

the vanishing of binomials in these coordinates, which is to say expressions of

the form u
m − λmnu

n with λmn ∈ k
∗. An ideal generated by such binomial

expressions is called a binomial ideal. These affine varieties defined by prime

binomial ideals are also the irreducible affine varieties on which a torus of the

same dimension acts algebraically with a dense orbit (see [Sturmfels 1996]); they

are the (not necessarily normal) affine toric varieties.

Binomial ideals were studied in [Eisenbud and Sturmfels 1996]; these authors

showed in particular that if k is algebraically closed their geometry is determined

by the lattice generated by the differences m − n of the exponents of the gen-

erating binomials. If the field k is not algebraically closed, the study becomes

more complicated. Here I will assume throughout that k is algebraically closed.

It is natural to study the behavior of binomial ideals under toric maps.

Let σ = 〈a1
, . . . , a

d〉 be a regular cone in Řd
≥0. The image of a binomial

u
m − λmnu

n

under the map k[u1, . . . , ud] → k[y1, . . . , yd] determined by ui 7→ y
a1

i

1 . . . y
ad

i

d is

given by

u
m − λmnu

n 7→ y
〈a1,m〉
1 . . . y

〈ad,m〉
d − λmny

〈a1,n〉
1 . . . y

〈ad,n〉
d .

In general this only tells us that the transform of a binomial is a binomial, which

is no news since by definition of a toric map the transform of a monomial is a

monomial.

However, something interesting happens if we assume that the cone σ is com-

patible with the hyperplane Hm−n which is the dual in the space of weights of

the vector m−n of the space of exponents, in the sense of definition on page 215,

where we remember that the origin {0} is a face of any polyhedral cone. Note

that the Newton polyhedron of a binomial has only one compact face, which is a

segment, so that for a cone in Řd
≥0, being compatible with the hyperplane Hm−n

is the same as being compatible with the dual fan of the Newton polyhedron of

our binomial.
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Let us assume that the binomial hypersurface u
m−λmnu

n = 0 is irreducible;

this means that no variable uj appears in both monomials, and the vector m−n

is primitive. In the sequel, I will tacitly assume this and also that our binomial

is really singular, that is, not of the form u1 − λu
m.

If the convex cone σ of dimension d is compatible with the hyperplane Hm−n,

it is contained in one of the closed half-spaces determined by Hm−n. This means

that all the nonzero 〈ai
,m−n〉 have the same sign, say positive. It also means

that, if we renumber the vectors a
i in such a way that 〈ai

,m−n〉 = 0 for 1 ≤ i ≤ t

and 〈ai
,m−n〉 > 0 for t + 1 ≤ i ≤ d, we can write the transform of our binomial

as

u
m − λmnu

n 7→ y
〈a1,n〉
1 . . . y

〈ad,n〉
d

(
y
〈at+1,m−n〉
t+1 . . . y

〈ad,m−n〉
d − λmn

)
.

And we can see that the strict transform y
〈at+1,m−n〉
t+1 . . . y

〈ad,m−n〉
d −λmn = 0 of

our hypersurface in the chart Z(σ) is nonsingular!

It is also irreducible in view of the results of [Eisenbud and Sturmfels 1996]

because we assumed that the vector m − n is primitive and the matrix (ai
j) is

unimodular. This implies that the vector (0, . . . , 0, 〈at+1
, m−n〉, . . . , 〈ad

, m−n〉)
is also primitive, and the strict transform irreducible. Moreover, in the chart

Z(σ) with σ = 〈a1
, . . . , a

d〉, the strict transform meets the hyperplane yj = 0

if and only if 〈aj
,m−n〉 = 0. Unless our binomial is nonsingular, a case we

excluded, this implies that a
j is not a vector of the canonical basis of W , so

that yj = 0 is a component of the exceptional divisor. So we see that the

strict transform meets the exceptional divisor only in those charts such that

σ ∩Hm−n 6= {0}, and then meets it transversally.

So we have in this very special case achieved that the total transform of our

irreducible binomial hypersurface defines in each chart a divisor with normal

crossings that is, a divisor locally at every point defined in suitable local coor-

dinates by the vanishing of a monomial and whose irreducible components are

nonsingular.

Now we consider a prime binomial ideal of k[u1, . . . , ud] generated by (um` −
λ`u

n`

)`∈{1,...,L}, λ` ∈ k
∗. Let us denote by L the sublattice of Zd generated

by the differences m
` − n

`. According to [Eisenbud and Sturmfels 1996], the

dimension of the subvariety X ⊂ Ad(k) defined by the ideal is d − r where r

is the rank of the Q-vector space L ⊗Z Q. To each binomial is associated a

hyperplane H` ⊂ Řd, the dual of the vector m
` − n

` ∈ Rd. The intersection W

of the hyperplanes H` is the dual of the vector subspace L ⊗ZR of Rd generated

by the vectors m
` − n

`; its dimension is d− r.

Let Σ be a fan with support Rd
≥0 which is compatible with each of the

hyperplanes H`. Let us compute the transforms of the generators u
m` − λ`u

n`

in a chart Z(σ) associated to the cone σ = 〈a1
, . . . , a

d〉: after renumbering the

vectors a
j and possibly exchanging some m

`
, n

` and replacing λ` by its inverse,

we may assume that a
1
, . . . , a

t are in W , that the 〈aj
,m

` − n
`〉 are ≥ 0 for
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j = t + 1, . . . , d, and that moreover for each such index j there is an ` such

〈aj
,m

` − n
`〉 > 0. The transforms of the binomials can be written

y
〈a1,n`〉
1 . . . y

〈ad,n`〉
d

(
y
〈at+1,m`−n`〉
t+1 . . . y

〈ad,m`−n`〉
d − λ`

)

with that additional condition. If σ∩W = {0}, we have t = 0 and the subvariety

defined by the equations just written (the strict transform of X in Z(σ)) does not

meet any coordinate hyperplane; in particular it does not meet the exceptional

divisor. In general, still assuming that none of the binomials is already in the

form uj − λu
m, one sees that the additional condition implies that, just like in

the case of hypersurfaces, the strict transform meets the hyperplane yj = 0 if

and only if a
j is in W .

Now the claim is that in each chart Z(σ) the strict transform is either empty

or nonsingular and transversal to the exceptional divisor.

The Q-vector space generated by the m
`−n

` is of dimension r. Let us assume

that m
1 − n

1
, . . . ,m

r − n
r generate it and let us denote by L1 the lattice which

they generate in Zd. By construction, the quotient L /L1 is a torsion Z-module.

Let us first show that the strict transform of the subspace X1 ⊂ X defined by

the first r binomial equations is nonsingular and transversal to the exceptional

divisor.

We consider then, for each cone σ = 〈a1
, . . . , a

d〉, the equations

y
〈a1,m1−n1〉
1 · · · · y〈a

d,m1−n1〉
d − λ1 = 0

y
〈a1,m2−n2〉
1 · · · · y〈a

d,m2−n2〉
d − λ2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

y
〈a1,mr−nr〉
1 · · · · y〈a

d,mr−nr〉
d − λr = 0

of the strict transform of X1 in Z(σ).

We can compute by logarithmic differentiation their jacobian matrix J , and

find with the same definition of t as above an equality of d× r matrices:

yt+1 . . . ydJ = y

P

s
〈at+1,ms−ns〉

t+1 . . . y

P

s
〈ad,ms−ns〉

d

(
〈aj

,m
s − n

s〉
)
1≤j≤d,1≤s≤r

.

Lemma 6.1. Given an irreducible binomial variety X ⊂ Ad(k), with the nota-

tions just introduced , for any regular cone σ = 〈a1
, . . . , a

d〉 compatible with the

hyperplanes H`, the image in Matd×L(k) of the matrix

(
〈aj

,m
s − n

s〉
)
1≤j≤d,1≤s≤L

∈ Matd×L(Z)

has rank r.

Proof. Since the vectors a
j form a basis of Qd, and the space W̌ = L ⊗Z R

generated by the m
s−n

s is of dimension r, the rank of the matrix
(
〈aj

,m
s−n

s〉
)

is r, which proves the lemma if k is of characteristic zero. If the field k is of

positive characteristic the proof is a little less direct; see [Teissier 2003, Ch. 6].
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In particular, the rank of the image in Matd×r(k) of the matrix
(
〈aj

,m
s −

n
s〉

)
1≤j≤d,1≤s≤r

∈ Matd×r(Z) is r. �

Lemma 6.2. The strict transform X
′
1 by π(Σ) of the subspace X ⊂ Ad(k) defined

by the ideal of k[u1, . . . , ud] generated by the binomials

u
m1 − λ1u

n1

, . . . , u
mr − λru

nr

is regular and transversal to the exceptional divisor .

Proof. Let σ be a cone of of maximal dimension in the fan Σ. In the chart

Z(σ), none of the coordinates yt+1, . . . , yd vanishes on the strict transform X
′
1

of X1 and the equations of X
′
1 in Z(σ) are independent of y1, . . . , yt. Therefore

to prove that the jacobian J of the equations has rank r at each point of this

strict transform it suffices to show that the rank of the image in Matd×L(k) of

the matrix
(
〈aj

,m
s − n

s〉
)
1≤j≤d,s∈L

∈ Matd×L(Z) is r, which follows from the

lemma. �

Proposition 6.3. If the regular fan Σ with support Řd
≥0 is compatible with all

the hyperplanes Hm`−n` , the strict transform X
′ under the map π(Σ) : Z(Σ)→

Ad(k) of the subspace X ⊂ Ad(k) defined by the ideal of k[u1, . . . , ud] generated

by the (um`−λ`u
n`

)`∈{1,...,L} is regular and transversal to the exceptional divisor ;

it is also irreducible in each chart .

Proof. The preceding discussion shows that the rank of J is r everywhere on

the strict transform of X, and by Zariski’s jacobian criterion this strict transform

is smooth and transversal to the exceptional divisor. But it is not necessarily

irreducible; we show that the strict transform of our binomial variety is one of

its irreducible components. Since the differences of the exponents in the total

transform and the strict transform of a binomial are the same, the lattice of

exponents generated by the exponents of all the strict transforms of the binomials

(um`−λmnu
n`

)`∈{1,...,L} is the image M(σ)L of the lattice L by the linear map

Zd → Zd corresponding to the matrix M(σ) with rows (a1
, . . . , a

d). Similarly

the exponents of the strict transforms of u
m1− λm1n1u

n1

, . . . , u
mr − λmrnru

nr

generate the lattice M(σ)L1. The lattice M(σ)L is the saturation of M(σ)L1,

and so according to [Eisenbud and Sturmfels 1996], since we assume that k

is algebraically closed, the strict transform of our binomial variety is one of

the irreducible components of the binomial variety defined by the r equations

displayed above.

The charts corresponding to regular cones σ ∈ Σ of dimension < d are open

subsets of those which we have just studied, so they contribute nothing new. �

In the case of binomial varieties one can show that the regular refinement Σ

of the fan Σ0 determined by the hyperplanes Hms−ns can be chosen in such a

way that the restriction X
′ → X of the map π(Σ) to the strict transform X

′

of X induces an isomorphism outside of the singular locus of X; it is therefore
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an embedded resolution of X ⊂ Ad(k) and not only a pseudoresolution; see

[González Pérez and Teissier 2002] and [Teissier 2003, § 6.2].

Remark. Since [Hironaka 1964], one usually seeks to achieve resolution of singu-

larities by successions of blowing-ups with nonsingular centers, which moreover

are “permissible”. According to [De Concini and Procesi 1983; 1985], toric maps

are dominated by finite successions of blowing-ups with nonsingular centers.

Now in view of the results of Section 5, we expect that if we deform a binomial

variety by adding to each of its equations terms which do not affect the Newton

polyhedron, the same toric map will resolve the deformed variety as well. How-

ever, it may be only a pseudoresolution, since the effect of the deformation on

the singular locus is difficult to control. The next section shows that in a special

case one can, conversely, present a singularity as a deformation of a toric variety,

and thus obtain an embedded toric resolution.

7. Resolution of Singularities of Branches

This section is essentially an exposition of material in [Goldin and Teissier

2000] and [Teissier 2003]. The idea is to show that any analytically irreducible

germ of curve is in a canonical way a deformation of a monomial curve, which

is defined by binomial equations. In this terminological mishap, the monomial

refers to the parametric presentation of the curve; the parametric presentation

is more classical, but the binomial character of the equations is more suitable

for resolution of singularities.

The deformation from the monomial curve to the curve is “equisingular”,

so that the toric map which resolves the singularties of the monomial curve

according to Section 6 also resolves the singularities of our original curve once

it is suitably embedded in the affine space where the monomial curve embeds.

One interpretation of this is that after a suitable reembedding, any analytically

irreducible curve becomes nondegenerate.

For example, in order to resolve the singularities at the origin of the plane

curve C with equation

(u2
1 − u

3
0)

2 − u
5
0u1 = 0,

a good method is to view it as the fiber for v = 1 of the family of curves Cv in

A3(k) defined by the equations

u
2
1 − u

3
0 − vu2 = 0,

u
2
2 − u

5
0u1 = 0,

as one can see by eliminating u2 between the two equations. The advantage is

that the fiber for v = 0 is a binomial variety, which we know how to resolve,

and its resolution also resolves all the fibers Cv. For v 6= 0, the fiber Cv is

isomorphic to our original plane curve C, re-embedded in A3(k) by the functions

u0, u1, u
2
1 − u

3
0.
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In more algebraic terms, it gives this:

Let R be a one dimensional excellent equicharacteristic local ring whose com-

pletion is an integral domain and whose residue field is algebraically closed. A

basic example is R = k[[x, y]]/(f) where k is algebraically closed and f(x, y) is

irreducible in k[[x, y]]. Then the normalization R of R is a (discrete) valuation

ring because it is a one dimensional normal local ring. The maximal ideal of

R is generated by a single element, say t, and each nonzero element of R can

be written uniquely as ut
n, where u is invertible in R and n ∈ N ∪ {0}. The

valuation ν(ut
n) of that element is n.

In our basic example, the inclusion R ⊂ R is k[[x, y]]/(f) ⊂ k[[t]] given by

x 7→ x(t), y 7→ y(t), where x(t), y(t) is a parametrization of the plane curve with

equation f(x, y) = 0.

Since R is a subalgebra of R, the values taken by the valuation on the elements

of R (except 0) form a semigroup Γ contained in N. This semigroup has a finite

complement in N and is finitely generated. Let us write it

Γ = 〈γ0, γ1, . . . , γg〉.

The powers of the maximal ideal of R form a filtration

R ⊃ tR ⊃ t
2
R ⊃ · · · ⊃ t

n
R ⊃ · · ·

whose associated graded ring

grνR =
⊕

n∈N∪{0}

t
n
R/t

n+1
R

is a k-algebra isomorphic to the polynomial ring k[t] by the map t (mod t
2
R) 7→ t.

This filtration induces a filtration on the ring R itself, by the ideals Pn =

R ∩ t
n
R, and one defines the corresponding associated graded ring

grν R =
⊕

n∈N∪{0}

Pn/Pn+1 ⊆ grν R = k[t].

Proposition 7.1 [Goldin and Teissier 2000]. The subalgebra grν R of k[t] is

equal to the subalgebra generated by t
γ0 , t

γ1 , . . . , t
γg . It is the semigroup algebra

over k of the semigroup Γ of the valuation ν on R; it is also the affine algebra

of the monomial curve in the affine space Ag+1(k) described parametrically by

ui = t
γi for 0 ≤ i ≤ g.

There is a precise geometrical relationship between the original curve C with

algebra R and the monomial curve C
Γ with algebra grν R: according to a general

principle of algebra, the ring R is a deformation of its associated graded ring.

More precisely, assume that R contain a field of representatives of its residue

field k, i.e., that we have a subfield k ⊂ R such that the composed map k ⊂
R → R/m = k is the identity. This will be the case in particular, according
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to Cohen’s theorem, if the local ring R is complete (and equicharacteristic of

course).

Start from the filtration by the ideals Pn introduced above, set Pn = R for

n ≤ 0 and consider the algebra

Aν(R) =
⊕

n∈Z

Pnv
−n ⊂ R[v, v

−1].

It can be shown (see [Teissier 2003]) that it is generated as a R[v]-algebra by the

ξiv
−γi , 0 ≤ i ≤ g, where ξi ∈ R is of t-adic order γi. Since Pn = R for n ≤ 0 it

contains as a graded subalgebra the polynomial algebra R[v], and therefore also

k[v].

Proposition 7.2 [Teissier 1975; Bourbaki 1983, Ch. VIII § 6, exerc. 2]; see also

[Gerstenhaber 1964; 1966].

(a) The composed map k[v]→ Aν(R) is faithfully flat .

(b) The map
∑

xnv
−n 7→

∑
xn,

where xn is the image of xn in the quotient Pn/Pn+1, induces an isomor-

phism

Aν(R)/vAν(R)→ grν R.

(c) For any v0 ∈ k
∗ the map

∑
xnv

−n 7→
∑

xnv
−n
0

induces an isomorphism of k-algebras

Aν(R)/(v − v0)Aν(R)→ R.

Proof. Since k[v] is a principal ideal domain, to prove (a) it suffices by [Bour-

baki 1968, Ch. I § 3.1] to prove that Aν(R) has no torsion as a k[v]-module and

that for any v0 ∈ k we have (v − v0)Aν(R) 6= Aν(R). The second statement

follows from (b) and (c), which are easy to verify, and the first follows from the

fact that Aν(R) is a subalgebra of R[v, v
−1]. �

This proposition means that there is a one parameter flat family of algebras

whose special fiber is the graded algebra and all other fibers are isomorphic

to R. Geometrically, this gives us a flat family of curves whose special fiber

is the monomial curve and all other fibers are isomorphic to our given curve.

This deformation can be realized in the following way. I assume for simplicity

that R is complete. Then by the definition of the semigroup Γ there are ele-

ments ξ0(t), . . . , ξg(t) in k[[t]] that belong to R and are such that their t-adic

valuations are the generators γi of the semigroup Γ. We may write ξi(t) =
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t
γi +

∑
j>γi

bijt
j with bij ∈ k. Now introduce a parameter v and consider the

family of parametrized curves in Ag+1(k) described as follows:

u0 = ξ0(vt)v−γ0 = t
γ0 +

∑

j>γ0

b0jv
j−γ0t

j
,

u1 = ξ1(vt)v−γ1 = t
γ1 +

∑

j>γ1

b1jv
j−γ1t

j
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ug = ξg(vt)v−γg = t
γg +

∑

j>γg

bgjv
j−γg t

j
.

The parametrization shows that for v = 0 we obtain the monomial curve, and

for any v 6= 0 a curve isomorphic to our given curve, as embedded in Ag+1(k) by

the functions ξ0, . . . , ξg. This is a realisation of the family of Proposition 7.2. In

order to get an equational representation of that family, we must begin by finding

the equations of the monomial curve, which we will then proceed to deform.

The equations of the monomial curve C
Γ correspond to the relations between

the generators γi of Γ. They are fairly simple in the case where Γ is the semigroup

of a plane branch, and in that case C
Γ is a complete intersection. The general

setup is as follows:

Consider the Z-linear map w : Zg+1 → Z determined by sending the i-th base

vector ei to γi; the image of Z
g+1
≥0 is Γ. It is not difficult to see that the kernel of

w is generated by differences m−m
′, where m,m

′ ∈ Z
g+1
≥0 and w(m) = w(m′).

The kernel of w is a lattice (free sub Z-module) L in Zg+1, which must be

finitely generated because Zg+1 is a noetherian Z-module and Z is a principal

ideal domain.

If we choose a basis m
1−n

1
, . . . ,m

q−n
q for L , such that all the m

j
, n

j are

in Z
g+1
≥0 , it follows from the very construction of semigroup algebras that C

Γ is

defined in the space Ag+1(k) with coordinates u0, . . . , ug by the vanishing of the

binomials u
m1− u

n1

, . . . , u
mq− u

nq

.

Now the faithful flatness of the family of Proposition 7.2 implies that it can be

defined in A1(k)×Ag+1(k) by equations which are deformations of the equations

of the monomial curve [Teissier 2003, § 5, proof of 5.49]. Here I cheat a little by

leaving out the fact that one in fact defines a formal space. Anyway, our family

of (formal) curves is also defined by equations of the form

u
m1− u

n1

+
∑

w(r)>w(m1)

c
(1)
r (v)ur = 0,

u
m2− u

n2

+
∑

w(r)>w(m2)

c
(2)
r (v)ur = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u
mq− u

nq

+
∑

w(r)>w(mq)

c
(1)
r (v)ur = 0,



MONOMIAL IDEALS, BINOMIAL IDEALS, POLYNOMIAL IDEALS 237

where the c
(j)
r (v) are in (v)k[[v]], w(r) =

∑g
0 γjrj is the weight of the monomial

u
r with respect to the weight vector w = (γ0, . . . , γg), that is, w(r) = 〈w, r〉.

Remember that by construction w(mi) = w(ni) for 1 ≤ i ≤ q. This means that

we deform each binomial equations by adding terms of weight greater than that

of the binomial. It is shown in [Teissier 2003] that the parametric representation

and the equation representation both describe the deformation of Proposition 7.2.

Up to completion with respect to the (u0, . . . , ug)-adic topology, the algebra

Aν(R) is the quotient of k[v][[u0, . . . , ug]] by the ideal generated by the equations

written above. It is also equal to the subalgebra k[[ξ0(vt)v−γ0 , . . . , ξg(vt)v−γg ]]

of k[v][[t]].

One may remark that, in the case where the ξj(t) are polynomials, there is a

close analogy with the SAGBI algebras bases for the subalgebra k[ξ0(t), ξ1(t)] ⊂
k[t] (see [Sturmfels 1996]). This is developed in [Bravo 2004].

This equation description is the generalization of the example shown at the

beginning of this section.

Now it should be more or less a computational exercise to check that a toric

map Z(Σ) → Ag+1 which resolves the binomial variety C
Γ also resolves the

“nearby fibers”, which are all isomorphic to C re-embedded in Ag+1. There is

however a difficulty [Goldin and Teissier 2000] which requires the use of Zariski’s

main theorem.

The results of this section have been extended in [González Pérez 2003] to the

much wider class of irreducible quasi-ordinary germs of hypersurface singulari-

ties, whose singularities are not isolated in general.

This shows that a toric resolution of binomial varieties can be used, by con-

sidering suitable deformations, to resolve singularities which are at first sight far

from binomial.

Appendix: Multiplicities, Volumes and Nondegeneracy

Multiplicities and volumes. One of the interesting features of the Briançon–

Skoda theorem is that it provides a way to pass from the integral closure of an

ideal to the ideal itself, while it is much easier to check that a given element

is in the integral closure of an ideal than to check that it is in the ideal. For

this reason, the theorem has important applications in problems of effective

commutative algebra motivated by transcendental number theory. In the same

vein, this section deals, in the monomial case, with the problem of determining

from numerical invariants whether two ideals have the same integral closure,

which is much easier than to determine whether they are equal. The basic fact

coming to light is that multiplicities in commutative algebra are like volumes in

the theory of convex bodies, and indeed, for monomial ideals, they are volumes,

up to a factor of d ! (compare with [Teissier 1988]). The same is true for degrees

of invertible sheaves on algebraic varieties. Exactly as monomial ideals, and

for the same reason, the degrees of equivariant invertible sheaves generated by
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their global sections on toric varieties are volumes of compact convex bodies

multiplied by d ! [Teissier 1979].

In this appendix proofs are essentially replaced by references; for the next

four paragraphs, see [Bourbaki 1983, Ch. VIII, § 4].

Let R be a noetherian ring and q an ideal of R such that the R-module R/q

has finite length `R(R/q) = `R/q(R/q). Then the quotients qn
/qn+1 have finite

length as R/q-modules and one can define the Hilbert–Samuel series

HR,q =

∞∑

n=0

`R/q(q
n
/q

n+1)Tn ∈ Z[[T ]].

There exist an integer d ≥ 0 and an element P ∈ Z[T, T
−1] such that P (1) > 0

and

HR,q = (1− T )−d
P.

From this follows:

Proposition A.1 (Samuel). Given R and q as above, there exist an integer

N0 and a polynomial Q(U) with rational coefficients such that for n ≥ N0 we

have

`R/q(R/q
n) = Q(n).

If we assume that q is primary for some maximal ideal m of R, i.e., q ⊃ m
k for

large enough k, the degree of the polynomial Q is the dimension d of the local

ring Rm, and the highest degree term of Q(U) can be written e(q, R)U
d
/d !. In

fact, e(q, R) = P (1) ∈ N.

By definition, the integer e(q, R) is the multiplicity of the ideal q in R.

If R contains a field k such that k = R/m, we can replace `R/q(R/qn) by its

dimension dimk(R/qn) as a k-vector space.

Take R = k[u1, . . . , ud] and q = (um1

, . . . , u
mq

)R; the ideal q is primary

for the maximal ideal m = (u1, . . . , ud)R if and only if dimk R/q < ∞. Now

one sees that the images of the monomials u
m such that m is not contained in

E =
⋃q

i=1(m
i + Rd

≥0) constitute a basis of the k-vector space R/q:

dimk R/q = #Zd ∩ (Rd
≥0 \ E).

For the same reason we have for all n ≥ 1, since qn is also monomial,

dimk R/q
n = #Zd ∩ (Rd

≥0 \ nE),

where nE is the set of sums of n elements of E.

From this follows, in view of the polynomial character of the first term of the

equality:

Corollary A.2. Given a subset E =
⋃q

s=1(m
s + Rd

≥0) whose complement

in Rd
≥0 has finite volume, there exists an integer N0 and a polynomial Q(n) of

degree d with rational coefficients such that for n ≥ N0 we have

#Zd ∩ (Rd
≥0 \ nE) = Q(n).
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Therefore,

lim
n→∞

Q(n)

nd
= lim

n→∞

#Zd ∩ (Rd
≥0 \ nE)

nd
= lim

n→∞
Covol

nE

n
= CovolE,

where CovolA, the covolume of A, is the volume of the complement of A in Rd
≥0.

The last equality follows from the remark made in Section 4, and the previous

one from the classical fact of calculus that as n→∞,

Covol
nE

n
=

#Zd ∩ (Rd
≥0 \ nE)

nd
+ o(1).

Since the limit as n→∞ of Q(n)/n
d is e(q, R)/d !, we have immediately:

Corollary A.3. For a monomial ideal q = (um1

, . . . , u
ms

) in R = k[u1, . . . , ud]

which is primary for m = (u1, . . . , ud) , with the notations above, we have

dimk(R/q) = #Zd ∩ (Rd
≥0 \ E),

e(q, R) = d ! CovolE.

Corollary A.4 (Monomial Rees Theorem, an avatar of [Rees 1961]).

(a) For a monomial primary ideal q as above, me have

e(q, R) = e(q, R).

(b) Given two such ideals q1, q2 such that q1 ⊆ q2, we have q1 = q2 if and only

if e(q1, R) = e(q2, R).

These results hold for ideals containing a power of the maximal ideal in a noe-

therian local ring R whose completion is equidimensional [Rees 1961].

Now there is a well-known theorem in the theory of convex bodies, concerning

the volume of the Minkowski sum of compact convex sets. Recall that for K1,K2

in Rd, the Minkowski sum K1 + K2 is the set of sums {x1 + x2 : x1 ∈ K1, x2 ∈
K2}; also we set λK = {λx : x ∈ K} for λ ∈ R. Then:

Theorem A.5 (Minkowski). Given s compact convex subsets K1, . . . ,Ks of

Rd, there is a homogeneous expression for the d-dimensional volume of the pos-

itive Minkowski linear combination of the Ki, with (λi)1≤i≤s ∈ Rs
≥0:

Vold(λ1K1 + · · ·+ λsKs) =
∑

P
s
1

αi=d

d !

α1! . . . αs!
Vol

(
K

[α1]
1 , . . . ,K

[αs]
s

)
λ

α1

1 . . . λ
αs
s ,

where the coefficients Vol(K
[α1]
1 , . . . ,K

[αs]
s ) are nonnegative and are called the

mixed volumes of the convex sets Ki.

In particular , with s = 2,

Vold(λ1K1 + λ2K2) =

d∑

i=0

(
d

i

)
Vol(K

[i]
1 ,K

[d−i]
2 )λi

1λ
d−i
2 .
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The proof is obtained by approximating the convex bodies by polytopes, and

using the Cauchy formula for the volume of polytopes. Exactly the same proof

applies to the covolumes of convex subsets of Rd
≥0 to give the corresponding

theorem:

Covold(λ1E1+· · ·+λsEs) =
∑

P
s
1

αi=d

d !

α1! . . . αs!
Covol

(
E

[α1]
1 , . . . , E

[αs]
s

)
λ

α1

1 . . . λ
αs
s ,

defining the mixed covolumes of such convex subsets.

There is an analogous formula in commutative algebra:

Theorem A.6 [Teissier 1973]. Given ideals q1, . . . , qs which are primary for

a maximal ideal m in a noetherian ring R such that the localization Rm is a

d-dimensional local ring and the residue field Rm/mRm is infinite, there is for

λ1, . . . , λs ∈ Zs
≥0 an expression

e(qλ1

1 . . . q
λs
s , R) =

∑
P

s
1

αi=d

d !

α1! . . . αs!
e

(
q
[α1]
1 , . . . , q

[αs]
s ;R

)
λ

α1

1 . . . λ
αs
s ,

where the coefficients e

(
q
[α1]
1 , . . . , q

[αs]
s ;R

)
are nonnegative integers and are called

the mixed multiplicities of the primary ideals qi. (This name is justified by the

fact that e

(
q
[α1]
1 , . . . , q

[αs]
s ;R

)
is the multiplicity of an ideal generated by α1

elements of q1, . . . , αs elements of qs, chosen in a sufficiently general way.)

Taking s = 2 gives

e(qλ1

1 q
λ2

2 , R) =

d∑

i=0

(
d

i

)
e

(
q
[i]
1 , q

[d−i]
2 ;R

)
λ

i
1λ

d−i
2 .

From this and Corollary A.3 there follows immediately:

Corollary A.7. Let k be an infinite field . Given monomial ideals q1, . . . , qs

which are primary for the maximal ideal (u1, . . . , ud) in R = k[u1, . . . , ud], and

denoting by Ei the corresponding subsets generated by their exponents, we have

for all α ∈ Zs
≥0 such

∑s
1 αi = d the equality

e(q
[α1]
1 , . . . , q

[αs]
s ;R) = d ! Covol

(
E

[α1]
1 , . . . , E

[αs]
s

)
.

In particular, the mixed multiplicities depend only on the integral closures of the

ideals qi. Now we have the well-known Alexandrov–Fenchel inequalities for the

mixed volumes of two compact convex bodies:

Theorem A.8 (Alexandrov and Fenchel; see [Gromov 1990]).

(a) Let K1,K2 be compact convex bodies in Rd; set vi = Vol(K
[i]
1 ,K

[d−i]
2 ). For

all 2 ≤ i ≤ d,

v
2
i−1 ≥ vivi−2.
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(b) Equality holds in all these inequalities if and only if for some ρ ∈ R+ we

have K1 = ρK2 up to translation. If all the vi are equal , then K1 = K2 up to

translation, and conversely .

Let Bd denote the d-dimensional unit ball, and A any subset of Rd which is

tame enough for the volumes to exist.

The problem that inspired this theorem is to prove that in the isoperimetric

inequality Vold−1(∂A)d ≥ d
d Vold(B

d)Vold(A)d−1, equality should hold only if

A is a multiple of the unit ball, to which some “hairs” of a smaller dimension than

∂A have been added. In the case where A is convex, taking K1 to be the unit

ball and K2 = A, one notices that v0 = Vold(A) and v1 = d
−1 Vold−1(∂A); the

isoperimetric inequality then follows very quickly by an appropriate telescoping

of the Alexandrov–Fenchel inequalities. From this telescoping follows the fact

that if we have equality in the isoperimetric inequality for a convex subset A of

Rd, then we have equality in all the Alexandrov–Fenchel inequalities for A and

the unit ball, so that A must be a ball. By the same type of telescoping, one

proves the inequalities v
d
i ≥ v

d−i
0 v

i
d, which yields:

Theorem A.9 (Brünn and Minkowski; see [Gromov 1990]). For convex

compact subsets K1,K2 of Rd,

Vold(K1 + K2)
1/d ≥ Vold(K1)

1/d + Vold(K2)
1/d

.

Equality holds if and only if the two sets are homothetic up to translation, or

one of them is a point , or Vold(K1 + K2)
1/d = 0.

The same constructions and proof apply to covolumes, where the inequalities are

reversed; they correspond to inequalities for the mixed multiplicities of monomial

ideals, which are in fact true for primary ideals in formally equidimensional

noetherian local rings:

Theorem A.10 [Teissier 1977; 1978; Rees and Sharp 1978; Katz 1988]. Let

q1, q2 be primary ideals in the d-dimensional noetherian local ring R. Set

wi = e(q
[i]
1 , q

[d−i]
2 ;R).

(a) We have w
2
i−1 ≤ wiwi−2 for 2 ≤ i ≤ d.

(b) The inequalities e(q1q2, R)1/d ≤ e(q1, R)1/d + e(q2, R)1/d hold , with equality

if and only if the inequalities of (a) are equalities.

(c) Assuming in addition that R is formally equidimensional (quasi-unmixed),

equality holds in all these inequalities if and only if qa
1 = qb

2 for some a, b ∈ N.

If all the wi are equal , then q1 = q2, and conversely .

So in this case again, the combinatorial inequalities appear as the avatar for

monomial ideals of general inequalities of commutative algebra. One can see

that if q1 ⊆ q2, we have e(q1, R) = wd ≥ wi ≥ w0 = e(q2, R), for 1 ≤ i ≤ d− 1.

So this result implies Rees’ Theorem, which is stated after Corollary A.4.
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In fact the same happens for the Alexandrov–Fenchel inequalities, which are

the avatars for toric varieties associated to polytopes of general inequalities of

Kähler geometry known as the Hodge Index Theorem. This is because the mixed

volumes of rational convex polytopes are equal, up to a d ! factor, to the mixed

degrees of invertible sheaves (or of divisors) on certain toric varieties associated

to the collection of polytopes, exactly as in Corollary A.7. This approach to

Alexandrov–Fenchel inequalities was introduced by Khovanskii and the author;

see [Gromov 1990] for an excellent exposition of this topic, and [Khovanskii 1979;

Teissier 1979].

In all these cases, it is remarkable that, thanks to the positivity and convexity

properties of volumes and of multiplicities, a finite number of equations on a

pair (A1, A2) of objects in an infinite dimensional space (convex bodies modulo

translation or integrally closed primary ideals) suffices to ensure that A1 = A2.

Newton nondegenerate ideals in k[[u1, . . . , ud]] and multiplicities. Define

the support S(I) of an ideal I of k[[u1, . . . , ud]] to be the set of the exponents m

appearing as one of the exponents in at least one series belonging to the ideal I.

Define the Newton polyhedron N+(I) of I as the boundary of the convex hull

P+(I) of
⋃

m∈S(I)(m + Rd
≥0).

According to [Bivià-Ausina et al. 2002], a primary ideal q is said to be nonde-

generate if it admits a system of generators q1, . . . , qt such that their restrictions

to each compact face of N+(I) have no common zero in the torus (k∗)d. The

following is part of what is proved in [Bivià-Ausina et al. 2002, § 3]:

Theorem A.11. For a primary ideal q of R = k[[u1, . . . , ud]], the following

conditions are equivalent :

(a) The ideal q is nondegenerate in the coordinates u1, . . . , ud.

(b) e(q, R) = d ! CovolP+(I).

(c) The integral closure q of q is generated by monomials in u1, . . . , ud.

It follows from this that monomial ideals are nondegenerate, and that products

of nondegenerate primary ideals are nondegenerate [Bivià-Ausina et al. 2002,

Corollary 3.14]. Moreover, all the numerical facts mentioned above for monomial

ideals with respect to their Newton polyhedron are valid for nondegenerate ideals

(loc. cit.). Nondegenerate ideals behave as reductions of monomial ideals, which

in fact they are. Here we can think of a reduction (in the sense of [Northcott

and Rees 1954]; see also see [Rees 1984]) of an ideal M ⊂ k[[u1, . . . , ud]] as an

ideal generated by d sufficiently general combinations of generators of M . More

precisely, it is an ideal M ′ contained in M and having the same integral closure.

There is a close connection between this nondegeneracy for ideals and the

results of section 5; if the ideal q = (q1, . . . , qs)k[[u1, . . . , ud]] is nondegenerate,

then a general linear combination q =
∑s

i=1 λiqi is nondegenerate with respect

to its Newton polyhedron.
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There are many other interesting consequences of the relationship between

monomial ideals and combinatorics; I refer the reader to [Sturmfels 1996].

All the results of this appendix remain valid if k[u1, . . . , ud] and its completion

k[[u1, . . . , ud]] are replaced respectively by k[σ̌ ∩ Zd] and its completion, for a

strictly convex cone σ ⊂ Rd
≥0.

There are also generalizations of mixed multiplicities to collections of not

necessarily primary ideals [Rees 1986] and to the case where one of the ideals

is replaced by a submodule of finite colength of a free R-module of finite type

[Kleiman and Thorup 1996].

It would be interesting to determine how the results of this appendix extend

to monomial submodules of a free k[u1, . . . , ud]-module.
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[Bourbaki 1983] N. Bourbaki, Algèbre commutative, Ch. VIII et IX, Masson, Paris,
1983.

[Bravo 2004] A. Bravo, “Some facts about canonical subalgebra bases”, pp. 247–254
in Trends in algebraic geometry, edited by L. Avramov et al., Math. Sci. Res. Inst.
Publ. 51, Cambridge University Press, New York, 2004.

[Brieskorn and Knörrer 1986] E. Brieskorn and H. Knörrer, Plane algebraic curves,
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[De Concini and Procesi 1983] C. De Concini and C. Procesi, “Complete symmetric
varieties”, pp. 1–44 in Invariant theory (Montecatini, 1982), edited by F. Gherardelli,
Lecture Notes in Math. 996, Springer, Berlin, 1983.

[De Concini and Procesi 1985] C. De Concini and C. Procesi, “Complete symmetric
varieties, II: Intersection theory”, pp. 481–513 in Algebraic groups and related topics

(Kyoto/Nagoya, 1983), edited by R. Hotta, Adv. Stud. Pure Math. 6, Kinokuniya,
Tokyo, 1985.

[Eisenbud and Sidman 2004] D. Eisenbud and J. Sidman, “The geometry of syzygies”,
pp. 115–152 in Trends in algebraic geometry, edited by L. Avramov et al., Math.
Sci. Res. Inst. Publ. 51, Cambridge University Press, New York, 2004.

[Eisenbud and Sturmfels 1996] D. Eisenbud and B. Sturmfels, “Binomial ideals”, Duke

Math. J. 84:1 (1996), 1–45.

[Ewald 1996] G. Ewald, Combinatorial convexity and algebraic geometry, Graduate
Texts in Math. 168, Springer, Paris, 1996.
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appendix to D. Eisenbud and H. I. Levine, “An algebraic formula for the degree of
a C∞ map germ”, Ann. Math. (2) 106:1 (1977), 19–44.

[Teissier 1978] B. Teissier, “On a Minkowski-type inequality for multiplicities. II”, pp.
347–361 in C. P. Ramanujam, a tribute, edited by K. G. Ramanathan, Tata Studies
in Math. 8, Springer, Berlin, 1978.
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Institut mathématique de Jussieu
UMR 7586 du C.N.R.S.
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1. Introduction

Let k be a field, let R ⊂ k[x1, . . . , xn] be a finitely generated subalgebra,

and let > be a term ordering in k[x1, . . . , xn]. A subset B of R is said to be a

canonical subalgebra basis, or SAGBI basis, of R, if

in>B := {in>f : f ∈ B}

generates the subalgebra in>R := {in>g : g ∈ R} of k[x1, . . . , xn]. If B is a

SAGBI basis for R, it generates R as a k-algebra.

The abbreviation SAGBI stands for “subalgebra analog to Gröbner basis for

ideals”; as we will see in Section 2 there are several similarities between canonical

subalgebra bases and Gröbner bases.

The simplest example occurs when R ⊂ k[x1, . . . , xn] is generated by a single

element, in which case this same generator is also a canonical subalgebra basis.

The notion was introduced by Kapur and Madlener [1989] and independently

by Robbiano and Sweedler [1990]. SAGBI bases are used to test subalgebra

247
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membership. Algorithms for computing canonical subalgebra bases are presented

in both [Kapur and Madlener 1989] and [Robbiano and Sweedler 1990].

From the algebraic point of view, canonical bases are very interesting. For

instance, if in>R is finitely generated, the study of in>R is simpler than that of

R, and in many cases both algebras share the same properties. As an example,

in [Conca et al. 1996] it is shown that if in>R is normal, Cohen–Macaulay, and

has rational singularities, R has the same properties.

From the geometric perspective, SAGBI bases also offer interesting possibili-

ties. When in>R is finitely generated, it can be regarded as the associated graded

ring of a suitable degree filtration of R. As a consequence in>R can be inter-

preted as the special fiber of a one-parameter family with R as a general fiber.

In this case the general fiber and the special fiber of the family share geometric

properties. See [Conca et al. 1996; Sturmfels 1996] and also Section 6 below for

discussion.

This philosophy appears, in the analytic case, in [Teissier 1975] and [Goldin

and Teissier 2000], as an approach to resolution of singularities of plane curves:

Given a suitable parametrization of a plane curve, construct a flat family of

curves in such a way that the general fiber is isomorphic to the original curve,

and the special fiber is a monomial curve. Then a toric resolution of singularities

of the special fiber induces a resolution of the generic fiber [Goldin and Teissier

2000, § 6].

Canonical subalgebra bases have also been studied for algebras over arbitrary

rings in [Miller 1996] and [Stillman and Tsai 1999]. For other applications and

examples, see [Göbel 2002; 2001; 2000; 1999c; 1999b; 1999a; 1998; Göbel and

Maier 2000; Miller 1998; Nordbeck 2002].

2. SABGI Bases Versus Gröbner Bases

As pointed out in the introduction, canonical subalgebra bases and Gröbner

bases play similar roles in two different contexts: The first are used to test

subalgebra membership while the second do the same work for ideals.

This similarity can be carried out one step further in two different directions:

The computational point of view and the geometric interpretation.

The Subduction Algorithm described in [Sturmfels 1996, Chapter 11] cor-

responds to the subalgebra analog of the Division Algorithm for ideals (which

produces, for any element f in an ideal I, an expression of f as a linear combi-

nation of a Gröbner basis of I):

Algorithm 2.1 (Subduction Algorithm for a Canonical Basis C ).

Given a canonical basis C for a subalgebra R ⊂ k[x1, . . . , xn] and given f ∈
k[x1, . . . , xn], the algorithm computes an expression for f as a polynomial in the

elements of C , provided that f ∈ R.
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Step 1. Find f1, . . . , fr ∈ C and exponents i1, . . . , ir ∈ N and c ∈ k \ {0} such

that

in>f = c · in>f
i1
1 · · · in>f

ir
r . (2–1)

Step 2. If it is not possible to find an expression as in (2–1) then f /∈ R, and the

algorithm stops.

Step 3. Otherwise, set g := c · f i1
1 · · · f ir

r , and replace f by f − g. Repeat the

previous steps until the algorithm stops or f is a constant in k.

In Section 5 we will also see how this algorithm can be used to produce an

algorithm to compute SAGBI bases which is similar to Buchberger’s algorithm

for computing Gröbner bases.

As for the geometric interpretation, let I ⊂ k[x1, . . . , xn] be the ideal defining

a variety X, and > a term ordering in k[x1, . . . , xn]. The question is:

How close are X and Spec (k[x1, . . . , xn]/in>I)?

The general theory of Gröbner basis says that one can construct a flat family of

varieties over a one-dimensional scheme Spec (k[t]), whose general fiber is isomor-

phic to X, and whose special fiber at t = 0 is Spec (k[x1, . . . , xn]/in>I). In this

sense we say that the original variety X deforms into Spec (k[x1, . . . , xn]/in>I).

Now let Y be a variety parametrized by equations f1, . . . , fs ∈ k[t1, . . . , tm],

and let > be a term ordering in k[t1, . . . , tm]. If {g1, . . . , gr} is a canonical

subalgebra basis of k[f1, . . . , fs], we will see in Section 6 that one can construct

a one-parameter flat family of varieties, whose general fiber is isomorphic to

Y , and whose special fiber is a toric variety; the generators of the algebras

degenerate into monomials and the relations between them into binomials.

Perhaps the main difference between Gröbner bases and canonical subalgebra

bases is that while the first are always finite, the second may fail to be so. This

point is discussed in the next section.

3. When Are SAGBI Bases Finite?

Canonical subalgebra bases are not always finite; finiteness may even depend

on the term ordering > chosen on k[x1, . . . , xn]. We examine some examples.

If R ⊂ k[x, y] is generated by {x+y, xy, xy
2}, then R does not have a finitely

generated canonical subalgebra basis, no matter what term ordering we fix in

k[x, y]: If x > y, it can be shown that a SAGBI basis of R must contain the

infinite set S = {x+ y, xy
n : n > 0}. If y > x, note that R is also generated by

{x+ y, xy, x
2
y}. It can be shown that

S = {x+ y, yx
n : n > 0}

should be contained in a SAGBI basis for R [Robbiano and Sweedler 1990, Ex-

ample 1.20].
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On the opposite extreme, the symmetric algebra R ⊂ k[x1, . . . , xn] always

has a finitely generated canonical subalgebra basis B which does not depend on

the order previously chosen: In this case, B is the set of elementary symmetric

polynomials [Robbiano and Sweedler 1990, Theorem 1.14].

There are also examples of subalgebras that, depending on the order fixed,

may or may not have a finite canonical subalgebra basis: Let R ⊂ k[x, y] be the

subalgebra generated by {x, xy− y
2
, xy

2}. If we fix a term ordering on k[x, y]

such that y > x, then B = {x, xy− y
2
, xy

2} is indeed a canonical subalgebra

basis for R, while if we fix a term ordering such that x > y then it can be shown

that k[x, xy, xy
2
, . . .] ⊂ in>R, and therefore it cannot have a finite SAGBI basis

[Robbiano and Sweedler 1990, Example 4.11]. For these and other examples, we

refer the reader to [Göbel 2000; Göbel 1999b; Robbiano and Sweedler 1990].

In general, it is a hard problem to decide whether a given subalgebra does

have a finite canonical subalgebra basis. Some conditions are as follows:

Proposition 3.1 [Robbiano and Sweedler 1990, Proposition 4.7]. Suppose that

R is a subalgebra of k[x1, . . . , xn] and that C is a finitely generated subalgebra

of k[x1, . . . , xn] containing in>R. If C is integral over in>R, then R has a finite

SAGBI basis. In particular if k[x1, . . . , xn] is integral over in>R, then R has a

finite SAGBI basis.

A corollary of the previous proposition is that when n = 1, things become less

chaotic: Any subalgebra R of k[x] has a finite subalgebra basis [Robbiano and

Sweedler 1990, Corollay 4.8]. And when the number of generators is low, there

are even easy criteria to decide if a given set of generators of a subalgebra of k[x]

is a canonical basis:

Theorem 3.2 [Torstensson 2002, Theorems 10, 12]. Let f, g ∈ k[x] and consider

the subalgebra R ⊂ k[x] generated by them. Then:

(i) If f and g have relatively prime degrees, they form a canonical subalgebra

basis for R.

(ii) If deg f divides deg g, f and g form a canonical subalgebra basis for R if and

only if g is a polynomial in f .

For more along these lines see Propositions 6, 7, and Theorems 12 and 14 in

[Torstensson 2002].

4. Finite SAGBI Bases

Let R ⊂ k[x1, . . . , xn] be a subalgebra generated by B = {f1, . . . , fs}, let > be

a monomial ordering in k[x1, . . . , xn], and assume that R has a finite canonical

subalgebra basis. The purpose of this section is to describe a criterion to decide

whether B is a canonical basis for R. In Section 5 and 6 some consequences of

this result will be discussed. The setup that follows can be found in [Sturmfels

1996, Chapter 11].
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Consider the exact sequences

0 - I - k[t1, . . . , ts] - k[f1, . . . , fs] - 0

ti
- fi

0 - IA
- k[t1, . . . , ts] - k[in>f1, . . . , in>fs] - 0

ti
- in>fi

(4–1)

Since the kernel of the second map represents relations between monomials,

the ideal IA is generated by binomials— it is a toric ideal.

Let ω = (ω1, . . . , ωn) ∈ Rn be a weight vector which represents the term

ordering > for the polynomials {f1, . . . , fs}.
Assume that in>fi = x

ai1

1 · · ·xain
n , for i = 1, . . . , s. Then

A =




a11 . . . as1
...

. . .
...

a1n . . . asn




is an n× s matrix, and

A
T
ω =




a11ω1 + . . . + a1nωn
...

as1ω1 + . . . + asnωn




is a vector in Rs, which can be thought of as a weight vector defining an order

in k[t1, . . . , ts]. Therefore it can be used to form an initial ideal inAT ωI of I. In

general this will not be a monomial ideal since A
T
ω may not be a generic vector,

even if ω is (see Example 4.2 below).

The key point is that the comparison between IA and inAT ωI gives a criterion

for deciding whether or not {f1, . . . , fs} is a canonical basis for the subalgebra

that they generate.

In general inAT ωI ⊂ IA [Sturmfels 1996, Lemma 11.3], but if equality holds,

then {f1, . . . , fs} is a canonical basis. More precisely:

Theorem 4.1 [Sturmfels 1996, Theorem 11.4]. The set {f1, . . . , fs} is a canon-

ical basis if and only if inAT ωI = IA.

Example 4.2. Let R = k[x2 +x
3
, x+x

2] ⊂ k[x], and let us temporarily forget

that we already know that {x2+x
3
, x+x

2} is a canonical subalgebra basis (since

the degrees of the generators are coprime). With the notation above, we have

I = 〈t32−t
2
1−t1t2〉, and that IA = 〈t32−t

2
1〉. Let A = (3, 2). Then A

T
ω =

(
3
2

)
and

inAT ωI = 〈t32− t
2
1〉 = IA. Hence, by Theorem 4.1, {x2 +x

3
, x+x

2} is a SAGBI

basis for R.
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5. An Algorithm to Compute SAGBI bases

Theorem 4.1 can be used to construct an algorithm for computing canonical

subalgebra bases. With the same notation as in Section 4, first we state the

following corollary to Theorem 4.1:

Corollary 5.1 [Sturmfels 1996, Corollary 11.5]. Let {p1, . . . , pt} be genera-

tors for the toric ideal IA. Then {f1, . . . , fs} is a canonical basis if and only if

Algorithm 2.1 reduces pi(f1, . . . , fs) to a constant for all i = 1, . . . , t.

Therefore, to apply the criterion of Theorem 4.1 there is no need to compute

generators for I, since only the ones of IA are used. Let us see how this works

with an example:

Example 5.2. Consider R = [x4 +x
3
, x

2 +x] ⊂ k[x]. By [Robbiano and

Sweedler 1990, Corollay 4.8] there is a finite SAGBI basis for R. With the

same notation as in Section 4 we have A = (4, 2), I = 〈t21− 2t1t
2
2− t1t2 + t

4
2〉,

A
T
ω =

(
4
2

)
and

inAT ωI = 〈t21− 2t1t
2
2 + t

4
2〉  IA = 〈t1− t

2
2〉.

Therefore, by Theorem 4.1, the set {x4 +x
3
, x

2 +x} is not a SAGBI basis for R.

With the notation of Corollary 5.1, p1(t1, t2) = t1− t
2
2 Algorithm 2.1 does not

reduce p1(x
4+x

3
, x

2+x) to a constant, since p1(x
4+x

3
, x

2+x) = x
3+x

2. This

is as expected. Hence we need to extend our generating set to

{x4 +x
3
, x

2 +x, x
3 +x

2}.

In this new setting, IA = 〈t32− t
2
3, t1− t

2
2〉 =

〈
p1(t1, t2, t3), p2(t1, t2, t3)

〉
, and

it is easy to check that, in this case, Algorithm 2.1 reduces pi(t1, t2, t3) to a

constant for i = 1, 2, and therefore, {x4 +x
3
, x

2 +x, x
3 +x

2} is a SAGBI basis

for R.

Remark 5.3. The algorithm that follows from Corollary 5.1 (used in Example

5.2) is similar to Buchberger’s Algorithm to compute Gröbner bases of ideals,

provided that we ahead of time know that there is a finite SAGBI basis.

6. Geometric Interpretation

As a final note we review the geometry behind the previous statements, spe-

cially diagram (4–1) and Theorem 4.1.

Assume that X is a variety parametrized by the equations {f1, . . . , fs}. Using

the same notation as in Section 4, if {f1, . . . , fs} is a canonical subalgebra bases

then by Theorem 4.1, IA = inAT ωI.

The following corollary to Theorem 4.1 relates any reduced Gröbner basis of

IA to a suitable reduced Gröbner basis of I:



SOME FACTS ABOUT CANONICAL SUBALGEBRA BASES 253

Corollary 6.1 [Sturmfels 1996, Corollary 11.6]. With the same notation as in

Section 4, assume that {f1, . . . , fs} is a canonical subalgebra basis. Then every

reduced Gröbner basis G of IA lifts to a reduced Gröbner basis H of I, i .e. the

elements of G are the initial forms with respect to A
T
ω of the elements of H .

Now, the general theory of Gröbner bases tells us that we can construct a one-

parameter flat family of varieties whose general fiber is isomorphic to X and

whose special fiber is isomorphic to Spec (k[t1, . . . , ts]/inAT ωI).

Therefore, Corollary 6.1, implies that we can construct a one-parameter flat

family of varieties whose general fiber is isomorphic to X and whose special

fiber is isomorphic to Spec (k[t1, . . . , ts]/IA): The parametric equations defining

X degenerate into monomials and the relations among them into binomials.

Therefore X degenerates to a toric variety.
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